WorldWideScience

Sample records for a1 iga1 proteases

  1. Evaluation of Immunoglobulin A1 (IgA1) Protease and IgA1 Protease-Inhibitory Activity in Human Female Genital Infection with Neisseria gonorrhoeae

    OpenAIRE

    Hedges, Spencer R.; Mayo, Matthew S.; Kallman, Lisa; Mestecky, Jiri; Hook, Edward W.; Russell, Michael W.

    1998-01-01

    Immunoglobulin A1 (IgA1) protease, an enzyme that selectively cleaves human IgA1, may be a virulence factor for pathogenic organisms such as Neisseria gonorrhoeae. Host protection from the effects of IgA1 protease includes antibody-mediated inhibition of IgA1 protease activity, and it is believed that the relative balance between IgA1 protease and inhibitory antibodies contributes to the pathogenesis of disease caused by IgA1 protease-producing organisms. We have examined the levels of these ...

  2. Evaluation of Immunoglobulin A1 (IgA1) Protease and IgA1 Protease-Inhibitory Activity in Human Female Genital Infection with Neisseria gonorrhoeae

    Science.gov (United States)

    Hedges, Spencer R.; Mayo, Matthew S.; Kallman, Lisa; Mestecky, Jiri; Hook, Edward W.; Russell, Michael W.

    1998-01-01

    Immunoglobulin A1 (IgA1) protease, an enzyme that selectively cleaves human IgA1, may be a virulence factor for pathogenic organisms such as Neisseria gonorrhoeae. Host protection from the effects of IgA1 protease includes antibody-mediated inhibition of IgA1 protease activity, and it is believed that the relative balance between IgA1 protease and inhibitory antibodies contributes to the pathogenesis of disease caused by IgA1 protease-producing organisms. We have examined the levels of these two opposing factors in genital tract secretions and sera from women with uncomplicated infection with N. gonorrhoeae. When IgA1 in cervical mucus was examined by Western blotting, no evidence of cleavage fragments characteristic of IgA1 protease activity was seen in gonococcus-infected or control patients. Cleavage fragments typical of IgA1 protease were detected, however, after the addition of exogenous IgA1 protease to cervical mucus. Degraded IgA1 was detected in some vaginal wash samples, but the fragment pattern was not typical of IgA1 protease activity. All N. gonorrhoeae isolates from the infected patients produced IgA1 protease in vitro. All but two serum samples and 16 of 65 cervical mucus samples displayed inhibitory activity against gonococcal IgA1 protease, but there was no significant difference in the level of inhibitory activity between gonococcus-infected and noninfected patients in either cervical mucus or serum. There was no difference in the levels of IgA1 protease-inhibitory activity in serum or cervical mucus collected from patients at recruitment and 2 weeks later. These results suggest that cleavage of IgA1 by gonococcal IgA1 protease within the lumen of the female lower genital tract is unlikely to be a significant factor in the pathogenesis of infections by N. gonorrhoeae. PMID:9826361

  3. Working mechanism of immunoglobulin A1 (IgA1) protease: cleavage of IgA1 antibody to Neisseria meningitidis PorA requires de novo synthesis of IgA1 Protease

    DEFF Research Database (Denmark)

    Vidarsson, G; Overbeeke, N; Stemerding, AM

    2005-01-01

    Neisseria meningitidis secretes a protease that specifically cleaves the hinge region of immunoglobulin A1 (IgA1), releasing the effector (Fc) domain of IgA1 from the antigen binding (Fab) determinants. Theoretically, the remaining Fab fragments can block pathogen receptors or toxins and still...

  4. Cleavage of a recombinant human immunoglobulin A2 (IgA2)-IgA1 hybrid antibody by certain bacterial IgA1 proteases

    DEFF Research Database (Denmark)

    Senior, B; Dunlop, JI; Batten, MR

    2000-01-01

    , Streptococcus pneumoniae, S. sanguis, Neisseria meningitidis types 1 and 2, N. gonorrhoeae types 1 and 2, and Haemophilus influenzae type 2. Thus, for these enzymes the recognition site for IgA1 cleavage is contained within half of the IgA1 hinge region; additional distal elements, if required, are provided...... by either an IgA1 or an IgA2 framework. In contrast, the IgA2/A1 hybrid appeared to be resistant to cleavage with S. oralis and some H. influenzae type 1 IgA1 proteases, suggesting these enzymes require additional determinants for efficient substrate recognition....

  5. Immunoglobulins in nasal secretions of healthy humans: structural integrity of secretory immunoglobulin A1 (IgA1) and occurrence of neutralizing antibodies to IgA1 proteases of nasal bacteria

    DEFF Research Database (Denmark)

    Kirkeby, L; Rasmussen, TT; Reinholdt, Jesper

    2000-01-01

    . Previous studies have suggested that cleavage of IgA1 in nasal secretions may be associated with the development and perpetuation of atopic disease. To clarify the potential effect of IgA1 protease-producing bacteria in the nasal cavity, we have analyzed immunoglobulin isotypes in nasal secretions of 11......). IgA1 protease-producing bacteria (Haemophilus influenzae, Streptococcus pneumoniae, or Streptococcus mitis biovar 1) were isolated from the nasal cavities of seven subjects at 2.1 x 10(3) to 7.2 x 10(6) CFU per ml of undiluted secretion, corresponding to 0.2 to 99.6% of the flora. Nevertheless, alpha......Certain bacteria, including overt pathogens as well as commensals, produce immunoglobulin A1 (IgA1) proteases. By cleaving IgA1, including secretory IgA1, in the hinge region, these enzymes may interfere with the barrier functions of mucosal IgA antibodies, as indicated by experiments in vitro...

  6. Occurrence and evolution of the paralogous zinc metalloproteases IgA1 protease, ZmpB, ZmpC, and ZmpD in Streptococcus pneumoniae and related commensal species.

    Science.gov (United States)

    Bek-Thomsen, Malene; Poulsen, Knud; Kilian, Mogens

    2012-01-01

    The distribution, genome location, and evolution of the four paralogous zinc metalloproteases, IgA1 protease, ZmpB, ZmpC, and ZmpD, in Streptococcus pneumoniae and related commensal species were studied by in silico analysis of whole genomes and by activity screening of 154 representatives of 20 species. ZmpB was ubiquitous in the Mitis and Salivarius groups of the genus Streptococcus and in the genera Gemella and Granulicatella, with the exception of a fragmented gene in Streptococcus thermophilus, the only species with a nonhuman habitat. IgA1 protease activity was observed in all members of S. pneumoniae, S. pseudopneumoniae, S. oralis, S. sanguinis, and Gemella haemolysans, was variably present in S. mitis and S. infantis, and absent in S. gordonii, S. parasanguinis, S. cristatus, S. oligofermentans, S. australis, S. peroris, and S. suis. Phylogenetic analysis of 297 zmp sequences and representative housekeeping genes provided evidence for an unprecedented selection for genetic diversification of the iga, zmpB, and zmpD genes in S. pneumoniae and evidence of very frequent intraspecies transfer of entire genes and combination of genes. Presumably due to their adaptation to a commensal lifestyle, largely unaffected by adaptive mucosal immune factors, the corresponding genes in commensal streptococci have remained conserved. The widespread distribution and significant sequence diversity indicate an ancient origin of the zinc metalloproteases predating the emergence of the humanoid species. zmpB, which appears to be the ancestral gene, subsequently duplicated and successfully diversified into distinct functions, is likely to serve an important but yet unknown housekeeping function associated with the human host. The paralogous zinc metalloproteases IgA1 protease, ZmpB, ZmpC, and ZmpD have been identified as crucial for virulence of the human pathogen Streptococcus pneumoniae. This study maps the presence of the corresponding genes and enzyme activities in S

  7. Occurrence and Evolution of the Paralogous Zinc Metalloproteases IgA1 Protease, ZmpB, ZmpC, and ZmpD in Streptococcus pneumoniae and Related Commensal Species

    Science.gov (United States)

    Bek-Thomsen, Malene; Poulsen, Knud; Kilian, Mogens

    2012-01-01

    ABSTRACT The distribution, genome location, and evolution of the four paralogous zinc metalloproteases, IgA1 protease, ZmpB, ZmpC, and ZmpD, in Streptococcus pneumoniae and related commensal species were studied by in silico analysis of whole genomes and by activity screening of 154 representatives of 20 species. ZmpB was ubiquitous in the Mitis and Salivarius groups of the genus Streptococcus and in the genera Gemella and Granulicatella, with the exception of a fragmented gene in Streptococcus thermophilus, the only species with a nonhuman habitat. IgA1 protease activity was observed in all members of S. pneumoniae, S. pseudopneumoniae, S. oralis, S. sanguinis, and Gemella haemolysans, was variably present in S. mitis and S. infantis, and absent in S. gordonii, S. parasanguinis, S. cristatus, S. oligofermentans, S. australis, S. peroris, and S. suis. Phylogenetic analysis of 297 zmp sequences and representative housekeeping genes provided evidence for an unprecedented selection for genetic diversification of the iga, zmpB, and zmpD genes in S. pneumoniae and evidence of very frequent intraspecies transfer of entire genes and combination of genes. Presumably due to their adaptation to a commensal lifestyle, largely unaffected by adaptive mucosal immune factors, the corresponding genes in commensal streptococci have remained conserved. The widespread distribution and significant sequence diversity indicate an ancient origin of the zinc metalloproteases predating the emergence of the humanoid species. zmpB, which appears to be the ancestral gene, subsequently duplicated and successfully diversified into distinct functions, is likely to serve an important but yet unknown housekeeping function associated with the human host. PMID:23033471

  8. Increased proportions of bacteria capable of cleaving IgA1 in the pharynx of infants with atopic disease

    DEFF Research Database (Denmark)

    Kilian, M; Husby, S; Høst, A

    1995-01-01

    , and Neisseria meningitidis, of which the first mentioned species was mainly responsible for the difference observed at the 18-mo examination. Percentage proportions of IgA1 protease-producing bacteria were significantly related to passive smoking which may stimulate the premature and more pronounced pharyngeal...

  9. IgA Nephropathy and Henoch-Schoenlein Purpura Nephritis: Aberrant Glycosylation of IgA1, Formation of IgA1-Containing Immune Complexes, and Activation of Mesangial Cells

    DEFF Research Database (Denmark)

    Novak, J.; Moldoveanu, Z.; Renfrow, M.B.

    2007-01-01

    IgA1 in the circulation and glomerular deposits of patients with IgA nephropathy (IgAN) is aberrantly glycosylated; the hinge-region O-linked glycans are galactose-deficient. The circulating IgA1 of patients with Henoch-Schoenlein purpura nephritis (HSPN) has a similar defect. This aberrancy...... at specific sites. We sought to define the aberrant glycosylation of a galactose-deficient IgA1 myeloma protein and analyze the formation of the immune complexes and their biological activities. Supplementation of serum or cord-blood serum with this IgA1 protein resulted in formation of new IgA1 complexes...... determined the O-glycosylation sites in the hinge region of the IgA1 myeloma protein and IgA1 proteins from sera of IgAN patients. The IgA1 myeloma protein had galactose-deficient sites at residues 228 and/or 230 and 232. These sites reacted with IgG specific to galactose-deficient IgA1. IgA1 from the Ig...

  10. Primary breast cancer tumours contain high amounts of IgA1 immunoglobulin

    DEFF Research Database (Denmark)

    Welinder, Charlotte; Baldetorp, Bo; Blixt, Klas Ola

    2013-01-01

    The Tn antigen (GalNAc alpha-O-Ser/Thr) as defined by the binding of the lectin, helix pomatia agglutinin (HPA) or anti-Tn monoclonal antibodies, is known to be exposed in a majority of cancers, and it has also been shown to correlate positively with the metastatic capacity in breast carcinoma......-embedded sections from primary breast cancers showed IgA1 to be present in the cytoplasm and plasma membrane of 35 out of 36 individual primary tumours. The immunohistochemical staining of HPA and anti-Tn antibody (GOD3-2C4) did to some extent overlap with the presence of IgA1 in the tumours, but differences were...... seen in the percentage of stained cells and in the staining pattern in the different breast cancers analysed. Anti-Tn antibody and HPA were also shown to specifically bind to a number of possible constellations of the Tn antigen in the hinge region of IgA1. Both reagents could also detect the presence...

  11. Glucocorticoids Reduce Aberrant O-Glycosylation of IgA1 in IgA Nephropathy Patients.

    Science.gov (United States)

    Kosztyu, Petr; Hill, Martin; Jemelkova, Jana; Czernekova, Lydie; Kafkova, Leona Raskova; Hruby, Miroslav; Matousovic, Karel; Vondrak, Karel; Zadrazil, Josef; Sterzl, Ivan; Mestecky, Jiri; Raska, Milan

    2018-03-06

    IgA nephropathy is associated with aberrant O-glycosylation of IgA1, which is recognized by autoantibodies leading to the formation of circulating immune complexes. Some of them, after deposition into kidney mesangium, trigger glomerular injury. In patients with active disease nonresponding to angiotensin-converting enzyme inhibitors or angiotensin II blockers, corticosteroids are recommended. The relationship between the corticosteroid therapy and serum levels of IgA, aberrantly O-glycosylated IgA1, IgA-containing immune complexes and their mesangioproliferative activity was analyzed in IgA nephropathy patients and disease and healthy controls. Prednisone therapy significantly reduced proteinuria and levels of serum IgA, galactose-deficient IgA1, and IgA-IgG immune complexes in IgA nephropathy patients and thus reduced differences in all of the above parameters between IgAN patients and control groups. A moderate but not significant reduction of mesangioproliferative potential of IgA-IgG immune complexes and IgA sialylation was detected. The prednisone therapy reduces overall aberrancy in IgA1 O-glycosylation in IgA nephropathy patients, but the measurement of IgA1 parameters does not allow us to predict the prednisone therapy outcome in individual patients. © 2018 The Author(s). Published by S. Karger AG, Basel.

  12. Transient glyco-engineering to produce recombinant IgA1 with defined N- and O-glycans in plants

    Directory of Open Access Journals (Sweden)

    Martina eDicker

    2016-01-01

    Full Text Available The production of therapeutic antibodies to combat pathogens and treat diseases such as cancer is of great interest for the biotechnology industry. The recent development of plant-based expression systems has demonstrated that plants are well-suited for the production of recombinant monoclonal antibodies with defined glycosylation. Compared to immunoglobulin G (IgG, less effort has been undertaken to express immunoglobulin A (IgA, which is the most prevalent antibody class at mucosal sites and a promising candidate for novel recombinant biopharmaceuticals with enhanced anti-tumour activity. Here, we transiently expressed recombinant human IgA1 against the VP8* rotavirus antigen in glyco-engineered deltaXT/FT Nicotiana benthamiana plants. Mass spectrometric analysis of IgA1 glycopeptides revealed the presence of complex biantennary N-glycans with terminal N-acetylglucosamine present on the N-glycosylation site of the CH2 domain in the IgA1 alpha chain. Analysis of the peptide carrying nine potential O-glycosylation sites in the IgA1 alpha chain hinge region showed the presence of plant-specific modifications including hydroxyproline formation and the attachment of pentoses. By co-expression of enzymes required for initiation and elongation of human O-glycosylation it was possible to generate disialylated mucin-type core 1 O-glycans on plant-produced IgA1. Our data demonstrate that deltaXT/FT Nicotiana benthamiana plants can be engineered towards the production of recombinant IgA1 with defined human-type N- and O-linked glycans.

  13. Galactose-Deficient IgA1 as a Candidate Urinary Polypeptide Marker of IgA Nephropathy?

    Science.gov (United States)

    Allegri, Landino; Hall, Stacy; Wyatt, Robert J.

    2016-01-01

    In patients with IgA nephropathy (IgAN), circulatory IgA1 and IgA1 in mesangial deposits contain elevated amounts of galactose-deficient IgA1 (Gd-IgA1). We hypothesized that a fraction of Gd-IgA1 from the glomerular deposits and/or circulation may be excreted into the urine and thus represent a disease-specific biomarker. Levels of urinary IgA and Gd-IgA1 were determined in 207 patients with IgAN, 205 patients with other renal diseases, and 57 healthy controls, recruited in USA, Japan, and Italy. Urinary IgA was similarly elevated in patients with IgAN and renal-disease controls compared with healthy controls. However, urinary Gd-IgA1 levels were higher in patients with IgAN (IgAN, 28.0 ± 17.9; disease controls, 20.6 ± 17.4 units/mg urinary creatinine; P IgA1 correlated with proteinuria (P IgA from serum and urine of an IgAN patient, the relative proportion of Gd-IgA1 to total IgA1 was higher in the urine compared with serum, suggesting selective excretion of Gd-IgA1 in IgAN. In summary, urinary excretion of Gd-IgA1 was elevated in patients with IgAN and the urinary Gd-IgA1 levels correlated with proteinuria. Urinary Gd-IgA1 may thus represent a disease-specific biomarker of IgAN. PMID:27647947

  14. Cellular Signaling and Production of Galactose-Deficient IgA1 in IgA Nephropathy, an Autoimmune Disease

    Directory of Open Access Journals (Sweden)

    Colin Reily

    2014-01-01

    Full Text Available Immunoglobulin A (IgA nephropathy (IgAN, the leading cause of primary glomerulonephritis, is characterized by IgA1-containing immunodeposits in the glomeruli. IgAN is a chronic disease, with up to 40% of patients progressing to end-stage renal disease, with no disease-specific treatment. Multiple studies of the origin of the glomerular immunodeposits have linked elevated circulating levels of aberrantly glycosylated IgA1 (galactose-deficient in some O-glycans; Gd-IgA1 with formation of nephritogenic Gd-IgA1-containing immune complexes. Gd-IgA1 is recognized as an autoantigen in susceptible individuals by anti-glycan autoantibodies, resulting in immune complexes that may ultimately deposit in the kidney and induce glomerular injury. Genetic studies have revealed that an elevated level of Gd-IgA1 in the circulation of IgAN patients is a hereditable trait. Moreover, recent genome-wide association studies have identified several immunity-related loci that associated with IgAN. Production of Gd-IgA1 by IgA1-secreting cells of IgAN patients has been attributed to abnormal expression and activity of several key glycosyltransferases. Substantial evidence is emerging that abnormal signaling in IgA1-producing cells is related to the production of Gd-IgA1. As Gd-IgA1 is the key autoantigen in IgAN, understanding the genetic, biochemical, and environmental aspects of the abnormal signaling in IgA1-producing cells will provide insight into possible targets for future disease-specific therapy.

  15. Immunoglobulin A1 protease activity in Gemella haemolysans

    DEFF Research Database (Denmark)

    Lomholt, JA; Kilian, Mogens

    2000-01-01

    The purpose of this study was to determine the occurrence and nature of immunoglobulin A1 (IgA1) protease activity in members of the genus Gemella and related taxa. Among a total of 22 Gemella strains belonging to the four species Gemella haemolysans, Gemella morbillorum, Gemella sanguinis...

  16. Somatic Mutations Modulate Autoantibodies against Galactose-Deficient IgA1 in IgA Nephropathy.

    Science.gov (United States)

    Huang, Zhi Qiang; Raska, Milan; Stewart, Tyler J; Reily, Colin; King, R Glenn; Crossman, David K; Crowley, Michael R; Hargett, Audra; Zhang, Zhixin; Suzuki, Hitoshi; Hall, Stacy; Wyatt, Robert J; Julian, Bruce A; Renfrow, Matthew B; Gharavi, Ali G; Novak, Jan

    2016-11-01

    Autoantibodies against galactose-deficient IgA1 drive formation of pathogenic immune complexes in IgA nephropathy. IgG autoantibodies against galactose-deficient IgA1 in patients with IgA nephropathy have a specific amino-acid sequence, Y 1 CS 3 , in the complementarity-determining region 3 of the heavy chain variable region compared with a Y 1 CA 3 sequence in similar isotype-matched IgG from healthy controls. We previously found that the S 3 residue is critical for binding galactose-deficient IgA1. To determine whether this difference is due to a rare germline sequence, we amplified and sequenced the corresponding germline variable region genes from peripheral blood mononuclear cells of seven patients with IgA nephropathy and six healthy controls from whom we had cloned single-cell lines secreting monoclonal IgG specific for galactose-deficient IgA1. Sanger DNA sequencing revealed that complementarity-determining region 3 in the variable region of the germline genes encoded the Y 1 C(A/V) 3 amino-acid sequence. Thus, the A/V>S substitution in the complementarity-determining region 3 of anti-galactose-deficient-IgA1 autoantibodies of the patients with IgA nephropathy is not a rare germline gene variant. Modeling analyses indicated that the S 3 hydroxyl group spans the complementarity-determining region 3 loop stem, stabilizing the adjacent β-sheet and stem structure, important features for effective binding to galactose-deficient IgA1. Understanding processes leading to production of the autoantibodies may offer new approaches to treat IgA nephropathy. Copyright © 2016 by the American Society of Nephrology.

  17. Analysis of O-glycan heterogeneity in IgA1 myeloma proteins by Fourier transform ion cyclotron resonance mass spectrometry: implications for IgA nephropathy

    DEFF Research Database (Denmark)

    Renfrow, MB; Mackay, CL; Chalmers, MJ

    2007-01-01

    deficiency in IgA1 proteins occurs randomly or preferentially at specific sites. We have previously demonstrated the first direct localization of multiple O-glycosylation sites on a single IgA1 myeloma protein by use of activated ion-electron capture dissociation (AI-ECD) Fourier transform ion cyclotron...

  18. IgA nephropathy and IgA vasculitis with nephritis have a shared feature involving galactose-deficient IgA1-oriented pathogenesis.

    Science.gov (United States)

    Suzuki, Hitoshi; Yasutake, Junichi; Makita, Yuko; Tanbo, Yuki; Yamasaki, Kohei; Sofue, Tadashi; Kano, Toshiki; Suzuki, Yusuke

    2018-03-01

    Galactose-deficient IgA1 has been proposed as an important effector molecule in IgA nephropathy (IgAN). We previously showed that the galactose-deficient IgA1-specific monoclonal antibody KM55 can detect circulating galactose-deficient IgA1 in patients with IgAN, enabling us to study the molecular roles of galactose-deficient IgA1. Herein, we further examined the pathophysiological significance of galactose-deficient IgA1 in glomerular deposits of patients with IgAN by immunohistochemistry using KM55. Immunostaining of galactose-deficient IgA1 with KM55 was performed in paraffin-embedded sections of renal biopsy specimens from 48 patients with IgAN and 49 patients with other renal diseases such as lupus nephritis, HCV-related nephropathy, IgA vasculitis with nephritis (IgA-VN), and membranous nephropathy. Glomerular galactose-deficient IgA1 was specifically detected in IgAN and IgA-VN but not in the other renal diseases. Galactose-deficient IgA1 was localized predominantly in the mesangial region as IgA deposition. However, galactose-deficient IgA1 was not detected in patients with lupus nephritis accompanied by glomerular IgA deposition. Thus, our study strongly suggests that IgAN and IgA-VN have a shared feature regarding galactose-deficient IgA1-oriented pathogenesis. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  19. Aberrantly Glycosylated IgA1 as a Factor in the Pathogenesis of IgA Nephropathy

    Directory of Open Access Journals (Sweden)

    Mototsugu Tanaka

    2011-01-01

    Full Text Available Predominant or codominant immunoglobulin (Ig A deposition in the glomerular mesangium characterizes IgA nephropathy (IgAN. Accumulated glomerular IgA is limited to the IgA1 subclass and usually galactose-deficient. This underglycosylated IgA may play an important role in the pathogenesis of IgAN. Recently, antibodies against galactose-deficient IgA1 were found to be well associated with the development of IgAN. Several therapeutic strategies based on corticosteroids or other immunosuppressive agents have been shown to at least partially suppress the progression of IgAN. On the other hand, several case reports of kidney transplantation or acquired IgA deficiency uncovered a remarkable ability of human kidney to remove mesangial IgA deposition, resulting in the long-term stabilization of kidney function. Continuous exposure to circulating immune complexes containing aberrantly glycosylated IgA1 and sequential immune response seems to be essential in the disease progression of IgAN. Removal of mesangial IgA deposition may be a challenging, but fundamental approach in the treatment of IgAN.

  20. CagA, a major virulence factor of Helicobacter pylori, promotes the production and underglycosylation of IgA1 in DAKIKI cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Man [Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City 610500 (China); Li, Fu-gang [Department of Nephrology, Affiliated Hospital of Luzhou Medical College, Luzhou City 646000 (China); Xie, Xi-sheng [Department of Nephrology, Second Clinical Medical Institution of North Sichuan Medical College (Nanchong Central Hospital), Nanchong City 637400 (China); Wang, Shao-qing [Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City 610500 (China); Fan, Jun-ming, E-mail: junmingfan@163.com [Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu City 610500 (China); Department of Nephrology, Affiliated Hospital of Luzhou Medical College, Luzhou City 646000 (China)

    2014-02-07

    Highlights: • CagA stimulated cell proliferation and the production of IgA1 in DAKIKI cells. • CagA promoted the underglycosylation of IgA1 in DAKIKI cells. • CagA decreased the expression of C1GALT1 and its chaperone Cosmc in DAKIKI cells. • Helicobacter pylori infection may participate in the pathogenesis of IgAN via CagA. - Abstract: While Helicobacter pylori (Hp) infection is closely associated with IgA nephropathy (IgAN), the underlying molecular mechanisms remain to be elucidated. This study was to investigate the effect of cytotoxin associated gene A protein (CagA), a major virulence factor of Hp, on the production and underglycosylation of IgA1 in the B cell line DAKIKI cells. Cells were cultured and treated with recombinant CagA protein. We found that CagA stimulated cell proliferation and the production of IgA1 in a dose-dependent and time-dependent manner. Moreover, CagA promoted the underglycosylation of IgA1, which at least partly attributed to the downregulation of β1,3-galactosyltransferase (C1GALT1) and its chaperone Cosmc. In conclusion, we demonstrated that Hp infection, at least via CagA, may participate in the pathogenesis of IgAN by influencing the production and glycosylation of IgA1 in B cells.

  1. Effect of glycosylation on cis/trans isomerization of prolines in IgA1-hinge peptide.

    Science.gov (United States)

    Narimatsu, Yoshiki; Kubota, Tomomi; Furukawa, Sanae; Morii, Hisayuki; Narimatsu, Hisashi; Yamasaki, Kazuhiko

    2010-04-28

    The hinge region of human immunoglobulin A1 (IgA1), connecting the Fab and Fc regions, is mostly composed of Ser, Thr, and Pro (VPSTPPTPSPSTPPTPSPS); hinge peptide (HP). O-Glycans are naturally attached on only particular five Ser/Thr residues in this region. NMR was employed for analysis of the structural changes in HP upon the glycosylation, especially focusing on the cis/trans isomerization of Pro residues. A series of HP containing (13)C,(15)N-labeled Pro residues were chemically synthesized and enzymatically glycosylated. The signals from cis and trans forms of the labeled Pro were identified by two-dimensional NMR spectroscopy. Cis/trans ratios of the Pro residues at the C-terminal side of the glycosylated Ser/Thr were reduced from 9-10% to 2-3% by the glycosylation. Thermodynamic analyses indicated that the decrease in the cis/trans ratio was enthalpy-driven. Hydrogen-deuterium exchange experiments and NOE-based structure determination revealed that the intraresidue hydrogen bonds between the amide group of GalNAc and carbonyl oxygen of the peptide backbone of GalNAc-Thr are formed in the major trans conformers, which is consistent with the thermodynamic parameters. These hydrogen bonds largely restrict the psi angle of the peptide backbone and, thereby, should make the trans conformation of the C-terminal Pro residue more stable than the cis conformation. Namely, it is predicted that the restricted psi angle causes interresidue steric hindrance for the cis conformation. The appropriate glycosylation of HP probably contributes to the decrease in the unfavorable variety of relative orientations between Fab and Fc in IgA1, through stabilizing the conformation of HP.

  2. CCL20 secreted from IgA1-stimulated human mesangial cells recruits inflammatory Th17 cells in IgA nephropathy.

    Directory of Open Access Journals (Sweden)

    Guoyuan Lu

    Full Text Available IgA nephropathy (IgAN is the most common primary glomerulonephritis characterized by human mesangial cells (HMC proliferation and extracellular matrix expansion associated with immune deposits consisting of galactose-deficient IgA1. However, how IgA1 contributes to IgAN has yet to be completely elucidated. In this study, the expression profile of chemokines was more altered in IgA1-treated HMC than in the control group. CCL20 was significantly higher either in the serum of IgAN patients or in IgA1-treated HMC. Further experiments demonstrated that CCR6, the only receptor of CCL20, was highly expressed in activated T cells. Intracellular staining assay and cytokine expression profile implied that CCR6+ T cells produced high IL-17 levels. Transwell experiment immunohistochemistry and immunofluorescence experiments extensively demonstrated that CCL20 could recruit inflammatory Th17 cells to the kidneys. These phenomena caused a series of immune inflammatory responses and further damaged the kidneys. Therefore, HMC stimulated by IgA1 could produce CCL20 and consequently recruit inflammatory Th17 cells to the kidneys to induce further lesion in IgA nephropathy.

  3. Vibration Induces BAFF Overexpression and Aberrant O-Glycosylation of IgA1 in Cultured Human Tonsillar Mononuclear Cells in IgA Nephropathy

    Directory of Open Access Journals (Sweden)

    Muyao Ye

    2016-01-01

    Full Text Available Objective. To investigate the influence of in vitro vibratory stimulation of human tonsillar mononuclear cells (TMCs. Methods. Fourteen IgA nephropathy (IgAN patients with chronic tonsillitis (CT and 12 CT patients with no renal pathology were enrolled. Group A TMCs were collected after 24 hours of culture and used to determine baseline levels. TMCs in groups B, C, D, E, and F were exposed to vibratory stimulation (60 Hz for 0 (as the control group, 1, 3, 5, and 10 minutes, respectively. Results. Baseline concentrations of B-cell-activation factor (BAFF and IgA1, BAFF mRNA expression, and aberrant O-glycosylation IgA1 level were higher in the IgAN group as compared to that in the CT group, and all increased after vibratory stimulation. Baseline mRNA expressions of core β1,3-galactosyltransferase (C1GALT1 and core β1,3GalT-specific molecular chaperone (Cosmc were lower in the IgAN group; the levels decreased further after vibratory stimulation. Conclusion. In patients with IgAN, vibratory stimulation of TMCs appears to induce IgA1 secretion through activation of BAFF release and to aberrant O-glycosylation IgA1 by suppressing C1GALT1 and Cosmc expression. In vitro vibratory stimulation of human TMCs mimics the vibratory simulation of palatine tonsils produced by vocal cords during phonation.

  4. N-acetylgalactosaminide α2,6-sialyltransferase II is a candidate enzyme for sialylation of galactose-deficient IgA1, the key autoantigen in IgA nephropathy.

    Science.gov (United States)

    Stuchlova Horynova, Milada; Vrablikova, Alena; Stewart, Tyler J; Takahashi, Kazuo; Czernekova, Lydie; Yamada, Koshi; Suzuki, Hitoshi; Julian, Bruce A; Renfrow, Matthew B; Novak, Jan; Raska, Milan

    2015-02-01

    Galactose-deficient O-glycans in the hinge region (HR) of immunoglobulin A1 (IgA1) play a key role in the pathogenesis of IgA nephropathy (IgAN). O-Glycans of circulatory IgA1 consist of N-acetylgalactosamine (GalNAc) with a β1,3-linked galactose; both sugars may be sialylated. In patients with IgAN, α2,6-sialylated GalNAc is a frequent form of the galactose-deficient O-glycans. Prior analyses of IgA1-producing cells had indicated that α2,6-sialyltransferase II (ST6GalNAc-II) is likely responsible for sialylation of GalNAc of galactose-deficient IgA1, but direct evidence is missing. We produced a secreted variant of recombinant human ST6GalNAc-II and an IgA1 fragment comprised of Cα1-HR-Cα2. This IgA1 fragment and a synthetic HR peptide with enzymatically attached GalNAc residues served as acceptors. ST6GalNAc-II activity was assessed in vitro and the attachment of sialic acid to these acceptors was detected by lectin blot and mass spectrometry. ST6GalNAc-II was active with both acceptors. High-resolution mass spectrometry analysis revealed that up to three sialic acid residues were added to the GalNAc residues of the HR glycopeptide. Our data provide direct evidence that ST6GalNAc-II can sialylate GalNAc of galactose-deficient IgA1. As serum levels of galactose-deficient IgA1 with sialylated glycoforms are increased in IgAN patients, our data explain the corresponding part of the biosynthetic pathway. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  5. Cloning and structural analysis of two highly divergent IgA isotypes, IgA1 and IgA2 from the duck billed platypus, Ornithorhynchus anatinus.

    Science.gov (United States)

    Vernersson, M; Belov, K; Aveskogh, M; Hellman, L

    2010-01-01

    To trace the emergence of modern IgA isotypes during vertebrate evolution we have studied the immunoglobulin repertoire of a model monotreme, the platypus. Two highly divergent IgA-like isotypes (IgA1 and IgA2) were identified and their primary structures were determined from full-length cDNAs. A comparative analysis of the amino acid sequences for IgA from various animal species showed that the two platypus IgA isotypes form a branch clearly separated from their eutherian (placental) counterparts. However, they still conform to the general structure of eutherian IgA, with a hinge region and three constant domains. This indicates that the deletion of the second domain and the formation of a hinge region in IgA did occur very early during mammalian evolution, more than 166 million years ago. The two IgA isotypes in platypus differ in primary structure and appear to have arisen from a very early gene duplication, possibly preceding the metatherian eutherian split. Interestingly, one of these isotypes, IgA1, appears to be expressed in only the platypus, but is present in the echidna based on Southern blot analysis. The platypus may require a more effective mucosal immunity, with two highly divergent IgA forms, than the terrestrial echidna, due to its lifestyle, where it is exposed to pathogens both on land and in the water. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Identification of a human immunodominant B-cell epitope within the immunoglobulin A1 protease of Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Felici Franco

    2007-12-01

    Full Text Available Abstract Background The IgA1 protease of Streptococcus pneumoniae is a proteolytic enzyme that specifically cleaves the hinge regions of human IgA1, which dominates most mucosal surfaces and is the major IgA isotype in serum. This protease is expressed in all of the known pneumococcal strains and plays a major role in pathogen's resistance to the host immune response. The present work was focused at identifying the immunodominant regions of pneumococcal IgA1 protease recognized by the human antibody response. Results An antigenic sequence corresponding to amino acids 420–457 (epiA of the iga gene product was identified by screening a pneumococcal phage display library with patients' sera. The epiA peptide is conserved in all pneumococci and in two out of three S. mitis strains, while it is not present in other oral streptococci so far sequenced. This epitope was specifically recognized by antibodies present in sera from 90% of healthy adults, thus representing an important target of the humoral response to S. pneumoniae and S. mitis infection. Moreover, sera from 68% of children less than 4 years old reacted with the epiA peptide, indicating that the human immune response against streptococcal antigens occurs during childhood. Conclusion The broad and specific recognition of the epiA polypeptide by human sera demonstrate that the pneumococcal IgA1 protease contains an immunodominant B-cell epitope. The use of phage display libraries to identify microbe or disease-specific antigens recognized by human sera is a valuable approach to epitope discovery.

  7. Exclusive occurrence of an extracellular protease capable of cleaving the hinge region of human immunoglobulin A1 in strains of Ureaplasma urealyticum.

    Science.gov (United States)

    Kilian, M; Freundt, E A

    1984-10-01

    The purpose of the study was to further investigate the occurrence of a specific immunoglobulin A1 (IgA1) protease among mycoplasmas of various origin. Fifty-two strains representing the genera Mycoplasma, Ureaplasma, Acholeplasma and Spiroplasma were examined. The ability to cause specific cleavage of human IgA1 in the hinge region resulting in intact Fab and Fc fragments was exclusively associated with strains of U. urealyticum. Thus, this trait may be used as a valuable differential characteristic of U. urealyticum. A more pronounced proteolytic activity capable of causing extensive degradation of both human and bovine IgA was demonstrated in the type strain of U. diversum.

  8. The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis.

    Science.gov (United States)

    Beers, Eric P; Jones, Alan M; Dickerman, Allan W

    2004-01-01

    The Arabidopsis thaliana genome has over 550 protease sequences representing all five catalytic types: serine, cysteine, aspartic acid, metallo and threonine (MEROPS peptidase database, http://merops.sanger.ac.uk/), which probably reflect a wide variety of as yet unidentified functions performed by plant proteases. Recent indications that the 26S proteasome, a T1 family-threonine protease, is a regulator of light and hormone responsive signal transduction highlight the potential of proteases to participate in many aspects of plant growth and development. Recent discoveries that proteases are required for stomatal distribution, embryo development and disease resistance point to wider roles for four additional multigene families that include some of the most frequently studied (yet poorly understood) plant proteases: the subtilisin-like, serine proteases (family S8), the papain-like, cysteine proteases (family C1A), the pepsin-like, aspartic proteases (family A1) and the plant matrixin, metalloproteases (family M10A). In this report, 54 subtilisin-like, 30 papain-like and 59 pepsin-like proteases from Arabidopsis, are compared with S8, C1A and A1 proteases known from other plant species at the functional, phylogenetic and gene structure levels. Examples of structural conservation between S8, C1A and A1 genes from rice, barley, tomato and soybean and those from Arabidopsis are noted, indicating that some common, essential plant protease roles were established before the divergence of monocots and eudicots. Numerous examples of tandem duplications of protease genes and evidence for a variety of restricted expression patterns suggest that a high degree of specialization exists among proteases within each family. We propose that comprehensive analysis of the functions of these genes in Arabidopsis will firmly establish serine, cysteine and aspartic proteases as regulators and effectors of a wide range of plant processes.

  9. Expression of IgA Proteases by Haemophilus influenzae in the Respiratory Tract of Adults With Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Murphy, Timothy F; Kirkham, Charmaine; Jones, Megan M; Sethi, Sanjay; Kong, Yong; Pettigrew, Melinda M

    2015-12-01

    Immunoglobulin (Ig)A proteases of Haemophilus influenzae are highly specific endopeptidases that cleave the hinge region of human IgA1 and also mediate invasion and trafficking in human respiratory epithelial cells, facilitating persistence of H. influenzae. Little is known about the expression of IgA proteases in clinical settings of H. influenzae infection. We identified and characterized IgA protease genes in H. influenzae and studied their expression and proteolytic specificity, in vitro and in vivo in 169 independent strains of H. influenzae collected longitudinally over 10 years from adults with chronic obstructive pulmonary disease. The H. influenzae pangenome has 2 alleles of IgA protease genes; all strains have igaA, and 40% of strains have igaB. Each allele has 2 variants with differing proteolytic specificities for human IgA1. A total of 88% of 169 strains express IgA protease activity. Expression of the 4 forms of IgA protease varies among strains. Based on the presence of IgA1 fragments in sputum samples, each of the different forms of IgA protease is selectively expressed in the human airways during infection. Four variants of IgA proteases are variably expressed by H. influenzae during infection of the human airways. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Survey of immunoglobulin A protease activity among selected species of Ureaplasma and Mycoplasma: specificity for host immunoglobulin A.

    Science.gov (United States)

    Kapatais-Zoumbos, K; Chandler, D K; Barile, M F

    1985-03-01

    Because immunoglobulin A (IgA) is the predominant immunoglobulin at mucosal surfaces, IgA proteases produced by pathogenic bacteria are considered potential virulence factors for organisms that cause disease or gain entry at mucous membranes. To determine the role of IgA protease in the pathogenicity of mycoplasmal disease, a variety of human and animal mycoplasma and ureaplasma species were examined for IgA protease activity with human, murine, porcine, and canine IgA. None of the mycoplasma species examined showed detectable IgA protease activity with any of the IgAs tested. Twenty-eight strains of Ureaplasma urealyticum isolated from human urogenital tissues cleaved human IgA1, but no cleavage of human IgA2 or murine, porcine, or canine IgA was observed. Ureaplasmas isolated from nonhuman hosts (feline, canine, avian, and bovine [Ureaplasma diversum]) did not cleave human IgA1. Two strains of canine ureaplasmas were able to cleave canine IgA, but not murine IgA. Thus, ureaplasmas from other species can produce IgA protease, but the specificity of the enzyme was restricted to the IgA of the appropriate host. This finding suggests that IgA proteases could play a role in the selective host specificity of mucosal pathogens.

  11. Earthworm Protease

    Directory of Open Access Journals (Sweden)

    Rong Pan

    2010-01-01

    Full Text Available The alimentary tract of earthworm secretes a group of proteases with a relative wide substrate specificity. In 1983, six isozymes were isolated from earthworm with fibrinolytic activities and called fibriniolytic enzymes. So far, more isozymes have been found from different earthworm species such as Lumbricus rubellus and Eisenia fetida. For convenience, the proteases are named on the basis of the earthworm species and the protein function, for instance, Eisenia fetida protease (EfP. The proteases have the abilities not only to hydrolyze fibrin and other protein, but also activate proenzymes such as plasminogen and prothrombin. In the light of recent studies, eight of the EfPs contain oligosaccharides chains which are thought to support the enzyme structure. Interestingly, EfP-II has a broader substrate specificity presenting alkaline trypsin, chymotrypsin and elastase activities, but EfP-III-1 has a stricter specificity. The protein crystal structures show the characteristics in their specificities. Earthworm proteases have been applied in several areas such as clinical treatment of clotting diseases, anti-tumor study, environmental protection and nutritional production. The current clinical utilizations and some potential new applications of the earthworm protease will be discussed in this paper.

  12. Earthworm Protease

    International Nuclear Information System (INIS)

    Pan, R.; Zhang, Z.; He, R.

    2010-01-01

    The alimentary tract of earthworm secretes a group of proteases with a relative wide substrate specificity. In 1983, six isozymes were isolated from earthworm with fibrinolytic activities and called fibrinolytic enzymes. So far, more isozymes have been found from different earthworm species such as Lumbricus rubellus and Eisenia fetida. For convenience, the proteases are named on the basis of the earthworm species and the protein function, for instance, Eisenia fetida protease (EfP). The proteases have the abilities not only to hydrolyze fibrin and other protein, but also activate pro enzymes such as plasminogen and prothrombin. In the light of recent studies, eight of the EfPs contain oligosaccharides chains which are thought to support the enzyme structure. Interestingly, EfP-II has a broader substrate specificity presenting alkaline trypsin, chymotrypsin and elastase activities, but EfP-III-1 has a stricter specificity. The protein crystal structures show the characteristics in their specificities. Earthworm proteases have been applied in several areas such as clinical treatment of clotting diseases, anti-tumor study, environmental protection and nutritional production. The current clinical utilizations and some potential new applications of the earthworm protease will be discussed in this paper.

  13. Identification of Transmembrane Protease Serine 2 and Forkhead Box A1 As the Potential Bisphenol A Responsive Genes in the Neonatal Male Rat Brain

    Directory of Open Access Journals (Sweden)

    Takayoshi Ubuka

    2018-03-01

    Full Text Available Perinatal exposure of Bisphenol A (BPA to rodents modifies their behavior in later life. To understand how BPA modifies their neurodevelopmental process, we first searched for BPA responsive genes from androgen and estrogen receptor signaling target genes by polymerase chain reaction array in the neonatal male rat brain. We used a transgenic strain of Wistar rats carrying enhanced green fluorescent protein tagged to gonadotropin-inhibitory hormone (GnIH promoter to investigate the possible interaction of BPA responsive genes and GnIH neurons. We found upregulation of transmembrane protease serine 2 (Tmprss2, an androgen receptor signaling target gene, and downregulation of Forkhead box A1 (Foxa1, an ER signaling target gene, in the medial amygdala of male rats that were subcutaneously administered with BPA from day 1 to 3. Tmprss2-immunoreactive (ir cells were distributed in the olfactory bulb, cerebral cortex, hippocampus, amygdala, and hypothalamus in 3 days old but not in 1-month-old male rats. Density of Tmprss2-ir cells in the medial amygdala was increased by daily administration of BPA from day 1 to 3. Tmprss2 immunoreactivity was observed in 26.5% of GnIH neurons clustered from the ventral region of the ventromedial hypothalamic nucleus to the dorsal region of the arcuate nucleus of 3-day-old male rat hypothalamus. However, Tmprss2 mRNA expression significantly decreased in the amygdala and hypothalamus of 1-month-old male rats. Foxa1 mRNA expression was higher in the hypothalamus than the amygdala in 3 days old male rats. Intense Foxa1-ir cells were only found in the peduncular part of lateral hypothalamus of 3-day-old male rats. Density of Foxa1-ir cells in the hypothalamus was decreased by daily administration of BPA from day 1 to 3. Foxa1 mRNA expression in the hypothalamus also significantly decreased at 1 month. These results suggest that BPA disturbs the neurodevelopmental process and behavior of rats later in their life by

  14. Degradation of phycobilisomes in Synechocystis sp. PCC6803: evidence for essential formation of an NblA1/NblA2 heterodimer and its codegradation by A Clp protease complex.

    Science.gov (United States)

    Baier, Antje; Winkler, Wiebke; Korte, Thomas; Lockau, Wolfgang; Karradt, Anne

    2014-04-25

    When cyanobacteria acclimate to nitrogen deficiency, they degrade their large (3-5-MDa), light-harvesting complexes, the phycobilisomes. This massive, yet specific, intracellular degradation of the pigmented phycobiliproteins causes a color change of cyanobacterial cultures from blue-green to yellow-green, a process referred to as chlorosis or bleaching. Phycobilisome degradation is induced by expression of the nblA gene, which encodes a protein of ~7 kDa. NblA most likely acts as an adaptor protein that guides a Clp protease to the phycobiliproteins, thereby initiating the degradation process. Most cyanobacteria and red algae possess just one nblA-homologous gene. As an exception, the widely used "model organism" Synechocystis sp. PCC6803 expresses two such genes, nblA16803 and nblA26803, both of whose products are required for phycobilisome degradation. Here, we demonstrate that the two NblA proteins heterodimerize in vitro and in vivo using pull-down assays and a Förster energy-transfer approach, respectively. We further show that the NblA proteins form a ternary complex with ClpC (the HSP100 chaperone partner of Clp proteases) and phycobiliproteins in vitro. This complex is susceptible to ATP-dependent degradation by a Clp protease, a finding that supports a proposed mechanism of the degradation process. Expression of the single nblA gene encoded by the genome of the N2-fixing, filamentous cyanobacterium Nostoc sp. PCC7120 in the nblA1/nblA2 mutant of Synechocystis sp. PCC6803 induced phycobilisome degradation, suggesting that the function of the NblA heterodimer of Synechocystis sp. PCC6803 is combined in the homodimeric protein of Nostoc sp. PCC7120.

  15. Recombinant human immunoglobulin (Ig)A1 and IgA2 anti-D used for detection of IgA deficiency and anti-IgA

    DEFF Research Database (Denmark)

    Nielsen, Leif K; Dziegiel, Morten Hanefeld

    2008-01-01

    To avoid anaphylactic reactions, immunoglobulin (Ig)A-deficient patients with anti-IgA should be transfused with IgA-deficient blood components. There is a need for fast and robust assays for demonstration of IgA deficiency and for detection of anti-IgA.......To avoid anaphylactic reactions, immunoglobulin (Ig)A-deficient patients with anti-IgA should be transfused with IgA-deficient blood components. There is a need for fast and robust assays for demonstration of IgA deficiency and for detection of anti-IgA....

  16. IgA1 antibodies specific for outer membrane protein PorA modulate the interaction between Neisseria meningitidis and the epithelium

    NARCIS (Netherlands)

    Horton, R. E.; Vidarsson, G.; Virji, M.; Williams, N. A.; Heyderman, R. S.

    2009-01-01

    Despite high carriage rates of Neisseria meningitidis, incidence of meningococcal disease remains low, partially due to development of natural immunity. We have previously demonstrated an inverse relationship between salivary anti-meningococcal IgA and disease incidence, but little is known about

  17. Proteases and protease inhibitors in cancer

    NARCIS (Netherlands)

    van Noorden, C. J.

    1998-01-01

    The second conference on 'Proteases and protease inhibitors in cancer' was organized by the American Association for Cancer Research (AACR) and Acta Pathologica Microbiologica et Immunologica Scandinavica (APMIS). To understand the role of proteinases and to develop relevant synthetic inhibitors to

  18. HIV protease inhibitor resistance

    NARCIS (Netherlands)

    Wensing, Annemarie M.J.; Fun, Axel; Nijhuis, Monique

    2017-01-01

    HIV protease is pivotal in the viral replication cycle and directs the formation of mature infectious virus particles. The development of highly specific HIV protease inhibitors (PIs), based on thorough understanding of the structure of HIV protease and its substrate, serves as a prime example of

  19. Deferoxamine Suppresses Collagen Cleavage and Protease, Cytokine, and COL10A1 Expression and Upregulates AMPK and Krebs Cycle Genes in Human Osteoarthritic Cartilage.

    Science.gov (United States)

    Tchetina, Elena V; Markova, Galina A; Poole, A Robin; Zukor, David J; Antoniou, John; Makarov, Sergey A; Kuzin, Aleksandr N

    2016-01-01

    This study reports the effects of the iron chelator deferoxamine (DFO) on collagen cleavage, inflammation, and chondrocyte hypertrophy in relation to energy metabolism-related gene expression in osteoarthritic (OA) articular cartilage. Full-depth explants of human OA knee articular cartilage from arthroplasty were cultured with exogenous DFO (1-50  μ M). Type II collagen cleavage and phospho-adenosine monophosphate-activated protein kinase (pAMPK) concentrations were measured using ELISAs. Gene expression studies employed real-time PCR and included AMPK analyses in PBMCs. In OA explants collagen cleavage was frequently downregulated by 10-50  μ M DFO. PCR analysis of 7 OA patient cartilages revealed that 10  μ M DFO suppressed expression of MMP-1, MMP-13, IL-1 β , and TNF α and a marker of chondrocyte hypertrophy, COL10A1. No changes were observed in the expression of glycolysis-related genes. In contrast, expressions of genes associated with the mitochondrial Krebs cycle (TCA), AMPK, HIF1 α , and COL2A1 were upregulated. AMPK gene expression was reduced in OA cartilage and increased in PBMCs from the same patients compared to healthy controls. Our studies demonstrate that DFO is capable of suppressing excessive collagenase-mediated type II collagen cleavage in OA cartilage and reversing phenotypic changes. The concomitant upregulation of proanabolic TCA-related gene expressions points to a potential for availability of energy generating substrates required for matrix repair by end-stage OA chondrocytes. This might normally be prevented by high whole-body energy requirements indicated by elevated AMPK expression in PBMCs of OA patients.

  20. Deferoxamine Suppresses Collagen Cleavage and Protease, Cytokine, and COL10A1 Expression and Upregulates AMPK and Krebs Cycle Genes in Human Osteoarthritic Cartilage

    Directory of Open Access Journals (Sweden)

    Elena V. Tchetina

    2016-01-01

    Full Text Available This study reports the effects of the iron chelator deferoxamine (DFO on collagen cleavage, inflammation, and chondrocyte hypertrophy in relation to energy metabolism-related gene expression in osteoarthritic (OA articular cartilage. Full-depth explants of human OA knee articular cartilage from arthroplasty were cultured with exogenous DFO (1–50 μM. Type II collagen cleavage and phospho-adenosine monophosphate-activated protein kinase (pAMPK concentrations were measured using ELISAs. Gene expression studies employed real-time PCR and included AMPK analyses in PBMCs. In OA explants collagen cleavage was frequently downregulated by 10–50 μM DFO. PCR analysis of 7 OA patient cartilages revealed that 10 μM DFO suppressed expression of MMP-1, MMP-13, IL-1β, and TNFα and a marker of chondrocyte hypertrophy, COL10A1. No changes were observed in the expression of glycolysis-related genes. In contrast, expressions of genes associated with the mitochondrial Krebs cycle (TCA, AMPK, HIF1α, and COL2A1 were upregulated. AMPK gene expression was reduced in OA cartilage and increased in PBMCs from the same patients compared to healthy controls. Our studies demonstrate that DFO is capable of suppressing excessive collagenase-mediated type II collagen cleavage in OA cartilage and reversing phenotypic changes. The concomitant upregulation of proanabolic TCA-related gene expressions points to a potential for availability of energy generating substrates required for matrix repair by end-stage OA chondrocytes. This might normally be prevented by high whole-body energy requirements indicated by elevated AMPK expression in PBMCs of OA patients.

  1. Bacterial proteases and virulence

    DEFF Research Database (Denmark)

    Frees, Dorte; Brøndsted, Lone; Ingmer, Hanne

    2013-01-01

    with the proteases either encoded within the same polypeptide or on separate subunits. In contrast, substrate recognition by extracellular proteases is less selective and therefore these enzymes are generally expressed as zymogens to prevent premature proteolytic activity that would be detrimental to the cell......Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing...... signalling to short-circuit host cell processes. Common to both intra- and extracellular proteases is the tight control of their proteolytic activities. In general, substrate recognition by the intracellular proteases is highly selective which is, in part, attributed to the chaperone activity associated...

  2. Secreted proteases from pathogenic fungi.

    Science.gov (United States)

    Monod, Michel; Capoccia, Sabrina; Léchenne, Barbara; Zaugg, Christophe; Holdom, Mary; Jousson, Olivier

    2002-10-01

    Many species of human pathogenic fungi secrete proteases in vitro or during the infection process. Secreted endoproteases belong to the aspartic proteases of the pepsin family, serine proteases of the subtilisin family, and metalloproteases of two different families. To these proteases has to be added the non-pepsin-type aspartic protease from Aspergillus niger and a unique chymotrypsin-like protease from Coccidioides immitis. Pathogenic fungi also secrete aminopeptidases, carboxypeptidases and dipeptidyl-peptidases. The function of fungal secreted proteases and their importance in infections vary. It is evident that secreted proteases are important for the virulence of dermatophytes since these fungi grow exclusively in the stratum corneum, nails or hair, which constitutes their sole nitrogen and carbon sources. The aspartic proteases secreted by Candida albicans are involved in the adherence process and penetration of tissues, and in interactions with the immune system of the infected host. For Aspergillus fumigatus, the role of proteolytic activity has not yet been proved. Although the secreted proteases have been intensively investigated as potential virulence factors, knowledge on protease substrate specificities is rather poor and few studies have focused on the research of inhibitors. Knowledge of substrate specificities will increase our understanding about the action of each protease secreted by pathogenic fungi and will help to determine their contribution to virulence.

  3. Death proteases come alive

    NARCIS (Netherlands)

    Woltering, E.J.

    2004-01-01

    Cell death in plants exhibits morphological features comparable to caspase-mediated apoptosis in animals, suggesting that plant cell death is executed by (caspase-like) proteases. However, to date, no caspase homologues have been identified in plants and therefore the existence and nature of these

  4. Serine protease inhibitors suppress pancreatic endogenous proteases and modulate bacterial neutral proteases.

    Science.gov (United States)

    Nduaguibe, Chikodili C; Bentsi-Barnes, Kwamina; Mullen, Yoko; Kandeel, Fouad; Al-Abdullah, Ismail

    2010-01-01

    Pefabloc, Trasylol and Urinary Trypsin Inhibitor (UTI) have been reported to be effective serine protease inhibitors that impair pancreatic endogenous proteases resulting in improved islet yield. Here we evaluated the effect of these inhibitors on endogenous proteases (trypsin, chymotrypsin and elastase), bacterial neutral proteases (thermolysin and neutral protease) and islet isolation digestion samples. Protease activity was measured using a fluorimetric assay and islet function was assessed by dynamic perifusion. Trypsin, chymotrypsin and elastase were significantly inhibited by Pefabloc and UTI. Trasylol showed strong inhibitory effects on trypsin and chymotrypsin but also decreased thermolysin activity. UTI was found to inhibit the activity of endogenous proteases and increase the activity of bacterial neutral proteases. Human islets exposed to Pefabloc had reduced insulin response, unlike Trasylol or UTI, which had no detrimental effect on insulin secretion. Although Trasylol was an effective inhibitor of endogenous proteases, FDA regulatory issues preclude its use in clinical application and thus in the isolation process. UTI has the greatest potential because it impairs endogenous pancreatic proteases and enhances digestion enzymes.

  5. Clp chaperone-proteases: structure and function.

    Science.gov (United States)

    Kress, Wolfgang; Maglica, Zeljka; Weber-Ban, Eilika

    2009-11-01

    Clp proteases are the most widespread energy-dependent proteases in bacteria. Their two-component architecture of protease core and ATPase rings results in an inventory of several Clp protease complexes that often coexist. Here, we present insights into Clp protease function, from their assembly to substrate recruitment and processing, and how this is coupled to the expense of energy.

  6. Protease-Sensitive Synthetic Prions

    OpenAIRE

    Colby, David W.; Wain, Rachel; Baskakov, Ilia V.; Legname, Giuseppe; Palmer, Christina G.; Nguyen, Hoang-Oanh B.; Lemus, Azucena; Cohen, Fred E.; DeArmond, Stephen J.; Prusiner, Stanley B.

    2010-01-01

    Prions arise when the cellular prion protein (PrPC) undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrPSc. Frequently, PrPSc is protease-resistant but protease-sensitive (s) prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec) PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but no...

  7. Co-evolution of insect proteases and plant protease inhibitors.

    Science.gov (United States)

    Jongsma, Maarten A; Beekwilder, Jules

    2011-08-01

    Plants are at the basis of the food chain, but there is no such thing as a "free lunch" for herbivores. To promote reproductive success, plants evolved multi-layered defensive tactics to avoid or discourage herbivory. To the detriment of plants, herbivores, in turn, evolved intricate strategies to find, eat, and successfully digest essential plant parts to raise their own offspring. In this battle the digestive tract is the arena determining final victory or defeat as measured by growth or starvation of the herbivore. Earlier, specific molecular opponents were identified as proteases and inhibitors: digestive proteases of herbivores evolved structural motifs to occlude plant protease inhibitors, or alternatively, the insects evolved proteases capable of specifically degrading the host plant inhibitors. In response plant inhibitors evolved hyper-variable and novel protein folds to remain active against potential herbivores. At the level of protease regulation in herbivorous insects, it was shown that inhibition-insensitive digestive proteases are up-regulated when sensitive proteases are inhibited. The way this regulation operates in mammals is known as negative feedback by gut-luminal factors, so-called 'monitor peptides' that are sensitive to the concentration of active enzymes. We propose that regulation of gut enzymes by endogenous luminal factors has been an open invitation to plants to "hijack" this regulation by evolving receptor antagonists, although yet these plant factors have not been identified. In future research the question of the co-evolution of insect proteases and plant inhibitors should, therefore, be better approached from a systems level keeping in mind that evolution is fundamentally opportunistic and that the plant's fitness is primarily improved by lowering the availability of essential amino acids to an herbivore by any available mechanism.

  8. Cytomegalovirus protease targeted prodrug development.

    Science.gov (United States)

    Sabit, Hairat; Dahan, Arik; Sun, Jing; Provoda, Chester J; Lee, Kyung-Dall; Hilfinger, John H; Amidon, Gordon L

    2013-04-01

    Human cytomegalovirus (HCMV) is a prevalent virus that infects up to 90% of the population. The goal of this research is to determine if small molecular prodrug substrates can be developed for a specific HCMV encoded protease and thus achieve site-specific activation. HCMV encodes a 256 amino acid serine protease that is responsible for capsid assembly, an essential process for herpes virus production. The esterase activity of the more stable HCMV A143T/A144T protease mutant was evaluated with model p-nitrophenol (ONp) esters, Boc-Xaa-ONp (Ala, Leu, Ile, Val, Gln, Phe at the Xaa position). We demonstrate that the A143T/A144T mutant has esterase activity toward specific small ester compounds, e.g., Boc-L-Ala-ONp. Mono amino acid and dipeptide prodrugs of ganciclovir (GCV) were also synthesized and evaluated for hydrolysis by the A143T/A144T protease mutant in solution. Hydrolysis of these prodrugs was also evaluated in Caco-2 cell homogenates, human liver microsomes (HLMs), and rat and human plasma. For the selectivity potential of the prodrugs, the hydrolysis ratio was evaluated as a percentage of prodrug hydrolyzed by the HCMV protease over the percentages of prodrug hydrolyses by Caco-2 cell homogenates, HLMs, and human/rat plasma. A dipeptide prodrug of ganciclovir, Ac-l-Gln-l-Ala-GCV, emerged as a potential selective prodrug candidate. The results of this research demonstrate that targeting prodrugs for activation by a specific protease encoded by the infectious HCMV pathogen may be achievable.

  9. Contemporary protease inhibitors and cardiovascular risk

    DEFF Research Database (Denmark)

    Lundgren, Jens; Mocroft, Amanda; Ryom, Lene

    2018-01-01

    PURPOSE OF REVIEW: To review the evidence linking use of HIV protease inhibitors with excess risk of cardiovascular disease (CVD) in HIV+ populations. RECENT FINDINGS: For the two contemporary most frequently used protease inhibitors, darunavir and atazanavir [both pharmacologically boosted...

  10. Milk Clotting Activity of Protease, Extracted from Rhizome of Taffin ...

    African Journals Online (AJOL)

    MBI

    2017-03-07

    Mar 7, 2017 ... *1Murtala, Y., 1Babandi, A., 1Babagana, K., 1Rajah, M. R., 3Yakasai, H. M., 1Ibrahim, ... many traditional spices and food additives in ..... by fungi. J. Gen. Microbiol. 84, 327–331. Adulyatham, P. and Owusu-Apenten, R. (2005). Stabilization and partial purification of a protease from ginger rhizome (Zingiber.

  11. tolerant alkaline protease from Bacillus coagulans PSB

    African Journals Online (AJOL)

    oyaide

    2013-05-22

    May 22, 2013 ... suggest the suitability of the enzyme for applications in peptide synthesis, detergent formulation and ... The cell free supernatant was recovered as crude enzyme preparation and used for further studies. Assay of protease activity. Protease activity was ... Effect of pH on growth and protease production.

  12. A genomic survey of proteases in Aspergilli

    NARCIS (Netherlands)

    Budak, Sebnem Ozturkoglu; Zhou, M.; Brouwer, Carlo; Wiebenga, A.; Benoit, Isabelle; Di Falco, Marcos; Tsang, Adrian; de Vries, Ronald P; van den Brink, J.

    2014-01-01

    BACKGROUND: Proteases can hydrolyze peptides in aqueous environments. This property has made proteases the most important industrial enzymes by taking up about 60% of the total enzyme market. Microorganisms are the main sources for industrial protease production due to their high yield and a wide

  13. Curcumin derivatives as HIV-1 protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R. [Univ. of California, San Francisco, CA (United States)

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  14. Carbohydrase and protease supplementation increased ...

    African Journals Online (AJOL)

    User

    2014-09-15

    Sep 15, 2014 ... Department of Animal and Wildlife Sciences, Faculty of Natural and Agricultural Science ... control birds was 12% higher than that of the positive control, while diets supplemented with single enzyme ... The inclusion of exogenous proteases in maize-soya-based diets increases protein digestion by.

  15. Carbohydrase and protease supplementation increased ...

    African Journals Online (AJOL)

    A trial was conducted to evaluate whether the addition of commercial enzyme preparations containing carbohydrases and a protease would increase the available metabolizable energy (ME) of maize-soya-based broiler diets. Seven thousand five hundred and sixty (7560) day-old Ross 788 chicks were randomly allocated ...

  16. Biotechnology of Cold-Active Proteases

    Directory of Open Access Journals (Sweden)

    Tulasi Satyanarayana

    2013-05-01

    Full Text Available The bulk of Earth’s biosphere is cold (<5 °C and inhabited by psychrophiles. Biocatalysts from psychrophilic organisms (psychrozymes have attracted attention because of their application in the ongoing efforts to decrease energy consumption. Proteinases as a class represent the largest category of industrial enzymes. There has been an emphasis on employing cold-active proteases in detergents because this allows laundry operations at ambient temperatures. Proteases have been used in environmental bioremediation, food industry and molecular biology. In view of the present limited understanding and availability of cold-active proteases with diverse characteristics, it is essential to explore Earth’s surface more in search of an ideal cold-active protease. The understanding of molecular and mechanistic details of these proteases will open up new avenues to tailor proteases with the desired properties. A detailed account of the developments in the production and applications of cold-active proteases is presented in this review.

  17. Protease-sensitive synthetic prions.

    Directory of Open Access Journals (Sweden)

    David W Colby

    2010-01-01

    Full Text Available Prions arise when the cellular prion protein (PrP(C undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrP(Sc. Frequently, PrP(Sc is protease-resistant but protease-sensitive (s prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164, denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174 did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrP(Sc and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600-750 days in Tg4053 mice, which exhibited sPrP(Sc. These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrP(Sc.

  18. Molecular Imaging of Proteases in Cancer

    Directory of Open Access Journals (Sweden)

    Yunan Yang

    2009-01-01

    Full Text Available Proteases play important roles during tumor angiogenesis, invasion, and metastasis. Various molecular imaging techniques have been employed for protease imaging: optical (both fluorescence and bioluminescence, magnetic resonance imaging (MRI, single-photon emission computed tomography (SPECT, and positron emission tomography (PET. In this review, we will summarize the current status of imaging proteases in cancer with these techniques. Optical imaging of proteases, in particular with fluorescence, is the most intensively validated and many of the imaging probes are already commercially available. It is generally agreed that the use of activatable probes is the most accurate and appropriate means for measuring protease activity. Molecular imaging of proteases with other techniques (i.e. MRI, SPECT, and PET has not been well-documented in the literature which certainly deserves much future effort. Optical imaging and molecular MRI of protease activity has very limited potential for clinical investigation. PET/SPECT imaging is suitable for clinical investigation; however the optimal probes for PET/SPECT imaging of proteases in cancer have yet to be developed. Successful development of protease imaging probes with optimal in vivo stability, tumor targeting efficacy, and desirable pharmacokinetics for clinical translation will eventually improve cancer patient management. Not limited to cancer, these protease-targeted imaging probes will also have broad applications in other diseases such as arthritis, atherosclerosis, and myocardial infarction.

  19. Cysteine Protease Zymography: Brief Review.

    Science.gov (United States)

    Wilkesman, Jeff

    2017-01-01

    Cysteine proteases play multiple roles in basically all aspects of physiology and development. In plants, they are involved in growth and development and in accumulation and mobilization of storage proteins. Furthermore, they are engaged in signalling pathways and in the response to biotic and abiotic stresses. In animals and also in humans, they are responsible for senescence and apoptosis, prohormone processing, and ECM remodelling. When analyzed by zymography, the enzyme must be renaturated after SDS-PAGE. SDS must be washed out and substituted by Triton X-100. Gels are then further incubated under ideal conditions for activity detection. Cysteine proteases require an acidic pH (5.0-6.0) and a reducing agent, usually DTT. When screening biological samples, there is generally no previous clue on what peptidase class will be present, neither optimal proteolysis conditions are known. Hence, it is necessary to assess several parameters, such as incubation time, pH, temperature, influence of ions or reducing agents, and finally evaluate the inhibition profile. For detection of cysteine peptidase activity, the use of specific inhibitors, such as E-64, can be used to prevent the development of cysteine peptidase activity bands and positively confirm its presence. Here four different protocols to assess cysteine protease activity from different sources are presented.

  20. Advances in protease engineering for laundry detergents.

    Science.gov (United States)

    Vojcic, Ljubica; Pitzler, Christian; Körfer, Georgette; Jakob, Felix; Ronny Martinez; Maurer, Karl-Heinz; Schwaneberg, Ulrich

    2015-12-25

    Proteases are essential ingredients in modern laundry detergents. Over the past 30 years, subtilisin proteases employed in the laundry detergent industry have been engineered by directed evolution and rational design to tailor their properties towards industrial demands. This comprehensive review discusses recent success stories in subtilisin protease engineering. Advances in protease engineering for laundry detergents comprise simultaneous improvement of thermal resistance and activity at low temperatures, a rational strategy to modulate pH profiles, and a general hypothesis for how to increase promiscuous activity towards the production of peroxycarboxylic acids as mild bleaching agents. The three protease engineering campaigns presented provide in-depth analysis of protease properties and have identified principles that can be applied to improve or generate enzyme variants for industrial applications beyond laundry detergents. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Mass spectrometry-assisted protease substrate screening

    DEFF Research Database (Denmark)

    Schlüter, Hartmut; Rykl, Jana; Thiemann, Joachim

    2007-01-01

    Since sequencing of the human genome was completed, more than 500 genes have been annotated as proteases. Exploring the physiological role of each protease requires the identification of their natural substrates. However, the endogenous substrates of many of the human proteases are as yet unknown....... Here we describe a new assay that addresses this problem. The assay, which easily can be automated, is based on the incubation of immobilized protein fractions, which may contain the natural substrate, with a defined protease. After concentrating the proteolytically released peptides by reversed...

  2. Proteolytic crosstalk in multi-protease networks

    Science.gov (United States)

    Ogle, Curtis T.; Mather, William H.

    2016-04-01

    Processive proteases, such as ClpXP in E. coli, are conserved enzyme assemblies that can recognize and rapidly degrade proteins. These proteases are used for a number of purposes, including degrading mistranslated proteins and controlling cellular stress response. However, proteolytic machinery within the cell is limited in capacity and can lead to a bottleneck in protein degradation, whereby many proteins compete (‘queue’) for proteolytic resources. Previous work has demonstrated that such queueing can lead to pronounced statistical relationships between different protein counts when proteins compete for a single common protease. However, real cells contain many different proteases, e.g. ClpXP, ClpAP, and Lon in E. coli, and it is not clear how competition between proteins for multiple classes of protease would influence the dynamics of cellular networks. In the present work, we theoretically demonstrate that a multi-protease proteolytic bottleneck can substantially couple the dynamics for both simple and complex (oscillatory) networks, even between substrates with substantially different affinities for protease. For these networks, queueing often leads to strong positive correlations between protein counts, and these correlations are strongest near the queueing theoretic point of balance. Furthermore, we find that the qualitative behavior of these networks depends on the relative size of the absolute affinity of substrate to protease compared to the cross affinity of substrate to protease, leading in certain regimes to priority queue statistics.

  3. Current and Novel Inhibitors of HIV Protease

    Czech Academy of Sciences Publication Activity Database

    Pokorná, Jana; Machala, L.; Řezáčová, Pavlína; Konvalinka, Jan

    2009-01-01

    Roč. 1, č. 3 (2009), s. 1209-1239 ISSN 1999-4915 R&D Projects: GA MŠk 1M0508 Grant - others:GA AV ČR(CZ) IAAX00320901 Program:IA Institutional research plan: CEZ:AV0Z40550506 Keywords : HIV protease * protease inhibitor * HAART Subject RIV: CE - Biochemistry

  4. Tissue dissociation enzyme neutral protease assessment.

    Science.gov (United States)

    Breite, A G; Dwulet, F E; McCarthy, R C

    2010-01-01

    Neutral proteases, essential components of purified tissue dissociation enzymes required for successful human islet isolation, show variable activities and effects of substrate on their activities. Initially we used a spectrophotometric endpoint assay with azocasein substrate to measure neutral protease activity. After critical review of the results, we observed these data to be inconsistent and not correlating expected differences in specific activities between thermolysin and Bacillus polymyxa proteases. This observation led to the development of a fluorescent microplate assay using fluorescein isothyocyanate-conjugated bovine serum albumin (FITC-BSA) as the substrate. This simpler, more flexible method offered a homogeneous, kinetic enzyme assay allowing determination of steady state reaction rates of sample replicates at various dilutions. The assay had a linear range of 4- to 8-fold and interassay coefficients of variation for B polymyxa protease and thermolysin of inhibitors, as illustrated by addition of sulfhydryl protease inhibitors, which, consistent with earlier reports, strongly indicated that the main contaminant in purified collagenase preparations was clostripain. Determination of the specific activities for several purified neutral proteases showed that the B polymyxa and Clostridium histolyticum proteases had approximately 40% and 15% specific activities, respectively, of those obtained with purified thermolysin, indicating the different characteristics of neutral protease enzymes for cell isolation procedures. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Production of extracellular aspartic protease in submerged ...

    African Journals Online (AJOL)

    Production of extracellular aspartic protease in submerged fermentation with Mucor mucedo DSM 809. ... The preferred method was the inoculation of the culture media with spores at a total load of 6x105 spores per flask. Key words: Milk clotting enzyme, Aspartic protease, Mucor mucedo, Sub-merged fermentation.

  6. Purification and characterization of protease enzyme from ...

    African Journals Online (AJOL)

    user

    2013-03-20

    Mar 20, 2013 ... be absorbed and utilized by living cells. Due to their wide .... The effect of pH on protease stability was determined by pre-incubating the enzyme without substrate at different pH values (5 to 11) using different buffers. The residual ..... detergent formulations: effects of thermodynamic stabilizers and protease ...

  7. Immobilization to prevent enzyme incompatibility with proteases

    NARCIS (Netherlands)

    Vossenberg, P.; Beeftink, H.H.; Cohen Stuart, M.A.; Tramper, J.

    2011-01-01

    Enzyme incompatibility is a problem in multi-enzyme processes that involve a non-specific protease, such as Alcalase. An example is the one-pot enzymatic synthesis of peptides catalyzed by a lipase and a protease. The incompatibility between lipase B from Candida antarctica (CalB) and Alcalase was

  8. Partial Purification and Characterization of Extracellular Protease ...

    African Journals Online (AJOL)

    USER

    ABSTRACT: Microbial proteases have wide industrial applications and proteases of the lactic acid bacteria (LAB) have received special attention ... Purification of the enzyme by gel filtration chromatography on Sephadex G75 following ammonium .... Gel filtration and ion exchange chromatography. The dialysate was ...

  9. Optimization of alkaline protease production from Pseudomonas ...

    African Journals Online (AJOL)

    A protease producing bacteria was isolated from meat waste contaminated soil and identified as Pseudomonas fluorescens. Optimization of the fermentation medium for maximum protease production was carried out. The culture conditions like inoculum concentration, incubation time, pH, temperature, carbon sources, ...

  10. Optimization of medium composition for thermostable protease ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... Optimization of the fermentation medium for maximization of thermostable neutral protease production by Bacillus sp. ... at 3.6 g/l and yeast extract at 3.9 g/l gived maximum protease activity of 6804 U/ml. Key words: Medium ... face method, which is used to study the effects of several factors influencing the ...

  11. Optimization of alkaline protease production from Pseudomonas ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... the metal ions tested. Key words: Alkaline protease, casein agar, meat waste contaminated soil, Pseudomonas fluorescens. INTRODUCTION. Proteases are the most important industrial enzymes that execute a wide variety of functions and have various important biotechnological applications (Mohen et al.,.

  12. Factor VII-activating protease

    DEFF Research Database (Denmark)

    Ramanathan, Ramshanker; Gram, Jørgen B; Sand, Niels Peter R

    2017-01-01

    : Factor VII-activating protease (FSAP) may regulate development of cardiovascular disease (CVD). We evaluated sex differences in FSAP measures and examined the association between FSAP and coronary artery calcification (CAC) in a middle-aged population. Participants were randomly selected citizens...... aged 50 or 60 without CVD, diabetes mellitus, Marburg I polymorphism, or hormone replacement therapy (HRT). FSAP protein concentration (total FSAP), FSAP urokinase-activating capacity (FSAP GP), and FSAP GP/total FSAP (specific FSAP activity) were measured. Cardiac computed tomography (CT) determined...... the Agatston score, dividing the study population in three groups: (1) Agatston score = 0 U, (2) Agatston score = 1-99 U, or (3) Agatston score more than 99 U. A total of 134 women and 116 men were included. Total FSAP, FSAP GP, and specific FSAP activity were independently higher in women (97.4%, 81.1%, 0...

  13. Gut proteases target Yersinia invasin in vivo

    Directory of Open Access Journals (Sweden)

    Freund Sandra

    2011-04-01

    Full Text Available Abstract Background Yersinia enterocolitica is a common cause of food borne gastrointestinal disease. After oral uptake, yersiniae invade Peyer's patches of the distal ileum. This is accomplished by the binding of the Yersinia invasin to β1 integrins on the apical surface of M cells which overlie follicle associated lymphoid tissue. The gut represents a barrier that severely limits yersiniae from reaching deeper tissues such as Peyer's patches. We wondered if gut protease attack on invasion factors could contribute to the low number of yersiniae invading Peyer's patches. Findings Here we show that invasin is rapidly degraded in vivo by gut proteases in the mouse infection model. In vivo proteolytic degradation is due to proteolysis by several gut proteases such as trypsin, α-chymotrypsin, pancreatic elastase, and pepsin. Protease treated yersiniae are shown to be less invasive in a cell culture model. YadA, another surface adhesin is cleaved by similar concentrations of gut proteases but Myf was not cleaved, showing that not all surface proteins are equally susceptible to degradation by gut proteases. Conclusions We demonstrate that gut proteases target important Yersinia virulence factors such as invasin and YadA in vivo. Since invasin is completely degraded within 2-3 h after reaching the small intestine of mice, it is no longer available to mediate invasion of Peyer's patches.

  14. Natural inhibitors of tumor-associated proteases

    International Nuclear Information System (INIS)

    Magdolen, U.; Krol, J.; Sato, S.; Schmitt, M.; Magdolen, V.; Krueger, A.; Mueller, M.M.; Sperl, S.

    2002-01-01

    The turnover and remodelling of extracellular matrix (ECM) is an essential part of many normal biological processes including development, morphogenesis, and wound healing. ECM turnover also occurs in severe pathological situations like artherosclerosis, fibrosis, tumor invasion and metastasis. The major proteases involved in this turnover are serine proteases (especially the urokinase-type plasminogen activator/plasmin system), matrix metalloproteases (a family of about 20 zinc-dependent endopeptidases including collagenases, gelatinases, stromelysins, and membrane-type metalloproteases), and cysteine proteases. In vivo, the activity of these proteases is tightly regulated in the extracellular space by zymogen activation and/or controlled inhibition. In the present review, we give an overview on the structure and biochemical properties of important tumor-associated protease inhibitors such as plasminogen activator inhibitor type 1 and type 2 (PAI-1, PAI-2), tissue inhibitors of metalloproteinases (TIMP-1, -2, -3, and -4), and the cysteine protease inhibitor cystatin C. Interestingly, some of these inhibitors of tumor-associated proteases display multiple functions which rather promote than inhibit tumor progression, when the presence of inhibitors in the tumor tissue is not balanced. (author)

  15. A biotechnology perspective of fungal proteases

    Directory of Open Access Journals (Sweden)

    Paula Monteiro de Souza

    2015-06-01

    Full Text Available Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.

  16. A biotechnology perspective of fungal proteases

    Science.gov (United States)

    de Souza, Paula Monteiro; Bittencourt, Mona Lisa de Assis; Caprara, Carolina Canielles; de Freitas, Marcela; de Almeida, Renata Paula Coppini; Silveira, Dâmaris; Fonseca, Yris Maria; Ferreira, Edivaldo Ximenes; Pessoa, Adalberto; Magalhães, Pérola Oliveira

    2015-01-01

    Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications. PMID:26273247

  17. Novel peptide-based protease inhibitors

    DEFF Research Database (Denmark)

    Roodbeen, Renée

    This thesis describes the design and synthesis of peptide-based serine protease inhibitors. The targeted protease, urokinase-type plasminogen activator (uPA) activates plasminogen, which plays a major role in cancer metastasis. The peptide upain-2 (S 1 ,S 12-cyclo-AcCSWRGLENHAAC-NH2) is a highly...... of novel peptide-based protease inhibitors, efforts were made towards improved methods for peptide synthesis. The coupling of Fmoc-amino acids onto N-methylated peptidyl resins was investigated. These couplings can be low yielding and the effect of the use of microwave heating combined with the coupling...

  18. Aspartic Protease Zymography Case Study: Detection of Fungal Acid Proteases by Zymography.

    Science.gov (United States)

    Kernaghan, Gavin; Mayerhofer, Michael

    2017-01-01

    This chapter describes a method for the production and characterization of fungal acid proteases. Protease production is induced by growth on BSA media over a pH gradient and protein levels are monitored over time with the Bradford assay. Once protein is depleted, the media is purified and proteases are characterized by gelatin zymography using acrylamide and buffers at near-neutral pH. Maintaining pH levels below those found in traditional zymographic systems avoids the potential loss of activity that may occur in aspartic proteases under alkaline conditions.

  19. Secreted fungal aspartic proteases: A review.

    Science.gov (United States)

    Mandujano-González, Virginia; Villa-Tanaca, Lourdes; Anducho-Reyes, Miguel Angel; Mercado-Flores, Yuridia

    2016-01-01

    The aspartic proteases, also called aspartyl and aspartate proteases or acid proteases (E.C.3.4.23), belong to the endopeptidase family and are characterized by the conserved sequence Asp-Gly-Thr at the active site. These enzymes are found in a wide variety of microorganisms in which they perform important functions related to nutrition and pathogenesis. In addition, their high activity and stability at acid pH make them attractive for industrial application in the food industry; specifically, they are used as milk-coagulating agents in cheese production or serve to improve the taste of some foods. This review presents an analysis of the characteristics and properties of secreted microbial aspartic proteases and their potential for commercial application. Copyright © 2016 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  20. Activation of ADAM 12 protease by copper

    DEFF Research Database (Denmark)

    Loechel, F; Wewer, Ulla M.

    2001-01-01

    Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency: elimina......Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency......: elimination of the ADAM 12 cysteine switch by a point mutation in the propeptide had no effect on copper activation, whereas mutation of an unpaired cysteine residue in the catalytic domain resulted in a mutant form of ADAM 12-S that was insensitive to copper. This suggests a multi-step activation mechanism...... for ADAM 12 involving both furin cleavage and copper binding....

  1. Tissue Dissociation Enzyme Neutral Protease Assessment

    OpenAIRE

    Breite, A.G.; Dwulet, F.E.; McCarthy, R.C.

    2010-01-01

    Neutral proteases, essential components of purified tissue dissociation enzymes required for successful human islet isolation, show variable activities and effects of substrate on their activities. Initially we used a spectrophotometric endpoint assay with azocasein substrate to measure neutral protease activity. After critical review of the results, we observed these data to be inconsistent and not correlating expected differences in specific activities between thermolysin and Bacillus polym...

  2. Purification and characterization of protease enzyme from ...

    African Journals Online (AJOL)

    The enzyme was active in pH range 5 to11 and temperature of 30 to 80°C. The optimum pH and the temperature for protease activity were recorded to be pH 8 and 50°C, respectively. The enzyme was stable up to 40°C and pH 9. The protease activity was inhibited by Zn2+, Ni2+ and Sn2+ and increased by Ca2+, Mg2+ ...

  3. Acid protease production in fungal root endophytes.

    Science.gov (United States)

    Mayerhofer, Michael S; Fraser, Erica; Kernaghan, Gavin

    2015-01-01

    Fungal endophytes are ubiquitous in healthy root tissue, but little is known about their ecosystem functions, including their ability to utilize organic nutrient sources such as proteins. Root-associated fungi may secrete proteases to access the carbon and mineral nutrients within proteins in the soil or in the cells of their plant host. We compared the protein utilization patterns of multiple isolates of the root endophytes Phialocephala fortinii s.l., Meliniomyces variabilis and Umbelopsis isabellina with those of two ectomycorrhizal (ECM) fungi, Hebeloma incarnatulum and Laccaria bicolor, and the wood-decay fungus Irpex lacteus at pH values of 2-9 on liquid BSA media. We also assessed protease activity using a fluorescently labeled casein assay and gelatin zymography and characterized proteases using specific protease inhibitors. I. lacteus and U. isabellina utilized protein efficiently, while the ECM fungi exhibited poor protein utilization. ECM fungi secreted metallo-proteases and had pH optima above 4, while other fungi produced aspartic proteases with lower pH optima. The ascomycetous root endophytes M. variabilis and P. fortinii exhibited intermediate levels of protein utilization and M. variabilis exhibited a very low pH optimum. Comparing proteolytic profiles between fungal root endophytes and fungi with well defined ecological roles provides insight into the ecology of these cryptic root associates. © 2015 by The Mycological Society of America.

  4. Carbohydrate protease conjugates: Stabilized proteases for peptide synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wartchow, C.A.; Wang, Peng; Bednarski, M.D.; Callstrom, M.R. [Ohio State Univ., Columbus, OH (United States)]|[Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    The synthesis of oligopeptides using stable carbohydrate protease conjugates (CPCs) was examined in acetonitrile solvent systems. CPC[{alpha}-chymotrypsin] was used for the preparation of peptides containing histidine, phenylalanine, tryptophan in the P{sub 1} position in 60-93% yield. The CPC[{alpha}-chymotrypsin]-catalyzed synthesis of octamer Z-Gly-Gly-Phe-Gly-Gly-Phe-Gly-Gly-OEt from Z-Gly-Gly-Phe-Gly-Gly-Phe-OMe was achieved in 71% yield demonstrating that synthesis peptides containing both hydrophylic and hydrophobic amino acids. The P{sub 2} specificity of papain for aromatic residues was utilized for the 2 + 3 coupling of Z-Tyr-Gly-OMe to H{sub 2}N-Gly-Phe-Leu-OH to generate the leucine enkephalin derivative in 79% yield. Although papain is nonspecific for the hydrolysis of N-benzyloxycarbonyl amino acid methyl esters in aqueous solution, the rates of synthesis for these derivitives with nucleophile leucine tert-butyl ester differed by nearly 2 orders of magnitude. CPC[thermolysin] was used to prepare the aspartame precursor Z-Asp-Phe-OMe in 90% yield. The increased stability of CPCs prepared from periodate-modified poly(2-methacryl- amido-2-deoxy-D-glucose), poly(2-methacrylamido-2-deoxy-D-galactose), and poly(5-methacryl-amido-5-deoxy-D-ribose), carbohydrate materials designed to increase the aldehyde concentration in aqueous solution, suggests that the stability of CPCs is directly related to the aldehyde concentration of the carbohydrate material. Periodate oxidation of poly(2-methacrylamido-2-deoxy-D-glucose) followed by covalent attachment to {alpha}-chymotrypsin gave a CPC with catalytic activity in potassium phosphate buffer at 90{degrees}C for 2 h. 1 fig., 1 tab., 40 refs.

  5. Evaluation of proteases and protease inhibitors in Heterodera glycines cysts obtained from laboratory and field populations

    Science.gov (United States)

    Proteases and proteases inhibitors were evaluated in a number of preparations of Heterodera glycines cysts obtained from glasshouse cultures (GH) and field (LR) populations. Using a FRET-peptide library comprising 512 peptide substrate pools that detect 4 endoprotease types (aspartic, cysteine, meta...

  6. Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La

    International Nuclear Information System (INIS)

    Hwang, B.J.; Park, W.J.; Chung, C.H.; Goldberg, A.L.

    1987-01-01

    The energy requirement for protein breakdown in Escherichia coli has generally been attributed to the ATP-dependence of protease La, the lon gene product. The authors have partially purified another ATP-dependent protease from lon - cells that lack protease La (as shown by immunoblotting). This enzyme hydrolyzes [ 3 H]methyl-casein to acid-soluble products in the presence of ATP and Mg 2+ . ATP hydrolysis appears necessary for proteolytic activity. Since this enzyme is inhibited by diisopropyl fluorophosphate, it appears to be a serine protease, but it also contains essential thiol residues. They propose to name this enzyme protease Ti. It differs from protease La in nucleotide specificity, inhibitor sensitivity, and subunit composition. On gel filtration, protease Ti has an apparent molecular weight of 370,000. It can be fractionated by phosphocellulose chromatography or by DEAE chromatography into two components with apparent molecular weights of 260,000 and 140,000. When separated, they do not show preteolytic activity. One of these components, by itself, has ATPase activity and is labile in the absence of ATP. The other contains the diisopropyl fluorophosphate-sensitive proteolytic site. These results and the similar findings of Katayama-Fujimura et al. indicate that E. coli contains two ATP-hydrolyzing proteases, which differ in many biochemical features and probably in their physiological roles

  7. Purification and characterisation of a protease (tamarillin) from tamarillo fruit

    KAUST Repository

    Li, Zhao

    2018-02-16

    A protease from tamarillo fruit (Cyphomandra betacea Cav.) was purified by ammonium sulphate precipitation and diethylaminoethyl-Sepharose chromatography. Protease activity was determined on selected peak fractions using a casein substrate. Sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis showed that the peak with the highest protease activity consisted of one protein of molecular mass ca. 70 kDa. The protease showed optimal activity at pH 11 and 60°C. It was sensitive to phenylmethylsulphonyl fluoride while ethylenediaminetetraacetic acid and p-chloromercuribenzoic acid had little effect on its activity, indicating that this enzyme was a serine protease. Hg2+ strongly inhibited enzyme activity, possibly due to formation of mercaptide bonds with the thiol groups of the protease, suggesting that some cysteine residues may be located close to the active site. De novo sequencing strongly indicated that the protease was a subtilisin-like alkaline serine protease. The protease from tamarillo has been named \\'tamarillin\\'.

  8. Temporal Proteomics of Inducible RNAi Lines of Clp Protease Subunits Identifies Putative Protease Substrates.

    Science.gov (United States)

    Moreno, Juan C; Martínez-Jaime, Silvia; Schwartzmann, Joram; Karcher, Daniel; Tillich, Michael; Graf, Alexander; Bock, Ralph

    2018-02-01

    The Clp protease in the chloroplasts of plant cells is a large complex composed of at least 13 nucleus-encoded subunits and one plastid-encoded subunit, which are arranged in several ring-like structures. The proteolytic P-ring and the structurally similar R-ring form the core complex that contains the proteolytic chamber. Chaperones of the HSP100 family help with substrate unfolding, and additional accessory proteins are believed to assist with Clp complex assembly and/or to promote complex stability. Although the structure and function of the Clp protease have been studied in great detail in both bacteria and chloroplasts, the identification of bona fide protease substrates has been very challenging. Knockout mutants of genes for protease subunits are of limited value, due to their often pleiotropic phenotypes and the difficulties with distinguishing primary effects (i.e. overaccumulation of proteins that represent genuine protease substrates) from secondary effects (proteins overaccumulating for other reasons). Here, we have developed a new strategy for the identification of candidate substrates of plant proteases. By combining ethanol-inducible knockdown of protease subunits with time-resolved analysis of changes in the proteome, proteins that respond immediately to reduced protease activity can be identified. In this way, secondary effects are minimized and putative protease substrates can be identified. We have applied this strategy to the Clp protease complex of tobacco ( Nicotiana tabacum ) and identified a set of chloroplast proteins that are likely degraded by Clp. These include several metabolic enzymes but also a small number of proteins involved in photosynthesis. © 2018 American Society of Plant Biologists. All Rights Reserved.

  9. Temporal Proteomics of Inducible RNAi Lines of Clp Protease Subunits Identifies Putative Protease Substrates1[OPEN

    Science.gov (United States)

    Martínez-Jaime, Silvia; Karcher, Daniel; Tillich, Michael

    2018-01-01

    The Clp protease in the chloroplasts of plant cells is a large complex composed of at least 13 nucleus-encoded subunits and one plastid-encoded subunit, which are arranged in several ring-like structures. The proteolytic P-ring and the structurally similar R-ring form the core complex that contains the proteolytic chamber. Chaperones of the HSP100 family help with substrate unfolding, and additional accessory proteins are believed to assist with Clp complex assembly and/or to promote complex stability. Although the structure and function of the Clp protease have been studied in great detail in both bacteria and chloroplasts, the identification of bona fide protease substrates has been very challenging. Knockout mutants of genes for protease subunits are of limited value, due to their often pleiotropic phenotypes and the difficulties with distinguishing primary effects (i.e. overaccumulation of proteins that represent genuine protease substrates) from secondary effects (proteins overaccumulating for other reasons). Here, we have developed a new strategy for the identification of candidate substrates of plant proteases. By combining ethanol-inducible knockdown of protease subunits with time-resolved analysis of changes in the proteome, proteins that respond immediately to reduced protease activity can be identified. In this way, secondary effects are minimized and putative protease substrates can be identified. We have applied this strategy to the Clp protease complex of tobacco (Nicotiana tabacum) and identified a set of chloroplast proteins that are likely degraded by Clp. These include several metabolic enzymes but also a small number of proteins involved in photosynthesis. PMID:29229697

  10. Bacterial proteases, untapped antimicrobial drug targets.

    Science.gov (United States)

    Culp, Elizabeth; Wright, Gerard D

    2017-04-01

    Bacterial proteases are an extensive collection of enzymes that have vital roles in cell viability, stress response and pathogenicity. Although their perturbation clearly offers the potential for antimicrobial drug development, both as traditional antibiotics and anti-virulence drugs, they are not yet the target of any clinically used therapeutics. Here we describe the potential for and recent progress in the development of compounds targeting bacterial proteases with a focus on AAA+ family proteolytic complexes and signal peptidases (SPs). Caseinolytic protease (ClpP) belongs to the AAA+ family of proteases, a group of multimeric barrel-shaped complexes whose activity is tightly regulated by associated AAA+ ATPases. The opportunity for chemical perturbation of these complexes is demonstrated by compounds targeting ClpP for inhibition, activation or perturbation of its associated ATPase. Meanwhile, SPs are also a proven antibiotic target. Responsible for the cleavage of targeting peptides during protein secretion, both type I and type II SPs have been successfully targeted by chemical inhibitors. As the threat of pan-antibiotic resistance continues to grow, these and other bacterial proteases offer an arsenal of novel antibiotic targets ripe for development.

  11. Cleavage entropy as quantitative measure of protease specificity.

    Directory of Open Access Journals (Sweden)

    Julian E Fuchs

    2013-04-01

    Full Text Available A purely information theory-guided approach to quantitatively characterize protease specificity is established. We calculate an entropy value for each protease subpocket based on sequences of cleaved substrates extracted from the MEROPS database. We compare our results with known subpocket specificity profiles for individual proteases and protease groups (e.g. serine proteases, metallo proteases and reflect them quantitatively. Summation of subpocket-wise cleavage entropy contributions yields a measure for overall protease substrate specificity. This total cleavage entropy allows ranking of different proteases with respect to their specificity, separating unspecific digestive enzymes showing high total cleavage entropy from specific proteases involved in signaling cascades. The development of a quantitative cleavage entropy score allows an unbiased comparison of subpocket-wise and overall protease specificity. Thus, it enables assessment of relative importance of physicochemical and structural descriptors in protease recognition. We present an exemplary application of cleavage entropy in tracing substrate specificity in protease evolution. This highlights the wide range of substrate promiscuity within homologue proteases and hence the heavy impact of a limited number of mutations on individual substrate specificity.

  12. The Clp protease system; a central component of the chloroplast protease network.

    Science.gov (United States)

    Olinares, Paul Dominic B; Kim, Jitae; van Wijk, Klaas J

    2011-08-01

    Intra-plastid proteases play crucial and diverse roles in the development and maintenance of non-photosynthetic plastids and chloroplasts. Formation and maintenance of a functional thylakoid electron transport chain requires various protease activities, operating in parallel, as well as in series. This review first provides a short, referenced overview of all experimentally identified plastid proteases in Arabidopsis thaliana. We then focus on the Clp protease system which constitutes the most abundant and complex soluble protease system in the plastid, consisting of 15 nuclear-encoded members and one plastid-encoded member in Arabidopsis. Comparisons to the simpler Clp system in photosynthetic and non-photosynthetic bacteria will be made and the role of Clp proteases in the green algae Chlamydomonas reinhardtii will be briefly reviewed. Extensive molecular genetics has shown that the Clp system plays an essential role in Arabidopsis chloroplast development in the embryo as well as in leaves. Molecular characterization of the various Clp mutants has elucidated many of the consequences of loss of Clp activities. We summarize and discuss the structural and functional aspects of the Clp machinery, including progress on substrate identification and recognition. Finally, the Clp system will be evaluated in the context of the chloroplast protease network. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Effect of protease inhibitors on exflagellation in Plasmodium falciparum.

    Science.gov (United States)

    Rupp, Ingrid; Bosse, Rebecca; Schirmeister, Tanja; Pradel, Gabriele

    2008-04-01

    Enzymes involved in sexual differentiation and fertilization of the human malaria parasite Plasmodium falciparum represent potential targets for transmission blocking strategies. Parasite proteases are putatively involved in several steps during fertilization, but the types of proteases, their targets and modes of action remain hitherto unknown. We investigated the involvement of proteases in gametogenesis via exflagellation and immunofluorescence assays, using a variety of commercially available as well as newly designed protease inhibitors. The assays revealed a blockade of microgamete formation by the cysteine/serine protease inhibitors TLCK and TPCK. The serine protease inhibitor PMSF, the falcipain-targeting inhibitor RV112D, and the aspartic protease inhibitor EPNP also significantly decreased formation of microgametes. The metalloprotease inhibitor 1,10-phenanthroline, on the other hand, inhibited exflagellation by interfering with microgamete motility. Furthermore, EPNP reduced the activation of male and female gametocytes. Our data point to a major involvement of serine proteases and a non-thermolysin-like zinc metalloprotease in microgametocyte exflagellation.

  14. Synergism of Selective Tumor Vascular Thrombosis and Protease Activated Prodrug

    National Research Council Canada - National Science Library

    Liu, Cheng

    2008-01-01

    ... by administration of protease-activated prodrug. The activation of coagulation cascade and tumor vascular thrombosis as well as the following activation of the thrombolytic pathways led to explosive amplification of serine protease cascades...

  15. Cysteine proteases as potential antigens in antiparasitic DNA vaccines

    DEFF Research Database (Denmark)

    Jørgensen, Louise von Gersdorff; Buchmann, Kurt

    2011-01-01

    En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner.......En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner....

  16. Selection of Protease Inhibitors to Prevent or Attenuate Inflammatory Processes

    Science.gov (United States)

    2007-08-01

    temperature. elevated body temperature, pH, oxygen tension): * number of chemical factors (fatty acids. lactid acid, pepsin, lysozyme, antimicrobial ...inhibit toxic serine proteases produced by the fungus Metarhizium anisopliae. The known spectrum of protease inhibitors from invertebrates includes also

  17. Deletion of aprA and nprA genes for alkaline protease A and neutral protease A from bacillus thuringiensis: effect on insecticidal crystal proteins.

    Science.gov (United States)

    Tan, Y; Donovan, W P

    2001-11-17

    The aprA gene encoding alkaline protease A (AprA) was cloned from Bacillus thuringiensis subsp. kurstaki, and the cloned gene was used to construct aprA-deleted (aprA1) strains of B. thuringiensis. An aprA1 strain of B. thuringiensis that contained the wild-type gene for neutral protease A (nprA(+)) displayed levels of extracellular proteolytic activity that were similar to those of an aprA(+)nprA(+) strain. However, when EDTA was included in the protease assay to inhibit NprA activity the aprA1nprA(+) strain displayed only 2% of the extracellular proteolytic activity of the aprA(+)nprA(+) strain. A strain that was deleted for both aprA and nprA (aprA1nprA3 strain) failed to produce detectable levels of proteolytic activity either in the presence or absence of EDTA in the assay. Compared with the aprA(+)nprA(+) strain the aprA1nprA(+) strain yielded 10% more full-length Cry1Bb crystal protein and the aprA1nprA3 strain yielded 25% more full-length Cry1Bb protein. No significant differences were seen in the 50% lethal dose of Cry1Bb protein from aprA(+)nprA(+) and aprA1nprA3 strains against three species of lepidopteran insects. These results suggest that enhanced yield of certain crystal proteins can be obtained by deletion of the genes aprA and nprA which are the major extracellular proteases of B. thuringiensis.

  18. Ten Prominent Host Proteases in Plant-Pathogen Interactions

    Directory of Open Access Journals (Sweden)

    Emma L. Thomas

    2018-02-01

    Full Text Available Proteases are enzymes integral to the plant immune system. Multiple aspects of defence are regulated by proteases, including the hypersensitive response, pathogen recognition, priming and peptide hormone release. These processes are regulated by unrelated proteases residing at different subcellular locations. In this review, we discuss 10 prominent plant proteases contributing to the plant immune system, highlighting the diversity of roles they perform in plant defence.

  19. Production of alkaline proteases by alkalophilic Bacillus subtilis ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-11-23

    Nov 23, 2016 ... detergent industries (Moon and Parulekar, 1991). Proteases of commercial importance are produced from microbial, animal and plant sources (Patel, 1985). Almost all living organisms can produce alkaline protease at 32 to 45°C and pH 8 to 9 (Akcan and Uyar, 2011). Microbial proteases are produced ...

  20. Optimization of alkaline protease production from Bacillus subtilis ...

    African Journals Online (AJOL)

    Optimization of the strain revealed that the most suitable nitrogen source to enhance protease production was beef extract. Among various carbon sources tested, maximum production of protease was registered in medium with added glucose. The effect of metals ions indicated that maximum protease production was ...

  1. Production dynamics of extracellular protease from Bacillus species ...

    African Journals Online (AJOL)

    ... showed that Bacillus species under study are good producers of extracellular protease at high temperature. This might be an indication that proteases produced would be thermostable. Keywords Protease; proteolytic bacteria; Bacillus macerans; Bacillus licheniformis; Bacillus subtilis. African Journal of Biotechnology Vol.

  2. Purification and characterization of a protease from Thermophilic ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-10-19

    Oct 19, 2006 ... strain HS08, originally isolated from a soil sample collected from the Tulufan Crater of China, is .... Effect of temperature and pH on protease activity ... pH. To test the thermostability of the protease, the purified protease was incubated at various temperatures ranging from 40 to 80°C for. 10 to 60 min, then ...

  3. tolerant alkaline protease from Bacillus coagulans PSB

    African Journals Online (AJOL)

    oyaide

    2013-05-22

    May 22, 2013 ... optimum activity at 60°C and pH 8.0 with casein as substrate. The enzyme was .... appropriate buffers. 50 mM of buffer solutions (sodium citrate, pH .... Table 2. Hydrolysis of protein substrates by protease from Bacillus coagulans PSB-07. Substrate. Relative activity (%). Casein. 100. Gelatin. 18. BSA. 72.

  4. HIV-1 protease-induced apoptosis

    Czech Academy of Sciences Publication Activity Database

    Rumlová, Michaela; Křížová, Ivana; Keprová, Alena; Hadravová, Romana; Doležal, Michal; Strohalmová, Karolína; Pichová, Iva; Hájek, Miroslav; Ruml, T.

    2014-01-01

    Roč. 11, May 20 (2014), 37/1-37/15 ISSN 1742-4690 R&D Projects: GA ČR GA204/09/1388 Institutional support: RVO:61388963 Keywords : HIV protease * BCA3 * AKIP-1 * apoptosis * mitochondria Subject RIV: EE - Microbiology, Virology Impact factor: 4.185, year: 2014 http://www.retrovirology.com/content/11/1/37

  5. Protease inhibitor mediated resistance to insects

    NARCIS (Netherlands)

    Outchkourov, N.S.

    2003-01-01

    Protease inhibitors (PIs) are among the defensive molecules that plants produce in order to defend themselves against herbivores. A major aim of this thesis is to develop novel insect resistance traits usingheterologous, non-plant PIs. Prerequisite for the success of the

  6. Protease inhibitor (Pi) locus, fertility and twinning

    NARCIS (Netherlands)

    Boomsma, D.I.; Frants, R.R.; Bank, R.A.; Martin, N.G.

    1992-01-01

    In a sample of 160 Dutch twin pairs and their parents, we found that mothers of dizygotic twins had frequencies of the S and Z alleles at the protease inhibitor (Pi) locus that were 3 times higher than a control sample. Mothers of identical twins also had a higher frequency of S than controls. The S

  7. Inhibition of HIV protease by monoclonal antibodies

    Czech Academy of Sciences Publication Activity Database

    Řezáčová, Pavlína; Brynda, Jiří; Fábry, Milan; Hořejší, Magdalena; Štouračová, Renata; Lescar, J.; Riottot, M. M.; Sedláček, Juraj; Bentley, G. A.

    15(5), č. 15 (2002), s. 272-276 ISSN 0952-3499 R&D Projects: GA AV ČR IAA5052502; GA ČR GV203/98/K023 Institutional research plan: CEZ:AV0Z5052915 Keywords : monoclonal antibodies * HIV protease * crystal structure Subject RIV: CE - Biochemistry Impact factor: 2.838, year: 2002

  8. Dataset of cocoa aspartic protease cleavage sites

    Directory of Open Access Journals (Sweden)

    Katharina Janek

    2016-09-01

    Full Text Available The data provide information in support of the research article, “The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors” (Janek et al., 2016 [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans. Keywords: Aspartic protease, Cleavage sites, Cocoa, In-vitro proteolysis, Mass spectrometry, Peptides

  9. A novel protease activity assay using a protease-responsive chaperone protein

    Energy Technology Data Exchange (ETDEWEB)

    Sao, Kentaro [Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan); Murata, Masaharu, E-mail: m-murata@dem.med.kyushu-u.ac.jp [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan); Fujisaki, Yuri; Umezaki, Kaori [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan); Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki [Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan); Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Nishi-ku Fukuoka 819-0395 (Japan); Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Hashizume, Makoto [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan)

    2009-06-05

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  10. Emerging principles in protease-based drug discovery.

    Science.gov (United States)

    Drag, Marcin; Salvesen, Guy S

    2010-09-01

    Proteases have an important role in many signalling pathways, and represent potential drug targets for diseases ranging from cardiovascular disorders to cancer, as well as for combating many parasites and viruses. Although inhibitors of well-established protease targets such as angiotensin-converting enzyme and HIV protease have shown substantial therapeutic success, developing drugs for new protease targets has proved challenging in recent years. This in part could be due to issues such as the difficulty of achieving selectivity when targeting protease active sites. This Perspective discusses the general principles in protease-based drug discovery, highlighting the lessons learned and the emerging strategies, such as targeting allosteric sites, which could help harness the therapeutic potential of new protease targets.

  11. Pathophysiological significance and therapeutic applications of snake venom protease inhibitors.

    Science.gov (United States)

    Thakur, Rupamoni; Mukherjee, Ashis K

    2017-06-01

    Protease inhibitors are important constituents of snake venom and play important roles in the pathophysiology of snakebite. Recently, research on snake venom protease inhibitors has provided valuable information to decipher the molecular details of various biological processes and offer insight for the development of some therapeutically important molecules from snake venom. The process of blood coagulation and fibrinolysis, in addition to affecting platelet function, are well known as the major targets of several snake venom protease inhibitors. This review summarizes the structure-functional aspects of snake venom protease inhibitors that have been described to date. Because diverse biological functions have been demonstrated by protease inhibitors, a comparative overview of their pharmacological and pathophysiological properties is also highlighted. In addition, since most snake venom protease inhibitors are non-toxic on their own, this review evaluates the different roles of individual protease inhibitors that could lead to the identification of drug candidates and diagnostic molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A Multifunctional Protease Inhibitor To Regulate Endolysosomal Function

    Science.gov (United States)

    2011-01-01

    Proteases constitute a major class of drug targets. Endosomal compartments harbor several protease families whose attenuation may be beneficial to a number of biological processes, including inflammation, cancer metastasis, antigen presentation, and parasite clearance. As a step toward the goal of generalized but targeted protease inhibition in the endocytic pathway, we describe here the synthesis, characterization, and cellular application of a novel multifunctional protease inhibitor. We show that pepstatin A, a potent but virtually insoluble inhibitor of cathepsins D and E, can be conjugated to a single site on cystatin C, a potent inhibitor of the papain-like cysteine proteases (PLCP) and of asparagine endopeptidease (AEP), to create a highly soluble compound capable of suppressing the activity of all 3 principal protease families found in endosomes and lysosomes. We demonstrate that this cystatin–pepstatin inhibitor (CPI) can be taken up by cells to modulate protease activity and affect biological responses. PMID:21910425

  13. Microbial alkaline proteases: Optimization of production parameters and their properties

    Directory of Open Access Journals (Sweden)

    Kanupriya Miglani Sharma

    2017-06-01

    Full Text Available Proteases are hydrolytic enzymes capable of degrading proteins into small peptides and amino acids. They account for nearly 60% of the total industrial enzyme market. Proteases are extensively exploited commercially, in food, pharmaceutical, leather and detergent industry. Given their potential use, there has been renewed interest in the discovery of proteases with novel properties and a constant thrust to optimize the enzyme production. This review summarizes a fraction of the enormous reports available on various aspects of alkaline proteases. Diverse sources for isolation of alkaline protease producing microorganisms are reported. The various nutritional and environmental parameters affecting the production of alkaline proteases in submerged and solid state fermentation are described. The enzymatic and physicochemical properties of alkaline proteases from several microorganisms are discussed which can help to identify enzymes with high activity and stability over extreme pH and temperature, so that they can be developed for industrial applications.

  14. Epigenetic silencing of serine protease HTRA1 drives polyploidy

    International Nuclear Information System (INIS)

    Schmidt, Nina; Irle, Inga; Ripkens, Kamilla; Lux, Vanda; Nelles, Jasmin; Johannes, Christian; Parry, Lee; Greenow, Kirsty; Amir, Sarah; Campioni, Mara; Baldi, Alfonso; Oka, Chio; Kawaichi, Masashi; Clarke, Alan R.; Ehrmann, Michael

    2016-01-01

    Increased numbers and improperly positioned centrosomes, aneuploidy or polyploidy, and chromosomal instability are frequently observed characteristics of cancer cells. While some aspects of these events and the checkpoint mechanisms are well studied, not all players have yet been identified. As the role of proteases other than the proteasome in tumorigenesis is an insufficiently addressed question, we investigated the epigenetic control of the widely conserved protease HTRA1 and the phenotypes of deregulation. Mouse embryonal fibroblasts and HCT116 and SW480 cells were used to study the mechanism of epigenetic silencing of HTRA1. In addition, using cell biological and genetic methods, the phenotypes of downregulation of HTRA1 expression were investigated. HTRA1 is epigenetically silenced in HCT116 colon carcinoma cells via the epigenetic adaptor protein MBD2. On the cellular level, HTRA1 depletion causes multiple phenotypes including acceleration of cell growth, centrosome amplification and polyploidy in SW480 colon adenocarcinoma cells as well as in primary mouse embryonic fibroblasts (MEFs). Downregulation of HTRA1 causes a number of phenotypes that are hallmarks of cancer cells suggesting that the methylation state of the HtrA1 promoter may be used as a biomarker for tumour cells or cells at risk of transformation. The online version of this article (doi:10.1186/s12885-016-2425-8) contains supplementary material, which is available to authorized users

  15. Novel peptide-based protease inhibitors

    DEFF Research Database (Denmark)

    Roodbeen, Renée

    This thesis describes the design and synthesis of peptide-based serine protease inhibitors. The targeted protease, urokinase-type plasminogen activator (uPA) activates plasminogen, which plays a major role in cancer metastasis. The peptide upain-2 (S 1 ,S 12-cyclo-AcCSWRGLENHAAC-NH2) is a highly...... specific inhibitor of uPA. With the aim of creating better inhibitors based on the upain-2 scaffold, the following three strategies were explored: First, it was attempted to predefine the structure of upain-2 in solution by incorporating turn-inducing sequences and peptidomimetics. Additionally...... bond across the ring. The second bridge was made by a disulfide bridge, amide bond formation or via ring-closing metathesis. A, with upain-2 equipotent, bicyclic inhibitor was obtained and its binding to uPA was studied by ITC, NMR and X-ray. The knowledge of how selective inhibitors bind uPA has been...

  16. Dysregulation of protease and protease inhibitors in a mouse model of human pelvic organ prolapse.

    Directory of Open Access Journals (Sweden)

    Madhusudhan Budatha

    Full Text Available Mice deficient for the fibulin-5 gene (Fbln5(-/- develop pelvic organ prolapse (POP due to compromised elastic fibers and upregulation of matrix metalloprotease (MMP-9. Here, we used casein zymography, inhibitor profiling, affinity pull-down, and mass spectrometry to discover additional protease upregulated in the vaginal wall of Fbln5(-/- mice, herein named V1 (25 kDa. V1 was a serine protease with trypsin-like activity similar to protease, serine (PRSS 3, a major extrapancreatic trypsinogen, was optimum at pH 8.0, and predominantly detected in estrogenized vaginal epithelium of Fbln5(-/- mice. PRSS3 was (a localized in epithelial secretions, (b detected in media of vaginal organ culture from both Fbln5(-/- and wild type mice, and (c cleaved fibulin-5 in vitro. Expression of two serine protease inhibitors [Serpina1a (α1-antitrypsin and Elafin] was dysregulated in Fbln5(-/- epithelium. Finally, we confirmed that PRSS3 was expressed in human vaginal epithelium and that SERPINA1 and Elafin were downregulated in vaginal tissues from women with POP. These data collectively suggest that the balance between proteases and their inhibitors contributes to support of the pelvic organs in humans and mice.

  17. Acanthamoeba protease activity promotes allergic airway inflammation via protease-activated receptor 2.

    Directory of Open Access Journals (Sweden)

    Mi Kyung Park

    Full Text Available Acanthamoeba is a free-living amoeba commonly present in the environment and often found in human airway cavities. Acanthamoeba possesses strong proteases that can elicit allergic airway inflammation. To our knowledge, the aeroallergenicity of Acanthamoeba has not been reported. We repeatedly inoculated mice with Acanthamoeba trophozoites or excretory-secretory (ES proteins intra-nasally and evaluated symptoms and airway immune responses. Acanthamoeba trophozoites or ES proteins elicited immune responses in mice that resembled allergic airway inflammation. ES proteins had strong protease activity and activated the expression of several chemokine genes (CCL11, CCL17, CCL22, TSLP, and IL-25 in mouse lung epithelial cells. The serine protease inhibitor phenyl-methane-sulfonyl fluoride (PMSF inhibited ES protein activity. ES proteins also stimulated dendritic cells and enhanced the differentiation of naive T cells into IL-4-secreting T cells. After repeated inoculation of the protease-activated receptor 2 knockout mouse with ES proteins, airway inflammation and Th2 immune responses were markedly reduced, but not to basal levels. Furthermore, asthma patients had higher Acanthamoeba-specific IgE titers than healthy controls and we found Acanthamoeba specific antigen from house dust in typical living room. Our findings suggest that Acanthamoeba elicits allergic airway symptoms in mice via a protease allergen. In addition, it is possible that Acanthamoeba may be one of the triggers human airway allergic disease.

  18. Acanthamoeba Protease Activity Promotes Allergic Airway Inflammation via Protease-Activated Receptor 2

    Science.gov (United States)

    Park, Mi Kyung; Cho, Min Kyoung; Kang, Shin Ae; Park, Hye-Kyung; Kim, Dong-Hee; Yu, Hak Sun

    2014-01-01

    Acanthamoeba is a free-living amoeba commonly present in the environment and often found in human airway cavities. Acanthamoeba possesses strong proteases that can elicit allergic airway inflammation. To our knowledge, the aeroallergenicity of Acanthamoeba has not been reported. We repeatedly inoculated mice with Acanthamoeba trophozoites or excretory-secretory (ES) proteins intra-nasally and evaluated symptoms and airway immune responses. Acanthamoeba trophozoites or ES proteins elicited immune responses in mice that resembled allergic airway inflammation. ES proteins had strong protease activity and activated the expression of several chemokine genes (CCL11, CCL17, CCL22, TSLP, and IL-25) in mouse lung epithelial cells. The serine protease inhibitor phenyl-methane-sulfonyl fluoride (PMSF) inhibited ES protein activity. ES proteins also stimulated dendritic cells and enhanced the differentiation of naive T cells into IL-4-secreting T cells. After repeated inoculation of the protease-activated receptor 2 knockout mouse with ES proteins, airway inflammation and Th2 immune responses were markedly reduced, but not to basal levels. Furthermore, asthma patients had higher Acanthamoeba-specific IgE titers than healthy controls and we found Acanthamoeba specific antigen from house dust in typical living room. Our findings suggest that Acanthamoeba elicits allergic airway symptoms in mice via a protease allergen. In addition, it is possible that Acanthamoeba may be one of the triggers human airway allergic disease. PMID:24658532

  19. Role of Proteases in Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Kailash C. Pandey

    2017-08-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is generally associated with progressive destruction of airways and lung parenchyma. Various factors play an important role in the development and progression of COPD, like imbalance of proteases, environmental and genetic factors and oxidative stress. This review is specifically focused on the role of proteases and their imbalance in COPD. There are three classes (serine, mettalo, and cysteine of proteases involved in COPD. In serine proteases, neutrophil elastase, cathepsin G, and proteinase-3 are involved in destruction of alveolar tissue. Matrix-mettaloproteinase-9, 12, 13, plays an influential role in severity of COPD. Among cysteine proteases, caspase-3, caspases-8 and caspase-9 play an important role in controlling apoptosis. These proteases activities can be regulated by inhibitors like α-1-antitrypsin, neutrophil elastase inhibitor, and leukocyte protease inhibitor. Studies suggest that neutrophil elastase may be a therapeutic target for COPD, and specific inhibitor against this enzyme has potential role to control the disease. Current study suggests that Dipeptidyl Peptidase IV is a potential marker for COPD. Since the expression of proteases and its inhibitors play an important role in COPD pathogenesis, therefore, it is worth investigating the role of proteases and their regulation. Understanding the biochemical basis of COPD pathogenesis using advanced tools in protease biochemistry and aiming toward translational research from bench-to-bedside will have great impact to deal with this health problem.

  20. PARTIAL PURIFICATION AND CHARACTERIZATION OF ALKALOPHILIC PROTEASE FROM PSEUDOMONAS AERUGINOSA

    Directory of Open Access Journals (Sweden)

    R. Satheeskumar

    2013-10-01

    Full Text Available Partial purification and characterization of alkalophilic protease production from Pseudomonas aeruginosa was isolated from the gut of marine and coastal waters shrimp Penaeus monodon. The protease production was assayed in submerged fermentation to produce maximum protease activity (423 ± 0.09 U/ml. The enzyme was precipitated with ammonium sulphate and partially purified by ion exchange chromatography through DEAE Sephadex A-50 column. In 10th fraction showed maximum protease activity (734 ± 0.18 U/ml with increase in purification fold. The molecular weight of protease from Pseudomonas aeruginosa was recorded as 60 kDa. The stability of protease was tested at various pH and temperature; it showed maximum protease activity at pH-9 and temperature 50ºC. Among the various surfactants tested for enzyme stability, maximum activity was retained in poly ethylene glycol. The compatibility of protease enzyme with various commercial detergents; the enzyme retained maximum protease activity in tide. The results are indicated that all these properties make the bacterial proteases are most suitable for wide industrial applications.

  1. Corruption of innate immunity by bacterial proteases.

    Science.gov (United States)

    Potempa, Jan; Pike, Robert N

    2009-01-01

    The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host's innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections.

  2. Corruption of Innate Immunity by Bacterial Proteases

    Science.gov (United States)

    Potempa, Jan; Pike, Robert N.

    2009-01-01

    The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host’s innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections. PMID:19756242

  3. A look inside HIV resistance through retroviral protease interaction maps.

    Directory of Open Access Journals (Sweden)

    Aleksejs Kontijevskis

    2007-03-01

    Full Text Available Retroviruses affect a large number of species, from fish and birds to mammals and humans, with global socioeconomic negative impacts. Here the authors report and experimentally validate a novel approach for the analysis of the molecular networks that are involved in the recognition of substrates by retroviral proteases. Using multivariate analysis of the sequence-based physiochemical descriptions of 61 retroviral proteases comprising wild-type proteases, natural mutants, and drug-resistant forms of proteases from nine different viral species in relation to their ability to cleave 299 substrates, the authors mapped the physicochemical properties and cross-dependencies of the amino acids of the proteases and their substrates, which revealed a complex molecular interaction network of substrate recognition and cleavage. The approach allowed a detailed analysis of the molecular-chemical mechanisms involved in substrate cleavage by retroviral proteases.

  4. Magnesium Enhanced Fibrinolytic Activity of Protease from Schizophyllum commune

    Directory of Open Access Journals (Sweden)

    Chung-Lun Lu

    2010-06-01

    Full Text Available Prevention and therapy of thrombotic diseases have attracted much attention in developed countries during recent years. Investigators have been looking for cheaper and safer thrombolytic agents for therapy of thrombotic diseases. Recently, we have discovered a fibrinolytic protease from Schizophyllum commune. In this study, the protease was proven to degrade blood clot effectively. Seven divalent metal ions were used to test the selectiveness on enhancing protease activity. The treated rat blood was traced by thromboelastography to assess the viscoelastic properties of whole blood. As the result, fibrinolytic activity of the protease was enhanced remarkably by Mg2+ in reducing the strength of blood clot and showed the innovative anti-thrombotic effects. This is the first study of anti-thrombotic effects from fungal-derived fibrinolytic protease using thromboelastography and delineates the efficacy of magnesium supplementation in enhancement of thrombolytic activity from S. commune fibrinolytic protease.

  5. Erwinia carotovora extracellular proteases : characterization and role in soft rot

    OpenAIRE

    Kyöstiö, Sirkka R. M.

    1990-01-01

    Erwinia carotovora subsp. carotovora (Ecc) strain EC14, a Gram-negative bacterium, causes soft rot on several crops, including potato. Maceration of potato tuber tissue is caused by secreted pectolytic enzymes. Other cell-degrading enzymes may also have roles in pathogenesis, including cellulases, phospholipases, and protease(s). The objectives of this research were to (1) characterize Ecc extracellular protease (Prt) and (2) elucidate its role in potato soft rot. A gene enc...

  6. Microbial alkaline proteases: Optimization of production parameters and their properties

    OpenAIRE

    Kanupriya Miglani Sharma; Rajesh Kumar; Surbhi Panwar; Ashwani Kumar

    2017-01-01

    Proteases are hydrolytic enzymes capable of degrading proteins into small peptides and amino acids. They account for nearly 60% of the total industrial enzyme market. Proteases are extensively exploited commercially, in food, pharmaceutical, leather and detergent industry. Given their potential use, there has been renewed interest in the discovery of proteases with novel properties and a constant thrust to optimize the enzyme production. This review summarizes a fraction of the enormous repor...

  7. Extracellular protease from the antarctic yeast Candida humicola.

    OpenAIRE

    Ray, M K; Devi, K U; Kumar, G S; Shivaji, S

    1992-01-01

    The psychrotrophic, dimorphic yeast Candida humicola, isolated from Antarctic soil, secretes an acidic protease into the medium. The secretion of this protease by C. humicola was found to be dependent on the composition of the medium. In YPD or yeast nitrogen base medium containing either amino acids or ammonium sulfate as the nitrogen source, the activity of the protease in the medium was low (basal level). However, when yeast nitrogen base medium was depleted of amino acids or ammonium sulf...

  8. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    International Nuclear Information System (INIS)

    Qiu Yuling; Choo, Young Moo; Yoon, Hyung Joo; Jia Jingming; Cui Zheng; Wang Dong; Kim, Doh Hoon; Sohn, Hung Dae; Jin, Byung Rae

    2011-01-01

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: → Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. → Bt-VSP activates prothrombin. → Bt-VSP directly degrades fibrinogen into fibrin degradation products. → Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  9. Characterization of Fibrinolytic Proteases from Gloydius blomhoffii siniticus Venom

    Directory of Open Access Journals (Sweden)

    Suk Ho Choi

    2011-09-01

    Full Text Available Objectives : This study was undertaken to identify fibrinolytic proteases from Gloydius blomhoffii siniticus venom and to characterize a major fibrinolytic protease purified from the venom. Methods: The venom was subjected to chromatography using columns of Q-Sepharose and Sephadex G-75. The molecular weights of fibrinolytic proteases showing fibrinolytic zone in fibrin plate assay were determined in SDS-PAGE (Sodium dodecyl sulfate-polyacrylamide gel electrophoresis The effects of inhibitors and metal ions on fibrinolytic protease and the proteolysis patterns of fibrinogen, gelatin, and bovine serum albumin were investigated. Results : 1 The fibrinolytic fractions of the three peaks isolated from Gloydius blomhoffii siniticus venom contained two polypeptides of 46 and 59 kDa and three polypeptides of 32, 18, and 15 kDa and a major polypeptide of 54 kDa, respectively. 2 The fibrinolytic activity of the purified protease of 54 kDA was inhibited by metal chelators, such as EDTA, EGTA, and 1,10-phenanthroline, and disulfhydryl-reducing compounds, such as dithiothreitol and cysteine. 3 Calcium chloride promoted the fibrinolytic activity of the protease, but mercuric chloride and cobalt(II chloride inhibited it. 4 The fibrinolytic protease cleaved preferentially A-chain and slowly B-chain of fibrinogen. It also hydrolyzed gelatin but not bovine serum albumin. Conclusions: The Gloydius blomhoffii siniticus venom contained more than three fibrinolytic proteases. The major fibrinolytic protease was a metalloprotease which hydrolyzed both fibrinogen and gelatin, but not bovine serum albumin.

  10. Intracellular alkaline proteases produced by thermoacidophiles: detection of protease heterogeneity by gelatin zymography and polymerase chain reaction (PCR)

    Energy Technology Data Exchange (ETDEWEB)

    Kocab, S.; Erdem, B. [Middle East Technical University, Ankara (Turkey). Dept. of Biological Sciences

    2002-08-01

    In this study 24 thermoacidophilic archeal and bacterial strains isolated from hot-springs and hot-soils were screened for their ability to produce intracellular alkaline proteases. The protease activities of the strains, based on azocasein hydrolysis, showed a variation from 0.6 to 5.1 U. The cell extracts of three most potent producers were further examined and it was found that their proteases exhibited maximum activity at 60-70{sup o}C and showed a pH optimum over a range of pH 7.0-8.5. Gelatin zymography revealed that two of the selected archeal strains produced multiple active SDS-resistant proteases. On the other hand, PCR amplification of alkaline serine protease gene sequences of total DNA from all isolates yielded four distinct amplification fragments of 650, 450, 400 and 300 bp, which might have been derived from different serine protease genes. (author)

  11. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    Energy Technology Data Exchange (ETDEWEB)

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Roszak, Aleksander W. [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel, E-mail: daniel.walker@glasgow.ac.uk [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom)

    2015-06-30

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.

  12. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    International Nuclear Information System (INIS)

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel

    2015-01-01

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group

  13. Construction of dengue virus protease expression plasmid and in vitro protease assay for screening antiviral inhibitors.

    Science.gov (United States)

    Lai, Huiguo; Teramoto, Tadahisa; Padmanabhan, Radhakrishnan

    2014-01-01

    Dengue virus serotypes 1-4 (DENV1-4) are mosquito-borne human pathogens of global significance causing ~390 million cases annually worldwide. The virus infections cause in general a self-limiting disease, known as dengue fever, but occasionally also more severe forms, especially during secondary infections, dengue hemorrhagic fever and dengue shock syndrome causing ~25,000 deaths annually. The DENV genome contains a single-strand positive sense RNA, approximately 11 kb in length. The 5'-end has a type I cap structure. The 3'-end has no poly(A) tail. The viral RNA has a single long open reading frame that is translated by the host translational machinery to yield a polyprotein precursor. Processing of the polyprotein precursor occurs co-translationally by cellular proteases and posttranslationally by the viral serine protease in the endoplasmic reticulum (ER) to yield three structural proteins (capsid (C), precursor membrane (prM), and envelope (E) and seven nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The active viral protease consists of both NS2B, an integral membrane protein in the ER, and the N-terminal part of NS3 (180 amino acid residues) that contains the trypsin-like serine protease domain having a catalytic triad of H51, D75, and S135. The C-terminal part of NS3, ~170-618 amino acid residues, encodes an NTPase/RNA helicase and 5'-RNA triphosphatase activities; the latter enzyme is required for the first step in 5'-capping. The cleavage sites of the polyprotein by the viral protease consist of two basic amino acid residues such as KR, RR, or QR, followed by short chain amino acid residues, G, S, or T. Since the cleavage of the polyprotein by the viral protease is absolutely required for assembly of the viral replicase, blockage of NS2B/NS3pro activity provides an effective means for designing dengue virus (DENV) small-molecule therapeutics. Here we describe the screening of small-molecule inhibitors against DENV2 protease.

  14. Complexity of cancer protease biology: Cathepsin K expression and function in cancer progression

    NARCIS (Netherlands)

    Verbovšek, Urška; van Noorden, Cornelis J. F.; Lah, Tamara T.

    2015-01-01

    Proteases, including lysosomal cathepsins, are functionally involved in many processes in cancer progression from its initiation to invasion and metastatic spread. Only recently, cathepsin K (CatK), the cysteine protease originally reported as a collagenolytic protease produced by osteoclasts,

  15. Semi-continuous in situ magnetic separation for enhanced extracellular protease productionmodeling and experimental validation

    DEFF Research Database (Denmark)

    Cerff, M.; Scholz, A.; Käppler, T.

    2013-01-01

    ) constitutes an excellent adsorptive method for efficient extracellular protease removal during cultivation. In this work, the impact of semi‐continuous ISMS on the overall protease yield has been investigated. Results reveal significant removal of the protease from Bacillus licheniformis cultivations......In modern biotechnology proteases play a major role as detergent ingredients. Especially the production of extracellular protease by Bacillus species facilitates downstream processing because the protease can be directly harvested from the biosuspension. In situ magnetic separation (ISMS...

  16. Karakterisasi protease Bacillus sp. UGM5

    Directory of Open Access Journals (Sweden)

    Titik Purwati Widowati

    1999-07-01

    Full Text Available The objective of this experiment is to indentify the characters of proetease produced by Bacillus sp.UGM5.the protease secreted by Bacillus sp.UGM5 was first isolated,purified and then charactirezed.The crude enzyme has spesific actifity of 1.14 U/mg,however,the spesific activity of purified enzyme was increased by 23.8 times fold and recovery was 33.69%.The Page of nondenatured crude enzymes showes two type of proreases,however ,the SDS-Page of denatured purified enzyme showed four protein-bends with molecular weights of 55.5 kDa,18kDa respecetively.The optimum pH and temperature for the enzyme acrivity are 8.5 and 420C and belongs to serin protease type,with Km 3 X 10-3mM and Vmax 0.0890mM/30 minutes.The activity is not inhibited by Ca+2,Fe+2 and EDTA.

  17. Lopinavir-Ritonavir: a new protease inhibitor.

    Science.gov (United States)

    Mangum, E M; Graham, K K

    2001-11-01

    Lopinavir is a new protease inhibitor that is structurally related to ritonavir. It recently was approved by the Food and Drug Administration as a coformulation with ritonavir under the brand name Kaletra. Ritonavir substantially increases lopinavir drug exposure by inhibiting cytochrome P450 isoenzyme 3A4. Based on limited data, lopinavir-ritonavir demonstrates safety and efficacy in both antiretroviral-naive and protease inhibitor-experienced patients. It has the ability to durably suppress human immunodeficiency virus (HIV) RNA for up to 2 years in antiretroviral-naïve patients. Compared with nelfinavir, it had superior virologic control at 48 weeks in antiretroviral-naïve patients. Its side effects include diarrhea, abnormal stools, abdominal pain, nausea, vomiting, and asthenia. A number of patients experienced grade 3-4 laboratory abnormalities in liver function tests, cholesterol, and triglycerides while receiving this drug combination. The exact resistance patterns of lopinavir-ritonavir are unknown, but the Department of Health and Human Services strongly recommends it for the initial treatment of HIV-infected adults and adolescents.

  18. Peptide synthesis in neat organic solvents with novel thermostable proteases

    NARCIS (Netherlands)

    Toplak, Ana; Nuijens, Timo; Quaedflieg, Peter J L M; Wu, Bian; Janssen, Dick B

    Biocatalytic peptide synthesis will benefit from enzymes that are active at low water levels in organic solvent compositions that allow good substrate and product solubility. To explore the use of proteases from thermophiles for peptide synthesis under such conditions, putative protease genes of the

  19. Expression and characterization of Coprothermobacter proteolyticus alkaline serine protease

    Science.gov (United States)

    TECHNICAL ABSTRACT A putative protease gene (aprE) from the thermophilic bacterium Coprothermobacter proteolyticus was cloned and expressed in Bacillus subtilis. The enzyme was determined to be a serine protease based on inhibition by PMSF. Biochemical characterization demonstrated the enzyme had...

  20. Focal Cerebral Ischemia Induces Active Proteases That Degrade Microvascular Matrix

    Science.gov (United States)

    Fukuda, Shunichi; Fini, Catherine A.; Mabuchi, Takuma; Koziol, James A.; Eggleston, Leonard L.; del Zoppo, Gregory J.

    2010-01-01

    Background and Purpose Focal cerebral ischemia causes microvessel matrix degradation and generates proteases known to degrade this matrix. However, proof that the proteases generated do indeed degrade vascular matrix is lacking. Here we demonstrate that active proteases derived from ischemic tissue after middle cerebral artery occlusion (MCAO) and transferred to normal tissue can degrade vascular matrix. Methods In an ex vivo bioassay, the effects of supernatants from ischemic and normal basal ganglia of nonhuman primates, proteases, and control buffer on the immunoreactivity of vascular matrix constituents in normal brain tissue sections were quantified. Protease families were identified with specific inhibitors. Results Plasmin, active matrix metalloproteinase (MMP)-2, and active MMP-9 significantly reduced microvessel-associated collagen, laminin, and heparan sulfate proteoglycans (HSPG). The vascular HSPG perlecan was more sensitive than collagen or laminin in the bioassay and in the ischemic core 2 hours after MCAO. Two-hour and 7-day ischemic tissue samples significantly degraded matrix perlecan and collagen. Inhibitor studies confirmed that while active MMPs were generated, active cysteine proteases significantly degraded microvessel perlecan. The cysteine proteases cathepsins B and L were generated in the microvasculature and adjacent neurons or glial cells 2 hours after MCAO and decreased perlecan in the bioassay. Conclusions This is the first direct evidence that active proteases are generated in ischemic cerebral tissues that are acutely responsible for vascular matrix degradation. Degradation of vascular perlecan, the most sensitive matrix component thus far identified, may be due to cathepsins B and L, generated very rapidly after MCAO. PMID:15001799

  1. Localisation of a multicatalytic protease complex in Trypanosoma ...

    African Journals Online (AJOL)

    Recently, a multicatalytic protease complex, the proteasome, has also become of interest because of its potential involvement in cell-cycle development. The proteasome is the central protease of the non lysosomal ubiquitin dependent pathway of protein degradation. Here we report the subcellular localization of 20S ...

  2. Acidic extracellular proteases from microrganisms of fairly acidic niche.

    Science.gov (United States)

    Bossi, Alessandra; Bonizzato, Luca; Zapparoli, Giacomo

    2006-01-01

    The protein population secreted from three wine-contaminant microorganisms was studied by two-dimensional electrophoresis and screened for proteases. Proteolytic enzymes were electrophoretically purified and their activity, optimum pH and temperature determined. The protease of Acetobacter aceti maintained its activity over the range of pHs 3.0-5.0, thus being of potential biotechnological interest.

  3. Partial purification and characterization of alkaline proteases from ...

    African Journals Online (AJOL)

    Alkaline proteases from the digestive tract of anchovy were partially purified by ammonium sulfate fractionation, dialysis and Sephadex G-75 gel filtration. The purification fold and yield were 6.23 and 4.49%, respectively. The optimum activities of partially purified alkaline proteases were observed at 60°C and at pH 11.0.

  4. Cold denaturation of the HIV-1 protease monomer

    DEFF Research Database (Denmark)

    Rösner, Heike Ilona; Caldarini, Martina; Prestel, Andreas

    2017-01-01

    The HIV-1-protease is a complex protein which in its active form adopts a homodimer dominated by -sheet structures. We have discovered a cold-denatured state of the monomeric subunit of HIV-1-protease which is populated above 0ºC and therefore directly accessible to various spectroscopic...

  5. Extracellular protease produced by Bacillus subtilis isolated from ...

    African Journals Online (AJOL)

    In a study to evaluate the microbiological safety of some paracetamol oral solutions sold in some Nigerian drug stores, 40.0% of the samples examined was contaminated with protease-producing Bacillus subtilis. The production of extracellular protease was induced by casein in the minimal medium and was found to be the ...

  6. Hordeum vulgare cysteine protease heterologous expressed in yeast

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben Bach

    During germination of barley seeds, the mobilization of protein is essential and Cysteine Proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins [1]. Cysteine proteases exist as pro-enzyme until activated through reduction of the...

  7. A Protease Isolated from the Latex of Plumeria rubra Linn ...

    African Journals Online (AJOL)

    Purpose: To isolate, purify and characterize protease from the latex of the plant. Methods: Protease was isolated from the latex of Plumeria rubra Linn using acetone precipitation method and purified by a sequence of DEAE cellulose column chromatography, followed by two successive column purification in Sephadex G-50 ...

  8. Protease-induced solubilisation of carbohydrates from brewers' spent grain

    NARCIS (Netherlands)

    Faulds, C.B.; Collins, S.; Robertson, J.A.; Treimo, J.; Eijsink, V.G.H.; Hinz, S.W.A.; Schols, H.A.; Buchert, J.; Waldron, K.W.

    2009-01-01

    The impact of microbial proteases on the release of carbohydrates from BSG was studied. The proteases were able to release the non-cellulosic glucose, a portion of feruloylated arabinoxylan and over 50% of the protein from brewers' spent grain (BSG) after 24 h hydrolysis. The non-cellulosic glucose

  9. Cloning and characterization of a novel cysteine protease gene ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Latex has been reported to contain a number of proteins such as protease-like enzymes (Arima et al 2000;. Arribere et al 1998), chitinase (Haque and Bradbury 1999;. Cloning and characterization of a novel cysteine protease gene (HbCP1) from Hevea brasiliensis. SHI-QING PENG. 1,#,*, JIA-HONG ZHU. 1,#, HUI-LIANG LI.

  10. Reaction mechanism of O-acylhydroxamate with cysteine proteases

    Indian Academy of Sciences (India)

    WINTEC

    such as, cardiovascular, oncology, osteoporosis, and arthritis. Till now, twenty one families of cysteine proteases have been discovered5, almost half of them are found in viruses and others are found in bacteria, fungi, pro- tozoa and plants. In mammals, two main groups of cysteine proteases are present: cytosolic calpains.

  11. Improvement of acid protease production by a mixed culture of ...

    African Journals Online (AJOL)

    The synthesis of acid protease by Aspergillus oryzae AS3042 was enhanced significantly with the mixed culture of Aspergillus niger SL-09 using solid-state fermentation technique. The influence of carbon sources, nitrogen sources and the addition of phytic acid on acid protease production were investigated. The enzyme ...

  12. Comparison of protease production from newly isolated bacterial ...

    African Journals Online (AJOL)

    Fermentation medium (by using sub-merged fermentation technique) was incubated for 48 h at 37°C temperature and agitation speed of 200 rpm. The protease was partially purified with 70% ammonium sulphate. Four different supports were used for the immobilization of the bacterial protease by physical adsorption ...

  13. Purification of an Intracellular Fibrinolytic Protease from Ganoderma ...

    African Journals Online (AJOL)

    Erah

    Method: The intracellular fibrinolytic protease produced by Ganoderma lucidum VK12 was isolated from the mycelia grown in MCDBF broth ... The inhibitory effect of different metal ions and commercial protease inhibitors on enzyme activity was studied. ... sodium hydroxide and 2.9 %w/v sodium carbonate in glass-distilled ...

  14. Some physicochemical properties of acid protease produced during ...

    African Journals Online (AJOL)

    Acid protease synthesis by Aspergillus niger increased in direct proportion to growth up to the early hours of the death phase. Maximum enzyme synthesis was obtained at the 96th hour of fermentation, which was 12 hours into the death phase. The acid protease synthesized had optimum pH of 4.0, while the enzyme was ...

  15. High-level expression of alkaline protease using recombinant ...

    African Journals Online (AJOL)

    AJL

    2012-02-16

    Feb 16, 2012 ... compared with that of wild-type B. licheniformis CICIM B5102. Key word: Alkaline protease, Bacillus amyloliquefaciens, Bacillus licheniformis. INTRODUCTION. Proteases are one of the most important industrial enzyme groups, accounting for approximately 60% of the total enzyme sales (Beg et al., 2003).

  16. Heterologous expression of Hordeum vulgare cysteine protease in yeast

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben B

    Cysteine Proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins during germination. Several Cysteine proteases have been identified in barley. One of the key enzymes, Hordeum vulgare endoprotease B2 (HvEPB2) was cloned...

  17. Isolation of protease producing novel Bacillus cereus and detection ...

    African Journals Online (AJOL)

    user

    2011-02-14

    Feb 14, 2011 ... The highest protease activity was determined at 30°C temperature and 6.4 pH conditions and after the 18th hour, it decreased evidently. Key words: Protease, production, optimization, Bacillus sp. INTRODUCTION. Enzymes have been produced in large industrial scale for several decades (Falch, 1991).

  18. Production of alkaline proteases by alkalophilic Bacillus subtilis ...

    African Journals Online (AJOL)

    Among various nitrogen sources, yeast extract was found to be the best inducer of alkaline protease. Among metal salts, KNO3 and NH4Cl were found to increase protease production. The maximum enzyme production (3600 U/ml) was observed with pomegranate peels of fermentation medium in the presence of yeast ...

  19. Sequence conservation, phylogenetic relationships, and expression profiles of nondigestive serine proteases and serine protease homologs in Manduca sexta.

    Science.gov (United States)

    Cao, Xiaolong; He, Yan; Hu, Yingxia; Zhang, Xiufeng; Wang, Yang; Zou, Zhen; Chen, Yunru; Blissard, Gary W; Kanost, Michael R; Jiang, Haobo

    2015-07-01

    Serine protease (SP) and serine protease homolog (SPH) genes in insects encode a large family of proteins involved in digestion, development, immunity, and other processes. While 68 digestive SPs and their close homologs are reported in a companion paper (Kuwar et al., in preparation), we have identified 125 other SPs/SPHs in Manduca sexta and studied their structure, evolution, and expression. Fifty-two of them contain cystine-stabilized structures for molecular recognition, including clip, LDLa, Sushi, Wonton, TSP, CUB, Frizzle, and SR domains. There are nineteen groups of genes evolved from relatively recent gene duplication and sequence divergence. Thirty-five SPs and seven SPHs contain 1, 2 or 5 clip domains. Multiple sequence alignment and molecular modeling of the 54 clip domains have revealed structural diversity of these regulatory modules. Sequence comparison with their homologs in Drosophila melanogaster, Anopheles gambiae and Tribolium castaneum allows us to classify them into five subfamilies: A are SPHs with 1 or 5 group-3 clip domains, B are SPs with 1 or 2 group-2 clip domains, C, D1 and D2 are SPs with a single clip domain in group-1a, 1b and 1c, respectively. We have classified into six categories the 125 expression profiles of SP-related proteins in fat body, brain, midgut, Malpighian tubule, testis, and ovary at different stages, suggesting that they participate in various physiological processes. Through RNA-Seq-based gene annotation and expression profiling, as well as intragenomic sequence comparisons, we have established a framework of information for future biochemical research of nondigestive SPs and SPHs in this model species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Alkaline protease production by a strain of marine yeasts

    Science.gov (United States)

    Ping, Wang; Zhenming, Chi; Chunling, Ma

    2006-07-01

    Yeast strain 10 with high yield of protease was isolated from sediments of saltern near Qingdao, China. The protease had the highest activity at pH 9.0 and 45°C. The optimal medium for the maximum alkaline protease production of strain 10 was 2.5g soluble starch and 2.0g NaNO3 in 100mL seawater with initial pH 6.0. The optimal cultivation conditions for the maximum protease production were temperature 24.5°C, aeration rate 8.0L min-1 and agitation speed 150r min-1 Under the optimal conditions, 623.1 U mg-1 protein of alkaline protease was reached in the culture within 30h of fermentation.

  1. Cross genome comparisons of serine proteases in Arabidopsis and rice

    Directory of Open Access Journals (Sweden)

    Sowdhamini R

    2006-08-01

    Full Text Available Abstract Background Serine proteases are one of the largest groups of proteolytic enzymes found across all kingdoms of life and are associated with several essential physiological pathways. The availability of Arabidopsis thaliana and rice (Oryza sativa genome sequences has permitted the identification and comparison of the repertoire of serine protease-like proteins in the two plant species. Results Despite the differences in genome sizes between Arabidopsis and rice, we identified a very similar number of serine protease-like proteins in the two plant species (206 and 222, respectively. Nearly 40% of the above sequences were identified as potential orthologues. Atypical members could be identified in the plant genomes for Deg, Clp, Lon, rhomboid proteases and species-specific members were observed for the highly populated subtilisin and serine carboxypeptidase families suggesting multiple lateral gene transfers. DegP proteases, prolyl oligopeptidases, Clp proteases and rhomboids share a significantly higher percentage orthology between the two genomes indicating substantial evolutionary divergence was set prior to speciation. Single domain architectures and paralogues for several putative subtilisins, serine carboxypeptidases and rhomboids suggest they may have been recruited for additional roles in secondary metabolism with spatial and temporal regulation. The analysis reveals some domain architectures unique to either or both of the plant species and some inactive proteases, like in rhomboids and Clp proteases, which could be involved in chaperone function. Conclusion The systematic analysis of the serine protease-like proteins in the two plant species has provided some insight into the possible functional associations of previously uncharacterised serine protease-like proteins. Further investigation of these aspects may prove beneficial in our understanding of similar processes in commercially significant crop plant species.

  2. Positive selection of digestive Cys proteases in herbivorous Coleoptera.

    Science.gov (United States)

    Vorster, Juan; Rasoolizadeh, Asieh; Goulet, Marie-Claire; Cloutier, Conrad; Sainsbury, Frank; Michaud, Dominique

    2015-10-01

    Positive selection is thought to contribute to the functional diversification of insect-inducible protease inhibitors in plants in response to selective pressures exerted by the digestive proteases of their herbivorous enemies. Here we assessed whether a reciprocal evolutionary process takes place on the insect side, and whether ingestion of a positively selected plant inhibitor may translate into a measurable rebalancing of midgut proteases in vivo. Midgut Cys proteases of herbivorous Coleoptera, including the major pest Colorado potato beetle (Leptinotarsa decemlineata), were first compared using a codon-based evolutionary model to look for the occurrence of hypervariable, positively selected amino acid sites among the tested sequences. Hypervariable sites were found, distributed within -or close to- amino acid regions interacting with Cys-type inhibitors of the plant cystatin protein family. A close examination of L. decemlineata sequences indicated a link between their assignment to protease functional families and amino acid identity at positively selected sites. A function-diversifying role for positive selection was further suggested empirically by in vitro protease assays and a shotgun proteomic analysis of L. decemlineata Cys proteases showing a differential rebalancing of protease functional family complements in larvae fed single variants of a model cystatin mutated at positively selected amino acid sites. These data confirm overall the occurrence of hypervariable, positively selected amino acid sites in herbivorous Coleoptera digestive Cys proteases. They also support the idea of an adaptive role for positive selection, useful to generate functionally diverse proteases in insect herbivores ingesting functionally diverse, rapidly evolving dietary cystatins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. From nonpeptide toward noncarbon protease inhibitors: Metallacarboranes as specific and potent inhibitors of HIV protease

    Czech Academy of Sciences Publication Activity Database

    Cígler, Petr; Kožíšek, Milan; Řezáčová, Pavlína; Brynda, Jiří; Otwinowski, Z.; Pokorná, Jana; Plešek, Jaromír; Grüner, Bohumír; Marešová, Lucie; Máša, Martin; Sedláček, Juraj; Bodem, J.; Kräusslich, H. G.; Král, V.; Konvalinka, Jan

    2005-01-01

    Roč. 102, č. 43 (2005), s. 15394-15399 ISSN 0027-8424 R&D Projects: GA MŠk(CZ) 1M0508; GA MŠk(CZ) LC523 Grant - others:5th Framework(XE) QLK2-CT-2001-02360 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40320502 Keywords : carboranes * HIV protease * X-ray structure Subject RIV: CE - Biochemistry Impact factor: 10.231, year: 2005

  4. Characterization of a secreted Chlamydia protease

    DEFF Research Database (Denmark)

    Shaw, A.C.; Vandahl, B.B.; Larsen, M.R.

    2002-01-01

    Chlamydiae are obligate intracellular bacteria that are important human pathogens. The Chlamydia genomes contain orthologues to secretion apparatus proteins from other intracellular bacteria, but only a few secreted proteins have been identified. Most likely, effector proteins are secreted in order...... to promote infection. Effector proteins cannot be identified by motif or similarity searches. As a new strategy for identification of secreted proteins we have compared 2D-PAGE profiles of [35S]-labelled Chlamydia proteins from whole lysates of infected cells to 2D-PAGE profiles of proteins from purified...... Chlamydia. Several secretion candidates from Chlamydia trachomatis D and Chlamydia pneumoniae were detected by this method. Two protein spots were identified among the candidates. These represent fragments of the 'chlamydial protease- or proteasome-like activity factor' (CPAF) and were clearly present in 2D...

  5. Protease-Mediated Maturation of HIV: Inhibitors of Protease and the Maturation Process

    Directory of Open Access Journals (Sweden)

    Catherine S. Adamson

    2012-01-01

    Full Text Available Protease-mediated maturation of HIV-1 virus particles is essential for virus infectivity. Maturation occurs concomitant with immature virus particle release and is mediated by the viral protease (PR, which sequentially cleaves the Gag and Gag-Pol polyproteins into mature protein domains. Maturation triggers a second assembly event that generates a condensed conical capsid core. The capsid core organizes the viral RNA genome and viral proteins to facilitate viral replication in the next round of infection. The fundamental role of proteolytic maturation in the generation of mature infectious particles has made it an attractive target for therapeutic intervention. Development of small molecules that target the PR active site has been highly successful and nine protease inhibitors (PIs have been approved for clinical use. This paper provides an overview of their development and clinical use together with a discussion of problems associated with drug resistance. The second-half of the paper discusses a novel class of antiretroviral drug termed maturation inhibitors, which target cleavage sites in Gag not PR itself. The paper focuses on bevirimat (BVM the first-in-class maturation inhibitor: its mechanism of action and the implications of naturally occurring polymorphisms that confer reduced susceptibility to BVM in phase II clinical trials.

  6. Identification of covalent active site inhibitors of dengue virus protease

    Directory of Open Access Journals (Sweden)

    Koh-Stenta X

    2015-12-01

    Full Text Available Xiaoying Koh-Stenta,1 Joma Joy,1 Si Fang Wang,1 Perlyn Zekui Kwek,1 John Liang Kuan Wee,1 Kah Fei Wan,2 Shovanlal Gayen,1 Angela Shuyi Chen,1 CongBao Kang,1 May Ann Lee,1 Anders Poulsen,1 Subhash G Vasudevan,3 Jeffrey Hill,1 Kassoum Nacro11Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR, Singapore; 2Novartis Institute for Tropical Diseases, Singapore; 3Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, SingaporeAbstract: Dengue virus (DENV protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described.Keywords: flavivirus protease, small molecule optimization, covalent inhibitor, active site binding, pyrazole ester derivatives

  7. Bacillus amyloliquefaciens SUBSP. plantarum PROBIOTIC STRAINS AS PROTEASE PRODUCERS

    Directory of Open Access Journals (Sweden)

    E. V. Маtseliukh

    2015-04-01

    Full Text Available Proteases from probiotic strains of the genus Bacillus, just like the antibiotics, bacteriocins and other hydrolytic enzymes, are one of the main factors that determine their biological activity. The aim of this work was to study the synthesis and biochemical properties of proteases from two strains Bacillus amyloliquefaciens subsp. plantarum UCM B-5139 and UCM B-5140 that included in the probiotic Endosporin. The cultivation of strains was carried out in flasks under rotating for two days. The influence of physico-chemical parameters of the reaction medium on proteolytic activity was studied on partially purified protease preparations. Lytic activity was determined by turbidimetric method. On the second day of cultivation B. amyloliquefaciens subsp. plantarum UCM В-5139 and UCM В-5140 synthesized the metal-dependent peptidase and serine protease, respectively. The optimum conditions of their action were the following: temperature 37–40 °C and pH 6.5–7.0. Isolated proteases are able to lyse the living cells of Staphylococcus aureus and Candida albicans. Thus we demonstrated that B. amyloliquefaciens subsp. plantarum UCM B-5140 and UCM B-5139, included in the probiotic veterinary preparation Endosporin, produced proteolytic enzymes that hydrolyze the native insoluble proteins (elastin, fibrin and collagen. These enzymes belong to the group of neutral metal-dependent and serine proteases. They are active under physiological conditions against gram-positive bacteria and yeasts. The application of these proteases in biotechnology is considered.

  8. Structure of HIV-1 protease determined by neutron crystallography

    International Nuclear Information System (INIS)

    Adachi, Motoyasu; Kuroki, Ryota

    2009-01-01

    HIV-1 protease is an aspartic protease, and plays an essential role in replication of HIV. To develop HIV-1 protease inhibitors through structure-based drug design, it is necessary to understand the catalytic mechanism and inhibitor recognition of HIV-1 protease. We have determined the crystal structure of HIV-1 protease in complex with KNI-272 to 1.9 A resolution by neutron crystallography in combination with 1.4 A resolution X-ray diffraction data. The results show that the carbonyl group of hydroxymethylcarbonyl (HMC) in KNI-272 forms a hydrogen bonding interaction with protonated Asp 25 and the hydrogen atom from the hydroxyl group of HMC forms a hydrogen bonding interaction with the deprotonated Asp125. This is the first neutron report for HIV-1/inhibitor complex and shows directly the locations of key hydrogen atoms in catalysis and in the binding of a transition-state analog. The results confirm key aspect of the presumed catalytic mechanism of HIV-1 protease and will aid in the further development of protease inhibitors. (author)

  9. Optimizing PHB and Protease Production by Box Behnken Design

    Directory of Open Access Journals (Sweden)

    Amro Abd al fattah Amara

    2013-04-01

    Full Text Available Mixed culture is more suitable to adapt more flexible fermentation process and produce different product simultaneously. In this study a mixed Bacillus culture was investigated for their ability to produce the bioplastic "Polyhydroxybutyrate" and both of the mesophilic and the thermophilic proteases in one flask. Box-Behnken experimental design was used. The produced amount of PHB has been increased significantly. Meanwhile there is a competition between PHB and proteases. The maximum produced amount of PHB using Box-Behnken design was 2.82 g/l/48 h with protease activity equal to 41.9 Units/ml/48 h for thermophilic proteases and 99.65 Units/ml/48 h for mesophilic proteases. Excel solver was used for extra-optimization for the optimum conditions obtained from Box-Behnken experiments and its model. The maximum PHB obtained after using Excel solver was 2.88 g/l/48 h. The maximum mesophilic and thermophilic activities obtained at the same PHB production conditions were 175.68 and 243.38 Units/ml respectively. The model accuracy as obtained from Excel solver was 118.8%, which prove the power of the experimental design in optimizing such complicated process. The strategies used in this study are recommended for the production of PHB and different proteases simultaneously using Bacillus mixed culture. ABSTRAK: Kultur campuran adalah lebih sesuai bagi proses penapaian yang fleksibel dan ia boleh menghasilkan produk yang berbeza secara serentak. Dalam kajian ini keupayaan  menghasilkan "Polyhydroxybutyrate" bioplastik serta mesofilik dan termofilik protease dalam satu flask oleh  kultur Bacillus campuran telah disiasat. Eksperimen rekabentuk Box-Behnken telah digunakan. Jumlah PHB yang dikeluarkan meningkat dengan ketara dan terdapat persaingan antara PHB dan protease. Jumlah keluaran PHB maksima menggunakan rekabentuk Box-Behnken adalah 2.82 g/l/48 jam dengan aktiviti protease sama dengan 41.9 Unit/ml/48 jam untuk protease termofilik dan 99.65 Unit

  10. Allergens with Protease Activity from House Dust Mites

    Directory of Open Access Journals (Sweden)

    Manuel Reithofer

    2017-06-01

    Full Text Available Globally, house dust mites (HDM are one of the main sources of allergens causing Type I allergy, which has a high risk of progressing into a severe disabling disease manifestation such as allergic asthma. The strong protease activities of a number of these allergens are thought to be involved in several steps of the pathophysiology of this allergic disease. It has been a common notion that protease activity may be one of the properties that confers allergenicity to proteins. In this review we summarize and discuss the roles of the different HDM proteases in the development of Type I allergy.

  11. Two-Dimensional Zymography of Proteases from Steatotic Duck Liver.

    Science.gov (United States)

    Wilkesman, Jeff; Padrón, María Fernanda; Kurz, Liliana; Rémignon, Hervé

    2017-01-01

    Protease activity present in liver cells with steatosis can be electrophoretically characterized. Zymographic techniques allow semi-quantitative results, successfully detecting cathepsin and metalloprotease activity using polyacrylamide gels copolymerized with gelatin and quantified by densitometry. By using specific inhibitors, the identity of the proteases can be confirmed. 2D zymography allows the determination of both M r. and pI of the metalloprotease and cathepsin activity present in the homogenates. The analysis of liver proteases activities in force fed ducks may elucidate the mechanisms behind steatosis development.

  12. Protease-associated cellular networks in malaria parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Lilburn Timothy G

    2011-12-01

    Full Text Available Abstract Background Malaria continues to be one of the most severe global infectious diseases, responsible for 1-2 million deaths yearly. The rapid evolution and spread of drug resistance in parasites has led to an urgent need for the development of novel antimalarial targets. Proteases are a group of enzymes that play essential roles in parasite growth and invasion. The possibility of designing specific inhibitors for proteases makes them promising drug targets. Previously, combining a comparative genomics approach and a machine learning approach, we identified the complement of proteases (degradome in the malaria parasite Plasmodium falciparum and its sibling species 123, providing a catalog of targets for functional characterization and rational inhibitor design. Network analysis represents another route to revealing the role of proteins in the biology of parasites and we use this approach here to expand our understanding of the systems involving the proteases of P. falciparum. Results We investigated the roles of proteases in the parasite life cycle by constructing a network using protein-protein association data from the STRING database 4, and analyzing these data, in conjunction with the data from protein-protein interaction assays using the yeast 2-hybrid (Y2H system 5, blood stage microarray experiments 678, proteomics 9101112, literature text mining, and sequence homology analysis. Seventy-seven (77 out of 124 predicted proteases were associated with at least one other protein, constituting 2,431 protein-protein interactions (PPIs. These proteases appear to play diverse roles in metabolism, cell cycle regulation, invasion and infection. Their degrees of connectivity (i.e., connections to other proteins, range from one to 143. The largest protease-associated sub-network is the ubiquitin-proteasome system which is crucial for protein recycling and stress response. Proteases are also implicated in heat shock response, signal peptide

  13. In vivo expression of proteases and protease inhibitor, a serpin, by periodontal pathogens at teeth and implants.

    Science.gov (United States)

    Eckert, Martin; Mizgalska, Danuta; Sculean, Anton; Potempa, Jan; Stavropoulos, Andreas; Eick, Sigrun

    2018-03-02

    Porphyromonas gingivalis and Tannerella forsythia secrete proteases, gingipains and KLIKK-proteases. In addition, T. forsythia produces a serpin (miropin) with broad inhibitory spectrum. The aim of this pilot study was to determine the level of expression of miropin and individual proteases in vivo in periodontal and peri-implant health and disease conditions. Biofilm and gingival/peri-implant crevicular fluid (GCF or PISF respectively) samples from healthy tooth and implant sites (n=10), gingivitis and mucositis sites (n=12), and periodontitis and peri-implantitis sites (n=10). Concentration of interleukins (IL)-8, IL-1β and IL-10 in GCF was determined by ELISA. Loads of P. gingivalis and T. forsythia and the presence of proteases and miropin genes were assessed in biofilm by qPCR, while genes expression was estimated by qRT-PCR. Presence of P. gingivalis and T. forsythia, as well as the level of IL-8 and IL-1β, were associated with disease severity in the periodontal and peri-implant tissues. In biofilm samples harboring T. forsythia genes encoding proteases were found to be present at 72.4% for karilysin and 100% for other KLIKK-proteases genes and miropin. At the same time, detectable mRNA expression of individual genes was in the range from 20.7% to 58.6% samples (for forsylisin and miropsin-1, respectively). In comparison to the T. forsythia proteases, miropin and the gingipains were highly expressed. The level of expression of gingipains was associated with those of miropin and certain T. forsythia proteases around teeth but not implants. Cumulatively, KLIKK-proteases and especially miropin might play a role in pathogenesis of both periodontal and peri-implant diseases. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Genome-wide identification and structure-function studies of proteases and protease inhibitors in Cicer arietinum (chickpea).

    Science.gov (United States)

    Sharma, Ranu; Suresh, C G

    2015-01-01

    Proteases are a family of enzymes present in almost all living organisms. In plants they are involved in many biological processes requiring stress response in situations such as water deficiency, pathogen attack, maintaining protein content of the cell, programmed cell death, senescence, reproduction and many more. Similarly, protease inhibitors (PIs) are involved in various important functions like suppression of invasion by pathogenic nematodes, inhibition of spores-germination and mycelium growth of Alternaria alternata and response to wounding and fungal attack. As much as we know, no genome-wide study of proteases together with proteinaceous PIs is reported in any of the sequenced genomes till now. Phylogenetic studies and domain analysis of proteases were carried out to understand the molecular evolution as well as gene and protein features. Structural analysis was carried out to explore the binding mode and affinity of PIs for cognate proteases and prolyl oligopeptidase protease with inhibitor ligand. In the study reported here, a significant number of proteases and PIs were identified in chickpea genome. The gene expression profiles of proteases and PIs in five different plant tissues revealed a differential expression pattern in more than one plant tissue. Molecular dynamics studies revealed the formation of stable complex owing to increased number of protein-ligand and inter and intramolecular protein-protein hydrogen bonds. The genome-wide identification, characterization, evolutionary understanding, gene expression, and structural analysis of proteases and PIs provide a framework for future analysis when defining their roles in stress response and developing a more stress tolerant variety of chickpea. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Molecular cloning, over expression, and activity studies of a peptidic HIV-1 protease inhibitor: designed synthetic gene to functional recombinant peptide.

    Science.gov (United States)

    Vathipadiekal, Vinod; Umasankar, Perunthottathu K; Patole, Milind S; Rao, Mala

    2010-01-01

    The aspartic protease inhibitor (ATBI) purified from a Bacillus sp. is a potent inhibitor of several proteases including recombinant HIV-1 protease, pepsin, and fungal aspartic protease. In this study, we report the cloning, and over expression of a synthetic gene coding for ATBI in Escherichia coli and establish a purification protocol. The ATBI molecule consists of eleven amino acids and is peptidic in nature. We used the peptide sequence data of ATBI to synthesize complementary oligonucleotides, which were annealed and subsequently cloned in-frame with the gene for glutathione-S-transferase (GST). The expression of the resulting fusion protein was induced in E. coli BL21-A1 cells using arabinose. The recombinant peptide was purified using a reduced glutathione column, and cleaved with Factor Xa to remove the GST tag. The resultant product was further purified to homogeneity using RP-HPLC. Mass spectroscopy analysis revealed that the purified peptide had a molecular weight of 1186Da which matches the theoretical molecular weight of the amino acids present in the synthetic gene. The recombinant peptide was found to be active in vitro against HIV-1 protease, pepsin, and fungal aspartic protease. The protocol described in this study may be used to clone pharmaceutically important peptide molecules.

  16. Zebra chip disease decreases tuber (Solanum tuberosum L.) protein content by attenuating protease inhibitor levels and increasing protease activities.

    Science.gov (United States)

    Kumar, G N Mohan; Knowles, Lisa O; Knowles, N Richard

    2015-11-01

    Zebra chip disease of potato decreases protease inhibitor levels resulting in enhanced serine-type protease activity, decreased protein content and altered protein profiles of fully mature tubers. Zebra-chip (ZC), caused by Candidatus Liberibacter solanacearum (CLso), is a relatively new disease of potato that negatively affects growth, yield, propagation potential, and fresh and process qualities of tubers. Diseased plants produce tubers with characteristic brown discoloration of vascular tissue accompanied by elevated levels of free amino acids and reducing sugars. Here we demonstrate that ZC disease induces selective protein catabolism in tubers through modulating protease inhibitor levels. Soluble protein content of tubers from CLso-infected plants was 33% lower than from non-infected plants and electrophoretic analyses revealed substantial reductions in major tuber proteins. Patatin (~40 kDa) and ser-, asp- (22 kDa) and cys-type (85 kDa) protease inhibitors were either absent or greatly reduced in ZC-afflicted tubers. In contrast to healthy (non-infected) tubers, the proteolytic activity in CLso infected tubers was high and the ability of extracts from infected tubers to inhibit trypsin (ser-type) and papain (cys-type) proteases greatly attenuated. Moreover, extracts from CLso-infected tubers rapidly catabolized proteins purified from healthy tubers (40 kDa patatin, 22 kDa protease inhibitors, 85 kDa potato multicystatin) when subjected to proteolysis individually. In contrast, crude extracts from non-infected tubers effectively inhibited the proteolytic activity from ZC-afflicted tubers. These results suggest that the altered protein profile of ZC afflicted tubers is largely due to loss of ser- and cys-type protease inhibitors. Further analysis revealed a novel PMSF-sensitive (ser) protease (ca. 80-120 kDa) in CLso infected tubers. PMSF abolished the proteolytic activities responsible for degrading patatin, the 22 kDa protease inhibitor(s) and potato

  17. Isolation of protease producing novel Bacillus cereus and detection ...

    African Journals Online (AJOL)

    user

    2011-02-14

    1991). Industrial enzymes-developments in production and application, Biotechnol. Adv. 9: 643-658. Ferrero MA, Castro GR, Abate CM, Baigori MD, Sineriz F (1996). Thermostable alkaline proteases of Bacillus licheniformis MIR ...

  18. Immune pressure analysis of protease and reverse transcriptase ...

    African Journals Online (AJOL)

    /dn) were analyzed for 33 HIV-1 subtype C protease (PR) and reverse transcriptase (RT) nucleotide sequences each from antiretroviral naïve South African chronically infected individuals. The ds/dn ratios were calculated using the ...

  19. Analysis and protease-catalysed synthesis of sucrose alkanoate regioisomers

    DEFF Research Database (Denmark)

    Lie, Aleksander

    2014-01-01

    laurate in DMF using serine proteases and a metalloprotease. A broad range of elution strategies for the chromatographic analysis of sucrose alkanoate regioisomers was systematically investigated using design of experiments strategies and statistical and multivariate analysis and modelling. Efficiency...

  20. Effect of Gastrointestinal Protease Digestion on Bioactivity of Marine Peptides

    DEFF Research Database (Denmark)

    Jensen, Ida-Johanne; Andersen, Lisa Lystbæk; Ossum, Carlo Gunnar

    2014-01-01

    executed without concerning subsequent digestion after intake and the aim of this work was hence to investigate how the in vitro antioxidative, antihypertensive and caspase activating activities of peptides are affected by digestion with gastrointestinal (GI) proteases. Five different fish protein...... hydrolysates were chosen to study the effect of in vitro digestion on bioactivity. The protein concentration decreased in all samples during digestion and the molecular weight distribution of the peptides shifted towards lower values. Thus, in vitro digestion with GI proteases resulted in a further degradation...... of the peptides obtained by hydrolysis. The antihypertensive effect increased in all samples after digestion with GI proteases whereas the antioxidative capacity decreased. The effect on the caspase activity depended on the proteases used in the preparation of hydrolysates. In conclusion, the caspase activity...

  1. The Place of protease inhibitors in antiretroviral treatment

    Directory of Open Access Journals (Sweden)

    S.B. Tenore

    Full Text Available With the introduction of highly active antiretroviral therapy, a number of drugs have been developed. The best choice concerning which antiretroviral analogs to start is always under discussion, especially in the choice between non-nucleoside reverse transcriptase inhibitors-based therapies and ritonavir-boosted protease inhibitors. Both are proven to control viral replication and lead to immunological gain. The choice between a non-nucleoside analog reverse transcriptase inhibitor and a protease inhibitor as a third antiretroviral drug in the therapy should consider factors related to the individual, as well as the inclusion of the best therapy in the patient's daily activities and potential adherence. The protease inhibitor-based therapies showed similar efficacy among the various inhibitors with characteristics concerning the adverse events from each medicine. For the treatment of protease-resistant patients, darunavir and tipranavir showed good efficacy with higher genetic barrier to resistance.

  2. Why cells need intramembrane proteases - a mechanistic perspective

    Czech Academy of Sciences Publication Activity Database

    Stříšovský, Kvido

    2016-01-01

    Roč. 283, č. 10 (2016), s. 1837-1845 ISSN 1742-464X R&D Projects: GA MŠk(CZ) LK11206; GA MŠk LO1302 EU Projects: European Commission(XE) 304154 - Rhomboid substrates Institutional support: RVO:61388963 Keywords : enzyme mechanism * intramembrane protease * membrane protein * rhomboid protease * substrate specificity Subject RIV: CE - Biochemistry Impact factor: 3.902, year: 2016

  3. Sequential Detection of Thermophilic Lipase and Protease by Zymography.

    Science.gov (United States)

    Kurz, Liliana; Hernández, Zully; Contreras, Lellys M; Wilkesman, Jeff

    2017-01-01

    Lipase and protease present in cell-free fractions of thermophilic Bacillus sp. cultures were analyzed by polyacrylamide gel (PAG) electrophoresis. After run, the gel is electrotransferred to another PAG copolymerized with glycerol tributyrate, olive oil, and gelatin. This multi-substrate gel was incubated first for lipase detection, until bands appeared, and then stained with Coomassie for protease detection. Advantages of this sequential procedure are the detection of two different enzyme activities on a single PAG, beside time and resource saving.

  4. Functional protease profiling for diagnosis of malignant disease.

    Science.gov (United States)

    Findeisen, Peter; Neumaier, Michael

    2012-01-01

    Clinical proteomic profiling by mass spectrometry (MS) aims at uncovering specific alterations within mass profiles of clinical specimens that are of diagnostic value for the detection and classification of various diseases including cancer. However, despite substantial progress in the field, the clinical proteomic profiling approaches have not matured into routine diagnostic applications so far. Their limitations are mainly related to high-abundance proteins and their complex processing by a multitude of endogenous proteases thus making rigorous standardization difficult. MS is biased towards the detection of low-molecular-weight peptides. Specifically, in serum specimens, the particular fragments of proteolytically degraded proteins are amenable to MS analysis. Proteases are known to be involved in tumour progression and tumour-specific proteases are released into the blood stream presumably as a result of invasive progression and metastasis. Thus, the determination of protease activity in clinical specimens from patients with malignant disease can offer diagnostic and also therapeutic options. The identification of specific substrates for tumour proteases in complex biological samples is challenging, but proteomic screens for proteases/substrate interactions are currently experiencing impressive progress. Such proteomic screens include peptide-based libraries, differential isotope labelling in combination with MS, quantitative degradomic analysis of proteolytically generated neo-N-termini, monitoring the degradation of exogenous reporter peptides with MS, and activity-based protein profiling. In the present article, we summarize and discuss the current status of proteomic techniques to identify tumour-specific protease-substrate interactions for functional protease profiling. Thereby, we focus on the potential diagnostic use of the respective approaches. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The crystal structure of GXGD membrane protease FlaK

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian; Xue, Yi; Lee, Sangwon; Ha, Ya (Yale-MED)

    2011-09-20

    The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 {angstrom} resolution. The structure contains six transmembrane helices. The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.

  6. The Crystal Structure of GXGD Membrane Protease FlaK

    Energy Technology Data Exchange (ETDEWEB)

    J Hu; Y Xue; S Lee; Y Ha

    2011-12-31

    The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 {angstrom} resolution. The structure contains six transmembrane helices. The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.

  7. Proteases induce secretion of collagenase and plasminogen activator by fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Werb, Z.; Aggeler, J.

    1978-04-01

    We have observed that treatment of rabbit synovial fibroblasts with proteolytic enzymes can induce secretion of collagenase (EC 3.4.24.7) and plasminogen activator (EC 3.4.21.-). Cells treated for 2 to 24 hr with plasmin, trypsin, chymotrypsin, pancreatic elastase, papain, bromelain, thermolysin, or ..cap alpha..-protease but not with thrombin or neuraminidase secreted detectable amounts of collagenase within 16 to 48 hr. Treatment of fibroblasts with trypsin also induced secretion of plasminogen activator. Proteases initiated secretion of collagenase (up to 20 units per 10/sup 6/ cells per 24 hr) only when treatment produced decreased cell adhesion. Collagenase production did not depend on continued presence of proteolytic activity or on subsequent cell adhesion, spreading, or proliferation. Routine subculturing with crude trypsin also induced collagenase secretion by cells. Secretion of collagenase was prevented and normal spreading was obtained if the trypsinized cells were placed into medium containing fetal calf serum. Soybean trypsin inhibitor, ..cap alpha../sub 1/-antitrypsin, bovine serum albumin, collagen, and fibronectin did not inhibit collagenase production. Although proteases that induced collagenase secretion also removed surface glycoprotein, the kinetics of induction of cell protease secretion were different from those for removal of fibronectin. Physiological inducers of secretion of collagenase and plasminogen activator by cells have not been identified. These results suggest that extracellular proteases in conjunction with plasma proteins may govern protease secretion by cells.

  8. Pnserpin: A Novel Serine Protease Inhibitor from Extremophile Pyrobaculum neutrophilum

    Directory of Open Access Journals (Sweden)

    Huan Zhang

    2017-01-01

    Full Text Available Serine protease inhibitors (serpins are native inhibitors of serine proteases, constituting a large protein family with members spread over eukaryotes and prokaryotes. However, only very few prokaryotic serpins, especially from extremophiles, have been characterized to date. In this study, Pnserpin, a putative serine protease inhibitor from the thermophile Pyrobaculum neutrophilum, was overexpressed in Escherichia coli for purification and characterization. It irreversibly inhibits chymotrypsin-, trypsin-, elastase-, and subtilisin-like proteases in a temperature range from 20 to 100 °C in a concentration-dependent manner. The stoichiometry of inhibition (SI of Pnserpin for proteases decreases as the temperature increases, indicating that the inhibitory activity of Pnserpin increases with the temperature. SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that Pnserpin inhibits proteases by forming a SDS-resistant covalent complex. Homology modeling and molecular dynamic simulations predicted that Pnserpin can form a stable common serpin fold. Results of the present work will help in understanding the structural and functional characteristics of thermophilic serpin and will broaden the current knowledge about serpins from extremophiles.

  9. Pnserpin: A Novel Serine Protease Inhibitor from Extremophile Pyrobaculum neutrophilum.

    Science.gov (United States)

    Zhang, Huan; Fei, Rui; Xue, Baigong; Yu, Shanshan; Zhang, Zuoming; Zhong, Sheng; Gao, Yuanqi; Zhou, Xiaoli

    2017-01-07

    Serine protease inhibitors (serpins) are native inhibitors of serine proteases, constituting a large protein family with members spread over eukaryotes and prokaryotes. However, only very few prokaryotic serpins, especially from extremophiles, have been characterized to date. In this study, Pnserpin, a putative serine protease inhibitor from the thermophile Pyrobaculum neutrophilum , was overexpressed in Escherichia coli for purification and characterization. It irreversibly inhibits chymotrypsin-, trypsin-, elastase-, and subtilisin-like proteases in a temperature range from 20 to 100 °C in a concentration-dependent manner. The stoichiometry of inhibition (SI) of Pnserpin for proteases decreases as the temperature increases, indicating that the inhibitory activity of Pnserpin increases with the temperature. SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) showed that Pnserpin inhibits proteases by forming a SDS-resistant covalent complex. Homology modeling and molecular dynamic simulations predicted that Pnserpin can form a stable common serpin fold. Results of the present work will help in understanding the structural and functional characteristics of thermophilic serpin and will broaden the current knowledge about serpins from extremophiles.

  10. Characterizing Protease Specificity: How Many Substrates Do We Need?

    Directory of Open Access Journals (Sweden)

    Michael Schauperl

    Full Text Available Calculation of cleavage entropies allows to quantify, map and compare protease substrate specificity by an information entropy based approach. The metric intrinsically depends on the number of experimentally determined substrates (data points. Thus a statistical analysis of its numerical stability is crucial to estimate the systematic error made by estimating specificity based on a limited number of substrates. In this contribution, we show the mathematical basis for estimating the uncertainty in cleavage entropies. Sets of cleavage entropies are calculated using experimental cleavage data and modeled extreme cases. By analyzing the underlying mathematics and applying statistical tools, a linear dependence of the metric in respect to 1/n was found. This allows us to extrapolate the values to an infinite number of samples and to estimate the errors. Analyzing the errors, a minimum number of 30 substrates was found to be necessary to characterize substrate specificity, in terms of amino acid variability, for a protease (S4-S4' with an uncertainty of 5 percent. Therefore, we encourage experimental researchers in the protease field to record specificity profiles of novel proteases aiming to identify at least 30 peptide substrates of maximum sequence diversity. We expect a full characterization of protease specificity helpful to rationalize biological functions of proteases and to assist rational drug design.

  11. Regulation of intestinal permeability: The role of proteases.

    Science.gov (United States)

    Van Spaendonk, Hanne; Ceuleers, Hannah; Witters, Leonie; Patteet, Eveline; Joossens, Jurgen; Augustyns, Koen; Lambeir, Anne-Marie; De Meester, Ingrid; De Man, Joris G; De Winter, Benedicte Y

    2017-03-28

    The gastrointestinal barrier is - with approximately 400 m 2 - the human body's largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases.

  12. Comparative Detection of Alkaline Protease Production in Exiguobacterium acetylicum

    International Nuclear Information System (INIS)

    Gomaa, O.M.; EI Shafey, H.M.

    2009-01-01

    Alkaline protease is one of the most important enzymes in industry, medicine, and research. In the present work, a comparative detection for alkaline protease activity was established for instant detection of enzyme activity. Eight different alkalophilic bacterial isolates were compared based on the clear zone they produced on skim milk agar. One strain gave an absolute clear zone in 16 hours and was used for alkaline protease detection. The result of Phenotypic identification using Biology Microlog 3 identified the isolate as Exiguobacterium acetylicum. The isolate under study showed slightly different characteristics from a known Exiguobacterium acetylicum strain. The isolate tolerated alkaline conditions up to ph 11, while good growth was evident at ph 7, the maximum alkaline protease activity was observed at ph 9 which reached up to 109.01 U/ml. The alkaline activity assay using alkaline protease enzyme assay were coordinating with those obtained by conductivity; there was a relevant decrease in conductivity at the maximum increase in enzyme activity, which proved the cell membrane conductivity has a close relation to alkaline protease production. This isolate has tolerated gamma radiation, the increase in dose (up to 4 Gy) gave wider clear zones in terms of diameter and this was relevant to the conductivity measurements

  13. Insights into the Cyanobacterial Deg/HtrA Proteases

    Directory of Open Access Journals (Sweden)

    Otilia eCheregi

    2016-05-01

    Full Text Available Proteins are the main machinery for all living processes in a cell; they provide structural elements, regulate biochemical reactions as enzymes, and are the interface to the outside as receptors and transporters. Like any other machinery proteins have to be assembled correctly and need maintenance after damage, e.g. caused by changes in environmental conditions, genetic mutations, and limitations in the availability of cofactors. Proteases and chaperones help in repair, assembly, and folding of damaged and misfolded protein complexes cost-effective, with low energy investment compared with neo-synthesis. Despite their importance for viability, the specific biological role of most proteases in vivo is largely unknown. Deg/HtrA proteases, a family of serine-type ATP-independent proteases, have been shown in higher plants to be involved in the degradation of the Photosystem II reaction center protein D1. The objective of this review is to highlight the structure and function of their cyanobacterial orthologues. Homology modeling was used to find specific features of the Deg/HtrA proteases of Synechocystis sp. PCC 6803. Based on the available data concerning their location and their physiological substrates we conclude that these Deg proteases not only have important housekeeping and chaperone functions within the cell, but also are needed for remodeling the cell exterior.

  14. Identification of Cysteine Proteases and Screening of Cysteine Protease Inhibitors in Biological Samples by a Two-Dimensional Gel System of Zymography and Reverse Zymography

    OpenAIRE

    Saitoh, Eiichi; Yamamoto, Shinya; Okamoto, Eishiro; Hayakawa, Yoshimi; Hoshino, Takashi; Sato, Ritsuko; Isemura, Satoko; Ohtsubo, Sadami; Taniguchi, Masayuki

    2007-01-01

    We have developed a two-dimensional (2D-) gel system of zymography and reverse zymography for the detection and characterization of proteases and protease inhibitors. Isoelectric focusing (IEF) agarose gels with pH gradients were employed for separation in the fi rst-dimension and sodium dodecyl sulfate (SDS)-polyacrylamide gel copolymerized with gelatin used for the second dimension. Proteases and protease inhibitors separated by IEF gel were applied on the second gel without trichloroacetic...

  15. Antibody proteases: induction of catalytic response.

    Science.gov (United States)

    Gabibov, A G; Friboulet, A; Thomas, D; Demin, A V; Ponomarenko, N A; Vorobiev, I I; Pillet, D; Paon, M; Alexandrova, E S; Telegin, G B; Reshetnyak, A V; Grigorieva, O V; Gnuchev, N V; Malishkin, K A; Genkin, D D

    2002-10-01

    Most of the data accumulated throughout the years on investigation of catalytic antibodies indicate that their production increases on the background of autoimmune abnormalities. The different approaches to induction of catalytic response toward recombinant gp120 HIV-1 surface protein in mice with various autoimmune pathologies are described. The peptidylphosphonate conjugate containing structural part of gp120 molecule is used for reactive immunization of NZB/NZW F1, MRL, and SJL mice. The specific modification of heavy and light chains of mouse autoantibodies with Val-Ala-Glu-Glu-Glu-Val-PO(OPh)2 reactive peptide was demonstrated. Increased proteolytic activity of polyclonal antibodies in SJL mice encouraged us to investigate the production of antigen-specific catalytic antibodies on the background of induced experimental autoimmune encephalomyelitis (EAE). The immunization of autoimmune-prone mice with the engineered fusions containing the fragments of gp120 and encephalitogenic epitope of myelin basic protein (MBP(89-104)) was made. The proteolytic activity of polyclonal antibodies isolated from the sera of autoimmune mice immunized by the described antigen was shown. Specific immune response of SJL mice to these antigens was characterized. Polyclonal antibodies purified from sera of the immunized animals revealed proteolytic activity. The antiidiotypic approach to raise the specific proteolytic antibody as an "internal image" of protease is described. The "second order" monoclonal antibodies toward subtilisin Carlsberg revealed pronounced proteolytic activity.

  16. Modelling of potentially promising SARS protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Plewczynski, Dariusz [Interdisciplinary Centre for Mathematical and Computational Modelling, ICM, Warsaw University, Pawinskiego 5a Street, 02-106 Warsaw (Poland); Hoffmann, Marcin [BioInfoBank Institute, Limanowskiego 24A/16, 60-744 Poznan (Poland); Grotthuss, Marcin von [BioInfoBank Institute, Limanowskiego 24A/16, 60-744 Poznan (Poland); Knizewski, Lukasz [Interdisciplinary Centre for Mathematical and Computational Modelling, ICM, Warsaw University, Pawinskiego 5a Street, 02-106 Warsaw (Poland); Rychewski, Leszek [BioInfoBank Institute, Limanowskiego 24A/16, 60-744 Poznan (Poland); Eitner, Krystian [BioInfoBank Institute, Limanowskiego 24A/16, 60-744 Poznan (Poland); Ginalski, Krzysztof [Interdisciplinary Centre for Mathematical and Computational Modelling, ICM, Warsaw University, Pawinskiego 5a Street, 02-106 Warsaw (Poland)

    2007-07-18

    In many cases, at the beginning of a high throughput screening experiment some information about active molecules is already available. Active compounds (such as substrate analogues, natural products and inhibitors of related proteins) are often identified in low throughput validation studies on a biochemical target. Sometimes the additional structural information is also available from crystallographic studies on protein and ligand complexes. In addition, the structural or sequence similarity of various protein targets yields a novel possibility for drug discovery. Co-crystallized compounds from homologous proteins can be used to design leads for a new target without co-crystallized ligands. In this paper we evaluate how far such an approach can be used in a real drug campaign, with severe acute respiratory syndrome (SARS) coronavirus providing an example. Our method is able to construct small molecules as plausible inhibitors solely on the basis of the set of ligands from crystallized complexes of a protein target, and other proteins from its structurally homologous family. The accuracy and sensitivity of the method are estimated here by the subsequent use of an electronic high throughput screening flexible docking algorithm. The best performing ligands are then used for a very restrictive similarity search for potential inhibitors of the SARS protease within the million compounds from the Ligand.Info small molecule meta-database. The selected molecules can be passed on for further experimental validation.

  17. Protease Production by Different Thermophilic Fungi

    Science.gov (United States)

    Macchione, Mariana M.; Merheb, Carolina W.; Gomes, Eleni; da Silva, Roberto

    A comparative study was carried out to evaluate protease production in solid-state fermentation (SSF) and submerged fermentation (SmF) by nine different thermophilic fungi — Thermoascus aurantiacus Miehe, Thermomyces lanuginosus, T. lanuginosus TO.03, Aspergillus flavus 1.2, Aspergillus sp. 13.33, Aspergillus sp. 13.34, Aspergillus sp. 13.35, Rhizomucor pusillus 13.36 and Rhizomucor sp. 13.37 — using substrates containing proteins to induce enzyme secretion. Soybean extract (soybean milk), soybean flour, milk powder, rice, and wheat bran were tested. The most satisfactory results were obtained when using wheat bran in SSF. The fungi that stood out in SSF were T. lanuginosus, T. lanuginosus TO.03, Aspergillus sp. 13.34, Aspergillus sp. 13.35, and Rhizomucor sp. 13.37, and those in SmF were T. aurantiacus, T. lanuginosus TO.03, and 13.37. In both fermentation systems, A. flavus 1.2 and R. pusillus 13.36 presented the lowest levels of proteolytic activity.

  18. Sequence conservation, phylogenetic relationships, and expression profiles of nondigestive serine proteases and serine protease homologs in Manduca sexta

    OpenAIRE

    Cao, Xiaolong; He, Yan; Hu, Yingxia; Zhang, Xiufeng; Wang, Yang; Zou, Zhen; Chen, Yunru; Blissard, Gary W.; Kanost, Michael R.; Jiang, Haobo

    2014-01-01

    Serine protease (SP) and serine protease homolog (SPH) genes in insects encode a large family of proteins involved in digestion, development, immunity, and other processes. While 68 digestive SPs and their close homologs are reported in a companion paper (Kuwar et al., 2015), we have identified 125 other SPs/SPHs in Manduca sexta and studied their structure, evolution, and expression. Fifty-two of them contain cystine-stabilized structures for molecular recognition, including clip, LDLa, Sush...

  19. Diversity of both the cultivable protease-producing bacteria and bacterial extracellular proteases in the coastal sediments of King George Island, Antarctica.

    Directory of Open Access Journals (Sweden)

    Ming-Yang Zhou

    Full Text Available Protease-producing bacteria play a vital role in degrading sedimentary organic nitrogen. However, the diversity of these bacteria and their extracellular proteases in most regions remain unknown. In this paper, the diversity of the cultivable protease-producing bacteria and of bacterial extracellular proteases in the sediments of Maxwell Bay, King George Island, Antarctica was investigated. The cultivable protease-producing bacteria reached 10(5 cells/g in all 8 sediment samples. The cultivated protease-producing bacteria were mainly affiliated with the phyla Actinobacteria, Firmicutes, Bacteroidetes, and Proteobacteria, and the predominant genera were Bacillus (22.9%, Flavobacterium (21.0% and Lacinutrix (16.2%. Among these strains, Pseudoalteromonas and Flavobacteria showed relatively high protease production. Inhibitor analysis showed that nearly all the extracellular proteases from the bacteria were serine proteases or metalloproteases. These results begin to address the diversity of protease-producing bacteria and bacterial extracellular proteases in the sediments of the Antarctic Sea.

  20. Cysteine Protease (Capparin from Capsules of Caper (Capparis spinosa

    Directory of Open Access Journals (Sweden)

    Yasar Demir

    2008-01-01

    Full Text Available Proteases are enzymes that perform very important functions in organisms and are used for a variety of objectives in vitro. In recent years, proteases have been used for clinical, pharmaceutical (alimentary digestion, anti-inflammatory, etc. and industrial applications (cheese production, meat tenderizing, leather tanning. In this research, a protease has been purified from capsules of caper (Capparis spinosa and characterized. Caper plants have been used for food and medicine since ancient times. The plant grows abundantly in certain regions of Turkey. Ammonium sulphate fractionation and a CM Sephadex column were used for purification of the enzyme. The purification enzyme has an optimum pH=5.0 and its optimum temperature was 60 °C. The vmax and Km values determined by Lineweaver-Burk graphics were 1.38 μg/(L·min and 0.88 μg/L, respectively. The purification degree and the molecular mass of the enzyme (46 kDa were determined by SDS-PAGE and gel filtration chromatography. It was investigated whether the purified and characterized protease could cause milk to congeal or digest chicken and cow meat. The results show that protease can be used for industrial production.

  1. Penaeus vannamei protease stabilizing process of ZnS nanoparticles.

    Science.gov (United States)

    Razzaghi, Mozhgan; Homaei, Ahmad; Mosaddegh, Elaheh

    2018-01-31

    The protease enzyme purified from the Penaeus vannamei shrimp has unique properties, so improving the stability of this enzyme can improve their practical applications. In this study, ZnS nanoparticles, which have special properties for enzyme immobilization, were synthesized using a chemical precipitation method, and Penaeus vannamei protease was successfully immobilized on them. The size, structure, and morphology of the ZnS nanoparticles, and the immobilization of the protease were studied, using Transmission Electron Microscopy (TEM), Fourier Transform Infrared (FT-IR) spectroscopy, UV-Vis spectroscopy and Dynamic Light Scattering (DLS) analysis. We show that the immobilized enzyme has improved functionality at high temperatures, extreme pH conditions (pH3 and 12), and during storage. Immobilization increased the optimum temperature range of the enzyme, but did not change the pH optimum, which remained at pH7. Immobilization of P. vannamei protease enzyme increased the K m and decreased k cat /K m . These results indicate that P. vannamei protease immobilized on ZnS nanoparticles, has improved properties due to its high stability and unique properties, can be used for biotechnology applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Extracellular protease from the antarctic yeast Candida humicola.

    Science.gov (United States)

    Ray, M K; Devi, K U; Kumar, G S; Shivaji, S

    1992-06-01

    The psychrotrophic, dimorphic yeast Candida humicola, isolated from Antarctic soil, secretes an acidic protease into the medium. The secretion of this protease by C. humicola was found to be dependent on the composition of the medium. In YPD or yeast nitrogen base medium containing either amino acids or ammonium sulfate as the nitrogen source, the activity of the protease in the medium was low (basal level). However, when yeast nitrogen base medium was depleted of amino acids or ammonium sulfate and supplemented with proteins, the activity of the enzyme increased. The secretion of the enzyme was greater during exponential growth at low temperatures than during growth at higher temperatures. The purified protease had a molecular mass of 36,000 Da and was inhibited by pepstatin, iodoacetamide, and sodium dodecyl sulfate. Despite the prevalent cold temperatures in Antarctica, this extracellular protease of the psychrotrophic yeast C. humicola was active at temperatures ranging from 0 to 45 degrees C, with an optimum activity at 37 degrees C.

  3. Alkaline protease from Thermoactinomyces sp. RS1 mitigates industrial pollution.

    Science.gov (United States)

    Verma, Amit; Ansari, Mohammad W; Anwar, Mohmmad S; Agrawal, Ruchi; Agrawal, Sanjeev

    2014-05-01

    Proteases have found a wide application in the several industrial processes, such as laundry detergents, protein recovery or solubilization, prion degradation, meat tenderizations, and in bating of hides and skins in leather industries. But the main hurdle in industrial application of proteases is their economical production on a large scale. The present investigation aimed to exploit the locally available inexpensive agricultural and household wastes for alkaline protease production using Thermoactinomyces sp. RS1 via solid-state fermentation (SSF) technique. The alkaline enzyme is potentially useful as an additive in commercial detergents to mitigate pollution load due to extensive use of caustic soda-based detergents. Thermoactinomyces sp. RS1 showed good protease production under SSF conditions of 55 °C, pH 9, and 50 % moisture content with potato peels as solid substrate. The presented findings revealed that crude alkaline protease produced by Thermoactinomyces sp. RS1 via SSF is of potential application in silver recovery from used X-ray films.

  4. Evaluation of a D-amino-acid-containing fluorescence resonance energy transfer peptide library for profiling prokaryotic proteases

    NARCIS (Netherlands)

    Kaman, W.E.; Voskamp-Visser, I.; de Jongh, D.M.C.; Endtz, H.P.; van Belkum, A.; Hays, J.P.; Bikker, F.J.

    2013-01-01

    Bacterial proteases play an important role in a broad spectrum of processes, including colonization, proliferation, and virulence. In this respect, bacterial proteases are potential biomarkers for bacterial diagnosis and targets for novel therapeutic protease inhibitors. To investigate these

  5. The Cysteine Protease–Cysteine Protease Inhibitor System Explored in Soybean Nodule Development

    Directory of Open Access Journals (Sweden)

    Marian Dorcas Quain

    2013-08-01

    Full Text Available Almost all protease families have been associated with plant development, particularly senescence, which is the final developmental stage of every organ before cell death. Proteolysis remobilizes and recycles nitrogen from senescent organs that is required, for example, seed development. Senescence-associated expression of proteases has recently been characterized using large-scale gene expression analysis seeking to identify and characterize senescence-related genes. Increasing activities of proteolytic enzymes, particularly cysteine proteases, are observed during the senescence of legume nodules, in which a symbiotic relationship between the host plant and bacteria (Rhizobia facilitate the fixation of atmospheric nitrogen. It is generally considered that cysteine proteases are compartmentalized to prevent uncontrolled proteolysis in nitrogen-fixing nodules. In addition, the activities of cysteine proteases are regulated by endogenous cysteine protease inhibitors called cystatins. These small proteins form reversible complexes with cysteine proteases, leading to inactivation. However, very little is currently known about how the cysteine protease-cysteine protease inhibitor (cystatin system is regulated during nodule development. Moreover, our current understanding of the expression and functions of proteases and protease inhibitors in nodules is fragmented. To address this issue, we have summarized the current knowledge and techniques used for studying proteases and their inhibitors including the application of “omics” tools, with a particular focus on changes in the cysteine protease-cystatin system during nodule development.

  6. Screening of Alkaline Protease-Producing Streptomyces diastaticus and Optimization of Enzyme Production

    Directory of Open Access Journals (Sweden)

    Elham Dawoodi

    2014-12-01

    Full Text Available Background and Aim: Alkaline proteases are used in pharmaceutical, film and photography, silk production and food, leather and detergent industries. Actinomycetes are gram positive bacteria that produce different enzymes such as proteases. The aims of this research were isolation of native alkaline protease-producing Actinomycete spp. from different soil samples as well as optimizing the conditions for enzyme production. Materials and Methods: The different soil samples were collected from different locations of the provinces of Khouzestan, Chahar Mahalo Bakhtiari and Isfahan, Iran. After determining of the best alkaline protease producing species using Lowry method, the optimization of alkaline protease was performed. Results: The alkaline protease producing Actinomycete spp. was isolated from soil. The most enzyme activity was measured in S.diastaticus. The best concentration of sucrose as the carbon source for the highest production of alkaline protease was 10 g/l. The optimum pH and temperature for the alkaline protease production by S. diastaticus were 10 and 30°C respectively. The maximum activity of alkaline protease was measured at 200 rpm as the best aeration speed. Conclusions: This is the first report of alkaline protease production by Streptomyces diastaticus in Iran. The accomplished examinations in this research confirmed the previous theories of alkaline protease production by Actinomycetes relatively. Regarding the immense applications of alkaline proteases in several industries and isolation of a native alkaline protease producing Actinomycete, The production potential of this enzyme in our country could be accessible in the near future.

  7. Diversity of cultivable protease-producing bacteria in sediments of Jiaozhou Bay, China

    Directory of Open Access Journals (Sweden)

    Xi-Ying eZhang

    2015-09-01

    Full Text Available Although protease-producing bacteria are key players in the degradation of organic nitrogen and essential for the nitrogen recycling in marine sediments, diversity of both these bacteria and their extracellular proteases is still largely unknown. This study investigated the diversity of the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the eutrophied Jiaozhou Bay, China through phylogenetic analysis and protease inhibitor tests. The abundance of the cultivable protease-producing bacteria was up to 104 cells/g in all six sediment samples. The cultivated protease-producing bacteria mostly belonged to the phyla Proteobacteria and Firmicutes with the predominant genera being Photobacterium (39.4%, Bacillus (25.8% and Vibrio (19.7%. Protease inhibitor tests revealed that extracellular proteases secreted by the bacteria were mainly serine proteases and/or metalloproteases with relatively low proportions of cysteine proteases. This study represents the first comprehensive analysis on the diversity of protease-producing bacteria and their extracellular proteases in sediments of a eutrophic bay.

  8. The binding mechanism of a peptidic cyclic serine protease inhibitor

    DEFF Research Database (Denmark)

    Jiang, Longguang; Svane, Anna Sigrid P.; Sørensen, Hans Peter

    2011-01-01

    Serine proteases are classical objects for studies of catalytic and inhibitory mechanisms as well as interesting as therapeutic targets. Since small-molecule serine protease inhibitors generally suffer from specificity problems, peptidic inhibitors, isolated from phage-displayed peptide libraries......, have attracted considerable attention. Here, we have investigated the mechanism of binding of peptidic inhibitors to serine protease targets. Our model is upain-1 (CSWRGLENHRMC), a disulfide-bond-constrained competitive inhibitor of human urokinase-type plasminogen activator with a noncanonical...... inhibitory mechanism and an unusually high specificity. Using a number of modified variants of upain-1, we characterised the upain-1-urokinase-type plasminogen activator complex using X-ray crystal structure analysis, determined a model of the peptide in solution by NMR spectroscopy, and analysed binding...

  9. Cleaning protocols for crystallization robots: preventing protease contamination

    Science.gov (United States)

    Naschberger, Andreas; Fürnrohr, Barbara G.; Dunzendorfer-Matt, Theresia; Bonagura, Christopher A.; Wright, David; Scheffzek, Klaus; Rupp, Bernhard

    2015-01-01

    The protease in the commonly used commercial low-foam enzyme cleaner Zymit cannot be completely blocked by EDTA, a widely used inhibitor of metalloproteases, at concentrations of up to 5 mM. Severe protein degradation was observed in crystallization drops after EDTA-containing wash steps unless residual Zymit protease was removed with NaOH at a concentration of at least 0.1 M. Wash steps with 0.1% SDS were also ineffective in completely removing the remaining Zymit activity. Protocols including wash steps with at least 0.1 M NaOH, as for example specified in the original ZENM protocol, are recommended to completely deactivate Zymit protease activity. PMID:25615978

  10. Protease activity in the larval stage of the parasitoid wasp, Eulophus pennicornis (Nees) (Hymenoptera: Eulophidae); effects of protease inhibitors.

    Science.gov (United States)

    Down, R E; Ford, L; Mosson, H J; Fitches, E; Gatehouse, J A; Gatehouse, A M

    1999-08-01

    Hymenopteran, parasitoid wasps have good potential for use in integrated pest management (IPM); for example, the gregarious ectoparasitoid, Eulophus pennicornis, has been suggested as a biological control agent for larvae of the tomato moth (Lacanobia oleracea L.). However, the processes by which such parasitic larvae are able to utilize the nutritional resource provided by the host have been little studied. Protease activity was present in E. pennicornis larvae, and characterization of the enzymes responsible for proteolysis was performed using a range of synthetic substrates and specific inhibitors. Serine protease enzymes was both trypsin- and chymotrypsin-like activities were present. A range of plant-derived serine protease inhibitors was tested for activity against these enzymes. Certain inhibitors, notably soybean Kunitz inhibitor (SKTI), inhibited enzyme activity by > 80% at < 10(-5) M. When SKTI was fed to L. oleracea larvae in an artificial diet, the inhibitor was subsequently detected within the larval haemolymph, showing that protease inhibitors in the host diet can be delivered to a parasitoid via the host haemolymph. If transgenic plants expressing foreign protease inhibitors for protection against insect pests are to form a component of IPM systems, possible adverse effects, whether direct or indirect, of transgene expression on parasitoids like E. pennicornis should be considered.

  11. Purification and characterization of alkaline proteases from aspergillus terreus

    International Nuclear Information System (INIS)

    Hussain, A.; Mannan, A.; Zubair, H.; Mirza, B.

    2010-01-01

    Proteases belong to an important class of enzymes known as hydrolases and catalyze hydrolysis of proteins. They act primarily to degrade proteins that are used for energy production and as biosynthetic precursors. In the following study, protease produced from Aspergillus terreus was found to be thermo stable and included in the category of alkaline serine and metallo protease. During partial purification, presence of enzyme in 60% (NH/sub 4/)/sub 2/SO/sub 4/ indicated small molecular weight polypeptide; later purification with Sephadex G-75 fractionation yielded a single proteolytic active molecule. At final purification step, the increase in specific activity of the enzyme was 7.5 fold with 23% yield. SDS-PAGE analysis revealed that alkaline protease of Aspergillus terreus is a monomer with approximate molecular weight of 35 kDa. Optimum pH for protease activity was found in the range of 7.5-11.0 (maximum at pH 8.5), thus apparently classified as an alkaline protease. The enzyme was thermo stable towards high temperature (60 deg. C), however it denatured irreversibly at 70 deg. C showing 80% loss of activity. The maximum proteolytic activity was found at 40 deg. C. The enzyme was effectively inhibited by PMSF, EDTA and urea whereas iodoacetamide and thiourea did not result in any loss in activity while cysteine was found to be activator molecule. The study with metal ions Mg/sup +2/, Mn/sup +2/ and Fe/sup +3/ (1 mM each) showed minute stimulatory effects on enzyme activity. Co/sup +2/ and Ca/sup +2/ (1 mM) had neither excitatory nor inhibitory effect while Hg/sup +2/ and Cu/sup +2/ (1 mM) slightly reduced the enzyme activity. (author)

  12. Design of HIV protease inhibitors based on inorganic polyhedral metallacarboranes

    Czech Academy of Sciences Publication Activity Database

    Řezáčová, Pavlína; Pokorná, Jana; Brynda, Jiří; Kožíšek, Milan; Cígler, Petr; Lepšík, Martin; Fanfrlík, Jindřich; Řezáč, Jan; Grantz Šašková, Klára; Sieglová, Irena; Plešek, Jaromír; Šícha, Václav; Grüner, Bohumír; Oberwinkler, H.; Sedláček, Juraj; Kräusslich, H. G.; Hobza, Pavel; Král, V.; Konvalinka, Jan

    2009-01-01

    Roč. 52, č. 22 (2009), s. 7132-7141 ISSN 0022-2623 R&D Projects: GA AV ČR IAAX00320901; GA MŠk LC512; GA MŠk LC523 EU Projects: European Commission(XE) 37693 - HIV PI RESISTANCE Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520514; CEZ:AV0Z40320502 Keywords : HIV protease inhibitors * aspartic proteases * viral resistance * cobalt bis(dicarbollide) * crystal structure Subject RIV: CC - Organic Chemistry Impact factor: 4.802, year: 2009

  13. Chemistry and biology of natural product derived protease inhibitors

    OpenAIRE

    Stolze, Sara Christina

    2012-01-01

    Im Rahmen dieser Dissertation sollten Naturstoffe und davon abgeleitete Derivate synthetisiert und im Hinblick auf ihre biologische Aktivität als Protease-Inhibitoren untersucht werden. Für die Naturstoffklasse der 3-Amino-6-Hydroxy-2-piperidon(Ahp)-Cyclodepsipeptide, die als nicht-kovalente Serin-Protease-Inhibitoren bekannt sind, konnte eine Festphasensynthese basierend auf einem allgemeinen Ahp-Vorläufermolekül entwickelt werden. Für den Ahp-Vorläufer wurde eine Lösungssynthese entwicke...

  14. Dissecting Degradomes: Analysis of Protease-Coding Genes.

    Science.gov (United States)

    Álvarez-Eguiluz, Ángel; Díaz-Navarro, Ander; Puente, Xose S

    2018-01-01

    Proteases constitute up to 3% of all protein-coding genes in a vertebrate genome and participate in numerous physiological and pathological processes. The characterization of the degradome of one organism, the set of all genes encoding proteolytic enzymes, and the comparison to the degradome of other species have proved useful to identify genetic differences that are helpful to elucidate the molecular basis of diverse biological processes, the different susceptibility to disease, and the evolution of the structure and function of proteases. Here we describe the main procedures involved in the characterization of the degradome of an organism for which its genome sequence is available.

  15. Boosted protease inhibitors and the electrocardiographic measures of QT and PR durations

    DEFF Research Database (Denmark)

    Soliman, Elsayed Z; Lundgren, Jens D; Roediger, Mollie P

    2011-01-01

    There are contradictory reports regarding the effects of protease inhibitors on the ECG measures of QT and PR interval durations. The effect of interrupting use of protease inhibitors on QT and PR progression is also unknown.......There are contradictory reports regarding the effects of protease inhibitors on the ECG measures of QT and PR interval durations. The effect of interrupting use of protease inhibitors on QT and PR progression is also unknown....

  16. Higher Desolvation Energy Reduces Molecular Recognition in Multi-Drug Resistant HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Ladislau C. Kovari

    2012-05-01

    Full Text Available Designing HIV-1 protease inhibitors that overcome drug-resistance is still a challenging task. In this study, four clinical isolates of multi-drug resistant HIV-1 proteases that exhibit resistance to all the US FDA-approved HIV-1 protease inhibitors and also reduce the substrate recognition ability were examined. A multi-drug resistant HIV-1 protease isolate, MDR 769, was co-crystallized with the p2/NC substrate and the mutated CA/p2 substrate, CA/p2 P1’F. Both substrates display different levels of molecular recognition by the wild-type and multi-drug resistant HIV-1 protease. From the crystal structures, only limited differences can be identified between the wild-type and multi-drug resistant protease. Therefore, a wild-type HIV-1 protease and four multi-drug resistant HIV-1 proteases in complex with the two peptides were modeled based on the crystal structures and examined during a 10 ns-molecular dynamics simulation. The simulation results reveal that the multi-drug resistant HIV-1 proteases require higher desolvation energy to form complexes with the peptides. This result suggests that the desolvation of the HIV-1 protease active site is an important step of protease-ligand complex formation as well as drug resistance. Therefore, desolvation energy could be considered as a parameter in the evaluation of future HIV-1 protease inhibitor candidates.

  17. A Kunitz-type cysteine protease inhibitor from cauliflower and Arabidopsis

    DEFF Research Database (Denmark)

    Halls, C.E.; Rogers, S. W.; Ouffattole, M.

    2006-01-01

    A Kunitz-type protease inhibitor co-purified from cauliflower florets with a granulin domain cysteine protease that cleaved barley proaleurain to yield a molecular form the same size as that for mature aleurain. The purified cauliflower protease required treatment with SDS detergent to become...

  18. Teaching Foundational Topics and Scientific Skills in Biochemistry within the Conceptual Framework of HIV Protease

    Science.gov (United States)

    Johnson, R. Jeremy

    2014-01-01

    HIV protease has served as a model protein for understanding protein structure, enzyme kinetics, structure-based drug design, and protein evolution. Inhibitors of HIV protease are also an essential part of effective HIV/AIDS treatment and have provided great societal benefits. The broad applications for HIV protease and its inhibitors make it a…

  19. A preliminary study of the protease activities in germinating brown rice (Oryza sativa L.).

    Science.gov (United States)

    Li, Cuijuan; Cao, Xiaohong; Gu, Zhenxin; Wen, Huanbin

    2011-03-30

    Proteases hydrolyse storage proteins to provide precursors for perpetuating species. The aim of this study was to investigate and characterise different proteases in germinating brown rice. The protease activity of brown rice increased sevenfold during 7 days of germination. It was highest on day 6 when determined at pH 3.5. With casein as substrate the proteases showed two catalytic groups: acidic proteases with an optimal pH of 3.5 and alkaline proteases with an optimal pH of 8.0. The acidic protease activity was inhibited by Ba(2+) and Pb(2+) but stimulated by Zn(2+) , while the alkaline protease activity was inhibited by Ca(2+) and Pb(2+) but stimulated by Mg(2+) and Zn(2+) . SDS-gelatin-PAGE assay showed two protease activity bands at pH 3.5, while two different bands with higher molecular weights were observed at pH 8.0. Inhibition assay revealed that pepstatin A and E-64 inhibited 67.63 and 38.26% respectively of the protease activity at pH 3.5, indicating the presence of aspartic and cysteine proteases. Metalloproteases played a major role under alkaline conditions (88.37% inhibition with EDTA). Germinated brown rice proteases fall into different classes with different properties. This study is helpful for their further purification. Copyright © 2010 Society of Chemical Industry.

  20. A New Subtilase-Like Protease Deriving from Fusarium equiseti with High Potential for Industrial Applications.

    Science.gov (United States)

    Juntunen, Kari; Mäkinen, Susanna; Isoniemi, Sari; Valtakari, Leena; Pelzer, Alexander; Jänis, Janne; Paloheimo, Marja

    2015-09-01

    A gene encoding a novel extracellular subtilisin-like protease was cloned from the ascomycete Fusarium equiseti and expressed in Trichoderma reesei. The F. equiseti protease (Fe protease) showed excellent performance in stain removal and good compatibility with several commercial laundry detergent formulations, suggesting that it has high potential for use in various industrial applications. The recombinant enzyme was purified and characterized. The temperature optimum of the Fe protease was 60 °C and it showed high activity in the pH range of 6-10, with a sharp decline in activity at pH above 10. The amino acid specificity of the Fe protease was studied using casein, cytochrome c, and ubiquitin as substrates. The Fe protease had broad substrate specificity: almost all amino acid residues were accepted at position P1, even though it showed some preference for cleavage at the C-terminal side of asparagine and histidine residues. The S4 subsite of Fe protease favors aspartic acid and threonine. The other well-characterized proteases from filamentous fungi, Proteinase K from Engyodontium album, Thermomycolin from Malbranchea sulfurea, and alkaline subtilisins from Bacillus species prefer hydrophobic amino acids in both the S1 and S4 subsites. Due to its different specificity compared to the members of the S8 family of clan SB of proteases, we consider that the Fe protease is a new protease. It does not belong to any previously defined IUBMB groups of proteases.

  1. A Mycobacterium avium subsp. paratuberculosis predicted serine protease is associated with acid stress and intraphagosomal survival

    Directory of Open Access Journals (Sweden)

    Abirami Kugadas

    2016-08-01

    Full Text Available AbstractThe ability to maintain intra-cellular pH is crucial for bacteria and other microbes to survive in diverse environments, particularly those that undergo fluctuations in pH. Mechanisms of acid resistance remain poorly understood in mycobacteria. Although studies investigating acid stress in M. tuberculosis are gaining traction, few center on Mycobacterium avium subsp. paratuberculosis (MAP, the etiological agent of chronic enteritis in ruminants. We identified a MAP acid stress response network involved in macrophage infection. The central node of this network was MAP0403, a predicted serine protease that shared an 86% amino acid identity with MarP in M. tuberculosis. Previous studies confirmed MarP as a serine protease integral to maintaining intra-bacterial pH and survival in acid in vitro and in vivo. We show that MAP0403 is upregulated in infected macrophage and MAC-T cells and coincided with phagosome acidification. Treatment of mammalian cells with bafilomcyin A1, a potent inhibitor of phagosomal vATPases, diminished MAP0403 transcription. MAP0403 expression was also noted in acidic medium. A surrogate host, M. smegmatis mc2 155, was designed to express MAP0403 and when exposed to either macrophages or in vitro acid stress had increase bacterial cell viability, which corresponds to maintenance of intra-bacterial pH in acidic (pH = 5 conditions. These data suggest that MAP0403 may be the equivalent of MarP in MAP. Future studies confirming MAP0403 as a serine protease and exploring its structure and possible substrates are warranted.

  2. Establishment of streptococci in the upper respiratory tract: longitudinal changes in the mouth and nasopharynx up to 2 years of age

    DEFF Research Database (Denmark)

    Könönen, E; Jousimies-Somer, H; Bryk, A

    2002-01-01

    at the ages of 2, 6, 12, 18 and 24 months. In the oral cavity, streptococci were found in all infants on every sampling occasion, Streptococcus mitis biovar 1 being the main finding in each age group. S. salivarius and S. mitis biovar 2 reached their highest prevalence during the first year of life, whereas...... in the nasopharynx. S. mitis biovar 1 and S. pneumoniae, a traditional respiratory pathogen, were the principal streptococcal species among nasopharyngeal isolates. IgA1 protease production by early streptococci was common in infancy. Among the oral streptococcal microflora, S. mitis biovar 1 (especially during...... the first year of life) and S. oralis and S. sanguis constituted the main species responsible for this enzyme activity. In the nasopharynx, IgA1 protease was produced by S. mitis biovar 1, S. oralis and S. pneumoniae. In conclusion, streptococcal colonisation differs in these two close habitats in the upper...

  3. Purification and characterization of protease from Bacillus cereus ...

    African Journals Online (AJOL)

    chitti

    2013-09-16

    Sep 16, 2013 ... Purification and characterization of protease from. Bacillus cereus SU12 isolated from oyster. Saccostrea cucullata. S. Umayaparvathi*, S. Meenakshi, M. Arumugam and T. Balasubramanian. Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai - 608.

  4. Isolation of alkaline protease from Bacillus subtilis AKRS3

    African Journals Online (AJOL)

    ashok

    2012-08-28

    Aug 28, 2012 ... This research study was mainly focused on phenotypic, biochemical characterization, 16s rRNA sequence based species level identification of isolate and determination of the higher production of alkaline protease through optimization study (carbon, nitrogen, incubation period, temperature, pH and.

  5. Cleavage of desmin by cysteine proteases: Calpains and cathepsin B

    DEFF Research Database (Denmark)

    Baron, Caroline; Jacobsen, S.; Purslow, P.P.

    2004-01-01

    The intermediate filament protein, desmin, was purified from pork longissimus dorsi and incubated with either P-calpain, m-calpain or cathepsin B. Proteolysis of desmin was followed using SDS-PAGE and Western blotting. After incubation of desmin with the proteases, cleavage sites on the desmin...

  6. Retroviral proteases and their roles in virion maturation

    Czech Academy of Sciences Publication Activity Database

    Konvalinka, Jan; Kräusslich, H. G.; Müller, B.

    2015-01-01

    Roč. 479, SI (2015), s. 403-417 ISSN 0042-6822 R&D Projects: GA ČR GBP208/12/G016; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : retrovirus * aspartic protease * maturation * human immunodeficiency virus * Gag Subject RIV: CE - Biochemistry Impact factor: 3.200, year: 2015

  7. Optimization of mycelial biomass and protease production by ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... 164: 81. De Azeredo LAI, De Lima MB, Coelho RRR, Freire DMG (2006). A low- cost fermentation medium for thermophilic protease production by. Streptomyces sp. 594 using feather meal and corn steep liquor. Curr. Microbiol. 53: 335-339. Dedman V (2000). “Native bread” Polyporus mylittae. Fungimap.

  8. Alkaline protease from senesced leaves of invasive weed Lantana ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... SDS-PAGE was performed on a slab gel containing 10% ( w/v) polyacrylamide by the method of Laemmli (Laemmli, 1971). Native. PAGE was performed on 7% (w/v) polyacrylamide gel. Compatibility with detergents. The compatibility of protease with local laundry detergents was studied in the presence of ...

  9. Alkaline protease production by alkaliphilic marine bacteria isolated ...

    African Journals Online (AJOL)

    The molecular mass determined using SDS-PAGE, was nearly 31.0 39 kDa. Some fundamental properties like effects of different temperatures, pH, metal ions (Ca2+, Mg2+, Cu2+, Pb3+, Mn2+ and Cd2+) and ethylene diamine tetraacetic acid (EDTA) on protease activity were also studied. Maximum activities were obtained ...

  10. Physical and chemical properties of the acid protease from ...

    African Journals Online (AJOL)

    samsung

    2016-03-02

    Mar 2, 2016 ... using casein as substrate. Activities were compared with the enzyme activity in absence of any inhibitor (100%). Determination of the molecular mass. The molecular mass of the purified protease was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-. PAGE) using 15% (w/v) ...

  11. Influence of radiation and photolysis on intracellular proteases

    International Nuclear Information System (INIS)

    Jamadar, V.K.; Jamdar, S.N.; Harikumar, P.; Hari Mohan; Dandekar, S.P.

    2002-01-01

    In contrast to gamma radiation, photoinactivation of aminopeptidase was more profound in air than in N 2 , indicating that oxidative reactions are predominantly involved in photoinduced inactivation. The results are discussed in view of possible differences in the mechanisms underlying radiation and photoinduced inactivation of proteases

  12. Isolation and screening of alkaline protease producing bacteria and ...

    African Journals Online (AJOL)

    Soil samples from different habitats including tanneries, soap industries, garden soil and soil compost were screened for the presence of alkalophilic Bacillus isolates capable of producing alkaline protease in large quantities. One hundred and eighteen (118) isolates were found having proteolytic activity on skim milk agar ...

  13. Isolation of alkaline protease from Bacillus subtilis AKRS3 ...

    African Journals Online (AJOL)

    This research study was mainly focused on phenotypic, biochemical characterization, 16s rRNA sequence based species level identification of isolate and determination of the higher production of alkaline protease through optimization study (carbon, nitrogen, incubation period, temperature, pH and sodium chloride ...

  14. Production of Thermostable Alkaline Protease from Streptomyces sp ...

    African Journals Online (AJOL)

    Bacterial extracellular alkaline proteases have been found to have broad spectrum industrial applications because of their stability characteristics among the bacteria. The Actinomyces are of enormous importance as they can be recovered easier than other bacteria after fermentation. Thus, the study was aimed at sourcing ...

  15. Alkaline protease production on date waste by an alkalophilic ...

    African Journals Online (AJOL)

    This research focused on isolation and characterization of a new strain of Bacillus sp. from alkaline soil, which was able to producing extracellular alkaline protease and amylase from date waste at pH ranging from 8 to 11 and temperatures of 20 to 50°C. Purification was conducted by fractionation, concentration, and cation ...

  16. Alkaline Protease from Bacillus firmus 7728 | Rao | African Journal ...

    African Journals Online (AJOL)

    Extracellular alkaline protease producing Bacillus firmus MTCC 7728 was isolated from the soil samples taken from the leather factories in Nacharam industrial area, Hyderabad. Maximum activity was found after 48 h of fermentation. Optimum pH and temperature for maximum enzyme activity were 9 and 40°C, respectively.

  17. Optimization of protease production by an actinomycete Strain, PS ...

    African Journals Online (AJOL)

    Actinomycetes were isolated from the sediment samples of an estuarine shrimp pond located along the south east coast of India. During the investigation, a total of 28 strains of actinomycetes were isolated and examined for their protease activity. Among them, one strain PS-18A which was tentatively identified as ...

  18. Breakdown of the innate immune system by bacterial proteases

    NARCIS (Netherlands)

    Laarman, A.J.

    2011-01-01

    Bacteria have developed many strategies to circumvent our immune system to survive and colonize human tissues. One of these strategies is by secreting proteases that specifically target the innate immune system. Aureolysin is a metalloprotease from Staphylococcus aureus which target the main

  19. Manipulating the autolytic pathway of a Bacillus protease

    NARCIS (Netherlands)

    VandenBurg, B; Eijsink, VGH; Vriend, G; Veltman, OR; Venema, G; HopsuHavu, VK; Jarvinen, M; Kirschke, H

    1997-01-01

    Autolytic degradation of Bacillus subtilis thermolysin-like proteinase (TLP-sub) is responsible for the irreversible inactivation of the enzyme at elevated temperatures. Previously, we reported five autolysis sites in B. subtilis neutral protease (Van den Burg et al., 1990, Biochem. J. 272:93-97).

  20. Determining and overcoming resistance to HIV protease inhibitors

    Czech Academy of Sciences Publication Activity Database

    Prejdová, Jana; Souček, Milan; Konvalinka, Jan

    2004-01-01

    Roč. 4, - (2004), s. 137-152 ISSN 1568-0053 Grant - others:5th Framework(XE) QLK2-CT-2001-02360 Institutional research plan: CEZ:AV0Z4055905 Keywords : HIV protease inhibitors Subject RIV: CE - Biochemistry

  1. Targeted degradomics in protein terminomics and protease substrate discovery

    DEFF Research Database (Denmark)

    Savickas, Simonas; auf dem Keller, Ulrich

    2017-01-01

    extensive degradomics target lists that now can be tested with help of selected and parallel reaction monitoring (S/PRM) in complex biological systems, where proteases act in physiological environments. In this minireview, we describe the general principles of targeted degradomics, outline the generic...

  2. Delay of Iris flower senescence by protease inhibitors

    NARCIS (Netherlands)

    Pak, C.; Doorn, van W.G.

    2005-01-01

    asterisk inside a circle sign Visible senescence of the flag tepals in Iris x hollandica (cv. Blue Magic) was preceded by a large increase in endoprotease activity. Just before visible senescence about half of total endoprotease activity was apparently due to cysteine proteases, somewhat less than

  3. Ionic liquids and proteases: A clean alliance for semisynthesis

    Czech Academy of Sciences Publication Activity Database

    Wehofsky, N.; Wespe, Ch.; Čeřovský, Václav; Pech, A.; Hoess, E.; Rudolph, R.; Bordusa, F.

    2008-01-01

    Roč. 9, č. 9 (2008), s. 1493-1499 ISSN 1439-4227 Grant - others:DFG(DE) SPP1191; DFG(DE) SFB610 Institutional research plan: CEZ:AV0Z40550506 Keywords : chemoenzymatic synthesis * ionic liquids * peptides * proteases * substrate mimetics Subject RIV: CC - Organic Chemistry Impact factor: 3.322, year: 2008

  4. Serine protease from midgut of Bombus terrestris males

    Czech Academy of Sciences Publication Activity Database

    Brabcová, Jana; Kindl, Jiří; Valterová, Irena; Pichová, Iva; Zarevúcka, Marie; Brabcová, J.; Jágr, Michal; Mikšík, Ivan

    2013-01-01

    Roč. 82, č. 3 (2013), s. 117-128 ISSN 0739-4462 R&D Projects: GA ČR GA203/09/1446; GA TA ČR TA01020969 Institutional support: RVO:61388963 ; RVO:67985823 Keywords : Bombus terrestris * midgut * serine protease * bumblebee Subject RIV: CE - Biochemistry; CE - Biochemistry (FGU-C) Impact factor: 1.160, year: 2013

  5. Oxidant and solvent stable alkaline protease from Aspergillus flavus ...

    African Journals Online (AJOL)

    The enzyme retained 80% of its original activity in the presence of non ionic and ionic surfactants and 100% with 10% H2O2 after 1 h of incubation at 30°C. In addition, the enzyme showed excellent compatibility with some commercial powder detergents. The compatibility of our protease with several detergents, oxidants ...

  6. ElaD, a Deubiquitinating protease expressed by E. coli.

    Directory of Open Access Journals (Sweden)

    André Catic

    Full Text Available BACKGROUND: Ubiquitin and ubiquitin-like proteins (Ubl are designed to modify polypeptides in eukaryotes. Covalent binding of ubiquitin or Ubls to substrate proteins can be reversed by specific hydrolases. One particular set of cysteine proteases, the CE clan, which targets ubiquitin and Ubls, has homologs in eukaryotes, prokaryotes, and viruses. FINDINGS: We have cloned and analyzed the E. coli protein elaD, which is distantly related to eukaryotic CE clan members of the ULP/SENP protease family that are specific for SUMO and Nedd8. Previously misannotated as a putative sulfatase/phosphatase, elaD is an efficient and specific deubiquitinating enzyme in vitro. Interestingly, elaD is present in all intestinal pathogenic E. coli strains, but conspicuously absent from extraintestinal pathogenic strains (ExPECs. Further homologs of this protease can be found in Acanthamoeba Polyphaga Mimivirus, and in Alpha-, Beta-and Gammaproteobacteria. CONCLUSION: The expression of ULP/SENP-related hydrolases in bacteria therefore extends to plant pathogens and medically relevant strains of Escherichia coli, Legionella pneumophila, Rickettsiae, Chlamydiae, and Salmonellae, in which the elaD ortholog sseL has recently been identified as a virulence factor with deubiquitinating activity. As a counterpoint, our phylogenetic and functional examination reveals that ancient eukaryotic ULP/SENP proteases also have the potential of ubiquitin-specific hydrolysis, suggesting an early common origin of this peptidase clan.

  7. Production of Microbial Protease from Selected Soil Fungal Isolates ...

    African Journals Online (AJOL)

    Production of Microbial Protease from Selected Soil Fungal Isolates. ... Nigerian Journal of Biotechnology ... and 500C. The optimal pH on the enzyme production was observed to be between pH 3.5 and 5.5 for the organisms. Keywords: Soil microorganism, fungal isolate, incubation period, microbial enzyme. Nig J. Biotech.

  8. Production of Microbial Protease from Selected Soil Fungal Isolates

    African Journals Online (AJOL)

    Dr Oseni

    Nig J. Biotech. Vol. 23 (2011) 28 - 34. ISSN: 0189 17131. Available online at www.biotechsocietynigeria.org. Production of Microbial Protease from Selected Soil Fungal. Isolates. Oseni, O.A.. Department of Medical Biochemistry, Ekiti State University, Ado-Ekiti, Nigeria. (Received 20.07.11, Accepted 09.11.11). Abstract.

  9. Accelerated ripening of Kashar cheese with encapsulated protease ...

    African Journals Online (AJOL)

    In this study, protease enzymes were encapsulated in Κ-carragenan, gellan and sodium alginate using emulsion and extrusion techniques and were then added in cheese milk together with rennet. The effects of the encapsulating material and ripening period on the chemical, textural and sensory characteristics of Kashar ...

  10. Purification and characterization of a protease from Thermophilic ...

    African Journals Online (AJOL)

    The purification and characterization of a thermophilic neutral protease from Thermophilic bacillus strain HS08, originally isolated from a soil sample collected from the Tulufan Crater of China, is presented in this paper. The purification steps included ammonium sulfate precipitation, with columns of DEAE-Sepharose anion ...

  11. High-level expression of alkaline protease using recombinant ...

    African Journals Online (AJOL)

    The apr gene was cloned into plasmid pUB110, resulting in the recombinant plasmid pUB-apr, which was then transformed into Bacillus amyloliquefaciens CICIM B4803. The protease productivity was significantly improved in the transformants of B. amyloliquefaciens CICIM B4803. A transformant with high alkaline ...

  12. Staphylococcal Proteases Aid in Evasion of the Human Complement System

    DEFF Research Database (Denmark)

    Jusko, Monika; Potempa, Jan; Kantyka, Tomasz

    2014-01-01

    lines of defense against bacterial pathogens, and S. aureus expresses several specific complement inhibitors. The effect of extracellular proteases from this bacterium on complement, however, has been the subject of limited investigation, except for a recent report regarding cleavage of the C3 component...

  13. Activity-Based Protein Profiling of Rhomboid Proteases in Liposomes

    Czech Academy of Sciences Publication Activity Database

    Wolf, E. V.; Seybold, M.; Hadravová, Romana; Stříšovský, Kvido; Verhelst, S. H. L.

    2015-01-01

    Roč. 16, č. 11 (2015), s. 1616-1621 ISSN 1439-4227 R&D Projects: GA MŠk(CZ) LK11206; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : activity-based protein profiling * chemical probes * inhibitors * intramembrane proteases * liposomes Subject RIV: CE - Biochemistry Impact factor: 2.850, year: 2015

  14. An oxidant, detergent and salt stable alkaline protease from Bacillus ...

    African Journals Online (AJOL)

    A novel soil bacterium, Bacillus cereus SIU1 was earlier isolated from non-saline, slightly alkaline soil of Eastern Uttar Pradesh, India. The isolate B. cereus SIU1 was grown in modified glucose yeast extract (modified GYE) medium at pH 9.0 and 45°C. It produced maximum protease at 20 h incubation. The enzyme was ...

  15. Purification and characterization of a milk-clotting protease from ...

    African Journals Online (AJOL)

    The protein homogeneity (a single electrophoretic band) of the monomeric protease was confirmed by both methods after precipitation with 80% saturated ammonium sulphate. Moreover, the fractional precipitation technique with this salt (40 and 80%) was useless in the experimental conditions employed and an important ...

  16. Molecular Basis for Drug Resistance in HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Celia A. Schiffer

    2010-11-01

    Full Text Available HIV-1 protease is one of the major antiviral targets in the treatment of patients infected with HIV-1. The nine FDA approved HIV-1 protease inhibitors were developed with extensive use of structure-based drug design, thus the atomic details of how the inhibitors bind are well characterized. From this structural understanding the molecular basis for drug resistance in HIV-1 protease can be elucidated. Selected mutations in response to therapy and diversity between clades in HIV-1 protease have altered the shape of the active site, potentially altered the dynamics and even altered the sequence of the cleavage sites in the Gag polyprotein. All of these interdependent changes act in synergy to confer drug resistance while simultaneously maintaining the fitness of the virus. New strategies, such as incorporation of the substrate envelope constraint to design robust inhibitors that incorporate details of HIV-1 protease’s function and decrease the probability of drug resistance, are necessary to continue to effectively target this key protein in HIV-1 life cycle.

  17. A Protease Isolated from the Latex of Plumeria rubra Linn ...

    African Journals Online (AJOL)

    Erah

    [3]. The extensive use of proteolytic enzymes in the treatment of inflammation and wound healing process is a well established fact. Bromelain from Ananas comosu has been shown to possess both anti-inflammatory and wound healing properties [4] while curcain, a protease from Jatropha curcas, was reported to have ...

  18. molecular biology approach to the search for novel hiv proteases ...

    African Journals Online (AJOL)

    ... which could be tested in the animal models of HIV infection before subjection to clinical trials. Optimistically, the magic HIV therapeutics may be hidden in such insects and may require the application of molecular biology techniques to unravel. KEY WORDS: Antiretroviral drugs, malaria, proteases, restriction enzymes, ...

  19. A Protease Isolated from the Latex of Plumeria rubra Linn ...

    African Journals Online (AJOL)

    Erah

    Spinacia oleracea and Petroselinum crispum leaves [5]. Proteases are important enzymes of plant metabolism and are instrumental in regulating senescence [6]. They are responsible for the degradation of proteins. Proteolytic enzymes are used extensively in industrial and medical applications [7]. Plumeria rubra Linn.

  20. Production of alkaline protease by Teredinobacter turnirae cells ...

    African Journals Online (AJOL)

    The conditions for immobilizing the new alkaline protease-producing bacteria strain Teredinobacter turnirae by entrapment in calcium alginate gel were investigated. The influence of alginate concentration (20, 25 and 30 g/l) and initial cell loading (ICL) on enzyme production were studied. The production of alkaline ...

  1. Structural Mechanisms of Inactivation in Scabies Mite Serine Protease Paralogues

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Katja; Langendorf, Christopher G.; Irving, James A.; Reynolds, Simone; Willis, Charlene; Beckham, Simone; Law, Ruby H.P.; Yang, Sundy; Bashtannyk-Puhalovich, Tanya A.; McGowan, Sheena; Whisstock, James C.; Pike, Robert N.; Kemp, David J.; Buckle, Ashley M.; (Monash); (Queensland Inst. of Med. Rsrch.)

    2009-08-07

    The scabies mite (Sarcoptes scabiei) is a parasite responsible for major morbidity in disadvantaged communities and immuno-compromised patients worldwide. In addition to the physical discomfort caused by the disease, scabies infestations facilitate infection by Streptococcal species via skin lesions, resulting in a high prevalence of rheumatic fever/heart disease in affected communities. The scabies mite produces 33 proteins that are closely related to those in the dust mite group 3 allergen and belong to the S1-like protease family (chymotrypsin-like). However, all but one of these molecules contain mutations in the conserved active-site catalytic triad that are predicted to render them catalytically inactive. These molecules are thus termed scabies mite inactivated protease paralogues (SMIPPs). The precise function of SMIPPs is unclear; however, it has been suggested that these proteins might function by binding and protecting target substrates from cleavage by host immune proteases, thus preventing the host from mounting an effective immune challenge. In order to begin to understand the structural basis for SMIPP function, we solved the crystal structures of SMIPP-S-I1 and SMIPP-S-D1 at 1.85 {angstrom} and 2.0 {angstrom} resolution, respectively. Both structures adopt the characteristic serine protease fold, albeit with large structural variations over much of the molecule. In both structures, mutations in the catalytic triad together with occlusion of the S1 subsite by a conserved Tyr200 residue is predicted to block substrate ingress. Accordingly, we show that both proteases lack catalytic function. Attempts to restore function (via site-directed mutagenesis of catalytic residues as well as Tyr200) were unsuccessful. Taken together, these data suggest that SMIPPs have lost the ability to bind substrates in a classical 'canonical' fashion, and instead have evolved alternative functions in the lifecycle of the scabies mite.

  2. Intramembrane protease RasP boosts protein production in Bacillus.

    Science.gov (United States)

    Neef, Jolanda; Bongiorni, Cristina; Goosens, Vivianne J; Schmidt, Brian; van Dijl, Jan Maarten

    2017-04-04

    The microbial cell factory Bacillus subtilis is a popular industrial platform for high-level production of secreted technical enzymes. Nonetheless, the effective secretion of particular heterologous enzymes remains challenging. Over the past decades various studies have tackled this problem, and major improvements were achieved by optimizing signal peptides or removing proteases involved in product degradation. On the other hand, serious bottlenecks in the protein export process per se remained enigmatic, especially for protein secretion at commercially significant levels by cells grown to high density. The aim of our present study was to assess the relevance of the intramembrane protease RasP for high-level protein production in B. subtilis. Deletion of the rasP gene resulted in reduced precursor processing and extracellular levels of the overproduced α-amylases AmyE from B. subtilis and AmyL from Bacillus licheniformis. Further, secretion of the overproduced serine protease BPN' from Bacillus amyloliquefaciens was severely impaired in the absence of RasP. Importantly, overexpression of rasP resulted in threefold increased production of a serine protease from Bacillus clausii, and 2.5- to 10-fold increased production of an AmyAc α-amylase from Paenibacillus curdlanolyticus, depending on the culture conditions. Of note, growth defects due to overproduction of the two latter enzymes were suppressed by rasP-overexpression. Here we show that an intramembrane protease, RasP, sets a limit to high-level production of two secreted heterologous enzymes that are difficult to produce in the B. subtilis cell factory. This finding was unexpected and suggests that proteolytic membrane sanitation is key to effective enzyme production in Bacillus.

  3. Effects of cysteine protease inhibitors on rabbit cathepsin D maturation

    International Nuclear Information System (INIS)

    Samarel, A.M.; Ferguson, A.G.; Decker, R.S.; Lesch, M.

    1989-01-01

    To examine the effects of cysteine protease inhibitors on cathepsin D intracellular transport, proteolytic processing, and secretion, primary cultures of rabbit cardiac fibroblasts were grown to confluence and exposed to media containing leupeptin, E 64, or chloroquine. Cathepsin D maturation was then evaluated in pulse-chase biosynthetic labeling experiments. None of the three agents affected the charge modification of procathepsin D within the Golgi apparatus. However, all three agents interfered with the subsequent proteolytic processing of procathepsin D isoforms to active cathepsin D. Both leupeptin and E 64 caused the intracellular accumulation of large amounts of a Mr 51,000 processing intermediate. Trace amounts of this intermediate were also detected in chloroquine-treated cells. Combined activity assay and radioimmunoassay of cell lysates indicated that this partially processed form of cathepsin D possessed proteolytic activity. Whereas low medium concentrations of leupeptin (10-100 microM) but not E 64 appeared to stimulate procathepsin D secretion, neither agent appeared to have a major effect on the rate of proenzyme secretion at doses required to inhibit proteolytic maturation (1-10 mM). Furthermore, pretreatment of cells with 10 mM leupeptin appeared only to delay, but not prevent, the intracellular transport of cathepsin D to lysosomes. In contrast, chloroquine increased procathepsin D secretion in a dose-dependent manner, diverting the majority of newly synthesized procathepsin D from the intracellular protease(s) responsible for proteolytic processing. These results suggest that cysteine proteases participate in the proteolytic maturation of procathepsin D during the transport of newly synthesized enzyme to lysosomes, but cysteine protease-mediated proteolytic processing is not required for cathepsin D activation or lysosomal translocation

  4. Molecular model of the specificity pocket of the hepatitis C virus protease: implications for substrate recognition.

    OpenAIRE

    Pizzi, E; Tramontano, A; Tomei, L; La Monica, N; Failla, C; Sardana, M; Wood, T; De Francesco, R

    1994-01-01

    We have built a model of the specificity pocket of the protease of hepatitis C virus on the basis of the known structures of trypsin-like serine proteases and of the conservation pattern of the protease sequences among various hepatitis C strains. The model allowed us to predict that the substrate of this protease should have a cysteine residue in position P1. This hypothesis was subsequently proved by N-terminal sequencing of two products of the protease. The success of this "blind" test inc...

  5. Some Investigations on Protease Enzyme Production Kinetics Using Bacillus licheniformis BBRC 100053 and Effects of Inhibitors on Protease Activity

    Directory of Open Access Journals (Sweden)

    Zahra Ghobadi Nejad

    2014-01-01

    Full Text Available Due to great commercial application of protease, it is necessary to study kinetic characterization of this enzyme in order to improve design of enzymatic reactors. In this study, mathematical modeling of protease enzyme production kinetics which is derived from Bacillus licheniformis BBRC 100053 was studied (at 37°C, pH 10 after 73 h in stationary phase, and 150 rpm. The aim of the present paper was to determine the best kinetic model and kinetic parameters for production of protease and calculating Ki (inhibition constant of different inhibitors to find the most effective one. The kinetic parameters Km (Michaelis-Menten constant and Vm (maximum rate were calculated 0.626 mM and 0.0523 mM/min. According to the experimental results, using DFP (diisopropyl fluorophosphate and PMSF (phenylmethanesulfonyl fluoride as inhibitors almost 50% of the enzyme activity could be inhibited when their concentrations were 0.525 and 0.541 mM, respectively. Ki for DFP and PMSF were 0.46 and 0.56 mM, respectively. Kinetic analysis showed that the Lineweaver-Burk model was the best fitting model for protease production kinetics DFP was more effective than PMSF and both of them should be covered in the group of noncompetitive inhibitors.

  6. A role in immunity for Arabidopsis cysteine protease RD21, the ortholog of the tomato immune protease C14.

    Directory of Open Access Journals (Sweden)

    Takayuki Shindo

    Full Text Available Secreted papain-like Cys proteases are important players in plant immunity. We previously reported that the C14 protease of tomato is targeted by cystatin-like EPIC proteins that are secreted by the oomycete pathogen Phytophthora infestans (Pinf during infection. C14 has been under diversifying selection in wild potato species coevolving with Pinf and reduced C14 levels result in enhanced susceptibility for Pinf. Here, we investigated the role C14-EPIC-like interactions in the natural pathosystem of Arabidopsis with the oomycete pathogen Hyaloperonospora arabidopsidis (Hpa. In contrast to the Pinf-solanaceae pathosystem, the C14 orthologous protease of Arabidopsis, RD21, does not evolve under diversifying selection in Arabidopsis, and rd21 null mutants do not show phenotypes upon compatible and incompatible Hpa interactions, despite the evident lack of a major leaf protease. Hpa isolates express highly conserved EPIC-like proteins during infections, but it is unknown if these HpaEPICs can inhibit RD21 and one of these HpaEPICs even lacks the canonical cystatin motifs. The rd21 mutants are unaffected in compatible and incompatible interactions with Pseudomonas syringae pv. tomato, but are significantly more susceptible for the necrotrophic fungal pathogen Botrytis cinerea, demonstrating that RD21 provides immunity to a necrotrophic pathogen.

  7. Characterization of the Protease Activity of Detergents: Laboratory Practicals for Studying the Protease Profile and Activity of Various Commercial Detergents

    Science.gov (United States)

    Valls, Cristina; Pujadas, Gerard; Garcia-Vallve, Santi; Mulero, Miquel

    2011-01-01

    Detergent enzymes account for about 30% of the total worldwide production of enzymes and are one of the largest and most successful applications of modern industrial biotechnology. Proteases can improve the wash performance of household, industrial, and institutional laundry detergents used to remove protein-based stains such as blood, grass, body…

  8. Identification of cysteine proteases and screening of cysteine protease inhibitors in biological samples by a two-dimensional gel system of zymography and reverse zymography.

    Science.gov (United States)

    Saitoh, Eiichi; Yamamoto, Shinya; Okamoto, Eishiro; Hayakawa, Yoshimi; Hoshino, Takashi; Sato, Ritsuko; Isemura, Satoko; Ohtsubo, Sadami; Taniguchi, Masayuki

    2007-11-18

    We have developed a two-dimensional (2D-) gel system of zymography and reverse zymography for the detection and characterization of proteases and protease inhibitors. Isoelectric focusing (IEF) agarose gels with pH gradients were employed for separation in the first-dimension and sodium dodecyl sulfate (SDS)-polyacrylamide gel copolymerized with gelatin used for the second dimension. Proteases and protease inhibitors separated by IEF gel were applied on the second gel without trichloroacetic acid (TCA) fixation. Protease activity in the 2D-gel was visualized as transparent spots where gelatin substrate was digested after commassie brilliant blue (CBB) staining. Some of the transparent spots from the skin mucus extract of rainbow trout were determined to be a cysteine protease through use of E-64 or CA-074. In the reverse zymography technique, the gel was incubated with papain solution at 37 degrees C for 18 h. Cysteine protease inhibitors from broad bean seeds were detected as clear blue spots after CBB staining. The amino (N-) terminal sequences of four papain inhibitor spots thus detected were demonstrated to be identical to that of favin beta chain, a broad bean lectin. Taken together, our system can be considered to be an efficient technique for discovering and characterizing new proteases and protease inhibitors in biological samples. This is the first report describing a 2D-gel system of zymography and reverse zymography.

  9. Proteases of Wood Rot Fungi with Emphasis on the Genus Pleurotus

    Directory of Open Access Journals (Sweden)

    Fabíola Dorneles Inácio

    2015-01-01

    Full Text Available Proteases are present in all living organisms and they play an important role in physiological conditions. Cell growth and death, blood clotting, and immune defense are all examples of the importance of proteases in maintaining homeostasis. There is growing interest in proteases due to their use for industrial purposes. The search for proteases with specific characteristics is designed to reduce production costs and to find suitable properties for certain industrial sectors, as well as good producing organisms. Ninety percent of commercialized proteases are obtained from microbial sources and proteases from macromycetes have recently gained prominence in the search for new enzymes with specific characteristics. The production of proteases from saprophytic basidiomycetes has led to the identification of various classes of proteases. The genus Pleurotus has been extensively studied because of its ligninolytic enzymes. The characteristics of this genus are easy cultivation techniques, high yield, low nutrient requirements, and excellent adaptation. There are few studies in the literature about proteases of Pleurotus spp. This review gathers together information about proteases, especially those derived from basidiomycetes, and aims at stimulating further research about fungal proteases because of their physiological importance and their application in various industries such as biotechnology and medicine.

  10. Production and partial characterization of alkaline protease from bacillus subtilis mutant induced by gamma radiation

    International Nuclear Information System (INIS)

    Ibrahim, H.M.M.; Bashandy, A.S.

    2010-01-01

    Fourteen bacterial isolates belonging to B.subtilis were locally isolated from soil and screened for alkaline protease production. Only one strain, the highly potent one, was selected as alkaline protease producer and subjected to further studies to optimize its production. Alkaline protease production was maximum at 35 degree C after 72 h of incubation and at ph 10.0. molasses as a carbon source and combination of peptone and yeast extract as a nitrogen source enhanced greatly alkaline protease production. The mutant strain induced by gamma radiation showed higher alkaline protease production by 1.97 fold as compared with the parent strain. The alkaline protease enzyme was active at 40 degree C and ph 10. It was compatible with many commercial detergents and showed high stability (84 %) of its original activity with Ariel detergent. Moreover, alkaline protease enhanced the washing performance, and retained 95 % of its activity in the formulated dry powder.

  11. Molecular model of the specificity pocket of the hepatitis C virus protease: implications for substrate recognition.

    Science.gov (United States)

    Pizzi, E; Tramontano, A; Tomei, L; La Monica, N; Failla, C; Sardana, M; Wood, T; De Francesco, R

    1994-02-01

    We have built a model of the specificity pocket of the protease of hepatitis C virus on the basis of the known structures of trypsin-like serine proteases and of the conservation pattern of the protease sequences among various hepatitis C strains. The model allowed us to predict that the substrate of this protease should have a cysteine residue in position P1. This hypothesis was subsequently proved by N-terminal sequencing of two products of the protease. The success of this "blind" test increases our confidence in the overall correctness of our proposed alignment of the enzyme sequence with those of other proteases of known structure and constitutes a first step in the construction of a complete model of the viral protease domain.

  12. The threonine protease activity of testes-specific protease 50 (TSP50 is essential for its function in cell proliferation.

    Directory of Open Access Journals (Sweden)

    Yu-Yin Li

    Full Text Available BACKGROUND: Testes-specific protease 50 (TSP50, a newly discovered threonine enzyme, has similar amino acid sequences and enzymatic structures to those of many serine proteases. It may be an oncogene. TSP50 is up-regulated in breast cancer epithelial cells, and ectopic expression of TSP50 in TSP50-deficient Chinese hamster ovary (CHO cells has been found to promote cell proliferation. However, the mechanisms by which TSP50 exerts its growth-promoting effects are not yet fully understood. METHODOLOGY/PRINCIPAL FINDINGS: To delineate whether the threonine protease activity of TSP50 is essential to its function in cell proliferation, we constructed and characterized a mutant TSP50, called TSP50 T310A, which was identified as a protease-dead mutant of TSP50. By a series of proliferation analyses, colony formation assays and apoptosis analyses, we showed that T310A mutation significantly depresses TSP50-induced cell proliferation in vitro. Next, the CHO stable cell line expressing either wild-type or T310A mutant TSP50 was injected subcutaneously into nude mice. We found that the T310A mutation could abolish the tumorigenicity of TSP50 in vivo. A mechanism investigation revealed that the T310A mutation prevented interaction between TSP50 and the NF-κBIκBα complex, which is necessary for TSP50 to perform its function in cell proliferation. CONCLUSION: Our data highlight the importance of threonine 310, the most critical protease catalytic site in TSP50, to TSP50-induced cell proliferation and tumor formation.

  13. Development of bioassay for pathogenecity testing of Ureaplasma urealyticum as part of host-pathogen communication

    Directory of Open Access Journals (Sweden)

    Purnomo Soeharso

    2005-12-01

    Full Text Available Bioassay of Ureaplasma urealyticum is necessary for detection as well as determination of pathogenic factors in order to understand the pathogenesis of diseases associate with ureaplasma infection. Cultivation and verification of ureaplasma is the first step of this study in the purpose of discovering sensitive method for ureaplasma detection. Cultivation of ureaplasma either in liquid or in solid media are able to detect the existence of ureaplasma in samples analyzed. However, application of PCR using specific primers to be compatible with urease gene (ure would confirm the presence of ureaplasma. The pathogenicity of ureaplasma is potentially monitored using reporter gene as a marker for gene expression. IceC was chosen as reporter gene for ureaplasma pathogenic determination as the gene has great sensitivity, easily detectable and quantitated in simple method of ice nucleation assay. Transposon 916 (Tn916 was selected as a vector for iceC gene to transform ureaplasma. The application of recombinant Tn916-iceC which is considered as pUI, allow detection of ureaplasma activities when transform ureaplasma is tested by ice nucleation assay. It was expected that ureaplasma transformation is the manifestation of mutagenesis which interfere genes responsible for bacterial pathogenicity, in order pathogenesis of bacterial infection to be analyzed accurately. IgA1 protease is considered to be an important factor for ureaplasma pathogenicity as the enzyme is required for successful colonization. Identification of iga gene and  determination of IgA1 protease activity are important for understanding the pathogenesis of ureaplasma infection. Putative iga gene of Mycoplasma genitalium was used as a reference to identify the presence of iga nucleotide sequence in U. urealyticum. Convincing evidence were obtained after PCR amplification of ureaplasma DNA using primers designed to be compatible with putative iga gene of M. genitalium followed by the

  14. Kinetic intermediates en route to the final serpin-protease complex: studies of complexes of α1-protease inhibitor with trypsin.

    Science.gov (United States)

    Maddur, Ashoka A; Swanson, Richard; Izaguirre, Gonzalo; Gettins, Peter G W; Olson, Steven T

    2013-11-01

    Serpin protein protease inhibitors inactivate their target proteases through a unique mechanism in which a major serpin conformational change, resulting in a 70-Å translocation of the protease from its initial reactive center loop docking site to the opposite pole of the serpin, kinetically traps the acyl-intermediate complex. Although the initial Michaelis and final trapped acyl-intermediate complexes have been well characterized structurally, the intermediate stages involved in this remarkable transformation are not well understood. To better characterize such intermediate steps, we undertook rapid kinetic studies of the FRET and fluorescence perturbation changes of site-specific fluorophore-labeled derivatives of the serpin, α1-protease inhibitor (α1PI), which report the serpin and protease conformational changes involved in transforming the Michaelis complex to the trapped acyl-intermediate complex in reactions with trypsin. Two kinetically resolvable conformational changes were observed in the reactions, ascribable to (i) serpin reactive center loop insertion into sheet A with full protease translocation but incomplete protease distortion followed by, (ii) full conformational distortion and movement of the protease and coupled serpin conformational changes involving the F helix-sheet A interface. Kinetic studies of calcium effects on the labeled α1PI-trypsin reactions demonstrated both inactive and low activity states of the distorted protease in the final complex that were distinct from the intermediate distorted state. These studies provide new insights into the nature of the serpin and protease conformational changes involved in trapping the acyl-intermediate complex in serpin-protease reactions and support a previously proposed role for helix F in the trapping mechanism.

  15. Advances in zymography techniques and patents regarding protease analysis.

    Science.gov (United States)

    Wilkesman, Jeff; Kurz, Liliana

    2012-08-01

    Detection of enzymatic activity on gel electrophoresis, namely zymography, is a technique that has received increasing attention in the last 10 years, according to the number of articles published. A growing amount of enzymes, mainly proteases, are now routinely detected by zymography. Detailed analytical studies are beginning to be published, as well as new patents have been developed. This new article updates the information covered in our last review, condensing the recent publications dealing with the identification of proteolytic enzymes in electrophoretic gel supports and its variations. The new advances of this method are basically focused towards two dimensional zymography and transfer zymography. Though comparatively fewer patents have been published, they basically coincide in the study of matrix metalloproteases. The tendency is foreseen to be very productive in the area of zymoproteomics, combining electrophoresis and mass spectrometry for the analysis of proteases.

  16. Keratinolytic protease: a green biocatalyst for leather industry.

    Science.gov (United States)

    Fang, Zhen; Yong, Yang-Chun; Zhang, Juan; Du, Guocheng; Chen, Jian

    2017-11-01

    Depilation/unhairing is the crucial but heavy pollution process in leather industry. Traditional inorganic sulfide treatment was the most widely used depilation technique in the past decades, which was usually detrimental to leather quality and resulted in serious environmental pollution. Using biocatalysts to substitute inorganic sulfide showed great advantages in environment protection and unhairing efficiency. Keratinolytic protease is one of the excellent biocatalysts to hydrolyze disulfide bond-rich proteins of hair and has little damage to leather. Biological treatment with keratinolytic proteases could largely reduce the quantity and toxicity of wastewater effluent from the leather industry. But low thermostability and substrate specificity or specific activity of these enzymes limited their practical application. Therefore, recent progresses on protein engineering strategies (site-directed mutagenesis, protein fusion, N/C-terminus truncation, and domain swapping) used to enhance the keratinolytic enzyme performance were presented.

  17. 2-D zymographic analysis of Broccoli (Brassica oleracea L. var. Italica) florets proteases: follow up of cysteine protease isotypes in the course of post-harvest senescence.

    Science.gov (United States)

    Rossano, Rocco; Larocca, Marilena; Riccio, Paolo

    2011-09-01

    Zymographic analysis of Broccoli florets (Brassica oleracea L. var. Italica) revealed the presence of acidic metallo-proteases, serine proteases and cysteine proteases. Under conditions which were denaturing for the other proteases, the study was restricted to cysteine proteases. 2-D zymography, a technique that combines IEF and zymography was used to show the presence of 11 different cysteine protease spots with molecular mass of 44 and 47-48kDa and pIs ranging between 4.1 and 4.7. pI differences could be ascribed to different degrees of phosphorylation that partly disappeared in the presence of alkaline phosphatase. Post-harvest senescence of Broccoli florets was characterized by decrease in protein and chlorophyll contents and increase of protease activity. In particular, as determined by 2-D zymography, the presence of cysteine protease clearly increased during senescence, a finding that may represent a useful tool for the control of the aging process. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. Experience of islet isolation without neutral protease supplementation

    OpenAIRE

    Kin, Tatsuya; O'Gorman, Doug; Senior, Peter; Shapiro, AM James

    2010-01-01

    We have reported improved islet isolation outcomes using a new digestion protocol where the pancreas is perfused only with collagenase, and neutral protease (NP) is administered during the digestion phase. Since the inception of this protocol, we have had some cases where administration of NP was not required. Our new protocol was utilized in 94 islet isolations. The timing of adding NP was dependent on the progression of digestion but in 10 cases the progression was rapid and most islets in ...

  19. Schistosome serine protease inhibitors: parasite defense or homeostasis?

    Directory of Open Access Journals (Sweden)

    Landys A. Lopez Quezada

    2011-06-01

    Full Text Available Serpins are a structurally conserved family of macromolecular inhibitors found in numerous biological systems. The completion and annotation of the genomes of Schistosoma mansoni and Schistosoma japonicum has enabled the identification by phylogenetic analysis of two major serpin clades. S. mansoni shows a greater multiplicity of serpin genes, perhaps reflecting adaptation to infection of a human host. Putative targets of schistosome serpins can be predicted from the sequence of the reactive center loop (RCL. Schistosome serpins may play important roles in both post-translational regulation of schistosome-derived proteases, as well as parasite defense mechanisms against the action of host proteases.Serpinas são uma família de inibidores macromoleculares estruturalmente conservados encontrados em inúmeros sistemas biológicos. O término e a anotação dos genomas de Schistosoma mansoni e de Schistosoma japonicum permitiram a identificação por análise filogenética de dois principais clados de serpinas. S. mansoni mostra uma multiplicidade maior de genes de serpinas, talvez refletindo uma adaptação à infecção de um hospedeiro humano. Alvos putativos das serpinas de esquistossomos podem ser preditos a partir da sequência do "loop" do centro reativo. Serpinas de esquistossomos podem ter importantes papeis tanto na regulação pós-traducional de proteases derivadas do esquistossoma, quanto nos mecanismos de defesa contra a ação de proteases do hospedeiro.

  20. Characterization and Preparation of Broken Rice Proteins Modified by Proteases

    Directory of Open Access Journals (Sweden)

    Lixia Hou

    2010-01-01

    Full Text Available Broken rice is an underutilized by-product of milling. Proteins prepared from broken rice by treatments with alkaline protease and papain have been characterized with regard to nutritional and functional properties. The protein content and the protein recovery were 56.45 and 75.45 % for alkaline protease treatment, and 65.45 and 46.32 % for papain treatment, respectively. Protease treatment increased the lysine and valine content, leading to a more balanced amino acid profile. Broken rice proteins had high emulsifying capacity, 58.3–71.6 % at neutral pH, and adequate water holding capacity, ranging from 1.96 to 2.93 g/g of proteins. At pH=7.0, the broken rice protein had the highest water holding capacity and the best interfacial activities (emulsifying capacity, emulsifying stability, foaming capacity and foaming stability, which may be the result of the higher solubility at pH=7.0. The interfacial activities increased with the increase in the mass fraction of broken rice proteins. The proteins prepared by the papain treatment had higher water holding capacity (p>0.05, emulsifying capacity (p0.05 than alkaline protease treatment at the same pH or mass fraction. To test the fortification of food products with broken rice proteins, pork sausages containing the proteins were prepared. Higher yield of the sausages was obtained with the increased content of broken rice proteins, in the range of 2.0–9.0 %. The results indicate that broken rice proteins have potential to be used as the protein fortification ingredient for food products.

  1. Engineering Environmentally-Stable Proteases to Specifically Neutralize Protein Toxins

    Science.gov (United States)

    2013-10-01

    synthesized as a fusion protein on the surface of M13 phage . The random library of subtilisin phage is mixed with the GA- PLFRAL-S-GB substrate...factor (LF), representing four functionally distinct families of toxins. The centerpiece of our design effort is a phage -display selection method for...hour assay. 15. SUBJECT TERMS Enterotoxin, protease, directed evolution, subtilisin, protein engineering, phage -display, enzymology 16. SECURITY

  2. Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

    Science.gov (United States)

    Xue, Yang; Li, Ling-Po; He, Yan-Hong; Guan, Zhi

    2012-10-01

    We reported the first enzyme-catalysed, direct, three-component asymmetric Mannich reaction using protease type XIV from Streptomyces griseus (SGP) in acetonitrile. Yields of up to 92% with enantioselectivities of up to 88% e.e. and diastereoselectivities of up to 92:8 (syn:anti) were achieved under the optimised conditions. This enzyme's catalytic promiscuity expands the application of this biocatalyst and provides a potential alternative method for asymmetric Mannich reactions.

  3. Rhomboid protease inhibitors: Emerging tools and future therapeutics

    Czech Academy of Sciences Publication Activity Database

    Stříšovský, Kvido

    2016-01-01

    Roč. 60, Dec (2016), s. 52-62 ISSN 1084-9521 R&D Projects: GA MŠk(CZ) LK11206; GA MŠk LO1302 EU Projects: European Commission(XE) 304154 - Rhomboid substrates Institutional support: RVO:61388963 Keywords : rhomboid protease * inhibitor * disease * mechanism * substrate specificity Subject RIV: CE - Biochemistry Impact factor: 6.614, year: 2016 http://www.sciencedirect.com/science/article/pii/S1084952116302592

  4. ISOLASI DAN KARAKTERISASI PROTEASE ALKALIN DARI ISOLAT BAKTERI LIMBAH TERNAK DI EXFARM FAKULTAS PETERNAKAN UNSOED

    Directory of Open Access Journals (Sweden)

    Zusfahair

    2011-05-01

    Full Text Available Protease is one of the widely used enzymes for the industry. The potential resource of microorganism that produced protease is milk cow waste. In this research, isolation and characterization has been done toward isolated protease from milk cow waste of the Exfarm’s Animal Husbandry Faculty at University of Jenderal Soedirman, Purwokerto. The research used experiment method and the parameters observed were the genus of bacteria which produce protease and the activity of protease. The characterizations of protease were determination of optimum pH and temperature, the influence of metal ions, EDTA, surfactant, and commercial detergent toward enzyme activity, and also the study of enzyme stability. The results from the research showed that the isolated bacteria from the Exfarm’s of Animal Husbandry Faculty of UNSOED, which produced protease was Salmonella sp. Characterization of isolated Salmonella sp. from 45% ammonium sulphate fraction indicated that the optimum temperature was 50 ºC, optimum pH was 8, the enzyme was activated by Ca2+ dan Mg2+ ion, whereas it was inhibited by Zn2+, Cu2+ ions and EDTA. The addition of Tween-80 with the concentration of 0.2% and 0.4% increased protease activity, however the addition of Tween-80 with concentration higher than 0.6% decreased the protease activity. Enzyme protease from isolated Salmonella sp. was relatively stable with the addition of commercial detergent such as Attack, Surf, and Bukrim.

  5. Optimum production and characterization of an acid protease from marine yeast Metschnikowia reukaufii W6b

    Science.gov (United States)

    Li, Jing; Peng, Ying; Wang, Xianghong; Chi, Zhenming

    2010-12-01

    The marine yeast strain W6b isolated from sediment of the South China Sea was found to produce a cell-bound acid protease. The crude acid protease produced by this marine yeast showed the highest activity at pH 3.5 and 40 °C. The optimal pH and temperature for the crude acid protease were in agreement with those for acid protease produced by the terrestrial yeasts. The optimal medium of the acid protease production was seawater containing 1.0% glucose, 1.5% casein, and 0.5% yeast extract, and the optimal cultivation conditions of the acid protease production were pH 4.0, a temperature of 25 °C and a shaking speed of 140 rmin-1. Under the optimal conditions, 72.5 UmL-1 of acid protease activity could be obtained in cell suspension within 48 h of fermentation at shake flask level. The acid protease production was induced by high-molecular-weight nitrogen sources and repressed by low-molecular-weight nitrogen sources. Skimmed-milk-clotting test showed that the crude acid protease from the cell suspension of the yeast W6b had high skimmed milk coagulability. The acid protease produced by M. reukaufii W6b may have highly potential applications in cheese, food and fermentation industries.

  6. Detergent-compatible proteases: microbial production, properties, and stain removal analysis.

    Science.gov (United States)

    Niyonzima, Francois Niyongabo; More, Sunil

    2015-01-01

    Proteases are one of the most important commercial enzymes used in various industrial domains such as detergent and leather industries. The alkaline proteases as well as other detergent-compatible enzymes such as lipases and amylases serve now as the key components in detergent formulations. They break down various stains during fabric washing. The search for detergent-compatible proteases with better properties is a continuous exercise. The current trend is to use detergent-compatible proteases that are stable over a wide temperature range. Although the proteases showing stability at elevated pH have the capacity to be used in detergent formulations, their usage can be significant if they are also stable and compatible with detergent and detergent ingredients, and also able to remove protein stains. Despite the existence of some reviews on alkaline proteases, there is no specification for the use of alkaline proteases as detergent additives. The present review describes the detergent-compatible proteases tested as detergent additives. An overview was provided for screening, optimization, purification, and properties of detergent compatible proteases, with an emphasis on the stability and compatibility of the alkaline proteases with the detergent and detergent compounds, as well as stain removal examination methods.

  7. Autoprocessing of human immunodeficiency virus type 1 protease miniprecursor fusions in mammalian cells

    Directory of Open Access Journals (Sweden)

    Chen Chaoping

    2010-07-01

    Full Text Available Abstract Background HIV protease (PR is a virus-encoded aspartic protease that is essential for viral replication and infectivity. The fully active and mature dimeric protease is released from the Gag-Pol polyprotein as a result of precursor autoprocessing. Results We here describe a simple model system to directly examine HIV protease autoprocessing in transfected mammalian cells. A fusion precursor was engineered encoding GST fused to a well-characterized miniprecursor, consisting of the mature protease along with its upstream transframe region (TFR, and small peptide epitopes to facilitate detection of the precursor substrate and autoprocessing products. In HEK 293T cells, the resulting chimeric precursor undergoes effective autoprocessing, producing mature protease that is rapidly degraded likely via autoproteolysis. The known protease inhibitors Darunavir and Indinavir suppressed both precursor autoprocessing and autoproteolysis in a dose-dependent manner. Protease mutations that inhibit Gag processing as characterized using proviruses also reduced autoprocessing efficiency when they were introduced to the fusion precursor. Interestingly, autoprocessing of the fusion precursor requires neither the full proteolytic activity nor the majority of the N-terminal TFR region. Conclusions We suggest that the fusion precursors provide a useful system to study protease autoprocessing in mammalian cells, and may be further developed for screening of new drugs targeting HIV protease autoprocessing.

  8. Characterization of a membrane-associated serine protease in Escherichia coli

    International Nuclear Information System (INIS)

    Palmer, S.M.; St John, A.C.

    1987-01-01

    Three membrane-associated proteolytic activities in Escherichia coli were resolved by DEAE-cellulose chromatography from detergent extracts of the total envelope fraction. On the basis of substrate specificity for the hydrolysis of chromogenic amino acid ester substrates, the first two eluting activities were determined previously to be protease V and protease IV, respectively. The third proteolytic activity eluting from the DEAE-cellulose column was further purified by affinity chromatography on benzamidine-Sepharose 6B. They termed this enzyme protease VI. Protease VI did not hydrolyze any of the chromogenic substrates used in the detection of protease IV and protease V. However, all three enzymes generated acid-soluble fragments from a mixture of E. coli membrane proteins which were biosynthetically labeled with radioactive amino acids. The activity of protease VI was sensitive to serine protease inhibitors. Using [ 3 H]diisopropylfluorophosphate as an active-site labeling reagent, they determined that protease VI has an apparent molecular weight of 43,000 in polyacrylamide gels. All three membrane-associated serine proteases were insensitive to inhibition by Ecotin, an endogenous, periplasmic inhibitor of trypsin

  9. Cysteine proteases: Modes of activation and future prospects as pharmacological targets

    Directory of Open Access Journals (Sweden)

    Sonia eVerma

    2016-04-01

    Full Text Available Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria and parasite to the higher organisms (mammals. Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases and metallo-proteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a pro-domain (regulatory and a mature domain (catalytic. The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein-protein interactions (PPIs and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases.

  10. Enterovirus type 71 2A protease functions as a transcriptional activator in yeast

    Directory of Open Access Journals (Sweden)

    Lai Meng-Jiun

    2010-08-01

    Full Text Available Abstract Enterovirus type 71 (EV71 2A protease exhibited strong transcriptional activity in yeast cells. The transcriptional activity of 2A protease was independent of its protease activity. EV71 2A protease retained its transcriptional activity after truncation of 40 amino acids at the N-terminus but lost this activity after truncation of 60 amino acids at the N-terminus or deletion of 20 amino acids at the C-terminus. Thus, the acidic domain at the C-terminus of this protein is essential for its transcriptional activity. Indeed, deletion of amino acids from 146 to 149 (EAME in this acidic domain lost the transcriptional activity of EV71 2A protein though still retained its protease activity. EV71 2A protease was detected both in the cytoplasm and nucleus using confocal microscopy analysis. Coxsackie virus B3 2A protease also exhibited transcriptional activity in yeast cells. As expected, an acidic domain in the C-terminus of Coxsackie virus B3 2A protease was also identified. Truncation of this acidic domain resulted in the loss of transcriptional activity. Interestingly, this acidic region of poliovirus 2A protease is critical for viral RNA replication. The transcriptional activity of the EV71 or Coxsackie virus B3 2A protease should play a role in viral replication and/or pathogenesis.

  11. Studies on detection and analysis of proteases in leaf extract of medicinally important plants.

    Science.gov (United States)

    Chinnadurai, Gandhi Shree; Krishnan, Sivakumar; Perumal, Palani

    2018-02-01

    The whole plant or the extracts obtained from them have long been used as medicine to treat various human diseases and disorders. Notably, those plants endowed with protease activity have been traditionally used as the agents for treating tumors, digestion disorders, swelling, blood coagulation, fibrinolysis and also for immune-modulation. Proteases occupy a pivotal position in enzyme based industries. Plant proteases have been increasingly exploited for pharmaceutical, food, leather and textile processing industries. Earlier investigations have focused on the occurrence of proteases in medicinally unimportant plants. Therefore it has been aimed to study the occurrence of proteolytic enzymes from medicinally important plants establish any correlation exists between protease activity and medicinal use of individual plants. Crude extract were obtained from the leaves of 80 different medicinal plants. Tris-HCl buffer was used as the extraction buffer and the supernatants obtained were used for determination of total protein and protease activity using spectrophotometric methods. Qualitative screening for the presence of protease was carried out with agar diffusion method by incorporating the substrate. SDS-PAGE was used to analyse the isoforms of protease and for determination of relative molecular mass. Relatively higher protease activities were observed in the extracts of leaves of Pongamia pinnata (Fabaceae), Wrightia tinctoria (Apocyanaceae) Acalypha indica (Euphorbiaceae), Adhatoda vasica (Acanthaceae) and Curcuma longa (Zingiberaceae). No correlation was found between the total protein content and protease activity in individual plant species. SDS-PAGE analysis indicated the presence of multiple forms of protease of higher molecular weight range in several plant species. We found a strong correlation between the protease activity and medicinal application of the plant CONCLUSION: The present study has unequivocally revealed that the leaves of medicinal plants

  12. Protease-activated receptors in kidney disease progression.

    Science.gov (United States)

    Palygin, Oleg; Ilatovskaya, Daria V; Staruschenko, Alexander

    2016-12-01

    Protease-activated receptors (PARs) are members of a well-known family of transmembrane G protein-coupled receptors (GPCRs). Four PARs have been identified to date, of which PAR1 and PAR2 are the most abundant receptors, and have been shown to be expressed in the kidney vascular and tubular cells. PAR signaling is mediated by an N-terminus tethered ligand that can be unmasked by serine protease cleavage. The receptors are activated by endogenous serine proteases, such as thrombin (acts on PARs 1, 3, and 4) and trypsin (PAR2). PARs can be involved in glomerular, microvascular, and inflammatory regulation of renal function in both normal and pathological conditions. As an example, it was shown that human glomerular epithelial and mesangial cells express PARs, and these receptors are involved in the pathogenesis of crescentic glomerulonephritis, glomerular fibrin deposition, and macrophage infiltration. Activation of these receptors in the kidney also modulates renal hemodynamics and glomerular filtration rate. Clinical studies further demonstrated that the concentration of urinary thrombin is associated with glomerulonephritis and type 2 diabetic nephropathy; thus, molecular and functional mechanisms of PARs activation can be directly involved in renal disease progression. We briefly discuss here the recent literature related to activation of PAR signaling in glomeruli and the kidney in general and provide some examples of PAR1 signaling in glomeruli podocytes. Copyright © 2016 the American Physiological Society.

  13. Semi purifikasi dan karakterisasi enzim protease Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Elidar Naiola

    2012-02-01

    Full Text Available The aim of the research was to find the partial purified of enzyme protease from Bacillus sp. The crude enzyme of protease was produce in rice brand medium (100 gram of rice brand in a liter tofu liquid waste. The enzyme was semi-purified by the procedure of precipitation using ethanol in different percentages of saturation, gel filtration using Sephadex G 100 and Ion Exchanged Chromatography using DEAE Sephadex A50. Specific activities of the enzyme during purification were 5.71 U/mg (crude enzyme; 6.75 U/mg (ethanol precipitations; 37.16 U/mg (gel filtration and 43.02 U/mg (Ion Exchanged Chromatography. The optimum temperature for enzyme reaction was 45 €“50 °C, while the optimum pH was 7.0 €“8.0. Protease was relatively stable after heating until 37 €“50 °C for 60 minutes. Metal ions had different effects to the enzyme. CaCl2, FeCl3, MnCl2, ZnCl2 and MgCl2 increased enzyme activity, CdCl2 and HgCl2 gave an inhibitory effect, and another of metal ions had no effects to the enzyme.

  14. Protease activated receptors (PARS) mediation in gyroxin biological activity

    International Nuclear Information System (INIS)

    Silva, Jose Alberto Alves da

    2009-01-01

    Gyroxin is a serine protease enzyme from the South American rattlesnake (Crotalus durissus terrificus) venom; it is only partially characterized and has multiple activities. Gyroxin induces blood coagulation, blood pressure decrease and a neurotoxic behavior named barrel rotation. The mechanisms involved in this neurotoxic activity are not known. Whereas gyroxin is a member of enzymes with high potential to become a new drug with clinical applications such as thrombin, batroxobin, ancrod, tripsyn and kalicrein, it is important to find out how gyroxin works. The analysis on agarose gel electrophoresis and circular dichroism confirmed the molecules' integrity and purity. The gyroxin intravenous administration in mice proved its neurotoxicity (barrel rotation). In vivo studies employing intravital microscopy proved that gyroxin induces vasodilation with the participation of protease activated receptors (PARs), nitric oxide and Na+K+ATPase. The leukocytes' adherence and rolling counting indicated that gyroxin has no pro inflammatory activity. Gyroxin induced platelet aggregation, which was blocked by inhibitors of PAR1 and PAR4 receptors (SCH 79797 and tcY-NH 2 , respectively). Finally, it was proved that the gyroxin temporarily alter the permeability of the blood brain barrier (BBB). Our study has shown that both the protease-activated receptors and nitric oxide are mediators involved in the biological activities of gyroxin. (author)

  15. Enhanced Thermostability of a Fungal Alkaline Protease by Different Additives

    Directory of Open Access Journals (Sweden)

    Nilesh P. Nirmal

    2014-01-01

    Full Text Available A fungal strain (Conidiobolus brefeldianus MTCC 5184 isolated from plant detritus secreted a high activity alkaline protease. Thermostability studies of the fungal alkaline protease (FAP revealed that the protease is stable up to 50°C with 40% residual activity after one hour. Effect of various additives such as sugars, sugar alcohols, polyols, and salts, on the thermostability of FAP was evaluated. Among the additives tested, glycerol, mannitol, xylitol, sorbitol, and trehalose were found to be very effective in increasing the stability of FAP, which was found to be concentration dependent. Fivefold increase in residual activity of FAP was observed in the presence of trehalose (50% and sorbitol (50% at 50°C for 4 h, compared to FAP without additive. Other additives like calcium at 20 mM and 10–15% ammonium sulphate showed lower stability improvement than trehalose and sorbitol. NaCl, MgCl2, K2HPO4, and glycine were found to be poor stabilizers and showed only a marginal improvement. PEG 6000 did not show any increase in stability but was found to be slightly inhibitory.

  16. Pathogen-secreted proteases activate a novel plant immune pathway.

    Science.gov (United States)

    Cheng, Zhenyu; Li, Jian-Feng; Niu, Yajie; Zhang, Xue-Cheng; Woody, Owen Z; Xiong, Yan; Djonović, Slavica; Millet, Yves; Bush, Jenifer; McConkey, Brendan J; Sheen, Jen; Ausubel, Frederick M

    2015-05-14

    Mitogen-activated protein kinase (MAPK) cascades play central roles in innate immune signalling networks in plants and animals. In plants, however, the molecular mechanisms of how signal perception is transduced to MAPK activation remain elusive. Here we report that pathogen-secreted proteases activate a previously unknown signalling pathway in Arabidopsis thaliana involving the Gα, Gβ, and Gγ subunits of heterotrimeric G-protein complexes, which function upstream of an MAPK cascade. In this pathway, receptor for activated C kinase 1 (RACK1) functions as a novel scaffold that binds to the Gβ subunit as well as to all three tiers of the MAPK cascade, thereby linking upstream G-protein signalling to downstream activation of an MAPK cascade. The protease-G-protein-RACK1-MAPK cascade modules identified in these studies are distinct from previously described plant immune signalling pathways such as that elicited by bacterial flagellin, in which G proteins function downstream of or in parallel to an MAPK cascade without the involvement of the RACK1 scaffolding protein. The discovery of the new protease-mediated immune signalling pathway described here was facilitated by the use of the broad host range, opportunistic bacterial pathogen Pseudomonas aeruginosa. The ability of P. aeruginosa to infect both plants and animals makes it an excellent model to identify novel immunoregulatory strategies that account for its niche adaptation to diverse host tissues and immune systems.

  17. Humanized-VHH Transbodies that Inhibit HCV Protease and Replication

    Directory of Open Access Journals (Sweden)

    Surasak Jittavisutthikul

    2015-04-01

    Full Text Available There is a need for safe and broadly effective anti-HCV agents that can cope with genetic multiplicity and mutations of the virus. In this study, humanized-camel VHHs to genotype 3a HCV serine protease were produced and were linked molecularly to a cell penetrating peptide, penetratin (PEN. Human hepatic (Huh7 cells transfected with the JFH-1 RNA of HCV genotype 2a and treated with the cell penetrable nanobodies (transbodies had a marked reduction of the HCV RNA intracellularly and in their culture fluids, less HCV foci inside the cells and less amounts of HCV core antigen in culture supernatants compared with the infected cells cultured in the medium alone. The PEN-VHH-treated-transfected cells also had up-regulation of the genes coding for the host innate immune response (TRIF, TRAF3, IRF3, IL-28B and IFN-β, indicating that the cell penetrable nanobodies rescued the host innate immune response from the HCV mediated-suppression. Computerized intermolecular docking revealed that the VHHs bound to residues of the protease catalytic triad, oxyanion loop and/or the NS3 N-terminal portion important for non-covalent binding of the NS4A protease cofactor protein. The so-produced transbodies have high potential for testing further as a candidate for safe, broadly effective and virus mutation tolerable anti-HCV agents.

  18. Detection of extracellular proteases from microorganisms on agar plates

    Directory of Open Access Journals (Sweden)

    Alane Beatriz Vermelho

    1996-12-01

    Full Text Available We present herein an improved assay for detecting the presence of extracellular proteases from microorganisms on agar plates. Using different substrates (gelatin, BSA, hemoglobin incorporated into the agar and varying the culture medium composition, we were able to detect proteolytic activities from Pseudomonas aeruginosa, Micrococcus luteus and Serratia marcescens as well as the influence that these components displayed in the expression of these enzymes. For all microorganisms tested we found that in agar-BHI or yeast extract medium containing gelatin the sensitivity of proteinase detection was considerably greater than in BSA-agar or hemoglobin-agar. However, when BSA or hemoglobin were added to the culture medium, there was an increase in growth along with a marked reduction in the amount of proteinase production. In the case of M. luteus the incorporation of glycerol in BHI or yeast extract gelatin-agar induced protease liberation. Our results indicate that the technique described here is of value for detecting extracellular proteases directly in the culture medium, by means of a qualitative assay, simple, inexpensive, straight forward method to assess the presence of the proteolytic activity of a given microorganism colony with great freedom in substrate selection.

  19. PURIFIKASI DAN KARAKTERISASI PARSIAL ENZIM PROTEASE DARI GETAH TANAMAN BIDURI (Calotropis gigantea [Purification and Partial Characterization of Protease from Biduri (Calotropis gigantea Latex

    Directory of Open Access Journals (Sweden)

    Yuli Witono1

    2007-06-01

    Full Text Available The main objectives of this research we to purify protease from biduri (Calotropis gigantean latex and its partial characterization in relation with this application in the food processing. Protease was extracted from biduri latex by using ammonium sulphate 35-80%, dialyzed and then purified subsequently through sephadex G-25 gel and CM sephadex C-50 caution exchanger. Biduri protease has specific activity of 59 unit/g in casein substrate. Optimum pH was 7 and temperature 550C. Apparent Km was 21.63 g/ml and reaction maximum velocity (Vmax being 18.9 mg/ml/min. SDS-PAGE (Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis analysis showed the apparent molecular weight of the protease was 25.2 kD. Moreover, the protease can be inactivated at 900C for 10 min, or 600C for 30 min.

  20. Vacuolar proteases from Candida glabrata: Acid aspartic protease PrA, neutral serine protease PrB and serine carboxypeptidase CpY. The nitrogen source influences their level of expression.

    Science.gov (United States)

    Sepúlveda-González, M Eugenia; Parra-Ortega, Berenice; Betancourt-Cervantes, Yuliana; Hernández-Rodríguez, César; Xicohtencatl-Cortes, Juan; Villa-Tanaca, Lourdes

    2016-01-01

    The Saccharomyces cerevisiae vacuole is actively involved in the mechanism of autophagy and is important in homeostasis, degradation, turnover, detoxification and protection under stressful conditions. In contrast, vacuolar proteases have not been fully studied in phylogenetically related Candida glabrata. The present paper is the first report on proteolytic activity in the C. glabrata vacuole. Biochemical studies in C. glabrata have highlighted the presence of different kinds of intracellular proteolytic activity: acid aspartyl proteinase (PrA) acts on substrates such as albumin and denatured acid hemoglobin, neutral serine protease (PrB) on collagen-type hide powder azure, and serine carboxypeptidase (CpY) on N-benzoyl-tyr-pNA. Our results showed a subcellular fraction with highly specific enzymatic activity for these three proteases, which allowed to confirm its vacuolar location. Expression analyses were performed in the genes CgPEP4 (CgAPR1), CgPRB1 and CgCPY1 (CgPRC), coding for vacuolar aspartic protease A, neutral protease B and carboxypeptidase Y, respectively. The results show a differential regulation of protease expression depending on the nitrogen source. The proteases encoded by genes CgPEP4, CgPRB1 and CgCPY1 from C. glabrata could participate in the process of autophagy and survival of this opportunistic pathogen. Copyright © 2014 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  1. Protease signaling through protease activated receptor 1 mediate nerve activation by mucosal supernatants from irritable bowel syndrome but not from ulcerative colitis patients.

    Science.gov (United States)

    Buhner, Sabine; Hahne, Hannes; Hartwig, Kerstin; Li, Qin; Vignali, Sheila; Ostertag, Daniela; Meng, Chen; Hörmannsperger, Gabriele; Braak, Breg; Pehl, Christian; Frieling, Thomas; Barbara, Giovanni; De Giorgio, Roberto; Demir, Ihsan Ekin; Ceyhan, Güralp Onur; Zeller, Florian; Boeckxstaens, Guy; Haller, Dirk; Kuster, Bernhard; Schemann, Michael

    2018-01-01

    The causes of gastrointestinal complaints in irritable bowel syndrome (IBS) remain poorly understood. Altered nerve function has emerged as an important pathogenic factor as IBS mucosal biopsy supernatants consistently activate enteric and sensory neurons. We investigated the neurally active molecular components of such supernatants from patients with IBS and quiescent ulcerative colitis (UC). Effects of supernatants from 7 healthy controls (HC), 20 IBS and 12 UC patients on human and guinea pig submucous neurons were studied with neuroimaging techniques. We identify differentially expressed proteins with proteome analysis. Nerve activation by IBS supernatants was prevented by the protease activated receptor 1 (PAR1) antagonist SCHE79797. UC supernatants also activated enteric neurons through protease dependent mechanisms but without PAR1 involvement. Proteome analysis of the supernatants identified 204 proteins, among them 17 proteases as differentially expressed between IBS, UC and HC. Of those the four proteases elastase 3a, chymotrypsin C, proteasome subunit type beta-2 and an unspecified isoform of complement C3 were significantly more abundant in IBS compared to HC and UC supernatants. Of eight proteases, which were upregulated in IBS, the combination of elastase 3a, cathepsin L and proteasome alpha subunit-4 showed the highest prediction accuracy of 98% to discriminate between IBS and HC groups. Elastase synergistically potentiated the effects of histamine and serotonin-the two other main neuroactive substances in the IBS supernatants. A serine protease inhibitor isolated from the probiotic Bifidobacterium longum NCC2705 (SERPINBL), known to inhibit elastase-like proteases, prevented nerve activation by IBS supernatants. Proteases in IBS and UC supernatants were responsible for nerve activation. Our data demonstrate that proteases, particularly those signalling through neuronal PAR1, are biomarker candidates for IBS, and protease profiling may be used to

  2. Thermodynamic and structural analysis of HIV protease resistance to darunavir - analysis of heavily mutated patient- derived HIV-1 proteases

    Czech Academy of Sciences Publication Activity Database

    Kožíšek, Milan; Lepšík, Martin; Grantz Šašková, Klára; Brynda, Jiří; Konvalinka, Jan; Řezáčová, Pavlína

    2014-01-01

    Roč. 281, č. 7 (2014), s. 1834-1847 ISSN 1742-464X R&D Projects: GA ČR GAP207/11/1798 Grant - others:OPPC(XE) CZ.2.16/3.1.00/24016 Institutional support: RVO:61388963 ; RVO:68378050 Keywords : enthropic contribution * HIV protease inhibitors * isothermal titration calorimetry * resistance mutation * X-ray crystallography Subject RIV: CE - Biochemistry Impact factor: 4.001, year: 2014

  3. The crystal structure of protease Sapp1p from Candida parapsilosis in complex with the HIV protease inhibitor ritonavir

    Czech Academy of Sciences Publication Activity Database

    Dostál, Jiří; Brynda, Jiří; Hrušková-Heidingsfeldová, Olga; Pachl, Petr; Pichová, Iva; Řezáčová, Pavlína

    2012-01-01

    Roč. 27, č. 1 (2012), s. 160-165 ISSN 1475-6366 R&D Projects: GA MŠk(CZ) LC531; GA ČR GA310/09/1945; GA ČR GA203/09/0820 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520514 Keywords : secreted aspartic protease * virulence factor * X-ray structure * candidiasis Subject RIV: CE - Biochemistry Impact factor: 1.495, year: 2012

  4. GS-8374, a Prototype Phosphonate-Containing Inhibitor of HIV-1 Protease, Effectively Inhibits Protease Mutants with Amino Acid Insertions

    Czech Academy of Sciences Publication Activity Database

    Grantz Šašková, Klára; Kožíšek, Milan; Stray, K.; Jong de, D.; Řezáčová, Pavlína; Brynda, Jiří; Maarseveen van, N. M.; Nijhuis, M.; Cihlář, T.; Konvalinka, Jan

    2014-01-01

    Roč. 88, č. 6 (2014), s. 3586-3590 ISSN 0022-538X R&D Projects: GA ČR GAP207/11/1798 Grant - others:OPPC(XE) CZ.2.16/3.1.00/24016 Institutional support: RVO:61388963 ; RVO:68378050 Keywords : virus type-1 protease * antiviral activity * drug resistance Subject RIV: EE - Microbiology, Virology Impact factor: 4.439, year: 2014

  5. New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina

    Science.gov (United States)

    2010-01-01

    Background Subtilisin-like serine proteases play an important role in pathogenic fungi during the penetration and colonization of their hosts. In this study, we perform an evolutionary analysis of the subtilisin-like serine protease genes of subphylum Pezizomycotina to find if there are similar pathogenic mechanisms among the pathogenic fungi with different life styles, which utilize subtilisin-like serine proteases as virulence factors. Within Pezizomycotina, nematode-trapping fungi are unique because they capture soil nematodes using specialized trapping devices. Increasing evidence suggests subtilisin-like serine proteases from nematode-trapping fungi are involved in the penetration and digestion of nematode cuticles. Here we also conduct positive selection analysis on the subtilisin-like serine protease genes from nematode-trapping fungi. Results Phylogenetic analysis of 189 subtilisin-like serine protease genes from Pezizomycotina suggests five strongly-supported monophyletic clades. The subtilisin-like serine protease genes previously identified or presumed as endocellular proteases were clustered into one clade and diverged the earliest in the phylogeny. In addition, the cuticle-degrading protease genes from entomopathogenic and nematode-parasitic fungi were clustered together, indicating that they might have overlapping pathogenic mechanisms against insects and nematodes. Our experimental bioassays supported this conclusion. Interestingly, although they both function as cuticle-degrading proteases, the subtilisin-like serine protease genes from nematode-trapping fungi and nematode-parasitic fungi were not grouped together in the phylogenetic tree. Our evolutionary analysis revealed evidence for positive selection on the subtilisin-like serine protease genes of the nematode-trapping fungi. Conclusions Our study provides new insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. Pezizomycotina subtilisins most likely evolved

  6. Studies of membrane topology of mitochondrial cholesterol hydroxylases CYPs 27A1 and 11A1

    Science.gov (United States)

    Mast, Natalia; Liao, Wei-Li; Turko, Illarion V.

    2010-01-01

    Mitochondrial cytochrome P450 enzymes (CYP or P450, EC 1.14.13.15) play an important role in metabolism of cholesterol. CYP27A1 hydroxylates cholesterol at position 27 and, thus, initiates cholesterol removal from many extrahepatic tissues. CYP11A1 is a steroidogenic P450 that converts cholesterol to pregnenolone, the first step in the biosynthesis of all steroid hormones. We utilized a new approach to study membrane topology of CYPs 27A1 and 11A1. This approach involves heterologous expression of membrane-bound P450 in E. coli, isolation of the P450-containing E. coli membranes, treatment of the membranes with protease, removal of the digested soluble portion and extraction of the membrane-associated peptides, which are then identified by mass spectrometry. By using this approach, we found four membrane-interacting peptides in CYP27A1, and two peptides in CYP11A1. Peptides in CYP27A1 represent a contiguous portion of the polypeptide chain (residues 210-251) corresponding to the putative F-G loop and adjacent portions of the F and G helices. Peptides in CYP11A1 are from the putative F-G loop (residues 218-225) and the C-terminal portion of the G helix (residues 238-250). This data is consistent with those obtained previously by us and others and provide new information about membrane topology of CYPs 27A1 and 11A1. PMID:18791760

  7. Variability and resistance mutations in the hepatitis C virus NS3 protease in patients not treated with protease inhibitors

    Directory of Open Access Journals (Sweden)

    Luciana Bonome Zeminian

    2013-02-01

    Full Text Available The goal of treatment of chronic hepatitis C is to achieve a sustained virological response, which is defined as exhibiting undetectable hepatitis C virus (HCV RNA levels in serum following therapy for at least six months. However, the current treatment is only effective in 50% of patients infected with HCV genotype 1, the most prevalent genotype in Brazil. Inhibitors of the serine protease non-structural protein 3 (NS3 have therefore been developed to improve the responses of HCV-infected patients. However, the emergence of drug-resistant variants has been the major obstacle to therapeutic success. The goal of this study was to evaluate the presence of resistance mutations and genetic polymorphisms in the NS3 genomic region of HCV from 37 patients infected with HCV genotype 1 had not been treated with protease inhibitors. Plasma viral RNA was used to amplify and sequence the HCV NS3 gene. The results indicate that the catalytic triad is conserved. A large number of substitutions were observed in codons 153, 40 and 91; the resistant variants T54A, T54S, V55A, R155K and A156T were also detected. This study shows that resistance mutations and genetic polymorphisms are present in the NS3 region of HCV in patients who have not been treated with protease inhibitors, data that are important in determining the efficiency of this new class of drugs in Brazil.

  8. Two SUMO Proteases SUMO PROTEASE RELATED TO FERTILITY1 and 2 Are Required for Fertility in Arabidopsis.

    Science.gov (United States)

    Liu, Linpo; Jiang, Ying; Zhang, Xiaomei; Wang, Xu; Wang, Yanbing; Han, Yuzhen; Coupland, George; Jin, Jing Bo; Searle, Iain; Fu, Yong-Fu; Chen, Fulu

    2017-12-01

    In plants, the posttranslational modification small ubiquitin-like modifier (SUMO) is involved in regulating several important developmental and cellular processes, including flowering time control and responses to biotic and abiotic stresses. Here, we report two proteases, SUMO PROTEASE RELATED TO FERTILITY1 (SPF1) and SPF2, that regulate male and female gamete and embryo development and remove SUMO from proteins in vitro and in vivo. spf1 mutants exhibit abnormal floral structures and embryo development, while spf2 mutants exhibit largely a wild-type phenotype. However, spf1 spf2 double mutants exhibit severe abnormalities in microgametogenesis, megagametogenesis, and embryo development, suggesting that the two genes are functionally redundant. Mutation of SPF1 and SPF2 genes also results in misexpression of generative- and embryo-specific genes. In vitro, SPF1 and SPF2 process SUMO1 precursors into a mature form, and as expected in vivo, spf1 and spf2 mutants accumulate SUMO conjugates. Using a yeast two-hybrid screen, we identified EMBRYO SAC DEVELOPMENT ARREST9 (EDA9) as an SPF1-interacting protein. In vivo, we demonstrate that EDA9 is sumolyated and that, in spf1 mutants, EDA9-SUMO conjugates increase in abundance, demonstrating that EDA9 is a substrate of SPF1. Together, our results demonstrate that SPF1 and SPF2 are two SUMO proteases important for plant development in Arabidopsis ( Arabidopsis thaliana ). © 2017 American Society of Plant Biologists. All Rights Reserved.

  9. Proteases and antiproteases in chronic neutrophilic lung disease - relevance to drug discovery.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2009-10-01

    Chronic inflammatory lung diseases such as cystic fibrosis and emphysema are characterized by higher-than-normal levels of pulmonary proteases. While these enzymes play important roles such as bacterial killing, their dysregulated expression or activity can adversely impact on the inflammatory process. The existence of efficient endogenous control mechanisms that can dampen or halt this overexuberant protease activity in vivo is essential for the effective resolution of inflammatory lung disease. The function of pulmonary antiproteases is to fulfil this role. Interestingly, in addition to their antiprotease activity, protease inhibitors in the lung also often possess other intrinsic properties that contribute to microbial killing or termination of the inflammatory process. This review will outline important features of chronic inflammation that are regulated by pulmonary proteases and will describe the various mechanisms by which antiproteases attempt to counterbalance exaggerated protease-mediated inflammatory events. These proteases, antiproteases and their modifiers represent interesting targets for therapeutic intervention.

  10. Tailored Ahp-cyclodepsipeptides as Potent Non-covalent Serine Protease Inhibitors.

    Science.gov (United States)

    Köcher, Steffen; Rey, Juliana; Bongard, Jens; Tiaden, André N; Meltzer, Michael; Richards, Peter J; Ehrmann, Michael; Kaiser, Markus

    2017-07-10

    The S1 serine protease family is one of the largest and most biologically important protease families. Despite their biomedical significance, generic approaches to generate potent, class-specific, bioactive non-covalent inhibitors for these enzymes are still limited. In this work, we demonstrate that Ahp-cyclodepsipeptides represent a suitable scaffold for generating target-tailored inhibitors of serine proteases. For efficient synthetic access, we developed a practical mixed solid- and solution-phase synthesis that we validated through performing the first chemical synthesis of the two natural products Tasipeptin A and B. The suitability of the Ahp-cyclodepsipeptide scaffold for tailored inhibitor synthesis is showcased by the generation of the most potent human HTRA protease inhibitors to date. We anticipate that our approach may also be applied to other serine proteases, thus opening new avenues for a systematic discovery of serine protease inhibitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cell Entry of Porcine Epidemic Diarrhea Coronavirus Is Activated by Lysosomal Proteases*

    Science.gov (United States)

    Liu, Chang; Ma, Yuanmei; Yang, Yang; Zheng, Yuan; Shang, Jian; Zhou, Yusen; Jiang, Shibo; Du, Lanying; Li, Jianrong; Li, Fang

    2016-01-01

    Porcine epidemic diarrhea coronavirus (PEDV) is currently devastating the United States pork industry by causing an 80–100% fatality rate in infected piglets. Coronavirus spike proteins mediate virus entry into cells, a process that requires the spike proteins to be proteolytically activated. It has been a conundrum which proteases activate PEDV entry. Here we systematically investigated the roles of different proteases in PEDV entry using pseudovirus entry, biochemical, and live virus infection assays. We found that the PEDV spike is activated by lysosomal cysteine proteases but not proprotein convertases or cell surface serine proteases. Extracellular trypsin activates PEDV entry when lysosomal cysteine proteases are inhibited. We further pinpointed cathepsin L and cathepsin B as the lysosomal cysteine proteases that activate the PEDV spike. These results advance our understanding of the molecular mechanism for PEDV entry and identify potential antiviral targets for curbing the spread of PEDV. PMID:27729455

  12. Effect of amino acids on the repression of alkaline protease synthesis in haloalkaliphilic Nocardiopsis dassonvillei

    Directory of Open Access Journals (Sweden)

    Amit K. Sharma

    2016-12-01

    Full Text Available A newly isolated salt-tolerant alkaliphilic actinomycete, Nocardiopsis dassonvillei strain OK-18 grows on mineral salts medium with glucose as carbon source. It also grows and produces protease with amino acids as sole carbon source. The synthesis of extracellular alkaline protease parallel to growth was repressible by substrate concentrations. The absolute production of the protease was delinked with growth under nutritional stress, as protease production was high, despite poor growth. When amino acids served as the sole source of carbon and nitrogen, the enzyme production was significantly controlled by the number of amino acids. Maximal protease production was achieved with proline, asparagine, tyrosine, alanine, methionine and valine as sole source of carbon and nitrogen in minimal medium. With the increasing number of different amino acids in the presence and absence of glucose, the protease production was synergistically lower as compared to complex medium.

  13. MALT1 Protease Activity Is Required for Innate and Adaptive Immune Responses.

    Directory of Open Access Journals (Sweden)

    Jong W Yu

    Full Text Available CARMA-BCL10-MALT1 signalosomes play important roles in antigen receptor signaling and other pathways. Previous studies have suggested that as part of this complex, MALT1 functions as both a scaffolding protein to activate NF-κB through recruitment of ubiquitin ligases, and as a protease to cleave and inactivate downstream inhibitory signaling proteins. However, our understanding of the relative importance of these two distinct MALT1 activities has been hampered by a lack of selective MALT1 protease inhibitors with suitable pharmacologic properties. To fully investigate the role of MALT1 protease activity, we generated mice homozygous for a protease-dead mutation in MALT1. We found that some, but not all, MALT1 functions in immune cells were dependent upon its protease activity. Protease-dead mice had defects in the generation of splenic marginal zone and peritoneal B1 B cells. CD4+ and CD8+ T cells displayed decreased T cell receptor-stimulated proliferation and IL-2 production while B cell receptor-stimulated proliferation was partially dependent on protease activity. In dendritic cells, stimulation of cytokine production through the Dectin-1, Dectin-2, and Mincle C-type lectin receptors was also found to be partially dependent upon protease activity. In vivo, protease-dead mice had reduced basal immunoglobulin levels, and showed defective responses to immunization with T-dependent and T-independent antigens. Surprisingly, despite these decreased responses, MALT1 protease-dead mice, but not MALT1 null mice, developed mixed inflammatory cell infiltrates in multiple organs, suggesting MALT1 protease activity plays a role in immune homeostasis. These findings highlight the importance of MALT1 protease activity in multiple immune cell types, and in integrating immune responses in vivo.

  14. Production and Preliminary Characterization of Alkaline Protease from Aspergillus flavus and Aspergillus terreus

    OpenAIRE

    Chellapandi, P.

    2010-01-01

    Proteases are being an industrial candidate, which are widely used in food, bakery, and beverage and detergent industry. In leather industry, alkaline proteases are exhibiting a prominent role in unhairing and bating processes. An extensive use of filamentous fungi, especially Aspergillus species has been studied elaborately. Although, the significant application of alkaline protease produced from these strains in leather industry is being limited. Aspergillus flavus and Aspergillus terreus f...

  15. Screening of Alkaline Protease-Producing Streptomyces diastaticus and Optimization of Enzyme Production

    OpenAIRE

    Elham Dawoodi; Keivan Beheshtimaal; Hashem Nayeri

    2014-01-01

    Background and Aim: Alkaline proteases are used in pharmaceutical, film and photography, silk production and food, leather and detergent industries. Actinomycetes are gram positive bacteria that produce different enzymes such as proteases. The aims of this research were isolation of native alkaline protease-producing Actinomycete spp. from different soil samples as well as optimizing the conditions for enzyme production. Materials and Methods: The different soil samples were collected fro...

  16. Use of MALDI-TOF Mass Spectrometry for Specificity Studies of Biomedically Important Proteases

    OpenAIRE

    Siigur, Jüri; Trummal, Katrin; TÕnismägi, Külli; Samel, Mari; Siigur, Ene; Vija, Heikki; Tammiste, Indrek; Subbi, Juhan

    2002-01-01

    Proteases play crucial role starting from fertilization until to cell death. Our studies of the two Viperidae venoms (Levantine viper Vipera lebetina, Common viper Vipera berus) have demonstrated the existence of biomedically important proteases, both coagulants and anticoagulants that may be useful as diagnostic tools or potential therapeutics. We showed that venoms of both snakes contain: (i) metalloproteases and serine proteases that degrade fibrinogen, but not fibrin; (ii) factor X activa...

  17. Cytokeratin 8 Is an Epithelial Cell Receptor for Pet, a Cytotoxic Serine Protease Autotransporter of Enterobacteriaceae

    OpenAIRE

    Nava-Acosta, Raul; Navarro-Garcia, Fernando

    2013-01-01

    ABSTRACT The group of proteins known as serine protease autotransporters of Enterobacteriaceae (SPATE) is a growing family of serine proteases secreted to the external milieu by the type V secretion system. Pet toxin and some other SPATE belong to the class 1 cytotoxic SPATE, which have comparable protease strength on fodrin. Pet is internalized and is directed to its intracellular substrate by retrograde transport. However, the epithelial cell receptor for Pet has yet to be identified. We sh...

  18. Cloning and Expression of Soluble Recombinant HIV-1 CRF35 Protease-HP Thioredoxin Fusion Protein.

    Science.gov (United States)

    Azarnezhad, Asaad; Sharifi, Zohreh; Seyedabadi, Rahmatollah; Hosseini, Arshad; Johari, Behrooz; Sobhani Fard, Mahsa

    2016-01-01

    As a drug target and an antigenic agent, HIV-1 protease (HIV-1 PR) is at the center of attention for designing anti-AIDS inhibitors and diagnostic tests. In previous studies, the production of the recombinant protease has been faced with several difficulties; therefore, the aims of this study were the easy production, purification of the soluble form of protease in E. coli and investigation of its immunoreactivity. Protease coding region was isolated from the serum of an infected individual, amplified by RT-PCR and cloned into PTZ57R using TA-cloning. Protease coding frame was isolated by PCR and cloned in pET102/D. TOPO expression vector and cloned protease was expressed in Escherichia coli ( E. coli) BL21 . Produced recombinant protein was purified by affinity Ni-NTA column and protein concentration was checked by BCA protein assay kit. Subsequently, immunoreactivity of recombinant protease (rPR) was assayed by Western blotting and ELISA. Cloning of the HIV protease by TOPO cloning system in pET102/D.TOPO was confirmed with PCR and sequencing. The concentration range of purified recombinant protein was 85 to 100 μg/ml . Immunogenicity of rPR was confirmed by Western blotting and ELISA. Soluble production of recombinant HIV-1 protease (HIV-1 rPR) was performed successfully. This recombinant protein disclosed 86% specificity and 90% sensitivity in immunoassay tests.

  19. Purification and characterization of an alkaline protease from Micrococcus sp. isolated from the South China Sea

    Science.gov (United States)

    Hou, Enling; Xia, Tao; Zhang, Zhaohui; Mao, Xiangzhao

    2017-04-01

    Protease is wildly used in various fields, such as food, medicine, washing, leather, cosmetics and other industrial fields. In this study, an alkaline protease secreted by Micrococcus NH54PC02 isolated from the South China Sea was purified and characterized. The growth curve and enzyme activity curve indicated that the cell reached a maximum concentration at the 30th hour and the enzyme activity reached the maximum value at the 36th hour. The protease was purified with 3 steps involving ammonium sulfate precipitation, ion-exchange chromatography and hydrophobic chromatography with 8.22-fold increase in specific activity and 23.68% increase in the recovery. The molecular mass of the protease was estimated to be 25 kDa by SDS-PAGE analysis. The optimum temperature and pH for the protease activity were 50°C and pH 10.0, respectively. The protease showed a strong stability in a wide range of pH values ranging from 6.0-11.0, and maintained 90% enzyme activity in strong alkaline environment with pH 11.0. Inhibitor trials indicated that the protease might be serine protease. But it also possessed the characteristic of metalloprotease as it could be strongly inhibited by EDTA and strongly stimulated by Mn2+. Evaluation of matrix-assisted laser desorption ionization/time-of-flight MS (MALDI-TOF-TOF/MS) showed that the protease might belong to the peptidase S8 family.

  20. Immobilized protease on the magnetic nanoparticles used for the hydrolysis of rapeseed meals

    International Nuclear Information System (INIS)

    Jin Xin; Li Jufang; Huang Pingying; Dong Xuyan; Guo Lulu; Yang Liang; Cao Yuancheng; Wei Fang; Zhao Yuandi

    2010-01-01

    (3-aminopropl) triethoxysilaneand modified magnetic nanoparticles with the average diameter of 25.4 nm were synthesized in water-phase co-precipitation method. And then these nanoparticles were covalently coupled with alkaline protease as enzyme carrier by using 1,4-phenylene diisothlocyanate as coupling agent. Experiments showed that the immobilized protease can keep the catalytic bioactivity, which can reach to 47.8% when casein was served as substrate. Results showed that the catalytic activity of immobilized protease on these magnetic nanoparticles could retain 98.63±2.37% after 60 days. And it is more stable than the free protease during the shelf-life test. The enzyme reaction conditions such as optimum reaction temperature and pH are the same as free protease. Furthermore, mix-and-separate experiments showed that the immobilized protease could be recycled through the magnetic nanoparticles after the biocatalysis process. When the rapeseed meals were used as substrate, the degree of hydrolysis of immobilized alkaline protease achieved 9.86%, while it was 10.41% for the free protease. The macromolecular proteins of rapeseed meals were hydrolyzed by immobilized protease into small molecules such as polypeptides or amino acids. Thus, a novel efficient and economic way for the recycling of enzymes in the application of continuous production of active peptides was provided based on these magnetic nanoparticles.

  1. Purification and biochemical characterization of the haloalkaliphilic archaeon Natronococcus occultus extracellular serine protease

    DEFF Research Database (Denmark)

    Studdert, C A; Herrera Seitz, M K; Plasencia, I

    2001-01-01

    other halobacteria nor with commercial proteases except subtilisin. The amino acid sequences of three tryptic peptides obtained from Natronococcus occultus protease did not show significant similarity to other known proteolytic enzymes. This fact, in addition to its high molecular mass suggests......A serine protease was purified from Natronococcus occultus stationary phase culture medium (328-fold, yield 19%) and characterized at the biochemical level. The enzyme has a native molecular mass of 130 kDa, has chymotrypsin-like activity, is stable and active in a broad pH range (5...... that Natronococcus occultus extracellular protease may be a novel enzyme. Udgivelsesdato: 2001-null...

  2. Determination of the protease cleavage site repertoire—The RNase H but not the RT domain is essential for foamy viral protease activity

    Energy Technology Data Exchange (ETDEWEB)

    Spannaus, Ralf; Bodem, Jochen, E-mail: Jochen.Bodem@vim.uni-wuerzburg.de

    2014-04-15

    In contrast to orthoretroviruses, the foamy virus protease is only active as a protease-reverse transcriptase fusion protein and requires viral RNA for activation. Maturation of foamy viral proteins seems to be restricted to a single cleavage site in Gag and Pol. We provide evidence that unprocessed Gag is required for optimal infectivity, which is unique among retroviruses. Analyses of the cleavage site sequences of the Gag and Pol cleavage sites revealed a high similarity compared to those of Lentiviruses. We show that positions P2' and P2 are invariant and that Gag and Pol cleavage sites are processed with similar efficiencies. The RNase H domain is essential for protease activity, but can functionally be substituted by RNase H domains of other retroviruses. Thus, the RNase H domain might be involved in the stabilization of the protease dimer, while the RT domain is essential for RNA dependent protease activation. - Highlights: • Unprocessed Gag is required for optimal infectivity of foamy viruses. • Positions P2 and P2' are invariant in the foamy viral cleavage sites. • The RNaseH domain is essential for protease activity. • The RNaseH domains of other retroviruses support foamy viral protease activity.

  3. Determination of the protease cleavage site repertoire—The RNase H but not the RT domain is essential for foamy viral protease activity

    International Nuclear Information System (INIS)

    Spannaus, Ralf; Bodem, Jochen

    2014-01-01

    In contrast to orthoretroviruses, the foamy virus protease is only active as a protease-reverse transcriptase fusion protein and requires viral RNA for activation. Maturation of foamy viral proteins seems to be restricted to a single cleavage site in Gag and Pol. We provide evidence that unprocessed Gag is required for optimal infectivity, which is unique among retroviruses. Analyses of the cleavage site sequences of the Gag and Pol cleavage sites revealed a high similarity compared to those of Lentiviruses. We show that positions P2' and P2 are invariant and that Gag and Pol cleavage sites are processed with similar efficiencies. The RNase H domain is essential for protease activity, but can functionally be substituted by RNase H domains of other retroviruses. Thus, the RNase H domain might be involved in the stabilization of the protease dimer, while the RT domain is essential for RNA dependent protease activation. - Highlights: • Unprocessed Gag is required for optimal infectivity of foamy viruses. • Positions P2 and P2' are invariant in the foamy viral cleavage sites. • The RNaseH domain is essential for protease activity. • The RNaseH domains of other retroviruses support foamy viral protease activity

  4. Antiacanthain A: New proteases isolated from Bromelia antiacantha Bertol. (Bromeliaceae).

    Science.gov (United States)

    Vallés, Diego; Cantera, Ana M B

    2018-03-06

    Crude extract (CE) from pulp of Bromelia antiacantha Bertol. mature fruit, contains at least 3 cysteine proteases with proteolytic activity. By single step cation exchange chromatography (Hi-trap SP-HP) of partially purified CE, the protease with the lowest pI, Antiacanthain A (AntA), was isolated. It showed maximum activity at pH9, and 75% of remaining activity was maintained over a wide pH range (pH6-10). The AntA activity exhibits a constant increase up to 70°C. Maintains almost 100% of its activity at 45 at pH6 and 9. A 60% of AntA was active by titration with specific inhibitor, E64. Amidasic activity was studied with pyroglutamyl-phenyl-leucyl-paranitroaniline (PFLNA) substrate having higher AntA catalytic efficiency of (k cat /K m =470s -1 M -1 ) relative to stem bromelain (k cat /K m =305s -1 M -1 ). Esterase activity using p-nitrophenyl esters of N-α-CBZ-l-Lysine (z-L-LysONp) showed a 10-fold higher catalytic efficiency for AntA (k cat /K m =6376s -1 M -1 ) relative to stem bromelain (k cat /K m =688s -1 M -1 ). Incubation with 8M Urea did not affect AntA activity and remained unchanged for 18h, with 6M GndHCl resulted in a 41% decrease in activity after 30min incubation, maintained this activity 18h. AntA exhibits high sequence identity with proteases of the Bromeliaceae family. Copyright © 2018. Published by Elsevier B.V.

  5. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop?

    Science.gov (United States)

    Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique

    2016-08-01

    Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop. Copyright © 2016. Published by Elsevier Inc.

  6. Characterization of a novel aspartyl protease inhibitor from Haemonchus contortus

    OpenAIRE

    Li, Baojie; Gadahi, Javaid Ali; Gao, Wenxiang; Zhang, Zhenchao; Ehsan, Muhammad; Xu, Lixin; Song, Xiaokai; Li, Xiangrui; Yan, Ruofeng

    2017-01-01

    Background Aspartyl protease inhibitor (API) was thought to protect intestinal parasitic nematodes from their hostile proteolytic environment. Studies on Ostertagia ostertagi, Ascaris suum and Brugia malayi indicated that aspins might play roles in nematode infection. In a recent study, proteins differentially expressed between free-living third-stage larvae (L3) and activated L3 (xL3) of Haemonchus contortus were identified by 2D-DIGE. API was found downregulated in xL3 when compared with L3...

  7. Expression and activation of proteases in co-cultures.

    Science.gov (United States)

    Paduch, Roman; Kandefer-Szerszeń, Martyna

    2011-01-01

    The present study concerned the expression and activation of metalloproteinase-2 (MMP-2), metalloproteinase-9 (MMP-9) and the urokinase plasminogen activator/urokinase plasminogen activator receptor (uPA/uPAR) system in co-cultures of human colon carcinoma cell spheroids (HT29, LS180, SW948) with human normal colon epithelium (CCD 841 CoTr), myofibroblasts (CCD-18Co) and endothelial cells (HUVEC). Additionally, the influence of monensin on the production and function of the proteases was tested. Tumor cells expressed small amounts of MMP-2, MMP-9 and uPA. Normal cells generally produced proportionally higher concentrations of these proteases (especially MMP-2, compared with significantly smaller yields of MMP-9 and significantly lower amounts of uPAR than tumors. In co-cultures of tumor spheroids with normal cell monolayers, the concentration of the proteases was equal to the sum of the enzymes produced in monocultures of both types of cells. The highest activity of uPA, measured as the reduction of the chromogenic substrate (S-2444), was detected in supernatants and lysates of endothelial cells. Interestingly, in normal cells, the higher expression of proteases, mainly uPA, measured as the level of protein concentration, was closely linked with their lower activity and inversely, in tumor cells, the low level of the expression of the enzymes correlated with their high enzymatic activity. In zymography analysis, mainly pro-MMPs were detected both in culture supernatants and cell lysates. The highest amounts of active forms of the MMPs were detected in tumor spheroids co-cultured with endothelial cells. Monensin inhibited MMPs and uPA secretion but significantly increased uPAR release, mainly from normal cells. In conclusion, during direct interactions of tumor cells with normal cells, MMPs and the uPA/uPAR system play an important role in the degradation of ECM and tumor development, but as we found, there is a reverse relationship between the concentration and the

  8. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis

    Science.gov (United States)

    Elsholz, Alexander K. W.; Birk, Marlene S.; Charpentier, Emmanuelle; Turgay, Kürşad

    2017-01-01

    Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics. PMID:28748186

  9. Mutant HIV-1 protease complexed with tetrapeptide inhibitor

    Czech Academy of Sciences Publication Activity Database

    Skálová, Tereza; Hašek, Jindřich; Dohnálek, Jan; Petroková, Hana; Buchtelová, E.

    2002-01-01

    Roč. 101, - (2002), s. 659-663 ISSN 0587-4246. [Symposium on Synchrotron Crystallography. Krynica, 31.08.2001-04.09.2001] R&D Projects: GA AV ČR IAA4050811; GA ČR GV203/98/K023; GA ČR GA203/00/D117 Institutional research plan: CEZ:AV0Z4050913 Keywords : HIV-1 protease * ethylenamine inhibitor * X-ray diffraction Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.345, year: 2002

  10. Antiretroviral activity of protease inhibitors against Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Lianet Monzote

    2013-02-01

    Full Text Available The introduction of highly active antiretroviral therapy (HAART has caused a marked reduction in the occurrence and severity of parasitic infections, including the toxoplasmic encephalitis (TE. These changes have been attributed to the restoration of cell-mediated immunity. This study was developed to examine the activity of six antiretroviral protease inhibitors (API on Toxoplasma gondii tachyzoites. The six API showed anti-Toxoplasma activity, with IC50 value between 1.4 and 6.6 µg/mL. Further studies at the molecular level should be performed to clarify if the use of API could be beneficial or not for AIDS patients with TE.

  11. Cloning and chromosomal assignment of a human cDNA encoding a T cell- and natural killer cell-specific trypsin-like serine protease

    International Nuclear Information System (INIS)

    Gershenfeld, H.K.; Hershberger, R.J.; Shows, T.B.; Weissman, I.L.

    1988-01-01

    A cDNA clone encoding a human T cell- and natural killer cell-specific serine protease was obtained by screening a phage λgt10 cDNA library from phytohemagglutinin-stimulated human peripheral blood lymphocytes with the mouse Hanukah factor cDNA clone. In an RNA blot-hybridization analysis, this human Hanukah factor cDNA hybridized with a 1.3-kilobase band in allogeneic-stimulated cytotoxic T cells and the Jurkat cell line, but this transcript was not detectable in normal muscle, liver, tonsil, or thymus. By dot-blot hybridization, this cDNA hybridized with RNA from three cytolytic T-cell clones and three noncytolytic T-cell clones grown in vitro as well as with purified CD16 + natural killer cells and CD3 + , CD16 - T-cell large granular lymphocytes from peripheral blood lymphocytes (CD = cluster designation). The nucleotide sequence of this cDNA clone encodes a predicted serine protease of 262 amino acids. The active enzyme is 71% and 77% similar to the mouse sequence at the amino acid and DNA level, respectively. The human and mouse sequences conserve the active site residues of serine proteases--the trypsin-specific Asp-189 and all 10 cysteine residues. The gene for the human Hanukah factor serine protease is located on human chromosome 5. The authors propose that this trypsin-like serine protease may function as a common component necessary for lysis of target cells by cytotoxic T lymphocytes and natural killer cells

  12. ANALISIS POTENSI PROTEASE EKTRASELULER TANAH HUTAN MANGROVE PANTAI SUWUNG KAUH BALI

    Directory of Open Access Journals (Sweden)

    Inten Hardianti Nizar

    2015-10-01

    Full Text Available ABSTRAK: Potensi tanah hutan mangrove pantai Suwung Kauh Bali sebagai sumber protease dapat diketahui dengan melakukan uji aktivitas protease ekstraseluler. Pada penelitian ini telah dilakukan pengukuran aktivitas protease ekstraseluler dan penentuan pengaruh waktu inkubasi serta penambahan toluena terhadap aktivitas protease. Sampel yang digunakan sebagai sumber enzim berupa slurry dan direaksikan dengan substrat kasein 0,3% selama 3,6,9 dan 24 jam dengan dan tanpa penambahan toluena 1% (v/v. Produk reaksi enzimatis diukur dengan metode kolorimetri. Aktivitas protease tertinggi yang diperoleh sebesar 1,9 x 10-4 U/mL dengan penambahan toluena pada waktu inkubasi 6 jam dan sebesar 1,2 x 10-4 U/mL tanpa penambahan toluena pada waktu inkubasi 9 jam. Hasil ini menunjukkan bahwa protease ekstraseluler pada tanah hutan mangrove yang dihasilkan oleh mikroba proteolitik memilki potensi digunakan untuk eksplorasi enzim. Waktu inkubasi dan penambahan toluena tidak berpengaruh signifikan terhadap aktivitas protease.   ABSTRACT: The potency of mangrove soil in Suwung Kauh Bali as a source of protease has been determined by protease activity assay. This research has been done to determine protease activity and the effect of incubation time and the addition of toluene to the protease activity. The slurry of soil was used as a source of extracellular  enzyme for protease assay, which was reacted with casein 0,3% for 3, 6, 9, and 24 hours with and without the addition of toluene 1% (v/v. The enzymatic reaction product was measured by colorimetric method. The highest protease activity with addition of toluene was 1,9 x 10-4 U/mL at 6 hours incubation and without toluene was 1,2 x 10-4 U/mL at 9 hours incubation. These results showed extracelluler protease on mangrove soil produced by proteolytic microorganisms had a potency to be used in enzyme exploration. Furthermore, the incubation time and addition of toluene had no significant effect to protease activity.

  13. An antibiotic, heavy metal resistant and halotolerant Bacillus cereus SIU1 and its thermoalkaline protease

    Directory of Open Access Journals (Sweden)

    Vikram Surendra

    2010-07-01

    Full Text Available Abstract Background Many workers have reported halotolerant bacteria from saline conditions capable of protease production. However, antibiotic resistance and heavy metal tolerance pattern of such organisms is not documented very well. Similarly, only a few researchers have reported the pattern of pH change of fermentation medium during the course of protease production. In this study, we have isolated a halotolerant Bacillus cereus SIU1 strain from a non-saline environment and studied its antibiotic and heavy metal resistance pattern. The isolate produces a thermoalkaline protease and changes the medium pH during the course of fermentation. Thermostability of protease was also studied for 30 min. Results Seventy bacterial strains isolated from the soils of Eastern Uttar Pradesh, India were screened for protease production. All of them exhibited protease activity. However, 40% bacterial isolates were found good protease producers as observed by caseinolytic zones on milk agar plates. Among them, culture S-4 was adjudged as the best protease producer, and was identified as Bacillus cereus by morphological, biochemical and 16 S rDNA sequence analyses. The isolate was resistant to heavy metals (As2+, Pb2+, Cs1+ and antibiotics (penicillin, lincomycin, cloxacillin, pefloxacin. Its growth behavior and protease production was studied at 45°C and pH 9.0. The protease units of 88 ml-1 were noted in unoptimized modified glucose yeast extract (GYE medium during early stationary phase at 20 h incubation period. The enzyme was stable in the temperature range of 35°-55°C. Conclusions An antibiotic and heavy metal resistant, halotolerant Bacillus cereus isolate is capable of producing thermoalkaline protease, which is active and stable at pH 9.0 and 35°-55°C. This isolate may be useful in several industrial applications owing to its halotolerance and antibiotic and heavy metal resistance characteristics.

  14. Effect of protease inhibitors (indinavir and ritonavir on the pharmacokinetics of gliclazide in rabbits

    Directory of Open Access Journals (Sweden)

    Shaik Mastan

    2011-01-01

    Full Text Available Kilari Eswar Kumar1, Shaik Mastan2,31Pharmacology Division, University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India; 2Research and Development Cell, Jawaharlal Nehru Technological University, Hyderabad, Andhra Pradesh, India; 3Cytel Statistical Software and Services Pvt Ltd, Pune, Maharashtra, IndiaAbstract: The objective of this study was to investigate the effect of protease inhibitors (indinavir and ritonavir on the pharmacokinetics of gliclazide in rabbits and to evaluate the mechanism of interaction of the combination. Studies in rabbits were conducted with oral doses of gliclazide, selected protease inhibitor, and their combination with a 1-week washout period between each treatment (single dose followed by multiple dose treatment. Blood samples were collected at regular time intervals by marginal ear vein puncture and serum gliclazide levels were analyzed by high-pressure liquid chromatography. Pharmacokinetic analysis was performed by noncompartmental analysis using WinNonlin Software. In combination, ritonavir significantly increased serum gliclazide levels and altered the pharmacokinetic parameters of gliclazide in rabbits while indinavir had no significant effect. The percentage increase of serum gliclazide level was 22.34% and 27.78% following single-dose and multiple-dose treatment of ritonavir, respectively. The interaction of ritonavir with gliclazide is pharmacokinetic at a metabolic level (by CYP3A4 inhibition in normal rabbits, while the interaction of indinavir with gliclazide is pharmacodynamic, which needs dose adjustment, and care should be taken when these combinations are prescribed for their clinical benefit in diabetic patients.Keywords: gliclazide, indinavir, ritonavir, diabetes, HIV infection, pharmacokinetics

  15. Regulation of Adrenal Aldosterone Production by Serine Protease Prostasin

    Directory of Open Access Journals (Sweden)

    Takehiro Ko

    2010-01-01

    Full Text Available A serine protease prostasin has been demonstrated to have a pivotal role in the activation of the epithelial sodium channel. Systemic administration of adenovirus carrying human prostasin gene in rats resulted in an increase in plasma prostasin and aldosterone levels. However, the mechanism by which the elevation of prostasin levels in the systemic circulation stimulated the plasma aldosterone levels remains unknown. Therefore, we examined if prostasin increases the aldosterone synthesis in a human adrenocortical cell line (H295R cells. Luciferase assay using CYP11B2 promoter revealed that prostasin significantly increased the transcriptional activity of CYP11B2. Prostasin significantly increased both CYP11B2 mRNA expression and aldosterone production in a dose-dependent manner. Surprisingly, treatment with camostat mesilate, a potent prostasin inhibitor, had no effect on the aldosterone synthesis by prostasin and also a protease-dead mutant of prostasin significantly stimulated the aldosterone production. A T-type/L-type calcium channel blocker and a protein kinase C (PKC inhibitor significantly reduced the aldosterone synthesis by prostasin. Our findings suggest a stimulatory effect of prostasin on the aldosterone synthesis by adrenal gland through the nonproteolytic action and indicate a new role of prostasin in the systemic circulation.

  16. Short hydrogen bonds in the catalytic mechanism of serine proteases

    Directory of Open Access Journals (Sweden)

    VLADIMIR LESKOVAC

    2008-04-01

    Full Text Available The survey of crystallographic data from the Protein Data Bank for 37 structures of trypsin and other serine proteases at a resolution of 0.78–1.28 Å revealed the presence of hydrogen bonds in the active site of the enzymes, which are formed between the catalytic histidine and aspartate residues and are on average 2.7 Å long. This is the typical bond length for normal hydrogen bonds. The geometric properties of the hydrogen bonds in the active site indicate that the H atom is not centered between the heteroatoms of the catalytic histidine and aspartate residues in the active site. Taken together, these findings exclude the possibility that short “low-barrier” hydrogen bonds are formed in the ground state structure of the active sites examined in this work. Some time ago, it was suggested by Cleland that the “low-barrier hydrogen bond” hypothesis is operative in the catalytic mechanism of serine proteases, and requires the presence of short hydrogen bonds around 2.4 Å long in the active site, with the H atom centered between the catalytic heteroatoms. The conclusions drawn from this work do not exclude the validity of the “low-barrier hydrogen bond” hypothesis at all, but they merely do not support it in this particular case, with this particular class of enzymes.

  17. Arginine phosphorylation marks proteins for degradation by a Clp protease.

    Science.gov (United States)

    Trentini, Débora Broch; Suskiewicz, Marcin Józef; Heuck, Alexander; Kurzbauer, Robert; Deszcz, Luiza; Mechtler, Karl; Clausen, Tim

    2016-11-03

    Protein turnover is a tightly controlled process that is crucial for the removal of aberrant polypeptides and for cellular signalling. Whereas ubiquitin marks eukaryotic proteins for proteasomal degradation, a general tagging system for the equivalent bacterial Clp proteases is not known. Here we describe the targeting mechanism of the ClpC-ClpP proteolytic complex from Bacillus subtilis. Quantitative affinity proteomics using a ClpP-trapping mutant show that proteins phosphorylated on arginine residues are selectively targeted to ClpC-ClpP. In vitro reconstitution experiments demonstrate that arginine phosphorylation by the McsB kinase is required and sufficient for the degradation of substrate proteins. The docking site for phosphoarginine is located in the amino-terminal domain of the ClpC ATPase, as resolved at high resolution in a co-crystal structure. Together, our data demonstrate that phosphoarginine functions as a bona fide degradation tag for the ClpC-ClpP protease. This system, which is widely distributed across Gram-positive bacteria, is functionally analogous to the eukaryotic ubiquitin-proteasome system.

  18. Rapid monitoring of autolysis process of proteases by capillary electrophoresis.

    Science.gov (United States)

    Chen, Xiu-Lan; Shun, Cai-Yun; Zhang, Yu-Zhong; Gao, Pei-Ji

    2003-10-01

    A protease, MCP-01, produced by a deep-sea psychrotrophic strain of Pseudoaltermonas sp. SM9913 was purified and its autolysis reaction at 20 degrees C-50 degrees C was monitored by capillary electrophoresis. Capillary electrophoresis provides a rapid assay because the degree and state of autolysis of protease MCP-01 could be observed within 6 min. The autolysis rate increased as the temperature rose in the tested range. After 30 min incubation at 30 degrees C, 77% of MCP-01 autolyzed into peptides. However, its activity for the hydrolysis of casein was reduced by only 4%. The rate of loss of activity of MCP-01 was thus slower than that of autolysis of MCP-01 at 30 degrees C. Similar results were obtained when MCP-01 was incubated at 20 degrees C, 40 degrees C and 50 degrees C. Large peptides produced by autolysis of MCP-01 therefore still have catalytic activity. When these large peptides autolyzed further into smaller peptides, the enzyme conformation that retained its catalytic activity was destroyed and activity was lost.

  19. Specificity and Application of the Lantibiotic Protease NisP

    Directory of Open Access Journals (Sweden)

    Manuel Montalbán-López

    2018-02-01

    Full Text Available Lantibiotics are ribosomally produced and posttranslationally modified peptides containing several lanthionine residues. They exhibit substantial antimicrobial activity against Gram-positive bacteria, including relevant pathogens. The production of the model lantibiotic nisin minimally requires the expression of the modification and export machinery. The last step during nisin maturation is the cleavage of the leader peptide. This liberates the active compound and is catalyzed by the cell wall-anchored protease NisP. Here, we report the production and purification of a soluble variant of NisP. This has enabled us to study its specificity and test its suitability for biotechnological applications. The ability of soluble NisP to cleave leaders from various substrates was tested with two sets of nisin variants. The first set was designed to investigate the influence of amino acid variations in the leader peptide or variations around the cleavage site. The second set was designed to study the influence of the lanthionine ring topology on the proteolytic efficiency. We show that the substrate promiscuity is higher than has previously been suggested. Our results demonstrate the importance of the arginine residue at the end of the leader peptide and the importance of lanthionine rings in the substrate for specific cleavage. Collectively, these data indicate that NisP is a suitable protease for the activation of diverse heterologously expressed lantibiotics, which is required to release active antimicrobial compounds.

  20. Preliminary crystallographic analysis of avian infectious bronchitis virus main protease

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Shen, Wei [Laboratory of Structural Biology, Tsinghua University, Beijing 100084 (China); Liao, Ming, E-mail: mliao@scau.edu.cn [Laboratory of Avian Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642 (China); Bartlam, Mark, E-mail: mliao@scau.edu.cn [Laboratory of Structural Biology, Tsinghua University, Beijing 100084 (China); National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China)

    2007-01-01

    The avian infectious bronchitis virus main protease has been crystallized; crystals diffract to 2.7 Å resolution. Infectious bronchitis virus (IBV) is the prototype of the genus Coronavirus. It causes a highly contagious disease which affects the respiratory, reproductive, neurological and renal systems of chickens, resulting great economic losses in the poultry industry worldwide. The coronavirus (CoV) main protease (M{sup pro}), which plays a pivotal role in viral gene expression and replication through a highly complex cascade involving the proteolytic processing of replicase polyproteins, is an attractive target for antiviral drug design. In this study, IBV M{sup pro} was overexpressed in Escherichia coli. Crystals suitable for X-ray crystallography have been obtained using microseeding techniques and belong to space group P6{sub 1}22. X-ray diffraction data were collected in-house to 2.7 Å resolution from a single crystal. The unit-cell parameters were a = b = 119.1, c = 270.7 Å, α = β = 90, γ = 120°. Three molecules were predicted to be present in the asymmetric unit from a calculated self-rotation function.

  1. Variably protease-sensitive prionopathy in the UK: a retrospective review 1991-2008

    NARCIS (Netherlands)

    Head, M.W.; Yull, H.M.; Ritchie, D.L.; Langeveld, J.P.M.; Fletcher, N.A.; Knight, R.S.; Ironside, J.W.

    2013-01-01

    Variably protease-sensitive prionopathy is a newly described human prion disease of unknown aetiology lying out with the hitherto recognized phenotypic spectrum of Creutzfeldt-Jakob disease. Two cases that conform to the variably protease-sensitive prionopathy phenotype have been identified

  2. Isolation, identification and optimization of alkaline protease production by Candida viswanathii

    Directory of Open Access Journals (Sweden)

    Mandana Lotfi

    2014-03-01

    Conclusion: Due to the high demand for industrial enzymes in the Country and the high activity of alkaline proteases produced by strain. It seems that the native strain can achieve high production of alkaline proteases.These native strains could be resulted in the independence of our country in industrial enzymes production.

  3. Conserved hydrogen bonds and water molecules in MDR HIV-1 protease substrate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhigang [Wayne State Univ., Detroit, MI (United States); Case Western Reserve Univ., Cleveland, OH (United States); Harbor Hospital Baltimore, MD (United States); Wang, Yong [Wayne State Univ., Detroit, MI (United States); Yedidi, Ravikiran S. [Wayne State Univ., Detroit, MI (United States); National Institutes of Health, Bethesda, MD (United States); Dewdney, Tamaria G. [Wayne State Univ., Detroit, MI (United States); Reiter, Samuel J. [Wayne State Univ., Detroit, MI (United States); Brunzelle, Joseph S. [Northwestern Univ. Feinberg School of Medicine, Chicago, IL (United States); Kovari, Iulia A. [Wayne State Univ., Detroit, MI (United States); Kovari, Ladislau C. [Wayne State Univ., Detroit, MI (United States)

    2012-12-19

    Success of highly active antiretroviral therapy (HAART) in anti-HIV therapy is severely compromised by the rapidly developing drug resistance. HIV-1 protease inhibitors, part of HAART, are losing their potency and efficacy in inhibiting the target. Multi-drug resistant (MDR) 769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, 90) was selected for the present study to understand the binding to its natural substrates. The nine crystal structures of MDR769 HIV-1 protease substrate hepta-peptide complexes were analyzed in order to reveal the conserved structural elements for the purpose of drug design against MDR HIV-1 protease. Our structural studies demonstrated that highly conserved hydrogen bonds between the protease and substrate peptides, together with the conserved crystallographic water molecules, played a crucial role in the substrate recognition, substrate stabilization and protease stabilization. Additionally, the absence of the key flap-ligand bridging water molecule might imply a different catalytic mechanism of MDR769 HIV-1 protease compared to that of wild type (WT) HIV-1 protease.

  4. Effect of Legionella pneumophila cytotoxic protease on human neutrophil and monocyte function

    DEFF Research Database (Denmark)

    Rechnitzer, C; Kharazmi, A

    1992-01-01

    by the protease in both cell types. Lastly, the protease inhibited the killing of Listeria monocytogenes by neutrophils or monocytes. Inhibition of Listeria killing was concentration-dependent, heat-labile, and did not require the presence of the enzyme in the bactericidal assay. The inhibitory activity of L...

  5. Crystal Structure of a Novel Viral Protease with a Serine/Lysine Catalytic Dyad Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Feldman,A.; Lee, J.; Delmas, B.; Paetzel, M.

    2006-01-01

    The blotched snakehead virus (BSNV), an aquatic birnavirus, encodes a polyprotein (NH2-pVP2-X-VP4-VP3-COOH) that is processed through the proteolytic activity of its own protease (VP4) to liberate itself and the viral proteins pVP2, X and VP3. The protein pVP2 is further processed by VP4 to give rise to the capsid protein VP2 and four structural peptides. We report here the crystal structure of a VP4 protease from BSNV, which displays a catalytic serine/lysine dyad in its active site. This is the first crystal structure of a birnavirus protease and the first crystal structure of a viral protease that utilizes a lysine general base in its catalytic mechanism. The topology of the VP4 substrate binding site is consistent with the enzymes substrate specificity and a nucleophilic attack from the si-face of the substrates scissile bond. Despite low levels of sequence identity, VP4 shows similarities in its active site to other characterized Ser/Lys proteases such as signal peptidase, LexA protease and Lon protease. Together, the structure of VP4 provides insights into the mechanism of a recently characterized clan of serine proteases that utilize a lysine general base and reveals the structure of potential targets for antiviral therapy, especially for other related and economically important viruses, such as infectious bursal disease virus in poultry and infectious pancreatic necrosis virus in aquaculture.

  6. 21 CFR 184.1150 - Bacterially-derived protease enzyme preparation.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bacterially-derived protease enzyme preparation... enzyme preparation. (a) Bacterially-derived protease enzyme preparation is obtained from the culture... subtilis or B. amyloliquefaciens. The preparation is characterized by the presence of the enzymes...

  7. 21 CFR 184.1027 - Mixed carbohydrase and protease enzyme product.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Mixed carbohydrase and protease enzyme product. 184... enzyme product. (a) Mixed carbohydrase and protease enzyme product is an enzyme preparation that includes... current good manufacturing practice conditions of use: (1) The ingredient is used as an enzyme, as defined...

  8. Synthesis and extended activity of triazole-containing macrocyclic protease inhibitors

    DEFF Research Database (Denmark)

    Pehere, A.D.; Pietsch, M.; Gütschow, M.

    2013-01-01

    Peptide-derived protease inhibitors are an important class of compounds with the potential to treat a wide range of diseases. Herein, we describe the synthesis of a series of triazole- containing macrocyclic protease inhibitors pre-organized into a b-strand conformation and an evaluation...

  9. Recovery of serine protease inhibitor from fish roes by polyethylene glycol precipitation

    Directory of Open Access Journals (Sweden)

    Hyun Ji Lee

    2016-07-01

    Full Text Available Abstract The fractionation of serine protease inhibitor (SPI from fish roe extracts was carried out using polyethylene glycol-4000 (PEG4000 precipitation. The protease inhibitory activity of extracts and PEG fractions from Alaska pollock (AP, bastard halibut (BH, skipjack tuna (ST, and yellowfin tuna (YT roes were determined against target proteases. All of the roe extracts showed inhibitory activity toward bromelain (BR, chymotrypsin (CH, trypsin (TR, papain-EDTA (PED, and alcalase (AL as target proteases. PEG fractions, which have positive inhibitory activity and high recovery (%, were the PEG1 fraction (0–5 %, w/v against cysteine proteases (BR and PA and the PEG4 fraction (20–40 %, w/v against serine proteases (CH and TR. The strongest specific inhibitory activity toward CH and TR of PEG4 fractions was AP (9278 and 1170 U/mg followed by ST (6687 and 2064 U/mg, YT (3951 and 1536 U/mg, and BH (538 and 98 U/mg. The inhibitory activity of serine protease in extracts and PEG fractions from fish roe was stronger than that of cysteine protease toward common casein substrate. Therefore, SPI is mainly distributed in fish roe and PEG fractionation effectively isolated the SPI from fish roes.

  10. EFFECTS OF CHANGING THE INTERACTION BETWEEN SUBDOMAINS ON THE THERMOSTABILITY OF BACILLUS NEUTRAL PROTEASES

    NARCIS (Netherlands)

    EIJSINK, VGH; VRIEND, G; VANDERVINNE, B; HAZES, B; VANDENBURG, B; VENEMA, G

    1992-01-01

    Variants of the thermolabile neutral protease (Npr) of B. subtilis (Npr-sub) and the thermostable neutral protease of B. stearothermophilus (Npr-ste) were produced by means of site-directed mutagenesis and the effects of the mutations on thermostability were determined. Mutations were designed to

  11. STABILIZATION OF BACILLUS-STEAROTHERMOPHILUS NEUTRAL PROTEASE BY INTRODUCTION OF PROLINES

    NARCIS (Netherlands)

    HARDY, F; VRIEND, G; VELTMAN, OR; VANDERVINNE, B; VENEMA, G; EIJSINK, VGH

    1993-01-01

    The thermostability of neutral proteases has been shown to depend on autolysis which presumably occurs in flexible regions of the protein. In an attempt to rigidify such a region in the neutral protease of Bacillus stearothermophilus, residues in the solvent-exposed 63-69 loop were replaced by

  12. Kinetics of the dimerization of retroviral proteases: The "fireman's grip" and dimerization

    Czech Academy of Sciences Publication Activity Database

    Ingr, Marek; Kondrová, Taťána; Stříšovský, Kvido; Majerová, E.; Konvalinka, Jan

    2003-01-01

    Roč. 12, - (2003), s. 2173-2182 ISSN 0961-8368 R&D Projects: GA MZd NI6339 Institutional research plan: CEZ:AV0Z4055905 Keywords : retroviral protease * dimerization * HIV protease Subject RIV: CE - Biochemistry Impact factor: 3.787, year: 2003

  13. Continuous-flow protease assay based on fluorescence resonance energy transfer

    NARCIS (Netherlands)

    Hirata, J.; Ariese, F.; Gooijer, C.; Irth, H.

    2003-01-01

    A homogeneous continuous-flow assay using fluorescence resonance energy transfer (FRET) for detection was developed to measure the hydrolysis of HIV Protease Substrate 1 (to which two choromophores, EDANS and DABCYL are covalently attached) by a protease (e.g. Subtilisin Carlsberg) and the influence

  14. The protease inhibitor HAI-2, but not HAI-1, regulates matriptase activation and shedding through prostasin

    DEFF Research Database (Denmark)

    Friis, Stine; Sales, Katiuchia Uzzun; Schafer, Jeffrey Martin

    2014-01-01

    The membrane-anchored serine proteases, matriptase and prostasin, and the membrane-anchored serine protease inhibitors, hepatocyte growth factor activator inhibitor (HAI)-1 and HAI-2, are critical effectors of epithelial development and postnatal epithelial homeostasis. Matriptase and prostasin f...

  15. A modular system to evaluate the efficacy of protease inhibitors against HIV-2.

    Directory of Open Access Journals (Sweden)

    Mohamed Mahdi

    Full Text Available The human immunodeficiency virus (HIV protease is a homodimeric aspartyl protease that is crucial for the viral life-cycle, cleaving proviral polyproteins, hence creating mature protein components that are required for the formation of an infectious virus. With diagnostic measures and clinically used protease inhibitors focusing on HIV-1, due to its higher virulence and prevalence, studies of the efficacy of those inhibitors on HIV-2 protease remain widely lacking. Utilizing a wild-type HIV-2 vector backbone and cloning techniques we have developed a cassette system where the efficacy of clinically used protease inhibitors can be studied for various serotypes of HIV-2 protease both in enzymatic and cell culture assays. In our experiments, optimization of the expression protocol led to a relatively stable enzyme, for cell culture assays, the efficiency of transfection and transduction capability of the modified vector was tested and was not found to differ from that of the wild-type, moreover, a 2nd generation protease inhibitor was used to demonstrate the usefulness of the system. The combination of assays performed with our cassette system is expected to provide an accurate measure of the efficacy of currently used; as well as experimental protease inhibitors on HIV-2.

  16. A modular system to evaluate the efficacy of protease inhibitors against HIV-2.

    Science.gov (United States)

    Mahdi, Mohamed; Matúz, Krisztina; Tóth, Ferenc; Tőzsér, József

    2014-01-01

    The human immunodeficiency virus (HIV) protease is a homodimeric aspartyl protease that is crucial for the viral life-cycle, cleaving proviral polyproteins, hence creating mature protein components that are required for the formation of an infectious virus. With diagnostic measures and clinically used protease inhibitors focusing on HIV-1, due to its higher virulence and prevalence, studies of the efficacy of those inhibitors on HIV-2 protease remain widely lacking. Utilizing a wild-type HIV-2 vector backbone and cloning techniques we have developed a cassette system where the efficacy of clinically used protease inhibitors can be studied for various serotypes of HIV-2 protease both in enzymatic and cell culture assays. In our experiments, optimization of the expression protocol led to a relatively stable enzyme, for cell culture assays, the efficiency of transfection and transduction capability of the modified vector was tested and was not found to differ from that of the wild-type, moreover, a 2nd generation protease inhibitor was used to demonstrate the usefulness of the system. The combination of assays performed with our cassette system is expected to provide an accurate measure of the efficacy of currently used; as well as experimental protease inhibitors on HIV-2.

  17. Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group

    Energy Technology Data Exchange (ETDEWEB)

    Bungard, Christopher J.; Williams, Peter D.; Ballard, Jeanine E.; Bennett, David J.; Beaulieu, Christian; Bahnck-Teets, Carolyn; Carroll, Steve S.; Chang, Ronald K.; Dubost, David C.; Fay, John F.; Diamond, Tracy L.; Greshock, Thomas J.; Hao, Li; Holloway, M. Katharine; Felock, Peter J.; Gesell, Jennifer J.; Su, Hua-Poo; Manikowski, Jesse J.; McKay, Daniel J.; Miller, Mike; Min, Xu; Molinaro, Carmela; Moradei, Oscar M.; Nantermet, Philippe G.; Nadeau, Christian; Sanchez, Rosa I.; Satyanarayana, Tummanapalli; Shipe, William D.; Singh, Sanjay K.; Truong, Vouy Linh; Vijayasaradhi, Sivalenka; Wiscount, Catherine M.; Vacca, Joseph P.; Crane, Sheldon N.; McCauley, John A. (Merck); (Albany MR)

    2016-07-14

    A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile.

  18. Activity of the fungus Pleurotus ostreatus and of its proteases on ...

    African Journals Online (AJOL)

    Biological control has been shown to be one of the possible biotechnological applications of fungi and their proteases. The objective of this study was to evaluate the nematicidal activity of the fungus Pleurotus ostreatus and its proteases on Panagrellus sp. larvae. Proteolytic activity of P. ostreatus (PLO 06) was measured ...

  19. Expression and characterization of plant aspartic protease nepenthesin-1 from Nepenthes gracilis

    Czech Academy of Sciences Publication Activity Database

    Kádek, Alan; Tretyachenko, V.; Mrázek, Hynek; Ivanova, Ljubina; Halada, Petr; Rey, M.; Schriemer, D. C.; Man, Petr

    2014-01-01

    Roč. 95, MAR 2014 (2014), s. 121-128 ISSN 1046-5928 R&D Projects: GA ČR GAP206/12/0503; GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : Plant aspartic protease * Nepenthesin * Protease characterization Subject RIV: CE - Biochemistry Impact factor: 1.695, year: 2014

  20. Crystal structure of the high-alkaline serine protease PB92 from Bacillus alcalophilus

    NARCIS (Netherlands)

    van der Laan, J.M.; Teplyakov, A.V.; Kelders, H.; Kalk, K.H.; Misset, O.; Mulleners, L.J.S.M.; Dijkstra, B.W.

    The crystal structure of a serine protease from the alkalophilic strain Bacillus alcalophilus PB92 has been determined by X-ray diffraction at 1.75 Å resolution. The structure has been solved by molecular replacement using the atomic model of subtilisin Carlsberg. The model of the PB92 protease has

  1. A novel substrate-based HIV-1 protease inhibitor drug resistance mechanism

    Czech Academy of Sciences Publication Activity Database

    Nijhuis, M.; Maarseveen van, N. M.; Lastere, S.; Schipper, P.; Coakley, E.; Glass, B.; Rovenská, Miroslava; Jong de, D.; Chappey, C.; Goedegebuure, I. W.; Heilek-Snyder, G.; Dulude, D.; Cammack, N.; Brakier-Gingras, L.; Konvalinka, Jan; Parkin, N.; Kräusslich, H. G.; Brun-Vezinet, F.; Boucher, Ch. A. B.

    2007-01-01

    Roč. 4, č. 1 (2007), s. 152-163 ISSN 1549-1277 Institutional research plan: CEZ:AV0Z40550506 Keywords : HIV-1 protease * drug resistance * protease inhibitor Subject RIV: CE - Biochemistry Impact factor: 12.601, year: 2007

  2. Serine proteases of the human immune system in health and disease

    NARCIS (Netherlands)

    Heutinck, Kirstin M.; ten Berge, Ineke J. M.; Hack, C. Erik; Hamann, Jörg; Rowshani, Ajda T.

    2010-01-01

    Serine proteases form a large family of protein-cleaving enzymes that play an essential role in processes like blood coagulation, apoptosis and inflammation. Immune cells express a wide variety of serine proteases such as granzymes in cytotoxic lymphocytes, neutrophil elastase, cathepsin G and

  3. Discovery of novel phosphonate derivatives as hepatitis C virus NS3 protease inhibitors.

    Science.gov (United States)

    Sheng, X Christopher; Pyun, Hyung-Jung; Chaudhary, Kleem; Wang, Jianying; Doerffler, Edward; Fleury, Melissa; McMurtrie, Darren; Chen, Xiaowu; Delaney, William E; Kim, Choung U

    2009-07-01

    A novel class of phosphonate derivatives was designed to mimic the interaction of product-like carboxylate based inhibitors of HCV NS3 protease. A phosphonic acid (compound 2) was demonstrated to be a potent HCV NS3 protease inhibitor, and a potential candidate for treating HCV infection. The syntheses and preliminary biological evaluation of this phosphonate class of inhibitor are described.

  4. Gold compounds as cysteine protease inhibitors: perspectives for pharmaceutical application as antiparasitic agents.

    Science.gov (United States)

    Massai, Lara; Messori, Luigi; Micale, Nicola; Schirmeister, Tanja; Maes, Louis; Fregona, Dolores; Cinellu, Maria Agostina; Gabbiani, Chiara

    2017-04-01

    Gold compounds form a new class of promising metal-based drugs with a number of potential therapeutic applications, particularly in the fields of anticancer and antimicrobial treatments. Previous research revealed that a group of structurally diverse gold compounds cause conspicuous inhibition of the protease activities of the human proteasome. Given the pharmacological importance of protease inhibition, the present study further explored whether these gold compounds might inhibit a few other proteases that are accepted druggable targets for disease treatment. In particular, four distinct cysteine proteases were considered here: cathepsin B and L that play a primary role in tumor-cell invasion and metastasis; rhodesain, the major cathepsin L-like cysteine protease of Trypanosoma brucei rhodesiense and CPB2.8ΔCTE, a Leishmania mexicana mature cysteine protease. Based on the encouraging results obtained for some of the tested gold compounds on the two parasitic cysteine proteases, especially against CPB2.8ΔCTE, with IC 50s in the micromolar range, we next evaluated whether those gold compounds might contrast effectively the growth of the respective protozoa and indeed important antiprotozoal properties were disclosed; on the other hand a certain lack of selectivity was highlighted. Also, no direct or clear correlation could be established between the in vitro antiprotozoal properties and the level of protease inhibition. The implications of these results are discussed in relation to possible pharmaceutical applications.

  5. Isolation, purification and characterization of extracellular protease produced by marine-derived endophytic fungus Xylaria psidii KT30

    Directory of Open Access Journals (Sweden)

    Bugi Ratno Budiarto

    2015-01-01

    Full Text Available Objective: To isolate, purify and characterize extracellular protease produced by Xylaria psidii (X. psidii KT30. Methods: In the present study, the extracellular protease secreted by X. psidii KT30 was isolated and purified by using three steps of protein purification, then the purified protease was characterized by applying qualitative and quantitative enzymatic assays. Results: Extracellular protease with molecular mass 71 kDa has been purified successfully by applying diethylaminoethanol-Sepharose followed by sephadex SG75 with its final specific protease activity of 0.091 IU/mg. Protease was the most active at temperature 60 °C and pH 7. The activity of enzyme was abolished mostly by phenylmethanesulfonyl fluoride, showing it is family of serine protease. Conclusions: Extracellular serine protease produced by X. psidii KT30 with good biochemical properties displayed some promising results for its further application in field of biotechnology or medicine.

  6. Characterization of the Mamestra configurata (Lepidoptera: Noctuidae) larval midgut protease complement and adaptation to feeding on artificial diet, Brassica species, and protease inhibitor.

    Science.gov (United States)

    Erlandson, Martin A; Hegedus, Dwayne D; Baldwin, Douglas; Noakes, Amy; Toprak, Umut

    2010-10-01

    The midgut protease profiles from 5th instar Mamestra configurata larvae fed various diets (standard artificial diet, low protein diet, low protein diet with soybean trypsin inhibitor [SBTI], or Brassica napus) were characterized by one-dimensional enzymography in gelatin gels. The gut protease profile of larvae fed B. napus possessed protease activities of molecular masses of approximately 33 and 55 kDa, which were not present in the guts of larvae fed artificial diet. Similarly, larvae fed artificial diet had protease activities of molecular masses of approximately 21, 30, and 100 kDa that were absent in larvae fed B. napus. Protease profiles changed within 12 to 24 h after switching larvae from artificial diet to plant diet and vice versa. The gut protease profiles from larvae fed various other brassicaceous species and lines having different secondary metabolite profiles did not differ despite significant differences in larval growth rates on the different host plants. Genes encoding putative digestive proteolytic enzymes, including four carboxypeptidases, five aminopeptidases, and 48 serine proteases, were identified in cDNA libraries from 4th instar M. configurata midgut tissue. Many of the protease-encoding genes were expressed at similar levels on all diets; however, three chymoptrypsin-like genes (McSP23, McSP27, and McSP37) were expressed at much higher levels on standard artificial diet and diet containing SBTI as was the trypsin-like gene McSP34. The expression of the trypsin-like gene McSP50 was highest on B. napus. The adaptation of M. configurata digestive biochemistry to different diets is discussed in the context of the flexibility of polyphagous insects to changing diet sources.

  7. Characterization of a New S8 serine Protease from Marine SedimentaryPhotobacteriumsp. A5-7 and the Function of Its Protease-Associated Domain.

    Science.gov (United States)

    Li, Hui-Juan; Tang, Bai-Lu; Shao, Xuan; Liu, Bai-Xue; Zheng, Xiao-Yu; Han, Xiao-Xu; Li, Ping-Yi; Zhang, Xi-Ying; Song, Xiao-Yan; Chen, Xiu-Lan

    2016-01-01

    Bacterial extracellular proteases are important for bacterial nutrition and marine sedimentary organic nitrogen degradation. However, only a few proteases from marine sedimentary bacteria have been characterized. Some subtilases have a protease-associated (PA) domain inserted in the catalytic domain. Although structural analysis and deletion mutation suggests that the PA domain in subtilases is involved in substrate binding, direct evidence to support this function is still absent. Here, a protease, P57, secreted by Photobacterium sp. A5-7 isolated from marine sediment was characterized. P57 could hydrolyze casein, gelatin and collagen. It showed the highest activity at 40°C and pH 8.0. P57 is a new subtilase, with 63% sequence identity to the closest characterized protease. Mature P57 contains a catalytic domain and an inserted PA domain. The recombinant PA domain from P57 was shown to have collagen-binding ability, and Phe349 and Tyr432 were revealed to be key residues for collagen binding in the PA domain. This study first shows direct evidence that the PA domain of a subtilase can bind substrate, which provides a better understanding of the function of the PA domain of subtilases and bacterial extracellular proteases from marine sediment.

  8. Target-based screen against a periplasmic serine protease that regulates intrabacterial pH homeostasis in Mycobacterium tuberculosis.

    Science.gov (United States)

    Zhao, Nan; Darby, Crystal M; Small, Jennifer; Bachovchin, Daniel A; Jiang, Xiuju; Burns-Huang, Kristin E; Botella, Helene; Ehrt, Sabine; Boger, Dale L; Anderson, Erin D; Cravatt, Benjamin F; Speers, Anna E; Fernandez-Vega, Virneliz; Hodder, Peter S; Eberhart, Christina; Rosen, Hugh; Spicer, Timothy P; Nathan, Carl F

    2015-02-20

    Mycobacterium tuberculosis (Mtb) maintains its intrabacterial pH (pHIB) near neutrality in the acidic environment of phagosomes within activated macrophages. A previously reported genetic screen revealed that Mtb loses this ability when the mycobacterial acid resistance protease (marP) gene is disrupted. In the present study, a high throughput screen (HTS) of compounds against the protease domain of MarP identified benzoxazinones as inhibitors of MarP. A potent benzoxazinone, BO43 (6-chloro-2-(2'-methylphenyl)-4H-1,3-benzoxazin-4-one), acylated MarP and lowered Mtb's pHIB and survival during incubation at pH 4.5. BO43 had similar effects on MarP-deficient Mtb, suggesting the existence of additional target(s). Reaction of an alkynyl-benzoxazinone, BO43T, with Mycobacterium bovis variant bacille Calmette-Guérin (BCG) followed by click chemistry with azido-biotin identified both the MarP homologue and the high temperature requirement A1 (HtrA1) homologue, an essential protein. Thus, the chemical probe identified through a target-based screen not only reacted with its intended target in the intact cells but also implicated an additional enzyme that had eluded a genetic screen biased against essential genes.

  9. Identification and properties of proteases from an Acanthamoeba isolate capable of producing granulomatous encephalitis

    Directory of Open Access Journals (Sweden)

    Jarroll Edward L

    2006-05-01

    Full Text Available Abstract Background Granulomatous amoebic encephalitis due to Acanthamoeba is often a fatal human disease. However, the pathogenesis and pathophysiology of Acanthamoeba encephalitis remain unclear. In this study, the role of extracellular Acanthamoeba proteases in central nervous system pathogenesis and pathophysiology was examined. Results Using an encephalitis isolate belonging to T1 genotype, we observed two major proteases with approximate molecular weights of 150 KD and 130 KD on SDS-PAGE gels using gelatin as substrate. The 130 KD protease was inhibited with phenylmethylsulfonyl fluoride (PMSF suggesting that it is a serine protease, while the 150 KD protease was inhibited with 1, 10-phenanthroline suggesting that it is a metalloprotease. Both proteases exhibited maximal activity at neutral pH and over a range of temperatures, indicating their physiological relevance. These proteases degrade extracellular matrix (ECM, which provide structural and functional support to the brain tissue, as shown by the degradation of collagen I and III (major components of collagenous ECM, elastin (elastic fibrils of ECM, plasminogen (involved in proteolytic degradation of ECM, as well as casein and haemoglobin. The proteases were purified partially using ion-exchange chromatography and their effects were tested in an in vitro model of the blood-brain barrier using human brain microvascular endothelial cells (HBMEC. Neither the serine nor the metalloprotease exhibited HBMEC cytotoxicity. However, the serine protease exhibited HBMEC monolayer disruptions (trypsin-like suggesting a role in blood-brain barrier perturbations. Conclusion Overall, these data suggest that Acanthamoeba proteases digest ECM, which may play crucial role(s in invasion of the brain tissue by amoebae.

  10. Phytase and protease supplementation for laying hens in peak egg production

    Directory of Open Access Journals (Sweden)

    Bruno Serpa Vieira

    2016-12-01

    Full Text Available The effects of the combination of enzymes in commercial laying hens need to be more explored in literature. To determine if the type of protease affects performance, egg quality, nutrient intake, and morphometry of intestinal mucosa of laying hens in peak egg production and fed with phytase, 780 25-weeks Hy-Line W36 hens were assigned to a completely randomized design composed of five treatments/diets (one positive control, two negative controls, and negative controls plus protease A or B, with 12 replicates of 13 birds each. There was no effect of treatments (P > 0.05 on egg production, egg mass and feed conversion, even though the nutritional restriction imposed by the negative controls reduced egg weight (P = 0.02, albumen height (P < 0.01, and Haugh unit (P < 0.01. Although inclusion of proteases in negative controls did not cause the calculated intake of protein and amino acids to return to the same amount consumed by positive-control hens, egg quality parameters returned to positive control standards with protease A. Intestinal mucosa responded to treatment only at jejunum, where birds fed with protease B showed greater (P < 0.01 villus height and crypt depth than those treated with protease A. These findings suggest that different proteases and phytases interact distinctly and, in consequence, induce different responses on the birds. Moreover, the behavior of egg quality parameters after protease A inclusion in the diet indicates that the nutritional contribution of the combination of this protease with phytase is greater than the contribution of protease alone.

  11. Identification of SlpB, a Cytotoxic Protease from Serratia marcescens.

    Science.gov (United States)

    Shanks, Robert M Q; Stella, Nicholas A; Hunt, Kristin M; Brothers, Kimberly M; Zhang, Liang; Thibodeau, Patrick H

    2015-07-01

    The Gram-negative bacterium and opportunistic pathogen Serratia marcescens causes ocular infections in healthy individuals. Secreted protease activity was characterized from 44 ocular clinical isolates, and a higher frequency of protease-positive strains was observed among keratitis isolates than among conjunctivitis isolates. A positive correlation between protease activity and cytotoxicity to human corneal epithelial cells in vitro was determined. Deletion of prtS in clinical keratitis isolate K904 reduced, but did not eliminate, cytotoxicity and secreted protease production. This indicated that PrtS is necessary for full cytotoxicity to ocular cells and implied the existence of another secreted protease(s) and cytotoxic factors. Bioinformatic analysis of the S. marcescens Db11 genome revealed three additional open reading frames predicted to code for serralysin-like proteases noted here as slpB, slpC, and slpD. Induced expression of prtS and slpB, but not slpC and slpD, in strain PIC3611 rendered the strain cytotoxic to a lung carcinoma cell line; however, only prtS induction was sufficient for cytotoxicity to a corneal cell line. Strain K904 with deletion of both prtS and slpB genes was defective in secreted protease activity and cytotoxicity to human cell lines. PAGE analysis suggests that SlpB is produced at lower levels than PrtS. Purified SlpB demonstrated calcium-dependent and AprI-inhibited protease activity and cytotoxicity to airway and ocular cell lines in vitro. Lastly, genetic analysis indicated that the type I secretion system gene, lipD, is required for SlpB secretion. These genetic data introduce SlpB as a new cytotoxic protease from S. marcescens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Recombinant expression and functional analysis of proteases from Streptococcus pneumoniae, Bacillus anthracis, and Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Pieper Rembert

    2011-05-01

    Full Text Available Abstract Background Uncharacterized proteases naturally expressed by bacterial pathogens represents important topic in infectious disease research, because these enzymes may have critical roles in pathogenicity and cell physiology. It has been observed that cloning, expression and purification of proteases often fail due to their catalytic functions which, in turn, cause toxicity in the E. coli heterologous host. Results In order to address this problem systematically, a modified pipeline of our high-throughput protein expression and purification platform was developed. This included the use of a specific E. coli strain, BL21(DE3 pLysS to tightly control the expression of recombinant proteins and various expression vectors encoding fusion proteins to enhance recombinant protein solubility. Proteases fused to large fusion protein domains, maltosebinding protein (MBP, SP-MBP which contains signal peptide at the N-terminus of MBP, disulfide oxidoreductase (DsbA and Glutathione S-transferase (GST improved expression and solubility of proteases. Overall, 86.1% of selected protease genes including hypothetical proteins were expressed and purified using a combination of five different expression vectors. To detect novel proteolytic activities, zymography and fluorescence-based assays were performed and the protease activities of more than 46% of purified proteases and 40% of hypothetical proteins that were predicted to be proteases were confirmed. Conclusions Multiple expression vectors, employing distinct fusion tags in a high throughput pipeline increased overall success rates in expression, solubility and purification of proteases. The combinatorial functional analysis of the purified proteases using fluorescence assays and zymography confirmed their function.

  13. Identification of dehydration-responsive cysteine proteases during post-harvest senescence of broccoli florets.

    Science.gov (United States)

    Coupe, Simon A; Sinclair, Ben K; Watson, Lyn M; Heyes, Julian A; Eason, Jocelyn R

    2003-03-01

    Harvest-induced senescence of broccoli results in tissue wilting and sepal chlorosis. As senescence progresses, chlorophyll and protein levels in floret tissues decline and endo-protease activity (measured with azo-casein) increases. Protease activity increased from 24 h after harvest for tissues held in air at 20 degrees C. Activity was lower in floret tissues from branchlets that had been held in solutions of sucrose (2% w/v) or under high carbon dioxide, low oxygen (10% CO(2), 5% O(2)) conditions. Four protease-active protein bands were identified in senescing floret tissue by zymography, and the use of chemical inhibitors of protease action suggests that some 44% of protease activity in senescing floret tissue 72 h after harvest is due to the action of cysteine and serine proteases. Four putative cysteine protease cDNAs have been isolated from broccoli floret tissue (BoCP1, BoCP2, BoCP3, BoCP4). The cDNAs are most similar (73-89% at the amino acid level) to dehydration-responsive cysteine proteases previously isolated from Arabidopsis thaliana (RD19, RD21). The mRNAs encoded by the broccoli cDNAs are expressed in floret tissue during harvest-induced senescence with mRNA accumulating within 6 h of harvest for BoCP1, 12 h of harvest for BoCP4 and within 24 h of harvest for BoCP2 and BoCP3. Induction of the cDNAs is differentially delayed when broccoli branchlets are held in solutions of water or sucrose. In addition, the expression of BoCP1 and BoCP3 is inhibited in tissue held in atmospheres of high carbon dioxide/low oxygen (10% CO(2), 5% O(2)). The putative cysteine protease mRNAs are expressed before measurable increases in endo-protease activity, loss of protein, chlorophyll or tissue chlorosis.

  14. Uncoupling of Protease trans-Cleavage and Helicase Activities in Pestivirus NS3.

    Science.gov (United States)

    Zheng, Fengwei; Lu, Guoliang; Li, Ling; Gong, Peng; Pan, Zishu

    2017-11-01

    The nonstructural protein NS3 from the Flaviviridae family is a multifunctional protein that contains an N-terminal protease and a C-terminal helicase, playing essential roles in viral polyprotein processing and genome replication. Here we report a full-length crystal structure of the classical swine fever virus (CSFV) NS3 in complex with its NS4A protease cofactor segment (PCS) at a 2.35-Å resolution. The structure reveals a previously unidentified ∼2,200-Å 2 intramolecular protease-helicase interface comprising three clusters of interactions, representing a "closed" global conformation related to the NS3-NS4A cis -cleavage event. Although this conformation is incompatible with protease trans -cleavage, it appears to be functionally important and beneficial to the helicase activity, as the mutations designed to perturb this conformation impaired both the helicase activities in vitro and virus production in vivo Our work reveals important features of protease-helicase coordination in pestivirus NS3 and provides a key basis for how different conformational states may explicitly contribute to certain functions of this natural protease-helicase fusion protein. IMPORTANCE Many RNA viruses encode helicases to aid their RNA genome replication and transcription by unwinding structured RNA. Being naturally fused to a protease participating in viral polyprotein processing, the NS3 helicases encoded by the Flaviviridae family viruses are unique. Therefore, how these two enzyme modules coordinate in a single polypeptide is of particular interest. Here we report a previously unidentified conformation of pestivirus NS3 in complex with its NS4A protease cofactor segment (PCS). This conformational state is related to the protease cis -cleavage event and is optimal for the function of helicase. This work provides an important basis to understand how different enzymatic activities of NS3 may be achieved by the coordination between the protease and helicase through different

  15. Production, purification and characterization of a thermotolerant alkaline serine protease from a novel species Bacillus caseinilyticus.

    Science.gov (United States)

    Mothe, Thirumala; Sultanpuram, Vishnuvardhan Reddy

    2016-06-01

    Alkaline proteases are important enzymes in many industrial applications, especially as additives in laundry detergent industry. Though there are a number of Bacillus species which are reported to be producing proteases, the efficiency of a protease produced by a novel strain has to be studied in comparison to the others. Hence, in this study, an alkaline serine protease produced by a novel species Bacillus caseinilyticus was purified and characterized for its possible usage in detergent industry. Ammonium sulphate, dialysis and DEAE column chromatographic methods were used for purification of the isolated alkaline protease. The molecular weight of the protease was determined by SDS-PAGE and it was found to be 66 kDa. Peptide mass fingerprinting (PMF) was carried out using MALDI-TOF-TOF mass spectrometry and the peptides were found to be similar to that of subtilisin protease. Specific activity of purified protein was found to be 89.2 U/mg. Optimum pH and temperature for enzyme activity were at pH 8 and 60 °C, respectively, showing stability with 10 mM CaCl 2 . Phenyl methyl sulphonyl fluoride (PMSF) at both 5 and 10 mM concentrations completely inhibited the enzyme activity suggesting its serine nature. EDTA, metal ions Mg 2+ and Ca 2+ increased the enzyme activity. The one factor at a time optimisation of the protease production was carried to identify the important factors that affect its production. After optimisation, the protease was produced at lab scale, purified and characterised. This alkali, thermotolerant serine protease was found to be significantly stable in the presence of various surfactants and H 2 O 2. Also, it was successfully able to remove blood stain when used as an additive along with commercial detergent suggesting its potential application in the laundry detergent industry.

  16. Pathogenic capacity of proteases from Serratia marcescens and Pseudomonas aeruginosa and their suppression by chicken egg white ovomacroglobulin.

    Science.gov (United States)

    Molla, A; Matsumura, Y; Yamamoto, T; Okamura, R; Maeda, H

    1987-01-01

    The pathogenicities of three proteases from Serratia marcescens, two proteases from Pseudomonas aeruginosa, and one thermolysin from Bacillus stearothermophilus were examined. All proteases tested caused acute liquefactive necrosis of the cornea and descemetocele formation in guinea pig eyes after intrastromal injection, with the exception of the 60-kilodalton protease from S. marcescens, which produced only an opaque lesion. When injected into guinea pig skin, the protease also enhanced vascular permeability, which was followed by edema formation. The permeability-enhancing activity of the proteases increased in parallel with the concentration of the enzymes. When tested in vitro for its effect on these bacterial proteases, chicken egg white ovomacroglobulin (ovoM) inhibited the enzymatic activity of all the proteases after a short incubation period at an enzyme/inhibitor ratio (molar) of 1:1 to 1:4 or at a lower concentration after a longer incubation period. Such treatment of the proteases with chicken egg white ovoM before injection intrastromally into the eyes or intradermally into the clipped flanks of guinea pigs protected the cornea from destruction or completely prevented the permeability reaction and edema formation. No inhibitory effects of plasma protease inhibitors against these bacterial proteases were noted. Since the proteases are critical in the pathogenic processes caused by the bacteria, these results suggest a beneficial effect of ovoM against bacterial infections. Images PMID:3115900

  17. Modulation of HIV-1 Gag NC/p1 cleavage efficiency affects protease inhibitor resistance and viral replicative capacity

    NARCIS (Netherlands)

    N.M. van Maarseveen (Noortje); D. Andersson (Dan); M. Lepšík (Martin); A. Fun (Axel); P.J. Schipper (Pauline); D. de Jong (Dorien); C.A.B. Boucher (Charles); M. Nijhuis (Monique)

    2012-01-01

    textabstractBackground: Mutations in the substrate of HIV-1 protease, especially changes in the NC/p1 cleavage site, can directly contribute to protease inhibitor (PI) resistance and also compensate for defects in viral replicative capacity (RC) due to a drug resistant protease. These NC/p1 changes

  18. Protease Inhibitor Resistance Is Uncommon in HIV-1 Subtype C Infected Patients on Failing Second-Line Lopinavir/r-Containing Antiretroviral Therapy in South Africa

    Directory of Open Access Journals (Sweden)

    Carole L. Wallis

    2011-01-01

    Full Text Available Limited data exist on HIV-1 drug resistance patterns in South Africa following second-line protease-inhibitor containing regimen failure. This study examined drug resistance patterns emerging in 75 HIV-1 infected adults experiencing virologic failure on a second-line regimen containing 2 NRTI and lopinavir/ritonavir. Ninety six percent of patients (n=72 were infected with HIV-1 subtype C, two patients were infected with HIV-1 subtype D and one with HIV-1 subtype A1. Thirty nine percent (n=29 of patients had no resistance mutations in protease or reverse transcriptase suggesting that medication non-adherence was a major factor contributing to failure. Major lopinavir resistance mutations were infrequent (5 of 75; 7%, indicating that drug resistance is not the main barrier to future viral suppression.

  19. SjAPI, the First Functionally Characterized Ascaris-Type Protease Inhibitor from Animal Venoms

    Science.gov (United States)

    Yang, Weishan; Cao, Zhijian; Zhuo, Renxi; Li, Wenxin; Wu, Yingliang

    2013-01-01

    Background Serine protease inhibitors act as modulators of serine proteases, playing important roles in protecting animal toxin peptides from degradation. However, all known serine protease inhibitors discovered thus far from animal venom belong to the Kunitz-type subfamily, and whether there are other novel types of protease inhibitors in animal venom remains unclear. Principal Findings Here, by screening scorpion venom gland cDNA libraries, we identified the first Ascaris-type animal toxin family, which contains four members: Scorpiops jendeki Ascaris-type protease inhibitor (SjAPI), Scorpiops jendeki Ascaris-type protease inhibitor 2 (SjAPI-2), Chaerilus tricostatus Ascaris-type protease inhibitor (CtAPI), and Buthus martensii Ascaris-type protease inhibitor (BmAPI). The detailed characterization of Ascaris-type peptide SjAPI from the venom gland of scorpion Scorpiops jendeki was carried out. The mature peptide of SjAPI contains 64 residues and possesses a classical Ascaris-type cysteine framework reticulated by five disulfide bridges, different from all known protease inhibitors from venomous animals. Enzyme and inhibitor reaction kinetics experiments showed that recombinant SjAPI was a dual function peptide with α-chymotrypsin- and elastase-inhibiting properties. Recombinant SjAPI inhibited α-chymotrypsin with a Ki of 97.1 nM and elastase with a Ki of 3.7 μM, respectively. Bioinformatics analyses and chimera experiments indicated that SjAPI contained the unique short side chain functional residues “AAV” and might be a useful template to produce new serine protease inhibitors. Conclusions/Significance To our knowledge, SjAPI is the first functionally characterized animal toxin peptide with an Ascaris-type fold. The structural and functional diversity of animal toxins with protease-inhibiting properties suggested that bioactive peptides from animal venom glands might be a new source of protease inhibitors, which will accelerate the development of

  20. SjAPI, the first functionally characterized Ascaris-type protease inhibitor from animal venoms.

    Directory of Open Access Journals (Sweden)

    Zongyun Chen

    Full Text Available BACKGROUND: Serine protease inhibitors act as modulators of serine proteases, playing important roles in protecting animal toxin peptides from degradation. However, all known serine protease inhibitors discovered thus far from animal venom belong to the Kunitz-type subfamily, and whether there are other novel types of protease inhibitors in animal venom remains unclear. PRINCIPAL FINDINGS: Here, by screening scorpion venom gland cDNA libraries, we identified the first Ascaris-type animal toxin family, which contains four members: Scorpiops jendeki Ascaris-type protease inhibitor (SjAPI, Scorpiops jendeki Ascaris-type protease inhibitor 2 (SjAPI-2, Chaerilus tricostatus Ascaris-type protease inhibitor (CtAPI, and Buthus martensii Ascaris-type protease inhibitor (BmAPI. The detailed characterization of Ascaris-type peptide SjAPI from the venom gland of scorpion Scorpiops jendeki was carried out. The mature peptide of SjAPI contains 64 residues and possesses a classical Ascaris-type cysteine framework reticulated by five disulfide bridges, different from all known protease inhibitors from venomous animals. Enzyme and inhibitor reaction kinetics experiments showed that recombinant SjAPI was a dual function peptide with α-chymotrypsin- and elastase-inhibiting properties. Recombinant SjAPI inhibited α-chymotrypsin with a Ki of 97.1 nM and elastase with a Ki of 3.7 μM, respectively. Bioinformatics analyses and chimera experiments indicated that SjAPI contained the unique short side chain functional residues "AAV" and might be a useful template to produce new serine protease inhibitors. CONCLUSIONS/SIGNIFICANCE: To our knowledge, SjAPI is the first functionally characterized animal toxin peptide with an Ascaris-type fold. The structural and functional diversity of animal toxins with protease-inhibiting properties suggested that bioactive peptides from animal venom glands might be a new source of protease inhibitors, which will accelerate the

  1. Phenolic compounds from Miconia myriantha inhibiting Candida aspartic proteases.

    Science.gov (United States)

    Li, X C; Jacob, M R; Pasco, D S; ElSohly, H N; Nimrod, A C; Walker, L A; Clark, A M

    2001-10-01

    Assay-guided fractionation of the ethanol extract of the twigs and leaves of Miconia myriantha yielded two new compounds, mattucinol-7-O-[4' ',6' '-O-(S)-hexahydroxydiphenoyl]-beta-D-glucopyranoside (1) and mattucinol-7-O-[4' ',6' '-di-O-galloyl]-beta-D-glucopyranoside (2), along with mattucinol-7-O-beta-D-glucopyranoside (3), ellagic acid (4), 3,3'-di-O-methyl ellagic acid-4-O-beta-D-xylopyranoside, and gallic acid. Complete (1)H and (13)C NMR assignments of compound 1, which possesses a hexahydroxydiphenoyl unit, were achieved using the HMBC technique optimized for small couplings to enhance the four-bond and two-bond H/C correlations. Compounds 1 and 4 showed inhibitory effects against Candida albicans secreted aspartic proteases, with IC(50) of 8.4 and 10.5 microM, respectively.

  2. RNA-virus proteases counteracting host innate immunity.

    Science.gov (United States)

    Lei, Jian; Hilgenfeld, Rolf

    2017-10-01

    Virus invasion triggers host immune responses, in particular, innate immune responses. Pathogen-associated molecular patterns of viruses (such as dsRNA, ssRNA, or viral proteins) released during virus replication are detected by the corresponding pattern-recognition receptors of the host, and innate immune responses are induced. Through production of type-I and type-III interferons as well as various other cytokines, the host innate immune system forms the frontline to protect host cells and inhibit virus infection. Not surprisingly, viruses have evolved diverse strategies to counter this antiviral system. In this review, we discuss the multiple strategies used by proteases of positive-sense single-stranded RNA viruses of the families Picornaviridae, Coronaviridae, and Flaviviridae, when counteracting host innate immune responses. © 2017 Federation of European Biochemical Societies.

  3. HIV-1 protease inhibitory substances from Cassia garrettiana

    Directory of Open Access Journals (Sweden)

    Jindaporn Puripattanvong

    2007-01-01

    Full Text Available Cassia garrettiana Craib, a Thai medicinal plant locally known as Samae-sarn, was investigated for its active constituents against HIV-1 protease (HIV-1 PR. Bioassay-guided fractionation of the heart woodof this plant led to the isolation of a stilbene derivative (1, piceatannol and an anthraquinone derivative (2, chrysophanol. Piceatannol exhibited appreciable inhibitory effect against HIV-1 PR with an IC50 value of25.4 μg/ml, whereas that of chrysophanol was 73.5 μg/ml. In addition, other two stilbenoids together with three anthraquinone derivatives were also investigated for their anti-HIV-1 PR activities. The resultindicated that resveratrol possessed anti-HIV-1 PR activity with an IC50 value of 85.0 μg/ml, whereas other stilbenoid (oxyresveratrol and anthraquinone derivatives (emodin, aloe-emodin, rhein were inactive (IC50 > 100 μg/ml.

  4. Calcium and SOL Protease Mediate Temperature Resetting of Circadian Clocks

    Science.gov (United States)

    Tataroglu, Ozgur; Zhao, Xiaohu; Busza, Ania; Ling, Jinli; O’Neill, John S.; Emery, Patrick

    2015-01-01

    Summary Circadian clocks integrate light and temperature input to remain synchronized with the day/night cycle. Although light input to the clock is well studied, the molecular mechanisms by which circadian clocks respond to temperature remain poorly understood. We found that temperature phase shifts Drosophila circadian clocks through degradation of the pacemaker protein TIM. This degradation is mechanistically distinct from photic CRY-dependent TIM degradation. Thermal TIM degradation is triggered by cytosolic calcium increase and CALMODULIN binding to TIM and is mediated by the atypical calpain protease SOL. This thermal input pathway and CRY-dependent light input thus converge on TIM, providing a molecular mechanism for the integration of circadian light and temperature inputs. Mammals use body temperature cycles to keep peripheral clocks synchronized with their brain pacemaker. Interestingly, downregulating the mammalian SOL homolog SOLH blocks thermal mPER2 degradation and phase shifts. Thus, we propose that circadian thermosensation in insects and mammals share common principles. PMID:26590423

  5. Protease activated receptor-2 (PAR2): possible target of phytochemicals.

    Science.gov (United States)

    Kakarala, Kavita Kumari; Jamil, Kaiser

    2015-09-01

    The use of phytochemicals either singly or in combination with other anticancer drugs comes with an advantage of less toxicity and minimal side effects. Signaling pathways play central role in cell cycle, cell growth, metabolism, etc. Thus, the identification of phytochemicals with promising antagonistic effect on the receptor/s playing key role in single transduction may have better therapeutic application. With this background, phytochemicals were screened against protease-activated receptor 2 (PAR2). PAR2 belongs to the superfamily of GPCRs and is an important target for breast cancer. Using in silico methods, this study was able to identify the phytochemicals with promising binding affinity suggesting their therapeutic potential in the treatment of breast cancer. The findings from this study acquires importance as the information on the possible agonists and antagonists of PAR2 is limited due its unique mechanism of activation.

  6. Mapping protease substrates using a biotinylated phage substrate library.

    Energy Technology Data Exchange (ETDEWEB)

    Scholle, M. D.; Kriplani, U.; Pabon, A.; Sishtla, K.; Glucksman, M. J.; Kay, B. K.; Biosciences Division; Chicago Medical School

    2005-05-05

    We describe a bacteriophage M13 substrate library encoding the AviTag (BirA substrate) and combinatorial heptamer peptides displayed at the N terminus of the mature form of capsid protein III. Phages are biotinylated efficiently (> or = 50%) when grown in E. coli cells coexpressing BirA, and such viral particles can be immobilized on a streptavidin-coated support and released by protease cleavage within the combinatorial peptide. We have used this library to map the specificity of human Factor Xa and a neuropeptidase, neurolysin (EC3.4.24.16). Validation by analysis of isolated peptide substrates has revealed that neurolysin recognizes the motif hydrophobic-X-Pro-Arg-hydrophobic, where Arg-hydrophobic is the scissile bond.

  7. HIV-protease inhibitors for the treatment of cancer

    DEFF Research Database (Denmark)

    Maksimovic-Ivanic, Danijela; Fagone, Paolo; McCubrey, James

    2017-01-01

    The possible use of HIV protease inhibitors (HIV-PI) as new therapeutic option for the treatment of cancer primarily originated from their success in treating HIV-related Kaposi's sarcoma (KS). While these findings were initially attributed to immune reconstitution and better control of oncogenic...... and nitric oxide (NO) derivatives of HIV-PIs. In this article, we discuss the current preclinical and clinical evidences for the potential use of HIV-PIs, and of novel derivatives, such as saquinavir-NO in the treatment of cancer....... viral infections, the number of reports on solid tumors, KS, lymphoma, fibrosarcoma, multiple myeloma and prostate cancer suggest other mechanisms for the anti-neoplastic activity of PIs. However, a major drawback for the possible adoption of HIV-PIs in the therapy of cancer relies on their relatively...

  8. Development of potent inhibitors of the coxsackievirus 3C protease

    International Nuclear Information System (INIS)

    Lee, Eui Seung; Lee, Won Gil; Yun, Soo-Hyeon; Rho, Seong Hwan; Im, Isak; Yang, Sung Tae; Sellamuthu, Saravanan; Lee, Yong Jae; Kwon, Sun Jae; Park, Ohkmae K.; Jeon, Eun-Seok; Park, Woo Jin; Kim, Yong-Chul

    2007-01-01

    Coxsackievirus B3 (CVB3) 3C protease (3CP) plays essential roles in the viral replication cycle, and therefore, provides an attractive therapeutic target for treatment of human diseases caused by CVB3 infection. CVB3 3CP and human rhinovirus (HRV) 3CP have a high degree of amino acid sequence similarity. Comparative modeling of these two 3CPs revealed one prominent distinction; an Asn residue delineating the S2' pocket in HRV 3CP is replaced by a Tyr residue in CVB3 3CP. AG7088, a potent inhibitor of HRV 3CP, was modified by substitution of the ethyl group at the P2' position with various hydrophobic aromatic rings that are predicted to interact preferentially with the Tyr residue in the S2' pocket of CVB3 3CP. The resulting derivatives showed dramatically increased inhibitory activities against CVB3 3CP. In addition, one of the derivatives effectively inhibited the CVB3 proliferation in vitro

  9. Extracellular Protease Activity of Enteropathogenic Escherechia coli on Mucin Substrate

    Directory of Open Access Journals (Sweden)

    SRI BUDIARTI

    2007-03-01

    Full Text Available Enteropathogenic Escherichia coli (EPEC causes gastrointestinal infections in human. EPEC invasion was initiated by attachment and aggressive colonization on intestinal surface. Attachment of EPEC alter the intestine mucosal cells. Despite this, the pathogenic mechanism of EPEC infectior has not been fully understood. This research hypothesizes that extracellular proteolytic enzymes is necessary for EPEC colonization. The enzyme is secreted into gastrointestinal milieu and presumably destroy mucus layer cover the gastrointestinal tract. The objective of this study was to assay EPEC extracellular protease enzyme by using mucin substrate. The activity of EPEC extracellular proteolytic enzyme on 1% mucin substrate was investigated. Non-pathogenic E. coli was used as a negative control. Positive and tentative controls were Yersinia enterocolitica and Salmonella. Ten EPEC strains were assayed, seven of them were able to degrade mucin, and the highest activity was produced by K1.1 strain. Both positive and tentative controls also showed the ability to digest 0.20% mucin.

  10. Recognition of misfolded proteins by Lon, a AAA(+) protease.

    Science.gov (United States)

    Gur, Eyal; Sauer, Robert T

    2008-08-15

    Proteins unfold constantly in cells, especially under stress conditions. Degradation of denatured polypeptides by Lon and related ATP-dependent AAA(+) proteases helps prevent toxic aggregates formation and other deleterious consequences, but how these destructive enzymatic machines distinguish between damaged and properly folded proteins is poorly understood. Here, we show that Escherichia coli Lon recognizes specific sequences -- rich in aromatic residues -- that are accessible in unfolded polypeptides but hidden in most native structures. Denatured polypeptides lacking such sequences are poor substrates. Lon also unfolds and degrades stably folded proteins with accessible recognition tags. Thus, protein architecture and the positioning of appropriate targeting sequences allow Lon degradation to be dependent or independent of the folding status of a protein. Our results suggest that Lon can recognize multiple signals in unfolded polypeptides synergistically, resulting in nanomolar binding and a mechanism for discriminating irreversibly damaged proteins from transiently unfolded elements of structure.

  11. Protease-resistant prions selectively decrease Shadoo protein.

    Directory of Open Access Journals (Sweden)

    Joel C Watts

    2011-11-01

    Full Text Available The central event in prion diseases is the conformational conversion of the cellular prion protein (PrP(C into PrP(Sc, a partially protease-resistant and infectious conformer. However, the mechanism by which PrP(Sc causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho, a protein that resembles the flexibly disordered N-terminal domain of PrP(C, were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrP(Sc in the brain. To test this hypothesis, we examined levels of Sho during prion infection using a variety of experimental systems. Sho protein levels were decreased in the brains of mice, hamsters, voles, and sheep infected with different natural and experimental prion strains. Furthermore, Sho levels were decreased in the brains of prion-infected, transgenic mice overexpressing Sho and in infected neuroblastoma cells. Time-course experiments revealed that Sho levels were inversely proportional to levels of protease-resistant PrP(Sc. Membrane anchoring and the N-terminal domain of PrP both influenced the inverse relationship between Sho and PrP(Sc. Although increased Sho levels had no discernible effect on prion replication in mice, we conclude that Sho is the first non-PrP marker specific for prion disease. Additional studies using this paradigm may provide insight into the cellular pathways and systems subverted by PrP(Sc during prion disease.

  12. A recombinant fusion protein-based, fluorescent protease assay for high throughput-compatible substrate screening.

    Science.gov (United States)

    Bozóki, Beáta; Gazda, Lívia; Tóth, Ferenc; Miczi, Márió; Mótyán, János András; Tőzsér, József

    2018-01-01

    In connection with the intensive investigation of proteases, several methods have been developed for analysis of the substrate specificity. Due to the great number of proteases and the expected target molecules to be analyzed, time- and cost-efficient high-throughput screening (HTS) methods are preferred. Here we describe the development and application of a separation-based HTS-compatible fluorescent protease assay, which is based on the use of recombinant fusion proteins as substrates of proteases. The protein substrates used in this assay consists of N-terminal (hexahistidine and maltose binding protein) fusion tags, cleavage sequences of the tobacco etch virus (TEV) and HIV-1 proteases, and a C-terminal fluorescent protein (mApple or mTurquoise2). The assay is based on the fluorimetric detection of the fluorescent proteins, which are released from the magnetic bead-attached substrates by the proteolytic cleavage. The protease assay has been applied for activity measurements of TEV and HIV-1 proteases to test the suitability of the system for enzyme kinetic measurements, inhibition studies, and determination of pH optimum. We also found that denatured fluorescent proteins can be renatured after SDS-PAGE of denaturing conditions, but showed differences in their renaturation abilities. After in-gel renaturation both substrates and cleavage products can be identified by in-gel UV detection. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Kinetics Study of Extracellular Detergent Stable Alkaline Protease from Rhizopus oryzae

    Directory of Open Access Journals (Sweden)

    Zareena Mushtaq

    2015-04-01

    Full Text Available In this study, extracellular alkaline protease was produced from Rhizopus oryzae in submerged fermentation using dairy waste (whey as a substrate. Fermentation kinetics was studied and various parameters were optimized. The strain produced maximum protease at initial medium pH of 6.0 medium depth of 26 mm, inoculum size of 2% at incubation temperature of 35ºC for 168 h of fermentation. Alkaline protease was purified to homogeneity by ammonium sulphate fractionation followed by sephadex G-100 chromatography. The molecular mass of alkaline protease was 69 kDa determined by 10% SDS-PAGE. The optimum pH and temperature of alkaline protease was 9.0 and 40ºC, respectively. Metal profile of the enzyme showed that the enzyme was non-metallic in nature. The Km , Kcat , Vmax and Kcat/Km values of purified protease were 7.0 mg/mL, 3.8 x102S-1, 54.30 µmol/min and 54.28 s-1mg -1.mL respectively, using casein as substrate. The purified alkaline protease had stability with commercial detergents.

  14. Modulation of the epithelial sodium channel (ENaC by bacterial metalloproteases and protease inhibitors.

    Directory of Open Access Journals (Sweden)

    Michael B Butterworth

    Full Text Available The serralysin family of metalloproteases is associated with the virulence of multiple gram-negative human pathogens, including Pseudomonas aeruginosa and Serratia marcescens. The serralysin proteases share highly conserved catalytic domains and show evolutionary similarity to the mammalian matrix metalloproteases. Our previous studies demonstrated that alkaline protease (AP from Pseudomonas aeruginosa is capable of activating the epithelial sodium channel (ENaC, leading to an increase in sodium absorption in airway epithelia. The serralysin proteases are often co-expressed with endogenous, intracellular or periplasmic inhibitors, which putatively protect the bacterium from unwanted or unregulated protease activities. To evaluate the potential use of these small protein inhibitors in regulating the serralysin induced activation of ENaC, proteases from Pseudomonas aeruginosa and Serratia marcescens were purified for characterization along with a high affinity inhibitor from Pseudomonas. Both proteases showed activity against in vitro substrates and could be blocked by near stoichiometric concentrations of the inhibitor. In addition, both proteases were capable of activating ENaC when added to the apical surfaces of multiple epithelial cells with similar slow activation kinetics. The high-affinity periplasmic inhibitor from Pseudomonas effectively blocked this activation. These data suggest that multiple metalloproteases are capable of activating ENaC. Further, the endogenous, periplasmic bacterial inhibitors may be useful for modulating the downstream effects of the serralysin virulence factors under physiological conditions.

  15. Optimization of protease extraction from horse mango (Mangifera foetida Lour) kernels by a response surface methodology.

    Science.gov (United States)

    Ahmad, Mohammad Norazmi; Liew, Siew Ling; Yarmo, Mohd Ambar; Said, Mamot

    2012-01-01

    Protease is one of the most important industrial enzymes with a multitude of applications in both food and non-food sectors. Although most commercial proteases are microbial proteases, the potential of non-conventional protease sources, especially plants, should not be overlooked. In this study, horse mango (Mangifera foetida Lour) fruit, known to produce latex with a blistering effect upon contact with human skin, was chosen as a source of protease, and the effect of the extraction process on its protease activity evaluated. The crude enzyme was extracted from the kernels and extraction was optimized by a response surface methodology (RSM) using a central composite rotatable design (CCRD). The variables studied were pH (x(1)), CaCl(2) (x(2)), Triton X-100 (x(3)), and 1,4-dithryeitol (x(4)). The results obtained indicate that the quadratic model is significant for all the variables tested. Based on the RSM model generated, optimal extraction conditions were obtained at pH 6.0, 8.16 mM CaCl(2), 5.0% Triton X-100, and 10.0 mM DTT, and the estimated response was 95.5% (w/w). Verification test results showed that the difference between the calculated and the experimental protease activity value was only 2%. Based on the t-value, the effects of the variables arranged in ascending order of strength were CaCl(2) < pH < DTT < Triton X-100.

  16. Galectin-3 Is a Target for Proteases Involved in the Virulence of Staphylococcus aureus.

    Science.gov (United States)

    Elmwall, Jonas; Kwiecinski, Jakub; Na, Manli; Ali, Abukar Ahmed; Osla, Veronica; Shaw, Lindsey N; Wang, Wanzhong; Sävman, Karin; Josefsson, Elisabet; Bylund, Johan; Jin, Tao; Welin, Amanda; Karlsson, Anna

    2017-07-01

    Staphylococcus aureus is a major cause of skin and soft tissue infection. The bacterium expresses four major proteases that are emerging as virulence factors: aureolysin (Aur), V8 protease (SspA), staphopain A (ScpA), and staphopain B (SspB). We hypothesized that human galectin-3, a β-galactoside-binding lectin involved in immune regulation and antimicrobial defense, is a target for these proteases and that proteolysis of galectin-3 is a novel immune evasion mechanism. Indeed, supernatants from laboratory strains and clinical isolates of S. aureus caused galectin-3 degradation. Similar proteolytic capacities were found in Staphylococcus epidermidis isolates but not in Staphylococcus saprophyticus Galectin-3-induced activation of the neutrophil NADPH oxidase was abrogated by bacterium-derived proteolysis of galectin-3, and SspB was identified as the major protease responsible. The impact of galectin-3 and protease expression on S. aureus virulence was studied in a murine skin infection model. In galectin-3 +/+ mice, SspB-expressing S. aureus caused larger lesions and resulted in higher bacterial loads than protease-lacking bacteria. No such difference in bacterial load or lesion size was detected in galectin-3 -/- mice, which overall showed smaller lesion sizes than the galectin-3 +/+ animals. In conclusion, the staphylococcal protease SspB inactivates galectin-3, abrogating its stimulation of oxygen radical production in human neutrophils and increasing tissue damage during skin infection. Copyright © 2017 American Society for Microbiology.

  17. Reverse zymography alone does not confirm presence of a protease inhibitor.

    Science.gov (United States)

    Dutta, Sangita; Bhattacharyya, Debasish

    2013-03-01

    Reverse zymography is applied for identification and semi-quantification of protease inhibitors that are of protein in nature. However, a protein that shows band in reverse zymography against a protease used for digestion of the gel need not be an inhibitor; it might be resistant to degradation by the protease. We demonstrate that in reverse zymography, avidin, streptavidin and the leaf extract of Catharanthus roseus behave like inhibitors of proteases like papain, ficin, bromelain extracts from pineapple leaf, stem and fruit and trypsin. Still, they do not act as inhibitors of those proteases when enzyme assays were done in solution. In reverse zymography, the extract of pineapple crown leaf shows two major inhibitor bands against its own proteases. Identification of these proteins from sequences derived from MALDI TOF MS analysis indicated that they are fruit and stem bromelains. Avidin, streptavidin and bromelains are 'kinetically stable proteins' that are usually resistant to proteolysis. Thus, it is recommended that identification of an inhibitor of a protease by reverse zymography should be supported by independent assay methods for confirmation.

  18. The dissemination of C10 cysteine protease genes in Bacteroides fragilis by mobile genetic elements

    Directory of Open Access Journals (Sweden)

    Kagawa Todd F

    2010-04-01

    Full Text Available Abstract Background The C10 family of cysteine proteases includes enzymes that contribute to the virulence of bacterial pathogens, such as SpeB in Streptococcus pyogenes. The presence of homologues of cysteine protease genes in human commensal organisms has not been examined. Bacteroides fragilis is a member of the dominant Bacteroidetes phylum of the human intestinal microbiota, and is a significant opportunistic pathogen. Results Four homologues of the streptococcal virulence factor SpeB were identified in the B. fragilis genome. These four protease genes, two were directly contiguous to open reading frames predicted to encode staphostatin-like inhibitors, with which the protease genes were co-transcribed. Two of these protease genes are unique to B. fragilis 638R and are associated with two large genomic insertions. Gene annotation indicated that one of these insertions was a conjugative Tn-like element and the other was a prophage-like element, which was shown to be capable of excision. Homologues of the B. fragilis C10 protease genes were present in a panel of clinical isolates, and in DNA extracted from normal human faecal microbiota. Conclusions This study suggests a mechanism for the evolution and dissemination of an important class of protease in major members of the normal human microbiota.

  19. Optimized production of extracellular proteases by Bacillus subtilis from degraded abattoir waste

    Directory of Open Access Journals (Sweden)

    PALLAVI BADHE

    2016-04-01

    Full Text Available Proteases are ubiquitous in occurrence and are found in all living organisms. These are essential for cell growth and differentiation. The extracellular proteases are of a high commercial value and find multiple applications in various industrial sectors. The present study describes the screening of protease producing bacteria from a hitherto unexplored source i.e. degraded waste from abattoir. Three isolates were found namely yellow, white and orange coloured bacteria. Amongst them, white colored colony was found to be more suitable for protease production. The morphological, cultural, biochemical and 16S rRNA confirmed that the isolate was Bacillus subtilis. Physical and chemical parameters were optimized for maximum protease production and optimum temperature and pH was found to be 40oC at pH 14. Glucose as a carbon source and yeast extract as a nitrogen source further stimulated the production process giving maximum protease activity to be 20.74 U/ml and 20.67 U/ml. The applications of protease in detergent and solvent industry were tested and it was revealed that the purified enzyme can be used as an additive in detergent industry.

  20. Molecular characterization of alkaline protease of Bacillus amyloliquefaciens SP1 involved in biocontrol of Fusarium oxysporum.

    Science.gov (United States)

    Guleria, Shiwani; Walia, Abhishek; Chauhan, Anjali; Shirkot, C K

    2016-09-02

    An alkaline protease gene was amplified from genomic DNA of Bacillus amyloliquefaciens SP1 which was involved in effective biocontrol of Fusarium oxysporum. We investigated the antagonistic capacity of protease of B. amyloliquifaciens SP1, under in vitro conditions. The 5.62 fold purified enzyme with specific activity of 607.69U/mg reported 24.14% growth inhibition of F. oxysporum. However, no antagonistic activity was found after addition of protease inhibitor i.e. PMSF (15mM) to purified enzyme. An 1149bp nucleotide sequence of protease gene encoded 382 amino acids of 43kDa and calculated isoelectric point of 9.29. Analysis of deduced amino acid sequence revealed high homology (86%) with subtilisin E of Bacillus subtilis. The B. amyloliquefaciens SP1 protease gene was expressed in Escherichiax coli BL21. The expressed protease was secreted into culture medium by E. coli and exhibited optimum activity at pH8.0 and 60°C. The most reliable three dimensional structure of alkaline protease was determined using Phyre 2 server which was validated on the basis of Ramachandran plot and ERRAT value. The expression and structure prediction of the enzyme offers potential value for commercial application in agriculture and industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The dissemination of C10 cysteine protease genes in Bacteroides fragilis by mobile genetic elements

    LENUS (Irish Health Repository)

    Thornton, Roibeard F

    2010-04-23

    Abstract Background The C10 family of cysteine proteases includes enzymes that contribute to the virulence of bacterial pathogens, such as SpeB in Streptococcus pyogenes. The presence of homologues of cysteine protease genes in human commensal organisms has not been examined. Bacteroides fragilis is a member of the dominant Bacteroidetes phylum of the human intestinal microbiota, and is a significant opportunistic pathogen. Results Four homologues of the streptococcal virulence factor SpeB were identified in the B. fragilis genome. These four protease genes, two were directly contiguous to open reading frames predicted to encode staphostatin-like inhibitors, with which the protease genes were co-transcribed. Two of these protease genes are unique to B. fragilis 638R and are associated with two large genomic insertions. Gene annotation indicated that one of these insertions was a conjugative Tn-like element and the other was a prophage-like element, which was shown to be capable of excision. Homologues of the B. fragilis C10 protease genes were present in a panel of clinical isolates, and in DNA extracted from normal human faecal microbiota. Conclusions This study suggests a mechanism for the evolution and dissemination of an important class of protease in major members of the normal human microbiota.

  2. Protease production by the keratinolytic Bacillus sp. CL18 through feather bioprocessing.

    Science.gov (United States)

    Sobucki, Lisiane; Ramos, Rodrigo Ferraz; Daroit, Daniel Joner

    2017-10-01

    Bacillus sp. CL18 was investigated to propose a bioprocess for protease production using feathers as organic substrate. In feather broth (FB), containing feathers as sole organic substrate (1-100 g l -1 ), maximal protease production was observed at 30 g l -1 (FB30) after 6 days of cultivation, whereas increased feather concentrations negatively affected protease production and feather degradation. Protease production peaks were always observed earlier during cultivations than maximal feather degradation. In FB30, 80% of initial feathers mass were degraded after 7 days. Addition of glucose, sucrose, starch, yeast extract (2 g l -1 ), CaCl 2 , or MgCl 2 (10 mmol l -1 ) to FB30 decreased protease production and feather degradation. FB30 supplementation with NH 4 Cl (1 g l -1 ) resulted in less apparent negative effects on protease production, whereas peptone (2 g l -1 ) increased protease yields earlier during cultivations (3 days). Through a central composite design employed to investigate the effects of peptone and NH 4 Cl (0.5-4.5 g l -1 ) on protease production and feather degradation, FB30 supplementation with peptone and NH 4 Cl (0.5-1.1 g l -1 ) increased protease production within a shorter cultivation time (5 days) and hastened complete feather degradation (6 days). Feather bioconversion concurs with sustainable production of value-added products.

  3. Production and some properties of crude alkaline proteases of indigenous Central Amazonian rhizobia strains

    Directory of Open Access Journals (Sweden)

    Arlem Nascimento de Oliveira

    2010-10-01

    Full Text Available Two rhizobia strains isolated from soils of the Central Amazonian floodplain produced appreciable quantities of crude alkaline protease extracts with inexpensive carbon and nitrogen sources. These protease crude extracts were optimally active at pH 9.0-11.0. The optimum temperatures were 35 ºC for Rhizobium sp. strain R-986 and 55 ºC for Bradyrhizobium sp. strain R-993. Protease activities in the crude extracts were enhanced in the presence of 5 mM metal ions, such as Na+, Ca2+, Mg2+ and Mn2+. Rhizobia proteases were strongly inhibited by PMSF, a serine-protease inhibitor. The enzymes were active in the presence of surfactants (SDS and Triton X-100 and stable in oxidizing (H2O2 and reducing agents (β-mercaptoethanol, and organic solvents (acetone, hexane, methanol, 1-propanol and toluene.Duas estirpes de rizóbia isoladas de solos de várzea da Amazônia Central produziram grandes quantidades de proteases alcalinas extracelulares, usando fontes baratas de carbono e nitrogênio. Os extratos brutos de proteases foram ativos em pH 9,0-11,0. As temperaturas ótimas foram de 35 ºC para a enzima do Rhizobium R-986 e de 55 ºC para a do Bradyrhizobium R-993. As atividades proteolíticas aumentaram na presença de 5 mM dos íons Na+, Ca2+ , Mg2+ e Mn2+ . As proteases secretadas pelos rizóbios foram fortemente inibidas por PMSF, um inibidor de serina protease. As enzimas foram ativas na presença de surfactantes (SDS e Triton X-100, e estáveis na presença de agentes oxidantes (H2O2 e redutores (β-mercaptoetanol e solventes orgânicos (acetona, hexano, metanol, 1-propanol e tolueno.

  4. PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.

    Directory of Open Access Journals (Sweden)

    Jiangning Song

    Full Text Available The ability to catalytically cleave protein substrates after synthesis is fundamental for all forms of life. Accordingly, site-specific proteolysis is one of the most important post-translational modifications. The key to understanding the physiological role of a protease is to identify its natural substrate(s. Knowledge of the substrate specificity of a protease can dramatically improve our ability to predict its target protein substrates, but this information must be utilized in an effective manner in order to efficiently identify protein substrates by in silico approaches. To address this problem, we present PROSPER, an integrated feature-based server for in silico identification of protease substrates and their cleavage sites for twenty-four different proteases. PROSPER utilizes established specificity information for these proteases (derived from the MEROPS database with a machine learning approach to predict protease cleavage sites by using different, but complementary sequence and structure characteristics. Features used by PROSPER include local amino acid sequence profile, predicted secondary structure, solvent accessibility and predicted native disorder. Thus, for proteases with known amino acid specificity, PROSPER provides a convenient, pre-prepared tool for use in identifying protein substrates for the enzymes. Systematic prediction analysis for the twenty-four proteases thus far included in the database revealed that the features we have included in the tool strongly improve performance in terms of cleavage site prediction, as evidenced by their contribution to performance improvement in terms of identifying known cleavage sites in substrates for these enzymes. In comparison with two state-of-the-art prediction tools, PoPS and SitePrediction, PROSPER achieves greater accuracy and coverage. To our knowledge, PROSPER is the first comprehensive server capable of predicting cleavage sites of multiple proteases within a single substrate

  5. The Drosophila melanogaster seminal fluid protease "seminase" regulates proteolytic and post-mating reproductive processes.

    Directory of Open Access Journals (Sweden)

    Brooke A LaFlamme

    2012-01-01

    Full Text Available Proteases and protease inhibitors have been identified in the ejaculates of animal taxa ranging from invertebrates to mammals and form a major protein class among Drosophila melanogaster seminal fluid proteins (SFPs. Other than a single protease cascade in mammals that regulates seminal clot liquefaction, no proteolytic cascades (i.e. pathways with at least two proteases acting in sequence have been identified in seminal fluids. In Drosophila, SFPs are transferred to females during mating and, together with sperm, are necessary for the many post-mating responses elicited in females. Though several SFPs are proteolytically cleaved either during or after mating, virtually nothing is known about the proteases involved in these cleavage events or the physiological consequences of proteolytic activity in the seminal fluid on the female. Here, we present evidence that a protease cascade acts in the seminal fluid of Drosophila during and after mating. Using RNAi to knock down expression of the SFP CG10586, a predicted serine protease, we show that it acts upstream of the SFP CG11864, a predicted astacin protease, to process SFPs involved in ovulation and sperm entry into storage. We also show that knockdown of CG10586 leads to lower levels of egg laying, higher rates of sexual receptivity to subsequent males, and abnormal sperm usage patterns, processes that are independent of CG11864. The long-term phenotypes of females mated to CG10586 knockdown males are similar to those of females that fail to store sex peptide, an important elicitor of long-term post-mating responses, and indicate a role for CG10586 in regulating sex peptide. These results point to an important role for proteolysis among insect SFPs and suggest that protease cascades may be a mechanism for precise temporal regulation of multiple post-mating responses in females.

  6. Protease inhibitors from processed legumes effectively inhibit superoxide generation in response to TPA.

    Science.gov (United States)

    Yavelow, J; Gidlund, M; Troll, W

    1982-01-01

    Crude extracts containing protease inhibitors from edible legumes (canned chick-peas, canned kidney beans and bean curd) were capable of blocking the superoxide response to human polymorphonuclear leukocytes produced by the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Protease inhibitors purified from crude extracts more effectively blocked the superoxide response produced by TPA. Bowman-Birk soybean inhibitor was more effective in blocking this effect of the tumor promoter than Kunitz soybean inhibitor. The significance of protease inhibitors in edible legumes and the possible role of free oxygen radicals in tumor promotion are discussed.

  7. Characterisation of an extracellular serine protease gene (nasp gene) from Dermatophilus congolensis.

    Science.gov (United States)

    Garcia-Sanchez, Alfredo; Cerrato, Rosario; Larrasa, Jose; Ambrose, Nicholas C; Parra, Alberto; Alonso, Juan M; Hermoso-de-Mendoza, Miguel; Rey, Joaquin M; Mine, Madisa O; Carnegie, Patrick R; Ellis, Trevor M; Masters, Anne M; Pemberton, Alan D; Hermoso-de-Mendoza, Javier

    2004-02-09

    A partial amino acid sequence of a serine protease from Dermatophilus congolensis allowed the design of oligonucleotide primers that were complemented with additional ones from previously published partial sequences of the gene encoding the enzyme. The polymerase chain reaction (PCR), using combinations of specific and degenerate oligonucleotide primers, allowed the amplification of a 1738-bp internal fragment of the gene, which was finally characterised by inverse PCR as the first full-length sequenced serine protease gene (nasp) from Dermatophilus congolensis. The deduced amino acid sequence of this enzyme, probably involved in the pathogenesis of dermatophilosis, links it to the subtilisin family of proteases.

  8. Extraction of lipase and protease and characterization of activated sludge from pulp and paper industry.

    Science.gov (United States)

    Karn, Santosh Kr; Kumar, Pradeep; Pan, Xiangliang

    2013-01-01

    Hydrolytic enzymes released by the microorganisms in activated sludge are responsible for the organic matter degradation there; however, the optimal extraction procedure of this valuable resource has not been well established until now. In this study protease and lipase were extracted from activated sludge using ultrasound disintegration combined with a nonionic detergent (Triton X-100) and cation-exchange resin (CER) in combination for the extraction of protease and lipase. It was observed that the concentration of 0.1% and 1% Triton X-100 has a strong influence for the extraction of lipase and protease respectively. Closer study of the enzyme extraction process is essential for different enzymes from activated sludge process.

  9. A new method for the characterization of strain-specific conformational stability of protease-sensitive and protease-resistant PrPSc.

    Directory of Open Access Journals (Sweden)

    Laura Pirisinu

    Full Text Available Although proteinacious in nature, prions exist as strains with specific self-perpetuating biological properties. Prion strains are thought to be associated with different conformers of PrP(Sc, a disease-associated isoform of the host-encoded cellular protein (PrP(C. Molecular strain typing approaches have been developed which rely on the characterization of protease-resistant PrP(Sc. However, PrP(Sc is composed not only of protease-resistant but also of protease-sensitive isoforms. The aim of this work was to develop a protocol for the molecular characterization of both, protease-resistant and protease-sensitive PrP(Sc aggregates. We first set up experimental conditions which allowed the most advantageous separation of PrP(C and PrP(Sc by means of differential centrifugation. The conformational solubility and stability assay (CSSA was then developed by measuring PrP(Sc solubility as a function of increased exposure to GdnHCl. Brain homogenates from voles infected with human and sheep prion isolates were analysed by CSSA and showed strain-specific conformational stabilities, with mean [GdnHCl](1/2 values ranging from 1.6 M for MM2 sCJD to 2.1 for scrapie and to 2.8 M for MM1/MV1 sCJD and E200K gCJD. Interestingly, the rank order of [GdnHCl](1/2 values observed in the human and sheep isolates used as inocula closely matched those found following transmission in voles, being MM1 sCJD the most resistant (3.3 M, followed by sheep scrapie (2.2 M and by MM2 sCJD (1.6 M. In order to test the ability of CSSA to characterise protease-sensitive PrP(Sc, we analysed sheep isolates of Nor98 and compared them to classical scrapie isolates. In Nor98, insoluble PrP(Sc aggregates were mainly protease-sensitive and showed a conformational stability much lower than in classical scrapie. Our results show that CSSA is able to reveal strain-specified PrP(Sc conformational stabilities of protease-resistant and protease-sensitive PrP(Sc and that it is a valuable tool

  10. A new method for the characterization of strain-specific conformational stability of protease-sensitive and protease-resistant PrPSc.

    Science.gov (United States)

    Pirisinu, Laura; Di Bari, Michele; Marcon, Stefano; Vaccari, Gabriele; D'Agostino, Claudia; Fazzi, Paola; Esposito, Elena; Galeno, Roberta; Langeveld, Jan; Agrimi, Umberto; Nonno, Romolo

    2010-09-14

    Although proteinacious in nature, prions exist as strains with specific self-perpetuating biological properties. Prion strains are thought to be associated with different conformers of PrP(Sc), a disease-associated isoform of the host-encoded cellular protein (PrP(C)). Molecular strain typing approaches have been developed which rely on the characterization of protease-resistant PrP(Sc). However, PrP(Sc) is composed not only of protease-resistant but also of protease-sensitive isoforms. The aim of this work was to develop a protocol for the molecular characterization of both, protease-resistant and protease-sensitive PrP(Sc) aggregates. We first set up experimental conditions which allowed the most advantageous separation of PrP(C) and PrP(Sc) by means of differential centrifugation. The conformational solubility and stability assay (CSSA) was then developed by measuring PrP(Sc) solubility as a function of increased exposure to GdnHCl. Brain homogenates from voles infected with human and sheep prion isolates were analysed by CSSA and showed strain-specific conformational stabilities, with mean [GdnHCl](1/2) values ranging from 1.6 M for MM2 sCJD to 2.1 for scrapie and to 2.8 M for MM1/MV1 sCJD and E200K gCJD. Interestingly, the rank order of [GdnHCl](1/2) values observed in the human and sheep isolates used as inocula closely matched those found following transmission in voles, being MM1 sCJD the most resistant (3.3 M), followed by sheep scrapie (2.2 M) and by MM2 sCJD (1.6 M). In order to test the ability of CSSA to characterise protease-sensitive PrP(Sc), we analysed sheep isolates of Nor98 and compared them to classical scrapie isolates. In Nor98, insoluble PrP(Sc) aggregates were mainly protease-sensitive and showed a conformational stability much lower than in classical scrapie. Our results show that CSSA is able to reveal strain-specified PrP(Sc) conformational stabilities of protease-resistant and protease-sensitive PrP(Sc) and that it is a valuable tool for

  11. Immobilization of bromelain protease on PVA gels for the oligopeptides synthesis; Imobilizacao da protease bromelaina em geis de PVA para a sintese de oligopeptideos

    Energy Technology Data Exchange (ETDEWEB)

    Fagundes, Fabio P., E-mail: fabiofagundes_unp@yahoo.com.br [Universidade Potiguar (UnP), Natal, RN (Brazil); Madruga, Liszt Y.C.; Balaban, Rosangela de C.; Costa, Marta [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2015-07-01

    Enzymatic synthesis of peptides using proteases has attracted a great deal of attention in recent years. One key challenge in peptide synthesis is to find supports for protease immobilization capable of working in aqueous medium at high performance, producing water-soluble oligopeptides. Therefore, the aim of this paper was to immobilize the bromelain protease by Freezing / thawing method on polymeric gels of Poli (vinyl alcohol) in order to produce water-soluble oligopeptides derived from lysine. Calculations of oligolysine yield and average degree of polymerization (DPavg) were monitored by {sup 1}H-NMR analysis. Scanning Electronic Micrograph (SEM) was responsible to associate to the porous size with performance of each system during the production of oligopeptides from lysine. These systems produced oligomers in only 1 hour with DPavg higher than free bromelain. (author)

  12. Vacuole/extravacuole distribution of soluble protease in Hippeastrum petal and Triticum leaf protoplasts

    International Nuclear Information System (INIS)

    Wagner, G.J.; Mulready, P.; Cutt, J.

    1981-01-01

    The subcellular distribution of soluble protease in anthesis-stage, anthocyanin-containing Hippeastrum cv. Dutch Red Hybrid petal protoplasts has been reevaluated and that of Triticum aestivum L. var. Red Coat leaf protoplasts determined using 125 I-fibrin as a protease substrate and improved methods for protoplast and vacuole volume estimation. Results indicate that about 20% of the Hippeastrum petal-soluble protease and about 90% of the wheat leaf-soluble protease can be assigned to the vacuole. Protoplast isolation enzyme labeled with 125 I has been used to assess the efficiency of removing isolation enzyme from protoplasts by repeated washing and by separation of protoplasts from debris using density centrifugation. Results of these studies suggest that protoplasts prepared by both methods retain low levels of isolation enzyme. However, when protoplasts prepared by either method were lysed with washing medium lacking osmoticum, little isolation enzyme contaminated the lysates

  13. Isolation of Mucorales from processed maize (Zea mays L.) and screening for protease activity

    OpenAIRE

    de Azevedo Santiago, Andr? Luiz Cabral Monteiro; de Souza Motta, Cristina Maria

    2008-01-01

    Mucorales were isolated from maize flour, corn meal and cooked cornflakes using surface and depth plate methods. Rhizopus oryzae, Circinella muscae, Mucor subtilissimus, Mucor hiemalis f. hiemalis, Syncephalastrum racemosum, Rhizopus microsporus var. chinensis and Absidia cylindrospora showed protease activity.

  14. THE EFFECT OF FEEDING Lactobacillus ON GROWTH, SURVIVAL RATE AND PROTEASE ACTIVITY OF Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Nunak Nafiqoh

    2011-12-01

    Full Text Available This study examined the effect of two Lactobacillus bacteria on protease activity and growth rate of Litopenaeus vannamei. An experiment was conducted to examine protease activity and growth rate. The experiment consisted of two treatment tanks, the first tank was provided with artemia immersed in 2.6 x 1016 cfu/mL of bacteria solution, the second tank served as the control tank. After 20 days, the L. vannamei in the tank that received Lactobacillus have significantly different in growth, survival rate and protease activity (P<0.05 compared to the control, but no significant difference between Lactobacillus casei and Lactobacillus plantarum treatments. Within the digestive organ, protease activity of hepatopancreas and stomach demonstrated significant higher activity (P<0.05 compared to the intestine.

  15. Efficient expression and purification of a protease from the common cold virus, human rhinovirus type 14

    Science.gov (United States)

    Leong, L. E.-C.; Walker, P. A.; Porter, A. G.

    1992-08-01

    The protease (3C pro) from human rhinovirus serotype-14 (HRV-14) has been cloned and efficiently expressed in E. coli. A straightforward single-step purification of the recombinant 3C pro has been achieved by fusing the protein to the car☐y-terminus of the glutathione-S-transferase from Schistosoma japonicum. Modifications made to the 5' end of the PCR fragment coding for the 3C pro have allowed the specific cleavage of the fusion protein using thrombin to yield mature 3C pro with the correct amino-terminal amino acid. This protease has been shown to be active when assayed using synthetic peptides corresponding to the natural cleavage recognition sequences within the polyprotein. Other substrates are being developed for this protease for possible use in the screening of inhibitors of 3C pro. Sufficient protease 3C pro has been purified for initial attempts at crystallization.

  16. Properties of protease and lipase from whole and individual organ of viscera from three tuna species

    Directory of Open Access Journals (Sweden)

    Thiraratana Prachumratana

    2008-04-01

    Full Text Available Properties of visceral enzymes from yellowfin tuna (Thunnus albacares, skipjack tuna (Katsuwonus pelamis and tonggol tuna (Thunnus albacares were studied. The crude enzymes from viscera of yellowfin tuna and skipjack tuna exhibited the highest activities at pH 10.0 whereas it was at pH 9.0 for those from viscera of tonggol tuna. The enzymes were the most stable at their optima pH after 120 min incubation. The optimum temperatures for protease and lipase activities were at 50oC and 60oC, respectively but the extracted enzymes were more stable in the temperature range of 37- 40oC. The protease and lipase from spleen were the most thermostable with the half-life of 120 and 90 min at 60oC incubation, respectively. Protease activity from spleen accounted for 45.6% of the total protease activity of the whole tuna viscera.

  17. Aktivitas Protease Dari Bacillus circulans Pada Media Pertumbuhan Dengan pH Tidak Terkontrol

    Directory of Open Access Journals (Sweden)

    La Ode Sumarlin

    2017-03-01

    Full Text Available Salah satu enzim yang telah banyak dipelajari adalah enzim protease. Jenis enzim inimerupakan enzim yang penting dari segi ekonomi karena menguasai 59% dari total penjualanenzim di dunia. Aplikasi protese telah meluas, baik pada industri pangan maupun nonpangan.Industri pangan memanfaatkan protease untuk memperbaiki tekstur, mempersingkat waktupencampuran, dan meningkatkan volume adonan pada pembuatan roti, menjernihkan bir,mengempukkan daging, dan menggumpalkan susu. Enzim ini dapat dproduksi oleh mikrobadalam suatu media mengandung Air Rendaman Kedelai (ARK dengan pH tidak terkontrol.Pengukuran aktivitas enzim menggunakan metode Bergmeyer dan Grassl sedangkan kadarprotein ditentukan dengan metode Bradford. Hasil analisis menunjukkan bahwa AktivitasProtease (AP pada media Air Rendaman Kedelai dan media standar dengan pH tidakterkontrol masing-masing sebesar 0,1814 U/ml dan 0,0342 U/ml. Produksi protease pada mediatersebut optimum pada pH 9,28, jam ke-56 pada fase akhir eksponensial dari fase pertumbuhanmikroba.

  18. Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases

    Science.gov (United States)

    Pietrocola, Giampiero; Nobile, Giulia; Rindi, Simonetta; Speziale, Pietro

    2017-01-01

    Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus, a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases. PMID:28529927

  19. Dietary protease can alleviate negative effects of a coccidiosis infection on production performance in broiler chickens

    NARCIS (Netherlands)

    Peek, H.W.; Klis, van der J.D.; Vermeulen, B.; Landman, W.J.M.

    2009-01-01

    Two experiments were conducted to determine the effect of dietary protease on coccidiosis infection, production performance, the intestinal mucus layer thickness, and brush border enzyme activity using broilers challenged with Eimeria spp. laboratory isolates (Eimeria acervulina, E. maxima and E.

  20. Targeting protease activated receptor-1 with P1pal-12 limits bleomycin-induced pulmonary fibrosis

    NARCIS (Netherlands)

    Lin, Cong; Duitman, Janwillem; Daalhuisen, Joost; ten Brink, Marieke; von der Thüsen, Jan; van der Poll, Tom; Borensztajn, Keren; Spek, C. Arnold

    2014-01-01

    Idiopathic pulmonary fibrosis is the most devastating fibrotic diffuse parenchymal lung disease which remains refractory to pharmacological therapies. Therefore, novel treatments are urgently required. Protease-activated receptor (PAR)-1 is a G-protein-coupled receptor that mediates critical

  1. Excretory bladder: the source of cysteine proteases in Paragonimus westermani metacercariae

    Science.gov (United States)

    Yang, Hyun-Jong; Kang, Shin-Yong; Kong, Yoon; Cho, Seung-Yull

    2002-01-01

    The cysteine proteases of Paragonimus westermani metacercariae are involved in metacercarial excystment, host immune modulation, and possibly in tissue penetration. In order to clarify the origin of the enzymes, 28 and 27 kDa cysteine proteases in metacercarial excretory-secretory products were purified through the FPLC system using Mono Q column chromatography. The polyclonal antibodies to the enzymes were produced in BALB/c mice. Immunolocalization studies revealed that both cysteine proteases were distributed at the linings of excretory bladder and excretory concretions of the metacercariae. It was suggested that the excretory epithelium of P. westermani undertake the secretory function of metacercarial cysteine proteases, in addition to its role as a route for eliminating waste products. PMID:12073734

  2. Effect of Legionella pneumophila cytotoxic protease on human neutrophil and monocyte function

    DEFF Research Database (Denmark)

    Rechnitzer, C; Kharazmi, A

    1992-01-01

    -dependent and heat-labile manner, the binding of F-Met-Leu-Phe to both cell types. Neutrophil and monocyte oxidative burst response, as measured by superoxide release and chemiluminescence response, was not significantly affected by the enzyme. A slight enhancement of PMA-stimulated superoxide release was induced...... infection, we investigated the effect of this protease on the function of human neutrophils and monocytes. L. pneumophila protease inhibited the chemotactic response of neutrophils to F-Met-Leu-Phe and zymosan-activated serum in a concentration-dependent and heat-labile manner. A direct effect...... by the protease in both cell types. Lastly, the protease inhibited the killing of Listeria monocytogenes by neutrophils or monocytes. Inhibition of Listeria killing was concentration-dependent, heat-labile, and did not require the presence of the enzyme in the bactericidal assay. The inhibitory activity of L...

  3. Production of extracellular proteases by Mucor circinelloides using D-glucose as carbon source / substrate

    Directory of Open Access Journals (Sweden)

    Andrade Vânia Sousa

    2002-01-01

    Full Text Available Recently, some Mucorales species have been reported as protease producers. The production of extracellular proteases by Mucor circinelloides using glucose as substrate was studied. Experiments were carried out with different D-glucose concentrations (40, 60 and 80 g/L. Biomass, pH and protease activity were determined. Although biomass production had reached best yields for the medium containing D-glucose in a concentration of 80 g/L, the enzymatic production was higher when the substrate concentration was reduced to 40 g/L. The yield factor for product on cell growth and the yield factor for product on carbon substrate were higher when the microorganism grew in medium containing 40 g/L glucose. The kinetics parameters suggest that this strain seems to be promising as an alternative microorganism for protease production.

  4. Vacuole/extravacuole distribution of soluble protease in Hippeastrum petal and Triticum leaf protoplasts

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.J.; Mulready, P.; Cutt, J.

    1981-11-01

    The subcellular distribution of soluble protease in anthesis-stage, anthocyanin-containing Hippeastrum cv. Dutch Red Hybrid petal protoplasts has been reevaluated and that of Triticum aestivum L. var. Red Coat leaf protoplasts determined using /sup 125/I-fibrin as a protease substrate and improved methods for protoplast and vacuole volume estimation. Results indicate that about 20% of the Hippeastrum petal-soluble protease and about 90% of the wheat leaf-soluble protease can be assigned to the vacuole. Protoplast isolation enzyme labeled with /sup 125/I has been used to assess the efficiency of removing isolation enzyme from protoplasts by repeated washing and by separation of protoplasts from debris using density centrifugation. Results of these studies suggest that protoplasts prepared by both methods retain low levels of isolation enzyme. However, when protoplasts prepared by either method were lysed with washing medium lacking osmoticum, little isolation enzyme contaminated the lysates.

  5. Studies on the Catalytic Properties of Partially Purified Alkaline Proteases from Some Selected Microorganisms

    Directory of Open Access Journals (Sweden)

    Titilayo Olufunke Femi-Ola

    2012-09-01

    Full Text Available Aims: The research was done to study the conditions enhancing catalytic activities of alkaline proteases from Vibro sp., Lactobacillus brevis, Zymomonas sp., Athrobacter sp., Corynebacterium sp. and Bacillus subtilis.Methodology and Results: The proteolytic enzymes were purified in 2-step procedures involving ammonium sulphate precipitation and sephadex G-150 gel permeation chromatography. The upper and lower limits for the specific activities of proteases from the selected microorganisms were estimated at 20.63 and 47.51 units/mg protein with Zymomonas protease having the highest specific activity towards casein as its substrate and purification fold of 3.46, while that ofLactobacillus brevis protease was 8.06. The native molecular weights of these active proteins ranged from 30.4 to 45.7 kDa with Athrobacter sp. protease having the highest weight for its subunits. The proteolytic enzymes had optimum pH range of 8 to 10 and temperature range of 50 to 62 ºC accounting for the percentage relative activity range of 75 to 94% and 71 to 84 % respectively. The activities of Lactobacillus brevis and Bacillus subtilis proteases were maximum at pH 9 and 10 respectively. Lactobacillus brevis protease activity was maximum at temperature of 62 ºC, while beyond this value, a general thermal instability of these active proteins was observed. At above 70 ºC, the catalytic activities of Corynebacterium sp., Vibrio sp., Zymomonas sp. and Arthrobacter sp. proteases were progressively reduced over a period of 120 min of incubation, while Bacillus subtlis and Lactobacillus brevis proteases were relatively stable. Effect of metal ions was investigated on the catalytic activity of protease from the microorganisms. Lactobacillus brevis,Zymomonas sp., Arthrobacter sp., Corynebacterium sp. and Bacillus subtilis protease activities were strongly activated by metal ions such as Ca+2 and Mg+2. Enzyme activities were inhibited strongly by Cu2+ and Hg2+ but were not

  6. Structural and functional characterization of cleavage and inactivation of human serine protease inhibitors by the bacterial SPATE protease EspPα from enterohemorrhagic E. coli.

    Directory of Open Access Journals (Sweden)

    André Weiss

    Full Text Available EspPα and EspI are serine protease autotransporters found in enterohemorrhagic Escherichia coli. They both belong to the SPATE autotransporter family and are believed to contribute to pathogenicity via proteolytic cleavage and inactivation of different key host proteins during infection. Here, we describe the specific cleavage and functional inactivation of serine protease inhibitors (serpins by EspPα and compare this activity with the related SPATE EspI. Serpins are structurally related proteins that regulate vital protease cascades, such as blood coagulation and inflammatory host response. For the rapid determination of serpin cleavage sites, we applied direct MALDI-TOF-MS or ESI-FTMS analysis of coincubations of serpins and SPATE proteases and confirmed observed cleavage positions using in-gel-digest of SDS-PAGE-separated degradation products. Activities of both serpin and SPATE protease were assessed in a newly developed photometrical assay using chromogenic peptide substrates. EspPα cleaved the serpins α1-protease inhibitor (α1-PI, α1-antichymotrypsin, angiotensinogen, and α2-antiplasmin. Serpin cleavage led to loss of inhibitory function as demonstrated for α1-PI while EspPα activity was not affected. Notably, EspPα showed pronounced specificity and cleaved procoagulatory serpins such as α2-antiplasmin while the anticoagulatory antithrombin III was not affected. Together with recently published research, this underlines the interference of EspPα with hemostasis or inflammatory responses during infection, while the observed interaction of EspI with serpins is likely to be not physiologically relevant. EspPα-mediated serpin cleavage occurred always in flexible loops, indicating that this structural motif might be required for substrate recognition.

  7. The Effect of the Protease Inhibitors Ritonavir on the Rate of Metabolism of Midazolam

    Science.gov (United States)

    1999-10-01

    the HIV protease enzyme that processes the viral proteins essential for the completion of the viral life cycle , thus decreasing the production of more...of long protein chains of the virus so that they can be packaged to complete the viral life cycle . The HIV protease enzyme cuts the long chain into...enzyme (Vmax) and rate constants (Km). In order to avoid the difficulty plotting curvilinear data of enzyme catalyzed reactions, the biochemists

  8. Role of Intracellular Proteases in the Antibiotic Resistance, Motility, and Biofilm Formation of Pseudomonas aeruginosa

    OpenAIRE

    Fernández, Lucía; Breidenstein, Elena B. M.; Song, Diana; Hancock, Robert E. W.

    2012-01-01

    Pseudomonas aeruginosa possesses complex regulatory networks controlling virulence and survival under adverse conditions, including antibiotic pressure, which are interconnected and share common regulatory proteins. Here, we screen a panel of 13 mutants defective in intracellular proteases and demonstrate that, in addition to the known alterations in Lon and AsrA mutants, mutation of three protease-related proteins PfpI, ClpS, and ClpP differentially affected antibiotic resistance, swarming m...

  9. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures

    Czech Academy of Sciences Publication Activity Database

    Zoll, Sebastian; Stanchev, Stancho; Began, Jakub; Škerle, Jan; Lepšík, Martin; Peclinovská, Lucie; Majer, Pavel; Stříšovský, Kvido

    2014-01-01

    Roč. 33, č. 20 (2014), s. 2408-2421 ISSN 0261-4189 R&D Projects: GA ČR GAP305/11/1886; GA MŠk(CZ) LK11206; GA MŠk LO1302; GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : intramembrane protease * rhomboid family * rhomboid protease * structure * substrate recognition Subject RIV: CE - Biochemistry Impact factor: 10.434, year: 2014

  10. Interspecific differences between D. pulex and D. magna in tolerance to cyanobacteria with protease inhibitors.

    Directory of Open Access Journals (Sweden)

    Christian J Kuster

    Full Text Available It is known that cyanobacteria negatively affect herbivores due to their production of toxins such as protease inhibitors. In the present study we investigated potential interspecific differences between two major herbivores, Daphnia magna and Daphnia pulex, in terms of their tolerance to cyanobacteria with protease inhibitors. Seven clones each of D. magna and of D. pulex were isolated from different habitats in Europe and North America. To test for interspecific differences in the daphnids' tolerance to cyanobacteria, their somatic and population growth rates were determined for each D. magna and D. pulex clone after exposure to varying concentrations of two Microcystis aeruginosa strains. The M. aeruginosa strains NIVA and PCC(- contained either chymotrypsin or trypsin inhibitors, but no microcystins. Mean somatic and population growth rates on a diet with 20% NIVA were significantly more reduced in D. pulex than in D. magna. On a diet with 10% PCC(-, the population growth of D. pulex was significantly more reduced than that of D. magna. This indicates that D. magna is more tolerant to cyanobacteria with protease inhibitors than D. pulex. The reduction of growth rates was possibly caused by an interference of cyanobacterial inhibitors with proteases in the gut of Daphnia, as many other conceivable factors, which might have been able to explain the reduced growth, could be excluded as causal factors. Protease assays revealed that the sensitivities of chymotrypsins and trypsins to cyanobacterial protease inhibitors did not differ between D. magna and D. pulex. However, D. magna exhibited a 2.3-fold higher specific chymotrypsin activity than D. pulex, which explains the observed higher tolerance to cyanobacterial protease inhibitors of D. magna. The present study suggests that D. magna may control the development of cyanobacterial blooms more efficiently than D. pulex due to differences in their tolerance to cyanobacteria with protease

  11. Functional characterization of the mammalian iAAA protease subunit, YME1L

    OpenAIRE

    Majczak, Joanna

    2008-01-01

    The iAAA protease is an ATP-dependent proteolytic complex in the mitochondrial inner membrane and belongs to the highly conserved family of AAA proteins. In the yeast Saccharomyces cerevisiae, the iAAA protease is a homo-oligomeric complex composed of Yme1p subunits which are active in the intermembrane space and mediate protein quality control. Yeast cells lacking Yme1p are characterized by pleiotropic phenotypes including a respiratory deficiency at elevated temperature and an aberrant mito...

  12. Molecular Characterization of Clinical Isolates of Human Immunodeficiency Virus Resistant to the Protease Inhibitor Darunavir

    Czech Academy of Sciences Publication Activity Database

    Grantz Šašková, Klára; Kožíšek, Milan; Řezáčová, Pavlína; Brynda, Jiří; Yashina, T.; Kagan, R. M.; Konvalinka, Jan

    2009-01-01

    Roč. 83, č. 17 (2009), s. 8810-8818 ISSN 0022-538X R&D Projects: GA MŠk 1M0508 EU Projects: European Commission(XE) 37693 - HIV PI RESISTANCE Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520514 Keywords : HIV -1 protease * darunavir * X-ray structural analysis * protease inhibitor * mutations Subject RIV: CE - Biochemistry Impact factor: 5.150, year: 2009

  13. Enhancement of sequential zymography technique for the detection of thermophilic lipases and proteases.

    Science.gov (United States)

    Wilkesman, Jeff; Hernández, Zully; Fernández, Marleny; Contreras, Lellys M; Kurz, Liliana

    2014-05-01

    Analysis of lipases and proteases present in cell-free fractions of thermophilic Bacillus sp. cultures were performed in an enhanced sequential zymography method. After the PAGE run, the gel was electrotransferred to another polyacrylamide gel containing a mixture of glycerol tributyrate, olive oil and gelatin. After transference, this substrate-mix gel was incubated for lipase detection, until bands appeared, and later stained with CBB for protease detection. Assets are, besides detecting two enzymes on a single gel, time and material saving.

  14. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection.

    Directory of Open Access Journals (Sweden)

    Matthew J Kesic

    Full Text Available Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs human airway trypsin-like protease (HAT and transmembrane protease, serine 2 (TMPRSS2, whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI. Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility.

  15. Excretory bladder: the source of cysteine proteases in Paragonimus westermani metacercariae

    OpenAIRE

    Yang, Hyun-Jong; Chung, Young-Bae; Kang, Shin-Yong; Kong, Yoon; Cho, Seung-Yull

    2002-01-01

    The cysteine proteases of Paragonimus westermani metacercariae are involved in metacercarial excystment, host immune modulation, and possibly in tissue penetration. In order to clarify the origin of the enzymes, 28 and 27 kDa cysteine proteases in metacercarial excretory-secretory products were purified through the FPLC system using Mono Q column chromatography. The polyclonal antibodies to the enzymes were produced in BALB/c mice. Immunolocalization studies revealed that both cysteine protea...

  16. Modulating effects of the protease inhibitor Antipain on x-ray induced transformations

    International Nuclear Information System (INIS)

    Borek, C.; Miller, R.C.

    1979-01-01

    Protease inhibitors have been shown to inhibit the expression of mutations in bacteria and to inhibit the tumor-promoting effect of phorbol esters in mice. We have investigated the effect of the protease inhibitor Antipain on cell transformation by x-irradiation in two in vitro systems; namely short-term cultures of freshly explanted hamster embryo cells and in the 10T1/2 cell line derived and cloned from C3H mouse embryo

  17. Identification and characterization of fusolisin, the Fusobacterium nucleatum autotransporter serine protease.

    Directory of Open Access Journals (Sweden)

    Lior Doron

    Full Text Available Fusobacterium nucleatum is an oral anaerobe associated with periodontal disease, adverse pregnancy outcomes and colorectal carcinoma. A serine endopeptidase of 61-65 kDa capable of damaging host tissue and of inactivating immune effectors was detected previously in F. nucleatum. Here we describe the identification of this serine protease, named fusolisin, in three oral F. nucleatum sub-species. Gel zymogram revealed fusobacterial proteolytic activity with molecular masses ranging from 55-101 kDa. All of the detected proteases were inhibited by the serine protease inhibitor PMSF. analysis revealed that all of the detected proteases are encoded by genes encoding an open reading frame (ORF with a calculated mass of approximately 115 kDa. Bioinformatics analysis of the identified ORFs demonstrated that they consist of three domains characteristic of autotransporters of the type Va secretion system. Our results suggest that the F. nucleatum fusolisins are derived from a precursor of approximately 115 kDa. After crossing the cytoplasmic membrane and cleavage of the leader sequence, the C-terminal autotransporter domain of the remaining 96-113 kDa protein is embedded in the outer membrane and delivers the N-terminal S8 serine protease passenger domain to the outer cell surface. In most strains the N-terminal catalytic 55-65 kDa domain self cleaves and liberates itself from the autotransporter domain after its transfer across the outer cell membrane. In F. nucleatum ATCC 25586 this autocatalytic activity is less efficient resulting in a full length membrane-anchored serine protease. The mature serine protease was found to cleave after Thr, Gly, Ala and Leu residues at the P1 position. Growth of F. nucleatum in complex medium was inhibited when serine protease inhibitors were used. Additional experiments are needed to determine whether fusolisin might be used as a target for controlling fusobacterial infections.

  18. Identification and characterization of fusolisin, the Fusobacterium nucleatum autotransporter serine protease.

    Science.gov (United States)

    Doron, Lior; Coppenhagen-Glazer, Shunit; Ibrahim, Yara; Eini, Amir; Naor, Ronit; Rosen, Graciela; Bachrach, Gilad

    2014-01-01

    Fusobacterium nucleatum is an oral anaerobe associated with periodontal disease, adverse pregnancy outcomes and colorectal carcinoma. A serine endopeptidase of 61-65 kDa capable of damaging host tissue and of inactivating immune effectors was detected previously in F. nucleatum. Here we describe the identification of this serine protease, named fusolisin, in three oral F. nucleatum sub-species. Gel zymogram revealed fusobacterial proteolytic activity with molecular masses ranging from 55-101 kDa. All of the detected proteases were inhibited by the serine protease inhibitor PMSF. analysis revealed that all of the detected proteases are encoded by genes encoding an open reading frame (ORF) with a calculated mass of approximately 115 kDa. Bioinformatics analysis of the identified ORFs demonstrated that they consist of three domains characteristic of autotransporters of the type Va secretion system. Our results suggest that the F. nucleatum fusolisins are derived from a precursor of approximately 115 kDa. After crossing the cytoplasmic membrane and cleavage of the leader sequence, the C-terminal autotransporter domain of the remaining 96-113 kDa protein is embedded in the outer membrane and delivers the N-terminal S8 serine protease passenger domain to the outer cell surface. In most strains the N-terminal catalytic 55-65 kDa domain self cleaves and liberates itself from the autotransporter domain after its transfer across the outer cell membrane. In F. nucleatum ATCC 25586 this autocatalytic activity is less efficient resulting in a full length membrane-anchored serine protease. The mature serine protease was found to cleave after Thr, Gly, Ala and Leu residues at the P1 position. Growth of F. nucleatum in complex medium was inhibited when serine protease inhibitors were used. Additional experiments are needed to determine whether fusolisin might be used as a target for controlling fusobacterial infections.

  19. Protease inhibitor from insect silk - activities of derivatives expressed in vitro and in transgenic potato

    Czech Academy of Sciences Publication Activity Database

    Kodrík, Dalibor; Kludkiewicz, Barbara; Navrátil, Oldřich; Skoková Habuštová, Oxana; Horáčková, V.; Svobodová, Z.; Vinokurov, Konstantin; Sehnal, František

    2013-01-01

    Roč. 171, č. 1 (2013), s. 209-224 ISSN 0273-2289 R&D Projects: GA MZe QI91A229 Institutional support: RVO:60077344 ; RVO:61389030 Keywords : genetically modified organism * silk protease inhibitor * protease Subject RIV: ED - Physiology Impact factor: 1.687, year: 2013 http://link.springer.com/content/pdf/10.1007%2Fs12010-013-0325-9.pdf

  20. KAJIAN SIFAT FISIKOKIMIA DAN ORGANOLEPTIK HIDROLISAT TEMPE HASIL HIDROLISIS PROTEASE [Study on physicochemical and organoleptic properties of tempeh hydrolysate produced by protease

    Directory of Open Access Journals (Sweden)

    Bambang Herry

    2002-12-01

    Full Text Available Physicochemical and organoleptic properties of tempeh hydrolysate produced by protease were studied. The tempeh hydrolysate had different properties comparing with those of the unhydrolyzed tempeh powder. Hydrolysis of the tempeh protein could lower the antioxidant activity. Accordingly, the TBA value increased significantly when the tempeh was hydrolyzed by protease. This process also promoted Maillard reaction, resulting in a more brown color than that of the unhydrolyzed tempeh powder. Moreover, the tempeh hydrolysate had a better protein solubility, and a higher index of umami taste by organoleptic evaluation.

  1. Endosymbiotic and host proteases in the digestive tract of the invasive snail Pomacea canaliculata: diversity, origin and characterization.

    Directory of Open Access Journals (Sweden)

    Martín S Godoy

    Full Text Available Digestive proteases of the digestive tract of the apple snail Pomacea canaliculata were studied. Luminal protease activity was found in the crop, the style sac and the coiled gut and was significantly higher in the coiled gut. Several protease bands and their apparent molecular weights were identified in both tissue extracts and luminal contents by gel zymography: (1 a 125 kDa protease in salivary gland extracts and in the crop content; (2 a 30 kDa protease throughout all studied luminal contents and in extracts of the midgut gland and of the endosymbionts isolated from this gland; (3 two proteases of 145 and 198 kDa in the coiled gut content. All these proteases were inhibited by aprotinin, a serine-protease inhibitor, and showed maximum activity between 30°C and 35°C and pH between 8.5 and 9.5. Tissue L-alanine-N-aminopeptidase activity was determined in the wall of the crop, the style sac and the coiled gut and was significantly higher in the coiled gut. Our findings show that protein digestion in P. canaliculata is carried out through a battery of diverse proteases originated from the salivary glands and the endosymbionts lodged in the midgut gland and by proteases of uncertain origin that occur in the coiled gut lumen.

  2. Endosymbiotic and host proteases in the digestive tract of the invasive snail Pomacea canaliculata: diversity, origin and characterization.

    Science.gov (United States)

    Godoy, Martín S; Castro-Vazquez, Alfredo; Castro-Vasquez, Alfredo; Vega, Israel A

    2013-01-01

    Digestive proteases of the digestive tract of the apple snail Pomacea canaliculata were studied. Luminal protease activity was found in the crop, the style sac and the coiled gut and was significantly higher in the coiled gut. Several protease bands and their apparent molecular weights were identified in both tissue extracts and luminal contents by gel zymography: (1) a 125 kDa protease in salivary gland extracts and in the crop content; (2) a 30 kDa protease throughout all studied luminal contents and in extracts of the midgut gland and of the endosymbionts isolated from this gland; (3) two proteases of 145 and 198 kDa in the coiled gut content. All these proteases were inhibited by aprotinin, a serine-protease inhibitor, and showed maximum activity between 30°C and 35°C and pH between 8.5 and 9.5. Tissue L-alanine-N-aminopeptidase activity was determined in the wall of the crop, the style sac and the coiled gut and was significantly higher in the coiled gut. Our findings show that protein digestion in P. canaliculata is carried out through a battery of diverse proteases originated from the salivary glands and the endosymbionts lodged in the midgut gland and by proteases of uncertain origin that occur in the coiled gut lumen.

  3. Production and Characterization of Alkaline Protease from a High Yielding and Moderately Halophilic Strain of SD11 Marine Bacteria

    Directory of Open Access Journals (Sweden)

    Hongxia Cui

    2015-01-01

    Full Text Available A marine bacterium SD11, which was isolated from sea muds (Geziwo Qinhuangdao Sea area, China, was used to produce thermostable alkaline serine nonmetal protease in the skim milk agar plate medium with 10% NaCl. The optimal temperature about the manufacture of the extracellular protease was ~60°C. The crude enzyme was stable at 20–50°C. The activity was retained to 60% and 45% after heating for 1 h at 60 and 70°C, respectively. The protease was highly active in a wide pH scope (8.0–10.0 and maximum protease activity exhibited at pH 10.0. The activity was restrained by phenylmethylsulfonyl fluoride (PMSF but mildly increased (~107% in the presence of ethylenediaminetetraacetic acid (EDTA, indicating that the production contains serine-protease(s and nonmetal protease(s. Moreover, the crude alkaline protease was active with the 5 mM Ca2+, Mn2+, Zn2+, Cu2+, Na+, and K+ that existed separately. In addition, the protease showed superduper stability when exposed to an anionic surfactant (5 mM SDS, an oxidizing agent (1% H2O2, and several organic solvents (methanol, isopropanol, and acetone. These results suggest that the marine bacterium SD11 is significant in the industry from the prospects of its ability to produce thermally stable alkaline protease.

  4. Interfacial behavior of alkaline protease at the air-water and oil-water interfaces

    Science.gov (United States)

    Zhang, Jian; Li, Yanyan; Wang, Jing; Zhang, Yue

    2018-03-01

    The interfacial behavior of alkaline protease at the air-water and n-hexane-water interfaces was investigated using interfacial tension, dilatational rheology and dynamic light scattering. Additionally, different adsorption models which are Langmuir, Frumkin, Reorientation-A and Reorientation-R were used to fitting the data of equilibrium interfacial tension for further understanding the interfacial behavior of alkaline protease. Data fitting of the equilibrium interfacial tension was achieved by IsoFit software. The results show that the molecules arrangement of the alkaline protease at the n-hexane-water interface is more tightly than at the air-water interface. The data were further analyzed to indicate that the hydrophobic chains of alkaline protease penetrate into oil phase deeper than the air phase. Also data indicate that the electrostatic interactions and hydrophobic interactions at the n-hexane-water interface are stronger than at the air-water interface within molecules of the alkaline protease. Based on comprehensive analysis of the adsorption kinetics and interfacial rheological properties, interfacial structures mechanism of alkaline protease at n-hexane-water and air-water interfaces was proposed.

  5. Purification and characterization of a novel extracellular alkaline protease from Cellulomonas bogoriensis.

    Science.gov (United States)

    Li, Fan; Yang, Liyuan; Lv, Xue; Liu, Dongbo; Xia, Hongmei; Chen, Shan

    2016-05-01

    An extracellular alkaline protease produced by the alkali-tolerant Cellulomonas bogoriensis was purified by a combination of ammonium sulfate precipitation and cation exchange chromatography. The purity of the protease was detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its molecular weight was confirmed to be 18.3 kDa. The enzyme showed optimum activity at 60 °C and pH 11. The stability of the protease was maintained at a wide temperature range of 4-60 °C and pH range of 3-12. Irreversible inhibition of the enzyme activity by phenylmethylsulfonyl fluoride and tosyl-l-phenylalanine chloromethyl ketone demonstrated that the purified enzyme is a chymotrypsin of the serine protease family. The Km and Vmax of the protease activity on casein were 19.2 mg/mL and 25000 μg/min/mg, respectively. The broad substrate specificity and remarkable stability in the presence of organic solvents, salt, and commercial detergents, as well as its excellent stain removal and dehairing capability, make the purified alkaline protease a promising candidate for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. An efficient procedure for the expression and purification of HIV-1 protease from inclusion bodies.

    Science.gov (United States)

    Nguyen, Hong-Loan Thi; Nguyen, Thuy Thi; Vu, Quy Thi; Le, Hang Thi; Pham, Yen; Trinh, Phuong Le; Bui, Thuan Phuong; Phan, Tuan-Nghia

    2015-12-01

    Several studies have focused on HIV-1 protease for developing drugs for treating AIDS. Recombinant HIV-1 protease is used to screen new drugs from synthetic compounds or natural substances. However, large-scale expression and purification of this enzyme is difficult mainly because of its low expression and solubility. In this study, we constructed 9 recombinant plasmids containing a sequence encoding HIV-1 protease along with different fusion tags and examined the expression of the enzyme from these plasmids. Of the 9 plasmids, pET32a(+) plasmid containing the HIV-1 protease-encoding sequence along with sequences encoding an autocleavage site GTVSFNF at the N-terminus and TEV plus 6× His tag at the C-terminus showed the highest expression of the enzyme and was selected for further analysis. The recombinant protein was isolated from inclusion bodies by using 2 tandem Q- and Ni-Sepharose columns. SDS-PAGE of the obtained HIV-1 protease produced a single band of approximately 13 kDa. The enzyme was recovered efficiently (4 mg protein/L of cell culture) and had high specific activity of 1190 nmol min(-1) mg(-1) at an optimal pH of 4.7 and optimal temperature of 37 °C. This procedure for expressing and purifying HIV-1 protease is now being scaled up to produce the enzyme on a large scale for its application. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Expression and localisation of a senescence-associated KDEL-cysteine protease from Lilium longiflorum tepals.

    Science.gov (United States)

    Battelli, Riccardo; Lombardi, Lara; Picciarelli, Piero; Lorenzi, Roberto; Frigerio, Lorenzo; Rogers, Hilary J

    2014-01-01

    Senescence is a tightly regulated process and both compartmentalisation and regulated activation of degradative enzymes is critical to avoid premature cellular destruction. Proteolysis is a key process in senescent tissues, linked to disassembly of cellular contents and nutrient remobilisation. Cysteine proteases are responsible for most proteolytic activity in senescent petals, encoded by a gene family comprising both senescence-specific and senescence up-regulated genes. KDEL cysteine proteases are present in senescent petals of several species. Isoforms from endosperm tissue localise to ricinosomes: cytosol acidification following vacuole rupture results in ricinosome rupture and activation of the KDEL proteases from an inactive proform. Here data show that a Lilium longiflorum KDEL protease gene (LlCYP) is transcriptionally up-regulated, and a KDEL cysteine protease antibody reveals post-translational processing in senescent petals. Plants over-expressing LlCYP lacking the KDEL sequence show reduced growth and early senescence. Immunogold staining and confocal analyses indicate that in young tissues the protein is retained in the ER, while during floral senescence it is localised to the vacuole. Our data therefore suggest that the vacuole may be the site of action for at least this KDEL cysteine protease during tepal senescence. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Serine protease inhibitors to treat inflammation: a patent review (2011-2016).

    Science.gov (United States)

    Soualmia, Feryel; El Amri, Chahrazade

    2018-02-01

    Inflammation is a physiological part of the complex biological response of tissues to counteract various harmful signals. This process involves diverse actors such as immune cells, blood vessels, and nerves as sources of mediators for inflammation control. Among them serine proteases are key elements in both physiological and pathological inflammation. Areas covered: Serine protease inhibitors to treat inflammatory diseases are being actively investigated by various industrial and academic institutions. The present review covers patent literature on serine protease inhibitors for the therapy of inflammatory diseases patented between 2011 and 2016. Expert opinion: Serine proteases regulating inflammation are versatile enzymes, usually involved in proinflammatory cytokine production and activation of immune cells. Their dysregulation during inflammation can have devastating consequences, promoting various diseases including skin and lung inflammation, neuroinflammation, and inflammatory arthritis. Several serine proteases were selected for their contribution to inflammatory diseases and significant efforts that are spread to develop inhibitors. Strategies developed for inhibitor identification consist on either peptide-based inhibitor derived from endogenous protein inhibitors or small-organic molecules. It is also worth noting that among the recent patents on serine protease inhibitors related to inflammation a significant number are related to retinal vascular dysfunction and skin diseases.

  9. Optimization of fibrinolytic protease production from Bacillus subtilis I-2 using agro-residues

    Directory of Open Access Journals (Sweden)

    Bijender Kumar Bajaj

    2014-10-01

    Full Text Available The aim of this work was to study the production of fibrinolytic protease by Bacillus subtilis I-2 on agricultural residues. Molasses substantially enhanced (63% protease production (652.32 U/mL than control (398.64 U/mL. Soybean meal supported maximum protease production (797.28 U/mL, followed by malt extract (770.1 U/mL, cotton cake (761.04 U/mL, gelatin (742.92 U/mL and beef extract (724.8 U/mL. Based on the Plackett-Burman designed experiments, incubation time, soybean meal, mustard cake and molasses were identified as the significant fermentation parameters. Ammonium sulfate precipitation and DEAE sephadex chromatography resulted 4.8-fold purification of protease. Zymography showed the presence of three iso-forms in the partially purified protease preparation, which was confirmed by the SDS-PAGE analysis (42, 48, 60 kDa. Protease exhibited maximum activity at 50oC and at pH 8.0. Significant stability was observed at 30-50oC and at pH 7.0-10.0. Mg2+, Zn2+, Co2+, Ca2+, Mn2+ and Cu2+,EGTA, EDTA and aprotinin severely decreased the enzyme activity.

  10. Structures of HIV Protease Guide Inhibitor Design to Overcome Drug Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Irene T.; Kovalevsky, Andrey Y.; Harrison, Robert W. (GSU)

    2008-06-03

    The HIV/AIDS infection continues to be a major epidemic worldwide despite the initial promise of antiviral drugs. Current therapy includes a combination of drugs that inhibit two of the virally-encoded enzymes, the reverse transcriptase and the protease. The first generation of HIV protease inhibitors that have been in clinical use for treatment of AIDS since 1995 was developed with the aid of structural analysis of protease-inhibitor complexes. These drugs were successful in improving the life span of HIV-infected people. Subsequently, the rapid emergence of drug resistance has necessitated the design of new inhibitors that target mutant proteases. This second generation of antiviral protease inhibitors has been developed with the aid of data from medicinal chemistry, kinetics, and X-ray crystallographic analysis. Traditional computational methods such as molecular mechanics and dynamics can be supplemented with intelligent data mining approaches. One approach, based on similarities to the protease interactions with substrates, is to incorporate additional interactions with main chain atoms that cannot easily be eliminated by mutations. Our structural and inhibition data for darunavir have helped to understand its antiviral activity and effectiveness on drug resistant HIV and demonstrate the success of this approach.

  11. Purification and characterization of a serine protease (CESP) from mature coconut endosperm

    Science.gov (United States)

    Panicker, Leelamma M; Usha, Rajamma; Roy, Samir; Mandal, Chhabinath

    2009-01-01

    Background In plants, proteases execute an important role in the overall process of protein turnover during seed development, germination and senescence. The limited knowledge on the proteolytic machinery that operates during seed development in coconut (Cocos nucifera L.) prompted us to search for proteases in the coconut endosperm. Findings We have identified and purified a coconut endosperm protease (CESP) to apparent homogeneity. CESP is a single polypeptide enzyme of approximate molecular mass of 68 kDa and possesses pH optimum of 8.5 for the hydrolysis of BAPNA. Studies relating to substrate specificity and pattern of inhibition by various protease inhibitors indicated that CESP is a serine protease with cleavage specificity to peptide bonds after arginine. Purified CESP was often autolysed to two polypeptides of 41.6 kDa (CESP1) and 26.7 kDa (CESP2) and is confirmed by immunochemistry. We have shown the expression of CESP in all varieties of coconut and in all stages of coconut endosperm development with maximum amount in fully matured coconut. Conclusion Since the involvement of proteases in the processing of pre-proteins and maintenance of intracellular protein levels in seeds are well known, we suspect this CESP might play an important role in the coconut endosperm development. However this need to be confirmed using further studies. PMID:19426537

  12. Process optimization by response surface methodology for extracellular alkaline protease production from bacillus subtilis

    International Nuclear Information System (INIS)

    Mushtaq, Z.; Adnan, A.; Mehmood, Z.

    2014-01-01

    Three microbial cultures Bacillus subtilis DSM 1970, Bacillus subtilis GCU-8 and Bacillus licheniformis DSM 1969 were screened for protease production by casein agar plate method. Among these Bacillus subtilis GCU-8 was found to be the most potent protease producer in wide pH range (5.0 to 8.0). Fermentation conditions were optimized for the production of alkaline protease using two statistical tools: Placket Burmen Model for linear regression study and Response Surface Model for interactive effects of significant factors on production. The alkaline protease was optimally produced after 48 hours of incubation at 37 degree C in fermentation media containing equal amounts of substrates (soybean meal and wheat bran, 7.5 g), MgSO/sub 4/ 7H/sub 2/O, 0.10 g and yeast extract 0.55 g. The protease was purified to homogeneity by salt precipitation, ion-exchange chromatography and size exclusion chromatography. The homogeneity and molecular weights were checked by SDS-PAGE. The protease was 45 KDa protein, predominantly alkaline and optimally active at pH 8.0. (author)

  13. An extremophile Microbacterium strain and its protease production under alkaline conditions.

    Science.gov (United States)

    Lü, Jin; Wu, Xiaodan; Jiang, Yali; Cai, Xiaofeng; Huang, Luyao; Yang, Yongbo; Wang, Huili; Zeng, Aibing; Li, Aiying

    2014-05-01

    Extremophiles are potential resources for alkaline protease production. In order to search for alkaline protease producers, we isolated and screened alkaliphilic microorganisms from alkaline saline environments. The microorganism HSL10 was identified as a member of the genus Microbacterium by morphological observation, Gram staining and sequence analysis of the 16S rRNA gene and the 16S-23S rRNA intergenic spacer region. By colony-forming unit counting under alkali or salt stress, it was further identified as an alkaliphilic microbe with mild halotolerance. In addition, it was capable of secreting alkaline proteases, evidenced by larger hydrolyzation zones in the skim milk-containing medium at pH 9.0 than at pH 7.0. Subsequently, we demonstrated that both NaCl and yeast extract significantly promoted protease production by HSL10. Finally, we established a sensitive colorimetric method for the detection of protease production by HSL10 under neutral and alkaline conditions, by using the Bradford reagent for substrate staining to improve the contrast between the hydrolyzation zone and the substrate background on agar plates. HSL10 was the first example of an alkaliphilic protease-producing member in Microbacterium, and its isolation and characterization have both academic and commercial importance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Detection of extracellular protease activity in different species and genera of ectomycorrhizal fungi.

    Science.gov (United States)

    Nygren, Cajsa M R; Edqvist, Johan; Elfstrand, Malin; Heller, Gregory; Taylor, Andy F S

    2007-05-01

    In northern forest ecosystems, most soil nitrogen (N) is in organic form and forest trees are largely dependent on ectomycorrhizal (ECM) fungi and their degradative abilities for N uptake. The ability of ECM fungi to acquire N from organic substrates should, therefore, be a widespread trait given its ecological importance. However, little is known about the degradative abilities of most ECM fungi as they remain untested due to problems of isolation or extremely slow growth in pure culture. In this paper, we present data on extracellular protease activity of 32 species of ECM fungi, most of which have not previously been cultured. Milk powder plates and zymograms were compared for detecting protease activity in these intractable species. In total, 29/32 of the species produced extracellular protease activity, but detection was method dependent. Growth on milk powder plates detected protease activity in 28 of 32 species, while zymograms only detected proteases in Amanita muscaria, Russula chloroides, Lactarius deterrimus and Lactarius quieticolor. The study supports the hypothesis that protease excretion is a widespread physiological trait in ECM fungi and that this ability is of considerable significance for nitrogen uptake in forest ecosystems.

  15. Cysteine proteases and wheat (Triticum aestivum L) under drought: A still greatly unexplored association.

    Science.gov (United States)

    Botha, Anna-Maria; Kunert, Karl J; Cullis, Christopher A

    2017-09-01

    Bread wheat (Triticum aestivum L.) provides about 19% of global dietary energy. Environmental stress, such as drought, affects wheat growth causing premature plant senescence and ultimately plant death. A plant response to drought is an increase in protease-mediated proteolysis with rapid degradation of proteins required for metabolic processes. Among the plant proteases that are increased in their activity following stress, cysteine proteases are the best characterized. Very little is known about particular wheat cysteine protease sequences, their expression and also localization. The current knowledge on wheat cysteine proteases belonging to the five clans (CA, CD, CE, CF and CP) is outlined, in particular their expression and possible function under drought. The first successes in establishing an annotated wheat genome database are further highlighted which has allowed more detailed mining of cysteine proteases. We also share our thoughts on future research directions considering the growing availability of genomic resources of this very important food crop. Finally, we also outline future application of developed knowledge in transgenic wheat plants for environmental stress protection and also as senescence markers to monitor wheat growth under environmental stress conditions. © 2017 John Wiley & Sons Ltd.

  16. Deklorofilasi ekstrak protease dari tanaman biduri (Calotropis gigantea dengan absorban celite

    Directory of Open Access Journals (Sweden)

    Yuli Witono

    2012-02-01

    Full Text Available ‘Biduri’ plant is a wild bush in tropical countries which is one of potential protease source. However, protease extracted fromleaf and stamp top of biduri is still green in color due to contain a protein bounding-chlorophyll. It would be problem if it is used forsome food. The objective of this rearch was to study a dechloroplyllation technique in order to obtain protease with low chlorophyllcontent but high specific activity. The results showed that the best dechlorophyllation method of biduri protease could be eluted by celiteabsorbance. The first step elution was obtained 16 ml filtrate of biduri protease with low chlorophyll. Consist to the result above alsodecreased protein content, with loading capacity was 1.067 gram biduri/gram celite or 0.015 μg chlorophyll/gram celite. Howeverin the second step elution, after biduri filtrate has been freezed for 12 hours was obtained the dechlorophylated biduri protease washigher in loading volume. Resulting in increased of loading capacity to be 2.13 gram biduri/gram celite or 0.004 μg chlorophyll/gramcelite. The chlorophyll decreased to about < 44% of chlorophyll from the first step elution, even the specific activity increased 286%compared with the first step elution.

  17. Cleavage of CD14 and LBP by a protease from Prevotella intermedia

    Science.gov (United States)

    Deschner, James; Singhal, Anuradha; Long, Ping; Liu, Chau-Ching; Piesco, Nicholas

    2016-01-01

    Periodontitis is an inflammatory disease caused by subgingival microorganisms and their components, such as lipopolysaccharide (LPS). Responses of the host to LPS are mediated by CD14 and LPS-binding protein (LBP). In this study, it was determined that proteases from a periodontal pathogen, Prevotella intermedia, cleave CD14 and LBP, and thereby modulate the virulence of LPS. Culture supernatants from two strains of P. intermedia (ATCC 25611 and 25261) cleaved CD14 and LBP in a concentration-dependent manner. Zymographic and molecular mass analysis revealed the presence of a membrane-associated, 170-kDa, monomeric protease. Class-specific inhibitors and stimulators demonstrated that this enzyme is a metal-requiring, thiol-activated, cysteine protease. The protease was stable over a wide range of temperatures (4–56 °C) and pH values (4.5–8.5). This enzyme also decreased the expression of interleukin-1β (IL-1β)-specific mRNA in the LPS-activated macrophage-like cell lines U937 and THP-1 in a concentration-dependent manner, indicating that it also cleaves membrane-associated CD14. Furthermore, addition of soluble CD14 abrogated protease-mediated inhibition of IL-1 mRNA expression induced by LPS. The observations suggest that proteolysis of CD14 and LBP by P. intermedia protease might modulate the virulence of LPS at sites of periodontal infections. PMID:12728301

  18. Comparative characterization of protease activity in cultured spotted rose snapper juveniles (Lutjanus guttatus

    Directory of Open Access Journals (Sweden)

    Emyr Peña

    2015-09-01

    Full Text Available Partial characterizations of digestive proteases were studied in three life stages of spotted rose snapper: early (EJ, middle (MJ and late juvenile (LJ with corresponding average weights of 21.3 ± 2.6 g (3 months after hatching, MAH, 190 ± 4.4 g (7 MAH, and 400 ± 11.5 g (12 MAH. At sampling points, the digestive tract was dissected into the stomach (St, pyloric caeca (PC, and the intestine in three sections (proximal (PI, middle (MI and distal intestine (DI. The effect of pH and temperature and specific inhibitors were evaluated for acid and alkaline proteases. Total acid and alkaline protease activity showed a tendency to increase with juvenile life stage of fish while trypsin activity decreased. Differences were found in acid and alkaline protease activities at different pH and temperatures during juvenile stages. Pepstatin A inhibited total activity in the stomach extract in all juvenile stages. Activity in total alkaline protease inhibition was significantly higher in EJ using TLCK, PMSF, SBTI, Phen and Ovo than in MJ and LJ, while no significant differences were found with TPCK inhibition. Therefore increases in protease activities with fish growth through juvenile stages in which a substitution or diversification in the type of alkaline enzymes exist. These results lead a better comprehension of changes in digestive potential of Lutjanidae fish.

  19. Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors

    Science.gov (United States)

    Serrano-Luna, Jesús; Piña-Vázquez, Carolina; Reyes-López, Magda; Ortiz-Estrada, Guillermo

    2013-01-01

    The standard reference for pathogenic and nonpathogenic amoebae is the human parasite Entamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenic Entamoeba species and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms. PMID:23476670

  20. Dynamic viscoelasticity of protease-treated rice batters for gluten-free rice bread making.

    Science.gov (United States)

    Honda, Yuji; Inoue, Nanami; Sugimoto, Reina; Matsumoto, Kenji; Koda, Tomonori; Nishioka, Akihiro

    2018-03-01

    Papain (cysteine protease), subtilisin (Protin SD-AY10, serine protease), and bacillolysin (Protin SD-NY10, metallo protease) increased the specific volume of gluten-free rice breads by 19-63% compared to untreated bread. In contrast, Newlase F (aspartyl protease) did not expand the volume of the rice bread. In a rheological analysis, the viscoelastic properties of the gluten-free rice batters also depended on the protease categories. Principal component analysis (PCA) analysis suggested that the storage and loss moduli (G' and G″, respectively) at 35 °C, and the maximum values of G' and G″, were important factors in the volume expansion. Judging from the PCA of the viscoelastic parameters of the rice batters, papain and Protin SD-AY10 improved the viscoelasticity for gluten-free rice bread making, and Protin SD-NY effectively expanded the gluten-free rice bread. The rheological properties differed between Protin SD-NY and the other protease treatments.

  1. Quantitative serine protease assays based on formation of copper(II)-oligopeptide complexes.

    Science.gov (United States)

    Ding, Xiaokang; Yang, Kun-Lin

    2015-01-07

    A quantitative protease assay based on the formation of a copper-oligopeptide complex is developed. In this assay, when a tripeptide GGH fragment is cleaved from an oligopeptide chain by serine proteases, the tripeptide quickly forms a pink GGH/Cu(2+) complex whose concentration can be determined quantitatively by using UV-Vis spectroscopy. Therefore, activities of serine proteases can be determined from the formation rate of the GGH/Cu(2+) complex. This principle can be used to detect the presence of serine protease in a real-time manner, or measure proteolytic activities of serine protease cleaving different oligopeptide substrates. For example, by using this assay, we demonstrate that trypsin, a model serine protease, is able to cleave two oligopeptides GGGGKGGH () and GGGGRGGH (). However, the specificity constant (kcat/Km) for is higher than that of (6.4 × 10(3) mM(-1) min(-1)vs. 1.3 × 10(3) mM(-1) min(-1)). This result shows that trypsin is more specific toward arginine (R) than lysine (K) in the oligopeptide sequence.

  2. Streptomyces flavogriseus HS1: Isolation and Characterization of Extracellular Proteases and Their Compatibility with Laundry Detergents

    Directory of Open Access Journals (Sweden)

    Sofiane Ghorbel

    2014-01-01

    Full Text Available The present study describes the isolation of a new protease producing Streptomyces strain HS1 and the biochemical characterization of the secreted proteases. By sequencing of its noted 16S rDNA, HS1 strain was found to have a 100% identity with Streptomyces flavogriseus. The highest protease production was found using FermII media. In these conditions maximum protease production (99 U/mL was obtained after 96 h incubation at 30°C and 150 rpm. HS1 strain produced at least five proteases as revealed by zymogram technique. The enzyme preparation exhibited activity over a broad range of pH (5–11 and temperature (25–70°C. Optimum activity was observed at a pH of 7.0 and a temperature of 50°C. Proteolytic activity was significantly unaffected by Ca2+ and Mg2+. EDTA and PMSF highly decreased the original activity. The crude extracellular proteases showed high stability when used as a detergent additive. These properties offer an interesting potential for enzymatic hydrolysis at the industrial level.

  3. Enzymes for the laundry industries: tapping the vast metagenomic pool of alkaline proteases

    Science.gov (United States)

    Niehaus, F.; Gabor, E.; Wieland, S.; Siegert, P.; Maurer, K. H.; Eck, J.

    2011-01-01

    Summary In the wide field of laundry and cleaning applications, there is an unbroken need for novel detergent proteases excelling in high stability and activity and a suitable substrate range. We demonstrated the large amount of highly diverse subtilase sequences present in metagenomic DNA by recovering 57 non‐redundant subtilase sequence tags with degenerate primers. Furthermore, an activity‐ as well as a sequence homology‐based screening of metagenomic DNA libraries was carried out, using alkaline soil and habitat enrichments as a source of DNA. In this way, 18 diverse full‐length protease genes were recovered, sharing only 37–85% of their amino acid residues with already known protease genes. Active clones were biochemically characterized and subjected to a laundry application assay, leading to the identification of three promising detergent proteases. According to sequence similarity, two proteases (HP53 and HP70) can be classified as subtilases, while the third enzyme (HP23) belongs to chymotrypsin‐like S1 serine proteases, a class of enzymes that has not yet been described for the use in laundry and cleaning applications. PMID:21895993

  4. Streptomyces flavogriseus HS1: isolation and characterization of extracellular proteases and their compatibility with laundry detergents.

    Science.gov (United States)

    Ghorbel, Sofiane; Kammoun, Maher; Soltana, Hala; Nasri, Moncef; Hmidet, Noomen

    2014-01-01

    The present study describes the isolation of a new protease producing Streptomyces strain HS1 and the biochemical characterization of the secreted proteases. By sequencing of its noted 16S rDNA, HS1 strain was found to have a 100% identity with Streptomyces flavogriseus. The highest protease production was found using FermII media. In these conditions maximum protease production (99 U/mL) was obtained after 96 h incubation at 30°C and 150 rpm. HS1 strain produced at least five proteases as revealed by zymogram technique. The enzyme preparation exhibited activity over a broad range of pH (5-11) and temperature (25-70°C). Optimum activity was observed at a pH of 7.0 and a temperature of 50°C. Proteolytic activity was significantly unaffected by Ca(2+) and Mg(2+). EDTA and PMSF highly decreased the original activity. The crude extracellular proteases showed high stability when used as a detergent additive. These properties offer an interesting potential for enzymatic hydrolysis at the industrial level.

  5. Solid-state characterization of the HIV protease inhibitor

    CERN Document Server

    Kim, Y A

    2002-01-01

    The LB71350, (3S, 4R)-Epoxy-(5S)-[[N-(1-methylethoxy) carbonyl]-3-(methylsulfonyl)-L-valinyl]amin= o]-N-[2-methyl-(1R)-[(phenyl)carbonyl]propyl-6-phenylhexanamide, is a novel HIV protease inhibitor. Its equilibrium solubility at room temperature was less than 40 mu g/mL. It was speculated that the low aqueous solubility might be due to the high crystalline lattice energy resulting from intermolecular hydrogen bonds. The present study was carried out to learn the solid-state characteristics of LB71350 using analytical methods such as NMR, FT-IR and XRD. sup 1 sup 3 C Solid-state NMR, solution NMR, and FT-IR spectra of the various solid forms of LB71350 were used to identify the conformation and structure of the solid forms. The chemical shifts of sup 1 sup 3 C solid-state NMR spectra suggest that the crystalline form might have 3 intermolecular hydrogen bondings between monomers.

  6. Design of wide-spectrum inhibitors targeting coronavirus main proteases.

    Directory of Open Access Journals (Sweden)

    Haitao Yang

    2005-10-01

    Full Text Available The genus Coronavirus contains about 25 species of coronaviruses (CoVs, which are important pathogens causing highly prevalent diseases and often severe or fatal in humans and animals. No licensed specific drugs are available to prevent their infection. Different host receptors for cellular entry, poorly conserved structural proteins (antigens, and the high mutation and recombination rates of CoVs pose a significant problem in the development of wide-spectrum anti-CoV drugs and vaccines. CoV main proteases (M(pros, which are key enzymes in viral gene expression and replication, were revealed to share a highly conservative substrate-recognition pocket by comparison of four crystal structures and a homology model representing all three genetic clusters of the genus Coronavirus. This conclusion was further supported by enzyme activity assays. Mechanism-based irreversible inhibitors were designed, based on this conserved structural region, and a uniform inhibition mechanism was elucidated from the structures of Mpro-inhibitor complexes from severe acute respiratory syndrome-CoV and porcine transmissible gastroenteritis virus. A structure-assisted optimization program has yielded compounds with fast in vitro inactivation of multiple CoV M(pros, potent antiviral activity, and extremely low cellular toxicity in cell-based assays. Further modification could rapidly lead to the discovery of a single agent with clinical potential against existing and possible future emerging CoV-related diseases.

  7. Characterization of fluorescence quenching in bifluorophoric protease substrates.

    Science.gov (United States)

    Packard, B Z; Toptygin, D D; Komoriya, A; Brand, L

    1997-09-01

    NorFES is a relatively rigid, bent undecapeptide which contains an amino acid sequence that is recognized by the serine protease elastase (AspAlaIleProNle downward arrow SerIleProLysGlyTyr ( downward arrow indicates the primary cleavage site)). Covalent attachment of a fluorophore on each side of NorFES's elastase cleavage site enables one to use a change of fluorescence intensity as a measure of enzymatic activity. In this study two bichromophoric NorFES derivatives, D-NorFES-A and D-NorFES-D, were prepared in which D (donor) was tetramethylrhodamine and A (acceptor) was rhodamine-X, two chromophores with characteristics suitable for energy transfer. Absorption and fluorescence spectra were obtained with both the intact and cleaved homodoubly, heterodoubly and singly labeled derivatives. It was found that both the homo and hetero doubly-labeled derivatives form ground-state complexes which exhibit exciton bands. The hetero labeled derivative exhibits little or no resonance energy transfer. Spectral measurements were also done in urea, which partially disrupts ground-state dimers.

  8. Prions in Variably Protease-Sensitive Prionopathy: An Update

    Directory of Open Access Journals (Sweden)

    Laura Pirisinu

    2013-07-01

    Full Text Available Human prion diseases, including sporadic, familial, and acquired forms such as Creutzfeldt-Jakob disease (CJD, are caused by prions in which an abnormal prion protein (PrPSc derived from its normal cellular isoform (PrPC is the only known component. The recently-identified variably protease-sensitive prionopathy (VPSPr is characterized not only by an atypical clinical phenotype and neuropathology but also by the deposition in the brain of a peculiar PrPSc. Like other forms of human prion disease, the pathogenesis of VPSPr also currently remains unclear. However, the findings of the peculiar features of prions from VPSPr and of the possible association of VPSPr with a known genetic prion disease linked with a valine to isoleucine mutation at residue 180 of PrP reported recently, may be of great importance in enhancing our understanding of not only this atypical human prion disease in particular, but also other prion diseases in general. In this review, we highlight the physicochemical and biological properties of prions from VPSPr and discuss the pathogenesis of VPSPr including the origin and formation of the peculiar prions.

  9. Alkaline protease contributes to pyocyanin production in Pseudomonas aeruginosa.

    Science.gov (United States)

    Iiyama, Kazuhiro; Takahashi, Eigo; Lee, Jae Man; Mon, Hiroaki; Morishita, Mai; Kusakabe, Takahiro; Yasunaga-Aoki, Chisa

    2017-04-01

    The role of the alkaline protease (AprA) in pyocyanin production in Pseudomonas aeruginosa was investigated. AprA was overproduced when a plasmid carrying the aprA gene was introduced to an aprA-deletion mutant strain, EG03; thus, aprA-complemented EG03 was used as an overproducing strain. The complemented strain produced higher pyocyanin than the mutant strain in all commercially available media evaluated. Particularly, pyocyanin production was higher in the complemented than in the parental strain in brain-heart infusion and tryptic soy broths. These results suggested that protein degradation products by AprA were utilized for pyocyanin production. Protein-rich media were used in subsequent validation studies. Similar results were obtained when the basal medium was supplemented with casein or skim milk as the sole organic nitrogen source. However, gelatin failed to induce abundant pyocyanin production in the complemented strain, despite the presence of protein degradation products by AprA as assessed by SDS-PAGE. Thus, gelatin degradation products may not be suitable for pyocyanin synthesis. In conclusion, AprA could contribute to pyocyanin production in the presence of several proteins or peptides. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Protease analysis by zymography: a review on techniques and patents.

    Science.gov (United States)

    Wilkesman, Jeff; Kurz, Liliana

    2009-01-01

    Zymography, the detection of enzymatic activity on gel electrophoresis, has been a technique described in the literature for at least in the past 50 years. Although a diverse amount of enzymes, especially proteases, have been detected, advances and improvements have been slower in comparison with other molecular biology, biotechnology and chromatography techniques. Most of the reviews and patents published focus on the technique as an element for enzymatic testing, but detailed analytical studies are scarce. Patents referring to zymography per se are few and the technique itself is hardly an important issue in titles or keywords in many scientific publications. This review covers a small condensation of the works published so far dealing with the identification of proteolytic enzymes in electrophoretic gel supports and its variations like 2-D zymography, real-time zymography, and in-situ zymography. Moreover, a scope will be given to visualize the new tendencies of this method, regarding substrates used and activity visualization. What to expect from zymography in the near future is also approached.

  11. Preformulation studies of a novel HIV protease inhibitor, AG1343.

    Science.gov (United States)

    Longer, M; Shetty, B; Zamansky, I; Tyle, P

    1995-09-01

    AG1343 is a novel human immunodeficiency virus (HIV) protease inhibitor designed using protein structure-based techniques and intended for chronic oral administration in the treatment of AIDS-related conditions. The compound is the mesylate salt of a basic amine with a molecular weight of 663.90, pKa of 6.0, and partition coefficient (log P) of 4.1. Examination of the physicochemical properties of a bench-scale lot of the bulk drug was undertaken in order to establish a preformulation database and to begin development of an oral formulation suitable for phase I clinical trials. A stability-indicating gradient HPLC method was developed, and initial stability studies indicated that the compound is relatively stable under accelerated conditions. Water solubility and intrinsic dissolution rate studies, however, revealed the potential for dissolution rate-limited absorption. Alternative salts were prepared and evaluated for water solubility relative to the mesylate. A pH-solubility profile for AG1343 was generated and its solubility in various pharmaceutical solvents was determined. Formulation into several prototypical oral dosage forms for in-vitro evaluation in animal models prior to phase I clinical trials resulted in a several-fold difference in bioavailability between these formulations.

  12. The properties of peptidyl diazoethanes and chloroethanes as protease inactivators.

    Science.gov (United States)

    Wikstrom, P; Kirschke, H; Stone, S; Shaw, E

    1989-04-01

    Earlier work has demonstrated the irreversible inactivation of serine and cysteine proteinases by peptides with a C-terminal chloromethyl ketone group. With a C-terminal diazomethyl ketone, on the other hand, peptides become reagents specific for cysteine proteinases. We have now synthesized and examined the properties of reagents with an additional methyl side chain near the reactive grouping with the goal of diminishing side reactions in a cellular environment. Derivatives of neutral amino acids as well as of lysine and arginine have been prepared. The chloroethyl ketones are about 60% less reactive to chemical nucleophiles than the chloromethyl ketones. However, the susceptibilities of the proteases examined varied remarkably. Cathepsins B and L of the papain family of cysteine proteinases were much less susceptible (about 2 orders of magnitude less) to both peptidyl diazoethyl and chloroethyl ketones. In marked contrast, clostripain, a cysteine proteinase of a separate family was decisively more susceptible to chloroethyl ketones. The serine proteinases showed a drop in susceptibility to the chloroethyl ketones generally, and this was similar to the drop in chemical reactivity in proceeding from the chloromethyl to the chloroethyl ketone.

  13. The protease inhibitor PI*S allele and COPD

    DEFF Research Database (Denmark)

    Hersh, C P; Ly, N P; Berkey, C S

    2005-01-01

    In many countries, the protease inhibitor (SERPINA1) PI*S allele is more common than PI*Z, the allele responsible for most cases of chronic obstructive pulmonary disease (COPD) due to severe alpha 1-antitrypsin deficiency. However, the risk of COPD due to the PI*S allele is not clear. The current...... authors located studies that addressed the risk of COPD or measured lung function in individuals with the PI SZ, PI MS and PI SS genotypes. A separate meta-analysis for each genotype was performed. Aggregating data from six studies, the odds ratio (OR) for COPD in PI SZ compound heterozygotes compared...... with PI MM (normal) individuals was significantly increased at 3.26 (95% confidence intervals (CI): 1.24-8.57). In 17 cross-sectional and case-control studies, the OR for COPD in PI MS heterozygotes was 1.19 (95%CI: 1.02-1.38). However, PI MS genotype was not associated with COPD risk after correcting...

  14. Effectiveness of cysteine proteases on protein/pigment film removal.

    Science.gov (United States)

    Yao, Jiang-Wu; Xiao, Yin; Zuo, Qi-liang; Zhang, Yi; Tao, Tao; Lin, Chang-Jian

    2013-11-01

    Theaflavin (TF) from the black tea can react to human salivary proline-rich proteins (PRPs) to form stains on exposed dental surfaces. Here, we employed a model of protein/pigment film using TF and dephosphorylated bovine β-casein (Dβ-CN), which has an extended conformation, similar to that of salivary PRPs, on a sensor surface to assess the efficacy of cysteine proteases (CPs) including papain, stem bromelain, and ficin, on removing TF bound to Dβ-CN and the control TF readsorption on the residual substrate surfaces was also measured. The protein/pigment complex film was built by using a quartz crystal microbalance with dissipation (QCM-D). The efficacies of CPs were assessed by Boltzman equation model. The surface details were detected by grazing angle infrared spectroscopy spectra, atomic force microscopy images, and contact angles. The efficacy order of CPs on hydrolyzing protein/pigment complex film is ficin>papain>bromelain. The results from grazing angle infrared spectroscopy spectra, atomic force microscopy images, and contact angles demonstrated that TF bound on the Dβ-CN was effectively removed by the CPs, and the amount of TF readsorption on both the residual film of the Dβ-CN/TF and the Dβ-CN was markedly decreased after hydrolysis. This study indicates the potential application of the CPs for tooth stain removal and suggests that these enzymes are worthy of further investigation for use in oral healthcare. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The yeast autophagy protease Atg4 is regulated by thioredoxin.

    Science.gov (United States)

    Pérez-Pérez, María Esther; Zaffagnini, Mirko; Marchand, Christophe H; Crespo, José L; Lemaire, Stéphane D

    2014-01-01

    Autophagy is a membrane-trafficking process whereby double-membrane vesicles called autophagosomes engulf and deliver intracellular material to the vacuole for degradation. Atg4 is a cysteine protease with an essential function in autophagosome formation. Mounting evidence suggests that reactive oxygen species may play a role in the control of autophagy and could regulate Atg4 activity but the precise mechanisms remain unclear. In this study, we showed that reactive oxygen species activate autophagy in the model yeast Saccharomyces cerevisiae and unraveled the molecular mechanism by which redox balance controls Atg4 activity. A combination of biochemical assays, redox titrations, and site-directed mutagenesis revealed that Atg4 is regulated by oxidoreduction of a single disulfide bond between Cys338 and Cys394. This disulfide has a low redox potential and is very efficiently reduced by thioredoxin, suggesting that this oxidoreductase plays an important role in Atg4 regulation. Accordingly, we found that autophagy activation by rapamycin was more pronounced in a thioredoxin mutant compared with wild-type cells. Moreover, in vivo studies indicated that Cys338 and Cys394 are required for the proper regulation of autophagosome biogenesis, since mutation of these cysteines resulted in increased recruitment of Atg8 to the phagophore assembly site. Thus, we propose that the fine-tuning of Atg4 activity depending on the intracellular redox state may regulate autophagosome formation.

  16. Flap Conformations in HIV-1 Protease are Altered by Mutations

    Science.gov (United States)

    Fanucci, Gail; Blackburn, Mandy; Veloro, Angelo; Galiano, Luis; Fangu, Ding; Simmerling, Carlos

    2009-03-01

    HIV-1 protease (PR) is an enzyme that is a major drug target in the treatment of AIDS. Although the structure and function of HIV-1 PR have been studied for over 20 years, questions remain regarding the conformations and dynamics of the β-hairpin turns (flaps) that cover the active site cavity. Distance measurements with pulsed EPR spectroscopy of spin labeled constructs of HIV-1 PR have been used to characterize the flap conformations in the apo and inhibitor bound states. From the most probably distances and the breadth of the distance distribution profiles from analysis of the EPR data, insights regarding the flap conformations and flexibility are gained. The EPR results clearly show how drug pressure selected mutations alter the average conformation of the flaps and the degree of opening of the flaps. Molecular dynamics simulations successfully regenerate the experimentally determined distance distribution profiles, and more importantly, provide structural models for full interpretation of the EPR results. By combining experiment and theory to understand the role that altered flap flexibility/conformations play in the mechanism of drug resistance, key insights are gained toward the rational development of new inhibitors of this important enzyme.

  17. Dengue Virus NS2B/NS3 Protease Inhibitors Exploiting the Prime Side.

    Science.gov (United States)

    Lin, Kuan-Hung; Ali, Akbar; Rusere, Linah; Soumana, Djade I; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-15

    The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein with high affinity for DENV protease. In this study, we designed a series of cyclic peptides interacting with both sides of the active site as inhibitors of dengue virus protease. The design was based on two aprotinin loops and aimed to leverage both key specific interactions of substrate sequences and the entropic advantage driving aprotinin's high affinity. By optimizing the cyclization linker, length, and amino acid sequence, the tightest cyclic peptide achieved a K i value of 2.9 μM against DENV3 wild-type (WT) protease. These inhibitors provide proof of concept that both sides of DENV protease active site can be exploited to potentially achieve specificity and lower hydrophilicity in the design of inhibitors targeting DENV. IMPORTANCE Viruses of the flaviviral family, including DENV and Zika virus transmitted by Aedes aegypti , continue to be a threat to global health by causing major outbreaks in tropical and subtropical regions, with no available direct-acting antivirals for treatment. A better understanding of the molecular requirements for the design of potent and specific inhibitors against flaviviral proteins will contribute to the development of targeted therapies for infections by these viruses. The cyclic peptides reported here as DENV protease inhibitors

  18. Characterization and inhibition of norovirus proteases of genogroups I and II using a fluorescence resonance energy transfer assay

    International Nuclear Information System (INIS)

    Chang, Kyeong-Ok; Takahashi, Daisuke; Prakash, Om; Kim, Yunjeong

    2012-01-01

    Noroviruses are the major cause of food- or water-borne gastroenteritis outbreaks in humans. The norovirus protease that cleaves a large viral polyprotein to nonstructural proteins is essential for virus replication and an attractive target for antiviral drug development. Noroviruses show high genetic diversity with at least five genogroups, GI–GV, of which GI and GII are responsible for the majority of norovirus infections in humans. We cloned and expressed proteases of Norwalk virus (GI) and MD145 virus (GII) and characterized the enzymatic activities with fluorescence resonance energy transfer substrates. We demonstrated that the GI and GII proteases cleaved the substrates derived from the naturally occurring cleavage site in the open reading frame (ORF) 1 of G1 norovirus with similar efficiency, and that enzymatic activity of both proteases was inhibited by commercial protease inhibitors including chymostatin. The interaction of chymostatin to Norwalk virus protease was validated by nuclear magnetic resonance (NMR) spectroscopy.

  19. Characterization and inhibition of norovirus proteases of genogroups I and II using a fluorescence resonance energy transfer assay

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kyeong-Ok [Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, KS 66506 (United States); Takahashi, Daisuke; Prakash, Om [Department of Biochemistry, Kansas State University, Manhattan, KS 66506 (United States); Kim, Yunjeong, E-mail: ykim@vet.ksu.edu [Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, KS 66506 (United States)

    2012-02-20

    Noroviruses are the major cause of food- or water-borne gastroenteritis outbreaks in humans. The norovirus protease that cleaves a large viral polyprotein to nonstructural proteins is essential for virus replication and an attractive target for antiviral drug development. Noroviruses show high genetic diversity with at least five genogroups, GI-GV, of which GI and GII are responsible for the majority of norovirus infections in humans. We cloned and expressed proteases of Norwalk virus (GI) and MD145 virus (GII) and characterized the enzymatic activities with fluorescence resonance energy transfer substrates. We demonstrated that the GI and GII proteases cleaved the substrates derived from the naturally occurring cleavage site in the open reading frame (ORF) 1 of G1 norovirus with similar efficiency, and that enzymatic activity of both proteases was inhibited by commercial protease inhibitors including chymostatin. The interaction of chymostatin to Norwalk virus protease was validated by nuclear magnetic resonance (NMR) spectroscopy.

  20. Protease inhibitor (PI) mediated defense in leaves and flowers of pigeonpea (protease inhibitor mediated defense in pigeonpea).

    Science.gov (United States)

    Padul, Manohar V; Tak, Rajesh D; Kachole, Manvendra S

    2012-03-01

    More than 200 insect pests are found growing on pigeonpea. Insects lay eggs, attack and feed on leaves, flowers and developing pods. Plants have developed elaborate defenses against these insect pests. The present work evaluates protease inhibitor (PI) based defense of pigeonpea in leaves and flowers. PIs in the extracts of these tender tissues were detected by using gel X-ray film contact print method. Up to three PIs (PI-3, PI-4 and PI-5) were detected in these tissues as against nine (PI-1-PI-9) in mature seeds. PI-3 is the major component of these tissues. Mechanical wounding, insect chewing, fungal pathogenesis and application of salicylic acid induced PIs in pigeonpea in these tissues. Induction was found to be local as well as systemic but local response was stronger than systemic response. During both local and systemic induction, PI-3 appeared first. In spite of the presence and induction of PIs in these tender tissues and seeds farmers continue to suffer yield loses. This is due to the weak expression of PIs. However the ability of the plant to respond to external stimuli by producing defense proteins does not seem to be compromised. This study therefore indicates that PIs are components of both constitutive and inducible defense and provide a ground for designing stronger inducible defense (PIs or other insect toxin based) in pigeonpea. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  1. The growth hormone dependent serine protease inhibitor, Spi 2.1 inhibits the des (1-3) insulin-like growth factor-I generating protease.

    Science.gov (United States)

    Maake, C; Yamamoto, H; Murphy, L J

    1997-12-01

    The conversion of insulin-like growth factor-I (IGF-I) to the biologically more active des (1-3) IGF-I variant is catalyzed by a ubiquitous protease. This proteolytic activity is inhibited by human alpha1-antitrypsin and soy-bean trypsin inhibitor and is up-regulated in serum and tissue extracts of hypophysectomized rats. These observations lead us to investigate whether the growth hormone regulated, serine protease inhibitor, Spi 2.1 was able to inhibit the des (1-3) IGF-I generating protease. Dihydrofolate reductase deficient Chinese hamster ovary (CHO(dhfr-ve)) cells were transfected with a rat Spi 2.1 expression vector containing the dhfr and neomycin resistance gene. Stable transfectants were selected using G418 and amplified using methotrexate. Conditioned medium from Spi 2.1 transfected CHO cells potently inhibited proteolytic activity directed against a synthetic hexa-peptide with a sequence identical to the N-terminal of IGF-I. In contrast conditioned medium from wild-type CHO cells had little effect. Based upon these observations we suggest that our previous finding of enhanced des (1-3) IGF-I generating protease activity in growth hormone deficient rats may be, at least partly explained by reduced levels of Spi 2.1. Furthermore, we propose that the regulation of the generation of des (1-3) IGF-I may be an additional potential site of growth hormone regulation of IGF-I action.

  2. Differential efficacy of protease inhibitors against HCV genotypes 2a, 3a, 5a, and 6a NS3/4A protease recombinant viruses

    DEFF Research Database (Denmark)

    Gottwein, Judith M; Scheel, Troels K H; Jensen, Tanja B

    2011-01-01

    The hepatitis C virus (HCV) genotype influences efficacy of interferon (IFN)-based therapy. HCV protease inhibitors are being licensed for treatment of genotype 1 infection. Because there are limited or no data on efficacy against HCV genotypes 2-7, we aimed at developing recombinant infectious c...

  3. Penapisan dan Karakterisasi Protease dari Bakteri Termo-Asidofilik P5-A dari Sumber Air Panas Tambarana

    Directory of Open Access Journals (Sweden)

    Dewi Seswita Zilda

    2008-12-01

    (ekstrak kasar bekerja optimal pada pH 6 dan suhu 500C. Aktivitas enzim dipacu oleh adanya ion Ca2+ dan Fe2+ (sebagai garam klorida;1mM, sedangkan Co2+, Zn2+, dan EDTA dalam konsentrasi yang sama menghambat aktivitas enzim tersebut. Enzim protease P5-a tahan terhadap deterjen (SDS 1%, Triton X-100 (5%, dan PMSF (1 dan 5 mM, menunjukkan bahwa enzim protease tersebut kemungkinan termasuk ke dalam protease logam.

  4. Rapid Detection of Thrombin and Other Protease Activity Directly in Whole Blood

    Science.gov (United States)

    Yu, Johnson Chung Sing

    Thrombin is a serine protease that plays a key role in the clotting cascade to promote hemostasis following injury to the endothelium. From a clinical diagnostic perspective, in-vivo thrombin activity is linked to various blood clotting disorders, as well as cardiovascular disease (DVT, arteriosclerosis, etc). Thus, the ability to rapidly measure protease activity directly in whole blood will provide important new diagnostics, and clinical researchers with a powerful tool to further elucidate the relationship between circulating protease levels and disease. The ultimate goal is to design novel point of care (POC) diagnostic devices that are capable of monitoring protease activities directly in whole blood and biological sample. A charge-changing substrate specific to the thrombin enzyme was engineered and its functionality was confirmed by a series of experiments. This led to the preliminary design, construction, and testing of two device platforms deemed fully functional for the electrophoretic separation and focusing of charged peptide fragments. The concept of using the existing charge-changing substrate platform for bacterial protease detection was also investigated. Certain strains of E coli are associated with severe symptoms such as abdominal cramps, bloody diarrhea, and vomiting. The OmpT protease is expressed on the outer membrane of E coli and plays a role in the cleavage of antimicrobial peptides, the degradation of recombinant heterologous proteins, and the activation of plasminogen in the host. Thus, a synthetic peptide substrate specific to the OmpT protease was designed and modeled for the purpose of detecting E coli in biological sample.

  5. Mutational patterns in the frameshift-regulating site of HIV-1 selected by protease inhibitors.

    Science.gov (United States)

    Knops, Elena; Brakier-Gingras, Léa; Schülter, Eugen; Pfister, Herbert; Kaiser, Rolf; Verheyen, Jens

    2012-05-01

    Sustained suppression of viral replication in HIV-1 infected patients is especially hampered by the emergence of HIV-1 drug resistance. The mechanisms of drug resistance mainly involve mutations directly altering the interaction of viral enzymes and inhibitors. However, protease inhibitors do not only select for mutations in the protease but also for mutations in the precursor Gag and Pol proteins. In this study, we analysed the frameshift-regulating site of HIV-1 subtype B isolates, which also encodes for Gag and Pol proteins, classified as either treatment-naïve (TN) or protease inhibitor resistant (PI-R). HIV-1 Gag cleavage site mutations (G435E, K436N, I437V, L449F/V) especially correlated with protease inhibitor resistance mutations, but also Pol cleavage site mutations (D05G, D05S) could be assigned to specific protease resistance profiles. Additionally, two Gag non-cleavage site mutations (S440F, H441P) were observed more often in HIV-1 isolates carrying protease resistance mutations. However, in dual luciferase assays, the frameshift efficiencies of specific clones did not reveal any effect from these mutations. Nevertheless, two patterns of mutations modestly increased the frameshift rates in vitro, but were not specifically accumulating in PI-resistant HIV-1 isolates. In summary, HIV-1 Gag cleavage site mutations were dominantly selected in PI-resistant HIV-1 isolates but also Pol cleavage site mutations influenced resistance profiles in the protease. Additionally, Gag non-cleavage site mutations accumulated in PI-resistant HIV-1 isolates, but were not related to an increased frameshift efficiency.

  6. Triclabendazole Effect on Protease Enzyme Activity in the Excretory- Secretory Products of Fasciola hepatica in Vitro.

    Directory of Open Access Journals (Sweden)

    Yosef Shrifi

    2014-03-01

    Full Text Available Fasciola hepatica is one of the most important helminthes parasites and triclabendazole (TCBZ is routinely used for treatment of infected people and animals. Secreted protease enzymes by the F. hepatica plays a critical role in the invasion, migration, nutrition and the survival of parasite and are key targets for novel drugs and vaccines. The aim of study was to determine the protease activity of excretory- secretory products (ESP of F. hepatica in the presence of TCBZ anthelmintic.F. hepatica helminthes were collected and cultured within RPMI 1640 [TCBZ treated (test and untreated (control] for 6 h at 37 °C. ESP of treated and control were collected, centrifuged and supernatants were stored at -20°C. Protein concentrations were measured according to Bradford method. Protease enzymes activities of ESP samples were estimated by using sigma's non-specific protease activity assay. ESP protein bands were detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE.Mean protein concentrations in control and treated of ESP samples were determined 196.1 ±14.52 and 376.4 ±28.20 μg/ml, respectively. Mean protease enzymes activities in control and treated were 0.37 ±0.1 and 0.089 ±0.03 U/ml, respectively. Significant difference between proteins concentrations and protease enzymes activities of two groups was observed (P<0.05. SDS-PAGE showed different patterns of protein bands between treated and control samples.The TCBZ reduced secreted protease enzymes activities and possibly effects on invasion, migration, nutrition and particularly survival of the parasite in the host tissues.

  7. Isolation, identification and characterization of organic solvent tolerant protease from Bacillus sp. DAF-01

    Directory of Open Access Journals (Sweden)

    Arastoo Badoei-Dalfard

    2012-01-01

    Full Text Available Introduction: Organic solvent-tolerant bacteria are relatively novel extermophilic microorganisms, which can produce organic tolerant protease with capacity of being used in industrial biotechnology for producing high-value compounds. Therefore, finding of these bacteria has drawn much researchers attention nowadays. Materials and Methods: In this project, samples were collected from a hot spring, located in Jiroft. Samples were incubated in medium supplemented with cyclohexane and toluene for 3 days. Screening of protease producing bacteria was performed on the specific media, SKM (Skim milk agar, based on clear area diameter. The best bacterium was identified based on 16s rDNA gene. Protease activity was considered in different temperatures, pH and organic solvents.Results: Sequence alignment and phylogenetic tree results showed that this bacteria was closely related to Bacillus niacini, with 97% homology. Enzymatic studies showed that, this enzyme was active at a wide range of temperatures, 20-90 °C and it,s optimal activity was in 60 °C. In addition, maximum protease activity was obtained in the 8-9 range of pH, and optimal stability was also at pH 9.0. Protease activity in the presence of methanol, toluene, isopropanol, cyclohexane and DMF ‏showed that, remaining activity was at least 80% compared to the control (without organic solvent Discussion and Conclusion: Thermopilic capacity, being active in alkaline protease and high protease stability in the presence of organic solvents all herald a remarkable application for using in different industries.

  8. Ionic strength and transition metals control PrPSc protease resistance and conversion-inducing activity.

    Science.gov (United States)

    Nishina, Koren; Jenks, Samantha; Supattapone, Surachai

    2004-09-24

    The essential component of infectious prions is a misfolded protein termed PrPSc, which is produced by conformational change of a normal host protein, PrPC. It is currently unknown whether PrPSc molecules exist in a unique conformation or whether they are able to undergo additional conformational changes. Under commonly used experimental conditions, PrPSc molecules are characteristically protease-resistant and capable of inducing the conversion of PrPC molecules into new PrPSc molecules. We describe the effects of ionic strength, copper, and zinc on the conformation-dependent protease resistance and conversion-inducing activity of PrPSc molecules in scrapie-infected hamster brains. In the absence of divalent cations, PrPSc molecules were > 20-fold more sensitive to proteinase K digestion in low ionic strength buffers than in high ionic strength buffers. Addition of micromolar concentrations of copper or zinc ions restored the protease resistance of PrPSc molecules under conditions of low ionic strength. These transition metals also controlled the conformation of purified truncated PrP-(27-30) molecules at low ionic strength, confirming that the N-terminal octapeptide repeat region of PrPSc is not required for binding to copper or zinc ions. The protease-sensitive and protease-resistant conformations of PrPSc were reversibly interchangeable, and only the protease-resistant conformation of PrPSc induced by high ionic strength was able to induce the formation of new protease-resistant PrP (PrPres) molecules in vitro. These findings show that PrPSc molecules are structurally interconvertible and that only a subset of PrPSc conformations are able to induce the conversion of other PrP molecules. Copyright 2004 American Society for Biochemistry and Molecular Biology, Inc.

  9. The effect of limited proteolysis by different proteases on the formation of whey protein fibrils.

    Science.gov (United States)

    Gao, Yu-Zhe; Xu, Hong-Hua; Ju, Ting-Ting; Zhao, Xin-Huai

    2013-01-01

    Four proteases: trypsin, protease A, pepsin, and protease M were selected to modify whey protein concentrate (WPC) at a low degree of hydrolysis (0.1, 0.2, and 0.3%) before adjusting to pH 2.0 and heating at 90°C to gain insight into the influence of proteolysis on fibril formation. The kinetics of fibril formation were performed on native and modified WPC using the fluorescent dye thioflavin T in conjunction with transmission electron microscopy and far-UV circular dichroism spectroscopy for the morphological and secondary structural analyses. The change in surface hydrophobicity and content of free sulfhydryl groups were also observed during the formation of fibrils for the native and modified WPC. The content of aggregation and thioflavin T kinetic data indicated that the ability of fibril formation was apparently different for WPC modified by the 4 proteases. Whey protein concentrate modified by trypsin aggregated more during heating and the fibril formation rate was faster than that of the native WPC. Whey protein concentrate modified by the other proteases showed slower aggregation with worse amyloid fibril morphology. Compared with the native WPC, the structure of WPC changed differently after being modified by proteases. The state of α-helix structure for modified WPC played the most important role in the formation of fibrils. Under the mild conditions used in this work, the α-helix structure of WPC modified by trypsin caused little destruction and resulted in fibrils with good morphology; the content of α-helices for WPC modified by other proteases decreased to 36.19 to 50.94%; thus, fibril formation was inhibited. In addition, it was beneficial for the modified WPC to form fibrils such that the surface hydrophobicity increased and the content of free sulfhydryl groups slightly decreased during heating. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Defining a new diagnostic assessment parameter for wound care: Elevated protease activity, an indicator of nonhealing, for targeted protease-modulating treatment.

    Science.gov (United States)

    Serena, Thomas E; Cullen, Breda M; Bayliff, Simon W; Gibson, Molly C; Carter, Marissa J; Chen, Lingyun; Yaakov, Raphael A; Samies, John; Sabo, Matthew; DeMarco, Daniel; Le, Namchi; Galbraith, James

    2016-05-01

    It is widely accepted that elevated protease activity (EPA) in chronic wounds impedes healing. However, little progress has occurred in quantifying the level of protease activity that is detrimental for healing. The aim of this study was to determine the relationship between inflammatory protease activity and wound healing status, and to establish the level of EPA above which human neutrophil-derived elastase (HNE) and matrix metalloproteases (MMP) activities correlate with nonhealing wounds. Chronic wound swab samples (n = 290) were collected from four wound centers across the USA to measure HNE and MMP activity. Healing status was determined according to percentage reduction in wound area over the previous 2-4 weeks; this was available for 211 wounds. Association between protease activity and nonhealing wounds was determined by receiver operating characteristic analysis (ROC), a statistical technique used for visualizing and analyzing the performance of diagnostic tests. ROC analysis showed that area under the curve (AUC) for HNE were 0.69 for all wounds and 0.78 for wounds with the most reliable wound trajectory information, respectively. For MMP, the corresponding AUC values were 0.70 and 0.82. Analysis suggested that chronic wounds having values of HNE >5 and/or MMP ≥13, should be considered wound healing impaired. EPA is indicative of nonhealing wounds. Use of a diagnostic test to detect EPA in clinical practice could enable clinicians to identify wounds that are nonhealing, thus enabling targeted treatment with protease modulating therapies. © 2016 by the Wound Healing Society.

  11. The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant–pathogen interactions

    Science.gov (United States)

    Jashni, Mansoor Karimi; Mehrabi, Rahim; Collemare, Jérôme; Mesarich, Carl H.; de Wit, Pierre J. G. M.

    2015-01-01

    Upon host penetration, fungal pathogens secrete a plethora of effectors to promote disease, including proteases that degrade plant antimicrobial proteins, and protease inhibitors (PIs) that inhibit plant proteases with antimicrobial activity. Conversely, plants secrete proteases and PIs to protect themselves against pathogens or to mediate recognition of pathogen proteases and PIs, which leads to induction of defense responses. Many examples of proteases and PIs mediating effector-triggered immunity in host plants have been reported in the literature, but little is known about their role in compromising basal defense responses induced by microbe-associated molecular patterns. Recently, several reports appeared in literature on secreted fungal proteases that modify or degrade pathogenesis-related proteins, including plant chitinases or PIs that compromise their activities. This prompted us to review the recent advances on proteases and PIs involved in fungal virulence and plant defense. Proteases and PIs from plants and their fungal pathogens play an important role in the arms race between plants and pathogens, which has resulted in co-evolutionary diversification and adaptation shaping pathogen lifestyles. PMID:26284100

  12. Isolation and rheological properties of tamarind seed polysaccharide from tamarind kernel powder using protease enzyme and high-intensity ultrasound.

    Science.gov (United States)

    Poommarinvarakul, Sukhum; Tattiyakul, Jirarat; Muangnapoh, Chirakarn

    2010-06-01

    The effectiveness of using protease and combinations of protease and high-intensity ultrasound for high-purity, high-yield tamarind seed polysaccharide (TSP) production was investigated. Tamarind kernel powder (TKP) suspension was treated with protease alone at 0.16, 0.48, and 0.80 units/mL and with protease-ultrasound combinations over 3 different orders of sequence (before, simultaneous with, and after protease digestion) using combinations of 0.48 units/mL protease and high-intensity ultrasound at 25% and 50% amplitude for 15 and 30 min. The long protease digestion time could produce high-purity isolated TSP, but the polysaccharide yields were lower. The polysaccharide purity and yield were highly improved, even at a shorter protease digestion time, when the protease treatment was combined with high-intensity ultrasound. The increased amplitude level and sonication time decreased the average molecular weight of the polysaccharide. The rheological properties of the TKP and the isolated TSP, from nondestructive oscillatory measurements, demonstrated that the latter present a viscoelastic solution. The decreasing of protein content resulted in better elasticity of the solution. The power law model could be used to fit the down curve between shear rate and shear stress data. The consistency coefficient (K) increased while the flow behavior index decreased with the increased purity of the polysaccharide as a result of increasing increased digestion time, enzyme concentration, sonication power, and sonication time.

  13. Silver-Stained Fibrin Zymography: Separation of Proteases and Activity Detection Using a Single Substrate-Containing Gel.

    Science.gov (United States)

    Park, Chang-Su; Kang, Dae-Ook; Choi, Nack-Shick

    2017-01-01

    Silver-stained fibrin zymography for separation of protease bands and activity detection using a single substrate gel was designed. The method takes advantage of the nano-scale sensitivity of both zymography and silver staining. After sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) in a gel containing fibrin (protease substrate), the gel was incubated in enzyme reaction buffer and the zymogram gel was silver-stained. Bands with protease activity were stained with silver in clear areas where the protein substrate had been degraded. The molecular sizes of proteases were accurately determined.

  14. Experience of islet isolation without neutral protease supplementation.

    Science.gov (United States)

    Kin, Tatsuya; O'Gorman, Doug; Senior, Peter; Shapiro, A M James

    2010-01-01

    We have reported improved islet isolation outcomes using a new digestion protocol where the pancreas is perfused only with collagenase, and neutral protease (NP) is administered during the digestion phase. Since the inception of this protocol, we have had some cases where administration of NP was not required. Our new protocol was utilized in 94 islet isolations. The timing of adding NP was dependent on the progression of digestion but in 10 cases the progression was rapid and most islets in the assessment samples were free from the exocrine tissue. As a result NP was not added at all for these isolations (no-NP group). In the remaining 84 isolations, NP was added during digestion phase (control group). Pancreata in the each group were digested with a similar collagenase dose. Digestion time was shorter in the no-NP (15.0±1.8 vs 19.5±0.6 min, P=0.004). At post-digestion, the no-NP had fewer trapped islets (10.9±2.8 vs 28.1±2.4%, P=0.009). Post-purification islet yield was similar (355±45 x10 ( 3) vs 318±17 x10 ( 3) IE, P=0.29). Five preparations in the no-NP were used for clinical transplantation, leading to a 64.3±15.2% reduction in insulin usage. Interestingly, cold ischemia time was longer in the no-NP (10.3±0.9 vs 7.9±0.4 h, P=0.04). One particular collagenase lot having the highest NP activity contamination was used in 7 isolations in the no-NP. Our experience indicates that supplementation of collagenase with NP is not always necessary for effective isolation. Cold ischemia time and NP contamination should be evaluated for optimal NP dosage.

  15. Cardio-metabolic effectsof HIV protease inhibitors (lopinavir/ritonavir.

    Directory of Open Access Journals (Sweden)

    Kathleen M S E Reyskens

    Full Text Available Although antiretroviral treatment decreases HIV-AIDS morbidity/mortality, long-term side effects may include the onset of insulin resistance and cardiovascular diseases. However, the underlying molecular mechanisms responsible for highly active antiretroviral therapy (HAART-induced cardio-metabolic effects are poorly understood. In light of this, we hypothesized that HIV protease inhibitor (PI treatment (Lopinavir/Ritonavir elevates myocardial oxidative stress and concomitantly inhibits the ubiquitin proteasome system (UPS, thereby attenuating cardiac function. Lopinavir/Ritonavir was dissolved in 1% ethanol (vehicle and injected into mini-osmotic pumps that were surgically implanted into Wistar rats for 8 weeks vs. vehicle and sham controls. We subsequently evaluated metabolic parameters, gene/protein markers and heart function (ex vivo Langendorff perfusions. PI-treated rats exhibited increased serum LDL-cholesterol, higher tissue triglycerides (heart, liver, but no evidence of insulin resistance. In parallel, there was upregulation of hepatic gene expression, i.e. acetyl-CoA carboxylase b and 3-hydroxy-3-methylglutaryl-CoA-reductase, key regulators of fatty acid oxidation and cholesterol synthesis, respectively. PI-treated hearts displayed impaired cardiac contractile function together with attenuated UPS activity. However, there was no significant remodeling of hearts exposed to PIs, i.e. lack of ultrastructural changes, fibrosis, cardiac hypertrophic response, and oxidative stress. Western blot analysis of PI-treated hearts revealed that perturbed calcium handling may contribute to the PI-mediated contractile dysfunction. Here chronic PI administration led to elevated myocardial calcineurin, nuclear factor of activated T-cells 3 (NFAT3, connexin 43, and phosphorylated phospholamban, together with decreased calmodulin expression levels. This study demonstrates that early changes triggered by PI treatment include increased serum LDL

  16. Inhibition of serine proteases by peptidyl fluoromethyl ketones

    International Nuclear Information System (INIS)

    Imperiali, B.; Abeles, R.H.

    1986-01-01

    Peptidyl fluoromethyl ketones that are specific inhibitors of the serine proteases α-chymotrypsin and porcine pancreatic elastase were synthesized. By analogy with the corresponding aldehydes it is assumed that the fluoromethyl ketones react with the γ-OH group of the active site serine to form a stable hemiacetal. 19 F NMR studies of the chymotrypsin-bound trifluoromethyl ketone inhibitors Ac-Leu-ambo-Phe-CF 3 1 and Ac-ambo-Phe-CF 3 clearly indicate that the carbonyl carbon is tetrahedral at the active site of the enzyme. The inhibitor is bound as either the stable hydrat or the hemiacetal, involving the active site serine. The effect of varying the number of amino acid residues in the peptidyl portion of the inhibitor and the number of fluorines in the fluoromethyl ketone moiety is examined. In the series of trifluoromethyl ketone elastase inhibitors, the lowering of K/sub i/ concomitant with the change from a dipeptide analogue to a tetrapeptide analogue correlates well with the variation in V/K for hydrolysis of the corresponding amide substrates. This trend is indicative of the inhibitors acting as transition-state analogues. In addition to chain length, the number of fluorine substituents also affects the K/sub i/. In the case of chymotrypsin, the K/sub i/ for Ac-Leu-ambo-Phe-CF 3 is 30-fold lower than that for Ac-Leu-ambo-Phe-CF 2 H. With elastase this trend is not as profound. In all cases, however, the difluoro- and trifluoromethyl ketones are better inhibitors than the monofluoromethyl and nonfluorinated analogues. This improvement must be associated with both the degree of hydration of the fluoromethyl ketones and the significant effect that fluorine substitution has on lowering the first pK/sub a/ of the hemiacetal hydroxyl. The monofluoromethyl ketone inhibitor of chymotrypsin, Ac-Leu-ambo-Phe-CFH 2 , is a weak competitive inhibitor

  17. Molecular models of NS3 protease variants of the Hepatitis C virus

    Directory of Open Access Journals (Sweden)

    Mello Isabel MVGC

    2005-01-01

    Full Text Available Abstract Background Hepatitis C virus (HCV currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are reports of success in the development of inhibitor using a structure-based approach. One of the possible targets for drug development against HCV is the NS3 protease variants. Based on the three-dimensional structure of these variants we expect to identify new NS3 protease inhibitors. In order to speed up the modeling process all NS3 protease variant models were generated in a Beowulf cluster. The potential of the structural bioinformatics for development of new antiviral drugs is discussed. Results The atomic coordinates of crystallographic structure 1CU1 and 1DY9 were used as starting model for modeling of the NS3 protease variant structures. The NS3 protease variant structures are composed of six subdomains, which occur in sequence along the polypeptide chain. The protease domain exhibits the dual beta-barrel fold that is common among members of the chymotrypsin serine protease family. The helicase domain contains two structurally related beta-alpha-beta subdomains and a third subdomain of seven helices and three short beta strands. The latter domain is usually referred to as the helicase alpha-helical subdomain. The rmsd value of bond lengths and bond angles, the average G-factor and Verify 3D values are presented for NS3 protease variant structures. Conclusions This project increases the certainty that homology modeling is an useful tool in structural biology and that it can be very valuable in annotating genome sequence information and contributing to structural and functional genomics from virus. The structural models will be used to guide future efforts in the structure

  18. How to find simple and accurate rules for viral protease cleavage specificities

    Directory of Open Access Journals (Sweden)

    Garwicz Daniel

    2009-05-01

    Full Text Available Abstract Background Proteases of human pathogens are becoming increasingly important drug targets, hence it is necessary to understand their substrate specificity and to interpret this knowledge in practically useful ways. New methods are being developed that produce large amounts of cleavage information for individual proteases and some have been applied to extract cleavage rules from data. However, the hitherto proposed methods for extracting rules have been neither easy to understand nor very accurate. To be practically useful, cleavage rules should be accurate, compact, and expressed in an easily understandable way. Results A new method is presented for producing cleavage rules for viral proteases with seemingly complex cleavage profiles. The method is based on orthogonal search-based rule extraction (OSRE combined with spectral clustering. It is demonstrated on substrate data sets for human immunodeficiency virus type 1 (HIV-1 protease and hepatitis C (HCV NS3/4A protease, showing excellent prediction performance for both HIV-1 cleavage and HCV NS3/4A cleavage, agreeing with observed HCV genotype differences. New cleavage rules (consensus sequences are suggested for HIV-1 and HCV NS3/4A cleavages. The practical usability of the method is also demonstrated by using it to predict the location of an internal cleavage site in the HCV NS3 protease and to correct the location of a previously reported internal cleavage site in the HCV NS3 protease. The method is fast to converge and yields accurate rules, on par with previous results for HIV-1 protease and better than previous state-of-the-art for HCV NS3/4A protease. Moreover, the rules are fewer and simpler than previously obtained with rule extraction methods. Conclusion A rule extraction methodology by searching for multivariate low-order predicates yields results that significantly outperform existing rule bases on out-of-sample data, but are more transparent to expert users. The approach

  19. Vibrio cholerae hemagglutinin(HA)/protease: An extracellular metalloprotease with multiple pathogenic activities.

    Science.gov (United States)

    Benitez, Jorge A; Silva, Anisia J

    2016-06-01

    Vibrio cholerae of serogroup O1 and O139, the etiological agent of the diarrheal disease cholera, expresses the extracellular Zn-dependent metalloprotease hemagglutinin (HA)/protease also reported as vibriolysin. This enzyme is also produced by non-O1/O139 (non-cholera) strains that cause mild, sporadic illness (i.e. gastroenteritis, wound or ear infections). Orthologs of HA/protease are present in other members of the Vibrionaceae family pathogenic to humans and fish. HA/protease belongs to the M4 neutral peptidase family and displays significant amino acid sequence homology to Pseudomonas aeruginosa elastase (LasB) and Bacillus thermoproteolyticus thermolysin. It exhibits a broad range of potentially pathogenic activities in cell culture and animal models. These activities range from the covalent modification of other toxins, the degradation of the protective mucus barrier and disruption of intestinal tight junctions. Here we review (i) the structure and regulation of HA/protease expression, (ii) its interaction with other toxins and the intestinal mucosa and (iii) discuss the possible role(s) of HA/protease in the pathogenesis of cholera. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. DNA G-Wire Formation Using an Artificial Peptide is Controlled by Protease Activity.

    Science.gov (United States)

    Usui, Kenji; Okada, Arisa; Sakashita, Shungo; Shimooka, Masayuki; Tsuruoka, Takaaki; Nakano, Shu-Ichi; Miyoshi, Daisuke; Mashima, Tsukasa; Katahira, Masato; Hamada, Yoshio

    2017-11-16

    The development of a switching system for guanine nanowire (G-wire) formation by external signals is important for nanobiotechnological applications. Here, we demonstrate a DNA nanostructural switch (G-wire particles) using a designed peptide and a protease. The peptide consists of a PNA sequence for inducing DNA to form DNA-PNA hybrid G-quadruplex structures, and a protease substrate sequence acting as a switching module that is dependent on the activity of a particular protease. Micro-scale analyses via TEM and AFM showed that G-rich DNA alone forms G-wires in the presence of Ca 2+ , and that the peptide disrupted this formation, resulting in the formation of particles. The addition of the protease and digestion of the peptide regenerated the G-wires. Macro-scale analyses by DLS, zeta potential, CD, and gel filtration were in agreement with the microscopic observations. These results imply that the secondary structure change (DNA G-quadruplex DNA/PNA hybrid structure) induces a change in the well-formed nanostructure (G-wire particles). Our findings demonstrate a control system for forming DNA G-wire structures dependent on protease activity using designed peptides. Such systems hold promise for regulating the formation of nanowire for various applications, including electronic circuits for use in nanobiotechnologies.