WorldWideScience

Sample records for a-to-i rna editing

  1. Regulatory factors governing adenosine-to-inosine (A-to-I) RNA editing.

    Science.gov (United States)

    Hong, HuiQi; Lin, Jaymie Siqi; Chen, Leilei

    2015-03-31

    Adenosine-to-inosine (A-to-I) RNA editing, the most prevalent mode of transcript modification in higher eukaryotes, is catalysed by the adenosine deaminases acting on RNA (ADARs). A-to-I editing imposes an additional layer of gene regulation as it dictates various aspects of RNA metabolism, including RNA folding, processing, localization and degradation. Furthermore, editing events in exonic regions contribute to proteome diversity as translational machinery decodes inosine as guanosine. Although it has been demonstrated that dysregulated A-to-I editing contributes to various diseases, the precise regulatory mechanisms governing this critical cellular process have yet to be fully elucidated. However, integration of previous studies revealed that regulation of A-to-I editing is multifaceted, weaving an intricate network of auto- and transregulations, including the involvement of virus-originated factors like adenovirus-associated RNA. Taken together, it is apparent that tipping of any regulatory components will have profound effects on A-to-I editing, which in turn contributes to both normal and aberrant physiological conditions. A complete understanding of this intricate regulatory network may ultimately be translated into new therapeutic strategies against diseases driven by perturbed RNA editing events. Herein, we review the current state of knowledge on the regulatory mechanisms governing A-to-I editing and propose the role of other co-factors that may be involved in this complex regulatory process.

  2. A-to-I RNA editing: the "ADAR" side of human cancer.

    Science.gov (United States)

    Galeano, Federica; Tomaselli, Sara; Locatelli, Franco; Gallo, Angela

    2012-05-01

    Carcinogenesis is a complex, multi-stage process depending on both endogenous and exogenous factors. In the past years, DNA mutations provided important clues to the comprehension of the molecular pathways involved in numerous cancers. Recently, post-transcriptional modification events, such as RNA editing, are emerging as new players in several human diseases, including tumours. A-to-I RNA editing changes the nucleotide sequence of target RNAs, introducing A-to-I/G "mutations". Since ADAR enzymes catalyse this nucleotide conversion, their expression/activity is essential and finely regulated in normal cells. This review summarizes the available knowledge on A-to-I RNA editing in the cancer field, giving a new view on how ADARs may play a role in carcinogenesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Small RNA and A-to-I Editing in Autism Spectrum Disorders

    Science.gov (United States)

    Eran, Alal

    One in every 88 children is diagnosed with Autism Spectrum Disorders (ASDs), a set of neurodevelopmental conditions characterized by social impairments, communication deficits, and repetitive behavior. ASDs have a substantial genetic component, but the specific cause of most cases remains unknown. Understanding gene-environment interactions underlying ASD is essential for improving early diagnosis and identifying critical targets for intervention and prevention. Towards this goal, we surveyed adenosine-to-inosine (A-to-I) RNA editing in autistic brains. A-to-I editing is an epigenetic mechanism that fine-tunes synaptic function in response to environmental stimuli, shown to modulate complex behavior in animals. We used ultradeep sequencing to quantify A-to-I receding of candidate synaptic genes in postmortem cerebella from individuals with ASD and neurotypical controls. We found unexpectedly wide distributions of human A-to-I editing levels, whose extremes were consistently populated by individuals with ASD. We correlated A-to-I editing with isoform usage, identified clusters of correlated sites, and examined differential editing patterns. Importantly, we found that individuals with ASD commonly use a dysfunctional form of the editing enzyme ADARB1. We next profiled small RNAs thought to regulate A-to-I editing, which originate from one of the most commonly altered loci in ASD, 15q11. Deep targeted sequencing of SNORD115 and SNORD116 transcripts enabled their high-resolution detection in human brains, and revealed a strong gender bias underlying their expression. The consistent 2-fold upregulation of 15q11 small RNAs in male vs. female cerebella could be important in delineating the role of this locus in ASD, a male dominant disorder. Overall, these studies provide an accurate population-level view of small RNA and A-to-I editing in human cerebella, and suggest that A-to-I editing of synaptic genes may be informative for assessing the epigenetic risk for autism

  4. Canonical A-to-I and C-to-U RNA editing is enriched at 3'UTRs and microRNA target sites in multiple mouse tissues.

    Directory of Open Access Journals (Sweden)

    Tongjun Gu

    Full Text Available RNA editing is a process that modifies RNA nucleotides and changes the efficiency and fidelity of the central dogma. Enzymes that catalyze RNA editing are required for life, and defects in RNA editing are associated with many diseases. Recent advances in sequencing have enabled the genome-wide identification of RNA editing sites in mammalian transcriptomes. Here, we demonstrate that canonical RNA editing (A-to-I and C-to-U occurs in liver, white adipose, and bone tissues of the laboratory mouse, and we show that apparent non-canonical editing (all other possible base substitutions is an artifact of current high-throughput sequencing technology. Further, we report that high-confidence canonical RNA editing sites can cause non-synonymous amino acid changes and are significantly enriched in 3' UTRs, specifically at microRNA target sites, suggesting both regulatory and functional consequences for RNA editing.

  5. Reciprocal regulation of A-to-I RNA editing and the vertebrate nervous system

    Directory of Open Access Journals (Sweden)

    Andrew Charles Penn

    2013-04-01

    Full Text Available The fine control of molecules mediating communication in the nervous system is key to adjusting neuronal responsiveness during development and in maintaining the stability of established networks in the face of altered sensory input. To prevent culmination of pathological recurrent network excitation or debilitating periods of quiescence, adaptive alterations occur in the signalling molecules and ion channels that control membrane excitability and synaptic transmission. However, rather than encoding (and thus ‘hardwiring’ modified gene copies, the nervous systems of metazoa have opted for expanding on post-transcriptional pre-mRNA splicing by altering key encoded amino acids using a conserved mechanism of A-to-I RNA editing: the enzymatic deamination of adenosine resulting in a change in the nucleotide to inosine. Inosine exhibits similar base-pairing properties to guanosine with respect to tRNA codon recognition, replication by polymerases and RNA secondary structure forming capacity. In addition to recoding within the open reading frame, adenosine deamination also occurs with high frequency throughout the non-coding transcriptome, where it affects multiple aspects of RNA metabolism and gene expression. We will describe here the recoding function of key RNA editing targets in the mammalian central nervous system (CNS and their potential to be regulated. We will then discuss how interactions of A-to-I editing with gene expression and alternative splicing could play a wider role in regulating the neuronal transcriptome. Finally, we will highlight the increasing complexity of this multifaceted control hub by summarising new findings from high-throughput studies.

  6. A-to-I RNA editing in the rat brain is age-dependent, region-specific and sensitive to environmental stress across generations.

    Science.gov (United States)

    Zaidan, Hiba; Ramaswami, Gokul; Golumbic, Yaela N; Sher, Noa; Malik, Assaf; Barak, Michal; Galiani, Dalia; Dekel, Nava; Li, Jin B; Gaisler-Salomon, Inna

    2018-01-08

    Adenosine-to-inosine (A-to-I) RNA editing is an epigenetic modification catalyzed by adenosine deaminases acting on RNA (ADARs), and is especially prevalent in the brain. We used the highly accurate microfluidics-based multiplex PCR sequencing (mmPCR-seq) technique to assess the effects of development and environmental stress on A-to-I editing at 146 pre-selected, conserved sites in the rat prefrontal cortex and amygdala. Furthermore, we asked whether changes in editing can be observed in offspring of stress-exposed rats. In parallel, we assessed changes in ADARs expression levels. In agreement with previous studies, we found editing to be generally higher in adult compared to neonatal rat brain. At birth, editing was generally lower in prefrontal cortex than in amygdala. Stress affected editing at the serotonin receptor 2c (Htr2c), and editing at this site was significantly altered in offspring of rats exposed to prereproductive stress across two generations. Stress-induced changes in Htr2c editing measured with mmPCR-seq were comparable to changes measured with Sanger and Illumina sequencing. Developmental and stress-induced changes in Adar and Adarb1 mRNA expression were observed but did not correlate with editing changes. Our findings indicate that mmPCR-seq can accurately detect A-to-I RNA editing in rat brain samples, and confirm previous accounts of a developmental increase in RNA editing rates. Our findings also point to stress in adolescence as an environmental factor that alters RNA editing patterns several generations forward, joining a growing body of literature describing the transgenerational effects of stress.

  7. RNA editing is induced by type I interferon in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Zhang, Jinyao; Chen, Zhaoli; Tang, Zefang; Huang, Jianbing; Hu, Xueda; He, Jie

    2017-07-01

    In recent years, abnormal RNA editing has been shown to play an important role in the development of esophageal squamous cell carcinoma, as such abnormal editing is catalyzed by ADAR (adenosine deaminases acting on RNA). However, the regulatory mechanism of ADAR1 in esophageal squamous cell carcinomas remains largely unknown. In this study, we investigated ADAR1 expression and its association with RNA editing in esophageal squamous cell carcinomas. RNA sequencing applied to esophageal squamous cell carcinoma clinical samples showed that ADAR1 expression was correlated with the expression of STAT1, STAT2, and IRF9. In vitro experiments showed that the abundance of ADAR1 protein was associated with the induced activation of the JAK/STAT pathway by type I interferon. RNA sequencing results showed that treatment with type I interferon caused an increase in the number and degree of RNA editing in esophageal squamous cell carcinoma cell lines. In conclusion, the activation of the JAK/STAT pathway is a regulatory mechanism of ADAR1 expression and causes abnormal RNA editing profile in esophageal squamous cell carcinoma. This mechanism may serve as a new target for esophageal squamous cell carcinoma therapy.

  8. ExpEdit: a webserver to explore human RNA editing in RNA-Seq experiments.

    Science.gov (United States)

    Picardi, Ernesto; D'Antonio, Mattia; Carrabino, Danilo; Castrignanò, Tiziana; Pesole, Graziano

    2011-05-01

    ExpEdit is a web application for assessing RNA editing in human at known or user-specified sites supported by transcript data obtained by RNA-Seq experiments. Mapping data (in SAM/BAM format) or directly sequence reads [in FASTQ/short read archive (SRA) format] can be provided as input to carry out a comparative analysis against a large collection of known editing sites collected in DARNED database as well as other user-provided potentially edited positions. Results are shown as dynamic tables containing University of California, Santa Cruz (UCSC) links for a quick examination of the genomic context. ExpEdit is freely available on the web at http://www.caspur.it/ExpEdit/.

  9. Genetic mapping uncovers cis-regulatory landscape of RNA editing.

    Science.gov (United States)

    Ramaswami, Gokul; Deng, Patricia; Zhang, Rui; Anna Carbone, Mary; Mackay, Trudy F C; Li, Jin Billy

    2015-09-16

    Adenosine-to-inosine (A-to-I) RNA editing, catalysed by ADAR enzymes conserved in metazoans, plays an important role in neurological functions. Although the fine-tuning mechanism provided by A-to-I RNA editing is important, the underlying rules governing ADAR substrate recognition are not well understood. We apply a quantitative trait loci (QTL) mapping approach to identify genetic variants associated with variability in RNA editing. With very accurate measurement of RNA editing levels at 789 sites in 131 Drosophila melanogaster strains, here we identify 545 editing QTLs (edQTLs) associated with differences in RNA editing. We demonstrate that many edQTLs can act through changes in the local secondary structure for edited dsRNAs. Furthermore, we find that edQTLs located outside of the edited dsRNA duplex are enriched in secondary structure, suggesting that distal dsRNA structure beyond the editing site duplex affects RNA editing efficiency. Our work will facilitate the understanding of the cis-regulatory code of RNA editing.

  10. ADAR RNA editing in human disease; more to it than meets the I.

    Science.gov (United States)

    Gallo, Angela; Vukic, Dragana; Michalík, David; O'Connell, Mary A; Keegan, Liam P

    2017-09-01

    We review the structures and functions of ADARs and their involvements in human diseases. ADAR1 is widely expressed, particularly in the myeloid component of the blood system, and plays a prominent role in promiscuous editing of long dsRNA. Missense mutations that change ADAR1 residues and reduce RNA editing activity cause Aicardi-Goutières Syndrome, a childhood encephalitis and interferonopathy that mimics viral infection and resembles an extreme form of Systemic Lupus Erythmatosus (SLE). In Adar1 mouse mutant models aberrant interferon expression is prevented by eliminating interferon activation signaling from cytoplasmic dsRNA sensors, indicating that unedited cytoplasmic dsRNA drives the immune induction. On the other hand, upregulation of ADAR1 with widespread promiscuous RNA editing is a prominent feature of many cancers and particular site-specific RNA editing events are also affected. ADAR2 is most highly expressed in brain and is primarily required for site-specific editing of CNS transcripts; recent findings indicate that ADAR2 editing is regulated by neuronal excitation for synaptic scaling of glutamate receptors. ADAR2 is also linked to the circadian clock and to sleep. Mutations in ADAR2 could contribute to excitability syndromes such as epilepsy, to seizures, to diseases involving neuronal plasticity defects, such as autism and Fragile-X Syndrome, to neurodegenerations such as ALS, or to astrocytomas or glioblastomas in which reduced ADAR2 activity is required for oncogenic cell behavior. The range of human disease associated with ADAR1 mutations may extend further to include other inflammatory conditions while ADAR2 mutations may affect psychiatric conditions.

  11. Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome

    DEFF Research Database (Denmark)

    Peng, Zhiyu; Cheng, Yanbing; Tan, Bertrand Chin-Ming

    2012-01-01

    a computational pipeline that carefully controls for false positives while calling RNA editing events from genome and whole-transcriptome data of the same individual. We identified 22,688 RNA editing events in noncoding genes and introns, untranslated regions and coding sequences of protein-coding genes. Most......RNA editing is a post-transcriptional event that recodes hereditary information. Here we describe a comprehensive profile of the RNA editome of a male Han Chinese individual based on analysis of ∼767 million sequencing reads from poly(A)(+), poly(A)(-) and small RNA samples. We developed...... changes (∼93%) converted A to I(G), consistent with known editing mechanisms based on adenosine deaminase acting on RNA (ADAR). We also found evidence of other types of nucleotide changes; however, these were validated at lower rates. We found 44 editing sites in microRNAs (miRNAs), suggesting a potential...

  12. A distant cis acting intronic element induces site-selective RNA editing

    DEFF Research Database (Denmark)

    Daniel, Chammiran; Venø, Morten Trillingsgaard; Ekdahl, Ylva

    2012-01-01

    Transcripts have been found to be site selectively edited from adenosine-to-inosine (A-to-I) in the mammalian brain, mostly in genes involved in neurotransmission. While A-to-I editing occurs at double-stranded structures, other structural requirements are largely unknown. We have investigated...... shown to be important for A-to-I editing. We demonstrate that the element also can induce editing in related but normally not edited RNA sequences. In human, thousands of genes are edited in duplexes formed by inverted repeats in non-coding regions. It is likely that numerous such duplexes can induce...... the requirements for editing at the I/M site in the Gabra-3 transcript of the GABA(A) receptor. We identify an evolutionarily conserved intronic duplex, 150 nt downstream of the exonic hairpin where the I/M site resides, which is required for its editing. This is the first time a distant RNA structure has been...

  13. Re-editing the paradigm of Cytidine (C) to Uridine (U) RNA editing.

    Science.gov (United States)

    Fossat, Nicolas; Tam, Patrick P L

    2014-01-01

    Cytidine (C) to Uridine (U) RNA editing is a post-trancriptional modification that until recently was known to only affect Apolipoprotein b (Apob) RNA and minimally require 2 components of the C to U editosome, the deaminase APOBEC1 and the RNA-binding protein A1CF. Our latest work has identified a novel RNA-binding protein, RBM47, as a core component of the editosome, which can substitute A1CF for the editing of ApoB mRNA. In addition, new RNA species that are subjected to C to U editing have been identified. Here, we highlight these recent discoveries and discuss how they change our view of the composition of the C to U editing machinery and expand our knowledge of the functional attributes of C to U RNA editing.

  14. RNA Editing During Sexual Development Occurs in Distantly Related Filamentous Ascomycetes.

    Science.gov (United States)

    Teichert, Ines; Dahlmann, Tim A; Kück, Ulrich; Nowrousian, Minou

    2017-04-01

    RNA editing is a post-transcriptional process that modifies RNA molecules leading to transcript sequences that differ from their template DNA. A-to-I editing was found to be widely distributed in nuclear transcripts of metazoa, but was detected in fungi only recently in a study of the filamentous ascomycete Fusarium graminearum that revealed extensive A-to-I editing of mRNAs in sexual structures (fruiting bodies). Here, we searched for putative RNA editing events in RNA-seq data from Sordaria macrospora and Pyronema confluens, two distantly related filamentous ascomycetes, and in data from the Taphrinomycete Schizosaccharomyces pombe. Like F. graminearum, S. macrospora is a member of the Sordariomycetes, whereas P. confluens belongs to the early-diverging group of Pezizomycetes. We found extensive A-to-I editing in RNA-seq data from sexual mycelium from both filamentous ascomycetes, but not in vegetative structures. A-to-I editing was not detected in different stages of meiosis of S. pombe. A comparison of A-to-I editing in S. macrospora with F. graminearum and P. confluens, respectively, revealed little conservation of individual editing sites. An analysis of RNA-seq data from two sterile developmental mutants of S. macrospora showed that A-to-I editing is strongly reduced in these strains. Sequencing of cDNA fragments containing more than one editing site from P. confluens showed that at the beginning of sexual development, transcripts were incompletely edited or unedited, whereas in later stages transcripts were more extensively edited. Taken together, these data suggest that A-to-I RNA editing is an evolutionary conserved feature during fruiting body development in filamentous ascomycetes. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Statistical Physics Approaches to RNA Editing

    Science.gov (United States)

    Bundschuh, Ralf

    2012-02-01

    The central dogma of molecular Biology states that DNA is transcribed base by base into RNA which is in turn translated into proteins. However, some organisms edit their RNA before translation by inserting, deleting, or substituting individual or short stretches of bases. In many instances the mechanisms by which an organism recognizes the positions at which to edit or by which it performs the actual editing are unknown. One model system that stands out by its very high rate of on average one out of 25 bases being edited are the Myxomycetes, a class of slime molds. In this talk we will show how the computational methods and concepts from statistical Physics can be used to analyze DNA and protein sequence data to predict editing sites in these slime molds and to guide experiments that identified previously unknown types of editing as well as the complete set of editing events in the slime mold Physarum polycephalum.

  16. Deletions in cox2 mRNA result in loss of splicing and RNA editing and gain of novel RNA editing sites.

    Directory of Open Access Journals (Sweden)

    Stefanie Grüttner

    Full Text Available As previously demonstrated, the maize cox2 RNA is fully edited in cauliflower mitochondria. Use of constructs with a deleted cox2 intron, however, led to a loss of RNA editing at almost all editing sites, with only a few sites still partially edited. Likewise, one deletion in exon 1 and three in exon 2 abolish RNA editing at all cox2 sites analyzed. Furthermore, intron splicing is abolished using these deletions. Mutation of a cytosine residue, which is normally edited and localized directly adjacent to the intron, to thymidine did not result in restoration of splicing, indicating that the loss of splicing was not due to loss of RNA editing. One deletion in exon 2 did not lead to loss of splicing. Instead, most editing sites were found to be edited, only three were not edited. Unexpectedly, we observed additional RNA editing events at new sites. Thus it appears that deletions in the cox2 RNA sequence can have a strong effect on RNA processing, leading to loss of splicing, loss of editing at all sites, or even to a gain of new editing sites. As these effects are not limited to the vicinity of the respective deletions, but appear to be widespread or even affect all editing sites, they may not be explained by the loss of PPR binding sites. Instead, it appears that several parts of the cox2 transcript are required for proper RNA processing. This indicates the roles of the RNA sequence and structural elements in the recognition of the editing sites.

  17. A to I editing in disease is not fake news.

    Science.gov (United States)

    Bajad, Prajakta; Jantsch, Michael F; Keegan, Liam; O'Connell, Mary

    2017-09-02

    Adenosine deaminases acting on RNA (ADARs) are zinc-containing enzymes that deaminate adenosine bases to inosines within dsRNA regions in transcripts. In short, structured dsRNA hairpins individual adenosine bases may be targeted specifically and edited with up to one hundred percent efficiency, leading to the production of alternative protein variants. However, the majority of editing events occur within longer stretches of dsRNA formed by pairing of repetitive sequences. Here, many different adenosine bases are potential targets but editing efficiency is usually much lower. Recent work shows that ADAR-mediated RNA editing is also required to prevent aberrant activation of antiviral innate immune sensors that detect viral dsRNA in the cytoplasm. Missense mutations in the ADAR1 RNA editing enzyme cause a fatal auto-inflammatory disease, Aicardi-Goutières syndrome (AGS) in affected children. In addition RNA editing by ADARs has been observed to increase in many cancers and also can contribute to vascular disease. Thus the role of RNA editing in the progression of various diseases can no longer be ignored. The ability of ADARs to alter the sequence of RNAs has also been used to artificially target model RNAs in vitro and in cells for RNA editing. Potentially this approach may be used to repair genetic defects and to alter genetic information at the RNA level. In this review we focus on the role of ADARs in disease development and progression and on their potential use to artificially modify RNAs in a targeted manner.

  18. Abundant off-target edits from site-directed RNA editing can be reduced by nuclear localization of the editing enzyme.

    Science.gov (United States)

    Vallecillo-Viejo, Isabel C; Liscovitch-Brauer, Noa; Montiel-Gonzalez, Maria Fernanda; Eisenberg, Eli; Rosenthal, Joshua J C

    2018-01-02

    Site-directed RNA editing (SDRE) is a general strategy for making targeted base changes in RNA molecules. Although the approach is relatively new, several groups, including our own, have been working on its development. The basic strategy has been to couple the catalytic domain of an adenosine (A) to inosine (I) RNA editing enzyme to a guide RNA that is used for targeting. Although highly efficient on-target editing has been reported, off-target events have not been rigorously quantified. In this report we target premature termination codons (PTCs) in messages encoding both a fluorescent reporter protein and the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein transiently transfected into human epithelial cells. We demonstrate that while on-target editing is efficient, off-target editing is extensive, both within the targeted message and across the entire transcriptome of the transfected cells. By redirecting the editing enzymes from the cytoplasm to the nucleus, off-target editing is reduced without compromising the on-target editing efficiency. The addition of the E488Q mutation to the editing enzymes, a common strategy for increasing on-target editing efficiency, causes a tremendous increase in off-target editing. These results underscore the need to reduce promiscuity in current approaches to SDRE.

  19. C to U RNA editing mediated by APOBEC1 requires RNA-binding protein RBM47.

    Science.gov (United States)

    Fossat, Nicolas; Tourle, Karin; Radziewic, Tania; Barratt, Kristen; Liebhold, Doreen; Studdert, Joshua B; Power, Melinda; Jones, Vanessa; Loebel, David A F; Tam, Patrick P L

    2014-08-01

    Cytidine (C) to Uridine (U) RNA editing is a post-transcriptional modification that is accomplished by the deaminase APOBEC1 and its partnership with the RNA-binding protein A1CF. We identify and characterise here a novel RNA-binding protein, RBM47, that interacts with APOBEC1 and A1CF and is expressed in tissues where C to U RNA editing occurs. RBM47 can substitute for A1CF and is necessary and sufficient for APOBEC1-mediated editing in vitro. Editing is further impaired in Rbm47-deficient mutant mice. These findings suggest that RBM47 and APOBEC1 constitute the basic machinery for C to U RNA editing. © 2014 The Authors.

  20. Regulation of Gene Expression by DNA Methylation and RNA Editing in Animals

    DEFF Research Database (Denmark)

    Li, Qiye

    , there has been growing interest in exploring the modifications occurring at the RNA level, which can impact the fate and function of mRNA. One fascinating type of such modifications is RNA editing, which alters specific nucleotides in transcribed RNA and thus can produce transcripts that are not encoded...... (Heterocephalus glaber), a eusocial mammal living in cooperative colonies. Finally, I introduce a software package that I developed that is specifically designed for the genome-wide identification of RNA-editing sites in animals, with the ultimate aim of promoting the evolutionary and functional study of RNA...... editing in different species....

  1. RNA Editing and Drug Discovery for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Wei-Hsuan Huang

    2013-01-01

    Full Text Available RNA editing is vital to provide the RNA and protein complexity to regulate the gene expression. Correct RNA editing maintains the cell function and organism development. Imbalance of the RNA editing machinery may lead to diseases and cancers. Recently, RNA editing has been recognized as a target for drug discovery although few studies targeting RNA editing for disease and cancer therapy were reported in the field of natural products. Therefore, RNA editing may be a potential target for therapeutic natural products. In this review, we provide a literature overview of the biological functions of RNA editing on gene expression, diseases, cancers, and drugs. The bioinformatics resources of RNA editing were also summarized.

  2. Genetic Determinants of RNA Editing Levels of ADAR Targets in Drosophila melanogaster.

    Science.gov (United States)

    Kurmangaliyev, Yerbol Z; Ali, Sammi; Nuzhdin, Sergey V

    2015-12-12

    RNA editing usually affects only a fraction of expressed transcripts and there is a vast amount of variation in editing levels of ADAR (adenosine deaminase, RNA-specific) targets. Here we explore natural genetic variation affecting editing levels of particular sites in 81 natural strains of Drosophila melanogaster. The analysis of associations between editing levels and single-nucleotide polymorphisms allows us to map putative cis-regulatory regions affecting editing of 16 A-to-I editing sites (cis-RNA editing quantitative trait loci or cis-edQTLs, P < 10(-8)). The observed changes in editing levels are validated by independent molecular technique. All identified regulatory variants are located in close proximity of modulated editing sites. Moreover, colocalized editing sites are often regulated by same loci. Similar to expression and splicing QTL studies, the characterization of edQTLs will greatly expand our understanding of cis-regulatory evolution of gene expression. Copyright © 2016 Kurmangaliyev et al.

  3. Genetic Determinants of RNA Editing Levels of ADAR Targets in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Yerbol Z. Kurmangaliyev

    2016-02-01

    Full Text Available RNA editing usually affects only a fraction of expressed transcripts and there is a vast amount of variation in editing levels of ADAR (adenosine deaminase, RNA-specific targets. Here we explore natural genetic variation affecting editing levels of particular sites in 81 natural strains of Drosophila melanogaster. The analysis of associations between editing levels and single-nucleotide polymorphisms allows us to map putative cis-regulatory regions affecting editing of 16 A-to-I editing sites (cis-RNA editing quantitative trait loci or cis-edQTLs, P < 10−8. The observed changes in editing levels are validated by independent molecular technique. All identified regulatory variants are located in close proximity of modulated editing sites. Moreover, colocalized editing sites are often regulated by same loci. Similar to expression and splicing QTL studies, the characterization of edQTLs will greatly expand our understanding of cis-regulatory evolution of gene expression.

  4. An RNA editing/dsRNA binding-independent gene regulatory mechanism of ADARs and its clinical implication in cancer.

    Science.gov (United States)

    Qi, Lihua; Song, Yangyang; Chan, Tim Hon Man; Yang, Henry; Lin, Chi Ho; Tay, Daryl Jin Tai; Hong, HuiQi; Tang, Sze Jing; Tan, Kar Tong; Huang, Xi Xiao; Lin, Jaymie Siqi; Ng, Vanessa Hui En; Maury, Julien Jean Pierre; Tenen, Daniel G; Chen, Leilei

    2017-10-13

    Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by Adenosine DeAminases acting on double-stranded RNA(dsRNA) (ADAR), occurs predominantly in the 3' untranslated regions (3'UTRs) of spliced mRNA. Here we uncover an unanticipated link between ADARs (ADAR1 and ADAR2) and the expression of target genes undergoing extensive 3'UTR editing. Using METTL7A (Methyltransferase Like 7A), a novel tumor suppressor gene with multiple editing sites at its 3'UTR, we demonstrate that its expression could be repressed by ADARs beyond their RNA editing and double-stranded RNA (dsRNA) binding functions. ADARs interact with Dicer to augment the processing of pre-miR-27a to mature miR-27a. Consequently, mature miR-27a targets the METTL7A 3'UTR to repress its expression level. In sum, our study unveils that the extensive 3'UTR editing of METTL7A is merely a footprint of ADAR binding, and there are a subset of target genes that are equivalently regulated by ADAR1 and ADAR2 through their non-canonical RNA editing and dsRNA binding-independent functions, albeit maybe less common. The functional significance of ADARs is much more diverse than previously appreciated and this gene regulatory function of ADARs is most likely to be of high biological importance beyond the best-studied editing function. This non-editing side of ADARs opens another door to target cancer. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Mediated Plastid RNA Editing in Plant Immunity

    Science.gov (United States)

    García-Andrade, Javier; Ramírez, Vicente; López, Ana; Vera, Pablo

    2013-01-01

    Plant regulatory circuits coordinating nuclear and plastid gene expression have evolved in response to external stimuli. RNA editing is one of such control mechanisms. We determined the Arabidopsis nuclear-encoded homeodomain-containing protein OCP3 is incorporated into the chloroplast, and contributes to control over the extent of ndhB transcript editing. ndhB encodes the B subunit of the chloroplast NADH dehydrogenase-like complex (NDH) involved in cyclic electron flow (CEF) around photosystem I. In ocp3 mutant strains, ndhB editing efficiency decays, CEF is impaired and disease resistance to fungal pathogens substantially enhanced, a process recapitulated in plants defective in editing plastid RNAs encoding NDH complex subunits due to mutations in previously described nuclear-encoded pentatricopeptide-related proteins (i.e. CRR21, CRR2). Furthermore, we observed that following a pathogenic challenge, wild type plants respond with editing inhibition of ndhB transcript. In parallel, rapid destabilization of the plastidial NDH complex is also observed in the plant following perception of a pathogenic cue. Therefore, NDH complex activity and plant immunity appear as interlinked processes. PMID:24204264

  6. AZIN1 RNA editing confers cancer stemness and enhances oncogenic potential in colorectal cancer.

    Science.gov (United States)

    Shigeyasu, Kunitoshi; Okugawa, Yoshinaga; Toden, Shusuke; Miyoshi, Jinsei; Toiyama, Yuji; Nagasaka, Takeshi; Takahashi, Naoki; Kusunoki, Masato; Takayama, Tetsuji; Yamada, Yasuhide; Fujiwara, Toshiyoshi; Chen, Leilei; Goel, Ajay

    2018-06-21

    Adenosine-to-inosine (A-to-I) RNA editing, a process mediated by adenosine deaminases that act on the RNA (ADAR) gene family, is a recently discovered epigenetic modification dysregulated in human cancers. However, the clinical significance and the functional role of RNA editing in colorectal cancer (CRC) remain unclear. We have systematically and comprehensively investigated the significance of the expression status of ADAR1 and of the RNA editing levels of antizyme inhibitor 1 (AZIN1), one of the most frequently edited genes in cancers, in 392 colorectal tissues from multiple independent CRC patient cohorts. Both ADAR1 expression and AZIN1 RNA editing levels were significantly elevated in CRC tissues when compared with corresponding normal mucosa. High levels of AZIN1 RNA editing emerged as a prognostic factor for overall survival and disease-free survival and were an independent risk factor for lymph node and distant metastasis. Furthermore, elevated AZIN1 editing identified high-risk stage II CRC patients. Mechanistically, edited AZIN1 enhances stemness and appears to drive the metastatic processes. We have demonstrated that edited AZIN1 functions as an oncogene and a potential therapeutic target in CRC. Moreover, AZIN1 RNA editing status could be used as a clinically relevant prognostic indicator in CRC patients.

  7. Inherited variants affecting RNA editing may contribute to ovarian cancer susceptibility

    DEFF Research Database (Denmark)

    Permuth, Jennifer B; Reid, Brett; Earp, Madalene

    2016-01-01

    RNA editing in mammals is a form of post-transcriptional modification in which adenosine is converted to inosine by the adenosine deaminases acting on RNA (ADAR) family of enzymes. Based on evidence of altered ADAR expression in epithelial ovarian cancers (EOC), we hypothesized that single nucleo......, including rs1127313 (G/A), a SNP in the 3' untranslated region. In summary, germline variation involving RNA editing genes may influence EOC susceptibility, warranting further investigation of inherited and acquired alterations affecting RNA editing.......RNA editing in mammals is a form of post-transcriptional modification in which adenosine is converted to inosine by the adenosine deaminases acting on RNA (ADAR) family of enzymes. Based on evidence of altered ADAR expression in epithelial ovarian cancers (EOC), we hypothesized that single...... nucleotide polymorphisms (SNPs) in ADAR genes modify EOC susceptibility, potentially by altering ovarian tissue gene expression. Using directly genotyped and imputed data from 10,891 invasive EOC cases and 21,693 controls, we evaluated the associations of 5,303 SNPs in ADAD1, ADAR, ADAR2, ADAR3, and SND1...

  8. REDIdb: the RNA editing database.

    Science.gov (United States)

    Picardi, Ernesto; Regina, Teresa Maria Rosaria; Brennicke, Axel; Quagliariello, Carla

    2007-01-01

    The RNA Editing Database (REDIdb) is an interactive, web-based database created and designed with the aim to allocate RNA editing events such as substitutions, insertions and deletions occurring in a wide range of organisms. The database contains both fully and partially sequenced DNA molecules for which editing information is available either by experimental inspection (in vitro) or by computational detection (in silico). Each record of REDIdb is organized in a specific flat-file containing a description of the main characteristics of the entry, a feature table with the editing events and related details and a sequence zone with both the genomic sequence and the corresponding edited transcript. REDIdb is a relational database in which the browsing and identification of editing sites has been simplified by means of two facilities to either graphically display genomic or cDNA sequences or to show the corresponding alignment. In both cases, all editing sites are highlighted in colour and their relative positions are detailed by mousing over. New editing positions can be directly submitted to REDIdb after a user-specific registration to obtain authorized secure access. This first version of REDIdb database stores 9964 editing events and can be freely queried at http://biologia.unical.it/py_script/search.html.

  9. Ebola virus RNA editing depends on the primary editing site sequence and an upstream secondary structure.

    Directory of Open Access Journals (Sweden)

    Masfique Mehedi

    Full Text Available Ebolavirus (EBOV, the causative agent of a severe hemorrhagic fever and a biosafety level 4 pathogen, increases its genome coding capacity by producing multiple transcripts encoding for structural and nonstructural glycoproteins from a single gene. This is achieved through RNA editing, during which non-template adenosine residues are incorporated into the EBOV mRNAs at an editing site encoding for 7 adenosine residues. However, the mechanism of EBOV RNA editing is currently not understood. In this study, we report for the first time that minigenomes containing the glycoprotein gene editing site can undergo RNA editing, thereby eliminating the requirement for a biosafety level 4 laboratory to study EBOV RNA editing. Using a newly developed dual-reporter minigenome, we have characterized the mechanism of EBOV RNA editing, and have identified cis-acting sequences that are required for editing, located between 9 nt upstream and 9 nt downstream of the editing site. Moreover, we show that a secondary structure in the upstream cis-acting sequence plays an important role in RNA editing. EBOV RNA editing is glycoprotein gene-specific, as a stretch encoding for 7 adenosine residues located in the viral polymerase gene did not serve as an editing site, most likely due to an absence of the necessary cis-acting sequences. Finally, the EBOV protein VP30 was identified as a trans-acting factor for RNA editing, constituting a novel function for this protein. Overall, our results provide novel insights into the RNA editing mechanism of EBOV, further understanding of which might result in novel intervention strategies against this viral pathogen.

  10. Ebola virus RNA editing depends on the primary editing site sequence and an upstream secondary structure.

    Science.gov (United States)

    Mehedi, Masfique; Hoenen, Thomas; Robertson, Shelly; Ricklefs, Stacy; Dolan, Michael A; Taylor, Travis; Falzarano, Darryl; Ebihara, Hideki; Porcella, Stephen F; Feldmann, Heinz

    2013-01-01

    Ebolavirus (EBOV), the causative agent of a severe hemorrhagic fever and a biosafety level 4 pathogen, increases its genome coding capacity by producing multiple transcripts encoding for structural and nonstructural glycoproteins from a single gene. This is achieved through RNA editing, during which non-template adenosine residues are incorporated into the EBOV mRNAs at an editing site encoding for 7 adenosine residues. However, the mechanism of EBOV RNA editing is currently not understood. In this study, we report for the first time that minigenomes containing the glycoprotein gene editing site can undergo RNA editing, thereby eliminating the requirement for a biosafety level 4 laboratory to study EBOV RNA editing. Using a newly developed dual-reporter minigenome, we have characterized the mechanism of EBOV RNA editing, and have identified cis-acting sequences that are required for editing, located between 9 nt upstream and 9 nt downstream of the editing site. Moreover, we show that a secondary structure in the upstream cis-acting sequence plays an important role in RNA editing. EBOV RNA editing is glycoprotein gene-specific, as a stretch encoding for 7 adenosine residues located in the viral polymerase gene did not serve as an editing site, most likely due to an absence of the necessary cis-acting sequences. Finally, the EBOV protein VP30 was identified as a trans-acting factor for RNA editing, constituting a novel function for this protein. Overall, our results provide novel insights into the RNA editing mechanism of EBOV, further understanding of which might result in novel intervention strategies against this viral pathogen.

  11. Regulation of gene expression in neuronal tissue by RNA interference and editing

    DEFF Research Database (Denmark)

    Venø, Morten Trillingsgaard

    No tissue in the mammalian organism is more complex than the brain. This complexity is in part the result of precise timing and interplay of a large number mechanisms modulating gene expression post-transcriptionally. Fine-tuning mechanisms such as A-to-I editing of RNA transcripts and regulation...... mediated by microRNAs are crucial for the correct function of the mammalian brain. We are addressing A-to-I editing and regulation by microRNAs with spatio-temporal resolution in the embryonic porcine brain by Solexa sequencing of microRNAs and 454 sequencing of edited neuronal messenger RNAs, resulting...... in detailed data of both of these fine-tuning mechanisms in the embryonic development of the pig. Editing levels of transcripts examined are generally seen to increase through development, in agreement with editing of specific microRNA also examined in the Solexa sequencing study. Three studies examining...

  12. The absence of A-to-I editing in the anticodon of plant cytoplasmic tRNA (Arg) ACG demands a relaxation of the wobble decoding rules.

    Science.gov (United States)

    Aldinger, Carolin A; Leisinger, Anne-Katrin; Gaston, Kirk W; Limbach, Patrick A; Igloi, Gabor L

    2012-10-01

    It is a prevalent concept that, in line with the Wobble Hypothesis, those tRNAs having an adenosine in the first position of the anticodon become modified to an inosine at this position. Sequencing the cDNA derived from the gene coding for cytoplasmic tRNA (Arg) ACG from several higher plants as well as mass spectrometric analysis of the isoacceptor has revealed that for this kingdom an unmodified A in the wobble position of the anticodon is the rule rather than the exception. In vitro translation shows that in the plant system the absence of inosine in the wobble position of tRNA (Arg) does not prevent decoding. This isoacceptor belongs to the class of tRNA that is imported from the cytoplasm into the mitochondria of higher plants. Previous studies on the mitochondrial tRNA pool have demonstrated the existence of tRNA (Arg) ICG in this organelle. In moss the mitochondrial encoded distinct tRNA (Arg) ACG isoacceptor possesses the I34 modification. The implication is that for mitochondrial protein biosynthesis A-to-I editing is necessary and occurs by a mitochondrion-specific deaminase after import of the unmodified nuclear encoded tRNA (Arg) ACG.

  13. ADAR RNA editing below the backbone.

    Science.gov (United States)

    Keegan, Liam; Khan, Anzer; Vukic, Dragana; O'Connell, Mary

    2017-09-01

    ADAR RNA editing enzymes ( a denosine d e a minases acting on R NA) that convert adenosine bases to inosines were first identified biochemically 30 years ago. Since then, studies on ADARs in genetic model organisms, and evolutionary comparisons between them, continue to reveal a surprising range of pleiotropic biological effects of ADARs. This review focuses on Drosophila melanogaster , which has a single Adar gene encoding a homolog of vertebrate ADAR2 that site-specifically edits hundreds of transcripts to change individual codons in ion channel subunits and membrane and cytoskeletal proteins. Drosophila ADAR is involved in the control of neuronal excitability and neurodegeneration and, intriguingly, in the control of neuronal plasticity and sleep. Drosophila ADAR also interacts strongly with RNA interference, a key antiviral defense mechanism in invertebrates. Recent crystal structures of human ADAR2 deaminase domain-RNA complexes help to interpret available information on Drosophila ADAR isoforms and on the evolution of ADARs from tRNA deaminase ADAT proteins. ADAR RNA editing is a paradigm for the now rapidly expanding range of RNA modifications in mRNAs and ncRNAs. Even with recent progress, much remains to be understood about these groundbreaking ADAR RNA modification systems. © 2017 Keegan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  14. RNA Editing in Plant Mitochondria

    Science.gov (United States)

    Hiesel, Rudolf; Wissinger, Bernd; Schuster, Wolfgang; Brennicke, Axel

    1989-12-01

    Comparative sequence analysis of genomic and complementary DNA clones from several mitochondrial genes in the higher plant Oenothera revealed nucleotide sequence divergences between the genomic and the messenger RNA-derived sequences. These sequence alterations could be most easily explained by specific post-transcriptional nucleotide modifications. Most of the nucleotide exchanges in coding regions lead to altered codons in the mRNA that specify amino acids better conserved in evolution than those encoded by the genomic DNA. Several instances show that the genomic arginine codon CGG is edited in the mRNA to the tryptophan codon TGG in amino acid positions that are highly conserved as tryptophan in the homologous proteins of other species. This editing suggests that the standard genetic code is used in plant mitochondria and resolves the frequent coincidence of CGG codons and tryptophan in different plant species. The apparently frequent and non-species-specific equivalency of CGG and TGG codons in particular suggests that RNA editing is a common feature of all higher plant mitochondria.

  15. Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection

    Science.gov (United States)

    Doria, Margherita; Neri, Francesca; Gallo, Angela; Farace, Maria Giulia; Michienzi, Alessandro

    2009-01-01

    Adenosine deaminases that act on dsRNA (ADARs) are enzymes that target double-stranded regions of RNA converting adenosines into inosines (A-to-I editing) thus contributing to genome complexity and fine regulation of gene expression. It has been described that a member of the ADAR family, ADAR1, can target viruses and affect their replication process. Here we report evidence showing that ADAR1 stimulates human immuno deficiency virus type 1 (HIV-1) replication by using both editing-dependent and editing-independent mechanisms. We show that over-expression of ADAR1 in HIV-1 producer cells increases viral protein accumulation in an editing-independent manner. Moreover, HIV-1 virions generated in the presence of over-expressed ADAR1 but not an editing-inactive ADAR1 mutant are released more efficiently and display enhanced infectivity, as demonstrated by challenge assays performed with T cell lines and primary CD4+ T lymphocytes. Finally, we report that ADAR1 associates with HIV-1 RNAs and edits adenosines in the 5′ untranslated region (UTR) and the Rev and Tat coding sequence. Overall these results suggest that HIV-1 has evolved mechanisms to take advantage of specific RNA editing activity of the host cell and disclose a stimulatory function of ADAR1 in the spread of HIV-1. PMID:19651874

  16. Predicting RNA hyper-editing with a novel tool when unambiguous alignment is impossible.

    Science.gov (United States)

    McKerrow, Wilson H; Savva, Yiannis A; Rezaei, Ali; Reenan, Robert A; Lawrence, Charles E

    2017-07-10

    Repetitive elements are now known to have relevant cellular functions, including self-complementary sequences that form double stranded (ds) RNA. There are numerous pathways that determine the fate of endogenous dsRNA, and misregulation of endogenous dsRNA is a driver of autoimmune disease, particularly in the brain. Unfortunately, the alignment of high-throughput, short-read sequences to repeat elements poses a dilemma: Such sequences may align equally well to multiple genomic locations. In order to differentiate repeat elements, current alignment methods depend on sequence variation in the reference genome. Reads are discarded when no such variations are present. However, RNA hyper-editing, a possible fate for dsRNA, introduces enough variation to distinguish between repeats that are otherwise identical. To take advantage of this variation, we developed a new algorithm, RepProfile, that simultaneously aligns reads and predicts novel variations. RepProfile accurately aligns hyper-edited reads that other methods discard. In particular we predict hyper-editing of Drosophila melanogaster repeat elements in vivo at levels previously described only in vitro, and provide validation by Sanger sequencing sixty-two individual cloned sequences. We find that hyper-editing is concentrated in genes involved in cell-cell communication at the synapse, including some that are associated with neurodegeneration. We also find that hyper-editing tends to occur in short runs. Previous studies of RNA hyper-editing discarded ambiguously aligned reads, ignoring hyper-editing in long, perfect dsRNA - the perfect substrate for hyper-editing. We provide a method that simulation and Sanger validation show accurately predicts such RNA editing, yielding a superior picture of hyper-editing.

  17. A genome-wide map of hyper-edited RNA reveals numerous new sites

    Science.gov (United States)

    Porath, Hagit T.; Carmi, Shai; Levanon, Erez Y.

    2014-01-01

    Adenosine-to-inosine editing is one of the most frequent post-transcriptional modifications, manifested as A-to-G mismatches when comparing RNA sequences with their source DNA. Recently, a number of RNA-seq data sets have been screened for the presence of A-to-G editing, and hundreds of thousands of editing sites identified. Here we show that existing screens missed the majority of sites by ignoring reads with excessive (‘hyper’) editing that do not easily align to the genome. We show that careful alignment and examination of the unmapped reads in RNA-seq studies reveal numerous new sites, usually many more than originally discovered, and in precisely those regions that are most heavily edited. Specifically, we discover 327,096 new editing sites in the heavily studied Illumina Human BodyMap data and more than double the number of detected sites in several published screens. We also identify thousands of new sites in mouse, rat, opossum and fly. Our results establish that hyper-editing events account for the majority of editing sites. PMID:25158696

  18. REDIdb: an upgraded bioinformatics resource for organellar RNA editing sites.

    Science.gov (United States)

    Picardi, Ernesto; Regina, Teresa M R; Verbitskiy, Daniil; Brennicke, Axel; Quagliariello, Carla

    2011-03-01

    RNA editing is a post-transcriptional molecular process whereby the information in a genetic message is modified from that in the corresponding DNA template by means of nucleotide substitutions, insertions and/or deletions. It occurs mostly in organelles by clade-specific diverse and unrelated biochemical mechanisms. RNA editing events have been annotated in primary databases as GenBank and at more sophisticated level in the specialized databases REDIdb, dbRES and EdRNA. At present, REDIdb is the only freely available database that focuses on the organellar RNA editing process and annotates each editing modification in its biological context. Here we present an updated and upgraded release of REDIdb with a web-interface refurbished with graphical and computational facilities that improve RNA editing investigations. Details of the REDIdb features and novelties are illustrated and compared to other RNA editing databases. REDIdb is freely queried at http://biologia.unical.it/py_script/REDIdb/. Copyright © 2010 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  19. RNA-Generated and Gene-Edited Induced Pluripotent Stem Cells for Disease Modeling and Therapy.

    Science.gov (United States)

    Kehler, James; Greco, Marianna; Martino, Valentina; Pachiappan, Manickam; Yokoe, Hiroko; Chen, Alice; Yang, Miranda; Auerbach, Jonathan; Jessee, Joel; Gotte, Martin; Milanesi, Luciano; Albertini, Alberto; Bellipanni, Gianfranco; Zucchi, Ileana; Reinbold, Rolland A; Giordano, Antonio

    2017-06-01

    Cellular reprogramming by epigenomic remodeling of chromatin holds great promise in the field of human regenerative medicine. As an example, human-induced Pluripotent Stem Cells (iPSCs) obtained by reprograming of patient somatic cells are sufficiently similar to embryonic stem cells (ESCs) and can generate all cell types of the human body. Clinical use of iPSCs is dependent on methods that do not utilize genome altering transgenic technologies that are potentially unsafe and ethically unacceptable. Transient delivery of exogenous RNA into cells provides a safer reprogramming system to transgenic approaches that rely on exogenous DNA or viral vectors. RNA reprogramming may prove to be more suitable for clinical applications and provide stable starting cell lines for gene-editing, isolation, and characterization of patient iPSC lines. The introduction and rapid evolution of CRISPR/Cas9 gene-editing systems has provided a readily accessible research tool to perform functional human genetic experiments. Similar to RNA reprogramming, transient delivery of mRNA encoding Cas9 in combination with guide RNA sequences to target specific points in the genome eliminates the risk of potential integration of Cas9 plasmid constructs. We present optimized RNA-based laboratory procedure for making and editing iPSCs. In the near-term these two powerful technologies are being harnessed to dissect mechanisms of human development and disease in vitro, supporting both basic, and translational research. J. Cell. Physiol. 232: 1262-1269, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. REDIdb 3.0: A Comprehensive Collection of RNA Editing Events in Plant Organellar Genomes.

    Science.gov (United States)

    Lo Giudice, Claudio; Pesole, Graziano; Picardi, Ernesto

    2018-01-01

    RNA editing is an important epigenetic mechanism by which genome-encoded transcripts are modified by substitutions, insertions and/or deletions. It was first discovered in kinetoplastid protozoa followed by its reporting in a wide range of organisms. In plants, RNA editing occurs mostly by cytidine (C) to uridine (U) conversion in translated regions of organelle mRNAs and tends to modify affected codons restoring evolutionary conserved aminoacid residues. RNA editing has also been described in non-protein coding regions such as group II introns and structural RNAs. Despite its impact on organellar transcriptome and proteome complexity, current primary databases still do not provide a specific field for RNA editing events. To overcome these limitations, we developed REDIdb a specialized database for RNA editing modifications in plant organelles. Hereafter we describe its third release containing more than 26,000 events in a completely novel web interface to accommodate RNA editing in its genomics, biological and evolutionary context through whole genome maps and multiple sequence alignments. REDIdb is freely available at http://srv00.recas.ba.infn.it/redidb/index.html.

  1. REDIdb 3.0: A Comprehensive Collection of RNA Editing Events in Plant Organellar Genomes

    Directory of Open Access Journals (Sweden)

    Claudio Lo Giudice

    2018-04-01

    Full Text Available RNA editing is an important epigenetic mechanism by which genome-encoded transcripts are modified by substitutions, insertions and/or deletions. It was first discovered in kinetoplastid protozoa followed by its reporting in a wide range of organisms. In plants, RNA editing occurs mostly by cytidine (C to uridine (U conversion in translated regions of organelle mRNAs and tends to modify affected codons restoring evolutionary conserved aminoacid residues. RNA editing has also been described in non-protein coding regions such as group II introns and structural RNAs. Despite its impact on organellar transcriptome and proteome complexity, current primary databases still do not provide a specific field for RNA editing events. To overcome these limitations, we developed REDIdb a specialized database for RNA editing modifications in plant organelles. Hereafter we describe its third release containing more than 26,000 events in a completely novel web interface to accommodate RNA editing in its genomics, biological and evolutionary context through whole genome maps and multiple sequence alignments. REDIdb is freely available at http://srv00.recas.ba.infn.it/redidb/index.html

  2. Evolutionary analysis reveals regulatory and functional landscape of coding and non-coding RNA editing.

    Science.gov (United States)

    Zhang, Rui; Deng, Patricia; Jacobson, Dionna; Li, Jin Billy

    2017-02-01

    Adenosine-to-inosine RNA editing diversifies the transcriptome and promotes functional diversity, particularly in the brain. A plethora of editing sites has been recently identified; however, how they are selected and regulated and which are functionally important are largely unknown. Here we show the cis-regulation and stepwise selection of RNA editing during Drosophila evolution and pinpoint a large number of functional editing sites. We found that the establishment of editing and variation in editing levels across Drosophila species are largely explained and predicted by cis-regulatory elements. Furthermore, editing events that arose early in the species tree tend to be more highly edited in clusters and enriched in slowly-evolved neuronal genes, thus suggesting that the main role of RNA editing is for fine-tuning neurological functions. While nonsynonymous editing events have been long recognized as playing a functional role, in addition to nonsynonymous editing sites, a large fraction of 3'UTR editing sites is evolutionarily constrained, highly edited, and thus likely functional. We find that these 3'UTR editing events can alter mRNA stability and affect miRNA binding and thus highlight the functional roles of noncoding RNA editing. Our work, through evolutionary analyses of RNA editing in Drosophila, uncovers novel insights of RNA editing regulation as well as its functions in both coding and non-coding regions.

  3. Differential Binding of Mitochondrial Transcripts by MRB8170 and MRB4160 Regulates Distinct Editing Fates of Mitochondrial mRNA in Trypanosomes

    Directory of Open Access Journals (Sweden)

    Sameer Dixit

    2017-01-01

    Full Text Available A dozen mRNAs are edited by multiple insertions and/or deletions of uridine residues in the mitochondrion of Trypanosoma brucei. Several protein complexes have been implicated in performing this type of RNA editing, including the mitochondrial RNA-binding complex 1 (MRB1. Two paralogous novel RNA-binding proteins, MRB8170 and MRB4160, are loosely associated with the core MRB1 complex. Their roles in RNA editing and effects on target mRNAs are so far not well understood. In this study, individual-nucleotide-resolution UV-cross-linking and affinity purification (iCLAP revealed a preferential binding of both proteins to mitochondrial mRNAs, which was positively correlated with their extent of editing. Integrating additional in vivo and in vitro data, we propose that binding of MRB8170 and/or MRB4160 onto pre-mRNA marks it for the initiation of editing and that initial binding of both proteins may facilitate the recruitment of other components of the RNA editing/processing machinery to ensure efficient editing. Surprisingly, MRB8170 also binds never-edited mRNAs, suggesting that at least this paralog has an additional role outside RNA editing to shape the mitochondrial transcriptome.

  4. Cell-type-specific genome editing with a microRNA-responsive CRISPR–Cas9 switch

    Science.gov (United States)

    Hirosawa, Moe; Fujita, Yoshihiko; Parr, Callum J. C.; Hayashi, Karin; Kashida, Shunnichi; Hotta, Akitsu; Woltjen, Knut

    2017-01-01

    Abstract The CRISPR–Cas9 system is a powerful genome-editing tool useful in a variety of biotechnology and biomedical applications. Here we developed a synthetic RNA-based, microRNA (miRNA)-responsive CRISPR–Cas9 system (miR-Cas9 switch) in which the genome editing activity of Cas9 can be modulated through endogenous miRNA signatures in mammalian cells. We created miR-Cas9 switches by using a miRNA-complementary sequence in the 5΄-UTR of mRNA encoding Streptococcus pyogenes Cas9. The miR-21-Cas9 or miR-302-Cas9 switches selectively and efficiently responded to miR-21-5p in HeLa cells or miR-302a-5p in human induced pluripotent stem cells, and post-transcriptionally attenuated the Cas9 activity only in the target cells. Moreover, the miR-Cas9 switches could differentially control the genome editing by sensing endogenous miRNA activities within a heterogeneous cell population. Our miR-Cas9 switch system provides a promising framework for cell-type selective genome editing and cell engineering based on intracellular miRNA information. PMID:28525578

  5. Editing modifies the GABA(A) receptor subunit alpha3

    DEFF Research Database (Denmark)

    Ohlson, Johan; Pedersen, Jakob Skou; Haussler, David

    2007-01-01

    Adenosine to inosine (A-to-I) pre-mRNA editing by the ADAR enzyme family has the potential to increase the variety of the proteome. This editing by adenosine deamination is essential in mammals for a functional brain. To detect novel substrates for A-to-I editing we have used an experimental method...... to find selectively edited sites and combined it with bioinformatic techniques that find stem-loop structures suitable for editing. We present here the first verified editing candidate detected by this screening procedure. We show that Gabra-3, which codes for the alpha3 subunit of the GABA(A) receptor......, is a substrate for editing by both ADAR1 and ADAR2. Editing of the Gabra-3 mRNA recodes an isoleucine to a methionine. The extent of editing is low at birth but increases with age, reaching close to 100% in the adult brain. We therefore propose that editing of the Gabra-3 mRNA is important for normal brain...

  6. Oligophrenin-1 (OPHN1, a gene involved in X-linked intellectual disability, undergoes RNA editing and alternative splicing during human brain development.

    Directory of Open Access Journals (Sweden)

    Sabina Barresi

    Full Text Available Oligophrenin-1 (OPHN1 encodes for a Rho-GTPase-activating protein, important for dendritic morphogenesis and synaptic function. Mutations in this gene have been identified in patients with X-linked intellectual disability associated with cerebellar hypoplasia. ADAR enzymes are responsible for A-to-I RNA editing, an essential post-transcriptional RNA modification contributing to transcriptome and proteome diversification. Specifically, ADAR2 activity is essential for brain development and function. Herein, we show that the OPHN1 transcript undergoes post-transcriptional modifications such as A-to-I RNA editing and alternative splicing in human brain and other tissues. We found that OPHN1 editing is detectable already at the 18th week of gestation in human brain with a boost of editing at weeks 20 to 33, concomitantly with OPHN1 expression increase and the appearance of a novel OPHN1 splicing isoform. Our results demonstrate that multiple post-transcriptional events occur on OPHN1, a gene playing an important role in brain function and development.

  7. Condition-specific RNA editing in the coral symbiont Symbiodinium microadriaticum

    KAUST Repository

    Liew, Yi Jin

    2017-03-01

    RNA editing is a rare post-transcriptional event that provides cells with an additional level of gene expression regulation. It has been implicated in various processes including adaptation, viral defence and RNA interference; however, its potential role as a mechanism in acclimatization has just recently been recognised. Here, we show that RNA editing occurs in 1.6% of all nuclear-encoded genes of Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals. All base-substitution edit types were present, and statistically significant motifs were associated with three edit types. Strikingly, a subset of genes exhibited condition-specific editing patterns in response to different stressors that resulted in significant increases of non-synonymous changes. We posit that this previously unrecognised mechanism extends this organism’s capability to respond to stress beyond what is encoded by the genome. This in turn may provide further acclimatization capacity to these organisms, and by extension, their coral hosts.

  8. Condition-specific RNA editing in the coral symbiont Symbiodinium microadriaticum

    KAUST Repository

    Liew, Yi Jin; Li, Yong; Baumgarten, Sebastian; Voolstra, Christian R.; Aranda, Manuel

    2017-01-01

    RNA editing is a rare post-transcriptional event that provides cells with an additional level of gene expression regulation. It has been implicated in various processes including adaptation, viral defence and RNA interference; however, its potential role as a mechanism in acclimatization has just recently been recognised. Here, we show that RNA editing occurs in 1.6% of all nuclear-encoded genes of Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals. All base-substitution edit types were present, and statistically significant motifs were associated with three edit types. Strikingly, a subset of genes exhibited condition-specific editing patterns in response to different stressors that resulted in significant increases of non-synonymous changes. We posit that this previously unrecognised mechanism extends this organism’s capability to respond to stress beyond what is encoded by the genome. This in turn may provide further acclimatization capacity to these organisms, and by extension, their coral hosts.

  9. Cell-type-specific genome editing with a microRNA-responsive CRISPR-Cas9 switch.

    Science.gov (United States)

    Hirosawa, Moe; Fujita, Yoshihiko; Parr, Callum J C; Hayashi, Karin; Kashida, Shunnichi; Hotta, Akitsu; Woltjen, Knut; Saito, Hirohide

    2017-07-27

    The CRISPR-Cas9 system is a powerful genome-editing tool useful in a variety of biotechnology and biomedical applications. Here we developed a synthetic RNA-based, microRNA (miRNA)-responsive CRISPR-Cas9 system (miR-Cas9 switch) in which the genome editing activity of Cas9 can be modulated through endogenous miRNA signatures in mammalian cells. We created miR-Cas9 switches by using a miRNA-complementary sequence in the 5΄-UTR of mRNA encoding Streptococcus pyogenes Cas9. The miR-21-Cas9 or miR-302-Cas9 switches selectively and efficiently responded to miR-21-5p in HeLa cells or miR-302a-5p in human induced pluripotent stem cells, and post-transcriptionally attenuated the Cas9 activity only in the target cells. Moreover, the miR-Cas9 switches could differentially control the genome editing by sensing endogenous miRNA activities within a heterogeneous cell population. Our miR-Cas9 switch system provides a promising framework for cell-type selective genome editing and cell engineering based on intracellular miRNA information. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. The art of editing RNA structural alignments

    DEFF Research Database (Denmark)

    Andersen, Ebbe Sloth

    2014-01-01

    Manual editing of RNA structural alignments may be considered more art than science, since it still requires an expert biologist to take multiple levels of information into account and be slightly creative when constructing high-quality alignments. Even though the task is rather tedious, it is re......Manual editing of RNA structural alignments may be considered more art than science, since it still requires an expert biologist to take multiple levels of information into account and be slightly creative when constructing high-quality alignments. Even though the task is rather tedious...

  11. REDItools: high-throughput RNA editing detection made easy.

    Science.gov (United States)

    Picardi, Ernesto; Pesole, Graziano

    2013-07-15

    The reliable detection of RNA editing sites from massive sequencing data remains challenging and, although several methodologies have been proposed, no computational tools have been released to date. Here, we introduce REDItools a suite of python scripts to perform high-throughput investigation of RNA editing using next-generation sequencing data. REDItools are in python programming language and freely available at http://code.google.com/p/reditools/. ernesto.picardi@uniba.it or graziano.pesole@uniba.it Supplementary data are available at Bioinformatics online.

  12. RED: A Java-MySQL Software for Identifying and Visualizing RNA Editing Sites Using Rule-Based and Statistical Filters.

    Directory of Open Access Journals (Sweden)

    Yongmei Sun

    Full Text Available RNA editing is one of the post- or co-transcriptional processes that can lead to amino acid substitutions in protein sequences, alternative pre-mRNA splicing, and changes in gene expression levels. Although several methods have been suggested to identify RNA editing sites, there remains challenges to be addressed in distinguishing true RNA editing sites from its counterparts on genome and technical artifacts. In addition, there lacks a software framework to identify and visualize potential RNA editing sites. Here, we presented a software - 'RED' (RNA Editing sites Detector - for the identification of RNA editing sites by integrating multiple rule-based and statistical filters. The potential RNA editing sites can be visualized at the genome and the site levels by graphical user interface (GUI. To improve performance, we used MySQL database management system (DBMS for high-throughput data storage and query. We demonstrated the validity and utility of RED by identifying the presence and absence of C→U RNA-editing sites experimentally validated, in comparison with REDItools, a command line tool to perform high-throughput investigation of RNA editing. In an analysis of a sample data-set with 28 experimentally validated C→U RNA editing sites, RED had sensitivity and specificity of 0.64 and 0.5. In comparison, REDItools had a better sensitivity (0.75 but similar specificity (0.5. RED is an easy-to-use, platform-independent Java-based software, and can be applied to RNA-seq data without or with DNA sequencing data. The package is freely available under the GPLv3 license at http://github.com/REDetector/RED or https://sourceforge.net/projects/redetector.

  13. RED: A Java-MySQL Software for Identifying and Visualizing RNA Editing Sites Using Rule-Based and Statistical Filters.

    Science.gov (United States)

    Sun, Yongmei; Li, Xing; Wu, Di; Pan, Qi; Ji, Yuefeng; Ren, Hong; Ding, Keyue

    2016-01-01

    RNA editing is one of the post- or co-transcriptional processes that can lead to amino acid substitutions in protein sequences, alternative pre-mRNA splicing, and changes in gene expression levels. Although several methods have been suggested to identify RNA editing sites, there remains challenges to be addressed in distinguishing true RNA editing sites from its counterparts on genome and technical artifacts. In addition, there lacks a software framework to identify and visualize potential RNA editing sites. Here, we presented a software - 'RED' (RNA Editing sites Detector) - for the identification of RNA editing sites by integrating multiple rule-based and statistical filters. The potential RNA editing sites can be visualized at the genome and the site levels by graphical user interface (GUI). To improve performance, we used MySQL database management system (DBMS) for high-throughput data storage and query. We demonstrated the validity and utility of RED by identifying the presence and absence of C→U RNA-editing sites experimentally validated, in comparison with REDItools, a command line tool to perform high-throughput investigation of RNA editing. In an analysis of a sample data-set with 28 experimentally validated C→U RNA editing sites, RED had sensitivity and specificity of 0.64 and 0.5. In comparison, REDItools had a better sensitivity (0.75) but similar specificity (0.5). RED is an easy-to-use, platform-independent Java-based software, and can be applied to RNA-seq data without or with DNA sequencing data. The package is freely available under the GPLv3 license at http://github.com/REDetector/RED or https://sourceforge.net/projects/redetector.

  14. Accurate identification of RNA editing sites from primitive sequence with deep neural networks.

    Science.gov (United States)

    Ouyang, Zhangyi; Liu, Feng; Zhao, Chenghui; Ren, Chao; An, Gaole; Mei, Chuan; Bo, Xiaochen; Shu, Wenjie

    2018-04-16

    RNA editing is a post-transcriptional RNA sequence alteration. Current methods have identified editing sites and facilitated research but require sufficient genomic annotations and prior-knowledge-based filtering steps, resulting in a cumbersome, time-consuming identification process. Moreover, these methods have limited generalizability and applicability in species with insufficient genomic annotations or in conditions of limited prior knowledge. We developed DeepRed, a deep learning-based method that identifies RNA editing from primitive RNA sequences without prior-knowledge-based filtering steps or genomic annotations. DeepRed achieved 98.1% and 97.9% area under the curve (AUC) in training and test sets, respectively. We further validated DeepRed using experimentally verified U87 cell RNA-seq data, achieving 97.9% positive predictive value (PPV). We demonstrated that DeepRed offers better prediction accuracy and computational efficiency than current methods with large-scale, mass RNA-seq data. We used DeepRed to assess the impact of multiple factors on editing identification with RNA-seq data from the Association of Biomolecular Resource Facilities and Sequencing Quality Control projects. We explored developmental RNA editing pattern changes during human early embryogenesis and evolutionary patterns in Drosophila species and the primate lineage using DeepRed. Our work illustrates DeepRed's state-of-the-art performance; it may decipher the hidden principles behind RNA editing, making editing detection convenient and effective.

  15. TbRGG2 facilitates kinetoplastid RNA editing initiation and progression past intrinsic pause sites.

    Science.gov (United States)

    Ammerman, Michelle L; Presnyak, Vladimir; Fisk, John C; Foda, Bardees M; Read, Laurie K

    2010-11-01

    TbRGG2 is an essential kinetoplastid RNA editing accessory factor that acts specifically on pan-edited RNAs. To understand the mechanism of TbRGG2 action, we undertook an in-depth analysis of edited RNA populations in TbRGG2 knockdown cells and an in vitro examination of the biochemical activities of the protein. We demonstrate that TbRGG2 down-regulation more severely impacts editing at the 5' ends of pan-edited RNAs than at their 3' ends. The initiation of editing is reduced to some extent in TbRGG2 knockdown cells. In addition, TbRGG2 plays a post-initiation role as editing becomes stalled in TbRGG2-depleted cells, resulting in an overall decrease in the 3' to 5' progression of editing. Detailed analyses of edited RNAs from wild-type and TbRGG2-depleted cells reveal that TbRGG2 facilitates progression of editing past intrinsic pause sites that often correspond to the 3' ends of cognate guide RNAs (gRNAs). In addition, noncanonically edited junction regions are either absent or significantly shortened in TbRGG2-depleted cells, consistent with impaired gRNA transitions. Sequence analysis further suggests that TbRGG2 facilitates complete utilization of certain gRNAs. In vitro RNA annealing and in vivo RNA unwinding assays demonstrate that TbRGG2 can modulate RNA-RNA interactions. Collectively, these data are consistent with a model in which TbRGG2 facilitates initiation and 3' to 5' progression of editing through its ability to affect gRNA utilization, both during the transition between specific gRNAs and during usage of certain gRNAs.

  16. CRISPR/Cas9-mediated noncoding RNA editing in human cancers.

    Science.gov (United States)

    Yang, Jie; Meng, Xiaodan; Pan, Jinchang; Jiang, Nan; Zhou, Chengwei; Wu, Zhenhua; Gong, Zhaohui

    2018-01-02

    Cancer is characterized by multiple genetic and epigenetic alterations, including a higher prevalence of mutations of oncogenes and/or tumor suppressors. Mounting evidences have shown that noncoding RNAs (ncRNAs) are involved in the epigenetic regulation of cancer genes and their associated pathways. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9) system, a revolutionary genome-editing technology, has shed light on ncRNA-based cancer therapy. Here, we briefly introduce the classifications and mechanisms of CRISPR/Cas9 system. Importantly, we mainly focused on the applications of CRISPR/Cas9 system as a molecular tool for ncRNA (microRNA, long noncoding RNA and circular RNA, etc.) editing in human cancers, and the novel techniques that are based on CRISPR/Cas9 system. Additionally, the off-target effects and the corresponding solutions as well as the challenges toward CRISPR/Cas9 were also evaluated and discussed. Long- and short-ncRNAs have been employed as targets in precision oncology, and CRISPR/Cas9-mediated ncRNA editing may provide an excellent way to cure cancer.

  17. Efficient CRISPR/Cas9-Mediated Genome Editing Using a Chimeric Single-Guide RNA Molecule

    KAUST Repository

    Butt, Haroon

    2017-08-24

    The CRISPR/Cas9 system has been applied in diverse eukaryotic organisms for targeted mutagenesis. However, targeted gene editing is inefficient and requires the simultaneous delivery of a DNA template for homology-directed repair (HDR). Here, we used CRISPR/Cas9 to generate targeted double-strand breaks and to deliver an RNA repair template for HDR in rice (Oryza sativa). We used chimeric single-guide RNA (cgRNA) molecules carrying both sequences for target site specificity (to generate the double-strand breaks) and repair template sequences (to direct HDR), flanked by regions of homology to the target. Gene editing was more efficient in rice protoplasts using repair templates complementary to the non-target DNA strand, rather than the target strand. We applied this cgRNA repair method to generate herbicide resistance in rice, which showed that this cgRNA repair method can be used for targeted gene editing in plants. Our findings will facilitate applications in functional genomics and targeted improvement of crop traits.

  18. The Extent of mRNA Editing Is Limited in Chicken Liver and Adipose, but Impacted by Tissular Context, Genotype, Age, and Feeding as Exemplified with a Conserved Edited Site in COG3

    Directory of Open Access Journals (Sweden)

    Pierre-François Roux

    2016-02-01

    Full Text Available RNA editing is a posttranscriptional process leading to differences between genomic DNA and transcript sequences, potentially enhancing transcriptome diversity. With recent advances in high-throughput sequencing, many efforts have been made to describe mRNA editing at the transcriptome scale, especially in mammals, yielding contradictory conclusions regarding the extent of this phenomenon. We show, by detailed description of the 25 studies focusing so far on mRNA editing at the whole-transcriptome scale, that systematic sequencing artifacts are considered in most studies whereas biological replication is often neglected and multi-alignment not properly evaluated, which ultimately impairs the legitimacy of results. We recently developed a rigorous strategy to identify mRNA editing using mRNA and genomic DNA sequencing, taking into account sequencing and mapping artifacts, and biological replicates. We applied this method to screen for mRNA editing in liver and white adipose tissue from eight chickens and confirm the small extent of mRNA recoding in this species. Among the 25 unique edited sites identified, three events were previously described in mammals, attesting that this phenomenon is conserved throughout evolution. Deeper investigations on five sites revealed the impact of tissular context, genotype, age, feeding conditions, and sex on mRNA editing levels. More specifically, this analysis highlighted that the editing level at the site located on COG3 was strongly regulated by four of these factors. By comprehensively characterizing the mRNA editing landscape in chickens, our results highlight how this phenomenon is limited and suggest regulation of editing levels by various genetic and environmental factors.

  19. A core MRB1 complex component is indispensable for RNA editing in insect and human infective stages of Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Michelle L Ammerman

    Full Text Available Uridine insertion/deletion RNA editing is a unique and vital process in kinetoplastids, required for creation of translatable open reading frames in most mitochondrially-encoded RNAs. Emerging as a key player in this process is the mitochondrial RNA binding 1 (MRB1 complex. MRB1 comprises an RNA-independent core complex of at least six proteins, including the GAP1/2 guide RNA (gRNA binding proteins. The core interacts in an RNA-enhanced or -dependent manner with imprecisely defined TbRGG2 subcomplexes, Armadillo protein MRB10130, and additional factors that comprise the dynamic MRB1 complex. Towards understanding MRB1 complex function in RNA editing, we present here functional characterization of the pentein domain-containing MRB1 core protein, MRB11870. Inducible RNAi studies demonstrate that MRB11870 is essential for proliferation of both insect vector and human infective stage T. brucei. MRB11870 ablation causes a massive defect in RNA editing, affecting both pan-edited and minimally edited mRNAs, but does not substantially affect mitochondrial RNA stability or processing of precursor transcripts. The editing defect in MRB1-depleted cells occurs at the initiation stage of editing, as pre-edited mRNAs accumulate. However, the gRNAs that direct editing remain abundant in the knockdown cells. To examine the contribution of MRB11870 to MRB1 macromolecular interactions, we tagged core complexes and analyzed their composition and associated proteins in the presence and absence of MRB11870. These studies demonstrated that MRB11870 is essential for association of GAP1/2 with the core, as well as for interaction of the core with other proteins and subcomplexes. Together, these data support a model in which the MRB1 core mediates functional interaction of gRNAs with the editing machinery, having GAP1/2 as its gRNA binding constituents. MRB11870 is a critical component of the core, essential for its structure and function.

  20. The expression of apoB mRNA editing factors is not the sole determinant for the induction of editing in differentiating Caco-2 cells

    International Nuclear Information System (INIS)

    Galloway, Chad A.; Smith, Harold C.

    2010-01-01

    Apolipoprotein B mRNA is edited at cytidine 6666 in the enterocytes lining the small intestine of all mammals; converting a CAA codon to a UAA stop codon. The conversion is ∼80% efficient in this tissue and leads to the expression of the truncated protein, ApoB48, essential for secretion of dietary lipid as chylomicrons. Caco-2 cell raft cultures have been used as an in vitro model for the induction of editing activity during human small intestinal cell differentiation. This induction of apoB mRNA editing has been ascribed to the expression of APOBEC-1. In agreement our data demonstrated differentiation-dependent induction of expression of the editing enzyme APOBEC-1 and in addition we show alternative splicing of the essential auxiliary factor ACF. However, transfection of these editing factors in undifferentiated proliferating Caco-2 cells was not sufficient to induce robust apoB mRNA editing activity. Only differentiation of Caco-2 cells could induce more physiological like levels of apoB mRNA editing. The data suggested that additional regulatory mechanism(s) were induced by differentiation that controlled the functional activity of editing factors.

  1. The ADAR RNA editing enzyme controls neuronal excitability in Drosophila melanogaster

    Science.gov (United States)

    Li, Xianghua; Overton, Ian M.; Baines, Richard A.; Keegan, Liam P.; O’Connell, Mary A.

    2014-01-01

    RNA editing by deamination of specific adenosine bases to inosines during pre-mRNA processing generates edited isoforms of proteins. Recoding RNA editing is more widespread in Drosophila than in vertebrates. Editing levels rise strongly at metamorphosis, and Adar5G1 null mutant flies lack editing events in hundreds of CNS transcripts; mutant flies have reduced viability, severely defective locomotion and age-dependent neurodegeneration. On the other hand, overexpressing an adult dADAR isoform with high enzymatic activity ubiquitously during larval and pupal stages is lethal. Advantage was taken of this to screen for genetic modifiers; Adar overexpression lethality is rescued by reduced dosage of the Rdl (Resistant to dieldrin), gene encoding a subunit of inhibitory GABA receptors. Reduced dosage of the Gad1 gene encoding the GABA synthetase also rescues Adar overexpression lethality. Drosophila Adar5G1 mutant phenotypes are ameliorated by feeding GABA modulators. We demonstrate that neuronal excitability is linked to dADAR expression levels in individual neurons; Adar-overexpressing larval motor neurons show reduced excitability whereas Adar5G1 null mutant or targeted Adar knockdown motor neurons exhibit increased excitability. GABA inhibitory signalling is impaired in human epileptic and autistic conditions, and vertebrate ADARs may have a relevant evolutionarily conserved control over neuronal excitability. PMID:24137011

  2. Auto-Regulatory RNA Editing Fine-Tunes mRNA Re-Coding and Complex Behaviour in Drosophila

    Science.gov (United States)

    Savva, Yiannis A.; Jepson, James E.C; Sahin, Asli; Sugden, Arthur U.; Dorsky, Jacquelyn S.; Alpert, Lauren; Lawrence, Charles; Reenan, Robert A.

    2014-01-01

    Auto-regulatory feedback loops are a common molecular strategy used to optimize protein function. In Drosophila many mRNAs involved in neuro-transmission are re-coded at the RNA level by the RNA editing enzyme dADAR, leading to the incorporation of amino acids that are not directly encoded by the genome. dADAR also re-codes its own transcript, but the consequences of this auto-regulation in vivo are unclear. Here we show that hard-wiring or abolishing endogenous dADAR auto-regulation dramatically remodels the landscape of re-coding events in a site-specific manner. These molecular phenotypes correlate with altered localization of dADAR within the nuclear compartment. Furthermore, auto-editing exhibits sexually dimorphic patterns of spatial regulation and can be modified by abiotic environmental factors. Finally, we demonstrate that modifying dAdar auto-editing affects adaptive complex behaviors. Our results reveal the in vivo relevance of auto-regulatory control over post-transcriptional mRNA re-coding events in fine-tuning brain function and organismal behavior. PMID:22531175

  3. Conjugation and Evaluation of Triazole?Linked Single Guide RNA for CRISPR?Cas9 Gene Editing

    OpenAIRE

    He, Kaizhang; Chou, Eldon T.; Begay, Shawn; Anderson, Emily M.; van?Brabant?Smith, Anja

    2016-01-01

    Abstract The CRISPR?Cas9 gene editing system requires Cas9 endonuclease and guide RNAs (either the natural dual RNA consisting of crRNA and tracrRNA or a chimeric single guide RNA) that direct site?specific double?stranded DNA cleavage. This communication describes a click ligation approach that uses alkyne?azide cycloaddition to generate a triazole?linked single guide RNA (sgRNA). The conjugated sgRNA shows efficient and comparable genome editing activity to natural dual RNA and unmodified s...

  4. Systematic identification of edited microRNAs in the human brain

    Science.gov (United States)

    Alon, Shahar; Mor, Eyal; Vigneault, Francois; Church, George M.; Locatelli, Franco; Galeano, Federica; Gallo, Angela; Shomron, Noam; Eisenberg, Eli

    2012-01-01

    Adenosine-to-inosine (A-to-I) editing modifies RNA transcripts from their genomic blueprint. A prerequisite for this process is a double-stranded RNA (dsRNA) structure. Such dsRNAs are formed as part of the microRNA (miRNA) maturation process, and it is therefore expected that miRNAs are affected by A-to-I editing. Editing of miRNAs has the potential to add another layer of complexity to gene regulation pathways, especially if editing occurs within the miRNA–mRNA recognition site. Thus, it is of interest to study the extent of this phenomenon. Current reports in the literature disagree on its extent; while some reports claim that it may be widespread, others deem the reported events as rare. Utilizing a next-generation sequencing (NGS) approach supplemented by an extensive bioinformatic analysis, we were able to systematically identify A-to-I editing events in mature miRNAs derived from human brain tissues. Our algorithm successfully identified many of the known editing sites in mature miRNAs and revealed 17 novel human sites, 12 of which are in the recognition sites of the miRNAs. We confirmed most of the editing events using in vitro ADAR overexpression assays. The editing efficiency of most sites identified is very low. Similar results are obtained for publicly available data sets of mouse brain-regions tissues. Thus, we find that A-to-I editing does alter several miRNAs, but it is not widespread. PMID:22499667

  5. Molecular modeling and molecular dynamics simulation study of archaeal leucyl-tRNA synthetase in complex with different mischarged tRNA in editing conformation.

    Science.gov (United States)

    Rayevsky, A V; Sharifi, M; Tukalo, M A

    2017-09-01

    Aminoacyl-tRNA synthetases (aaRSs) play important roles in maintaining the accuracy of protein synthesis. Some aaRSs accomplish this via editing mechanisms, among which leucyl-tRNA synthetase (LeuRS) edits non-cognate amino acid norvaline mainly by post-transfer editing. However, the molecular basis for this pathway for eukaryotic and archaeal LeuRS remain unclear. In this study, a complex of archaeal P. horikoshii LeuRS (PhLeuRS) with misacylated tRNA Leu was modeled wherever tRNA's acceptor stem was oriented directly into the editing site. To understand the distinctive features of organization we reconstructed a complex of PhLeuRS with tRNA and visualize post-transfer editing interactions mode by performing molecular dynamics (MD) simulation studies. To study molecular basis for substrate selectivity by PhLeuRS's editing site we utilized MD simulation of the entire LeuRS complexes using a diverse charged form of tRNAs, namely norvalyl-tRNA Leu and isoleucyl-tRNA Leu . In general, the editing site organization of LeuRS from P.horikoshii has much in common with bacterial LeuRS. The MD simulation results revealed that the post-transfer editing substrate norvalyl-A76, binds more strongly than isoleucyl-A76. Moreover, the branched side chain of isoleucine prevents water molecules from being closer and hence the hydrolysis reaction slows significantly. To investigate a possible mechanism of the post-transfer editing reaction, by PhLeuRS we have determined that two water molecules (the attacking and assisting water molecules) are localized near the carbonyl group of the amino acid to be cleaved off. These water molecules approach the substrate from the opposite side to that observed for Thermus thermophilus LeuRS (TtLeuRS). Based on the results obtained, it was suggested that the post-transfer editing mechanism of PhLeuRS differs from that of prokaryotic TtLeuRS. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei

    NARCIS (Netherlands)

    Vondrusková, Eva; van den Burg, Janny; Zíková, Alena; Ernst, Nancy Lewis; Stuart, Kenneth; Benne, Rob; Lukes, Julius

    2005-01-01

    Mitochondrial RNA-binding proteins MRP1 and MRP2 occur in a heteromeric complex that appears to play a role in U-insertion/deletion editing in trypanosomes. Reduction in the levels of MRP1 (gBP21) and/or MRP2 (gBP25) mRNA by RNA interference in procyclic Trypanosoma brucei resulted in severe growth

  7. Genome-Independent Identification of RNA Editing by Mutual Information (GIREMI) | Informatics Technology for Cancer Research (ITCR)

    Science.gov (United States)

    Identification of single-nucleotide variants in RNA-seq data. Current version focuses on detection of RNA editing sites without requiring genome sequence data. New version is under development to separately identify RNA editing sites and genetic variants using RNA-seq data alone.

  8. Substrate specificity and catalysis by the editing active site of alanyl-tRNA synthetase from Escherichia coli†

    Science.gov (United States)

    Pasman, Zvi; Robey-Bond, Susan; Mirando, Adam C.; Smith, Gregory J.; Lague, Astrid; Francklyn, Christopher S.

    2011-01-01

    Aminoacyl-tRNA synthetases (ARSs) enhance the fidelity of protein synthesis through multiple mechanisms, including hydrolysis of the adenylate and cleavage of misacylated tRNA. Alanyl-tRNA synthetase (AlaRS) limits misacylation with glycine and serine by use of a dedicated editing domain, and a mutation in this activity has been genetically linked to a mouse model of a progressive neurodegenerative disease. Using the free standing P. horikoshii AlaX editing domain complexed with serine as a model and both Ser-tRNAAla and Ala-tRNAAla as substrates, the deacylation activities of the wild type and five different E. coli AlaRS editing site substitution mutants were characterized. The wild type AlaRS editing domain deacylated Ser-tRNAAla with a kcat/KM of 6.6 × 105 M−1 s−1, equivalent to a rate enhancement of 6000 over the rate of enzyme-independent deacylation, but only 12.2-fold greater than the rate with Ala-tRNAAla. While the E664A and T567G substitutions only minimally decreased kcat/KM, Q584H, I667E, and C666A AlaRS were more compromised in activity, with decreases in kcat/KM in the range of 6-, 7.3-, and 15-fold. C666A AlaRS was 1.4-fold more active on Ala-tRNAAla relative to Ser-tRNAAla, providing the only example of a true reversal of substrate specificity and highlighting a potential role of the coordinated zinc in editing substrate specificity. Along with the potentially serious physiological consequences of serine mis-incorporation, the relatively modest specificity of the AlaRS editing domain may provide a rationale for the widespread phylogenetic distribution of AlaX free standing editing domains, thereby contributing a further mechanism to lower concentrations of misacylated tRNAAla. PMID:21241052

  9. Alternative splicing and extensive RNA editing of human TPH2 transcripts.

    Directory of Open Access Journals (Sweden)

    Maik Grohmann

    Full Text Available Brain serotonin (5-HT neurotransmission plays a key role in the regulation of mood and has been implicated in a variety of neuropsychiatric conditions. Tryptophan hydroxylase (TPH is the rate-limiting enzyme in the biosynthesis of 5-HT. Recently, we discovered a second TPH isoform (TPH2 in vertebrates, including man, which is predominantly expressed in brain, while the previously known TPH isoform (TPH1 is primarly a non-neuronal enzyme. Overwhelming evidence now points to TPH2 as a candidate gene for 5-HT-related psychiatric disorders. To assess the role of TPH2 gene variability in the etiology of psychiatric diseases we performed cDNA sequence analysis of TPH2 transcripts from human post mortem amygdala samples obtained from individuals with psychiatric disorders (drug abuse, schizophrenia, suicide and controls. Here we show that TPH2 exists in two alternatively spliced variants in the coding region, denoted TPH2a and TPH2b. Moreover, we found evidence that the pre-mRNAs of both splice variants are dynamically RNA-edited in a mutually exclusive manner. Kinetic studies with cell lines expressing recombinant TPH2 variants revealed a higher activity of the novel TPH2B protein compared with the previously known TPH2A, whereas RNA editing was shown to inhibit the enzymatic activity of both TPH2 splice variants. Therefore, our results strongly suggest a complex fine-tuning of central nervous system 5-HT biosynthesis by TPH2 alternative splicing and RNA editing. Finally, we present molecular and large-scale linkage data evidencing that deregulated alternative splicing and RNA editing is involved in the etiology of psychiatric diseases, such as suicidal behaviour.

  10. Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma.

    Science.gov (United States)

    Tomaselli, Sara; Galeano, Federica; Alon, Shahar; Raho, Susanna; Galardi, Silvia; Polito, Vinicia Assunta; Presutti, Carlo; Vincenti, Sara; Eisenberg, Eli; Locatelli, Franco; Gallo, Angela

    2015-01-13

    ADAR enzymes convert adenosines to inosines within double-stranded RNAs, including microRNA (miRNA) precursors, with important consequences on miRNA retargeting and expression. ADAR2 activity is impaired in glioblastoma and its rescue has anti-tumoral effects. However, how ADAR2 activity may impact the miRNome and the progression of glioblastoma is not known. By integrating deep-sequencing and array approaches with bioinformatics analyses and molecular studies, we show that ADAR2 is essential to edit a small number of mature miRNAs and to significantly modulate the expression of about 90 miRNAs in glioblastoma cells. Specifically, the rescue of ADAR2 activity in cancer cells recovers the edited miRNA population lost in glioblastoma cell lines and tissues, and rebalances expression of onco-miRNAs and tumor suppressor miRNAs to the levels observed in normal human brain. We report that the major effect of ADAR2 is to reduce the expression of a large number of miRNAs, most of which act as onco-miRNAs. ADAR2 can edit miR-222/221 and miR-21 precursors and decrease the expression of the corresponding mature onco-miRNAs in vivo and in vitro, with important effects on cell proliferation and migration. Our findings disclose an additional layer of complexity in miRNome regulation and provide information to better understand the impact of ADAR2 editing enzyme in glioblastoma. We propose that ADAR2 is a key factor for maintaining edited-miRNA population and balancing the expression of several essential miRNAs involved in cancer.

  11. Crystallization and X-ray diffraction analysis of the Trp/amber editing site of hepatitis delta virus (+)RNA: a case of rational design

    International Nuclear Information System (INIS)

    MacElrevey, Celeste; Wedekind, Joseph E.

    2005-01-01

    Well diffracting decamer crystals of the hepatitis delta virus RNA-editing site were prepared, but exhibited merohedral twinning and base averaging owing to duplex symmetry. A longer asymmetric construct that includes additional flanking RNA sequences has been crystallized that does not appear to exhibit these defects. RNA editing by mammalian ADAR1 (Adenosine Deaminase Acting on RNA) is required for the life cycle of the hepatitis delta virus (HDV). Editing extends the single viral open reading frame to yield two protein products of alternate length. ADARs are believed to recognize double-stranded RNA substrates via a ‘structure-based’ readout mechanism. Crystals of 10-mer duplexes representing the HDV RNA-editing site diffracted to 1.35 Å resolution, but suffered from merohedral twinning and averaging of the base registry. Expansion of the construct to include two flanking 3 × 1 internal loops yielded crystals in the primitive tetragonal space group P4 1 2 1 2 or P4 3 2 1 2. X-ray diffraction data were collected to 2.8 Å resolution, revealing a unit cell with parameters a = 62.5, c = 63.5 Å. The crystallization and X-ray analysis of multiple forms of the HDV RNA-editing substrate, encounters with common RNA crystal-growth defects and a strategy to overcome these problems are reported

  12. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.

    Science.gov (United States)

    Doetschman, Thomas; Georgieva, Teodora

    2017-03-03

    Genetic engineering of model organisms and cultured cells has for decades provided important insights into the mechanisms underlying cardiovascular development and disease. In the past few years the development of several nuclease systems has broadened the range of model/cell systems that can be engineered. Of these, the CRISPR (clustered regularly interspersed short palindromic repeats)/Cas9 (CRISPR-associated protein 9) system has become the favorite for its ease of application. Here we will review this RNA-guided nuclease system for gene editing with respect to its usefulness for cardiovascular studies and with an eye toward potential therapy. Studies on its off-target activity, along with approaches to minimize this activity will be given. The advantages of gene editing versus gene targeting in embryonic stem cells, including the breadth of species and cell types to which it is applicable, will be discussed. We will also cover its use in iPSC for research and possible therapeutic purposes; and we will review its use in muscular dystrophy studies where considerable progress has been made toward dystrophin correction in mice. The CRISPR/Ca9s system is also being used for high-throughput screening of genes, gene regulatory regions, and long noncoding RNAs. In addition, the CRISPR system is being used for nongene-editing purposes such as activation and inhibition of gene expression, as well as for fluorescence tagging of chromosomal regions and individual mRNAs to track their cellular location. Finally, an approach to circumvent the inability of post-mitotic cells to support homologous recombination-based gene editing will be presented. In conclusion, applications of the CRISPR/Cas system are expanding at a breath-taking pace and are revolutionizing approaches to gain a better understanding of human diseases. © 2017 American Heart Association, Inc.

  13. Is plant mitochondrial RNA editing a source of phylogenetic incongruence? An answer from in silico and in vivo data sets

    Directory of Open Access Journals (Sweden)

    Quagliariello Carla

    2008-03-01

    Full Text Available Abstract Background In plant mitochondria, the post-transcriptional RNA editing process converts C to U at a number of specific sites of the mRNA sequence and usually restores phylogenetically conserved codons and the encoded amino acid residues. Sites undergoing RNA editing evolve at a higher rate than sites not modified by the process. As a result, editing sites strongly affect the evolution of plant mitochondrial genomes, representing an important source of sequence variability and potentially informative characters. To date no clear and convincing evidence has established whether or not editing sites really affect the topology of reconstructed phylogenetic trees. For this reason, we investigated here the effect of RNA editing on the tree building process of twenty different plant mitochondrial gene sequences and by means of computer simulations. Results Based on our simulation study we suggest that the editing ‘noise’ in tree topology inference is mainly manifested at the cDNA level. In particular, editing sites tend to confuse tree topologies when artificial genomic and cDNA sequences are generated shorter than 500 bp and with an editing percentage higher than 5.0%. Similar results have been also obtained with genuine plant mitochondrial genes. In this latter instance, indeed, the topology incongruence increases when the editing percentage goes up from about 3.0 to 14.0%. However, when the average gene length is higher than 1,000 bp (rps3, matR and atp1 no differences in the comparison between inferred genomic and cDNA topologies could be detected. Conclusions Our findings by the here reported in silico and in vivo computer simulation system seem to strongly suggest that editing sites contribute in the generation of misleading phylogenetic trees if the analyzed mitochondrial gene sequence is highly edited (higher than 3.0% and reduced in length (shorter than 500 bp. In the current lack of direct experimental evidence the results

  14. The agents of natural genome editing.

    Science.gov (United States)

    Witzany, Guenther

    2011-06-01

    The DNA serves as a stable information storage medium and every protein which is needed by the cell is produced from this blueprint via an RNA intermediate code. More recently it was found that an abundance of various RNA elements cooperate in a variety of steps and substeps as regulatory and catalytic units with multiple competencies to act on RNA transcripts. Natural genome editing on one side is the competent agent-driven generation and integration of meaningful DNA nucleotide sequences into pre-existing genomic content arrangements, and the ability to (re-)combine and (re-)regulate them according to context-dependent (i.e. adaptational) purposes of the host organism. Natural genome editing on the other side designates the integration of all RNA activities acting on RNA transcripts without altering DNA-encoded genes. If we take the genetic code seriously as a natural code, there must be agents that are competent to act on this code because no natural code codes itself as no natural language speaks itself. As code editing agents, viral and subviral agents have been suggested because there are several indicators that demonstrate viruses competent in both RNA and DNA natural genome editing.

  15. Targeted Genome Editing Using DNA-Free RNA-Guided Cas9 Ribonucleoprotein for CHO Cell Engineering.

    Science.gov (United States)

    Shin, Jongoh; Lee, Namil; Cho, Suhyung; Cho, Byung-Kwan

    2018-01-01

    Recent advances in the CRISPR/Cas9 system have dramatically facilitated genome engineering in various cell systems. Among the protocols, the direct delivery of the Cas9-sgRNA ribonucleoprotein (RNP) complex into cells is an efficient approach to increase genome editing efficiency. This method uses purified Cas9 protein and in vitro transcribed sgRNA to edit the target gene without vector DNA. We have applied the RNP complex to CHO cell engineering to obtain desirable phenotypes and to reduce unintended insertional mutagenesis and off-target effects. Here, we describe our routine methods for RNP complex-mediated gene deletion including the protocols to prepare the purified Cas9 protein and the in vitro transcribed sgRNA. Subsequently, we also describe a protocol to confirm the edited genomic positions using the T7E1 enzymatic assay and next-generation sequencing.

  16. RNA editing makes mistakes in plant mitochondria: editing loses sense in transcripts of a rps19 pseudogene and in creating stop codons in coxI and rps3 mRNAs of Oenothera.

    Science.gov (United States)

    Schuster, W; Brennicke, A

    1991-01-01

    An intact gene for the ribosomal protein S19 (rps19) is absent from Oenothera mitochondria. The conserved rps19 reading frame found in the mitochondrial genome is interrupted by a termination codon. This rps19 pseudogene is cotranscribed with the downstream rps3 gene and is edited on both sides of the translational stop. Editing, however, changes the amino acid sequence at positions that were well conserved before editing. Other strange editings create translational stops in open reading frames coding for functional proteins. In coxI and rps3 mRNAs CGA codons are edited to UGA stop codons only five and three codons, respectively, downstream to the initiation codon. These aberrant editings in essential open reading frames and in the rps19 pseudogene appear to have been shifted to these positions from other editing sites. These observations suggest a requirement for a continuous evolutionary constraint on the editing specificities in plant mitochondria. Images PMID:1762921

  17. Proofreading in vivo: Editing of homocysteine by methionyl-tRNA synthetase in Escherichia coli

    International Nuclear Information System (INIS)

    Jakubowski, H.

    1990-01-01

    Previous in vitro studies have established a pre-transfer proofreading mechanism for editing of homocysteine by bacterial methionyl-, isoleucyl-, and valyl-tRNA synthetases. The unusual feature of the editing is the formation of a distinct compound, homocysteine thiolactone. Now, two-dimensional TLC analysis of 35S-labeled amino acids extracted from cultures of the bacterium Escherichia coli reveals that the thiolactone is also synthesized in vivo. In E. coli, the thiolactone is made from homocysteine in a reaction catalyzed by methionyl-tRNA synthetase. One molecule of homocysteine is edited as thiolactone per 109 molecules of methionine incorporated into protein in vivo. These results not only directly demonstrate that the adenylate proofreading pathway for rejection of misactivated homocysteine operates in vivo in E. coli but, in general, establish the importance of error-editing mechanisms in living cells

  18. New Insights into the Biological Role of Mammalian ADARs; the RNA Editing Proteins

    Directory of Open Access Journals (Sweden)

    Niamh Mannion

    2015-09-01

    Full Text Available The ADAR proteins deaminate adenosine to inosine in double-stranded RNA which is one of the most abundant modifications present in mammalian RNA. Inosine can have a profound effect on the RNAs that are edited, not only changing the base-pairing properties, but can also result in recoding, as inosine behaves as if it were guanosine. In mammals there are three ADAR proteins and two ADAR-related proteins (ADAD expressed. All have a very similar modular structure; however, both their expression and biological function differ significantly. Only two of the ADAR proteins have enzymatic activity. However, both ADAR and ADAD proteins possess the ability to bind double-strand RNA. Mutations in ADARs have been associated with many diseases ranging from cancer, innate immunity to neurological disorders. Here, we will discuss in detail the domain structure of mammalian ADARs, the effects of RNA editing, and the role of ADARs in human diseases.

  19. New Insights into the Biological Role of Mammalian ADARs; the RNA Editing Proteins

    Science.gov (United States)

    Mannion, Niamh; Arieti, Fabiana; Gallo, Angela; Keegan, Liam P.; O’Connell, Mary A.

    2015-01-01

    The ADAR proteins deaminate adenosine to inosine in double-stranded RNA which is one of the most abundant modifications present in mammalian RNA. Inosine can have a profound effect on the RNAs that are edited, not only changing the base-pairing properties, but can also result in recoding, as inosine behaves as if it were guanosine. In mammals there are three ADAR proteins and two ADAR-related proteins (ADAD) expressed. All have a very similar modular structure; however, both their expression and biological function differ significantly. Only two of the ADAR proteins have enzymatic activity. However, both ADAR and ADAD proteins possess the ability to bind double-strand RNA. Mutations in ADARs have been associated with many diseases ranging from cancer, innate immunity to neurological disorders. Here, we will discuss in detail the domain structure of mammalian ADARs, the effects of RNA editing, and the role of ADARs in human diseases. PMID:26437436

  20. 5S rRNA Promoter for Guide RNA Expression Enabled Highly Efficient CRISPR/Cas9 Genome Editing in Aspergillus niger.

    Science.gov (United States)

    Zheng, Xiaomei; Zheng, Ping; Zhang, Kun; Cairns, Timothy C; Meyer, Vera; Sun, Jibin; Ma, Yanhe

    2018-04-30

    The CRISPR/Cas9 system is a revolutionary genome editing tool. However, in eukaryotes, search and optimization of a suitable promoter for guide RNA expression is a significant technical challenge. Here we used the industrially important fungus, Aspergillus niger, to demonstrate that the 5S rRNA gene, which is both highly conserved and efficiently expressed in eukaryotes, can be used as a guide RNA promoter. The gene editing system was established with 100% rates of precision gene modifications among dozens of transformants using short (40-bp) homologous donor DNA. This system was also applicable for generation of designer chromosomes, as evidenced by deletion of a 48 kb gene cluster required for biosynthesis of the mycotoxin fumonisin B1. Moreover, this system also facilitated simultaneous mutagenesis of multiple genes in A. niger. We anticipate that the use of the 5S rRNA gene as guide RNA promoter can broadly be applied for engineering highly efficient eukaryotic CRISPR/Cas9 toolkits. Additionally, the system reported here will enable development of designer chromosomes in model and industrially important fungi.

  1. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases.

    Science.gov (United States)

    Bi, Yanwei; Sun, Le; Gao, Dandan; Ding, Chen; Li, Zhihua; Li, Yadong; Cun, Wei; Li, Qihan

    2014-05-01

    A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)) RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ) and homology-directed repair (HDR) pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses.

  2. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases.

    Directory of Open Access Journals (Sweden)

    Yanwei Bi

    2014-05-01

    Full Text Available A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR-associated (Cas RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ and homology-directed repair (HDR pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses.

  3. Multifunctional G-rich and RRM-containing domains of TbRGG2 perform separate yet essential functions in trypanosome RNA editing.

    Science.gov (United States)

    Foda, Bardees M; Downey, Kurtis M; Fisk, John C; Read, Laurie K

    2012-09-01

    Efficient editing of Trypanosoma brucei mitochondrial RNAs involves the actions of multiple accessory factors. T. brucei RGG2 (TbRGG2) is an essential protein crucial for initiation and 3'-to-5' progression of editing. TbRGG2 comprises an N-terminal G-rich region containing GWG and RG repeats and a C-terminal RNA recognition motif (RRM)-containing domain. Here, we perform in vitro and in vivo separation-of-function studies to interrogate the mechanism of TbRGG2 action in RNA editing. TbRGG2 preferentially binds preedited mRNA in vitro with high affinity attributable to its G-rich region. RNA-annealing and -melting activities are separable, carried out primarily by the G-rich and RRM domains, respectively. In vivo, the G-rich domain partially complements TbRGG2 knockdown, but the RRM domain is also required. Notably, TbRGG2's RNA-melting activity is dispensable for RNA editing in vivo. Interactions between TbRGG2 and MRB1 complex proteins are mediated by both G-rich and RRM-containing domains, depending on the binding partner. Overall, our results are consistent with a model in which the high-affinity RNA binding and RNA-annealing activities of the G-rich domain are essential for RNA editing in vivo. The RRM domain may have key functions involving interactions with the MRB1 complex and/or regulation of the activities of the G-rich domain.

  4. The Arabidopsis thaliana RNA editing factor SLO2, which affects the mitochondrial electron transport chain, participates in multiple stress and hormone responses.

    Science.gov (United States)

    Zhu, Qiang; Dugardeyn, Jasper; Zhang, Chunyi; Mühlenbock, Per; Eastmond, Peter J; Valcke, Roland; De Coninck, Barbara; Oden, Sevgi; Karampelias, Michael; Cammue, Bruno P A; Prinsen, Els; Van Der Straeten, Dominique

    2014-02-01

    Recently, we reported that the novel mitochondrial RNA editing factor SLO2 is essential for mitochondrial electron transport, and vital for plant growth through regulation of carbon and energy metabolism. Here, we show that mutation in SLO2 causes hypersensitivity to ABA and insensitivity to ethylene, suggesting a link with stress responses. Indeed, slo2 mutants are hypersensitive to salt and osmotic stress during the germination stage, while adult plants show increased drought and salt tolerance. Moreover, slo2 mutants are more susceptible to Botrytis cinerea infection. An increased expression of nuclear-encoded stress-responsive genes, as well as mitochondrial-encoded NAD genes of complex I and genes of the alternative respiratory pathway, was observed in slo2 mutants, further enhanced by ABA treatment. In addition, H2O2 accumulation and altered amino acid levels were recorded in slo2 mutants. We conclude that SLO2 is required for plant sensitivity to ABA, ethylene, biotic, and abiotic stress. Although two stress-related RNA editing factors were reported very recently, this study demonstrates a unique role of SLO2, and further supports a link between mitochondrial RNA editing events and stress response.

  5. Delta's Key to the TOEFL iBT[R]: Advanced Skill Practice. Revised Edition

    Science.gov (United States)

    Gallagher, Nancy

    2012-01-01

    Delta's Key to the TOEFL iBT: Advanced Skill Practice is a revised and updated edition of Delta's Key to the Next Generation TOEFL Test. Since the introduction of the TOEFL iBT in 2005, there have been significant changes to some of the test questions, particularly the integrated writing and integrated speaking tasks. The new 2011 edition of…

  6. The essential role of AMPA receptor GluR2 subunit RNA editing in the normal and diseased brain

    Directory of Open Access Journals (Sweden)

    Amanda Lorraine Wright

    2012-04-01

    Full Text Available AMPA receptors are comprised of different combinations of GluR1-GluR4 (also known as GluA1-GluA4 and GluR-A to GluR-D subunits. The GluR2 subunit is subject to Q/R site RNA editing by the ADAR2 enzyme, which converts a codon for glutamine (Q, present in the GluR2 gene, to a codon for arginine (R found in the mRNA. AMPA receptors are calcium (Ca2+-permeable if they contain the unedited GluR2(Q subunit or if they lack the GluR2 subunit. While most AMPA receptors in the brain contain the edited GluR2(R subunit and are therefore Ca2+-impermeable, recent evidence suggests that Ca2+-permeable GluR2-lacking AMPA receptors are important in synaptic plasticity and learning. However, the presence of Ca2+-permeable AMPA receptors containing unedited GluR2 leads to excitotoxic cell loss. Recent studies have indicated that RNA editing of GluR2 is deregulated in diseases, such as amyotrophic lateral sclerosis (ALS, as well in acute neurodegenerative conditions, such as ischemia. More recently, studies have investigated the regulation of RNA editing and possible causes for its deregulation during disease. In this review, we will explore the role of GluR2 RNA editing in the healthy and diseased brain and outline new insights into the mechanisms that control this process.

  7. EdiPy: a resource to simulate the evolution of plant mitochondrial genes under the RNA editing.

    Science.gov (United States)

    Picardi, Ernesto; Quagliariello, Carla

    2006-02-01

    EdiPy is an online resource appropriately designed to simulate the evolution of plant mitochondrial genes in a biologically realistic fashion. EdiPy takes into account the presence of sites subjected to RNA editing and provides multiple artificial alignments corresponding to both genomic and cDNA sequences. Each artificial data set can successively be submitted to main and widespread evolutionary and phylogenetic software packages such as PAUP, Phyml, PAML and Phylip. As an online bioinformatic resource, EdiPy is available at the following web page: http://biologia.unical.it/py_script/index.html.

  8. Integrity of the core mitochondrial RNA-binding complex 1/nis vital for trypanosome RNA editing

    Czech Academy of Sciences Publication Activity Database

    Huang, Zhenqiu; Faktorová, Drahomíra; Křížová, A.; Kafková, L.; Read, L. K.; Lukeš, Julius; Hashimi, Hassan

    2015-01-01

    Roč. 21, č. 12 (2015), s. 2088-2102 ISSN 1355-8382 R&D Projects: GA ČR GA15-21974S EU Projects: European Commission(XE) 289007 Institutional support: RVO:60077344 Keywords : RNA editing * mitochondrion * trypanosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.344, year: 2015

  9. DEAH-RHA helicase•Znf cofactor systems in kinetoplastid RNA editing and evolutionarily distant RNA processes

    Science.gov (United States)

    Cruz-Reyes, Jorge; Mooers, Blaine H.M.; Abu-Adas, Zakaria; Kumar, Vikas; Gulati, Shelly

    2016-01-01

    Multi-zinc finger proteins are an emerging class of cofactors in DEAH-RHA RNA helicases across highly divergent eukaryotic lineages. DEAH-RHA helicase•zinc finger cofactor partnerships predate the split of kinetoplastid protozoa, which include several human pathogens, from other eukaryotic lineages 100–400 Ma. Despite a long evolutionary history, the prototypical DEAH-RHA domains remain highly conserved. This short review focuses on a recently identified DEAH-RHA helicase•zinc finger cofactor system in kinetoplastid RNA editing, and its potential functional parallels with analogous systems in embryogenesis control in nematodes and antivirus protection in humans. PMID:27540585

  10. c-Jun amino-terminal kinase-1 mediates glucose-responsive upregulation of the RNA editing enzyme ADAR2 in pancreatic beta-cells.

    Directory of Open Access Journals (Sweden)

    Liu Yang

    Full Text Available A-to-I RNA editing catalyzed by the two main members of the adenosine deaminase acting on RNA (ADAR family, ADAR1 and ADAR2, represents a RNA-based recoding mechanism implicated in a variety of cellular processes. Previously we have demonstrated that the expression of ADAR2 in pancreatic islet β-cells is responsive to the metabolic cues and ADAR2 deficiency affects regulated cellular exocytosis. To investigate the molecular mechanism by which ADAR2 is metabolically regulated, we found that in cultured β-cells and primary islets, the stress-activated protein kinase JNK1 mediates the upregulation of ADAR2 in response to changes of the nutritional state. In parallel with glucose induction of ADAR2 expression, JNK phosphorylation was concurrently increased in insulin-secreting INS-1 β-cells. Pharmacological inhibition of JNKs or siRNA knockdown of the expression of JNK1 prominently suppressed glucose-augmented ADAR2 expression, resulting in decreased efficiency of ADAR2 auto-editing. Consistently, the mRNA expression of Adar2 was selectively reduced in the islets from JNK1 null mice in comparison with that of wild-type littermates or JNK2 null mice, and ablation of JNK1 diminished high-fat diet-induced Adar2 expression in the islets from JNK1 null mice. Furthermore, promoter analysis of the mouse Adar2 gene identified a glucose-responsive region and revealed the transcription factor c-Jun as a driver of Adar2 transcription. Taken together, these results demonstrate that JNK1 serves as a crucial component in mediating glucose-responsive upregulation of ADAR2 expression in pancreatic β-cells. Thus, the JNK1 pathway may be functionally linked to the nutrient-sensing actions of ADAR2-mediated RNA editing in professional secretory cells.

  11. Comparison of Various Nuclear Localization Signal-Fused Cas9 Proteins and Cas9 mRNA for Genome Editing in Zebrafish.

    Science.gov (United States)

    Hu, Peinan; Zhao, Xueying; Zhang, Qinghua; Li, Weiming; Zu, Yao

    2018-03-02

    The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has been proven to be an efficient and precise genome editing technology in various organisms. However, the gene editing efficiencies of Cas9 proteins with a nuclear localization signal (NLS) fused to different termini and Cas9 mRNA have not been systematically compared. Here, we compared the ability of Cas9 proteins with NLS fused to the N-, C-, or both the N- and C-termini and N-NLS-Cas9-NLS-C mRNA to target two sites in the tyr gene and two sites in the gol gene related to pigmentation in zebrafish. Phenotypic analysis revealed that all types of Cas9 led to hypopigmentation in similar proportions of injected embryos. Genome analysis by T7 Endonuclease I (T7E1) assays demonstrated that all types of Cas9 similarly induced mutagenesis in four target sites. Sequencing results further confirmed that a high frequency of indels occurred in the target sites ( tyr1 > 66%, tyr2 > 73%, gol1 > 50%, and gol2 > 35%), as well as various types (more than six) of indel mutations observed in all four types of Cas9-injected embryos. Furthermore, all types of Cas9 showed efficient targeted mutagenesis on multiplex genome editing, resulting in multiple phenotypes simultaneously. Collectively, we conclude that various NLS-fused Cas9 proteins and Cas9 mRNAs have similar genome editing efficiencies on targeting single or multiple genes, suggesting that the efficiency of CRISPR/Cas9 genome editing is highly dependent on guide RNAs (gRNAs) and gene loci. These findings may help to simplify the selection of Cas9 for gene editing using the CRISPR/Cas9 system. Copyright © 2018 Hu et al.

  12. Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit.

    Science.gov (United States)

    Wang, Zupeng; Wang, Shuaibin; Li, Dawei; Zhang, Qiong; Li, Li; Zhong, Caihong; Liu, Yifei; Huang, Hongwen

    2018-01-13

    Kiwifruit is an important fruit crop; however, technologies for its functional genomic and molecular improvement are limited. The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system has been successfully applied to genetic improvement in many crops, but its editing capability is variable depending on the different combinations of the synthetic guide RNA (sgRNA) and Cas9 protein expression devices. Optimizing conditions for its use within a particular species is therefore needed to achieve highly efficient genome editing. In this study, we developed a new cloning strategy for generating paired-sgRNA/Cas9 vectors containing four sgRNAs targeting the kiwifruit phytoene desaturase gene (AcPDS). Comparing to the previous method of paired-sgRNA cloning, our strategy only requires the synthesis of two gRNA-containing primers which largely reduces the cost. We further compared efficiencies of paired-sgRNA/Cas9 vectors containing different sgRNA expression devices, including both the polycistronic tRNA-sgRNA cassette (PTG) and the traditional CRISPR expression cassette. We found the mutagenesis frequency of the PTG/Cas9 system was 10-fold higher than that of the CRISPR/Cas9 system, coinciding with the relative expressions of sgRNAs in two different expression cassettes. In particular, we identified large chromosomal fragment deletions induced by the paired-sgRNAs of the PTG/Cas9 system. Finally, as expected, we found both systems can successfully induce the albino phenotype of kiwifruit plantlets regenerated from the G418-resistance callus lines. We conclude that the PTG/Cas9 system is a more powerful system than the traditional CRISPR/Cas9 system for kiwifruit genome editing, which provides valuable clues for optimizing CRISPR/Cas9 editing system in other plants. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons

  13. RNA editing differently affects protein-coding genes in D. melanogaster and H. sapiens.

    Science.gov (United States)

    Grassi, Luigi; Leoni, Guido; Tramontano, Anna

    2015-07-14

    When an RNA editing event occurs within a coding sequence it can lead to a different encoded amino acid. The biological significance of these events remains an open question: they can modulate protein functionality, increase the complexity of transcriptomes or arise from a loose specificity of the involved enzymes. We analysed the editing events in coding regions that produce or not a change in the encoded amino acid (nonsynonymous and synonymous events, respectively) in D. melanogaster and in H. sapiens and compared them with the appropriate random models. Interestingly, our results show that the phenomenon has rather different characteristics in the two organisms. For example, we confirm the observation that editing events occur more frequently in non-coding than in coding regions, and report that this effect is much more evident in H. sapiens. Additionally, in this latter organism, editing events tend to affect less conserved residues. The less frequently occurring editing events in Drosophila tend to avoid drastic amino acid changes. Interestingly, we find that, in Drosophila, changes from less frequently used codons to more frequently used ones are favoured, while this is not the case in H. sapiens.

  14. No link of serotonin 2C receptor editing to serotonin transporter genotype

    NARCIS (Netherlands)

    Lyddon, R.; Cuppen, E.; Haroutunian, V.; Siever, L.J.; Dracheva, S.

    2010-01-01

    RNA editing is a post-transcriptional process, which has the potential to alter the function of encoded proteins. In particular, serotonin 2C receptor (5-HT2cR) mRNA editing can produce 24 protein isoforms of varying functionality. Rodent studies have shown that 5-HT2cR editing is dynamically

  15. Actions of Agonists, Fipronil and Ivermectin on the Predominant In Vivo Splice and Edit Variant (RDLbd, I/V) of the Drosophila GABA Receptor Expressed in Xenopus laevis Oocytes

    Science.gov (United States)

    Suwanmanee, Siros; Buckingham, Steven David; Biggin, Philip; Sattelle, David

    2014-01-01

    Ionotropic GABA receptors are the targets for several classes of insecticides. One of the most widely-studied insect GABA receptors is RDL (resistance to dieldrin), originally isolated from Drosophila melanogaster. RDL undergoes alternative splicing and RNA editing, which influence the potency of GABA. Most work has focussed on minority isoforms. Here, we report the first characterisation of the predominant native splice variant and RNA edit, combining functional characterisation with molecular modelling of the agonist-binding region. The relative order of agonist potency is GABA> muscimol> TACA> β-alanine. The I/V edit does not alter the potency of GABA compared to RDLbd. Docking calculations suggest that these agonists bind and activate RDLbdI/V through a similar binding mode. TACA and β-alanine are predicted to bind with lower affinity than GABA, potentially explaining their lower potency, whereas the lower potency of muscimol and isoguvacine cannot be explained structurally from the docking calculations. The A301S (resistance to dieldrin) mutation reduced the potency of antagonists picrotoxin, fipronil and pyrafluprole but the I/V edit had no measurable effect. Ivermectin suppressed responses to GABA of RDLbdI/V, RDLbd and RDLbdI/VA301S. The dieldrin resistant variant also showed reduced sensitivity to Ivermectin. This study of a highly abundant insect GABA receptor isoform will help the design of new insecticides. PMID:24823815

  16. Regulation of Na+/K+ ATPase transport velocity by RNA editing.

    Directory of Open Access Journals (Sweden)

    Claudia Colina

    2010-11-01

    Full Text Available Because firing properties and metabolic rates vary widely, neurons require different transport rates from their Na(+/K(+ pumps in order to maintain ion homeostasis. In this study we show that Na(+/K(+ pump activity is tightly regulated by a novel process, RNA editing. Three codons within the squid Na(+/K(+ ATPase gene can be recoded at the RNA level, and the efficiency of conversion for each varies dramatically, and independently, between tissues. At one site, a highly conserved isoleucine in the seventh transmembrane span can be converted to a valine, a change that shifts the pump's intrinsic voltage dependence. Mechanistically, the removal of a single methyl group specifically targets the process of Na(+ release to the extracellular solution, causing a higher turnover rate at the resting membrane potential.

  17. RNA editing in Drosophila melanogaster: new targets and functionalconsequences

    Energy Technology Data Exchange (ETDEWEB)

    Stapleton, Mark; Carlson, Joseph W.; Celniker, Susan E.

    2006-09-05

    Adenosine deaminases that act on RNA (ADARs) catalyze the site-specific conversion of adenosine to inosine in primary mRNA transcripts. These re-coding events affect coding potential, splice-sites, and stability of mature mRNAs. ADAR is an essential gene and studies in mouse, C. elegans, and Drosophila suggest its primary function is to modify adult behavior by altering signaling components in the nervous system. By comparing the sequence of isogenic cDNAs to genomic DNA, we have identified and experimentally verified 27 new targets of Drosophila ADAR. Our analyses lead us to identify new classes of genes whose transcripts are targets of ADAR including components of the actin cytoskeleton, and genes involved in ion homeostasis and signal transduction. Our results indicate that editing in Drosophila increases the diversity of the proteome, and does so in a manner that has direct functional consequences on protein function.

  18. iDoRNA: An Interacting Domain-based Tool for Designing RNA-RNA Interaction Systems

    Directory of Open Access Journals (Sweden)

    Jittrawan Thaiprasit

    2016-03-01

    Full Text Available RNA-RNA interactions play a crucial role in gene regulation in living organisms. They have gained increasing interest in the field of synthetic biology because of their potential applications in medicine and biotechnology. However, few novel regulators based on RNA-RNA interactions with desired structures and functions have been developed due to the challenges of developing design tools. Recently, we proposed a novel tool, called iDoDe, for designing RNA-RNA interacting sequences by first decomposing RNA structures into interacting domains and then designing each domain using a stochastic algorithm. However, iDoDe did not provide an optimal solution because it still lacks a mechanism to optimize the design. In this work, we have further developed the tool by incorporating a genetic algorithm (GA to find an RNA solution with maximized structural similarity and minimized hybridized RNA energy, and renamed the tool iDoRNA. A set of suitable parameters for the genetic algorithm were determined and found to be a weighting factor of 0.7, a crossover rate of 0.9, a mutation rate of 0.1, and the number of individuals per population set to 8. We demonstrated the performance of iDoRNA in comparison with iDoDe by using six RNA-RNA interaction models. It was found that iDoRNA could efficiently generate all models of interacting RNAs with far more accuracy and required far less computational time than iDoDe. Moreover, we compared the design performance of our tool against existing design tools using forty-four RNA-RNA interaction models. The results showed that the performance of iDoRNA is better than RiboMaker when considering the ensemble defect, the fitness score and computation time usage. However, it appears that iDoRNA is outperformed by NUPACK and RNAiFold 2.0 when considering the ensemble defect. Nevertheless, iDoRNA can still be an useful alternative tool for designing novel RNA-RNA interactions in synthetic biology research. The source code of iDoRNA

  19. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies.

    Science.gov (United States)

    Wang, Gang; Yang, Luhan; Grishin, Dennis; Rios, Xavier; Ye, Lillian Y; Hu, Yong; Li, Kai; Zhang, Donghui; Church, George M; Pu, William T

    2017-01-01

    Genome editing of human induced pluripotent stem cells (hiPSCs) offers unprecedented opportunities for in vitro disease modeling and personalized cell replacement therapy. The introduction of Cas9-directed genome editing has expanded adoption of this approach. However, marker-free genome editing using standard protocols remains inefficient, yielding desired targeted alleles at a rate of ∼1-5%. We developed a protocol based on a doxycycline-inducible Cas9 transgene carried on a piggyBac transposon to enable robust and highly efficient Cas9-directed genome editing, so that a parental line can be expeditiously engineered to harbor many separate mutations. Treatment with doxycycline and transfection with guide RNA (gRNA), donor DNA and piggyBac transposase resulted in efficient, targeted genome editing and concurrent scarless transgene excision. Using this approach, in 7 weeks it is possible to efficiently obtain genome-edited clones with minimal off-target mutagenesis and with indel mutation frequencies of 40-50% and homology-directed repair (HDR) frequencies of 10-20%.

  20. RNA editing in kinetoplastid parasites: what to do with U

    NARCIS (Netherlands)

    Sloof, P.; Benne, R.

    1997-01-01

    The editing of the mitochondrial RNAs of kinetoplastid protozoa is a bizarre form of transcript maturation that involves insertion and deletion of uridylate residues. Editing leads to the formation of translational initiation and termination codons, the correction of gene-encoded reading frame

  1. ADAR2 editing activity in newly diagnosed versus relapsed pediatric high-grade astrocytomas

    International Nuclear Information System (INIS)

    Tomaselli, Sara; Galeano, Federica; Massimi, Luca; Di Rocco, Concezio; Lauriola, Libero; Mastronuzzi, Angela; Locatelli, Franco; Gallo, Angela

    2013-01-01

    High-grade (WHO grade III and IV) astrocytomas are aggressive malignant brain tumors affecting humans with a high risk of recurrence in both children and adults. To date, limited information is available on the genetic and molecular alterations important in the onset and progression of pediatric high-grade astrocytomas and, even less, on the prognostic factors that influence long-term outcome in children with recurrence. A-to-I RNA editing is an essential post-transcriptional mechanism that can alter the nucleotide sequence of several RNAs and is mediated by the ADAR enzymes. ADAR2 editing activity is particularly important in mammalian brain and is impaired in both adult and pediatric high-grade astrocytomas. Moreover, we have recently shown that the recovered ADAR2 activity in high-grade astrocytomas inhibits in vivo tumor growth. The aim of the present study is to investigate whether changes may occur in ADAR2-mediated RNA editing profiles of relapsed high-grade astrocytomas compared to their respective specimens collected at diagnosis, in four pediatric patients. Total RNAs extracted from all tumor samples and controls were tested for RNA editing levels (by direct sequencing on cDNA pools) and for ADAR2 mRNA expression (by qRT-PCR). A significant loss of ADAR2-editing activity was observed in the newly diagnosed and recurrent astrocytomas in comparison to normal brain. Surprisingly, we found a substantial rescue of ADAR2 editing activity in the relapsed tumor of the only patient showing prolonged survival. High-grade astrocytomas display a generalized loss of ADAR2-mediated RNA editing at both diagnosis and relapse. However, a peculiar Case, in complete remission of disease, displayed a total rescue of RNA editing at relapse, intriguingly suggesting ADAR2 activity/expression as a possible marker for long-term survival of patients with high-grade astrocytomas

  2. Heterologous and endogenous U6 snRNA promoters enable CRISPR/Cas9 mediated genome editing in Aspergillus niger.

    Science.gov (United States)

    Zheng, Xiaomei; Zheng, Ping; Sun, Jibin; Kun, Zhang; Ma, Yanhe

    2018-01-01

    U6 promoters have been used for single guide RNA (sgRNA) transcription in the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas9) genome editing system. However, no available U6 promoters have been identified in Aspergillus niger, which is an important industrial platform for organic acid and protein production. Two CRISPR/Cas9 systems established in A. niger have recourse to the RNA polymerase II promoter or in vitro transcription for sgRNA synthesis, but these approaches generally increase cloning efforts and genetic manipulation. The validation of functional RNA polymerase II promoters is therefore an urgent need for A. niger . Here, we developed a novel CRISPR/Cas9 system in A. niger for sgRNA expression, based on one endogenous U6 promoter and two heterologous U6 promoters. The three tested U6 promoters enabled sgRNA transcription and the disruption of the polyketide synthase albA gene in A. niger . Furthermore, this system enabled highly efficient gene insertion at the targeted genome loci in A. niger using donor DNAs with homologous arms as short as 40-bp. This study demonstrated that both heterologous and endogenous U6 promoters were functional for sgRNA expression in A. niger . Based on this result, a novel and simple CRISPR/Cas9 toolbox was established in A. niger, that will benefit future gene functional analysis and genome editing.

  3. Efficient Generation and Editing of Feeder-free IPSCs from Human Pancreatic Cells Using the CRISPR-Cas9 System.

    Science.gov (United States)

    Nandal, Anjali; Mallon, Barbara; Telugu, Bhanu P

    2017-11-08

    Embryonic and induced pluripotent stem cells can self-renew and differentiate into multiple cell types of the body. The pluripotent cells are thus coveted for research in regenerative medicine and are currently in clinical trials for eye diseases, diabetes, heart diseases, and other disorders. The potential to differentiate into specialized cell types coupled with the recent advances in genome editing technologies including the CRISPR/Cas system have provided additional opportunities for tailoring the genome of iPSC for varied applications including disease modeling, gene therapy, and biasing pathways of differentiation, to name a few. Among the available editing technologies, the CRISPR/Cas9 from Streptococcus pyogenes has emerged as a tool of choice for site-specific editing of the eukaryotic genome. The CRISPRs are easily accessible, inexpensive, and highly efficient in engineering targeted edits. The system requires a Cas9 nuclease and a guide sequence (20-mer) specific to the genomic target abutting a 3-nucleotide "NGG" protospacer-adjacent-motif (PAM) for targeting Cas9 to the desired genomic locus, alongside a universal Cas9 binding tracer RNA (together called single guide RNA or sgRNA). Here we present a step-by-step protocol for efficient generation of feeder-independent and footprint-free iPSC and describe methodologies for genome editing of iPSC using the Cas9 ribonucleoprotein (RNP) complexes. The genome editing protocol is effective and can be easily multiplexed by pre-complexing sgRNAs for more than one target with the Cas9 protein and simultaneously delivering into the cells. Finally, we describe a simplified approach for identification and characterization of iPSCs with desired edits. Taken together, the outlined strategies are expected to streamline generation and editing of iPSC for manifold applications.

  4. A Two-Piece Derivative of a Group I Intron RNA as a Platform for Designing Self-Assembling RNA Templates to Promote Peptide Ligation

    Directory of Open Access Journals (Sweden)

    Takahiro Tanaka

    2012-01-01

    Full Text Available Multicomponent RNA-peptide complexes are attractive from the viewpoint of artificial design of functional biomacromolecular systems. We have developed self-folding and self-assembling RNAs that serve as templates to assist chemical ligation between two reactive peptides with RNA-binding capabilities. The design principle of previous templates, however, can be applied only to limited classes of RNA-binding peptides. In this study, we employed a two-piece derivative of a group I intron RNA from the Tetrahymena large subunit ribosomal RNA (LSU rRNA as a platform for new template RNAs. In this group I intron-based self-assembling platform, modules for the recognition of substrate peptides can be installed independently from modules holding the platform structure. The new self-assembling platform allows us to expand the repertoire of substrate peptides in template RNA design.

  5. Dual core processing: MRB1 is an emerging kinetoplast RNA editing complex

    Czech Academy of Sciences Publication Activity Database

    Hashimi, Hassan; Zimmer, S.L.; Ammerman, M. L.; Read, L. K.; Lukeš, Julius

    2013-01-01

    Roč. 29, č. 2 (2013), s. 91-99 ISSN 1471-4922 R&D Projects: GA ČR GAP305/12/2261; GA ČR GA204/09/1667 Institutional support: RVO:60077344 Keywords : kinetoplastida * trypanosome * RNA editing * protein complexes * RECC * MRB1 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.217, year: 2013 http://www.sciencedirect.com/science/article/pii/S1471492212001985

  6. Fasting decreases apolipoprotein B mRNA editing and the secretion of small molecular weight apoB by rat hepatocytes: Evidence that the total amount of apoB secreted is regulated post-transcriptionally

    International Nuclear Information System (INIS)

    Leighton, J.K.; Joyner, J.; Zamarripa, J.; Deines, M.; Davis, R.A.

    1990-01-01

    Two different molecular weight forms of apoB are produced from a common initial transcript via editing of a Gln codon (CAA) to a stop codon (UAA), leading to a truncated translation product (apo BS) that consists of the amino terminal half of the larger form (apoBL). Previous studies have shown that fasting coordinately decreases lipogenesis and the secretion of very low density lipoprotein (VLDL) lipids and apoBS. Secretion of the apoBL is unaffected by fasting. We studied whether editing of apoB RNA is repressed by fasting, thus accounting for the selective decreased secretion of apoBS. Column chromatography of [35S]methionine-labeled lipoproteins secreted by hepatocytes from fed rats showed that essentially all of apoBL is secreted in the VLDL fraction, whereas a significant amount (15%) of apoBS is secreted associated as lipoproteins eluting in the HDL fractions. Fasting decreased the relative amount of apoBS that eluted in the VLDL fractions and increased the amount secreted in the HDL fractions. Consistent with previous results, hepatocytes from fasted rats show a selective twofold decrease in apoBS secretion. Fasting did not affect the relative abundance of apoB RNA, determined by slot blot hybridization assays using two different 32P-labeled cDNA probes coding either for both molecular weight forms or for only the large molecular weight form. However, quantitative of the editing of apoB RNA showed that fasting caused a 60% decrease in the amount of apoB RNA possessing the stop codon. These data show that the editing of apoB RNA is sensitive to metabolic state (i.e., fasting) resulting in a selective decrease in the secretion of apoBS. However, since the total secretion of apoB was decreased by fasting, while apoB mRNA levels remained constant, additional (post-transcriptional) mechanisms play a role in regulating apoB secretion

  7. Fan edits and the legacy of The Phantom Edit

    Directory of Open Access Journals (Sweden)

    Joshua Wille

    2014-09-01

    Full Text Available A fan edit can generally be defined as an alternative version of a film or television text created by a fan. It offers a different viewing experience, much as a song remix offers a different listening experience. The contemporary wave of fan edits has emerged during the remix zeitgeist of digital media and at a time when digital video editing technology has become more affordable and popular. The increasing number of alternative versions of films and the works of revisionist Hollywood filmmakers such as George Lucas have contributed to a greater public understanding of cinema as a fluid medium instead of one that exists in a fixed form. The Phantom Edit (2000, a seminal fan edit based on Lucas's Star Wars Episode I: The Phantom Menace (1999, inspired new ranks of fan editors. However, critics have misunderstood fan edits as merely the work of disgruntled fans. In order to provide a critical and historical basis for studies in fan editing as a creative practice, I examine previous interpretations of fan edits in the context of relevant contemporary works, and I use an annotated chronology of The Phantom Edit to trace its influence on subsequent fan editing communities and uncover their relationship with intellectual property disputes.

  8. Efficient genome editing in hematopoietic stem cells with helper-dependent Ad5/35 vectors expressing site-specific endonucleases under microRNA regulation

    Directory of Open Access Journals (Sweden)

    Kamola Saydaminova

    Full Text Available Genome editing with site-specific endonucleases has implications for basic biomedical research as well as for gene therapy. We generated helper-dependent, capsid-modified adenovirus (HD-Ad5/35 vectors for zinc-finger nuclease (ZFN– or transcription activator-like effector nuclease (TALEN–mediated genome editing in human CD34+ hematopoietic stem cells (HSCs from mobilized adult donors. The production of these vectors required that ZFN and TALEN expression in HD-Ad5/35 producer 293-Cre cells was suppressed. To do this, we developed a microRNA (miRNA-based system for regulation of gene expression based on miRNA expression profiling of 293-Cre and CD34+ cells. Using miR-183-5p and miR-218-5p based regulation of transgene gene expression, we first produced an HD-Ad5/35 vector expressing a ZFN specific to the HIV coreceptor gene ccr5. We demonstrated that HD-Ad5/35.ZFNmiR vector conferred ccr5 knock out in primitive HSC (i.e., long-term culture initiating cells and NOD/SCID repopulating cells. The ccr5 gene disruption frequency achieved in engrafted HSCs found in the bone marrow of transplanted mice is clinically relevant for HIV therapy considering that these cells can give rise to multiple lineages, including all the lineages that represent targets and reservoirs for HIV. We produced a second HD-Ad5/35 vector expressing a TALEN targeting the DNase hypersensitivity region 2 (HS2 within the globin locus control region. This vector has potential for targeted gene correction in hemoglobinopathies. The miRNA regulated HD-Ad5/35 vector platform for expression of site-specific endonucleases has numerous advantages over currently used vectors as a tool for genome engineering of HSCs for therapeutic purposes.

  9. [In silico CRISPR-based sgRNA design].

    Science.gov (United States)

    Wang, Yuanli; Chuai, Guohui; Yan, Jifang; Shi, Lei; Liu, Qi

    2017-10-25

    CRISPR-based genome editing has been widely implemented in various cell types. In-silico single guide RNA (sgRNA) design is a key step for successful gene editing using CRISPR system. Continuing efforts are made to refine in-silico sgRNA design with high on-target efficacy and reduced off-target effects. In this paper, we summarize the present sgRNA design tools, and show that efficient in-silico models can be built that integrate current heterogeneous genome-editing data to derive unbiased sgRNA design rules and identify key features for improving sgRNA design. Our review shows that systematic comparisons and evaluation of on-target and off-target effects of sgRNA will allow more precise genome editing and gene therapies using the CRISPR system.

  10. What! I Have To Give a Speech? 2nd Edition.

    Science.gov (United States)

    Snyder, Kenneth; Murphy, Thomas J.

    Noting that fear of public speaking is shared by people of all types, the second edition of this book offers practical, easy-to-follow strategies for confident and effective public speaking. The book discusses the following aspects of public speaking: what to talk about; how to research a topic; how to organize a speech; how to keep an audience…

  11. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells.

    Science.gov (United States)

    Yuen, Kit-San; Chan, Chi-Ping; Wong, Nok-Hei Mickey; Ho, Chau-Ha; Ho, Ting-Hin; Lei, Ting; Deng, Wen; Tsao, Sai Wah; Chen, Honglin; Kok, Kin-Hang; Jin, Dong-Yan

    2015-03-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated 9) system is a highly efficient and powerful tool for RNA-guided editing of the cellular genome. Whether CRISPR/Cas9 can also cleave the genome of DNA viruses such as Epstein-Barr virus (EBV), which undergo episomal replication in human cells, remains to be established. Here, we reported on CRISPR/Cas9-mediated editing of the EBV genome in human cells. Two guide RNAs (gRNAs) were used to direct a targeted deletion of 558 bp in the promoter region of BART (BamHI A rightward transcript) which encodes viral microRNAs (miRNAs). Targeted editing was achieved in several human epithelial cell lines latently infected with EBV, including nasopharyngeal carcinoma C666-1 cells. CRISPR/Cas9-mediated editing of the EBV genome was efficient. A recombinant virus with the desired deletion was obtained after puromycin selection of cells expressing Cas9 and gRNAs. No off-target cleavage was found by deep sequencing. The loss of BART miRNA expression and activity was verified, supporting the BART promoter as the major promoter of BART RNA. Although CRISPR/Cas9-mediated editing of the multicopy episome of EBV in infected HEK293 cells was mostly incomplete, viruses could be recovered and introduced into other cells at low m.o.i. Recombinant viruses with an edited genome could be further isolated through single-cell sorting. Finally, a DsRed selectable marker was successfully introduced into the EBV genome during the course of CRISPR/Cas9-mediated editing. Taken together, our work provided not only the first genetic evidence that the BART promoter drives the expression of the BART transcript, but also a new and efficient method for targeted editing of EBV genome in human cells. © 2015 The Authors.

  12. Structure of a putative trans-editing enzyme for prolyl-tRNA synthetase from Aeropyrum pernix K1 at 1.7 Å resolution

    International Nuclear Information System (INIS)

    Murayama, Kazutaka; Kato-Murayama, Miyuki; Katsura, Kazushige; Uchikubo-Kamo, Tomomi; Yamaguchi-Hirafuji, Machiko; Kawazoe, Masahito; Akasaka, Ryogo; Hanawa-Suetsugu, Kyoko; Hori-Takemoto, Chie; Terada, Takaho; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2004-01-01

    The three-dimensional structure of the APE2540 protein from A. pernix K1 has been determined by the multiple anomalous dispersion method at 1.7 Å resolution. The structure includes two monomers in the asymmetric unit and shares structural similarity with the YbaK protein or cysteinyl-tRNA Pro deacylase from H. influenzae. The crystal structure of APE2540, the putative trans-editing enzyme ProX from Aeropyrum pernix K1, was determined in a high-throughput manner. The crystal belongs to the monoclinic space group P2 1 , with unit-cell parameters a = 47.4, b = 58.9, c = 53.6 Å, β = 106.8°. The structure was solved by the multiwavelength anomalous dispersion method at 1.7 Å and refined to an R factor of 16.8% (R free = 20.5%). The crystal structure includes two protein molecules in the asymmetric unit. Each monomer consists of eight β-strands and seven α-helices. A structure-homology search revealed similarity between the trans-editing enzyme YbaK (or cysteinyl-tRNA Pro deacylase) from Haemophilus influenzae (HI1434; 22% sequence identity) and putative ProX proteins from Caulobacter crescentus (16%) and Agrobacterium tumefaciens (21%)

  13. Targeted CRISPR disruption reveals a role for RNase MRP RNA in human preribosomal RNA processing.

    Science.gov (United States)

    Goldfarb, Katherine C; Cech, Thomas R

    2017-01-01

    MRP RNA is an abundant, essential noncoding RNA whose functions have been proposed in yeast but are incompletely understood in humans. Mutations in the genomic locus for MRP RNA cause pleiotropic human diseases, including cartilage hair hypoplasia (CHH). Here we applied CRISPR-Cas9 genome editing to disrupt the endogenous human MRP RNA locus, thereby attaining what has eluded RNAi and RNase H experiments: elimination of MRP RNA in the majority of cells. The resulting accumulation of ribosomal RNA (rRNA) precursor-analyzed by RNA fluorescent in situ hybridization (FISH), Northern blots, and RNA sequencing-implicates MRP RNA in pre-rRNA processing. Amelioration of pre-rRNA imbalance is achieved through rescue of MRP RNA levels by ectopic expression. Furthermore, affinity-purified MRP ribonucleoprotein (RNP) from HeLa cells cleaves the human pre-rRNA in vitro at at least one site used in cells, while RNP isolated from cells with CRISPR-edited MRP loci loses this activity, and ectopic MRP RNA expression restores cleavage activity. Thus, a role for RNase MRP in human pre-rRNA processing is established. As demonstrated here, targeted CRISPR disruption is a valuable tool for functional studies of essential noncoding RNAs that are resistant to RNAi and RNase H-based degradation. © 2017 Goldfarb and Cech; Published by Cold Spring Harbor Laboratory Press.

  14. Identification of high-efficiency 3′GG gRNA motifs in indexed FASTA files with ngg2

    Directory of Open Access Journals (Sweden)

    Elisha D. Roberson

    2015-11-01

    Full Text Available CRISPR/Cas9 is emerging as one of the most-used methods of genome modification in organisms ranging from bacteria to human cells. However, the efficiency of editing varies tremendously site-to-site. A recent report identified a novel motif, called the 3′GG motif, which substantially increases the efficiency of editing at all sites tested in C. elegans. Furthermore, they highlighted that previously published gRNAs with high editing efficiency also had this motif. I designed a Python command-line tool, ngg2, to identify 3′GG gRNA sites from indexed FASTA files. As a proof-of-concept, I screened for these motifs in six model genomes: Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Mus musculus, and Homo sapiens. I also scanned the genomes of pig (Sus scrofa and African elephant (Loxodonta africana to demonstrate the utility in non-model organisms. I identified more than 60 million single match 3′GG motifs in these genomes. Greater than 61% of all protein coding genes in the reference genomes had at least one unique 3′GG gRNA site overlapping an exon. In particular, more than 96% of mouse and 93% of human protein coding genes have at least one unique, overlapping 3′GG gRNA. These identified sites can be used as a starting point in gRNA selection, and the ngg2 tool provides an important ability to identify 3′GG editing sites in any species with an available genome sequence.

  15. Genome Editing for Cancer Therapy: Delivery of Cas9 Protein/sgRNA Plasmid via a Gold Nanocluster/Lipid Core-Shell Nanocarrier.

    Science.gov (United States)

    Wang, Peng; Zhang, Lingmin; Xie, Yangzhouyun; Wang, Nuoxin; Tang, Rongbing; Zheng, Wenfu; Jiang, Xingyu

    2017-11-01

    The type II bacterial clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 (CRISPR-associated protein) system (CRISPR-Cas9) is a powerful toolbox for gene-editing, however, the nonviral delivery of CRISPR-Cas9 to cells or tissues remains a key challenge. This paper reports a strategy to deliver Cas9 protein and single guide RNA (sgRNA) plasmid by a nanocarrier with a core of gold nanoclusters (GNs) and a shell of lipids. By modifying the GNs with HIV-1-transactivator of transcription peptide, the cargo (Cas9/sgRNA) can be delivered into cell nuclei. This strategy is utilized to treat melanoma by designing sgRNA targeting Polo-like kinase-1 ( Plk1 ) of the tumor. The nanoparticle (polyethylene glycol-lipid/GNs/Cas9 protein/sgPlk1 plasmid, LGCP) leads to >70% down-regulation of Plk1 protein expression of A375 cells in vitro. Moreover, the LGCP suppresses melanoma progress by 75% on mice. Thus, this strategy can deliver protein-nucleic acid hybrid agents for gene therapy.

  16. Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa.

    Science.gov (United States)

    Shinkuma, Satoru; Guo, Zongyou; Christiano, Angela M

    2016-05-17

    Genome editing with engineered site-specific endonucleases involves nonhomologous end-joining, leading to reading frame disruption. The approach is applicable to dominant negative disorders, which can be treated simply by knocking out the mutant allele, while leaving the normal allele intact. We applied this strategy to dominant dystrophic epidermolysis bullosa (DDEB), which is caused by a dominant negative mutation in the COL7A1 gene encoding type VII collagen (COL7). We performed genome editing with TALENs and CRISPR/Cas9 targeting the mutation, c.8068_8084delinsGA. We then cotransfected Cas9 and guide RNA expression vectors expressed with GFP and DsRed, respectively, into induced pluripotent stem cells (iPSCs) generated from DDEB fibroblasts. After sorting, 90% of the iPSCs were edited, and we selected four gene-edited iPSC lines for further study. These iPSCs were differentiated into keratinocytes and fibroblasts secreting COL7. RT-PCR and Western blot analyses revealed gene-edited COL7 with frameshift mutations degraded at the protein level. In addition, we confirmed that the gene-edited truncated COL7 could neither associate with normal COL7 nor undergo triple helix formation. Our data establish the feasibility of mutation site-specific genome editing in dominant negative disorders.

  17. Transcriptional Slippage and RNA Editing Increase the Diversity of Transcripts in Chloroplasts: Insight from Deep Sequencing of Vigna radiata Genome and Transcriptome.

    Directory of Open Access Journals (Sweden)

    Ching-Ping Lin

    Full Text Available We performed deep sequencing of the nuclear and organellar genomes of three mungbean genotypes: Vigna radiata ssp. sublobata TC1966, V. radiata var. radiata NM92 and the recombinant inbred line RIL59 derived from a cross between TC1966 and NM92. Moreover, we performed deep sequencing of the RIL59 transcriptome to investigate transcript variability. The mungbean chloroplast genome has a quadripartite structure including a pair of inverted repeats separated by two single copy regions. A total of 213 simple sequence repeats were identified in the chloroplast genomes of NM92 and RIL59; 78 single nucleotide variants and nine indels were discovered in comparing the chloroplast genomes of TC1966 and NM92. Analysis of the mungbean chloroplast transcriptome revealed mRNAs that were affected by transcriptional slippage and RNA editing. Transcriptional slippage frequency was positively correlated with the length of simple sequence repeats of the mungbean chloroplast genome (R2=0.9911. In total, 41 C-to-U editing sites were found in 23 chloroplast genes and in one intergenic spacer. No editing site that swapped U to C was found. A combination of bioinformatics and experimental methods revealed that the plastid-encoded RNA polymerase-transcribed genes psbF and ndhA are affected by transcriptional slippage in mungbean and in main lineages of land plants, including three dicots (Glycine max, Brassica rapa, and Nicotiana tabacum, two monocots (Oryza sativa and Zea mays, two gymnosperms (Pinus taeda and Ginkgo biloba and one moss (Physcomitrella patens. Transcript analysis of the rps2 gene showed that transcriptional slippage could affect transcripts at single sequence repeat regions with poly-A runs. It showed that transcriptional slippage together with incomplete RNA editing may cause sequence diversity of transcripts in chloroplasts of land plants.

  18. Effect of apolipoprotein B mRNA-editing catalytic polypeptide-like protein-3G in cervical cancer.

    Science.gov (United States)

    Xu, Yanhua; Leng, Junhong; Xue, Fang; Dong, Ruiqian

    2015-01-01

    Cervical cancer is one of the most common gynecologic cancers. The role of apolipoprotein B mRNA-editing catalytic polypeptide-like protein-3G (APCBEC-3G) in cervical cancer has yet to be elucidated. This study intends to explore the effect of APCBEC-3G on cervical cancer cell proliferation and invasion. In vitro, the cervical cancer cell line Hela was transfected by APCBEC-3G plasmid. The mRNA and protein expression levels of APCBEC-3G were detected by Real-time PCR and Western blot, respectively. Cervical cancer cell proliferation was determined by MTT. Transwell assay was applied to measure the effect of APCBEC-3G on cell invasion. APCBEC-3G mRNA and protein increased significantly after transfection (P3G serves as a suppressor of cervical cancer cell proliferation and invasion. Our research provides theoretical basis for further investigation APOBEC-3G effect in cervical cancer occurrence and development.

  19. Ribosomal incorporation of backbone modified amino acids via an editing-deficient aminoacyl-tRNA synthetase.

    Science.gov (United States)

    Iqbal, Emil S; Dods, Kara K; Hartman, Matthew C T

    2018-02-14

    The ability to incorporate non-canonical amino acids (ncAA) using translation offers researchers the ability to extend the functionality of proteins and peptides for many applications including synthetic biology, biophysical and structural studies, and discovery of novel ligands. Here we describe the high promiscuity of an editing-deficient valine-tRNA synthetase (ValRS T222P). Using this enzyme, we demonstrate ribosomal translation of 11 ncAAs including those with novel side chains, α,α-disubstitutions, and cyclic β-amino acids.

  20. The CRISPR/Cas genome-editing tool: application in improvement of crops

    Directory of Open Access Journals (Sweden)

    SURENDER eKHATODIA

    2016-04-01

    Full Text Available The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR associated Cas9/sgRNA system is a novel fledgling targeted genome-editing technique from bacterial immune system, which is a cheap, easy and most rapidly adopted genome editing tool transforming to revolutionary paradigm. Cas9 protein is an RNA guided endonuclease utilized for creating targeted double stranded breaks with only a short RNA sequence to confer recognition of the target in animals and plants. Development of genetically edited (GE crops similar to those developed by conventional or mutation breeding using this potential technique makes it a promising and extremely versatile tool for providing sustainable productive agriculture for better feeding of rapidly growing population in changing climate. The emerging areas of research for the genome editing in plants are like, interrogating gene function, rewiring the regulatory signaling networks, sgRNA library for high-throughput loss-of-function screening. In this review, we will discuss the broad applicability of the Cas9 nuclease mediated targeted plant genome editing for development of designer crops. The regulatory uncertainty and social acceptance of plant breeding by Cas9 genome editing have also been discussed. The non-GM designer genetically edited plants could prospect climate resilient and sustainable energy agriculture in coming future for maximizing the yield by combating abiotic and biotic stresses with this new innovative plant breeding technique.

  1. RNA Nanoparticles Derived from Three-Way Junction of Phi29 Motor pRNA Are Resistant to I-125 and Cs-131 Radiation

    Science.gov (United States)

    Li, Hui; Rychahou, Piotr G.; Cui, Zheng; Pi, Fengmei; Evers, B. Mark; Shu, Dan

    2015-01-01

    Radiation reagents that specifically target tumors are in high demand for the treatment of cancer. The emerging field of RNA nanotechnology might provide new opportunities for targeted radiation therapy. This study investigates whether chemically modified RNA nanoparticles derived from the packaging RNA (pRNA) three-way junction (3WJ) of phi29 DNA-packaging motor are resistant to potent I-125 and Cs-131 radiation, which is a prerequisite for utilizing these RNA nanoparticles as carriers for targeted radiation therapy. pRNA 3WJ nanoparticles were constructed and characterized, and the stability of these nanoparticles under I-125 and Cs-131 irradiation with clinically relevant doses was examined. RNA nanoparticles derived from the pRNA 3WJ targeted tumors specifically and they were stable under irradiation of I-125 and Cs-131 with clinically relevant doses ranging from 1 to 90 Gy over a significantly long time up to 20 days, while control plasmid DNA was damaged at 20 Gy or higher. PMID:26017686

  2. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.

    Science.gov (United States)

    Liu, Jiao; Wang, Yu; Lu, Yujiao; Zheng, Ping; Sun, Jibin; Ma, Yanhe

    2017-11-16

    Corynebacterium glutamicum is an important industrial workhorse and advanced genetic engineering tools are urgently demanded. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) and their CRISPR-associated proteins (Cas) have revolutionized the field of genome engineering. The CRISPR/Cas9 system that utilizes NGG as protospacer adjacent motif (PAM) and has good targeting specificity can be developed into a powerful tool for efficient and precise genome editing of C. glutamicum. Herein, we developed a versatile CRISPR/Cas9 genome editing toolbox for C. glutamicum. Cas9 and gRNA expression cassettes were reconstituted to combat Cas9 toxicity and facilitate effective termination of gRNA transcription. Co-transformation of Cas9 and gRNA expression plasmids was exploited to overcome high-frequency mutation of cas9, allowing not only highly efficient gene deletion and insertion with plasmid-borne editing templates (efficiencies up to 60.0 and 62.5%, respectively) but also simple and time-saving operation. Furthermore, CRISPR/Cas9-mediated ssDNA recombineering was developed to precisely introduce small modifications and single-nucleotide changes into the genome of C. glutamicum with efficiencies over 80.0%. Notably, double-locus editing was also achieved in C. glutamicum. This toolbox works well in several C. glutamicum strains including the widely-used strains ATCC 13032 and ATCC 13869. In this study, we developed a CRISPR/Cas9 toolbox that could facilitate markerless gene deletion, gene insertion, precise base editing, and double-locus editing in C. glutamicum. The CRISPR/Cas9 toolbox holds promise for accelerating the engineering of C. glutamicum and advancing its application in the production of biochemicals and biofuels.

  3. Emerging Role of CRISPR/Cas9 Technology for MicroRNAs Editing in Cancer Research.

    Science.gov (United States)

    Aquino-Jarquin, Guillermo

    2017-12-15

    MicroRNAs (miRNA) are small, noncoding RNA molecules with a master role in the regulation of important tasks in different critical processes of cancer pathogenesis. Because there are different miRNAs implicated in all the stages of cancer, for example, functioning as oncogenes, this makes these small molecules suitable targets for cancer diagnosis and therapy. RNA-mediated interference has been one major approach for sequence-specific regulation of gene expression in eukaryotic organisms. Recently, the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 system, first identified in bacteria and archaea as an adaptive immune response to invading genetic material, has been explored as a sequence-specific molecular tool for editing genomic sequences for basic research in life sciences and for therapeutic purposes. There is growing evidence that small noncoding RNAs, including miRNAs, can be targeted by the CRISPR/Cas9 system despite their lacking an open reading frame to evaluate functional loss. Thus, CRISPR/Cas9 technology represents a novel gene-editing strategy with compelling robustness, specificity, and stability for the modification of miRNA expression. Here, I summarize key features of current knowledge of genomic editing by CRISPR/Cas9 technology as a feasible strategy for globally interrogating miRNA gene function and miRNA-based therapeutic intervention. Alternative emerging strategies for nonviral delivery of CRISPR/Cas9 core components into human cells in a clinical context are also analyzed critically. Cancer Res; 77(24); 6812-7. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. Harnessing type I and type III CRISPR-Cas systems for genome editing

    DEFF Research Database (Denmark)

    Li, Yingjun; Pan, Saifu; Zhang, Yan

    2016-01-01

    CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are widespread in archaea and bacteria, and research on their molecular mechanisms has led to the development of genome-editing techniques based on a few Type II systems. However, there has not been any...... report on harnessing a Type I or Type III system for genome editing. Here, a method was developed to repurpose both CRISPR-Cas systems for genetic manipulation in Sulfolobus islandicus, a thermophilic archaeon. A novel type of genome-editing plasmid (pGE) was constructed, carrying an artificial mini-CRISPR...... and selectively retained as transformants. Using this strategy, different types of mutation were generated, including deletion, insertion and point mutations. We envision this method is readily applicable to different bacteria and archaea that carry an active CRISPR-Cas system of DNA interference provided...

  5. Evolution of a pseudogene: exclusive survival of a functional mitochondrial nad7 gene supports Haplomitrium as the earliest liverwort lineage and proposes a secondary loss of RNA editing in Marchantiidae.

    Science.gov (United States)

    Groth-Malonek, Milena; Wahrmund, Ute; Polsakiewicz, Monika; Knoop, Volker

    2007-04-01

    Gene transfer from the mitochondrion into the nucleus is a corollary of the endosymbiont hypothesis. The frequent and independent transfer of genes for mitochondrial ribosomal proteins is well documented with many examples in angiosperms, whereas transfer of genes for components of the respiratory chain is a rarity. A notable exception is the nad7 gene, encoding subunit 7 of complex I, in the liverwort Marchantia polymorpha, which resides as a full-length, intron-carrying and transcribed, but nonspliced pseudogene in the chondriome, whereas its functional counterpart is nuclear encoded. To elucidate the patterns of pseudogene degeneration, we have investigated the mitochondrial nad7 locus in 12 other liverworts of broad phylogenetic distribution. We find that the mitochondrial nad7 gene is nonfunctional in 11 of them. However, the modes of pseudogene degeneration vary: whereas point mutations, accompanied by single-nucleotide indels, predominantly introduce stop codons into the reading frame in marchantiid liverworts, larger indels introduce frameshifts in the simple thalloid and leafy jungermanniid taxa. Most notably, however, the mitochondrial nad7 reading frame appears to be intact in the isolated liverwort genus Haplomitrium. Its functional expression is shown by cDNA analysis identifying typical RNA-editing events to reconstitute conserved codon identities and also confirming functional splicing of the 2 liverwort-specific group II introns. We interpret our results 1) to indicate the presence of a functional mitochondrial nad7 gene in the earliest land plants and strongly supporting a basal placement of Haplomitrium among the liverworts, 2) to indicate different modes of pseudogene degeneration and chondriome evolution in the later branching liverwort clades, 3) to suggest a surprisingly long maintenance of a nonfunctional gene in the presumed oldest group of land plants, and 4) to support the model of a secondary loss of RNA-editing activity in marchantiid

  6. MRB3010 is a core component of the MRB1 complex that facilitates an early step of the kinetoplastid RNA editing process

    Czech Academy of Sciences Publication Activity Database

    Ammerman, M. L.; Hashimi, Hassan; Novotná, Lucie; Číčová, Zdeňka; Mcevoy, S. M.; Lukeš, Julius; Read, L. K.

    2011-01-01

    Roč. 17, č. 5 (2011), 865-877 ISSN 1355-8382 R&D Projects: GA ČR GA204/09/1667; GA MŠk 2B06129; GA MŠk LC07032 Institutional research plan: CEZ:AV0Z60220518 Keywords : RNA editing * trypanosome * MRB1 complex * mitochondria * kinetoplast Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.095, year: 2011

  7. Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9.

    Science.gov (United States)

    Yumlu, Saniye; Stumm, Jürgen; Bashir, Sanum; Dreyer, Anne-Kathrin; Lisowski, Pawel; Danner, Eric; Kühn, Ralf

    2017-05-15

    Human induced pluripotent stem cells (hiPSCs) represent an ideal in vitro platform to study human genetics and biology. The recent advent of programmable nucleases makes also the human genome amenable to experimental genetics through either the correction of mutations in patient-derived iPSC lines or the de novo introduction of mutations into otherwise healthy iPSCs. The production of specific and sometimes complex genotypes in multiple cell lines requires efficient and streamlined gene editing technologies. In this article we provide protocols for gene editing in hiPSCs. We presently achieve high rates of gene editing at up to three loci using a modified iCRISPR system. This system includes a doxycycline inducible Cas9 and sgRNA/reporter plasmids for the enrichment of transfected cells by fluorescence-activated cell sorting (FACS). Here we cover the selection of target sites, vector construction, transfection, and isolation and genotyping of modified hiPSC clones. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The assembly of F1FO-ATP synthase is disrupted upon interference of RNA editing in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Hashimi, Hassan; Benkovičová, V.; Čermáková, P.; Lai, De Hua; Horváth, A.; Lukeš, Julius

    2010-01-01

    Roč. 40, č. 1 (2010), s. 45-54 ISSN 0020-7519 R&D Projects: GA ČR GA204/06/1558; GA AV ČR IAA500960705 Institutional research plan: CEZ:AV0Z60220518 Keywords : RNA editing * ATP synthase * mitochondrion * Trypanosoma * respiratory complex * membrane potential Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.822, year: 2010

  9. In Silico Meets In Vivo: Towards Computational CRISPR-Based sgRNA Design.

    Science.gov (United States)

    Chuai, Guo-Hui; Wang, Qi-Long; Liu, Qi

    2017-01-01

    CRISPR-based genome editing has been widely implemented in various cell types. In silico single guide RNA (sgRNA) design is a key step for successful gene editing using the CRISPR system, and continuing efforts are aimed at refining in silico sgRNA design with high on-target efficacy and reduced off-target effects. Many sgRNA design tools are available, but careful assessments of their application scenarios and performance benchmarks across different types of genome-editing data are needed. Efficient in silico models can be built that integrate current heterogeneous genome-editing data to derive unbiased sgRNA design rules and identify key features for improving sgRNA design. Comprehensive evaluation of on-target and off-target effects of sgRNA will allow more precise genome editing and gene therapies using the CRISPR system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. RNA SURVEILLANCE– AN EMERGING ROLE FOR RNA REGULATORY NETWORKS IN AGING

    OpenAIRE

    Montano, Monty; Long, Kimberly

    2010-01-01

    In this review, we describe recent advances in the field of RNA regulatory biology and relate these advances to aging science. We introduce a new term, RNA surveillance, an RNA regulatory process that is conserved in metazoans, and describe how RNA surveillance represents molecular cross-talk between two emerging RNA regulatory systems – RNA interference and RNA editing. We discuss how RNA surveillance mechanisms influence mRNA and microRNA expression and activity during lifespan. Additionall...

  11. Use of a Fluorescent Aptamer RNA as an Exonic Sequence to Analyze Self-Splicing Ability of a Group I Intron from Structured RNAs

    Directory of Open Access Journals (Sweden)

    Airi Furukawa

    2016-11-01

    Full Text Available Group I self-splicing intron constitutes an important class of functional RNA molecules that can promote chemical transformation. Although the fundamental mechanism of the auto-excision from its precursor RNA has been established, convenient assay systems for its splicing activity are still useful for a further understanding of its detailed mechanism and of its application. Because some host RNA sequences, to which group I introns inserted form stable three-dimensional (3D structures, the effects of the 3D structures of exonic elements on the splicing efficiency of group I introns are important but not a fully investigated issue. We developed an assay system for group I intron self-splicing by employing a fluorescent aptamer RNA (spinach RNA as a model exonic sequence inserted by the Tetrahymena group I intron. We investigated self-splicing of the intron from spinach RNA, serving as a model exonic sequence with a 3D structure.

  12. Functional and structural insights revealed by molecular dynamics simulations of an essential RNA editing ligase in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Rommie E Amaro

    2007-11-01

    Full Text Available RNA editing ligase 1 (TbREL1 is required for the survival of both the insect and bloodstream forms of Trypanosoma brucei, the parasite responsible for the devastating tropical disease African sleeping sickness. The type of RNA editing that TbREL1 is involved in is unique to the trypanosomes, and no close human homolog is known to exist. In addition, the high-resolution crystal structure revealed several unique features of the active site, making this enzyme a promising target for structure-based drug design. In this work, two 20 ns atomistic molecular dynamics (MD simulations are employed to investigate the dynamics of TbREL1, both with and without the ATP substrate present. The flexibility of the active site, dynamics of conserved residues and crystallized water molecules, and the interactions between TbREL1 and the ATP substrate are investigated and discussed in the context of TbREL1's function. Differences in local and global motion upon ATP binding suggest that two peripheral loops, unique to the trypanosomes, may be involved in interdomain signaling events. Notably, a significant structural rearrangement of the enzyme's active site occurs during the apo simulations, opening an additional cavity adjacent to the ATP binding site that could be exploited in the development of effective inhibitors directed against this protozoan parasite. Finally, ensemble averaged electrostatics calculations over the MD simulations reveal a novel putative RNA binding site, a discovery that has previously eluded scientists. Ultimately, we use the insights gained through the MD simulations to make several predictions and recommendations, which we anticipate will help direct future experimental studies and structure-based drug discovery efforts against this vital enzyme.

  13. CRISPR-RT: A web service for designing CRISPR-C2c2 crRNA with improved target specificity

    OpenAIRE

    Zhu, Houxiang; Richmond, Emily; Liang, Chun

    2017-01-01

    CRISPR-Cas systems have been successfully applied in genome editing. Recently, the CRISPR-C2c2 system has been reported as a tool for RNA editing. Here we describe CRISPR-RT (CRISPR RNA-Targeting), the first web service to help biologists design the crRNA with improved target specificity for the CRISPR-C2c2 system. CRISPR-RT allows users to set up a wide range of parameters, making it highly flexible for current and future research in CRISPR-based RNA editing. CRISPR-RT covers major model org...

  14. The genome editing revolution

    DEFF Research Database (Denmark)

    Stella, Stefano; Montoya, Guillermo

    2016-01-01

    -Cas system has become the main tool for genome editing in many laboratories. Currently the targeted genome editing technology has been used in many fields and may be a possible approach for human gene therapy. Furthermore, it can also be used to modifying the genomes of model organisms for studying human......In the last 10 years, we have witnessed a blooming of targeted genome editing systems and applications. The area was revolutionized by the discovery and characterization of the transcription activator-like effector proteins, which are easier to engineer to target new DNA sequences than...... sequence). This ribonucleoprotein complex protects bacteria from invading DNAs, and it was adapted to be used in genome editing. The CRISPR ribonucleic acid (RNA) molecule guides to the specific DNA site the Cas9 nuclease to cleave the DNA target. Two years and more than 1000 publications later, the CRISPR...

  15. Selective RNA targeting and regulated signaling by RIG-I is controlled by coordination of RNA and ATP binding.

    Science.gov (United States)

    Fitzgerald, Megan E; Rawling, David C; Potapova, Olga; Ren, Xiaoming; Kohlway, Andrew; Pyle, Anna Marie

    2017-02-17

    RIG-I is an innate immune receptor that detects and responds to infection by deadly RNA viruses such as influenza, and Hepatitis C. In the cytoplasm, RIG-I is faced with a difficult challenge: it must sensitively detect viral RNA while ignoring the abundance of host RNA. It has been suggested that RIG-I has a ‘proof-reading’ mechanism for rejecting host RNA targets, and that disruptions of this selectivity filter give rise to autoimmune diseases. Here, we directly monitor RNA proof-reading by RIG-I and we show that it is controlled by a set of conserved amino acids that couple RNA and ATP binding to the protein (Motif III). Mutations of this motif directly modulate proof-reading by eliminating or enhancing selectivity for viral RNA, with major implications for autoimmune disease and cancer. More broadly, the results provide a physical explanation for the ATP-gated behavior of SF2 RNA helicases and receptor proteins.

  16. Production of Purified CasRNPs for Efficacious Genome Editing.

    Science.gov (United States)

    Lingeman, Emily; Jeans, Chris; Corn, Jacob E

    2017-10-02

    CRISPR-Cas systems have been harnessed as modular genome editing reagents for functional genomics and show promise to cure genetic diseases. Directed by a guide RNA, a Cas effector introduces a double stranded break in DNA and host cell DNA repair leads to the introduction of errors (e.g., to knockout a gene) or a programmed change. Introduction of a Cas effector and guide RNA as a purified Cas ribonucleoprotein complex (CasRNP) has recently emerged as a powerful approach to alter cell types and organisms. Not only does CasRNP editing exhibit increased efficacy and specificity, it avoids optimization and iteration of species-specific factors such as codon usage, promoters, and terminators. CasRNP editing has been rapidly adopted for research use in many contexts and is quickly becoming a popular method to edit primary cells for therapeutic application. This article describes how to make a Cas9 RNP and outlines its use for gene editing in human cells. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  17. Cas9 versus Cas12a/Cpf1: Structure-function comparisons and implications for genome editing.

    Science.gov (United States)

    Swarts, Daan C; Jinek, Martin

    2018-05-22

    Cas9 and Cas12a are multidomain CRISPR-associated nucleases that can be programmed with a guide RNA to bind and cleave complementary DNA targets. The guide RNA sequence can be varied, making these effector enzymes versatile tools for genome editing and gene regulation applications. While Cas9 is currently the best-characterized and most widely used nuclease for such purposes, Cas12a (previously named Cpf1) has recently emerged as an alternative for Cas9. Cas9 and Cas12a have distinct evolutionary origins and exhibit different structural architectures, resulting in distinct molecular mechanisms. Here we compare the structural and mechanistic features that distinguish Cas9 and Cas12a, and describe how these features modulate their activity. We discuss implications for genome editing, and how they may influence the choice of Cas9 or Cas12a for specific applications. Finally, we review recent studies in which Cas12a has been utilized as a genome editing tool. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes. © 2018 Wiley Periodicals, Inc.

  18. CRISPR/Cas9:A powerful tool for crop genome editing

    Institute of Scientific and Technical Information of China (English)

    Gaoyuan Song; Meiling Jia; Kai Chen; Xingchen Kong; Bushra Khattak; Chuanxiao Xie; Aili Li; Long Mao

    2016-01-01

    The CRISPR/Cas9 technology is evolved from a type II bacterial immune system and represents a new generation of targeted genome editing technology that can be applied to nearly all organisms. Site-specific modification is achieved by a single guide RNA(usually about 20nucleotides) that is complementary to a target gene or locus and is anchored by a protospaceradjacent motif. Cas9 nuclease then cleaves the targeted DNA to generate double-strand breaks(DSBs), which are subsequently repaired by non-homologous end joining(NHEJ) or homology-directed repair(HDR) mechanisms. NHEJ may introduce indels that cause frame shift mutations and hence the disruption of gene functions. When combined with double or multiplex guide RNA design, NHEJ may also introduce targeted chromosome deletions,whereas HDR can be engineered for target gene correction, gene replacement, and gene knock-in. In this review, we briefly survey the history of the CRISPR/Cas9 system invention and its genome-editing mechanism. We also describe the most recent innovation of the CRISPR/Cas9 technology, particularly the broad applications of modified Cas9 variants, and discuss the potential of this system for targeted genome editing and modification for crop improvement.

  19. CRISPR/Cas9:A powerful tool for crop genome editing

    Institute of Scientific and Technical Information of China (English)

    Gaoyuan Song; Meiling Jia; Kai Chen; Xingchen Kong; Bushra Khattak; Chuanxiao Xie; Aili Li; Long Mao

    2016-01-01

    The CRISPR/Cas9 technology is evolved from a type II bacterial immune system and represents a new generation of targeted genome editing technology that can be applied to nearly all organisms. Site-specific modification is achieved by a single guide RNA (usually about 20 nucleotides) that is complementary to a target gene or locus and is anchored by a protospacer-adjacent motif. Cas9 nuclease then cleaves the targeted DNA to generate double-strand breaks (DSBs), which are subsequently repaired by non-homologous end joining (NHEJ) or homology-directed repair (HDR) mechanisms. NHEJ may introduce indels that cause frame shift mutations and hence the disruption of gene functions. When combined with double or multiplex guide RNA design, NHEJ may also introduce targeted chromosome deletions, whereas HDR can be engineered for target gene correction, gene replacement, and gene knock-in. In this review, we briefly survey the history of the CRISPR/Cas9 system invention and its genome-editing mechanism. We also describe the most recent innovation of the CRISPR/Cas9 technology, particularly the broad applications of modified Cas9 variants, and discuss the potential of this system for targeted genome editing and modification for crop improvement.

  20. Evaluation of the AJCC 8th Edition Staging System for Pathologically Versus Clinically Staged Intrahepatic Cholangiocarcinoma (iCCA): a Time to Revisit a Dogma? A Surveillance, Epidemiology, and End Results (SEER) Analysis.

    Science.gov (United States)

    Kamarajah, Sivesh K

    2018-03-07

    Recently, the AJCC has released its 8th edition changes to the staging system for intrahepatic cholangiocarcinoma (iCCA). This study sought to validate the proposed changes to the 8th edition of AJCC system for T and N classification of iCCA using a population-based data set. Using the Surveillance, Epidemiology, and End Results (SEER) database (1998-2013), patients undergoing resection or non-surgical management for non-metastatic iCCA were identified. Overall survival was estimated using the Kaplan-Meier method and compared using log-rank tests. Concordance indices (c-indices) calculated from Cox proportional hazards models were calculated to evaluate discriminatory power. The study included 2630 patients resected (37%) or non-surgically managed (63%) for iCCA. Nodal staging was performed in 56%, of whom 31% had positive nodes. For all patients with iCCA, the median 5-year survival by AJCC T classification for T1a, T1b, T2, T3, and T4 was 32, 21, 14, 10, and 10 months, respectively (p < 0.001). The concordance index for the staging system was 0.57 for all patients, 0.62 for those who underwent resection, and 0.54 for patients who did not undergo resection. In summary, the new AJCC 8th edition staging system is comparable to the 7th edition and valid in stratifying patients with iCCA. However, the performance of the staging system is better in patients undergoing surgical resection than those undergoing non-surgical management. These findings further highlight the need for improved accuracy of radiological imaging in clinically staging patients to guide prognosis.

  1. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.

    Science.gov (United States)

    Wang, Ping

    2018-06-27

    construction, side effects, and other limitations, such as the high cost of acquiring a particle delivery system. CRISPR-Cas9 technology has been demonstrated in Cryptococcus for genome editing. However, it remains labor-intensive and time-consuming since it requires the identification of a suitable type III RNA polymerase promoter for gRNA expression. In addition, there may be potential adverse effects caused by constitutive expressions of Cas9 and gRNA. Here, I report the use of a ribonucleoprotein-mediated CRISPR-Cas9 technique for genome editing of C. neoformans and related species. Together with the custom-constructed pCnCas9:U6-gRNA vector that allows low-cost and time-saving DNA-based CRISPR-Cas9, my approach adds to the molecular toolbox for dissecting the molecular mechanism of pathogenesis in this important group of fungal pathogens. Copyright © 2018 Wang.

  2. E+ subgroup PPR protein defective kernel 36 is required for multiple mitochondrial transcripts editing and seed development in maize and Arabidopsis.

    Science.gov (United States)

    Wang, Gang; Zhong, Mingyu; Shuai, Bilian; Song, Jiandong; Zhang, Jie; Han, Liang; Ling, Huiling; Tang, Yuanping; Wang, Guifeng; Song, Rentao

    2017-06-01

    Mitochondria are semi-autonomous organelles that are the powerhouse of the cells. Plant mitochondrial RNA editing guided by pentatricopeptide repeat (PPR) proteins is essential for energy production. We identify a maize defective kernel mutant dek36, which produces small and collapsed kernels, leading to embryos and/or seedlings lethality. Seed filling in dek36 is drastically impaired, in line with the defects observed in the organization of endosperm transfer tissue. Positional cloning reveals that DEK36, encoding a mitochondria-targeted E+ subgroup PPR protein, is required for mitochondrial RNA editing at atp4-59, nad7-383 and ccmF N -302, thus resulting in decreased activities of mitochondrial complex I, complex III and complex IV in dek36. Loss-of-function of its Arabidopsis ortholog At DEK36 causes arrested embryo and endosperm development, leading to embryo lethality. At_dek36 also has RNA editing defects in atp4, nad7, ccmF N 1 and ccmF N 2 , but at the nonconserved sites. Importantly, efficiency of all editing sites in ccmF N 1 , ccmF N 2 and rps12 is severely decreased in At_dek36, probably caused by the impairment of their RNA stabilization. These results suggest that the DEK36 orthologue pair are essential for embryo and endosperm development in both maize and Arabidopsis, but through divergent function in regulating RNA metabolism of their mitochondrial targets. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. FACT facilitates chromatin transcription by RNA polymerases I and III

    DEFF Research Database (Denmark)

    Birch, Joanna L; Tan, Bertrand C-M; Panov, Kostya I

    2009-01-01

    Efficient transcription elongation from a chromatin template requires RNA polymerases (Pols) to negotiate nucleosomes. Our biochemical analyses demonstrate that RNA Pol I can transcribe through nucleosome templates and that this requires structural rearrangement of the nucleosomal core particle....... The subunits of the histone chaperone FACT (facilitates chromatin transcription), SSRP1 and Spt16, co-purify and co-immunoprecipitate with mammalian Pol I complexes. In cells, SSRP1 is detectable at the rRNA gene repeats. Crucially, siRNA-mediated repression of FACT subunit expression in cells results...... in a significant reduction in 47S pre-rRNA levels, whereas synthesis of the first 40 nt of the rRNA is not affected, implying that FACT is important for Pol I transcription elongation through chromatin. FACT also associates with RNA Pol III complexes, is present at the chromatin of genes transcribed by Pol III...

  4. A non-inheritable maternal Cas9-based multiple-gene editing system in mice

    OpenAIRE

    Takayuki Sakurai; Akiko Kamiyoshi; Hisaka Kawate; Chie Mori; Satoshi Watanabe; Megumu Tanaka; Ryuichi Uetake; Masahiro Sato; Takayuki Shindo

    2016-01-01

    The CRISPR/Cas9 system is capable of editing multiple genes through one-step zygote injection. The preexisting method is largely based on the co-injection of Cas9 DNA (or mRNA) and guide RNAs (gRNAs); however, it is unclear how many genes can be simultaneously edited by this method, and a reliable means to generate transgenic (Tg) animals with multiple gene editing has yet to be developed. Here, we employed non-inheritable maternal Cas9 (maCas9) protein derived from Tg mice with systemic Cas9...

  5. Genes (including RNA editing information) - RMG | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available t tested T: transcribed N: not transcribed Editing site Editing site N: not transcribed Previous reports on ...editing sites Previous reports on editing sites Strand Strand S: sense A: antisense exon1 start Start positi

  6. The Conspicuity of CRISPR-Cpf1 System as a Significant Breakthrough in Genome Editing.

    Science.gov (United States)

    Bayat, Hadi; Modarressi, Mohammad Hossein; Rahimpour, Azam

    2018-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) is a microbial adaptive immune system. CRISPR-Cas systems are classified into two main classes and six types. Cpf1 is a putative type V (class II) CRISPR effector, which has revolutionized the genome editing approaches through multiple distinct features such as using T-rich protospacer-adjacent motif, applying a short guide RNA lacking trans-activating crRNA, introducing a staggered double-strand break, and possessing RNA processing activity in addition to DNA nuclease activity. In the present review, we attempt to highlight most recent advances in CRISPR-Cpf1 (CRISPR-Cas12a) system in particular, considering ground expeditions of the nature and the biology of this system, introducing novel Cpf1 variants that have broadened the versatility and feasibility of CRISPR-Cpf1 system, and lastly the great impact of the CRISPR-Cpf1 system on the manipulation of the genome of prokaryotic, mammalian, and plant models is summarized. With regard to recent developments in utilizing the CRISPR-Cpf1 system in genome editing of various organisms, it can be concluded with confidence that this system is a reliable molecular toolbox of genome editing approaches.

  7. Rescue of DNA-PK Signaling and T-Cell Differentiation by Targeted Genome Editing in a prkdc Deficient iPSC Disease Model.

    Directory of Open Access Journals (Sweden)

    Shamim H Rahman

    2015-05-01

    Full Text Available In vitro disease modeling based on induced pluripotent stem cells (iPSCs provides a powerful system to study cellular pathophysiology, especially in combination with targeted genome editing and protocols to differentiate iPSCs into affected cell types. In this study, we established zinc-finger nuclease-mediated genome editing in primary fibroblasts and iPSCs generated from a mouse model for radiosensitive severe combined immunodeficiency (RS-SCID, a rare disorder characterized by cellular sensitivity to radiation and the absence of lymphocytes due to impaired DNA-dependent protein kinase (DNA-PK activity. Our results demonstrate that gene editing in RS-SCID fibroblasts rescued DNA-PK dependent signaling to overcome radiosensitivity. Furthermore, in vitro T-cell differentiation from iPSCs was employed to model the stage-specific T-cell maturation block induced by the disease causing mutation. Genetic correction of the RS-SCID iPSCs restored T-lymphocyte maturation, polyclonal V(DJ recombination of the T-cell receptor followed by successful beta-selection. In conclusion, we provide proof that iPSC-based in vitro T-cell differentiation is a valuable paradigm for SCID disease modeling, which can be utilized to investigate disorders of T-cell development and to validate gene therapy strategies for T-cell deficiencies. Moreover, this study emphasizes the significance of designer nucleases as a tool for generating isogenic disease models and their future role in producing autologous, genetically corrected transplants for various clinical applications.

  8. Non-GMO genetically edited crop plants.

    Science.gov (United States)

    Kanchiswamy, Chidananda Nagamangala; Malnoy, Mickael; Velasco, Riccardo; Kim, Jin-Soo; Viola, Roberto

    2015-09-01

    Direct delivery of purified Cas9 protein with guide RNA into plant cells, as opposed to plasmid-mediated delivery, displays high efficiency and reduced off-target effects. Following regeneration from edited cells, the ensuing plant is also likely to bypass genetically modified organism (GMO) legislation as the genome editing complex is degraded in the recipient cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Advances in the delivery of RNA therapeutics: from concept to clinical reality.

    Science.gov (United States)

    Kaczmarek, James C; Kowalski, Piotr S; Anderson, Daniel G

    2017-06-27

    The rapid expansion of the available genomic data continues to greatly impact biomedical science and medicine. Fulfilling the clinical potential of genetic discoveries requires the development of therapeutics that can specifically modulate the expression of disease-relevant genes. RNA-based drugs, including short interfering RNAs and antisense oligonucleotides, are particularly promising examples of this newer class of biologics. For over two decades, researchers have been trying to overcome major challenges for utilizing such RNAs in a therapeutic context, including intracellular delivery, stability, and immune response activation. This research is finally beginning to bear fruit as the first RNA drugs gain FDA approval and more advance to the final phases of clinical trials. Furthermore, the recent advent of CRISPR, an RNA-guided gene-editing technology, as well as new strides in the delivery of messenger RNA transcribed in vitro, have triggered a major expansion of the RNA-therapeutics field. In this review, we discuss the challenges for clinical translation of RNA-based therapeutics, with an emphasis on recent advances in delivery technologies, and present an overview of the applications of RNA-based drugs for modulation of gene/protein expression and genome editing that are currently being investigated both in the laboratory as well as in the clinic.

  10. In situ DNA-RNA hybridization using in vitro 125I-labeled ribosomal RNA of higher plant

    International Nuclear Information System (INIS)

    Sato, Seiichi; Kikuchi, Tadatoshi; Ishida, M.R.; Tanaka, Ryuso.

    1975-01-01

    In situ hybridization using 125 I-labeled ribosomal RNA was applied to plant cells. Cytoplasmic 25 s rRNA, which was eluted from acrylamide gels after electrophoretic separation, was labeled in vitro with carrier-free 125 I and hybridized with the interphase nuclei in root tips of Vicia faba. In most of the preparations, the nucleoli were more heavily labeled than the other regions within nuclei, and several types of grain distribution were observed on the nucleoli. From these results, it was confirmed that in situ hybridization using 125 I-labeled rRNA can be used very effectively to detect the annealing sites of different molecular species of rRNA within the nuclei of plant cells, for which it is not as easy to obtain high specific radioactive rRNA in vivo as it is in the case of cultured animal cells. (auth.)

  11. Highly efficient biallelic genome editing of human ES/iPS cells using a CRISPR/Cas9 or TALEN system.

    Science.gov (United States)

    Takayama, Kazuo; Igai, Keisuke; Hagihara, Yasuko; Hashimoto, Rina; Hanawa, Morifumi; Sakuma, Tetsushi; Tachibana, Masashi; Sakurai, Fuminori; Yamamoto, Takashi; Mizuguchi, Hiroyuki

    2017-05-19

    Genome editing research of human ES/iPS cells has been accelerated by clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) and transcription activator-like effector nucleases (TALEN) technologies. However, the efficiency of biallelic genetic engineering in transcriptionally inactive genes is still low, unlike that in transcriptionally active genes. To enhance the biallelic homologous recombination efficiency in human ES/iPS cells, we performed screenings of accessorial genes and compounds. We found that RAD51 overexpression and valproic acid treatment enhanced biallelic-targeting efficiency in human ES/iPS cells regardless of the transcriptional activity of the targeted locus. Importantly, RAD51 overexpression and valproic acid treatment synergistically increased the biallelic homologous recombination efficiency. Our findings would facilitate genome editing study using human ES/iPS cells. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. sRNAnalyzer-a flexible and customizable small RNA sequencing data analysis pipeline.

    Science.gov (United States)

    Wu, Xiaogang; Kim, Taek-Kyun; Baxter, David; Scherler, Kelsey; Gordon, Aaron; Fong, Olivia; Etheridge, Alton; Galas, David J; Wang, Kai

    2017-12-01

    Although many tools have been developed to analyze small RNA sequencing (sRNA-Seq) data, it remains challenging to accurately analyze the small RNA population, mainly due to multiple sequence ID assignment caused by short read length. Additional issues in small RNA analysis include low consistency of microRNA (miRNA) measurement results across different platforms, miRNA mapping associated with miRNA sequence variation (isomiR) and RNA editing, and the origin of those unmapped reads after screening against all endogenous reference sequence databases. To address these issues, we built a comprehensive and customizable sRNA-Seq data analysis pipeline-sRNAnalyzer, which enables: (i) comprehensive miRNA profiling strategies to better handle isomiRs and summarization based on each nucleotide position to detect potential SNPs in miRNAs, (ii) different sequence mapping result assignment approaches to simulate results from microarray/qRT-PCR platforms and a local probabilistic model to assign mapping results to the most-likely IDs, (iii) comprehensive ribosomal RNA filtering for accurate mapping of exogenous RNAs and summarization based on taxonomy annotation. We evaluated our pipeline on both artificial samples (including synthetic miRNA and Escherichia coli cultures) and biological samples (human tissue and plasma). sRNAnalyzer is implemented in Perl and available at: http://srnanalyzer.systemsbiology.net/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. sRNAnalyzer—a flexible and customizable small RNA sequencing data analysis pipeline

    Science.gov (United States)

    Kim, Taek-Kyun; Baxter, David; Scherler, Kelsey; Gordon, Aaron; Fong, Olivia; Etheridge, Alton; Galas, David J.

    2017-01-01

    Abstract Although many tools have been developed to analyze small RNA sequencing (sRNA-Seq) data, it remains challenging to accurately analyze the small RNA population, mainly due to multiple sequence ID assignment caused by short read length. Additional issues in small RNA analysis include low consistency of microRNA (miRNA) measurement results across different platforms, miRNA mapping associated with miRNA sequence variation (isomiR) and RNA editing, and the origin of those unmapped reads after screening against all endogenous reference sequence databases. To address these issues, we built a comprehensive and customizable sRNA-Seq data analysis pipeline—sRNAnalyzer, which enables: (i) comprehensive miRNA profiling strategies to better handle isomiRs and summarization based on each nucleotide position to detect potential SNPs in miRNAs, (ii) different sequence mapping result assignment approaches to simulate results from microarray/qRT-PCR platforms and a local probabilistic model to assign mapping results to the most-likely IDs, (iii) comprehensive ribosomal RNA filtering for accurate mapping of exogenous RNAs and summarization based on taxonomy annotation. We evaluated our pipeline on both artificial samples (including synthetic miRNA and Escherichia coli cultures) and biological samples (human tissue and plasma). sRNAnalyzer is implemented in Perl and available at: http://srnanalyzer.systemsbiology.net/. PMID:29069500

  14. Kinetic proofreading at single molecular level: aminoacylation of tRNA(Ile and the role of water as an editor.

    Directory of Open Access Journals (Sweden)

    Mantu Santra

    Full Text Available Proofreading/editing in protein synthesis is essential for accurate translation of information from the genetic code. In this article we present a theoretical investigation of efficiency of a kinetic proofreading mechanism that employs hydrolysis of the wrong substrate as the discriminatory step in enzyme catalytic reactions. We consider aminoacylation of tRNA(Ile which is a crucial step in protein synthesis and for which experimental results are now available. We present an augmented kinetic scheme and then employ methods of stochastic simulation algorithm to obtain time dependent concentrations of different substances involved in the reaction and their rates of formation. We obtain the rates of product formation and ATP hydrolysis for both correct and wrong substrates (isoleucine and valine in our case, respectively, in single molecular enzyme as well as ensemble enzyme kinetics. The present theoretical scheme correctly reproduces (i the amplitude of the discrimination factor in the overall rates between isoleucine and valine which is obtained as (1.8×10(2.(4.33×10(2 = 7.8×10(4, (ii the rates of ATP hydrolysis for both Ile and Val at different substrate concentrations in the aminoacylation of tRNA(Ile. The present study shows a non-michaelis type dependence of rate of reaction on tRNA(Ile concentration in case of valine. The overall editing in steady state is found to be independent of amino acid concentration. Interestingly, the computed ATP hydrolysis rate for valine at high substrate concentration is same as the rate of formation of Ile-tRNA(Ile whereas at intermediate substrate concentration the ATP hydrolysis rate is relatively low. We find that the presence of additional editing domain in class I editing enzyme makes the kinetic proofreading more efficient through enhanced hydrolysis of wrong product at the editing CP1 domain.

  15. A new method to study the change of miRNA-mRNA interactions due to environmental exposures.

    Science.gov (United States)

    Petralia, Francesca; Aushev, Vasily N; Gopalakrishnan, Kalpana; Kappil, Maya; W Khin, Nyan; Chen, Jia; Teitelbaum, Susan L; Wang, Pei

    2017-07-15

    Integrative approaches characterizing the interactions among different types of biological molecules have been demonstrated to be useful for revealing informative biological mechanisms. One such example is the interaction between microRNA (miRNA) and messenger RNA (mRNA), whose deregulation may be sensitive to environmental insult leading to altered phenotypes. The goal of this work is to develop an effective data integration method to characterize deregulation between miRNA and mRNA due to environmental toxicant exposures. We will use data from an animal experiment designed to investigate the effect of low-dose environmental chemical exposure on normal mammary gland development in rats to motivate and evaluate the proposed method. We propose a new network approach-integrative Joint Random Forest (iJRF), which characterizes the regulatory system between miRNAs and mRNAs using a network model. iJRF is designed to work under the high-dimension low-sample-size regime, and can borrow information across different treatment conditions to achieve more accurate network inference. It also effectively takes into account prior information of miRNA-mRNA regulatory relationships from existing databases. When iJRF is applied to the data from the environmental chemical exposure study, we detected a few important miRNAs that regulated a large number of mRNAs in the control group but not in the exposed groups, suggesting the disruption of miRNA activity due to chemical exposure. Effects of chemical exposure on two affected miRNAs were further validated using breast cancer human cell lines. R package iJRF is available at CRAN. pei.wang@mssm.edu or susan.teitelbaum@mssm.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  16. iSmaRT: a toolkit for a comprehensive analysis of small RNA-Seq data.

    Science.gov (United States)

    Panero, Riccardo; Rinaldi, Antonio; Memoli, Domenico; Nassa, Giovanni; Ravo, Maria; Rizzo, Francesca; Tarallo, Roberta; Milanesi, Luciano; Weisz, Alessandro; Giurato, Giorgio

    2017-03-15

    The interest in investigating the biological roles of small non-coding RNAs (sncRNAs) is increasing, due to the pleiotropic effects of these molecules exert in many biological contexts. While several methods and tools are available to study microRNAs (miRNAs), only few focus on novel classes of sncRNAs, in particular PIWI-interacting RNAs (piRNAs). To overcome these limitations, we implemented iSmaRT ( i ntegrative Sm all R NA T ool-kit), an automated pipeline to analyze smallRNA-Seq data. iSmaRT is a collection of bioinformatics tools and own algorithms, interconnected through a Graphical User Interface (GUI). In addition to performing comprehensive analyses on miRNAs, it implements specific computational modules to analyze piRNAs, predicting novel ones and identifying their RNA targets. A smallRNA-Seq dataset generated from brain samples of Huntington's Disease patients was used here to illustrate iSmaRT performances, demonstrating how the pipeline can provide, in a rapid and user friendly way, a comprehensive analysis of different classes of sncRNAs. iSmaRT is freely available on the web at ftp://labmedmolge-1.unisa.it (User: iSmart - Password: password). aweisz@unisa.it or ggiurato@unisa.it. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  17. HMMEditor: a visual editing tool for profile hidden Markov model

    Directory of Open Access Journals (Sweden)

    Cheng Jianlin

    2008-03-01

    Full Text Available Abstract Background Profile Hidden Markov Model (HMM is a powerful statistical model to represent a family of DNA, RNA, and protein sequences. Profile HMM has been widely used in bioinformatics research such as sequence alignment, gene structure prediction, motif identification, protein structure prediction, and biological database search. However, few comprehensive, visual editing tools for profile HMM are publicly available. Results We develop a visual editor for profile Hidden Markov Models (HMMEditor. HMMEditor can visualize the profile HMM architecture, transition probabilities, and emission probabilities. Moreover, it provides functions to edit and save HMM and parameters. Furthermore, HMMEditor allows users to align a sequence against the profile HMM and to visualize the corresponding Viterbi path. Conclusion HMMEditor provides a set of unique functions to visualize and edit a profile HMM. It is a useful tool for biological sequence analysis and modeling. Both HMMEditor software and web service are freely available.

  18. Distinct Mechanism Evolved for Mycobacterial RNA Polymerase and Topoisomerase I Protein-Protein Interaction.

    Science.gov (United States)

    Banda, Srikanth; Cao, Nan; Tse-Dinh, Yuk-Ching

    2017-09-15

    We report here a distinct mechanism of interaction between topoisomerase I and RNA polymerase in Mycobacterium tuberculosis and Mycobacterium smegmatis that has evolved independently from the previously characterized interaction between bacterial topoisomerase I and RNA polymerase. Bacterial DNA topoisomerase I is responsible for preventing the hyper-negative supercoiling of genomic DNA. The association of topoisomerase I with RNA polymerase during transcription elongation could efficiently relieve transcription-driven negative supercoiling. Our results demonstrate a direct physical interaction between the C-terminal domains of topoisomerase I (TopoI-CTDs) and the β' subunit of RNA polymerase of M. smegmatis in the absence of DNA. The TopoI-CTDs in mycobacteria are evolutionarily unrelated in amino acid sequence and three-dimensional structure to the TopoI-CTD found in the majority of bacterial species outside Actinobacteria, including Escherichia coli. The functional interaction between topoisomerase I and RNA polymerase has evolved independently in mycobacteria and E. coli, with distinctively different structural elements of TopoI-CTD utilized for this protein-protein interaction. Zinc ribbon motifs in E. coli TopoI-CTD are involved in the interaction with RNA polymerase. For M. smegmatis TopoI-CTD, a 27-amino-acid tail that is rich in basic residues at the C-terminal end is responsible for the interaction with RNA polymerase. Overexpression of recombinant TopoI-CTD in M. smegmatis competed with the endogenous topoisomerase I for protein-protein interactions with RNA polymerase. The TopoI-CTD overexpression resulted in decreased survival following treatment with antibiotics and hydrogen peroxide, supporting the importance of the protein-protein interaction between topoisomerase I and RNA polymerase during stress response of mycobacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Characterization of a Novel Class I Transcription Factor A (CITFA) Subunit That Is Indispensable for Transcription by the Multifunctional RNA Polymerase I of Trypanosoma brucei

    KAUST Repository

    Nguyen, T. N.

    2012-10-26

    Trypanosoma brucei is the only organism known to have evolved a multifunctional RNA polymerase I (pol I) system that is used to express the parasite\\'s ribosomal RNAs, as well as its major cell surface antigens, namely, the variant surface glycoprotein (VSG) and procyclin, which are vital for establishing successful infections in the mammalian host and the tsetse vector, respectively. Thus far, biochemical analyses of the T. brucei RNA pol I transcription machinery have elucidated the subunit structure of the enzyme and identified the class I transcription factor A (CITFA). CITFA binds to RNA pol I promoters, and its CITFA-2 subunit was shown to be absolutely essential for RNA pol I transcription in the parasite. Tandem affinity purification (TAP) of CITFA revealed the subunits CITFA-1 to -6, which are conserved only among kinetoplastid organisms, plus the dynein light chain DYNLL1. Here, by tagging CITFA-6 instead of CITFA-2, a complex was purified that contained all known CITFA subunits, as well as a novel proline-rich protein. Functional studies carried out in vivo and in vitro, as well as a colocalization study, unequivocally demonstrated that this protein is a bona fide CITFA subunit, essential for parasite viability and indispensable for RNA pol I transcription of ribosomal gene units and the active VSG expression site in the mammalian-infective life cycle stage of the parasite. Interestingly, CITFA-7 function appears to be species specific, because expression of an RNA interference (RNAi)-resistant CITFA-7 transgene from Trypanosoma cruzi could not rescue the lethal phenotype of silencing endogenous CITFA-7.

  20. Involvement of DNA topoisomerase I in transcription of human ribosomal RNA genes

    International Nuclear Information System (INIS)

    Zhang, H.; Wang, J.C.; Liu, L.F.

    1988-01-01

    Treatment of HeLa cells with a DNA topoisomerase I-specific inhibitor, camptothecin, results in rapid cessation of the synthesis of the 45S rRNA precursor. The inhibition of rRNA synthesis is reversible following drug removal and correlates with the presence of camptothecin-trapped topoisomerase I-DNA abortive complexes, which can be detected as topoisomerase I-linked DNA breaks upon lysis with sodium dodecyl sulfate. These breaks were found to be concentrated within the transcribed region of human rRNA genes. No such sites can be detected in the inactive human rRNA genes in mouse-human hybrid cells, suggesting a preferential association of topoisomerase I with actively transcribed genes. The distribution of RNA polymerase molecules along the transcription unit of human rRNA genes in camptothecin-treated HeLa cells, as assayed by nuclear run-on transcription, shows a graded decrease of the RNA polymerase density toward the 3' end of the transcription unit; the density is minimally affected near the 5' start of the transcription unit. These results suggest that DNA topoisomerase I is normally involved in the elongation step of transcription, especially when the transcripts are long, and that camptothecin interferes with this role

  1. Phosphorylation and Dephosphorylation of the Presequence of Precursor MULTIPLE ORGANELLAR RNA EDITING FACTOR3 during Import into Mitochondria from Arabidopsis

    OpenAIRE

    SUN, F; CHENG, S; GUAN, X; ZHANG, R; LAW, YS; Duncan, O; Murcha, M; Whelan, J; Lim, BL

    2015-01-01

    The nuclear-encoded mitochondrial-targeted proteins, multiple organellar RNA editing factors (MORF3, MORF5, MORF6) interact with AtPAP2 (Purple acid phosphatase 2) located on the chloroplast and mitochondrial outer membranes in a presequence dependent manner. Phosphorylation of the presequence of the precursor MORF3 (pMORF3) by endogenous kinases in wheat germ translation lysate, leaf extracts, or STY kinases, but not in rabbit reticulocyte translation lysate, resulted in the inhibition of pr...

  2. Crystal structure of a TAPBPR–MHC I complex reveals the mechanism of peptide editing in antigen presentation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiansheng; Natarajan, Kannan; Boyd, Lisa F.; Morozov, Giora I.; Mage, Michael G.; Margulies, David H. (NIH); (Hebrew)

    2017-10-12

    Central to CD8+ T cell–mediated immunity is the recognition of peptide–major histocompatibility complex class I (p–MHC I) proteins displayed by antigen-presenting cells. Chaperone-mediated loading of high-affinity peptides onto MHC I is a key step in the MHC I antigen presentation pathway. However, the structure of MHC I with a chaperone that facilitates peptide loading has not been determined. We report the crystal structure of MHC I in complex with the peptide editor TAPBPR (TAP-binding protein–related), a tapasin homolog. TAPBPR remodels the peptide-binding groove of MHC I, resulting in the release of low-affinity peptide. Changes include groove relaxation, modifications of key binding pockets, and domain adjustments. This structure captures a peptide-receptive state of MHC I and provides insights into the mechanism of peptide editing by TAPBPR and, by analogy, tapasin.

  3. Genome Editing: A New Approach to Human Therapeutics.

    Science.gov (United States)

    Porteus, Matthew

    2016-01-01

    The ability to manipulate the genome with precise spatial and nucleotide resolution (genome editing) has been a powerful research tool. In the past decade, the tools and expertise for using genome editing in human somatic cells and pluripotent cells have increased to such an extent that the approach is now being developed widely as a strategy to treat human disease. The fundamental process depends on creating a site-specific DNA double-strand break (DSB) in the genome and then allowing the cell's endogenous DSB repair machinery to fix the break such that precise nucleotide changes are made to the DNA sequence. With the development and discovery of several different nuclease platforms and increasing knowledge of the parameters affecting different genome editing outcomes, genome editing frequencies now reach therapeutic relevance for a wide variety of diseases. Moreover, there is a series of complementary approaches to assessing the safety and toxicity of any genome editing process, irrespective of the underlying nuclease used. Finally, the development of genome editing has raised the issue of whether it should be used to engineer the human germline. Although such an approach could clearly prevent the birth of people with devastating and destructive genetic diseases, questions remain about whether human society is morally responsible enough to use this tool.

  4. Simple Genome Editing of Rodent Intact Embryos by Electroporation.

    Directory of Open Access Journals (Sweden)

    Takehito Kaneko

    Full Text Available The clustered regularly interspaced short palindromic repeat (CRISPR/CRISPR-associated (Cas system is a powerful tool for genome editing in animals. Recently, new technology has been developed to genetically modify animals without using highly skilled techniques, such as pronuclear microinjection of endonucleases. Technique for animal knockout system by electroporation (TAKE method is a simple and effective technology that produces knockout rats by introducing endonuclease mRNAs into intact embryos using electroporation. Using TAKE method and CRISPR/Cas system, the present study successfully produced knockout and knock-in mice and rats. The mice and rats derived from embryos electroporated with Cas9 mRNA, gRNA and single-stranded oligodeoxynucleotide (ssODN comprised the edited targeted gene as a knockout (67% of mice and 88% of rats or knock-in (both 33%. The TAKE method could be widely used as a powerful tool to produce genetically modified animals by genome editing.

  5. A Cas9 transgenic Plasmodium yoelii parasite for efficient gene editing.

    Science.gov (United States)

    Qian, Pengge; Wang, Xu; Yang, Zhenke; Li, Zhenkui; Gao, Han; Su, Xin-Zhuan; Cui, Huiting; Yuan, Jing

    2018-06-01

    The RNA-guided endonuclease Cas9 has applied as an efficient gene-editing method in malaria parasite Plasmodium. However, the size (4.2 kb) of the commonly used Cas9 from Streptococcus pyogenes (SpCas9) limits its utility for genome editing in the parasites only introduced with cas9 plasmid. To establish the endogenous and constitutive expression of Cas9 protein in the rodent malaria parasite P. yoelii, we replaced the coding region of an endogenous gene sera1 with the intact SpCas9 coding sequence using the CRISPR/Cas9-mediated genome editing method, generating the cas9-knockin parasite (PyCas9ki) of the rodent malaria parasite P. yoelii. The resulted PyCas9ki parasite displays normal progression during the whole life cycle and possesses the Cas9 protein expression in asexual blood stage. By introducing the plasmid (pYCs) containing only sgRNA and homologous template elements, we successfully achieved both deletion and tagging modifications for different endogenous genes in the genome of PyCas9ki parasite. This cas9-knockin PyCas9ki parasite provides a new platform facilitating gene functions study in the rodent malaria parasite P. yoelii. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Nucleobase but not Sugar Fidelity is Maintained in the Sabin I RNA-Dependent RNA Polymerase.

    Science.gov (United States)

    Liu, Xinran; Musser, Derek M; Lee, Cheri A; Yang, Xiaorong; Arnold, Jamie J; Cameron, Craig E; Boehr, David D

    2015-10-26

    The Sabin I poliovirus live, attenuated vaccine strain encodes for four amino acid changes (i.e., D53N, Y73H, K250E, and T362I) in the RNA-dependent RNA polymerase (RdRp). We have previously shown that the T362I substitution leads to a lower fidelity RdRp, and viruses encoding this variant are attenuated in a mouse model of poliovirus. Given these results, it was surprising that the nucleotide incorporation rate and nucleobase fidelity of the Sabin I RdRp is similar to that of wild-type enzyme, although the Sabin I RdRp is less selective against nucleotides with modified sugar groups. We suggest that the other Sabin amino acid changes (i.e., D53N, Y73H, K250E) help to re-establish nucleotide incorporation rates and nucleotide discrimination near wild-type levels, which may be a requirement for the propagation of the virus and its efficacy as a vaccine strain. These results also suggest that the nucleobase fidelity of the Sabin I RdRp likely does not contribute to viral attenuation.

  7. From Genomics to Gene Therapy: Induced Pluripotent Stem Cells Meet Genome Editing.

    Science.gov (United States)

    Hotta, Akitsu; Yamanaka, Shinya

    2015-01-01

    The advent of induced pluripotent stem (iPS) cells has opened up numerous avenues of opportunity for cell therapy, including the initiation in September 2014 of the first human clinical trial to treat dry age-related macular degeneration. In parallel, advances in genome-editing technologies by site-specific nucleases have dramatically improved our ability to edit endogenous genomic sequences at targeted sites of interest. In fact, clinical trials have already begun to implement this technology to control HIV infection. Genome editing in iPS cells is a powerful tool and enables researchers to investigate the intricacies of the human genome in a dish. In the near future, the groundwork laid by such an approach may expand the possibilities of gene therapy for treating congenital disorders. In this review, we summarize the exciting progress being made in the utilization of genomic editing technologies in pluripotent stem cells and discuss remaining challenges toward gene therapy applications.

  8. Cellular La protein shields nonsegmented negative-strand RNA viral leader RNA from RIG-I and enhances virus growth by diverse mechanisms.

    Science.gov (United States)

    Bitko, Vira; Musiyenko, Alla; Bayfield, Mark A; Maraia, Richard J; Barik, Sailen

    2008-08-01

    The La antigen (SS-B) associates with a wide variety of cellular and viral RNAs to affect gene expression in multiple systems. We show that La is the major cellular protein found to be associated with the abundant 44-nucleotide viral leader RNA (leRNA) early after infection with respiratory syncytial virus (RSV), a nonsegmented negative-strand RNA virus. Consistent with this, La redistributes from the nucleus to the cytoplasm in RSV-infected cells. Upon RNA interference knockdown of La, leRNA is redirected to associate with the RNA-binding protein RIG-I, a known activator of interferon (IFN) gene expression, and this is accompanied by the early induction of IFN mRNA. These results suggest that La shields leRNA from RIG-I, abrogating the early viral activation of type I IFN. We mapped the leRNA binding function to RNA recognition motif 1 of La and showed that while wild-type La greatly enhanced RSV growth, a La mutant defective in RSV leRNA binding also did not support RSV growth. Comparative studies of RSV and Sendai virus and the use of IFN-negative Vero cells indicated that La supports the growth of nonsegmented negative-strand RNA viruses by both IFN suppression and a potentially novel IFN-independent mechanism.

  9. Solving the RNA polymerase I structural puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Morcillo, María [European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg (Germany); Taylor, Nicholas M. I. [Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid (Spain); Gruene, Tim [Georg-August-University, Tammannstrasse 4, 37077 Göttingen (Germany); Legrand, Pierre [SOLEIL Synchrotron, L’Orme de Merisiers, Saint Aubin, Gif-sur-Yvette (France); Rashid, Umar J. [European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg (Germany); Ruiz, Federico M. [Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid (Spain); Steuerwald, Ulrich; Müller, Christoph W. [European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg (Germany); Fernández-Tornero, Carlos, E-mail: cftornero@cib.csic.es [Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid (Spain); European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg (Germany)

    2014-10-01

    Details of the RNA polymerase I crystal structure determination provide a framework for solution of the structures of other multi-subunit complexes. Simple crystallographic experiments are described to extract relevant biological information such as the location of the enzyme active site. Knowing the structure of multi-subunit complexes is critical to understand basic cellular functions. However, when crystals of these complexes can be obtained they rarely diffract beyond 3 Å resolution, which complicates X-ray structure determination and refinement. The crystal structure of RNA polymerase I, an essential cellular machine that synthesizes the precursor of ribosomal RNA in the nucleolus of eukaryotic cells, has recently been solved. Here, the crucial steps that were undertaken to build the atomic model of this multi-subunit enzyme are reported, emphasizing how simple crystallographic experiments can be used to extract relevant biological information. In particular, this report discusses the combination of poor molecular replacement and experimental phases, the application of multi-crystal averaging and the use of anomalous scatterers as sequence markers to guide tracing and to locate the active site. The methods outlined here will likely serve as a reference for future structural determination of large complexes at low resolution.

  10. A dictionary of altitudes in the United States (second edition)

    Science.gov (United States)

    Gannett, Henry

    1891-01-01

    I have the honor to transmit herewith the manuscript of a second edition of a Dictionary of Altitudes, the first edition having been published in 1884. The present work is considerably enlarged, mainly by the addition of determinations of altitudes by railroads. Besides the additions of matter, the principal change from the earlier edition consists in the substitution of a single alphabetic arrangement throughout the work for an alphabetic arrangement by States.

  11. [CRISPR/CAS9, the King of Genome Editing Tools].

    Science.gov (United States)

    Bannikov, A V; Lavrov, A V

    2017-01-01

    The discovery of CRISPR/Cas9 brought a hope for having an efficient, reliable, and readily available tool for genome editing. CRISPR/Cas9 is certainly easy to use, while its efficiency and reliability remain the focus of studies. The review describes the general principles of the organization and function of Cas nucleases and a number of important issues to be considered while planning genome editing experiments with CRISPR/Cas9. The issues include evaluation of the efficiency and specificity for Cas9, sgRNA selection, Cas9 variants designed artificially, and use of homologous recombination and nonhomologous end joining in DNA editing.

  12. Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity.

    Science.gov (United States)

    Chiang, Jessica J; Sparrer, Konstantin M J; van Gent, Michiel; Lässig, Charlotte; Huang, Teng; Osterrieder, Nikolaus; Hopfner, Karl-Peter; Gack, Michaela U

    2018-01-01

    The sensor RIG-I detects double-stranded RNA derived from RNA viruses. Although RIG-I is also known to have a role in the antiviral response to DNA viruses, physiological RNA species recognized by RIG-I during infection with a DNA virus are largely unknown. Using next-generation RNA sequencing (RNAseq), we found that host-derived RNAs, most prominently 5S ribosomal RNA pseudogene 141 (RNA5SP141), bound to RIG-I during infection with herpes simplex virus 1 (HSV-1). Infection with HSV-1 induced relocalization of RNA5SP141 from the nucleus to the cytoplasm, and virus-induced shutoff of host protein synthesis downregulated the abundance of RNA5SP141-interacting proteins, which allowed RNA5SP141 to bind RIG-I and induce the expression of type I interferons. Silencing of RNA5SP141 strongly dampened the antiviral response to HSV-1 and the related virus Epstein-Barr virus (EBV), as well as influenza A virus (IAV). Our findings reveal that antiviral immunity can be triggered by host RNAs that are unshielded following depletion of their respective binding proteins by the virus.

  13. Nucleobase but not Sugar Fidelity is Maintained in the Sabin I RNA-Dependent RNA Polymerase

    Directory of Open Access Journals (Sweden)

    Xinran Liu

    2015-10-01

    Full Text Available The Sabin I poliovirus live, attenuated vaccine strain encodes for four amino acid changes (i.e., D53N, Y73H, K250E, and T362I in the RNA-dependent RNA polymerase (RdRp. We have previously shown that the T362I substitution leads to a lower fidelity RdRp, and viruses encoding this variant are attenuated in a mouse model of poliovirus. Given these results, it was surprising that the nucleotide incorporation rate and nucleobase fidelity of the Sabin I RdRp is similar to that of wild-type enzyme, although the Sabin I RdRp is less selective against nucleotides with modified sugar groups. We suggest that the other Sabin amino acid changes (i.e., D53N, Y73H, K250E help to re-establish nucleotide incorporation rates and nucleotide discrimination near wild-type levels, which may be a requirement for the propagation of the virus and its efficacy as a vaccine strain. These results also suggest that the nucleobase fidelity of the Sabin I RdRp likely does not contribute to viral attenuation.

  14. Editing plants for virus resistance using CRISPR-Cas.

    Science.gov (United States)

    Green, J C; Hu, J S

    This minireview summarizes recent advancements using the clustered regularly interspaced palindromic repeats-associated nuclease systems (CRISPR-Cas) derived from prokaryotes to breed plants resistant to DNA and RNA viruses. The CRISPR-Cas system represents a powerful tool able to edit and insert novel traits into plants precisely at chosen loci offering enormous advantages to classical breeding. Approaches to engineering plant virus resistance in both transgenic and non-transgenic plants are discussed. Iterations of the CRISPR-Cas system, FnCas9 and C2c2 capable of editing RNA in eukaryotic cells offer a particular advantage for providing resistance to RNA viruses which represent the great majority of known plant viruses. Scientists have obtained conflicting results using gene silencing technology to produce transgenic plants resistant to geminiviruses. CRISPR-Cas systems engineered in plants to target geminiviruses have consistently reduced virus accumulation providing increased resistance to virus infection. CRISPR-Cas may provide novel and reliable approaches to control geminiviruses and other ssDNA viruses such as Banana bunchy top virus (BBTV).

  15. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa).

    Science.gov (United States)

    Li, Xiao-Jie; Zhang, Ya-Feng; Hou, Mingming; Sun, Feng; Shen, Yun; Xiu, Zhi-Hui; Wang, Xiaomin; Chen, Zong-Liang; Sun, Samuel S M; Small, Ian; Tan, Bao-Cai

    2014-09-01

    RNA editing modifies cytidines (C) to uridines (U) at specific sites in the transcripts of mitochondria and plastids, altering the amino acid specified by the DNA sequence. Here we report the identification of a critical editing factor of mitochondrial nad7 transcript via molecular characterization of a small kernel 1 (smk1) mutant in Zea mays (maize). Mutations in Smk1 arrest both the embryo and endosperm development. Cloning of Smk1 indicates that it encodes an E-subclass pentatricopeptide repeat (PPR) protein that is targeted to mitochondria. Loss of SMK1 function abolishes the C → U editing at the nad7-836 site, leading to the retention of a proline codon that is edited to encode leucine in the wild type. The smk1 mutant showed dramatically reduced complex-I assembly and NADH dehydrogenase activity, and abnormal biogenesis of the mitochondria. Analysis of the ortholog in Oryza sativa (rice) reveals that rice SMK1 has a conserved function in C → U editing of the mitochondrial nad7-836 site. T-DNA knock-out mutants showed abnormal embryo and endosperm development, resulting in embryo or seedling lethality. The leucine at NAD7-279 is highly conserved from bacteria to flowering plants, and analysis of genome sequences from many plants revealed a molecular coevolution between the requirement for C → U editing at this site and the existence of an SMK1 homolog. These results demonstrate that Smk1 encodes a PPR-E protein that is required for nad7-836 editing, and this editing is critical to NAD7 function in complex-I assembly in mitochondria, and hence to embryo and endosperm development in maize and rice. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  16. Targeted viral-mediated plant genome editing using crispr/cas9

    KAUST Repository

    Mahfouz, Magdy M.; Ali, Zahir

    2015-01-01

    The present disclosure provides a viral-mediated genome-editing platform that facilitates multiplexing, obviates stable transformation, and is applicable across plant species. The RNA2 genome of the tobacco rattle virus (TRV) was engineered to carry and systemically deliver a guide RNA molecules into plants overexpressing Cas9 endonuclease. High genomic modification frequencies were observed in inoculated as well as systemic leaves including the plant growing points. This system facilitates multiplexing and can lead to germinal transmission of the genomic modifications in the progeny, thereby obviating the requirements of repeated transformations and tissue culture. The editing platform of the disclosure is useful in plant genome engineering and applicable across plant species amenable to viral infections for agricultural biotechnology applications.

  17. Targeted viral-mediated plant genome editing using crispr/cas9

    KAUST Repository

    Mahfouz, Magdy M.

    2015-12-17

    The present disclosure provides a viral-mediated genome-editing platform that facilitates multiplexing, obviates stable transformation, and is applicable across plant species. The RNA2 genome of the tobacco rattle virus (TRV) was engineered to carry and systemically deliver a guide RNA molecules into plants overexpressing Cas9 endonuclease. High genomic modification frequencies were observed in inoculated as well as systemic leaves including the plant growing points. This system facilitates multiplexing and can lead to germinal transmission of the genomic modifications in the progeny, thereby obviating the requirements of repeated transformations and tissue culture. The editing platform of the disclosure is useful in plant genome engineering and applicable across plant species amenable to viral infections for agricultural biotechnology applications.

  18. Heat Increases the Editing Efficiency of Human Papillomavirus E2 Gene by Inducing Upregulation of APOBEC3A and 3G.

    Science.gov (United States)

    Yang, Yang; Wang, Hexiao; Zhang, Xinrui; Huo, Wei; Qi, Ruiqun; Gao, Yali; Zhang, Gaofeng; Song, Bing; Chen, Hongduo; Gao, Xinghua

    2017-04-01

    Apolipoprotein B mRNA-editing catalytic polypeptide (APOBEC) 3 proteins have been identified as potent viral DNA mutators and have broad antiviral activity. In this study, we demonstrated that apolipoprotein B mRNA-editing catalytic polypeptide 3A (A3A) and A3G expression levels were significantly upregulated in human papillomavirus (HPV)-infected cell lines and tissues. Heat treatment resulted in elevated expression of A3A and A3G in a temperature-dependent manner in HPV-infected cells. Correspondingly, HPV-infected cells heat-treated at 44 °C showed accumulated G-to-A or C-to-T mutation in HPV E2 gene. Knockdown of A3A or A3G could promote cell viability, along with the lower frequency of A/T in HPV E2 gene. In addition, regressing genital viral warts also harbored high G-to-A or C-to-T mutation in HPV E2 gene. Taken together, we demonstrate that apolipoprotein B mRNA-editing catalytic polypeptide 3 expression and editing function was heat sensitive to a certain degree, partly explaining the mechanism of action of local hyperthermia to treat viral warts. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Increased <i>FXYD1i> and <i>PGC-1αi> mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle

    DEFF Research Database (Denmark)

    Christiansen, Danny; Murphy, Robyn M; Bangsbo, Jens

    2018-01-01

    ). A muscle sample was collected before (Pre) and after exercise (+0h, +3h) to quantify mRNA, indicators of oxidative stress (HSP27 protein in type I and II fibres, and catalase and HSP70 mRNA), metabolites, and α-AMPK Thr172 /α-AMPK, ACC Ser221 /ACC, CaMKII Thr287 /CaMKII, and PLBSer16 /PLB ratios in type I...

  20. Generation, genome edition and characterization of iPSC lines from a patient with coenzyme Q10 deficiency harboring a heterozygous mutation in COQ4 gene

    Directory of Open Access Journals (Sweden)

    Damià Romero-Moya

    2017-10-01

    Full Text Available We report the generation, CRISPR/Cas9-edition and characterization of induced pluripotent stem cell (iPSC lines from a patient with coenzyme Q10 deficiency harboring the heterozygous mutation c.483G > C in the COQ4 gene. iPSCs were generated using non-integrative Sendai Viruses containing the reprogramming factors OCT4, SOX2, KLF4 and C-MYC. The iPSC lines carried the c.483G > C COQ4 mutation, silenced the OKSM expression and were mycoplasma-free. They were bona fide pluripotent cells as characterized by morphology, immunophenotype/gene expression for pluripotent-associated markers/genes, NANOG and OCT4 promoter demethylation, karyotype and teratoma formation. The COQ4 mutation was CRISPR/Cas9 edited resulting in isogenic, diploid and off-target free COQ4-corrected iPSCs.

  1. RNA-SSPT: RNA Secondary Structure Prediction Tools.

    Science.gov (United States)

    Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; Din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad

    2013-01-01

    The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes.

  2. Structural organization of the transfer RNA operon I of Vibrio cholerae

    Indian Academy of Sciences (India)

    Nine major transfer RNA (tRNA) gene clusters were analysed in various Vibrio cholerae strains. Of these, only the tRNA operon I was found to differ significantly in V. cholerae classical (sixth pandemic) and El Tor (seventh pandemic) strains. Amongst the sixteen tRNA genes contained in this operon, genes for tRNA Gln3 ...

  3. Safe Handling of Radioisotopes. First Edition with Revised Appendix I

    International Nuclear Information System (INIS)

    1966-01-01

    Under its Statute the International Atomic Energy Agency is empowered to provide for the application of standards of safety for protection against radiation to its own operations and to operations making use of assistance provided by it or with which it is otherwise directly associated. To this end authorities receiving such assistance are required to observe relevant health and safety measures prescribed by the Agency. As a first step, it was considered an urgent task to provide users of radioisotopes with a manual of practice for the safe handling of these substances. The first edition of such a manual was published in 1958 and represented the first of the 'Safety Series', a series of manuals and codes on health and safety published by the Agency. It was prepared after careful consideration of existing national and international codes of radiation safety by a group of international experts and in consultation with other international bodies. This edition presents the first revision. It incorporates in the Appendices the latest recommendations of the International Commission on Radiological Protection and extracts from the report of the Committee II of the I.C.R.P. on permissible dose for internal radiation. The Health Physics and Medical Addenda to this Manual, published as No. 2 and No. 3 in the Safety Series in 1960, give more complete advice to the user on specialized topics.

  4. Molecular docking and molecular dynamics simulation studies on Thermus thermophilus leucyl-tRNA synthetase complexed with different amino acids and pre-transfer editing substrates

    OpenAIRE

    Rayevsky A. V.; Tukalo M. A.

    2016-01-01

    Aim. To investigate the structural bases for the amino acid selectivity of the Thermus thermophilus leucyl-tRNA synthetase (LeuRSTT) aminoacylation site and to disclose the binding pattern of pre-transfer editing substrates. Methods. Eight amino acids proposed as semi-cognate substrates for aminoacylation and eight aminoacyl-adenylates (formed from AMP and eight amino acids) were prepared in zwitterions form. The protein structure with a co-crystallized substrate in the aminoacylation site [P...

  5. Lentiviral CRISPR/Cas9 vector mediated miR-21 gene editing inhibits the epithelial to mesenchymal transition in ovarian cancer cells.

    Science.gov (United States)

    Huo, Wenying; Zhao, Guannan; Yin, Jinggang; Ouyang, Xuan; Wang, Yinan; Yang, Chuanhe; Wang, Baojing; Dong, Peixin; Wang, Zhixiang; Watari, Hidemichi; Chaum, Edward; Pfeffer, Lawrence M; Yue, Junming

    2017-01-01

    CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) mediated genome editing is a powerful approach for loss of function studies. Here we report that lentiviral CRISPR/Cas9 vectors are highly efficient in introducing mutations in the precursor miRNA sequence, thus leading to the loss of miRNA expression and function. We constructed four different lentiviral CRISPR/Cas9 vectors that target different regions of the precursor miR-21 sequence and found that these lentiviral CRISPR/Cas9 miR-21 gRNA vectors induced mutations in the precursor sequences as shown by DNA surveyor mutation assay and Sanger sequencing. Two miR-21 lentiviral CRISPR/Cas9 gRNA vectors were selected to probe miR-21 function in ovarian cancer SKOV3 and OVCAR3 cell lines. Our data demonstrate that disruption of pre-miR-21 sequences leads to reduced cell proliferation, migration and invasion. Moreover, CRISPR/Cas9-mediated miR-21 gene editing sensitizes both SKOV3 and OVCAR3 cells to chemotherapeutic drug treatment. Disruption of miR-21 leads to the inhibition of epithelial to mesenchymal transition (EMT) in both SKOV3 and OVCAR3 cells as evidenced by the upregulation of epithelial cell marker E-cadherin and downregulation of mesenchymal marker genes, vimentin and Snai2. The miR-21 target genes PDCD4 and SPRY2 were upregulated in cells transduced with miR-21gRNAs compared to controls. Our study indicates that lentiviral CRISPR/Cas9-mediated miRNA gene editing is an effective approach to address miRNA function, and disruption of miR-21 inhibits EMT in ovarian cancer cells.

  6. [Participation of the piRNA pathway in recruiting a component of RNA polymerase I transcription initiation complex to germline cell nucleoli].

    Science.gov (United States)

    Fefelova, E A; Stolyarenko, A D; Yakushev, E Y; Gvozdev, V A; Klenov, M S

    2017-01-01

    Proteins of the Piwi family and short Piwi-interacting RNAs (piRNAs) ensure the protection of the genome from transposable elements. We have previously shown that nuclear Piwi protein tends to concentrate in the nucleoli of the cells of Drosophila melanogaster ovaries. It could be hypothesized that the function of Piwi in the nucleolus is associated with the repression of R1 and R2 retrotransposons inserted into the rDNA cluster. Here, we show that Piwi participates in recruiting Udd protein to nucleoli. Udd is a component of the conserved Selectivity Factor I-like (SL1-like) complex, which is required for transcription initiation by RNA polymerase I. We found that Udd localization depends on Piwi in germline cells, but not in somatic cells of the ovaries. In contrast, knockdowns of the SL1-like components (Udd or TAF1b) do not disrupt Piwi localization. We also observed that the absence of Udd or TAF1b in germline cells, as well as the impairment of Piwi nuclear localization lead to the accumulation of late stage egg chambers in the ovaries, which could be explained by reduced rRNA transcription. These results allow us to propose for the first time a role for Piwi in the nucleolus that is not directly associated with transposable element repression.

  7. [sgRNA design for the CRISPR/Cas9 system and evaluation of its off-target effects].

    Science.gov (United States)

    Xie, Sheng-song; Zhang, Yi; Zhang, Li-sheng; Li, Guang-lei; Zhao, Chang-zhi; Ni, Pan; Zhao, Shu-hong

    2015-11-01

    The third generation of CRISPR/Cas9-mediated genome editing technology has been successfully applied to genome modification of various species including animals, plants and microorganisms. How to improve the efficiency of CRISPR/Cas9 genome editing and reduce its off-target effects has been extensively explored in this field. Using sgRNA (Small guide RNA) with high efficiency and specificity is one of the critical factors for successful genome editing. Several software have been developed for sgRNA design and/or off-target evaluation, which have advantages and disadvantages respectively. In this review, we summarize characters of 16 kinds online and standalone software for sgRNA design and/or off-target evaluation and conduct a comparative analysis of these different kinds of software through developing 38 evaluation indexes. We also summarize 11 experimental approaches for testing genome editing efficiency and off-target effects as well as how to screen highly efficient and specific sgRNA.

  8. iSRAP - a one-touch research tool for rapid profiling of small RNA-seq data.

    Science.gov (United States)

    Quek, Camelia; Jung, Chol-Hee; Bellingham, Shayne A; Lonie, Andrew; Hill, Andrew F

    2015-01-01

    Small non-coding RNAs have been significantly recognized as the key modulators in many biological processes, and are emerging as promising biomarkers for several diseases. These RNA species are transcribed in cells and can be packaged in extracellular vesicles, which are small vesicles released from many biotypes, and are involved in intercellular communication. Currently, the advent of next-generation sequencing (NGS) technology for high-throughput profiling has further advanced the biological insights of non-coding RNA on a genome-wide scale and has become the preferred approach for the discovery and quantification of non-coding RNA species. Despite the routine practice of NGS, the processing of large data sets poses difficulty for analysis before conducting downstream experiments. Often, the current analysis tools are designed for specific RNA species, such as microRNA, and are limited in flexibility for modifying parameters for optimization. An analysis tool that allows for maximum control of different software is essential for drawing concrete conclusions for differentially expressed transcripts. Here, we developed a one-touch integrated small RNA analysis pipeline (iSRAP) research tool that is composed of widely used tools for rapid profiling of small RNAs. The performance test of iSRAP using publicly and in-house available data sets shows its ability of comprehensive profiling of small RNAs of various classes, and analysis of differentially expressed small RNAs. iSRAP offers comprehensive analysis of small RNA sequencing data that leverage informed decisions on the downstream analyses of small RNA studies, including extracellular vesicles such as exosomes.

  9. Coxsackievirus cloverleaf RNA containing a 5' triphosphate triggers an antiviral response via RIG-I activation.

    Directory of Open Access Journals (Sweden)

    Qian Feng

    Full Text Available Upon viral infections, pattern recognition receptors (PRRs recognize pathogen-associated molecular patterns (PAMPs and stimulate an antiviral state associated with the production of type I interferons (IFNs and inflammatory markers. Type I IFNs play crucial roles in innate antiviral responses by inducing expression of interferon-stimulated genes and by activating components of the adaptive immune system. Although pegylated IFNs have been used to treat hepatitis B and C virus infections for decades, they exert substantial side effects that limit their use. Current efforts are directed toward the use of PRR agonists as an alternative approach to elicit host antiviral responses in a manner similar to that achieved in a natural infection. RIG-I is a cytosolic PRR that recognizes 5' triphosphate (5'ppp-containing RNA ligands. Due to its ubiquitous expression profile, induction of the RIG-I pathway provides a promising platform for the development of novel antiviral agents and vaccine adjuvants. In this study, we investigated whether structured RNA elements in the genome of coxsackievirus B3 (CVB3, a picornavirus that is recognized by MDA5 during infection, could activate RIG-I when supplied with 5'ppp. We show here that a 5'ppp-containing cloverleaf (CL RNA structure is a potent RIG-I inducer that elicits an extensive antiviral response that includes induction of classical interferon-stimulated genes, as well as type III IFNs and proinflammatory cytokines and chemokines. In addition, we show that prophylactic treatment with CVB3 CL provides protection against various viral infections including dengue virus, vesicular stomatitis virus and enterovirus 71, demonstrating the antiviral efficacy of this RNA ligand.

  10. Non-functional genes repaired at the RNA level.

    Science.gov (United States)

    Burger, Gertraud

    2016-01-01

    Genomes and genes continuously evolve. Gene sequences undergo substitutions, deletions or nucleotide insertions; mobile genetic elements invade genomes and interleave in genes; chromosomes break, even within genes, and pieces reseal in reshuffled order. To maintain functional gene products and assure an organism's survival, two principal strategies are used - either repair of the gene itself or of its product. I will introduce common types of gene aberrations and how gene function is restored secondarily, and then focus on systematically fragmented genes found in a poorly studied protist group, the diplonemids. Expression of their broken genes involves restitching of pieces at the RNA-level, and substantial RNA editing, to compensate for point mutations. I will conclude with thoughts on how such a grotesquely unorthodox system may have evolved, and why this group of organisms persists and thrives since tens of millions of years. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. A Guide to the Elements, Rev. Edition (by Albert Stwertka)

    Science.gov (United States)

    Berger, Reviewed By Daniel

    1999-12-01

    This edition is identical in format and content to the 1996 edition, now sold as the "library edition", except that the names and information for elements 104-109 have been updated. My earlier review still applies; a page-by-page comparison found this edition identical to the first except as noted in the previous sentence. The major revision has been in size and price. The 50% price reduction is welcome, but the format was not changed when the size was reduced, and the resulting 9-point font puts readers at risk of eyestrain. I would like to correct one of the criticisms in my earlier review There is excellent discussion of the industrial uses of each element, as well as its most common source minerals. The more economically important elements are given extensive discussions, detailing industrial uses of the element and its compounds. However, biological activity is given spotty coverage. There is no mention - under "iron" or elsewhere - of the central biological role of iron in oxygen transport or of magnesium in photosynthesis. When coverage appears it is not bad: the roles of calcium in vertebrate and invertebrate skeletons, of fluorine in reducing tooth decay by changing hydroxyapatite to fluorapatite, and of cobalt in vitamin B12 are discussed. While information on transuranium elements has been updated, there has been no attempt to correct several minor errors in spelling, placement, or even information. On page 14 the 1s subshell appears as part of the L (n = 2) shell, and upon the electrolysis of molten sodium chloride on page 54, "sodium collects atthe cathode, and chloride [sic] at...the anode." On page 73 the etymology of "potash" is still given as "potassium-rich ash" rather than "ash burned down in pots", though it is obvious that the latter is intended. On page 74, a picture caption claims that black powder ("potassium nitrate, wood charcoal, and sulfur") is used in modern, high-powered rifle cartridges. In spite of the mistakes, which are relatively

  12. Kinetic discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5.

    Science.gov (United States)

    Louber, Jade; Brunel, Joanna; Uchikawa, Emiko; Cusack, Stephen; Gerlier, Denis

    2015-07-28

    The cytoplasmic RIG-like receptors are responsible for the early detection of viruses and other intracellular microbes by activating the innate immune response mediated by type I interferons (IFNs). RIG-I and MDA5 detect virus-specific RNA motifs with short 5'-tri/diphosphorylated, blunt-end double-stranded RNA (dsRNA) and >0.5-2 kb long dsRNA as canonical agonists, respectively. However, in vitro, they can bind to many RNA species, while in cells there is an activation threshold. As SF2 helicase/ATPase family members, ATP hydrolysis is dependent on co-operative RNA and ATP binding. Whereas simultaneous ATP and cognate RNA binding is sufficient to activate RIG-I by releasing autoinhibition of the signaling domains, the physiological role of the ATPase activity of RIG-I and MDA5 remains controversial. A cross-analysis of a rationally designed panel of RNA binding and ATPase mutants and truncated receptors, using type I IFN promoter activation as readout, allows us to refine our understanding of the structure-function relationships of RIG-I and MDA5. RNA activation of RIG-I depends on multiple critical RNA binding sites in its helicase domain as confirmed by functional evidence using novel mutations. We found that RIG-I or MDA5 mutants with low ATP hydrolysis activity exhibit constitutive activity but this was fully reverted when associated with mutations preventing RNA binding to the helicase domain. We propose that the turnover kinetics of the ATPase domain enables the discrimination of self/non-self RNA by both RIG-I and MDA5. Non-cognate, possibly self, RNA binding would lead to fast ATP turnover and RNA disassociation and thus insufficient time for the caspase activation and recruitment domains (CARDs) to promote downstream signaling, whereas tighter cognate RNA binding provides a longer time window for downstream events to be engaged. The exquisite fine-tuning of RIG-I and MDA5 RNA-dependent ATPase activity coupled to CARD release allows a robust IFN response

  13. Genome Editing in Sugarcane: Challenges ahead

    Directory of Open Access Journals (Sweden)

    Chakravarthi Mohan

    2016-10-01

    Full Text Available Genome editing opens new and unique opportunities for researchers to enhance crop production. Until 2013, the zinc finger nucleases (ZFNs and transcription activator-like effector nucleases (TALENs were the key tools used for genome editing applications. The advent of RNA-guided engineered nucleases - the type II clustered regularly interspaced short palindromic repeat (CRISPR/Cas9 (CRISPR-associated system from Streptococcus pyogenes holds great potential since it is simple, effective and more versatile than ZFNs and TALENs. CRISPR/Cas9 system has already been successfully employed in several crop plants. Use of these techniques is in its infant stage in sugarcane. Jung and Altpeter (2016 have reported TALEN mediated approach for the first time to reduce lignin content in sugarcane to make it amenable for biofuel production. This is so far the only report describing genome editing in sugarcane. Large genome size, polyploidy, low transformation efficiency, transgene silencing and lack of high throughput screening techniques are certainly great challenges for genome editing in sugarcane which would be discussed in detail in this review.

  14. CRISPR/Cas9 in Genome Editing and Beyond.

    Science.gov (United States)

    Wang, Haifeng; La Russa, Marie; Qi, Lei S

    2016-06-02

    The Cas9 protein (CRISPR-associated protein 9), derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms. As an RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, and its development as a tool has made sequence-specific gene editing several magnitudes easier. The nuclease-deactivated form of Cas9 further provides a versatile RNA-guided DNA-targeting platform for regulating and imaging the genome, as well as for rewriting the epigenetic status, all in a sequence-specific manner. With all of these advances, we have just begun to explore the possible applications of Cas9 in biomedical research and therapeutics. In this review, we describe the current models of Cas9 function and the structural and biochemical studies that support it. We focus on the applications of Cas9 for genome editing, regulation, and imaging, discuss other possible applications and some technical considerations, and highlight the many advantages that CRISPR/Cas9 technology offers.

  15. A Phenotypic Screen for Functional Mutants of Human Adenosine Deaminase Acting on RNA 1.

    Science.gov (United States)

    Wang, Yuru; Havel, Jocelyn; Beal, Peter A

    2015-11-20

    Adenosine deaminases acting on RNA (ADARs) are RNA-editing enzymes responsible for the conversion of adenosine to inosine at specific locations in cellular RNAs. ADAR1 and ADAR2 are two members of the family that have been shown to be catalytically active. Earlier, we reported a phenotypic screen for the study of human ADAR2 using budding yeast S. cerevisiae as the host system. While this screen has been successfully applied to the study of ADAR2, it failed with ADAR1. Here, we report a new reporter that uses a novel editing substrate and is suitable for the study of ADAR1. We screened plasmid libraries with randomized codons for two important residues in human ADAR1 (G1007 and E1008). The screening results combined with in vitro deamination assays led to the identification of mutants that are more active than the wild type protein. Furthermore, a screen of the ADAR1 E1008X library with a reporter construct bearing an A•G mismatch at the editing site suggests one role for the residue at position 1008 is to sense the identity of the base pairing partner for the editing site adenosine. This work has provided a starting point for future in vitro evolution studies of ADAR1 and led to new insight into ADAR's editing site selectivity.

  16. [Advances in CRISPR-Cas-mediated genome editing system in plants].

    Science.gov (United States)

    Wang, Chun; Wang, Kejian

    2017-10-25

    Targeted genome editing technology is an important tool to study the function of genes and to modify organisms at the genetic level. Recently, CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins) system has emerged as an efficient tool for specific genome editing in animals and plants. CRISPR-Cas system uses CRISPR-associated endonuclease and a guide RNA to generate double-strand breaks at the target DNA site, subsequently leading to genetic modifications. CRISPR-Cas system has received widespread attention for manipulating the genomes with simple, easy and high specificity. This review summarizes recent advances of diverse applications of the CRISPR-Cas toolkit in plant research and crop breeding, including expanding the range of genome editing, precise editing of a target base, and efficient DNA-free genome editing technology. This review also discusses the potential challenges and application prospect in the future, and provides a useful reference for researchers who are interested in this field.

  17. RNA-DNA Differences Are Generated in Human Cells within Seconds after RNA Exits Polymerase II

    Directory of Open Access Journals (Sweden)

    Isabel X. Wang

    2014-03-01

    Full Text Available RNA sequences are expected to be identical to their corresponding DNA sequences. Here, we found all 12 types of RNA-DNA sequence differences (RDDs in nascent RNA. Our results show that RDDs begin to occur in RNA chains ∼55 nt from the RNA polymerase II (Pol II active site. These RDDs occur so soon after transcription that they are incompatible with known deaminase-mediated RNA-editing mechanisms. Moreover, the 55 nt delay in appearance indicates that they do not arise during RNA synthesis by Pol II or as a direct consequence of modified base incorporation. Preliminary data suggest that RDD and R-loop formations may be coupled. These findings identify sequence substitution as an early step in cotranscriptional RNA processing.

  18. A Nonhuman Primate Transplantation Model to Evaluate Hematopoietic Stem Cell Gene Editing Strategies for β-Hemoglobinopathies

    Directory of Open Access Journals (Sweden)

    Olivier Humbert

    2018-03-01

    Full Text Available Reactivation of fetal hemoglobin (HbF is a promising approach for the treatment of β-hemoglobinopathies and the targeting of genes involved in HbF regulation is under intensive investigation. Here, we established a nonhuman primate (NHP transplantation model to evaluate hematopoietic stem cell (HSC-based gene editing strategies aimed at reactivating HbF. We first characterized the transient HbF induction to autologous HSC transplantation in pigtailed macaques, which was comparable in duration and amplitude to that of human patients. After validating function of the HbF repressor BCL11A in NHPs, we transplanted a pigtailed macaque with CD34+ cells electroporated with TALE nuclease mRNA targeting the BCL11A coding sequence. In vivo gene editing levels were low, but some BCL11A deletions were detected as late as 200 days post-transplantation. HbF production, as determined by F-cell staining and γ-globin expression, was slightly increased in this animal as compared to transplant controls. We also provided proof-of-concept results for the selection of edited NHP CD34+ cells in culture following integration of the P140K/MGMT cassette at the BCL11A locus. In summary, the NHP model described here will allow the testing of novel therapeutic approaches for hemoglobinopathies and should facilitate clinical translation.

  19. Selection of tRNA charging quality control mechanisms that increase mistranslation of the genetic code

    DEFF Research Database (Denmark)

    Yadavalli, Srujana S; Ibba, Michael

    2013-01-01

    Mistranslation can follow two events during protein synthesis: production of non-cognate amino acid:transfer RNA (tRNA) pairs by aminoacyl-tRNA synthetases (aaRSs) and inaccurate selection of aminoacyl-tRNAs by the ribosome. Many aaRSs actively edit non-cognate amino acids, but editing mechanisms...

  20. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing

    Science.gov (United States)

    Church, George M.; Esvelt, Kevin; Mali, Prashant

    2017-03-07

    Methods of modulating expression of a target nucleic acid in a cell are provided including use of multiple orthogonal Cas9 proteins to simultaneously and independently regulate corresponding genes or simultaneously and independently edit corresponding genes.

  1. The downregulation of microRNA let-7a contributes to the excessive expression of type I collagen in systemic and localized scleroderma.

    Science.gov (United States)

    Makino, Katsunari; Jinnin, Masatoshi; Hirano, Ayaka; Yamane, Keitaro; Eto, Mitsuhiko; Kusano, Takamitsu; Honda, Noritoshi; Kajihara, Ikko; Makino, Takamitsu; Sakai, Keisuke; Masuguchi, Shinichi; Fukushima, Satoshi; Ihn, Hironobu

    2013-04-15

    Systemic and localized scleroderma (SSc and LSc) is characterized by excessive deposition of collagen and tissue fibrosis in the skin. Although they have fundamental common characteristics including autoimmunity, little is known about the exact mechanism that mediates the excessive collagen expression in these disorders. In the current study, we tried to evaluate the possibility that microRNAs (miRNAs) play some roles in the pathogenesis of fibrosis seen in these diseases. miRNA expression patterns were evaluated by miRNA array analysis, real-time PCR, and in situ hybridization. The function of miRNAs in dermal fibroblasts was assessed using miRNA inhibitors, precursors, or protectors. In the mouse model of bleomycin-induced dermal sclerosis, the overexpression of miRNAs was performed by i.p. miRNA injection. We demonstrated let-7a expression was downregulated in SSc and LSc skin both in vivo and in vitro, compared with normal or keloid skin. The inhibition or overexpression of let-7a in human or mouse skin fibroblasts affected the protein expression of type I collagen or luciferase activity of collagen 3'-untranslated region. Also, we found let-7a was detectable and quantitative in the serum and investigated serum let-7a levels in patients with SSc or LSc. let-7a concentration was significantly decreased in these patients, especially in LSc patients. Moreover, we revealed that the intermittent overexpression of let-7a in the skin by i.p. miRNA injection improved the skin fibrosis induced by bleomycin in mice. Investigation of more detailed mechanisms of miRNA-mediated regulation of collagen expression may lead to new therapeutic approaches against SSc and LSc.

  2. CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction

    Science.gov (United States)

    Puton, Tomasz; Kozlowski, Lukasz P.; Rother, Kristian M.; Bujnicki, Janusz M.

    2013-01-01

    We present a continuous benchmarking approach for the assessment of RNA secondary structure prediction methods implemented in the CompaRNA web server. As of 3 October 2012, the performance of 28 single-sequence and 13 comparative methods has been evaluated on RNA sequences/structures released weekly by the Protein Data Bank. We also provide a static benchmark generated on RNA 2D structures derived from the RNAstrand database. Benchmarks on both data sets offer insight into the relative performance of RNA secondary structure prediction methods on RNAs of different size and with respect to different types of structure. According to our tests, on the average, the most accurate predictions obtained by a comparative approach are generated by CentroidAlifold, MXScarna, RNAalifold and TurboFold. On the average, the most accurate predictions obtained by single-sequence analyses are generated by CentroidFold, ContextFold and IPknot. The best comparative methods typically outperform the best single-sequence methods if an alignment of homologous RNA sequences is available. This article presents the results of our benchmarks as of 3 October 2012, whereas the rankings presented online are continuously updated. We will gladly include new prediction methods and new measures of accuracy in the new editions of CompaRNA benchmarks. PMID:23435231

  3. CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction.

    Science.gov (United States)

    Puton, Tomasz; Kozlowski, Lukasz P; Rother, Kristian M; Bujnicki, Janusz M

    2013-04-01

    We present a continuous benchmarking approach for the assessment of RNA secondary structure prediction methods implemented in the CompaRNA web server. As of 3 October 2012, the performance of 28 single-sequence and 13 comparative methods has been evaluated on RNA sequences/structures released weekly by the Protein Data Bank. We also provide a static benchmark generated on RNA 2D structures derived from the RNAstrand database. Benchmarks on both data sets offer insight into the relative performance of RNA secondary structure prediction methods on RNAs of different size and with respect to different types of structure. According to our tests, on the average, the most accurate predictions obtained by a comparative approach are generated by CentroidAlifold, MXScarna, RNAalifold and TurboFold. On the average, the most accurate predictions obtained by single-sequence analyses are generated by CentroidFold, ContextFold and IPknot. The best comparative methods typically outperform the best single-sequence methods if an alignment of homologous RNA sequences is available. This article presents the results of our benchmarks as of 3 October 2012, whereas the rankings presented online are continuously updated. We will gladly include new prediction methods and new measures of accuracy in the new editions of CompaRNA benchmarks.

  4. iSRAP – a one-touch research tool for rapid profiling of small RNA-seq data

    Science.gov (United States)

    Quek, Camelia; Jung, Chol-hee; Bellingham, Shayne A.; Lonie, Andrew; Hill, Andrew F.

    2015-01-01

    Small non-coding RNAs have been significantly recognized as the key modulators in many biological processes, and are emerging as promising biomarkers for several diseases. These RNA species are transcribed in cells and can be packaged in extracellular vesicles, which are small vesicles released from many biotypes, and are involved in intercellular communication. Currently, the advent of next-generation sequencing (NGS) technology for high-throughput profiling has further advanced the biological insights of non-coding RNA on a genome-wide scale and has become the preferred approach for the discovery and quantification of non-coding RNA species. Despite the routine practice of NGS, the processing of large data sets poses difficulty for analysis before conducting downstream experiments. Often, the current analysis tools are designed for specific RNA species, such as microRNA, and are limited in flexibility for modifying parameters for optimization. An analysis tool that allows for maximum control of different software is essential for drawing concrete conclusions for differentially expressed transcripts. Here, we developed a one-touch integrated small RNA analysis pipeline (iSRAP) research tool that is composed of widely used tools for rapid profiling of small RNAs. The performance test of iSRAP using publicly and in-house available data sets shows its ability of comprehensive profiling of small RNAs of various classes, and analysis of differentially expressed small RNAs. iSRAP offers comprehensive analysis of small RNA sequencing data that leverage informed decisions on the downstream analyses of small RNA studies, including extracellular vesicles such as exosomes. PMID:26561006

  5. The genome editing revolution: A CRISPR-Cas TALE off-target story.

    Science.gov (United States)

    Stella, Stefano; Montoya, Guillermo

    2016-07-01

    In the last 10 years, we have witnessed a blooming of targeted genome editing systems and applications. The area was revolutionized by the discovery and characterization of the transcription activator-like effector proteins, which are easier to engineer to target new DNA sequences than the previously available DNA binding templates, zinc fingers and meganucleases. Recently, the area experimented a quantum leap because of the introduction of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) system (clustered regularly interspaced short palindromic sequence). This ribonucleoprotein complex protects bacteria from invading DNAs, and it was adapted to be used in genome editing. The CRISPR ribonucleic acid (RNA) molecule guides to the specific DNA site the Cas9 nuclease to cleave the DNA target. Two years and more than 1000 publications later, the CRISPR-Cas system has become the main tool for genome editing in many laboratories. Currently the targeted genome editing technology has been used in many fields and may be a possible approach for human gene therapy. Furthermore, it can also be used to modifying the genomes of model organisms for studying human pathways or to improve key organisms for biotechnological applications, such as plants, livestock genome as well as yeasts and bacterial strains. © 2016 The Authors. BioEssays published by WILEY Periodicals, Inc.

  6. CPSS: a computational platform for the analysis of small RNA deep sequencing data.

    Science.gov (United States)

    Zhang, Yuanwei; Xu, Bo; Yang, Yifan; Ban, Rongjun; Zhang, Huan; Jiang, Xiaohua; Cooke, Howard J; Xue, Yu; Shi, Qinghua

    2012-07-15

    Next generation sequencing (NGS) techniques have been widely used to document the small ribonucleic acids (RNAs) implicated in a variety of biological, physiological and pathological processes. An integrated computational tool is needed for handling and analysing the enormous datasets from small RNA deep sequencing approach. Herein, we present a novel web server, CPSS (a computational platform for the analysis of small RNA deep sequencing data), designed to completely annotate and functionally analyse microRNAs (miRNAs) from NGS data on one platform with a single data submission. Small RNA NGS data can be submitted to this server with analysis results being returned in two parts: (i) annotation analysis, which provides the most comprehensive analysis for small RNA transcriptome, including length distribution and genome mapping of sequencing reads, small RNA quantification, prediction of novel miRNAs, identification of differentially expressed miRNAs, piwi-interacting RNAs and other non-coding small RNAs between paired samples and detection of miRNA editing and modifications and (ii) functional analysis, including prediction of miRNA targeted genes by multiple tools, enrichment of gene ontology terms, signalling pathway involvement and protein-protein interaction analysis for the predicted genes. CPSS, a ready-to-use web server that integrates most functions of currently available bioinformatics tools, provides all the information wanted by the majority of users from small RNA deep sequencing datasets. CPSS is implemented in PHP/PERL+MySQL+R and can be freely accessed at http://mcg.ustc.edu.cn/db/cpss/index.html or http://mcg.ustc.edu.cn/sdap1/cpss/index.html.

  7. USH2A Gene Editing Using the CRISPR System

    Directory of Open Access Journals (Sweden)

    Carla Fuster-García

    2017-09-01

    Full Text Available Usher syndrome (USH is a rare autosomal recessive disease and the most common inherited form of combined visual and hearing impairment. Up to 13 genes are associated with this disorder, with USH2A being the most prevalent, due partially to the recurrence rate of the c.2299delG mutation. Excluding hearing aids or cochlear implants for hearing impairment, there are no medical solutions available to treat USH patients. The repair of specific mutations by gene editing is, therefore, an interesting strategy that can be explored using the CRISPR/Cas9 system. In this study, this method of gene editing is used to target the c.2299delG mutation on fibroblasts from an USH patient carrying the mutation in homozygosis. Successful in vitro mutation repair was demonstrated using locus-specific RNA-Cas9 ribonucleoproteins with subsequent homologous recombination repair induced by an engineered template supply. Effects on predicted off-target sites in the CRISPR-treated cells were discarded after a targeted deep-sequencing screen. The proven effectiveness and specificity of these correction tools, applied to the c.2299delG pathogenic variant of USH2A, indicates that the CRISPR system should be considered to further explore a potential treatment of USH. Keywords: Usher syndrome, USH2A, c.2299delG, CRISPR, gene editing, RNPs

  8. Semiautomated improvement of RNA alignments

    DEFF Research Database (Denmark)

    Andersen, Ebbe Sloth; Lind-Thomsen, Allan; Knudsen, Bjarne

    2007-01-01

    connects to external tools to provide a flexible semiautomatic editing environment. A new method, Pcluster, is introduced for dividing the sequences of an RNA alignment into subgroups with secondary structure differences. Pcluster was used to evaluate 574 seed alignments obtained from the Rfam database...... and we identified 71 alignments with significant prediction of inconsistent base pairs and 102 alignments with significant prediction of novel base pairs. Four RNA families were used to illustrate how SARSE can be used to manually or automatically correct the inconsistent base pairs detected by Pcluster......: the mir-399 RNA, vertebrate telomase RNA (vert-TR), bacterial transfer-messenger RNA (tmRNA), and the signal recognition particle (SRP) RNA. The general use of the method is illustrated by the ability to accommodate pseudoknots and handle even large and divergent RNA families. The open architecture...

  9. Small RNA expression and strain specificity in the rat

    Directory of Open Access Journals (Sweden)

    de Bruijn Ewart

    2010-04-01

    Full Text Available Abstract Background Digital gene expression (DGE profiling has become an established tool to study RNA expression. Here, we provide an in-depth analysis of small RNA DGE profiles from two different rat strains (BN-Lx and SHR from six different rat tissues (spleen, liver, brain, testis, heart, kidney. We describe the expression patterns of known and novel micro (miRNAs and piwi-interacting (piRNAs. Results We confirmed the expression of 588 known miRNAs (54 in antisense orientation and identified 56 miRNAs homologous to known human or mouse miRNAs, as well as 45 new rat miRNAs. Furthermore, we confirmed specific A to I editing in brain for mir-376a/b/c and identified mir-377 as a novel editing target. In accordance with earlier findings, we observed a highly tissue-specific expression pattern for all tissues analyzed. The brain was found to express the highest number of tissue-specific miRNAs, followed by testis. Notably, our experiments also revealed robust strain-specific differential miRNA expression in the liver that is caused by genetic variation between the strains. Finally, we identified two types of germline-specific piRNAs in testis, mapping either to transposons or in strand-specific clusters. Conclusions Taken together, the small RNA compendium described here advances the annotation of small RNAs in the rat genome. Strain and tissue-specific expression patterns furthermore provide a strong basis for studying the role of small RNAs in regulatory networks as well as biological process like physiology and neurobiology that are extensively studied in this model system.

  10. Standards of specialized diabetes care. Edited by Dedov I.I., Shestakova M.V. (7th edition

    Directory of Open Access Journals (Sweden)

    Ivan Ivanovich Dedov

    2015-03-01

    Full Text Available We are glad to present the 7th Edition of Standards of Diabetes Care. These evidence-based guidelines were designed to standardize and facilitate diabetes care in all regions of the Russian Federation. The Standards are updated on the regular basis to incorporate new data and relevant recommendations from national and international clinical societies, including World Health Organization Guidelines (WHO, 2011, 2013, International Diabetes Federation (IDF, 2011, 2012, 2013, American Diabetes Association (ADA, 2012, 2015, American Association of Clinical Endocrinologists (AACE, 2013, International Society for Pediatric and Adolescent Diabetes (ISPAD, 2014 and Russian Association of Endocrinologists (RAE, 2011, 2012. Current edition of the “Standards” also integrates results of completed randomized clinical trials (ADVANCE, ACCORD, VADT, UKPDS, etc., as well as findings from the national studies of diabetes mellitus (DM, conducted in close partnership with a number of Russian hospitals.Latest data indicates that prevalence of DM increased during the last decade more than two-fold, reaching some 387 million patients by the end of 2014. According to the current estimation by the International Diabetes Federation, 592 million patients will be suffering from DM by 2035. These observations resulted in the UN Resolution 61/225 passed on 20.12.2006 that encouraged all Member States “to develop national policies for the prevention, treatment and care of diabetes”.Like many other countries, Russian Federation experiences a sharp rise in the prevalence of DM. According to Russian State Diabetes Register, there are at least 4.1 million patients with DM in this country. However, the epidemiological survey conducted by the Federal Endocrinology Research Centre during 2002-2010 suggests that actual prevalence is 3 to 4 times greater than the officially recognized and, by this estimate, amounts to 9-10 million persons, comprising 7% of the national

  11. Standards of specialized diabetes care. Edited by Dedov I.I., Shestakova M.V. (7th edition

    Directory of Open Access Journals (Sweden)

    Ivan Ivanovich Dedov

    2015-03-01

    Full Text Available We are glad to present the 7th Edition of Standards of Diabetes Care. These evidence-based guidelines were designed to standardize and facilitate diabetes care in all regions of the Russian Federation. The Standards are updated on the regular basis to incorporate new data and relevant recommendations from national and international clinical societies, including World Health Organization Guidelines (WHO, 2011, 2013, International Diabetes Federation (IDF, 2011, 2012, 2013, American Diabetes Association (ADA, 2012, 2015, American Association of Clinical Endocrinologists (AACE, 2013, International Society for Pediatric and Adolescent Diabetes (ISPAD, 2014 and Russian Association of Endocrinologists (RAE, 2011, 2012. Current edition of the ?Standards? also integrates results of completed randomized clinical trials (ADVANCE, ACCORD, VADT, UKPDS, etc., as well as findings from the national studies of diabetes mellitus (DM, conducted in close partnership with a number of Russian hospitals. Latest data indicates that prevalence of DM increased during the last decade more than two-fold, reaching some 387 million patients by the end of 2014. According to the current estimation by the International Diabetes Federation, 592 million patients will be suffering from DM by 2035. These observations resulted in the UN Resolution 61/225 passed on 20.12.2006 that encouraged all Member States "to develop national policies for the prevention, treatment and care of diabetes". Like many other countries, Russian Federation experiences a sharp rise in the prevalence of DM. According to Russian State Diabetes Register, there are at least 4.1 million patients with DM in this country. However, the epidemiological survey conducted by the Federal Endocrinology Research Centre during 2002-2010 suggests that actual prevalence is 3 to 4 times greater than the officially recognized and, by this estimate, amounts to 9-10 million persons, comprising 7% of the national population

  12. Engineered Viruses as Genome Editing Devices

    Science.gov (United States)

    Chen, Xiaoyu; Gonçalves, Manuel A F V

    2016-01-01

    Genome editing based on sequence-specific designer nucleases, also known as programmable nucleases, seeks to modify in a targeted and precise manner the genetic information content of living cells. Delivering into cells designer nucleases alone or together with donor DNA templates, which serve as surrogate homologous recombination (HR) substrates, can result in gene knockouts or gene knock-ins, respectively. As engineered replication-defective viruses, viral vectors are having an increasingly important role as delivery vehicles for donor DNA templates and designer nucleases, namely, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated Cas9 (CRISPR−Cas9) nucleases, also known as RNA-guided nucleases (RGNs). We review this dual role played by engineered viral particles on genome editing while focusing on their main scaffolds, consisting of lentiviruses, adeno-associated viruses, and adenoviruses. In addition, the coverage of the growing body of research on the repurposing of viral vectors as delivery systems for genome editing tools is complemented with information regarding their main characteristics, pros, and cons. Finally, this information is framed by a concise description of the chief principles, tools, and applications of the genome editing field as a whole. PMID:26336974

  13. Connectivity editing for quadrilateral meshes

    KAUST Repository

    Peng, Chihan

    2011-12-12

    We propose new connectivity editing operations for quadrilateral meshes with the unique ability to explicitly control the location, orientation, type, and number of the irregular vertices (valence not equal to four) in the mesh while preserving sharp edges. We provide theoretical analysis on what editing operations are possible and impossible and introduce three fundamental operations to move and re-orient a pair of irregular vertices. We argue that our editing operations are fundamental, because they only change the quad mesh in the smallest possible region and involve the fewest irregular vertices (i.e., two). The irregular vertex movement operations are supplemented by operations for the splitting, merging, canceling, and aligning of irregular vertices. We explain how the proposed highlevel operations are realized through graph-level editing operations such as quad collapses, edge flips, and edge splits. The utility of these mesh editing operations are demonstrated by improving the connectivity of quad meshes generated from state-of-art quadrangulation techniques. © 2011 ACM.

  14. Connectivity editing for quadrilateral meshes

    KAUST Repository

    Peng, Chihan; Zhang, Eugene; Kobayashi, Yoshihiro; Wonka, Peter

    2011-01-01

    We propose new connectivity editing operations for quadrilateral meshes with the unique ability to explicitly control the location, orientation, type, and number of the irregular vertices (valence not equal to four) in the mesh while preserving sharp edges. We provide theoretical analysis on what editing operations are possible and impossible and introduce three fundamental operations to move and re-orient a pair of irregular vertices. We argue that our editing operations are fundamental, because they only change the quad mesh in the smallest possible region and involve the fewest irregular vertices (i.e., two). The irregular vertex movement operations are supplemented by operations for the splitting, merging, canceling, and aligning of irregular vertices. We explain how the proposed highlevel operations are realized through graph-level editing operations such as quad collapses, edge flips, and edge splits. The utility of these mesh editing operations are demonstrated by improving the connectivity of quad meshes generated from state-of-art quadrangulation techniques. © 2011 ACM.

  15. CrisprGE: a central hub of CRISPR/Cas-based genome editing.

    Science.gov (United States)

    Kaur, Karambir; Tandon, Himani; Gupta, Amit Kumar; Kumar, Manoj

    2015-01-01

    CRISPR system is a powerful defense mechanism in bacteria and archaea to provide immunity against viruses. Recently, this process found a new application in intended targeting of the genomes. CRISPR-mediated genome editing is performed by two main components namely single guide RNA and Cas9 protein. Despite the enormous data generated in this area, there is a dearth of high throughput resource. Therefore, we have developed CrisprGE, a central hub of CRISPR/Cas-based genome editing. Presently, this database holds a total of 4680 entries of 223 unique genes from 32 model and other organisms. It encompasses information about the organism, gene, target gene sequences, genetic modification, modifications length, genome editing efficiency, cell line, assay, etc. This depository is developed using the open source LAMP (Linux Apache MYSQL PHP) server. User-friendly browsing, searching facility is integrated for easy data retrieval. It also includes useful tools like BLAST CrisprGE, BLAST NTdb and CRISPR Mapper. Considering potential utilities of CRISPR in the vast area of biology and therapeutics, we foresee this platform as an assistance to accelerate research in the burgeoning field of genome engineering. © The Author(s) 2015. Published by Oxford University Press.

  16. Recent Advances in Genome Editing Using CRISPR/Cas9

    Science.gov (United States)

    Ding, Yuduan; Li, Hong; Chen, Ling-Ling; Xie, Kabin

    2016-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) system is a versatile tool for genome engineering that uses a guide RNA (gRNA) to target Cas9 to a specific sequence. This simple RNA-guided genome-editing technology has become a revolutionary tool in biology and has many innovative applications in different fields. In this review, we briefly introduce the Cas9-mediated genome-editing method, summarize the recent advances in CRISPR/Cas9 technology, and discuss their implications for plant research. To date, targeted gene knockout using the Cas9/gRNA system has been established in many plant species, and the targeting efficiency and capacity of Cas9 has been improved by optimizing its expression and that of its gRNA. The CRISPR/Cas9 system can also be used for sequence-specific mutagenesis/integration and transcriptional control of target genes. We also discuss off-target effects and the constraint that the protospacer-adjacent motif (PAM) puts on CRISPR/Cas9 genome engineering. To address these problems, a number of bioinformatic tools are available to help design specific gRNAs, and new Cas9 variants and orthologs with high fidelity and alternative PAM specificities have been engineered. Owing to these recent efforts, the CRISPR/Cas9 system is becoming a revolutionary and flexible tool for genome engineering. Adoption of the CRISPR/Cas9 technology in plant research would enable the investigation of plant biology at an unprecedented depth and create innovative applications in precise crop breeding. PMID:27252719

  17. Textual Challenges: A Brief Guide to Choosing Shakespearean Editions

    Science.gov (United States)

    Cornell, Christine; Malcolmson, Patrick

    2012-01-01

    How should educators go about selecting appropriate editions of Shakespeare's plays for use in political science courses? Shakespeare is turning up on many politics syllabi, but, at times, the editions chosen seem to reflect primarily a concern for price or publisher reputation over pedagogical and scholarly considerations. This article offers an…

  18. CRISPR/Cas9 Based Genome Editing of Penicillium chrysogenum.

    Science.gov (United States)

    Pohl, C; Kiel, J A K W; Driessen, A J M; Bovenberg, R A L; Nygård, Y

    2016-07-15

    CRISPR/Cas9 based systems have emerged as versatile platforms for precision genome editing in a wide range of organisms. Here we have developed powerful CRISPR/Cas9 tools for marker-based and marker-free genome modifications in Penicillium chrysogenum, a model filamentous fungus and industrially relevant cell factory. The developed CRISPR/Cas9 toolbox is highly flexible and allows editing of new targets with minimal cloning efforts. The Cas9 protein and the sgRNA can be either delivered during transformation, as preassembled CRISPR-Cas9 ribonucleoproteins (RNPs) or expressed from an AMA1 based plasmid within the cell. The direct delivery of the Cas9 protein with in vitro synthesized sgRNA to the cells allows for a transient method for genome engineering that may rapidly be applicable for other filamentous fungi. The expression of Cas9 from an AMA1 based vector was shown to be highly efficient for marker-free gene deletions.

  19. The Significance of Peer-Editing in Teaching Writing to EFL Students

    Directory of Open Access Journals (Sweden)

    Zohreh Seifoori

    2008-05-01

    Full Text Available This study set out to investigate the effect of peer- editing as a metacognitive strategy on the development of writing. It was hypothesized that peer-editing could be used to raise grammatical and compositional awareness of the learners. Forty pre-intermediate sophomores at Islamic Azad University-Tabriz Branch participated in the study, taking the course Writing I. To warrant the initial homogeneity of the groups, a nonequivalent pretest –posttest design was selected and the groups were randomly determined as the control and the experimental groups, each with twenty subjects.  The treatment following the pretest involved a three-phase planning procedure including: consciousness awareness via error recognition activities, error categorizing activities, and self/peer editing. Statistical analysis of the post-test composition did not reveal any significant difference between the two groups.  It seems that peer-editing entails a firm grammatical foundation which needs to be formed early in the process of language learning. The results underscore the need to reorient the method of teaching grammar at university level in a way to accommodate a task-based approach to cognitive and metacognitive strategies-based training.

  20. Gene editing by co-transformation of TALEN and chimeric RNA/DNA oligonucleotides on the rice OsEPSPS gene and the inheritance of mutations.

    Directory of Open Access Journals (Sweden)

    Mugui Wang

    Full Text Available Although several site-specific nucleases (SSNs, such as zinc-finger nucleases (ZFNs, transcription activator-like effector nucleases (TALENs, and the clustered regularly interspaced short palindromic repeat (CRISPR/Cas, have emerged as powerful tools for targeted gene editing in many organisms, to date, gene targeting (GT in plants remains a formidable challenge. In the present study, we attempted to substitute a single base in situ on the rice OsEPSPS gene by co-transformation of TALEN with chimeric RNA/DNA oligonucleotides (COs, including different strand composition such as RNA/DNA (C1 or DNA/RNA (C2 but contained the same target base to be substituted. In contrast to zero GT event obtained by the co-transformation of TALEN with homologous recombination plasmid (HRP, we obtained one mutant showing target base substitution although accompanied by undesired deletion of 12 bases downstream the target site from the co-transformation of TALEN and C1. In addition to this typical event, we also obtained 16 mutants with different length of base deletions around the target site among 105 calli lines derived from transformation of TALEN alone (4/19 as well as co-transformation of TELAN with either HRP (5/30 or C1 (2/25 or C2 (5/31. Further analysis demonstrated that the homozygous gene-edited mutants without foreign gene insertion could be obtained in one generation. The induced mutations in transgenic generation were also capable to pass to the next generation stably. However, the genotypes of mutants did not segregate normally in T1 population, probably due to lethal mutations. Phenotypic assessments in T1 generation showed that the heterozygous plants with either one or three bases deletion on target sequence, called d1 and d3, were more sensitive to glyphosate and the heterozygous d1 plants had significantly lower seed-setting rate than wild-type.

  1. Kinetoplastid guide RNA biogenesis is dependent on subunits of the mitochondrial RNA binding complex 1 and mitochondrial RNA polymerase

    Czech Academy of Sciences Publication Activity Database

    Hashimi, Hassan; Číčová, Zdeňka; Novotná, Lucie; Wen, Y.-Z.; Lukeš, Julius

    2009-01-01

    Roč. 15, č. 4 (2009), s. 588-599 ISSN 1355-8382 R&D Projects: GA ČR GA204/09/1667; GA AV ČR IAA500960705; GA MŠk LC07032; GA MŠk 2B06129; GA ČR GD524/03/H133 Institutional research plan: CEZ:AV0Z60220518 Keywords : RNA editing * guide RNA * mitochondrion * trypanosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.198, year: 2009

  2. Newer Gene Editing Technologies toward HIV Gene Therapy

    Directory of Open Access Journals (Sweden)

    Premlata Shankar

    2013-11-01

    Full Text Available Despite the great success of highly active antiretroviral therapy (HAART in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called “Berlin patient” who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy.

  3. iMir: an integrated pipeline for high-throughput analysis of small non-coding RNA data obtained by smallRNA-Seq.

    Science.gov (United States)

    Giurato, Giorgio; De Filippo, Maria Rosaria; Rinaldi, Antonio; Hashim, Adnan; Nassa, Giovanni; Ravo, Maria; Rizzo, Francesca; Tarallo, Roberta; Weisz, Alessandro

    2013-12-13

    Qualitative and quantitative analysis of small non-coding RNAs by next generation sequencing (smallRNA-Seq) represents a novel technology increasingly used to investigate with high sensitivity and specificity RNA population comprising microRNAs and other regulatory small transcripts. Analysis of smallRNA-Seq data to gather biologically relevant information, i.e. detection and differential expression analysis of known and novel non-coding RNAs, target prediction, etc., requires implementation of multiple statistical and bioinformatics tools from different sources, each focusing on a specific step of the analysis pipeline. As a consequence, the analytical workflow is slowed down by the need for continuous interventions by the operator, a critical factor when large numbers of datasets need to be analyzed at once. We designed a novel modular pipeline (iMir) for comprehensive analysis of smallRNA-Seq data, comprising specific tools for adapter trimming, quality filtering, differential expression analysis, biological target prediction and other useful options by integrating multiple open source modules and resources in an automated workflow. As statistics is crucial in deep-sequencing data analysis, we devised and integrated in iMir tools based on different statistical approaches to allow the operator to analyze data rigorously. The pipeline created here proved to be efficient and time-saving than currently available methods and, in addition, flexible enough to allow the user to select the preferred combination of analytical steps. We present here the results obtained by applying this pipeline to analyze simultaneously 6 smallRNA-Seq datasets from either exponentially growing or growth-arrested human breast cancer MCF-7 cells, that led to the rapid and accurate identification, quantitation and differential expression analysis of ~450 miRNAs, including several novel miRNAs and isomiRs, as well as identification of the putative mRNA targets of differentially expressed mi

  4. Characterization of a Novel Class I Transcription Factor A (CITFA) Subunit That Is Indispensable for Transcription by the Multifunctional RNA Polymerase I of Trypanosoma brucei

    KAUST Repository

    Nguyen, T. N.; Nguyen, B. N.; Lee, J. H.; Panigrahi, A. K.; Gunzl, A.

    2012-01-01

    Trypanosoma brucei is the only organism known to have evolved a multifunctional RNA polymerase I (pol I) system that is used to express the parasite's ribosomal RNAs, as well as its major cell surface antigens, namely, the variant surface

  5. TMEPAI genome editing in triple negative breast cancer cells

    Directory of Open Access Journals (Sweden)

    Bantari W.K. Wardhani

    2017-05-01

    Full Text Available Background: Clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9 is a powerful genome editing technique. It consists of RNA-guided DNA endonuclease Cas9 and single guide RNA (gRNA. By combining their expressions, high efficiency cleavage of the target gene can be achieved, leading to the formation of DNA double-strand break (DSB at the genomic locus of interest which will be repaired via NHEJ (non-homologous end joining or HDR (homology-directed repair and mediate DNA alteration. We aimed to apply the CRISPR/Cas9 technique to knock-out the transmembrane prostate androgen-induced protein (TMEPAI gene in the triple negative breast cancer cell line.Methods: Designed gRNA which targets the TMEPAI gene was synthesized, annealed, and cloned into gRNA expression vector. It was co-transfected into the TNBC cell line using polyethylenimine (PEI together with Cas9-GFP and puromycin resistant gene vector. At 24-hours post-transfection, cells were selected by puromycin for 3 days before they were cloned. Selected knock-out clones were subsequently checked on their protein levels by western blotting.Results: CRISPR/Cas9, a genome engineering technique successfully knocked-out TMEPAI in the Hs578T TNBC cell line. Sequencing shows a frameshift mutation in TMEPAI. Western blot shows the absence of TMEPAI band on Hs578T KO cells.Conclusion: TMEPAI gene was deleted in the TNBC cell line using the genomic editing technique CRISPR/Cas9. The deletion was confirmed by genome and protein analysis.

  6. What Video Games Have to Teach Us about Learning and Literacy. Second Edition: Revised and Updated Edition

    Science.gov (United States)

    Gee, James Paul

    2007-01-01

    The author begins his classic book with "I want to talk about video games--yes, even violent video games--and say some positive things about them." With this simple but explosive statement, one of America's most well-respected educators looks seriously at the good that can come from playing video games. In this revised edition, new games like…

  7. In vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease

    Science.gov (United States)

    Lau, Cia-Hin; Suh, Yousin

    2017-01-01

    Adeno-associated virus (AAV) has shown promising therapeutic efficacy with a good safety profile in a wide range of animal models and human clinical trials. With the advent of clustered regulatory interspaced short palindromic repeat (CRISPR)-based genome-editing technologies, AAV provides one of the most suitable viral vectors to package, deliver, and express CRISPR components for targeted gene editing. Recent discoveries of smaller Cas9 orthologues have enabled the packaging of Cas9 nuclease and its chimeric guide RNA into a single AAV delivery vehicle for robust in vivo genome editing. Here, we discuss how the combined use of small Cas9 orthologues, tissue-specific minimal promoters, AAV serotypes, and different routes of administration has advanced the development of efficient and precise in vivo genome editing and comprehensively review the various AAV-CRISPR systems that have been effectively used in animals. We then discuss the clinical implications and potential strategies to overcome off-target effects, immunogenicity, and toxicity associated with CRISPR components and AAV delivery vehicles. Finally, we discuss ongoing non-viral-based ex vivo gene therapy clinical trials to underscore the current challenges and future prospects of CRISPR/Cas9 delivery for human therapeutics. PMID:29333255

  8. CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani.

    Science.gov (United States)

    Zhang, Wen-Wei; Matlashewski, Greg

    2015-07-21

    study, we have implemented CRISPR-Cas9 genome-editing technology in L. donovani. Both single- and dual-gRNA expression vectors were developed using a strong RNA polymerase I promoter and ribozymes. With this system, it was possible to generate loss-of-function insertion and deletion mutations and introduce drug selection markers and the GFP sequence precisely into the L. donovani genome. These methods greatly improved the ability to manipulate this parasite genome and will help pave the way for high-throughput functional analysis of Leishmania genes. This study further revealed that double-stranded DNA breaks created by CRISPR-Cas9 were repaired by the homology-directed repair (HDR) pathway and microhomology-mediated end joining (MMEJ) in Leishmania. Copyright © 2015 Zhang and Matlashewski.

  9. High-Resolution Crystal Structure of a Silver(I)-RNA Hybrid Duplex Containing Watson-Crick-like C-Silver(I)-C Metallo-Base Pairs.

    Science.gov (United States)

    Kondo, Jiro; Tada, Yoshinari; Dairaku, Takenori; Saneyoshi, Hisao; Okamoto, Itaru; Tanaka, Yoshiyuki; Ono, Akira

    2015-11-02

    Metallo-base pairs have been extensively studied for applications in nucleic acid-based nanodevices and genetic code expansion. Metallo-base pairs composed of natural nucleobases are attractive because nanodevices containing natural metallo-base pairs can be easily prepared from commercially available sources. Previously, we have reported a crystal structure of a DNA duplex containing T-Hg(II)-T base pairs. Herein, we have determined a high-resolution crystal structure of the second natural metallo-base pair between pyrimidine bases C-Ag(I)-C formed in an RNA duplex. One Ag(I) occupies the center between two cytosines and forms a C-Ag(I)-C base pair through N3-Ag(I)-N3 linear coordination. The C-Ag(I)-C base pair formation does not disturb the standard A-form conformation of RNA. Since the C-Ag(I)-C base pair is structurally similar to the canonical Watson-Crick base pairs, it can be a useful building block for structure-based design and fabrication of nucleic acid-based nanodevices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Genome editing: The efficient tool CRISPR–Cpf1

    KAUST Repository

    Mahfouz, Magdy M.

    2017-01-01

    The novel features of the CRISPR–Cpf1 RNA-guided endonuclease system facilitate precise and efficient genome engineering. Application of CRISPR–Cpf1 in plants shows promise for robust gene editing and regulation, opening exciting possibilities for targeted trait improvement in crops.

  11. Genome editing: The efficient tool CRISPR–Cpf1

    KAUST Repository

    Mahfouz, Magdy M.

    2017-03-01

    The novel features of the CRISPR–Cpf1 RNA-guided endonuclease system facilitate precise and efficient genome engineering. Application of CRISPR–Cpf1 in plants shows promise for robust gene editing and regulation, opening exciting possibilities for targeted trait improvement in crops.

  12. The Craft of Editing

    DEFF Research Database (Denmark)

    Moeran, Brian

    To edit is to make a choice, or series of choices. Will I write a rough draft of this essay in longhand, or hammer it out on my computer? If the latter, what font shall I use? Times New Roman, Book Antiqua, or Garamond? Once I get started, what style shall I adopt: realistic, confessional or impr...... or impressionistic; or a combination of all three (Van Maanen 1988)? Should I try to impress with ‘learned scholarship’, or should I merely outline in conversational English a few thoughts based on my own experiences?...

  13. Efficient CRISPR/Cas9-Mediated Genome Editing Using a Chimeric Single-Guide RNA Molecule

    KAUST Repository

    Butt, Haroon; Eid, Ayman; Ali, Zahir; Atia, Mohamed A. M.; Mokhtar, Morad M.; Hassan, Norhan; Lee, Ciaran M.; Bao, Gang; Mahfouz, Magdy M.

    2017-01-01

    used CRISPR/Cas9 to generate targeted double-strand breaks and to deliver an RNA repair template for HDR in rice (Oryza sativa). We used chimeric single-guide RNA (cgRNA) molecules carrying both sequences for target site specificity (to generate

  14. LARP6 Meets Collagen mRNA: Specific Regulation of Type I Collagen Expression

    Directory of Open Access Journals (Sweden)

    Yujie Zhang

    2016-03-01

    Full Text Available Type I collagen is the most abundant structural protein in all vertebrates, but its constitutive rate of synthesis is low due to long half-life of the protein (60–70 days. However, several hundred fold increased production of type I collagen is often seen in reparative or reactive fibrosis. The mechanism which is responsible for this dramatic upregulation is complex, including multiple levels of regulation. However, posttranscriptional regulation evidently plays a predominant role. Posttranscriptional regulation comprises processing, transport, stabilization and translation of mRNAs and is executed by RNA binding proteins. There are about 800 RNA binding proteins, but only one, La ribonucleoprotein domain family member 6 (LARP6, is specifically involved in type I collagen regulation. In the 5′untranslated region (5’UTR of mRNAs encoding for type I and type III collagens there is an evolutionally conserved stem-loop (SL structure; this structure is not found in any other mRNA, including any other collagen mRNA. LARP6 binds to the 5′SL in sequence specific manner to regulate stability of collagen mRNAs and their translatability. Here, we will review current understanding of how is LARP6 involved in posttranscriptional regulation of collagen mRNAs. We will also discuss how other proteins recruited by LARP6, including nonmuscle myosin, vimentin, serine threonine kinase receptor associated protein (STRAP, 25 kD FK506 binding protein (FKBP25 and RNA helicase A (RHA, contribute to this process.

  15. Genome editing and assisted reproduction: curing embryos, society or prospective parents?

    Science.gov (United States)

    Cavaliere, Giulia

    2018-06-01

    This paper explores the ethics of introducing genome-editing technologies as a new reproductive option. In particular, it focuses on whether genome editing can be considered a morally valuable alternative to preimplantation genetic diagnosis (PGD). Two arguments against the use of genome editing in reproduction are analysed, namely safety concerns and germline modification. These arguments are then contrasted with arguments in favour of genome editing, in particular with the argument of the child's welfare and the argument of parental reproductive autonomy. In addition to these two arguments, genome editing could be considered as a worthy alternative to PGD as it may not be subjected to some of the moral critiques moved against this technology. Even if these arguments offer sound reasons in favour of introducing genome editing as a new reproductive option, I conclude that these benefits should be balanced against other considerations. More specifically, I maintain that concerns regarding the equality of access to assisted reproduction and the allocation of scarce resources should be addressed prior to the adoption of genome editing as a new reproductive option.

  16. Intracellular delivery of poly(I:C) induces apoptosis of fibroblast-like synoviocytes via an unknown dsRNA sensor

    Energy Technology Data Exchange (ETDEWEB)

    Karpus, Olga N.; Hsiao, Cheng-Chih; Kort, Hanneke de; Tak, Paul P.; Hamann, Jörg, E-mail: j.hamann@amc.uva.nl

    2016-08-26

    Fibroblast-like synoviocytes (FLS) express functional membranous and cytoplasmic sensors for double-stranded (ds)RNA. Notably, FLS undergo apoptosis upon transfection with the synthetic dsRNA analog poly(I:C). We here studied the mechanism of intracellular poly(I:C) recognition and subsequent cell death in FLS. FLS responded similarly to poly(I:C) or 3pRNA transfection; however, only intracellular delivery of poly(I:C) induced significant cell death, accompanied by upregulation of pro-apoptotic proteins Puma and Noxa, caspase 3 cleavage, and nuclear segregation. Knockdown of the DExD/H-box helicase MDA5 did not affect the response to intracellular poly(I:C); in contrast, knockdown of RIG-I abrogated the response to 3pRNA. Knockdown of the downstream adaptor proteins IPS, STING, and TRIF or inhibition of TBK1 did not affect the response to intracellular poly(I:C), while knockdown of IFNAR blocked intracellular poly(I:C)-mediated signaling and cell death. We conclude that a so far unknown intracellular sensor recognizes linear dsRNA and induces apoptosis in FLS. - Highlights: • Intracellular poly(I:C) and 3pRNA evoke immune responses in FLS. • Only intracellular delivery of poly(I:C) induces FLS apoptosis. • FLS do not require MDA5 for their response to intracellular poly(I:C). • FLS respond to intracellular poly(I:C) independent of IPS and STING. • An unknown intracellular sensor recognizes linear dsRNA in FLS.

  17. Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework

    KAUST Repository

    Alsaiari, Shahad K.

    2017-12-22

    CRISPR/Cas9 is a combined protein (Cas9) and an engineered single guide RNA (sgRNA) genome editing platform that offers revolutionary solutions to genetic diseases. It has, however, a double delivery problem owning to the large protein size and the highly charged RNA component. In this work, we report the first example of CRISPR/Cas9 encapsulated by nanoscale zeolitic imidazole frameworks (ZIFs) with a loading efficiency of 17% and enhanced endosomal escape promoted by the protonated imidazole moieties. The gene editing potential of CRISPR/Cas9 encapsulated by ZIF-8 (CC-ZIFs) is further verified by knocking down the gene expression of green fluorescent protein by 37% over 4 days employing CRISPR/Cas9 machinery. The nanoscale CC-ZIFs are biocompatible and easily scaled-up offering excellent loading capacity and controlled co-delivery of intact Cas9 protein and sgRNA.

  18. Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework

    KAUST Repository

    Alsaiari, Shahad K.; Patil, Sachin; Alyami, Mram Z.; Alamoudi, Kholod; Aleisa, Fajr A; Merzaban, Jasmeen; Li, Mo; Khashab, Niveen M.

    2017-01-01

    CRISPR/Cas9 is a combined protein (Cas9) and an engineered single guide RNA (sgRNA) genome editing platform that offers revolutionary solutions to genetic diseases. It has, however, a double delivery problem owning to the large protein size and the highly charged RNA component. In this work, we report the first example of CRISPR/Cas9 encapsulated by nanoscale zeolitic imidazole frameworks (ZIFs) with a loading efficiency of 17% and enhanced endosomal escape promoted by the protonated imidazole moieties. The gene editing potential of CRISPR/Cas9 encapsulated by ZIF-8 (CC-ZIFs) is further verified by knocking down the gene expression of green fluorescent protein by 37% over 4 days employing CRISPR/Cas9 machinery. The nanoscale CC-ZIFs are biocompatible and easily scaled-up offering excellent loading capacity and controlled co-delivery of intact Cas9 protein and sgRNA.

  19. Ribosomal protein S14 transcripts are edited in Oenothera mitochondria.

    Science.gov (United States)

    Schuster, W; Unseld, M; Wissinger, B; Brennicke, A

    1990-01-01

    The gene encoding ribosomal protein S14 (rps14) in Oenothera mitochondria is located upstream of the cytochrome b gene (cob). Sequence analysis of independently derived cDNA clones covering the entire rps14 coding region shows two nucleotides edited from the genomic DNA to the mRNA derived sequences by C to U modifications. A third editing event occurs four nucleotides upstream of the AUG initiation codon and improves a potential ribosome binding site. A CGG codon specifying arginine in a position conserved in evolution between chloroplasts and E. coli as a UGG tryptophan codon is not edited in any of the cDNAs analysed. An inverted repeat 3' of an unidentified open reading frame is located upstream of the rps14 gene. The inverted repeat sequence is highly conserved at analogous regions in other Oenothera mitochondrial loci. Images PMID:2326162

  20. Single base mutation in the proα2(I) collagen gene that causes efficient splicing of RNA from exon 27 to exon 29 and synthesis of a shortened but in-frame proα2(I) chain

    International Nuclear Information System (INIS)

    Tromp, G.; Prockop, D.J.

    1988-01-01

    Previous observations demonstrated that a lethal variant of osteogenesis imperfecta had two altered alleles for proα2(I) chains of type I procollagen. One mutation produced a nonfunctioning allele in that there was synthesis of mRNA but no detectable synthesis of proα2(I) chains from the allele. The mutation in the other allele caused synthesis of shortened proα2(I) chains that lacked most or all of the 18 amino acids encoded by exon 28. Subclones of the proα2(I) gene were prepared from the proband's DNA and the DNA sequence was determined for a 582-base-pair (bp) region that extended from the last 30 bp of intervening sequence 26 to the first 26 bp of intervening sequence 29. Data from six independent subclones demonstrated that all had the same sequence as a previously isolated normal clone for the proα2(I) gene except that four subclones had a single base mutation at the 3' end of intervening sequence 27. The mutation was a substitution of guanine for adenine that changed the universal consensus sequence for the 3' splicing site of RNA from -AG- to -GG-. S1 nuclease experiments demonstrated that about half the proα2(I) mRNA in the proband's fibroblasts was abnormally spliced and that the major species of abnormal proα2(I) mRNA was completely spliced from the last codon of exon 27 to the first codon of exon 29. The mutation is apparently unique among RNA splicing mutations of mammalian systems in producing a shortened polypeptide chain that is in-frame in terms of coding sequences, that is used in the subunit assembly of a protein, and that contributes to a lethal phenotype

  1. Dead links, vaporcuts, and creativity in fan edit replication

    Directory of Open Access Journals (Sweden)

    Joshua Wille

    2015-09-01

    Full Text Available In my examination of a Star Wars prequel trilogy fan edit reportedly made by Topher Grace, I introduce the term vaporcut to describe fan edits with reputations that may generate critical discourse but that are not publicly released. I explore the ways some fan editors attempt to recreate intangible projects but inevitably produce variant works that reflect their own creative perspectives.

  2. Genome editing in pluripotent stem cells: research and therapeutic applications

    Energy Technology Data Exchange (ETDEWEB)

    Deleidi, Michela, E-mail: michela.deleidi@dzne.de [German Center for Neurodegenerative Diseases (DZNE) Tübingen within the Helmholtz Association, Tübingen (Germany); Hertie Institute for Clinical Brain Research, University of Tübingen (Germany); Yu, Cong [Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, New York (United States)

    2016-05-06

    Recent progress in human pluripotent stem cell (hPSC) and genome editing technologies has opened up new avenues for the investigation of human biology in health and disease as well as the development of therapeutic applications. Gene editing approaches with programmable nucleases have been successfully established in hPSCs and applied to study gene function, develop novel animal models and perform genetic and chemical screens. Several studies now show the successful editing of disease-linked alleles in somatic and patient-derived induced pluripotent stem cells (iPSCs) as well as in animal models. Importantly, initial clinical trials have shown the safety of programmable nucleases for ex vivo somatic gene therapy. In this context, the unlimited proliferation potential and the pluripotent properties of iPSCs may offer advantages for gene targeting approaches. However, many technical and safety issues still need to be addressed before genome-edited iPSCs are translated into the clinical setting. Here, we provide an overview of the available genome editing systems and discuss opportunities and perspectives for their application in basic research and clinical practice, with a particular focus on hPSC based research and gene therapy approaches. Finally, we discuss recent research on human germline genome editing and its social and ethical implications. - Highlights: • Programmable nucleases have proven efficient and specific for genome editing in human pluripotent stem cells (hPSCs). • Genome edited hPSCs can be employed to study gene function in health and disease as well as drug and chemical screens. • Genome edited hPSCs hold great promise for ex vivo gene therapy approaches. • Technical and safety issues should be first addressed to advance the clinical use of gene-edited hPSCs.

  3. Genome editing in pluripotent stem cells: research and therapeutic applications

    International Nuclear Information System (INIS)

    Deleidi, Michela; Yu, Cong

    2016-01-01

    Recent progress in human pluripotent stem cell (hPSC) and genome editing technologies has opened up new avenues for the investigation of human biology in health and disease as well as the development of therapeutic applications. Gene editing approaches with programmable nucleases have been successfully established in hPSCs and applied to study gene function, develop novel animal models and perform genetic and chemical screens. Several studies now show the successful editing of disease-linked alleles in somatic and patient-derived induced pluripotent stem cells (iPSCs) as well as in animal models. Importantly, initial clinical trials have shown the safety of programmable nucleases for ex vivo somatic gene therapy. In this context, the unlimited proliferation potential and the pluripotent properties of iPSCs may offer advantages for gene targeting approaches. However, many technical and safety issues still need to be addressed before genome-edited iPSCs are translated into the clinical setting. Here, we provide an overview of the available genome editing systems and discuss opportunities and perspectives for their application in basic research and clinical practice, with a particular focus on hPSC based research and gene therapy approaches. Finally, we discuss recent research on human germline genome editing and its social and ethical implications. - Highlights: • Programmable nucleases have proven efficient and specific for genome editing in human pluripotent stem cells (hPSCs). • Genome edited hPSCs can be employed to study gene function in health and disease as well as drug and chemical screens. • Genome edited hPSCs hold great promise for ex vivo gene therapy approaches. • Technical and safety issues should be first addressed to advance the clinical use of gene-edited hPSCs.

  4. Tipping the balance of RNA stability by 3' editing of the transcriptome.

    Science.gov (United States)

    Chung, Christina Z; Seidl, Lauren E; Mann, Mitchell R; Heinemann, Ilka U

    2017-11-01

    The regulation of active microRNAs (miRNAs) and maturation of messenger RNAs (mRNAs) that are competent for translation is a crucial point in the control of all cellular processes, with established roles in development and differentiation. Terminal nucleotidyltransferases (TNTases) are potent regulators of RNA metabolism. TNTases promote the addition of single or multiple nucleotides to an RNA transcript that can rapidly alter transcript stability. The well-known polyadenylation promotes transcript stability while the newly discovered but ubiquitious 3'-end polyuridylation marks RNA for degradation. Monoadenylation and uridylation are essential control mechanisms balancing mRNA and miRNA homeostasis. This review discusses the multiple functions of non-canonical TNTases, focusing on their substrate range, biological functions, and evolution. TNTases directly control mRNA and miRNA levels, with diverse roles in transcriptome stabilization, maturation, silencing, or degradation. We will summarize the current state of knowledge on non-canonical nucleotidyltransferases and their function in regulating miRNA and mRNA metabolism. We will review the discovery of uridylation as an RNA degradation pathway and discuss the evolution of nucleotidyltransferases along with their use in RNA labeling and future applications as therapeutic targets. The biochemically and evolutionarily highly related adenylyl- and uridylyltransferases play antagonizing roles in the cell. In general, RNA adenylation promotes stability, while uridylation marks RNA for degradation. Uridylyltransferases evolved from adenylyltransferases in multiple independent evolutionary events by the insertion of a histidine residue into the active site, altering nucleotide, but not RNA specificity. Understanding the mechanisms regulating RNA stability in the cell and controlling the transcriptome is essential for efforts aiming to influence cellular fate. Selectively enhancing or reducing RNA stability allows for

  5. Thomas Jefferson, I dilemmi della democrazia americana, translated and edited by Alberto Giordano, with a preface by Dino Cofrancesco (Novi Ligure: Città del Silenzio, 2007

    Directory of Open Access Journals (Sweden)

    Pierluigi Chiassoni

    2010-03-01

    Full Text Available A review of Thomas Jefferson, I dilemmi della democrazia americana, translated and edited by Alberto Giordano, with a preface by Dino Cofrancesco (Novi Ligure: Città del Silenzio, 2007

  6. RNA-Binding Proteins in Plant Immunity

    Directory of Open Access Journals (Sweden)

    Virginia Woloshen

    2011-01-01

    Full Text Available Plant defence responses against pathogen infection are crucial to plant survival. The high degree of regulation of plant immunity occurs both transcriptionally and posttranscriptionally. Once transcribed, target gene RNA must be processed prior to translation. This includes polyadenylation, 5′capping, editing, splicing, and mRNA export. RNA-binding proteins (RBPs have been implicated at each level of RNA processing. Previous research has primarily focused on structural RNA-binding proteins of yeast and mammals; however, more recent work has characterized a number of plant RBPs and revealed their roles in plant immune responses. This paper provides an update on the known functions of RBPs in plant immune response regulation. Future in-depth analysis of RBPs and other related players will unveil the sophisticated regulatory mechanisms of RNA processing during plant immune responses.

  7. Cas9-nickase-mediated genome editing corrects hereditary tyrosinemia in rats.

    Science.gov (United States)

    Shao, Yanjiao; Wang, Liren; Guo, Nana; Wang, Shengfei; Yang, Lei; Li, Yajing; Wang, Mingsong; Yin, Shuming; Han, Honghui; Zeng, Li; Zhang, Ludi; Hui, Lijian; Ding, Qiurong; Zhang, Jiqin; Geng, Hongquan; Liu, Mingyao; Li, Dali

    2018-05-04

    Hereditary tyrosinemia type I (HTI) is a metabolic genetic disorder caused by mutation of fumarylacetoacetate hydrolase (FAH). Because of the accumulation of toxic metabolites, HTI causes severe liver cirrhosis, liver failure, and even hepatocellular carcinoma. HTI is an ideal model for gene therapy, and several strategies have been shown to ameliorate HTI symptoms in animal models. Although CRISPR/Cas9-mediated genome editing is able to correct the Fah mutation in mouse models, WT Cas9 induces numerous undesired mutations that have raised safety concerns for clinical applications. To develop a new method for gene correction with high fidelity, we generated a Fah mutant rat model to investigate whether Cas9 nickase (Cas9n)-mediated genome editing can efficiently correct the Fah First, we confirmed that Cas9n rarely induces indels in both on-target and off-target sites in cell lines. Using WT Cas9 as a positive control, we delivered Cas9n and the repair donor template/single guide (sg)RNA through adenoviral vectors into HTI rats. Analyses of the initial genome editing efficiency indicated that only WT Cas9 but not Cas9n causes indels at the on-target site in the liver tissue. After receiving either Cas9n or WT Cas9-mediated gene correction therapy, HTI rats gained weight steadily and survived. Fah-expressing hepatocytes occupied over 95% of the liver tissue 9 months after the treatment. Moreover, CRISPR/Cas9-mediated gene therapy prevented the progression of liver cirrhosis, a phenotype that could not be recapitulated in the HTI mouse model. These results strongly suggest that Cas9n-mediated genome editing is a valuable and safe gene therapy strategy for this genetic disease. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. A comparison of the first and second editions of the Dictionary of Literary Slovene

    Directory of Open Access Journals (Sweden)

    Simon Krek

    2014-12-01

    Full Text Available The paper investigates the differences between the first and second editions of the Dictionary of Literary Slovene (SSKJ. The analysis is two-fold: first, a detailed comparison of headword lists of both editions is conducted, followed by the comparison of 2,500 entries from both editions, consisting of a hundred entries for each letter. The analysis shows that the spelling and pronunciation changes to the entries in the second edition were made without the approval of any relevant language authority. Also, the changes introduced are random and inconsistent, and are affecting the consistency of lexicographic description of the first edition, especially on the grammatical level. Furthermore, the editorial decision to make identifying the source of lexicographic information (i.e. the first edition of SSKJ or the Dictionary of New Words of the Slovenian language impossible, raises doubts about lexicographic credibility of the second edition as a description of contemporary Slovene. From the lexicographic perspective, it would have been more appropriate to leave the first edition unchanged and the Dictionary of New Words of the Slovenian language as a separate publication. In addition, the second edition of SSKJ is not freely available online, and neither of the editions is freely available in the form of a dictionary database for natural language processing and other uses.

  9. The Impact of Chromatin Dynamics on Cas9-Mediated Genome Editing in Human Cells.

    Science.gov (United States)

    Daer, René M; Cutts, Josh P; Brafman, David A; Haynes, Karmella A

    2017-03-17

    In order to efficiently edit eukaryotic genomes, it is critical to test the impact of chromatin dynamics on CRISPR/Cas9 function and develop strategies to adapt the system to eukaryotic contexts. So far, research has extensively characterized the relationship between the CRISPR endonuclease Cas9 and the composition of the RNA-DNA duplex that mediates the system's precision. Evidence suggests that chromatin modifications and DNA packaging can block eukaryotic genome editing by custom-built DNA endonucleases like Cas9; however, the underlying mechanism of Cas9 inhibition is unclear. Here, we demonstrate that closed, gene-silencing-associated chromatin is a mechanism for the interference of Cas9-mediated DNA editing. Our assays use a transgenic cell line with a drug-inducible switch to control chromatin states (open and closed) at a single genomic locus. We show that closed chromatin inhibits binding and editing at specific target sites and that artificial reversal of the silenced state restores editing efficiency. These results provide new insights to improve Cas9-mediated editing in human and other mammalian cells.

  10. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.

    Science.gov (United States)

    Wang, Bo; Hu, Qitiao; Zhang, Yu; Shi, Ruilin; Chai, Xin; Liu, Zhe; Shang, Xiuling; Zhang, Yun; Wen, Tingyi

    2018-04-23

    Extensive modification of genome is an efficient manner to regulate the metabolic network for producing target metabolites or non-native products using Corynebacterium glutamicum as a cell factory. Genome editing approaches by means of homologous recombination and counter-selection markers are laborious and time consuming due to multiple round manipulations and low editing efficiencies. The current two-plasmid-based CRISPR-Cas9 editing methods generate false positives due to the potential instability of Cas9 on the plasmid, and require a high transformation efficiency for co-occurrence of two plasmids transformation. Here, we developed a RecET-assisted CRISPR-Cas9 genome editing method using a chromosome-borne Cas9-RecET and a single plasmid harboring sgRNA and repair templates. The inducible expression of chromosomal RecET promoted the frequencies of homologous recombination, and increased the efficiency for gene deletion. Due to the high transformation efficiency of a single plasmid, this method enabled 10- and 20-kb region deletion, 2.5-, 5.7- and 7.5-kb expression cassette insertion and precise site-specific mutation, suggesting a versatility of this method. Deletion of argR and farR regulators as well as site-directed mutation of argB and pgi genes generated the mutant capable of accumulating L-arginine, indicating the stability of chromosome-borne Cas9 for iterative genome editing. Using this method, the model-predicted target genes were modified to redirect metabolic flux towards 1,2-propanediol biosynthetic pathway. The final engineered strain produced 6.75 ± 0.46 g/L of 1,2-propanediol that is the highest titer reported in C. glutamicum. Furthermore, this method is available for Corynebacterium pekinense 1.563, suggesting its universal applicability in other Corynebacterium species. The RecET-assisted CRISPR-Cas9 genome editing method will facilitate engineering of metabolic networks for the synthesis of interested bio-based products from renewable

  11. Efficient Oligo nucleotide mediated CRISPR-Cas9 Gene Editing in Aspergilli

    DEFF Research Database (Denmark)

    Nødvig, Christina Spuur; Hoof, Jakob Blæsbjerg; Kogle, Martin Engelhard

    2018-01-01

    CRISPR-Cas9 technologies are revolutionizing fungal gene editing. Here we show that survival of specific Cas9/sgRNA mediated DNA double strand breaks (DSBs) depends on the non-homologous end-joining, NHEJ, DNA repair pathway and we use this observation to develop a tool to assess protospacer....... niger, and in A. oryzae indicating that this type of repair may be wide spread in filamentous fungi. Importantly, we demonstrate that by using single-stranded oligo nucleotides for CRISPR-Cas9 mediated gene editing it is possible to introduce specific point mutations as well gene deletions...

  12. MicroRNA Expression during Viral Infection or PolyI:C Stimulation in a Fish Model

    DEFF Research Database (Denmark)

    Kristensen, Lasse Bøgelund Juel; Schyth, Brian Dall; Lorenzen, Niels

    Fish are important as small vertebrate models for studying various aspects of development and disease. MicroRNA regulation in fish has so far received attention especially in studies of their expression and function during embryonic development. In the studies carried out at the National Veterinary...... Institute in Århus we aim at using fish models for studying microRNA regulation during viral infection. In the studies presented here we make use of a qPCR method to detect miRNAs in fish cells. We present results regarding the expression of the immunologically relevant microRNAs, miR-155, miR-146a and mi......R-146b in fish cells during infection with the fish pathogenic virus viral hemorrhagic septicemia virus (VHSV) and during immune stimulation with double stranded RNA (polyI:C). We highlight the need of finding stable normalization genes for microRNA detection....

  13. Superparamagnetic iron oxide nanoparticles mediated 131I-hVEGF siRNA inhibits hepatocellular carcinoma tumor growth in nude mice

    International Nuclear Information System (INIS)

    Chen, Jing; Zhu, Shu; Tong, Liangqian; Li, Jiansha; Chen, Fei; Han, Yunfeng; Zhao, Ming; Xiong, Wei

    2014-01-01

    Hepatocellular carcinoma (HCC) is a primary liver tumor and is the most difficult human malignancy to treat. In this study, we sought to develop an integrative approach in which real-time tumor monitoring, gene therapy, and internal radiotherapy can be performed simultaneously. This was achieved through targeting HCC with superparamagnetic iron oxide nanoparticles (SPIOs) carrying small interfering RNA with radiolabled iodine 131 ( 131 I) against the human vascular endothelial growth factor (hVEGF). hVEGF siRNA was labeled with 131 I by the Bolton-Hunter method and conjugated to SilenceMag, a type of SPIOs. 131 I-hVEGF siRNA/SilenceMag was then subcutaneously injected into nude mice with HCC tumors exposed to an external magnetic field (EMF). The biodistribution and cytotoxicity of 131 I-hVEGF siRNA/SilenceMag was assessed by SPECT (Single-Photon Emission Computed Tomography) and MRI (Magnetic Resonance Imaging) studies and blood kinetics analysis. The body weight and tumor size of nude mice bearing HCC were measured daily for the 4-week duration of the experiment. 131 I-hVEGF siRNA/SilenceMag was successfully labeled; with a satisfactory radiochemical purity (>80%) and biological activity in vitro. External application of an EMF successfully attracted and retained more 131 I-hVEGF siRNA/SilenceMag in HCC tumors as shown by SPECT, MRI and biodistribution studies. The tumors treated with 131 I-hVEGF siRNA/SilenceMag grew nearly 50% slower in the presence of EMF than those without EMF and the control. Immunohistochemical assay confirmed that the tumor targeted by 131 I-hVEGF siRNA/SilenceMag guided by an EMF had a lower VEGF protein level compared to that without EMF exposure and the control. EMF-guided 131 I-hVEGF siRNA/SilenceMag exhibited an antitumor effect. The synergic therapy of 131 I-hVEGF siRNA/SilenceMag might be a promising future treatment option against HCC with the dual functional properties of tumor therapy and imaging

  14. Potential of Gene Editing and Induced Pluripotent Stem Cells (iPSCs) in Treatment of Retinal Diseases.

    Science.gov (United States)

    Chuang, Katherine; Fields, Mark A; Del Priore, Lucian V

    2017-12-01

    The advent of gene editing has introduced the ability to make changes to the genome of cells, thus allowing for correction of genetic mutations in patients with monogenic diseases. Retinal diseases are particularly suitable for the application of this new technology because many retinal diseases, such as Stargardt disease, retinitis pigmentosa (RP), and Leber congenital amaurosis (LCA), are monogenic. Moreover, gene delivery techniques such as the use of adeno-associated virus (AAV) vectors have been optimized for intraocular use, and phase III trials are well underway to treat LCA, a severe form of inherited retinal degeneration, with gene therapy. This review focuses on the use of gene editing techniques and another relatively recent advent, induced pluripotent stem cells (iPSCs), and their potential for the study and treatment of retinal disease. Investment in these technologies, including overcoming challenges such as off-target mutations and low transplanted cell integration, may allow for future treatment of many debilitating inherited retinal diseases.

  15. Molecular evolution of pentatricopeptide repeat genes reveals truncation in species lacking an editing target and structural domains under distinct selective pressures

    Directory of Open Access Journals (Sweden)

    Hayes Michael L

    2012-05-01

    Full Text Available Abstract Background Pentatricopeptide repeat (PPR proteins are required for numerous RNA processing events in plant organelles including C-to-U editing, splicing, stabilization, and cleavage. Fifteen PPR proteins are known to be required for RNA editing at 21 sites in Arabidopsis chloroplasts, and belong to the PLS class of PPR proteins. In this study, we investigate the co-evolution of four PPR genes (CRR4, CRR21, CLB19, and OTP82 and their six editing targets in Brassicaceae species. PPR genes are composed of approximately 10 to 20 tandem repeats and each repeat has two α-helical regions, helix A and helix B, that are separated by short coil regions. Each repeat and structural feature was examined to determine the selective pressures on these regions. Results All of the PPR genes examined are under strong negative selection. Multiple independent losses of editing site targets are observed for both CRR21 and OTP82. In several species lacking the known editing target for CRR21, PPR genes are truncated near the 17th PPR repeat. The coding sequences of the truncated CRR21 genes are maintained under strong negative selection; however, the 3’ UTR sequences beyond the truncation site have substantially diverged. Phylogenetic analyses of four PPR genes show that sequences corresponding to helix A are high compared to helix B sequences. Differential evolutionary selection of helix A versus helix B is observed in both plant and mammalian PPR genes. Conclusion PPR genes and their cognate editing sites are mutually constrained in evolution. Editing sites are frequently lost by replacement of an edited C with a genomic T. After the loss of an editing site, the PPR genes are observed with three outcomes: first, few changes are detected in some cases; second, the PPR gene is present as a pseudogene; and third, the PPR gene is present but truncated in the C-terminal region. The retention of truncated forms of CRR21 that are maintained under strong negative

  16. Molecular evolution of pentatricopeptide repeat genes reveals truncation in species lacking an editing target and structural domains under distinct selective pressures.

    Science.gov (United States)

    Hayes, Michael L; Giang, Karolyn; Mulligan, R Michael

    2012-05-14

    Pentatricopeptide repeat (PPR) proteins are required for numerous RNA processing events in plant organelles including C-to-U editing, splicing, stabilization, and cleavage. Fifteen PPR proteins are known to be required for RNA editing at 21 sites in Arabidopsis chloroplasts, and belong to the PLS class of PPR proteins. In this study, we investigate the co-evolution of four PPR genes (CRR4, CRR21, CLB19, and OTP82) and their six editing targets in Brassicaceae species. PPR genes are composed of approximately 10 to 20 tandem repeats and each repeat has two α-helical regions, helix A and helix B, that are separated by short coil regions. Each repeat and structural feature was examined to determine the selective pressures on these regions. All of the PPR genes examined are under strong negative selection. Multiple independent losses of editing site targets are observed for both CRR21 and OTP82. In several species lacking the known editing target for CRR21, PPR genes are truncated near the 17th PPR repeat. The coding sequences of the truncated CRR21 genes are maintained under strong negative selection; however, the 3' UTR sequences beyond the truncation site have substantially diverged. Phylogenetic analyses of four PPR genes show that sequences corresponding to helix A are high compared to helix B sequences. Differential evolutionary selection of helix A versus helix B is observed in both plant and mammalian PPR genes. PPR genes and their cognate editing sites are mutually constrained in evolution. Editing sites are frequently lost by replacement of an edited C with a genomic T. After the loss of an editing site, the PPR genes are observed with three outcomes: first, few changes are detected in some cases; second, the PPR gene is present as a pseudogene; and third, the PPR gene is present but truncated in the C-terminal region. The retention of truncated forms of CRR21 that are maintained under strong negative selection even in the absence of an editing site target

  17. The use of 125iodine-labeled RNA for detection of the RNA binding to ribosomes

    International Nuclear Information System (INIS)

    Mori, Tomohiko; Fukuda, Mitsuru

    1975-01-01

    The in vitro labeling of RNA with radioactive iodine is the efficient method to obtain the RNA with high specific activity. The present paper reports on the application of this technique to the production of iodine-labeled RNA for use in the experiment of binding RNA to ribosomes. Tobacco mosaic virus (TMV) RNA was used as natural mRNA, and E. coli S-30 preparation was used as a source of ribosomes. The TMV-RNA was prepared by bentonite-phenol extraction from TMV, and the method used for the iodation of RNA was based on the procedure described by Getz et al. The iodine-labeled RNA was incubated in a cell-free protein synthesizing system (S-30) prepared from E. coli K-12. After the incubation, the reaction mixture was layered onto sucrose gradient, centrifuged, and fractionated into 18 fractions. Optical density at 260 nm was measured, and radioactivity was counted, for each fraction. The binding of mRNA to ribosomes occurred even at 0 deg C, and the occurrence of the nonspecific binding was also shown. Consequently, the specific binding, i.e. the formation of the initiation complex being involved in amino acid incorporation, may be estimated by subtracting the radioactivity associated with monosomes in the presence of both rRNA and ATA from that in the presence of rRNA only. It was shown that the iodine-labeled RNA can be used for the studies of binding RNA to ribosomes. (Kako, I.)

  18. Biochemical studies of immune RNA using a cell-mediated cytotoxicity assay

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, G.D.; Sellin, H.G.; Novelli, G.D.

    1980-01-01

    Immune RNA (iRNA), a subcellular macromolecular species usually prepared by phenol extraction of lymphoid tissue, can confer some manifestation(s) of cellular immunity on naive lymphocytes. Experiments were done to develop an assay system to detect activation of lymphocytes by iRNA to become cytotoxic toward tumor cells, and to study certain properties of iRNA using this system. Guinea pigs were immunized with human mammary carcinoma cells and the iRNA, prepared from spleens of animals shown by prior assay to have blood lymphocytes highly cytotoxic against the tumor cells, was assayed by ability of iRNA-activated lymphocytes to lyse /sup 51/Cr-labelled tumor cells. The ability of iRNA to activate lymphocytes to tumor cytotoxicity could only be differentiated from a cytotoxic activation by RNA preparations from unimmunized animals at very low doses of RNA. The most active iRNA preparations were from cytoplasmic subcellular fractions, extracted by a cold phenol procedure, while iRNA isolated by hot phenol methods was no more active than control RNA prepared by the same techniques. Attempts to demonstrate poly(A) sequences in iRNA were inconclusive.

  19. Organ-Specific and Age-Dependent Expression of Insulin-like Growth Factor-I (IGF-I) mRNA Variants: IGF-IA and IB mRNAs in the Mouse

    OpenAIRE

    Ohtsuki, Takashi; Otsuki, Mariko; Murakami, Yousuke; Maekawa, Tetsuya; Yamamoto, Takashi; Akasaka, Koji; Takeuchi, Sakae; Takahashi, Sumio

    2005-01-01

    Insulin-like growth factor-I (IGF-I) gene generates several IGF-I mRNA variants by alternative splicing. Two promoters are present in mouse IGF-I gene. Each promoter encodes two IGF-I mRNA variants (IGF-IA and IGF-IB mRNAs). Variants differ by the presence (IGF-IB) or absence (IGF-IA) of a 52-bp insert in the E domain-coding region. Functional differences among IGF-I mRNAs, and regulatory mechanisms for alternative splicing of IGF-I mRNA are not yet known. We analyzed the expression of mouse ...

  20. Tokamaks (Second Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Stott, Peter [JET, UK (United Kingdom)

    1998-10-01

    The first edition of John Wesson's book on tokamaks, published in 1987, established itself as essential reading for researchers in the field of magnetic confinement fusion: it was an excellent introduction for students to tokamak physics and also a valuable reference work for the more experienced. The second edition, published in 1997, has been completely rewritten and substantially enlarged (680 pages compared with 300). The new edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes discussion of the substantial advances in fusion research during the past decade. The new book, like its predecessor, is well written and commendable for its clarity and accuracy. In fact many of the chapters are written by a series of co-authors bringing the benefits of a wide range of expertise but, by careful editing, Wesson has maintained a uniformity of style and presentation. The chapter headings and coverage for the most part remain the same - but are expanded considerably and brought up to date. The most substantial change is that the single concluding chapter in the first edition on 'Experiments' has been replaced by three chapters: 'Tokamak experiments' which deals with some of the earlier key experiments plus a selection of recent small and medium-sized devices, 'Large experiments' which gives an excellent summary of the main results from the four large tokamaks - TFTR, JET, JT60/JT60U and DIII-D, and 'The future' which gives a very short (possibly too short in my opinion) account of reactors and ITER. This is an excellent book, which I strongly recommend should have a place - on the desk rather than in the bookshelf - of researchers in magnetic confinement fusion. (book review)

  1. Tokamaks (Second Edition)

    International Nuclear Information System (INIS)

    Stott, Peter

    1998-01-01

    The first edition of John Wesson's book on tokamaks, published in 1987, established itself as essential reading for researchers in the field of magnetic confinement fusion: it was an excellent introduction for students to tokamak physics and also a valuable reference work for the more experienced. The second edition, published in 1997, has been completely rewritten and substantially enlarged (680 pages compared with 300). The new edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes discussion of the substantial advances in fusion research during the past decade. The new book, like its predecessor, is well written and commendable for its clarity and accuracy. In fact many of the chapters are written by a series of co-authors bringing the benefits of a wide range of expertise but, by careful editing, Wesson has maintained a uniformity of style and presentation. The chapter headings and coverage for the most part remain the same - but are expanded considerably and brought up to date. The most substantial change is that the single concluding chapter in the first edition on 'Experiments' has been replaced by three chapters: 'Tokamak experiments' which deals with some of the earlier key experiments plus a selection of recent small and medium-sized devices, 'Large experiments' which gives an excellent summary of the main results from the four large tokamaks - TFTR, JET, JT60/JT60U and DIII-D, and 'The future' which gives a very short (possibly too short in my opinion) account of reactors and ITER. This is an excellent book, which I strongly recommend should have a place - on the desk rather than in the bookshelf - of researchers in magnetic confinement fusion. (book review)

  2. The inhibitory effect of apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G) and its family members on the activity of cellular microRNAs.

    Science.gov (United States)

    Zhang, Hui

    2010-01-01

    The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G or APOBEC3G) and its fellow cytidine deaminase family members are potent restrictive factors for human immunodeficiency virus type 1 (HIV-1) and many other retroviruses. However, the cellular function of APOBEC3G remains to be further clarified. It has been reported that APOBEC3s can restrict the mobility of endogenous retroviruses and LTR-retrotransposons, suggesting that they can maintain stability in host genomes. However, APOBEC3G is normally cytoplasmic. Further studies have demonstrated that it is associated with an RNase-sensitive high molecular mass (HMM) and located in processing bodies (P-bodies) of replicating T-cells, indicating that the major cellular function of APOBEC3G seems to be related to P-body-related RNA processing and metabolism. As the function of P-body is closely related to miRNA activity, APOBEC3G could affect the miRNA function. Recent studies have demonstrated that APOBEC3G and its family members counteract miRNA-mediated repression of protein translation. Further, APOBEC3G enhances the association of miRNA-targeted mRNA with polysomes, and facilitates the dissociation of miRNA-targeted mRNA from P-bodies. As such, APOBEC3G regulate the activity of cellular miRNAs. Whether this function is related to its potent antiviral activity remains to be further determined.

  3. Genome Editing with Crispr-Cas9 Systems: Basic Research and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2017-04-01

    Full Text Available BACKGROUND: Recently established genome editing technologies will open new avenues for biological research and development. Human genome editing is a powerful tool which offers great scientific and therapeutic potential. CONTENT: Genome editing using the clustered regularly interspaced short palindromic repeats (CRISPR/CRISPRassociated protein 9 (Cas9 technology is revolutionizing the gene function studies and possibly will give rise to an entirely new degree of therapeutics for a large range of diseases. Prompt advances in the CRISPR/Cas9 technology, as well as delivery modalities for gene therapy applications, are dismissing the barriers to the clinical translation of this technology. Many studies conducted showed promising results, but as current available technologies for evaluating off-target gene modification, several elements must be addressed to validate the safety of the CRISPR/Cas9 platform for clinical application, as the ethical implication as well. SUMMARY: The CRISPR/Cas9 system is a powerful genome editing technology with the potential to create a variety of novel therapeutics for a range of diseases, many of which are currently untreatable. KEYWORDS: genome editing, CRISPR-Cas, guideRNA, DSB, ZFNs, TALEN

  4. Guide totheNomenclatureofKinetoplastidRNA Editing: AProposal

    Czech Academy of Sciences Publication Activity Database

    Simpson, L.; Aphasizhev, R.; Lukeš, Julius; Cruz-Reyes, J.

    2010-01-01

    Roč. 161, č. 1 (2010), s. 2-6 ISSN 1434-4610 Institutional research plan: CEZ:AV0Z60220518 Keywords : TRYPANOSOMA-BRUCEI MITOCHONDRIA * BINDING COMPLEX * EDITOSOME INTEGRITY * MESSENGER-RNA * U-DELETION * LEISHMANIA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.329, year: 2010

  5. "I'll Speak in Proper Slang": Language Ideologies in a Daily Editing Activity

    Science.gov (United States)

    Godley, Amanda J.; Carpenter, Brian D.; Werner, Cynthia A.

    2007-01-01

    The purpose of this study was to examine the language ideologies--the assumptions about the nature of language, language variation, and language learning--reflected in a widespread daily editing activity often known as Daily Oral Language or Daily Language Practice. Through a yearlong ethnographic study of grammar instruction in three urban,…

  6. Short RNA guides cleavage by eukaryotic RNase III.

    Directory of Open Access Journals (Sweden)

    Bruno Lamontagne

    Full Text Available In eukaryotes, short RNAs guide a variety of enzymatic activities that range from RNA editing to translation repression. It is hypothesized that pre-existing proteins evolved to bind and use guide RNA during evolution. However, the capacity of modern proteins to adopt new RNA guides has never been demonstrated. Here we show that Rnt1p, the yeast orthologue of the bacterial dsRNA-specific RNase III, can bind short RNA transcripts and use them as guides for sequence-specific cleavage. Target cleavage occurred at a constant distance from the Rnt1p binding site, leaving the guide RNA intact for subsequent cleavage. Our results indicate that RNase III may trigger sequence-specific RNA degradation independent of the RNAi machinery, and they open the road for a new generation of precise RNA silencing tools that do not trigger a dsRNA-mediated immune response.

  7. Differential decay of RNA of the CFA/I fimbrial operon and control of relative gene expression.

    OpenAIRE

    Jordi, B J; op den Camp, I E; de Haan, L A; van der Zeijst, B A; Gaastra, W

    1993-01-01

    CFA/I fimbriae on human enterotoxigenic Escherichia coli are composed of the CfaB protein, the product of the second gene of the CFA/I operon. We show here that CfaB is expressed at a higher level than other proteins of the CFA/I operon. mRNA encoding the CfaB protein is much more abundant than mRNA encoding CfaA, the first protein, together with CfaB or mRNA encoding CfaA only. Only one promoter, upstream of cfaA, is present. These data indicate that a primary transcript containing cfaA and ...

  8. CRISPR-Cas9 Toolkit for Actinomycete Genome Editing

    DEFF Research Database (Denmark)

    Tong, Yaojun; Robertsen, Helene Lunde; Blin, Kai

    2018-01-01

    engineering approaches for boosting known and discovering novel natural products. In order to facilitate the genome editing for actinomycetes, we developed a CRISPR-Cas9 toolkit with high efficiency for actinomyces genome editing. This basic toolkit includes a software for spacer (sgRNA) identification......, a system for in-frame gene/gene cluster knockout, a system for gene loss-of-function study, a system for generating a random size deletion library, and a system for gene knockdown. For the latter, a uracil-specific excision reagent (USER) cloning technology was adapted to simplify the CRISPR vector...... construction process. The application of this toolkit was successfully demonstrated by perturbation of genomes of Streptomyces coelicolor A3(2) and Streptomyces collinus Tü 365. The CRISPR-Cas9 toolkit and related protocol described here can be widely used for metabolic engineering of actinomycetes....

  9. May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Brookhouser, Nicholas; Raman, Sreedevi; Potts, Christopher; Brafman, David A

    2017-02-06

    In the decade since Yamanaka and colleagues described methods to reprogram somatic cells into a pluripotent state, human induced pluripotent stem cells (hiPSCs) have demonstrated tremendous promise in numerous disease modeling, drug discovery, and regenerative medicine applications. More recently, the development and refinement of advanced gene transduction and editing technologies have further accelerated the potential of hiPSCs. In this review, we discuss the various gene editing technologies that are being implemented with hiPSCs. Specifically, we describe the emergence of technologies including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 that can be used to edit the genome at precise locations, and discuss the strengths and weaknesses of each of these technologies. In addition, we present the current applications of these technologies in elucidating the mechanisms of human development and disease, developing novel and effective therapeutic molecules, and engineering cell-based therapies. Finally, we discuss the emerging technological advances in targeted gene editing methods.

  10. Identification of Subtype Specific miRNA-mRNA Functional Regulatory Modules in Matched miRNA-mRNA Expression Data: Multiple Myeloma as a Case

    OpenAIRE

    Zhang, Yunpeng; Liu, Wei; Xu, Yanjun; Li, Chunquan; Wang, Yingying; Yang, Haixiu; Zhang, Chunlong; Su, Fei; Li, Yixue; Li, Xia

    2015-01-01

    Identification of miRNA-mRNA modules is an important step to elucidate their combinatorial effect on the pathogenesis and mechanisms underlying complex diseases. Current identification methods primarily are based upon miRNA-target information and matched miRNA and mRNA expression profiles. However, for heterogeneous diseases, the miRNA-mRNA regulatory mechanisms may differ between subtypes, leading to differences in clinical behavior. In order to explore the pathogenesis of each subtype, it i...

  11. Genome Editing in Induced Pluripotent Stem Cells using CRISPR/Cas9.

    Science.gov (United States)

    Ben Jehuda, Ronen; Shemer, Yuval; Binah, Ofer

    2018-06-01

    The development of the reprogramming technology led to generation of induced Pluripotent Stem Cells (iPSC) from a variety of somatic cells. Ever since, fast growing knowledge of different efficient protocols enabled the differentiation of these iPSCs into different cells types utilized for disease modeling. Indeed, iPSC-derived cells have been increasingly used for investigating molecular and cellular pathophysiological mechanisms underlying inherited diseases. However, a major barrier in the field of iPSC-based disease modeling relies on discriminating between the effects of the causative mutation and the genetic background of these cells. In the past decade, researchers have made great improvement in genome editing techniques, with one of the latest being CRISPR/Cas9. Using a single non-sequence specific protein combined with a small guiding RNA molecule, this state-of-the-art approach enables modifications of genes with high efficiency and accuracy. By so doing, this technique enables the generation of isogenic controls or isogenic mutated cell lines in order to focus on the pathologies caused by a specific mutation. In this article, we review the latest studies combining iPSC and CRISPR/Cas9 technologies for the investigation of the molecular and cellular mechanisms underlying inherited diseases including immunological, metabolic, hematological, neurodegenerative and cardiac diseases.

  12. Postnatal Cardiac Gene Editing Using CRISPR/Cas9 With AAV9-Mediated Delivery of Short Guide RNAs Results in Mosaic Gene Disruption.

    Science.gov (United States)

    Johansen, Anne Katrine; Molenaar, Bas; Versteeg, Danielle; Leitoguinho, Ana Rita; Demkes, Charlotte; Spanjaard, Bastiaan; de Ruiter, Hesther; Akbari Moqadam, Farhad; Kooijman, Lieneke; Zentilin, Lorena; Giacca, Mauro; van Rooij, Eva

    2017-10-27

    CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated protein 9)-based DNA editing has rapidly evolved as an attractive tool to modify the genome. Although CRISPR/Cas9 has been extensively used to manipulate the germline in zygotes, its application in postnatal gene editing remains incompletely characterized. To evaluate the feasibility of CRISPR/Cas9-based cardiac genome editing in vivo in postnatal mice. We generated cardiomyocyte-specific Cas9 mice and demonstrated that Cas9 expression does not affect cardiac function or gene expression. As a proof-of-concept, we delivered short guide RNAs targeting 3 genes critical for cardiac physiology, Myh6 , Sav1 , and Tbx20 , using a cardiotropic adeno-associated viral vector 9. Despite a similar degree of DNA disruption and subsequent mRNA downregulation, only disruption of Myh6 was sufficient to induce a cardiac phenotype, irrespective of short guide RNA exposure or the level of Cas9 expression. DNA sequencing analysis revealed target-dependent mutations that were highly reproducible across mice resulting in differential rates of in- and out-of-frame mutations. Finally, we applied a dual short guide RNA approach to effectively delete an important coding region of Sav1 , which increased the editing efficiency. Our results indicate that the effect of postnatal CRISPR/Cas9-based cardiac gene editing using adeno-associated virus serotype 9 to deliver a single short guide RNA is target dependent. We demonstrate a mosaic pattern of gene disruption, which hinders the application of the technology to study gene function. Further studies are required to expand the versatility of CRISPR/Cas9 as a robust tool to study novel cardiac gene functions in vivo. © 2017 American Heart Association, Inc.

  13. Explanatory Supplement to the Astronomical Almanac, Third Edition

    Science.gov (United States)

    Seidelmann, P. Kenneth; Urban, S. E.

    2010-01-01

    "The Explanatory Supplement to the Astronomical Almanac" (hereafter "The Explanatory Supplement") is a comprehensive reference book on the topic of positional astronomy, covering the theories and algorithms used to produce "The Astronomical Almanac" (AsA), an annual publication produced jointly by the Nautical Almanac Office of the US Naval Observatory (USNO) and Her Majesty's Nautical Almanac Office (HMNAO) of the UK Hydrographic Office. The first edition of The Explanatory Supplement appeared in 1961 and was reprinted with amendments during the 1970s. The second edition was printed in 1992 and reprinted until 2006. Since the second edition, several changes have taken place in positional astronomy regarding reference systems and internationally accepted models, data sets, and computational methods; these have been incorporated into the AsA. Additionally, the data presented in the AsA have been modified over the years, with new tables being added and some being discontinued. Given these changes, a new edition of The Explanatory Supplement is appropriate. The third edition has been in development for the last few years and will be available in 2010. The book is organized similarly to the second (1991) edition, with each chapter written by subject matter experts. Authors from USNO and HMNAO contributed to the majority of the book, but there are authors from Jet Propulsion Laboratory, Technical University of Dresden, National Geospatial-Intelligence Agency, University of Texas Austin, and University of Virginia. This paper will discuss this latest edition of the Explanatory Supplement.

  14. CRISPR-Cas9-Mediated Genome Editing and Transcriptional Control in Yarrowia lipolytica.

    Science.gov (United States)

    Schwartz, Cory; Wheeldon, Ian

    2018-01-01

    The discovery and adaptation of RNA-guided nucleases has resulted in the rapid development of efficient, scalable, and easily accessible synthetic biology tools for targeted genome editing and transcriptional control. In these systems, for example CRISPR-Cas9 from Streptococcus pyogenes, a protein with nuclease activity is targeted to a specific nucleotide sequence by a short RNA molecule, whereupon binding it cleaves the targeted nucleotide strand. To extend this genome-editing ability to the industrially important oleaginous yeast Yarrowia lipolytica, we developed a set of easily usable and effective CRISPR-Cas9 episomal vectors. In this protocols chapter, we first present a method by which arbitrary protein-coding genes can be disrupted via indel formation after CRISPR-Cas9 targeting. A second method demonstrates how the same CRISPR-Cas9 system can be used to induce markerless gene cassette integration into the genome by inducing homologous recombination after DNA cleavage by Cas9. Finally, we describe how a catalytically inactive form of Cas9 fused to a transcriptional repressor can be used to control transcription of native genes in Y. lipolytica. The CRISPR-Cas9 tools and strategies described here greatly increase the types of genome editing and transcriptional control that can be achieved in Y. lipolytica, and promise to facilitate more advanced engineering of this important oleaginous host.

  15. Edit Distance to Monotonicity in Sliding Windows

    DEFF Research Database (Denmark)

    Chan, Ho-Leung; Lam, Tak-Wah; Lee, Lap Kei

    2011-01-01

    Given a stream of items each associated with a numerical value, its edit distance to monotonicity is the minimum number of items to remove so that the remaining items are non-decreasing with respect to the numerical value. The space complexity of estimating the edit distance to monotonicity of a ...

  16. Natural variation of piRNA expression affects immunity to transposable elements.

    Directory of Open Access Journals (Sweden)

    Sergei Ryazansky

    2017-04-01

    Full Text Available In the Drosophila germline, transposable elements (TEs are silenced by PIWI-interacting RNA (piRNA that originate from distinct genomic regions termed piRNA clusters and are processed by PIWI-subfamily Argonaute proteins. Here, we explore the variation in the ability to restrain an alien TE in different Drosophila strains. The I-element is a retrotransposon involved in the phenomenon of I-R hybrid dysgenesis in Drosophila melanogaster. Genomes of R strains do not contain active I-elements, but harbour remnants of ancestral I-related elements. The permissivity to I-element activity of R females, called reactivity, varies considerably in natural R populations, indicating the existence of a strong natural polymorphism in defense systems targeting transposons. To reveal the nature of such polymorphisms, we compared ovarian small RNAs between R strains with low and high reactivity and show that reactivity negatively correlates with the ancestral I-element-specific piRNA content. Analysis of piRNA clusters containing remnants of I-elements shows increased expression of the piRNA precursors and enrichment by the Heterochromatin Protein 1 homolog, Rhino, in weak R strains, which is in accordance with stronger piRNA expression by these regions. To explore the nature of the differences in piRNA production, we focused on two R strains, weak and strong, and showed that the efficiency of maternal inheritance of piRNAs as well as the I-element copy number are very similar in both strains. At the same time, germline and somatic uni-strand piRNA clusters generate more piRNAs in strains with low reactivity, suggesting the relationship between the efficiency of primary piRNA production and variable response to TE invasions. The strength of adaptive genome defense is likely driven by naturally occurring polymorphisms in the rapidly evolving piRNA pathway proteins. We hypothesize that hyper-efficient piRNA production is contributing to elimination of a telomeric

  17. An accessory to the 'Trinity': SR-As are essential pathogen sensors of extracellular dsRNA, mediating entry and leading to subsequent type I IFN responses.

    Directory of Open Access Journals (Sweden)

    Stephanie J DeWitte-Orr

    2010-03-01

    Full Text Available Extracellular RNA is becoming increasingly recognized as a signaling molecule. Virally derived double stranded (dsRNA released into the extracellular space during virus induced cell lysis acts as a powerful inducer of classical type I interferon (IFN responses; however, the receptor that mediates this response has not been identified. Class A scavenger receptors (SR-As are likely candidates due to their cell surface expression and ability to bind nucleic acids. In this study, we investigated a possible role for SR-As in mediating type I IFN responses induced by extracellular dsRNA in fibroblasts, a predominant producer of IFNbeta. Fibroblasts were found to express functional SR-As, even SR-A species thought to be macrophage specific. SR-A specific competitive ligands significantly blocked extracellular dsRNA binding, entry and subsequent interferon stimulated gene (ISG induction. Candidate SR-As were systematically investigated using RNAi and the most dramatic inhibition in responses was observed when all candidate SR-As were knocked down in unison. Partial inhibition of dsRNA induced antiviral responses was observed in vivo in SR-AI/II(-/- mice compared with WT controls. The role of SR-As in mediating extracellular dsRNA entry and subsequent induced antiviral responses was observed in both murine and human fibroblasts. SR-As appear to function as 'carriers', facilitating dsRNA entry and delivery to the established dsRNA sensing receptors, specifically TLR3, RIGI and MDA-5. Identifying SR-As as gatekeepers of the cell, mediating innate antiviral responses, represents a novel function for this receptor family and provides insight into how cells recognize danger signals associated with lytic virus infections. Furthermore, the implications of a cell surface receptor capable of recognizing extracellular RNA may exceed beyond viral immunity to mediating other important innate immune functions.

  18. Introduction to Energy - 2nd Edition

    Science.gov (United States)

    Cassedy, Edward S.; Grossman, Peter Z.

    1998-12-01

    Energy issues such as pollution, resource depletion, global warming, nuclear power and waste are problems that demand timely solutions. This book provides a critical examination of the resources, market forces, and social impacts of modern energy production. The book addresses the dilemmas that have arisen due to society's crucial dependence on energy, particularly fossil fuels, and explores the available alternative energy producing technologies. The second edition has increased emphasis on those issues at the forefront of the current energy debate: energy sustainability, climate change, and the radical restructuring of the power industry due to de-regulation. Assuming no prior technical expertise and avoiding complex mathematical formulation, it is directed at a broad readership. The second edition will follow the first in proving especially useful as a textbook for undergraduate programs in Science, Technology and Society (STS), and as a supplementary text in a variety of courses which touch upon energy studies, including environmental and technology policy, environmental, mineral and business law, energy and resource economics. Fully updated second edition of successful first edition that was adopted on Science, Technology and Society courses Provides a critical examination of all aspects of modern energy production for non-technical readers For a broad readership from a variety of backgrounds

  19. Peptide/Cas9 nanostructures for ribonucleoprotein cell membrane transport and gene edition.

    Science.gov (United States)

    Lostalé-Seijo, Irene; Louzao, Iria; Juanes, Marisa; Montenegro, Javier

    2017-12-01

    The discovery of RNA guided endonucleases has emerged as one of the most important tools for gene edition and biotechnology. The selectivity and simplicity of the CRISPR/Cas9 strategy allows the straightforward targeting and editing of particular loci in the cell genome without the requirement of protein engineering. However, the transfection of plasmids encoding the Cas9 and the guide RNA could lead to undesired permanent recombination and immunogenic responses. Therefore, the direct delivery of transient Cas9 ribonucleoprotein constitutes an advantageous strategy for gene edition and other potential therapeutic applications of the CRISPR/Cas9 system. The covalent fusion of Cas9 with penetrating peptides requires multiple incubation steps with the target cells to achieve efficient levels of gene edition. These and other recent reports suggested that covalent conjugation of the anionic Cas9 ribonucleoprotein to cationic peptides would be associated with a hindered nuclease activity due to undesired electrostatic interactions. We here report a supramolecular strategy for the direct delivery of Cas9 by an amphiphilic penetrating peptide that was prepared by a hydrazone bond formation between a cationic peptide scaffold and a hydrophobic aldehyde tail. The peptide/protein non-covalent nanoparticles performed with similar efficiency and less toxicity than one of the best methods described to date. To the best of our knowledge this report constitutes the first supramolecular strategy for the direct delivery of Cas9 using a penetrating peptide vehicle. The results reported here confirmed that peptide amphiphilic vectors can deliver Cas9 in a single incubation step, with good efficiency and low toxicity. This work will encourage the search and development of conceptually new synthetic systems for transitory endonucleases direct delivery.

  20. Structural Insights into the Methylation of C1402 in 16S rRNA by Methyltransferase RsmI.

    Directory of Open Access Journals (Sweden)

    Mohan Zhao

    Full Text Available RsmI and RsmH are conserved S-Adenosylmethionine (AdoMet-dependent methyltransferases (MTases that are responsible for the 2'-O-methylation and N4-methylation of C1402 in bacterial 16S rRNA, respectively. Methylation of m4Cm1402 plays a role in fine-tuning the shape and functions of the P-site to increase the decoding fidelity, and was recently found to contribute to the virulence of Staphylococcus aureus in host animals. Here we report the 2.20-Å crystal structure of homodimeric RsmI from Escherichia coli in complex with the cofactor AdoMet. RsmI consists of an N-terminal putative RNA-binding domain (NTD and a C-terminal catalytic domain (CTD with a Rossmann-like fold, and belongs to the class III MTase family. AdoMet is specifically bound into a negatively charged deep pocket formed by both domains by making extensive contacts. Structure-based mutagenesis and isothermal titration calorimetry (ITC assays revealed Asp100 and Ala124 are vital for AdoMet-binding. Although the overall fold of RsmI shows remarkable similarities to the characterized MTases involved in vitamin B12 biosynthesis, it exhibits a distinct charge distribution especially around the AdoMet-binding pocket because of different substrate specificity. The docking model of RsmI-AdoMet-RNA ternary complex suggested a possible base-flipping mechanism of the substrate RNA that has been observed in several known RNA MTases. Our structural and biochemical studies provide novel insights into the catalytic mechanism of C1402 methylation in 16S rRNA.

  1. Extracellular Matrix-Dependent Generation of Integration- and Xeno-Free iPS Cells Using a Modified mRNA Transfection Method

    Directory of Open Access Journals (Sweden)

    Kang-In Lee

    2016-01-01

    Full Text Available Human induced pluripotent stem cells (iPS cells hold great promise in the field of regenerative medicine, especially immune-compatible cell therapy. The most important safety-related issues that must be resolved before the clinical use of iPS cells include the generation of “footprint-free” and “xeno-free” iPS cells. In this study, we sought to examine whether an extracellular matrix- (ECM- based xeno-free culture system that we recently established could be used together with a microRNA-enhanced mRNA reprogramming method for the generation of clinically safe iPS cells. The notable features of this method are the use of a xeno-free/feeder-free culture system for the generation and expansion of iPS cells rather than the conventional labor-intensive culture systems using human feeder cells or human feeder-conditioned medium and the enhancement of mRNA-mediated reprogramming via the delivery of microRNAs. Strikingly, we observed the early appearance of iPS cell colonies (~11 days, substantial reprogramming efficiency (~0.2–0.3%, and a high percentage of ESC-like colonies among the total colonies (~87.5%, indicating enhanced kinetics and reprogramming efficiency. Therefore, the combined method established in this study provides a valuable platform for the generation and expansion of clinically safe (i.e., integration- and xeno-free iPS cells, facilitating immune-matched cell therapy in the near future.

  2. Introduction to nuclear science, second edition

    CERN Document Server

    Bryan, Jeff C.

    2013-01-01

    This book was written to provide students who have limited backgrounds in the physical sciences and math with an accessible textbook on nuclear science. Expanding on the foundation of the bestselling first edition, Introduction to Nuclear Science, Second Edition provides a clear and complete introduction to nuclear chemistry and physics, from basic concepts to nuclear power and medical applications. Incorporating suggestions from professors using this book for their courses, the author has created a new text that is approximately 60 percent larger and more comprehensive and flexible than the first.New to This Edition: Thorough review of nuclear forensics, radiology, gamma cameras, and decay through proton or neutron emission More detailed explanations of the necessary mathematics A chapter on dosimetry of radiation fields Expanded discussion of applications, introduced earlier in the text More in-depth coverage of nuclear reactors, including a new chapter examining more reactor types, their safety systems,...

  3. Computational Insights into the High-Fidelity Catalysis of Aminoacyl-tRNA Synthetases

    Science.gov (United States)

    Aboelnga, Mohamed M.

    Obtaining insights into the catalytic function of enzymes is an important area of research due to their widespread applications in the biotechnology and pharmaceutical industries. Among these enzymes, the aminoacyl-tRNA synthetases (aaRSs) are known for their remarkable fidelity in catalyzing the aminoacylation reactions of tRNA in protein biosynthesis. Despite the exceptional execution of this critical function, mechanistic details of the reactions catalyzed by aminoacyl-tRNA synthetases remain elusive demonstrating the obvious need to explore their remarkable chemistry. During the PhD studies reported in this thesis the mechanism of aminoacylation, pre?transfer editing and post?transfer editing catalyzed by different aaRS have been established using multi-scale computational enzymology. In the first two chapters a detailed information about aaRS and the addressed questions was given in addition to an overview of the used computational methodology currently used to investigate the enzymatic mechanisms. The aminoacylation mechanism of threonine by Threonyl-tRNA synthetases, glutamine by Glutaminyl-tRNA synthetases and glutamate by Glutamyl-tRNA synthetases have been clearly unveiled in chapter 3 and 4. Also, valuable information regarding the role of cofactors and active site residues has been obtained. While investigating the post-transfer editing mechanisms, which proceed in a remote and distinct active site, two different scenarios were experimentally suggested for two types of threonyl-tRNA synthetase species to correct the misacylation of the structurally related serine. We explored these two mechanisms as in chapters 5 and 6. Moreover, the synthetic site in which the aminoacylation reaction is catalyzed, is also responsible for a second type of proofreading reaction called pre-transfer editing mechanism. In chapter 7, this latter mechanism has been elucidated for both Seryl-tRNA synthetases and Isoleucyl-tRNA synthetases against their non-cognate substrates

  4. Structural organization of the transfer RNA operon I of Vibrio cholerae

    Indian Academy of Sciences (India)

    Unknown

    [Ghatak A, Majumdar A and Ghosh R K 2005 Structural organization of the transfer RNA operon I of Vibrio cholerae: Differences ..... clonal relationship are of utmost importance. ... rately derived from environmental, nontoxigenic, non-O1.

  5. Scarless Cas9 Assisted Recombineering (no-SCAR) in Escherichia coli, an Easy-to-Use System for Genome Editing.

    Science.gov (United States)

    Reisch, Christopher R; Prather, Kristala L J

    2017-01-05

    The discovery and development of genome editing systems that leverage the site-specific DNA endonuclease system CRISPR/Cas9 has fundamentally changed the ease and speed of genome editing in many organisms. In eukaryotes, the CRISPR/Cas9 system utilizes a "guide" RNA to enable the Cas9 nuclease to make a double-strand break at a particular genome locus, which is repaired by non-homologous end joining (NHEJ) repair enzymes, often generating random mutations in the process. A specific alteration of the target genome can also be generated by supplying a DNA template in vivo with a desired mutation, which is incorporated by homology-directed repair. However, E. coli lacks robust systems for double-strand break repair. Thus, in contrast to eukaryotes, targeting E. coli chromosomal DNA with Cas9 causes cell death. However, Cas9-mediated killing of bacteria can be exploited to select against cells with a specified genotype within a mixed population. In combination with the well described λ-Red system for recombination in E. coli, we created a highly efficient system for marker-free and scarless genome editing. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  6. Genome editing reveals a role for OCT4 in human embryogenesis.

    Science.gov (United States)

    Fogarty, Norah M E; McCarthy, Afshan; Snijders, Kirsten E; Powell, Benjamin E; Kubikova, Nada; Blakeley, Paul; Lea, Rebecca; Elder, Kay; Wamaitha, Sissy E; Kim, Daesik; Maciulyte, Valdone; Kleinjung, Jens; Kim, Jin-Soo; Wells, Dagan; Vallier, Ludovic; Bertero, Alessandro; Turner, James M A; Niakan, Kathy K

    2017-10-05

    Despite their fundamental biological and clinical importance, the molecular mechanisms that regulate the first cell fate decisions in the human embryo are not well understood. Here we use CRISPR-Cas9-mediated genome editing to investigate the function of the pluripotency transcription factor OCT4 during human embryogenesis. We identified an efficient OCT4-targeting guide RNA using an inducible human embryonic stem cell-based system and microinjection of mouse zygotes. Using these refined methods, we efficiently and specifically targeted the gene encoding OCT4 (POU5F1) in diploid human zygotes and found that blastocyst development was compromised. Transcriptomics analysis revealed that, in POU5F1-null cells, gene expression was downregulated not only for extra-embryonic trophectoderm genes, such as CDX2, but also for regulators of the pluripotent epiblast, including NANOG. By contrast, Pou5f1-null mouse embryos maintained the expression of orthologous genes, and blastocyst development was established, but maintenance was compromised. We conclude that CRISPR-Cas9-mediated genome editing is a powerful method for investigating gene function in the context of human development.

  7. Edix: A Software for Editing Algebraic Expressions.

    OpenAIRE

    Bouhineau , Denis; Nicaud , Jean-François; Pavard , X.

    2001-01-01

    International audience; The paper presents a computer software, called Edix, devoted to the edition of algebraic expressions in their usual 2D representation. At present, many systems display fine algebraic expressions, but the edition of such expressions is weak. Systems like Word and FrameMaker place sub-expressions in too many boxes so that many editing actions are not simple, while usual CAS (computer algebra systems) just use a 1D representation for the edition. Furthermore, Edix allows ...

  8. Human BLCAP transcript: new editing events in normal and cancerous tissues.

    Science.gov (United States)

    Galeano, Federica; Leroy, Anne; Rossetti, Claudia; Gromova, Irina; Gautier, Philippe; Keegan, Liam P; Massimi, Luca; Di Rocco, Concezio; O'Connell, Mary A; Gallo, Angela

    2010-07-01

    Bladder cancer-associated protein (BLCAP) is a highly conserved protein among species, and it is considered a novel candidate tumor suppressor gene originally identified from human bladder carcinoma. However, little is known about the regulation or the function of this protein. Here, we show that the human BLCAP transcript undergoes multiple A-to-I editing events. Some of the new editing events alter the highly conserved amino terminus of the protein creating alternative protein isoforms by changing the genetically coded amino acids. We found that both ADAR1 and ADAR2-editing enzymes cooperate to edit this transcript and that different tissues displayed distinctive ratios of edited and unedited BLCAP transcripts. Moreover, we observed a general decrease in BLCAP-editing level in astrocytomas, bladder cancer and colorectal cancer when compared with the related normal tissues. The newly identified editing events, found to be downregulated in cancers, could be useful for future studies as a diagnostic tool to distinguish malignancies or epigenetic changes in different tumors.

  9. Thermodynamics of Fluids Under Flow Second Edition

    CERN Document Server

    Jou, David; Criado-Sancho, Manuel

    2011-01-01

    This is the second edition of the book “Thermodynamics of Fluids under Flow,” which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vázquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vázquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer ble...

  10. The synthesis of polyadenylated messenger RNA in herpes simplex type I virus infected BHK cells.

    Science.gov (United States)

    Harris, T J; Wildy, P

    1975-09-01

    The pattern of polyadenylated messenger RNA (mRNA) synthesis in BHK cell monolayers, infected under defined conditions with herpes simplex type I virus has been investigated by polyacrylamide gel electrophoresis or pulse-labelled RNA isolated by oligo dT-cellulose chromatography. Two classes of mRNA molecules were synthesized in infected cells; these were not detected in uninfected cells. The rate of synthesis of the larger, 18 to 30S RNA class reached a maximum soon after injection and then declined, whereas the rate of synthesis of the 7 to 11 S RNA class did not reach a maximum until much later and did not decline. In the presence of cytosine arabinoside, the rate of mRNA synthesis in infected cells was reduced but the electrophoretic pattern remained the same.

  11. Writing, Editing and Publishing an Article in a Scientific Journal

    Directory of Open Access Journals (Sweden)

    Man Bahadur Khattri

    2010-02-01

    Full Text Available The purpose of this article is to discuss some important aspects involved while writing an article to publish in a scientific journal. This is a review article. I argue that writing an article is technical as well as creative art of an author which facilitates acceptance of article for publication in a scientific journal. Academicians are obliged to conduct research and publish articles to demonstrate their job efficiency. To publish an article in a scientific journal is the first necessary condition to meet standard norms i.e. journal's guideline for authors and the next is to follow the editing processes of the journal. Writing an article for printed version is becoming an old fashion. Therefore, authors need to learn how to submit a scholarly written article online and follow review processes. Writing and publishing of a scientific article is not only important for individuals and specific scientific community, it is also important to the wider society which helps to enhance stock of knowledge, and sharing and learning culture. Key words: Online publication; author aid; open access; copy editing; peer review DOI: 10.3126/dsaj.v3i0.2787 Dhaulagiri Journal of Sociology and Anthropology Vol.3 2009 185-196

  12. IMRT fluence map editing to control hot and cold spots

    International Nuclear Information System (INIS)

    Taylor Cook, J.; Tobler, Matt; Leavitt, Dennis D.; Watson, Gordon

    2005-01-01

    Manually editing intensity-modulated radiation therapy (IMRT) fluence maps effectively controls hot and cold spots that the IMRT optimization cannot control. Many times, re-optimizing does not reduce the hot spots or increase the cold spots. In fact, re-optimizing only places the hot and cold spots in different locations. Fluence-map editing provides manual control of dose delivery and provides the best treatment plan possible. Several IMRT treatments were planned using the Varian Eclipse planning system. We compare the effects on dose distributions between fluence-map editing and re-optimization, discuss techniques for fluence-map editing, and analyze differences between fluence editing on one beam vs. multiple beams. When editing a beam's fluence map, it is essential to choose a beam that least affects dose to the tumor and critical structures. Editing fluence maps gives an advantage in treatment planning and provides controlled delivery of IMRT dose

  13. Application of binomial-edited CPMG to shale characterization.

    Science.gov (United States)

    Washburn, Kathryn E; Birdwell, Justin E

    2014-09-01

    Unconventional shale resources may contain a significant amount of hydrogen in organic solids such as kerogen, but it is not possible to directly detect these solids with many NMR systems. Binomial-edited pulse sequences capitalize on magnetization transfer between solids, semi-solids, and liquids to provide an indirect method of detecting solid organic materials in shales. When the organic solids can be directly measured, binomial-editing helps distinguish between different phases. We applied a binomial-edited CPMG pulse sequence to a range of natural and experimentally-altered shale samples. The most substantial signal loss is seen in shales rich in organic solids while fluids associated with inorganic pores seem essentially unaffected. This suggests that binomial-editing is a potential method for determining fluid locations, solid organic content, and kerogen-bitumen discrimination. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. SERS-based inverse molecular sentinel (iMS) nanoprobes for multiplexed detection of microRNA cancer biomarkers in biological samples

    Science.gov (United States)

    Crawford, Bridget M.; Wang, Hsin-Neng; Fales, Andrew M.; Bowie, Michelle L.; Seewaldt, Victoria L.; Vo-Dinh, Tuan

    2017-02-01

    The development of sensitive and selective biosensing techniques is of great interest for clinical diagnostics. Here, we describe the development and application of a surface enhanced Raman scattering (SERS) sensing technology, referred to as "inverse Molecular Sentinel (iMS)" nanoprobes, for the detection of nucleic acid biomarkers in biological samples. This iMS nanoprobe involves the use of plasmonic-active nanostars as the sensing platform for a homogenous assay for multiplexed detection of nucleic acid biomarkers, including DNA, RNA and microRNA (miRNA). The "OFF-to-ON" signal switch is based on a non-enzymatic strand-displacement process and the conformational change of stem-loop (hairpin) oligonucleotide probes upon target binding. Here, we demonstrate the development of iMS nanoprobes for the detection of DNA sequences as well as a modified design of the nanoprobe for the detection of short (22-nt) microRNA sequences. The application of iMS nanoprobes to detect miRNAs in real biological samples was performed with total small RNA extracted from breast cancer cell lines. The multiplex capability of the iMS technique was demonstrated using a mixture of the two differently labeled nanoprobes to detect miR-21 and miR-34a miRNA biomarkers for breast cancer. The results of this study demonstrate the feasibility of applying the iMS technique for multiplexed detection of nucleic acid biomarkers, including short miRNAs molecules.

  15. An Approach to Detect and Study DNA Double-Strand Break Repair by Transcript RNA Using a Spliced-Antisense RNA Template.

    Science.gov (United States)

    Keskin, Havva; Storici, Francesca

    2018-01-01

    A double-strand break (DSB) is one of the most dangerous DNA lesion, and its repair is crucial for genome stability. Homologous recombination is considered the safest way to repair a DNA DSB and requires an identical or nearly identical DNA template, such as a sister chromatid or a homologous chromosome for accurate repair. Can transcript RNA serve as donor template for DSB repair? Here, we describe an approach that we developed to detect and study DNA repair by transcript RNA. Key features of the method are: (i) use of antisense (noncoding) RNA as template for DSB repair by RNA, (ii) use of intron splicing to distinguish the sequence of the RNA template from that of the DNA that generates the RNA template, and (iii) use of a trans and cis system to study how RNA repairs a DSB in homologous but distant DNA or in its own DNA, respectively. This chapter provides details on how to use a spliced-antisense RNA template to detect and study DSB repair by RNA in trans or cis in yeast cells. Our approach for detection of DSB repair by RNA in cells can be applied to cell types other than yeast, such as bacteria, mammalian cells, or other eukaryotic cells. © 2018 Elsevier Inc. All rights reserved.

  16. Efficient Genome Editing in the Oomycete Phytophthora sojae Using CRISPR/Cas9.

    Science.gov (United States)

    Fang, Yufeng; Cui, Linkai; Gu, Biao; Arredondo, Felipe; Tyler, Brett M

    2017-02-06

    Phytophthora is a filamentous fungus-like microorganism, but belongs to the oomycetes, in the kingdom Stramenopila. Phytophthora species are notorious as plant destroyers, causing multibillion-dollar damage to agriculture and natural ecosystems worldwide annually. For a long time, genome editing has been unattainable in oomycetes, because of their extremely low rate of homologous recombination. The recent implementation of the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system in the soybean pathogen Phytophthora sojae, an experimental model for oomycetes, has opened up a powerful new research capability for the oomycete community. Here, we describe a detailed protocol for CRISPR/Cas9-mediated genome editing in P. sojae, including single guide RNA (sgRNA) design and construction, efficient gene replacement, and mutant-screening strategies. This protocol should be generally applicable for most culturable oomycetes. We also describe an optimized transformation method that is useful for other Phytophthora spp. including P. capsici and P. parasitica. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  17. Can i just check...? Effects of edit check questions on measurement error and survey estimates

    NARCIS (Netherlands)

    Lugtig, Peter; Jäckle, Annette

    2014-01-01

    Household income is difficult to measure, since it requires the collection of information about all potential income sources for each member of a household.Weassess the effects of two types of edit check questions on measurement error and survey estimates: within-wave edit checks use responses to

  18. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications.

    Science.gov (United States)

    Liu, Chang; Zhang, Li; Liu, Hao; Cheng, Kun

    2017-11-28

    The CRISPR-Cas9 genome-editing system is a part of the adaptive immune system in archaea and bacteria to defend against invasive nucleic acids from phages and plasmids. The single guide RNA (sgRNA) of the system recognizes its target sequence in the genome, and the Cas9 nuclease of the system acts as a pair of scissors to cleave the double strands of DNA. Since its discovery, CRISPR-Cas9 has become the most robust platform for genome engineering in eukaryotic cells. Recently, the CRISPR-Cas9 system has triggered enormous interest in therapeutic applications. CRISPR-Cas9 can be applied to correct disease-causing gene mutations or engineer T cells for cancer immunotherapy. The first clinical trial using the CRISPR-Cas9 technology was conducted in 2016. Despite the great promise of the CRISPR-Cas9 technology, several challenges remain to be tackled before its successful applications for human patients. The greatest challenge is the safe and efficient delivery of the CRISPR-Cas9 genome-editing system to target cells in human body. In this review, we will introduce the molecular mechanism and different strategies to edit genes using the CRISPR-Cas9 system. We will then highlight the current systems that have been developed to deliver CRISPR-Cas9 in vitro and in vivo for various therapeutic purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Vom work Book Journal, 2011 1st Edition PDF

    African Journals Online (AJOL)

    USER

    American camelids: Llama, Alpaca, Vicuno, nd. Guanaco. 2 edition, Iowa State University Press,. Iowa, U.S.A.. SASTRY, G.A. AND RAMA, P.R. (2004): Veterinary th pathology. 7 edition, Satish Kumar Jain, New Delhi,. India. SAYED, S.M.; RATEB, H.Z.; ARAFA M.I.; ABDEL-HAFEEZ. M.M. AND AMER A.A (2007): Field study ...

  20. MysiRNA-designer: a workflow for efficient siRNA design.

    Directory of Open Access Journals (Sweden)

    Mohamed Mysara

    Full Text Available The design of small interfering RNA (siRNA is a multi factorial problem that has gained the attention of many researchers in the area of therapeutic and functional genomics. MysiRNA score was previously introduced that improves the correlation of siRNA activity prediction considering state of the art algorithms. In this paper, a new program, MysiRNA-Designer, is described which integrates several factors in an automated work-flow considering mRNA transcripts variations, siRNA and mRNA target accessibility, and both near-perfect and partial off-target matches. It also features the MysiRNA score, a highly ranked correlated siRNA efficacy prediction score for ranking the designed siRNAs, in addition to top scoring models Biopredsi, DISR, Thermocomposition21 and i-Score, and integrates them in a unique siRNA score-filtration technique. This multi-score filtration layer filters siRNA that passes the 90% thresholds calculated from experimental dataset features. MysiRNA-Designer takes an accession, finds conserved regions among its transcript space, finds accessible regions within the mRNA, designs all possible siRNAs for these regions, filters them based on multi-scores thresholds, and then performs SNP and off-target filtration. These strict selection criteria were tested against human genes in which at least one active siRNA was designed from 95.7% of total genes. In addition, when tested against an experimental dataset, MysiRNA-Designer was found capable of rejecting 98% of the false positive siRNAs, showing superiority over three state of the art siRNA design programs. MysiRNA is a freely accessible (Microsoft Windows based desktop application that can be used to design siRNA with a high accuracy and specificity. We believe that MysiRNA-Designer has the potential to play an important role in this area.

  1. mRNA decay proteins are targeted to poly(A+ RNA and dsRNA-containing cytoplasmic foci that resemble P-bodies in Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    Itzel López-Rosas

    Full Text Available In higher eukaryotes, mRNA degradation and RNA-based gene silencing occur in cytoplasmic foci referred to as processing bodies (P-bodies. In protozoan parasites, the presence of P-bodies and their putative role in mRNA decay have yet to be comprehensively addressed. Identification of P-bodies might provide information on how mRNA degradation machineries evolved in lower eukaryotes. Here, we used immunofluorescence and confocal microscopy assays to investigate the cellular localization of mRNA degradation proteins in the human intestinal parasite Entamoeba histolytica and found evidence of the existence of P-bodies. Two mRNA decay factors, namely the EhXRN2 exoribonuclease and the EhDCP2 decapping enzyme, were localized in cytoplasmic foci in a pattern resembling P-body organization. Given that amoebic foci appear to be smaller and less rounded than those described in higher eukaryotes, we have named them "P-body-like structures". These foci contain additional mRNA degradation factors, including the EhCAF1 deadenylase and the EhAGO2-2 protein involved in RNA interference. Biochemical analysis revealed that EhCAF1 co-immunoprecipitated with EhXRN2 but not with EhDCP2 or EhAGO2-2, thus linking deadenylation to 5'-to-3' mRNA decay. The number of EhCAF1-containing foci significantly decreased after inhibition of transcription and translation with actinomycin D and cycloheximide, respectively. Furthermore, results of RNA-FISH assays showed that (i EhCAF1 colocalized with poly(A(+ RNA and (ii during silencing of the Ehpc4 gene by RNA interference, EhAGO2-2 colocalized with small interfering RNAs in cytoplasmic foci. Our observation of decapping, deadenylation and RNA interference proteins within P-body-like foci suggests that these structures have been conserved after originating in the early evolution of eukaryotic lineages. To the best of our knowledge, this is the first study to report on the localization of mRNA decay proteins within P

  2. Rapid Generation of Human Genetic Loss-of-Function iPSC Lines by Simultaneous Reprogramming and Gene Editing

    Directory of Open Access Journals (Sweden)

    Andrew M. Tidball

    2017-09-01

    Full Text Available Specifically ablating genes in human induced pluripotent stem cells (iPSCs allows for studies of gene function as well as disease mechanisms in disorders caused by loss-of-function (LOF mutations. While techniques exist for engineering such lines, we have developed and rigorously validated a method of simultaneous iPSC reprogramming while generating CRISPR/Cas9-dependent insertions/deletions (indels. This approach allows for the efficient and rapid formation of genetic LOF human disease cell models with isogenic controls. The rate of mutagenized lines was strikingly consistent across experiments targeting four different human epileptic encephalopathy genes and a metabolic enzyme-encoding gene, and was more efficient and consistent than using CRISPR gene editing of established iPSC lines. The ability of our streamlined method to reproducibly generate heterozygous and homozygous LOF iPSC lines with passage-matched isogenic controls in a single step provides for the rapid development of LOF disease models with ideal control lines, even in the absence of patient tissue.

  3. Pleiades. The Journal of the University of Hawai'i Community Colleges. First Edition. February 1988.

    Science.gov (United States)

    Pleiades: The Journal of the University of Hawai'i Community Colleges, 1988

    1988-01-01

    "Pleiades" is a new journal, intended to appear annually, with publication scheduled for February. This is the first edition; it is unnumbered. Designed as a staff development activity, "Pleiades" is intended to contain writings and art authored and edited by the faculty and staff of the University of Hawaii Community Colleges.…

  4. The RNA splicing factor ASF/SF2 inhibits human topoisomerase I mediated DNA relaxation

    DEFF Research Database (Denmark)

    Andersen, Félicie Faucon; Tange, Thomas Ø.; Sinnathamby, Thayaline

    2002-01-01

    Human topoisomerase I interacts with and phosphorylates the SR-family of RNA splicing factors, including ASF/SF2, and has been suggested to play an important role in the regulation of RNA splicing. Here we present evidence to support the theory that the regulation can go the other way around...

  5. Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a

    NARCIS (Netherlands)

    Swarts, Daan C.; Oost, van der John; Jinek, Martin

    2017-01-01

    The CRISPR-associated protein Cas12a (Cpf1), which has been repurposed for genome editing, possesses two distinct nuclease activities: endoribonuclease activity for processing its own guide RNAs and RNA-guided DNase activity for target DNA cleavage. To elucidate the molecular basis of both

  6. Evaluation of microRNA alignment techniques

    Science.gov (United States)

    Kaspi, Antony; El-Osta, Assam

    2016-01-01

    Genomic alignment of small RNA (smRNA) sequences such as microRNAs poses considerable challenges due to their short length (∼21 nucleotides [nt]) as well as the large size and complexity of plant and animal genomes. While several tools have been developed for high-throughput mapping of longer mRNA-seq reads (>30 nt), there are few that are specifically designed for mapping of smRNA reads including microRNAs. The accuracy of these mappers has not been systematically determined in the case of smRNA-seq. In addition, it is unknown whether these aligners accurately map smRNA reads containing sequence errors and polymorphisms. By using simulated read sets, we determine the alignment sensitivity and accuracy of 16 short-read mappers and quantify their robustness to mismatches, indels, and nontemplated nucleotide additions. These were explored in the context of a plant genome (Oryza sativa, ∼500 Mbp) and a mammalian genome (Homo sapiens, ∼3.1 Gbp). Analysis of simulated and real smRNA-seq data demonstrates that mapper selection impacts differential expression results and interpretation. These results will inform on best practice for smRNA mapping and enable more accurate smRNA detection and quantification of expression and RNA editing. PMID:27284164

  7. Transcripts of the NADH-dehydrogenase subunit 3 gene are differentially edited in Oenothera mitochondria.

    Science.gov (United States)

    Schuster, W; Wissinger, B; Unseld, M; Brennicke, A

    1990-01-01

    A number of cytosines are altered to be recognized as uridines in transcripts of the nad3 locus in mitochondria of the higher plant Oenothera. Such nucleotide modifications can be found at 16 different sites within the nad3 coding region. Most of these alterations in the mRNA sequence change codon identities to specify amino acids better conserved in evolution. Individual cDNA clones differ in their degree of editing at five nucleotide positions, three of which are silent, while two lead to codon alterations specifying different amino acids. None of the cDNA clones analysed is maximally edited at all possible sites, suggesting slow processing or lowered stringency of editing at these nucleotides. Differentially edited transcripts could be editing intermediates or could code for differing polypeptides. Two edited nucleotides in an open reading frame located upstream of nad3 change two amino acids in the deduced polypeptide. Part of the well-conserved ribosomal protein gene rps12 also encoded downstream of nad3 in other plants, is lost in Oenothera mitochondria by recombination events. The functional rps12 protein must be imported from the cytoplasm since the deleted sequences of this gene are not found in the Oenothera mitochondrial genome. The pseudogene sequence is not edited at any nucleotide position. Images Fig. 3. Fig. 4. Fig. 7. PMID:1688531

  8. Construction of an easy-to-use CRISPR-Cas9 system by patching a newly designed EXIT circuit.

    Science.gov (United States)

    Tang, Qiang; Lou, Chunbo; Liu, Shuang-Jiang

    2017-01-01

    Plasmid-borne genetic editing tools, including the widely used CRISPR-Cas9 system, have greatly facilitated bacterial programming to obtain novel functionalities. However, the lack of effective post-editing plasmid elimination methods impedes follow-up genetic manipulation or application. Conventional strategies including exposure to physical and chemical treatments, or exploiting temperature-sensitive replication origins have several drawbacks (e.g., they are limited for efficiency and are time-consuming). Therefore, the demand is apparent for easy and rapid elimination of the tool plasmids from their bacterial hosts after genetic manipulation. To bridge this gap, we designed a novel EXIT circuit with the homing endonuclease, which can be exploited for rapid and efficient elimination of various plasmids with diverse replication origins. As a proof of concept, we validated the EXIT circuit in Escherichia coli by harnessing homing endonuclease I- Sce I and its cleavage site. When integrated into multiple plasmids with different origins, the EXIT circuit allowed them to be eliminated from the host cells, simultaneously. By combining the widely used plasmid-borne CRISPR-Cas9 system and the EXIT circuit, we constructed an easy-to-use CRISPR-Cas9 system that eliminated the Cas9- and the single-guide RNA (sgRNA)-encoding plasmids in one-step. Within 3 days, we successfully constructed an atrazine-degrading E. coli strain, thus further demonstrating the advantage of this new CRISPR-Cas9 system for bacterial genome editing. Our novel EXIT circuit, which exploits the homing endonuclease I- Sce I, enables plasmid(s) with different replication origins to be eliminated from their host cells rapidly and efficiently. We also developed an easy-to-use CRISPR-Cas9 system with the EXIT circuit, and this new system can be widely applied to bacterial genome editing.

  9. Plasmid-free CRISPR/Cas9 genome editing in Plasmodium falciparum confirms mutations conferring resistance to the dihydroisoquinolone clinical candidate SJ733.

    Directory of Open Access Journals (Sweden)

    Emily D Crawford

    Full Text Available Genetic manipulation of the deadly malaria parasite Plasmodium falciparum remains challenging, but the rise of CRISPR/Cas9-based genome editing tools is increasing the feasibility of altering this parasite's genome in order to study its biology. Of particular interest is the investigation of drug targets and drug resistance mechanisms, which have major implications for fighting malaria. We present a new method for introducing drug resistance mutations in P. falciparum without the use of plasmids or the need for cloning homologous recombination templates. We demonstrate this method by introducing edits into the sodium efflux channel PfATP4 by transfection of a purified CRISPR/Cas9-guide RNA ribonucleoprotein complex and a 200-nucleotide single-stranded oligodeoxynucleotide (ssODN repair template. Analysis of whole genome sequencing data with the variant-finding program MinorityReport confirmed that only the intended edits were made, and growth inhibition assays confirmed that these mutations confer resistance to the antimalarial SJ733. The method described here is ideally suited for the introduction of mutations that confer a fitness advantage under selection conditions, and the novel finding that an ssODN can function as a repair template in P. falciparum could greatly simplify future editing attempts regardless of the nuclease used or the delivery method.

  10. mRNA related to insulin family in human placenta

    International Nuclear Information System (INIS)

    Younes, M.A.; D'Agostino, J.B.; Frazier, M.L.; Besch, P.K.

    1986-01-01

    The authors have previously reported that human term placenta contains mRNA displaying sequence homology to a rat preproinsulin I cDNA clone (p119). When placental poly(A + ) RNA was analyzed for homology to p119 by RNA/DNA blot hybridization, prominent hybridization was observed which was found by densitometric analysis to be three-fold higher than control. To further characterize this insulin-like message, a cDNA library was generated (approx.7000 transformants) using normal term cesarean-sectioned tissue to prepare placental poly(A + ) RNA templates. Five hundred transformants were initially screened by colony hybridization using a 32 P-labeled rat preproinsulin I cDNA as probe. Of the ten initial positives obtained, three were found to be true positives based on Southern hybridization analyses of the recombinant plasmids. Using Taq I digested pBr322 as a size marker, the cDNAs were found to be approximately 300 bp in length. Preliminary DNA sequencing using the Sanger dideoxy chain termination method has revealed that one of these clones displays significant homology to the 5' region of human insulin-like growth factors I and II

  11. mRNA related to insulin family in human placenta

    Energy Technology Data Exchange (ETDEWEB)

    Younes, M.A.; D' Agostino, J.B.; Frazier, M.L.; Besch, P.K.

    1986-03-01

    The authors have previously reported that human term placenta contains mRNA displaying sequence homology to a rat preproinsulin I cDNA clone (p119). When placental poly(A/sup +/) RNA was analyzed for homology to p119 by RNA/DNA blot hybridization, prominent hybridization was observed which was found by densitometric analysis to be three-fold higher than control. To further characterize this insulin-like message, a cDNA library was generated (approx.7000 transformants) using normal term cesarean-sectioned tissue to prepare placental poly(A/sup +/) RNA templates. Five hundred transformants were initially screened by colony hybridization using a /sup 32/P-labeled rat preproinsulin I cDNA as probe. Of the ten initial positives obtained, three were found to be true positives based on Southern hybridization analyses of the recombinant plasmids. Using Taq I digested pBr322 as a size marker, the cDNAs were found to be approximately 300 bp in length. Preliminary DNA sequencing using the Sanger dideoxy chain termination method has revealed that one of these clones displays significant homology to the 5' region of human insulin-like growth factors I and II.

  12. Cas5d Protein Processes Pre-crRNA and Assembles into a Cascade-like Interference Complex in Subtype I-C/Dvulg CRISPR-Cas System

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ki Hyun; Haitjema, Charles; Liu, Xueqi; Ding, Fran; Wang, Hongwei; DeLisa, Matthew P.; Ke, Ailong (Yale); (Cornell); (Tsinghua)

    2012-10-10

    Clustered regularly interspaced short palindromic repeats (CRISPRs), together with an operon of CRISPR-associated (Cas) proteins, form an RNA-based prokaryotic immune system against exogenous genetic elements. Cas5 family proteins are found in several type I CRISPR-Cas systems. Here, we report the molecular function of subtype I-C/Dvulg Cas5d from Bacillus halodurans. We show that Cas5d cleaves pre-crRNA into unit length by recognizing both the hairpin structure and the 3 single stranded sequence in the CRISPR repeat region. Cas5d structure reveals a ferredoxin domain-based architecture and a catalytic triad formed by Y46, K116, and H117 residues. We further show that after pre-crRNA processing, Cas5d assembles with crRNA, Csd1, and Csd2 proteins to form a multi-sub-unit interference complex similar to Escherichia coli Cascade (CRISPR-associated complex for antiviral defense) in architecture. Our results suggest that formation of a crRNA-presenting Cascade-like complex is likely a common theme among type I CRISPR subtypes.

  13. mRNA Traffic Control Reviewed: N6-Methyladenosine (m6 A) Takes the Driver's Seat.

    Science.gov (United States)

    Visvanathan, Abhirami; Somasundaram, Kumaravel

    2018-01-01

    Messenger RNA is a flexible tool box that plays a key role in the dynamic regulation of gene expression. RNA modifications variegate the message conveyed by the mRNA. Similar to DNA and histone modifications, mRNA modifications are reversible and play a key role in the regulation of molecular events. Our understanding about the landscape of RNA modifications is still rudimentary in contrast to DNA and histone modifications. The major obstacle has been the lack of sensitive detection methods since they are non-editing events. However, with the advent of next-generation sequencing techniques, RNA modifications are being identified precisely at single nucleotide resolution. In recent years, methylation at the N6 position of adenine (m 6 A) has gained the attention of RNA biologists. The m 6 A modification has a set of writers (methylases), erasers (demethylases), and readers. Here, we provide a summary of interesting facts, conflicting findings, and recent advances in the technical and functional aspects of the m 6 A epitranscriptome. © 2017 WILEY Periodicals, Inc.

  14. The Elgar companion to social economics : Second edition

    NARCIS (Netherlands)

    Davis, John B.; Dolfsma, Wilfred

    2015-01-01

    Social economics is a dynamic and growing field that emphasizes the key roles social values play in the economy and economic life. This second edition of the Elgar Companion to Social Economics revises all chapters from the first edition, and adds important new chapters to reflect the expansion and

  15. Generation of Knock-in Mouse by Genome Editing.

    Science.gov (United States)

    Fujii, Wataru

    2017-01-01

    Knock-in mice are useful for evaluating endogenous gene expressions and functions in vivo. Instead of the conventional gene-targeting method using embryonic stem cells, an exogenous DNA sequence can be inserted into the target locus in the zygote using genome editing technology. In this chapter, I describe the generation of epitope-tagged mice using engineered endonuclease and single-stranded oligodeoxynucleotide through the mouse zygote as an example of how to generate a knock-in mouse by genome editing.

  16. Zebrafish Adar2 Edits the Q/R site of AMPA receptor Subunit gria2α transcript to ensure normal development of nervous system and cranial neural crest cells.

    Directory of Open Access Journals (Sweden)

    I-Chen Li

    Full Text Available BACKGROUND: Adar2 deaminates selective adenosines to inosines (A-to-I RNA editing in the double-stranded region of nuclear transcripts. Although the functions of mouse Adar2 and its biologically most important substrate gria2, encoding the GluA2 subunit of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor, have been extensively studied, the substrates and functions of zebrafish Adar2 remain elusive. METHODS/PRINCIPAL FINDINGS: Expression of Adar2 was perturbed in the adar2 morphant (adar2MO, generated by antisense morpholio oligonucleotides. The Q/R editing of gria2α was reduced in the adar2MO and was enhanced by overexpression of Adar2, demonstrating an evolutionarily conserved activity between zebrafish and mammalian Adar2 in editing the Q/R site of gria2. To delineate the role of Q/R editing of gria2α in the developmental defects observed in the adar2MO, the Q/R editing of gria2α was specifically perturbed in the gria2αQRMO, generated by a morpholio oligonucleotide complementary to the exon complementary sequence (ECS required for the Q/R editing. Analogous to the adar2-deficient and Q/R-editing deficient mice displaying identical neurological defects, the gria2αQRMO and adar2MO displayed identical developmental defects in the nervous system and cranial cartilages. Knockdown p53 abolished apoptosis and partially suppressed the loss of spinal cord motor neurons in these morphants. However, reducing p53 activity neither replenished the brain neuronal populations nor rescued the developmental defects. The expressions of crestin and sox9b in the neural crest cells were reduced in the adar2MO and gria2αQRMO. Overexpressing the edited GluA2αR in the adar2MO restored normal expressions of cresting and sox9b. Moreover, overexpressing the unedited GluA2αQ in the wild type embryos resulted in reduction of crestin and sox9b expressions. These results argue that an elevated GluA2αQ level is sufficient for generating the

  17. Scarless Cas9 Assisted Recombineering (no‐SCAR) in Escherichia coli, an Easy‐to‐Use System for Genome Editing

    OpenAIRE

    Reisch, Christopher R; Jones, Kristala L.

    2018-01-01

    The discovery and development of genome editing systems that leverage the site‐specific DNA endonuclease system CRISPR/Cas9 has fundamentally changed the ease and speed of genome editing in many organisms. In eukaryotes, the CRISPR/Cas9 system utilizes a “guide” RNA to enable the Cas9 nuclease to make a double‐strand break at a particular genome locus, which is repaired by non‐homologous end joining (NHEJ) repair enzymes, often generating random mutations in the process. A specific alteration...

  18. General edition program

    International Nuclear Information System (INIS)

    Vaturi, Sylvain

    1969-01-01

    Computerized edition is essential for data processing exploitation. When a more or less complex edition program is required for each task, then the need for a general edition program become obvious. The aim of this study is to create a general edition program. Universal programs are capable to execute numerous and varied tasks. For a more precise processing, the execution of which is frequently required, the use of a specialized program is preferable because, contradictory to the universal program, it goes straight to the point [fr

  19. Immunoregulation by interference RNA (iRNA – mechanisms, role, perspective

    Directory of Open Access Journals (Sweden)

    Emilia Sikora

    2011-08-01

    Full Text Available The functioning of an organism depends on the precise control mechanisms, constantly adjusted to the actual state. Therefore, there is a need for efficient communication between both adjacent and distant cells, which may be executed by proteins such as hormones, neurotransmitters and cytokines. Recently another means of regulation has emerged – short regulatory RNAs (srRNAs. Although discovered only a couple of years ago, the mechanism of RNA interference has already become a topic of thousands of publications, defining its roles in both physiological and pathological processes, such as cancerogenesis and autoimmunization.RNAs regulating cell function may be coded in its genome (both exons and introns or be introduced from the external environment. In mammals microRNAs (miRNAs cooperate with proteins from the Ago/PIWI family to form effector ribonucleoprotein complexes, and owing to their complementarity to the target mRNA, control genes’ expression at the posttranscriptional level, either through the suppression of mRNA translation or through mRNA degradation.SrRNAs are crucial regulators throughout the development of immune cells, starting from hematopoietic stem cells, up to the effector cells of the adaptive immune response. Moreover, some of the regulatory cells perform their function by releasing miRNAs, which are then transported to the target cells, possibly enclosed in the exosomes.

  20. Readying Cavalli's operas for the classroom: textbooks, editions, and the teaching of a non-canonic composer

    Directory of Open Access Journals (Sweden)

    Robert Holzer

    2014-12-01

    Full Text Available My title pays homage to a recent volume of essays edited by Ellen Rosand and devoted to the scholarship and performance of Francesco Cavalli’s operas. Yet if love of wordplay inspired it, coincidence confirmed it. The volume appeared in print just months after my own foray into editing, albeit of a very different kind. I had been asked to prepare one of the volumes of The Oxford Anthology of Western Music, specifically the part that deals with Baroque music. As its title suggests, the anthology accompanies The Oxford History of Western Music: College Edition, the one-volume abridgement of Richard Taruskin’s five-volume behemoth prepared by Christopher H. Gibbs. I was charged with assembling scores of the works discussed therein and writing commentary on them, based on Taruskin’s own in the larger text. While I was left free to do as I pleased with the latter, such was not the case with the former. Thus music after 1700 occupies more pages than that before 1700, and the earlier repertory features some notable lacunae. That one of the biggest is Francesco Cavalli comes as no surprise, for in the course of the more than 3,800 pages of Taruskin’s original the composer receives exactly three sentences.

  1. CRISPR/Cas9-mediated gene knockout is insensitive to target copy number but is dependent on guide RNA potency and Cas9/sgRNA threshold expression level.

    Science.gov (United States)

    Yuen, Garmen; Khan, Fehad J; Gao, Shaojian; Stommel, Jayne M; Batchelor, Eric; Wu, Xiaolin; Luo, Ji

    2017-11-16

    CRISPR/Cas9 is a powerful gene editing tool for gene knockout studies and functional genomic screens. Successful implementation of CRISPR often requires Cas9 to elicit efficient target knockout in a population of cells. In this study, we investigated the role of several key factors, including variation in target copy number, inherent potency of sgRNA guides, and expression level of Cas9 and sgRNA, in determining CRISPR knockout efficiency. Using isogenic, clonal cell lines with variable copy numbers of an EGFP transgene, we discovered that CRISPR knockout is relatively insensitive to target copy number, but is highly dependent on the potency of the sgRNA guide sequence. Kinetic analysis revealed that most target mutation occurs between 5 and 10 days following Cas9/sgRNA transduction, while sgRNAs with different potencies differ by their knockout time course and by their terminal-phase knockout efficiency. We showed that prolonged, low level expression of Cas9 and sgRNA often fails to elicit target mutation, particularly if the potency of the sgRNA is also low. Our findings provide new insights into the behavior of CRISPR/Cas9 in mammalian cells that could be used for future improvement of this platform. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

  2. The autoinhibitory CARD2-Hel2i Interface of RIG-I governs RNA selection.

    Science.gov (United States)

    Ramanathan, Anand; Devarkar, Swapnil C; Jiang, Fuguo; Miller, Matthew T; Khan, Abdul G; Marcotrigiano, Joseph; Patel, Smita S

    2016-01-29

    RIG-I (Retinoic Acid Inducible Gene-I) is a cytosolic innate immune receptor that detects atypical features in viral RNAs as foreign to initiate a Type I interferon signaling response. RIG-I is present in an autoinhibited state in the cytoplasm and activated by blunt-ended double-stranded (ds)RNAs carrying a 5' triphosphate (ppp) moiety. These features found in many pathogenic RNAs are absent in cellular RNAs due to post-transcriptional modifications of RNA ends. Although RIG-I is structurally well characterized, the mechanistic basis for RIG-I's remarkable ability to discriminate between cellular and pathogenic RNAs is not completely understood. We show that RIG-I's selectivity for blunt-ended 5'-ppp dsRNAs is ≈3000 times higher than non-blunt ended dsRNAs commonly found in cellular RNAs. Discrimination occurs at multiple stages and signaling RNAs have high affinity and ATPase turnover rate and thus a high katpase/Kd. We show that RIG-I uses its autoinhibitory CARD2-Hel2i (second CARD-helicase insertion domain) interface as a barrier to select against non-blunt ended dsRNAs. Accordingly, deletion of CARDs or point mutations in the CARD2-Hel2i interface decreases the selectivity from ≈3000 to 150 and 750, respectively. We propose that the CARD2-Hel2i interface is a 'gate' that prevents cellular RNAs from generating productive complexes that can signal. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Promotion of Hendra Virus Replication by MicroRNA 146a

    Science.gov (United States)

    Marsh, Glenn A.; Jenkins, Kristie A.; Gantier, Michael P.; Tizard, Mark L.; Middleton, Deborah; Lowenthal, John W.; Haining, Jessica; Izzard, Leonard; Gough, Tamara J.; Deffrasnes, Celine; Stambas, John; Robinson, Rachel; Heine, Hans G.; Pallister, Jackie A.; Foord, Adam J.; Bean, Andrew G.; Wang, Lin-Fa

    2013-01-01

    Hendra virus is a highly pathogenic zoonotic paramyxovirus in the genus Henipavirus. Thirty-nine outbreaks of Hendra virus have been reported since its initial identification in Queensland, Australia, resulting in seven human infections and four fatalities. Little is known about cellular host factors impacting Hendra virus replication. In this work, we demonstrate that Hendra virus makes use of a microRNA (miRNA) designated miR-146a, an NF-κB-responsive miRNA upregulated by several innate immune ligands, to favor its replication. miR-146a is elevated in the blood of ferrets and horses infected with Hendra virus and is upregulated by Hendra virus in human cells in vitro. Blocking miR-146a reduces Hendra virus replication in vitro, suggesting a role for this miRNA in Hendra virus replication. In silico analysis of miR-146a targets identified ring finger protein (RNF)11, a member of the A20 ubiquitin editing complex that negatively regulates NF-κB activity, as a novel component of Hendra virus replication. RNA interference-mediated silencing of RNF11 promotes Hendra virus replication in vitro, suggesting that increased NF-κB activity aids Hendra virus replication. Furthermore, overexpression of the IκB superrepressor inhibits Hendra virus replication. These studies are the first to demonstrate a host miRNA response to Hendra virus infection and suggest an important role for host miRNAs in Hendra virus disease. PMID:23345523

  4. Nuclear factor 90 uses an ADAR2-like binding mode to recognize specific bases in dsRNA.

    Science.gov (United States)

    Jayachandran, Uma; Grey, Heather; Cook, Atlanta G

    2016-02-29

    Nuclear factors 90 and 45 (NF90 and NF45) form a protein complex involved in the post-transcriptional control of many genes in vertebrates. NF90 is a member of the dsRNA binding domain (dsRBD) family of proteins. RNA binding partners identified so far include elements in 3' untranslated regions of specific mRNAs and several non-coding RNAs. In NF90, a tandem pair of dsRBDs separated by a natively unstructured segment confers dsRNA binding activity. We determined a crystal structure of the tandem dsRBDs of NF90 in complex with a synthetic dsRNA. This complex shows surprising similarity to the tandem dsRBDs from an adenosine-to-inosine editing enzyme, ADAR2 in complex with a substrate RNA. Residues involved in unusual base-specific recognition in the minor groove of dsRNA are conserved between NF90 and ADAR2. These data suggest that, like ADAR2, underlying sequences in dsRNA may influence how NF90 recognizes its target RNAs. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Post-editing through Speech Recognition

    DEFF Research Database (Denmark)

    Mesa-Lao, Bartolomé

    (i.e. typing, handwriting and speaking) to improve the efficiency and accuracy of the translation process. However, further studies need to be conducted to build up new knowledge about the way in which state-of-the-art speech recognition software can be applied to the post-editing process...

  6. Human amniotic epithelial cell feeder layers maintain human iPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression

    International Nuclear Information System (INIS)

    Liu, Te; Cheng, Weiwei; Huang, Yongyi; Huang, Qin; Jiang, Lizhen; Guo, Lihe

    2012-01-01

    Currently, human induced pluripotent stem (iPS) cells were generated from patient or disease-specific sources and share the same key properties as embryonic stem cells. This makes them attractive for personalized medicine, drug screens or cellular therapy. Long-term cultivation and maintenance of normal iPS cells in an undifferentiated self-renewing state are a major challenge. Our previous studies have shown that human amniotic epithelial cells (HuAECs) could provide a good source of feeder cells for mouse and human embryonic stem cells, or spermatogonial stem cells, but the mechanism for this is unknown. Here, we examined the effect of endogenous microRNA-145 regulation on Sox2 expression in human iPS cells by HuAECs feeder cells regulation, and in turn on human iPS cells pluripotency. We found that human IPS cells transfected with a microRNA-145 mutant expressed Sox2 at high levels, allowing iPS to maintain a high level of AP activity in long-term culture and form teratomas in SCID mice. Expression of stem cell markers was increased in iPS transfected with the microRNA-145 mutant, compared with iPS was transfected with microRNA-145. Besides, the expression of Drosha proteins of the microRNA-processor complex, required for the generation of precursor pre-miRNA, was significantly increased in human iPS cells cultured on MEF but not on HuAECs. Taken together, these results suggest that endogenous Sox2 expression may be regulated by microRNA-145 in human iPS cells with HuAECs feeder cells, and Sox2 is a crucial component required for maintenance of them in an undifferentiated, proliferative state capable of self-renewal. Highlights: ► microRNA-145 inhibits Sox2 expression in human iPS cells. ► microRNA-145 suppresses the self-renewal and pluripotency of human iPS cells. ► HuAECs regulate expression of microRNA-145 and Sox2 in human iPS cells. ► HuAECs feeder layers maintain human iPS cells pluripotency. ► HuAECs negatively regulates the synthesis of

  7. Human amniotic epithelial cell feeder layers maintain human iPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Te, E-mail: liute79@yahoo.com [School of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Shanghai Geriatric Institute of Chinese Medicine, Shanghai 200031 (China); Cheng, Weiwei [International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University, Shanghai 200030 (China); Huang, Yongyi [Laboratoire PROTEE, Batiment R, Universite du Sud Toulon-Var, 83957 LA GARDE Cedex (France); Huang, Qin; Jiang, Lizhen [Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Guo, Lihe, E-mail: liute79@yahoo.com [Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China)

    2012-02-15

    Currently, human induced pluripotent stem (iPS) cells were generated from patient or disease-specific sources and share the same key properties as embryonic stem cells. This makes them attractive for personalized medicine, drug screens or cellular therapy. Long-term cultivation and maintenance of normal iPS cells in an undifferentiated self-renewing state are a major challenge. Our previous studies have shown that human amniotic epithelial cells (HuAECs) could provide a good source of feeder cells for mouse and human embryonic stem cells, or spermatogonial stem cells, but the mechanism for this is unknown. Here, we examined the effect of endogenous microRNA-145 regulation on Sox2 expression in human iPS cells by HuAECs feeder cells regulation, and in turn on human iPS cells pluripotency. We found that human IPS cells transfected with a microRNA-145 mutant expressed Sox2 at high levels, allowing iPS to maintain a high level of AP activity in long-term culture and form teratomas in SCID mice. Expression of stem cell markers was increased in iPS transfected with the microRNA-145 mutant, compared with iPS was transfected with microRNA-145. Besides, the expression of Drosha proteins of the microRNA-processor complex, required for the generation of precursor pre-miRNA, was significantly increased in human iPS cells cultured on MEF but not on HuAECs. Taken together, these results suggest that endogenous Sox2 expression may be regulated by microRNA-145 in human iPS cells with HuAECs feeder cells, and Sox2 is a crucial component required for maintenance of them in an undifferentiated, proliferative state capable of self-renewal. Highlights: Black-Right-Pointing-Pointer microRNA-145 inhibits Sox2 expression in human iPS cells. Black-Right-Pointing-Pointer microRNA-145 suppresses the self-renewal and pluripotency of human iPS cells. Black-Right-Pointing-Pointer HuAECs regulate expression of microRNA-145 and Sox2 in human iPS cells. Black-Right-Pointing-Pointer HuAECs feeder

  8. Path from schizophrenia genomics to biology: gene regulation and perturbation in neurons derived from induced pluripotent stem cells and genome editing.

    Science.gov (United States)

    Duan, Jubao

    2015-02-01

    Schizophrenia (SZ) is a devastating mental disorder afflicting 1% of the population. Recent genome-wide association studies (GWASs) of SZ have identified >100 risk loci. However, the causal variants/genes and the causal mechanisms remain largely unknown, which hinders the translation of GWAS findings into disease biology and drug targets. Most risk variants are noncoding, thus likely regulate gene expression. A major mechanism of transcriptional regulation is chromatin remodeling, and open chromatin is a versatile predictor of regulatory sequences. MicroRNA-mediated post-transcriptional regulation plays an important role in SZ pathogenesis. Neurons differentiated from patient-specific induced pluripotent stem cells (iPSCs) provide an experimental model to characterize the genetic perturbation of regulatory variants that are often specific to cell type and/or developmental stage. The emerging genome-editing technology enables the creation of isogenic iPSCs and neurons to efficiently characterize the effects of SZ-associated regulatory variants on SZ-relevant molecular and cellular phenotypes involving dopaminergic, glutamatergic, and GABAergic neurotransmissions. SZ GWAS findings equipped with the emerging functional genomics approaches provide an unprecedented opportunity for understanding new disease biology and identifying novel drug targets.

  9. Single nucleotide editing without DNA cleavage using CRISPR/Cas9-deaminase in the sea urchin embryo.

    Science.gov (United States)

    Shevidi, Saba; Uchida, Alicia; Schudrowitz, Natalie; Wessel, Gary M; Yajima, Mamiko

    2017-12-01

    A single base pair mutation in the genome can result in many congenital disorders in humans. The recent gene editing approach using CRISPR/Cas9 has rapidly become a powerful tool to replicate or repair such mutations in the genome. These approaches rely on cleaving DNA, while presenting unexpected risks. In this study, we demonstrate a modified CRISPR/Cas9 system fused to cytosine deaminase (Cas9-DA), which induces a single nucleotide conversion in the genome. Cas9-DA was introduced into sea urchin eggs with sgRNAs targeted for SpAlx1, SpDsh, or SpPks, each of which is critical for skeletogenesis, embryonic axis formation, or pigment formation, respectively. We found that both Cas9 and Cas9-DA edit the genome, and cause predicted phenotypic changes at a similar efficiency. Cas9, however, resulted in significant deletions in the genome centered on the gRNA target sequence, whereas Cas9-DA resulted in single or double nucleotide editing of C to T conversions within the gRNA target sequence. These results suggest that the Cas9-DA approach may be useful for manipulating gene activity with decreased risks of genomic aberrations. Developmental Dynamics 246:1036-1046, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. c-MYC G-quadruplex binding by the RNA polymerase I inhibitor BMH-21 and analogues revealed by a combined NMR and biochemical Approach.

    Science.gov (United States)

    Musso, Loana; Mazzini, Stefania; Rossini, Anna; Castagnoli, Lorenzo; Scaglioni, Leonardo; Artali, Roberto; Di Nicola, Massimo; Zunino, Franco; Dallavalle, Sabrina

    2018-03-01

    Pyridoquinazolinecarboxamides have been reported as RNA polymerase I inhibitors and represent a novel class of potential antitumor agents. BMH-21, was reported to intercalate with GC-rich rDNA, resulting in nucleolar stress as a primary mechanism of cytotoxicity. The interaction of BMH-21 and analogues with DNA G-quadruplex structures was studied by NMR and molecular modelling. The cellular response was investigated in a panel of human tumor cell lines and protein expression was examined by Western Blot analysis. We explored the ability of BMH-21 and its analogue 2 to bind to G-quadruplex present in the c-MYC promoter, by NMR and molecular modelling studies. We provide evidence that both compounds are not typical DNA intercalators but are effective binders of the tested G-quadruplex. The interaction with c-MYC G-quadruplex was reflected in down-regulation of c-Myc expression in human tumor cells. The inhibitory effect was almost complete in lymphoma cells SUDHL4 characterized by overexpression of c-Myc protein. This downregulation reflected an early and persistent modulation of cMyc mRNA. Given the relevance of c-MYC in regulation of ribosome biogenesis, it is conceivable that the inhibition of c-MYC contributes to the perturbation of nuclear functions and RNA polymerase I activity. Similar experiments with CX-5461, another RNA polymerase I transcription inhibitor, indicate the same behaviour in G-quadruplex stabilization. Our results support the hypothesis that BMH-21 and analogue compounds share the same mechanism, i.e. G-quadruplex binding as a primary event of a cascade leading to inhibition of RNA polymerase I and apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. JAK kinases are required for the bacterial RNA and poly I:C induced tyrosine phosphorylation of PKR

    OpenAIRE

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V; Tai, TC; Saleh, Mazen; Parrillo, Joseph E; Kumar, Anand; Kumar, Aseem

    2012-01-01

    Discriminating the molecular patterns associated with RNA is central to innate immunity. The protein kinase PKR is a cytosolic sensor involved in the recognition of viral dsRNA and triggering interferon-induced signaling. Here, we identified bacterial RNA as a novel distinct pattern recognized by PKR. We show that the tyrosine phosphorylation of PKR induced by either bacterial RNA or poly I:C is impaired in mutant cells lacking TYK2, JAK1, or JAK2 kinases. PKR was found to be a direct substra...

  12. Multi-resistance strategy for viral diseases and short hairpin RNA verification method in pigs

    Directory of Open Access Journals (Sweden)

    Jong-nam Oh

    2018-04-01

    Full Text Available Objective Foot and mouth disease (FMD and porcine reproductive and respiratory syndrome (PRRS are major diseases that interrupt porcine production. Because they are viral diseases, vaccinations are of only limited effectiveness in preventing outbreaks. To establish an alternative multi-resistant strategy against FMD virus (FMDV and PRRS virus (PRRSV, the present study introduced two genetic modification techniques to porcine cells. Methods First, cluster of differentiation 163 (CD163, the PRRSV viral receptor, was edited with the clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 technique. The CD163 gene sequences of edited cells and control cells differed. Second, short hairpin RNA (shRNAs were integrated into the cells. The shRNAs, targeting the 3D gene of FMDV and the open reading frame 7 (ORF7 gene of PRRSV, were transferred into fibroblasts. We also developed an in vitro shRNA verification method with a target gene expression vector. Results shRNA activity was confirmed in vitro with vectors that expressed the 3D and ORF7 genes in the cells. Cells containing shRNAs showed lower transcript levels than cells with only the expression vectors. The shRNAs were integrated into CD163-edited cells to combine the two techniques, and the viral genes were suppressed in these cells. Conclusion We established a multi-resistant strategy against viral diseases and an in vitro shRNA verification method.

  13. JAK kinases are required for the bacterial RNA and poly I:C induced tyrosine phosphorylation of PKR

    Science.gov (United States)

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V; Tai, TC; Saleh, Mazen; Parrillo, Joseph E; Kumar, Anand; Kumar, Aseem

    2013-01-01

    Discriminating the molecular patterns associated with RNA is central to innate immunity. The protein kinase PKR is a cytosolic sensor involved in the recognition of viral dsRNA and triggering interferon-induced signaling. Here, we identified bacterial RNA as a novel distinct pattern recognized by PKR. We show that the tyrosine phosphorylation of PKR induced by either bacterial RNA or poly I:C is impaired in mutant cells lacking TYK2, JAK1, or JAK2 kinases. PKR was found to be a direct substrate for the activated JAKs. Our results indicated that the double-stranded structures of bacterial RNA are required to fully activate PKR. These results suggest that bacterial RNA signaling is analogous in some respects to that of viral RNA and interferons and may have implications in bacterial immunity. PMID:23236554

  14. Residential and Light Commercial HVAC. Teacher Edition and Student Edition. Second Edition.

    Science.gov (United States)

    Stephenson, David

    This package contains teacher and student editions of a residential and light commercial heating, ventilation, and air conditioning (HVAC) course of study. The teacher edition contains information on the following: using the publication; national competencies; competency profile; related academic and workplace skills list; tools, equipment, and…

  15. Adenylylation of small RNA sequencing adapters using the TS2126 RNA ligase I.

    Science.gov (United States)

    Lama, Lodoe; Ryan, Kevin

    2016-01-01

    Many high-throughput small RNA next-generation sequencing protocols use 5' preadenylylated DNA oligonucleotide adapters during cDNA library preparation. Preadenylylation of the DNA adapter's 5' end frees from ATP-dependence the ligation of the adapter to RNA collections, thereby avoiding ATP-dependent side reactions. However, preadenylylation of the DNA adapters can be costly and difficult. The currently available method for chemical adenylylation of DNA adapters is inefficient and uses techniques not typically practiced in laboratories profiling cellular RNA expression. An alternative enzymatic method using a commercial RNA ligase was recently introduced, but this enzyme works best as a stoichiometric adenylylating reagent rather than a catalyst and can therefore prove costly when several variant adapters are needed or during scale-up or high-throughput adenylylation procedures. Here, we describe a simple, scalable, and highly efficient method for the 5' adenylylation of DNA oligonucleotides using the thermostable RNA ligase 1 from bacteriophage TS2126. Adapters with 3' blocking groups are adenylylated at >95% yield at catalytic enzyme-to-adapter ratios and need not be gel purified before ligation to RNA acceptors. Experimental conditions are also reported that enable DNA adapters with free 3' ends to be 5' adenylylated at >90% efficiency. © 2015 Lama and Ryan; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. Effective gene editing by high-fidelity base editor 2 in mouse zygotes

    Directory of Open Access Journals (Sweden)

    Puping Liang

    2017-06-01

    Full Text Available ABSTRACT Targeted point mutagenesis through homologous recombination has been widely used in genetic studies and holds considerable promise for repairing disease-causing mutations in patients. However, problems such as mosaicism and low mutagenesis efficiency continue to pose challenges to clinical application of such approaches. Recently, a base editor (BE system built on cytidine (C deaminase and CRISPR/Cas9 technology was developed as an alternative method for targeted point mutagenesis in plant, yeast, and human cells. Base editors convert C in the deamination window to thymidine (T efficiently, however, it remains unclear whether targeted base editing in mouse embryos is feasible. In this report, we generated a modified high-fidelity version of base editor 2 (HF2-BE2, and investigated its base editing efficacy in mouse embryos. We found that HF2-BE2 could convert C to T efficiently, with up to 100% biallelic mutation efficiency in mouse embryos. Unlike BE3, HF2-BE2 could convert C to T on both the target and non-target strand, expanding the editing scope of base editors. Surprisingly, we found HF2-BE2 could also deaminate C that was proximal to the gRNA-binding region. Taken together, our work demonstrates the feasibility of generating point mutations in mouse by base editing, and underscores the need to carefully optimize base editing systems in order to eliminate proximal-site deamination.

  17. Drosophila Imp iCLIP identifies an RNA assemblage coordinating F-actin formation

    DEFF Research Database (Denmark)

    Hansen, Heidi Theil; Rasmussen, Simon Horskjær; Adolph, Sidsel Kramshøj

    2015-01-01

    BACKGROUND: Post-transcriptional RNA regulons ensure co-ordinated expression of monocistronic mRNAs encoding functionally related proteins. In this study, we employ a combination of RIP-seq and short- and long-wave individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP...

  18. Multiplex editing system

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a multiplex editing system. The system allows multiple editing of nucleic acid sequences such as genomic sequences, such as knockins of genes of interest in a genome, knockouts of genomic sequences and/or allele replacement. Also provided herein are a method...... for editing nucleic acids and a cell comprising a stably integrated endonuclease....

  19. A Method to Predict the Structure and Stability of RNA/RNA Complexes.

    Science.gov (United States)

    Xu, Xiaojun; Chen, Shi-Jie

    2016-01-01

    RNA/RNA interactions are essential for genomic RNA dimerization and regulation of gene expression. Intermolecular loop-loop base pairing is a widespread and functionally important tertiary structure motif in RNA machinery. However, computational prediction of intermolecular loop-loop base pairing is challenged by the entropy and free energy calculation due to the conformational constraint and the intermolecular interactions. In this chapter, we describe a recently developed statistical mechanics-based method for the prediction of RNA/RNA complex structures and stabilities. The method is based on the virtual bond RNA folding model (Vfold). The main emphasis in the method is placed on the evaluation of the entropy and free energy for the loops, especially tertiary kissing loops. The method also uses recursive partition function calculations and two-step screening algorithm for large, complicated structures of RNA/RNA complexes. As case studies, we use the HIV-1 Mal dimer and the siRNA/HIV-1 mutant (T4) to illustrate the method.

  20. Benchmarking CRISPR on-target sgRNA design.

    Science.gov (United States)

    Yan, Jifang; Chuai, Guohui; Zhou, Chi; Zhu, Chenyu; Yang, Jing; Zhang, Chao; Gu, Feng; Xu, Han; Wei, Jia; Liu, Qi

    2017-02-15

    CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-based gene editing has been widely implemented in various cell types and organisms. A major challenge in the effective application of the CRISPR system is the need to design highly efficient single-guide RNA (sgRNA) with minimal off-target cleavage. Several tools are available for sgRNA design, while limited tools were compared. In our opinion, benchmarking the performance of the available tools and indicating their applicable scenarios are important issues. Moreover, whether the reported sgRNA design rules are reproducible across different sgRNA libraries, cell types and organisms remains unclear. In our study, a systematic and unbiased benchmark of the sgRNA predicting efficacy was performed on nine representative on-target design tools, based on six benchmark data sets covering five different cell types. The benchmark study presented here provides novel quantitative insights into the available CRISPR tools. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Chimira: analysis of small RNA sequencing data and microRNA modifications.

    Science.gov (United States)

    Vitsios, Dimitrios M; Enright, Anton J

    2015-10-15

    Chimira is a web-based system for microRNA (miRNA) analysis from small RNA-Seq data. Sequences are automatically cleaned, trimmed, size selected and mapped directly to miRNA hairpin sequences. This generates count-based miRNA expression data for subsequent statistical analysis. Moreover, it is capable of identifying epi-transcriptomic modifications in the input sequences. Supported modification types include multiple types of 3'-modifications (e.g. uridylation, adenylation), 5'-modifications and also internal modifications or variation (ADAR editing or single nucleotide polymorphisms). Besides cleaning and mapping of input sequences to miRNAs, Chimira provides a simple and intuitive set of tools for the analysis and interpretation of the results (see also Supplementary Material). These allow the visual study of the differential expression between two specific samples or sets of samples, the identification of the most highly expressed miRNAs within sample pairs (or sets of samples) and also the projection of the modification profile for specific miRNAs across all samples. Other tools have already been published in the past for various types of small RNA-Seq analysis, such as UEA workbench, seqBuster, MAGI, OASIS and CAP-miRSeq, CPSS for modifications identification. A comprehensive comparison of Chimira with each of these tools is provided in the Supplementary Material. Chimira outperforms all of these tools in total execution speed and aims to facilitate simple, fast and reliable analysis of small RNA-Seq data allowing also, for the first time, identification of global microRNA modification profiles in a simple intuitive interface. Chimira has been developed as a web application and it is accessible here: http://www.ebi.ac.uk/research/enright/software/chimira. aje@ebi.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  2. Beyond Author-Centricity in Scholarly Editing

    Directory of Open Access Journals (Sweden)

    Hans Walter Gabler

    2012-03-01

    Full Text Available Authorship – authority – authorisation – the author – the author’s will – the author’s intention: these form a cluster of notions whose validity for scholarly editing I fundamentally question. Taking measure from a historical survey of the discipline’s principles and practice from their institution under the dominance of stemmatics up to their main present-day ‘author orientation’ (Shillingsburg 1996, I see the need to split the terms ‘author’ and ‘authorship’ into a pragmatic versus a conceptual aspect. What textual scholarship engages with, directly and tangibly, is not authors but texts (and equally not works but texts, materially inscribed in transmissions. In the materiality and artifice of texts, ‘authoriality’ is accessible conceptually only, in a manner analog-ous to the Foucauldian ‘author function’. Under such premises, as well, ‘authority’, ‘authorisation’ and ‘authorial intention’ become recognisable as exogenous to texts, not integral to them. Consequently, I propose to abandon ‘authority’, ‘authorisation’ and ‘authorial intention’ as overriding principles and arbiters in editorial scholarship. Scholarly editing instead should re-situate itself in relation to texts, to textual criticism, to literary criticism and to literary theory alike, and do so by re-focussing the method-ology of its own practice. It should relinquish the external props termed ‘authorised document’, ‘textual authority’, or ‘authorial intention’ hitherto deferred to. Instead, it should revitalise skills fundamental to inherited editorial scholarship, namely those of critically assessing, and of editorially realising, textual validity. To re-embed editorial scholarship in literary criticism and theory, moreover, the interpretative and hermeneutic dimensions of textual criticism and scholarly editing will need to be freshly mapped.

  3. [Efficient genome editing in human pluripotent stem cells through CRISPR/Cas9].

    Science.gov (United States)

    Liu, Gai-gai; Li, Shuang; Wei, Yu-da; Zhang, Yong-xian; Ding, Qiu-rong

    2015-11-01

    The RNA-guided CRISPR (clustered regularly interspaced short palindromic repeat)-associated Cas9 nuclease has offered a new platform for genome editing with high efficiency. Here, we report the use of CRISPR/Cas9 technology to target a specific genomic region in human pluripotent stem cells. We show that CRISPR/Cas9 can be used to disrupt a gene by introducing frameshift mutations to gene coding region; to knock in specific sequences (e.g. FLAG tag DNA sequence) to targeted genomic locus via homology directed repair; to induce large genomic deletion through dual-guide multiplex. Our results demonstrate the versatile application of CRISPR/Cas9 in stem cell genome editing, which can be widely utilized for functional studies of genes or genome loci in human pluripotent stem cells.

  4. Cytochrome c oxidase subunit 1-based human RNA quantification to enhance mRNA profiling in forensic biology

    Directory of Open Access Journals (Sweden)

    Dong Zhao

    2017-01-01

    Full Text Available RNA analysis offers many potential applications in forensic science, and molecular identification of body fluids by analysis of cell-specific RNA markers represents a new technique for use in forensic cases. However, due to the nature of forensic materials that often admixed with nonhuman cellular components, human-specific RNA quantification is required for the forensic RNA assays. Quantification assay for human RNA has been developed in the present study with respect to body fluid samples in forensic biology. The quantitative assay is based on real-time reverse transcription-polymerase chain reaction of mitochondrial RNA cytochrome c oxidase subunit I and capable of RNA quantification with high reproducibility and a wide dynamic range. The human RNA quantification improves the quality of mRNA profiling in the identification of body fluids of saliva and semen because the quantification assay can exclude the influence of nonhuman components and reduce the adverse affection from degraded RNA fragments.

  5. A Subdivision-Based Representation for Vector Image Editing.

    Science.gov (United States)

    Liao, Zicheng; Hoppe, Hugues; Forsyth, David; Yu, Yizhou

    2012-11-01

    Vector graphics has been employed in a wide variety of applications due to its scalability and editability. Editability is a high priority for artists and designers who wish to produce vector-based graphical content with user interaction. In this paper, we introduce a new vector image representation based on piecewise smooth subdivision surfaces, which is a simple, unified and flexible framework that supports a variety of operations, including shape editing, color editing, image stylization, and vector image processing. These operations effectively create novel vector graphics by reusing and altering existing image vectorization results. Because image vectorization yields an abstraction of the original raster image, controlling the level of detail of this abstraction is highly desirable. To this end, we design a feature-oriented vector image pyramid that offers multiple levels of abstraction simultaneously. Our new vector image representation can be rasterized efficiently using GPU-accelerated subdivision. Experiments indicate that our vector image representation achieves high visual quality and better supports editing operations than existing representations.

  6. Targeted Genome Regulation and Editing in Plants

    KAUST Repository

    Piatek, Agnieszka

    2016-03-01

    The ability to precisely regulate gene expression patterns and to modify genome sequence in a site-specific manner holds much promise in determining gene function and linking genotype to phenotype. DNA-binding modules have been harnessed to generate customizable and programmable chimeric proteins capable of binding to site-specific DNA sequences and regulating the genome and epigenome. Modular DNA-binding domains from zinc fingers (ZFs) and transcriptional activator-like effectors (TALEs) are amenable to engineering to bind any DNA target sequence of interest. Deciphering the code of TALE repeat binding to DNA has helped to engineer customizable TALE proteins capable of binding to any sequence of interest. Therefore TALE repeats provide a rich resource for bioengineering applications. However, the TALE system is limited by the requirement to re-engineer one or two proteins for each new target sequence. Recently, the clustered regularly interspaced palindromic repeats (CRISPR)/ CRISPR associated 9 (Cas9) has been used as a versatile genome editing tool. This machinery has been also repurposed for targeted transcriptional regulation. Due to the facile engineering, simplicity and precision, the CRISPR/Cas9 system is poised to revolutionize the functional genomics studies across diverse eukaryotic species. In this dissertation I employed transcription activator-like effectors and CRISPR/Cas9 systems for targeted genome regulation and editing and my achievements include: 1) I deciphered and extended the DNA-binding code of Ralstonia TAL effectors providing new opportunities for bioengineering of customizable proteins; 2) I repurposed the CRISPR/Cas9 system for site-specific regulation of genes in plant genome; 3) I harnessed the power of CRISPR/Cas9 gene editing tool to study the function of the serine/arginine-rich (SR) proteins.

  7. RNA Structural Alignments, Part I

    DEFF Research Database (Denmark)

    Havgaard, Jakob Hull; Gorodkin, Jan

    2014-01-01

    Simultaneous alignment and secondary structure prediction of RNA sequences is often referred to as "RNA structural alignment." A class of the methods for structural alignment is based on the principles proposed by Sankoff more than 25 years ago. The Sankoff algorithm simultaneously folds and aligns...... is so high that it took more than a decade before the first implementation of a Sankoff style algorithm was published. However, with the faster computers available today and the improved heuristics used in the implementations the Sankoff-based methods have become practical. This chapter describes...... the methods based on the Sankoff algorithm. All the practical implementations of the algorithm use heuristics to make them run in reasonable time and memory. These heuristics are also described in this chapter....

  8. Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity

    Science.gov (United States)

    Tycko, Josh; Myer, Vic E.; Hsu, Patrick D.

    2016-01-01

    Summary Advances in the development of delivery, repair, and specificity strategies for the CRISPR-Cas9 genome engineering toolbox are helping researchers understand gene function with unprecedented precision and sensitivity. CRISPR-Cas9 also holds enormous therapeutic potential for the treatment of genetic disorders by directly correcting disease-causing mutations. Although the Cas9 protein has been shown to bind and cleave DNA at off-target sites, the field of Cas9 specificity is rapidly progressing with marked improvements in guide RNA selection, protein and guide engineering, novel enzymes, and off-target detection methods. We review important challenges and breakthroughs in the field as a comprehensive practical guide to interested users of genome editing technologies, highlighting key tools and strategies for optimizing specificity. The genome editing community should now strive to standardize such methods for measuring and reporting off-target activity, while keeping in mind that the goal for specificity should be continued improvement and vigilance. PMID:27494557

  9. Fundamentals of Welding. Teacher Edition [and] Student Edition [and] Student Workbook. Second Edition.

    Science.gov (United States)

    Fortney, Clarence; Gregory, Mike; New, Larry

    Teacher and student editions and a student workbook for fundamentals of welding comprise the first of six in a series of competency-based instructional materials for welding programs. Introductory pages in the teacher edition are training and competency profile, instructional/task analysis, basic skills icons and classifications, basic skills…

  10. mRNA Transcript Diversity Creates New Opportunities for Pharmacological Intervention

    OpenAIRE

    Barrie, Elizabeth S.; Smith, Ryan M.; Sanford, Jonathan C.; Sadee, Wolfgang

    2012-01-01

    Most protein coding genes generate multiple RNA transcripts through alternative splicing, variable 3′ and 5′UTRs, and RNA editing. Although drug design typically targets the main transcript, alternative transcripts can have profound physiological effects, encoding proteins with distinct functions or regulatory properties. Formation of these alternative transcripts is tissue-selective and context-dependent, creating opportunities for more effective and targeted therapies with reduced adverse e...

  11. The Gift Network: Dave Eggers and the Circulation of Second Editions

    Directory of Open Access Journals (Sweden)

    Jacqueline O’Dell

    2017-07-01

    Full Text Available This article argues for a view of the gift as an affective network and investigates how Dave Eggers’s practice of publishing second editions works to produce this network. Framing my discussion of the gift with Sara Ahmed’s work on affective economies, I suggest that the gift, like affect, is best understood as a surplus effect of circulation. I argue that Eggers negotiates the gift’s double bind by emphasizing the impossibility of identifying a “pure” gift or an authoritative “original” edition; his double editions show how the gift survives through the surplus values generated by their ongoing circulation. Eggers's symbolic and material gift network ultimately depends on the uncertainty and mystification emblematic of Eggers’s anxious aesthetic and mode of recirculation, adding to critical conversations that position Eggers’s aesthetic within movements of new sincerity or post-irony.

  12. Regulatory Role of N6 -methyladenosine (m6 A) Methylation in RNA Processing and Human Diseases.

    Science.gov (United States)

    Wei, Wenqiang; Ji, Xinying; Guo, Xiangqian; Ji, Shaoping

    2017-09-01

    N 6 -methyladenosine (m 6 A) modification is an abundant and conservative RNA modification in bacterial and eukaryotic cells. m 6 A modification mainly occurs in the 3' untranslated regions (UTRs) and near the stop codons of mRNA. Diverse strategies have been developed for identifying m 6 A sites in single nucleotide resolution. Dynamic regulation of m 6 A is found in metabolism, embryogenesis, and developmental processes, indicating a possible epigenetic regulation role along RNA processing and exerting biological functions. It has been known that m 6 A editing involves in nuclear RNA export, mRNA degradation, protein translation, and RNA splicing. Deficiency of m 6 A modification will lead to kinds of diseases, such as obesity, cancer, type 2 diabetes mellitus (T2DM), infertility, and developmental arrest. Some specific inhibitors against methyltransferase and demethylase have been developed to selectively regulate m 6 A modification, which may be advantageous for treatment of m 6 A related diseases. J. Cell. Biochem. 118: 2534-2543, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases.

    Science.gov (United States)

    Periwal, Vinita

    2017-07-01

    Genome editing with engineered nucleases (zinc finger nucleases, TAL effector nucleases s and Clustered regularly inter-spaced short palindromic repeats/CRISPR-associated) has recently been shown to have great promise in a variety of therapeutic and biotechnological applications. However, their exploitation in genetic analysis and clinical settings largely depends on their specificity for the intended genomic target. Large and complex genomes often contain highly homologous/repetitive sequences, which limits the specificity of genome editing tools and could result in off-target activity. Over the past few years, various computational approaches have been developed to assist the design process and predict/reduce the off-target activity of these nucleases. These tools could be efficiently used to guide the design of constructs for engineered nucleases and evaluate results after genome editing. This review provides a comprehensive overview of various databases, tools, web servers and resources for genome editing and compares their features and functionalities. Additionally, it also describes tools that have been developed to analyse post-genome editing results. The article also discusses important design parameters that could be considered while designing these nucleases. This review is intended to be a quick reference guide for experimentalists as well as computational biologists working in the field of genome editing with engineered nucleases. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. ISVASE: identification of sequence variant associated with splicing event using RNA-seq data.

    Science.gov (United States)

    Aljohi, Hasan Awad; Liu, Wanfei; Lin, Qiang; Yu, Jun; Hu, Songnian

    2017-06-28

    Exon recognition and splicing precisely and efficiently by spliceosome is the key to generate mature mRNAs. About one third or a half of disease-related mutations affect RNA splicing. Software PVAAS has been developed to identify variants associated with aberrant splicing by directly using RNA-seq data. However, it bases on the assumption that annotated splicing site is normal splicing, which is not true in fact. We develop the ISVASE, a tool for specifically identifying sequence variants associated with splicing events (SVASE) by using RNA-seq data. Comparing with PVAAS, our tool has several advantages, such as multi-pass stringent rule-dependent filters and statistical filters, only using split-reads, independent sequence variant identification in each part of splicing (junction), sequence variant detection for both of known and novel splicing event, additional exon-exon junction shift event detection if known splicing events provided, splicing signal evaluation, known DNA mutation and/or RNA editing data supported, higher precision and consistency, and short running time. Using a realistic RNA-seq dataset, we performed a case study to illustrate the functionality and effectiveness of our method. Moreover, the output of SVASEs can be used for downstream analysis such as splicing regulatory element study and sequence variant functional analysis. ISVASE is useful for researchers interested in sequence variants (DNA mutation and/or RNA editing) associated with splicing events. The package is freely available at https://sourceforge.net/projects/isvase/ .

  15. A Scaled Framework for CRISPR Editing of Human Pluripotent Stem Cells to Study Psychiatric Disease.

    Science.gov (United States)

    Hazelbaker, Dane Z; Beccard, Amanda; Bara, Anne M; Dabkowski, Nicole; Messana, Angelica; Mazzucato, Patrizia; Lam, Daisy; Manning, Danielle; Eggan, Kevin; Barrett, Lindy E

    2017-10-10

    Scaling of CRISPR-Cas9 technology in human pluripotent stem cells (hPSCs) represents an important step for modeling complex disease and developing drug screens in human cells. However, variables affecting the scaling efficiency of gene editing in hPSCs remain poorly understood. Here, we report a standardized CRISPR-Cas9 approach, with robust benchmarking at each step, to successfully target and genotype a set of psychiatric disease-implicated genes in hPSCs and provide a resource of edited hPSC lines for six of these genes. We found that transcriptional state and nucleosome positioning around targeted loci was not correlated with editing efficiency. However, editing frequencies varied between different hPSC lines and correlated with genomic stability, underscoring the need for careful cell line selection and unbiased assessments of genomic integrity. Together, our step-by-step quantification and in-depth analyses provide an experimental roadmap for scaling Cas9-mediated editing in hPSCs to study psychiatric disease, with broader applicability for other polygenic diseases. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. A 'new lease of life': FnCpf1 possesses DNA cleavage activity for genome editing in human cells.

    Science.gov (United States)

    Tu, Mengjun; Lin, Li; Cheng, Yilu; He, Xiubin; Sun, Huihui; Xie, Haihua; Fu, Junhao; Liu, Changbao; Li, Jin; Chen, Ding; Xi, Haitao; Xue, Dongyu; Liu, Qi; Zhao, Junzhao; Gao, Caixia; Song, Zongming; Qu, Jia; Gu, Feng

    2017-11-02

    Cpf1 nucleases were recently reported to be highly specific and programmable nucleases with efficiencies comparable to those of SpCas9. AsCpf1 and LbCpf1 require a single crRNA and recognize a 5'-TTTN-3' protospacer adjacent motif (PAM) at the 5' end of the protospacer for genome editing. For widespread application in precision site-specific human genome editing, the range of sequences that AsCpf1 and LbCpf1 can recognize is limited due to the size of this PAM. To address this limitation, we sought to identify a novel Cpf1 nuclease with simpler PAM requirements. Specifically, here we sought to test and engineer FnCpf1, one reported Cpf1 nuclease (FnCpf1) only requires 5'-TTN-3' as a PAM but does not exhibit detectable levels of nuclease-induced indels at certain locus in human cells. Surprisingly, we found that FnCpf1 possesses DNA cleavage activity in human cells at multiple loci. We also comprehensively and quantitatively examined various FnCpf1 parameters in human cells, including spacer sequence, direct repeat sequence and the PAM sequence. Our study identifies FnCpf1 as a new member of the Cpf1 family for human genome editing with distinctive characteristics, which shows promise as a genome editing tool with the potential for both research and therapeutic applications. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Global RNA association with the transcriptionally active chromosome of chloroplasts.

    Science.gov (United States)

    Lehniger, Marie-Kristin; Finster, Sabrina; Melonek, Joanna; Oetke, Svenja; Krupinska, Karin; Schmitz-Linneweber, Christian

    2017-10-01

    Processed chloroplast RNAs are co-enriched with preparations of the chloroplast transcriptionally active chromosome. Chloroplast genomes are organized as a polyploid DNA-protein structure called the nucleoid. Transcriptionally active chloroplast DNA together with tightly bound protein factors can be purified by gel filtration as a functional entity called the transcriptionally active chromosome (TAC). Previous proteomics analyses of nucleoids and of TACs demonstrated a considerable overlap in protein composition including RNA binding proteins. Therefore the RNA content of TAC preparations from Nicotiana tabacum was determined using whole genome tiling arrays. A large number of chloroplast RNAs was found to be associated with the TAC. The pattern of RNAs attached to the TAC consists of RNAs produced by different chloroplast RNA polymerases and differs from the pattern of RNA found in input controls. An analysis of RNA splicing and RNA editing of selected RNA species demonstrated that TAC-associated RNAs are processed to a similar extent as the RNA in input controls. Thus, TAC fractions contain a specific subset of the processed chloroplast transcriptome.

  18. Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells.

    Directory of Open Access Journals (Sweden)

    Sanne Hindriksen

    Full Text Available The CRISPR/Cas9 system is a highly effective tool for genome editing. Key to robust genome editing is the efficient delivery of the CRISPR/Cas9 machinery. Viral delivery systems are efficient vehicles for the transduction of foreign genes but commonly used viral vectors suffer from a limited capacity in the genetic information they can carry. Baculovirus however is capable of carrying large exogenous DNA fragments. Here we investigate the use of baculoviral vectors as a delivery vehicle for CRISPR/Cas9 based genome-editing tools. We demonstrate transduction of a panel of cell lines with Cas9 and an sgRNA sequence, which results in efficient knockout of all four targeted subunits of the chromosomal passenger complex (CPC. We further show that introduction of a homology directed repair template into the same CRISPR/Cas9 baculovirus facilitates introduction of specific point mutations and endogenous gene tags. Tagging of the CPC recruitment factor Haspin with the fluorescent reporter YFP allowed us to study its native localization as well as recruitment to the cohesin subunit Pds5B.

  19. Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells.

    Science.gov (United States)

    Hindriksen, Sanne; Bramer, Arne J; Truong, My Anh; Vromans, Martijn J M; Post, Jasmin B; Verlaan-Klink, Ingrid; Snippert, Hugo J; Lens, Susanne M A; Hadders, Michael A

    2017-01-01

    The CRISPR/Cas9 system is a highly effective tool for genome editing. Key to robust genome editing is the efficient delivery of the CRISPR/Cas9 machinery. Viral delivery systems are efficient vehicles for the transduction of foreign genes but commonly used viral vectors suffer from a limited capacity in the genetic information they can carry. Baculovirus however is capable of carrying large exogenous DNA fragments. Here we investigate the use of baculoviral vectors as a delivery vehicle for CRISPR/Cas9 based genome-editing tools. We demonstrate transduction of a panel of cell lines with Cas9 and an sgRNA sequence, which results in efficient knockout of all four targeted subunits of the chromosomal passenger complex (CPC). We further show that introduction of a homology directed repair template into the same CRISPR/Cas9 baculovirus facilitates introduction of specific point mutations and endogenous gene tags. Tagging of the CPC recruitment factor Haspin with the fluorescent reporter YFP allowed us to study its native localization as well as recruitment to the cohesin subunit Pds5B.

  20. A non-canonical landscape of the microRNA system

    Directory of Open Access Journals (Sweden)

    Gabriel Adelman Cipolla

    2014-09-01

    Full Text Available Microribonucleic acids, best known as microRNAs or miRNAs, are small, non-coding RNAs with important regulatory roles in eukaryotic cells. Here, I present a broad review about highly relevant but generally non-depicted features of miRNAs, among which stand out the non-conventional miRNA seed sites, the unusual messenger RNA (mRNA target regions, the non-canonical miRNA-guided mechanisms of gene expression regulation and the recently identified new class of miRNA ligands. Furthermore, I address the miRNA uncommon genomic location, transcription, and subcellular localization. Altogether, these unusual features and roles place the miRNA system as a very diverse, complex and intriguing biological mechanism.

  1. Effective Delivery of PEGylated siRNA-Containing Lipoplexes to Extraperitoneal Tumours following Intraperitoneal Administration

    Directory of Open Access Journals (Sweden)

    Akul Singhania

    2011-01-01

    Full Text Available Intraperitoneal (i.p. administration of small interfering RNA (siRNA has, to date, shown promise in treating tumours located within the peritoneal cavity. The ability of these siRNA molecules to reach extraperitoneal tumours following i.p. administration is, however, yet to be investigated. Here, we examined the impact of PEGylation on the biodistribution of i.p. administered nucleic acids-containing lipoplexes. We showed that in contrast to non-PEGylated liposomes, PEGylated liposomes can deliver siRNA efficiently to extraperitoneal tumours following i.p. administration, resulting in a 45% reduction in tumour size when the oncogene-targeted siRNA was used. This difference was likely contributed by the decreased uptake of PEGylated lipoplexes in the first-pass organs, and, in particular, we observed a 10-fold decrease in the macrophage uptake of these particles compared to non-PEGylated counterparts. Overall, our results indicated the potential of using PEGylated liposomes to deliver siRNA for the treatment of i.p. localized cancer with coexisting extraperitoneal metastasis.

  2. Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma.

    Science.gov (United States)

    Liu, Tang; Shen, Jacson K; Li, Zhihong; Choy, Edwin; Hornicek, Francis J; Duan, Zhenfeng

    2016-04-01

    Sarcomas include some of the most aggressive tumors and typically respond poorly to chemotherapy. In recent years, specific gene fusion/mutations and gene over-expression/activation have been shown to drive sarcoma pathogenesis and development. These emerging genomic alterations may provide targets for novel therapeutic strategies and have the potential to transform sarcoma patient care. The RNA-guided nuclease CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein-9 nuclease) is a convenient and versatile platform for site-specific genome editing and epigenome targeted modulation. Given that sarcoma is believed to develop as a result of genetic alterations in mesenchymal progenitor/stem cells, CRISPR-Cas9 genome editing technologies hold extensive application potentials in sarcoma models and therapies. We review the development and mechanisms of the CRISPR-Cas9 system in genome editing and introduce its application in sarcoma research and potential therapy in clinic. Additionally, we propose future directions and discuss the challenges faced with these applications, providing concise and enlightening information for readers interested in this area. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. The modification of siRNA with 3' cholesterol to increase nuclease protection and suppression of native mRNA by select siRNA polyplexes.

    Science.gov (United States)

    Ambardekar, Vishakha V; Han, Huai-Yun; Varney, Michelle L; Vinogradov, Serguei V; Singh, Rakesh K; Vetro, Joseph A

    2011-02-01

    Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3' cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Understanding Editing Behaviors in Multilingual Wikipedia.

    Science.gov (United States)

    Kim, Suin; Park, Sungjoon; Hale, Scott A; Kim, Sooyoung; Byun, Jeongmin; Oh, Alice H

    2016-01-01

    Multilingualism is common offline, but we have a more limited understanding of the ways multilingualism is displayed online and the roles that multilinguals play in the spread of content between speakers of different languages. We take a computational approach to studying multilingualism using one of the largest user-generated content platforms, Wikipedia. We study multilingualism by collecting and analyzing a large dataset of the content written by multilingual editors of the English, German, and Spanish editions of Wikipedia. This dataset contains over two million paragraphs edited by over 15,000 multilingual users from July 8 to August 9, 2013. We analyze these multilingual editors in terms of their engagement, interests, and language proficiency in their primary and non-primary (secondary) languages and find that the English edition of Wikipedia displays different dynamics from the Spanish and German editions. Users primarily editing the Spanish and German editions make more complex edits than users who edit these editions as a second language. In contrast, users editing the English edition as a second language make edits that are just as complex as the edits by users who primarily edit the English edition. In this way, English serves a special role bringing together content written by multilinguals from many language editions. Nonetheless, language remains a formidable hurdle to the spread of content: we find evidence for a complexity barrier whereby editors are less likely to edit complex content in a second language. In addition, we find that multilinguals are less engaged and show lower levels of language proficiency in their second languages. We also examine the topical interests of multilingual editors and find that there is no significant difference between primary and non-primary editors in each language.

  5. Understanding Editing Behaviors in Multilingual Wikipedia.

    Directory of Open Access Journals (Sweden)

    Suin Kim

    Full Text Available Multilingualism is common offline, but we have a more limited understanding of the ways multilingualism is displayed online and the roles that multilinguals play in the spread of content between speakers of different languages. We take a computational approach to studying multilingualism using one of the largest user-generated content platforms, Wikipedia. We study multilingualism by collecting and analyzing a large dataset of the content written by multilingual editors of the English, German, and Spanish editions of Wikipedia. This dataset contains over two million paragraphs edited by over 15,000 multilingual users from July 8 to August 9, 2013. We analyze these multilingual editors in terms of their engagement, interests, and language proficiency in their primary and non-primary (secondary languages and find that the English edition of Wikipedia displays different dynamics from the Spanish and German editions. Users primarily editing the Spanish and German editions make more complex edits than users who edit these editions as a second language. In contrast, users editing the English edition as a second language make edits that are just as complex as the edits by users who primarily edit the English edition. In this way, English serves a special role bringing together content written by multilinguals from many language editions. Nonetheless, language remains a formidable hurdle to the spread of content: we find evidence for a complexity barrier whereby editors are less likely to edit complex content in a second language. In addition, we find that multilinguals are less engaged and show lower levels of language proficiency in their second languages. We also examine the topical interests of multilingual editors and find that there is no significant difference between primary and non-primary editors in each language.

  6. Study of RNA structures with a connection to random matrix theory

    International Nuclear Information System (INIS)

    Bhadola, Pradeep; Deo, Nivedita

    2015-01-01

    This manuscript investigates the level of complexity and thermodynamic properties of the real RNA structures and compares the properties with the random RNA sequences. A discussion on the similarities of thermodynamical properties of the real structures with the non linear random matrix model of RNA folding is presented. The structural information contained in the PDB file is exploited to get the base pairing information. The complexity of an RNA structure is defined by a topological quantity called genus which is calculated from the base pairing information. Thermodynamic analysis of the real structures is done numerically. The real structures have a minimum free energy which is very small compared to the randomly generated sequences of the same length. This analysis suggests that there are specific patterns in the structures which are preserved during the evolution of the sequences and certain sequences are discarded by the evolutionary process. Further analyzing the sequences of a fixed length reveal that the RNA structures exist in ensembles i.e. although all the sequences in the ensemble have different series of nucleotides (sequence) they fold into structures that have the same pairs of hydrogen bonding as well as the same minimum free energy. The specific heat of the RNA molecule is numerically estimated at different lengths. The specific heat curve with temperature shows a bump and for some RNA, a double peak behavior is observed. The same behavior is seen in the study of the random matrix model with non linear interaction of RNA folding. The bump in the non linear matrix model can be controlled by the change in the interaction strength.

  7. An RNA Domain Imparts Specificity and Selectivity to a Viral DNA Packaging Motor

    Science.gov (United States)

    Zhao, Wei; Jardine, Paul J.

    2015-01-01

    ABSTRACT During assembly, double-stranded DNA viruses, including bacteriophages and herpesviruses, utilize a powerful molecular motor to package their genomic DNA into a preformed viral capsid. An integral component of the packaging motor in the Bacillus subtilis bacteriophage ϕ29 is a viral genome-encoded pentameric ring of RNA (prohead RNA [pRNA]). pRNA is a 174-base transcript comprised of two domains, domains I and II. Early studies initially isolated a 120-base form (domain I only) that retains high biological activity in vitro; hence, no function could be assigned to domain II. Here we define a role for this domain in the packaging process. DNA packaging using restriction digests of ϕ29 DNA showed that motors with the 174-base pRNA supported the correct polarity of DNA packaging, selectively packaging the DNA left end. In contrast, motors containing the 120-base pRNA had compromised specificity, packaging both left- and right-end fragments. The presence of domain II also provides selectivity in competition assays with genomes from related phages. Furthermore, motors with the 174-base pRNA were restrictive, in that they packaged only one DNA fragment into the head, whereas motors with the 120-base pRNA packaged several fragments into the head, indicating multiple initiation events. These results show that domain II imparts specificity and stringency to the motor during the packaging initiation events that precede DNA translocation. Heteromeric rings of pRNA demonstrated that one or two copies of domain II were sufficient to impart this selectivity/stringency. Although ϕ29 differs from other double-stranded DNA phages in having an RNA motor component, the function provided by pRNA is carried on the motor protein components in other phages. IMPORTANCE During virus assembly, genome packaging involves the delivery of newly synthesized viral nucleic acid into a protein shell. In the double-stranded DNA phages and herpesviruses, this is accomplished by a powerful

  8. An RNA Domain Imparts Specificity and Selectivity to a Viral DNA Packaging Motor.

    Science.gov (United States)

    Zhao, Wei; Jardine, Paul J; Grimes, Shelley

    2015-12-01

    During assembly, double-stranded DNA viruses, including bacteriophages and herpesviruses, utilize a powerful molecular motor to package their genomic DNA into a preformed viral capsid. An integral component of the packaging motor in the Bacillus subtilis bacteriophage ϕ29 is a viral genome-encoded pentameric ring of RNA (prohead RNA [pRNA]). pRNA is a 174-base transcript comprised of two domains, domains I and II. Early studies initially isolated a 120-base form (domain I only) that retains high biological activity in vitro; hence, no function could be assigned to domain II. Here we define a role for this domain in the packaging process. DNA packaging using restriction digests of ϕ29 DNA showed that motors with the 174-base pRNA supported the correct polarity of DNA packaging, selectively packaging the DNA left end. In contrast, motors containing the 120-base pRNA had compromised specificity, packaging both left- and right-end fragments. The presence of domain II also provides selectivity in competition assays with genomes from related phages. Furthermore, motors with the 174-base pRNA were restrictive, in that they packaged only one DNA fragment into the head, whereas motors with the 120-base pRNA packaged several fragments into the head, indicating multiple initiation events. These results show that domain II imparts specificity and stringency to the motor during the packaging initiation events that precede DNA translocation. Heteromeric rings of pRNA demonstrated that one or two copies of domain II were sufficient to impart this selectivity/stringency. Although ϕ29 differs from other double-stranded DNA phages in having an RNA motor component, the function provided by pRNA is carried on the motor protein components in other phages. During virus assembly, genome packaging involves the delivery of newly synthesized viral nucleic acid into a protein shell. In the double-stranded DNA phages and herpesviruses, this is accomplished by a powerful molecular motor

  9. Arrangements for transition from the 1985 edition (as amended 1990) to the 1996 edition of the IAEA Transport Regulations

    International Nuclear Information System (INIS)

    2001-03-01

    The purpose of this publication is to provide guidance to National Competent Authorities to facilitate compliance during, and after, transition from the previous edition of the International Atomic Energy Agency's (IAEA's) Transport Regulations (Safety Series No. 6, 1985 Edition, as Amended 1990) to the 1996 editions (TS-R-1 [ST-1, Revised], in English; ST-1 in French, Russian and Spanish) of the regulations. This may also provide guidance to other users of the IAEA's Transport Regulations such as consignors, carriers, consignees, owners and designers and fabricators of radioactive material and package designers and fabrications

  10. A ‘new lease of life’: FnCpf1 possesses DNA cleavage activity for genome editing in human cells

    Science.gov (United States)

    Tu, Mengjun; Lin, Li; Cheng, Yilu; He, Xiubin; Sun, Huihui; Xie, Haihua; Fu, Junhao; Liu, Changbao; Li, Jin; Chen, Ding; Xi, Haitao; Xue, Dongyu; Liu, Qi; Zhao, Junzhao; Gao, Caixia; Song, Zongming; Qu, Jia

    2017-01-01

    Abstract Cpf1 nucleases were recently reported to be highly specific and programmable nucleases with efficiencies comparable to those of SpCas9. AsCpf1 and LbCpf1 require a single crRNA and recognize a 5′-TTTN-3′ protospacer adjacent motif (PAM) at the 5′ end of the protospacer for genome editing. For widespread application in precision site-specific human genome editing, the range of sequences that AsCpf1 and LbCpf1 can recognize is limited due to the size of this PAM. To address this limitation, we sought to identify a novel Cpf1 nuclease with simpler PAM requirements. Specifically, here we sought to test and engineer FnCpf1, one reported Cpf1 nuclease (FnCpf1) only requires 5′-TTN-3′ as a PAM but does not exhibit detectable levels of nuclease-induced indels at certain locus in human cells. Surprisingly, we found that FnCpf1 possesses DNA cleavage activity in human cells at multiple loci. We also comprehensively and quantitatively examined various FnCpf1 parameters in human cells, including spacer sequence, direct repeat sequence and the PAM sequence. Our study identifies FnCpf1 as a new member of the Cpf1 family for human genome editing with distinctive characteristics, which shows promise as a genome editing tool with the potential for both research and therapeutic applications. PMID:28977650

  11. Iterating between Tools to Create and Edit Visualizations.

    Science.gov (United States)

    Bigelow, Alex; Drucker, Steven; Fisher, Danyel; Meyer, Miriah

    2017-01-01

    A common workflow for visualization designers begins with a generative tool, like D3 or Processing, to create the initial visualization; and proceeds to a drawing tool, like Adobe Illustrator or Inkscape, for editing and cleaning. Unfortunately, this is typically a one-way process: once a visualization is exported from the generative tool into a drawing tool, it is difficult to make further, data-driven changes. In this paper, we propose a bridge model to allow designers to bring their work back from the drawing tool to re-edit in the generative tool. Our key insight is to recast this iteration challenge as a merge problem - similar to when two people are editing a document and changes between them need to reconciled. We also present a specific instantiation of this model, a tool called Hanpuku, which bridges between D3 scripts and Illustrator. We show several examples of visualizations that are iteratively created using Hanpuku in order to illustrate the flexibility of the approach. We further describe several hypothetical tools that bridge between other visualization tools to emphasize the generality of the model.

  12. Oxyacetylene Welding and Oxyfuel Cutting. Third Edition. Teacher Edition [and] Student Edition [and] Student Workbook.

    Science.gov (United States)

    Knapp, John; Harper, Eddie

    This Oklahoma curriculum guide, which includes a teacher edition, a student edition, and a student workbook, provides three units for a course on oxyacetylene welding, oxyfuel cutting, and cutting done with alternative fuels such as MAPP, propane, and natural gas. The three units are: "Oxyacetylene Welding"; "Oxyfuel Cutting";…

  13. Matematicas en la vida actual. Volumen I, edicion para el maestro. (Mathematics: A Practical View. Volume I, Teacher Edition). Applied Basic Curriculum Series.

    Science.gov (United States)

    Evaluation, Dissemination and Assessment Center, Dallas.

    This Spanish language teacher's edition of a practical mathematics text for the intermediate grades contains three components which can be structured in different combinations according to different student needs. Built around a review of selected objectives in the mathematics basic curriculum, the material is intended to stimulate interest in…

  14. A Sequence-Specific Interaction between the Saccharomyces cerevisiae rRNA Gene Repeats and a Locus Encoding an RNA Polymerase I Subunit Affects Ribosomal DNA Stability

    Science.gov (United States)

    Cahyani, Inswasti; Cridge, Andrew G.; Engelke, David R.; Ganley, Austen R. D.

    2014-01-01

    The spatial organization of eukaryotic genomes is linked to their functions. However, how individual features of the global spatial structure contribute to nuclear function remains largely unknown. We previously identified a high-frequency interchromosomal interaction within the Saccharomyces cerevisiae genome that occurs between the intergenic spacer of the ribosomal DNA (rDNA) repeats and the intergenic sequence between the locus encoding the second largest RNA polymerase I subunit and a lysine tRNA gene [i.e., RPA135-tK(CUU)P]. Here, we used quantitative chromosome conformation capture in combination with replacement mapping to identify a 75-bp sequence within the RPA135-tK(CUU)P intergenic region that is involved in the interaction. We demonstrate that the RPA135-IGS1 interaction is dependent on the rDNA copy number and the Msn2 protein. Surprisingly, we found that the interaction does not govern RPA135 transcription. Instead, replacement of a 605-bp region within the RPA135-tK(CUU)P intergenic region results in a reduction in the RPA135-IGS1 interaction level and fluctuations in rDNA copy number. We conclude that the chromosomal interaction that occurs between the RPA135-tK(CUU)P and rDNA IGS1 loci stabilizes rDNA repeat number and contributes to the maintenance of nucleolar stability. Our results provide evidence that the DNA loci involved in chromosomal interactions are composite elements, sections of which function in stabilizing the interaction or mediating a functional outcome. PMID:25421713

  15. Interferon γ-inducible protein (IFI) 16 transcriptionally regulates type i interferons and other interferon-stimulated genes and controls the interferon response to both DNA and RNA viruses.

    Science.gov (United States)

    Thompson, Mikayla R; Sharma, Shruti; Atianand, Maninjay; Jensen, Søren B; Carpenter, Susan; Knipe, David M; Fitzgerald, Katherine A; Kurt-Jones, Evelyn A

    2014-08-22

    The interferon γ-inducible protein 16 (IFI16) has recently been linked to the detection of nuclear and cytosolic DNA during infection with herpes simplex virus-1 and HIV. IFI16 binds dsDNA via HIN200 domains and activates stimulator of interferon genes (STING), leading to TANK (TRAF family member-associated NF-κB activator)-binding kinase-1 (TBK1)-dependent phosphorylation of interferon regulatory factor (IRF) 3 and transcription of type I interferons (IFNs) and related genes. To better understand the role of IFI16 in coordinating type I IFN gene regulation, we generated cell lines with stable knockdown of IFI16 and examined responses to DNA and RNA viruses as well as cyclic dinucleotides. As expected, stable knockdown of IFI16 led to a severely attenuated type I IFN response to DNA ligands and viruses. In contrast, expression of the NF-κB-regulated cytokines IL-6 and IL-1β was unaffected in IFI16 knockdown cells, suggesting that the role of IFI16 in sensing these triggers was unique to the type I IFN pathway. Surprisingly, we also found that knockdown of IFI16 led to a severe attenuation of IFN-α and the IFN-stimulated gene retinoic acid-inducible gene I (RIG-I) in response to cyclic GMP-AMP, a second messenger produced by cyclic GMP-AMP synthase (cGAS) as well as RNA ligands and viruses. Analysis of IFI16 knockdown cells revealed compromised occupancy of RNA polymerase II on the IFN-α promoter in these cells, suggesting that transcription of IFN-stimulated genes is dependent on IFI16. These results indicate a broader role for IFI16 in the regulation of the type I IFN response to RNA and DNA viruses in antiviral immunity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. The Modification of siRNA with 3′ Cholesterol to Increase Nuclease Protection and Suppression of Native mRNA by Select siRNA Polyplexes

    Science.gov (United States)

    Ambardekar, Vishakha V.; Han, Huai-Yun; Varney, Michelle L.; Vinogradov, Serguei V.; Singh, Rakesh K.; Vetro, Joseph A.

    2010-01-01

    Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3′ cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. PMID:21047680

  17. Microarray data analyses of yeast RNA Pol I subunit RPA12 deletion strain

    Directory of Open Access Journals (Sweden)

    Kamlesh Kumar Yadav

    2016-06-01

    Full Text Available The ribosomal RNA (rRNA biosynthesis is the most energy consuming process in all living cells and the majority of total transcription activity is dedicated for synthesizing rRNA. The cells may adjust the synthesis of rRNA with the availability of resources. rRNA is mainly synthesized by RNA polymerase I that is composed of 14 subunits. Deletion of RPA12, 14, 39 and 49 are viable. RPA12 is a very small protein (13.6 kDa, and the amount of protein in the cells is very high (12,000 molecules per cell, but the role of this protein is unknown in other cellular metabolic processes (Kulak et al., 2014 [1]. RPA12 consists of two zinc-binding domains and it is required for the termination of rRNA synthesis (Mullem et al., 2002 [2]. Deletions of RPA12 in Saccharomyces cerevisiae and Schizosaccharomyces pombe cause a conditional growth defect (Nogi et al., 1993 [3]. In S. pombe, C-terminal deletion behaves like wild-type (Imazawa et al., 2001 [4]. This prompted us to investigate in detail the physiological role of RPA12 in S. cerevisiae, we performed the microarray of rpa12∆ strain and deposited into Gene Expression Omnibus under GSE68731. The analysis of microarray data revealed that the expression of major cellular metabolism genes is high. The amino acid biosynthesis, nonpolar lipid biosynthesis and glucose metabolic genes are highly expressed. The analyses also revealed that the rpa12∆ cells have an uncontrolled synthesis of cell metabolites, so RPA12 could be a master regulator for whole cellular metabolism.

  18. Preface to Special Edition

    Directory of Open Access Journals (Sweden)

    Renee Nathanson

    2012-04-01

    Full Text Available Given that reading comprehension is at the forefront of global literacy discourse, this special edition of Per Linguam, the first number that is also published online, features a collection of articles that cover different aspects of reading comprehension and instruction, such as, strategies for comprehending texts, metacognitive awareness, the reciprocity of assessment and comprehension instruction and socio-affective factors that influence comprehension.

  19. An anti-HIV-1 compound that increases steady-state expression of apoplipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G.

    Science.gov (United States)

    Ejima, Tomohiko; Hirota, Mayuko; Mizukami, Tamio; Otsuka, Masami; Fujita, Mikako

    2011-10-01

    Human apoplipoprotein B mRNA-editing enzyme-catalytic polypeptide-like (APOBEC) 3G (A3G) is an antiviral protein that blocks HIV-1 replication. However, the antiviral activity of A3G is overcome by the HIV-1 protein Vif. This inhibitory function of Vif is related to its ability to degrade A3G in the proteasome. This finding prompted us to examine the activities of 4-(dimethylamino)-2,6-bis[(N-(2-[(2-nitrophenyl)dithio]ethyl)amino)methyl]pyridine (SN-2) and SN-3. We found that 5 µM SN-2 increases the expression of A3G to a level much higher than that observed in the absence of Vif, without affecting the level of Vif expression. The proteasome inhibitor MG-132 increased the level of both A3G and Vif expression. These results demonstrate that A3G is ubiquitinated and degraded in the proteasome by a factor other than Vif, and that SN-2 selectively inhibits these processes. Furthermore, 5 µM SN-2 significantly inhibited the MAGI cell infectivity of wild-type HIV-1. These findings may contribute to the development of a novel anti-HIV-1 drug.

  20. B. abortus RNA is the component involved in the down-modulation of MHC-I expression on human monocytes via TLR8 and the EGFR pathway

    Science.gov (United States)

    Milillo, M. Ayelén; Velásquez, Lis N.; Trotta, Aldana; Delpino, M. Victoria; Balboa, Luciana; Vermeulen, Mónica; Espindola, Sonia L.; Rodriguez-Rodrigues, Nahuel; Fernández, Gabriela C.; Oliveira, Sergio Costa; Giambartolomei, Guillermo H.

    2017-01-01

    Despite eliciting a potent CD8+ T cell response, Brucella abortus is able to persist and establish a chronic infection inside its host. We have previously reported that the infection of human monocytes/macrophages with B. abortus inhibits the IFN-γ-induced MHC-I cell surface expression down-modulating cytotoxic CD8+ T cell responses. MHC-I down-modulation depends on bacterial viability and results from the capacity of B. abortus to retain the MHC-I molecules within the Golgi apparatus. Furthermore, we recently demonstrated that epidermal growth factor receptor (EGFR) pathway is involved in this phenomenon and that this is an early event during infection. However, the components and mechanisms whereby B. abortus is able to down-modulate MHC-I remained to be elucidated. In this study we demonstrated that the down-modulation of MHC-I expression is not mediated by well-known Brucella virulence factors but instead by B. abortus RNA, a PAMP associated to viability (vita-PAMP). Surprisingly, completely degraded RNA was also able to inhibit MHC-I expression to the same extent as intact RNA. Accordingly, B. abortus RNA and its degradation products were able to mimic the MHC-I intracellular retention within the Golgi apparatus observed upon infection. We further demonstrated that TLR8, a single-stranded RNA and RNA degradation products sensor, was involved in MHC-I inhibition. On the other hand, neutralization of the EGFR reversed the MHC-I inhibition, suggesting a connection between the TLR8 and EGFR pathways. Finally, B. abortus RNA-treated macrophages display diminished capacity of antigen presentation to CD8+ T cells. Overall, our results indicate that the vita-PAMP RNA as well as its degradation products constitute novel virulence factors whereby B. abortus, by a TLR8-dependent mechanism and through the EGFR pathway, inhibits the IFN-γ-induced MHC-I surface expression on human monocytes/macrophages. Thus, bacteria can hide within infected cells and avoid the

  1. B. abortus RNA is the component involved in the down-modulation of MHC-I expression on human monocytes via TLR8 and the EGFR pathway.

    Directory of Open Access Journals (Sweden)

    M Ayelén Milillo

    2017-08-01

    Full Text Available Despite eliciting a potent CD8+ T cell response, Brucella abortus is able to persist and establish a chronic infection inside its host. We have previously reported that the infection of human monocytes/macrophages with B. abortus inhibits the IFN-γ-induced MHC-I cell surface expression down-modulating cytotoxic CD8+ T cell responses. MHC-I down-modulation depends on bacterial viability and results from the capacity of B. abortus to retain the MHC-I molecules within the Golgi apparatus. Furthermore, we recently demonstrated that epidermal growth factor receptor (EGFR pathway is involved in this phenomenon and that this is an early event during infection. However, the components and mechanisms whereby B. abortus is able to down-modulate MHC-I remained to be elucidated. In this study we demonstrated that the down-modulation of MHC-I expression is not mediated by well-known Brucella virulence factors but instead by B. abortus RNA, a PAMP associated to viability (vita-PAMP. Surprisingly, completely degraded RNA was also able to inhibit MHC-I expression to the same extent as intact RNA. Accordingly, B. abortus RNA and its degradation products were able to mimic the MHC-I intracellular retention within the Golgi apparatus observed upon infection. We further demonstrated that TLR8, a single-stranded RNA and RNA degradation products sensor, was involved in MHC-I inhibition. On the other hand, neutralization of the EGFR reversed the MHC-I inhibition, suggesting a connection between the TLR8 and EGFR pathways. Finally, B. abortus RNA-treated macrophages display diminished capacity of antigen presentation to CD8+ T cells. Overall, our results indicate that the vita-PAMP RNA as well as its degradation products constitute novel virulence factors whereby B. abortus, by a TLR8-dependent mechanism and through the EGFR pathway, inhibits the IFN-γ-induced MHC-I surface expression on human monocytes/macrophages. Thus, bacteria can hide within infected cells and

  2. Isolation of RNA for dot hybridization by heparin-DNase I treatment of whole cell lysate.

    Science.gov (United States)

    Krawczyk, Z; Wu, C

    1987-08-15

    We have developed a new procedure for the rapid preparation of undegraded total RNA from cultured cells for specific quantitation by dot blotting analysis. Pelleted cells are resuspended in hypotonic solution containing a ribonuclease inhibitor and heparin and disrupted by freeze-thaw. Heparin is employed as an agent for nuclear lysis, dissociation of chromosomal protein, and release of mRNA from rough endoplasmic reticulum. We eliminate chromosomal DNA by digestion with DNase I and denature the RNA in the lysate with formaldehyde. After centrifugation to remove debris, the supernatant is used directly for dot blotting. All manipulations are performed in the same microfuge tube and recovery of RNA is quantitative. The procedure is especially useful for processing large numbers of samples. We illustrate its versatility by analysis of specific RNAs in Drosophila, rat, and human cell lines. In reconstruction experiments, less than 80 molecules per cell of a small RNA (beta-globin) can be detected under highly stringent hybridization conditions, using only moderately labeled double-stranded plasmid DNA probes and short film exposures.

  3. Transfected poly(I:C) activates different dsRNA receptors, leading to apoptosis or immunoadjuvant response in androgen-independent prostate cancer cells.

    Science.gov (United States)

    Palchetti, Sara; Starace, Donatella; De Cesaris, Paola; Filippini, Antonio; Ziparo, Elio; Riccioli, Anna

    2015-02-27

    Despite the effectiveness of surgery or radiation therapy for the treatment of early-stage prostate cancer (PCa), there is currently no effective strategy for late-stage disease. New therapeutic targets are emerging; in particular, dsRNA receptors Toll-like receptor 3 (TLR3) and cytosolic helicases expressed by cancer cells, once activated, exert a pro-apoptotic effect in different tumors. We previously demonstrated that the synthetic analog of dsRNA poly(I:C) induces apoptosis in the androgen-dependent PCa cell line LNCaP in a TLR3-dependent fashion, whereas only a weak apoptotic effect is observed in the more aggressive and androgen-independent PCa cells PC3 and DU145. In this paper, we characterize the receptors and the signaling pathways involved in the remarkable apoptosis induced by poly(I:C) transfected by Lipofectamine (in-poly(I:C)) compared with the 12-fold higher free poly(I:C) concentration in PC3 and DU145 cells. By using genetic inhibition of different poly(I:C) receptors, we demonstrate the crucial role of TLR3 and Src in in-poly(I:C)-induced apoptosis. Therefore, we show that the increased in-poly(I:C) apoptotic efficacy is due to a higher binding of endosomal TLR3. On the other hand, we show that in-poly(I:C) binding to cytosolic receptors MDA5 and RIG-I triggers IRF3-mediated signaling, leading uniquely to the up-regulation of IFN-β, which likely in turn induces increased TLR3, MDA5, and RIG-I proteins. In summary, in-poly(I:C) activates two distinct antitumor pathways in PC3 and DU145 cells: one mediated by the TLR3/Src/STAT1 axis, leading to apoptosis, and the other one mediated by MDA5/RIG-I/IRF3, leading to immunoadjuvant IFN-β expression. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. 5S ribosomal RNA database Y2K.

    Science.gov (United States)

    Szymanski, M; Barciszewska, M Z; Barciszewski, J; Erdmann, V A

    2000-01-01

    This paper presents the updated version (Y2K) of the database of ribosomal 5S ribonucleic acids (5S rRNA) and their genes (5S rDNA), http://rose.man/poznan.pl/5SData/index.html. This edition of the database contains 1985primary structures of 5S rRNA and 5S rDNA. They include 60 archaebacterial, 470 eubacterial, 63 plastid, nine mitochondrial and 1383 eukaryotic sequences. The nucleotide sequences of the 5S rRNAs or 5S rDNAs are divided according to the taxonomic position of the source organisms.

  5. Nonviral Genome Editing Based on a Polymer-Derivatized CRISPR Nanocomplex for Targeting Bacterial Pathogens and Antibiotic Resistance.

    Science.gov (United States)

    Kang, Yoo Kyung; Kwon, Kyu; Ryu, Jea Sung; Lee, Ha Neul; Park, Chankyu; Chung, Hyun Jung

    2017-04-19

    The overuse of antibiotics plays a major role in the emergence and spread of multidrug-resistant bacteria. A molecularly targeted, specific treatment method for bacterial pathogens can prevent this problem by reducing the selective pressure during microbial growth. Herein, we introduce a nonviral treatment strategy delivering genome editing material for targeting antibacterial resistance. We apply the CRISPR-Cas9 system, which has been recognized as an innovative tool for highly specific and efficient genome engineering in different organisms, as the delivery cargo. We utilize polymer-derivatized Cas9, by direct covalent modification of the protein with cationic polymer, for subsequent complexation with single-guide RNA targeting antibiotic resistance. We show that nanosized CRISPR complexes (= Cr-Nanocomplex) were successfully formed, while maintaining the functional activity of Cas9 endonuclease to induce double-strand DNA cleavage. We also demonstrate that the Cr-Nanocomplex designed to target mecA-the major gene involved in methicillin resistance-can be efficiently delivered into Methicillin-resistant Staphylococcus aureus (MRSA), and allow the editing of the bacterial genome with much higher efficiency compared to using native Cas9 complexes or conventional lipid-based formulations. The present study shows for the first time that a covalently modified CRISPR system allows nonviral, therapeutic genome editing, and can be potentially applied as a target specific antimicrobial.

  6. Taking Your iPhoto '11 to the Max

    CERN Document Server

    Grothaus, Michael

    2011-01-01

    Taking Your iPhoto '11 to the Max walks users through Apple's most popular software application in the iLife suite - iPhoto. This book helps readers use iPhoto to its fullest to organize and create digital memories and keepsakes. * Learn all about Apple's newest version of iPhoto - iPhoto '11 * Explore iPhoto, one menu button at a time * Walk-through tutorials guide you step-by-step What you'll learn * How to import existing photo libraries from popular Windows applications * How to organize and edit your photos * How to tag your photos using iPhoto's Faces and Places features * How to create

  7. <i>De Novoi> Discovery of Structured ncRNA Motifs in Genomic Sequences

    DEFF Research Database (Denmark)

    Ruzzo, Walter L; Gorodkin, Jan

    2014-01-01

    De novo discovery of "motifs" capturing the commonalities among related noncoding ncRNA structured RNAs is among the most difficult problems in computational biology. This chapter outlines the challenges presented by this problem, together with some approaches towards solving them, with an emphas...... on an approach based on the CMfinder CMfinder program as a case study. Applications to genomic screens for novel de novo structured ncRNA ncRNA s, including structured RNA elements in untranslated portions of protein-coding genes, are presented.......De novo discovery of "motifs" capturing the commonalities among related noncoding ncRNA structured RNAs is among the most difficult problems in computational biology. This chapter outlines the challenges presented by this problem, together with some approaches towards solving them, with an emphasis...

  8. Whole genome analysis of CRISPR Cas9 sgRNA off-target homologies via an efficient computational algorithm.

    Science.gov (United States)

    Zhou, Hong; Zhou, Michael; Li, Daisy; Manthey, Joseph; Lioutikova, Ekaterina; Wang, Hong; Zeng, Xiao

    2017-11-17

    The beauty and power of the genome editing mechanism, CRISPR Cas9 endonuclease system, lies in the fact that it is RNA-programmable such that Cas9 can be guided to any genomic loci complementary to a 20-nt RNA, single guide RNA (sgRNA), to cleave double stranded DNA, allowing the introduction of wanted mutations. Unfortunately, it has been reported repeatedly that the sgRNA can also guide Cas9 to off-target sites where the DNA sequence is homologous to sgRNA. Using human genome and Streptococcus pyogenes Cas9 (SpCas9) as an example, this article mathematically analyzed the probabilities of off-target homologies of sgRNAs and discovered that for large genome size such as human genome, potential off-target homologies are inevitable for sgRNA selection. A highly efficient computationl algorithm was developed for whole genome sgRNA design and off-target homology searches. By means of a dynamically constructed sequence-indexed database and a simplified sequence alignment method, this algorithm achieves very high efficiency while guaranteeing the identification of all existing potential off-target homologies. Via this algorithm, 1,876,775 sgRNAs were designed for the 19,153 human mRNA genes and only two sgRNAs were found to be free of off-target homology. By means of the novel and efficient sgRNA homology search algorithm introduced in this article, genome wide sgRNA design and off-target analysis were conducted and the results confirmed the mathematical analysis that for a sgRNA sequence, it is almost impossible to escape potential off-target homologies. Future innovations on the CRISPR Cas9 gene editing technology need to focus on how to eliminate the Cas9 off-target activity.

  9. Cloud Properties of CERES-MODIS Edition 4 and CERES-VIIRS Edition 1

    Science.gov (United States)

    Sun-Mack, Sunny; Minnis, Patrick; Chang, Fu-Lung; Hong, Gang; Arduini, Robert; Chen, Yan; Trepte, Qing; Yost, Chris; Smith, Rita; Brown, Ricky; hide

    2015-01-01

    The Clouds and Earth's Radiant Energy System (CERES) analyzes MODerate-resolution Imaging Spectroradiometer (MODIS) data and Visible Infrared Imaging Radiometer Suite (VIIRS) to derive cloud properties that are combine with aerosol and CERES broadband flux data to create a multi-parameter data set for climate study. CERES has produced over 15 years of data from Terra and over 13 years of data from Aqua using the CERES-MODIS Edition-2 cloud retrieval algorithm. A recently revised algorithm, CERESMODIS Edition 4, has been developed and is now generating enhanced cloud data for climate research (over 10 years for Terra and 8 years for Aqua). New multispectral retrievals of properties are included along with a multilayer cloud retrieval system. Cloud microphysical properties are reported at 3 wavelengths, 0.65, 1.24, and 2.1 microns to enable better estimates of the vertical profiles of cloud water contents. Cloud properties over snow are retrieved using the 1.24-micron channel. A new CERES-VIIRS cloud retrieval package was developed for the VIIRS spectral complement and is currently producing the CERES-VIIRS Edition 1 cloud dataset. The results from CERES-MODIS Edition 4 and CERES-VIIRS Edition 1 are presented and compared with each other and other datasets, including CALIPSO, CloudSat and the CERES-MODIS Edition-2 results.

  10. Using a Specific RNA-Protein Interaction To Quench the Fluorescent RNA Spinach.

    Science.gov (United States)

    Roszyk, Laura; Kollenda, Sebastian; Hennig, Sven

    2017-12-15

    RNAs are involved in interaction networks with other biomolecules and are crucial for proper cell function. Yet their biochemical analysis remains challenging. For Förster Resonance Energy Transfer (FRET), a common tool to study such interaction networks, two interacting molecules have to be fluorescently labeled. "Spinach" is a genetically encodable RNA aptamer that starts to fluoresce upon binding of an organic molecule. Therefore, it is a biological fluorophore tag for RNAs. However, spinach has never been used in a FRET assembly before. Here, we describe how spinach is quenched when close to acceptors. We used RNA-DNA hybridization to bring quenchers or red organic dyes in close proximity to spinach. Furthermore, we investigate RNA-protein interactions quantitatively on the example of Pseudomonas aeruginosa phage coat protein 7 (PP7) and its interacting pp7-RNA. We utilize spinach quenching as a fully genetically encodable system even under lysate conditions. Therefore, this work represents a direct method to analyze RNA-protein interactions by quenching the spinach aptamer.

  11. Ebolavirus VP35 uses a bimodal strategy to bind dsRNA for innate immune suppression

    Energy Technology Data Exchange (ETDEWEB)

    Kimberlin, Christopher R.; Bornholdt, Zachary A.; Li, Sheng; Woods, Jr., Virgil L.; MacRae, Ian J.; Saphire, Erica Ollmann (Scripps); (UCSD)

    2010-03-12

    Ebolavirus causes a severe hemorrhagic fever and is divided into five distinct species, of which Reston ebolavirus is uniquely nonpathogenic to humans. Disease caused by ebolavirus is marked by early immunosuppression of innate immune signaling events, involving silencing and sequestration of double-stranded RNA (dsRNA) by the viral protein VP35. Here we present unbound and dsRNA-bound crystal structures of the dsRNA-binding domain of Reston ebolavirus VP35. The structures show that VP35 forms an unusual, asymmetric dimer on dsRNA binding, with each of the monomers binding dsRNA in a different way: one binds the backbone whereas the other caps the terminus. Additional SAXS, DXMS, and dsRNA-binding experiments presented here support a model of cooperative dsRNA recognition in which binding of the first monomer assists binding of the next monomer of the oligomeric VP35 protein. This work illustrates how ebolavirus VP35 could mask key recognition sites of molecules such as RIG-I, MDA-5, and Dicer to silence viral dsRNA in infection.

  12. [One hundred years of Freud editions in The Netherlands].

    Science.gov (United States)

    Greven, Elsbeth

    2009-01-01

    The history of Dutch editions of Freud is discussed from a publisher's point of view. The author focuses on the main publishers involved in presenting Freud's work to the Dutch public: S. C. van Doesburgh, De Wereldbibliotheek, De Bezige Bij and Uitgeverij Boom. She describes their role, together with their networks of translators, editors and psychoanalysts, in the production, perception and reception of Freud's work--and hence in the development of psychoanalysis in The Netherlands--as well as their approaches to translation, publishing strategies and use of paratextual resources. Three main stages can be identified: 1. 1912 to World War I (Freud was introduced), 2. World War I to 1950 (Freud was popularised), and 3. 1960 to 1990 (Freud was canonised, but also criticised). A fourth stage, the historicisation of Freud, began in 2006 with a new, scholarly edition of his Werken, arranged in chronological order.

  13. Transplantation of Gene-Edited Hepatocyte-like Cells Modestly Improves Survival of Arginase-1-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Yuan Yan Sin

    2018-03-01

    Full Text Available Progress in gene editing research has been accelerated by utilizing engineered nucleases in combination with induced pluripotent stem cell (iPSC technology. Here, we report transcription activator-like effector nuclease (TALEN-mediated reincorporation of Arg1 exons 7 and 8 in iPSCs derived from arginase-1-deficient mice possessing Arg1Δ alleles lacking these terminal exons. The edited cells could be induced to differentiate into hepatocyte-like cells (iHLCs in vitro and were subsequently used for transplantation into our previously described (Sin et al., PLoS ONE 2013 tamoxifen-inducible Arg1-Cre arginase-1-deficient mouse model. While successful gene-targeted repair was achieved in iPSCs containing Arg1Δ alleles, only minimal restoration of urea cycle function could be observed in the iHLC-transplanted mice compared to control mice, and survival in this lethal model was extended by up to a week in some mice. The partially rescued phenotype may be due to inadequate regenerative capacity of arginase-1-expressing cells in the correct metabolic zones. Technical hurdles exist and will need to be overcome for gene-edited iPSC to iHLC rescue of arginase-1 deficiency, a rare urea cycle disorder.

  14. CCR5 Disruption in Induced Pluripotent Stem Cells Using CRISPR/Cas9 Provides Selective Resistance of Immune Cells to CCR5-tropic HIV-1 Virus.

    Science.gov (United States)

    Kang, HyunJun; Minder, Petra; Park, Mi Ae; Mesquitta, Walatta-Tseyon; Torbett, Bruce E; Slukvin, Igor I

    2015-12-15

    The chemokine (C-C motif) receptor 5 (CCR5) serves as an HIV-1 co-receptor and is essential for cell infection with CCR5-tropic viruses. Loss of functional receptor protects against HIV infection. Here, we report the successful targeting of CCR5 in GFP-marked human induced pluripotent stem cells (iPSCs) using CRISPR/Cas9 with single and dual guide RNAs (gRNAs). Following CRISPER/Cas9-mediated gene editing using a single gRNA, 12.5% of cell colonies demonstrated CCR5 editing, of which 22.2% showed biallelic editing as determined by a Surveyor nuclease assay and direct sequencing. The use of dual gRNAs significantly increased the efficacy of CCR5 editing to 27% with a biallelic gene alteration frequency of 41%. To ensure the homogeneity of gene editing within cells, we used single cell sorting to establish clonal iPSC lines. Single cell-derived iPSC lines with homozygous CCR5 mutations displayed the typical characteristics of pluripotent stem cells and differentiated efficiently into hematopoietic cells, including macrophages. Although macrophages from both wild-type and CCR5-edited iPSCs supported CXCR4-tropic virus replication, macrophages from CCR5-edited iPSCs were uniquely resistant to CCR5-tropic virus challenge. This study demonstrates the feasibility of applying iPSC technology for the study of the role of CCR5 in HIV infection in vitro, and generation of HIV-resistant cells for potential therapeutic applications.

  15. Transportation energy conservation data book: edition I. 5

    Energy Technology Data Exchange (ETDEWEB)

    Shonka, D B; Loebl, A S; Ogle, M C; Johnson, M L; Howard, E B

    1977-01-01

    This document contains statistical information on the major transportation modes, their respective energy consumption patterns, and other pertinent factors influencing performance in the transportation sector. Data relating to past, present, and projected energy use and conservation in the transportation sector are presented under seven chapter headings. These focus on (1) modal transportation characteristics, (2) energy characteristics of the transportation sector, (3) energy conservation alternatives involving the transportation sector, (4) government impacts on the transportation sector, (5) the supply of energy to the transportation sector, (6) characteristics of transportation demand, and (7) miscellaneous reference materials such as energy conversion factors and geographical maps. References are included for each set of data presented, and a more general bibliography is included at the end of the book. In addition, a glossary of key terms and a subject index is provided for the user. A second edition of this document is scheduled for publication in September 1977.

  16. Adeno-associated virus gene therapy vector scAAVIGF-I for transduction of equine articular chondrocytes and RNA-seq analysis.

    Science.gov (United States)

    Hemphill, D D; McIlwraith, C W; Slayden, R A; Samulski, R J; Goodrich, L R

    2016-05-01

    IGF-I is one of several anabolic factors being investigated for the treatment of osteoarthritis (OA). Due to the short biological half-life, extended administration is required for more robust cartilage healing. Here we create a self-complimentary adeno-associated virus (AAV) gene therapy vector utilizing the transgene for IGF-I. Various biochemical assays were performed to investigate the cellular response to scAAVIGF-I treatment vs an scAAVGFP positive transduction control and a negative for transduction control culture. RNA-sequencing analysis was also performed to establish a differential regulation profile of scAAVIGF-I transduced chondrocytes. Biochemical analyses indicated an average media IGF-I concentration of 608 ng/ml in the scAAVIGF-I transduced chondrocytes. This increase in IGF-I led to increased expression of collagen type II and aggrecan and increased protein concentrations of cellular collagen type II and media glycosaminoglycan vs both controls. RNA-seq revealed a global regulatory pattern consisting of 113 differentially regulated GO categories including those for chondrocyte and cartilage development and regulation of apoptosis. This research substantiates that scAAVIGF-I gene therapy vector increased production of IGF-I to clinically relevant levels with a biological response by chondrocytes conducive to increased cartilage healing. The RNA-seq further established a set of differentially expressed genes and gene ontologies induced by the scAAVIGF-I vector while controlling for AAV infection. This dataset provides a static representation of the cellular transcriptome that, while only consisting of one time point, will allow for further gene expression analyses to compare additional cartilage healing therapeutics or a transient cellular response. Copyright © 2015. Published by Elsevier Ltd.

  17. Revising and editing for translators

    CERN Document Server

    Mossop, Brian

    2014-01-01

    Revising and Editing for Translators provides guidance and learning materials for translation students learning to edit texts written by others, and professional translators wishing to improve their self-revision ability or learning to revise the work of others. Editing is understood as making corrections and improvements to texts, with particular attention to tailoring them to the given readership. Revising is this same task applied to draft translations. The linguistic work of editors and revisers is related to the professional situations in which they work. Mossop offers in-depth coverage of a wide range of topics, including copyediting, style editing, structural editing, checking for consistency, revising procedures and principles, and translation quality assessment. This third edition provides extended coverage of computer aids for revisers, and of the different degrees of revision suited to different texts. The inclusion of suggested activities and exercises, numerous real-world examples, a proposed gra...

  18. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export.

    Science.gov (United States)

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M; Brandl, Holger; Schwich, Oliver D; Steiner, Michaela C; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M

    2016-03-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1-7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1-7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3' untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3' ends. © 2016 Müller-McNicoll et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels.

    Science.gov (United States)

    Jossinet, Fabrice; Ludwig, Thomas E; Westhof, Eric

    2010-08-15

    Assemble is an intuitive graphical interface to analyze, manipulate and build complex 3D RNA architectures. It provides several advanced and unique features within the framework of a semi-automated modeling process that can be performed by homology and ab initio with or without electron density maps. Those include the interactive editing of a secondary structure and a searchable, embedded library of annotated tertiary structures. Assemble helps users with performing recurrent and otherwise tedious tasks in structural RNA research. Assemble is released under an open-source license (MIT license) and is freely available at http://bioinformatics.org/assemble. It is implemented in the Java language and runs on MacOSX, Linux and Windows operating systems.

  20. Site-Directed Genome Knockout in Chicken Cell Line and Embryos Can Use CRISPR/Cas Gene Editing Technology

    Directory of Open Access Journals (Sweden)

    Qisheng Zuo

    2016-06-01

    Full Text Available The present study established an efficient genome editing approach for the construction of stable transgenic cell lines of the domestic chicken (Gallus gallus domesticus. Our objectives were to facilitate the breeding of high-yield, high-quality chicken strains, and to investigate gene function in chicken stem cells. Three guide RNA (gRNAs were designed to knockout the C2EIP gene, and knockout efficiency was evaluated in DF-1 chicken fibroblasts and chicken ESCs using the luciferase single-strand annealing (SSA recombination assay, T7 endonuclease I (T7EI assay, and TA clone sequencing. In addition, the polyethylenimine-encapsulated Cas9/gRNA plasmid was injected into fresh fertilized eggs. At 4.5 d later, frozen sections of the embryos were prepared, and knockout efficiency was evaluated by the T7EI assay. SSA assay results showed that luciferase activity of the vector expressing gRNA-3 was double that of the control. Results of the T7EI assay and TA clone sequencing indicated that Cas9/gRNA vector-mediated gene knockdown efficiency was approximately 27% in both DF-1 cells and ESCs. The CRISPR/Cas9 vector was also expressed in chicken embryos, resulting in gene knockdown in three of the 20 embryos (gene knockdown efficiency 15%. Taken together, our results indicate that the CRISPR/Cas9 system can mediate stable gene knockdown at the cell and embryo levels in domestic chickens.

  1. Manipulating DNA repair for improved genetic engineering in <i>Aspergillus>

    DEFF Research Database (Denmark)

    Nødvig, Christina Spuur

    in a marker free strain of A. nidulans, and successfully tested and similarly a disruption of nkuA was made. Genome editing is not a new concept, but never has it been as accessible as it is now due to the CRISPR-Cas9 technology. In chapter 3, a versatile CRISPR-Cas9 system for use in various Aspergillus...... species was made, consisting of four vectors each with a different selection marker. To successfully express the two components of CRISPR-Cas9, Cas9 was codon-optimized to A. niger, and a ribozyme based strategy was used for gRNA expression. With a functional system in place, I demonstrated how it could...... homologs across multiple species was developed. While the initial experiments were made in A. nidulans and A. aculeatus, this was used to quickly demonstrate that the system could be used in more species, and mutagenesis was done in four additional species. In chapter 4 the focus stays on CRISPR-Cas9...

  2. Looking forward to genetically edited fruit crops.

    Science.gov (United States)

    Nagamangala Kanchiswamy, Chidananda; Sargent, Daniel James; Velasco, Riccardo; Maffei, Massimo E; Malnoy, Mickael

    2015-02-01

    The availability of genome sequences for many fruit crops has redefined the boundaries of genetic engineering and genetically modified (GM) crop plants. However commercialization of GM crops is hindered by numerous regulatory and social hurdles. Here, we focus on recently developed genome-editing tools for fruit crop improvement and their importance from the consumer perspective. Challenges and opportunities for the deployment of new genome-editing tools for fruit plants are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Recombination Narratives to Accompany "A-LM French One," First Edition.

    Science.gov (United States)

    Coughlin, Dorothy

    Supplementary recombination narratives intended for use with the 1961 edition of the text "A-LM French One" are designed to help students learn to manipulate basic textual materials. The sample narratives correlate with Units 4-14 of the text. The teacher is urged to make use of the overhead projector when using the narratives for the…

  4. Preparation for the second edition of nuclear criticality safety handbook

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Nomura, Yasushi

    1997-01-01

    The making of the second edition of Nuclear Criticality Safety Handbook entered the final stage of investigation by the working group. In the second edition, the newest results of the researches in Japan were taken. In this report, among the subjects which were examined continuously from the first edition published in 1988, the size of fuel particles which can be regarded as homogeneous even in a heterogeneous system, the reactivity effect when fuel concentration distribution became not uniform in a homogeneous fuel system, the method of evaluating criticality safety in which submersion is not assumed, and the criticality data when fuel burning is considered are explained. Further, about the matters related to the criticality in chemical processes and the matters related to criticality accident, the outlines are introduced. Finally, the state of preparation for aiming at the third edition is mentioned. Criticality safety control is important for overall nuclear fuel cycle including the transportation and storage of fuel. The course of the publication of this Handbook is outlined. The matters which have been successively examined from the first edition, the results of criticality safety analysis for the dissolving tanks of fuel reprocessing, and the analysis code and the simplified evaluation method for criticality accident are reported. (K.I.)

  5. Acute hepatitis A virus infection is associated with a limited type I interferon response and persistence of intrahepatic viral RNA.

    Science.gov (United States)

    Lanford, Robert E; Feng, Zongdi; Chavez, Deborah; Guerra, Bernadette; Brasky, Kathleen M; Zhou, Yan; Yamane, Daisuke; Perelson, Alan S; Walker, Christopher M; Lemon, Stanley M

    2011-07-05

    Hepatitis A virus (HAV) is an hepatotropic human picornavirus that is associated only with acute infection. Its pathogenesis is not well understood because there are few studies in animal models using modern methodologies. We characterized HAV infections in three chimpanzees, quantifying viral RNA by quantitative RT-PCR and examining critical aspects of the innate immune response including intrahepatic IFN-stimulated gene expression. We compared these infection profiles with similar studies of chimpanzees infected with hepatitis C virus (HCV), an hepatotropic flavivirus that frequently causes persistent infection. Surprisingly, HAV-infected animals exhibited very limited induction of type I IFN-stimulated genes in the liver compared with chimpanzees with acute resolving HCV infection, despite similar levels of viremia and 100-fold greater quantities of viral RNA in the liver. Minimal IFN-stimulated gene 15 and IFIT1 responses peaked 1-2 wk after HAV challenge and then subsided despite continuing high hepatic viral RNA. An acute inflammatory response at 3-4 wk correlated with the appearance of virus-specific antibodies and apoptosis and proliferation of hepatocytes. Despite this, HAV RNA persisted in the liver for months, remaining present long after clearance from serum and feces and revealing dramatic differences in the kinetics of clearance in the three compartments. Viral RNA was detected in the liver for significantly longer (35 to >48 wk) than HCV RNA in animals with acute resolving HCV infection (10-20 wk). Collectively, these findings indicate that HAV is far stealthier than HCV early in the course of acute resolving infection. HAV infections represent a distinctly different paradigm in virus-host interactions within the liver.

  6. Making the Best of an Inappropriate Textbook: Using an "International Edition" to Teach Critical Thinking and Intercultural Understanding

    Science.gov (United States)

    Marcellus, Kristina C.

    2016-01-01

    In this report, I outline and provide examples of an approach to using an international edition of an introductory sociology textbook to facilitate cross-cultural learning and critical thinking skills in an EFL (English as a foreign language) environment at a small engineering university in the United Arab Emirates.

  7. Expression profiles of eNOS, iNOS and microRNA-27b in the corpus cavernosum of rats submitted to chronic alcoholism and Diabetes mellitus.

    Science.gov (United States)

    Cunha, Joao Paulo da; Lizarte, Fermino Sanches; Novais, Paulo Cezar; Gattas, Daniela; Carvalho, Camila Albuquerque Mello de; Tirapelli, Daniela Pretti da Cunha; Molina, Carlos Augusto Fernandes; Tirapelli, Luis Fernando; Tucci, Silvio

    2017-01-01

    To evaluate the expression of endothelial and inducible NOS in addition to the miRNA-27b in the corpus cavernosum and peripheral blood of healthy rats, diabetic rats, alcoholic rats and rats with both pathologies. Forty eight Wistar rats were divided into four groups: control (C), alcoholic (A), diabetic (D) and alcoholic-diabetic (AD). Samples of the corpus cavernosum were prepared to study protein expressions of eNOS and iNOS by immunohistochemistry and expression of miRNA-27b in the corpus cavernosum and peripheral blood. Immunohistochemistry for eNOS and iNOS showed an increase in cavernosal smooth muscle cells in the alcoholic, diabetic and alcoholic-diabetic groups when compared with the control group. Similarly, the mRNA levels for eNOS were increased in cavernosal smooth muscle (CSM) in the alcoholic, diabetic and alcoholic-diabetic groups and miRNA-27b were decreased in CSM in the alcoholic, diabetic and alcoholic-diabetic groups. The major new finding of our study was an impairment of relaxation of cavernosal smooth muscle in alcoholic, diabetic, and alcoholic-diabetic rats that involved a decrease in the nitric oxide pathway by endothelium-dependent mechanisms accompanied by a change in the corpus cavernosum contractile sensitivity.

  8. Host factor I, Hfq, binds to Escherichia coli ompA mRNA in a growth rate-dependent fashion and regulates its stability

    DEFF Research Database (Denmark)

    Vytvytska, O; Jakobsen, J S; Balcunaite, G

    1998-01-01

    RNA. In hfq mutant cells with a deficient Hfq gene product, the RNA-binding activity is missing, and analysis of the ompA mRNA showed that the growth-rate dependence of degradation is lost. Furthermore, the half-life of the ompA mRNA is prolonged in the mutant cells, irrespective of growth rate. Hfq has...

  9. Qualitative Data Analysis: A Methods Sourcebook. Third Edition

    Science.gov (United States)

    Miles, Matthew B.; Huberman, A. Michael; Saldana, Johnny

    2014-01-01

    The Third Edition of Miles & Huberman's classic research methods text is updated and streamlined by Johnny Saldaña, author of "The Coding Manual for Qualitative Researchers." Several of the data display strategies from previous editions are now presented in re-envisioned and reorganized formats to enhance reader accessibility and…

  10. Connectivity editing for quad-dominant meshes

    KAUST Repository

    Peng, Chihan

    2013-08-01

    We propose a connectivity editing framework for quad-dominant meshes. In our framework, the user can edit the mesh connectivity to control the location, type, and number of irregular vertices (with more or fewer than four neighbors) and irregular faces (non-quads). We provide a theoretical analysis of the problem, discuss what edits are possible and impossible, and describe how to implement an editing framework that realizes all possible editing operations. In the results, we show example edits and illustrate the advantages and disadvantages of different strategies for quad-dominant mesh design. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.

  11. Fibrillarin methylates H2A in RNA polymerase I trans-active promoters in Brassica oleracea

    Czech Academy of Sciences Publication Activity Database

    Loza-Muller, L.; Rodriguez-Corona, U.; Sobol, Margaryta; Rodriguez-Zapata, L.C.; Hozák, Pavel; Castano, E.

    2015-01-01

    Roč. 6, Nov 6 (2015) ISSN 1664-462X R&D Projects: GA ČR GAP305/11/2232; GA ČR GA15-08738S; GA MPO FR-TI3/588; GA TA ČR(CZ) TE01020118; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : histones * methylation * RNA polymerase I * Brassica * phosphoinositide Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.495, year: 2015

  12. Bifurcations in the interplay of messenger RNA, protein and nonprotein coding RNA

    International Nuclear Information System (INIS)

    Zhdanov, Vladimir P

    2008-01-01

    The interplay of messenger RNA (mRNA), protein, produced via translation of this RNA, and nonprotein coding RNA (ncRNA) may include regulation of the ncRNA production by protein and (i) ncRNA-protein association resulting in suppression of the protein regulatory activity or (ii) ncRNA-mRNA association resulting in degradation of the miRNA-mRNA complex. The kinetic models describing these two scenarios are found to predict bistability provided that protein suppresses the ncRNA formation

  13. High GC Content Cas9-Mediated Genome-Editing and Biosynthetic Gene Cluster Activation in Saccharopolyspora erythraea.

    Science.gov (United States)

    Liu, Yong; Wei, Wen-Ping; Ye, Bang-Ce

    2018-05-18

    The overexpression of bacterial secondary metabolite biosynthetic enzymes is the basis for industrial overproducing strains. Genome editing tools can be used to further improve gene expression and yield. Saccharopolyspora erythraea produces erythromycin, which has extensive clinical applications. In this study, the CRISPR-Cas9 system was used to edit genes in the S. erythraea genome. A temperature-sensitive plasmid containing the PermE promoter, to drive Cas9 expression, and the Pj23119 and PkasO promoters, to drive sgRNAs, was designed. Erythromycin esterase, encoded by S. erythraea SACE_1765, inactivates erythromycin by hydrolyzing the macrolactone ring. Sequencing and qRT-PCR confirmed that reporter genes were successfully inserted into the SACE_1765 gene. Deletion of SACE_1765 in a high-producing strain resulted in a 12.7% increase in erythromycin levels. Subsequent PermE- egfp knock-in at the SACE_0712 locus resulted in an 80.3% increase in erythromycin production compared with that of wild type. Further investigation showed that PermE promoter knock-in activated the erythromycin biosynthetic gene clusters at the SACE_0712 locus. Additionally, deletion of indA (SACE_1229) using dual sgRNA targeting without markers increased the editing efficiency to 65%. In summary, we have successfully applied Cas9-based genome editing to a bacterial strain, S. erythraea, with a high GC content. This system has potential application for both genome-editing and biosynthetic gene cluster activation in Actinobacteria.

  14. The Prognostic Relevance of Sentinel Lymph Node Metastases Assessed by PHGR1 mRNA Quantification in Stage I to III Colon Cancer

    Directory of Open Access Journals (Sweden)

    Satu Oltedal

    2018-04-01

    Full Text Available BACKGROUND: Regional lymph node (LN metastasis is a strong and well-established prognostic factor in colon cancer, and recent data suggest a prognostic value of detecting micrometastases and isolated tumor cells in regional LNs. The aim of the study was to investigate the clinical relevance of detecting sentinel lymph node (SLN metastases in colon cancer patients by measuring the novel metastasis marker PHGR1 mRNA. METHODS: Using quantitative reverse-transcription polymerase chain reaction, we measured PHGR1 mRNA levels in SLNs and primary tumors from 206 patients surgically treated for stage I to III colon cancer and 52 normal LNs from patients undergoing surgery for benign colon diseases. The prognostic impact of these findings was evaluated by Kaplan-Meier analysis and Cox proportional-hazards regression. RESULTS: Compared to normal LNs, elevated PHGR1 mRNA levels were detected in SLNs from 56 (89% of the 63 patients with pN+ disease. Furthermore, 68 (48% of the 143 node-negative (pN0 patients had elevated PHGR1 mRNA levels in SLNs, suggesting occult metastases. With a median follow-up of 7.2 years, a significantly shorter recurrence-free (P=.005 and disease-specific (P=.02 survival was observed in patients with elevated PHGR1 mRNA levels in SLNs. Multivariable modeling showed that the SLN PHGR1 mRNA level was an independent prognostic factor. However, when the survival analyses were restricted to pN0 patients, no significant prognostic information was found. CONCLUSION: Measuring PHGR1 mRNA in SLNs provided independent prognostic information on operable colon cancer patients but not in the pN0 subgroup.

  15. The Edit Distance as a Measure of Perceived Rhythmic Similarity

    Directory of Open Access Journals (Sweden)

    Olaf Post

    2012-07-01

    Full Text Available The ‘edit distance’ (or ‘Levenshtein distance’ measure of distance between two data sets is defined as the minimum number of editing operations – insertions, deletions, and substitutions – that are required to transform one data set to the other (Orpen and Huron, 1992. This measure of distance has been applied frequently and successfully in music information retrieval, but rarely in predicting human perception of distance. In this study, we investigate the effectiveness of the edit distance as a predictor of perceived rhythmic dissimilarity under simple rhythmic alterations. Approaching rhythms as a set of pulses that are either onsets or silences, we study two types of alterations. The first experiment is designed to test the model’s accuracy for rhythms that are relatively similar; whether rhythmic variations with the same edit distance to a source rhythm are also perceived as relatively similar by human subjects. In addition, we observe whether the salience of an edit operation is affected by its metric placement in the rhythm. Instead of using a rhythm that regularly subdivides a 4/4 meter, our source rhythm is a syncopated 16-pulse rhythm, the son. Results show a high correlation between the predictions by the edit distance model and human similarity judgments (r = 0.87; a higher correlation than for the well-known generative theory of tonal music (r = 0.64. In the second experiment, we seek to assess the accuracy of the edit distance model in predicting relatively dissimilar rhythms. The stimuli used are random permutations of the son’s inter-onset intervals: 3-3-4-2-4. The results again indicate that the edit distance correlates well with the perceived rhythmic dissimilarity judgments of the subjects (r = 0.76. To gain insight in the relationships between the individual rhythms, the results are also presented by means of graphic phylogenetic trees.

  16. An Introduction to Music Therapy: Theory and Practice. Third Edition

    Science.gov (United States)

    Davis, William B.; Gfeller, Kate E.; Thaut, Michael H.

    2008-01-01

    "An Introduction to Music Therapy: Theory and Practice, Third Edition," provides a comprehensive overview of the practice of music therapy for the 21st century. It looks at where we have been, where we are today, and where we might be in the future. Combining sound pedagogy with recent research findings, this new edition has been updated and…

  17. Material-specific retroactive interference effects of the Wechsler Adult Intelligence Scale-Fourth Edition on the Wechsler Memory Scale-Fourth Edition in a nonclinical sample.

    Science.gov (United States)

    Ingram, Nicolette S; Diakoumakos, Jessica V; Sinclair, Erin R; Crowe, Simon F

    2016-01-01

    This study investigated proactive and retroactive interference effects between the Wechsler Memory Scale-Fourth Edition (WMS-IV) using the flexible approach, and the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV). One hundred and eighty nonclinical participants were assigned to a four (visual interference, verbal interference, visual and verbal interference, vs. no interference) by two (retroactive vs. proactive) between-subjects design. The administration order of the tests was counterbalanced (i.e., administration of the WAIS-IV prior to the WMS-IV, and the WAIS-IV administered during the delay interval of the WMS-IV). The WAIS-IV produced significant retroactive interference effects on the WMS-IV; however, no proactive interference effect was observed. The retroactive interference effect was dependent on material specificity. The results indicate that material presented within the delay of the WMS-IV can have a significant effect on subsequent delayed recall. Clinicians should carefully consider the effects associated with carry-over effects of these tests when using them in combination.

  18. Crystal Structure of a CRISPR RNA-guided Surveillance Complex Bound to a ssDNA Target

    Energy Technology Data Exchange (ETDEWEB)

    Mulepati, Sabin [Johns Hopkins Univ., Baltimore, MD (United States); Heroux, Annie; Bailey, Scott [Johns Hopkins Univ., Baltimore, MD (United States)

    2014-09-19

    In prokaryotes, RNA derived from type I and type III CRISPR loci direct large ribonucleoprotein complexes to destroy invading bacteriophage and plasmids. In Escherichia coli, this 405-kilodalton complex is called Cascade. We report the crystal structure of Cascade bound to a single-stranded DNA (ssDNA) target at a resolution of 3.03 angstroms. The structure reveals that the CRISPR RNA and target strands do not form a double helix but instead adopt an underwound ribbon-like structure. This noncanonical structure is facilitated by rotation of every sixth nucleotide out of the RNA-DNA hybrid and is stabilized by the highly interlocked organization of protein subunits. These studies provide insight into both the assembly and the activity of this complex and suggest a mechanism to enforce fidelity of target binding.

  19. Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA.

    Directory of Open Access Journals (Sweden)

    John W Yarham

    2014-06-01

    Full Text Available Identifying the genetic basis for mitochondrial diseases is technically challenging given the size of the mitochondrial proteome and the heterogeneity of disease presentations. Using next-generation exome sequencing, we identified in a patient with severe combined mitochondrial respiratory chain defects and corresponding perturbation in mitochondrial protein synthesis, a homozygous p.Arg323Gln mutation in TRIT1. This gene encodes human tRNA isopentenyltransferase, which is responsible for i6A37 modification of the anticodon loops of a small subset of cytosolic and mitochondrial tRNAs. Deficiency of i6A37 was previously shown in yeast to decrease translational efficiency and fidelity in a codon-specific manner. Modelling of the p.Arg323Gln mutation on the co-crystal structure of the homologous yeast isopentenyltransferase bound to a substrate tRNA, indicates that it is one of a series of adjacent basic side chains that interact with the tRNA backbone of the anticodon stem, somewhat removed from the catalytic center. We show that patient cells bearing the p.Arg323Gln TRIT1 mutation are severely deficient in i6A37 in both cytosolic and mitochondrial tRNAs. Complete complementation of the i6A37 deficiency of both cytosolic and mitochondrial tRNAs was achieved by transduction of patient fibroblasts with wild-type TRIT1. Moreover, we show that a previously-reported pathogenic m.7480A>G mt-tRNASer(UCN mutation in the anticodon loop sequence A36A37A38 recognised by TRIT1 causes a loss of i6A37 modification. These data demonstrate that deficiencies of i6A37 tRNA modification should be considered a potential mechanism of human disease caused by both nuclear gene and mitochondrial DNA mutations while providing insight into the structure and function of TRIT1 in the modification of cytosolic and mitochondrial tRNAs.

  20. The Landscape of Qualitative Research. Third Edition

    Science.gov (United States)

    Denzin, Norman K., Ed.; Lincoln, Yvonna, Ed.

    2007-01-01

    This book, the first volume of the paperback versions of the "The SAGE Handbook of Qualitative Research, Third Edition," takes a look at the field from a broadly theoretical perspective, and is composed of the Handbook's Parts I ("Locating the Field"), II ("Major Paradigms and Perspectives"), and VI ("The Future of Qualitative Research"). "The…

  1. How To Help Your Child Choose a Career. New and Revised Edition. Today's Youth and Tomorrow's Careers Edition.

    Science.gov (United States)

    Otto, Luther B.

    This edition of a handbook aimed at helping parents help their children make a career choice has been rewritten and updated. New material begins with the introduction, which provides a rationale for involving parents in their sons' and daughters' career decisions. Other new material includes sections on women and work, minorities and work,…

  2. The specificity of long noncoding RNA expression.

    Science.gov (United States)

    Gloss, Brian S; Dinger, Marcel E

    2016-01-01

    Over the last decade, long noncoding RNAs (lncRNAs) have emerged as a fundamental molecular class whose members play pivotal roles in the regulation of the genome. The observation of pervasive transcription of mammalian genomes in the early 2000s sparked a revolution in the understanding of information flow in eukaryotic cells and the incredible flexibility and dynamic nature of the transcriptome. As a molecular class, distinct loci yielding lncRNAs are set to outnumber those yielding mRNAs. However, like many important discoveries, the road leading to uncovering this diverse class of molecules that act through a remarkable repertoire of mechanisms, was not a straight one. The same characteristic that most distinguishes lncRNAs from mRNAs, i.e. their developmental-stage, tissue-, and cell-specific expression, was one of the major impediments to their discovery and recognition as potentially functional regulatory molecules. With growing numbers of lncRNAs being assigned to biological functions, the specificity of lncRNA expression is now increasingly recognized as a characteristic that imbues lncRNAs with great potential as biomarkers and for the development of highly targeted therapeutics. Here we review the history of lncRNA research and how technological advances and insight into biological complexity have gone hand-in-hand in shaping this revolution. We anticipate that as increasing numbers of these molecules, often described as the dark matter of the genome, are characterized and the structure-function relationship of lncRNAs becomes better understood, it may ultimately be feasible to decipher what these non-(protein)-coding genes encode. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A Counselor's Guide to Career Assessment Instruments, Sixth Edition

    Science.gov (United States)

    Wood, Chris; Hays, Danica G.

    2013-01-01

    This book contains exemplary resources for counselors, career development facilitators, school counselors, and other career professionals working in a variety of settings. This edition is an essential guide to career assessment and contains a comprehensive list of career assessment instruments. It has over 70 reviews and includes…

  4. iPod The Missing Manual

    CERN Document Server

    Biersdorfer, J D

    2010-01-01

    With iPod and iTunes, Apple's gotten the world hooked on portable music, pictures, and videos. One thing they haven't delivered, though, is an easy guide for getting the most from your sleek little entertainment center. Enter iPod: The Missing Manual, 5th Edition-a book as breathtaking and satisfying as its subject. Our latest edition thoroughly covers the redesigned iPod Nanos, the video iPod, the tiny Shuffle and the overhauled iTunes 7. Each custom-designed page sports easy-to-follow color graphics, crystal-clear explanations, and guidance on the most useful things your iPod can do. Topic

  5. [Differential expression of IGF-I and its mRNA in mandibular condylar cartilage of rat--direct evidence for servosystem theory of facial growth].

    Science.gov (United States)

    Zhou, Z; Luo, S

    1998-05-01

    It was studied the expression of IGF-I and its mRNA in the condylar cartilage of 10 7-week-old SD male rats by using in situ hybridization and immunohisto-chemistry technique. The results showed both IGF-I and its gene expressed in growing rat condyle. IGF-I peptide was abundant in germinal zone, and positive reaction of its mRNA was strongest in transitional and maturational zones. These indicate that condylar cartilage has the capability of local production and secretion of IGF-I, mediating the command effect of STH, and differential expression of IGF-I and its mRNA might establish the local feedback loop, which supply a direct evidence for servosystem theory of facial growth.

  6. A unique enhancer boundary complex on the mouse ribosomal RNA genes persists after loss of Rrn3 or UBF and the inactivation of RNA polymerase I transcription.

    Science.gov (United States)

    Herdman, Chelsea; Mars, Jean-Clement; Stefanovsky, Victor Y; Tremblay, Michel G; Sabourin-Felix, Marianne; Lindsay, Helen; Robinson, Mark D; Moss, Tom

    2017-07-01

    Transcription of the several hundred of mouse and human Ribosomal RNA (rRNA) genes accounts for the majority of RNA synthesis in the cell nucleus and is the determinant of cytoplasmic ribosome abundance, a key factor in regulating gene expression. The rRNA genes, referred to globally as the rDNA, are clustered as direct repeats at the Nucleolar Organiser Regions, NORs, of several chromosomes, and in many cells the active repeats are transcribed at near saturation levels. The rDNA is also a hotspot of recombination and chromosome breakage, and hence understanding its control has broad importance. Despite the need for a high level of rDNA transcription, typically only a fraction of the rDNA is transcriptionally active, and some NORs are permanently silenced by CpG methylation. Various chromatin-remodelling complexes have been implicated in counteracting silencing to maintain rDNA activity. However, the chromatin structure of the active rDNA fraction is still far from clear. Here we have combined a high-resolution ChIP-Seq protocol with conditional inactivation of key basal factors to better understand what determines active rDNA chromatin. The data resolve questions concerning the interdependence of the basal transcription factors, show that preinitiation complex formation is driven by the architectural factor UBF (UBTF) independently of transcription, and that RPI termination and release corresponds with the site of TTF1 binding. They further reveal the existence of an asymmetric Enhancer Boundary Complex formed by CTCF and Cohesin and flanked upstream by phased nucleosomes and downstream by an arrested RNA Polymerase I complex. We find that the Enhancer Boundary Complex is the only site of active histone modification in the 45kbp rDNA repeat. Strikingly, it not only delimits each functional rRNA gene, but also is stably maintained after gene inactivation and the re-establishment of surrounding repressive chromatin. Our data define a poised state of rDNA chromatin

  7. A unique enhancer boundary complex on the mouse ribosomal RNA genes persists after loss of Rrn3 or UBF and the inactivation of RNA polymerase I transcription.

    Directory of Open Access Journals (Sweden)

    Chelsea Herdman

    2017-07-01

    Full Text Available Transcription of the several hundred of mouse and human Ribosomal RNA (rRNA genes accounts for the majority of RNA synthesis in the cell nucleus and is the determinant of cytoplasmic ribosome abundance, a key factor in regulating gene expression. The rRNA genes, referred to globally as the rDNA, are clustered as direct repeats at the Nucleolar Organiser Regions, NORs, of several chromosomes, and in many cells the active repeats are transcribed at near saturation levels. The rDNA is also a hotspot of recombination and chromosome breakage, and hence understanding its control has broad importance. Despite the need for a high level of rDNA transcription, typically only a fraction of the rDNA is transcriptionally active, and some NORs are permanently silenced by CpG methylation. Various chromatin-remodelling complexes have been implicated in counteracting silencing to maintain rDNA activity. However, the chromatin structure of the active rDNA fraction is still far from clear. Here we have combined a high-resolution ChIP-Seq protocol with conditional inactivation of key basal factors to better understand what determines active rDNA chromatin. The data resolve questions concerning the interdependence of the basal transcription factors, show that preinitiation complex formation is driven by the architectural factor UBF (UBTF independently of transcription, and that RPI termination and release corresponds with the site of TTF1 binding. They further reveal the existence of an asymmetric Enhancer Boundary Complex formed by CTCF and Cohesin and flanked upstream by phased nucleosomes and downstream by an arrested RNA Polymerase I complex. We find that the Enhancer Boundary Complex is the only site of active histone modification in the 45kbp rDNA repeat. Strikingly, it not only delimits each functional rRNA gene, but also is stably maintained after gene inactivation and the re-establishment of surrounding repressive chromatin. Our data define a poised state

  8. Triggering of the dsRNA sensors TLR3, MDA5, and RIG-I induces CD55 expression in synovial fibroblasts.

    Directory of Open Access Journals (Sweden)

    Olga N Karpus

    Full Text Available CD55 (decay-accelerating factor is a complement-regulatory protein highly expressed on fibroblast-like synoviocytes (FLS. CD55 is also a ligand for CD97, an adhesion-type G protein-coupled receptor abundantly present on leukocytes. Little is known regarding the regulation of CD55 expression in FLS.FLS isolated from arthritis patients were stimulated with pro-inflammatory cytokines and Toll-like receptor (TLR ligands. Transfection with polyinosinic-polycytidylic acid (poly(I:C and 5'-triphosphate RNA were used to activate the cytoplasmic double-stranded (dsRNA sensors melanoma differentiation-associated gene 5 (MDA5 and retinoic acid-inducible gene-I (RIG-I. CD55 expression, cell viability, and binding of CD97-loaded beads were quantified by flow cytometry.CD55 was expressed at equal levels on FLS isolated from patients with rheumatoid arthritis (RA, osteoarthritis, psoriatic arthritis and spondyloarthritis. CD55 expression in RA FLS was significantly induced by IL-1β and especially by the TLR3 ligand poly(I:C. Activation of MDA5 and RIG-I also enhanced CD55 expression. Notably, activation of MDA5 dose-dependently induced cell death, while triggering of TLR3 or RIG-I had a minor effect on viability. Upregulation of CD55 enhanced the binding capacity of FLS to CD97-loaded beads, which could be blocked by antibodies against CD55.Activation of dsRNA sensors enhances the expression of CD55 in cultured FLS, which increases the binding to CD97. Our findings suggest that dsRNA promotes the interaction between FLS and CD97-expressing leukocytes.

  9. Enhancement of single guide RNA transcription for efficient CRISPR/Cas-based genomic engineering.

    Science.gov (United States)

    Ui-Tei, Kumiko; Maruyama, Shohei; Nakano, Yuko

    2017-06-01

    Genomic engineering using clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) protein is a promising approach for targeting the genomic DNA of virtually any organism in a sequence-specific manner. Recent remarkable advances in CRISPR/Cas technology have made it a feasible system for use in therapeutic applications and biotechnology. In the CRISPR/Cas system, a guide RNA (gRNA), interacting with the Cas protein, recognizes a genomic region with sequence complementarity, and the double-stranded DNA at the target site is cleaved by the Cas protein. A widely used gRNA is an RNA polymerase III (pol III)-driven single gRNA (sgRNA), which is produced by artificial fusion of CRISPR RNA (crRNA) and trans-activation crRNA (tracrRNA). However, we identified a TTTT stretch, known as a termination signal of RNA pol III, in the scaffold region of the sgRNA. Here, we revealed that sgRNA carrying a TTTT stretch reduces the efficiency of sgRNA transcription due to premature transcriptional termination, and decreases the efficiency of genome editing. Unexpectedly, it was also shown that the premature terminated sgRNA may have an adverse effect of inducing RNA interference. Such disadvantageous effects were avoided by substituting one base in the TTTT stretch.

  10. Adar3 Is Involved in Learning and Memory in Mice

    Directory of Open Access Journals (Sweden)

    Dessislava Mladenova

    2018-04-01

    Full Text Available The amount of regulatory RNA encoded in the genome and the extent of RNA editing by the post-transcriptional deamination of adenosine to inosine (A-I have increased with developmental complexity and may be an important factor in the cognitive evolution of animals. The newest member of the A-I editing family of ADAR proteins, the vertebrate-specific ADAR3, is highly expressed in the brain, but its functional significance is unknown. In vitro studies have suggested that ADAR3 acts as a negative regulator of A-I RNA editing but the scope and underlying mechanisms are also unknown. Meta-analysis of published data indicates that mouse Adar3 expression is highest in the hippocampus, thalamus, amygdala, and olfactory region. Consistent with this, we show that mice lacking exon 3 of Adar3 (which encodes two double stranded RNA binding domains have increased levels of anxiety and deficits in hippocampus-dependent short- and long-term memory formation. RNA sequencing revealed a dysregulation of genes involved in synaptic function in the hippocampi of Adar3-deficient mice. We also show that ADAR3 transiently translocates from the cytoplasm to the nucleus upon KCl-mediated activation in SH-SY5Y cells. These results indicate that ADAR3 contributes to cognitive processes in mammals.

  11. Trypanosome RNA editing: the complexity of getting U in and taking U out

    Czech Academy of Sciences Publication Activity Database

    Read, L. K.; Lukeš, Julius; Hashimi, Hassan

    2016-01-01

    Roč. 7, č. 1 (2016), s. 33-51 ISSN 1757-7004 R&D Projects: GA ČR GA15-21974S EU Projects: European Commission(XE) 289007 Institutional support: RVO:60077344 Keywords : messenger RNA * guide RNA * mitochondria Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.838, year: 2016

  12. Genome editing: a robust technology for human stem cells.

    Science.gov (United States)

    Chandrasekaran, Arun Pandian; Song, Minjung; Ramakrishna, Suresh

    2017-09-01

    Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.

  13. Education-stratified base-rate information on discrepancy scores within and between the Wechsler Adult Intelligence Scale--Third Edition and the Wechsler Memory Scale--Third Edition.

    Science.gov (United States)

    Dori, Galit A; Chelune, Gordon J

    2004-06-01

    The Wechsler Adult Intelligence Scale--Third Edition (WAIS-III; D. Wechsler, 1997a) and the Wechsler Memory Scale--Third Edition (WMS-III; D. Wechsler, 1997b) are 2 of the most frequently used measures in psychology and neuropsychology. To facilitate the diagnostic use of these measures in the clinical decision-making process, this article provides information on education-stratified, directional prevalence rates (i.e., base rates) of discrepancy scores between the major index scores for the WAIS-III, the WMS-III, and between the WAIS-III and WMS-III. To illustrate how such base-rate data can be clinically used, this article reviews the relative risk (i.e., odds ratio) of empirically defined "rare" cognitive deficits in 2 of the clinical samples presented in the WAIS-III--WMS-III Technical Manual (The Psychological Corporation, 1997). ((c) 2004 APA, all rights reserved)

  14. Introduction to Educational Administration: Standards, Theories, and Practice. Second Edition

    Science.gov (United States)

    Fiore, Douglas J.

    2009-01-01

    Organized around the ISLLC standards, this text introduces students to the concepts and theories of educational leadership. The new edition adds coverage of such topics as data usage, ethics, innovative hiring practices, and student discipline. Appearing in the second edition are chapter-ending sections called "Point-Counterpoint" which prompt…

  15. Human Genome Editing and Ethical Considerations.

    Science.gov (United States)

    Krishan, Kewal; Kanchan, Tanuj; Singh, Bahadur

    2016-04-01

    Editing human germline genes may act as boon in some genetic and other disorders. Recent editing of the genome of the human embryo with the CRISPR/Cas9 editing tool generated a debate amongst top scientists of the world for the ethical considerations regarding its effect on the future generations. It needs to be seen as to what transformation human gene editing brings to humankind in the times to come.

  16. Generation and characterization of a human iPSC cell line expressing inducible Cas9 in the “safe harbor” AAVS1 locus

    Directory of Open Access Journals (Sweden)

    Julio Castaño

    2017-05-01

    Full Text Available We report the generation-characterization of a fetal liver (FL B-cell progenitor (BCP-derived human induced pluripotent stem cell (hiPSC line CRISPR/Cas9-edited to carry/express a single copy of doxycycline-inducible Cas9 gene in the “safe locus” AAVS1 (iCas9-FL-BCP-hiPSC. Gene-edited iPSCs remained pluripotent after CRISPR/Cas9 genome-edition. Correct genomic integration of a unique copy of Cas9 was confirmed by PCR and Southern blot. Cas9 was robustly and specifically expressed on doxycycline exposure. T7-endonuclease assay demonstrated that iCas9 induces robust gene-edition when gRNAs against hematopoietic transcription factors were tested. This iCas9-FL-BCP-hiPSC will facilitate gene-editing approaches for studies on developmental biology, drug screening and disease modeling.

  17. All-in-One CRISPR-Cas9/FokI-dCas9 Vector-Mediated Multiplex Genome Engineering in Cultured Cells.

    Science.gov (United States)

    Sakuma, Tetsushi; Sakamoto, Takuya; Yamamoto, Takashi

    2017-01-01

    CRISPR-Cas9 enables highly convenient multiplex genome engineering in cultured cells, because it utilizes generic Cas9 nuclease and an easily customizable single-guide RNA (sgRNA) for site-specific DNA double-strand break induction. We previously established a multiplex CRISPR-Cas9 assembly system for constructing an all-in-one vector simultaneously expressing multiple sgRNAs and Cas9 nuclease or other Cas9 variants including FokI-dCas9, which supersedes the wild-type Cas9 with regard to high specificity. In this chapter, we describe a streamlined protocol to design and construct multiplex CRISPR-Cas9 or FokI-dCas9 vectors, to introduce them into cultured cells by lipofection or electroporation, to enrich the genomically edited cells with a transient puromycin selection, to validate the mutation efficiency by Surveyor nuclease assay, and to perform off-target analyses. We show that our protocol enables highly efficient multiplex genome engineering even in hard-to-transfect HepG2 cells.

  18. Human Resources Administration: A School-Based Perspective. Fourth Edition

    Science.gov (United States)

    Smith, Richard

    2009-01-01

    Enhanced and updated, this Fourth Edition of Richard E. Smith's highly successful text examines the growing role of the principal in planning, hiring, staff development, supervision, and other human resource functions. The Fourth Edition includes new sections on ethics, induction, and the role of the mentor teacher. This edition also introduces…

  19. <i>Drosophila> Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio

    Energy Technology Data Exchange (ETDEWEB)

    Weidmann, Chase A.; Qiu, Chen; Arvola, René M.; Lou, Tzu-Fang; Killingsworth, Jordan; Campbell, Zachary T.; Tanaka Hall, Traci M.; Goldstrohm, Aaron C.

    2016-08-02

    Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation byDrosophilaPumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulatedin vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.

  20. SAD1, an RNA polymerase I subunit A34.5 of rice, interacts with Mediator and controls various aspects of plant development.

    Science.gov (United States)

    Li, Weiqiang; Yoshida, Akiko; Takahashi, Megumu; Maekawa, Masahiko; Kojima, Mikiko; Sakakibara, Hitoshi; Kyozuka, Junko

    2015-01-01

    The DWARF14 (D14) gene of rice functions within the signaling pathway of strigolactones, a group of plant hormones that inhibits shoot branching. We isolated a recessive mutant named super apical dormant (sad1-1) from a suppressor screen of d14-1. The growth of tillers (vegetative shoot branches) is suppressed in both the d14-1 sad1-1 double mutant and the sad1-1 single mutant. In addition, the sad1-1 mutant shows pleiotropic defects throughout development. SAD1 encodes an ortholog of RPA34.5, a subunit of RNA polymerase I (Pol I). Consequently, the level of ribosomal RNA (rRNA) is severely reduced in the sad1-1 mutant. These results indicate that proper ribosome function is a prerequisite for normal development in plants. The Arabidopsis ortholog of SAD1 was previously isolated as a Mediator-interacting protein. Here we show that SAD1 interacts physically with the Mediator complex through direct binding with OsMED4, a component of the middle module of the Mediator complex in rice. It is known that Mediator interacts with Pol II, which transcribes mRNAs and functions as a central regulator of transcription. This study indicates a novel aspect of Mediator function in Pol I-controlled rRNA transcription. TFIIF2 and RPC53 are the counterparts of RPA34.5 in Pol II and Pol III, respectively. We demonstrate that the rice orthologs of these proteins also interact with OsMED4. Our results suggest that interaction with MED4 in the Mediator complex is a common feature of the three types of RNA polymerases. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  1. Does atlas-based autosegmentation of neck levels require subsequent manual contour editing to avoid risk of severe target underdosage? A dosimetric analysis

    International Nuclear Information System (INIS)

    Voet, Peter W.J.; Dirkx, Maarten L.P.; Teguh, David N.; Hoogeman, Mischa S.; Levendag, Peter C.; Heijmen, Ben J.M.

    2011-01-01

    Background and purpose: To investigate the dosimetric impact of not editing auto-contours of the elective neck and organs at risk (OAR), generated with atlas-based autosegmentation (ABAS) (Elekta software) for head and neck cancer patients. Materials and methods: For nine patients ABAS auto-contours and auto-contours edited by two observers were available. Based on the non-edited auto-contours clinically acceptable IMRT plans were constructed (designated 'ABAS plans'). These plans were then evaluated for the two edited structure sets, by quantifying the percentage of the neck-PTV receiving more than 95% of the prescribed dose (V 95 ) and the near-minimum dose (D 99 ) in the neck PTV. Dice coefficients and mean contour distances were calculated to quantify the similarity of ABAS auto-contours with the structure sets edited by observer 1 and observer 2. To study the dosimetric importance of editing OAR auto-contours a new IMRT plan was generated for each patient-observer combination, based on the observer's edited CTV and the non-edited salivary gland auto-contours. For each plan mean doses for the non-edited glands were compared with doses for the same glands edited by the observer. Results: For both observers, edited neck CTVs were larger than ABAS auto-contours (p ≤ 0.04), by a mean of 8.7%. When evaluating ABAS plans on the PTVs of the edited structure sets, V 95 reduced by 7.2% ± 5.4% (1 SD) (p 99 was 14.2 Gy (range 1-54 Gy). Even for Dice coefficients >0.8 and mean contour distances 99 up to 11 Gy were observed. For treatment plans based on observer PTVs and non-edited auto-contoured salivary glands, the mean doses in the edited glands differed by only -0.6 Gy ± 1.0 Gy (p = 0.06). Conclusions: Editing of auto-contoured neck CTVs generated by ABAS is required to avoid large underdosages in target volumes. Often used similarity measures for evaluation of auto-contouring algorithms, such as dice coefficients, do not predict well for expected PTV underdose

  2. miRge - A Multiplexed Method of Processing Small RNA-Seq Data to Determine MicroRNA Entropy.

    Directory of Open Access Journals (Sweden)

    Alexander S Baras

    Full Text Available Small RNA RNA-seq for microRNAs (miRNAs is a rapidly developing field where opportunities still exist to create better bioinformatics tools to process these large datasets and generate new, useful analyses. We built miRge to be a fast, smart small RNA-seq solution to process samples in a highly multiplexed fashion. miRge employs a Bayesian alignment approach, whereby reads are sequentially aligned against customized mature miRNA, hairpin miRNA, noncoding RNA and mRNA sequence libraries. miRNAs are summarized at the level of raw reads in addition to reads per million (RPM. Reads for all other RNA species (tRNA, rRNA, snoRNA, mRNA are provided, which is useful for identifying potential contaminants and optimizing small RNA purification strategies. miRge was designed to optimally identify miRNA isomiRs and employs an entropy based statistical measurement to identify differential production of isomiRs. This allowed us to identify decreasing entropy in isomiRs as stem cells mature into retinal pigment epithelial cells. Conversely, we show that pancreatic tumor miRNAs have similar entropy to matched normal pancreatic tissues. In a head-to-head comparison with other miRNA analysis tools (miRExpress 2.0, sRNAbench, omiRAs, miRDeep2, Chimira, UEA small RNA Workbench, miRge was faster (4 to 32-fold and was among the top-two methods in maximally aligning miRNAs reads per sample. Moreover, miRge has no inherent limits to its multiplexing. miRge was capable of simultaneously analyzing 100 small RNA-Seq samples in 52 minutes, providing an integrated analysis of miRNA expression across all samples. As miRge was designed for analysis of single as well as multiple samples, miRge is an ideal tool for high and low-throughput users. miRge is freely available at http://atlas.pathology.jhu.edu/baras/miRge.html.

  3. Multiple isoelectric forms of poliovirus RNA-dependent RNA polymerase: Evidence for phosphorylation

    International Nuclear Information System (INIS)

    Ransone, L.J.; Dasgupta, A.

    1989-01-01

    Poliovirus-specific RNA-dependent RNA polymerase (3Dpol) was purified to apparent homogeneity. A single polypeptide of an apparent molecular weight of 63,000 catalyzes the synthesis of dimeric and monomeric RNA products in response to the poliovirion RNA template. Analysis of purified 3Dpol by two-dimensional electrophoresis showed multiple forms of 3Dpol, suggesting posttranslational modification of the protein in virus-infected cells. The two major forms of 3Dpol appear to have approximate pI values of 7.1 and 7.4. Incubation of purified 3Dpol with calf intestinal phosphatase resulted in almost complete disappearance of the pI 7.1 form and a concomitant increase in the intensity of the pI 7.4 form of 3Dpol. Addition of 32P-labeled Pi during infection of HeLa cells with poliovirus resulted in specific labeling of 3Dpol and 3CD, a viral protein which contains the entire 3Dpol sequence. Both 3Dpol and 3CD appear to be phosphorylated at serine residues. Ribosomal salt washes prepared from both mock- and poliovirus-infected cells contain phosphatases capable of dephosphorylating quantitatively the phosphorylated form (pI 7.1) of 3Dpol

  4. Promiscuous RNA binding ensures effective encapsidation of APOBEC3 proteins by HIV-1.

    Directory of Open Access Journals (Sweden)

    Luis Apolonia

    2015-01-01

    Full Text Available The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3 proteins are cell-encoded cytidine deaminases, some of which, such as APOBEC3G (A3G and APOBEC3F (A3F, act as potent human immunodeficiency virus type-1 (HIV-1 restriction factors. These proteins require packaging into HIV-1 particles to exert their antiviral activities, but the molecular mechanism by which this occurs is incompletely understood. The nucleocapsid (NC region of HIV-1 Gag is required for efficient incorporation of A3G and A3F, and the interaction between A3G and NC has previously been shown to be RNA-dependent. Here, we address this issue in detail by first determining which RNAs are able to bind to A3G and A3F in HV-1 infected cells, as well as in cell-free virions, using the unbiased individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP method. We show that A3G and A3F bind many different types of RNA, including HIV-1 RNA, cellular mRNAs and small non-coding RNAs such as the Y or 7SL RNAs. Interestingly, A3G/F incorporation is unaffected when the levels of packaged HIV-1 genomic RNA (gRNA and 7SL RNA are reduced, implying that these RNAs are not essential for efficient A3G/F packaging. Confirming earlier work, HIV-1 particles formed with Gag lacking the NC domain (Gag ΔNC fail to encapsidate A3G/F. Here, we exploit this system by demonstrating that the addition of an assortment of heterologous RNA-binding proteins and domains to Gag ΔNC efficiently restored A3G/F packaging, indicating that A3G and A3F have the ability to engage multiple RNAs to ensure viral encapsidation. We propose that the rather indiscriminate RNA binding characteristics of A3G and A3F promote functionality by enabling recruitment into a wide range of retroviral particles whose packaged RNA genomes comprise divergent sequences.

  5. Cluster editing

    DEFF Research Database (Denmark)

    Böcker, S.; Baumbach, Jan

    2013-01-01

    . The problem has been the inspiration for numerous algorithms in bioinformatics, aiming at clustering entities such as genes, proteins, phenotypes, or patients. In this paper, we review exact and heuristic methods that have been proposed for the Cluster Editing problem, and also applications......The Cluster Editing problem asks to transform a graph into a disjoint union of cliques using a minimum number of edge modifications. Although the problem has been proven NP-complete several times, it has nevertheless attracted much research both from the theoretical and the applied side...

  6. Human Germline Genome Editing.

    Science.gov (United States)

    Ormond, Kelly E; Mortlock, Douglas P; Scholes, Derek T; Bombard, Yvonne; Brody, Lawrence C; Faucett, W Andrew; Garrison, Nanibaa' A; Hercher, Laura; Isasi, Rosario; Middleton, Anna; Musunuru, Kiran; Shriner, Daniel; Virani, Alice; Young, Caroline E

    2017-08-03

    With CRISPR/Cas9 and other genome-editing technologies, successful somatic and germline genome editing are becoming feasible. To respond, an American Society of Human Genetics (ASHG) workgroup developed this position statement, which was approved by the ASHG Board in March 2017. The workgroup included representatives from the UK Association of Genetic Nurses and Counsellors, Canadian Association of Genetic Counsellors, International Genetic Epidemiology Society, and US National Society of Genetic Counselors. These groups, as well as the American Society for Reproductive Medicine, Asia Pacific Society of Human Genetics, British Society for Genetic Medicine, Human Genetics Society of Australasia, Professional Society of Genetic Counselors in Asia, and Southern African Society for Human Genetics, endorsed the final statement. The statement includes the following positions. (1) At this time, given the nature and number of unanswered scientific, ethical, and policy questions, it is inappropriate to perform germline gene editing that culminates in human pregnancy. (2) Currently, there is no reason to prohibit in vitro germline genome editing on human embryos and gametes, with appropriate oversight and consent from donors, to facilitate research on the possible future clinical applications of gene editing. There should be no prohibition on making public funds available to support this research. (3) Future clinical application of human germline genome editing should not proceed unless, at a minimum, there is (a) a compelling medical rationale, (b) an evidence base that supports its clinical use, (c) an ethical justification, and (d) a transparent public process to solicit and incorporate stakeholder input. Copyright © 2017 American Society of Human Genetics. All rights reserved.

  7. TbRGG1, an essential protein involved in kinetoplastid RNA metabolism that is associated with a novel multiprotein complex

    Czech Academy of Sciences Publication Activity Database

    Hashimi, Hassan; Zíková, Alena; Panigrahi, A. K.; Stuart, K. D.; Lukeš, Julius

    2008-01-01

    Roč. 14, č. 5 (2008), s. 970-980 ISSN 1355-8382 R&D Projects: GA AV ČR IAA500960705; GA MŠk 2B06129; GA MŠk LC07032; GA ČR GA204/06/1558; GA ČR GD524/03/H133 Grant - others:NIH(US) 5R03TW6445; NIH(US) AI14102 Institutional research plan: CEZ:AV0Z60220518 Keywords : Trypanosoma * mitochondrion * RNA editing * RNA binding Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.018, year: 2008

  8. Human apolipoprotein B (apoB) mRNA: Identification of two distinct apoB mRNAs, an mRNA with the apoB-100 sequence and an apoB mRNA containing a premature in-frame translational stop codon, in both liver and intestine

    International Nuclear Information System (INIS)

    Higuchi, K.; Hospattankar, A.V.; Law, S.W.; Meglin, N.; Cortright, J.; Brewer, H.B. Jr.

    1988-01-01

    Human apolipoprotein B (apoB) is present in plasma as two separate isoproteins, designated apoB-100 (512 kDa) and apoB-48 (250 kDa). ApoB is encoded by a single gene on chromosome 2, and a single nuclear mRNA is edited and processed into two separate apoB mRNAs. A 14.1-kilobase apoB mRNA codes for apoB-100, and the second mRNA, which codes for apoB-48, contains a premature stop codon generated by a single base substitution of cytosine to uracil at nucleotide 6,538, which converts the translated CAA codon coding for the amino acid glutamine at residue 2,153 in apoB-100 to a premature in-frame stop codon (UAA). Two 30-base synthetic oligonucleotides, designated apoB-Stop and apoB-Gln, were synthesized containing the complementary sequence to the stop codon (UAA) and glutamine codon (CAA), respectively. The combined results from these studies establish that both human intestine and liver contain the two distinct apoB mRNAs, an mRNA that codes for apoB-100 and an apoB mRNA that contains the premature stop codon, which codes for apoB-48. The premature in-frame stop codon is not tissue specific and is present in both human liver and intestine

  9. Purification and characterization of chromatin-bound DNA-dependent RNA polymerase I from parsley (Petroselinum crispum). Influence of nucleoside triphosphates.

    Science.gov (United States)

    Grossmann, K; Friedrich, H; Seitz, U

    1980-01-01

    The isolation and purification of DNA-dependent RNA polymerase I (EC 2.7.7.6) from parsley (Petroselinum crispum) callus cells grown in suspension culture is described. The enzyme was solubilized from isolated chromatin. Purification was achieved by using DEAE- and phospho-cellulose in batches, followed by column chromatography on DEAE- and phospho-cellulose (two columns) and density-gradient centrifugation. The highly purified enzyme was stable over several months. The properties of purified parsley RNA polymerase I were investigated. Optimum concentration for Mn2+ was 1 mM, and for Mg2+ 4-6 mM, Mn2+ was slightly more stimulatory than Mg2+. The enzyme was most active at low ionic strengths [10-20 mM-(NH4)SO4]. The influence of various phosphates was tested: pyrophosphate inhibited RNA polymerase at low concentrations, whereas orthophosphate had no effect on the enzyme activity. ADP was slightly inhibitory, and AMP had no effect on the enzyme reaction. Nucleoside triphosphates and bivalent cations in equimolar concentrations in the range 4-11 mM did not influence the RNA synthesis in vitro. Free nucleoside triphosphates in excess of this 1:1 ratio inhibited the enzyme activity, unlike free bivalent cations, which stimulated RNA polymerase I. PMID:7470092

  10. Extracellular and circulating redox- and metalloregulated eRNA and eRNP: copper ion-structured RNA cytokines (angiotropin ribokines) and bioaptamer targets imparting RNA chaperone and novel biofunctions to S100-EF-hand and disease-associated proteins.

    Science.gov (United States)

    Wissler, Josef H

    2004-06-01

    Bioassays for cellular differentiation and tissue morphogenesis were used to design methods for isolation of bioactive redox- and metalloregulated nucleic acids and copper ion complexes with proteins from extracellular, circulating, wound, and supernatant fluids of cultured cells. In extracellular biospheres, diversities of nucleic acids were found to be secreted by cells upon activation. They may reflect nucleic acid biolibraries with molecular imprints of cellular history. After removal of protein components, eRNA prototypes exuded by activated cells were sequenced. They are small, endogenous, highly modified and edited, redox- and metalloregulated 5'-end phosphorylated extracellular eRNA (approximately 2-200 bases) with cellular, enzymic, and bioaptamer functions. Fenton-type OH* radical redox reactions may form modified nucleotides in RNA as wobbles eRNA per se, or as copper ion-complex with protein (e.g., S100A12-EF-hand protein, angiotropin-related protein, calgranulin-C, hippocampal neurite differentiation factor) are shown to be bioactive in vivo and in vitro as cytokines (ribokines) and as nonmitogenic angiomorphogens for endothelial cell differentiation in the formation of organoid supracellular capillary structures. As bioaptamers, copper ion-structured eRNA imparts novel biofunctions to proteins that they do not have on their own. The origin of extracellular RNA and intermediate precursors (up to 500 bases) was traced to intracellular parent nucleic acids. Intermediate precursors with and without partial homology were found. This suggests that bioaptamers are not directly retranslatable gene products. Metalloregulated eRNA bioaptamer function was investigated by domains (e.g. 5'...CUG...3' hairpin loop) for folding, bioactivity, and binding of protein with copper, calcium, and alkali metal ion affinity. Vice versa, metalloregulated nucleic acid-binding domains (K3H, R3H) in proteins were identified. Interaction of protein and eRNA docking potentials

  11. Cytoplasmic Z-RNA

    International Nuclear Information System (INIS)

    Zarling, D.A.; Calhoun, C.J.; Hardin, C.C.; Zarling, A.H.

    1987-01-01

    Specific immunochemical probes for Z-RNA were generated and characterized to search for possible Z-RNA-like double helices in cells. Z-RNA was detected in the cytoplasm of fixed protozoan cells by immunofluorescence microscopy using these anti-Z-RNA IgCs. In contrast, autoimmune or experimentally elicited anti-DNA antibodies, specifically reactive with B-DNA or Z-DNA, stained the nuclei. Pre-or nonimmune IgGs did not bind to the cells. RNase A or T1 digestion eliminated anti-Z-RNA IgG binding to cytoplasmic determinants; however, DNase I or mung bean nuclease had no effect. Doxorubicin and ethidium bromide prevented anti-Z-RNA antibody binding; however, actinomycin D, which does not bind double-stranded RNA, did not. Anti-Z-RNA immunofluorescence was specifically blocked in competition assays by synthetic Z-RNA but not Z-DNA, A-RNA, or single-stranded RNAs. Thus, some cytoplasmic sequences in fixed cells exist in the left-handed Z-RNA conformation

  12. Host apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3G is an innate defensive factor and drug target against hepatitis C virus.

    Science.gov (United States)

    Peng, Zong-Gen; Zhao, Zhi-Yun; Li, Yan-Ping; Wang, Yu-Ping; Hao, Lan-Hu; Fan, Bo; Li, Yu-Huan; Wang, Yue-Ming; Shan, Yong-Qiang; Han, Yan-Xing; Zhu, Yan-Ping; Li, Jian-Rui; You, Xue-Fu; Li, Zhuo-Rong; Jiang, Jian-Dong

    2011-04-01

    Host cellular factor apolipoprotein B messenger RNA (mRNA)-editing enzyme catalytic polypeptide-like 3G (hA3G) is a cytidine deaminase that inhibits a group of viruses including human immunodeficiency virus-1 (HIV-1). In the continuation of our research on hA3G, we found that hA3G stabilizing compounds significantly inhibited hepatitis C virus (HCV) replication. Therefore, this study investigated the role of hA3G in HCV replication. Introduction of external hA3G into HCV-infected Huh7.5 human hepatocytes inhibited HCV replication; knockdown of endogenous hA3G enhanced HCV replication. Exogenous HIV-1 virion infectivity factor (Vif) decreased intracellular hA3G and therefore enhanced HCV proliferation, suggesting that the presence of Vif might be an explanation for the HIV-1/HCV coinfection often observed in HIV-1(+) individuals. Treatment of the HCV-infected Huh7.5 cells with RN-5 or IMB-26, two known hA3G stabilizing compounds, increased intracellular hA3G and accordingly inhibited HCV replication. The compounds inhibit HCV through increasing the level of hA3G incorporated into HCV particles, but not through inhibiting HCV enzymes. However, G/A hypermutation in the HCV genome were not detected, suggesting a new antiviral mechanism of hA3G in HCV, different from that in HIV-1. Stabilization of hA3G by RN-5 was safe in vivo. hA3G appears to be a cellular restrict factor against HCV and could be a potential target for drug discovery. 2011 American Association for the Study of Liver Diseases.

  13. CRISPR-Cas9-Based Genome Editing of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Giacalone, Joseph C; Sharma, Tasneem P; Burnight, Erin R; Fingert, John F; Mullins, Robert F; Stone, Edwin M; Tucker, Budd A

    2018-02-28

    Human induced pluripotent stem cells (hiPSCs) are the ideal cell source for autologous cell replacement. However, for patients with Mendelian diseases, genetic correction of the original disease-causing mutation is likely required prior to cellular differentiation and transplantation. The emergence of the CRISPR-Cas9 system has revolutionized the field of genome editing. By introducing inexpensive reagents that are relatively straightforward to design and validate, it is now possible to correct genetic variants or insert desired sequences at any location within the genome. CRISPR-based genome editing of patient-specific iPSCs shows great promise for future autologous cell replacement therapies. One caveat, however, is that hiPSCs are notoriously difficult to transfect, and optimized experimental design considerations are often necessary. This unit describes design strategies and methods for efficient CRISPR-based genome editing of patient- specific iPSCs. Additionally, it details a flexible approach that utilizes positive selection to generate clones with a desired genomic modification, Cre-lox recombination to remove the integrated selection cassette, and negative selection to eliminate residual hiPSCs with intact selection cassettes. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  14. Methylated nucleosides in tRNA and tRNA methyltransferases

    Directory of Open Access Journals (Sweden)

    Hiroyuki eHori

    2014-05-01

    Full Text Available To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s. Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon–anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.

  15. Art with an iPhone a photographer's guide to creating altered realities

    CERN Document Server

    Sloma, Kat

    2015-01-01

    iPhone boasts a powerful and highly capable camera that is always at the ready, allowing you to document the people, places, and things that surround you. Kat Sloma teaches you how to harness natural light, both indoors and out, to create high-quality images—and then she details some of the amazing, inexpensive, and powerful apps that can be used to finesse every aspect of the image—from capture to output. You'll learn how to choose and use apps that mimic the controls offered on professional-level cameras to take control over focus and exposure. You'll also discover apps that boost your camera's resolution, improve stability, and more. Of course, you'll also delve into the myriad apps on the market that will allow you to manipulate color and contrast, add special effects, and implement image-editing strategies that were once the exclusive domain of professional editing programs aimed at serious professional photographers and graphic designers.

  16. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation.

    Science.gov (United States)

    Bald, Tobias; Landsberg, Jennifer; Lopez-Ramos, Dorys; Renn, Marcel; Glodde, Nicole; Jansen, Philipp; Gaffal, Evelyn; Steitz, Julia; Tolba, Rene; Kalinke, Ulrich; Limmer, Andreas; Jönsson, Göran; Hölzel, Michael; Tüting, Thomas

    2014-06-01

    Infiltration of human melanomas with cytotoxic immune cells correlates with spontaneous type I IFN activation and a favorable prognosis. Therapeutic blockade of immune-inhibitory receptors in patients with preexisting lymphocytic infiltrates prolongs survival, but new complementary strategies are needed to activate cellular antitumor immunity in immune cell-poor melanomas. Here, we show that primary melanomas in Hgf-Cdk4(R24C) mice, which imitate human immune cell-poor melanomas with a poor outcome, escape IFN-induced immune surveillance and editing. Peritumoral injections of immunostimulatory RNA initiated a cytotoxic inflammatory response in the tumor microenvironment and significantly impaired tumor growth. This critically required the coordinated induction of type I IFN responses by dendritic, myeloid, natural killer, and T cells. Importantly, antibody-mediated blockade of the IFN-induced immune-inhibitory interaction between PD-L1 and PD-1 receptors further prolonged the survival. These results highlight important interconnections between type I IFNs and immune-inhibitory receptors in melanoma pathogenesis, which serve as targets for combination immunotherapies. Using a genetically engineered mouse melanoma model, we demonstrate that targeted activation of the type I IFN system with immunostimulatory RNA in combination with blockade of immune-inhibitory receptors is a rational strategy to expose immune cell-poor tumors to cellular immune surveillance. ©2014 American Association for Cancer Research.

  17. Therapeutic strategy with artificially-designed i-lncRNA targeting multiple oncogenic microRNAs exhibits effective antitumor activity in diffuse large B-cell lymphoma.

    Science.gov (United States)

    Su, Yinghan; Sun, Bin; Lin, Xuejing; Zhao, Xinying; Ji, Weidan; He, Miaoxia; Qian, Haihua; Song, Xianmin; Yang, Jianmin; Wang, Jianmin; Chen, Jie

    2016-08-02

    In diffuse large B-cell lymphoma (DLBCL), many oncogenic microRNAs (OncomiRs) are highly expressed to promote disease development and progression by inhibiting the expression and function of certain tumor suppressor genes, and these OncomiRs comprise a promising new class of molecular targets for the treatment of DLBCL. However, most current therapeutic studies have focused on a single miRNA, with limited treatment outcomes. In this study, we generated tandem sequences of 10 copies of the complementary binding sequences to 13 OncomiRs and synthesized an interfering long non-coding RNA (i-lncRNA). The highly-expressed i-lncRNA in DLBCL cells would compete with the corresponding mRNAs of OncomiR target genes for binding OncomiRs, thereby effectively consuming a large amount of OncomiRs and protecting many tumor suppressor genes. The in vitro experiments confirmed that the i-lncRNA expression significantly inhibited cell proliferation, induced cell cycle arrest and apoptosis in DLBCL cell lines, mainly through upregulating the expression of PTEN, p27kip1, TIMP3, RECK and downregulating the expression of p38/MAPK, survivin, CDK4, c-myc. In the established SUDHL-4 xenografts in nude mice, the treatment strategy involving adenovirus-mediated i-lncRNA expression significantly inhibited the growth of DLBCL xenografts. Therefore, this treatment would specifically target the carcinogenic effects of many OncomiRs that are usually expressed in DLBCL and not in normal cells, such a strategy could improve anti-tumor efficacy and safety and may be a good prospect for clinical applications.

  18. Functional characterization of two paralogs that are novel RNA binding proteins influencing mitochondrial transcripts of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Kafková, Lucie; Ammerman, M. L.; Faktorová, D.; Fisk, J. C.; Zimmer, S.L.; Sobotka, Roman; Read, L. K.; Lukeš, Julius; Hashimi, Hassan

    2012-01-01

    Roč. 18, č. 10 (2012), s. 1846-1861 ISSN 1355-8382 R&D Projects: GA ČR GA204/09/1667 Institutional support: RVO:60077344 ; RVO:61388971 Keywords : RNA editing * RNA binding protein * ribonuclear protein (RNP) * mitochondria * trypanosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.088, year: 2012 http://rnajournal.cshlp.org/content/18/10/1846

  19. Genome editing for crop improvement: Challenges and opportunities.

    Science.gov (United States)

    Abdallah, Naglaa A; Prakash, Channapatna S; McHughen, Alan G

    2015-01-01

    the genome. Due to its precision, gene editing is more precise than either conventional crop breeding methods or standard genetic engineering methods. Thus this technology is a very powerful tool that can be used toward securing the world's food supply. In addition to improving the nutritional value of crops, it is the most effective way to produce crops that can resist pests and thrive in tough climates. There are 3 types of modifications produced by genome editing; Type I includes altering a few nucleotides, Type II involves replacing an allele with a pre-existing one and Type III allows for the insertion of new gene(s) in predetermined regions in the genome. Because most genome-editing techniques can leave behind traces of DNA alterations evident in a small number of nucleotides, crops created through gene editing could avoid the stringent regulation procedures commonly associated with GM crop development. For this reason many scientists believe plants improved with the more precise gene editing techniques will be more acceptable to the public than transgenic plants. With genome editing comes the promise of new crops being developed more rapidly with a very low risk of off-target effects. It can be performed in any laboratory with any crop, even those that have complex genomes and are not easily bred using conventional methods.

  20. High-Resolution Analysis of the Efficiency, Heritability, and Editing Outcomes of CRISPR/Cas9-Induced Modifications of NCED4 in Lettuce (Lactuca sativa).

    Science.gov (United States)

    Bertier, Lien D; Ron, Mily; Huo, Heqiang; Bradford, Kent J; Britt, Anne B; Michelmore, Richard W

    2018-05-04

    CRISPR/Cas9 is a transformative tool for making targeted genetic alterations. In plants, high mutation efficiencies have been reported in primary transformants. However, many of the mutations analyzed were somatic and therefore not heritable. To provide more insights into the efficiency of creating stable homozygous mutants using CRISPR/Cas9, we targeted LsNCED4 ( 9-cis-EPOXYCAROTENOID DIOXYGENASE4) , a gene conditioning thermoinhibition of seed germination in lettuce. Three constructs, each capable of expressing Cas9 and a single gRNA targeting different sites in LsNCED4 , were stably transformed into lettuce (Lactuca sativa) cvs. Salinas and Cobham Green. Analysis of 47 primary transformants (T 1 ) and 368 T 2 plants by deep amplicon sequencing revealed that 57% of T 1 plants contained events at the target site: 28% of plants had germline mutations in one allele indicative of an early editing event (mono-allelic), 8% of plants had germline mutations in both alleles indicative of two early editing events (bi-allelic), and the remaining 21% of plants had multiple low frequency mutations indicative of late events (chimeric plants). Editing efficiency was similar in both genotypes, while the different gRNAs varied in efficiency. Amplicon sequencing of 20 T 1 and more than 100 T 2 plants for each of the three gRNAs showed that repair outcomes were not random, but reproducible and characteristic for each gRNA. Knockouts of NCED4 resulted in large increases in the maximum temperature for seed germination, with seeds of both cultivars capable of germinating >70% at 37°. Knockouts of NCED4 provide a whole-plant selectable phenotype that has minimal pleiotropic consequences. Targeting NCED4 in a co-editing strategy could therefore be used to enrich for germline-edited events simply by germinating seeds at high temperature. Copyright © 2018 Bertier et al.

  1. iConnected use AirPlay, iCloud, apps, and more to bring your Apple devices together

    CERN Document Server

    Harvell, Ben

    2013-01-01

    Bring your Apple products together and enjoy an orchard of intelligent, unified technology! Whether at work or at home, syncing multiple Apple devices can help you achieve an organized, streamlined, harmonized life. With this unique resource, you discover how to get the most out of AirPlay and iCloud, Apple's streaming and cloud services. Featuring a four-color design and packed with helpful codes, tips, and tricks, this accessible book shows you how to write a document on an iMac at home and then continue editing it on an iPad while on the go without worrying about synching the de

  2. Polycistronic tRNA and CRISPR guide-RNA enables highly efficient multiplexed genome engineering in human cells.

    Science.gov (United States)

    Dong, Fengping; Xie, Kabin; Chen, Yueying; Yang, Yinong; Mao, Yingwei

    2017-01-22

    CRISPR/Cas9 has been widely used for genomic editing in many organisms. Many human diseases are caused by multiple mutations. The CRISPR/Cas9 system provides a potential tool to introduce multiple mutations in a genome. To mimic complicated genomic variants in human diseases, such as multiple gene deletions or mutations, two or more small guide RNAs (sgRNAs) need to be introduced all together. This can be achieved by separate Pol III promoters in a construct. However, limited enzyme sites and increased insertion size lower the efficiency to make a construct. Here, we report a strategy to quickly assembly multiple sgRNAs in one construct using a polycistronic-tRNA-gRNA (PTG) strategy. Taking advantage of the endogenous tRNA processing system in mammalian cells, we efficiently express multiple sgRNAs driven using only one Pol III promoter. Using an all-in-one construct carrying PTG, we disrupt the deacetylase domain in multiple histone deacetylases (HDACs) in human cells simultaneously. We demonstrate that multiple HDAC deletions significantly affect the activation of the Wnt-signaling pathway. Thus, this method enables to efficiently target multiple genes and provide a useful tool to establish mutated cells mimicking human diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Decreased expression of microRNA let-7i and its association with chemotherapeutic response in human gastric cancer

    Directory of Open Access Journals (Sweden)

    Liu Kun

    2012-10-01

    Full Text Available Abstract Background MicroRNA let-7i has been proven to be down-regulated in many human malignancies and correlated with tumor progression and anticancer drug resistance. Our study aims to characterize the contribution of miRNA let-7i to the initiation and malignant progression of locally advanced gastric cancer (LAGC, and evaluate its possible value in neoadjuvant chemotherapeutic efficacy prediction. Methods Eighty-six previously untreated LAGC patients who underwent preoperative chemotherapy and radical resection were included in our study. Let-7i expression was examined for pairs of cancer tissues and corresponding normal adjacent tissues (NATs, using quantitative RT-PCR. The relationship of let-7i level to clinicopathological characteristics, pathologic tumor regression grades after chemotherapy, and overall survival (OS was also investigated. Results Let-7i was significantly down-regulated in most tumor tissues (78/86: 91% compared with paired NATs (P P =0.024 independently of other clinicopathological factors, including tumor node metastasis (TNM stage (HR = 3.226, P = 0.013, depth of infiltration (HR = 4.167, P P = 0.037. Conclusions These findings indicate that let-7i may be a good candidate for use a therapeutic target and a potential tissue marker for the prediction of chemotherapeutic sensitivity and prognosis in LAGC patients.

  4. CRISPR Genome Engineering for Human Pluripotent Stem Cell Research.

    Science.gov (United States)

    Chaterji, Somali; Ahn, Eun Hyun; Kim, Deok-Ho

    2017-01-01

    The emergence of targeted and efficient genome editing technologies, such as repurposed bacterial programmable nucleases (e.g., CRISPR-Cas systems), has abetted the development of cell engineering approaches. Lessons learned from the development of RNA-interference (RNA-i) therapies can spur the translation of genome editing, such as those enabling the translation of human pluripotent stem cell engineering. In this review, we discuss the opportunities and the challenges of repurposing bacterial nucleases for genome editing, while appreciating their roles, primarily at the epigenomic granularity. First, we discuss the evolution of high-precision, genome editing technologies, highlighting CRISPR-Cas9. They exist in the form of programmable nucleases, engineered with sequence-specific localizing domains, and with the ability to revolutionize human stem cell technologies through precision targeting with greater on-target activities. Next, we highlight the major challenges that need to be met prior to bench-to-bedside translation, often learning from the path-to-clinic of complementary technologies, such as RNA-i. Finally, we suggest potential bioinformatics developments and CRISPR delivery vehicles that can be deployed to circumvent some of the challenges confronting genome editing technologies en route to the clinic.

  5. Precision genome editing

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Bennett, Eric P; Schjoldager, Katrine Ter-Borch Gram

    2014-01-01

    Precise and stable gene editing in mammalian cell lines has until recently been hampered by the lack of efficient targeting methods. While different gene silencing strategies have had tremendous impact on many biological fields, they have generally not been applied with wide success in the field...... of glycobiology, primarily due to their low efficiencies, with resultant failure to impose substantial phenotypic consequences upon the final glycosylation products. Here, we review novel nuclease-based precision genome editing techniques enabling efficient and stable gene editing, including gene disruption...... by introducing single or double-stranded breaks at a defined genomic sequence. We here compare and contrast the different techniques and summarize their current applications, highlighting cases from the field of glycobiology as well as pointing to future opportunities. The emerging potential of precision gene...

  6. A novel serum microRNA panel to discriminate benign from malignant ovarian disease.

    LENUS (Irish Health Repository)

    Langhe, Ream

    2015-01-28

    Ovarian cancer is the seventh most common cancer in women and the most frequent cause of gynaecological malignancy-related mortality in women. Currently, no standardized reliable screening test exists. MicroRNA profiling has allowed the identification of signatures associated with diagnosis, prognosis and response to treatment of human tumours. The aim of this study was to determine if a microRNA signature could distinguish between malignant and benign ovarian disease. A training set of 5 serous ovarian carcinomas and 5 benign serous cystadenomas were selected for the initial experiments. The validation set included 20 serous ovarian carcinomas and 20 benign serous cystadenomas. The serum\\/plasma focus microRNA Exiqon panel was used for the training set. For the validation set a pick and mix Exiqon panel, which focuses on microRNAs of interest was used. A panel of 4 microRNAs (let-7i-5p, miR-122, miR-152-5p and miR-25-3p) was significantly down regulated in cancer patients. These microRNAs target WNT signalling, AKT\\/mTOR and TLR-4\\/MyD88, which have previously been found to play a role in ovarian carcinogenesis and chemoresistance. let-7i-5p, miR-122, miR-152-5p and miR-25-3p could act as diagnostic biomarkers in ovarian cancer.

  7. Development of a new method to identify aminoacylated RNA

    Directory of Open Access Journals (Sweden)

    Wang Ji

    2014-02-01

    Full Text Available A RT-PCR method is developed to isolate RNA aminoacylated on their 3’ end from large pools of RNA. The method is being applied in two separate projects. We are interested in isolating a new class of ribozymes that could successively catalyze the two chemical reactions leading to their own 3’ aminoacylation (ATP activation of an amino acid followed by 3' esterification of the RNA. The catalysis of each of the two reactions has independently been demonstrated for some RNA isolated with the SELEX methodology [1-2]. However, the coupling of both reactions on a same molecule has not been achieved yet. The identification of these still hypothetical ribozymes may help understand how the former translation system started in the absence of the aminoacyltRNA Synthetase, which catalyzes the above two reactions on tRNA in modern cells. In another project, we would like to identify the whole repertoire of aminoacylated RNA (the “aminoacylome” in cells. There are strong indications that other RNA besides tRNA and tmRNA may be aminoacylated for biological purposes [3-4].

  8. Viral RNA-Unprimed Rig-I Restrains Stat3 Activation in the Modulation of Regulatory T Cell/Th17 Cell Balance.

    Science.gov (United States)

    Yang, Hui; Guo, He-Zhou; Li, Xian-Yang; Lin, Jian; Zhang, Wu; Zhao, Jun-Mei; Zhang, Hong-Xin; Chen, Sai-Juan; Chen, Zhu; Zhu, Jiang

    2017-07-01

    Innate immunity activation by viral RNA-primed retinoid acid inducible gene-I (Rig-I) in CD4 + T cells antagonizes TGFβ signaling to suppress the differentiation of regulatory T cells (Tregs). However, how viral RNA-unliganded Rig-I (apo-Rig-I) modulates Treg generation remains unclear. In this article, we show that, in the absence of viral infection, Treg differentiation of Rig-I -/- CD4 + T cells was compromised, in the presence of increased generation of Th17 cells and overactivation of Stat3, a critical regulator tilting the Treg/Th17 cell balance. Mechanistically, apo-Rig-I physically associates with Stat3, thereby inhibiting Jak1's association with Stat3 while facilitating Shp2's association to inhibit p-Stat3 levels. Interestingly, inhibition of Stat3 ameliorates the Treg/Th17 imbalance and the colitis observed in Rig-I -/- mice. Collectively, these results uncover an independent functional contribution of the apo-Rig-I/Stat3 interaction in the maintenance of Treg/Th17 cell balance. Copyright © 2017 by The American Association of Immunologists, Inc.

  9. International guide to the circus. - 2015 edition

    NARCIS (Netherlands)

    Huey, R.; Albrecht, E.; Belbahri, N.; Brunsdale, M.; Christian, J.; Garcia, J.; Giarola, A.; Jando, D.; Lehmann, R.; Marier, F.; Nieminen, K.; Parkinson, G.; Pierce, R.D.; Revolledo Cárdenas, J.; Rodenhuis, W.; Serena, A.; Schlotfeldt, A.; Shaina, C.; Shrake, P.; Simon, M.; St. Leon, M.; Stone, C.; Cooper, J.; Tamaoki, V.; Winkler, G.

    2015-01-01

    An easy-to-read publication defining 100 key circus terms translated in nine languages. The 2015 edition has been re-created in a smaller "pocket" version, 44 pages in length and weighing 63 grams per book. Additional images have been added to illustrate terms and each book is sold complete with a

  10. Production of genome-edited pluripotent stem cells and mice by CRISPR/Cas.

    Science.gov (United States)

    Horii, Takuro; Hatada, Izuho

    2016-01-01

    Clustered regularly at interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) nucleases, so-called CRISPR/Cas, was recently developed as an epoch-making genome engineering technology. This system only requires Cas9 nuclease and single-guide RNA complementary to a target locus. CRISPR/Cas enables the generation of knockout cells and animals in a single step. This system can also be used to generate multiple mutations and knockin in a single step, which is not possible using other methods. In this review, we provide an overview of genome editing by CRISPR/Cas in pluripotent stem cells and mice.

  11. From "Cellular" RNA to "Smart" RNA: Multiple Roles of RNA in Genome Stability and Beyond.

    Science.gov (United States)

    Michelini, Flavia; Jalihal, Ameya P; Francia, Sofia; Meers, Chance; Neeb, Zachary T; Rossiello, Francesca; Gioia, Ubaldo; Aguado, Julio; Jones-Weinert, Corey; Luke, Brian; Biamonti, Giuseppe; Nowacki, Mariusz; Storici, Francesca; Carninci, Piero; Walter, Nils G; Fagagna, Fabrizio d'Adda di

    2018-03-30

    Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.

  12. Editing Audio with Audacity

    Directory of Open Access Journals (Sweden)

    Brandon Walsh

    2016-08-01

    Full Text Available For those interested in audio, basic sound editing skills go a long way. Being able to handle and manipulate the materials can help you take control of your object of study: you can zoom in and extract particular moments to analyze, process the audio, and upload the materials to a server to compliment a blog post on the topic. On a more practical level, these skills could also allow you to record and package recordings of yourself or others for distribution. That guest lecture taking place in your department? Record it and edit it yourself! Doing so is a lightweight way to distribute resources among various institutions, and it also helps make the materials more accessible for readers and listeners with a wide variety of learning needs. In this lesson you will learn how to use Audacity to load, record, edit, mix, and export audio files. Sound editing platforms are often expensive and offer extensive capabilities that can be overwhelming to the first-time user, but Audacity is a free and open source alternative that offers powerful capabilities for sound editing with a low barrier for entry. For this lesson we will work with two audio files: a recording of Bach’s Goldberg Variations available from MusOpen and another recording of your own voice that will be made in the course of the lesson. This tutorial uses Audacity 2.1.2, released January 2016.

  13. [Current advances and future prospects of genome editing technology in the field of biomedicine.

    Science.gov (United States)

    Sakuma, Tetsushi

    Genome editing technology can alter the genomic sequence at will, contributing the creation of cellular and animal models of human diseases including hereditary disorders and cancers, and the generation of the mutation-corrected human induced pluripotent stem cells for ex vivo regenerative medicine. In addition, novel approaches such as drug development using genome-wide CRISPR screening and cancer suppression using epigenome editing technology, which can change the epigenetic modifications in a site-specific manner, have also been conducted. In this article, I summarize the current advances and future prospects of genome editing technology in the field of biomedicine.

  14. A Novel Parallel Algorithm for Edit Distance Computation

    Directory of Open Access Journals (Sweden)

    Muhammad Murtaza Yousaf

    2018-01-01

    Full Text Available The edit distance between two sequences is the minimum number of weighted transformation-operations that are required to transform one string into the other. The weighted transformation-operations are insert, remove, and substitute. Dynamic programming solution to find edit distance exists but it becomes computationally intensive when the lengths of strings become very large. This work presents a novel parallel algorithm to solve edit distance problem of string matching. The algorithm is based on resolving dependencies in the dynamic programming solution of the problem and it is able to compute each row of edit distance table in parallel. In this way, it becomes possible to compute the complete table in min(m,n iterations for strings of size m and n whereas state-of-the-art parallel algorithm solves the problem in max(m,n iterations. The proposed algorithm also increases the amount of parallelism in each of its iteration. The algorithm is also capable of exploiting spatial locality while its implementation. Additionally, the algorithm works in a load balanced way that further improves its performance. The algorithm is implemented for multicore systems having shared memory. Implementation of the algorithm in OpenMP shows linear speedup and better execution time as compared to state-of-the-art parallel approach. Efficiency of the algorithm is also proven better in comparison to its competitor.

  15. RNA Catalysis, Thermodynamics and the Origin of Life

    Directory of Open Access Journals (Sweden)

    William G. Scott

    2014-04-01

    Full Text Available The RNA World Hypothesis posits that the first self-replicating molecules were RNAs. RNA self-replicases are, in general, assumed to have employed nucleotide 5ʹ-polyphosphates (or their analogues as substrates for RNA polymerization. The mechanism by which these substrates might be synthesized with sufficient abundance to supply a growing and evolving population of RNAs is problematic for evolutionary hypotheses because non-enzymatic synthesis and assembly of nucleotide 5ʹ-triphosphates (or other analogously activated phosphodiester species is inherently difficult. However, nucleotide 2ʹ,3ʹ-cyclic phosphates are also phosphodiesters, and are the natural and abundant products of RNA degradation. These have previously been dismissed as viable substrates for prebiotic RNA synthesis. We propose that the arguments for their dismissal are based on a flawed assumption, and that nucleotide 2ʹ,3ʹ-cyclic phosphates in fact possess several significant, advantageous properties that indeed make them particularly viable substrates for prebiotic RNA synthesis. An RNA World hypothesis based upon the polymerization of nucleotide 2ʹ,3ʹ-cyclic phosphates possesses additional explanatory power in that it accounts for the observed ribozyme “fossil record”, suggests a viable mechanism for substrate transport across lipid vesicle boundaries of primordial proto-cells, circumvents the problems of substrate scarcity and implausible synthetic pathways, provides for a primitive but effective RNA replicase editing mechanism, and definitively explains why RNA, rather than DNA, must have been the original catalyst. Finally, our analysis compels us to propose that a fundamental and universal property that drives the evolution of living systems, as well as pre-biotic replicating molecules (be they composed of RNA or protein, is that they exploit chemical reactions that already possess competing kinetically-preferred and thermodynamically-preferred pathways in a

  16. Activity-regulated RNA editing in select neuronal subfields in hippocampus

    Czech Academy of Sciences Publication Activity Database

    Balík, Aleš; Penn, A.C.; Nemoda, Z.; Greger, I. H.

    2013-01-01

    Roč. 41, č. 2 (2013), s. 1124-1134 ISSN 0305-1048 R&D Projects: GA ČR(CZ) GBP304/12/G069 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200110971; Medical Research Council(GB) U105174197 Institutional support: RVO:67985823 Keywords : hippocampus * RNA * adenosine Subject RIV: ED - Physiology Impact factor: 8.808, year: 2013

  17. Petitions to delist hazardous wastes: A guidance manual. Second edition

    International Nuclear Information System (INIS)

    1993-03-01

    EPA developed the guidance document to assist facilities in preparing delisting petitions for the exclusion of listed hazardous wastes. The manual provides general information on hazardous waste delisting, discusses sampling strategies and testing protocols in detail, and presents a step-by-step approach to compiling a complete delisting petition. This updated edition incorporates recent changes in RCRA regulations, agency policies, and delisting criteria. It also reflects the current emphasis on ground-water monitoring data and new concepts such as upfront delistings

  18. Complex chloroplast RNA metabolism: just debugging the genetic programme?

    Directory of Open Access Journals (Sweden)

    Schmitz-Linneweber Christian

    2008-08-01

    Full Text Available Abstract Background The gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity. Results We inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants. Conclusion Our inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions.

  19. NATO Reference Mobility Model. Edition I. Users Guide. Volume I

    Science.gov (United States)

    1979-10-01

    C TOTAL ERAKING FCRCE - SCIL /SLOPE/VEHICLE C --- ----.----------- C 275 R-2WJ58# VCLUIJE I PAGE A-103 APPEND-IX A - LISTING CF O.CFAt’ NRtPM C 1...sGCW vN1RAV ,SFTYPC 9TBF I- c r-------------------------~e e C tPAXIMUP BRAKING FCRCE * SCIL /SL OP E/V ENICLE/ DRIVER C --------------------- C C 1. VAR...CONTINUE GO TC 2160 ,ýObO IFl IST ,NE, 21 GC TG 2110i 317 R-20358, VOLUME I PAGE A-145 APPENDIX A - LISTING CF FRGG/iAM NAMM C 8. COARSE GRAINED SCIL IF

  20. The 8th edition of the American Joint Committee on Cancer tumor-node-metastasis staging system for gastric cancer is superior to the 7th edition: results from a Chinese mono-institutional study of 1663 patients.

    Science.gov (United States)

    Ji, Xin; Bu, Zhao-De; Yan, Yan; Li, Zi-Yu; Wu, Ai-Wen; Zhang, Lian-Hai; Zhang, Ji; Wu, Xiao-Jiang; Zong, Xiang-Long; Li, Shuang-Xi; Shan, Fei; Jia, Zi-Yu; Ji, Jia-Fu

    2017-11-22

    We investigated the superiority of the 8th edition of the tumor-node-metastasis (TNM) system for patients in China with gastric cancer. The survival outcomes of 1663 patients with gastric cancer undergoing radical resection were analyzed. In the 8th edition system, homogeneous 5-year survival rates among different pathological TNM (pTNM) categories belonging to the same stage were observed. However, in the 7th edition system, the differences of 5-year survival rate among pTNM categories belonging to the same stage were observed in stages IIB (P = 0.010), IIIB (P = 0.004), and IIIC (P < 0.001). For patients in the pT1-3 (P < 0.001) and pT4a (P < 0.001) categories, there were significant differences in survival between patients in the pN3a and pN3b categories. Furthermore, partial cases (pT4bN0M0/T4aN2M0) of stage IIIB were downstaged to stage IIIA in the 8th edition system, and the 5-year survival rate of these patients was significantly better than that of patients in stage IIIB in the 8th edition system. Similarly, the 5-year survival rate of patients in p4bN2M0/T4aN3aM0 downstaged from stage IIIC to IIIB was significantly better than that of patients in stage IIIC. Compared with the 7th edition system, the 8th edition system had a higher likelihood ratio and linear trend chi-squared score and a smaller Akaike information criteria value. The 8th edition system is superior to the 7th edition system in terms of homogeneity, discriminatory ability, and monotonicity of gradients for Chinese patients with gastric cancer.

  1. Towards a critical edition of Fibonacci’s Liber Abaci

    Directory of Open Access Journals (Sweden)

    Giuseppe Germano

    2013-11-01

    Full Text Available A group of research working at the University of Naples Federico II aim to achieve the goal to offer a modern scientific and widely accessible edition of Fibonacci’s treatise. With a linguistic-philological, an historical-mathematical and a computer approach it has pointed out the value and the need for a multidisciplinary research in order to achieve the goal of making this edition adequately available to the scientific community.

  2. RNA Origami

    DEFF Research Database (Denmark)

    Sparvath, Steffen Lynge

    introducerede vores gruppe den enkeltstrengede RNA-origami metode, der giver mulighed for cotranscriptional foldning af veldefinerede nanostrukturer, og er en central del af arbejdet præsenteret heri. Denne ph.d.-afhandling udforsker potentielle anvendelser af RNA-origami nanostrukturer, som nanomedicin eller...... biosensorer. Afhandlingen består af en introduktion til RNA-nanoteknologi feltet, en introduktion af enkeltstrenget RNA-origami design, og fire studier, der beskriver design, produktion og karakterisering af både strukturelle og funktionelle RNA-origamier. Flere RNA-origami designs er blevet undersøgt, og...... projekterne, der indgår i denne afhandling, inkluderer de nyeste fremskridt indenfor strukturel RNA-nanoteknologi og udvikling af funktionelle RNA-baserede enheder. Det første studie beskriver konstruktion og karakterisering af en enkeltstrenget 6-helix RNA-origami stuktur, som er den første demonstration af...

  3. Volcanoes, Third Edition

    Science.gov (United States)

    Nye, Christopher J.

    It takes confidence to title a smallish book merely “Volcanoes” because of the impliction that the myriad facets of volcanism—chemistry, physics, geology, meteorology, hazard mitigation, and more—have been identified and addressed to some nontrivial level of detail. Robert and Barbara Decker have visited these different facets seamlessly in Volcanoes, Third Edition. The seamlessness comes from a broad overarching, interdisciplinary, professional understanding of volcanism combined with an exceptionally smooth translation of scientific jargon into plain language.The result is a book which will be informative to a very broad audience, from reasonably educated nongeologists (my mother loves it) to geology undergraduates through professional volcanologists. I bet that even the most senior professional volcanologists will learn at least a few things from this book and will find at least a few provocative discussions of subjects they know.

  4. Phosphorylation of eukaryotic aminoacyl-tRNA synthetases

    International Nuclear Information System (INIS)

    Pendergast, A.M.

    1986-01-01

    The phosphorylation of the highly purified aminoacyl-tRNA synthetase complex from rabbit reticulocytes was examined. The synthetase complex contained, in addition to eight aminoacyl-tRNA synthetases, three unidentified proteins and was free of endogenous protein kinase activity. Incubation of the complex with casein kinase I in the presence of ATP resulted in the phosphorylation of four synthetases, the glutamyl-, isoleucyl-, methionyl-, and lysyl-tRNA synthetases. Phosphorylation by casein kinase I altered binding to tRNA-Sepharose such that the phosphorylated complex eluted at 190 mM NaCl instead of the 275 mM salt observed for the nonphosphorylated form. Phosphorylation by casein kinase I resulted in a significant inhibition of aminoacylation with the four synthetases; the activities of the nonphosphorylated synthetases were unchanged. One of the unidentified proteins in the complex (M/sub r/ 37,000) was also an excellent substrate for casein kinase I. A comparison of the properties and two-dimensional phosphopeptide pattern of this protein with that of casein kinase I suggest that the 37,000 dalton protein in the synthetase complex is an inactive form of casein kinase I. Two other protein kinases were shown to phosphorylate aminoacyl-tRNA synthetases in the complex. The phosphorylation of threonyl-tRNA synthetase was also investigated. Five aminoacyl-tRNA synthetases in the high molecular weight complex were shown to be phosphorylated in rabbit reticulocytes following labeling with ( 32 P)orthophosphate

  5. Partners in Play: An Adlerian Approach to Play Therapy. Second Edition.

    Science.gov (United States)

    Kottman, Terry

    This handbook gives step-by-step instruction on using play therapy with children in school and private practice settings. The second edition builds on the fundamental instruction of the first edition and supplies play therapists with the necessary tools to strengthen therapeutic work with children-- especially those with problematic attitudes--…

  6. C. elegans ADARs antagonize silencing of cellular dsRNAs by the antiviral RNAi pathway.

    Science.gov (United States)

    Reich, Daniel P; Tyc, Katarzyna M; Bass, Brenda L

    2018-02-01

    Cellular dsRNAs are edited by adenosine deaminases that act on RNA (ADARs). While editing can alter mRNA-coding potential, most editing occurs in noncoding sequences, the function of which is poorly understood. Using dsRNA immunoprecipitation (dsRIP) and RNA sequencing (RNA-seq), we identified 1523 regions of clustered A-to-I editing, termed editing-enriched regions (EERs), in four stages of Caenorhabditis elegans development, often with highest expression in embryos. Analyses of small RNA-seq data revealed 22- to 23-nucleotide (nt) siRNAs, reminiscent of viral siRNAs, that mapped to EERs and were abundant in adr-1;adr-2 mutant animals. Consistent with roles for these siRNAs in silencing, EER-associated genes (EAGs) were down-regulated in adr-1;adr-2 embryos, and this was dependent on associated EERs and the RNAi factor RDE-4. We observed that ADARs genetically interact with the 26G endogenous siRNA (endo-siRNA) pathway, which likely competes for RNAi components; deletion of factors required for this pathway ( rrf-3 or ergo-1 ) in adr-1;adr-2 mutant strains caused a synthetic phenotype that was rescued by deleting antiviral RNAi factors. Poly(A) + RNA-seq revealed EAG down-regulation and antiviral gene induction in adr-1;adr-2;rrf-3 embryos, and these expression changes were dependent on rde-1 and rde-4 Our data suggest that ADARs restrict antiviral silencing of cellular dsRNAs. © 2018 Reich et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Genome edited animals: Learning from GM crops?

    Science.gov (United States)

    Bruce, Ann

    2017-06-01

    Genome editing of livestock is poised to become commercial reality, yet questions remain as to appropriate regulation, potential impact on the industry sector and public acceptability of products. This paper looks at how genome editing of livestock has attempted to learn some of the lessons from commercialisation of GM crops, and takes a systemic approach to explore some of the complexity and ambiguity in incorporating genome edited animals in a food production system. Current applications of genome editing are considered, viewed from the perspective of past technological applications. The question of what is genome editing, and can it be considered natural is examined. The implications of regulation on development of different sectors of livestock production systems are studied, with a particular focus on the veterinary sector. From an EU perspective, regulation of genome edited animals, although not necessarily the same as for GM crops, is advocated from a number of different perspectives. This paper aims to open up new avenues of research on genome edited animals, extending from the current primary focus on science and regulation, to engage with a wider-range of food system actors.

  8. Nuclear distribution of the Trypanosoma cruzi RNA Pol I subunit RPA31 during growth and metacyclogenesis, and characterization of its nuclear localization signal.

    Science.gov (United States)

    Canela-Pérez, Israel; López-Villaseñor, Imelda; Cevallos, Ana María; Hernández, Roberto

    2018-03-01

    Trypanosoma cruzi is the aetiologic agent of Chagas disease. Our research group studies ribosomal RNA (rRNA) gene transcription and nucleolus dynamics in this species of trypanosomes. RPA31 is an essential subunit of RNA polymerase I (Pol I) whose presence is apparently restricted to trypanosomes. Using fluorescent-tagged versions of this protein (TcRPA31-EGFP), we describe its nuclear distribution during growth and metacyclogenesis. Our findings indicate that TcRPA31-EGFP alters its nuclear presence from concentrated nucleolar localization in exponentially growing epimastigotes to a dispersed granular distribution in the nucleoplasm of stationary epimastigotes and metacyclic trypomastigotes. These changes likely reflect a structural redistribution of the Pol I transcription machinery in quiescent cellular stages where downregulation of rRNA synthesis is known to occur. In addition, and related to the nuclear internalization of this protein, the presence of a classical bipartite-type nuclear localization signal was identified towards its C-terminal end. The functionality of this motif was demonstrated by its partial or total deletion in recombinant versions of the tagged fluorescent protein. Moreover, ivermectin inhibited the nuclear localization of the labelled chimaera, suggesting the involvement of the importin α/β transport system.

  9. Myb-binding protein 1a (Mybbp1a) regulates levels and processing of pre-ribosomal RNA.

    Science.gov (United States)

    Hochstatter, Julia; Hölzel, Michael; Rohrmoser, Michaela; Schermelleh, Lothar; Leonhardt, Heinrich; Keough, Rebecca; Gonda, Thomas J; Imhof, Axel; Eick, Dirk; Längst, Gernot; Németh, Attila

    2012-07-13

    Ribosomal RNA gene transcription, co-transcriptional processing, and ribosome biogenesis are highly coordinated processes that are tightly regulated during cell growth. In this study we discovered that Mybbp1a is associated with both the RNA polymerase I complex and the ribosome biogenesis machinery. Using a reporter assay that uncouples transcription and RNA processing, we show that Mybbp1a represses rRNA gene transcription. In addition, overexpression of the protein reduces RNA polymerase I loading on endogenous rRNA genes as revealed by chromatin immunoprecipitation experiments. Accordingly, depletion of Mybbp1a results in an accumulation of the rRNA precursor in vivo but surprisingly also causes growth arrest of the cells. This effect can be explained by the observation that the modulation of Mybbp1a protein levels results in defects in pre-rRNA processing within the cell. Therefore, the protein may play a dual role in the rRNA metabolism, potentially linking and coordinating ribosomal DNA transcription and pre-rRNA processing to allow for the efficient synthesis of ribosomes.

  10. Characterization of RNase MRP RNA and novel snoRNAs from Giardia intestinalis and Trichomonas vaginalis

    Science.gov (United States)

    2011-01-01

    Background Eukaryotic cells possess a complex network of RNA machineries which function in RNA-processing and cellular regulation which includes transcription, translation, silencing, editing and epigenetic control. Studies of model organisms have shown that many ncRNAs of the RNA-infrastructure are highly conserved, but little is known from non-model protists. In this study we have conducted a genome-scale survey of medium-length ncRNAs from the protozoan parasites Giardia intestinalis and Trichomonas vaginalis. Results We have identified the previously 'missing' Giardia RNase MRP RNA, which is a key ribozyme involved in pre-rRNA processing. We have also uncovered 18 new H/ACA box snoRNAs, expanding our knowledge of the H/ACA family of snoRNAs. Conclusions Results indicate that Giardia intestinalis and Trichomonas vaginalis, like their distant multicellular relatives, contain a rich infrastructure of RNA-based processing. From here we can investigate the evolution of RNA processing networks in eukaryotes. PMID:22053856

  11. Characterization of RNase MRP RNA and novel snoRNAs from Giardia intestinalis and Trichomonas vaginalis

    Directory of Open Access Journals (Sweden)

    Chen Xiaowei S

    2011-11-01

    Full Text Available Abstract Background Eukaryotic cells possess a complex network of RNA machineries which function in RNA-processing and cellular regulation which includes transcription, translation, silencing, editing and epigenetic control. Studies of model organisms have shown that many ncRNAs of the RNA-infrastructure are highly conserved, but little is known from non-model protists. In this study we have conducted a genome-scale survey of medium-length ncRNAs from the protozoan parasites Giardia intestinalis and Trichomonas vaginalis. Results We have identified the previously 'missing' Giardia RNase MRP RNA, which is a key ribozyme involved in pre-rRNA processing. We have also uncovered 18 new H/ACA box snoRNAs, expanding our knowledge of the H/ACA family of snoRNAs. Conclusions Results indicate that Giardia intestinalis and Trichomonas vaginalis, like their distant multicellular relatives, contain a rich infrastructure of RNA-based processing. From here we can investigate the evolution of RNA processing networks in eukaryotes.

  12. Advances in genome editing for improved animal breeding: A review

    Directory of Open Access Journals (Sweden)

    Shakil Ahmad Bhat

    2017-11-01

    Full Text Available Since centuries, the traits for production and disease resistance are being targeted while improving the genetic merit of domestic animals, using conventional breeding programs such as inbreeding, outbreeding, or introduction of marker-assisted selection. The arrival of new scientific concepts, such as cloning and genome engineering, has added a new and promising research dimension to the existing animal breeding programs. Development of genome editing technologies such as transcription activator-like effector nuclease, zinc finger nuclease, and clustered regularly interspaced short palindromic repeats systems begun a fresh era of genome editing, through which any change in the genome, including specific DNA sequence or indels, can be made with unprecedented precision and specificity. Furthermore, it offers an opportunity of intensification in the frequency of desirable alleles in an animal population through gene-edited individuals more rapidly than conventional breeding. The specific research is evolving swiftly with a focus on improvement of economically important animal species or their traits all of which form an important subject of this review. It also discusses the hurdles to commercialization of these techniques despite several patent applications owing to the ambiguous legal status of genome-editing methods on account of their disputed classification. Nonetheless, barring ethical concerns gene-editing entailing economically important genes offers a tremendous potential for breeding animals with desirable traits.

  13. Non-standard amino acid recognition by Escherichia coli leucyl-tRNA synthetase

    Science.gov (United States)

    Martinis, S. A.; Fox, G. E.

    1997-01-01

    Recombinant E. coli leucyl-tRNA synthetase was screened for amino acid-dependent pyrophosphate exchange activity using noncognate aliphatic amino acids including norvaline, homocysteine, norleucine, methionine, and homoserine. [32P]-labeled reaction products were separated by thin layer chromatography using a novel solvent system and then quantified by phosphorimaging. Norvaline which differs from leucine by only one methyl group stimulated pyrophosphate exchange activity as did both homocysteine and norleucine to a lesser extent. The KM parameters for leucine and norvaline were measured to be 10 micromoles and 1.5 mM, respectively. Experiments are in progress to determine if norvaline is transferred to tRNA(Leu) and/or edited by a pre- or post-transfer mechanism.

  14. The HIV-1 leader RNA conformational switch regulates RNA dimerization but does not regulate mRNA translation

    NARCIS (Netherlands)

    Abbink, Truus E. M.; Ooms, Marcel; Haasnoot, P. C. Joost; Berkhout, Ben

    2005-01-01

    The untranslated leader RNA is the most conserved part of the human immunodeficiency virus type I (HIV-1) genome. It contains many regulatory motifs that mediate a variety of steps in the viral life cycle. Previous work showed that the full-length leader RNA can adopt two alternative structures: a

  15. Expression of insulin-like growth factor I, insulin-like growth factor binding proteins, and collagen mRNA in mechanically loaded plantaris tendon

    DEFF Research Database (Denmark)

    Olesen, Jens L; Heinemeier, Katja M; Haddad, Fadia

    2006-01-01

    Insulin-like growth factor I (IGF-I) is known to exert an anabolic effect on tendon fibroblast production of collagen. IGF-I's regulation is complex and involves six different IGF binding proteins (IGFBPs). Of these, IGFBP-4 and -5 could potentially influence the effect of IGF-I in the tendon...... because they both are produced in fibroblast; however, the response of IGFBP-4 and -5 to mechanical loading and their role in IGF-I regulation in tendinous tissue are unknown. A splice variant of IGF-I, mechano-growth factor (MGF) is upregulated and known to be important for adaptation in loaded muscle....... However, it is not known whether MGF is expressed and upregulated in mechanically loaded tendon. This study examined the effect of mechanical load on tendon collagen mRNA in relation to changes in the IGF-I systems mRNA expression. Data were collected at 2, 4, 8 and 16 days after surgical removal...

  16. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9.

    Science.gov (United States)

    Ren, Xingjie; Sun, Jin; Housden, Benjamin E; Hu, Yanhui; Roesel, Charles; Lin, Shuailiang; Liu, Lu-Ping; Yang, Zhihao; Mao, Decai; Sun, Lingzhu; Wu, Qujie; Ji, Jun-Yuan; Xi, Jianzhong; Mohr, Stephanie E; Xu, Jiang; Perrimon, Norbert; Ni, Jian-Quan

    2013-11-19

    The ability to engineer genomes in a specific, systematic, and cost-effective way is critical for functional genomic studies. Recent advances using the CRISPR-associated single-guide RNA system (Cas9/sgRNA) illustrate the potential of this simple system for genome engineering in a number of organisms. Here we report an effective and inexpensive method for genome DNA editing in Drosophila melanogaster whereby plasmid DNAs encoding short sgRNAs under the control of the U6b promoter are injected into transgenic flies in which Cas9 is specifically expressed in the germ line via the nanos promoter. We evaluate the off-targets associated with the method and establish a Web-based resource, along with a searchable, genome-wide database of predicted sgRNAs appropriate for genome engineering in flies. Finally, we discuss the advantages of our method in comparison with other recently published approaches.

  17. microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein.

    Science.gov (United States)

    Pinder, Benjamin D; Smibert, Craig A

    2013-01-01

    Argonaute (Ago) proteins are typically recruited to target messenger RNAs via an associated small RNA such as a microRNA (miRNA). Here, we describe a new mechanism of Ago recruitment through the Drosophila Smaug RNA-binding protein. We show that Smaug interacts with the Ago1 protein, and that Ago1 interacts with and is required for the translational repression of the Smaug target, nanos mRNA. The Ago1/nanos mRNA interaction does not require a miRNA, but it does require Smaug. Taken together, our data suggest a model whereby Smaug directly recruits Ago1 to nanos mRNA in a miRNA-independent manner, thereby repressing translation.

  18. Application of ion mobility-mass spectrometry to microRNA analysis.

    Science.gov (United States)

    Takebayashi, Kosuke; Hirose, Kenji; Izumi, Yoshihiro; Bamba, Takeshi; Fukusaki, Eiichiro

    2013-03-01

    Liquid chromatography/mass spectrometry is widely used for studying sequence determination and modification analysis of small RNAs. However, the efficiency of liquid chromatography-based separation of intact small RNA species is insufficient, since the physiochemical properties among small RNAs are very similar. In this study, we focused on ion mobility-mass spectrometry (IM-MS), which is a gas-phase separation technique coupled with mass spectrometry; we have evaluated the utility of IM-MS for microRNA (miRNA) analysis. A multiply charged deprotonated ion derived from an 18-24-nt-long miRNA was formed by electrospray ionization, and then the time, called the "drift time", taken by each ion to migrate through a buffer gas was measured. Each multivalent ion was temporally separated on the basis of the charge state and structural formation; 3 types of unique mass-mobility correlation patterns (i.e., chainlike-form, hairpin-form, and dimer-form) were present on the two-dimensional mobility-mass spectrum. Moreover, we found that the ion size (sequence length) and the secondary structures of the small RNAs strongly contributed to the IM-MS-based separation, although solvent conditions such as pH had no effect. Therefore, sequence isomers could also be discerned by the selection of each specific charged ion, i.e., the 6(-) charged ion reflected a majority among chainlike-, hairpin-, and other structures. We concluded that the IM-MS provides additional capability for separation; thus, this analytical method will be a powerful tool for comprehensive small RNA analysis. Copyright © 2012. Published by Elsevier B.V.

  19. [Genome editing of industrial microorganism].

    Science.gov (United States)

    Zhu, Linjiang; Li, Qi

    2015-03-01

    Genome editing is defined as highly-effective and precise modification of cellular genome in a large scale. In recent years, such genome-editing methods have been rapidly developed in the field of industrial strain improvement. The quickly-updating methods thoroughly change the old mode of inefficient genetic modification, which is "one modification, one selection marker, and one target site". Highly-effective modification mode in genome editing have been developed including simultaneous modification of multiplex genes, highly-effective insertion, replacement, and deletion of target genes in the genome scale, cut-paste of a large DNA fragment. These new tools for microbial genome editing will certainly be applied widely, and increase the efficiency of industrial strain improvement, and promote the revolution of traditional fermentation industry and rapid development of novel industrial biotechnology like production of biofuel and biomaterial. The technological principle of these genome-editing methods and their applications were summarized in this review, which can benefit engineering and construction of industrial microorganism.

  20. Careers and retention of staff in the 21st century world of work: Introduction to the special edition

    Directory of Open Access Journals (Sweden)

    Melinde Coetzee

    2012-12-01

    Full Text Available How to cite this article: Coetzee, M., & Gunz, H. (2012. Careers and retention of staff in the 21st century world of work: Introduction to the special edition. SA Journal of Human Resource Management/SA Tydskrif vir Menslikehulpbronbestuur, 10(2, Art. #505, 4 pages. http://dx.doi.org/10.4102/ sajhrm.v10i2.505