WorldWideScience

Sample records for a-proteobacterial mitochondrial ancestor

  1. Evidence for loss of mitochondria in Microsporidia from a mitochondrial-type HSP70 in Nosema locustae.

    Science.gov (United States)

    Germot, A; Philippe, H; Le Guyader, H

    1997-08-01

    In molecular phylogenies based on ribosomal RNA, three amitochondriate protist lineages, Microsporidia, Metamonada (including diplomonads) and Parabasala (including trichomonads), are the earliest offshoots of the eukaryotic tree. As an explantation for the lack of mitochondria in these organisms, the hypothesis that they have diverged before the mitochondrial endosymbiosis is preferred to the less parsimonious hypothesis of several independent losses of the organelle. Nevertheless, if they had descended from mitochondrion-containing ancestors, it may be possible to find in their nuclear DNA genes that derive from the endosymbiont which gave rise to mitochondria. Based on similar evidence, secondary losses of mitochondria have recently been suggested for Entamoeba histolytica and for Trichomonas vaginalis. In this study, we have isolated a gene encoding a chaperone protein (HSP70, 70 kDa heat shock protein) from the microspordian Nosema locustae. In phylogenetic trees, this HSP70 was located within a group of sequences that in other lineages is targetted to the mitochondrial compartment, itself included in the proteobacterial clade. In addition, the N. locustae protein contained the GDAW(V) motif shared by mitochondrial and proteobacterial sequences, with only one conservative substitution. Moreover, microsporidia, a phylum which was assumed to emerge close to the base of the eukaryotic tree, appears as the sister-group of fungi in the HSP70 phylogeny, in agreement with some ultrastructural characters and phylogenies based on alpha- and beta-tubulins. Loss of mitochondria, now demonstrated for several amitochondriate groups, indicates that the common ancestor of all the extant eukaryotic species could have been a mitochondriate eukaryote.

  2. Evolutionary origins and diversification of proteobacterial mutualists.

    Science.gov (United States)

    Sachs, Joel L; Skophammer, Ryan G; Bansal, Nidhanjali; Stajich, Jason E

    2014-01-22

    Mutualistic bacteria infect most eukaryotic species in nearly every biome. Nonetheless, two dilemmas remain unresolved about bacterial-eukaryote mutualisms: how do mutualist phenotypes originate in bacterial lineages and to what degree do mutualists traits drive or hinder bacterial diversification? Here, we reconstructed the phylogeny of the hyperdiverse phylum Proteobacteria to investigate the origins and evolutionary diversification of mutualistic bacterial phenotypes. Our ancestral state reconstructions (ASRs) inferred a range of 34-39 independent origins of mutualist phenotypes in Proteobacteria, revealing the surprising frequency with which host-beneficial traits have evolved in this phylum. We found proteobacterial mutualists to be more often derived from parasitic than from free-living ancestors, consistent with the untested paradigm that bacterial mutualists most often evolve from pathogens. Strikingly, we inferred that mutualists exhibit a negative net diversification rate (speciation minus extinction), which suggests that mutualism evolves primarily via transitions from other states rather than diversification within mutualist taxa. Moreover, our ASRs infer that proteobacterial mutualist lineages exhibit a paucity of reversals to parasitism or to free-living status. This evolutionary conservatism of mutualism is contrary to long-standing theory, which predicts that selection should often favour mutants in microbial mutualist populations that exploit or abandon more slowly evolving eukaryotic hosts.

  3. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes.

    Science.gov (United States)

    Germot, A; Philippe, H; Le Guyader, H

    1996-12-10

    Molecular phylogenetic analyses, based mainly on ribosomal RNA, show that three amitochondriate protist lineages, diplomonads, microsporidia, and trichomonads, emerge consistently at the base of the eukaryotic tree before groups having mitochondria. This suggests that these groups could have diverged before the mitochondrial endosymbiosis. Nevertheless, since all these organisms live in anaerobic environments, the absence of mitochondria might be due to secondary loss, as demonstrated for the later emerging eukaryote Entamoeba histolytica. We have now isolated from Trichomonas vaginalis a gene encoding a chaperone protein (HSP70) that in other lineages is addressed to the mitochondrial compartment. The phylogenetic reconstruction unambiguously located this HSP70 within a large set of mitochondrial sequences, itself a sister-group of alpha-purple bacteria. In addition, the T. vaginalis protein exhibits the GDAWV sequence signature, so far exclusively found in mitochondrial HSP70 and in proteobacterial dnaK. Thus mitochondrial endosymbiosis could have occurred earlier than previously assumed. The trichomonad double membrane-bounded organelles, the hydrogenosomes, could have evolved from mitochondria.

  4. How the mitochondrion was shaped by radical differences in substrates: what carnitine shuttles and uncoupling tell us about mitochondrial evolution in response to ROS

    NARCIS (Netherlands)

    Speijer, Dave

    2014-01-01

    As free-living organisms, alpha-proteobacteria produce reactive oxygen species (ROS) that diffuse into the surroundings; once constrained inside the archaeal ancestor of eukaryotes, however, ROS production presented evolutionary pressures - especially because the alpha-proteobacterial symbiont made

  5. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes

    Science.gov (United States)

    Germot, Agnès; Philippe, Hervé; Le Guyader, Hervé

    1996-01-01

    Molecular phylogenetic analyses, based mainly on ribosomal RNA, show that three amitochondriate protist lineages, diplomonads, microsporidia, and trichomonads, emerge consistently at the base of the eukaryotic tree before groups having mitochondria. This suggests that these groups could have diverged before the mitochondrial endosymbiosis. Nevertheless, since all these organisms live in anaerobic environments, the absence of mitochondria might be due to secondary loss, as demonstrated for the later emerging eukaryote Entamoeba histolytica. We have now isolated from Trichomonas vaginalis a gene encoding a chaperone protein (HSP70) that in other lineages is addressed to the mitochondrial compartment. The phylogenetic reconstruction unambiguously located this HSP70 within a large set of mitochondrial sequences, itself a sister-group of α-purple bacteria. In addition, the T. vaginalis protein exhibits the GDAWV sequence signature, so far exclusively found in mitochondrial HSP70 and in proteobacterial dnaK. Thus mitochondrial endosymbiosis could have occurred earlier than previously assumed. The trichomonad double membrane-bounded organelles, the hydrogenosomes, could have evolved from mitochondria. PMID:8962101

  6. Genome digging: insight into the mitochondrial genome of Homo.

    Directory of Open Access Journals (Sweden)

    Igor V Ovchinnikov

    2010-12-01

    Full Text Available A fraction of the Neanderthal mitochondrial genome sequence has a similarity with a 5,839-bp nuclear DNA sequence of mitochondrial origin (numt on the human chromosome 1. This fact has never been interpreted. Although this phenomenon may be attributed to contamination and mosaic assembly of Neanderthal mtDNA from short sequencing reads, we explain the mysterious similarity by integration of this numt (mtAncestor-1 into the nuclear genome of the common ancestor of Neanderthals and modern humans not long before their reproductive split.Exploiting bioinformatics, we uncovered an additional numt (mtAncestor-2 with a high similarity to the Neanderthal mtDNA and indicated that both numts represent almost identical replicas of the mtDNA sequences ancestral to the mitochondrial genomes of Neanderthals and modern humans. In the proteins, encoded by mtDNA, the majority of amino acids distinguishing chimpanzees from humans and Neanderthals were acquired by the ancestral hominins. The overall rate of nonsynonymous evolution in Neanderthal mitochondrial protein-coding genes is not higher than in other lineages. The model incorporating the ancestral hominin mtDNA sequences estimates the average divergence age of the mtDNAs of Neanderthals and modern humans to be 450,000-485,000 years. The mtAncestor-1 and mtAncestor-2 sequences were incorporated into the nuclear genome approximately 620,000 years and 2,885,000 years ago, respectively.This study provides the first insight into the evolution of the mitochondrial DNA in hominins ancestral to Neanderthals and humans. We hypothesize that mtAncestor-1 and mtAncestor-2 are likely to be molecular fossils of the mtDNAs of Homo heidelbergensis and a stem Homo lineage. The d(N/d(S dynamics suggests that the effective population size of extinct hominins was low. However, the hominin lineage ancestral to humans, Neanderthals and H. heidelbergensis, had a larger effective population size and possessed genetic diversity

  7. Evolution of gastropod mitochondrial genome arrangements

    Directory of Open Access Journals (Sweden)

    Zardoya Rafael

    2008-02-01

    Full Text Available Abstract Background Gastropod mitochondrial genomes exhibit an unusually great variety of gene orders compared to other metazoan mitochondrial genome such as e.g those of vertebrates. Hence, gastropod mitochondrial genomes constitute a good model system to study patterns, rates, and mechanisms of mitochondrial genome rearrangement. However, this kind of evolutionary comparative analysis requires a robust phylogenetic framework of the group under study, which has been elusive so far for gastropods in spite of the efforts carried out during the last two decades. Here, we report the complete nucleotide sequence of five mitochondrial genomes of gastropods (Pyramidella dolabrata, Ascobulla fragilis, Siphonaria pectinata, Onchidella celtica, and Myosotella myosotis, and we analyze them together with another ten complete mitochondrial genomes of gastropods currently available in molecular databases in order to reconstruct the phylogenetic relationships among the main lineages of gastropods. Results Comparative analyses with other mollusk mitochondrial genomes allowed us to describe molecular features and general trends in the evolution of mitochondrial genome organization in gastropods. Phylogenetic reconstruction with commonly used methods of phylogenetic inference (ME, MP, ML, BI arrived at a single topology, which was used to reconstruct the evolution of mitochondrial gene rearrangements in the group. Conclusion Four main lineages were identified within gastropods: Caenogastropoda, Vetigastropoda, Patellogastropoda, and Heterobranchia. Caenogastropoda and Vetigastropoda are sister taxa, as well as, Patellogastropoda and Heterobranchia. This result rejects the validity of the derived clade Apogastropoda (Caenogastropoda + Heterobranchia. The position of Patellogastropoda remains unclear likely due to long-branch attraction biases. Within Heterobranchia, the most heterogeneous group of gastropods, neither Euthyneura (because of the inclusion of P

  8. A degenerate primer MOB typing (DPMT method to classify gamma-proteobacterial plasmids in clinical and environmental settings.

    Directory of Open Access Journals (Sweden)

    Andrés Alvarado

    Full Text Available Transmissible plasmids are responsible for the spread of genetic determinants, such as antibiotic resistance or virulence traits, causing a large ecological and epidemiological impact. Transmissible plasmids, either conjugative or mobilizable, have in common the presence of a relaxase gene. Relaxases were previously classified in six protein families according to their phylogeny. Degenerate primers hybridizing to coding sequences of conserved amino acid motifs were designed to amplify related relaxase genes from γ-Proteobacterial plasmids. Specificity and sensitivity of a selected set of 19 primer pairs were first tested using a collection of 33 reference relaxases, representing the diversity of γ-Proteobacterial plasmids. The validated set was then applied to the analysis of two plasmid collections obtained from clinical isolates. The relaxase screening method, which we call "Degenerate Primer MOB Typing" or DPMT, detected not only most known Inc/Rep groups, but also a plethora of plasmids not previously assigned to any Inc group or Rep-type.

  9. Still under the ancestors' shadow? Ancestor worship and family formation in contemporary China

    Directory of Open Access Journals (Sweden)

    Anning Hu

    2018-01-01

    Full Text Available Background: Ancestor worship in China used to be an indispensable component of marriage and family life because it fostered an orientation toward perpetuating the family line. However, whether or not ancestor worship still matters in contemporary China is an open question. Objective: This article presents a comprehensive study of the association between ancestor worship practices and 1 the timing of transition to first marriage, 2 the pattern of childbearing, and 3 the orientation toward son preference. Methods: Drawing on the adult sample from the Chinese Family Panel Studies 2010, several multivariate models (Cox proportional hazard model, probit regression model, negative binomial regression models, and ordered probit model were fitted, corresponding to different types of outcome. Results: All else being equal, involvement in ancestor worship practices is correlated with 1 an early transition to marriage, 2 a larger number of children, 3 a higher probability of having at least one son, and 4 a larger number of sons. Conclusions: The relevance of the kinship tradition to family formation persists in contemporary China and has not faded away. Contribution: By highlighting the demographic implications of ancestor worship, this study illustrates the ongoing connection between culture and demography.

  10. Comparative mitochondrial genome analysis reveals the evolutionary rearrangement mechanism in Brassica.

    Science.gov (United States)

    Yang, J; Liu, G; Zhao, N; Chen, S; Liu, D; Ma, W; Hu, Z; Zhang, M

    2016-05-01

    The genus Brassica has many species that are important for oil, vegetable and other food products. Three mitochondrial genome types (mitotype) originated from its common ancestor. In this paper, a B. nigra mitochondrial main circle genome with 232,407 bp was generated through de novo assembly. Synteny analysis showed that the mitochondrial genomes of B. rapa and B. oleracea had a better syntenic relationship than B. nigra. Principal components analysis and development of a phylogenetic tree indicated maternal ancestors of three allotetraploid species in Us triangle of Brassica. Diversified mitotypes were found in allotetraploid B. napus, in which napus-type B. napus was derived from B. oleracea, while polima-type B. napus was inherited from B. rapa. In addition, the mitochondrial genome of napus-type B. napus was closer to botrytis-type than capitata-type B. oleracea. The sub-stoichiometric shifting of several mitochondrial genes suggested that mitochondrial genome rearrangement underwent evolutionary selection during domestication and/or plant breeding. Our findings clarify the role of diploid species in the maternal origin of allotetraploid species in Brassica and suggest the possibility of breeding selection of the mitochondrial genome. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Organization of the mitochondrial genomes of whiteflies, aphids, and psyllids (Hemiptera, Sternorrhyncha

    Directory of Open Access Journals (Sweden)

    Baumann Paul

    2004-08-01

    Full Text Available Abstract Background With some exceptions, mitochondria within the class Insecta have the same gene content, and generally, a similar gene order allowing the proposal of an ancestral gene order. The principal exceptions are several orders within the Hemipteroid assemblage including the order Thysanoptera, a sister group of the order Hemiptera. Within the Hemiptera, there are available a number of completely sequenced mitochondrial genomes that have a gene order similar to that of the proposed ancestor. None, however, are available from the suborder Sternorryncha that includes whiteflies, psyllids and aphids. Results We have determined the complete nucleotide sequence of the mitochondrial genomes of six species of whiteflies, one psyllid and one aphid. Two species of whiteflies, one psyllid and one aphid have mitochondrial genomes with a gene order very similar to that of the proposed insect ancestor. The remaining four species of whiteflies had variations in the gene order. In all cases, there was the excision of a DNA fragment encoding for cytochrome oxidase subunit III(COIII-tRNAgly-NADH dehydrogenase subunit 3(ND3-tRNAala-tRNAarg-tRNAasn from the ancestral position between genes for ATP synthase subunit 6 and NADH dehydrogenase subunit 5. Based on the position in which all or part of this fragment was inserted, the mitochondria could be subdivided into four different gene arrangement types. PCR amplification spanning from COIII to genes outside the inserted region and sequence determination of the resulting fragments, indicated that different whitefly species could be placed into one of these arrangement types. A phylogenetic analysis of 19 whitefly species based on genes for mitochondrial cytochrome b, NADH dehydrogenase subunit 1, and 16S ribosomal DNA as well as cospeciating endosymbiont 16S and 23S ribosomal DNA indicated a clustering of species that corresponded to the gene arrangement types. Conclusions In whiteflies, the region of the

  12. Chaperone-protease networks in mitochondrial protein homeostasis.

    Science.gov (United States)

    Voos, Wolfgang

    2013-02-01

    As essential organelles, mitochondria are intimately integrated into the metabolism of a eukaryotic cell. The maintenance of the functional integrity of the mitochondrial proteome, also termed protein homeostasis, is facing many challenges both under normal and pathological conditions. First, since mitochondria are derived from bacterial ancestor cells, the proteins in this endosymbiotic organelle have a mixed origin. Only a few proteins are encoded on the mitochondrial genome, most genes for mitochondrial proteins reside in the nuclear genome of the host cell. This distribution requires a complex biogenesis of mitochondrial proteins, which are mostly synthesized in the cytosol and need to be imported into the organelle. Mitochondrial protein biogenesis usually therefore comprises complex folding and assembly processes to reach an enzymatically active state. In addition, specific protein quality control (PQC) processes avoid an accumulation of damaged or surplus polypeptides. Mitochondrial protein homeostasis is based on endogenous enzymatic components comprising a diverse set of chaperones and proteases that form an interconnected functional network. This review describes the different types of mitochondrial proteins with chaperone functions and covers the current knowledge of their roles in protein biogenesis, folding, proteolytic removal and prevention of aggregation, the principal reactions of protein homeostasis. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Random ancestor trees

    International Nuclear Information System (INIS)

    Ben-Naim, E; Krapivsky, P L

    2010-01-01

    We investigate a network growth model in which the genealogy controls the evolution. In this model, a new node selects a random target node and links either to this target node, or to its parent, or to its grandparent, etc; all nodes from the target node to its most ancient ancestor are equiprobable destinations. The emerging random ancestor tree is very shallow: the fraction g n of nodes at distance n from the root decreases super-exponentially with n, g n = e −1 /(n − 1)!. We find that a macroscopic hub at the root coexists with highly connected nodes at higher generations. The maximal degree of a node at the nth generation grows algebraically as N 1/β n , where N is the system size. We obtain the series of nontrivial exponents which are roots of transcendental equations: β 1 ≅1.351 746, β 2 ≅1.682 201, etc. As a consequence, the fraction p k of nodes with degree k has an algebraic tail, p k ∼ k −γ , with γ = β 1 + 1 = 2.351 746

  14. Complete mitochondrial genome and phylogeny of Pleistocene mammoth Mammuthus primigenius.

    Directory of Open Access Journals (Sweden)

    Evgeny I Rogaev

    2006-03-01

    Full Text Available Phylogenetic relationships between the extinct woolly mammoth (Mammuthus primigenius, and the Asian (Elephas maximus and African savanna (Loxodonta africana elephants remain unresolved. Here, we report the sequence of the complete mitochondrial genome (16,842 base pairs of a woolly mammoth extracted from permafrost-preserved remains from the Pleistocene epoch--the oldest mitochondrial genome sequence determined to date. We demonstrate that well-preserved mitochondrial genome fragments, as long as approximately 1,600-1700 base pairs, can be retrieved from pre-Holocene remains of an extinct species. Phylogenetic reconstruction of the Elephantinae clade suggests that M. primigenius and E. maximus are sister species that diverged soon after their common ancestor split from the L. africana lineage. Low nucleotide diversity found between independently determined mitochondrial genomic sequences of woolly mammoths separated geographically and in time suggests that north-eastern Siberia was occupied by a relatively homogeneous population of M. primigenius throughout the late Pleistocene.

  15. Vacuum fluctuations in an ancestor vacuum: A possible dark energy candidate

    Science.gov (United States)

    Aoki, Hajime; Iso, Satoshi; Lee, Da-Shin; Sekino, Yasuhiro; Yeh, Chen-Pin

    2018-02-01

    We consider an open universe created by bubble nucleation, and study possible effects of our "ancestor vacuum," a de Sitter space in which bubble nucleation occurred, on the present universe. We compute vacuum expectation values of the energy-momentum tensor for a minimally coupled scalar field, carefully taking into account the effect of the ancestor vacuum by the Euclidean prescription. We pay particular attention to the so-called supercurvature mode, a non-normalizable mode on a spatial slice of the open universe, which has been known to exist for sufficiently light fields. This mode decays in time most slowly, and may leave residual effects of the ancestor vacuum, potentially observable in the present universe. We point out that the vacuum energy of the quantum field can be regarded as dark energy if mass of the field is of order the present Hubble parameter or smaller. We obtain preliminary results for the dark energy equation of state w (z ) as a function of the redshift.

  16. Dewey Called Them Utopians, I Call Them Ancestors

    Science.gov (United States)

    Kulago, Hollie A.

    2018-01-01

    In this article, I will describe how the Utopians whom John Dewey once referenced are possibly the ancestors of Indigenous peoples, in this case, ancestors of the Diné. I will describe a Diné philosophy of education through the Kinaaldá ceremony which was the first ceremony created by the Holy People of the Diné to ensure the survival of the…

  17. Proposed Ancestors of Phage Nucleic Acid Packaging Motors (and Cells

    Directory of Open Access Journals (Sweden)

    Philip Serwer

    2011-07-01

    Full Text Available I present a hypothesis that begins with the proposal that abiotic ancestors of phage RNA and DNA packaging systems (and cells include mobile shells with an internal, molecule-transporting cavity. The foundations of this hypothesis include the conjecture that current nucleic acid packaging systems have imprints from abiotic ancestors. The abiotic shells (1 initially imbibe and later also bind and transport organic molecules, thereby providing a means for producing molecular interactions that are links in the chain of events that produces ancestors to the first molecules that are both information carrying and enzymatically active, and (2 are subsequently scaffolds on which proteins assemble to form ancestors common to both shells of viral capsids and cell membranes. Emergence of cells occurs via aggregation and merger of shells and internal contents. The hypothesis continues by using proposed imprints of abiotic and biotic ancestors to deduce an ancestral thermal ratchet-based DNA packaging motor that subsequently evolves to integrate a DNA packaging ATPase that provides a power stroke.

  18. Near-optimal labeling schemes for nearest common ancestors

    DEFF Research Database (Denmark)

    Alstrup, Stephen; Bistrup Halvorsen, Esben; Larsen, Kasper Green

    2014-01-01

    and Korman (STOC'10) established that labels in ancestor labeling schemes have size log n + Θ(log log n), our new lower bound separates ancestor and NCA labeling schemes. Our upper bound improves the 10 log n upper bound by Alstrup, Gavoille, Kaplan and Rauhe (TOCS'04), and our theoretical result even...

  19. The mitochondrial genome of Frankliniella intonsa: insights into the evolution of mitochondrial genomes at lower taxonomic levels in Thysanoptera.

    Science.gov (United States)

    Yan, Dankan; Tang, Yunxia; Hu, Min; Liu, Fengquan; Zhang, Dongfang; Fan, Jiaqin

    2014-10-01

    Thrips is an ideal group for studying the evolution of mitochondrial (mt) genomes in the genus and family due to independent rearrangements within this order. The complete sequence of the mitochondrial DNA (mtDNA) of the flower thrips Frankliniella intonsa has been completed and annotated in this study. The circular genome is 15,215bp in length with an A+T content of 75.9% and contains the typical 37 genes and it has triplicate putative control regions. Nucleotide composition is A+T biased, and the majority of the protein-coding genes present opposite CG skew which is reflected by the nucleotide composition, codon and amino acid usage. Although the known thrips have massive gene rearrangements, it showed no reversal of strand asymmetry. Gene rearrangements have been found in the lower taxonomic levels of thrips. Three tRNA genes were translocated in the genus Frankliniella and eight tRNA genes in the family Thripidae. Although the gene arrangements of mt genomes of all three thrips species differ massively from the ancestral insect, they are all very similar to each other, indicating that there was a large rearrangement somewhere before the most recent common ancestor of these three species and very little genomic evolution or rearrangements after then. The extremely similar sequences among the CRs suggest that they are ongoing concerted evolution. Analyses of the up and downstream sequence of CRs reveal that the CR2 is actually the ancestral CR. The three CRs are in the same spot in each of the three thrips mt genomes which have the identical inverted genes. These characteristics might be obtained from the most recent common ancestor of this three thrips. Above observations suggest that the mt genomes of the three thrips keep a single massive rearrangement from the common ancestor and have low evolutionary rates among them. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Phylogenetic rooting using minimal ancestor deviation.

    Science.gov (United States)

    Tria, Fernando Domingues Kümmel; Landan, Giddy; Dagan, Tal

    2017-06-19

    Ancestor-descendent relations play a cardinal role in evolutionary theory. Those relations are determined by rooting phylogenetic trees. Existing rooting methods are hampered by evolutionary rate heterogeneity or the unavailability of auxiliary phylogenetic information. Here we present a rooting approach, the minimal ancestor deviation (MAD) method, which accommodates heterotachy by using all pairwise topological and metric information in unrooted trees. We demonstrate the performance of the method, in comparison to existing rooting methods, by the analysis of phylogenies from eukaryotes and prokaryotes. MAD correctly recovers the known root of eukaryotes and uncovers evidence for the origin of cyanobacteria in the ocean. MAD is more robust and consistent than existing methods, provides measures of the root inference quality and is applicable to any tree with branch lengths.

  1. The galaxy ancestor problem

    Science.gov (United States)

    Disney, M. J.; Lang, R. H.

    2012-11-01

    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  2. THE WHITE BLOOD ANCESTOR?

    OpenAIRE

    M.Arulmani; V.R.Hema Latha

    2014-01-01

    This scientific research article focus that “Red colour blood” of human shall be considered as the 3rd generation Blood and the Human on origin shall be considered having white colour Blood. The white colour blood of human Ancestor shall be considered composed of only ions of Photon, Electron, Proton and free from Hydrogen, Carbon, Nitrogen, Ozone.

  3. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects.

    Science.gov (United States)

    Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang

    2014-01-01

    Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects.

  4. A complete mitochondrial genome sequence from a mesolithic wild aurochs (Bos primigenius.

    Directory of Open Access Journals (Sweden)

    Ceiridwen J Edwards

    Full Text Available BACKGROUND: The derivation of domestic cattle from the extinct wild aurochs (Bos primigenius has been well-documented by archaeological and genetic studies. Genetic studies point towards the Neolithic Near East as the centre of origin for Bos taurus, with some lines of evidence suggesting possible, albeit rare, genetic contributions from locally domesticated wild aurochsen across Eurasia. Inferences from these investigations have been based largely on the analysis of partial mitochondrial DNA sequences generated from modern animals, with limited sequence data from ancient aurochsen samples. Recent developments in DNA sequencing technologies, however, are affording new opportunities for the examination of genetic material retrieved from extinct species, providing new insight into their evolutionary history. Here we present DNA sequence analysis of the first complete mitochondrial genome (16,338 base pairs from an archaeologically-verified and exceptionally-well preserved aurochs bone sample. METHODOLOGY: DNA extracts were generated from an aurochs humerus bone sample recovered from a cave site located in Derbyshire, England and radiocarbon-dated to 6,738+/-68 calibrated years before present. These extracts were prepared for both Sanger and next generation DNA sequencing technologies (Illumina Genome Analyzer. In total, 289.9 megabases (22.48% of the post-filtered DNA sequences generated using the Illumina Genome Analyzer from this sample mapped with confidence to the bovine genome. A consensus B. primigenius mitochondrial genome sequence was constructed and was analysed alongside all available complete bovine mitochondrial genome sequences. CONCLUSIONS: For all nucleotide positions where both Sanger and Illumina Genome Analyzer sequencing methods gave high-confidence calls, no discrepancies were observed. Sequence analysis reveals evidence of heteroplasmy in this sample and places this mitochondrial genome sequence securely within a previously

  5. A complete mitochondrial genome sequence from a mesolithic wild aurochs (Bos primigenius).

    LENUS (Irish Health Repository)

    Edwards, Ceiridwen J

    2010-01-01

    BACKGROUND: The derivation of domestic cattle from the extinct wild aurochs (Bos primigenius) has been well-documented by archaeological and genetic studies. Genetic studies point towards the Neolithic Near East as the centre of origin for Bos taurus, with some lines of evidence suggesting possible, albeit rare, genetic contributions from locally domesticated wild aurochsen across Eurasia. Inferences from these investigations have been based largely on the analysis of partial mitochondrial DNA sequences generated from modern animals, with limited sequence data from ancient aurochsen samples. Recent developments in DNA sequencing technologies, however, are affording new opportunities for the examination of genetic material retrieved from extinct species, providing new insight into their evolutionary history. Here we present DNA sequence analysis of the first complete mitochondrial genome (16,338 base pairs) from an archaeologically-verified and exceptionally-well preserved aurochs bone sample. METHODOLOGY: DNA extracts were generated from an aurochs humerus bone sample recovered from a cave site located in Derbyshire, England and radiocarbon-dated to 6,738+\\/-68 calibrated years before present. These extracts were prepared for both Sanger and next generation DNA sequencing technologies (Illumina Genome Analyzer). In total, 289.9 megabases (22.48%) of the post-filtered DNA sequences generated using the Illumina Genome Analyzer from this sample mapped with confidence to the bovine genome. A consensus B. primigenius mitochondrial genome sequence was constructed and was analysed alongside all available complete bovine mitochondrial genome sequences. CONCLUSIONS: For all nucleotide positions where both Sanger and Illumina Genome Analyzer sequencing methods gave high-confidence calls, no discrepancies were observed. Sequence analysis reveals evidence of heteroplasmy in this sample and places this mitochondrial genome sequence securely within a previously identified

  6. Temporal pattern of africanization in a feral honeybee population from Texas inferred from mitochondrial DNA.

    Science.gov (United States)

    Pinto, M Alice; Rubink, William L; Coulson, Robert N; Patton, John C; Johnston, J Spencer

    2004-05-01

    The invasion of Africanized honeybees (Apis mellifera L.) in the Americas provides a window of opportunity to study the dynamics of secondary contact of subspecies of bees that evolved in allopatry in ecologically distinctive habitats of the Old World. We report here the results of an 11-year mitochondrial DNA survey of a feral honeybee population from southern United States (Texas). The mitochondrial haplotype (mitotype) frequencies changed radically during the 11-year study period. Prior to immigration of Africanized honeybees, the resident population was essentially of eastern and western European maternal ancestry. Three years after detection of the first Africanized swarm there was a mitotype turnover in the population from predominantly eastern European to predominantly A. m. scutellata (ancestor of Africanized honeybees). This remarkable change in the mitotype composition coincided with arrival of the parasitic mite Varroa destructor, which was likely responsible for severe losses experienced by colonies of European ancestry. From 1997 onward the population stabilized with most colonies of A. m. scutellata maternal origin.

  7. Mitochondrial genome sequences reveal evolutionary relationships of the Phytophthora 1c clade species.

    Science.gov (United States)

    Lassiter, Erica S; Russ, Carsten; Nusbaum, Chad; Zeng, Qiandong; Saville, Amanda C; Olarte, Rodrigo A; Carbone, Ignazio; Hu, Chia-Hui; Seguin-Orlando, Andaine; Samaniego, Jose A; Thorne, Jeffrey L; Ristaino, Jean B

    2015-11-01

    Phytophthora infestans is one of the most destructive plant pathogens of potato and tomato globally. The pathogen is closely related to four other Phytophthora species in the 1c clade including P. phaseoli, P. ipomoeae, P. mirabilis and P. andina that are important pathogens of other wild and domesticated hosts. P. andina is an interspecific hybrid between P. infestans and an unknown Phytophthora species. We have sequenced mitochondrial genomes of the sister species of P. infestans and examined the evolutionary relationships within the clade. Phylogenetic analysis indicates that the P. phaseoli mitochondrial lineage is basal within the clade. P. mirabilis and P. ipomoeae are sister lineages and share a common ancestor with the Ic mitochondrial lineage of P. andina. These lineages in turn are sister to the P. infestans and P. andina Ia mitochondrial lineages. The P. andina Ic lineage diverged much earlier than the P. andina Ia mitochondrial lineage and P. infestans. The presence of two mitochondrial lineages in P. andina supports the hybrid nature of this species. The ancestral state of the P. andina Ic lineage in the tree and its occurrence only in the Andean regions of Ecuador, Colombia and Peru suggests that the origin of this species hybrid in nature may occur there.

  8. Phylogenomic evidence for a myxococcal contribution to the mitochondrial fatty acid beta-oxidation.

    Directory of Open Access Journals (Sweden)

    Agatha Schlüter

    Full Text Available BACKGROUND: The origin of eukaryotes remains a fundamental question in evolutionary biology. Although it is clear that eukaryotic genomes are a chimeric combination of genes of eubacterial and archaebacterial ancestry, the specific ancestry of most eubacterial genes is still unknown. The growing availability of microbial genomes offers the possibility of analyzing the ancestry of eukaryotic genomes and testing previous hypotheses on their origins. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have applied a phylogenomic analysis to investigate a possible contribution of the Myxococcales to the first eukaryotes. We conducted a conservative pipeline with homologous sequence searches against a genomic sampling of 40 eukaryotic and 357 prokaryotic genomes. The phylogenetic reconstruction showed that several eukaryotic proteins traced to Myxococcales. Most of these proteins were associated with mitochondrial lipid intermediate pathways, particularly enzymes generating reducing equivalents with pivotal roles in fatty acid β-oxidation metabolism. Our data suggest that myxococcal species with the ability to oxidize fatty acids transferred several genes to eubacteria that eventually gave rise to the mitochondrial ancestor. Later, the eukaryotic nucleocytoplasmic lineage acquired those metabolic genes through endosymbiotic gene transfer. CONCLUSIONS/SIGNIFICANCE: Our results support a prokaryotic origin, different from α-proteobacteria, for several mitochondrial genes. Our data reinforce a fluid prokaryotic chromosome model in which the mitochondrion appears to be an important entry point for myxococcal genes to enter eukaryotes.

  9. The Five Ancestors--Book 1: Tiger

    Science.gov (United States)

    Stone, Jeff

    2004-01-01

    Losing a job is an awfully low point--until it turns into the opportunity to pursue writing full time, and a book like "The Five Ancestors: Tiger" results. Jeff Stone looks back to his own experience as a young reader and taps that experience to help frame his own writing. An intriguing snapshot of his new book follows.

  10. Is Ancestor veneration the most universal of all world religions? A critique of modernist cosmological bias

    Directory of Open Access Journals (Sweden)

    Thomas Reuter

    2015-07-01

    Full Text Available Research by anthropologists engaged with the Comparative Austronesia Project (Australian National University has amassed an enormous data set for ethnological comparison between the religions of Austronesian-speaking societies, a language group to which nearly all Indonesian societies also belong. Comparative analysis reveals that ancestor veneration is a key-shared feature among “Austronesian” religious cosmologies; a feature that also resonates strongly with the ancestor-focused religions characteristic of East Asia. Characteristically, the religions of Austronesian-speaking societies focus on the core idea of a sacred time and place of ancestral origin and the continuous flow of life that is issuing forth from this source. Present-day individuals connect with the place and time of origin though ritual acts of retracing a historical path of migration to its source. What can this seemingly exotic notion of a flow of life reveal about the human condition writ large? Is it merely a curiosity of the ethnographic record of this region, a traditional religious insight forgotten even by many of the people whose traditional religion this is, but who have come under the influence of so-called world religions? Or is there something of great importance to be learnt from the Austronesian approach to life? Such questions have remained unasked until now, I argue, because a systematic cosmological bias within western thought has largely prevented us from taking Ancestor Religion and other forms of “traditional knowledge” seriously as an alternative truth claim. While I have discussed elsewhere the significance of Ancestor Religion in reference to my own research in highland Bali, I will attempt in this paper to remove this bias by its roots. I do so by contrasting two modes of thought: the “incremental dualism” of precedence characteristic of Austronesian cultures and their Ancestor Religions, and the “transcendental dualism” of mind and

  11. Information-Theoretic Inference of Common Ancestors

    Directory of Open Access Journals (Sweden)

    Bastian Steudel

    2015-04-01

    Full Text Available A directed acyclic graph (DAG partially represents the conditional independence structure among observations of a system if the local Markov condition holds, that is if every variable is independent of its non-descendants given its parents. In general, there is a whole class of DAGs that represents a given set of conditional independence relations. We are interested in properties of this class that can be derived from observations of a subsystem only. To this end, we prove an information-theoretic inequality that allows for the inference of common ancestors of observed parts in any DAG representing some unknown larger system. More explicitly, we show that a large amount of dependence in terms of mutual information among the observations implies the existence of a common ancestor that distributes this information. Within the causal interpretation of DAGs, our result can be seen as a quantitative extension of Reichenbach’s principle of common cause to more than two variables. Our conclusions are valid also for non-probabilistic observations, such as binary strings, since we state the proof for an axiomatized notion of “mutual information” that includes the stochastic as well as the algorithmic version.

  12. Mitochondrial phylogenomics of modern and ancient equids.

    Science.gov (United States)

    Vilstrup, Julia T; Seguin-Orlando, Andaine; Stiller, Mathias; Ginolhac, Aurelien; Raghavan, Maanasa; Nielsen, Sandra C A; Weinstock, Jacobo; Froese, Duane; Vasiliev, Sergei K; Ovodov, Nikolai D; Clary, Joel; Helgen, Kristofer M; Fleischer, Robert C; Cooper, Alan; Shapiro, Beth; Orlando, Ludovic

    2013-01-01

    The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we generated the first data set including complete mitochondrial sequences from all seven extant lineages within the genus Equus. Bayesian and Maximum Likelihood phylogenetic inference confirms that zebras are monophyletic within the genus, and the Plains and Grevy's zebras form a well-supported monophyletic group. Using ancient DNA techniques, we further characterize the complete mitochondrial genomes of three extinct equid lineages (the New World stilt-legged horses, NWSLH; the subgenus Sussemionus; and the Quagga, Equus quagga quagga). Comparisons with extant taxa confirm the NWSLH as being part of the caballines, and the Quagga and Plains zebras as being conspecific. However, the evolutionary relationships among the non-caballine lineages, including the now-extinct subgenus Sussemionus, remain unresolved, most likely due to extremely rapid radiation within this group. The closest living outgroups (rhinos and tapirs) were found to be too phylogenetically distant to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far as up to 4 Million years ago (Mya).

  13. Mitochondrial Phylogenomics of Modern and Ancient Equids

    Science.gov (United States)

    Vilstrup, Julia T.; Seguin-Orlando, Andaine; Stiller, Mathias; Ginolhac, Aurelien; Raghavan, Maanasa; Nielsen, Sandra C. A.; Weinstock, Jacobo; Froese, Duane; Vasiliev, Sergei K.; Ovodov, Nikolai D.; Clary, Joel; Helgen, Kristofer M.; Fleischer, Robert C.; Cooper, Alan; Shapiro, Beth; Orlando, Ludovic

    2013-01-01

    The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we generated the first data set including complete mitochondrial sequences from all seven extant lineages within the genus Equus. Bayesian and Maximum Likelihood phylogenetic inference confirms that zebras are monophyletic within the genus, and the Plains and Grevy’s zebras form a well-supported monophyletic group. Using ancient DNA techniques, we further characterize the complete mitochondrial genomes of three extinct equid lineages (the New World stilt-legged horses, NWSLH; the subgenus Sussemionus; and the Quagga, Equus quagga quagga). Comparisons with extant taxa confirm the NWSLH as being part of the caballines, and the Quagga and Plains zebras as being conspecific. However, the evolutionary relationships among the non-caballine lineages, including the now-extinct subgenus Sussemionus, remain unresolved, most likely due to extremely rapid radiation within this group. The closest living outgroups (rhinos and tapirs) were found to be too phylogenetically distant to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far as up to 4 Million years ago (Mya). PMID:23437078

  14. Mitochondrial phylogenomics of modern and ancient equids.

    Directory of Open Access Journals (Sweden)

    Julia T Vilstrup

    Full Text Available The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we generated the first data set including complete mitochondrial sequences from all seven extant lineages within the genus Equus. Bayesian and Maximum Likelihood phylogenetic inference confirms that zebras are monophyletic within the genus, and the Plains and Grevy's zebras form a well-supported monophyletic group. Using ancient DNA techniques, we further characterize the complete mitochondrial genomes of three extinct equid lineages (the New World stilt-legged horses, NWSLH; the subgenus Sussemionus; and the Quagga, Equus quagga quagga. Comparisons with extant taxa confirm the NWSLH as being part of the caballines, and the Quagga and Plains zebras as being conspecific. However, the evolutionary relationships among the non-caballine lineages, including the now-extinct subgenus Sussemionus, remain unresolved, most likely due to extremely rapid radiation within this group. The closest living outgroups (rhinos and tapirs were found to be too phylogenetically distant to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far as up to 4 Million years ago (Mya.

  15. Ancestors protocol for scalable key management

    Directory of Open Access Journals (Sweden)

    Dieter Gollmann

    2010-06-01

    Full Text Available Group key management is an important functional building block for secure multicast architecture. Thereby, it has been extensively studied in the literature. The main proposed protocol is Adaptive Clustering for Scalable Group Key Management (ASGK. According to ASGK protocol, the multicast group is divided into clusters, where each cluster consists of areas of members. Each cluster uses its own Traffic Encryption Key (TEK. These clusters are updated periodically depending on the dynamism of the members during the secure session. The modified protocol has been proposed based on ASGK with some modifications to balance the number of affected members and the encryption/decryption overhead with any number of the areas when a member joins or leaves the group. This modified protocol is called Ancestors protocol. According to Ancestors protocol, every area receives the dynamism of the members from its parents. The main objective of the modified protocol is to reduce the number of affected members during the leaving and joining members, then 1 affects n overhead would be reduced. A comparative study has been done between ASGK protocol and the modified protocol. According to the comparative results, it found that the modified protocol is always outperforming the ASGK protocol.

  16. The mitochondrial genome of an aquatic plant, Spirodela polyrhiza.

    Directory of Open Access Journals (Sweden)

    Wenqin Wang

    Full Text Available BACKGROUND: Spirodela polyrhiza is a species of the order Alismatales, which represent the basal lineage of monocots with more ancestral features than the Poales. Its complete sequence of the mitochondrial (mt genome could provide clues for the understanding of the evolution of mt genomes in plant. METHODS: Spirodela polyrhiza mt genome was sequenced from total genomic DNA without physical separation of chloroplast and nuclear DNA using the SOLiD platform. Using a genome copy number sensitive assembly algorithm, the mt genome was successfully assembled. Gap closure and accuracy was determined with PCR products sequenced with the dideoxy method. CONCLUSIONS: This is the most compact monocot mitochondrial genome with 228,493 bp. A total of 57 genes encode 35 known proteins, 3 ribosomal RNAs, and 19 tRNAs that recognize 15 amino acids. There are about 600 RNA editing sites predicted and three lineage specific protein-coding-gene losses. The mitochondrial genes, pseudogenes, and other hypothetical genes (ORFs cover 71,783 bp (31.0% of the genome. Imported plastid DNA accounts for an additional 9,295 bp (4.1% of the mitochondrial DNA. Absence of transposable element sequences suggests that very few nuclear sequences have migrated into Spirodela mtDNA. Phylogenetic analysis of conserved protein-coding genes suggests that Spirodela shares the common ancestor with other monocots, but there is no obvious synteny between Spirodela and rice mtDNAs. After eliminating genes, introns, ORFs, and plastid-derived DNA, nearly four-fifths of the Spirodela mitochondrial genome is of unknown origin and function. Although it contains a similar chloroplast DNA content and range of RNA editing as other monocots, it is void of nuclear insertions, active gene loss, and comprises large regions of sequences of unknown origin in non-coding regions. Moreover, the lack of synteny with known mitochondrial genomic sequences shed new light on the early evolution of monocot

  17. Dynamic evolution of Geranium mitochondrial genomes through multiple horizontal and intracellular gene transfers.

    Science.gov (United States)

    Park, Seongjun; Grewe, Felix; Zhu, Andan; Ruhlman, Tracey A; Sabir, Jamal; Mower, Jeffrey P; Jansen, Robert K

    2015-10-01

    The exchange of genetic material between cellular organelles through intracellular gene transfer (IGT) or between species by horizontal gene transfer (HGT) has played an important role in plant mitochondrial genome evolution. The mitochondrial genomes of Geraniaceae display a number of unusual phenomena including highly accelerated rates of synonymous substitutions, extensive gene loss and reduction in RNA editing. Mitochondrial DNA sequences assembled for 17 species of Geranium revealed substantial reduction in gene and intron content relative to the ancestor of the Geranium lineage. Comparative analyses of nuclear transcriptome data suggest that a number of these sequences have been functionally relocated to the nucleus via IGT. Evidence for rampant HGT was detected in several Geranium species containing foreign organellar DNA from diverse eudicots, including many transfers from parasitic plants. One lineage has experienced multiple, independent HGT episodes, many of which occurred within the past 5.5 Myr. Both duplicative and recapture HGT were documented in Geranium lineages. The mitochondrial genome of Geranium brycei contains at least four independent HGT tracts that are absent in its nearest relative. Furthermore, G. brycei mitochondria carry two copies of the cox1 gene that differ in intron content, providing insight into contrasting hypotheses on cox1 intron evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  18. The Waikato river: Changing properties of a living Māori ancestor

    NARCIS (Netherlands)

    Meijl, A.H.M. van

    2015-01-01

    In Māori cosmology, rivers and other waterways are conceptualised as living ancestors, who have their own life force and spiritual strength. The special status of rivers in Māori society also explains why they are sometimes separated from other Māori claims to natural resources of which they were

  19. Decrypting the mitochondrial gene pool of modern Panamanians.

    Directory of Open Access Journals (Sweden)

    Ugo A Perego

    Full Text Available The Isthmus of Panama--the narrow neck of land connecting the northern and southern American landmasses--was an obligatory corridor for the Paleo-Indians as they moved into South America. Archaeological evidence suggests an unbroken link between modern natives and their Paleo-Indian ancestors in some areas of Panama, even if the surviving indigenous groups account for only 12.3% of the total population. To evaluate if modern Panamanians have retained a larger fraction of the native pre-Columbian gene pool in their maternally-inherited mitochondrial genome, DNA samples and historical records were collected from more than 1500 volunteer participants living in the nine provinces and four indigenous territories of the Republic. Due to recent gene-flow, we detected ~14% African mitochondrial lineages, confirming the demographic impact of the Atlantic slave trade and subsequent African immigration into Panama from Caribbean islands, and a small European (~2% component, indicating only a minor influence of colonialism on the maternal side. The majority (~83% of Panamanian mtDNAs clustered into native pan-American lineages, mostly represented by haplogroup A2 (51%. These findings reveal an overwhelming native maternal legacy in today's Panama, which is in contrast with the overall concept of personal identity shared by many Panamanians. Moreover, the A2 sub-clades A2ad and A2af (with the previously named 6 bp Huetar deletion, when analyzed at the maximum level of resolution (26 entire mitochondrial genomes, confirm the major role of the Pacific coastal path in the peopling of North, Central and South America, and testify to the antiquity of native mitochondrial genomes in Panama.

  20. Apparatus Named after Our Academic Ancestors, III

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2014-01-01

    My academic ancestors in physics have called on me once more to tell you about the apparatus that they devised, and that many of you have used in your demonstrations and labs. This article is about apparatus named after François Arago, Heinrich Helmholtz, Leon Foucault, and James Watt.

  1. Turkish and Japanese Mycobacterium tuberculosis sublineages share a remote common ancestor

    KAUST Repository

    Refregier, Guislaine

    2016-10-14

    Two geographically distant M. tuberculosis sublineages, Tur from Turkey and T3-Osaka from Japan, exhibit partially identical genotypic signatures (identical 12-loci MIRU-VNTR profiles, distinct spoligotyping patterns). We investigated T3-Osaka and Tur sublineages characteristics and potential genetic relatedness, first using MIRU-VNTR locus analysis on 21 and 25 samples of each sublineage respectively, and second comparing Whole Genome Sequences of 8 new samples to public data from 45 samples uncovering human tuberculosis diversity. We then tried to date their Most Recent Common Ancestor (MRCA) using three calibrations of SNP accumulation rate (long-term = 0.03 SNP/genome/year, derived from a tuberculosis ancestor of around 70,000 years old; intermediate = 0.2 SNP/genome/year derived from a Peruvian mummy; short-term = 0.5 SNP/genome/year). To disentangle between these scenarios, we confronted the corresponding divergence times with major human history events and knowledge on human genetic divergence. We identified relatively high intrasublineage diversity for both T3-Osaka and Tur. We definitively proved their monophyly; the corresponding super-sublineage (referred to as “T3-Osa-Tur”) shares a common ancestor with T3-Ethiopia and Ural sublineages but is only remotely related to other Euro-American sublineages such as X, LAM, Haarlem and S. The evolutionary scenario based on long-term evolution rate being valid until T3-Osa-Tur MRCA was not supported by Japanese fossil data. The evolutionary scenario relying on short-term evolution rate since T3-Osa-Tur MRCA was contradicted by human history and potential traces of past epidemics. T3-Osaka and Tur sublineages were found likely to have diverged between 800 y and 2000 years ago, potentially at the time of Mongol Empire. Altogether, this study definitively proves a strong genetic link between Turkish and Japanese tuberculosis. It provides a first hypothesis for calibrating TB Euro-American lineage molecular clock

  2. Turkish and Japanese Mycobacterium tuberculosis sublineages share a remote common ancestor.

    Science.gov (United States)

    Refrégier, Guislaine; Abadia, Edgar; Matsumoto, Tomoshige; Ano, Hiromi; Takashima, Tetsuya; Tsuyuguchi, Izuo; Aktas, Elif; Cömert, Füsun; Gomgnimbou, Michel Kireopori; Panaiotov, Stefan; Phelan, Jody; Coll, Francesc; McNerney, Ruth; Pain, Arnab; Clark, Taane G; Sola, Christophe

    2016-11-01

    Two geographically distant M. tuberculosis sublineages, Tur from Turkey and T3-Osaka from Japan, exhibit partially identical genotypic signatures (identical 12-loci MIRU-VNTR profiles, distinct spoligotyping patterns). We investigated T3-Osaka and Tur sublineages characteristics and potential genetic relatedness, first using MIRU-VNTR locus analysis on 21 and 25 samples of each sublineage respectively, and second comparing Whole Genome Sequences of 8 new samples to public data from 45 samples uncovering human tuberculosis diversity. We then tried to date their Most Recent Common Ancestor (MRCA) using three calibrations of SNP accumulation rate (long-term=0.03SNP/genome/year, derived from a tuberculosis ancestor of around 70,000years old; intermediate=0.2SNP/genome/year derived from a Peruvian mummy; short-term=0.5SNP/genome/year). To disentangle between these scenarios, we confronted the corresponding divergence times with major human history events and knowledge on human genetic divergence. We identified relatively high intrasublineage diversity for both T3-Osaka and Tur. We definitively proved their monophyly; the corresponding super-sublineage (referred to as "T3-Osa-Tur") shares a common ancestor with T3-Ethiopia and Ural sublineages but is only remotely related to other Euro-American sublineages such as X, LAM, Haarlem and S. The evolutionary scenario based on long-term evolution rate being valid until T3-Osa-Tur MRCA was not supported by Japanese fossil data. The evolutionary scenario relying on short-term evolution rate since T3-Osa-Tur MRCA was contradicted by human history and potential traces of past epidemics. T3-Osaka and Tur sublineages were found likely to have diverged between 800y and 2000years ago, potentially at the time of Mongol Empire. Altogether, this study definitively proves a strong genetic link between Turkish and Japanese tuberculosis. It provides a first hypothesis for calibrating TB Euro-American lineage molecular clock; additional

  3. Correction to: A sophisticated, differentiated Golgi in the ancestor of eukaryotes.

    Science.gov (United States)

    Barlow, Lael D; Nývltová, Eva; Aguilar, Maria; Tachezy, Jan; Dacks, Joel B

    2018-03-28

    Upon publication of the original article, Barlow et al. [1], the authors noticed that Fig. 4b contained an inaccuracy when additional data is taken into account. We inferred a loss of GRASP in the common ancestor of cryptophytes and archaeplastids, based on the absence of identified homologues in the data from taxa that we analyzed, which include Cyanidioschyzon merolae as the single representative of red algae.

  4. A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology

    Directory of Open Access Journals (Sweden)

    Michelle T. Burstein

    2014-01-01

    Full Text Available A recent study revealed a mechanism of delaying aging in yeast by a natural compound which specifically impacts mitochondrial redox processes. In this mechanism, exogenously added lithocholic bile acid enters yeast cells, accumulates mainly in the inner mitochondrial membrane, and elicits an age-related remodeling of phospholipid synthesis and movement within both mitochondrial membranes. Such remodeling of mitochondrial phospholipid dynamics progresses with the chronological age of a yeast cell and ultimately causes significant changes in mitochondrial membrane lipidome. These changes in the composition of membrane phospholipids alter mitochondrial abundance and morphology, thereby triggering changes in the age-related chronology of such longevity-defining redox processes as mitochondrial respiration, the maintenance of mitochondrial membrane potential, the preservation of cellular homeostasis of mitochondrially produced reactive oxygen species, and the coupling of electron transport to ATP synthesis.

  5. The Ancestor Project: Aboriginal Computer Education through Storytelling

    Science.gov (United States)

    Weston, Marla; Biin, Dianne

    2013-01-01

    The goal of the ANCESTOR program is to use digital storytelling as a means of promoting an interest in technology careers for Aboriginal learners, as well as increasing cultural literacy. A curriculum was developed and first tested with Aboriginal students at the LÁU,WELNEW Tribal School near Victoria, British Columbia, Canada. Based on feedback…

  6. Heterokont predator Develorapax marinus gen. et sp. nov. – a model of the ochrophyte ancestor

    Directory of Open Access Journals (Sweden)

    Vladimir V. Aleoshin

    2016-08-01

    Full Text Available Heterotrophic lineages of Heterokonta (or stramenopiles, in contrast to a single monophyletic group of autotrophs, Ochrophyta, form several clades that independently branch off the heterokont stem lineage. The nearest neighbors of Ochrophyta in the phylogenetic tree appear to be almost exclusively bacterivorous, whereas the hypothesis of plastid acquisition by the ancestors of the ochrophyte lineage suggests an ability to engulf eukaryotic alga. In line with this hypothesis, the heteretrophic predator at the base of the ochrophyte lineage may be regarded as a model for the ochrophyte ancestor. Here we present a new genus and species of marine free-living heterotrophic heterokont Develorapax marinus, which falls into an isolated heterokont cluster, along with the marine flagellate Developayella elegans, and is able to engulf eukaryotic cells. Together with environmental sequences D. marinus and D. elegans form a class-level clade Developea nom. nov. represented by species adapted to different environmental conditions and with a wide geographical distribution. The position of Developea among Heterokonta in large-scale phylogenetic tree is discussed. We propose that members of the Developea clade represent a model for transition from bacterivory to a predatory feeding mode by selection for larger prey. Presumably, such transition in the grazing strategy is possible in the presence of bacterial biofilms, and has likely occured in the ochrophyte ancestor.

  7. The common ancestor of archaea and eukarya was not an archaeon.

    Science.gov (United States)

    Forterre, Patrick

    2013-01-01

    It is often assumed that eukarya originated from archaea. This view has been recently supported by phylogenetic analyses in which eukarya are nested within archaea. Here, I argue that these analyses are not reliable, and I critically discuss archaeal ancestor scenarios, as well as fusion scenarios for the origin of eukaryotes. Based on recognized evolutionary trends toward reduction in archaea and toward complexity in eukarya, I suggest that their last common ancestor was more complex than modern archaea but simpler than modern eukaryotes (the bug in-between scenario). I propose that the ancestors of archaea (and bacteria) escaped protoeukaryotic predators by invading high temperature biotopes, triggering their reductive evolution toward the "prokaryotic" phenotype (the thermoreduction hypothesis). Intriguingly, whereas archaea and eukarya share many basic features at the molecular level, the archaeal mobilome resembles more the bacterial than the eukaryotic one. I suggest that selection of different parts of the ancestral virosphere at the onset of the three domains played a critical role in shaping their respective biology. Eukarya probably evolved toward complexity with the help of retroviruses and large DNA viruses, whereas similar selection pressure (thermoreduction) could explain why the archaeal and bacterial mobilomes somehow resemble each other.

  8. RNase MRP and the RNA processing cascade in the eukaryotic ancestor.

    Science.gov (United States)

    Woodhams, Michael D; Stadler, Peter F; Penny, David; Collins, Lesley J

    2007-02-08

    Within eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. An example is RNase MRP processing ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simpler network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, herein called the Eukaryotic Ancestor. We present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches, find previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of RNAs for RNase MRP, along with analysis of the target substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution. We conclude that RNase MRP can now be placed in the RNA-processing cascade of the Eukaryotic Ancestor, highlighting the complexity of RNA-processing in early eukaryotes. Promoter analyses of MRP-RNA suggest that regulation of the critical processes of rRNA cleavage can vary, showing that even these key cellular processes (for which we expect high conservation) show some species-specific variability. We present our consensus MRP-RNA secondary structure as a useful model for further searches.

  9. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics

    Science.gov (United States)

    Tan, Dun-Xian; Manchester, Lucien C.; Qin, Lilan; Reiter, Russel J.

    2016-01-01

    Melatonin has been speculated to be mainly synthesized by mitochondria. This speculation is supported by the recent discovery that aralkylamine N-acetyltransferase/serotonin N-acetyltransferase (AANAT/SNAT) is localized in mitochondria of oocytes and the isolated mitochondria generate melatonin. We have also speculated that melatonin is a mitochondria-targeted antioxidant. It accumulates in mitochondria with high concentration against a concentration gradient. This is probably achieved by an active transportation via mitochondrial melatonin transporter(s). Melatonin protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting the mitochondrial permeability transition pore (MPTP), and activating uncoupling proteins (UCPs). Thus, melatonin maintains the optimal mitochondrial membrane potential and preserves mitochondrial functions. In addition, mitochondrial biogenesis and dynamics is also regulated by melatonin. In most cases, melatonin reduces mitochondrial fission and elevates their fusion. Mitochondrial dynamics exhibit an oscillatory pattern which matches the melatonin circadian secretory rhythm in pinealeocytes and probably in other cells. Recently, melatonin has been found to promote mitophagy and improve homeostasis of mitochondria. PMID:27999288

  10. Mitochondrial flash as a novel biomarker of mitochondrial respiration in the heart.

    Science.gov (United States)

    Gong, Guohua; Liu, Xiaoyun; Zhang, Huiliang; Sheu, Shey-Shing; Wang, Wang

    2015-10-01

    Mitochondrial respiration through electron transport chain (ETC) activity generates ATP and reactive oxygen species in eukaryotic cells. The modulation of mitochondrial respiration in vivo or under physiological conditions remains elusive largely due to the lack of appropriate approach to monitor ETC activity in a real-time manner. Here, we show that ETC-coupled mitochondrial flash is a novel biomarker for monitoring mitochondrial respiration under pathophysiological conditions in cultured adult cardiac myocyte and perfused beating heart. Through real-time confocal imaging, we follow the frequency of a transient bursting fluorescent signal, named mitochondrial flash, from individual mitochondria within intact cells expressing a mitochondrial matrix-targeted probe, mt-cpYFP (mitochondrial-circularly permuted yellow fluorescent protein). This mt-cpYFP recorded mitochondrial flash has been shown to be composed of a major superoxide signal with a minor alkalization signal within the mitochondrial matrix. Through manipulating physiological substrates for mitochondrial respiration, we find a close coupling between flash frequency and the ETC electron flow, as measured by oxygen consumption rate in cardiac myocyte. Stimulating electron flow under physiological conditions increases flash frequency. On the other hand, partially block or slowdown electron flow by inhibiting the F0F1 ATPase, which represents a pathological condition, transiently increases then decreases flash frequency. Limiting electron entrance at complex I by knocking out Ndufs4, an assembling subunit of complex I, suppresses mitochondrial flash activity. These results suggest that mitochondrial electron flow can be monitored by real-time imaging of mitochondrial flash. The mitochondrial flash frequency could be used as a novel biomarker for mitochondrial respiration under physiological and pathological conditions. Copyright © 2015 the American Physiological Society.

  11. Alpha proteobacterial ancestry of the [Fe-Fe]-hydrogenases in anaerobic eukaryotes

    DEFF Research Database (Denmark)

    Degli Esposti, Mauro; Cortez, Diego; Lozano, Luis

    2016-01-01

    Eukaryogenesis, a major transition in evolution of life, originated from the symbiogenic fusion of an archaea with a metabolically versatile bacterium. By general consensus, the latter organism belonged to a proteobacteria, subsequently evolving into the mitochondrial organelle of our cells...

  12. Aboriginal Australian mitochondrial genome variation - an increased understanding of population antiquity and diversity

    Science.gov (United States)

    Nagle, Nano; van Oven, Mannis; Wilcox, Stephen; van Holst Pellekaan, Sheila; Tyler-Smith, Chris; Xue, Yali; Ballantyne, Kaye N.; Wilcox, Leah; Papac, Luka; Cooke, Karen; van Oorschot, Roland A. H.; McAllister, Peter; Williams, Lesley; Kayser, Manfred; Mitchell, R. John; Adhikarla, Syama; Adler, Christina J.; Balanovska, Elena; Balanovsky, Oleg; Bertranpetit, Jaume; Clarke, Andrew C.; Comas, David; Cooper, Alan; der Sarkissian, Clio S. I.; Dulik, Matthew C.; Gaieski, Jill B.; Ganeshprasad, Arunkumar; Haak, Wolfgang; Haber, Marc; Hobbs, Angela; Javed, Asif; Jin, Li; Kaplan, Matthew E.; Li, Shilin; Martínez-Cruz, Begoña; Matisoo-Smith, Elizabeth A.; Melé, Marta; Merchant, Nirav C.; Owings, Amanda C.; Parida, Laxmi; Pitchappan, Ramasamy; Platt, Daniel E.; Quintana-Murci, Lluis; Renfrew, Colin; Royyuru, Ajay K.; Santhakumari, Arun Varatharajan; Santos, Fabrício R.; Schurr, Theodore G.; Soodyall, Himla; Soria Hernanz, David F.; Swamikrishnan, Pandikumar; Vilar, Miguel G.; Wells, R. Spencer; Zalloua, Pierre A.; Ziegle, Janet S.

    2017-03-01

    Aboriginal Australians represent one of the oldest continuous cultures outside Africa, with evidence indicating that their ancestors arrived in the ancient landmass of Sahul (present-day New Guinea and Australia) ~55 thousand years ago. Genetic studies, though limited, have demonstrated both the uniqueness and antiquity of Aboriginal Australian genomes. We have further resolved known Aboriginal Australian mitochondrial haplogroups and discovered novel indigenous lineages by sequencing the mitogenomes of 127 contemporary Aboriginal Australians. In particular, the more common haplogroups observed in our dataset included M42a, M42c, S, P5 and P12, followed by rarer haplogroups M15, M16, N13, O, P3, P6 and P8. We propose some major phylogenetic rearrangements, such as in haplogroup P where we delinked P4a and P4b and redefined them as P4 (New Guinean) and P11 (Australian), respectively. Haplogroup P2b was identified as a novel clade potentially restricted to Torres Strait Islanders. Nearly all Aboriginal Australian mitochondrial haplogroups detected appear to be ancient, with no evidence of later introgression during the Holocene. Our findings greatly increase knowledge about the geographic distribution and phylogenetic structure of mitochondrial lineages that have survived in contemporary descendants of Australia’s first settlers.

  13. The evolution of the mitochondrial genetic code in arthropods revisited.

    Science.gov (United States)

    Abascal, Federico; Posada, David; Zardoya, Rafael

    2012-04-01

    A variant of the invertebrate mitochondrial genetic code was previously identified in arthropods (Abascal et al. 2006a, PLoS Biol 4:e127) in which, instead of translating the AGG codon as serine, as in other invertebrates, some arthropods translate AGG as lysine. Here, we revisit the evolution of the genetic code in arthropods taking into account that (1) the number of arthropod mitochondrial genomes sequenced has triplicated since the original findings were published; (2) the phylogeny of arthropods has been recently resolved with confidence for many groups; and (3) sophisticated probabilistic methods can be applied to analyze the evolution of the genetic code in arthropod mitochondria. According to our analyses, evolutionary shifts in the genetic code have been more common than previously inferred, with many taxonomic groups displaying two alternative codes. Ancestral character-state reconstruction using probabilistic methods confirmed that the arthropod ancestor most likely translated AGG as lysine. Point mutations at tRNA-Lys and tRNA-Ser correlated with the meaning of the AGG codon. In addition, we identified three variables (GC content, number of AGG codons, and taxonomic information) that best explain the use of each of the two alternative genetic codes.

  14. The Common Ancestor of Archaea and Eukarya Was Not an Archaeon

    Directory of Open Access Journals (Sweden)

    Patrick Forterre

    2013-01-01

    Full Text Available It is often assumed that eukarya originated from archaea. This view has been recently supported by phylogenetic analyses in which eukarya are nested within archaea. Here, I argue that these analyses are not reliable, and I critically discuss archaeal ancestor scenarios, as well as fusion scenarios for the origin of eukaryotes. Based on recognized evolutionary trends toward reduction in archaea and toward complexity in eukarya, I suggest that their last common ancestor was more complex than modern archaea but simpler than modern eukaryotes (the bug in-between scenario. I propose that the ancestors of archaea (and bacteria escaped protoeukaryotic predators by invading high temperature biotopes, triggering their reductive evolution toward the “prokaryotic” phenotype (the thermoreduction hypothesis. Intriguingly, whereas archaea and eukarya share many basic features at the molecular level, the archaeal mobilome resembles more the bacterial than the eukaryotic one. I suggest that selection of different parts of the ancestral virosphere at the onset of the three domains played a critical role in shaping their respective biology. Eukarya probably evolved toward complexity with the help of retroviruses and large DNA viruses, whereas similar selection pressure (thermoreduction could explain why the archaeal and bacterial mobilomes somehow resemble each other.

  15. Graves, Ancestors and Cement in Land disputes in Acholi and Ikland, Uganda

    DEFF Research Database (Denmark)

    Meinert, Lotte; Willerslev, Rane; Seebach, Sophie Hooge

    2017-01-01

    graves are made concrete and increasingly cemented indices of belonging in wrangles over land. Belonging is often justified through the presence of ancestor graves on land. The cementing of graves turns them into more concrete and durable proofs of ownership, and the reburial of relatives to disputed......The paper explores the roles of graves, ancestors and concrete pillars in disputes over land across different land-systems, -conflicts, and territory making in northern Uganda by comparing extended cases between Acholi in Gulu district and Ik in Kaabong district . In the post-conflict Acholi region...

  16. The independent prokaryotic origins of eukaryotic fructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase and the implications of their origins for the evolution of eukaryotic Calvin cycle

    Directory of Open Access Journals (Sweden)

    Jiang Yong-Hai

    2012-10-01

    Full Text Available Abstract Background In the Calvin cycle of eubacteria, the dephosphorylations of both fructose-1, 6-bisphosphate (FBP and sedoheptulose-1, 7-bisphosphate (SBP are catalyzed by the same bifunctional enzyme: fructose-1, 6-bisphosphatase/sedoheptulose-1, 7-bisphosphatase (F/SBPase, while in that of eukaryotic chloroplasts by two distinct enzymes: chloroplastic fructose-1, 6-bisphosphatase (FBPase and sedoheptulose-1, 7-bisphosphatase (SBPase, respectively. It was proposed that these two eukaryotic enzymes arose from the divergence of a common ancestral eubacterial bifunctional F/SBPase of mitochondrial origin. However, no specific affinity between SBPase and eubacterial FBPase or F/SBPase can be observed in the previous phylogenetic analyses, and it is hard to explain why SBPase and/or F/SBPase are/is absent from most extant nonphotosynthetic eukaryotes according to this scenario. Results Domain analysis indicated that eubacterial F/SBPase of two different resources contain distinct domains: proteobacterial F/SBPases contain typical FBPase domain, while cyanobacterial F/SBPases possess FBPase_glpX domain. Therefore, like prokaryotic FBPase, eubacterial F/SBPase can also be divided into two evolutionarily distant classes (Class I and II. Phylogenetic analysis based on a much larger taxonomic sampling than previous work revealed that all eukaryotic SBPase cluster together and form a close sister group to the clade of epsilon-proteobacterial Class I FBPase which are gluconeogenesis-specific enzymes, while all eukaryotic chloroplast FBPase group together with eukaryotic cytosolic FBPase and form another distinct clade which then groups with the Class I FBPase of diverse eubacteria. Motif analysis of these enzymes also supports these phylogenetic correlations. Conclusions There are two evolutionarily distant classes of eubacterial bifunctional F/SBPase. Eukaryotic FBPase and SBPase do not diverge from either of them but have two independent origins

  17. Host Mitochondrial Association Evolved in the Human Parasite Toxoplasma gondii via Neofunctionalization of a Gene Duplicate.

    Science.gov (United States)

    Adomako-Ankomah, Yaw; English, Elizabeth D; Danielson, Jeffrey J; Pernas, Lena F; Parker, Michelle L; Boulanger, Martin J; Dubey, Jitender P; Boyle, Jon P

    2016-05-01

    In Toxoplasma gondii, an intracellular parasite of humans and other animals, host mitochondrial association (HMA) is driven by a gene family that encodes multiple mitochondrial association factor 1 (MAF1) proteins. However, the importance of MAF1 gene duplication in the evolution of HMA is not understood, nor is the impact of HMA on parasite biology. Here we used within- and between-species comparative analysis to determine that the MAF1 locus is duplicated in T. gondii and its nearest extant relative Hammondia hammondi, but not another close relative, Neospora caninum Using cross-species complementation, we determined that the MAF1 locus harbors multiple distinct paralogs that differ in their ability to mediate HMA, and that only T. gondii and H. hammondi harbor HMA(+) paralogs. Additionally, we found that exogenous expression of an HMA(+) paralog in T. gondii strains that do not normally exhibit HMA provides a competitive advantage over their wild-type counterparts during a mouse infection. These data indicate that HMA likely evolved by neofunctionalization of a duplicate MAF1 copy in the common ancestor of T. gondii and H. hammondi, and that the neofunctionalized gene duplicate is selectively advantageous. Copyright © 2016 by the Genetics Society of America.

  18. The mitochondrial transcription factor A functions in mitochondrial base excision repair

    DEFF Research Database (Denmark)

    Canugovi, Chandrika; Maynard, Scott; Bayne, Anne-Cécile V

    2010-01-01

    Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids. TFAM plays an important role in mitochondrial transcription and replication. TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected i...

  19. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics.

    Science.gov (United States)

    Long, Aaron; Klimova, Nina; Kristian, Tibor

    2017-10-01

    NAD + catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD + catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD + pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics. Published by Elsevier Ltd.

  20. The Slow:Fast substitution ratio reveals changing patterns of natural selection in gamma-proteobacterial genomes

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Eric; Shapiro, B. Jesse

    2009-04-15

    Different microbial species are thought to occupy distinct ecological niches, subjecting each species to unique selective constraints, which may leave a recognizable signal in their genomes. Thus, it may be possible to extract insight into the genetic basis of ecological differences among lineages by identifying unusual patterns of substitutions in orthologous gene or protein sequences. We use the ratio of substitutions in slow versus fast-evolving sites (nucleotides in DNA, or amino acids in protein sequence) to quantify deviations from the typical pattern of selective constraint observed across bacterial lineages. We propose that elevated S:F in one branch (an excess of slow-site substitutions) can indicate a functionally-relevant change, due to either positive selection or relaxed evolutionary constraint. In a genome-wide comparative study of gamma-proteobacterial proteins, we find that cell-surface proteins involved with motility and secretion functions often have high S:F ratios, while information-processing genes do not. Change in evolutionary constraints in some species is evidenced by increased S:F ratios within functionally-related sets of genes (e.g., energy production in Pseudomonas fluorescens), while other species apparently evolve mostly by drift (e.g., uniformly elevated S:F across most genes in Buchnera spp.). Overall, S:F reveals several species-specific, protein-level changes with potential functional/ecological importance. As microbial genome projects yield more species-rich gene-trees, the S:F ratio will become an increasingly powerful tool for uncovering functional genetic differences among species.

  1. Mitochondrial glutamate carriers from Drosophila melanogaster: biochemical, evolutionary and modeling studies.

    Science.gov (United States)

    Lunetti, Paola; Cappello, Anna Rita; Marsano, René Massimiliano; Pierri, Ciro Leonardo; Carrisi, Chiara; Martello, Emanuela; Caggese, Corrado; Dolce, Vincenza; Capobianco, Loredana

    2013-10-01

    The mitochondrial carriers are members of a family of transport proteins that mediate solute transport across the inner mitochondrial membrane. Two isoforms of the glutamate carriers, GC1 and GC2 (encoded by the SLC25A22 and SLC25A18 genes, respectively), have been identified in humans. Two independent mutations in SLC25A22 are associated with severe epileptic encephalopathy. In the present study we show that two genes (CG18347 and CG12201) phylogenetically related to the human GC encoding genes are present in the D. melanogaster genome. We have functionally characterized the proteins encoded by CG18347 and CG12201, designated as DmGC1p and DmGC2p respectively, by overexpression in Escherichia coli and reconstitution into liposomes. Their transport properties demonstrate that DmGC1p and DmGC2p both catalyze the transport of glutamate across the inner mitochondrial membrane. Computational approaches have been used in order to highlight residues of DmGC1p and DmGC2p involved in substrate binding. Furthermore, gene expression analysis during development and in various adult tissues reveals that CG18347 is ubiquitously expressed in all examined D. melanogaster tissues, while the expression of CG12201 is strongly testis-biased. Finally, we identified mitochondrial glutamate carrier orthologs in 49 eukaryotic species in order to attempt the reconstruction of the evolutionary history of the glutamate carrier function. Comparison of the exon/intron structure and other key features of the analyzed orthologs suggests that eukaryotic glutamate carrier genes descend from an intron-rich ancestral gene already present in the common ancestor of lineages that diverged as early as bilateria and radiata. © 2013.

  2. Genetic polymorphisms of Echinococcus tapeworms in China as determined by mitochondrial and nuclear DNA sequences ✩

    Science.gov (United States)

    Nakao, Minoru; Li, Tiaoying; Han, Xiumin; Ma, Xiumin; Xiao, Ning; Qiu, Jiamin; Wang, Hu; Yanagida, Tetsuya; Mamuti, Wulamu; Wen, Hao; Moro, Pedro L.; Giraudoux, Patrick; Craig, Philip S.; Ito, Akira

    2009-01-01

    The genetic polymorphisms of Echinococcus spp. in the eastern Tibetan Plateau and the Xinjiang Uyghur Autonomous Region were evaluated by DNA sequencing analyses of genes for mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear elongation factor-1 alpha (ef1a). We collected 68 isolates of Echinococcus granulosus sensu stricto (s.s.) from Xinjiang and 113 isolates of E. granulosus s. s., 49 isolates of Echinococcus multilocularis and 34 isolates of Echinococcus shiquicus from the Tibetan Plateau. The results of molecular identification by mitochondrial and nuclear markers were identical, suggesting the infrequency of introgressive hybridization. A considerable intraspecific variation was detected in mitochondrial cox1 sequences. The parsimonious network of cox1 haplotypes showed star-like features in E. granulosus s. s. and E. multilocularis, but a divergent feature in E. shiquicus. The cox1 neutrality indexes computed by Tajima's D and Fu's Fs tests showed high negative values in E. granulosus s. s. and E. multilocularis, indicating significant deviations from neutrality. In contrast, the low positive values of both tests were obtained in E. shiquicus. These results suggest the following hypotheses: (i) recent founder effects arose in E. granulosus and E. multilocularis after introducing particular individuals into the endemic areas by anthropogenic movement or natural migration of host mammals, and (ii) the ancestor of E. shiquicus was segregated into the Tibetan Plateau by colonizing alpine mammals and its mitochondrial locus has evolved without bottleneck effects. PMID:19800346

  3. Understanding mitochondrial myopathies: a review

    Directory of Open Access Journals (Sweden)

    Abhimanyu S. Ahuja

    2018-05-01

    Full Text Available Mitochondria are small, energy-producing structures vital to the energy needs of the body. Genetic mutations cause mitochondria to fail to produce the energy needed by cells and organs which can cause severe disease and death. These genetic mutations are likely to be in the mitochondrial DNA (mtDNA, or possibly in the nuclear DNA (nDNA. The goal of this review is to assess the current understanding of mitochondrial diseases. This review focuses on the pathology, causes, risk factors, symptoms, prevalence data, symptomatic treatments, and new research aimed at possible preventions and/or treatments of mitochondrial diseases. Mitochondrial myopathies are mitochondrial diseases that cause prominent muscular symptoms such as muscle weakness and usually present with a multitude of symptoms and can affect virtually all organ systems. There is no cure for these diseases as of today. Treatment is generally supportive and emphasizes symptom management. Mitochondrial diseases occur infrequently and hence research funding levels tend to be low in comparison with more common diseases. On the positive side, quite a few genetic defects responsible for mitochondrial diseases have been identified, which are in turn being used to investigate potential treatments. Speech therapy, physical therapy, and respiratory therapy have been used in mitochondrial diseases with variable results. These therapies are not curative and at best help with maintaining a patient’s current abilities to move and function.

  4. Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: Implications for crop plant evolution and areas of origin

    Science.gov (United States)

    Sanjur, Oris I.; Piperno, Dolores R.; Andres, Thomas C.; Wessel-Beaver, Linda

    2002-01-01

    We have investigated the phylogenetic relationships among six wild and six domesticated taxa of Cucurbita using as a marker an intron region from the mitochondrial nad1 gene. Our study represents one of the first successful uses of a mtDNA gene in resolving inter- and intraspecific taxonomic relationships in Angiosperms and yields several important insights into the origins of domesticated Cucurbita. First, our data suggest at least six independent domestication events from distinct wild ancestors. Second, Cucurbita argyrosperma likely was domesticated from a wild Mexican gourd, Cucurbita sororia, probably in the same region of southwest Mexico that gave rise to maize. Third, the wild ancestor of Cucurbita moschata is still unknown, but mtDNA data combined with other sources of information suggest that it will probably be found in lowland northern South America. Fourth, Cucurbita andreana is supported as the wild progenitor of Cucurbita maxima, but humid lowland regions of Bolivia in addition to warmer temperate zones in South America from where C. andreana was originally described should possibly be considered as an area of origin for C. maxima. Fifth, our data support other molecular results that indicate two separate domestications in the Cucurbita pepo complex. The potential zone of domestication for one of the domesticated subspecies, C. pepo subsp. ovifera, includes eastern North America and should be extended to northeastern Mexico. The wild ancestor of the other domesticated subspecies, C. pepo subsp. pepo, is undiscovered but is closely related to C. pepo subsp. fraterna and possibly will be found in southern Mexico. PMID:11782554

  5. Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: Implications for crop plant evolution and areas of origin.

    Science.gov (United States)

    Sanjur, Oris I; Piperno, Dolores R; Andres, Thomas C; Wessel-Beaver, Linda

    2002-01-08

    We have investigated the phylogenetic relationships among six wild and six domesticated taxa of Cucurbita using as a marker an intron region from the mitochondrial nad1 gene. Our study represents one of the first successful uses of a mtDNA gene in resolving inter- and intraspecific taxonomic relationships in Angiosperms and yields several important insights into the origins of domesticated Cucurbita. First, our data suggest at least six independent domestication events from distinct wild ancestors. Second, Cucurbita argyrosperma likely was domesticated from a wild Mexican gourd, Cucurbita sororia, probably in the same region of southwest Mexico that gave rise to maize. Third, the wild ancestor of Cucurbita moschata is still unknown, but mtDNA data combined with other sources of information suggest that it will probably be found in lowland northern South America. Fourth, Cucurbita andreana is supported as the wild progenitor of Cucurbita maxima, but humid lowland regions of Bolivia in addition to warmer temperate zones in South America from where C. andreana was originally described should possibly be considered as an area of origin for C. maxima. Fifth, our data support other molecular results that indicate two separate domestications in the Cucurbita pepo complex. The potential zone of domestication for one of the domesticated subspecies, C. pepo subsp. ovifera, includes eastern North America and should be extended to northeastern Mexico. The wild ancestor of the other domesticated subspecies, C. pepo subsp. pepo, is undiscovered but is closely related to C. pepo subsp. fraterna and possibly will be found in southern Mexico.

  6. Novel mitochondrial extensions provide evidence for a link between microtubule-directed movement and mitochondrial fission

    International Nuclear Information System (INIS)

    Bowes, Timothy; Gupta, Radhey S.

    2008-01-01

    Mitochondrial dynamics play an important role in a large number of cellular processes. Previously, we reported that treatment of mammalian cells with the cysteine-alkylators, N-ethylmaleimide and ethacrynic acid, induced rapid mitochondrial fusion forming a large reticulum approximately 30 min after treatment. Here, we further investigated this phenomenon using a number of techniques including live-cell confocal microscopy. In live cells, drug-induced fusion coincided with a cessation of fast mitochondrial movement which was dependent on microtubules. During this loss of movement, thin mitochondrial tubules extending from mitochondria were also observed, which we refer to as 'mitochondrial extensions'. The formation of these mitochondrial extensions, which were not observed in untreated cells, depended on microtubules and was abolished by pretreatment with nocodazole. In this study, we provide evidence that these extensions result from of a block in mitochondrial fission combined with continued application of motile force by microtubule-dependent motor complexes. Our observations strongly suggest the existence of a link between microtubule-based mitochondrial trafficking and mitochondrial fission

  7. Mitochondrial Disease

    OpenAIRE

    Bulent Kurt; Turgut Topal

    2013-01-01

    Mitochondria are the major energy source of cells. Mitochondrial disease occurs due to a defect in mitochondrial energy production. A valuable energy production in mitochondria depend a healthy interconnection between nuclear and mitochondrial DNA. A mutation in nuclear or mitochondrial DNA may cause abnormalities in ATP production and single or multiple organ dysfunctions, secondarily. In this review, we summarize mitochondrial physiology, mitochondrial genetics, and clinical expression and ...

  8. Mitochondrial and Y chromosome haplotype motifs as diagnostic markers of Jewish ancestry: a reconsideration.

    Directory of Open Access Journals (Sweden)

    Sergio eTofanelli

    2014-11-01

    Full Text Available Several authors have proposed haplotype motifs based on site variants at the mitochondrial genome (mtDNA and the non-recombining portion of the Y chromosome (NRY to trace the genealogies of Jewish people. Here, we analyzed their main approaches and test the feasibility of adopting motifs as ancestry markers through construction of a large database of mtDNA and NRY haplotypes from public genetic genealogical repositories. We verified the reliability of Jewish ancestry prediction based on the Cohen and Levite Modal Haplotypes in their classical 6 STR marker format or in the extended 12 STR format, as well as four founder mtDNA lineages (HVS-I segments accounting for about 40% of the current population of Ashkenazi Jews. For this purpose we compared haplotype composition in individuals of self-reported Jewish ancestry with the rest of European, African or Middle Eastern samples, to test for non-random association of ethno-geographic groups and haplotypes. Overall, NRY and mtDNA based motifs, previously reported to differentiate between groups, were found to be more represented in Jewish compared to non-Jewish groups. However, this seems to stem from common ancestors of Jewish lineages being rather recent respect to ancestors of non-Jewish lineages with the same haplotype signatures. Moreover, the polyphyly of haplotypes which contain the proposed motifs and the misuse of constant mutation rates heavily affected previous attempts to correctly dating the origin of common ancestries. Accordingly, our results stress the limitations of using the above haplotype motifs as reliable Jewish ancestry predictors and show its inadequacy for forensic or genealogical purposes.

  9. A whole mitochondrial genome screening in a MELAS patient: A novel mitochondrial tRNAVal mutation

    International Nuclear Information System (INIS)

    Mezghani, Najla; Mnif, Mouna; Kacem, Maha; Mkaouar-Rebai, Emna; Hadj Salem, Ikhlass; Kallel, Nozha; Charfi, Nadia; Abid, Mohamed; Fakhfakh, Faiza

    2011-01-01

    Highlights: → We report a young Tunisian patient with clinical features of MELAS syndrome. → Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. → We described a novel m.1640A>G mutation in the tRNA Val gene which was absent in 150 controls. → Mitochondrial deletions and POLG1 gene mutations were absent. → The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA Val . This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.

  10. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H

    DEFF Research Database (Denmark)

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus

    2014-01-01

    and determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30......% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present....

  11. A Mitochondrial Genome of Rhyparochromidae (Hemiptera: Heteroptera) and a Comparative Analysis of Related Mitochondrial Genomes.

    Science.gov (United States)

    Li, Teng; Yang, Jie; Li, Yinwan; Cui, Ying; Xie, Qiang; Bu, Wenjun; Hillis, David M

    2016-10-19

    The Rhyparochromidae, the largest family of Lygaeoidea, encompasses more than 1,850 described species, but no mitochondrial genome has been sequenced to date. Here we describe the first mitochondrial genome for Rhyparochromidae: a complete mitochondrial genome of Panaorus albomaculatus (Scott, 1874). This mitochondrial genome is comprised of 16,345 bp, and contains the expected 37 genes and control region. The majority of the control region is made up of a large tandem-repeat region, which has a novel pattern not previously observed in other insects. The tandem-repeats region of P. albomaculatus consists of 53 tandem duplications (including one partial repeat), which is the largest number of tandem repeats among all the known insect mitochondrial genomes. Slipped-strand mispairing during replication is likely to have generated this novel pattern of tandem repeats. Comparative analysis of tRNA gene families in sequenced Pentatomomorpha and Lygaeoidea species shows that the pattern of nucleotide conservation is markedly higher on the J-strand. Phylogenetic reconstruction based on mitochondrial genomes suggests that Rhyparochromidae is not the sister group to all the remaining Lygaeoidea, and supports the monophyly of Lygaeoidea.

  12. Mitochondrial Dynamics: Coupling Mitochondrial Fitness with Healthy Aging.

    Science.gov (United States)

    Sebastián, David; Palacín, Manuel; Zorzano, Antonio

    2017-03-01

    Aging is associated with a decline in mitochondrial function and the accumulation of abnormal mitochondria. However, the precise mechanisms by which aging promotes these mitochondrial alterations and the role of the latter in aging are still not fully understood. Mitochondrial dynamics is a key process regulating mitochondrial function and quality. Altered expression of some mitochondrial dynamics proteins has been recently associated with aging and with age-related alterations in yeast, Caenorhabditis elegans, mice, and humans. Here, we review the link between alterations in mitochondrial dynamics, aging, and age-related impairment. We propose that the dysregulation of mitochondrial dynamics leads to age-induced accumulation of unhealthy mitochondria and contributes to alterations linked to aging, such as diabetes and neurodegeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The origins of African Plasmodium vivax; insights from mitochondrial genome sequencing.

    Directory of Open Access Journals (Sweden)

    Richard Culleton

    Full Text Available Plasmodium vivax, the second most prevalent of the human malaria parasites, is estimated to affect 75 million people annually. It is very rare, however, in west and central Africa, due to the high prevalence of the Duffy negative phenotype in the human population. Due to its rarity in Africa, previous studies on the phylogeny of world-wide P. vivax have suffered from insufficient samples of African parasites. Here we compare the mitochondrial sequence diversity of parasites from Africa with those from other areas of the world, in order to investigate the origin of present-day African P. vivax. Mitochondrial genome sequencing revealed relatively little polymorphism within the African population compared to parasites from the rest of the world. This, combined with sequence similarity with parasites from India, suggests that the present day African P. vivax population in humans may have been introduced relatively recently from the Indian subcontinent. Haplotype network analysis also raises the possibility that parasites currently found in Africa and South America may be the closest extant relatives of the ancestors of the current world population. Lines of evidence are adduced that this ancestral population may be from an ancient stock of P. vivax in Africa.

  14. Repetitive transpositions of mitochondrial DNA sequences to the nucleus during the radiation of horseshoe bats (Rhinolophus, Chiroptera).

    Science.gov (United States)

    Shi, Huizhen; Dong, Ji; Irwin, David M; Zhang, Shuyi; Mao, Xiuguang

    2016-05-01

    Transposition of mitochondrial DNA into the nucleus, which gives rise to nuclear mitochondrial DNAs (NUMTs), has been well documented in eukaryotes. However, very few studies have assessed the frequency of these transpositions during the evolutionary history of a specific taxonomic group. Here we used the horseshoe bats (Rhinolophus) as a case study to determine the frequency and relative timing of nuclear transfers of mitochondrial control region sequences. For this, phylogenetic and coalescent analyzes were performed on NUMTs and authentic mtDNA sequences generated from eight horseshoe bat species. Our results suggest at least three independent transpositions, including two ancient and one more recent, during the evolutionary history of Rhinolophus. The two ancient transpositions are represented by the NUMT-1 and -2 clades, with each clade consisting of NUMTs from almost all studied species but originating from different portions of the mtDNA genome. Furthermore, estimates of the most recent common ancestor for each clade corresponded to the time of the initial diversification of this genus. The recent transposition is represented by NUMT-3, which was discovered only in a specific subgroup of Rhinolophus and exhibited a close relationship to its mitochondrial counterpart. Our similarity searches of mtDNA in the R. ferrumequinum genome confirmed the presence of NUMT-1 and NUMT-2 clade sequences and, for the first time, assessed the extent of NUMTs in a bat genome. To our knowledge, this is the first study to report on the frequency of transpositions of mtDNA occurring before the common ancestry of a genus. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A proposal of the proteome before the last universal common ancestor (LUCA)

    Science.gov (United States)

    de Farias, Sávio Torres; Rêgo, Thais Gaudêncio; José, Marco V.

    2016-01-01

    The search for understanding the biological nature of the last universal common ancestor (LUCA) has been a theoretical challenge and has sparked intense debate in the scientific community. We reconstructed the ancestral sequences of tRNAs in order to test the hypothesis that these molecules originated the first genes. The results showed that the proteome before LUCA may have been composed of basal energy metabolism, namely, compounds with three carbons in the glycolytic pathway, which operated as a distribution centre of substrates for the development of metabolic pathways of nucleotides, lipids and amino acids. Thus, we present a proposal for metabolism in organisms before LUCA that was the initial core for the assembly of further metabolic pathways.

  16. Strong gender differences in reproductive success variance, and the times to the most recent common ancestors.

    Science.gov (United States)

    Favre, Maroussia; Sornette, Didier

    2012-10-07

    The Time to the Most Recent Common Ancestor (TMRCA) based on human mitochondrial DNA (mtDNA) is estimated to be twice that based on the non-recombining part of the Y chromosome (NRY). These TMRCAs have special demographic implications because mtDNA is transmitted only from mother to child, while NRY is passed along from father to son. Therefore, the former locus reflects female history, and the latter, male history. To investigate what caused the two-to-one female-male TMRCA ratio r(F/M)=T(F)/T(M) in humans, we develop a forward-looking agent-based model (ABM) with overlapping generations. Our ABM simulates agents with individual life cycles, including life events such as reaching maturity or menopause. We implemented two main mating systems: polygynandry and polygyny with different degrees in between. In each mating system, the male population can be either homogeneous or heterogeneous. In the latter case, some males are 'alphas' and others are 'betas', which reflects the extent to which they are favored by female mates. A heterogeneous male population implies a competition among males with the purpose of signaling as alpha males. The introduction of a heterogeneous male population is found to reduce by a factor 2 the probability of finding equal female and male TMRCAs and shifts the distribution of r(F/M) to higher values. In order to account for the empirical observation of the factor 2, a high level of heterogeneity in the male population is needed: less than half the males can be alphas and betas can have at most half the fitness of alphas for the TMRCA ratio to depart significantly from 1. In addition, we find that, in the modes that maximize the probability of having 1.5ancestors. We also tested the effect of sex-biased migration and sex-specific death rates and found that these are unlikely to explain alone the sex-biased TMRCA ratio observed in humans. Our results support the view

  17. Windmills: Ancestors of the wind power generation

    Institute of Scientific and Technical Information of China (English)

    Cesare ROSSI; Flavio RUSSO; Sergio SAVINO

    2017-01-01

    A brief description of the windmills from the second millennium BC to the Renaissance is presented.This survey is a part of several studies conducted by the authors on technology in the ancient world.The windmills are the first motor,other than human muscles,and are the ancestors of the modem wind turbines.Some authors' virtual reconstructions of old windmills are also presented.The paper shows that the operating principle of many modem machines had already been conceived in the ancient times by using a technology that was more advanced than expected,but with two main differences,as follows:Similar tasks were accomplished by using much less energy;and the environmental impact was nil or very low.Modem designers should sometimes consider simplicity rather than the use of a large amount of energy.

  18. Windmills: Ancestors of the wind power generation

    Science.gov (United States)

    Rossi, Cesare; Russo, Flavio; Savino, Sergio

    2017-09-01

    A brief description of the windmills from the second millennium BC to the Renaissance is presented. This survey is a part of several studies conducted by the authors on technology in the ancient world. The windmills are the first motor, other than human muscles, and are the ancestors of the modern wind turbines. Some authors' virtual reconstructions of old windmills are also presented. The paper shows that the operating principle of many modern machines had already been conceived in the ancient times by using a technology that was more advanced than expected, but with two main differences, as follows: Similar tasks were accomplished by using much less energy; and the environmental impact was nil or very low. Modern designers should sometimes consider simplicity rather than the use of a large amount of energy.

  19. Evolution of life history and behavior in Hominidae: towards phylogenetic reconstruction of the chimpanzee-human last common ancestor.

    Science.gov (United States)

    Duda, Pavel; Zrzavý, Jan

    2013-10-01

    The origin of the fundamental behavioral differences between humans and our closest living relatives is one of the central issues of evolutionary anthropology. The prominent, chimpanzee-based referential model of early hominin behavior has recently been challenged on the basis of broad multispecies comparisons and newly discovered fossil evidence. Here, we argue that while behavioral data on extant great apes are extremely relevant for reconstruction of ancestral behaviors, these behaviors should be reconstructed trait by trait using formal phylogenetic methods. Using the widely accepted hominoid phylogenetic tree, we perform a series of character optimization analyses using 65 selected life-history and behavioral characters for all extant hominid species. This analysis allows us to reconstruct the character states of the last common ancestors of Hominoidea, Hominidae, and the chimpanzee-human last common ancestor. Our analyses demonstrate that many fundamental behavioral and life-history attributes of hominids (including humans) are evidently ancient and likely inherited from the common ancestor of all hominids. However, numerous behaviors present in extant great apes represent their own terminal autapomorphies (both uniquely derived and homoplastic). Any evolutionary model that uses a single extant species to explain behavioral evolution of early hominins is therefore of limited use. In contrast, phylogenetic reconstruction of ancestral states is able to provide a detailed suite of behavioral, ecological and life-history characters for each hypothetical ancestor. The living great apes therefore play an important role for the confident identification of the traits found in the chimpanzee-human last common ancestor, some of which are likely to represent behaviors of the fossil hominins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda bears a novel gene order and unusual control region features

    Directory of Open Access Journals (Sweden)

    Podsiadlowski Lars

    2006-09-01

    Full Text Available Abstract Background Sequence data and other characters from mitochondrial genomes (gene translocations, secondary structure of RNA molecules are useful in phylogenetic studies among metazoan animals from population to phylum level. Moreover, the comparison of complete mitochondrial sequences gives valuable information about the evolution of small genomes, e.g. about different mechanisms of gene translocation, gene duplication and gene loss, or concerning nucleotide frequency biases. The Peracarida (gammarids, isopods, etc. comprise about 21,000 species of crustaceans, living in many environments from deep sea floor to arid terrestrial habitats. Ligia oceanica is a terrestrial isopod living at rocky seashores of the european North Sea and Atlantic coastlines. Results The study reveals the first complete mitochondrial DNA sequence from a peracarid crustacean. The mitochondrial genome of Ligia oceanica is a circular double-stranded DNA molecule, with a size of 15,289 bp. It shows several changes in mitochondrial gene order compared to other crustacean species. An overview about mitochondrial gene order of all crustacean taxa yet sequenced is also presented. The largest non-coding part (the putative mitochondrial control region of the mitochondrial genome of Ligia oceanica is unexpectedly not AT-rich compared to the remainder of the genome. It bears two repeat regions (4× 10 bp and 3× 64 bp, and a GC-rich hairpin-like secondary structure. Some of the transfer RNAs show secondary structures which derive from the usual cloverleaf pattern. While some tRNA genes are putative targets for RNA editing, trnR could not be localized at all. Conclusion Gene order is not conserved among Peracarida, not even among isopods. The two isopod species Ligia oceanica and Idotea baltica show a similarly derived gene order, compared to the arthropod ground pattern and to the amphipod Parhyale hawaiiensis, suggesting that most of the translocation events were already

  1. A complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus: an evolutionary history of camelidae

    Directory of Open Access Journals (Sweden)

    Meng He

    2007-07-01

    Full Text Available Abstract Background The family Camelidae that evolved in North America during the Eocene survived with two distinct tribes, Camelini and Lamini. To investigate the evolutionary relationship between them and to further understand the evolutionary history of this family, we determined the complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus, the only wild survivor of the Old World camel. Results The mitochondrial genome sequence (16,680 bp from C. bactrianus ferus contains 13 protein-coding, two rRNA, and 22 tRNA genes as well as a typical control region; this basic structure is shared by all metazoan mitochondrial genomes. Its protein-coding region exhibits codon usage common to all mammals and possesses the three cryptic stop codons shared by all vertebrates. C. bactrianus ferus together with the rest of mammalian species do not share a triplet nucleotide insertion (GCC that encodes a proline residue found only in the nd1 gene of the New World camelid Lama pacos. This lineage-specific insertion in the L. pacos mtDNA occurred after the split between the Old and New World camelids suggests that it may have functional implication since a proline insertion in a protein backbone usually alters protein conformation significantly, and nd1 gene has not been seen as polymorphic as the rest of ND family genes among camelids. Our phylogenetic study based on complete mitochondrial genomes excluding the control region suggested that the divergence of the two tribes may occur in the early Miocene; it is much earlier than what was deduced from the fossil record (11 million years. An evolutionary history reconstructed for the family Camelidae based on cytb sequences suggested that the split of bactrian camel and dromedary may have occurred in North America before the tribe Camelini migrated from North America to Asia. Conclusion Molecular clock analysis of complete mitochondrial genomes from C. bactrianus ferus and L

  2. Mitochondrial DNA: A Blind Spot in Neuroepigenetics.

    Science.gov (United States)

    Manev, Hari; Dzitoyeva, Svetlana; Chen, Hu

    2012-04-01

    Neuroepigenetics, which includes nuclear DNA modifications such as 5-methylcytosine and 5-hydoxymethylcytosine and modifications of nuclear proteins such as histones, is emerging as the leading field in molecular neuroscience. Historically, a functional role for epigenetic mechanisms, including in neuroepigenetics, has been sought in the area of the regulation of nuclear transcription. However, one important compartment of mammalian cell DNA, different from nuclear but equally important for physiological and pathological processes (including in the brain), mitochondrial DNA has for the most part not had a systematic epigenetic characterization. The importance of mitochondria and mitochondrial DNA (particularly its mutations) in central nervous system physiology and pathology has long been recognized. Only recently have mechanisms of mitochondrial DNA methylation and hydroxymethylation, including the discovery of mitochondrial DNA-methyltransferases and the presence and the functionality of 5-methylcytosine and 5-hydroxymethylcytosine in mitochondrial DNA (e.g., in modifying the transcription of mitochondrial genome), been unequivocally recognized as a part of mammalian mitochondrial physiology. Here we summarize for the first time evidence supporting the existence of these mechanisms and we propose the term "mitochondrial epigenetics" to be used when referring to them. Currently, neuroepigenetics does not include mitochondrial epigenetics - a gap that we expect to close in the near future.

  3. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity

    Directory of Open Access Journals (Sweden)

    William Dott

    2014-01-01

    Full Text Available Mitochondrial toxicity is increasingly being implicated as a contributing factor to many xenobiotic-induced organ toxicities, including skeletal muscle toxicity. This has necessitated the need for predictive in vitro models that are able to sensitively detect mitochondrial toxicity of chemical entities early in the research and development process. One such cell model involves substituting galactose for glucose in the culture media. Since cells cultured in galactose are unable to generate sufficient ATP from glycolysis they are forced to rely on mitochondrial oxidative phosphorylation for ATP generation and consequently are more sensitive to mitochondrial perturbation than cells grown in glucose. The aim of this study was to characterise cellular growth, bioenergetics and mitochondrial toxicity of the L6 rat skeletal muscle cell line cultured in either high glucose or galactose media. L6 myoblasts proliferated more slowly when cultured in galactose media, although they maintained similar levels of ATP. Galactose cultured L6 cells were significantly more sensitive to classical mitochondrial toxicants than glucose-cultured cells, confirming the cells had adapted to galactose media. Analysis of bioenergetic function with the XF Seahorse extracellular flux analyser demonstrated that oxygen consumption rate (OCR was significantly increased whereas extracellular acidification rate (ECAR, a measure of glycolysis, was decreased in cells grown in galactose. Mitochondria operated closer to state 3 respiration and had a lower mitochondrial membrane potential and basal mitochondrial O2·– level compared to cells in the glucose model. An antimycin A (AA dose response revealed that there was no difference in the sensitivity of OCR to AA inhibition between glucose and galactose cells. Importantly, cells in glucose were able to up-regulate glycolysis, while galactose cells were not. These results confirm that L6 cells are able to adapt to growth in a

  4. Molecular systematics and phylogeography of the genus Lagothrix (Atelidae, Primates) by means of the mitochondrial COII gene.

    Science.gov (United States)

    Ruiz-Garcia, Manuel; Pinedo-Castro, Myreya Omayra

    2010-01-01

    We propose the first molecular systematic hypothesis on the origin and evolution of Lagothrix taxa based on an analysis of 720 base pairs of the cytochrome c oxidase subunit II mitochondrial gene in 97 Lagothrix specimens. All the current Lagothrix forms probably descended from the ancestor L. poeppigii or perhaps (less probably) that of L. lugens. We detected at least 2 lineages in L. poeppigii. L. cana and L. lagotricha were determined to be monophyletic and had lower gene diversity levels compared to L. poeppigii and L. lugens. The most basal ancestors of the current L. poeppigii lineages diverged from the other Lagothrix taxa around 2.5 million years ago, at the end of the Pliocene or at the beginning of the Pleistocene. Clearly, L. cana and L. lagotricha were the 2 most recently derived Lagothrix taxa. The diversification within L. lugens and L. poeppigii may coincide with the first and second Pleistocene glacial periods, respectively, while the diversification within L. cana and L. lagotricha could have occurred in the last 400,000 years, coinciding with the climatological changes provoked by the Illinois-Riss (third) and Wisconsin-Würm (fourth) glaciations. Copyright © 2010 S. Karger AG, Basel.

  5. Pervasive survival of expressed mitochondrial rps14 pseudogenes in grasses and their relatives for 80 million years following three functional transfers to the nucleus

    Directory of Open Access Journals (Sweden)

    Palmer Jeffrey D

    2006-07-01

    Full Text Available Abstract Background Many mitochondrial genes, especially ribosomal protein genes, have been frequently transferred as functional entities to the nucleus during plant evolution, often by an RNA-mediated process. A notable case of transfer involves the rps14 gene of three grasses (rice, maize, and wheat, which has been relocated to the intron of the nuclear sdh2 gene and which is expressed and targeted to the mitochondrion via alternative splicing and usage of the sdh2 targeting peptide. Although this transfer occurred at least 50 million years ago, i.e., in a common ancestor of these three grasses, it is striking that expressed, nearly intact pseudogenes of rps14 are retained in the mitochondrial genomes of both rice and wheat. To determine how ancient this transfer is, the extent to which mitochondrial rps14 has been retained and is expressed in grasses, and whether other transfers of rps14 have occurred in grasses and their relatives, we investigated the structure, expression, and phylogeny of mitochondrial and nuclear rps14 genes from 32 additional genera of grasses and from 9 other members of the Poales. Results Filter hybridization experiments showed that rps14 sequences are present in the mitochondrial genomes of all examined Poales except for members of the grass subfamily Panicoideae (to which maize belongs. However, PCR amplification and sequencing revealed that the mitochondrial rps14 genes of all examined grasses (Poaceae, Cyperaceae, and Joinvilleaceae are pseudogenes, with all those from the Poaceae sharing two 4-NT frameshift deletions and all those from the Cyperaceae sharing a 5-NT insertion (only one member of the Joinvilleaceae was examined. cDNA analysis showed that all mitochondrial pseudogenes examined (from all three families are transcribed, that most are RNA edited, and that surprisingly many of the edits are reverse (U→C edits. Putatively nuclear copies of rps14 were isolated from one to several members of each of these

  6. Mitochondrial matrix delivery using MITO-Porter, a liposome-based carrier that specifies fusion with mitochondrial membranes

    International Nuclear Information System (INIS)

    Yasuzaki, Yukari; Yamada, Yuma; Harashima, Hideyoshi

    2010-01-01

    Mitochondria are the principal producers of energy in cells of higher organisms. It was recently reported that mutations and defects in mitochondrial DNA (mtDNA) are associated with various mitochondrial diseases including a variety of neurodegenerative and neuromuscular diseases. Therefore, an effective mitochondrial gene therapy and diagnosis would be expected to have great medical benefits. To achieve this, therapeutic agents need to be delivered into the innermost mitochondrial space (mitochondrial matrix), which contains the mtDNA pool. We previously reported on the development of MITO-Porter, a liposome-based carrier that introduces macromolecular cargos into mitochondria via membrane fusion. In this study, we provide a demonstration of mitochondrial matrix delivery and the visualization of mitochondrial genes (mtDNA) in living cells using the MITO-Porter. We first prepared MITO-Porter containing encapsulated propidium iodide (PI), a fluorescent dye used to stain nucleic acids to detect mtDNA. We then confirmed the emission of red-fluorescence from PI by conjugation with mtDNA, when the carriers were incubated in the presence of isolated rat liver mitochondria. Finally, intracellular observation by confocal laser scanning microscopy clearly verified that the MITO-Porter delivered PI to the mitochondrial matrix.

  7. A whole mitochondrial genome screening in a MELAS patient: A novel mitochondrial tRNA{sup Val} mutation

    Energy Technology Data Exchange (ETDEWEB)

    Mezghani, Najla [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Mnif, Mouna [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Kacem, Maha [Service de Medecine interne, C.H.U. Fattouma Bourguiba de Monastir (Tunisia); Mkaouar-Rebai, Emna, E-mail: emna_mkaouar@mail2world.com [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Hadj Salem, Ikhlass [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Kallel, Nozha; Charfi, Nadia; Abid, Mohamed [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Fakhfakh, Faiza [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)

    2011-04-22

    Highlights: {yields} We report a young Tunisian patient with clinical features of MELAS syndrome. {yields} Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. {yields} We described a novel m.1640A>G mutation in the tRNA{sup Val} gene which was absent in 150 controls. {yields} Mitochondrial deletions and POLG1 gene mutations were absent. {yields} The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA{sup Val}. This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.

  8. Drp1-Dependent Mitochondrial Autophagy Plays a Protective Role Against Pressure Overload-Induced Mitochondrial Dysfunction and Heart Failure.

    Science.gov (United States)

    Shirakabe, Akihiro; Zhai, Peiyong; Ikeda, Yoshiyuki; Saito, Toshiro; Maejima, Yasuhiro; Hsu, Chiao-Po; Nomura, Masatoshi; Egashira, Kensuke; Levine, Beth; Sadoshima, Junichi

    2016-03-29

    Mitochondrial autophagy is an important mediator of mitochondrial quality control in cardiomyocytes. The occurrence of mitochondrial autophagy and its significance during cardiac hypertrophy are not well understood. Mice were subjected to transverse aortic constriction (TAC) and observed at multiple time points up to 30 days. Cardiac hypertrophy developed after 5 days, the ejection fraction was reduced after 14 days, and heart failure was observed 30 days after TAC. General autophagy was upregulated between 1 and 12 hours after TAC but was downregulated below physiological levels 5 days after TAC. Mitochondrial autophagy, evaluated by electron microscopy, mitochondrial content, and Keima with mitochondrial localization signal, was transiently activated at ≈3 to 7 days post-TAC, coinciding with mitochondrial translocation of Drp1. However, it was downregulated thereafter, followed by mitochondrial dysfunction. Haploinsufficiency of Drp1 abolished mitochondrial autophagy and exacerbated the development of both mitochondrial dysfunction and heart failure after TAC. Injection of Tat-Beclin 1, a potent inducer of autophagy, but not control peptide, on day 7 after TAC, partially rescued mitochondrial autophagy and attenuated mitochondrial dysfunction and heart failure induced by overload. Haploinsufficiency of either drp1 or beclin 1 prevented the rescue by Tat-Beclin 1, suggesting that its effect is mediated in part through autophagy, including mitochondrial autophagy. Mitochondrial autophagy is transiently activated and then downregulated in the mouse heart in response to pressure overload. Downregulation of mitochondrial autophagy plays an important role in mediating the development of mitochondrial dysfunction and heart failure, whereas restoration of mitochondrial autophagy attenuates dysfunction in the heart during pressure overload. © 2016 American Heart Association, Inc.

  9. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  10. Mitochondrial myopathies.

    Science.gov (United States)

    DiMauro, Salvatore

    2006-11-01

    Our understanding of mitochondrial diseases (defined restrictively as defects of the mitochondrial respiratory chain) is expanding rapidly. In this review, I will give the latest information on disorders affecting predominantly or exclusively skeletal muscle. The most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency and mutations in genes controlling mitochondrial DNA abundance and structure, such as POLG, TK2, and MPV17. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with decreased amount and altered structure of cardiolipin, the main phospholipid of the inner mitochondrial membrane, but a secondary impairment of respiratory chain function is plausible. The role of mutations in protein-coding genes of mitochondrial DNA in causing isolated myopathies has been confirmed. Mutations in tRNA genes of mitochondrial DNA can also cause predominantly myopathic syndromes and--contrary to conventional wisdom--these mutations can be homoplasmic. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, cramps, recurrent myoglobinuria, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.

  11. Transcription profiles of mitochondrial genes correlate with mitochondrial DNA haplotypes in a natural population of Silene vulgaris

    Directory of Open Access Journals (Sweden)

    Olson Matthew S

    2010-01-01

    Full Text Available Abstract Background Although rapid changes in copy number and gene order are common within plant mitochondrial genomes, associated patterns of gene transcription are underinvestigated. Previous studies have shown that the gynodioecious plant species Silene vulgaris exhibits high mitochondrial diversity and occasional paternal inheritance of mitochondrial markers. Here we address whether variation in DNA molecular markers is correlated with variation in transcription of mitochondrial genes in S. vulgaris collected from natural populations. Results We analyzed RFLP variation in two mitochondrial genes, cox1 and atp1, in offspring of ten plants from a natural population of S. vulgaris in Central Europe. We also investigated transcription profiles of the atp1 and cox1 genes. Most DNA haplotypes and transcription profiles were maternally inherited; for these, transcription profiles were associated with specific mitochondrial DNA haplotypes. One individual exhibited a pattern consistent with paternal inheritance of mitochondrial DNA; this individual exhibited a transcription profile suggestive of paternal but inconsistent with maternal inheritance. We found no associations between gender and transcript profiles. Conclusions Specific transcription profiles of mitochondrial genes were associated with specific mitochondrial DNA haplotypes in a natural population of a gynodioecious species S. vulgaris. Our findings suggest the potential for a causal association between rearrangements in the plant mt genome and transcription product variation.

  12. Mitochondrial cardiomyopathies

    Directory of Open Access Journals (Sweden)

    Ayman W. El-Hattab

    2016-07-01

    Full Text Available Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA while more than 99% of them are encoded by nuclear DNA (nDNA. Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs of various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular noncompaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain (ETC complexes subunits and their assembly factors, mitochondrial tRNAs, rRNAs, ribosomal proteins, and translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia.

  13. Composition of the mitochondrial electron transport chain in acanthamoeba castellanii: structural and evolutionary insights.

    Science.gov (United States)

    Gawryluk, Ryan M R; Chisholm, Kenneth A; Pinto, Devanand M; Gray, Michael W

    2012-11-01

    The mitochondrion, derived in evolution from an α-proteobacterial progenitor, plays a key metabolic role in eukaryotes. Mitochondria house the electron transport chain (ETC) that couples oxidation of organic substrates and electron transfer to proton pumping and synthesis of ATP. The ETC comprises several multiprotein enzyme complexes, all of which have counterparts in bacteria. However, mitochondrial ETC assemblies from animals, plants and fungi are generally more complex than their bacterial counterparts, with a number of 'supernumerary' subunits appearing early in eukaryotic evolution. Little is known, however, about the ETC of unicellular eukaryotes (protists), which are key to understanding the evolution of mitochondria and the ETC. We present an analysis of the ETC proteome from Acanthamoeba castellanii, an ecologically, medically and evolutionarily important member of Amoebozoa (sister to Opisthokonta). Data obtained from tandem mass spectrometric (MS/MS) analyses of purified mitochondria as well as ETC complexes isolated via blue native polyacrylamide gel electrophoresis are combined with the results of bioinformatic queries of sequence databases. Our bioinformatic analyses have identified most of the ETC subunits found in other eukaryotes, confirming and extending previous observations. The assignment of proteins as ETC subunits by MS/MS provides important insights into the primary structures of ETC proteins and makes possible, through the use of sensitive profile-based similarity searches, the identification of novel constituents of the ETC along with the annotation of highly divergent but phylogenetically conserved ETC subunits. © 2012 Elsevier B.V. All rights reserved.

  14. PARTIAL REPRODUCTIVE ISOLATION OF A RECENTLY DERIVED RESIDENT-FRESHWATER POPULATION OF THREESPINE STICKLEBACK (GASTEROSTEUS ACULEATUS) FROM ITS PUTATIVE ANADROMOUS ANCESTOR

    Science.gov (United States)

    Furin, Christoff G.; Von Hippel, Frank A.; Bell, Michael A.

    2012-01-01

    We used no-choice mating trials to test for assortative mating between a newly derived resident-freshwater population (8 – 22 generations since founding) of threespine stickleback (Gasterosteus aculeatus) in Loberg Lake, Alaska and its putative anadromous ancestor as well as a morphologically convergent but distantly related resident-freshwater population. Partial reproductive isolation has evolved between the Loberg Lake population and its ancestor within a remarkably short time period. However, Loberg stickleback readily mate with morphologically similar, but distantly related resident-freshwater stickleback. Partial pre-mating isolation is asymmetrical; anadromous females and smaller, resident-freshwater males from Loberg Lake readily mate, but the anadromous males and smaller Loberg females do not. Our results indicate that pre-mating isolation can begin to evolve in allopatry within a few generations after isolation as a correlated effect of evolution of reduced body size. PMID:23025615

  15. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake.

    Science.gov (United States)

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    2017-05-01

    Mitochondrial calcium ([Ca 2+ ] m ) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca 2+ ] m uptake upon SK channel activation as detected by time lapse mitochondrial Ca 2+ measurements with the Ca 2+ -binding mitochondria-targeted aequorin and FRET-based [Ca 2+ ] m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca 2+ ] m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.

  16. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Tetsuhiro, E-mail: atetsu@mail.ecc.u-tokyo.ac.jp; Shimizu, Ayano; Takahashi, Kazutoshi; Hidaka, Makoto; Masaki, Haruhiko, E-mail: amasaki@mail.ecc.u-tokyo.ac.jp

    2014-08-15

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ{sup 0} cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.

  17. Healing and coping with life within challenges of spiritual insecurity: Juxtaposed consideration of Christ’s sinlessness and African ancestors in pastoral guidance

    Directory of Open Access Journals (Sweden)

    Vhumani Magezi

    2017-04-01

    Full Text Available Spiritual insecurity among African Christians is a huge challenge. The insecurity among other things arises from African people’s former traditional African ancestral world view of ancestral veneration. The ancestors promote or hinder African Christians’ reliance on Christ because they have presupposedly acquired the supernatural power that enables them to provide diagnoses and solutions to life challenges. The inherent problem in the ancestral world view, however, is that the ancestors are both respected and feared by their descendants because they can either bless or harm depending on the state of the relationship between the surviving human beings and the ancestors. The basis of the unpredictable influence of ancestors lies in the fact that they (ancestors are considered as human beings who carry their human qualities to the spiritual world. In light of this situation, one constructive approach that can be advanced to address the challenges of African Christians’ spiritual insecurity is a proper understanding of Christ as a sinless representative of humanity. This approach maintains that healing and coping with life within the challenge of African spirituality in the context of threatening life issues can be addressed by an appropriate understanding of Christ’s sinlessness. The article argues for the foundational status of Christ as a sinless representative of humanity as the controlling framework. In doing so, Christ’s sinlessness and the sinfulness of natural ancestors are juxtaposed to compare the two ontologies in order to draw some pastoral guidelines for African Christians. This approach pays close attention to the factors and mindset that sustain people who adhere to ancestral worship and assess them through a lens of Christology focusing on Christ’s sinlessness as an exemplary doctrine.

  18. The origin of life and the last universal common ancestor: do we need a change of perspective?

    Science.gov (United States)

    Glansdorff, Nicolas; Xu, Ying; Labedan, Bernard

    2009-09-01

    A complete tree with roots, trunk and crown remains an appropriate model to represent all steps of life's development, from the emergence of a unique genetic code up to the last universal common ancestor and its further radiation. Catalytic closure of a mixture of prebiotic polymers is a heuristic alternative to the RNA world. Conjectures about emergence of life in an infinite multiverse should not confuse probability with possibility.

  19. Mitochondrial DNA evolution in the genus Equus.

    Science.gov (United States)

    George, M; Ryder, O A

    1986-11-01

    Employing mitochondrial DNA (mtDNA) restriction-endonuclease maps as the basis of comparison, we have investigated the evolutionary affinities of the seven species generally recognized as the genus Equus. Individual species' cleavage maps contained an average of 60 cleavage sites for 16 enzymes, of which 29 were invariant for all species. Based on an average divergence rate of 2%/Myr, the variation between species supports a divergence of extant lineages from a common ancestor approximately 3.9 Myr before the present. Comparisons of cleavage maps between Equus przewalskii (Mongolian wild horse) and E. caballus (domestic horse) yielded estimates of nucleotide sequence divergence ranging from 0.27% to 0.41%. This range was due to intraspecific variation, which was noted only for E. caballus. For pairwise comparisons within this family, estimates of sequence divergence ranged from 0% (E. hemionus onager vs. E. h. kulan) to 7.8% (E. przewalskii vs. E. h. onager). Trees constructed according to the parsimony principle, on the basis of 31 phylogenetically informative restriction sites, indicate that the three extant zebra species represent a monophyletic group with E. grevyi and E. burchelli antiquorum diverging most recently. The phylogenetic relationships of E. africanus and E. hemionus remain enigmatic on the basis of the mtDNA analysis, although a recent divergence is unsupported.

  20. MLN64 induces mitochondrial dysfunction associated with increased mitochondrial cholesterol content

    Directory of Open Access Journals (Sweden)

    Elisa Balboa

    2017-08-01

    Full Text Available MLN64 is a late endosomal cholesterol-binding membrane protein that has been implicated in cholesterol transport from endosomal membranes to the plasma membrane and/or mitochondria, in toxin-induced resistance, and in mitochondrial dysfunction. Down-regulation of MLN64 in Niemann-Pick C1 deficient cells decreased mitochondrial cholesterol content, suggesting that MLN64 functions independently of NPC1. However, the role of MLN64 in the maintenance of endosomal cholesterol flow and intracellular cholesterol homeostasis remains unclear. We have previously described that hepatic MLN64 overexpression increases liver cholesterol content and induces liver damage. Here, we studied the function of MLN64 in normal and NPC1-deficient cells and we evaluated whether MLN64 overexpressing cells exhibit alterations in mitochondrial function. We used recombinant-adenovirus-mediated MLN64 gene transfer to overexpress MLN64 in mouse liver and hepatic cells; and RNA interference to down-regulate MLN64 in NPC1-deficient cells. In MLN64-overexpressing cells, we found increased mitochondrial cholesterol content and decreased glutathione (GSH levels and ATPase activity. Furthermore, we found decreased mitochondrial membrane potential and mitochondrial fragmentation and increased mitochondrial superoxide levels in MLN64-overexpressing cells and in NPC1-deficient cells. Consequently, MLN64 expression was increased in NPC1-deficient cells and reduction of its expression restore mitochondrial membrane potential and mitochondrial superoxide levels. Our findings suggest that MLN64 overexpression induces an increase in mitochondrial cholesterol content and consequently a decrease in mitochondrial GSH content leading to mitochondrial dysfunction. In addition, we demonstrate that MLN64 expression is increased in NPC cells and plays a key role in cholesterol transport into the mitochondria.

  1. Mutation in the novel nuclear-encoded mitochondrial protein CHCHD10 in a family with autosomal dominant mitochondrial myopathy.

    Science.gov (United States)

    Ajroud-Driss, Senda; Fecto, Faisal; Ajroud, Kaouther; Lalani, Irfan; Calvo, Sarah E; Mootha, Vamsi K; Deng, Han-Xiang; Siddique, Nailah; Tahmoush, Albert J; Heiman-Patterson, Terry D; Siddique, Teepu

    2015-01-01

    Mitochondrial myopathies belong to a larger group of systemic diseases caused by morphological or biochemical abnormalities of mitochondria. Mitochondrial disorders can be caused by mutations in either the mitochondrial or nuclear genome. Only 5% of all mitochondrial disorders are autosomal dominant. We analyzed DNA from members of the previously reported Puerto Rican kindred with an autosomal dominant mitochondrial myopathy (Heimann-Patterson et al. 1997). Linkage analysis suggested a putative locus on the pericentric region of the long arm of chromosome 22 (22q11). Using the tools of integrative genomics, we established chromosome 22 open reading frame 16 (C22orf16) (later designated as CHCHD10) as the only high-scoring mitochondrial candidate gene in our minimal candidate region. Sequence analysis revealed a double-missense mutation (R15S and G58R) in cis in CHCHD10 which encodes a coiled coil-helix-coiled coil-helix protein of unknown function. These two mutations completely co-segregated with the disease phenotype and were absent in 1,481 Caucasian and 80 Hispanic (including 32 Puerto Rican) controls. Expression profiling showed that CHCHD10 is enriched in skeletal muscle. Mitochondrial localization of the CHCHD10 protein was confirmed using immunofluorescence in cells expressing either wild-type or mutant CHCHD10. We found that the expression of the G58R, but not the R15S, mutation induced mitochondrial fragmentation. Our findings identify a novel gene causing mitochondrial myopathy, thereby expanding the spectrum of mitochondrial myopathies caused by nuclear genes. Our findings also suggest a role for CHCHD10 in the morphologic remodeling of the mitochondria.

  2. Mitochondrial DNA diversity of present-day Aboriginal Australians and implications for human evolution in Oceania.

    Science.gov (United States)

    Nagle, Nano; Ballantyne, Kaye N; van Oven, Mannis; Tyler-Smith, Chris; Xue, Yali; Wilcox, Stephen; Wilcox, Leah; Turkalov, Rust; van Oorschot, Roland A H; van Holst Pellekaan, Sheila; Schurr, Theodore G; McAllister, Peter; Williams, Lesley; Kayser, Manfred; Mitchell, R John

    2017-03-01

    Aboriginal Australians are one of the more poorly studied populations from the standpoint of human evolution and genetic diversity. Thus, to investigate their genetic diversity, the possible date of their ancestors' arrival and their relationships with neighboring populations, we analyzed mitochondrial DNA (mtDNA) diversity in a large sample of Aboriginal Australians. Selected mtDNA single-nucleotide polymorphisms and the hypervariable segment haplotypes were analyzed in 594 Aboriginal Australians drawn from locations across the continent, chiefly from regions not previously sampled. Most (~78%) samples could be assigned to mtDNA haplogroups indigenous to Australia. The indigenous haplogroups were all ancient (with estimated ages >40 000 years) and geographically widespread across the continent. The most common haplogroup was P (44%) followed by S (23%) and M42a (9%). There was some geographic structure at the haplotype level. The estimated ages of the indigenous haplogroups range from 39 000 to 55 000 years, dates that fit well with the estimated date of colonization of Australia based on archeological evidence (~47 000 years ago). The distribution of mtDNA haplogroups in Australia and New Guinea supports the hypothesis that the ancestors of Aboriginal Australians entered Sahul through at least two entry points. The mtDNA data give no support to the hypothesis of secondary gene flow into Australia during the Holocene, but instead suggest long-term isolation of the continent.

  3. Validation of the use of an artificial mitochondrial reporter DNA vector containing a Cytomegalovirus promoter for mitochondrial transgene expression.

    Science.gov (United States)

    Yamada, Yuma; Ishikawa, Takuya; Harashima, Hideyoshi

    2017-08-01

    Mitochondria have their own gene expression system that is independent of the nuclear system, and control cellular functions in cooperation with the nucleus. While a number of useful technologies for achieving nuclear transgene expression have been reported, only a few have focused on mitochondria. In this study, we validated the utility of an artificial mitochondrial DNA vector with a virus promoter on mitochondrial transgene expression. We designed and constructed pCMV-mtLuc (CGG) that contains a CMV promotor derived from Cytomegalovirus and an artificial mitochondrial genome with a NanoLuc (Nluc) luciferase gene that records adjustments to the mitochondrial codon system. Nluc luciferase activity measurements showed that the pCMV-mtLuc (CGG) efficiently produced the Nluc luciferase protein in human HeLa cells. Moreover, we optimized the mitochondrial transfection of pCMV-mtLuc (CGG) using a MITO-Porter system, a liposome-based carrier for mitochondrial delivery via membrane fusion. As a result, we found that transfection of pCMV-mtLuc (CGG) by MITO-Porter modified with the KALA peptide (cationic amphipathic cell-penetrating peptide) showed a high mitochondrial transgene expression. The developed mitochondrial transgene expression system represents a potentially useful tool for the fields of nanoscience and nanotechnology for controlling the intracellular microenvironment via the regulation of mitochondrial function and promises to open additional innovative research fields of study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Betaine is a positive regulator of mitochondrial respiration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Icksoo, E-mail: icksoolee@dankook.ac.kr

    2015-01-09

    Highlights: • Betaine enhances cytochrome c oxidase activity and mitochondrial respiration. • Betaine increases mitochondrial membrane potential and cellular energy levels. • Betaine’s anti-tumorigenic effect might be due to a reversal of the Warburg effect. - Abstract: Betaine protects cells from environmental stress and serves as a methyl donor in several biochemical pathways. It reduces cardiovascular disease risk and protects liver cells from alcoholic liver damage and nonalcoholic steatohepatitis. Its pretreatment can rescue cells exposed to toxins such as rotenone, chloroform, and LiCl. Furthermore, it has been suggested that betaine can suppress cancer cell growth in vivo and in vitro. Mitochondrial electron transport chain (ETC) complexes generate the mitochondrial membrane potential, which is essential to produce cellular energy, ATP. Reduced mitochondrial respiration and energy status have been found in many human pathological conditions including aging, cancer, and neurodegenerative disease. In this study we investigated whether betaine directly targets mitochondria. We show that betaine treatment leads to an upregulation of mitochondrial respiration and cytochrome c oxidase activity in H2.35 cells, the proposed rate limiting enzyme of ETC in vivo. Following treatment, the mitochondrial membrane potential was increased and cellular energy levels were elevated. We propose that the anti-proliferative effects of betaine on cancer cells might be due to enhanced mitochondrial function contributing to a reversal of the Warburg effect.

  5. Before the dawn recovering the lost history of our ancestors

    CERN Document Server

    Wade, Nicholas

    2007-01-01

    Nicholas Wade’s articles are a major reason why the science section has become the most popular, nationwide, in the New York Times. In his groundbreaking Before the Dawn, Wade reveals humanity’s origins as never before—a journey made possible only recently by genetic science, whose incredible findings have answered such questions as: What was the first human language like? How large were the first societies, and how warlike were they? When did our ancestors first leave Africa, and by what route did they leave? By eloquently solving these and numerous other mysteries, Wade offers nothing less than a uniquely complete retelling of a story that began 500 centuries ago.

  6. Viruses Infecting a Freshwater Filamentous Cyanobacterium (Nostoc sp.) Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B.

    Science.gov (United States)

    Chénard, Caroline; Wirth, Jennifer F; Suttle, Curtis A

    2016-06-14

    filamentous freshwater cyanobacteria, revealing that their gene content is unlike that of other cyanophages. In addition to sharing many gene homologues with freshwater cyanobacteria, cyanophage N-1 encodes a CRISPR array and expresses it upon infection. Also, both viruses contain a DNA polymerase B-encoding gene with high similarity to genes found in proteobacterial plasmids of filamentous cyanobacteria. The observation that phages can acquire CRISPRs from their hosts suggests that phages can also move them among hosts, thereby conferring resistance to competing phages. The presence in these cyanophages of CRISPR and DNA polymerase B sequences, as well as a suite of other host-related genes, illustrates the long and complex evolutionary history of these viruses and their hosts. Copyright © 2016 Chénard et al.

  7. Comparative symbiotic plasmid analysis indicates that symbiosis gene ancestor type affects plasmid genetic evolution.

    Science.gov (United States)

    Wang, X; Zhao, L; Zhang, L; Wu, Y; Chou, M; Wei, G

    2018-07-01

    Rhizobial symbiotic plasmids play vital roles in mutualistic symbiosis with legume plants by executing the functions of nodulation and nitrogen fixation. To explore the gene composition and genetic constitution of rhizobial symbiotic plasmids, comparison analyses of 24 rhizobial symbiotic plasmids derived from four rhizobial genera was carried out. Results illustrated that rhizobial symbiotic plasmids had higher proportion of functional genes participating in amino acid transport and metabolism, replication; recombination and repair; carbohydrate transport and metabolism; energy production and conversion and transcription. Mesorhizobium amorphae CCNWGS0123 symbiotic plasmid - pM0123d had similar gene composition with pR899b and pSNGR234a. All symbiotic plasmids shared 13 orthologous genes, including five nod and eight nif/fix genes which participate in the rhizobia-legume symbiosis process. These plasmids contained nod genes from four ancestors and fix genes from six ancestors. The ancestral type of pM0123d nod genes was similar with that of Rhizobium etli plasmids, while the ancestral type of pM0123d fix genes was same as that of pM7653Rb. The phylogenetic trees constructed based on nodCIJ and fixABC displayed different topological structures mainly due to nodCIJ and fixABC ancestral type discordance. The study presents valuable insights into mosaic structures and the evolution of rhizobial symbiotic plasmids. This study compared 24 rhizobial symbiotic plasmids that included four genera and 11 species, illuminating the functional gene composition and symbiosis gene ancestor types of symbiotic plasmids from higher taxonomy. It provides valuable insights into mosaic structures and the evolution of symbiotic plasmids. © 2018 The Society for Applied Microbiology.

  8. Mitochondrial lineage M1 traces an early human backflow to Africa.

    Science.gov (United States)

    González, Ana M; Larruga, José M; Abu-Amero, Khaled K; Shi, Yufei; Pestano, José; Cabrera, Vicente M

    2007-07-09

    The out of Africa hypothesis has gained generalized consensus. However, many specific questions remain unsettled. To know whether the two M and N macrohaplogroups that colonized Eurasia were already present in Africa before the exit is puzzling. It has been proposed that the east African clade M1 supports a single origin of haplogroup M in Africa. To test the validity of that hypothesis, the phylogeographic analysis of 13 complete mitochondrial DNA (mtDNA) sequences and 261 partial sequences belonging to haplogroup M1 was carried out. The coalescence age of the African haplogroup M1 is younger than those for other M Asiatic clades. In contradiction to the hypothesis of an eastern Africa origin for modern human expansions out of Africa, the most ancestral M1 lineages have been found in Northwest Africa and in the Near East, instead of in East Africa. The M1 geographic distribution and the relative ages of its different subclades clearly correlate with those of haplogroup U6, for which an Eurasian ancestor has been demonstrated. This study provides evidence that M1, or its ancestor, had an Asiatic origin. The earliest M1 expansion into Africa occurred in northwestern instead of eastern areas; this early spread reached the Iberian Peninsula even affecting the Basques. The majority of the M1a lineages found outside and inside Africa had a more recent eastern Africa origin. Both western and eastern M1 lineages participated in the Neolithic colonization of the Sahara. The striking parallelism between subclade ages and geographic distribution of M1 and its North African U6 counterpart strongly reinforces this scenario. Finally, a relevant fraction of M1a lineages present today in the European Continent and nearby islands possibly had a Jewish instead of the commonly proposed Arab/Berber maternal ascendance.

  9. Mitochondrial lineage M1 traces an early human backflow to Africa

    Directory of Open Access Journals (Sweden)

    Pestano José

    2007-07-01

    Full Text Available Abstract Background The out of Africa hypothesis has gained generalized consensus. However, many specific questions remain unsettled. To know whether the two M and N macrohaplogroups that colonized Eurasia were already present in Africa before the exit is puzzling. It has been proposed that the east African clade M1 supports a single origin of haplogroup M in Africa. To test the validity of that hypothesis, the phylogeographic analysis of 13 complete mitochondrial DNA (mtDNA sequences and 261 partial sequences belonging to haplogroup M1 was carried out. Results The coalescence age of the African haplogroup M1 is younger than those for other M Asiatic clades. In contradiction to the hypothesis of an eastern Africa origin for modern human expansions out of Africa, the most ancestral M1 lineages have been found in Northwest Africa and in the Near East, instead of in East Africa. The M1 geographic distribution and the relative ages of its different subclades clearly correlate with those of haplogroup U6, for which an Eurasian ancestor has been demonstrated. Conclusion This study provides evidence that M1, or its ancestor, had an Asiatic origin. The earliest M1 expansion into Africa occurred in northwestern instead of eastern areas; this early spread reached the Iberian Peninsula even affecting the Basques. The majority of the M1a lineages found outside and inside Africa had a more recent eastern Africa origin. Both western and eastern M1 lineages participated in the Neolithic colonization of the Sahara. The striking parallelism between subclade ages and geographic distribution of M1 and its North African U6 counterpart strongly reinforces this scenario. Finally, a relevant fraction of M1a lineages present today in the European Continent and nearby islands possibly had a Jewish instead of the commonly proposed Arab/Berber maternal ascendance.

  10. miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor.

    Science.gov (United States)

    Tak, Hyosun; Kim, Jihye; Jayabalan, Aravinth Kumar; Lee, Heejin; Kang, Hoin; Cho, Dong-Hyung; Ohn, Takbum; Nam, Suk Woo; Kim, Wook; Lee, Eun Kyung

    2014-11-28

    Mitochondrial morphology is dynamically regulated by forming small, fragmented units or interconnected networks, and this is a pivotal process that is used to maintain mitochondrial homeostasis. Although dysregulation of mitochondrial dynamics is related to the pathogenesis of several human diseases, its molecular mechanism is not fully elucidated. In this study, we demonstrate the potential role of miR-27 in the regulation of mitochondrial dynamics. Mitochondrial fission factor (MFF) mRNA is a direct target of miR-27, whose ectopic expression decreases MFF expression through binding to its 3'-untranslated region. Expression of miR-27 results in the elongation of mitochondria as well as an increased mitochondrial membrane potential and mitochondrial ATP level. Our results suggest that miR-27 is a novel regulator affecting morphological mitochondrial changes by targeting MFF.

  11. Towards a functional definition of the mitochondrial human proteome

    Directory of Open Access Journals (Sweden)

    Mauro Fasano

    2016-03-01

    Full Text Available The mitochondrial human proteome project (mt-HPP was initiated by the Italian HPP group as a part of both the chromosome-centric initiative (C-HPP and the “biology and disease driven” initiative (B/D-HPP. In recent years several reports highlighted how mitochondrial biology and disease are regulated by specific interactions with non-mitochondrial proteins. Thus, it is of great relevance to extend our present view of the mitochondrial proteome not only to those proteins that are encoded by or transported to mitochondria, but also to their interactors that take part in mitochondria functionality. Here, we propose a graphical representation of the functional mitochondrial proteome by retrieving mitochondrial proteins from the NeXtProt database and adding to the network their interactors as annotated in the IntAct database. Notably, the network may represent a reference to map all the proteins that are currently being identified in mitochondrial proteomics studies.

  12. Mitochondrial-targeted DNA delivery using a DF-MITO-Porter, an innovative nano carrier with cytoplasmic and mitochondrial fusogenic envelopes

    International Nuclear Information System (INIS)

    Yamada, Yuma; Kawamura, Eriko; Harashima, Hideyoshi

    2012-01-01

    Mitochondrial gene therapy has the potential for curing a variety of diseases that are associated with mitochondrial DNA mutations and/or defects. To achieve this, it will be necessary to deliver therapeutic agents into the mitochondria in diseased cells. A number of mitochondrial drug delivery systems have been reported to date. However, reports of mitochondrial-targeted DNA delivery are limited. To achieve this, the therapeutic agent must be taken up by the cell (1), after which, the multi-processes associated with intracellular trafficking must be sophisticatedly regulated so as to release the agent from the endosome and deliver it to the cytosol (2) and to pass through the mitochondrial membrane (3). We report herein on the mitochondrial delivery of oligo DNA as a model therapeutic using a Dual Function (DF)-MITO-Porter, an innovative nano carrier designed for mitochondrial delivery. The critical structural elements of the DF-MITO-Porter include mitochondria-fusogenic inner envelopes and endosome-fusogenic outer envelopes, modified with octaarginine which greatly assists in cellular uptake. Inside the cell, the carrier passes through the endosomal and mitochondrial membranes via step-wise membrane fusion. When the oligo DNA was packaged in the DF-MITO-Porter, cellular uptake efficiency was strongly enhanced. Intracellular observation using confocal laser scanning microscopy showed that the DF-MITO-Porter was effectively released from endosomes. Moreover, the findings confirmed that the mitochondrial targeting activity of the DF-MITO-Porter was significantly higher than that of a carrier without outer endosome-fusogenic envelopes. These results support the conclusion that mitochondrial-targeted DNA delivery using a DF-MITO-Porter can be achieved when intracellular trafficking is optimally regulated.

  13. Mitochondrial-targeted DNA delivery using a DF-MITO-Porter, an innovative nano carrier with cytoplasmic and mitochondrial fusogenic envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yuma; Kawamura, Eriko; Harashima, Hideyoshi, E-mail: harasima@pharm.hokudai.ac.jp [Hokkaido University, Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences (Japan)

    2012-08-15

    Mitochondrial gene therapy has the potential for curing a variety of diseases that are associated with mitochondrial DNA mutations and/or defects. To achieve this, it will be necessary to deliver therapeutic agents into the mitochondria in diseased cells. A number of mitochondrial drug delivery systems have been reported to date. However, reports of mitochondrial-targeted DNA delivery are limited. To achieve this, the therapeutic agent must be taken up by the cell (1), after which, the multi-processes associated with intracellular trafficking must be sophisticatedly regulated so as to release the agent from the endosome and deliver it to the cytosol (2) and to pass through the mitochondrial membrane (3). We report herein on the mitochondrial delivery of oligo DNA as a model therapeutic using a Dual Function (DF)-MITO-Porter, an innovative nano carrier designed for mitochondrial delivery. The critical structural elements of the DF-MITO-Porter include mitochondria-fusogenic inner envelopes and endosome-fusogenic outer envelopes, modified with octaarginine which greatly assists in cellular uptake. Inside the cell, the carrier passes through the endosomal and mitochondrial membranes via step-wise membrane fusion. When the oligo DNA was packaged in the DF-MITO-Porter, cellular uptake efficiency was strongly enhanced. Intracellular observation using confocal laser scanning microscopy showed that the DF-MITO-Porter was effectively released from endosomes. Moreover, the findings confirmed that the mitochondrial targeting activity of the DF-MITO-Porter was significantly higher than that of a carrier without outer endosome-fusogenic envelopes. These results support the conclusion that mitochondrial-targeted DNA delivery using a DF-MITO-Porter can be achieved when intracellular trafficking is optimally regulated.

  14. Ancestors We Didn’t Even Know We Had”: Alice Walker, Asian Religion, and Ethnic Authenticity

    Directory of Open Access Journals (Sweden)

    Kyle Garton-Gundling

    2015-03-01

    Full Text Available Recent debates about the ethics of identity in a global age have dealt with how to prioritize conflicting local and global allegiances. Guided by these concerns, the fiction of Alice Walker develops a distinctive view of how local cultures and global movements can fruitfully interact. This vision depends on concepts from Asian religions, a major influence that critics of Walker have largely overlooked. Walker promotes Hindu and Buddhist meditation in a context of widespread African American skepticism toward Asian religions. According to widespread notions of cultural authenticity, Asian religions cannot nourish an African American connection to ethnic roots. In response to this challenge, Alice Walker’s fiction portrays Hindu and Buddhist mystics as African Americans’ ancestors, thus positioning these faiths as authentically black. By creatively enfolding Asian religions into her sense of African American heritage, Walker builds a spiritual cosmopolitanism that relies on claims of ancestral affiliation even when these claims are not literal. This strategy is Walker’s effort to create a new paradigm of cultural authenticity, one that allows individuals and groups to choose their ancestors. Walker’s approach seeks to incorporate disparate global influences while still valorizing the figure of the ancestor. This innovative approach places Walker at the forefront of a growing number of African American artists and intellectuals who promote Asian religions to American minorities. Walker’s work vividly dramatizes larger concerns in transnational American Studies: Eastern philosophy’s relevance to identity politics, the tensions between universal ideals and cultural specifics, and the ethics of cross-cultural appropriation.

  15. Mitochondrial Nucleoid: Shield and Switch of the Mitochondrial Genome

    Science.gov (United States)

    2017-01-01

    Mitochondria preserve very complex and distinctively unique machinery to maintain and express the content of mitochondrial DNA (mtDNA). Similar to chromosomes, mtDNA is packaged into discrete mtDNA-protein complexes referred to as a nucleoid. In addition to its role as a mtDNA shield, over 50 nucleoid-associated proteins play roles in mtDNA maintenance and gene expression through either temporary or permanent association with mtDNA or other nucleoid-associated proteins. The number of mtDNA(s) contained within a single nucleoid is a fundamental question but remains a somewhat controversial issue. Disturbance in nucleoid components and mutations in mtDNA were identified as significant in various diseases, including carcinogenesis. Significant interest in the nucleoid structure and its regulation has been stimulated in relation to mitochondrial diseases, which encompass diseases in multicellular organisms and are associated with accumulation of numerous mutations in mtDNA. In this review, mitochondrial nucleoid structure, nucleoid-associated proteins, and their regulatory roles in mitochondrial metabolism are briefly addressed to provide an overview of the emerging research field involving mitochondrial biology. PMID:28680532

  16. Analysis of regional brain mitochondrial bioenergetics and susceptibility to mitochondrial inhibition utilizing a microplate based system

    Science.gov (United States)

    Sauerbeck, Andrew; Pandya, Jignesh; Singh, Indrapal; Bittman, Kevin; Readnower, Ryan; Bing, Guoying; Sullivan, Patrick

    2012-01-01

    The analysis of mitochondrial bioenergetic function typically has required 50–100 μg of protein per sample and at least 15 min per run when utilizing a Clark-type oxygen electrode. In the present work we describe a method utilizing the Seahorse Biosciences XF24 Flux Analyzer for measuring mitochondrial oxygen consumption simultaneously from multiple samples and utilizing only 5 μg of protein per sample. Utilizing this method we have investigated whether regionally based differences exist in mitochondria isolated from the cortex, striatum, hippocampus, and cerebellum. Analysis of basal mitochondrial bioenergetics revealed that minimal differences exist between the cortex, striatum, and hippocampus. However, the cerebellum exhibited significantly slower basal rates of Complex I and Complex II dependent oxygen consumption (p < 0.05). Mitochondrial inhibitors affected enzyme activity proportionally across all samples tested and only small differences existed in the effect of inhibitors on oxygen consumption. Investigation of the effect of rotenone administration on Complex I dependent oxygen consumption revealed that exposure to 10 pM rotenone led to a clear time dependent decrease in oxygen consumption beginning 12 min after administration (p < 0.05). These studies show that the utilization of this microplate based method for analysis of mitochondrial bioenergetics is effective at quantifying oxygen consumption simultaneously from multiple samples. Additionally, these studies indicate that minimal regional differences exist in mitochondria isolated from the cortex, striatum, or hippocampus. Furthermore, utilization of the mitochondrial inhibitors suggests that previous work indicating regionally specific deficits following systemic mitochondrial toxin exposure may not be the result of differences in the individual mitochondria from the affected regions. PMID:21402103

  17. Models of gene gain and gene loss for probabilistic reconstruction of gene content in the last universal common ancestor of life

    OpenAIRE

    Kannan, Lavanya; Li, Hua; Rubinstein, Boris; Mushegian, Arcady

    2013-01-01

    Background The problem of probabilistic inference of gene content in the last common ancestor of several extant species with completely sequenced genomes is: for each gene that is conserved in all or some of the genomes, assign the probability that its ancestral gene was present in the genome of their last common ancestor. Results We have developed a family of models of gene gain and gene loss in evolution, and applied the maximum-likelihood approach that uses phylogenetic tree of prokaryotes...

  18. Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication

    Directory of Open Access Journals (Sweden)

    Lippold Sebastian

    2011-11-01

    Full Text Available Abstract Background DNA target enrichment by micro-array capture combined with high throughput sequencing technologies provides the possibility to obtain large amounts of sequence data (e.g. whole mitochondrial DNA genomes from multiple individuals at relatively low costs. Previously, whole mitochondrial genome data for domestic horses (Equus caballus were limited to only a few specimens and only short parts of the mtDNA genome (especially the hypervariable region were investigated for larger sample sets. Results In this study we investigated whole mitochondrial genomes of 59 domestic horses from 44 breeds and a single Przewalski horse (Equus przewalski using a recently described multiplex micro-array capture approach. We found 473 variable positions within the domestic horses, 292 of which are parsimony-informative, providing a well resolved phylogenetic tree. Our divergence time estimate suggests that the mitochondrial genomes of modern horse breeds shared a common ancestor around 93,000 years ago and no later than 38,000 years ago. A Bayesian skyline plot (BSP reveals a significant population expansion beginning 6,000-8,000 years ago with an ongoing exponential growth until the present, similar to other domestic animal species. Our data further suggest that a large sample of wild horse diversity was incorporated into the domestic population; specifically, at least 46 of the mtDNA lineages observed in domestic horses (73% already existed before the beginning of domestication about 5,000 years ago. Conclusions Our study provides a window into the maternal origins of extant domestic horses and confirms that modern domestic breeds present a wide sample of the mtDNA diversity found in ancestral, now extinct, wild horse populations. The data obtained allow us to detect a population expansion event coinciding with the beginning of domestication and to estimate both the minimum number of female horses incorporated into the domestic gene pool and the

  19. Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage.

    Science.gov (United States)

    Bachmann, Rosilla F; Wang, Yun; Yuan, Peixiong; Zhou, Rulun; Li, Xiaoxia; Alesci, Salvatore; Du, Jing; Manji, Husseini K

    2009-07-01

    Accumulating evidence suggests that mitochondrial dysfunction plays a critical role in the progression of a variety of neurodegenerative and psychiatric disorders. Thus, enhancing mitochondrial function could potentially help ameliorate the impairments of neural plasticity and cellular resilience associated with a variety of neuropsychiatric disorders. A series of studies was undertaken to investigate the effects of mood stabilizers on mitochondrial function, and against mitochondrially mediated neurotoxicity. We found that long-term treatment with lithium and valproate (VPA) enhanced cell respiration rate. Furthermore, chronic treatment with lithium or VPA enhanced mitochondrial function as determined by mitochondrial membrane potential, and mitochondrial oxidation in SH-SY5Y cells. In-vivo studies showed that long-term treatment with lithium or VPA protected against methamphetamine (Meth)-induced toxicity at the mitochondrial level. Furthermore, these agents prevented the Meth-induced reduction of mitochondrial cytochrome c, the mitochondrial anti-apoptotic Bcl-2/Bax ratio, and mitochondrial cytochrome oxidase (COX) activity. Oligoarray analysis demonstrated that the gene expression of several proteins related to the apoptotic pathway and mitochondrial functions were altered by Meth, and these changes were attenuated by treatment with lithium or VPA. One of the genes, Bcl-2, is a common target for lithium and VPA. Knock-down of Bcl-2 with specific Bcl-2 siRNA reduced the lithium- and VPA-induced increases in mitochondrial oxidation. These findings illustrate that lithium and VPA enhance mitochondrial function and protect against mitochondrially mediated toxicity. These agents may have potential clinical utility in the treatment of other diseases associated with impaired mitochondrial function, such as neurodegenerative diseases and schizophrenia.

  20. PINK1 regulates mitochondrial trafficking in dendrites of cortical neurons through mitochondrial PKA.

    Science.gov (United States)

    Das Banerjee, Tania; Dagda, Raul Y; Dagda, Marisela; Chu, Charleen T; Rice, Monica; Vazquez-Mayorga, Emmanuel; Dagda, Ruben K

    2017-08-01

    Mitochondrial Protein Kinase A (PKA) and PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, are two neuroprotective serine/threonine kinases that regulate dendrite remodeling and mitochondrial function. We have previously shown that PINK1 regulates dendrite morphology by enhancing PKA activity. Here, we show the molecular mechanisms by which PINK1 and PKA in the mitochondrion interact to regulate dendrite remodeling, mitochondrial morphology, content, and trafficking in dendrites. PINK1-deficient cortical neurons exhibit impaired mitochondrial trafficking, reduced mitochondrial content, fragmented mitochondria, and a reduction in dendrite outgrowth compared to wild-type neurons. Transient expression of wild-type, but not a PKA-binding-deficient mutant of the PKA-mitochondrial scaffold dual-specificity A Kinase Anchoring Protein 1 (D-AKAP1), restores mitochondrial trafficking, morphology, and content in dendrites of PINK1-deficient cortical neurons suggesting that recruiting PKA to the mitochondrion reverses mitochondrial pathology in dendrites induced by loss of PINK1. Mechanistically, full-length and cleaved forms of PINK1 increase the binding of the regulatory subunit β of PKA (PKA/RIIβ) to D-AKAP1 to enhance the autocatalytic-mediated phosphorylation of PKA/RIIβ and PKA activity. D-AKAP1/PKA governs mitochondrial trafficking in dendrites via the Miro-2/TRAK2 complex and by increasing the phosphorylation of Miro-2. Our study identifies a new role of D-AKAP1 in regulating mitochondrial trafficking through Miro-2, and supports a model in which PINK1 and mitochondrial PKA participate in a similar neuroprotective signaling pathway to maintain dendrite connectivity. © 2017 International Society for Neurochemistry.

  1. Outgroup, alignment and modelling improvements indicate that two TNFSF13-like genes existed in the vertebrate ancestor.

    Science.gov (United States)

    Redmond, Anthony K; Pettinello, Rita; Dooley, Helen

    2017-03-01

    The molecular machinery required for lymphocyte development and differentiation appears to have emerged concomitantly with distinct B- and T-like lymphocyte subsets in the ancestor of all vertebrates. The TNFSF superfamily (TNFSF) members BAFF (TNFSF13/Blys) and APRIL (TNFSF13) are key regulators of B cell development survival, and activation in mammals, but the temporal emergence of these molecules, and their precise relationship to the newly identified TNFSF gene BALM (BAFF and APRIL-like molecule), have not yet been elucidated. Here, to resolve the early evolutionary history of this family, we improved outgroup sampling and alignment quality, and applied better fitting substitution models compared to past studies. Our analyses reveal that BALM is a definitive TNFSF13 family member, which split from BAFF in the gnathostome (jawed vertebrate) ancestor. Most importantly, however, we show that both the APRIL and BAFF lineages existed in the ancestors of all extant vertebrates. This implies that APRIL has been lost, or is yet to be found, in cyclostomes (jawless vertebrates). Our results suggest that lineage-specific gene duplication and loss events have caused lymphocyte regulation, despite shared origins, to become secondarily distinct between gnathostomes and cyclostomes. Finally, the structure of lamprey BAFF-like, and its phylogenetic placement as sister to BAFF and BALM, but not the more slowly evolving APRIL, indicates that the primordial lymphocyte regulator was more APRIL-like than BAFF-like.

  2. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance

    Science.gov (United States)

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity. PMID:17322372

  3. Mitochondrial morphology and cardiovascular disease

    OpenAIRE

    Ong, Sang-Bing; Hausenloy, Derek J.

    2010-01-01

    Mitochondria are dynamic and are able to interchange their morphology between elongated interconnected mitochondrial networks and a fragmented disconnected arrangement by the processes of mitochondrial fusion and fission, respectively. Changes in mitochondrial morphology are regulated by the mitochondrial fusion proteins (mitofusins 1 and 2, and optic atrophy 1) and the mitochondrial fission proteins (dynamin-related peptide 1 and mitochondrial fission protein 1) and have been implicated in a...

  4. Mitochondrial DNA triplication and punctual mutations in patients with mitochondrial neuromuscular disorders

    Energy Technology Data Exchange (ETDEWEB)

    Mkaouar-Rebai, Emna, E-mail: emna.mkaouar@gmail.com [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Felhi, Rahma; Tabebi, Mouna [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Alila-Fersi, Olfa; Chamkha, Imen [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Maalej, Marwa; Ammar, Marwa [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Kammoun, Fatma [Service de pédiatrie, C.H.U. Hedi Chaker de Sfax (Tunisia); Keskes, Leila [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Hachicha, Mongia [Service de pédiatrie, C.H.U. Hedi Chaker de Sfax (Tunisia); Fakhfakh, Faiza, E-mail: faiza.fakhfakh02@gmail.com [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia)

    2016-04-29

    Mitochondrial diseases are a heterogeneous group of disorders caused by the impairment of the mitochondrial oxidative phosphorylation system which have been associated with various mutations of the mitochondrial DNA (mtDNA) and nuclear gene mutations. The clinical phenotypes are very diverse and the spectrum is still expanding. As brain and muscle are highly dependent on OXPHOS, consequently, neurological disorders and myopathy are common features of mtDNA mutations. Mutations in mtDNA can be classified into three categories: large-scale rearrangements, point mutations in tRNA or rRNA genes and point mutations in protein coding genes. In the present report, we screened mitochondrial genes of complex I, III, IV and V in 2 patients with mitochondrial neuromuscular disorders. The results showed the presence the pathogenic heteroplasmic m.9157G>A variation (A211T) in the MT-ATP6 gene in the first patient. We also reported the first case of triplication of 9 bp in the mitochondrial NC7 region in Africa and Tunisia, in association with the novel m.14924T>C in the MT-CYB gene in the second patient with mitochondrial neuromuscular disorder. - Highlights: • We reported 2 patients with mitochondrial neuromuscular disorders. • The heteroplasmic MT-ATP6 9157G>A variation was reported. • A triplication of 9 bp in the mitochondrial NC7 region was detected. • The m.14924T>C transition (S60P) in the MT-CYB gene was found.

  5. The Mitochondrial Protein Atlas: A Database of Experimentally Verified Information on the Human Mitochondrial Proteome.

    Science.gov (United States)

    Godin, Noa; Eichler, Jerry

    2017-09-01

    Given its central role in various biological systems, as well as its involvement in numerous pathologies, the mitochondrion is one of the best-studied organelles. However, although the mitochondrial genome has been extensively investigated, protein-level information remains partial, and in many cases, hypothetical. The Mitochondrial Protein Atlas (MPA; URL: lifeserv.bgu.ac.il/wb/jeichler/MPA ) is a database that provides a complete, manually curated inventory of only experimentally validated human mitochondrial proteins. The MPA presently contains 911 unique protein entries, each of which is associated with at least one experimentally validated and referenced mitochondrial localization. The MPA also contains experimentally validated and referenced information defining function, structure, involvement in pathologies, interactions with other MPA proteins, as well as the method(s) of analysis used in each instance. Connections to relevant external data sources are offered for each entry, including links to NCBI Gene, PubMed, and Protein Data Bank. The MPA offers a prototype for other information sources that allow for a distinction between what has been confirmed and what remains to be verified experimentally.

  6. Mitochondrial pharmacology: electron transport chain bypass as strategies to treat mitochondrial dysfunction.

    Science.gov (United States)

    Atamna, Hani; Mackey, Jeanette; Dhahbi, Joseph M

    2012-01-01

    Mitochondrial dysfunction (primary or secondary) is detrimental to intermediary metabolism. Therapeutic strategies to treat/prevent mitochondrial dysfunction could be valuable for managing metabolic and age-related disorders. Here, we review strategies proposed to treat mitochondrial impairment. We then concentrate on redox-active agents, with mild-redox potential, who shuttle electrons among specific cytosolic or mitochondrial redox-centers. We propose that specific redox agents with mild redox potential (-0.1 V; 0.1 V) improve mitochondrial function because they can readily donate or accept electrons in biological systems, thus they enhance metabolic activity and prevent reactive oxygen species (ROS) production. These agents are likely to lack toxic effects because they lack the risk of inhibiting electron transfer in redox centers. This is different from redox agents with strong negative (-0.4 V; -0.2 V) or positive (0.2 V; 0.4 V) redox potentials who alter the redox status of redox-centers (i.e., become permanently reduced or oxidized). This view has been demonstrated by testing the effect of several redox active agents on cellular senescence. Methylene blue (MB, redox potential ≅10 mV) appears to readily cycle between the oxidized and reduced forms using specific mitochondrial and cytosolic redox centers. MB is most effective in delaying cell senescence and enhancing mitochondrial function in vivo and in vitro. Mild-redox agents can alter the biochemical activity of specific mitochondrial components, which then in response alters the expression of nuclear and mitochondrial genes. We present the concept of mitochondrial electron-carrier bypass as a potential result of mild-redox agents, a method to prevent ROS production, improve mitochondrial function, and delay cellular aging. Thus, mild-redox agents may prevent/delay mitochondria-driven disorders. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  7. Vimar Is a Novel Regulator of Mitochondrial Fission through Miro.

    Directory of Open Access Journals (Sweden)

    Lianggong Ding

    2016-10-01

    Full Text Available As fundamental processes in mitochondrial dynamics, mitochondrial fusion, fission and transport are regulated by several core components, including Miro. As an atypical Rho-like small GTPase with high molecular mass, the exchange of GDP/GTP in Miro may require assistance from a guanine nucleotide exchange factor (GEF. However, the GEF for Miro has not been identified. While studying mitochondrial morphology in Drosophila, we incidentally observed that the loss of vimar, a gene encoding an atypical GEF, enhanced mitochondrial fission under normal physiological conditions. Because Vimar could co-immunoprecipitate with Miro in vitro, we speculated that Vimar might be the GEF of Miro. In support of this hypothesis, a loss-of-function (LOF vimar mutant rescued mitochondrial enlargement induced by a gain-of-function (GOF Miro transgene; whereas a GOF vimar transgene enhanced Miro function. In addition, vimar lost its effect under the expression of a constitutively GTP-bound or GDP-bound Miro mutant background. These results indicate a genetic dependence of vimar on Miro. Moreover, we found that mitochondrial fission played a functional role in high-calcium induced necrosis, and a LOF vimar mutant rescued the mitochondrial fission defect and cell death. This result can also be explained by vimar's function through Miro, because Miro's effect on mitochondrial morphology is altered upon binding with calcium. In addition, a PINK1 mutant, which induced mitochondrial enlargement and had been considered as a Drosophila model of Parkinson's disease (PD, caused fly muscle defects, and the loss of vimar could rescue these defects. Furthermore, we found that the mammalian homolog of Vimar, RAP1GDS1, played a similar role in regulating mitochondrial morphology, suggesting a functional conservation of this GEF member. The Miro/Vimar complex may be a promising drug target for diseases in which mitochondrial fission and fusion are dysfunctional.

  8. Mitochondrial myopathy presenting as fibromyalgia: a case report

    Directory of Open Access Journals (Sweden)

    Abdullah Mishal

    2012-02-01

    Full Text Available Abstract Introduction To the best of our knowledge, we describe for the first time the case of a woman who met the diagnostic criteria for fibromyalgia, did not respond to therapy for that disorder, and was subsequently diagnosed by biochemical and genetic studies with a mitochondrial myopathy. Treatment of the mitochondrial myopathy resulted in resolution of symptoms. This case demonstrates that mitochondrial myopathy may present in an adult with a symptom complex consistent with fibromyalgia. Case presentation Our patient was a 41-year-old Caucasian woman with symptoms of fatigue, exercise intolerance, headache, and multiple trigger points. Treatment for fibromyalgia with a wide spectrum of medications including non-steroidal anti-inflammatory drugs, antidepressants, gabapentin and pregabalin had no impact on her symptoms. A six-minute walk study demonstrated an elevated lactic acid level (5 mmol/L; normal Conclusions This case demonstrates that adults diagnosed with fibromyalgia may have their symptom complex related to an adult onset mitochondrial myopathy. This is an important finding since treatment of mitochondrial myopathy resulted in resolution of symptoms.

  9. First description of a novel mitochondrial mutation in the MT-TI gene associated with multiple mitochondrial DNA deletion and depletion in family with severe dilated mitochondrial cardiomyopathy.

    Science.gov (United States)

    Alila-Fersi, Olfa; Tabebi, Mouna; Maalej, Marwa; Belguith, Neila; Keskes, Leila; Mkaouar-Rebai, Emna; Fakhfakh, Faiza

    2018-03-18

    Mitochondria are essential for early cardiac development and impaired mitochondrial function was described associated with heart diseases such as hypertrophic or dilated mitochondrial cardiomyopathy. In this study, we report a family including two individuals with severe dilated mitochondrial cardiomyopathy. The whole mitochondrial genome screening showed the presence of several variations and a novel homoplasmic mutation m.4318-4322delC in the MT-TI gene shared by the two patients and their mother and leading to a disruption of the tRNA Ile secondary structure. In addition, a mitochondrial depletion was present in blood leucocyte of the two affected brother whereas a de novo heteroplasmic multiple deletion in the major arc of mtDNA was present in blood leucocyte and mucosa of only one of them. These deletions in the major arc of the mtDNA resulted to the loss of several protein-encoding genes and also some tRNA genes. The mtDNA deletion and depletion could result to an impairment of the oxidative phosphorylation and energy metabolism in the respiratory chain in the studied patients. Our report is the first description of a family with severe lethal dilated mitochondrial cardiomyopathy and presenting several mtDNA abnormalities including punctual mutation, deletion and depletion. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  11. The goat domestication process inferred from large-scale mitochondrial DNA analysis of wild and domestic individuals

    Science.gov (United States)

    Naderi, Saeid; Rezaei, Hamid-Reza; Pompanon, François; Blum, Michael G. B.; Negrini, Riccardo; Naghash, Hamid-Reza; Balkız, Özge; Mashkour, Marjan; Gaggiotti, Oscar E.; Ajmone-Marsan, Paolo; Kence, Aykut; Vigne, Jean-Denis; Taberlet, Pierre

    2008-01-01

    The emergence of farming during the Neolithic transition, including the domestication of livestock, was a critical point in the evolution of human kind. The goat (Capra hircus) was one of the first domesticated ungulates. In this study, we compared the genetic diversity of domestic goats to that of the modern representatives of their wild ancestor, the bezoar, by analyzing 473 samples collected over the whole distribution range of the latter species. This partly confirms and significantly clarifies the goat domestication scenario already proposed by archaeological evidence. All of the mitochondrial DNA haplogroups found in current domestic goats have also been found in the bezoar. The geographic distribution of these haplogroups in the wild ancestor allowed the localization of the main domestication centers. We found no haplotype that could have been domesticated in the eastern half of the Iranian Plateau, nor further to the east. A signature of population expansion in bezoars of the C haplogroup suggests an early domestication center on the Central Iranian Plateau (Yazd and Kerman Provinces) and in the Southern Zagros (Fars Province), possibly corresponding to the management of wild flocks. However, the contribution of this center to the current domestic goat population is rather low (1.4%). We also found a second domestication center covering a large area in Eastern Anatolia, and possibly in Northern and Central Zagros. This last domestication center is the likely origin of almost all domestic goats today. This finding is consistent with archaeological data identifying Eastern Anatolia as an important domestication center. PMID:19004765

  12. Targeting mitochondrial respiration as a therapeutic strategy for cervical cancer.

    Science.gov (United States)

    Tian, Shenglan; Chen, Heng; Tan, Wei

    2018-05-23

    Targeting mitochondrial respiration has been documented as an effective therapeutic strategy in cancer. However, the impact of mitochondrial respiration inhibition on cervical cancer cells are not well elucidated. Using a panel of cervical cancer cell lines, we show that an existing drug atovaquone is active against the cervical cancer cells with high profiling of mitochondrial biogenesis. Atovaquone inhibited proliferation and induced apoptosis with varying efficacy among cervical cancer cell lines regardless of HPV infection, cellular origin and their sensitivity to paclitaxel. We further demonstrated that atovaquone acts on cervical cancer cells via inhibiting mitochondrial respiration. In particular, atovaquone specifically inhibited mitochondrial complex III but not I, II or IV activity, leading to respiration inhibition and energy crisis. Importantly, we found that the different sensitivity of cervical cancer cell lines to atovaquone were due to their differential level of mitochondrial biogenesis and dependency to mitochondrial respiration. In addition, we demonstrated that the in vitro observations were translatable to in vivo cervical cancer xenograft mouse model. Our findings suggest that the mitochondrial biogenesis varies among patients with cervical cancer. Our work also suggests that atovaquone is a useful addition to cervical cancer treatment, particularly to those with high dependency on mitochondrial respiration. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Reversible infantile mitochondrial diseases.

    Science.gov (United States)

    Boczonadi, Veronika; Bansagi, Boglarka; Horvath, Rita

    2015-05-01

    Mitochondrial diseases are usually severe and progressive conditions; however, there are rare forms that show remarkable spontaneous recoveries. Two homoplasmic mitochondrial tRNA mutations (m.14674T>C/G in mt-tRNA(Glu)) have been reported to cause severe infantile mitochondrial myopathy in the first months of life. If these patients survive the first year of life by extensive life-sustaining measures they usually recover and develop normally. Another mitochondrial disease due to deficiency of the 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) causes severe liver failure in infancy, but similar to the reversible mitochondrial myopathy, within the first year of life these infants may also recover completely. Partial recovery has been noted in some other rare forms of mitochondrial disease due to deficiency of mitochondrial tRNA synthetases and mitochondrial tRNA modifying enzymes. Here we summarize the clinical presentation of these unique reversible mitochondrial diseases and discuss potential molecular mechanisms behind the reversibility. Understanding these mechanisms may provide the key to treatments of potential broader relevance in mitochondrial disease, where for the majority of the patients no effective treatment is currently available.

  14. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes.

    Directory of Open Access Journals (Sweden)

    Anthony L Luz

    Full Text Available Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors, carbonyl cyanide 4-(trifluoromethoxy phenylhydrazone (mitochondrial uncoupler and sodium azide (cytochrome c oxidase inhibitor, we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1-, fusion (fzo-1-, mitophagy (pdr-1, pink-1-, and electron transport chain complex III (isp-1-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes.

  15. Mitochondrial shaping cuts.

    Science.gov (United States)

    Escobar-Henriques, Mafalda; Langer, Thomas

    2006-01-01

    A broad range of cellular processes are regulated by proteolytic events. Proteolysis has now also been established to control mitochondrial morphology which results from the balanced action of fusion and fission. Two out of three known core components of the mitochondrial fusion machinery are under proteolytic control. The GTPase Fzo1 in the outer membrane of mitochondria is degraded along two independent proteolytic pathways. One controls mitochondrial fusion in vegetatively growing cells, the other one acts upon mating factor-induced cell cycle arrest. Fusion also depends on proteolytic processing of the GTPase Mgm1 by the rhomboid protease Pcp1 in the inner membrane of mitochondria. Functional links of AAA proteases or other proteolytic components to mitochondrial dynamics are just emerging. This review summarises the current understanding of regulatory roles of proteolytic processes for mitochondrial plasticity.

  16. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Michelle Barbi de Moura

    Full Text Available SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  17. Three dimensional reconstruction of the human skeletal muscle mitochondrial network as a tool to assess mitochondrial content and structural organization

    DEFF Research Database (Denmark)

    Dahl, Rannvá; Larsen, Steen; Dohlmann, Tine L

    2015-01-01

    a method to visualize mitochondrial networks in high resolution and assess mitochondrial volume. Methods: Confocal fluorescence microscopy imaging of mitochondrial network stains in human vastus lateralis single muscle fibers and, focused ion beam scanning electron microscopy (FIB/SEM) imaging, combined...... mitochondrial dynamics in response to life-style interventions and/or in certain pathologies. Our results question the classification of mitochondria into subsarcolemmal and intermyofibrillar pools, since they are physically interconnected. This article is protected by copyright. All rights reserved....

  18. From Isolated to Networked: A Paradigmatic Shift in Mitochondrial Physiology

    OpenAIRE

    Aon, Miguel A.

    2010-01-01

    A new paradigm of mitochondrial function in networks is emerging which includes, without undermining, the glorious and still useful paradigm of the isolated mitochondrion. The mitochondrial network paradigm introduces new concepts, tools, and analytical techniques. Among them is that mitochondrial function in networks exhibits interdependence and multiplicative effects based on synchronization mechanisms, which involve communication between mitochondrial neighbors. The collective dynamics of ...

  19. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lantao; Li, Shuhong; Wang, Shilei, E-mail: wshlei@aliyun.com; Yu, Ning; Liu, Jia

    2015-06-05

    The mitochondrial calcium uniporter (MCU) transports free Ca{sup 2+} into the mitochondrial matrix, maintaining Ca{sup 2+} homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca{sup 2+} concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca{sup 2+} transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect.

  20. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1

    Energy Technology Data Exchange (ETDEWEB)

    Kieper, Nicole; Holmstroem, Kira M.; Ciceri, Dalila; Fiesel, Fabienne C. [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany); Wolburg, Hartwig [Institute of Pathology, University of Tuebingen, 72076 Tuebingen (Germany); Ziviani, Elena; Whitworth, Alexander J. [Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield S10 2TN (United Kingdom); Martins, L. Miguel [Cell Death Regulation Laboratory, MRC Toxicology Unit, Leicester LE1 9HN (United Kingdom); Kahle, Philipp J., E-mail: philipp.kahle@uni-tuebingen.de [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany); Krueger, Rejko, E-mail: rejko.krueger@uni-tuebingen.de [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany)

    2010-04-15

    Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.

  1. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1

    International Nuclear Information System (INIS)

    Kieper, Nicole; Holmstroem, Kira M.; Ciceri, Dalila; Fiesel, Fabienne C.; Wolburg, Hartwig; Ziviani, Elena; Whitworth, Alexander J.; Martins, L. Miguel; Kahle, Philipp J.; Krueger, Rejko

    2010-01-01

    Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.

  2. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint.

    Science.gov (United States)

    Yamamori, Tohru; Yasui, Hironobu; Yamazumi, Masayuki; Wada, Yusuke; Nakamura, Yoshinari; Nakamura, Hideo; Inanami, Osamu

    2012-07-15

    Whereas ionizing radiation (Ir) instantaneously causes the formation of water radiolysis products that contain some reactive oxygen species (ROS), ROS are also suggested to be released from biological sources in irradiated cells. It is now becoming clear that these ROS generated secondarily after Ir have a variety of biological roles. Although mitochondria are assumed to be responsible for this Ir-induced ROS production, it remains to be elucidated how Ir triggers it. Therefore, we conducted this study to decipher the mechanism of Ir-induced mitochondrial ROS production. In human lung carcinoma A549 cells, Ir (10 Gy of X-rays) induced a time-dependent increase in the mitochondrial ROS level. Ir also increased mitochondrial membrane potential, mitochondrial respiration, and mitochondrial ATP production, suggesting upregulation of the mitochondrial electron transport chain (ETC) function after Ir. Although we found that Ir slightly enhanced mitochondrial ETC complex II activity, the complex II inhibitor 3-nitropropionic acid failed to reduce Ir-induced mitochondrial ROS production. Meanwhile, we observed that the mitochondrial mass and mitochondrial DNA level were upregulated after Ir, indicating that Ir increased the mitochondrial content of the cell. Because irradiated cells are known to undergo cell cycle arrest under control of the checkpoint mechanisms, we examined the relationships between cell cycle and mitochondrial content and cellular oxidative stress level. We found that the cells in the G2/M phase had a higher mitochondrial content and cellular oxidative stress level than cells in the G1 or S phase, regardless of whether the cells were irradiated. We also found that Ir-induced accumulation of the cells in the G2/M phase led to an increase in cells with a high mitochondrial content and cellular oxidative stress level. This suggested that Ir upregulated mitochondrial ETC function and mitochondrial content, resulting in mitochondrial ROS production, and that

  3. Extensive intron gain in the ancestor of placental mammals

    Science.gov (United States)

    2011-01-01

    Background Genome-wide studies of intron dynamics in mammalian orthologous genes have found convincing evidence for loss of introns but very little for intron turnover. Similarly, large-scale analysis of intron dynamics in a few vertebrate genomes has identified only intron losses and no gains, indicating that intron gain is an extremely rare event in vertebrate evolution. These studies suggest that the intron-rich genomes of vertebrates do not allow intron gain. The aim of this study was to search for evidence of de novo intron gain in domesticated genes from an analysis of their exon/intron structures. Results A phylogenomic approach has been used to analyse all domesticated genes in mammals and chordates that originated from the coding parts of transposable elements. Gain of introns in domesticated genes has been reconstructed on well established mammalian, vertebrate and chordate phylogenies, and examined as to where and when the gain events occurred. The locations, sizes and amounts of de novo introns gained in the domesticated genes during the evolution of mammals and chordates has been analyzed. A significant amount of intron gain was found only in domesticated genes of placental mammals, where more than 70 cases were identified. De novo gained introns show clear positional bias, since they are distributed mainly in 5' UTR and coding regions, while 3' UTR introns are very rare. In the coding regions of some domesticated genes up to 8 de novo gained introns have been found. Intron densities in Eutheria-specific domesticated genes and in older domesticated genes that originated early in vertebrates are lower than those for normal mammalian and vertebrate genes. Surprisingly, the majority of intron gains have occurred in the ancestor of placentals. Conclusions This study provides the first evidence for numerous intron gains in the ancestor of placental mammals and demonstrates that adequate taxon sampling is crucial for reconstructing intron evolution. The

  4. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    Science.gov (United States)

    Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina

    2014-11-01

    Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis. © 2014 International Union of Biochemistry and Molecular Biology.

  5. Disruption of mitochondrial DNA replication in Drosophila increases mitochondrial fast axonal transport in vivo.

    Directory of Open Access Journals (Sweden)

    Rehan M Baqri

    Full Text Available Mutations in mitochondrial DNA polymerase (pol gamma cause several progressive human diseases including Parkinson's disease, Alper's syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol gamma leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol gamma deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol gamma-alpha mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases.

  6. MitoMiner: a data warehouse for mitochondrial proteomics data.

    Science.gov (United States)

    Smith, Anthony C; Blackshaw, James A; Robinson, Alan J

    2012-01-01

    MitoMiner (http://mitominer.mrc-mbu.cam.ac.uk/) is a data warehouse for the storage and analysis of mitochondrial proteomics data gathered from publications of mass spectrometry and green fluorescent protein tagging studies. In MitoMiner, these data are integrated with data from UniProt, Gene Ontology, Online Mendelian Inheritance in Man, HomoloGene, Kyoto Encyclopaedia of Genes and Genomes and PubMed. The latest release of MitoMiner stores proteomics data sets from 46 studies covering 11 different species from eumetazoa, viridiplantae, fungi and protista. MitoMiner is implemented by using the open source InterMine data warehouse system, which provides a user interface allowing users to upload data for analysis, personal accounts to store queries and results and enables queries of any data in the data model. MitoMiner also provides lists of proteins for use in analyses, including the new MitoMiner mitochondrial proteome reference sets that specify proteins with substantial experimental evidence for mitochondrial localization. As further mitochondrial proteomics data sets from normal and diseased tissue are published, MitoMiner can be used to characterize the variability of the mitochondrial proteome between tissues and investigate how changes in the proteome may contribute to mitochondrial dysfunction and mitochondrial-associated diseases such as cancer, neurodegenerative diseases, obesity, diabetes, heart failure and the ageing process.

  7. Mitochondrial matters: Mitochondrial bottlenecks, self-assembling structures, and entrapment in the female germline

    Directory of Open Access Journals (Sweden)

    Florence L. Marlow

    2017-05-01

    Full Text Available Mitochondrial replacement therapy, a procedure to generate embryos with the nuclear genome of a donor mother and the healthy mitochondria of a recipient egg, has recently emerged as a promising strategy to prevent transmission of devastating mitochondrial DNA diseases and infertility. The procedure may produce an embryo that is free of diseased mitochondria. A recent study addresses important fundamental questions about the mechanisms underlying maternal inheritance and translational questions regarding the transgenerational effectiveness of this promising therapeutic strategy. This review considers recent advances in our understanding of maternal inheritance of mitochondria, implications for fertility and mitochondrial disease, and potential roles for the Balbiani body, an ancient oocyte structure, in mitochondrial selection in oocytes, with emphasis on therapies to remedy mitochondrial disorders.

  8. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line

    Directory of Open Access Journals (Sweden)

    Hirotaka Yamamoto

    2016-01-01

    Full Text Available Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders.

  9. The backbone of the post-synaptic density originated in a unicellular ancestor of choanoflagellates and metazoans

    Directory of Open Access Journals (Sweden)

    Manuel Michaël

    2010-02-01

    Full Text Available Abstract Background Comparative genomics of the early diverging metazoan lineages and of their unicellular sister-groups opens new window to reconstructing the genetic changes which preceded or accompanied the evolution of multicellular body plans. A recent analysis found that the genome of the nerve-less sponges encodes the homologues of most vertebrate post-synaptic proteins. In vertebrate excitatory synapses, these proteins assemble to form the post-synaptic density, a complex molecular platform linking membrane receptors, components of their signalling pathways, and the cytoskeleton. Newly available genomes from Monosiga brevicollis (a member of Choanoflagellata, the closest unicellular relatives of animals and Trichoplax adhaerens (a member of Placozoa: besides sponges, the only nerve-less metazoans offer an opportunity to refine our understanding of post-synaptic protein evolution. Results Searches for orthologous proteins and reconstruction of gene gains/losses based on the taxon phylogeny indicate that post-synaptic proteins originated in two main steps. The backbone scaffold proteins (Shank, Homer, DLG and some of their partners were acquired in a unicellular ancestor of choanoflagellates and metazoans. A substantial additional set appeared in an exclusive ancestor of the Metazoa. The placozoan genome contains most post-synaptic genes but lacks some of them. Notably, the master-scaffold protein Shank might have been lost secondarily in the placozoan lineage. Conclusions The time of origination of most post-synaptic proteins was not concomitant with the acquisition of synapses or neural-like cells. The backbone of the scaffold emerged in a unicellular context and was probably not involved in cell-cell communication. Based on the reconstructed protein composition and potential interactions, its ancestral function could have been to link calcium signalling and cytoskeleton regulation. The complex later became integrated into the evolving

  10. Transcription profiling suggests that mitochondrial topoisomerase IB acts as a topological barrier and regulator of mitochondrial DNA transcription.

    Science.gov (United States)

    Dalla Rosa, Ilaria; Zhang, Hongliang; Khiati, Salim; Wu, Xiaolin; Pommier, Yves

    2017-12-08

    Mitochondrial DNA (mtDNA) is essential for cell viability because it encodes subunits of the respiratory chain complexes. Mitochondrial topoisomerase IB (TOP1MT) facilitates mtDNA replication by removing DNA topological tensions produced during mtDNA transcription, but it appears to be dispensable. To test whether cells lacking TOP1MT have aberrant mtDNA transcription, we performed mitochondrial transcriptome profiling. To that end, we designed and implemented a customized tiling array, which enabled genome-wide, strand-specific, and simultaneous detection of all mitochondrial transcripts. Our technique revealed that Top1mt KO mouse cells process the mitochondrial transcripts normally but that protein-coding mitochondrial transcripts are elevated. Moreover, we found discrete long noncoding RNAs produced by H-strand transcription and encompassing the noncoding regulatory region of mtDNA in human and murine cells and tissues. Of note, these noncoding RNAs were strongly up-regulated in the absence of TOP1MT. In contrast, 7S DNA, produced by mtDNA replication, was reduced in the Top1mt KO cells. We propose that the long noncoding RNA species in the D-loop region are generated by the extension of H-strand transcripts beyond their canonical stop site and that TOP1MT acts as a topological barrier and regulator for mtDNA transcription and D-loop formation.

  11. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, Vincent; Lang, Diane; Valois, Sierra; Rothman, Alan L.; Medin, Carey L., E-mail: cmedin.uri@gmail.com

    2017-01-15

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. - Highlights: •Mitochondrial length and respiration are increased during DENV infection. •DENV inhibits Drp1-triggered mitochondrial fission. •DENV titers are reduced by mitochondrial fragmentation, Drp1 WT and S616D expression. •Viral proteins NS4b and NS3 are associated with subcellular fractions of mitochondria.

  12. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission

    International Nuclear Information System (INIS)

    Barbier, Vincent; Lang, Diane; Valois, Sierra; Rothman, Alan L.; Medin, Carey L.

    2017-01-01

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. - Highlights: •Mitochondrial length and respiration are increased during DENV infection. •DENV inhibits Drp1-triggered mitochondrial fission. •DENV titers are reduced by mitochondrial fragmentation, Drp1 WT and S616D expression. •Viral proteins NS4b and NS3 are associated with subcellular fractions of mitochondria.

  13. Cysteine Supplementation May be Beneficial in a Subgroup of Mitochondrial Translation Deficiencies.

    Science.gov (United States)

    Bartsakoulia, Marina; Mϋller, Juliane S; Gomez-Duran, Aurora; Yu-Wai-Man, Patrick; Boczonadi, Veronika; Horvath, Rita

    2016-08-30

    Mitochondrial encephalomyopathies are severe, relentlessly progressive conditions and there are very few effective therapies available to date. We have previously suggested that in two rare forms of reversible mitochondrial disease (reversible infantile respiratory chain deficiency and reversible infantile hepatopathy) supplementation with L-cysteine can improve mitochondrial protein synthesis, since cysteine is required for the 2-thiomodification of mitochondrial tRNAs. We studied whether supplementation with L-cysteine or N-acetyl-cysteine (NAC) results in any improvement of the mitochondrial function in vitro in fibroblasts of patients with different genetic forms of abnormal mitochondrial translation. We studied in vitro in fibroblasts of patients carrying the common m.3243A>G and m.8344A>G mutations or autosomal recessive mutations in genes affecting mitochondrial translation, whether L-cysteine or N-acetyl-cysteine supplementation have an effect on mitochondrial respiratory chain function. Here we show that supplementation with L-cysteine, but not with N-acetyl-cysteine partially rescues the mitochondrial translation defect in vitro in fibroblasts of patients carrying the m.3243A>G and m.8344A>G mutations. In contrast, N-acetyl-cysteine had a beneficial effect on mitochondrial translation in TRMU and MTO1 deficient fibroblasts. Our results suggest that L-cysteine or N-acetyl-cysteine supplementation may be a potential treatment for selected subgroups of patients with mitochondrial translation deficiencies. Further studies are needed to explore the full potential of cysteine supplementation as a treatment for patients with mitochondrial disease.

  14. Elastocapillary Instability in Mitochondrial Fission

    Science.gov (United States)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  15. Developing a biological dosimeter based on mitochondrial DNA

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S; Carlisle, S M; Unrau, P; Deugau, K V [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    Direct measurement of deoxyribonucleic acid (DNA) damage from ionizing radiation may be advantageous in determining radiation radiation exposures and assessing their effects on atomic radiation workers. The mitochondrial DNA molecule is one potential cellular DNA target which is: fully defined and sequenced; present in many copies per cell; not vital to cellular survival; and less subject to DNA repair than nuclear DNA. A method is described to isolate and analyse normal mitochondrial DNA. We describe the developments needed to determine DNA damage in mitochondrial DNA. The target is to make a biological dosimeter. (author). 6 refs., 3 figs.

  16. Developing a biological dosimeter based on mitochondrial DNA

    International Nuclear Information System (INIS)

    Adams, S.; Carlisle, S.M.; Unrau, P.; Deugau, K.V.

    1995-01-01

    Direct measurement of deoxyribonucleic acid (DNA) damage from ionizing radiation may be advantageous in determining radiation radiation exposures and assessing their effects on atomic radiation workers. The mitochondrial DNA molecule is one potential cellular DNA target which is: fully defined and sequenced; present in many copies per cell; not vital to cellular survival; and less subject to DNA repair than nuclear DNA. A method is described to isolate and analyse normal mitochondrial DNA. We describe the developments needed to determine DNA damage in mitochondrial DNA. The target is to make a biological dosimeter. (author). 6 refs., 3 figs

  17. A Dig into the Past Mitochondrial Diversity of Corsican Goats Reveals the Influence of Secular Herding Practices

    Science.gov (United States)

    Hughes, Sandrine; Fernández, Helena; Cucchi, Thomas; Duffraisse, Marilyne; Casabianca, François; Istria, Daniel; Pompanon, François; Vigne, Jean-Denis; Hänni, Catherine; Taberlet, Pierre

    2012-01-01

    The goat (Capra hircus) is one of the earliest domesticated species ca. 10,500 years ago in the Middle-East where its wild ancestor, the bezoar (Capra aegagrus), still occurs. During the Neolithic dispersal, the domestic goat was then introduced in Europe, including the main Mediterranean islands. Islands are interesting models as they maintain traces of ancient colonization, historical exchanges or of peculiar systems of husbandry. Here, we compare the mitochondrial genetic diversity of both medieval and extant goats in the Island of Corsica that presents an original and ancient model of breeding with free-ranging animals. We amplified a fragment of the Control Region for 21 medieval and 28 current goats. Most of them belonged to the A haplogroup, the most worldwide spread and frequent today, but the C haplogroup is also detected at low frequency in the current population. Present Corsican goats appeared more similar to medieval goats than to other European goat populations. Moreover, 16 out of the 26 haplotypes observed were endemic to Corsica and the inferred demographic history suggests that the population has remained constant since the Middle Ages. Implications of these results on management and conservation of endangered Corsican goats currently decimated by a disease are addressed. PMID:22299033

  18. Hyperglycemia decreases mitochondrial function: The regulatory role of mitochondrial biogenesis

    International Nuclear Information System (INIS)

    Palmeira, Carlos M.; Rolo, Anabela P.; Berthiaume, Jessica; Bjork, James A.; Wallace, Kendall B.

    2007-01-01

    Increased generation of reactive oxygen species (ROS) is implicated in 'glucose toxicity' in diabetes. However, little is known about the action of glucose on the expression of transcription factors in hepatocytes, especially those involved in mitochondrial DNA (mtDNA) replication and transcription. Since mitochondrial functional capacity is dynamically regulated, we hypothesized that stressful conditions of hyperglycemia induce adaptations in the transcriptional control of cellular energy metabolism, including inhibition of mitochondrial biogenesis and oxidative metabolism. Cell viability, mitochondrial respiration, ROS generation and oxidized proteins were determined in HepG2 cells cultured in the presence of either 5.5 mM (control) or 30 mM glucose (high glucose) for 48 h, 96 h and 7 days. Additionally, mtDNA abundance, plasminogen activator inhibitor-1 (PAI-1), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor-1 (NRF-1) transcripts were evaluated by real time PCR. High glucose induced a progressive increase in ROS generation and accumulation of oxidized proteins, with no changes in cell viability. Increased expression of PAI-1 was observed as early as 96 h of exposure to high glucose. After 7 days in hyperglycemia, HepG2 cells exhibited inhibited uncoupled respiration and decreased MitoTracker Red fluorescence associated with a 25% decrease in mtDNA and 16% decrease in TFAM transcripts. These results indicate that glucose may regulate mtDNA copy number by modulating the transcriptional activity of TFAM in response to hyperglycemia-induced ROS production. The decrease of mtDNA content and inhibition of mitochondrial function may be pathogenic hallmarks in the altered metabolic status associated with diabetes

  19. Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage

    OpenAIRE

    Bachmann, Rosilla F.; Wang, Yun; Yuan, Peixiong; Zhou, Rulun; Li, Xiaoxia; Alesci, Salvatore; Du, Jing; Manji, Husseini K.

    2009-01-01

    Accumulating evidence suggests that mitochondrial dysfunction plays a critical role in the progression of a variety of neurodegenerative and psychiatric disorders. Thus, enhancing mitochondrial function could potentially help ameliorate the impairments of neural plasticity and cellular resilience associated with a variety of neuropsychiatric disorders. A series of studies was undertaken to investigate the effects of mood stabilizers on mitochondrial function, and against mitochondrially media...

  20. Mitochondrial transcription factor A (Tfam) gene sequencing and mitochondrial evaluation in inherited retinal dysplasia in miniature schnauzer dogs.

    Science.gov (United States)

    Bauer, Bianca S; Forsyth, George W; Sandmeyer, Lynne S; Grahn, Bruce H

    2011-04-01

    Mitochondrial transcription factor A (Tfam) has been implicated in the pathogenesis of retinal dysplasia in miniature schnauzer dogs and it has been proposed that affected dogs have altered mitochondrial numbers, size, and morphology. To test these hypotheses the Tfam gene of affected and normal miniature schnauzer dogs with retinal dysplasia was sequenced and lymphocyte mitochondria were quantified, measured, and the morphology was compared in normal and affected dogs using transmission electron microscopy. For Tfam sequencing, retina, retinal pigment epithelium (RPE), and whole blood samples were collected. Total RNA was isolated from the retina and RPE and reverse transcribed to make cDNA. Genomic DNA was extracted from white blood cell pellets obtained from the whole blood samples. The Tfam coding sequence, 5' promoter region, intron1 and the 3' non-coding sequence of normal and affected dogs were amplified using polymerase chain reaction (PCR), cloned and sequenced. For electron microscopy, lymphocytes from affected and normal dogs were photographed and the mitochondria within each cross-section were identified, quantified, and the mitochondrial area (μm²) per lymphocyte cross-section was calculated. Lastly, using a masked technique, mitochondrial morphology was compared between the 2 groups. Sequencing of the miniature schnauzer Tfam gene revealed no functional sequence variation between affected and normal dogs. Lymphocyte and mitochondrial area, mitochondrial quantification, and morphology assessment also revealed no significant difference between the 2 groups. Further investigation into other candidate genes or factors causing retinal dysplasia in the miniature schnauzer is warranted.

  1. Triclosan is a Mitochondrial Uncoupler in Live Zebrafish

    Science.gov (United States)

    Shim, Juyoung; Weatherly, Lisa M.; Luc, Richard H.; Dorman, Maxwell T.; Neilson, Andy; Ng, Ryan; Kim, Carol H.; Millard, Paul J.; Gosse, Julie A.

    2016-01-01

    Triclosan (TCS) is a synthetic antimicrobial agent used in many consumer goods at millimolar concentrations. As a result of exposure, TCS has been detected widely in humans. We have recently discovered that TCS is a proton ionophore mitochondrial uncoupler in multiple types of living cells. Here we present novel data indicating that TCS is also a mitochondrial uncoupler in a living organism: 24 hour post fertilization zebrafish embryos. These experiments were conducted using a Seahorse Bioscience XFe 96 Extracellular Flux Analyzer modified for bidirectional temperature control, using the XF96 spheroid plate to position and measure one zebrafish embryo per well. Using this method, following acute exposure to TCS, basal oxygen consumption rate (OCR) increases, without a decrease in survival or heartbeat rate. TCS also decreases ATP-linked respiration and spare respiratory capacity and increases proton leak: all indicators of mitochondrial uncoupling. Our data indicate, that TCS is a mitochondrial uncoupler in vivo, which should be taken into consideration when assessing the toxicity and/or pharmaceutical uses of TCS. This is the first example of usage of a Seahorse Extracellular Flux Analyzer to measure bioenergetic flux of a single zebrafish embryo per well in a 96 well assay format. The method developed in this study provides a high-throughput tool to identify previously-unknown mitochondrial uncouplers in a living organism. PMID:27111768

  2. Mitochondrial Myopathy: A Rare Cause of Early-Onset Vocal Fold Atrophy

    Science.gov (United States)

    Kelly, Elizabeth A.; Bock, Jonathan M.; Peltier, Amanda C.; Oh, Shin J.; Garrett, C. Gaelyn

    2014-01-01

    Objectives We present the second published case of laryngeal involvement in mitochondrial myopathy. Methods A patient with laryngeal involvement of mitochondrial myopathy is presented, together with a literature review. Results A 41-year-old man presented with progressive breathy dysphonia. His brother had mitochondrial myopathy. Biopsy of the biceps muscle demonstrated cytochrome C oxidase–negative ragged blue fibers confirming mitochondrial myopathy. Videostroboscopy showed marked vocal fold atrophy, but subsequent injection laryngoplasty did not significantly improve the patient’s voice, despite improved postoperative glottic closure. Conclusions Mitochondrial myopathy should be considered in the differential diagnosis of severe early-onset vocal fold atrophy. PMID:23577570

  3. Supplementary data: A complete mitochondrial genome of wheat ...

    Indian Academy of Sciences (India)

    Supplementary data: A complete mitochondrial genome of wheat (Triticum aestivum cv. Chinese Yumai), and fast evolving mitochondrial genes in higher plants. Peng Cui, Huitao Liu, Qiang Lin, Feng Ding, Guoyin Zhuo, Songnian Hu, Dongcheng Liu, Wenlong Yang, Kehui Zhan,. Aimin Zhang and Jun Yu. J. Genet.

  4. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    International Nuclear Information System (INIS)

    Watanabe, Tomoyuki; Saotome, Masao; Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi; Funaki, Makoto; Hayashi, Hideharu

    2014-01-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ m ) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H 2 O 2 ), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ m depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H 2 O 2 -induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ m depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin-resistance. • Inhibition of DRP or ROS

  5. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tomoyuki [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Saotome, Masao, E-mail: msaotome@hama-med.ac.jp [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Funaki, Makoto [Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503 (Japan); Hayashi, Hideharu [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan)

    2014-05-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin

  6. Mitochondrial functionality in female reproduction

    Directory of Open Access Journals (Sweden)

    Łukasz Gąsior

    2017-01-01

    Full Text Available In most animal species female germ cells are the source of mitochondrial genome for the whole body of individuals. As a source of mitochondrial DNA for future generations the mitochondria in the female germ line undergo dynamic quantitative and qualitative changes. In addition to maintaining the intact template of mitochondrial genome from one generation to another, mitochondrial role in oocytes is much more complex and pleiotropic. The quality of mitochondria determines the ability of meiotic divisions, fertilization ability, and activation after fertilization or sustaining development of a new embryo. The presence of normal number of functional mitochondria is also crucial for proper implantation and pregnancy maintaining. This article addresses issues of mitochondrial role and function in mammalian oocyte and presents new approaches in studies of mitochondrial function in female germ cells.

  7. Expression of a transferred nuclear gene in a mitochondrial genome

    Directory of Open Access Journals (Sweden)

    Yichun Qiu

    2014-08-01

    Full Text Available Transfer of mitochondrial genes to the nucleus, and subsequent gain of regulatory elements for expression, is an ongoing evolutionary process in plants. Many examples have been characterized, which in some cases have revealed sources of mitochondrial targeting sequences and cis-regulatory elements. In contrast, there have been no reports of a nuclear gene that has undergone intracellular transfer to the mitochondrial genome and become expressed. Here we show that the orf164 gene in the mitochondrial genome of several Brassicaceae species, including Arabidopsis, is derived from the nuclear ARF17 gene that codes for an auxin responsive protein and is present across flowering plants. Orf164 corresponds to a portion of ARF17, and the nucleotide and amino acid sequences are 79% and 81% identical, respectively. Orf164 is transcribed in several organ types of Arabidopsis thaliana, as detected by RT-PCR. In addition, orf164 is transcribed in five other Brassicaceae within the tribes Camelineae, Erysimeae and Cardamineae, but the gene is not present in Brassica or Raphanus. This study shows that nuclear genes can be transferred to the mitochondrial genome and become expressed, providing a new perspective on the movement of genes between the genomes of subcellular compartments.

  8. Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis.

    Science.gov (United States)

    Zhang, Yong-Zhong; Ouyang, Ying-Chun; Hou, Yi; Schatten, Heide; Chen, Da-Yuan; Sun, Qing-Yuan

    2008-03-01

    The behavior of mitochondria during early oogenesis remains largely unknown in zebrafish. We used three mitochondrial probes (Mito Tracker Red CMXRos, Mito Tracker Green FM, and JC-1) to stain early zebrafish oocyte mitochondria, and confocal microscopy to analyze mitochondrial aggregation and distribution. By using fluorescence recovery after photobleaching (FRAP), we traced mitochondrial movement. The microtubule assembly inhibitor nocodazole and microfilament inhibitor cytochalasin B (CB) were used to analyze the role of microtubules and microfilaments on mitochondrial movement. By using the dual emission probe, JC-1, and oxidative phosphorylation uncoupler, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), we determined the distribution of active and inactive (low-active) mitochondria. Green/red fluorescence ratios of different sublocations in different oocyte groups stained by JC-1 were detected in merged (green and red) images. Our results showed that mitochondria exhibited a unique distribution pattern in early zebrafish oocytes. They tended to aggregate into large clusters in early stage I oocytes, but in a threadlike state in latter stage I oocytes. We detected a lower density mitochondrial area and a higher density mitochondrial area on opposite sides of the germinal vesicle. The green/red fluorescence ratios in different sublocations in normal oocytes were about 1:1. This implies that active mitochondria were distributed in all sublocations. FCCP treatment caused significant increases in the ratios. CB and nocodazole treatment caused an increase of the ratios in clusters and mitochondrial cloud, but not in dispersed areas. Mitochondria in different sublocations underwent fast dynamic movement. Inhibition or disruption of microtubules or microfilaments resulted in even faster mitochondrial free movement.

  9. Mitochondrial disease and endocrine dysfunction.

    Science.gov (United States)

    Chow, Jasmine; Rahman, Joyeeta; Achermann, John C; Dattani, Mehul T; Rahman, Shamima

    2017-02-01

    Mitochondria are critical organelles for endocrine health; steroid hormone biosynthesis occurs in these organelles and they provide energy in the form of ATP for hormone production and trafficking. Mitochondrial diseases are multisystem disorders that feature defective oxidative phosphorylation, and are characterized by enormous clinical, biochemical and genetic heterogeneity. To date, mitochondrial diseases have been found to result from >250 monogenic defects encoded across two genomes: the nuclear genome and the ancient circular mitochondrial genome located within mitochondria themselves. Endocrine dysfunction is often observed in genetic mitochondrial diseases and reflects decreased intracellular production or extracellular secretion of hormones. Diabetes mellitus is the most frequently described endocrine disturbance in patients with inherited mitochondrial diseases, but other endocrine manifestations in these patients can include growth hormone deficiency, hypogonadism, adrenal dysfunction, hypoparathyroidism and thyroid disease. Although mitochondrial endocrine dysfunction frequently occurs in the context of multisystem disease, some mitochondrial disorders are characterized by isolated endocrine involvement. Furthermore, additional monogenic mitochondrial endocrine diseases are anticipated to be revealed by the application of genome-wide next-generation sequencing approaches in the future. Understanding the mitochondrial basis of endocrine disturbance is key to developing innovative therapies for patients with mitochondrial diseases.

  10. A linear mitochondrial genome of Cyclospora cayetanensis (Eimeriidae, Eucoccidiorida, Coccidiasina, Apicomplexa) suggests the ancestral start position within mitochondrial genomes of eimeriid coccidia.

    Science.gov (United States)

    Ogedengbe, Mosun E; Qvarnstrom, Yvonne; da Silva, Alexandre J; Arrowood, Michael J; Barta, John R

    2015-05-01

    The near complete mitochondrial genome for Cyclospora cayetanensis is 6184 bp in length with three protein-coding genes (Cox1, Cox3, CytB) and numerous lsrDNA and ssrDNA fragments. Gene arrangements were conserved with other coccidia in the Eimeriidae, but the C. cayetanensis mitochondrial genome is not circular-mapping. Terminal transferase tailing and nested PCR completed the 5'-terminus of the genome starting with a 21 bp A/T-only region that forms a potential stem-loop. Regions homologous to the C. cayetanensis mitochondrial genome 5'-terminus are found in all eimeriid mitochondrial genomes available and suggest this may be the ancestral start of eimeriid mitochondrial genomes. Copyright © 2015 Australian Society for Parasitology Inc. All rights reserved.

  11. Neuroradiologic findings in children with mitochondrial disorder: correlation with mitochondrial respiratory chain defects

    International Nuclear Information System (INIS)

    Kim, Jinna; Lee, Seung-Koo; Kim, Dong Ik; Kim, Eung Yeop; Lee, Young-Mock; Lee, Joon Soo; Kim, Heung Dong

    2008-01-01

    Mitochondrial disorders are a heterogeneous group of disorders affecting energy metabolism that can present at any age with a wide variety of clinical symptoms. We investigated brain magnetic resonance (MR) findings in 40 children with defects of the mitochondrial respiratory chain (MRC) complex and correlated them with the type of MRC defects. Enrolled were 40 children with MRC defects in biochemical enzyme assay of the muscle specimen. Twenty-one children were found to have classical syndromes of mitochondrial disorders and 19 children presented nonspecific mitochondrial encephalomyopathies. Their brain MR imaging findings were retrospectively reviewed and correlated with the biochemical defect in the MRC complex. Children with MRC defects showed various neuroradiologic features on brain MR imaging that resulted from a complex genetic background and a heterogeneous phenotype. Rapid progression of atrophy involving all structures of the brain with variable involvement of deep gray and white matter are the most frequent MR findings in children with MRC defects in both classical syndromes of mitochondrial disorder and nonspecific mitochondrial encephalomyopathies. The type of biochemical defect in the MRC complex enzyme did not correlate with brain MR findings in child patients. (orig.)

  12. Neuroradiologic findings in children with mitochondrial disorder: correlation with mitochondrial respiratory chain defects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinna; Lee, Seung-Koo; Kim, Dong Ik [Yonsei University College of Medicine, Department of Radiology, Research Institute of Radiological Science, Seoul (Korea); Kim, Eung Yeop [Yonsei University College of Medicine, Department of Radiology, Research Institute of Radiological Science, Brain Korea 21 Project for Medical Science, Seoul (Korea); Lee, Young-Mock; Lee, Joon Soo [Yonsei University College of Medicine, Department of Pediatrics, Pediatric Epilepsy Clinics, Severance Children' s Hospital, Brain Research Institute, Seoul (Korea); Kim, Heung Dong [Yonsei University College of Medicine, Department of Pediatrics, Pediatric Epilepsy Clinics, Severance Children' s Hospital, Brain Research Institute, Seoul (Korea); Yonsei University College of Medicine, Department of Pediatrics, Seoul (Korea)

    2008-08-15

    Mitochondrial disorders are a heterogeneous group of disorders affecting energy metabolism that can present at any age with a wide variety of clinical symptoms. We investigated brain magnetic resonance (MR) findings in 40 children with defects of the mitochondrial respiratory chain (MRC) complex and correlated them with the type of MRC defects. Enrolled were 40 children with MRC defects in biochemical enzyme assay of the muscle specimen. Twenty-one children were found to have classical syndromes of mitochondrial disorders and 19 children presented nonspecific mitochondrial encephalomyopathies. Their brain MR imaging findings were retrospectively reviewed and correlated with the biochemical defect in the MRC complex. Children with MRC defects showed various neuroradiologic features on brain MR imaging that resulted from a complex genetic background and a heterogeneous phenotype. Rapid progression of atrophy involving all structures of the brain with variable involvement of deep gray and white matter are the most frequent MR findings in children with MRC defects in both classical syndromes of mitochondrial disorder and nonspecific mitochondrial encephalomyopathies. The type of biochemical defect in the MRC complex enzyme did not correlate with brain MR findings in child patients. (orig.)

  13. Co-ordinate decrease in the expression of the mitochondrial genome and nuclear genes for mitochondrial proteins in the lactation-induced mitochondrial hypotrophy of rat brown fat.

    Science.gov (United States)

    Martin, I; Giralt, M; Viñas, O; Iglesias, R; Mampel, T; Villarroya, F

    1995-01-01

    The relative abundance of the mitochondrial-encoded mRNAs for cytochrome c oxidase subunit II and NADH dehydrogenase subunit I was lower in brown adipose tissue (BAT) from lactating rats than in virgin controls. This decrease was in parallel with a significant decrease in mitochondrial 16 S rRNA levels and in the relative content of mitochondrial DNA in the tissue. BAT from lactating rats showed lowered mRNA expression of the nuclear-encoded genes for the mitochondrial uncoupling protein, subunit IV of cytochrome c oxidase and the adenine nucleotide translocase isoforms ANT1 and ANT2, whereas mRNA levels for the ATP synthase beta-subunit were unchanged. However, the relative content of this last protein was lower in BAT mitochondria from lactating rats than in virgin controls. It is concluded that lactation-induced mitochondrial hypotrophy in BAT is associated with a co-ordinate decrease in the expression of the mitochondrial genome and nuclear genes for mitochondrial proteins. This decrease is caused by regulatory events acting at different levels, including pre- and post-transcriptional regulation. BAT appears to be a useful model with which to investigate the molecular mechanisms involved in the co-ordination of the expression of the mitochondrial and nuclear genomes during mitochondrial biogenesis. Images Figure 1 Figure 2 PMID:8948428

  14. Molecular basis for mitochondrial signaling

    CERN Document Server

    2017-01-01

    This book covers recent advances in the study of structure, function, and regulation of metabolite, protein and ion translocating channels, and transporters in mitochondria. A wide array of cutting-edge methods are covered, ranging from electrophysiology and cell biology to bioinformatics, as well as structural, systems, and computational biology. At last, the molecular identity of two important channels in the mitochondrial inner membrane, the mitochondrial calcium uniporter and the mitochondrial permeability transition pore have been established. After years of work on the physiology and structure of VDAC channels in the mitochondrial outer membrane, there have been multiple discoveries on VDAC permeation and regulation by cytosolic proteins. Recent breakthroughs in structural studies of the mitochondrial cholesterol translocator reveal a set of novel unexpected features and provide essential clues for defining therapeutic strategies. Molecular Basis for Mitochondrial Signaling covers these and many more re...

  15. Genetics of mitochondrial dysfunction and infertility.

    Science.gov (United States)

    Demain, L A M; Conway, G S; Newman, W G

    2017-02-01

    Increasingly, mitochondria are being recognized as having an important role in fertility. Indeed in assisted reproductive technologies mitochondrial function is a key indicator of sperm and oocyte quality. Here, we review the literature regarding mitochondrial genetics and infertility. In many multisystem disorders caused by mitochondrial dysfunction death occurs prior to sexual maturity, or the clinical features are so severe that infertility may be underreported. Interestingly, many of the genes linked to mitochondrial dysfunction and infertility have roles in the maintenance of mitochondrial DNA or in mitochondrial translation. Studies on populations with genetically uncharacterized infertility have highlighted an association with mitochondrial DNA deletions, whether this is causative or indicative of poor functioning mitochondria requires further examination. Studies on the impact of mitochondrial DNA variants present conflicting data but highlight POLG as a particularly interesting candidate gene for both male and female infertility. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Ontogeny of the maxilla in Neanderthals and their ancestors.

    Science.gov (United States)

    Lacruz, Rodrigo S; Bromage, Timothy G; O'Higgins, Paul; Arsuaga, Juan-Luis; Stringer, Chris; Godinho, Ricardo Miguel; Warshaw, Johanna; Martínez, Ignacio; Gracia-Tellez, Ana; de Castro, José María Bermúdez; Carbonell, Eudald

    2015-12-07

    Neanderthals had large and projecting (prognathic) faces similar to those of their putative ancestors from Sima de los Huesos (SH) and different from the retracted modern human face. When such differences arose during development and the morphogenetic modifications involved are unknown. We show that maxillary growth remodelling (bone formation and resorption) of the Devil's Tower (Gibraltar 2) and La Quina 18 Neanderthals and four SH hominins, all sub-adults, show extensive bone deposition, whereas in modern humans extensive osteoclastic bone resorption is found in the same regions. This morphogenetic difference is evident by ∼5 years of age. Modern human faces are distinct from those of the Neanderthal and SH fossils in part because their postnatal growth processes differ markedly. The growth remodelling identified in these fossil hominins is shared with Australopithecus and early Homo but not with modern humans suggesting that the modern human face is developmentally derived.

  17. A novel mutation in the mitochondrial DNA cytochrome b gene (MTCYB) in a patient with mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes syndrome.

    Science.gov (United States)

    Emmanuele, Valentina; Sotiriou, Evangelia; Rios, Purificación Gutierrez; Ganesh, Jaya; Ichord, Rebecca; Foley, A Reghan; Akman, H Orhan; Dimauro, Salvatore

    2013-02-01

    Mutations in the mitochondrial DNA cytochrome b gene (MTCYB) have been commonly associated with isolated mitochondrial myopathy and exercise intolerance, rarely with multisystem disorders, and only once with a parkinsonism/mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS) overlap syndrome. Here, we describe a novel mutation (m.14864 T>C) in MTCYB in a 15-year-old girl with a clinical history of migraines, epilepsy, sensorimotor neuropathy, and strokelike episodes, a clinical picture reminiscent of MELAS.  The mutation, which changes a highly conserved cysteine to arginine at amino acid position 40 of cytochrome b, was heteroplasmic in muscle, blood, fibroblasts, and urinary sediment from the patient but absent in accessible tissues from her asymptomatic mother. This case demonstrates that MTCYB must be included in the already long list of mitochondrial DNA genes that have been associated with the MELAS phenotype.

  18. Nuclear Expression of a Mitochondrial DNA Gene: Mitochondrial Targeting of Allotopically Expressed Mutant ATP6 in Transgenic Mice

    Directory of Open Access Journals (Sweden)

    David A. Dunn

    2012-01-01

    Full Text Available Nuclear encoding of mitochondrial DNA transgenes followed by mitochondrial targeting of the expressed proteins (allotopic expression; AE represents a potentially powerful strategy for creating animal models of mtDNA disease. Mice were created that allotopically express either a mutant (A6M or wildtype (A6W mt-Atp6 transgene. Compared to non-transgenic controls, A6M mice displayed neuromuscular and motor deficiencies (wire hang, pole, and balance beam analyses; P0.05. This study illustrates a mouse model capable of circumventing in vivo mitochondrial mutations. Moreover, it provides evidence supporting AE as a tool for mtDNA disease research with implications in development of DNA-based therapeutics.

  19. The complete mitochondrial genome of Pseudocellus pearsei (Chelicerata: Ricinulei and a comparison of mitochondrial gene rearrangements in Arachnida

    Directory of Open Access Journals (Sweden)

    Braband Anke

    2007-10-01

    Full Text Available Abstract Background Mitochondrial genomes are widely utilized for phylogenetic and population genetic analyses among animals. In addition to sequence data the mitochondrial gene order and RNA secondary structure data are used in phylogenetic analyses. Arachnid phylogeny is still highly debated and there is a lack of sufficient sequence data for many taxa. Ricinulei (hooded tickspiders are a morphologically distinct clade of arachnids with uncertain phylogenetic affinities. Results The first complete mitochondrial DNA genome of a member of the Ricinulei, Pseudocellus pearsei (Arachnida: Ricinulei was sequenced using a PCR-based approach. The mitochondrial genome is a typical circular duplex DNA molecule with a size of 15,099 bp, showing the complete set of genes usually present in bilaterian mitochondrial genomes. Five tRNA genes (trnW, trnY, trnN, trnL(CUN, trnV show different relative positions compared to other Chelicerata (e.g. Limulus polyphemus, Ixodes spp.. We propose that two events led to this derived gene order: (1 a tandem duplication followed by random deletion and (2 an independent translocation of trnN. Most of the inferred tRNA secondary structures show the common cloverleaf pattern except tRNA-Glu where the TψC-arm is missing. In phylogenetic analyses (maximum likelihood, maximum parsimony, Bayesian inference using concatenated amino acid and nucleotide sequences of protein-coding genes the basal relationships of arachnid orders remain unresolved. Conclusion Phylogenetic analyses (ML, MP, BI of arachnid mitochondrial genomes fail to resolve interordinal relationships of Arachnida and remain in a preliminary stage because there is still a lack of mitogenomic data from important taxa such as Opiliones and Pseudoscorpiones. Gene order varies considerably within Arachnida – only eight out of 23 species have retained the putative arthropod ground pattern. Some gene order changes are valuable characters in phylogenetic analysis of

  20. Habitual physical activity in mitochondrial disease.

    Science.gov (United States)

    Apabhai, Shehnaz; Gorman, Grainne S; Sutton, Laura; Elson, Joanna L; Plötz, Thomas; Turnbull, Douglass M; Trenell, Michael I

    2011-01-01

    Mitochondrial disease is the most common neuromuscular disease and has a profound impact upon daily life, disease and longevity. Exercise therapy has been shown to improve mitochondrial function in patients with mitochondrial disease. However, no information exists about the level of habitual physical activity of people with mitochondrial disease and its relationship with clinical phenotype. Habitual physical activity, genotype and clinical presentations were assessed in 100 patients with mitochondrial disease. Comparisons were made with a control group individually matched by age, gender and BMI. Patients with mitochondrial disease had significantly lower levels of physical activity in comparison to matched people without mitochondrial disease (steps/day; 6883±3944 vs. 9924±4088, p = 0.001). 78% of the mitochondrial disease cohort did not achieve 10,000 steps per day and 48% were classified as overweight or obese. Mitochondrial disease was associated with less breaks in sedentary activity (Sedentary to Active Transitions, % per day; 13±0.03 vs. 14±0.03, p = 0.001) and an increase in sedentary bout duration (bout lengths/fraction of total sedentary time; 0.206±0.044 vs. 0.187±0.026, p = 0.001). After adjusting for covariates, higher physical activity was moderately associated with lower clinical disease burden (steps/day; r(s) = -0.49; 95% CI -0.33, -0.63, Pphysical activity between different genotypes mitochondrial disease. These results demonstrate for the first time that low levels of physical activity are prominent in mitochondrial disease. Combined with a high prevalence of obesity, physical activity may constitute a significant and potentially modifiable risk factor in mitochondrial disease.

  1. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D

    2013-01-01

    Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial...... myopathies. We investigated regeneration in muscle biopsies from 61 genetically well-defined patients affected by mitochondrial myopathy. Our results show that the perturbed energy metabolism in mitochondrial myopathies causes ongoing muscle regeneration in a majority of patients, and some were even affected...

  2. Aerobic characteristics of red kangaroo skeletal muscles: is a high aerobic capacity matched by muscle mitochondrial and capillary morphology as in placental mammals?

    Science.gov (United States)

    Dawson, Terence J; Mifsud, Brock; Raad, Matthew C; Webster, Koa N

    2004-07-01

    Marsupials and placentals together comprise the Theria, the advanced mammals, but they have had long independent evolutionary histories, with the last common ancestor occurring more than 125 million years ago. Although in the past the marsupials were considered to be metabolically 'primitive', the red kangaroo Macropus rufus has been reported to have an aerobic capacity (VO2max) comparable to that of the most 'athletic' of placentals such as dogs. However, kangaroos travel at moderate speeds with lower relative cost than quadrupedal placentals. Given the long independent evolution of the two therian groups, and their unusual locomotor energetics, do kangaroos achieve their high aerobic capacity using the same structural and functional mechanisms used by (athletic) placentals? Red kangaroo skeletal muscle morphometry matched closely the general aerobic characteristics of placental mammals. The relationship between total mitochondrial volume in skeletal muscle and VO2max during exercise was identical to that in quadrupedal placentals, and differed from that in bipedal humans. As for placentals generally, red kangaroo mitochondrial oxygen consumption at VO2max was 4.7 ml O2 min(-1) ml(-1) of mitochondria. Also, the inner mitochondrial membrane densities were 35.8 +/- 0.7 m2 ml(-1) of mitochondria, which is the same as for placental mammals, and the same pattern of similarity was seen for capillary densities and volumes. The overall data for kangaroos was equivalent to that seen in athletic placentals such as dogs and pronghorns. Total skeletal muscle mass was high, being around 50% of body mass, and was concentrated around the pelvis and lower back. The majority of the muscles sampled had relatively high mitochondrial volume densities, in the range 8.8-10.6% in the major locomotor muscles. Again, capillary densities and capillary blood volumes followed the pattern seen for mitochondria. Our results indicate that the red kangaroo, despite its locomotion and extreme

  3. Mt-rps3 is an ancient gene which provides insight into the evolution of fungal mitochondrial genomes.

    Science.gov (United States)

    Korovesi, Artemis G; Ntertilis, Maria; Kouvelis, Vassili N

    2018-05-12

    The nuclear ribosomal protein S3 (Rps3) is implicated in the assembly of the ribosomal small subunit. Fungi and plants present a gene copy in their mitochondrial (mt) genomes. An analysis of 303 complete fungal mt genomes showed that, when rps3 is found, it is either a free-standing gene or an anchored gene within the omega intron of the rnl gene. Early divergent fungi, Basidiomycota and all yeasts but the CTG group belong to the first case, and Pezizomycotina to the second. Its position, size and genetic code employed are conserved within species of the same Order. Size variability is attributed to different number of repeats. These repeats consist of AT-rich sequences. MtRps3 proteins lack the KH domain, necessary for binding to rRNA, in their N-terminal region. Their C-terminal region is conserved in all Domains of life. Phylogenetic analysis showed that nuclear and mt Rps3 proteins are descendants of archaeal and a-proteobacterial homologues, respectively. Thus, fungal mt-rps3 gene is an ancient gene which evolved within the endosymbiotic model and presents different evolutionary routes: (a) coming from a-proteobacteria, it was relocated to another region of the mt genome, (b) via its insertion to the omega intron, it was transferred to the nucleus and/or got lost, and (c) it was re-routed to the mt genome again. Today, Basidiomycota and Saccharomycetales seem to follow the first evolutionary route and almost all Pezizomycotina support the second scenario with their exceptions being the result of the third scenario, i.e., the gene's re-entry to the mt genome. Copyright © 2018. Published by Elsevier Inc.

  4. Ancient DNA from Nubian and Somali wild ass provides insights into donkey ancestry and domestication.

    Science.gov (United States)

    Kimura, Birgitta; Marshall, Fiona B; Chen, Shanyuan; Rosenbom, Sónia; Moehlman, Patricia D; Tuross, Noreen; Sabin, Richard C; Peters, Joris; Barich, Barbara; Yohannes, Hagos; Kebede, Fanuel; Teclai, Redae; Beja-Pereira, Albano; Mulligan, Connie J

    2011-01-07

    Genetic data from extant donkeys (Equus asinus) have revealed two distinct mitochondrial DNA haplogroups, suggestive of two separate domestication events in northeast Africa about 5000 years ago. Without distinct phylogeographic structure in domestic donkey haplogroups and with little information on the genetic makeup of the ancestral African wild ass, however, it has been difficult to identify wild ancestors and geographical origins for the domestic mitochondrial clades. Our analysis of ancient archaeological and historic museum samples provides the first genetic information on the historic Nubian wild ass (Equus africanus africanus), Somali wild ass (Equus africanus somaliensis) and ancient donkey. The results demonstrate that the Nubian wild ass was an ancestor of the first donkey haplogroup. In contrast, the Somali wild ass has considerable mitochondrial divergence from the Nubian wild ass and domestic donkeys. These findings resolve the long-standing issue of the role of the Nubian wild ass in the domestication of the donkey, but raise new questions regarding the second ancestor for the donkey. Our results illustrate the complexity of animal domestication, and have conservation implications for critically endangered Nubian and Somali wild ass.

  5. Resveratrol induces mitochondrial biogenesis in endothelial cells.

    Science.gov (United States)

    Csiszar, Anna; Labinskyy, Nazar; Pinto, John T; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan

    2009-07-01

    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1alpha, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases.

  6. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    Science.gov (United States)

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  7. Habitual physical activity in mitochondrial disease.

    Directory of Open Access Journals (Sweden)

    Shehnaz Apabhai

    Full Text Available Mitochondrial disease is the most common neuromuscular disease and has a profound impact upon daily life, disease and longevity. Exercise therapy has been shown to improve mitochondrial function in patients with mitochondrial disease. However, no information exists about the level of habitual physical activity of people with mitochondrial disease and its relationship with clinical phenotype.Habitual physical activity, genotype and clinical presentations were assessed in 100 patients with mitochondrial disease. Comparisons were made with a control group individually matched by age, gender and BMI.Patients with mitochondrial disease had significantly lower levels of physical activity in comparison to matched people without mitochondrial disease (steps/day; 6883±3944 vs. 9924±4088, p = 0.001. 78% of the mitochondrial disease cohort did not achieve 10,000 steps per day and 48% were classified as overweight or obese. Mitochondrial disease was associated with less breaks in sedentary activity (Sedentary to Active Transitions, % per day; 13±0.03 vs. 14±0.03, p = 0.001 and an increase in sedentary bout duration (bout lengths/fraction of total sedentary time; 0.206±0.044 vs. 0.187±0.026, p = 0.001. After adjusting for covariates, higher physical activity was moderately associated with lower clinical disease burden (steps/day; r(s = -0.49; 95% CI -0.33, -0.63, P<0.01. There were no systematic differences in physical activity between different genotypes mitochondrial disease.These results demonstrate for the first time that low levels of physical activity are prominent in mitochondrial disease. Combined with a high prevalence of obesity, physical activity may constitute a significant and potentially modifiable risk factor in mitochondrial disease.

  8. Loss of mitochondrial exo/endonuclease EXOG affects mitochondrial respiration and induces ROS mediated cardiomyocyte hypertrophy

    NARCIS (Netherlands)

    Tigchelaar, Wardit; Yu, Hongjuan; De Jong, Anne Margreet; van Gilst, Wiek H; van der Harst, Pim; Westenbrink, B Daan; de Boer, Rudolf A; Sillje, Herman H W

    2015-01-01

    Recently, a genetic variant in the mitochondrial exo/endo nuclease EXOG, which has been implicated in mitochondrial DNA repair, was associated with cardiac function. The function of EXOG in cardiomyocytes is still elusive. Here we investigated the role of EXOG in mitochondrial function and

  9. Autism in the Son of a Woman with Mitochondrial Myopathy and Dysautonomia: A Case Report.

    Science.gov (United States)

    Brown, Bradley D; Rais, Theodore

    2015-01-01

    The relationship between autism spectrum disorders and mitochondrial dysfunction, including mitochondrial myopathies and other mitochondrial diseases, is an area of ongoing research. All autism spectrum disorders are known to be heritable, via genetic and/or epigenetic mechanisms, but specific modes of inheritance are not well characterized. Nevertheless, autism spectrum disorders have been linked to many specific genes associated with mitochondrial function, especially to genes involved in mitochondrial tRNA and the electron transport chain, both particularly vulnerable to point mutations, and clinical research also supports a relationship between the two pathologies. Although only a small minority of patients with autism have a mitochondrial disease, many patients with mitochondrial myopathies have autism spectrum disorder symptoms, and these symptoms may be the presenting symptoms, which presents a diagnostic challenge for clinicians. The authors report the case of a 15-year-old boy with a history of autism spectrum disorder and neurocardiogenic syncope, admitted to the inpatient unit for self-injury, whose young mother, age 35, was discovered to suffer from mitochondrial myopathy, dysautonomia, neurocardiogenic syncope, Ehler-Danlos syndrome, and other uncommon multisystem pathologies likely related to mitochondrial dysfunction. This case illustrates the need for a high index of suspicion for mitochondrial disease in patients with autism, as they have two orders of magnitude greater risk for such diseases than the general population. The literature shows that mitochondrial disease is underdiagnosed in autism spectrum disorder patients and should not be viewed as a "zebra" (i.e., an obscure diagnosis that is made when a more common explanation is more likely).

  10. The mitochondrial ND1 m.3337G>A mutation associated to multiple mitochondrial DNA deletions in a patient with Wolfram syndrome and cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Mezghani, Najla [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Mnif, Mouna [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Mkaouar-Rebai, Emna, E-mail: emna_mkaouar@mail2world.com [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Kallel, Nozha [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Salem, Ikhlass Haj [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Charfi, Nadia; Abid, Mohamed [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Fakhfakh, Faiza [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)

    2011-07-29

    Highlights: {yields} We reported a patient with Wolfram syndrome and dilated cardiomyopathy. {yields} We detected the ND1 mitochondrial m.3337G>A mutation in 3 tested tissues (blood leukocytes, buccal mucosa and skeletal muscle). {yields} Long-range PCR amplification revealed the presence of multiple mitochondrial deletions in the skeletal muscle. {yields} The deletions remove several tRNA and protein-coding genes. -- Abstract: Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient's skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions.

  11. The mitochondrial ND1 m.3337G>A mutation associated to multiple mitochondrial DNA deletions in a patient with Wolfram syndrome and cardiomyopathy

    International Nuclear Information System (INIS)

    Mezghani, Najla; Mnif, Mouna; Mkaouar-Rebai, Emna; Kallel, Nozha; Salem, Ikhlass Haj; Charfi, Nadia; Abid, Mohamed; Fakhfakh, Faiza

    2011-01-01

    Highlights: → We reported a patient with Wolfram syndrome and dilated cardiomyopathy. → We detected the ND1 mitochondrial m.3337G>A mutation in 3 tested tissues (blood leukocytes, buccal mucosa and skeletal muscle). → Long-range PCR amplification revealed the presence of multiple mitochondrial deletions in the skeletal muscle. → The deletions remove several tRNA and protein-coding genes. -- Abstract: Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient's skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions.

  12. Formation and Regulation of Mitochondrial Membranes

    Directory of Open Access Journals (Sweden)

    Laila Cigana Schenkel

    2014-01-01

    Full Text Available Mitochondrial membrane phospholipids are essential for the mitochondrial architecture, the activity of respiratory proteins, and the transport of proteins into the mitochondria. The accumulation of phospholipids within mitochondria depends on a coordinate synthesis, degradation, and trafficking of phospholipids between the endoplasmic reticulum (ER and mitochondria as well as intramitochondrial lipid trafficking. Several studies highlight the contribution of dietary fatty acids to the remodeling of phospholipids and mitochondrial membrane homeostasis. Understanding the role of phospholipids in the mitochondrial membrane and their metabolism will shed light on the molecular mechanisms involved in the regulation of mitochondrial function and in the mitochondrial-related diseases.

  13. Aberrant Time to Most Recent Common Ancestor as a Signature of Natural Selection.

    Science.gov (United States)

    Hunter-Zinck, Haley; Clark, Andrew G

    2015-10-01

    Natural selection inference methods often target one mode of selection of a particular age and strength. However, detecting multiple modes simultaneously, or with atypical representations, would be advantageous for understanding a population's evolutionary history. We have developed an anomaly detection algorithm using distributions of pairwise time to most recent common ancestor (TMRCA) to simultaneously detect multiple modes of natural selection in whole-genome sequences. As natural selection distorts local genealogies in distinct ways, the method uses pairwise TMRCA distributions, which approximate genealogies at a nonrecombining locus, to detect distortions without targeting a specific mode of selection. We evaluate the performance of our method, TSel, for both positive and balancing selection over different time-scales and selection strengths and compare TSel's performance with that of other methods. We then apply TSel to the Complete Genomics diversity panel, a set of human whole-genome sequences, and recover loci previously inferred to be under positive or balancing selection. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Mitochondrial deficiency: a double-edged sword for ageing and neurodegeneration

    Directory of Open Access Journals (Sweden)

    Daniele eBano

    2012-11-01

    Full Text Available For decades, ageing was considered the inevitable result of the accumulation of damaged macromolecules due to environmental factors and intrinsic processes. Our current knowledge clearly supports that ageing is a complex biological process influenced by multiple evolutionary conserved molecular pathways. With the advanced age, loss of cellular homeostasis severely affects the structure and function of various tissues, especially those highly sensitive to stressful conditions like the central nervous system. In this regard, the age-related regression of neural circuits and the consequent poor neuronal plasticity have been associated with metabolic dysfunctions, in which the decline of mitochondrial activity significantly contributes. Interestingly, while mitochondrial lesions promote the onset of degenerative disorders, mild mitochondrial manipulations delay some of the age-related phenotypes and, more importantly, increase the lifespan of organisms ranging from invertebrates to mammals. Here, we survey the insulin/IGF-1 and the TOR signaling pathways and review how these two important longevity determinants regulate mitochondrial activity. Furthermore, we discuss the contribution of slight mitochondrial dysfunction in the engagement of pro-longevity processes and the opposite role of strong mitochondrial dysfunction in neurodegeneration.

  15. A crosstalk between Na⁺ channels, Na⁺/K⁺ pump and mitochondrial Na⁺ transporters controls glucose-dependent cytosolic and mitochondrial Na⁺ signals.

    Science.gov (United States)

    Nita, Iulia I; Hershfinkel, Michal; Lewis, Eli C; Sekler, Israel

    2015-02-01

    Glucose-dependent cytosolic Na(+) influx in pancreatic islet β cells is mediated by TTX-sensitive Na(+) channels and is propagated into the mitochondria through the mitochondrial Na(+)/Ca(2+) exchanger, NCLX. Mitochondrial Na(+) transients are also controlled by the mitochondrial Na(+)/H(+) exchanger, NHE, while cytosolic Na(+) changes are governed by Na(+)/K(+) ATPase pump. The functional interaction between the Na(+) channels, Na(+)/K(+) ATPase pump and mitochondrial Na(+) transporters, NCLX and NHE, in mediating Na(+) signaling is poorly understood. Here, we combine fluorescent Na(+) imaging, pharmacological inhibition by TTX, ouabain and EIPA, with molecular control of NCLX expression, so as to investigate the crosstalk between Na(+) transporters on both the plasma membrane and the mitochondria. According to our results, glucose-dependent cytosolic Na(+) response was enhanced by ouabain and was followed by a rise in mitochondrial Na(+) signal. Silencing of NCLX expression using siNCLX, did not affect the glucose- or ouabain-dependent cytosolic rise in Na(+). In contrast, the ouabain-dependent rise in mitochondrial Na(+) was strongly suppressed by siNCLX. Furthermore, mitochondrial Na(+) influx rates were accelerated in cells treated with the Na(+)/H(+) exchanger inhibitor, EIPA or by combination of EIPA and ouabain. Similarly, TTX blocked the cytosolic and mitochondrial Na(+) responses, which were enhanced by ouabain or EIPA, respectively. Our results suggest that Na(+)/K(+) ATPase pump controls cytosolic glucose-dependent Na(+) rise, in a manner that is mediated by TTX-sensitive Na(+) channels and subsequent mitochondrial Na(+) uptake via NCLX. Furthermore, these results indicate that mitochondrial Na(+) influx via NCLX is antagonized by Na(+) efflux, which is mediated by the mitochondrial NHE; thus, the duration of mitochondrial Na(+) transients is set by the interplay between these pivotal transporters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Mitochondrial Energy and Redox Signaling in Plants

    Science.gov (United States)

    Schwarzländer, Markus

    2013-01-01

    Abstract Significance: For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. Recent Advances: Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. Critical Issues: Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. Future Directions: Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling. Antioxid. Redox Signal. 18, 2122–2144. PMID:23234467

  17. A role of taurine in mitochondrial function

    DEFF Research Database (Denmark)

    Hansen, Svend Høime; Andersen, Mogens Larsen; Cornett, Claus

    2010-01-01

    The mitochondrial pH gradient across the inner-membrane is stabilised by buffering of the matrix. A low-molecular mass buffer compound has to be localised in the matrix to maintain its alkaline pH value. Taurine is found ubiquitously in animal cells with concentrations in the millimolar range...... enzymes, which are pivotal for beta-oxidation of fatty acids, are demonstrated to have optimal activity in a taurine buffer. By application of the model presented, taurine depletion caused by hyperglycemia could provide a link between mitochondrial dysfunction and diabetes....

  18. Mitochondrial Dynamics in Diabetic Cardiomyopathy

    Science.gov (United States)

    Galloway, Chad A.

    2015-01-01

    Abstract Significance: Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca2+ handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. Recent Advances: Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. Critical Issues: Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. Future Directions: Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction. Antioxid. Redox Signal. 22, 1545–1562. PMID

  19. Mitochondrial PKA mediates sperm motility.

    Science.gov (United States)

    Mizrahi, Rashel; Breitbart, Haim

    2014-12-01

    Mitochondria are the major source of ATP to power sperm motility. Phosphorylation of mitochondrial proteins has been proposed as a major regulatory mechanism for mitochondrial bioenergetics. Sperm motility was measured by a computer-assisted analyzer, protein detection by western blotting, membrane potential by tetramethylrhodamine, cellular ATP by luciferase assay and localization of PKA by immuno-electron microscopy. Bicarbonate is essential for the creation of mitochondrial electro-chemical gradient, ATP synthesis and sperm motility. Bicarbonate stimulates PKA-dependent phosphorylation of two 60kDa proteins identified as Tektin and glucose-6-phosphate isomerase. This phosphorylation was inhibited by respiration inhibition and phosphorylation could be restored by glucose in the presence of bicarbonate. However, this effect of glucose cannot be seen when the mitochondrial ATP/ADP exchanger was inhibited indicating that glycolytic-produced ATP is transported into the mitochondria and allows PKA-dependent protein phosphorylation inside the mitochondria. Bicarbonate activates mitochondrial soluble adenylyl cyclase (sAC) which catalyzes cAMP production leading to the activation of mitochondrial PKA. Glucose can overcome the lack of ATP in the absence of bicarbonate but it cannot affect the mitochondrial sAC/PKA system, therefore the PKA-dependent phosphorylation of the 60kDa proteins does not occur in the absence of bicarbonate. Production of CO2 in Krebs cycle, which is converted to bicarbonate is essential for sAC/PKA activation leading to mitochondrial membrane potential creation and ATP synthesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. SET overexpression in HEK293 cells regulates mitochondrial uncoupling proteins levels within a mitochondrial fission/reduced autophagic flux scenario

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Luciana O.; Goto, Renata N. [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Neto, Marinaldo P.C. [Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Sousa, Lucas O. [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Curti, Carlos [Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Leopoldino, Andréia M., E-mail: andreiaml@usp.br [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil)

    2015-03-06

    We hypothesized that SET, a protein accumulated in some cancer types and Alzheimer disease, is involved in cell death through mitochondrial mechanisms. We addressed the mRNA and protein levels of the mitochondrial uncoupling proteins UCP1, UCP2 and UCP3 (S and L isoforms) by quantitative real-time PCR and immunofluorescence as well as other mitochondrial involvements, in HEK293 cells overexpressing the SET protein (HEK293/SET), either in the presence or absence of oxidative stress induced by the pro-oxidant t-butyl hydroperoxide (t-BHP). SET overexpression in HEK293 cells decreased UCP1 and increased UCP2 and UCP3 (S/L) mRNA and protein levels, whilst also preventing lipid peroxidation and decreasing the content of cellular ATP. SET overexpression also (i) decreased the area of mitochondria and increased the number of organelles and lysosomes, (ii) increased mitochondrial fission, as demonstrated by increased FIS1 mRNA and FIS-1 protein levels, an apparent accumulation of DRP-1 protein, and an increase in the VDAC protein level, and (iii) reduced autophagic flux, as demonstrated by a decrease in LC3B lipidation (LC3B-II) in the presence of chloroquine. Therefore, SET overexpression in HEK293 cells promotes mitochondrial fission and reduces autophagic flux in apparent association with up-regulation of UCP2 and UCP3; this implies a potential involvement in cellular processes that are deregulated such as in Alzheimer's disease and cancer. - Highlights: • SET, UCPs and autophagy prevention are correlated. • SET action has mitochondrial involvement. • UCP2/3 may reduce ROS and prevent autophagy. • SET protects cell from ROS via UCP2/3.

  1. Retrospective assessment of the most common mitochondrial DNA mutations in a large Hungarian cohort of suspect mitochondrial cases.

    Science.gov (United States)

    Remenyi, Viktoria; Inczedy-Farkas, Gabriella; Komlosi, Katalin; Horvath, Rita; Maasz, Anita; Janicsek, Ingrid; Pentelenyi, Klara; Gal, Aniko; Karcagi, Veronika; Melegh, Bela; Molnar, Maria Judit

    2015-08-01

    Prevalence estimations for mitochondrial disorders still vary widely and only few epidemiologic studies have been carried out so far. With the present work we aim to give a comprehensive overview about frequencies of the most common mitochondrial mutations in Hungarian patients. A total of 1328 patients were tested between 1999 and 2012. Among them, 882 were screened for the m.3243A > G, m.8344A > G, m.8993T > C/G mutations and deletions, 446 for LHON primary mutations. The mutation frequency in our cohort was 2.61% for the m.3243A > G, 1.47% for the m.8344A > G, 17.94% for Leber's Hereditary Optic Neuropathy (m.3460G > A, m.11778G > A, m.14484T > C) and 0.45% for the m.8993T > C/G substitutions. Single mtDNA deletions were detected in 14.97%, while multiple deletions in 6.01% of the cases. The mutation frequency in Hungarian patients suggestive of mitochondrial disease was similar to other Caucasian populations. Further retrospective studies of different populations are needed in order to accurately assess the importance of mitochondrial diseases and manage these patients.

  2. Signatures of Climatic Change In Human Mitochondrial Dna From Europe

    Science.gov (United States)

    Richards, M. B.; Macaulay, V. A.; Torroni, A.; Bandelt, H.-J.

    Founder analysis is an approach to analysing non-recombining DNA sequence data, such as variation in the mitochondrial DNA (mtDNA), which aims at identifying and dating migrations into new territory. We applied the approach to about 4,000 human mtDNA sequences from Europe and the Near East, in order to estimate the proportion of modern lineages whose ancestors arrived at various times during the continent's past. We found that the major signal dates to about 15,000 years ago, at the time of rewarming following the Last Glacial Maximum (LGM). There is little or no archaeological evidence for immigration into Europe at this time, and the record indicates that at least parts of southern Europe remained populated during the LGM. Therefore, we interpret this signal as the trace of a bottleneck at the time of the LGM, as a result of the retreat from northern Europe during the peak of the glaciation, followed by a re-expansion from one or more refugial zones. Immigration episodes then figure at the beginning of the Early Upper Palaeolithic, during the Middle Upper Palaeolithic, and with the Neolithic. The impact of the latter on the composition of the European mtDNA pool was evidently rather minor. This result implies that climate is likely to have been a major force shaping human demographic history in Europe.

  3. Lowered iPLA2γ activity causes increased mitochondrial lipid peroxidation and mitochondrial dysfunction in a rotenone-induced model of Parkinson's disease.

    Science.gov (United States)

    Chao, Honglu; Liu, Yinlong; Fu, Xian; Xu, Xiupeng; Bao, Zhongyuan; Lin, Chao; Li, Zheng; Liu, Yan; Wang, Xiaoming; You, Yongping; Liu, Ning; Ji, Jing

    2018-02-01

    iPLA 2 γ, calcium-independent phospholipase A 2 γ, discerningly hydrolyses glycerophospholipids to liberate free fatty acids. iPLA 2 γ-deficiency has been associated with abnormal mitochondrial function. More importantly, the iPLA 2 family is causative proteins in mitochondrial neurodegenerative disorders such as parkinsonian disorders. However, the mechanisms by which iPLA 2 γ affects Parkinson's disease (PD) remain unknown. Mitochondrion stress has a key part in rotenone-induced dopaminergic neuronal degeneration. The present evaluation revealed that lowered iPLA 2 γ function provokes the parkinsonian phenotype and leads to the reduction of dopamine and its metabolites, lowered survival, locomotor deficiencies, and organismal hypersensitivity to rotenone-induced oxidative stress. In addition, lowered iPLA 2 γ function escalated the amount of mitochondrial irregularities, including mitochondrial reactive oxygen species (ROS) regeneration, reduced ATP synthesis, reduced glutathione levels, and abnormal mitochondrial morphology. Further, lowered iPLA 2 γ function was tightly linked with strengthened lipid peroxidation and mitochondrial membrane flaws following rotenone treatment, which can cause cytochrome c release and eventually apoptosis. These results confirmed the important role of iPLA 2 γ, whereby decreasing iPLA 2 γ activity aggravates mitochondrial degeneration to induce neurodegenerative disorders in a rotenone rat model of Parkinson's disease. These findings may be useful in the design of rational approaches for the prevention and treatment of PD-associated symptoms. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance : Transgenic TK2, mtDNA, and Antiretrovirals

    OpenAIRE

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK...

  5. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Science.gov (United States)

    2010-01-01

    Background Horizontal gene transfer (HGT) is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR) survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR) were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT)-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native mitochondrial copies suggests

  6. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Directory of Open Access Journals (Sweden)

    Hao Weilong

    2010-12-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native

  7. Multifunctional Mitochondrial AAA Proteases.

    Science.gov (United States)

    Glynn, Steven E

    2017-01-01

    Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle.

  8. Mitochondrial quality control in cardiac diseases.

    Directory of Open Access Journals (Sweden)

    Juliane Campos

    2016-10-01

    Full Text Available Disruption of mitochondrial homeostasis is a hallmark of cardiac diseases. Therefore, maintenance of mitochondrial integrity through different surveillance mechanisms is critical for cardiomyocyte survival. In this review, we discuss the most recent findings on the central role of mitochondrial quality control processes including regulation of mitochondrial redox balance, aldehyde metabolism, proteostasis, dynamics and clearance in cardiac diseases, highlighting their potential as therapeutic targets.

  9. DNA Sequences Proximal to Human Mitochondrial DNA Deletion Breakpoints Prevalent in Human Disease Form G-quadruplexes, a Class of DNA Structures Inefficiently Unwound by the Mitochondrial Replicative Twinkle Helicase*

    Science.gov (United States)

    Bharti, Sanjay Kumar; Sommers, Joshua A.; Zhou, Jun; Kaplan, Daniel L.; Spelbrink, Johannes N.; Mergny, Jean-Louis; Brosh, Robert M.

    2014-01-01

    Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the “Pattern Finder” G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase. PMID:25193669

  10. Targeted transgenic overexpression of mitochondrial thymidine kinase (TK2) alters mitochondrial DNA (mtDNA) and mitochondrial polypeptide abundance: transgenic TK2, mtDNA, and antiretrovirals.

    Science.gov (United States)

    Hosseini, Seyed H; Kohler, James J; Haase, Chad P; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-03-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-gamma. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity.

  11. LRPPRC is a mitochondrial matrix protein that is conserved in metazoans

    International Nuclear Information System (INIS)

    Sterky, Fredrik H.; Ruzzenente, Benedetta; Gustafsson, Claes M.; Samuelsson, Tore; Larsson, Nils-Goeran

    2010-01-01

    Research highlights: → LRPPRC orthologs are restricted to metazoans. → LRPPRC is imported to the mitochondrial matrix. → No evidence of nuclear isoform. -- Abstract: LRPPRC (also called LRP130) is an RNA-binding pentatricopeptide repeat protein. LRPPRC has been recognized as a mitochondrial protein, but has also been shown to regulate nuclear gene transcription and to bind specific RNA molecules in both the nucleus and the cytoplasm. We here present a bioinformatic analysis of the LRPPRC primary sequence, which reveals that orthologs to the LRPPRC gene are restricted to metazoan cells and that all of the corresponding proteins contain mitochondrial targeting signals. To address the subcellular localization further, we have carefully analyzed LRPPRC in mammalian cells and identified a single isoform that is exclusively localized to mitochondria. The LRPPRC protein is imported to the mitochondrial matrix and its mitochondrial targeting sequence is cleaved upon entry.

  12. Mitochondrial Metabolism in Aging Heart

    Science.gov (United States)

    Lesnefsky, Edward J.; Chen, Qun; Hoppel, Charles L.

    2016-01-01

    Altered mitochondrial metabolism is the underlying basis for the increased sensitivity in the aged heart to stress. The aged heart exhibits impaired metabolic flexibility, with a decreased capacity to oxidize fatty acids and enhanced dependence on glucose metabolism. Aging impairs mitochondrial oxidative phosphorylation, with a greater role played by the mitochondria located between the myofibrils, the interfibrillar mitochondria. With aging, there is a decrease in activity of complexes III and IV, which account for the decrease in respiration. Furthermore, aging decreases mitochondrial content among the myofibrils. The end result is that in the interfibrillar area there is an approximate 50% decrease in mitochondrial function, affecting all substrates. The defective mitochondria persist in the aged heart, leading to enhanced oxidant production and oxidative injury and the activation of oxidant signaling for cell death. Aging defects in mitochondria represent new therapeutic targets, whether by manipulation of the mitochondrial proteome, modulation of electron transport, activation of biogenesis or mitophagy, or the regulation of mitochondrial fission and fusion. These mechanisms provide new ways to attenuate cardiac disease in elders by preemptive treatment of age-related defects, in contrast to the treatment of disease-induced dysfunction. PMID:27174952

  13. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake

    NARCIS (Netherlands)

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    Mitochondrial calcium ([Ca(2+)]m) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner

  14. Caenorhabditis elegans as a Model System for Studying Drug Induced Mitochondrial Toxicity.

    Directory of Open Access Journals (Sweden)

    Richard de Boer

    Full Text Available Today HIV-1 infection is recognized as a chronic disease with obligatory lifelong treatment to keep viral titers below detectable levels. The continuous intake of antiretroviral drugs however, leads to severe and even life-threatening side effects, supposedly by the deleterious impact of nucleoside-analogue type compounds on the functioning of the mitochondrial DNA polymerase. For detailed investigation of the yet partially understood underlying mechanisms, the availability of a versatile model system is crucial. We therefore set out to develop the use of Caenorhabditis elegans to study drug induced mitochondrial toxicity. Using a combination of molecular-biological and functional assays, combined with a quantitative analysis of mitochondrial network morphology, we conclude that anti-retroviral drugs with similar working mechanisms can be classified into distinct groups based on their effects on mitochondrial morphology and biochemistry. Additionally we show that mitochondrial toxicity of antiretroviral drugs cannot be exclusively attributed to interference with the mitochondrial DNA polymerase.

  15. Brain aging and neurodegeneration: from a mitochondrial point of view.

    Science.gov (United States)

    Grimm, Amandine; Eckert, Anne

    2017-11-01

    Aging is defined as a progressive time-related accumulation of changes responsible for or at least involved in the increased susceptibility to disease and death. The brain seems to be particularly sensitive to the aging process since the appearance of neurodegenerative diseases, including Alzheimer's disease, is exponential with the increasing age. Mitochondria were placed at the center of the 'free-radical theory of aging', because these paramount organelles are not only the main producers of energy in the cells, but also to main source of reactive oxygen species. Thus, in this review, we aim to look at brain aging processes from a mitochondrial point of view by asking: (i) What happens to brain mitochondrial bioenergetics and dynamics during aging? (ii) Why is the brain so sensitive to the age-related mitochondrial impairments? (iii) Is there a sex difference in the age-induced mitochondrial dysfunction? Understanding mitochondrial physiology in the context of brain aging may help identify therapeutic targets against neurodegeneration. This article is part of a series "Beyond Amyloid". © 2017 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  16. Mitochondrial nucleoid clusters protect newly synthesized mtDNA during Doxorubicin- and Ethidium Bromide-induced mitochondrial stress

    Energy Technology Data Exchange (ETDEWEB)

    Alán, Lukáš, E-mail: lukas.alan@fgu.cas.cz; Špaček, Tomáš; Pajuelo Reguera, David; Jabůrek, Martin; Ježek, Petr

    2016-07-01

    Mitochondrial DNA (mtDNA) is compacted in ribonucleoprotein complexes called nucleoids, which can divide or move within the mitochondrial network. Mitochondrial nucleoids are able to aggregate into clusters upon reaction with intercalators such as the mtDNA depletion agent Ethidium Bromide (EB) or anticancer drug Doxorobicin (DXR). However, the exact mechanism of nucleoid clusters formation remains unknown. Resolving these processes may help to elucidate the mechanisms of DXR-induced cardiotoxicity. Therefore, we addressed the role of two key nucleoid proteins; mitochondrial transcription factor A (TFAM) and mitochondrial single-stranded binding protein (mtSSB); in the formation of mitochondrial nucleoid clusters during the action of intercalators. We found that both intercalators cause numerous aberrations due to perturbing their native status. By blocking mtDNA replication, both agents also prevented mtDNA association with TFAM, consequently causing nucleoid aggregation into large nucleoid clusters enriched with TFAM, co-existing with the normal nucleoid population. In the later stages of intercalation (> 48 h), TFAM levels were reduced to 25%. In contrast, mtSSB was released from mtDNA and freely distributed within the mitochondrial network. Nucleoid clusters mostly contained nucleoids with newly replicated mtDNA, however the nucleoid population which was not in replication mode remained outside the clusters. Moreover, the nucleoid clusters were enriched with p53, an anti-oncogenic gatekeeper. We suggest that mitochondrial nucleoid clustering is a mechanism for protecting nucleoids with newly replicated DNA against intercalators mediating genotoxic stress. These results provide new insight into the common mitochondrial response to mtDNA stress and can be implied also on DXR-induced mitochondrial cytotoxicity. - Highlights: • The mechanism for mitochondrial nucleoid clustering is proposed. • DNA intercalators (Doxorubicin or Ethidium Bromide) prevent TFAM

  17. Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway.

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2010-01-01

    Full Text Available Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH.ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p. for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways were examined.Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O(2 (*-. Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-alpha, Fas receptor, Fas L and cytosolic AIF.Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.

  18. Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway.

    Science.gov (United States)

    Guo, Rui; Ren, Jun

    2010-01-18

    Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH). ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways) were examined. Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O(2) (*-). Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-alpha, Fas receptor, Fas L and cytosolic AIF. Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.

  19. Mitochondrial Dysfunction in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    P. C. Keane

    2011-01-01

    Full Text Available Parkinson's disease (PD is a progressive, neurodegenerative condition that has increasingly been linked with mitochondrial dysfunction and inhibition of the electron transport chain. This inhibition leads to the generation of reactive oxygen species and depletion of cellular energy levels, which can consequently cause cellular damage and death mediated by oxidative stress and excitotoxicity. A number of genes that have been shown to have links with inherited forms of PD encode mitochondrial proteins or proteins implicated in mitochondrial dysfunction, supporting the central involvement of mitochondria in PD. This involvement is corroborated by reports that environmental toxins that inhibit the mitochondrial respiratory chain have been shown to be associated with PD. This paper aims to illustrate the considerable body of evidence linking mitochondrial dysfunction with neuronal cell death in the substantia nigra pars compacta (SNpc of PD patients and to highlight the important need for further research in this area.

  20. Endocrine disorders in mitochondrial disease.

    Science.gov (United States)

    Schaefer, Andrew M; Walker, Mark; Turnbull, Douglass M; Taylor, Robert W

    2013-10-15

    Endocrine dysfunction in mitochondrial disease is commonplace, but predominantly restricted to disease of the endocrine pancreas resulting in diabetes mellitus. Other endocrine manifestations occur, but are relatively rare by comparison. In mitochondrial disease, neuromuscular symptoms often dominate the clinical phenotype, but it is of paramount importance to appreciate the multi-system nature of the disease, of which endocrine dysfunction may be a part. The numerous phenotypes attributable to pathogenic mutations in both the mitochondrial (mtDNA) and nuclear DNA creates a complex and heterogeneous catalogue of disease which can be difficult to navigate for novices and experts alike. In this article we provide an overview of the endocrine disorders associated with mitochondrial disease, the way in which the underlying mitochondrial disorder influences the clinical presentation, and how these factors influence subsequent management. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  1. Mitochondrial Fusion Proteins and Human Diseases

    Directory of Open Access Journals (Sweden)

    Michela Ranieri

    2013-01-01

    Full Text Available Mitochondria are highly dynamic, complex organelles that continuously alter their shape, ranging between two opposite processes, fission and fusion, in response to several stimuli and the metabolic demands of the cell. Alterations in mitochondrial dynamics due to mutations in proteins involved in the fusion-fission machinery represent an important pathogenic mechanism of human diseases. The most relevant proteins involved in the mitochondrial fusion process are three GTPase dynamin-like proteins: mitofusin 1 (MFN1 and 2 (MFN2, located in the outer mitochondrial membrane, and optic atrophy protein 1 (OPA1, in the inner membrane. An expanding number of degenerative disorders are associated with mutations in the genes encoding MFN2 and OPA1, including Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy. While these disorders can still be considered rare, defective mitochondrial dynamics seem to play a significant role in the molecular and cellular pathogenesis of more common neurodegenerative diseases, for example, Alzheimer’s and Parkinson’s diseases. This review provides an overview of the basic molecular mechanisms involved in mitochondrial fusion and focuses on the alteration in mitochondrial DNA amount resulting from impairment of mitochondrial dynamics. We also review the literature describing the main disorders associated with the disruption of mitochondrial fusion.

  2. WBSCR16 Is a Guanine Nucleotide Exchange Factor Important for Mitochondrial Fusion

    Directory of Open Access Journals (Sweden)

    Guorui Huang

    2017-07-01

    Full Text Available Regulated inter-mitochondrial fusion/fission is essential for maintaining optimal mitochondrial respiration and control of apoptosis and autophagy. In mammals, mitochondrial fusion is controlled by outer membrane GTPases MFN1 and MFN2 and by inner membrane (IM GTPase OPA1. Disordered mitochondrial fusion/fission contributes to various pathologies, and MFN2 or OPA1 mutations underlie neurodegenerative diseases. Here, we show that the WBSCR16 protein is primarily associated with the outer face of the inner mitochondrial membrane and is important for mitochondrial fusion. We provide evidence of a WBSCR16/OPA1 physical interaction in the intact cell and of a WBSCR16 function as an OPA1-specific guanine nucleotide exchange factor (GEF. Homozygosity for a Wbscr16 mutation causes early embryonic lethality, whereas neurons of mice heterozygous for the mutation have mitochondria with reduced membrane potential and increased susceptibility to fragmentation upon exposure to stress, suggesting roles for WBSCR16 deficits in neuronal pathologies.

  3. Mitochondrial dysfunction and organophosphorus compounds

    Energy Technology Data Exchange (ETDEWEB)

    Karami-Mohajeri, Somayyeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP.

  4. Mitochondrial dysfunction and organophosphorus compounds

    International Nuclear Information System (INIS)

    Karami-Mohajeri, Somayyeh; Abdollahi, Mohammad

    2013-01-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP

  5. Melatonin and human mitochondrial diseases

    Directory of Open Access Journals (Sweden)

    Reza Sharafati-Chaleshtori

    2017-01-01

    Full Text Available Mitochondrial dysfunction is one of the main causative factors in a wide variety of complications such as neurodegenerative disorders, ischemia/reperfusion, aging process, and septic shock. Decrease in respiratory complex activity, increase in free radical production, increase in mitochondrial synthase activity, increase in nitric oxide production, and impair in electron transport system and/or mitochondrial permeability are considered as the main factors responsible for mitochondrial dysfunction. Melatonin, the pineal gland hormone, is selectively taken up by mitochondria and acts as a powerful antioxidant, regulating the mitochondrial bioenergetic function. Melatonin increases the permeability of membranes and is the stimulator of antioxidant enzymes including superoxide dismutase, glutathione peroxidase, glutathione reductase, and catalase. It also acts as an inhibitor of lipoxygenase. Melatonin can cause resistance to oxidation damage by fixing the microsomal membranes. Melatonin has been shown to retard aging and inhibit neurodegenerative disorders, ischemia/reperfusion, septic shock, diabetes, cancer, and other complications related to oxidative stress. The purpose of the current study, other than introducing melatonin, was to present the recent findings on clinical effects in diseases related to mitochondrial dysfunction including diabetes, cancer, gastrointestinal diseases, and diseases related to brain function.

  6. Models of gene gain and gene loss for probabilistic reconstruction of gene content in the last universal common ancestor of life.

    Science.gov (United States)

    Kannan, Lavanya; Li, Hua; Rubinstein, Boris; Mushegian, Arcady

    2013-12-19

    The problem of probabilistic inference of gene content in the last common ancestor of several extant species with completely sequenced genomes is: for each gene that is conserved in all or some of the genomes, assign the probability that its ancestral gene was present in the genome of their last common ancestor. We have developed a family of models of gene gain and gene loss in evolution, and applied the maximum-likelihood approach that uses phylogenetic tree of prokaryotes and the record of orthologous relationships between their genes to infer the gene content of LUCA, the Last Universal Common Ancestor of all currently living cellular organisms. The crucial parameter, the ratio of gene losses and gene gains, was estimated from the data and was higher in models that take account of the number of in-paralogs in genomes than in models that treat gene presences and absences as a binary trait. While the numbers of genes that are placed confidently into LUCA are similar in the ML methods and in previously published methods that use various parsimony-based approaches, the identities of genes themselves are different. Most of the models of either kind treat the genes found in many existing genomes in a similar way, assigning to them high probabilities of being ancestral ("high ancestrality"). The ML models are more likely than others to assign high ancestrality to the genes that are relatively rare in the present-day genomes.

  7. Distribution of mitochondrial nucleoids upon mitochondrial network fragmentation and network reintegration in HEPG2 cells

    Czech Academy of Sciences Publication Activity Database

    Tauber, Jan; Dlasková, Andrea; Šantorová, Jitka; Smolková, Katarína; Alán, Lukáš; Špaček, Tomáš; Plecitá-Hlavatá, Lydie; Ježek, Petr

    2013-01-01

    Roč. 45, č. 3 (2013), s. 593-603 ISSN 1357-2725 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA ČR(CZ) GPP304/10/P204; GA ČR(CZ) GAP305/12/1247 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : mitochondrial DNA nucleoids * mitochondrial fission * mitochondrial network fragmentation * mitochondrial network reintegration Subject RIV: ED - Physiology Impact factor: 4.240, year: 2013

  8. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications

    Directory of Open Access Journals (Sweden)

    Susana Rovira-Llopis

    2017-04-01

    Full Text Available Mitochondria play a key role in maintaining cellular metabolic homeostasis. These organelles have a high plasticity and are involved in dynamic processes such as mitochondrial fusion and fission, mitophagy and mitochondrial biogenesis. Type 2 diabetes is characterised by mitochondrial dysfunction, high production of reactive oxygen species (ROS and low levels of ATP. Mitochondrial fusion is modulated by different proteins, including mitofusin-1 (MFN1, mitofusin-2 (MFN2 and optic atrophy (OPA-1, while fission is controlled by mitochondrial fission 1 (FIS1, dynamin-related protein 1 (DRP1 and mitochondrial fission factor (MFF. PARKIN and (PTEN-induced putative kinase 1 (PINK1 participate in the process of mitophagy, for which mitochondrial fission is necessary. In this review, we discuss the molecular pathways of mitochondrial dynamics, their impairment under type 2 diabetes, and pharmaceutical approaches for targeting mitochondrial dynamics, such as mitochondrial division inhibitor-1 (mdivi-1, dynasore, P110 and 15-oxospiramilactone. Furthermore, we discuss the pathophysiological implications of impaired mitochondrial dynamics, especially in type 2 diabetes.

  9. Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies

    Directory of Open Access Journals (Sweden)

    Jean-Paul Lasserre

    2015-06-01

    Full Text Available Mitochondrial diseases are severe and largely untreatable. Owing to the many essential processes carried out by mitochondria and the complex cellular systems that support these processes, these diseases are diverse, pleiotropic, and challenging to study. Much of our current understanding of mitochondrial function and dysfunction comes from studies in the baker's yeast Saccharomyces cerevisiae. Because of its good fermenting capacity, S. cerevisiae can survive mutations that inactivate oxidative phosphorylation, has the ability to tolerate the complete loss of mitochondrial DNA (a property referred to as ‘petite-positivity’, and is amenable to mitochondrial and nuclear genome manipulation. These attributes make it an excellent model system for studying and resolving the molecular basis of numerous mitochondrial diseases. Here, we review the invaluable insights this model organism has yielded about diseases caused by mitochondrial dysfunction, which ranges from primary defects in oxidative phosphorylation to metabolic disorders, as well as dysfunctions in maintaining the genome or in the dynamics of mitochondria. Owing to the high level of functional conservation between yeast and human mitochondrial genes, several yeast species have been instrumental in revealing the molecular mechanisms of pathogenic human mitochondrial gene mutations. Importantly, such insights have pointed to potential therapeutic targets, as have genetic and chemical screens using yeast.

  10. Epilepsy and Mitochondrial Dysfunction

    Directory of Open Access Journals (Sweden)

    Russell P. Saneto DO, PhD

    2017-10-01

    Full Text Available Epilepsy is a common manifestation of mitochondrial disease. In a large cohort of children and adolescents with mitochondrial disease (n = 180, over 48% of patients developed seizures. The majority (68% of patients were younger than 3 years and medically intractable (90%. The electroencephalographic pattern of multiregional epileptiform discharges over the left and right hemisphere with background slowing occurred in 62%. The epilepsy syndrome, infantile spasms, was seen in 17%. Polymerase γ mutations were the most common genetic etiology of seizures, representing Alpers-Huttenlocher syndrome (14%. The severity of disease in those patients with epilepsy was significant, as 13% of patients experienced early death. Simply the loss of energy production cannot explain the development of seizures or all patients with mitochondrial dysfunction would have epilepsy. Until the various aspects of mitochondrial physiology that are involved in proper brain development are understood, epilepsy and its treatment will remain unsatisfactory.

  11. Repositioning of antibiotic levofloxacin as a mitochondrial biogenesis inhibitor to target breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Min [Galactophore Department, JingZhou Central Hospital, JingZhou (China); Li, Ruishu, E-mail: liruishu2016@yahoo.com [Forensic Surgery Department, JingZhou Traditional Chinese Medicine Hospital, JingZhou (China); Zhang, Juan [Endocrinology Department, JingZhou Central Hospital, JingZhou (China)

    2016-03-18

    Targeting mitochondrial biogenesis has become a potential therapeutic strategy in cancer due to their unique metabolic dependencies. In this study, we show that levofloxacin, a FDA-approved antibiotic, is an attractive candidate for breast cancer treatment. This is achieved by the inhibition of proliferation and induction of apoptosis in a panel of breast cancer cell lines while sparing normal breast cells. It also acts synergistically with conventional chemo drug in two independent in vivo breast xenograft mouse models. Importantly, levofloxacin inhibits mitochondrial biogenesis as shown by the decreased level of mitochondrial respiration, membrane potential and ATP. In addition, the anti-proliferative and pro-apoptotic effects of levofloxacin are reversed by acetyl-L-Carnitine (ALCAR, a mitochondrial fuel), confirming that levofloxacin's action in breast cancer cells is through inhibition of mitochondrial biogenesis. A consequence of mitochondrial biogenesis inhibition by levofloxacin in breast cancer cells is the deactivation of PI3K/Akt/mTOR and MAPK/ERK pathways. We further demonstrate that breast cancer cells have increased mitochondrial biogenesis than normal breast cells, and this explains their different sensitivity to levofloxacin. Our work suggest that levofloxacin is a useful addition to breast cancer treatment. Our work also establish the essential role of mitochondrial biogenesis on the activation of PI3K/Akt/mTOR and MAPK/ERK pathways in breast cancer cells. - Highlights: • Levofloxacin targets a panel of breast cancer cell lines in vitro and in vivo. • Levofloxacin acts synergistically with 5-Fluorouracil in breast cancer. • Levofloxacin targets breast cancer cells via inhibiting mitochondrial biogenesis. • Breast cancer cells have increased mitochondrial biogenesis than normal cells. • Mitochondrial biogenesis inhibition lead to deactivation of PI3K/Akt/mTOR pathway.

  12. Repositioning of antibiotic levofloxacin as a mitochondrial biogenesis inhibitor to target breast cancer

    International Nuclear Information System (INIS)

    Yu, Min; Li, Ruishu; Zhang, Juan

    2016-01-01

    Targeting mitochondrial biogenesis has become a potential therapeutic strategy in cancer due to their unique metabolic dependencies. In this study, we show that levofloxacin, a FDA-approved antibiotic, is an attractive candidate for breast cancer treatment. This is achieved by the inhibition of proliferation and induction of apoptosis in a panel of breast cancer cell lines while sparing normal breast cells. It also acts synergistically with conventional chemo drug in two independent in vivo breast xenograft mouse models. Importantly, levofloxacin inhibits mitochondrial biogenesis as shown by the decreased level of mitochondrial respiration, membrane potential and ATP. In addition, the anti-proliferative and pro-apoptotic effects of levofloxacin are reversed by acetyl-L-Carnitine (ALCAR, a mitochondrial fuel), confirming that levofloxacin's action in breast cancer cells is through inhibition of mitochondrial biogenesis. A consequence of mitochondrial biogenesis inhibition by levofloxacin in breast cancer cells is the deactivation of PI3K/Akt/mTOR and MAPK/ERK pathways. We further demonstrate that breast cancer cells have increased mitochondrial biogenesis than normal breast cells, and this explains their different sensitivity to levofloxacin. Our work suggest that levofloxacin is a useful addition to breast cancer treatment. Our work also establish the essential role of mitochondrial biogenesis on the activation of PI3K/Akt/mTOR and MAPK/ERK pathways in breast cancer cells. - Highlights: • Levofloxacin targets a panel of breast cancer cell lines in vitro and in vivo. • Levofloxacin acts synergistically with 5-Fluorouracil in breast cancer. • Levofloxacin targets breast cancer cells via inhibiting mitochondrial biogenesis. • Breast cancer cells have increased mitochondrial biogenesis than normal cells. • Mitochondrial biogenesis inhibition lead to deactivation of PI3K/Akt/mTOR pathway.

  13. Complete mitochondrial genome of a wild Siberian tiger.

    Science.gov (United States)

    Sun, Yujiao; Lu, Taofeng; Sun, Zhaohui; Guan, Weijun; Liu, Zhensheng; Teng, Liwei; Wang, Shuo; Ma, Yuehui

    2015-01-01

    In this study, the complete mitochondrial genome of Siberian tiger (Panthera tigris altaica) was sequenced, using muscle tissue obtained from a male wild tiger. The total length of the mitochondrial genome is 16,996 bp. The genome structure of this tiger is in accordance with other Siberian tigers and it contains 12S rRNA gene, 16S rRNA gene, 22 tRNA genes, 13 protein-coding genes, and 1 control region.

  14. Aspirin increases mitochondrial fatty acid oxidation

    International Nuclear Information System (INIS)

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.; Bharathi, Sivakama S.; Zhang, Yuxun; Stolz, Donna B.; Goetzman, Eric S.

    2017-01-01

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. - Highlights: • Aspirin increases mitochondrial—but inhibits peroxisomal—fatty acid oxidation. • Aspirin acetylates mitochondrial proteins including fatty acid oxidation enzymes. • SIRT3 does not influence the effect of aspirin on fatty acid oxidation. • Increased fatty acid oxidation is likely due to altered mitochondrial morphology and respiration.

  15. Mitochondrial dysfunction in obesity.

    Science.gov (United States)

    de Mello, Aline Haas; Costa, Ana Beatriz; Engel, Jéssica Della Giustina; Rezin, Gislaine Tezza

    2018-01-01

    Obesity leads to various changes in the body. Among them, the existing inflammatory process may lead to an increase in the production of reactive oxygen species (ROS) and cause oxidative stress. Oxidative stress, in turn, can trigger mitochondrial changes, which is called mitochondrial dysfunction. Moreover, excess nutrients supply (as it commonly is the case with obesity) can overwhelm the Krebs cycle and the mitochondrial respiratory chain, causing a mitochondrial dysfunction, and lead to a higher ROS formation. This increase in ROS production by the respiratory chain may also cause oxidative stress, which may exacerbate the inflammatory process in obesity. All these intracellular changes can lead to cellular apoptosis. These processes have been described in obesity as occurring mainly in peripheral tissues. However, some studies have already shown that obesity is also associated with changes in the central nervous system (CNS), with alterations in the blood-brain barrier (BBB) and in cerebral structures such as hypothalamus and hippocampus. In this sense, this review presents a general view about mitochondrial dysfunction in obesity, including related alterations, such as inflammation, oxidative stress, and apoptosis, and focusing on the whole organism, covering alterations in peripheral tissues, BBB, and CNS. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Bilaterally symmetric axes with rhizoids composed the rooting structure of the common ancestor of vascular plants.

    Science.gov (United States)

    Hetherington, Alexander J; Dolan, Liam

    2018-02-05

    There are two general types of rooting systems in extant land plants: gametophyte rhizoids and sporophyte root axes. These structures carry out the rooting function in the free-living stage of almost all land plant gametophytes and sporophytes, respectively. Extant vascular plants develop a dominant, free-living sporophyte on which roots form, with the exception of a small number of taxa that have secondarily lost roots. However, fossil evidence indicates that early vascular plants did not develop sporophyte roots. We propose that the common ancestor of vascular plants developed a unique rooting system-rhizoidal sporophyte axes. Here we present a synthesis and reinterpretation of the rootless sporophytes of Horneophyton lignieri , Aglaophyton majus , Rhynia gwynne-vaughanii and Nothia aphylla preserved in the Rhynie chert. We show that the sporophyte rooting structures of all four plants comprised regions of plagiotropic (horizontal) axes that developed unicellular rhizoids on their underside. These regions of axes with rhizoids developed bilateral symmetry making them distinct from the other regions which were radially symmetrical. We hypothesize that rhizoidal sporophyte axes constituted the rooting structures in the common ancestor of vascular plants because the phylogenetic positions of these plants span the origin of the vascular lineage.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'. © 2017 The Authors.

  17. Mitochondrial signaling in health and disease

    National Research Council Canada - National Science Library

    Orrenius, Sten; Packer, Lester; Cadenas, Enrique

    2012-01-01

    .... The text covers themes essential for the maintenance of mitochondrial activity, including electron transport and energy production, mitochondrial biogenesis and dynamics, mitochondrial signaling...

  18. A magic bullet to specifically eliminate mutated mitochondrial genomes from patients' cells

    Science.gov (United States)

    Moraes, Carlos T

    2014-01-01

    When mitochondrial diseases result from mutations found in the mitochondrial DNA, engineered mitochondrial-targeted nucleases such as mitochondrial-targeted zinc finger nucleases are shown to specifically eliminate the mutated molecules, leaving the wild-type mitochondrial DNA intact to replicate and restore normal copy number. In this issue, Gammage and colleagues successfully apply this improved technology on patients' cells with two types of genetic alterations responsible for neuropathy ataxia and retinitis pigmentosa (NARP) syndrome and Kearns Sayre syndrome and progressive external ophthalmoplegia (PEO). PMID:24623377

  19. A comprehensive characterization of rare mitochondrial DNA variants in neuroblastoma.

    Science.gov (United States)

    Calabrese, Francesco Maria; Clima, Rosanna; Pignataro, Piero; Lasorsa, Vito Alessandro; Hogarty, Michael D; Castellano, Aurora; Conte, Massimo; Tonini, Gian Paolo; Iolascon, Achille; Gasparre, Giuseppe; Capasso, Mario

    2016-08-02

    Neuroblastoma, a tumor of the developing sympathetic nervous system, is a common childhood neoplasm that is often lethal. Mitochondrial DNA (mtDNA) mutations have been found in most tumors including neuroblastoma. We extracted mtDNA data from a cohort of neuroblastoma samples that had undergone Whole Exome Sequencing (WES) and also used snap-frozen samples in which mtDNA was entirely sequenced by Sanger technology. We next undertook the challenge of determining those mutations that are relevant to, or arisen during tumor development. The bioinformatics pipeline used to extract mitochondrial variants from matched tumor/blood samples was enriched by a set of filters inclusive of heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. Our in silico multistep workflow applied both on WES and Sanger-sequenced neuroblastoma samples, allowed us to identify a limited burden of somatic and germline mitochondrial mutations with a potential pathogenic impact. The few singleton germline and somatic mitochondrial mutations emerged, according to our in silico analysis, do not appear to impact on the development of neuroblastoma. Our findings are consistent with the hypothesis that most mitochondrial somatic mutations can be considered as 'passengers' and consequently have no discernible effect in this type of cancer.

  20. Deconstructing Mitochondrial Dysfunction in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Vega García-Escudero

    2013-01-01

    Full Text Available There is mounting evidence showing that mitochondrial damage plays an important role in Alzheimer disease. Increased oxygen species generation and deficient mitochondrial dynamic balance have been suggested to be the reason as well as the consequence of Alzheimer-related pathology. Mitochondrial damage has been related to amyloid-beta or tau pathology or to the presence of specific presenilin-1 mutations. The contribution of these factors to mitochondrial dysfunction is reviewed in this paper. Due to the relevance of mitochondrial alterations in Alzheimer disease, recent works have suggested the therapeutic potential of mitochondrial-targeted antioxidant. On the other hand, autophagy has been demonstrated to play a fundamental role in Alzheimer-related protein stress, and increasing data shows that this pathway is altered in the disease. Moreover, mitochondrial alterations have been related to an insufficient clearance of dysfunctional mitochondria by autophagy. Consequently, different approaches for the removal of damaged mitochondria or to decrease the related oxidative stress in Alzheimer disease have been described. To understand the role of mitochondrial function in Alzheimer disease it is necessary to generate human cellular models which involve living neurons. We have summarized the novel protocols for the generation of neurons by reprogramming or direct transdifferentiation, which offer useful tools to achieve this result.

  1. Cytomolecular analysis of ribosomal DNA evolution in a natural allotetraploid Brachypodium hybridum and its putative ancestors – dissecting complex repetitive structure of intergenic spacers

    Directory of Open Access Journals (Sweden)

    Natalia Borowska-Zuchowska

    2016-10-01

    Full Text Available Nucleolar dominance is an epigenetic phenomenon associated with nuclear 35S rRNA genes and consists in selective suppression of gene loci inherited from one of the progenitors in the allopolyploid. Our understanding of the exact mechanisms that determine this process is still fragmentary, especially in case of the grass species. This study aimed to shed some light on the molecular basis of this genome-specific inactivation of 35S rDNA loci in an allotetraploid Brachypodium hybridum (2n=30, which arose from the interspecific hybridization between two diploid ancestors that were very similar to modern B. distachyon (2n=10 and B. stacei (2n=20. Using fluorescence in situ hybridization with 25S rDNA and chromosome-specific BAC clones as probes we revealed that the nucleolar dominance is present not only in meristematic root-tip cells but also in differentiated cell fraction of B. hybridum. Additionally, the intergenic spacers (IGSs from both of the putative ancestors and the allotetraploid were sequenced and analyzed. The presumptive transcription initiation sites, spacer promoters and repeated elements were identified within the IGSs. Two different length variants, 2.3 kb and 3.5 kb, of IGSs were identified in B. distachyon and B. stacei, respectively, however only the IGS that had originated from B. distachyon-like ancestor was present in the allotetraploid. The amplification pattern of B. hybridum IGSs suggests that some genetic changes occurred in inactive B. stacei-like rDNA loci during the evolution of the allotetraploid. We hypothesize that their preferential silencing is an effect of structural changes in the sequence rather than just the result of the sole inactivation at the epigenetic level.

  2. Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN

    Directory of Open Access Journals (Sweden)

    Annalisa Canta

    2015-06-01

    Full Text Available The mitochondrial dysfunction has a critical role in several disorders including chemotherapy-induced peripheral neuropathies (CIPN. This is due to a related dysregulation of pathways involving calcium signalling, reactive oxygen species and apoptosis. Vincristine is able to affect calcium movement through the Dorsal Root Ganglia (DRG neuronal mitochondrial membrane, altering its homeostasis and leading to abnormal neuronal excitability. Paclitaxel induces the opening of the mitochondrial permeability transition pore in axons followed by mitochondrial membrane potential loss, increased reactive oxygen species generation, ATP level reduction, calcium release and mitochondrial swelling. Cisplatin and oxaliplatin form adducts with mitochondrial DNA producing inhibition of replication, disruption of transcription and morphological abnormalities within mitochondria in DRG neurons, leading to a gradual energy failure. Bortezomib is able to modify mitochondrial calcium homeostasis and mitochondrial respiratory chain. Moreover, the expression of a certain number of genes, including those controlling mitochondrial functions, was altered in patients with bortezomib-induced peripheral neuropathy.

  3. Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN)

    Science.gov (United States)

    Canta, Annalisa; Pozzi, Eleonora; Carozzi, Valentina Alda

    2015-01-01

    The mitochondrial dysfunction has a critical role in several disorders including chemotherapy-induced peripheral neuropathies (CIPN). This is due to a related dysregulation of pathways involving calcium signalling, reactive oxygen species and apoptosis. Vincristine is able to affect calcium movement through the Dorsal Root Ganglia (DRG) neuronal mitochondrial membrane, altering its homeostasis and leading to abnormal neuronal excitability. Paclitaxel induces the opening of the mitochondrial permeability transition pore in axons followed by mitochondrial membrane potential loss, increased reactive oxygen species generation, ATP level reduction, calcium release and mitochondrial swelling. Cisplatin and oxaliplatin form adducts with mitochondrial DNA producing inhibition of replication, disruption of transcription and morphological abnormalities within mitochondria in DRG neurons, leading to a gradual energy failure. Bortezomib is able to modify mitochondrial calcium homeostasis and mitochondrial respiratory chain. Moreover, the expression of a certain number of genes, including those controlling mitochondrial functions, was altered in patients with bortezomib-induced peripheral neuropathy. PMID:29056658

  4. Lipophilic triphenylphosphonium cations inhibit mitochondrial electron transport chain and induce mitochondrial proton leak.

    Directory of Open Access Journals (Sweden)

    Jan Trnka

    Full Text Available The lipophilic positively charged moiety of triphenylphosphonium (TPP+ has been used to target a range of biologically active compounds including antioxidants, spin-traps and other probes into mitochondria. The moiety itself, while often considered biologically inert, appears to influence mitochondrial metabolism.We used the Seahorse XF flux analyzer to measure the effect of a range of alkylTPP+ on cellular respiration and further analyzed their effect on mitochondrial membrane potential and the activity of respiratory complexes. We found that the ability of alkylTPP+ to inhibit the respiratory chain and decrease the mitochondrial membrane potential increases with the length of the alkyl chain suggesting that hydrophobicity is an important determinant of toxicity.More hydrophobic TPP+ derivatives can be expected to have a negative impact on mitochondrial membrane potential and respiratory chain activity in addition to the effect of the biologically active moiety attached to them. Using shorter linker chains or adding hydrophilic functional groups may provide a means to decrease this negative effect.

  5. Endangered species: mitochondrial DNA loss as a mechanism of human disease.

    Science.gov (United States)

    Herrera, Alan; Garcia, Iraselia; Gaytan, Norma; Jones, Edith; Maldonado, Alicia; Gilkerson, Robert

    2015-06-01

    Human mitochondrial DNA (mtDNA) is a small maternally inherited DNA, typically present in hundreds of copies in a single human cell. Thus, despite its small size, the mitochondrial genome plays a crucial role in the metabolic homeostasis of the cell. Our understanding of mtDNA genotype-phenotype relationships is derived largely from studies of the classical mitochondrial neuromuscular diseases, in which mutations of mtDNA lead to compromised mitochondrial bioenergetic function, with devastating pathological consequences. Emerging research suggests that loss, rather than mutation, of mtDNA plays a major role across a range of prevalent human diseases, including diabetes mellitus, cardiovascular disease, and aging. Here, we examine the 'rules' of mitochondrial genetics and function, the clinical settings in which loss of mtDNA is an emerging pathogenic mechanism, and explore mtDNA damage and its consequences for the organellar network and cell at large. As extranuclear genetic material arrayed throughout the cell to support metabolism, mtDNA is increasingly implicated in a host of disease conditions, opening a range of exciting questions regarding mtDNA and its role in cellular homeostasis.

  6. Mitochondrial cytopathies, phenotypic heterogeneity and a high incidence.

    LENUS (Irish Health Repository)

    Ryan, E

    2006-10-01

    Mitochondrial respiratory chain disorders account for significant and varied presentations in paediatric practice. The true prevalence of these disorders in the paediatric population is still not well documented with predicted geographic variation. We report a retrospective analysis over a seven year period of cases presenting to a tertiary care centre and associated clinical features. The overall prevalence of mitochondrial disorders in our population is higher than expected (1\\/9,000 births), explained in part by multiple presentations in a consanguineous subgroup of the population (Irish travellers).

  7. "While we are questioning we are progressing"—A Reply to the Ancestors of Qualitative Research

    Directory of Open Access Journals (Sweden)

    Monika Götsch

    2009-07-01

    Full Text Available REICHERTZ' reflections on the development of qualitative research during the Berlin Meeting on Qualitative Research Methods in 2009 (http://www.berliner-methodentreffen.de/ have led to the following central questions: Are we facing the end of critical social research? Is this possible end correlated with an uncritical mass of young scientists? In their reply to the ancestors of qualitative research the present authors advocate the abolition of a bipolar thinking about the issues and support a hybrid turn, standing the test through a fundamentally open-minded, reflexive, and deconstructive researcher`s attitude. Using the example of ethnography and gender studies we show that there are indeed opportunities for the future of critical social research: This approach would take place beyond the slaves of market-controlled contract research and ahead of the characters of the eternal hall of fame of social research. URN: urn:nbn:de:0114-fqs0903306

  8. Contribution of liver mitochondrial membrane-bound glutathione transferase to mitochondrial permeability transition pores

    International Nuclear Information System (INIS)

    Hossain, Quazi Sohel; Ulziikhishig, Enkhbaatar; Lee, Kang Kwang; Yamamoto, Hideyuki; Aniya, Yoko

    2009-01-01

    We recently reported that the glutathione transferase in rat liver mitochondrial membranes (mtMGST1) is activated by S-glutathionylation and the activated mtMGST1 contributes to the mitochondrial permeability transition (MPT) pore and cytochrome c release from mitochondria [Lee, K.K., Shimoji, M., Quazi, S.H., Sunakawa, H., Aniya, Y., 2008. Novel function of glutathione transferase in rat liver mitochondrial membrane: role for cytochrome c release from mitochondria. Toxcol. Appl. Pharmacol. 232, 109-118]. In the present study we investigated the effect of reactive oxygen species (ROS), generator gallic acid (GA) and GST inhibitors on mtMGST1 and the MPT. When rat liver mitochondria were incubated with GA, mtMGST1 activity was increased to about 3 fold and the increase was inhibited with antioxidant enzymes and singlet oxygen quenchers including 1,4-diazabicyclo [2,2,2] octane (DABCO). GA-mediated mtMGST1 activation was prevented by GST inhibitors such as tannic acid, hematin, and cibacron blue and also by cyclosporin A (CsA). In addition, GA induced the mitochondrial swelling which was also inhibited by GST inhibitors, but not by MPT inhibitors CsA, ADP, and bongkrekic acid. GA also released cytochrome c from the mitochondria which was inhibited completely by DABCO, moderately by GST inhibitors, and somewhat by CsA. Ca 2+ -mediated mitochondrial swelling and cytochrome c release were inhibited by MPT inhibitors but not by GST inhibitors. When the outer mitochondrial membrane was isolated after treatment of mitochondria with GA, mtMGST1 activity was markedly increased and oligomer/aggregate of mtMGST1 was observed. These results indicate that mtMGST1 in the outer mitochondrial membrane is activated by GA through thiol oxidation leading to protein oligomerization/aggregation, which may contribute to the formation of ROS-mediated, CsA-insensitive MPT pore, suggesting a novel mechanism for regulation of the MPT by mtMGST1

  9. Parallel origins of duplications and the formation of pseudogenes in mitochondrial DNA from parthenogenetic lizards (Heteronotia binoei; Gekkonidae).

    Science.gov (United States)

    Zevering, C E; Moritz, C; Heideman, A; Sturm, R A

    1991-11-01

    Analysis of mitochondrial DNAs (mtDNAs) from parthenogenetic lizards of the Heteronotia binoei complex with restriction enzymes revealed an approximately 5-kb addition present in all 77 individuals. Cleavage site mapping suggested the presence of a direct tandem duplication spanning the 16S and 12S rRNA genes, the control region and most, if not all, of the gene for the subunit 1 of NADH dehydrogenase (ND1). The location of the duplication was confirmed by Southern hybridization. A restriction enzyme survey provided evidence for modifications to each copy of the duplicated sequence, including four large deletions. Each gene affected by a deletion was complemented by an intact version in the other copy of the sequence, although for one gene the functional copy was heteroplasmic for another deletion. Sequencing of a fragment from one copy of the duplication which encompassed the tRNA(leu)(UUR) and parts of the 16S rRNA and ND1 genes, revealed mutations expected to disrupt function. Thus, evolution subsequent to the duplication event has resulted in mitochondrial pseudogenes. The presence of duplications in all of these parthenogens, but not among representatives of their maternal sexual ancestors, suggests that the duplications arose in the parthenogenetic form. This provides the second instance in H. binoei of mtDNA duplication associated with the transition from sexual to parthenogenetic reproduction. The increased incidence of duplications in parthenogenetic lizards may be caused by errors in mtDNA replication due to either polyploidy or hybridity of their nuclear genomes.

  10. Quality control of mitochondria during aging: is there a good and a bad side of mitochondrial dynamics?

    Science.gov (United States)

    Figge, Marc Thilo; Osiewacz, Heinz D; Reichert, Andreas S

    2013-04-01

    Maintenance of functional mitochondria is essential in order to prevent degenerative processes leading to disease and aging. Mitochondrial dynamics plays a crucial role in ensuring mitochondrial quality but may also generate and spread molecular damage through a population of mitochondria. Computational simulations suggest that this dynamics is advantageous when mitochondria are not or only marginally damaged. In contrast, at a higher degree of damage, mitochondrial dynamics may be disadvantageous. Deceleration of fusion-fission cycles could be one way to adapt to this situation and to delay a further decline in mitochondrial quality. However, this adaptive response makes the mitochondrial network more vulnerable to additional molecular damage. The "mitochondrial infectious damage adaptation" (MIDA) model explains a number of inconsistent and counterintuitive data such as the "clonal expansion" of mutant mitochondrial DNA. We propose that mitochondrial dynamics is a double-edged sword and suggest ways to test this experimentally. Copyright © 2013 WILEY Periodicals, Inc.

  11. Characterization of mitochondrial proteome in a severe case of ETF-QO deficiency.

    Science.gov (United States)

    Rocha, H; Ferreira, R; Carvalho, J; Vitorino, R; Santa, C; Lopes, L; Gregersen, N; Vilarinho, L; Amado, F

    2011-12-10

    Multiple acyl-CoA dehydrogenase deficiency (MADD) is a mitochondrial fatty acid oxidation disorder caused by mutations that affect electron transfer flavoprotein (ETF) or ETF:ubiquinone oxidoreductase (ETF-QO) or even due to unidentified disturbances of riboflavin metabolism. Besides all the available data on the molecular basis of FAO disorders, including MADD, the pathophysiological mechanisms underlying clinical phenotype development, namely at the mitochondrial level, are poorly understood. In order to contribute to the elucidation of these mechanisms, we isolated mitochondria from cultured fibroblasts, from a patient with a severe MADD presentation due to ETF-QO deficiency, characterize its mitochondrial proteome and compare it with normal controls. The used approach (2-DE-MS/MS) allowed the positive identification of 287 proteins in both patient and controls, presenting 35 of the significant differences in their relative abundance. Among the differentially expressed are proteins associated to binding/folding functions, mitochondrial antioxidant enzymes as well as proteins associated to apoptotic events. The overexpression of chaperones like Hsp60 or mitochondrial Grp75, antioxidant enzymes and apoptotic proteins reflects the mitochondrial response to a complete absence of ETF-QO. Our study provides a global perspective of the mitochondrial proteome plasticity in a severe case of MADD and highlights the main molecular pathways involved in its pathogenesis. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Mitochondrial dynamics in mammalian health and disease.

    Science.gov (United States)

    Liesa, Marc; Palacín, Manuel; Zorzano, Antonio

    2009-07-01

    The meaning of the word mitochondrion (from the Greek mitos, meaning thread, and chondros, grain) illustrates that the heterogeneity of mitochondrial morphology has been known since the first descriptions of this organelle. Such a heterogeneous morphology is explained by the dynamic nature of mitochondria. Mitochondrial dynamics is a concept that includes the movement of mitochondria along the cytoskeleton, the regulation of mitochondrial architecture (morphology and distribution), and connectivity mediated by tethering and fusion/fission events. The relevance of these events in mitochondrial and cell physiology has been partially unraveled after the identification of the genes responsible for mitochondrial fusion and fission. Furthermore, during the last decade, it has been identified that mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause prevalent neurodegenerative diseases (Charcot-Marie Tooth type 2A and Kjer disease/autosomal dominant optic atrophy). In addition, other diseases such as type 2 diabetes or vascular proliferative disorders show impaired MFN2 expression. Altogether, these findings have established mitochondrial dynamics as a consolidated area in cellular physiology. Here we review the most significant findings in the field of mitochondrial dynamics in mammalian cells and their implication in human pathologies.

  13. Hypobaric Hypoxia Imbalances Mitochondrial Dynamics in Rat Brain Hippocampus

    Directory of Open Access Journals (Sweden)

    Khushbu Jain

    2015-01-01

    Full Text Available Brain is predominantly susceptible to oxidative stress and mitochondrial dysfunction during hypobaric hypoxia, and therefore undergoes neurodegeneration due to energy crisis. Evidences illustrate a high degree of association for mitochondrial fusion/fission imbalance and mitochondrial dysfunction. Mitochondrial fusion/fission is a recently reported dynamic mechanism which frequently occurs among cellular mitochondrial network. Hence, the study investigated the temporal alteration and involvement of abnormal mitochondrial dynamics (fusion/fission along with disturbed mitochondrial functionality during chronic exposure to hypobaric hypoxia (HH. The Sprague-Dawley rats were exposed to simulated high altitude equivalent to 25000 ft for 3, 7, 14, 21, and 28 days. Mitochondrial morphology, distribution within neurons, enzyme activity of respiratory complexes, Δψm, ADP: ATP, and expression of fission/fusion key proteins were determined. Results demonstrated HH induced alteration in mitochondrial morphology by damaged, small mitochondria observed in neurons with disturbance of mitochondrial functionality and reduced mitochondrial density in neuronal processes manifested by excessive mitochondrial fragmentation (fission and decreased mitochondrial fusion as compared to unexposed rat brain hippocampus. The study suggested that imbalance in mitochondrial dynamics is one of the noteworthy mechanisms occurring in hippocampal neurons during HH insult.

  14. Mitochondrial DNA repair and aging

    Energy Technology Data Exchange (ETDEWEB)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-11-30

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis.

  15. Mitochondrial DNA repair and aging

    International Nuclear Information System (INIS)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-01-01

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis

  16. Reconstructing a B-cell clonal lineage. I. Statistical inference of unobserved ancestors [v1; ref status: indexed, http://f1000r.es/z6

    Directory of Open Access Journals (Sweden)

    Thomas B Kepler

    2013-04-01

    Full Text Available One of the key phenomena in the adaptive immune response to infection and immunization is affinity maturation, during which antibody genes are mutated and selected, typically resulting in a substantial increase in binding affinity to the eliciting antigen. Advances in technology on several fronts have made it possible to clone large numbers of heavy-chain light-chain pairs from individual B cells and thereby identify whole sets of clonally related antibodies. These collections could provide the information necessary to reconstruct their own history - the sequence of changes introduced into the lineage during the development of the clone - and to study affinity maturation in detail. But the success of such a program depends entirely on accurately inferring the founding ancestor and the other unobserved intermediates. Given a set of clonally related immunoglobulin V-region genes, the method described here allows one to compute the posterior distribution over their possible ancestors, thereby giving a thorough accounting of the uncertainty inherent in the reconstruction. I demonstrate the application of this method on heavy-chain and light-chain clones, assess the reliability of the inference, and discuss the sources of uncertainty.

  17. Neurodegenerative and Fatiguing Illnesses, Infections and Mitochondrial Dysfunction: Use of Natural Supplements to Improve Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Garth L. Nicolson

    2014-01-01

    Full Text Available Background: Many chronic diseases and illnesses are associated with one or more chronic infections, dysfunction of mitochondria and reduced production of ATP. This results in fatigue and other symptoms that occur in most if not all chronic conditions and diseases. Methods: This is a review of the published literature on chronic infections in neurodegenerative diseases and fatiguing illnesses that are also typified by mitochondrial dysfunction. This contribution also reviews the use of natural supplements to enhance mitochondrial function and reduce the effects of chronic infections to improve overall function in various chronic illnesses. Results: Mitochondrial function can be enhanced by the use of various natural supplements, notably Lipid Replacement Therapy (LRT using glyerolphospholipids and other mitochondrial supplements. In various chronic illnesses that are characterized by the presence of chronic infections, such as intracellular bacteria (Mycoplasma, Borrelia, Chlamydia and other infections and viruses, LRT has proven useful in multiple clinical trials. For example, in clinical studies on chronic fatigue syndrome, fibromyalgia syndrome and other chronic fatiguing illnesses where a large majority of patients have chronic infections, LRT significantly reduced fatigue by 35-43% in different clinical trials and increased mitochondrial function. In clinical trials on patients with multiple intracellular bacterial infections and intractable fatigue LRT plus other mitochondrial supplements significantly decreased fatigue and improved mood and cognition. Conclusions: LRT formulations designed to improve mitochondrial function appear to be useful as non-toxic dietary supplements for reducing fatigue and restoring mitochondrial and other cellular membrane functions in patients with chronic illnesses and multiple chronic infections.

  18. A novel component of the mitochondrial genome segregation machinery in trypanosomes

    Directory of Open Access Journals (Sweden)

    Anneliese Hoffmann

    2016-07-01

    Full Text Available We recently described a new component (TAC102 of the mitochondrial genome segregation machinery (mtGSM in the protozoan parasite Trypanosoma brucei. T. brucei belongs to a group of organisms that contain a single mitochondrial organelle with a single mitochondrial genome (mt-genome per cell. The mt-genome consists of 5000 minicircles (1 kb and 25 maxicircles (23 kb that are catenated into a large network. After replication of the network its segregation is driven by the separating basal bodies, which are homologous structures to the centrioles organizing the spindle apparatus in many eukaryotes. The structure connecting the basal body to the mt-genome was named the Tripartite Attachment Complex (TAC owing its name to the distribution across three areas in the cell including the two mitochondrial membranes.

  19. Mitochondrial oxodicarboxylate carrier deficiency is associated with mitochondrial DNA depletion and spinal muscular atrophy-like disease.

    Science.gov (United States)

    Boczonadi, Veronika; King, Martin S; Smith, Anthony C; Olahova, Monika; Bansagi, Boglarka; Roos, Andreas; Eyassu, Filmon; Borchers, Christoph; Ramesh, Venkateswaran; Lochmüller, Hanns; Polvikoski, Tuomo; Whittaker, Roger G; Pyle, Angela; Griffin, Helen; Taylor, Robert W; Chinnery, Patrick F; Robinson, Alan J; Kunji, Edmund R S; Horvath, Rita

    2018-03-08

    PurposeTo understand the role of the mitochondrial oxodicarboxylate carrier (SLC25A21) in the development of spinal muscular atrophy-like disease.MethodsWe identified a novel pathogenic variant in a patient by whole-exome sequencing. The pathogenicity of the mutation was studied by transport assays, computer modeling, followed by targeted metabolic testing and in vitro studies in human fibroblasts and neurons.ResultsThe patient carries a homozygous pathogenic variant c.695A>G; p.(Lys232Arg) in the SLC25A21 gene, encoding the mitochondrial oxodicarboxylate carrier, and developed spinal muscular atrophy and mitochondrial myopathy. Transport assays show that the mutation renders SLC25A21 dysfunctional and 2-oxoadipate cannot be imported into the mitochondrial matrix. Computer models of central metabolism predicted that impaired transport of oxodicarboxylate disrupts the pathways of lysine and tryptophan degradation, and causes accumulation of 2-oxoadipate, pipecolic acid, and quinolinic acid, which was confirmed in the patient's urine by targeted metabolomics. Exposure to 2-oxoadipate and quinolinic acid decreased the level of mitochondrial complexes in neuronal cells (SH-SY5Y) and induced apoptosis.ConclusionMitochondrial oxodicarboxylate carrier deficiency leads to mitochondrial dysfunction and the accumulation of oxoadipate and quinolinic acid, which in turn cause toxicity in spinal motor neurons leading to spinal muscular atrophy-like disease.GENETICS in MEDICINE advance online publication, 8 March 2018; doi:10.1038/gim.2017.251.

  20. Radiolabeled Cu-ATSM as a novel indicator of overreduced intracellular state due to mitochondrial dysfunction: studies with mitochondrial DNA-less ρ0 cells and cybrids carrying MELAS mitochondrial DNA mutation

    International Nuclear Information System (INIS)

    Yoshii, Yukie; Yoneda, Makoto; Ikawa, Masamichi; Furukawa, Takako; Kiyono, Yasushi; Mori, Tetsuya; Yoshii, Hiroshi; Oyama, Nobuyuki; Okazawa, Hidehiko; Saga, Tsuneo; Fujibayashi, Yasuhisa

    2012-01-01

    Objectives: Radiolabeled Cu-diacetyl-bis (N 4 -methylthiosemicarbazone) ( ⁎ Cu-ATSM), including 60/62/64 Cu-ATSM, is a potential imaging agent of hypoxic tumors for positron emission tomography (PET). We have reported that ⁎ Cu-ATSM is trapped in tumor cells under intracellular overreduced states, e.g., hypoxia. Here we evaluated ⁎ Cu-ATSM as an indicator of intracellular overreduced states in mitochondrial disorders using cell lines with mitochondrial dysfunction. Methods: Mitochondrial DNA-less ρ 0 206 cells; the parental 143B human osteosarcoma cells; the cybrids carrying mutated mitochondria from a patient of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) (2SD); and that carrying wild-type one (2SA) were used. Cells were treated under normoxia or hypoxia, and 64 Cu-ATSM uptake was examined to compare it with levels of biological reductant NADH and NADPH. Results: ρ 0 206 cells showed higher 64 Cu-ATSM uptake than control 143B cells under normoxia, whereas 64 Cu-ATSM uptake was not significantly increased under hypoxia in ρ 0 206 cells. Additionally, 64 Cu-ATSM uptake showed correlate change to the NADH and NADPH levels, but not oxygenic conditions. 2SD cells showed increased 64 Cu-ATSM uptake under normoxia as compared with the control 2SA, and 64 Cu-ATSM uptake followed NADH and NADPH levels, but not oxygenic conditions. Conclusions: 64 Cu-ATSM accumulated in cells with overreduced states due to mitochondrial dysfunction, even under normoxia. We recently reported that 62 Cu-ATSM-PET can visualize stroke-like episodes maintaining oxygen supply in MELAS patients. Taken together, our data indicate that ⁎ Cu-ATSM uptake reflects overreduced intracellular states, despite oxygenic conditions; thus, ⁎ Cu-ATSM would be a promising marker of intracellular overreduced states for disorders with mitochondrial dysfunction, such as MELAS, Parkinson's disease and Alzheimer's disease.

  1. Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induce Post-Translational Modifications of AKAP121, DRP1, and OPA1 That Promote Mitochondrial Fission.

    Science.gov (United States)

    Tsushima, Kensuke; Bugger, Heiko; Wende, Adam R; Soto, Jamie; Jenson, Gregory A; Tor, Austin R; McGlauflin, Rose; Kenny, Helena C; Zhang, Yuan; Souvenir, Rhonda; Hu, Xiao X; Sloan, Crystal L; Pereira, Renata O; Lira, Vitor A; Spitzer, Kenneth W; Sharp, Terry L; Shoghi, Kooresh I; Sparagna, Genevieve C; Rog-Zielinska, Eva A; Kohl, Peter; Khalimonchuk, Oleh; Schaffer, Jean E; Abel, E Dale

    2018-01-05

    Cardiac lipotoxicity, characterized by increased uptake, oxidation, and accumulation of lipid intermediates, contributes to cardiac dysfunction in obesity and diabetes mellitus. However, mechanisms linking lipid overload and mitochondrial dysfunction are incompletely understood. To elucidate the mechanisms for mitochondrial adaptations to lipid overload in postnatal hearts in vivo. Using a transgenic mouse model of cardiac lipotoxicity overexpressing ACSL1 (long-chain acyl-CoA synthetase 1) in cardiomyocytes, we show that modestly increased myocardial fatty acid uptake leads to mitochondrial structural remodeling with significant reduction in minimum diameter. This is associated with increased palmitoyl-carnitine oxidation and increased reactive oxygen species (ROS) generation in isolated mitochondria. Mitochondrial morphological changes and elevated ROS generation are also observed in palmitate-treated neonatal rat ventricular cardiomyocytes. Palmitate exposure to neonatal rat ventricular cardiomyocytes initially activates mitochondrial respiration, coupled with increased mitochondrial polarization and ATP synthesis. However, long-term exposure to palmitate (>8 hours) enhances ROS generation, which is accompanied by loss of the mitochondrial reticulum and a pattern suggesting increased mitochondrial fission. Mechanistically, lipid-induced changes in mitochondrial redox status increased mitochondrial fission by increased ubiquitination of AKAP121 (A-kinase anchor protein 121) leading to reduced phosphorylation of DRP1 (dynamin-related protein 1) at Ser637 and altered proteolytic processing of OPA1 (optic atrophy 1). Scavenging mitochondrial ROS restored mitochondrial morphology in vivo and in vitro. Our results reveal a molecular mechanism by which lipid overload-induced mitochondrial ROS generation causes mitochondrial dysfunction by inducing post-translational modifications of mitochondrial proteins that regulate mitochondrial dynamics. These findings provide a

  2. Pharmacological modulation of mitochondrial calcium homeostasis.

    Science.gov (United States)

    Arduino, Daniela M; Perocchi, Fabiana

    2018-01-10

    Mitochondria are pivotal organelles in calcium (Ca 2+ ) handling and signalling, constituting intracellular checkpoints for numerous processes that are vital for cell life. Alterations in mitochondrial Ca 2+ homeostasis have been linked to a variety of pathological conditions and are critical in the aetiology of several human diseases. Efforts have been taken to harness mitochondrial Ca 2+ transport mechanisms for therapeutic intervention, but pharmacological compounds that direct and selectively modulate mitochondrial Ca 2+ homeostasis are currently lacking. New avenues have, however, emerged with the breakthrough discoveries on the genetic identification of the main players involved in mitochondrial Ca 2+ influx and efflux pathways and with recent hints towards a deep understanding of the function of these molecular systems. Here, we review the current advances in the understanding of the mechanisms and regulation of mitochondrial Ca 2+ homeostasis and its contribution to physiology and human disease. We also introduce and comment on the recent progress towards a systems-level pharmacological targeting of mitochondrial Ca 2+ homeostasis. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  3. The expanding phenotype of mitochondrial myopathy.

    Science.gov (United States)

    DiMauro, Salvatore; Gurgel-Giannetti, Juliana

    2005-10-01

    Our understanding of mitochondrial diseases (defined restrictively as defects in the mitochondrial respiratory chain) continues to progress apace. In this review we provide an update of information regarding disorders that predominantly or exclusively affect skeletal muscle. Most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency, and mutations in genes that control mitochondrial DNA (mtDNA) abundance and structure such as POLG and TK2. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with altered lipid composition of the inner mitochondrial membrane, but a putative secondary impairment of the respiratory chain remains to be documented. Concerning the 'other genome', the role played by mutations in protein encoding genes of mtDNA in causing isolated myopathies has been confirmed. It has also been confirmed that mutations in tRNA genes of mtDNA can cause predominantly myopathic syndromes and - contrary to conventional wisdom - these mutations can be homoplasmic. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, myalgia, cramps, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.

  4. Models of gene gain and gene loss for probabilistic reconstruction of gene content in the last universal common ancestor of life

    Science.gov (United States)

    2013-01-01

    Background The problem of probabilistic inference of gene content in the last common ancestor of several extant species with completely sequenced genomes is: for each gene that is conserved in all or some of the genomes, assign the probability that its ancestral gene was present in the genome of their last common ancestor. Results We have developed a family of models of gene gain and gene loss in evolution, and applied the maximum-likelihood approach that uses phylogenetic tree of prokaryotes and the record of orthologous relationships between their genes to infer the gene content of LUCA, the Last Universal Common Ancestor of all currently living cellular organisms. The crucial parameter, the ratio of gene losses and gene gains, was estimated from the data and was higher in models that take account of the number of in-paralogs in genomes than in models that treat gene presences and absences as a binary trait. Conclusion While the numbers of genes that are placed confidently into LUCA are similar in the ML methods and in previously published methods that use various parsimony-based approaches, the identities of genes themselves are different. Most of the models of either kind treat the genes found in many existing genomes in a similar way, assigning to them high probabilities of being ancestral (“high ancestrality”). The ML models are more likely than others to assign high ancestrality to the genes that are relatively rare in the present-day genomes. Reviewers This article was reviewed by Martijn A Huynen, Toni Gabaldón and Fyodor Kondrashov. PMID:24354654

  5. Role of polyhydroxybutyrate in mitochondrial calcium uptake

    Science.gov (United States)

    Smithen, Matthew; Elustondo, Pia A.; Winkfein, Robert; Zakharian, Eleonora; Abramov, Andrey Y.; Pavlov, Evgeny

    2013-01-01

    Polyhydroxybutyrate (PHB) is a biological polymer which belongs to the class of polyesters and is ubiquitously present in all living organisms. Mammalian mitochondrial membranes contain PHB consisting of up to 120 hydroxybutyrate residues. Roles played by PHB in mammalian mitochondria remain obscure. It was previously demonstrated that PHB of the size similar to one found in mitochondria mediates calcium transport in lipid bilayer membranes. We hypothesized that the presence of PHB in mitochondrial membrane might play a significant role in mitochondrial calcium transport. To test this, we investigated how the induction of PHB hydrolysis affects mitochondrial calcium transport. Mitochondrial PHB was altered enzymatically by targeted expression of bacterial PHB hydrolyzing enzyme (PhaZ7) in mitochondria of mammalian cultured cells. The expression of PhaZ7 induced changes in mitochondrial metabolism resulting in decreased mitochondrial membrane potential in HepG2 but not in U87 and HeLa cells. Furthermore, it significantly inhibited mitochondrial calcium uptake in intact HepG2, U87 and HeLa cells stimulated by the ATP or by the application of increased concentrations of calcium to the digitonin permeabilized cells. Calcium uptake in PhaZ7 expressing cells was restored by mimicking calcium uniporter properties with natural electrogenic calcium ionophore - ferutinin. We propose that PHB is a previously unrecognized important component of the mitochondrial calcium uptake system. PMID:23702223

  6. Algal ancestor of land plants was preadapted for symbiosis.

    Science.gov (United States)

    Delaux, Pierre-Marc; Radhakrishnan, Guru V; Jayaraman, Dhileepkumar; Cheema, Jitender; Malbreil, Mathilde; Volkening, Jeremy D; Sekimoto, Hiroyuki; Nishiyama, Tomoaki; Melkonian, Michael; Pokorny, Lisa; Rothfels, Carl J; Sederoff, Heike Winter; Stevenson, Dennis W; Surek, Barbara; Zhang, Yong; Sussman, Michael R; Dunand, Christophe; Morris, Richard J; Roux, Christophe; Wong, Gane Ka-Shu; Oldroyd, Giles E D; Ané, Jean-Michel

    2015-10-27

    Colonization of land by plants was a major transition on Earth, but the developmental and genetic innovations required for this transition remain unknown. Physiological studies and the fossil record strongly suggest that the ability of the first land plants to form symbiotic associations with beneficial fungi was one of these critical innovations. In angiosperms, genes required for the perception and transduction of diffusible fungal signals for root colonization and for nutrient exchange have been characterized. However, the origin of these genes and their potential correlation with land colonization remain elusive. A comprehensive phylogenetic analysis of 259 transcriptomes and 10 green algal and basal land plant genomes, coupled with the characterization of the evolutionary path leading to the appearance of a key regulator, a calcium- and calmodulin-dependent protein kinase, showed that the symbiotic signaling pathway predated the first land plants. In contrast, downstream genes required for root colonization and their specific expression pattern probably appeared subsequent to the colonization of land. We conclude that the most recent common ancestor of extant land plants and green algae was preadapted for symbiotic associations. Subsequent improvement of this precursor stage in early land plants through rounds of gene duplication led to the acquisition of additional pathways and the ability to form a fully functional arbuscular mycorrhizal symbiosis.

  7. Percolation Model for the Existence of a Mitochondrial Eve

    CERN Document Server

    Neves, A G M

    2005-01-01

    We look at the process of inheritance of mitochondrial DNA as a percolation model on trees equivalent to the Galton-Watson process. The model is exactly solvable for its percolation threshold $p_c$ and percolation probability critical exponent. In the approximation of small percolation probability, and assuming limited progeny number, we are also able to find the maximum and minimum percolation probabilities over all probability distributions for the progeny number constrained to a given $p_c$. As a consequence, we can relate existence of a mitochondrial Eve to quantitative knowledge about demographic evolution of early mankind. In particular, we show that a mitochondrial Eve may exist even in an exponentially growing population, provided that the average number of children per individual is constrained to a small range depending on the probability $p$ that a newborn child is a female.

  8. Cold acclimation increases mitochondrial oxidative capacity without inducing mitochondrial uncoupling in goldfish white skeletal muscle

    Directory of Open Access Journals (Sweden)

    Reinaldo Sousa Dos Santos

    2012-11-01

    Goldfish have been used for cold acclimation studies, which have focused on changes in glycolytic and oxidative enzymes or alterations in lipid composition in skeletal muscle. Here we examine the effects of cold acclimation on the functional properties of isolated mitochondria and permeabilized fibers from goldfish white skeletal muscle, focusing on understanding the types of changes that occur in the mitochondrial respiratory states. We observed that cold acclimation promoted a significant increase in the mitochondrial oxygen consumption rates. Western blot analysis showed that UCP3 was raised by ∼1.5-fold in cold-acclimated muscle mitochondria. Similarly, we also evidenced a rise in the adenine nucleotide translocase content in cold-acclimated muscle mitochondria compared to warm-acclimated mitochondria (0.96±0.05 vs 0.68±0.02 nmol carboxyatractyloside mg−1 protein. This was followed by a 2-fold increment in the citrate synthase activity, which suggests a higher mitochondrial content in cold-acclimated goldfish. Even with higher levels of UCP3 and ANT, the effects of activator (palmitate and inhibitors (carboxyatractyloside and GDP on mitochondrial parameters were similar in both warm- and cold-acclimated goldfish. Thus, we propose that cold acclimation in goldfish promotes an increase in functional oxidative capacity, with higher mitochondrial content without changes in the mitochondrial uncoupling pathways.

  9. The cyclophilin D/Drp1 axis regulates mitochondrial fission contributing to oxidative stress-induced mitochondrial dysfunctions in SH-SY5Y cells

    International Nuclear Information System (INIS)

    Xiao, Anqi; Gan, Xueqi; Chen, Ruiqi; Ren, Yanming; Yu, Haiyang; You, Chao

    2017-01-01

    Oxidative stress plays a central role in the pathogenesis of various neurodegenerative diseases. Increasing evidences have demonstrated that structural abnormalities in mitochondria are involved in oxidative stress related nerve cell damage. And Drp1 plays a critical role in mitochondrial dynamic imbalance insulted by oxidative stress-derived mitochondria. However, the status of mitochondrial fusion and fission pathway and its relationship with mitochondrial properties such as mitochondrial membrane permeability transition pore (mPTP) have not been fully elucidated. Here, we demonstrated for the first time the role of Cyclophilin D (CypD), a crucial component for mPTP formation, in the regulation of mitochondrial dynamics in oxidative stress treated nerve cell. We observed that CypD-mediated phosphorylation of Drp1 and subsequently augmented Drp1 recruitment to mitochondria and shifts mitochondrial dynamics toward excessive fission, which contributes to the mitochondrial structural and functional dysfunctions in oxidative stress-treated nerve cells. CypD depletion or over expression accompanies mitochondrial dynamics/functions recovery or aggravation separately. We also demonstrated first time the link between the CypD to mitochondrial dynamics. Our data offer new insights into the mechanism of mitochondrial dynamics which contribute to the mitochondrial dysfunctions, specifically the role of CypD in Drp1-mediated mitochondrial fission. The protective effect of CsA, or other molecules affecting the function of CypD hold promise as a potential novel therapeutic strategy for governing oxidative stress pathology via mitochondrial pathways. - Highlights: • Demonstrated first time the link between the mPTP to mitochondrial dynamics. • The role of Cyclophilin D in the regulation of Drp1-mediated mitochondrial fission. • CsA as a potential target for governing oxidative stress related neuropathology.

  10. The artiodactyl APOBEC3 innate immune repertoire shows evidence for a multi-functional domain organization that existed in the ancestor of placental mammals

    Directory of Open Access Journals (Sweden)

    Andrésdóttir Valgerdur

    2008-11-01

    Full Text Available Abstract Background APOBEC3 (A3 proteins deaminate DNA cytosines and block the replication of retroviruses and retrotransposons. Each A3 gene encodes a protein with one or two conserved zinc-coordinating motifs (Z1, Z2 or Z3. The presence of one A3 gene in mice (Z2–Z3 and seven in humans, A3A-H (Z1a, Z2a-Z1b, Z2b, Z2c-Z2d, Z2e-Z2f, Z2g-Z1c, Z3, suggests extraordinary evolutionary flexibility. To gain insights into the mechanism and timing of A3 gene expansion and into the functional modularity of these genes, we analyzed the genomic sequences, expressed cDNAs and activities of the full A3 repertoire of three artiodactyl lineages: sheep, cattle and pigs. Results Sheep and cattle have three A3 genes, A3Z1, A3Z2 and A3Z3, whereas pigs only have two, A3Z2 and A3Z3. A comparison between domestic and wild pigs indicated that A3Z1 was deleted in the pig lineage. In all three species, read-through transcription and alternative splicing also produced a catalytically active double domain A3Z2-Z3 protein that had a distinct cytoplasmic localization. Thus, the three A3 genes of sheep and cattle encode four conserved and active proteins. These data, together with phylogenetic analyses, indicated that a similar, functionally modular A3 repertoire existed in the common ancestor of artiodactyls and primates (i.e., the ancestor of placental mammals. This mammalian ancestor therefore possessed the minimal A3 gene set, Z1-Z2-Z3, required to evolve through a remarkable series of eight recombination events into the present day eleven Z domain human repertoire. Conclusion The dynamic recombination-filled history of the mammalian A3 genes is consistent with the modular nature of the locus and a model in which most of these events (especially the expansions were selected by ancient pathogenic retrovirus infections.

  11. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington's disease knock-in striatal cells.

    Science.gov (United States)

    Ribeiro, Márcio; Rosenstock, Tatiana R; Oliveira, Ana M; Oliveira, Catarina R; Rego, A Cristina

    2014-09-01

    Oxidative stress and mitochondrial dysfunction have been described in Huntington's disease, a disorder caused by expression of mutant huntingtin (mHtt). IGF-1 was previously shown to protect HD cells, whereas insulin prevented neuronal oxidative stress. In this work we analyzed the role of insulin and IGF-1 in striatal cells derived from HD knock-in mice on mitochondrial production of reactive oxygen species (ROS) and related antioxidant and signaling pathways influencing mitochondrial function. Insulin and IGF-1 decreased mitochondrial ROS induced by mHtt and normalized mitochondrial SOD activity, without affecting intracellular glutathione levels. IGF-1 and insulin promoted Akt phosphorylation without changing the nuclear levels of phosphorylated Nrf2 or Nrf2/ARE activity. Insulin and IGF-1 treatment also decreased mitochondrial Drp1 phosphorylation, suggesting reduced mitochondrial fragmentation, and ameliorated mitochondrial function in HD cells in a PI-3K/Akt-dependent manner. This was accompanied by increased total and phosphorylated Akt, Tfam, and mitochondrial-encoded cytochrome c oxidase II, as well as Tom20 and Tom40 in mitochondria of insulin- and IGF-1-treated mutant striatal cells. Concomitantly, insulin/IGF-1-treated mutant cells showed reduced apoptotic features. Hence, insulin and IGF-1 improve mitochondrial function and reduce mitochondrial ROS caused by mHtt by activating the PI-3K/Akt signaling pathway, in a process independent of Nrf2 transcriptional activity, but involving enhanced mitochondrial levels of Akt and mitochondrial-encoded complex IV subunit. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Mitochondrial cyclophilin-D as a critical mediator of ischaemic preconditioning

    OpenAIRE

    Hausenloy, Derek J.; Lim, Shiang Y.; Ong, Sang-Ging; Davidson, Sean M.; Yellon, Derek M.

    2010-01-01

    Aims It has been suggested that mitochondrial reactive oxygen species (ROS), Akt and Erk1/2 and more recently the mitochondrial permeability transition pore (mPTP) may act as mediators of ischaemic preconditioning (IPC), although the actual interplay between these mediators is unclear. The aim of the present study is to determine whether the cyclophilin-D (CYPD) component of the mPTP is required by IPC to generate mitochondrial ROS and subsequently activate Akt and Erk1/2. Methods and results...

  13. Mitochondrial abnormalities-A link to idiosyncratic drug hepatotoxicity?

    International Nuclear Information System (INIS)

    Boelsterli, Urs A.; Lim, Priscilla L.K.

    2007-01-01

    Idiosyncratic drug-induced liver injury (DILI) is a major clinical problem and poses a considerable challenge for drug development as an increasing number of successfully launched drugs or new potential drugs have been implicated in causing DILI in susceptible patient subsets. Although the incidence for a particular drug is very low (yet grossly underestimated), the outcome of DILI can be serious. Unfortunately, prediction has remained poor (both for patients at risk and for new chemical entities). The underlying mechanisms and the determinants of susceptibility have largely remained ill-defined. The aim of this review is to provide both clinical and experimental evidence for a major role of mitochondria both as a target of drugs causing idiosyncratic DILI and as mediators of delayed liver injury. We develop a unifying hypothesis that involves underlying genetic or acquired mitochondrial abnormalities as a major determinant of susceptibility for a number of drugs that target mitochondria and cause DILI. The mitochondrial hypothesis, implying gradually accumulating and initially silent mitochondrial injury in heteroplasmic cells which reaches a critical threshold and abruptly triggers liver injury, is consistent with the findings that typically idiosyncratic DILI is delayed (by weeks or months), that increasing age and female gender are risk factors and that these drugs are targeted to the liver and clearly exhibit a mitochondrial hazard in vitro and in vivo. New animal models (e.g., the Sod2 +/- mouse) provide supporting evidence for this concept. However, genetic analyses of DILI patient samples are needed to ultimately provide the proof-of-concept

  14. The mitochondrial ND1 m.3337G>A mutation associated to multiple mitochondrial DNA deletions in a patient with Wolfram syndrome and cardiomyopathy.

    Science.gov (United States)

    Mezghani, Najla; Mnif, Mouna; Mkaouar-Rebai, Emna; Kallel, Nozha; Salem, Ikhlass Haj; Charfi, Nadia; Abid, Mohamed; Fakhfakh, Faiza

    2011-07-29

    Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient's skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Mitochondrial quality control: a matter of life and death for neurons

    OpenAIRE

    Rugarli, Elena I; Langer, Thomas

    2012-01-01

    Mitochondrial integrity and functionality is monitored via multiple levels of cellular and organellar quality control that critically depend on mitochondrial proteases. Defects in these surveillance mechanisms cause neuronal loss in a number of prevalent neurodegenerative diseases.

  16. Parkin suppresses Drp1-independent mitochondrial division

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Madhuparna, E-mail: mroy17@jhmi.edu; Itoh, Kie, E-mail: kito5@jhmi.edu; Iijima, Miho, E-mail: miijima@jhmi.edu; Sesaki, Hiromi, E-mail: hsesaki@jhmi.edu

    2016-07-01

    The cycle of mitochondrial division and fusion disconnect and reconnect individual mitochondria in cells to remodel this energy-producing organelle. Although dynamin-related protein 1 (Drp1) plays a major role in mitochondrial division in cells, a reduced level of mitochondrial division still persists even in the absence of Drp1. It is unknown how much Drp1-mediated mitochondrial division accounts for the connectivity of mitochondria. The role of a Parkinson’s disease-associated protein—parkin, which biochemically and genetically interacts with Drp1—in mitochondrial connectivity also remains poorly understood. Here, we quantified the number and connectivity of mitochondria using mitochondria-targeted photoactivatable GFP in cells. We show that the loss of Drp1 increases the connectivity of mitochondria by 15-fold in mouse embryonic fibroblasts (MEFs). While a single loss of parkin does not affect the connectivity of mitochondria, the connectivity of mitochondria significantly decreased compared with a single loss of Drp1 when parkin was lost in the absence of Drp1. Furthermore, the loss of parkin decreased the frequency of depolarization of the mitochondrial inner membrane that is caused by increased mitochondrial connectivity in Drp1-knockout MEFs. Therefore, our data suggest that parkin negatively regulates Drp1-indendent mitochondrial division. -- Highlights: •A Drp1-mediated mechanism accounts for ∼95% of mitochondrial division. •Parkin controls the connectivity of mitochondria via a mechanism that is independent of Drp1. •In the absence of Drp1, connected mitochondria transiently depolarize. •The transient depolarization is independent of calcium signaling and uncoupling protein 2.

  17. Parkin suppresses Drp1-independent mitochondrial division

    International Nuclear Information System (INIS)

    Roy, Madhuparna; Itoh, Kie; Iijima, Miho; Sesaki, Hiromi

    2016-01-01

    The cycle of mitochondrial division and fusion disconnect and reconnect individual mitochondria in cells to remodel this energy-producing organelle. Although dynamin-related protein 1 (Drp1) plays a major role in mitochondrial division in cells, a reduced level of mitochondrial division still persists even in the absence of Drp1. It is unknown how much Drp1-mediated mitochondrial division accounts for the connectivity of mitochondria. The role of a Parkinson’s disease-associated protein—parkin, which biochemically and genetically interacts with Drp1—in mitochondrial connectivity also remains poorly understood. Here, we quantified the number and connectivity of mitochondria using mitochondria-targeted photoactivatable GFP in cells. We show that the loss of Drp1 increases the connectivity of mitochondria by 15-fold in mouse embryonic fibroblasts (MEFs). While a single loss of parkin does not affect the connectivity of mitochondria, the connectivity of mitochondria significantly decreased compared with a single loss of Drp1 when parkin was lost in the absence of Drp1. Furthermore, the loss of parkin decreased the frequency of depolarization of the mitochondrial inner membrane that is caused by increased mitochondrial connectivity in Drp1-knockout MEFs. Therefore, our data suggest that parkin negatively regulates Drp1-indendent mitochondrial division. -- Highlights: •A Drp1-mediated mechanism accounts for ∼95% of mitochondrial division. •Parkin controls the connectivity of mitochondria via a mechanism that is independent of Drp1. •In the absence of Drp1, connected mitochondria transiently depolarize. •The transient depolarization is independent of calcium signaling and uncoupling protein 2.

  18. Mitochondrial genome sequences reveal deep divergences among Anopheles punctulatus sibling species in Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Logue Kyle

    2013-02-01

    Full Text Available Abstract Background Members of the Anopheles punctulatus group (AP group are the primary vectors of human malaria in Papua New Guinea. The AP group includes 13 sibling species, most of them morphologically indistinguishable. Understanding why only certain species are able to transmit malaria requires a better comprehension of their evolutionary history. In particular, understanding relationships and divergence times among Anopheles species may enable assessing how malaria-related traits (e.g. blood feeding behaviours, vector competence have evolved. Methods DNA sequences of 14 mitochondrial (mt genomes from five AP sibling species and two species of the Anopheles dirus complex of Southeast Asia were sequenced. DNA sequences from all concatenated protein coding genes (10,770 bp were then analysed using a Bayesian approach to reconstruct phylogenetic relationships and date the divergence of the AP sibling species. Results Phylogenetic reconstruction using the concatenated DNA sequence of all mitochondrial protein coding genes indicates that the ancestors of the AP group arrived in Papua New Guinea 25 to 54 million years ago and rapidly diverged to form the current sibling species. Conclusion Through evaluation of newly described mt genome sequences, this study has revealed a divergence among members of the AP group in Papua New Guinea that would significantly predate the arrival of humans in this region, 50 thousand years ago. The divergence observed among the mtDNA sequences studied here may have resulted from reproductive isolation during historical changes in sea-level through glacial minima and maxima. This leads to a hypothesis that the AP sibling species have evolved independently for potentially thousands of generations. This suggests that the evolution of many phenotypes, such as insecticide resistance will arise independently in each of the AP sibling species studied here.

  19. CaMKII determines mitochondrial stress responses in heart

    Science.gov (United States)

    Joiner, Mei-ling A.; Koval, Olha M.; Jingdong, Li; He, B. Julie; Allamargot, Chantal; Gao, Zhan; Luczak, Elizabeth D.; Hall, Duane D.; Fink, Brian D.; Chen, Biyi; Yang, Jinying; Moore, Steven A.; Scholz, Thomas D.; Strack, Stefan; Mohler, Peter J.; Sivitz, William I.; Song, Long-Sheng; Anderson, Mark E.

    2012-01-01

    Myocardial cell death is initiated by excessive mitochondrial Ca2+ entry, causing Ca2+ overload, mitochondrial permeability transition pore (mPTP) opening and dissipation of the mitochondrial inner membrane potential (ΔΨm)1,2. However, the signaling pathways that control mitochondrial Ca2+ entry through the inner membrane mitochondrial Ca2+ uniporter (MCU)3–5 are not known. The multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII) is activated in ischemia reperfusion (I/R), myocardial infarction (MI) and neurohumoral injury, common causes of myocardial death and heart failure, suggesting CaMKII could couple disease stress to mitochondrial injury. Here we show that CaMKII promotes mPTP opening and myocardial death by increasing MCU current (IMCU). Mitochondrial-targeted CaMKII inhibitory protein or cyclosporin A (CsA), an mPTP antagonist with clinical efficacy in I/R injury6, equivalently prevent mPTP opening, ΔΨm deterioration and diminish mitochondrial disruption and programmed cell death in response to I/R injury. Mice with myocardial and mitochondrial-targeted CaMKII inhibition are resistant to I/R injury, MI and neurohumoral injury, suggesting pathological actions of CaMKII are substantially mediated by increasing IMCU. Our findings identify CaMKII activity as a central mechanism for mitochondrial Ca2+ entry and suggest mitochondrial-targeted CaMKII inhibition could prevent or reduce myocardial death and heart failure dysfunction in response to common experimental forms of pathophysiological stress. PMID:23051746

  20. Mitochondrial Dysfunction: A Novel Potential Driver of Epithelial-to-Mesenchymal Transition in Cancer

    Directory of Open Access Journals (Sweden)

    Flora Guerra

    2017-12-01

    Full Text Available Epithelial-to-mesenchymal transition (EMT allows epithelial cancer cells to assume mesenchymal features, endowing them with enhanced motility and invasiveness, thus enabling cancer dissemination and metastatic spread. The induction of EMT is orchestrated by EMT-inducing transcription factors that switch on the expression of “mesenchymal” genes and switch off the expression of “epithelial” genes. Mitochondrial dysfunction is a hallmark of cancer and has been associated with progression to a metastatic and drug-resistant phenotype. The mechanistic link between metastasis and mitochondrial dysfunction is gradually emerging. The discovery that mitochondrial dysfunction owing to deregulated mitophagy, depletion of the mitochondrial genome (mitochondrial DNA or mutations in Krebs’ cycle enzymes, such as succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase, activate the EMT gene signature has provided evidence that mitochondrial dysfunction and EMT are interconnected. In this review, we provide an overview of the current knowledge on the role of different types of mitochondrial dysfunction in inducing EMT in cancer cells. We place emphasis on recent advances in the identification of signaling components in the mito-nuclear communication network initiated by dysfunctional mitochondria that promote cellular remodeling and EMT activation in cancer cells.

  1. Decreasing mitochondrial fission alleviates hepatic steatosis in a murine model of nonalcoholic fatty liver disease.

    Science.gov (United States)

    Galloway, Chad A; Lee, Hakjoo; Brookes, Paul S; Yoon, Yisang

    2014-09-15

    Mitochondria produce the majority of cellular ATP through oxidative phosphorylation, and their capacity to do so is influenced by many factors. Mitochondrial morphology is recently suggested as an important contributor in controlling mitochondrial bioenergetics. Mitochondria divide and fuse continuously, which is affected by environmental factors, including metabolic alterations. Underscoring its bioenergetic influence, altered mitochondrial morphology is reported in tissues of patients and in animal models of metabolic dysfunction. In this study, we found that mitochondrial fission plays a vital role in the progression of nonalcoholic fatty liver disease (NAFLD). The development of hepatic steatosis, oxidative/nitrative stress, and hepatic tissue damage, induced by a high-fat diet, were alleviated in genetically manipulated mice suppressing mitochondrial fission. The alleviation of steatosis was recapitulated in primary hepatocytes with the inhibition of mitochondrial fission. Mechanistically, our study indicates that fission inhibition enhances proton leak under conditions of free fatty acid incubation, implicating bioenergetic change through manipulating mitochondrial fission. Taken together, our results suggest a mechanistic role for mitochondrial fission in the etiology of NAFLD. The efficacy of decreasing mitochondrial fission in the suppression of NAFLD suggests that mitochondrial fission represents a novel target for therapeutic treatment of NAFLD. Copyright © 2014 the American Physiological Society.

  2. Mitochondrial Stress Signaling Promotes Cellular Adaptations

    Directory of Open Access Journals (Sweden)

    Jayne Alexandra Barbour

    2014-01-01

    Full Text Available Mitochondrial dysfunction has been implicated in the aetiology of many complex diseases, as well as the ageing process. Much of the research on mitochondrial dysfunction has focused on how mitochondrial damage may potentiate pathological phenotypes. The purpose of this review is to draw attention to the less well-studied mechanisms by which the cell adapts to mitochondrial perturbations. This involves communication of stress to the cell and successful induction of quality control responses, which include mitophagy, unfolded protein response, upregulation of antioxidant and DNA repair enzymes, morphological changes, and if all else fails apoptosis. The mitochondrion is an inherently stressful environment and we speculate that dysregulation of stress signaling or an inability to switch on these adaptations during times of mitochondrial stress may underpin mitochondrial dysfunction and hence amount to pathological states over time.

  3. Mitochondrial Insult in a Parkinson's like symptoms model

    Science.gov (United States)

    Carrizales, Julio; Cantu, Manuel; Plas, Daniel; Daniel Plas Lab Team, Dr.

    2014-03-01

    Healthy cells require healthy mitochondria. If these organelles are damaged, many health consequences follow. For example, Parkinson's Disease (PD) is a major neurodegenerative disorder of unknown cause, but much evidence points to the mitochondrion as a key player in the onset of this disease. PD has been studied in animal models challenged with toxins that target the mitochondria. In our work, we have used the pesticide, Rotenone, a known inhibitor of protein Complex I in the mitochondrial electron transport chain. When this toxin is applied to the freshwater mollusk, Lymnaea stagnalis, or pond snail, severe motor deficits ensue. In this project, we are studying the direct effects of this toxin on mitochondrial structure and physiology. We expected that the morphology of the organelle may be altered. In addition, it is likely that the mitochondrial membrane potential necessary for normal function may decrease as the electron transport loses the ability to move protons from the matrix to the intermembrane space. we also are going to use Electrophysiology to compare and Identify the difference of the electrical signaling among healthy and unhealthy neurons. HHMI

  4. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    Energy Technology Data Exchange (ETDEWEB)

    Simarro, Maria [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Gimenez-Cassina, Alfredo [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Kedersha, Nancy [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A. [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Rhee, Kirsten [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Tisdale, Sarah; Danial, Nika [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Benarafa, Charaf [Theodor Kocher Institute, University of Bern, 3012 Bern (Switzerland); Orduna, Anonio [Unidad de Investigacion, Hospital Clinico Universitario de Valladolid, 47005 Valladolid (Spain); Anderson, Paul, E-mail: panderson@rics.bwh.harvard.edu [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States)

    2010-10-22

    Research highlights: {yields} Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. {yields} The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. {yields} Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  5. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    International Nuclear Information System (INIS)

    Simarro, Maria; Gimenez-Cassina, Alfredo; Kedersha, Nancy; Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A.; Rhee, Kirsten; Tisdale, Sarah; Danial, Nika; Benarafa, Charaf; Orduna, Anonio; Anderson, Paul

    2010-01-01

    Research highlights: → Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. → The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. → Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  6. Mitochondrial haplogroups modify the risk of developing hypertrophic cardiomyopathy in a Danish population

    DEFF Research Database (Denmark)

    Hagen, Christian M; Aidt, Frederik H; Hedley, Paula L

    2013-01-01

    Hypertrophic cardiomyopathy (HCM) is a genetic disorder caused by mutations in genes coding for proteins involved in sarcomere function. The disease is associated with mitochondrial dysfunction. Evolutionarily developed variation in mitochondrial DNA (mtDNA), defining mtDNA haplogroups and haplog......Hypertrophic cardiomyopathy (HCM) is a genetic disorder caused by mutations in genes coding for proteins involved in sarcomere function. The disease is associated with mitochondrial dysfunction. Evolutionarily developed variation in mitochondrial DNA (mtDNA), defining mtDNA haplogroups...... factors in the development of HCM. Thus, constitutive differences in mitochondrial function may influence the occurrence and clinical presentation of HCM. This could explain some of the phenotypic variability in HCM. The fact that haplogroup H and J are also modifying factors in ischemic cardiomyopathy...

  7. The mitochondrial elongation factors MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tong; Yu, Rong [Department of Oncology–Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm (Sweden); Jin, Shao-Bo [Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Han, Liwei [Department of Oncology–Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm (Sweden); Lendahl, Urban [Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Zhao, Jian, E-mail: Jian.Zhao@ki.se [Department of Oncology–Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm (Sweden); Nistér, Monica [Department of Oncology–Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm (Sweden)

    2013-11-01

    Mitochondria are dynamic organelles whose morphology is regulated by a complex balance of fission and fusion processes, and we still know relatively little about how mitochondrial dynamics is regulated. MIEF1 (also called MiD51) has recently been characterized as a key regulator of mitochondrial dynamics and in this report we explore the functions of its paralog MIEF2 (also called MiD49), to learn to what extent MIEF2 is functionally distinct from MIEF1. We show that MIEF1 and MIEF2 have many functions in common. Both are anchored in the mitochondrial outer membrane, recruit Drp1 from the cytoplasm to the mitochondrial surface and cause mitochondrial fusion, and MIEF2, like MIEF1, can interact with Drp1 and hFis1. MIEF1 and MIEF2, however, also differ in certain aspects. MIEF1 and MIEF2 are differentially expressed in human tissues during development. When overexpressed, MIEF2 exerts a stronger fusion-promoting effect than MIEF1, and in line with this, hFis1 and Mff can only partially revert the MIEF2-induced fusion phenotype, whereas MIEF1-induced fusion is reverted to a larger extent by hFis1 and Mff. MIEF2 forms high molecular weight oligomers, while MIEF1 is largely present as a dimer. Furthermore, MIEF1 and MIEF2 use distinct domains for oligomerization: in MIEF1, the region from amino acid residues 109–154 is required, whereas oligomerization of MIEF2 depends on amino acid residues 1 to 49, i.e. the N-terminal end. We also show that oligomerization of MIEF1 is not required for its mitochondrial localization and interaction with Drp1. In conclusion, our data suggest that the mitochondrial regulators MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics. - Highlights: • MIEF1 and MIEF2 recruit Drp1 to mitochondria and cause mitochondrial fusion. • MIEF2, like MIEF1, can interact with Drp1 and hFis1. • MIEF1 and MIEF2 are differentially expressed in human tissues during development. • MIEF2 exerts a stronger fusion

  8. The mitochondrial elongation factors MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics

    International Nuclear Information System (INIS)

    Liu, Tong; Yu, Rong; Jin, Shao-Bo; Han, Liwei; Lendahl, Urban; Zhao, Jian; Nistér, Monica

    2013-01-01

    Mitochondria are dynamic organelles whose morphology is regulated by a complex balance of fission and fusion processes, and we still know relatively little about how mitochondrial dynamics is regulated. MIEF1 (also called MiD51) has recently been characterized as a key regulator of mitochondrial dynamics and in this report we explore the functions of its paralog MIEF2 (also called MiD49), to learn to what extent MIEF2 is functionally distinct from MIEF1. We show that MIEF1 and MIEF2 have many functions in common. Both are anchored in the mitochondrial outer membrane, recruit Drp1 from the cytoplasm to the mitochondrial surface and cause mitochondrial fusion, and MIEF2, like MIEF1, can interact with Drp1 and hFis1. MIEF1 and MIEF2, however, also differ in certain aspects. MIEF1 and MIEF2 are differentially expressed in human tissues during development. When overexpressed, MIEF2 exerts a stronger fusion-promoting effect than MIEF1, and in line with this, hFis1 and Mff can only partially revert the MIEF2-induced fusion phenotype, whereas MIEF1-induced fusion is reverted to a larger extent by hFis1 and Mff. MIEF2 forms high molecular weight oligomers, while MIEF1 is largely present as a dimer. Furthermore, MIEF1 and MIEF2 use distinct domains for oligomerization: in MIEF1, the region from amino acid residues 109–154 is required, whereas oligomerization of MIEF2 depends on amino acid residues 1 to 49, i.e. the N-terminal end. We also show that oligomerization of MIEF1 is not required for its mitochondrial localization and interaction with Drp1. In conclusion, our data suggest that the mitochondrial regulators MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics. - Highlights: • MIEF1 and MIEF2 recruit Drp1 to mitochondria and cause mitochondrial fusion. • MIEF2, like MIEF1, can interact with Drp1 and hFis1. • MIEF1 and MIEF2 are differentially expressed in human tissues during development. • MIEF2 exerts a stronger fusion

  9. Sleep disorders associated with primary mitochondrial diseases.

    Science.gov (United States)

    Ramezani, Ryan J; Stacpoole, Peter W

    2014-11-15

    Primary mitochondrial diseases are caused by heritable or spontaneous mutations in nuclear DNA or mitochondrial DNA. Such pathological mutations are relatively common in humans and may lead to neurological and neuromuscular complication that could compromise normal sleep behavior. To gain insight into the potential impact of primary mitochondrial disease and sleep pathology, we reviewed the relevant English language literature in which abnormal sleep was reported in association with a mitochondrial disease. We examined publication reported in Web of Science and PubMed from February 1976 through January 2014, and identified 54 patients with a proven or suspected primary mitochondrial disorder who were evaluated for sleep disturbances. Both nuclear DNA and mitochondrial DNA mutations were associated with abnormal sleep patterns. Most subjects who underwent polysomnography had central sleep apnea, and only 5 patients had obstructive sleep apnea. Twenty-four patients showed decreased ventilatory drive in response to hypoxia and/ or hyperapnea that was not considered due to weakness of the intrinsic muscles of respiration. Sleep pathology may be an underreported complication of primary mitochondrial diseases. The probable underlying mechanism is cellular energy failure causing both central neurological and peripheral neuromuscular degenerative changes that commonly present as central sleep apnea and poor ventilatory response to hyperapnea. Increased recognition of the genetics and clinical manifestations of mitochondrial diseases by sleep researchers and clinicians is important in the evaluation and treatment of all patients with sleep disturbances. Prospective population-based studies are required to determine the true prevalence of mitochondrial energy failure in subjects with sleep disorders, and conversely, of individuals with primary mitochondrial diseases and sleep pathology. © 2014 American Academy of Sleep Medicine.

  10. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    International Nuclear Information System (INIS)

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh; Godbole, Madan M.

    2010-01-01

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1α, NRF-1α and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  11. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India); Godbole, Madan M., E-mail: madangodbole@yahoo.co.in [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India)

    2010-07-02

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1{alpha}, NRF-1{alpha} and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  12. Ebselen protects mitochondrial function and oxidative stress while inhibiting the mitochondrial apoptosis pathway after acute spinal cord injury.

    Science.gov (United States)

    Jia, Zhi-Qiang; Li, San-Qiang; Qiao, Wei-Qiang; Xu, Wen-Zhong; Xing, Jian-Wu; Liu, Jian-Tao; Song, Hui; Gao, Zhong-Yang; Xing, Bing-Wen; He, Xi-Jing

    2018-05-04

    Ebselen is a fat-soluble small molecule and organic selenium compound that regulates the activity of glutathione peroxidase to alleviate mitochondrial oxidative stress and improve mitochondrial function. In the present study, we aimed to investigate the effects of ebselen on mitochondrial oxidative stress response, mitochondrial apotosis, and motor behaviors after spinal cord injury (SCI). We found that ebselen significantly increased the BBB score in motor behavior, thus suggesting a rescue effect of ebselen on motor function after SCI in rats. Meanwhile, we revealed that ebselen can increase glutathione (GSH) content as well as superoxide dismutase (SOD) and catalase (CAT) activities after SCI-this suggests ebselen has an antioxidant effect. Furthermore, the ATP content and Na + -K + -ATPase activity in mitochondria were increased by ebselen after SCI, while the mitochondrial membrane potential (MMP) was decreased by ebselen. The Cytochrome C and Smac release from mitochondria were reduced by ebselen after SCI, thus indicating improved membrane permeability by ebselen. Moreover, the alterations in caspase-3, Bax and Bcl-2 protein expression, as well as the proportion of cell apoptosis were improved by ebselen treatment, which together suggested that ebselen has an inhibitory effect on mitochondrial apotosis pathways after SCI. Taken together, our results suggest that ebselen can inhibit secondary damage caused by spinal cord injury. Indeed it plays a neuroprotective role in spinal cord injury perhaps by improving mitochondrial function and inhibiting the mitochondrial apoptosis pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Modulation of mitochondrial bioenergetics as a therapeutic strategy in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Isaac G Onyango

    2018-01-01

    Full Text Available Alzheimer's disease (AD is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved success in preclinical models addressing the pathological hallmarks of the disease, these efforts have not translated into any effective disease-modifying therapies. This could be because interventions are being tested too late in the disease process. While existing therapies provide symptomatic and clinical benefit, they do not fully address the molecular abnormalities that occur in AD neurons. The pathophysiology of AD is complex; mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress are antecedent and potentially play a causal role in the disease pathogenesis. Dysfunctional mitochondria accumulate from the combination of impaired mitophagy, which can also induce injurious inflammatory responses, and inadequate neuronal mitochondrial biogenesis. Altering the metabolic capacity of the brain by modulating/potentiating its mitochondrial bioenergetics may be a strategy for disease prevention and treatment. We present insights into the mechanisms of mitochondrial dysfunction in AD brain as well as an overview of emerging treatments with the potential to prevent, delay or reverse the neurodegenerative process by targeting mitochondria.

  14. Associations of mitochondrial haplogroups and mitochondrial DNA copy numbers with end-stage renal disease in a Han population.

    Science.gov (United States)

    Zhang, Yuheng; Zhao, Ying; Wen, Shuzhen; Yan, Rengna; Yang, Qinglan; Chen, Huimei

    2017-09-01

    Mitochondrial DNA (mtDNA) is closely related to mitochondrion function, and variations have been suggested to be involved in pathogenesis of complex diseases. The present study sought to elucidate mitochondrial haplogroups and mtDNA copy number in end-stage renal disease (ESRD) in a Han population. First, the mitochondrial haplogroups of 37 ESRD patients were clustered into several haplogroups, and haplogroup A & D were taken as the candidate risk haplogroups for ESRD. Second, the frequencies of A and D were assessed in 344 ESRD patients and 438 healthy controls, respectively. Haplogroup D was found to be risk maker for ESRD in young subjects (numbers were evaluated with quantitative-PCR. The ESRD patients exhibited greater cell-free mtDNA contents than the healthy controls but less intracellular mtDNA. Haplogroup D exhibited a further increase in cell-free mtDNA content and a decrease in intracellular mtDNA content among the ESRDs patients. Our findings suggest that mtNDA haplogroup D may contributes to pathogenesis of early-onset ESRD through alterations of mtDNA copy numbers.

  15. High-throughput respirometric assay identifies predictive toxicophore of mitochondrial injury

    Energy Technology Data Exchange (ETDEWEB)

    Wills, Lauren P. [MitoHealth Inc., Charleston, SC 29403 (United States); Beeson, Gyda C.; Trager, Richard E.; Lindsey, Christopher C. [Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (United States); Beeson, Craig C. [MitoHealth Inc., Charleston, SC 29403 (United States); Peterson, Yuri K. [Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (United States); Schnellmann, Rick G., E-mail: schnell@musc.edu [Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (United States); Ralph H. Johnson VA Medical Center, Charleston, SC 29401 (United States)

    2013-10-15

    Many environmental chemicals and drugs negatively affect human health through deleterious effects on mitochondrial function. Currently there is no chemical library of mitochondrial toxicants, and no reliable methods for predicting mitochondrial toxicity. We hypothesized that discrete toxicophores defined by distinct chemical entities can identify previously unidentified mitochondrial toxicants. We used a respirometric assay to screen 1760 compounds (5 μM) from the LOPAC and ChemBridge DIVERSet libraries. Thirty-one of the assayed compounds decreased uncoupled respiration, a stress test for mitochondrial dysfunction, prior to a decrease in cell viability and reduced the oxygen consumption rate in isolated mitochondria. The mitochondrial toxicants were grouped by chemical similarity and two clusters containing four compounds each were identified. Cheminformatic analysis of one of the clusters identified previously uncharacterized mitochondrial toxicants from the ChemBridge DIVERSet. This approach will enable the identification of mitochondrial toxicants and advance the prediction of mitochondrial toxicity for both drug discovery and risk assessment. - Highlights: • Respirometric assay conducted in RPTC to create mitochondrial toxicant database. • Chemically similar mitochondrial toxicants aligned as mitochondrial toxicophores • Mitochondrial toxicophore identifies five novel mitochondrial toxicants.

  16. High-throughput respirometric assay identifies predictive toxicophore of mitochondrial injury

    International Nuclear Information System (INIS)

    Wills, Lauren P.; Beeson, Gyda C.; Trager, Richard E.; Lindsey, Christopher C.; Beeson, Craig C.; Peterson, Yuri K.; Schnellmann, Rick G.

    2013-01-01

    Many environmental chemicals and drugs negatively affect human health through deleterious effects on mitochondrial function. Currently there is no chemical library of mitochondrial toxicants, and no reliable methods for predicting mitochondrial toxicity. We hypothesized that discrete toxicophores defined by distinct chemical entities can identify previously unidentified mitochondrial toxicants. We used a respirometric assay to screen 1760 compounds (5 μM) from the LOPAC and ChemBridge DIVERSet libraries. Thirty-one of the assayed compounds decreased uncoupled respiration, a stress test for mitochondrial dysfunction, prior to a decrease in cell viability and reduced the oxygen consumption rate in isolated mitochondria. The mitochondrial toxicants were grouped by chemical similarity and two clusters containing four compounds each were identified. Cheminformatic analysis of one of the clusters identified previously uncharacterized mitochondrial toxicants from the ChemBridge DIVERSet. This approach will enable the identification of mitochondrial toxicants and advance the prediction of mitochondrial toxicity for both drug discovery and risk assessment. - Highlights: • Respirometric assay conducted in RPTC to create mitochondrial toxicant database. • Chemically similar mitochondrial toxicants aligned as mitochondrial toxicophores • Mitochondrial toxicophore identifies five novel mitochondrial toxicants

  17. Mitochondrial miRNA (MitomiR): a new player in cardiovascular health.

    Science.gov (United States)

    Srinivasan, Hemalatha; Das, Samarjit

    2015-10-01

    Cardiovascular disease is one of the major causes of human morbidity and mortality in the world. MicroRNAs (miRNAs) are small RNAs that regulate gene expression and are known to be involved in the pathogenesis of heart diseases, but the translocation phenomenon and the mode of action in mitochondria are largely unknown. Recent mitochondrial proteome analysis unveiled at least 2000 proteins, of which only 13 are made by the mitochondrial genome. There are numerous studies demonstrating the translocation of proteins into the mitochondria and also translocation of ribosomal RNA (viz., 5S rRNA) into mitochondria. Recent studies have suggested that miRNAs contain sequence elements that affect their subcellular localization, particularly nuclear localization. If there are sequence elements that direct miRNAs to the nucleus, it is also possible that similar sequence elements exist to direct miRNAs to the mitochondria. In this review we have summarized most of the miRNAs that have been shown to play an important role in mitochondrial function, either by regulating mitochondrial genes or by regulating nuclear genes that are known to influence mitochondrial function. While the focus of this review is cardiovascular diseases, we also illustrate the role of mitochondrial miRNA (MitomiR) in the initiation and progression of various diseases, including cardiovascular diseases, metabolic diseases, and cancer. Our goal here is to summarize the miRNAs that are localized to the mitochondrial fraction of cells, and how these miRNAs modulate cardiovascular health.

  18. Return of the mitochondrial DNA : Case study of mitochondrial genome evolution in the genus Fusarium

    NARCIS (Netherlands)

    Brankovics, Balázs

    2018-01-01

    Mitochondrial DNA played a prominent role in the fields of population genetics, systematics and evolutionary biology, due to its favorable characteristics, such as, uniparental inheritance, fast evolution and easy accessibility. However, the mitochondrial sequences have been mostly neglected in

  19. The potato tuber mitochondrial proteome

    DEFF Research Database (Denmark)

    Møller, Ian Max; Salvato, Fernanda; Havelund, Jesper

    We are testing the hypothesis that oxidized peptides are released from stressed mitochondria and contribute to retrograde signalling (Møller IM & Sweetlove LJ 2010 Trends Plant Sci 15, 370-374). However, there is a large gap between the number of experimentally verified mitochondrial proteins (~450......) and in silico-predicted mitochondrial proteins (2000-3000). Thus, before starting to look for oxidized peptides, we wanted to expand the current compendium of plant mitochondrial proteins while obtaining what could be termed the "baseline proteome" from our model organelle, the potato tuber mitochondrion. Its...

  20. Salvianolic Acid-A Induces Apoptosis, Mitochondrial Membrane ...

    African Journals Online (AJOL)

    using Hoechst 33258 staining. The effect of the compound on mitochondrial membrane potential loss ... Fluorescence microscopy demonstrated that salvianolic acid-A induced dose- dependent ..... aggregation and anticancer properties. It has.

  1. Cenozoic biogeography and evolution in direct-developing frogs of Central America (Leptodactylidae: Eleutherodactylus) as inferred from a phylogenetic analysis of nuclear and mitochondrial genes.

    Science.gov (United States)

    Crawford, Andrew J; Smith, Eric N

    2005-06-01

    We report the first phylogenetic analysis of DNA sequence data for the Central American component of the genus Eleutherodactylus (Anura: Leptodactylidae: Eleutherodactylinae), one of the most ubiquitous, diverse, and abundant components of the Neotropical amphibian fauna. We obtained DNA sequence data from 55 specimens representing 45 species. Sampling was focused on Central America, but also included Bolivia, Brazil, Jamaica, and the USA. We sequenced 1460 contiguous base pairs (bp) of the mitochondrial genome containing ND2 and five neighboring tRNA genes, plus 1300 bp of the c-myc nuclear gene. The resulting phylogenetic inferences were broadly concordant between data sets and among analytical methods. The subgenus Craugastor is monophyletic and its initial radiation was potentially rapid and adaptive. Within Craugastor, the earliest splits separate three northern Central American species groups, milesi, augusti, and alfredi, from a clade comprising the rest of Craugastor. Within the latter clade, the rhodopis group as formerly recognized comprises three deeply divergent clades that do not form a monophyletic group; we therefore restrict the content of the rhodopis group to one of two northern clades, and use new names for the other northern (mexicanus group) and one southern clade (bransfordii group). The new rhodopis and bransfordii groups together form the sister taxon to a clade comprising the biporcatus, fitzingeri, mexicanus, and rugulosus groups. We used a Bayesian MCMC approach together with geological and biogeographic assumptions to estimate divergence times from the combined DNA sequence data. Our results corroborated three independent dispersal events for the origins of Central American Eleutherodactylus: (1) an ancestor of Craugastor entered northern Central America from South American in the early Paleocene, (2) an ancestor of the subgenus Syrrhophus entered northern Central America from the Caribbean at the end of the Eocene, and (3) a wave of

  2. NIF-type iron-sulfur cluster assembly system is duplicated and distributed in the mitochondria and cytosol of Mastigamoeba balamuthi.

    Science.gov (United States)

    Nývltová, Eva; Šuták, Robert; Harant, Karel; Šedinová, Miroslava; Hrdy, Ivan; Paces, Jan; Vlček, Čestmír; Tachezy, Jan

    2013-04-30

    In most eukaryotes, the mitochondrion is the main organelle for the formation of iron-sulfur (FeS) clusters. This function is mediated through the iron-sulfur cluster assembly machinery, which was inherited from the α-proteobacterial ancestor of mitochondria. In Archamoebae, including pathogenic Entamoeba histolytica and free-living Mastigamoeba balamuthi, the complex iron-sulfur cluster machinery has been replaced by an ε-proteobacterial nitrogen fixation (NIF) system consisting of two components: NifS (cysteine desulfurase) and NifU (scaffold protein). However, the cellular localization of the NIF system and the involvement of mitochondria in archamoebal FeS assembly are controversial. Here, we show that the genes for both NIF components are duplicated within the M. balamuthi genome. One paralog of each protein contains an amino-terminal extension that targets proteins to mitochondria (NifS-M and NifU-M), and the second paralog lacks a targeting signal, thereby reflecting the cytosolic form of the NIF machinery (NifS-C and NifU-C). The dual localization of the NIF system corresponds to the presence of FeS proteins in both cellular compartments, including detectable hydrogenase activity in Mastigamoeba cytosol and mitochondria. In contrast, E. histolytica possesses only single genes encoding NifS and NifU, respectively, and there is no evidence for the presence of the NIF machinery in its reduced mitochondria. Thus, M. balamuthi is unique among eukaryotes in that its FeS cluster formation is mediated through two most likely independent NIF machineries present in two cellular compartments.

  3. A case of mitochondrial cardiomyopathy with restrictive transmitral filling pattern

    Directory of Open Access Journals (Sweden)

    Otsui K

    2012-04-01

    Full Text Available Kazunori Otsui, Nobutaka Inoue, Anna Tamagawa, Kazuo OnishiDepartment of Cardiovascular Medicine, Kobe Rosai Hospital, Kobe, JapanAbstract: A 61-year-old diabetic woman with a mitochondrial A3243G mutation was hospitalized for evaluation of breathlessness, general fatigue, and leg edema. Chest radiography revealed cardiomegaly with massive pleural effusion. Serum lactate, pyruvate, and brain natriuretic peptide concentrations were elevated. Transthoracic echocardiography revealed a restrictive pattern of transmitral flow, although systolic function of the left ventricle was only mildly impaired. Based on these findings and her clinical course, the patient was diagnosed with right-sided heart failure caused by mitochondrial cardiomyopathy associated with a restrictive transmitral filling pattern. Treatment with furosemide, enalapril, and eplerenone was effective, and improvement in her symptoms was associated with amelioration of transthoracic echocardiographic findings and a reduction in serum brain natriuretic peptide levels. Previous reports have indicated heterogeneity in the clinical features of mitochondrial cardiomyopathy in patients carrying the A3243G mutation; the present case highlights the substantial variability in the clinical features of this disease.Keywords: mitochondrial disease, A3243G mutation, diastolic dysfunction, transmitral flow

  4. Complete mitochondrial genome of a Asian lion (Panthera leo goojratensis).

    Science.gov (United States)

    Li, Yu-Fei; Wang, Qiang; Zhao, Jian-ning

    2016-01-01

    The entire mitochondrial genome of this Asian lion (Panthera leo goojratensis) was 17,183 bp in length, gene composition and arrangement conformed to other lions, which contained the typical structure of 22 tRNAs, 2 rRNAs, 13 protein-coding genes and a non-coding region. The characteristic of the mitochondrial genome was analyzed in detail.

  5. Mitochondrial bioenergetics decay in aging: beneficial effect of melatonin.

    Science.gov (United States)

    Paradies, Giuseppe; Paradies, Valeria; Ruggiero, Francesca M; Petrosillo, Giuseppe

    2017-11-01

    Aging is a biological process characterized by progressive decline in physiological functions, increased oxidative stress, reduced capacity to respond to stresses, and increased risk of contracting age-associated disorders. Mitochondria are referred to as the powerhouse of the cell through their role in the oxidative phosphorylation to generate ATP. These organelles contribute to the aging process, mainly through impairment of electron transport chain activity, opening of the mitochondrial permeability transition pore and increased oxidative stress. These events lead to damage to proteins, lipids and mitochondrial DNA. Cardiolipin, a phospholipid of the inner mitochondrial membrane, plays a pivotal role in several mitochondrial bioenergetic processes as well as in mitochondrial-dependent steps of apoptosis and in mitochondrial membrane stability and dynamics. Cardiolipin alterations are associated with mitochondrial bienergetics decline in multiple tissues in a variety of physiopathological conditions, as well as in the aging process. Melatonin, the major product of the pineal gland, is considered an effective protector of mitochondrial bioenergetic function. Melatonin preserves mitochondrial function by preventing cardiolipin oxidation and this may explain, at least in part, the protective role of this compound in mitochondrial physiopathology and aging. Here, mechanisms through which melatonin exerts its protective role against mitochondrial dysfunction associated with aging and age-associated disorders are discussed.

  6. A nuclear mutation defective in mitochondrial recombination in yeast.

    Science.gov (United States)

    Ling, F; Makishima, F; Morishima, N; Shibata, T

    1995-08-15

    Homologous recombination (crossing over and gene conversion) is generally essential for heritage and DNA repair, and occasionally causes DNA aberrations, in nuclei of eukaryotes. However, little is known about the roles of homologous recombination in the inheritance and stability of mitochondrial DNA which is continuously damaged by reactive oxygen species, by-products of respiration. Here, we report the first example of a nuclear recessive mutation which suggests an essential role for homologous recombination in the stable inheritance of mitochondrial DNA. For the detection of this class of mutants, we devised a novel procedure, 'mitochondrial crossing in haploid', which has enabled us to examine many mutant clones. Using this procedure, we examined mutants of Saccharomyces cerevisiae that showed an elevated UV induction of respiration-deficient mutations. We obtained a mutant that was defective in both the omega-intron homing and Endo.SceI-induced homologous gene conversion. We found that the mutant cells are temperature sensitive in the maintenance of mitochondrial DNA. A tetrad analysis indicated that elevated UV induction of respiration-deficient mutations, recombination deficiency and temperature sensitivity are all caused by a single nuclear mutation (mhr1) on chromosome XII. The pleiotropic characteristics of the mutant suggest an essential role for the MHR1 gene in DNA repair, recombination and the maintenance of DNA in mitochondria.

  7. Endoplasmic reticulum-mitochondrial crosstalk: a novel role for the mitochondrial peptide humanin

    Directory of Open Access Journals (Sweden)

    Parameswaran G Sreekumar

    2017-01-01

    Full Text Available In this review, the interactive mechanisms of mitochondria with the endoplasmic reticulum (ER are discussed with emphasis on the potential protective role of the mitochondria derived peptide humanin (HN in ER stress. The ER and mitochondria are dynamic organelles capable of modifying their structure and function in response to changing environmental conditions. The ER and mitochondria join together at multiple sites and form mitochondria-ER associated membranes that participate in signal transduction pathways that are under active investigation. Our laboratory previously showed that HN protects cells from oxidative stress induced cell death and more recently, described the beneficial role of HN on ER stress-induced apoptosis in retinal pigment epithelium cells and the involvement of ER-mitochondrial cross-talk in cellular protection. The protection was achieved, in part, by the restoration of mitochondrial glutathione that was depleted by ER stress. Thus, HN may be a promising candidate for therapy for diseases that involve both oxidative and ER stress. Developing novel approaches for retinal delivery of HN, its analogues as well as small molecular weight ER stress inhibitors would prove to be a valuable approach in the treatment of age-related macular degeneration.

  8. Why translation counts for mitochondria - retrograde signalling links mitochondrial protein synthesis to mitochondrial biogenesis and cell proliferation.

    Science.gov (United States)

    Battersby, Brendan J; Richter, Uwe

    2013-10-01

    Organelle biosynthesis is a key requirement for cell growth and division. The regulation of mitochondrial biosynthesis exhibits additional layers of complexity compared with that of other organelles because they contain their own genome and dedicated ribosomes. Maintaining these components requires gene expression to be coordinated between the nucleo-cytoplasmic compartment and mitochondria in order to monitor organelle homeostasis and to integrate the responses to the physiological and developmental demands of the cell. Surprisingly, the parameters that are used to monitor or count mitochondrial abundance are not known, nor are the signalling pathways. Inhibiting the translation on mito-ribosomes genetically or with antibiotics can impair cell proliferation and has been attributed to defects in aerobic energy metabolism, even though proliferating cells rely primarily on glycolysis to fuel their metabolic demands. However, a recent study indicates that mitochondrial translational stress and the rescue mechanisms that relieve this stress cause the defect in cell proliferation and occur before any impairment of oxidative phosphorylation. Therefore, the process of mitochondrial translation in itself appears to be an important checkpoint for the monitoring of mitochondrial homeostasis and might have a role in establishing mitochondrial abundance within a cell. This hypothesis article will explore the evidence supporting a role for mito-ribosomes and translation in a mitochondria-counting mechanism.

  9. MicroRNA as biomarkers of mitochondrial toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Baumgart, Bethany R., E-mail: bethany.baumgart@bms.com [Department of Toxicology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Gray, Katherine L. [Department of Toxicology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Woicke, Jochen [Department of Pathology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Bunch, Roderick T.; Sanderson, Thomas P. [Department of Toxicology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Van Vleet, Terry R. [Department of Investigative Toxicology and Pathology, Abbvie, 1 N. Waukegan Rd., North Chicago, IL 60064-6123, USA. (United States)

    2016-12-01

    Mitochondrial toxicity can be difficult to detect as most cells can tolerate reduced activity as long as minimal capacity for function is maintained. However, once minimal capacity is lost, apoptosis or necrosis occurs quickly. Identification of more sensitive, early markers of mitochondrial toxicity was the objective of this work. Rotenone, a mitochondrial complex I inhibitor, and 3-nitropropionic acid (3-NP), a mitochondrial complex II inhibitor, were administered daily to male Sprague–Dawley rats at subcutaneous doses of 0.1 or 0.3 mg/kg/day and intraperitoneal doses of 5 or 10 mg/kg/day, respectively, for 1 week. Samples of kidney, skeletal muscle (quadriceps femoris), and serum were collected for analysis of mitochondrial DNA (mtDNA) copy number and microRNA (miRNA) expression patterns. MtDNA was significantly decreased with administration of rotenone at 0.3 mg/kg/day and 3-NP at 5 and 10 mg/kg/day in the quadriceps femoris and with 3-NP at 10 mg/kg/day in the kidney. Additionally, rotenone and 3-NP treatment produced changes to miRNA expression that were similar in direction (i.e. upregulation, downregulation) to those previously linked to mitochondrial functions, such as mitochondrial damage and biogenesis (miR-122, miR-202-3p); regulation of ATP synthesis, abolished oxidative phosphorylation, and loss of membrane potential due to increased reactive oxygen species (ROS) production (miR-338-5p, miR-546, miR-34c); and mitochondrial DNA damage and depletion (miR-546). These results suggest that miRNAs may be sensitive biomarkers for early detection of mitochondrial toxicity. - Highlights: • MtDNA decreased after treatment with respiratory chain inhibitors rotenone and 3-NP. • Decrease in mtDNA is generally dose-related and indicative of mitochondrial toxicity. • Altered miRNA has reported roles in regulating mitochondrial function. • Induction of miR-338-5p in kidney and serum suggests potential as renal biomarker. • Induction of miR-122 implies

  10. Ubiquitination of specific mitochondrial matrix proteins

    International Nuclear Information System (INIS)

    Lehmann, Gilad; Ziv, Tamar; Braten, Ori; Admon, Arie; Udasin, Ronald G.; Ciechanover, Aaron

    2016-01-01

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  11. Ubiquitination of specific mitochondrial matrix proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Gilad [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ziv, Tamar [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Braten, Ori [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Admon, Arie [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Udasin, Ronald G. [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ciechanover, Aaron, E-mail: aaroncie@tx.technion.ac.il [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel)

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  12. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT--relationship to newly identified mitochondrial pyruvate carrier proteins.

    Directory of Open Access Journals (Sweden)

    Jerry R Colca

    Full Text Available Thiazolidinedione (TZD insulin sensitizers have the potential to effectively treat a number of human diseases, however the currently available agents have dose-limiting side effects that are mediated via activation of the transcription factor PPARγ. We have recently shown PPARγ-independent actions of TZD insulin sensitizers, but the molecular target of these molecules remained to be identified. Here we use a photo-catalyzable drug analog probe and mass spectrometry-based proteomics to identify a previously uncharacterized mitochondrial complex that specifically recognizes TZDs. These studies identify two well-conserved proteins previously known as brain protein 44 (BRP44 and BRP44 Like (BRP44L, which recently have been renamed Mpc2 and Mpc1 to signify their function as a mitochondrial pyruvate carrier complex. Knockdown of Mpc1 or Mpc2 in Drosophila melanogaster or pre-incubation with UK5099, an inhibitor of pyruvate transport, blocks the crosslinking of mitochondrial membranes by the TZD probe. Knockdown of these proteins in Drosophila also led to increased hemolymph glucose and blocked drug action. In isolated brown adipose tissue (BAT cells, MSDC-0602, a PPARγ-sparing TZD, altered the incorporation of (13C-labeled carbon from glucose into acetyl CoA. These results identify Mpc1 and Mpc2 as components of the mitochondrial target of TZDs (mTOT and suggest that understanding the modulation of this complex, which appears to regulate pyruvate entry into the mitochondria, may provide a viable target for insulin sensitizing pharmacology.

  13. A Spatio-Temporal Analysis of Mitochondrial DNA Haplogroup I

    Directory of Open Access Journals (Sweden)

    Revesz Peter Z.

    2016-01-01

    Full Text Available The recent recovery of ancient DNA from a growing number of human samples shows that mitochondrial DNA haplogroup I was introduced to Europe after the end of the Last Glacial Maximum. This paper provides a spatio-temporal analysis of the various subhaplogroups of mitochondrial DNA I. The study suggests that haplogroup I diversified into haplogroups I1, I2’3, I4 and I5 at specific regions in Eurasia and then spread southward to Crete and Egypt.

  14. A Mitochondrial Power Play in Lymphoma

    OpenAIRE

    DeBerardinis, Ralph J.

    2012-01-01

    Deregulated energetics is a hallmark of malignancy, but metabolic heterogeneity among individual tumors is unknown. A study by Caro et al. in this issue of Cancer Cell demonstrates that a subset of lymphomas is defined by reliance on mitochondrial energy generation and is selectively killed when this pathway is impaired.

  15. Ancestor-descendant relationships in evolution: origin of the extant pygmy right whale, Caperea marginata.

    Science.gov (United States)

    Tsai, Cheng-Hsiu; Fordyce, R Ewan

    2015-01-01

    Ancestor-descendant relationships (ADRs), involving descent with modification, are the fundamental concept in evolution, but are usually difficult to recognize. We examined the cladistic relationship between the only reported fossil pygmy right whale, †Miocaperea pulchra, and its sole living relative, the enigmatic pygmy right whale Caperea marginata, the latter represented by both adult and juvenile specimens. †Miocaperea is phylogenetically bracketed between juvenile and adult Caperea marginata in morphologically based analyses, thus suggesting a possible ADR-the first so far identified within baleen whales (Cetacea: Mysticeti). The †Miocaperea-Caperea lineage may show long-term morphological stasis and, in turn, punctuated equilibrium. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. The organellar genome and metabolic potential of the hydrogen- producing mitochondrion of Nyctotherus ovalis

    NARCIS (Netherlands)

    J.H.P. Hackstein (Johannes); C. Burgtorf; B.E. Dutilh (Bas); I. Duarte (Isabel); G.W.M. van der Staay (Georg); R.M. de Graaf (Rob); J.W.P. Kuiper (Jan); M. Huynen (Martijn); T.A. van Alen (Theo); G. Ricard (Guenola); A.G.M. Tielens (Aloysius)

    2011-01-01

    textabstractAbstract It is generally accepted that hydrogenosomes (hydrogen-producing organelles) evolved from a mitochondrial ancestor. However, until recently, only indirect evidence for this hypothesis was available. Here, we present the almost complete genome of the hydrogen-producing

  17. Protein Carbonylation and Adipocyte Mitochondrial Function*

    Science.gov (United States)

    Curtis, Jessica M.; Hahn, Wendy S.; Stone, Matthew D.; Inda, Jacob J.; Droullard, David J.; Kuzmicic, Jovan P.; Donoghue, Margaret A.; Long, Eric K.; Armien, Anibal G.; Lavandero, Sergio; Arriaga, Edgar; Griffin, Timothy J.; Bernlohr, David A.

    2012-01-01

    Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy metabolism. To address the role of protein carbonylation in the pathogenesis of mitochondrial dysfunction, quantitative proteomics was employed to identify specific targets of carbonylation in GSTA4-silenced or overexpressing 3T3-L1 adipocytes. GSTA4-silenced adipocytes displayed elevated carbonylation of several key mitochondrial proteins including the phosphate carrier protein, NADH dehydrogenase 1α subcomplexes 2 and 3, translocase of inner mitochondrial membrane 50, and valyl-tRNA synthetase. Elevated protein carbonylation is accompanied by diminished complex I activity, impaired respiration, increased superoxide production, and a reduction in membrane potential without changes in mitochondrial number, area, or density. Silencing of the phosphate carrier or NADH dehydrogenase 1α subcomplexes 2 or 3 in 3T3-L1 cells results in decreased basal and maximal respiration. These results suggest that protein carbonylation plays a major instigating role in cytokine-dependent mitochondrial dysfunction and may be linked to the development of insulin resistance in the adipocyte. PMID:22822087

  18. Protein carbonylation and adipocyte mitochondrial function.

    Science.gov (United States)

    Curtis, Jessica M; Hahn, Wendy S; Stone, Matthew D; Inda, Jacob J; Droullard, David J; Kuzmicic, Jovan P; Donoghue, Margaret A; Long, Eric K; Armien, Anibal G; Lavandero, Sergio; Arriaga, Edgar; Griffin, Timothy J; Bernlohr, David A

    2012-09-21

    Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy metabolism. To address the role of protein carbonylation in the pathogenesis of mitochondrial dysfunction, quantitative proteomics was employed to identify specific targets of carbonylation in GSTA4-silenced or overexpressing 3T3-L1 adipocytes. GSTA4-silenced adipocytes displayed elevated carbonylation of several key mitochondrial proteins including the phosphate carrier protein, NADH dehydrogenase 1α subcomplexes 2 and 3, translocase of inner mitochondrial membrane 50, and valyl-tRNA synthetase. Elevated protein carbonylation is accompanied by diminished complex I activity, impaired respiration, increased superoxide production, and a reduction in membrane potential without changes in mitochondrial number, area, or density. Silencing of the phosphate carrier or NADH dehydrogenase 1α subcomplexes 2 or 3 in 3T3-L1 cells results in decreased basal and maximal respiration. These results suggest that protein carbonylation plays a major instigating role in cytokine-dependent mitochondrial dysfunction and may be linked to the development of insulin resistance in the adipocyte.

  19. Complete mitochondrial genome sequences of three bats species and whole genome mitochondrial analyses reveal patterns of codon bias and lend support to a basal split in Chiroptera.

    Science.gov (United States)

    Meganathan, P R; Pagan, Heidi J T; McCulloch, Eve S; Stevens, Richard D; Ray, David A

    2012-01-15

    Order Chiroptera is a unique group of mammals whose members have attained self-powered flight as their main mode of locomotion. Much speculation persists regarding bat evolution; however, lack of sufficient molecular data hampers evolutionary and conservation studies. Of ~1200 species, complete mitochondrial genome sequences are available for only eleven. Additional sequences should be generated if we are to resolve many questions concerning these fascinating mammals. Herein, we describe the complete mitochondrial genomes of three bats: Corynorhinus rafinesquii, Lasiurus borealis and Artibeus lituratus. We also compare the currently available mitochondrial genomes and analyze codon usage in Chiroptera. C. rafinesquii, L. borealis and A. lituratus mitochondrial genomes are 16438 bp, 17048 bp and 16709 bp, respectively. Genome organization and gene arrangements are similar to other bats. Phylogenetic analyses using complete mitochondrial genome sequences support previously established phylogenetic relationships and suggest utility in future studies focusing on the evolutionary aspects of these species. Comprehensive analyses of available bat mitochondrial genomes reveal distinct nucleotide patterns and synonymous codon preferences corresponding to different chiropteran families. These patterns suggest that mutational and selection forces are acting to different extents within Chiroptera and shape their mitochondrial genomes. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Oxidative stress negatively affects human sperm mitochondrial respiration.

    Science.gov (United States)

    Ferramosca, Alessandra; Pinto Provenzano, Sara; Montagna, Daniela Domenica; Coppola, Lamberto; Zara, Vincenzo

    2013-07-01

    To correlate the level of oxidative stress in serum and seminal fluid and the level of sperm deoxyribonucleic acid (DNA) fragmentation with sperm mitochondrial respiratory efficiency. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. A possible relationship between sperm mitochondrial respiratory efficiency, the level of oxidative stress, and the level of sperm DNA fragmentation was investigated. Sperm motility was positively correlated with mitochondrial respiration but negatively correlated with oxidative stress and DNA fragmentation. Interestingly, sperm mitochondrial respiratory activity was negatively affected by oxidative stress and DNA fragmentation. Our data indicate that sperm mitochondrial respiration is decreased in patients with high levels of reactive oxygen species by an uncoupling between electron transport and adenosine triphosphate synthesis. This reduction in mitochondrial functionality might be 1 of the reasons responsible for the decrease in spermatozoa motility. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Insulin Resistance and Mitochondrial Dysfunction.

    Science.gov (United States)

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  2. Mitochondrial shape governs BAX-induced membrane permeabilization and apoptosis.

    Science.gov (United States)

    Renault, Thibaud T; Floros, Konstantinos V; Elkholi, Rana; Corrigan, Kelly-Ann; Kushnareva, Yulia; Wieder, Shira Y; Lindtner, Claudia; Serasinghe, Madhavika N; Asciolla, James J; Buettner, Christoph; Newmeyer, Donald D; Chipuk, Jerry E

    2015-01-08

    Proapoptotic BCL-2 proteins converge upon the outer mitochondrial membrane (OMM) to promote mitochondrial outer membrane permeabilization (MOMP) and apoptosis. Here we investigated the mechanistic relationship between mitochondrial shape and MOMP and provide evidence that BAX requires a distinct mitochondrial size to induce MOMP. We utilized the terminal unfolded protein response pathway to systematically define proapoptotic BCL-2 protein composition after stress and then directly interrogated their requirement for a productive mitochondrial size. Complementary biochemical, cellular, in vivo, and ex vivo studies reveal that Mfn1, a GTPase involved in mitochondrial fusion, establishes a mitochondrial size that is permissive for proapoptotic BCL-2 family function. Cells with hyperfragmented mitochondria, along with size-restricted OMM model systems, fail to support BAX-dependent membrane association and permeabilization due to an inability to stabilize BAXα9·membrane interactions. This work identifies a mechanistic contribution of mitochondrial size in dictating BAX activation, MOMP, and apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Mitochondrial DNA and Cancer Epidemiology Workshop

    Science.gov (United States)

    A workshop to review the state-of-the science in the mitochondrial DNA field and its use in cancer epidemiology, and to develop a concept for a research initiative on mitochondrial DNA and cancer epidemiology.

  4. GDF-15 Is Elevated in Children with Mitochondrial Diseases and Is Induced by Mitochondrial Dysfunction.

    Directory of Open Access Journals (Sweden)

    Raquel Montero

    Full Text Available We previously described increased levels of growth and differentiation factor 15 (GDF-15 in skeletal muscle and serum of patients with mitochondrial diseases. Here we evaluated GDF-15 as a biomarker for mitochondrial diseases affecting children and compared it to fibroblast-growth factor 21 (FGF-21. To investigate the mechanism of GDF-15 induction in these pathologies we measured its expression and secretion in response to mitochondrial dysfunction.We analysed 59 serum samples from 48 children with mitochondrial disease, 19 samples from children with other neuromuscular diseases and 33 samples from aged-matched healthy children. GDF-15 and FGF-21 circulating levels were determined by ELISA.Our results showed that in children with mitochondrial diseases GDF-15 levels were on average increased by 11-fold (mean 4046pg/ml, 1492 SEM relative to healthy (350, 21 and myopathic (350, 32 controls. The area under the curve for the receiver-operating-characteristic curve for GDF-15 was 0.82 indicating that it has a good discriminatory power. The overall sensitivity and specificity of GDF-15 for a cut-off value of 550pg/mL was 67.8% (54.4%-79.4% and 92.3% (81.5%-97.9%, respectively. We found that elevated levels of GDF-15 and or FGF-21 correctly identified a larger proportion of patients than elevated levels of GDF-15 or FGF-21 alone. GDF-15, as well as FGF-21, mRNA expression and protein secretion, were significantly induced after treatment of myotubes with oligomycin and that levels of expression of both factors significantly correlated.Our data indicate that GDF-15 is a valuable serum quantitative biomarker for the diagnosis of mitochondrial diseases in children and that measurement of both GDF-15 and FGF-21 improves the disease detection ability of either factor separately. Finally, we demonstrate for the first time that GDF-15 is produced by skeletal muscle cells in response to mitochondrial dysfunction and that its levels correlate in vitro with FGF

  5. Hepatic Mitochondrial Dysfunction and Immune Response in a Murine Model of Peanut Allergy

    Directory of Open Access Journals (Sweden)

    Giovanna Trinchese

    2018-06-01

    Full Text Available Background: Evidence suggests a relevant role for liver and mitochondrial dysfunction in allergic disease. However, the role of hepatic mitochondrial function in food allergy is largely unknown. We aimed to investigate hepatic mitochondrial dysfunction in a murine model of peanut allergy. Methods: Three-week-old C3H/HeOuJ mice were sensitized by the oral route with peanut-extract (PNT. We investigated: 1. the occurrence of effective sensitization to PNT by analysing acute allergic skin response, anaphylactic symptoms score, body temperature, serum mucosal mast cell protease-1 (mMCP-1 and anti-PNT immunoglobulin E (IgE levels; 2. hepatic involvement by analysing interleukin (IL-4, IL-5, IL-13, IL-10 and IFN-γ mRNA expression; 3. hepatic mitochondrial oxidation rates and efficiency by polarography, and hydrogen peroxide (H2O2 yield, aconitase and superoxide dysmutase activities by spectrophotometry. Results: Sensitization to PNT was demonstrated by acute allergic skin response, anaphylactic symptoms score, body temperature decrease, serum mMCP-1 and anti-peanut IgE levels. Liver involvement was demonstrated by a significant increase of hepatic Th2 cytokines (IL-4, IL-5 and IL-13 mRNA expression. Mitochondrial dysfunction was demonstrated by lower state 3 respiration rate in the presence of succinate, decreased fatty acid oxidation in the presence of palmitoyl-carnitine, increased yield of ROS proven by the inactivation of aconitase enzyme and higher H2O2 mitochondrial release. Conclusions: We provide evidence of hepatic mitochondrial dysfunction in a murine model of peanut allergy. These data could open the way to the identification of new mitochondrial targets for innovative preventive and therapeutic strategies against food allergy.

  6. Reactive Oxygen Species-Mediated Control of Mitochondrial Biogenesis

    Directory of Open Access Journals (Sweden)

    Edgar D. Yoboue

    2012-01-01

    Full Text Available Mitochondrial biogenesis is a complex process. It necessitates the contribution of both the nuclear and the mitochondrial genomes and therefore crosstalk between the nucleus and mitochondria. It is now well established that cellular mitochondrial content can vary according to a number of stimuli and physiological states in eukaryotes. The knowledge of the actors and signals regulating the mitochondrial biogenesis is thus of high importance. The cellular redox state has been considered for a long time as a key element in the regulation of various processes. In this paper, we report the involvement of the oxidative stress in the regulation of some actors of mitochondrial biogenesis.

  7. How do yeast sense mitochondrial dysfunction?

    Directory of Open Access Journals (Sweden)

    Dmitry A. Knorre

    2016-09-01

    Full Text Available Apart from energy transformation, mitochondria play important signaling roles. In yeast, mitochondrial signaling relies on several molecular cascades. However, it is not clear how a cell detects a particular mitochondrial malfunction. The problem is that there are many possible manifestations of mitochondrial dysfunction. For example, exposure to the specific antibiotics can either decrease (inhibitors of respiratory chain or increase (inhibitors of ATP-synthase mitochondrial transmembrane potential. Moreover, even in the absence of the dysfunctions, a cell needs feedback from mitochondria to coordinate mitochondrial biogenesis and/or removal by mitophagy during the division cycle. To cope with the complexity, only a limited set of compounds is monitored by yeast cells to estimate mitochondrial functionality. The known examples of such compounds are ATP, reactive oxygen species, intermediates of amino acids synthesis, short peptides, Fe-S clusters and heme, and also the precursor proteins which fail to be imported by mitochondria. On one hand, the levels of these molecules depend not only on mitochondria. On the other hand, these substances are recognized by the cytosolic sensors which transmit the signals to the nucleus leading to general, as opposed to mitochondria-specific, transcriptional response. Therefore, we argue that both ways of mitochondria-to-nucleus communication in yeast are mostly (if not completely unspecific, are mediated by the cytosolic signaling machinery and strongly depend on cellular metabolic state.

  8. Recombination among multiple mitochondrial pseudogenes from a passerine genus

    DEFF Research Database (Denmark)

    Nielsen, Kirstine Klitgaard; Arctander, P.

    2001-01-01

    to the observed differences in substitution patterns 58% of the cloned sequences were identified as pseudogenes. Recombination could be traced in 19% of the inferred nuclear pseudogenes, but this figure probably represents a Significant underestimation of the factual recombination events. The nonrecombined...... pseudogenes consisted of multiple haplotypes found to diverge from 1 to 16% from the mitochondrial gene. The number of mitochondrial nuclear copies and their apparent frequent recombination suggest that pseudogenes constitute a serious potential risk in confounding phylogenetic studies and population genetic...

  9. Hyperoxia activates ATM independent from mitochondrial ROS and dysfunction.

    Science.gov (United States)

    Resseguie, Emily A; Staversky, Rhonda J; Brookes, Paul S; O'Reilly, Michael A

    2015-08-01

    High levels of oxygen (hyperoxia) are often used to treat individuals with respiratory distress, yet prolonged hyperoxia causes mitochondrial dysfunction and excessive reactive oxygen species (ROS) that can damage molecules such as DNA. Ataxia telangiectasia mutated (ATM) kinase is activated by nuclear DNA double strand breaks and delays hyperoxia-induced cell death through downstream targets p53 and p21. Evidence for its role in regulating mitochondrial function is emerging, yet it has not been determined if mitochondrial dysfunction or ROS activates ATM. Because ATM maintains mitochondrial homeostasis, we hypothesized that hyperoxia induces both mitochondrial dysfunction and ROS that activate ATM. In A549 lung epithelial cells, hyperoxia decreased mitochondrial respiratory reserve capacity at 12h and basal respiration by 48 h. ROS were significantly increased at 24h, yet mitochondrial DNA double strand breaks were not detected. ATM was not required for activating p53 when mitochondrial respiration was inhibited by chronic exposure to antimycin A. Also, ATM was not further activated by mitochondrial ROS, which were enhanced by depleting manganese superoxide dismutase (SOD2). In contrast, ATM dampened the accumulation of mitochondrial ROS during exposure to hyperoxia. Our findings suggest that hyperoxia-induced mitochondrial dysfunction and ROS do not activate ATM. ATM more likely carries out its canonical response to nuclear DNA damage and may function to attenuate mitochondrial ROS that contribute to oxygen toxicity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Cisplatin Induces a Mitochondrial-ROS Response That Contributes to Cytotoxicity Depending on Mitochondrial Redox Status and Bioenergetic Functions

    Science.gov (United States)

    Marullo, Rossella; Werner, Erica; Degtyareva, Natalya; Moore, Bryn; Altavilla, Giuseppe; Ramalingam, Suresh S.; Doetsch, Paul W.

    2013-01-01

    Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is thought to be mediated primarily by the generation of nuclear DNA adducts, which, if not repaired, cause cell death as a consequence of DNA replication and transcription blockage. However, the ability of cisplatin to induce nuclear DNA (nDNA) damage per se is not sufficient to explain its high degree of effectiveness nor the toxic effects exerted on normal, post-mitotic tissues. Oxidative damage has been observed in vivo following exposure to cisplatin in several tissues, suggesting a role for oxidative stress in the pathogenesis of cisplatin-induced dose-limiting toxicities. However, the mechanism of cisplatin-induced generation of ROS and their contribution to cisplatin cytotoxicity in normal and cancer cells is still poorly understood. By employing a panel of normal and cancer cell lines and the budding yeast Saccharomyces cerevisiae as model system, we show that exposure to cisplatin induces a mitochondrial-dependent ROS response that significantly enhances the cytotoxic effect caused by nDNA damage. ROS generation is independent of the amount of cisplatin-induced nDNA damage and occurs in mitochondria as a consequence of protein synthesis impairment. The contribution of cisplatin-induced mitochondrial dysfunction in determining its cytotoxic effect varies among cells and depends on mitochondrial redox status, mitochondrial DNA integrity and bioenergetic function. Thus, by manipulating these cellular parameters, we were able to enhance cisplatin cytotoxicity in cancer cells. This study provides a new mechanistic insight into cisplatin-induced cell killing and may lead to the design of novel therapeutic strategies to improve anticancer drug efficacy. PMID:24260552

  11. Loss of Mitochondrial Function Impairs Lysosomes.

    Science.gov (United States)

    Demers-Lamarche, Julie; Guillebaud, Gérald; Tlili, Mouna; Todkar, Kiran; Bélanger, Noémie; Grondin, Martine; Nguyen, Angela P; Michel, Jennifer; Germain, Marc

    2016-05-06

    Alterations in mitochondrial function, as observed in neurodegenerative diseases, lead to disrupted energy metabolism and production of damaging reactive oxygen species. Here, we demonstrate that mitochondrial dysfunction also disrupts the structure and function of lysosomes, the main degradation and recycling organelle. Specifically, inhibition of mitochondrial function, following deletion of the mitochondrial protein AIF, OPA1, or PINK1, as well as chemical inhibition of the electron transport chain, impaired lysosomal activity and caused the appearance of large lysosomal vacuoles. Importantly, our results show that lysosomal impairment is dependent on reactive oxygen species. Given that alterations in both mitochondrial function and lysosomal activity are key features of neurodegenerative diseases, this work provides important insights into the etiology of neurodegenerative diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Ischemic preconditioning improves mitochondrial tolerance to experimental calcium overload.

    Science.gov (United States)

    Crestanello, Juan A; Doliba, Nicolai M; Babsky, Andriy M; Doliba, Natalia M; Niibori, Koki; Whitman, Glenn J R; Osbakken, Mary D

    2002-04-01

    Ca(2+) overload leads to mitochondrial uncoupling, decreased ATP synthesis, and myocardial dysfunction. Pharmacologically opening of mitochondrial K(ATP) channels decreases mitochondrial Ca(2+) uptake, improving mitochondrial function during Ca(2+) overload. Ischemic preconditioning (IPC), by activating mitochondrial K(ATP) channels, may attenuate mitochondrial Ca(2+) overload and improve mitochondrial function during reperfusion. The purpose of these experiments was to study the effect of IPC (1) on mitochondrial function and (2) on mitochondrial tolerance to experimental Ca(2+) overload. Rat hearts (n = 6/group) were subjected to (a) 30 min of equilibration, 25 min of ischemia, and 30 min of reperfusion (Control) or (b) two 5-min episodes of ischemic preconditioning, 25 min of ischemia, and 30 min of reperfusion (IPC). Developed pressure (DP) was measured. Heart mitochondria were isolated at end-Equilibration (end-EQ) and at end-Reperfusion (end-RP). Mitochondrial respiratory function (state 2, oxygen consumption with substrate only; state 3, oxygen consumption stimulated by ADP; state 4, oxygen consumption after cessation of ADP phosphorylation; respiratory control index (RCI, state 3/state 4); rate of oxidative phosphorylation (ADP/Deltat), and ADP:O ratio) was measured with polarography using alpha-ketoglutarate as a substrate in the presence of different Ca(2+) concentrations (0 to 5 x 10(-7) M) to simulate Ca(2+) overload. IPC improved DP at end-RP. IPC did not improve preischemic mitochondrial respiratory function or preischemic mitochondrial response to Ca(2+) loading. IPC improved state 3, ADP/Deltat, and RCI during RP. Low Ca(2+) levels (0.5 and 1 x 10(-7) M) stimulated mitochondrial function in both groups predominantly in IPC. The Control group showed evidence of mitochondrial uncoupling at lower Ca(2+) concentrations (1 x 10(-7) M). IPC preserved state 3 at high Ca(2+) concentrations. The cardioprotective effect of IPC results, in part, from

  13. Dynamics of mitochondrial transport in axons

    Directory of Open Access Journals (Sweden)

    Robert Francis Niescier

    2016-05-01

    Full Text Available The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

  14. Complete mitochondrial genome of the aluminum-tolerant fungus Rhodotorula taiwanensis RS1 and comparative analysis of Basidiomycota mitochondrial genomes.

    Science.gov (United States)

    Zhao, Xue Qiang; Aizawa, Tomoko; Schneider, Jessica; Wang, Chao; Shen, Ren Fang; Sunairi, Michio

    2013-04-01

    The complete mitochondrial genome of Rhodotorula taiwanensis RS1, an aluminum-tolerant Basidiomycota fungus, was determined and compared with the known mitochondrial genomes of 12 Basidiomycota species. The mitochondrial genome of R. taiwanensis RS1 is a circular DNA molecule of 40,392 bp and encodes the typical 15 mitochondrial proteins, 23 tRNAs, and small and large rRNAs as well as 10 intronic open reading frames. These genes are apparently transcribed in two directions and do not show syntenies in gene order with other investigated Basidiomycota species. The average G+C content (41%) of the mitochondrial genome of R. taiwanensis RS1 is the highest among the Basidiomycota species. Two introns were detected in the sequence of the atp9 gene of R. taiwanensis RS1, but not in that of other Basidiomycota species. Rhodotorula taiwanensis is the first species of the genus Rhodotorula whose full mitochondrial genome has been sequenced; and the data presented here supply valuable information for understanding the evolution of fungal mitochondrial genomes and researching the mechanism of aluminum tolerance in microorganisms. © 2013 The Authors. Published by Blackwell Publishing Ltd.

  15. Transoceanic Dispersal and Plate Tectonics Shaped Global Cockroach Distributions: Evidence from Mitochondrial Phylogenomics.

    Science.gov (United States)

    Bourguignon, Thomas; Tang, Qian; Ho, Simon Y W; Juna, Frantisek; Wang, Zongqing; Arab, Daej A; Cameron, Stephen L; Walker, James; Rentz, David; Evans, Theodore A; Lo, Nathan

    2017-04-01

    Following the acceptance of plate tectonics theory in the latter half of the 20th century, vicariance became the dominant explanation for the distributions of many plant and animal groups. In recent years, however, molecular-clock analyses have challenged a number of well-accepted hypotheses of vicariance. As a widespread group of insects with a fossil record dating back 300 My, cockroaches provide an ideal model for testing hypotheses of vicariance through plate tectonics versus transoceanic dispersal. However, their evolutionary history remains poorly understood, in part due to unresolved relationships among the nine recognized families. Here, we present a phylogenetic estimate of all extant cockroach families, as well as a timescale for their evolution, based on the complete mitochondrial genomes of 119 cockroach species. Divergence dating analyses indicated that the last common ancestor of all extant cockroaches appeared ∼235 Ma, ∼95 My prior to the appearance of fossils that can be assigned to extant families, and before the breakup of Pangaea began. We reconstructed the geographic ranges of ancestral cockroaches and found tentative support for vicariance through plate tectonics within and between several major lineages. We also found evidence of transoceanic dispersal in lineages found across the Australian, Indo-Malayan, African, and Madagascan regions. Our analyses provide evidence that both vicariance and dispersal have played important roles in shaping the distribution and diversity of these insects.

  16. Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism.

    Science.gov (United States)

    Warren, Emily Booth; Aicher, Aidan Edward; Fessel, Joshua Patrick; Konradi, Christine

    2017-01-01

    Mitochondrial DNA (mtDNA), the discrete genome which encodes subunits of the mitochondrial respiratory chain, is present at highly variable copy numbers across cell types. Though severe mtDNA depletion dramatically reduces mitochondrial function, the impact of tissue-specific mtDNA reduction remains debated. Previously, our lab identified reduced mtDNA quantity in the putamen of Parkinson's Disease (PD) patients who had developed L-DOPA Induced Dyskinesia (LID), compared to PD patients who had not developed LID and healthy subjects. Here, we present the consequences of mtDNA depletion by ethidium bromide (EtBr) treatment on the bioenergetic function of primary cultured neurons, astrocytes and neuron-enriched cocultures from rat striatum. We report that EtBr inhibition of mtDNA replication and transcription consistently reduces mitochondrial oxygen consumption, and that neurons are significantly more sensitive to EtBr than astrocytes. EtBr also increases glycolytic activity in astrocytes, whereas in neurons it reduces the expression of mitochondrial creatine kinase mRNA and levels of phosphocreatine. Further, we show that mitochondrial creatine kinase mRNA is similarly downregulated in dyskinetic PD patients, compared to both non-dyskinetic PD patients and healthy subjects. Our data support a hypothesis that reduced striatal mtDNA contributes to energetic dysregulation in the dyskinetic striatum by destabilizing the energy buffering system of the phosphocreatine/creatine shuttle.

  17. Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism.

    Directory of Open Access Journals (Sweden)

    Emily Booth Warren

    Full Text Available Mitochondrial DNA (mtDNA, the discrete genome which encodes subunits of the mitochondrial respiratory chain, is present at highly variable copy numbers across cell types. Though severe mtDNA depletion dramatically reduces mitochondrial function, the impact of tissue-specific mtDNA reduction remains debated. Previously, our lab identified reduced mtDNA quantity in the putamen of Parkinson's Disease (PD patients who had developed L-DOPA Induced Dyskinesia (LID, compared to PD patients who had not developed LID and healthy subjects. Here, we present the consequences of mtDNA depletion by ethidium bromide (EtBr treatment on the bioenergetic function of primary cultured neurons, astrocytes and neuron-enriched cocultures from rat striatum. We report that EtBr inhibition of mtDNA replication and transcription consistently reduces mitochondrial oxygen consumption, and that neurons are significantly more sensitive to EtBr than astrocytes. EtBr also increases glycolytic activity in astrocytes, whereas in neurons it reduces the expression of mitochondrial creatine kinase mRNA and levels of phosphocreatine. Further, we show that mitochondrial creatine kinase mRNA is similarly downregulated in dyskinetic PD patients, compared to both non-dyskinetic PD patients and healthy subjects. Our data support a hypothesis that reduced striatal mtDNA contributes to energetic dysregulation in the dyskinetic striatum by destabilizing the energy buffering system of the phosphocreatine/creatine shuttle.

  18. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain.

    Science.gov (United States)

    Lauritzen, Knut H; Hasan-Olive, Md Mahdi; Regnell, Christine E; Kleppa, Liv; Scheibye-Knudsen, Morten; Gjedde, Albert; Klungland, Arne; Bohr, Vilhelm A; Storm-Mathisen, Jon; Bergersen, Linda H

    2016-12-01

    Mitochondrial genome maintenance plays a central role in preserving brain health. We previously demonstrated accumulation of mitochondrial DNA damage and severe neurodegeneration in transgenic mice inducibly expressing a mutated mitochondrial DNA repair enzyme (mutUNG1) selectively in forebrain neurons. Here, we examine whether severe neurodegeneration in mutUNG1-expressing mice could be rescued by feeding the mice a ketogenic diet, which is known to have beneficial effects in several neurological disorders. The diet increased the levels of superoxide dismutase 2, and mitochondrial mass, enzymes, and regulators such as SIRT1 and FIS1, and appeared to downregulate N-methyl-D-aspartic acid (NMDA) receptor subunits NR2A/B and upregulate γ-aminobutyric acid A (GABA A ) receptor subunits α 1 . However, unexpectedly, the ketogenic diet aggravated neurodegeneration and mitochondrial deterioration. Electron microscopy showed structurally impaired mitochondria accumulating in neuronal perikarya. We propose that aggravation is caused by increased mitochondrial biogenesis of generally dysfunctional mitochondria. This study thereby questions the dogma that a ketogenic diet is unambiguously beneficial in mitochondrial disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Cutaneous respirometry by dynamic measurement of mitochondrial oxygen tension for monitoring mitochondrial function in vivo.

    Science.gov (United States)

    Harms, Floor A; Voorbeijtel, Wilhelmina J; Bodmer, Sander I A; Raat, Nicolaas J H; Mik, Egbert G

    2013-09-01

    Progress in diagnosis and treatment of mitochondrial dysfunction in chronic and acute disease could greatly benefit from techniques for monitoring of mitochondrial function in vivo. In this study we demonstrate the feasibility of in vivo respirometry in skin. Mitochondrial oxygen measurements by means of oxygen-dependent delayed fluorescence of protoporphyrin IX are shown to provide a robust basis for measurement of local oxygen disappearance rate (ODR). The fundamental principles behind the technology are described, together with an analysis method for retrievel of respirometry data. The feasibility and reproducibility of this clinically useful approach are demonstrated in a series of rats. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Wild mallards have more "goose-like" bills than their ancestors: a case of anthropogenic influence?

    Directory of Open Access Journals (Sweden)

    Pär Söderquist

    Full Text Available Wild populations of the world's most common dabbling duck, the mallard (Anas platyrhynchos, run the risk of genetic introgression by farmed conspecifics released for hunting purposes. We tested whether bill morphology of free-living birds has changed since large-scale releases of farmed mallards started. Three groups of mallards from Sweden, Norway and Finland were compared: historical wild (before large-scale releases started, present-day wild, and present-day farmed. Higher density of bill lamellae was observed in historical wild mallards (only males. Farmed mallards had wider bills than present-day and historical wild ones. Present-day wild and farmed mallards also had higher and shorter bills than historical wild mallards. Present-day mallards thus tend to have more "goose-like" bills (wider, higher, and shorter than their ancestors. Our study suggests that surviving released mallards affect morphological traits in wild population by introgression. We discuss how such anthropogenic impact may lead to a maladapted and genetically compromised wild mallard population. Our study system has bearing on other taxa where large-scale releases of conspecifics with 'alien genes' may cause a cryptic invasive process that nevertheless has fitness consequences for individual birds.

  1. Characterization of Bombyx mori mitochondrial transcription factor A, a conserved regulator of mitochondrial DNA.

    Science.gov (United States)

    Sumitani, Megumi; Kondo, Mari; Kasashima, Katsumi; Endo, Hitoshi; Nakamura, Kaoru; Misawa, Toshihiko; Tanaka, Hiromitsu; Sezutsu, Hideki

    2017-04-15

    In the present study, we initially cloned and characterized a mitochondrial transcription factor A (Tfam) homologue in the silkworm, Bombyx mori. Bombyx mori TFAM (BmTFAM) localized to mitochondria in cultured silkworm and human cells, and co-localized with mtDNA nucleoids in human HeLa cells. In an immunoprecipitation analysis, BmTFAM was found to associate with human mtDNA in mitochondria, indicating its feature as a non-specific DNA-binding protein. In spite of the low identity between BmTFAM and human TFAM (26.5%), the expression of BmTFAM rescued mtDNA copy number reductions and enlarged mtDNA nucleoids in HeLa cells, which were induced by human Tfam knockdown. Thus, BmTFAM compensates for the function of human TFAM in HeLa cells, demonstrating that the mitochondrial function of TFAM is highly conserved between silkworms and humans. BmTfam mRNA was strongly expressed in early embryos. Through double-stranded RNA (dsRNA)-based RNA interference (RNAi) in silkworm embryos, we found that the knockdown of BmTFAM reduced the amount of mtDNA and induced growth retardation at the larval stage. Collectively, these results demonstrate that BmTFAM is a highly conserved mtDNA regulator and may be a good candidate for investigating and modulating mtDNA metabolism in this model organism. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Mitochondrial mutations drive prostate cancer aggression

    DEFF Research Database (Denmark)

    Hopkins, Julia F.; Sabelnykova, Veronica Y.; Weischenfeldt, Joachim

    2017-01-01

    Nuclear mutations are well known to drive tumor incidence, aggression and response to therapy. By contrast, the frequency and roles of mutations in the maternally inherited mitochondrial genome are poorly understood. Here we sequence the mitochondrial genomes of 384 localized prostate cancer...... in prostate cancer, and suggest interplay between nuclear and mitochondrial mutational profiles in prostate cancer....

  3. Mitochondrial Dynamics in Type 2 Diabetes and Cancer

    Directory of Open Access Journals (Sweden)

    Michelle Williams

    2018-04-01

    Full Text Available Mitochondria are bioenergetic, biosynthetic, and signaling organelles that control various aspects of cellular and organism homeostasis. Quality control mechanisms are in place to ensure maximal mitochondrial function and metabolic homeostasis at the cellular level. Dysregulation of these pathways is a common theme in human disease. In this mini-review, we discuss how alterations of the mitochondrial network influences mitochondrial function, focusing on the molecular regulators of mitochondrial dynamics (organelle’s shape and localization. We highlight similarities and critical differences in the mitochondrial network of cancer and type 2 diabetes, which may be relevant for treatment of these diseases.

  4. Mitochondrial Sensorineural Hearing Loss: A Retrospective Study and a Description of Cochlear Implantation in a MELAS Patient

    Directory of Open Access Journals (Sweden)

    Mauro Scarpelli

    2012-01-01

    Full Text Available Hearing impairment is common in patients with mitochondrial disorders, affecting over half of all cases at some time in the course of the disease. In some patients, deafness is only part of a multisystem disorder. By contrast, there are also a number of “pure” mitochondrial deafness disorders, the most common probably being maternally inherited. We retrospectively analyzed the last 60 genetically confirmed mitochondrial disorders diagnosed in our Department: 28 had bilateral sensorineural hearing loss, whereas 32 didn't present ear's abnormalities, without difference about sex and age of onset between each single group of diseases. We reported also a case of MELAS patient with sensorineural hearing loss, in which cochlear implantation greatly contributed to the patient's quality of life. Our study suggests that sensorineural hearing loss is an important feature in mitochondrial disorders and indicated that cochlear implantation can be recommended for patients with MELAS syndrome and others mitochondrial disorders.

  5. Legionella pneumophila secretes a mitochondrial carrier protein during infection.

    Directory of Open Access Journals (Sweden)

    Pavel Dolezal

    2012-01-01

    Full Text Available The Mitochondrial Carrier Family (MCF is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionellanucleotide carrier Protein (LncP, encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms.

  6. ALS-associated mutation SOD1G93A leads to abnormal mitochondrial dynamics in osteocytes.

    Science.gov (United States)

    Wang, Huan; Yi, Jianxun; Li, Xuejun; Xiao, Yajuan; Dhakal, Kamal; Zhou, Jingsong

    2018-01-01

    While the death of motor neuron is a pathological hallmark of amyotrophic lateral sclerosis (ALS), defects in other cell types or organs may also actively contribute to ALS disease progression. ALS patients experience progressive skeletal muscle wasting that may not only exacerbate neuronal degeneration, but likely has a significant impact on bone function. In our previous published study, we have discovered severe bone loss in an ALS mouse model with overexpression of ALS-associated mutation SOD1 G93A (G93A). Here we further provide a mechanistic understanding of the bone loss in ALS animal and cellular models. Combining mitochondrial fluorescent indicators and confocal live cell imaging, we discovered abnormalities in mitochondrial network and dynamics in primary osteocytes derived from the same ALS mouse model G93A. Those mitochondrial defects occur in ALS mice after the onset of neuromuscular symptoms, indicating that mitochondria in bone cells respond to muscle atrophy during ALS disease progression. To examine whether ALS mutation has a direct contribution to mitochondrial dysfunction independent of muscle atrophy, we evaluated mitochondrial morphology and motility in cultured osteocytes (MLO-Y4) with overexpression of mitochondrial targeted SOD1 G93A . Compared with osteocytes overexpressing the wild type SOD1 as a control, the SOD1 G93A osteocytes showed similar defects in mitochondrial network and dynamic as that of the primary osteocytes derived from the ALS mouse model. In addition, we further discovered that overexpression of SOD1 G93A enhanced the expression level of dynamin-related protein 1 (Drp1), a key protein promoting mitochondrial fission activity, and reduced the expression level of optic atrophy protein 1 (OPA1), a key protein related to mitochondrial fusion. A specific mitochondrial fission inhibitor (Mdivi-1) partially reversed the effect of SOD1 G93A on mitochondrial network and dynamics, indicating that SOD1 G93A likely promotes

  7. A nontoxic, photostable and high signal-to-noise ratio mitochondrial probe with mitochondrial membrane potential and viscosity detectivity

    Science.gov (United States)

    Chen, Yanan; Qi, Jianguo; Huang, Jing; Zhou, Xiaomin; Niu, Linqiang; Yan, Zhijie; Wang, Jianhong

    2018-01-01

    Herein, we reported a yellow emission probe 1-methyl-4-(6-morpholino-1, 3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl) pyridin-1-ium iodide which could specifically stain mitochondria in living immortalized and normal cells. In comparison to the common mitochondria tracker (Mitotracker Deep Red, MTDR), this probe was nontoxic, photostable and ultrahigh signal-to-noise ratio, which could real-time monitor mitochondria for a long time. Moreover, this probe also showed high sensitivity towards mitochondrial membrane potential and intramitochondrial viscosity change. Consequently, this probe was used for imaging mitochondria, detecting changes in mitochondrial membrane potential and intramitochondrial viscosity in physiological and pathological processes.

  8. Altered Mitochondrial Dynamics and TBI Pathophysiology

    Directory of Open Access Journals (Sweden)

    Tara Diane Fischer

    2016-03-01

    Full Text Available Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS, and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1, which translocates to the mitochondrial outer membrane to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 hours post-injury, followed by a significant decrease in length at 72 hours. Post-TBI administration of Mdivi-1, a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the hippocampus and improved

  9. Selective scavenging of intra-mitochondrial superoxide corrects diclofenac-induced mitochondrial dysfunction and gastric injury: A novel gastroprotective mechanism independent of gastric acid suppression.

    Science.gov (United States)

    Mazumder, Somnath; De, Rudranil; Sarkar, Souvik; Siddiqui, Asim Azhar; Saha, Shubhra Jyoti; Banerjee, Chinmoy; Iqbal, Mohd Shameel; Nag, Shiladitya; Debsharma, Subhashis; Bandyopadhyay, Uday

    2016-12-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to treat multiple inflammatory diseases and pain but severe gastric mucosal damage is the worst outcome of NSAID-therapy. Here we report that mitoTEMPO, a mitochondrially targeted superoxide (O 2 - ) scavenger protected as well as healed gastric injury induced by diclofenac (DCF), the most commonly used NSAID. Common existing therapy against gastric injury involves suppression of gastric acid secretion by proton pump inhibitors and histamine H 2 receptor antagonists; however, dyspepsia, vitamin B12 deficiency and gastric microfloral dysbalance are the major drawbacks of acid suppression. Interestingly, mitoTEMPO did not inhibit gastric acid secretion but offered gastroprotection by preventing DCF-induced generation of O 2 - due to mitochondrial respiratory chain failure and by preventing mitochondrial oxidative stress (MOS)-mediated mitopathology. MitoTEMPO even restored DCF-stimulated reduced fatty acid oxidation, mitochondrial depolarization and bioenergetic crisis in gastric mucosa. MitoTEMPO also prevented the activation of mitochondrial pathway of apoptosis and MOS-mediated proinflammatory signaling through NF-κB by DCF. Furthermore, mitoTEMPO when administered in rats with preformed gastric lesions expedited the healing of gastric injury and the healed stomach exhibited its normal physiology as evident from gastric acid and pepsin secretions under basal or stimulated conditions. Thus, in contrast to the existing antiulcer drugs, mitochondrially targeted O 2 - scavengers like mitoTEMPO may represent a novel class of gastroprotective molecules that does not affect gastric acid secretion and may be used in combination with DCF, keeping its anti-inflammatory action intact, while reducing its gastrodamaging effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A multipartite mitochondrial genome in the potato cyst nematode Globodera pallida.

    Science.gov (United States)

    Armstrong, M R; Blok, V C; Phillips, M S

    2000-01-01

    The mitochondrial genome (mtDNA) of the plant parasitic nematode Globodera pallida exists as a population of small, circular DNAs that, taken individually, are of insufficient length to encode the typical metazoan mitochondrial gene complement. As far as we are aware, this unusual structural organization is unique among higher metazoans, although interesting comparisons can be made with the multipartite mitochondrial genome organizations of plants and fungi. The variation in frequency between populations displayed by some components of the mtDNA is likely to have major implications for the way in which mtDNA can be used in population and evolutionary genetic studies of G. pallida.

  11. A Metabolic Signature of Mitochondrial Dysfunction Revealed through a Monogenic Form of Leigh Syndrome

    Directory of Open Access Journals (Sweden)

    Julie Thompson Legault

    2015-11-01

    Full Text Available A decline in mitochondrial respiration represents the root cause of a large number of inborn errors of metabolism. It is also associated with common age-associated diseases and the aging process. To gain insight into the systemic, biochemical consequences of respiratory chain dysfunction, we performed a case-control, prospective metabolic profiling study in a genetically homogenous cohort of patients with Leigh syndrome French Canadian variant, a mitochondrial respiratory chain disease due to loss-of-function mutations in LRPPRC. We discovered 45 plasma and urinary analytes discriminating patients from controls, including classic markers of mitochondrial metabolic dysfunction (lactate and acylcarnitines, as well as unexpected markers of cardiometabolic risk (insulin and adiponectin, amino acid catabolism linked to NADH status (α-hydroxybutyrate, and NAD+ biosynthesis (kynurenine and 3-hydroxyanthranilic acid. Our study identifies systemic, metabolic pathway derangements that can lie downstream of primary mitochondrial lesions, with implications for understanding how the organelle contributes to rare and common diseases.

  12. MitBASE : a comprehensive and integrated mitochondrial DNA database. The present status

    NARCIS (Netherlands)

    Attimonelli, M.; Altamura, N.; Benne, R.; Brennicke, A.; Cooper, J. M.; D'Elia, D.; Montalvo, A.; Pinto, B.; de Robertis, M.; Golik, P.; Knoop, V.; Lanave, C.; Lazowska, J.; Licciulli, F.; Malladi, B. S.; Memeo, F.; Monnerot, M.; Pasimeni, R.; Pilbout, S.; Schapira, A. H.; Sloof, P.; Saccone, C.

    2000-01-01

    MitBASE is an integrated and comprehensive database of mitochondrial DNA data which collects, under a single interface, databases for Plant, Vertebrate, Invertebrate, Human, Protist and Fungal mtDNA and a Pilot database on nuclear genes involved in mitochondrial biogenesis in Saccharomyces

  13. The rhizome of Reclinomonas americana, Homo sapiens, Pediculus humanus and Saccharomyces cerevisiae mitochondria

    Directory of Open Access Journals (Sweden)

    Raoult Didier

    2011-10-01

    Full Text Available Abstract Background Mitochondria are thought to have evolved from eubacteria-like endosymbionts; however, the origin of the mitochondrion remains a subject of debate. In this study, we investigated the phenomenon of chimerism in mitochondria to shed light on the origin of these organelles by determining which species played a role in their formation. We used the mitochondria of four distinct organisms, Reclinomonas americana, Homo sapiens, Saccharomyces cerevisiae and multichromosome Pediculus humanus, and attempted to identify the origin of each mitochondrial gene. Results Our results suggest that the origin of mitochondrial genes is not limited to the Rickettsiales and that the creation of these genes did not occur in a single event, but through multiple successive events. Some of these events are very old and were followed by events that are more recent and occurred through the addition of elements originating from current species. The points in time that the elements were added and the parental species of each gene in the mitochondrial genome are different to the individual species. These data constitute strong evidence that mitochondria do not have a single common ancestor but likely have numerous ancestors, including proto-Rickettsiales, proto-Rhizobiales and proto-Alphaproteobacteria, as well as current alphaproteobacterial species. The analysis of the multichromosome P. humanus mitochondrion supports this mechanism. Conclusions The most plausible scenario of the origin of the mitochondrion is that ancestors of Rickettsiales and Rhizobiales merged in a proto-eukaryotic cell approximately one billion years ago. The fusion of the Rickettsiales and Rhizobiales cells was followed by gene loss, genomic rearrangements and the addition of alphaproteobacterial elements through ancient and more recent recombination events. Each gene of each of the four studied mitochondria has a different origin, while in some cases, multichromosomes may allow for

  14. DJ-1 KNOCK-DOWN IMPAIRS ASTROCYTE MITOCHONDRIAL FUNCTION

    Science.gov (United States)

    LARSEN, N. J.; AMBROSI, G.; MULLETT, S. J.; BERMAN, S. B.; HINKLE, D. A.

    2012-01-01

    Mitochondrial dysfunction has long been implicated in the pathogenesis of Parkinson’s disease (PD). PD brain tissues show evidence for mitochondrial respiratory chain Complex I deficiency. Pharmacological inhibitors of Complex I, such as rotenone, cause experimental parkinsonism. The cytoprotective protein DJ-1, whose deletion is sufficient to cause genetic PD, is also known to have mitochondria-stabilizing properties. We have previously shown that DJ-1 is over-expressed in PD astrocytes, and that DJ-1 deficiency impairs the capacity of astrocytes to protect co-cultured neurons against rotenone. Since DJ-1 modulated, astrocyte-mediated neuroprotection against rotenone may depend upon proper astrocytic mitochondrial functioning, we hypothesized that DJ-1 deficiency would impair astrocyte mitochondrial motility, fission/fusion dynamics, membrane potential maintenance, and respiration, both at baseline and as an enhancement of rotenone-induced mitochondrial dysfunction. In astrocyte-enriched cultures, we observed that DJ-1 knock-down reduced mitochondrial motility primarily in the cellular processes of both untreated and rotenone treated cells. In these same cultures, DJ-1 knock-down did not appreciably affect mitochondrial fission, fusion, or respiration, but did enhance rotenone-induced reductions in the mitochondrial membrane potential. In neuron–astrocyte co-cultures, astrocytic DJ-1 knock-down reduced astrocyte process mitochondrial motility in untreated cells, but this effect was not maintained in the presence of rotenone. In the same co-cultures, astrocytic DJ-1 knock-down significantly reduced mitochondrial fusion in the astrocyte cell bodies, but not the processes, under the same conditions of rotenone treatment in which DJ-1 deficiency is known to impair astrocyte-mediated neuroprotection. Our studies therefore demonstrated the following new findings: (i) DJ-1 deficiency can impair astrocyte mitochondrial physiology at multiple levels, (ii) astrocyte

  15. Mitochondrial-Targeted Antioxidant Maintains Blood Flow, Mitochondrial Function, and Redox Balance in Old Mice Following Prolonged Limb Ischemia

    Directory of Open Access Journals (Sweden)

    Shunsuke Miura

    2017-09-01

    Full Text Available Aging is a major factor in the decline of limb blood flow with ischemia. However, the underlying mechanism remains unclear. We investigated the role of mitochondrial reactive oxygen species (ROS with regard to limb perfusion recovery in aging during ischemia. We performed femoral artery ligation in young and old mice with or without treatment with a scavenger of mitochondrial superoxide, MitoTEMPO (180 μg/kg/day, from pre-operative day 7 to post-operative day (POD 21 infusion using an implanted mini-pump. The recoveries of cutaneous blood flow in the ischemic hind limb were lower in old mice than in young mice but were improved in MitoTEMPO-treated old mice. Mitochondrial DNA damage appeared in ischemic aged muscles but was eliminated by MitoTEMPO treatment. For POD 2, MitoTEMPO treatment suppressed the expression of p53 and the ratio of Bax/Bcl2 and upregulated the expression of hypoxia-inducible factor-1α (HIF-1α and vascular endothelial growth factor (VEGF in ischemic aged skeletal muscles. For POD 21, MitoTEMPO treatment preserved the expression of PGC-1α in ischemic aged skeletal muscle. The ischemic soleus of old mice showed a lower mitochondrial respiratory control ratio in POD 21 compared to young mice, which was recovered in MitoTEMPO-treated old mice. Scavenging of mitochondrial superoxide attenuated mitochondrial DNA damage and preserved the mitochondrial respiration, in addition to suppression of the expression of p53 and preservation of the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α in ischemic skeletal muscles with aging. Resolution of excessive mitochondrial superoxide could be an effective therapy to recover blood flow of skeletal muscle during ischemia in senescence.

  16. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway.

    Directory of Open Access Journals (Sweden)

    Angela C Poole

    2010-04-01

    Full Text Available Loss-of-function mutations in the PINK1 or parkin genes result in recessive heritable forms of parkinsonism. Genetic studies of Drosophila orthologs of PINK1 and parkin indicate that PINK1, a mitochondrially targeted serine/threonine kinase, acts upstream of Parkin, a cytosolic ubiquitin-protein ligase, to promote mitochondrial fragmentation, although the molecular mechanisms by which the PINK1/Parkin pathway promotes mitochondrial fragmentation are unknown. We tested the hypothesis that PINK1 and Parkin promote mitochondrial fragmentation by targeting core components of the mitochondrial morphogenesis machinery for ubiquitination. We report that the steady-state abundance of the mitochondrial fusion-promoting factor Mitofusin (dMfn is inversely correlated with the activity of PINK1 and Parkin in Drosophila. We further report that dMfn is ubiquitinated in a PINK1- and Parkin-dependent fashion and that dMfn co-immunoprecipitates with Parkin. By contrast, perturbations of PINK1 or Parkin did not influence the steady-state abundance of the mitochondrial fission-promoting factor Drp1 or the mitochondrial fusion-promoting factor Opa1, or the subcellular distribution of Drp1. Our findings suggest that dMfn is a direct substrate of the PINK1/Parkin pathway and that the mitochondrial morphological alterations and tissue degeneration phenotypes that derive from mutations in PINK1 and parkin result at least in part from reduced ubiquitin-mediated turnover of dMfn.

  17. Transaldolase inhibition impairs mitochondrial respiration and induces a starvation-like longevity response in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Christopher F Bennett

    2017-03-01

    Full Text Available Mitochondrial dysfunction can increase oxidative stress and extend lifespan in Caenorhabditis elegans. Homeostatic mechanisms exist to cope with disruptions to mitochondrial function that promote cellular health and organismal longevity. Previously, we determined that decreased expression of the cytosolic pentose phosphate pathway (PPP enzyme transaldolase activates the mitochondrial unfolded protein response (UPRmt and extends lifespan. Here we report that transaldolase (tald-1 deficiency impairs mitochondrial function in vivo, as evidenced by altered mitochondrial morphology, decreased respiration, and increased cellular H2O2 levels. Lifespan extension from knockdown of tald-1 is associated with an oxidative stress response involving p38 and c-Jun N-terminal kinase (JNK MAPKs and a starvation-like response regulated by the transcription factor EB (TFEB homolog HLH-30. The latter response promotes autophagy and increases expression of the flavin-containing monooxygenase 2 (fmo-2. We conclude that cytosolic redox established through the PPP is a key regulator of mitochondrial function and defines a new mechanism for mitochondrial regulation of longevity.

  18. Mitochondrial Reactive Oxygen Species Mediate Cardiac Structural, Functional, and Mitochondrial Consequences of Diet-Induced Metabolic Heart Disease.

    Science.gov (United States)

    Sverdlov, Aaron L; Elezaby, Aly; Qin, Fuzhong; Behring, Jessica B; Luptak, Ivan; Calamaras, Timothy D; Siwik, Deborah A; Miller, Edward J; Liesa, Marc; Shirihai, Orian S; Pimentel, David R; Cohen, Richard A; Bachschmid, Markus M; Colucci, Wilson S

    2016-01-11

    Mitochondrial reactive oxygen species (ROS) are associated with metabolic heart disease (MHD). However, the mechanism by which ROS cause MHD is unknown. We tested the hypothesis that mitochondrial ROS are a key mediator of MHD. Mice fed a high-fat high-sucrose (HFHS) diet develop MHD with cardiac diastolic and mitochondrial dysfunction that is associated with oxidative posttranslational modifications of cardiac mitochondrial proteins. Transgenic mice that express catalase in mitochondria and wild-type mice were fed an HFHS or control diet for 4 months. Cardiac mitochondria from HFHS-fed wild-type mice had a 3-fold greater rate of H2O2 production (P=0.001 versus control diet fed), a 30% decrease in complex II substrate-driven oxygen consumption (P=0.006), 21% to 23% decreases in complex I and II substrate-driven ATP synthesis (P=0.01), and a 62% decrease in complex II activity (P=0.002). In transgenic mice that express catalase in mitochondria, all HFHS diet-induced mitochondrial abnormalities were ameliorated, as were left ventricular hypertrophy and diastolic dysfunction. In HFHS-fed wild-type mice complex II substrate-driven ATP synthesis and activity were restored ex vivo by dithiothreitol (5 mmol/L), suggesting a role for reversible cysteine oxidative posttranslational modifications. In vitro site-directed mutation of complex II subunit B Cys100 or Cys103 to redox-insensitive serines prevented complex II dysfunction induced by ROS or high glucose/high palmitate in the medium. Mitochondrial ROS are pathogenic in MHD and contribute to mitochondrial dysfunction, at least in part, by causing oxidative posttranslational modifications of complex I and II proteins including reversible oxidative posttranslational modifications of complex II subunit B Cys100 and Cys103. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  19. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies.

    Directory of Open Access Journals (Sweden)

    Masakazu Kohda

    2016-01-01

    Full Text Available Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4 as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3 and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21 as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder.

  20. Mitochondrial Dysfunction in Lysosomal Storage Disorders

    Directory of Open Access Journals (Sweden)

    Mario de la Mata

    2016-10-01

    Full Text Available Lysosomal storage diseases (LSDs describe a heterogeneous group of rare inherited metabolic disorders that result from the absence or loss of function of lysosomal hydrolases or transporters, resulting in the progressive accumulation of undigested material in lysosomes. The accumulation of substances affects the function of lysosomes and other organelles, resulting in secondary alterations such as impairment of autophagy, mitochondrial dysfunction, inflammation and apoptosis. LSDs frequently involve the central nervous system (CNS, where neuronal dysfunction or loss results in progressive neurodegeneration and premature death. Many LSDs exhibit signs of mitochondrial dysfunction, which include mitochondrial morphological changes, decreased mitochondrial membrane potential (ΔΨm, diminished ATP production and increased generation of reactive oxygen species (ROS. Furthermore, reduced autophagic flux may lead to the persistence of dysfunctional mitochondria. Gaucher disease (GD, the LSD with the highest prevalence, is caused by mutations in the GBA1 gene that results in defective and insufficient activity of the enzyme β-glucocerebrosidase (GCase. Decreased catalytic activity and/or instability of GCase leads to accumulation of glucosylceramide (GlcCer and glucosylsphingosine (GlcSph in the lysosomes of macrophage cells and visceral organs. Mitochondrial dysfunction has been reported to occur in numerous cellular and mouse models of GD. The aim of this manuscript is to review the current knowledge and implications of mitochondrial dysfunction in LSDs.

  1. The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats.

    Directory of Open Access Journals (Sweden)

    Andrew J Alverson

    2011-01-01

    Full Text Available The mitochondrial genomes of seed plants are exceptionally fluid in size, structure, and sequence content, with the accumulation and activity of repetitive sequences underlying much of this variation. We report the first fully sequenced mitochondrial genome of a legume, Vigna radiata (mung bean, and show that despite its unexceptional size (401,262 nt, the genome is unusually depauperate in repetitive DNA and "promiscuous" sequences from the chloroplast and nuclear genomes. Although Vigna lacks the large, recombinationally active repeats typical of most other seed plants, a PCR survey of its modest repertoire of short (38-297 nt repeats nevertheless revealed evidence for recombination across all of them. A set of novel control assays showed, however, that these results could instead reflect, in part or entirely, artifacts of PCR-mediated recombination. Consequently, we recommend that other methods, especially high-depth genome sequencing, be used instead of PCR to infer patterns of plant mitochondrial recombination. The average-sized but repeat- and feature-poor mitochondrial genome of Vigna makes it ever more difficult to generalize about the factors shaping the size and sequence content of plant mitochondrial genomes.

  2. Stress and coping of parents caring for a child with mitochondrial disease.

    Science.gov (United States)

    Senger, Brenda A; Ward, Linda D; Barbosa-Leiker, Celestina; Bindler, Ruth C

    2016-02-01

    Mitochondrial disease comprises a group of rare, genetic, life-limiting, neurodegenerative disorders known to affect children. Little is known about disease-related challenges, parental stress, and coping when caring for a child with a mitochondrial disease. This study explored disease-related characteristics and parental stressors and coping behaviors related to caring for a child with mitochondrial disease. Internet surveys were posted on known mitochondrial disease websites for parent completion. Surveys included demographic items and two questionnaires: Coping Inventory for Parents (CHIP) and Pediatric Inventory for Parents (PIP). Descriptive data were collected and correlations used to determine relationships between parenting stress, coping, and demographic variables. The majority of participants (n=231) were mothers (95%) of children with mitochondrial disease around the age of 10 years (M=9.85). On average, children had 6 organs involved (M=6.02) and saw 7 different specialists (M=7.49); 61% were hospitalized in the past year. Significant correlations (pstress and parent age, parent income, parent education, child age, child age at diagnosis, presence of developmental delays, number of hospitalizations, number of medical visits, number of organs involved, and number of specialists seen. Significant correlations were also found between parenting stress and coping behaviors such as family integration, social support and understanding health care. The ability to identify disease-related challenges, stressors, and coping strategies in parents of children with mitochondrial disease is novel and can assist nurses to provide disease-sensitive, family-focused care and improve child health outcomes. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Mitochondrial AAA proteases--towards a molecular understanding of membrane-bound proteolytic machines.

    Science.gov (United States)

    Gerdes, Florian; Tatsuta, Takashi; Langer, Thomas

    2012-01-01

    Mitochondrial AAA proteases play an important role in the maintenance of mitochondrial proteostasis. They regulate and promote biogenesis of mitochondrial proteins by acting as processing enzymes and ensuring the selective turnover of misfolded proteins. Impairment of AAA proteases causes pleiotropic defects in various organisms including neurodegeneration in humans. AAA proteases comprise ring-like hexameric complexes in the mitochondrial inner membrane and are functionally conserved from yeast to man, but variations are evident in the subunit composition of orthologous enzymes. Recent structural and biochemical studies revealed how AAA proteases degrade their substrates in an ATP dependent manner. Intersubunit coordination of the ATP hydrolysis leads to an ordered ATP hydrolysis within the AAA ring, which ensures efficient substrate dislocation from the membrane and translocation to the proteolytic chamber. In this review, we summarize recent findings on the molecular mechanisms underlying the versatile functions of mitochondrial AAA proteases and their relevance to those of the other AAA+ machines. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Mechanistic perspective of mitochondrial fusion: tubulation vs. fragmentation.

    Science.gov (United States)

    Escobar-Henriques, Mafalda; Anton, Fabian

    2013-01-01

    Mitochondrial fusion is a fundamental process driven by dynamin related GTPase proteins (DRPs), in contrast to the general SNARE-dependence of most cellular fusion events. The DRPs Mfn1/Mfn2/Fzo1 and OPA1/Mgm1 are the key effectors for fusion of the mitochondrial outer and inner membranes, respectively. In order to promote fusion, these two DRPs require post-translational modifications and proteolysis. OPA1/Mgm1 undergoes partial proteolytic processing, which results in a combination between short and long isoforms. In turn, ubiquitylation of mitofusins, after oligomerization and GTP hydrolysis, promotes and positively regulates mitochondrial fusion. In contrast, under conditions of mitochondrial dysfunction, negative regulation by proteolysis on these DRPs results in mitochondrial fragmentation. This occurs by complete processing of OPA1 and via ubiquitylation and degradation of mitofusins. Mitochondrial fragmentation contributes to the elimination of damaged mitochondria by mitophagy, and may play a protective role against Parkinson's disease. Moreover, a link of Mfn2 to Alzheimer's disease is emerging and mutations in Mfn2 or OPA1 cause Charcot-Marie-Tooth type 2A neuropathy or autosomal-dominant optic atrophy. Here, we summarize our current understanding on the molecular mechanisms promoting or inhibiting fusion of mitochondrial membranes, which is essential for cellular survival and disease control. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Mitochondrial respiratory efficiency is positively correlated with human sperm motility.

    Science.gov (United States)

    Ferramosca, Alessandra; Provenzano, Sara Pinto; Coppola, Lamberto; Zara, Vincenzo

    2012-04-01

    To correlate sperm mitochondrial respiratory efficiency with variations in sperm motility and with sperm morphologic anomalies. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically-treated sperm cells. A possible relationship among sperm mitochondrial respiratory efficiency, sperm motility, and morphologic anomalies was investigated. Mitochondrial respiratory efficiency was positively correlated with sperm motility and negatively correlated with the percentage of immotile spermatozoa. Moreover, midpiece defects impaired mitochondrial functionality. Our data indicate that an increase in sperm motility requires a parallel increase in mitochondrial respiratory capacity, thereby supporting the fundamental role played by mitochondrial oxidative phosphorylation in sperm motility of normozoospermic subjects. These results are of physiopathological relevance because they suggest that disturbances of sperm mitochondrial function and of energy production could be responsible for asthenozoospermia. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Piracetam improves mitochondrial dysfunction following oxidative stress

    OpenAIRE

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2005-01-01

    Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging.Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction fol...

  7. Piracetam improves mitochondrial dysfunction following oxidative stress

    Science.gov (United States)

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2005-01-01

    Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging. Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction following oxidative stress was investigated using PC12 cells and dissociated brain cells of animals treated with piracetam. Piracetam treatment at concentrations between 100 and 1000 μM improved mitochondrial membrane potential and ATP production of PC12 cells following oxidative stress induced by sodium nitroprusside (SNP) and serum deprivation. Under conditions of mild serum deprivation, piracetam (500 μM) induced a nearly complete recovery of mitochondrial membrane potential and ATP levels. Piracetam also reduced caspase 9 activity after SNP treatment. Piracetam treatment (100–500 mg kg−1 daily) of mice was also associated with improved mitochondrial function in dissociated brain cells. Significant improvement was mainly seen in aged animals and only less in young animals. Moreover, the same treatment reduced antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and glutathione reductase) in aged mouse brain only, which are elevated as an adaptive response to the increased oxidative stress with aging. In conclusion, therapeutically relevant in vitro and in vivo concentrations of piracetam are able to improve mitochondrial dysfunction associated with oxidative stress and/or aging. Mitochondrial stabilization and protection might be an important mechanism to explain many of piracetam's beneficial effects in elderly patients. PMID:16284628

  8. Carriers of mitochondrial DNA macrohaplogroup R colonized Eurasia and Australasia from a southeast Asia core area.

    Science.gov (United States)

    Larruga, Jose M; Marrero, Patricia; Abu-Amero, Khaled K; Golubenko, Maria V; Cabrera, Vicente M

    2017-05-23

    The colonization of Eurasia and Australasia by African modern humans has been explained, nearly unanimously, as the result of a quick southern coastal dispersal route through the Arabian Peninsula, the Indian subcontinent, and the Indochinese Peninsula, to reach Australia around 50 kya. The phylogeny and phylogeography of the major mitochondrial DNA Eurasian haplogroups M and N have played the main role in giving molecular genetics support to that scenario. However, using the same molecular tools, a northern route across central Asia has been invoked as an alternative that is more conciliatory with the fossil record of East Asia. Here, we assess as the Eurasian macrohaplogroup R fits in the northern path. Haplogroup U, with a founder age around 50 kya, is one of the oldest clades of macrohaplogroup R in western Asia. The main branches of U expanded in successive waves across West, Central and South Asia before the Last Glacial Maximum. All these dispersions had rather overlapping ranges. Some of them, as those of U6 and U3, reached North Africa. At the other end of Asia, in Wallacea, another branch of macrohaplogroup R, haplogroup P, also independently expanded in the area around 52 kya, in this case as isolated bursts geographically well structured, with autochthonous branches in Australia, New Guinea, and the Philippines. Coeval independently dispersals around 50 kya of the West Asia haplogroup U and the Wallacea haplogroup P, points to a halfway core area in southeast Asia as the most probable centre of expansion of macrohaplogroup R, what fits in the phylogeographic pattern of its ancestor, macrohaplogroup N, for which a northern route and a southeast Asian origin has been already proposed.

  9. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  10. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia.

    Science.gov (United States)

    McCarthy, Cathal; Kenny, Louise C

    2016-09-08

    Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates.

  11. A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network.

    Directory of Open Access Journals (Sweden)

    Lufang Zhou

    2010-01-01

    Full Text Available Loss of mitochondrial function is a fundamental determinant of cell injury and death. In heart cells under metabolic stress, we have previously described how the abrupt collapse or oscillation of the mitochondrial energy state is synchronized across the mitochondrial network by local interactions dependent upon reactive oxygen species (ROS. Here, we develop a mathematical model of ROS-induced ROS release (RIRR based on reaction-diffusion (RD-RIRR in one- and two-dimensional mitochondrial networks. The nodes of the RD-RIRR network are comprised of models of individual mitochondria that include a mechanism of ROS-dependent oscillation based on the interplay between ROS production, transport, and scavenging; and incorporating the tricarboxylic acid (TCA cycle, oxidative phosphorylation, and Ca(2+ handling. Local mitochondrial interaction is mediated by superoxide (O2.- diffusion and the O2.(--dependent activation of an inner membrane anion channel (IMAC. In a 2D network composed of 500 mitochondria, model simulations reveal DeltaPsi(m depolarization waves similar to those observed when isolated guinea pig cardiomyocytes are subjected to a localized laser-flash or antioxidant depletion. The sensitivity of the propagation rate of the depolarization wave to O(2.- diffusion, production, and scavenging in the reaction-diffusion model is similar to that observed experimentally. In addition, we present novel experimental evidence, obtained in permeabilized cardiomyocytes, confirming that DeltaPsi(m depolarization is mediated specifically by O2.-. The present work demonstrates that the observed emergent macroscopic properties of the mitochondrial network can be reproduced in a reaction-diffusion model of RIRR. Moreover, the findings have uncovered a novel aspect of the synchronization mechanism, which is that clusters of mitochondria that are oscillating can entrain mitochondria that would otherwise display stable dynamics. The work identifies the

  12. A mitochondrial genome sequence of the Tibetan antelope (Pantholops hodgsonii)

    DEFF Research Database (Denmark)

    Xu, Shu Qing; Yang, Ying Zhong; Zhou, Jun

    2005-01-01

    To investigate genetic mechanisms of high altitude adaptations of native mammals on the Tibetan Plateau, we compared mitochondrial sequences of the endangered Pantholops hodgsonii with its lowland distant relatives Ovis aries and Capra hircus, as well as other mammals. The complete mitochondrial...... genome of P. hodgsonii (16,498 bp) revealed a similar gene order as of other mammals. Because of tandem duplications, the control region of P. hodgsonii mitochondrial genome is shorter than those of O. aries and C. hircus, but longer than those of Bos species. Phylogenetic analysis based on alignments...... of the entire cytochrome b genes suggested that P. hodgsonii is more closely related to O. aries and C. hircus, rather than to species of the Antilopinae subfamily. The estimated divergence time between P. hodgsonii and O. aries is about 2.25 million years ago. Further analysis on natural selection indicated...

  13. In pursuit of our ancestors' hand laterality.

    Science.gov (United States)

    Bargalló, Amèlia; Mosquera, Marina; Lozano, Sergi

    2017-10-01

    The aim of this paper is to apply a previously published method (Bargalló and Mosquera, 2014) to the archaeological record, allowing us to identify the hand laterality of our ancestors and determine when and how this feature, which is exhibited most strongly in humans, appeared in our evolutionary history. The method focuses on identifying handedness by looking at the technical features of the flakes produced by a single knapper, and discovering how many flakes are required to ascertain their hand preference. This method can potentially be applied to the majority of archaeological sites, since flakes are the most abundant stone tools, and stone tools are the most widespread and widely-preserved remains from prehistory. For our study, we selected two Spanish sites: Gran Dolina-TD10.1 (Atapuerca) and Abric Romaní (Barcelona), which were occupied by pre-Neanderthal and Neanderthal populations, respectively. Our analyses indicate that a minimum number of eight flakes produced by the same knapper is required to ascertain their hand preference. Even though this figure is relatively low, it is quite difficult to obtain from many archaeological sites. In addition, there is no single technical feature that provides information about handedness, instead there is a combination of eight technical features, localised on the striking platforms and ventral surfaces. The raw material is not relevant where good quality rocks are used, in this case quartzite and flint, since most of them retain the technical features required for the analysis. Expertise is not an issue either, since the technical features analysed here only correlate with handedness (Bargalló and Mosquera, 2014). Our results allow us to tentatively identify one right-handed knapper among the pre-Neanderthals of level TD10.1 at Gran Dolina (Atapuerca), while four of the five Neanderthals analysed from Abric Romaní were right-handed. The hand preference of the fifth knapper from that location (AR5) remains unclear

  14. Phylogeny and biogeography of highly diverged freshwater fish species (Leuciscinae, Cyprinidae, Teleostei) inferred from mitochondrial genome analysis.

    Science.gov (United States)

    Imoto, Junichi M; Saitoh, Kenji; Sasaki, Takeshi; Yonezawa, Takahiro; Adachi, Jun; Kartavtsev, Yuri P; Miya, Masaki; Nishida, Mutsumi; Hanzawa, Naoto

    2013-02-10

    The distribution of freshwater taxa is a good biogeographic model to study pattern and process of vicariance and dispersal. The subfamily Leuciscinae (Cyprinidae, Teleostei) consists of many species distributed widely in Eurasia and North America. Leuciscinae have been divided into two phyletic groups, leuciscin and phoxinin. The phylogenetic relationships between major clades within the subfamily are poorly understood, largely because of the overwhelming diversity of the group. The origin of the Far Eastern phoxinin is an interesting question regarding the evolutionary history of Leuciscinae. Here we present phylogenetic analysis of 31 species of Leuciscinae and outgroups based on complete mitochondrial genome sequences to clarify the phylogenetic relationships and to infer the evolutionary history of the subfamily. Phylogenetic analysis suggests that the Far Eastern phoxinin species comprised the monophyletic clades Tribolodon, Pseudaspius, Oreoleuciscus and Far Eastern Phoxinus. The Far Eastern phoxinin clade was independent of other Leuciscinae lineages and was closer to North American phoxinins than European leuciscins. All of our analysis also suggested that leuciscins and phoxinins each constituted monophyletic groups. Divergence time estimation suggested that Leuciscinae species diverged from outgroups such as Tincinae to be 83.3 million years ago (Mya) in the Late Cretaceous and leuciscin and phoxinin shared a common ancestor 70.7 Mya. Radiation of Leuciscinae lineages occurred during the Late Cretaceous to Paleocene. This period also witnessed the radiation of tetrapods. Reconstruction of ancestral areas indicates Leuciscinae species originated within Europe. Leuciscin species evolved in Europe and the ancestor of phoxinin was distributed in North America. The Far Eastern phoxinins would have dispersed from North America to Far East across the Beringia land bridge. The present study suggests important roles for the continental rearrangements during the

  15. Thyrotropin-releasing hormone controls mitochondrial biology in human epidermis.

    Science.gov (United States)

    Knuever, Jana; Poeggeler, Burkhard; Gáspár, Erzsébet; Klinger, Matthias; Hellwig-Burgel, Thomas; Hardenbicker, Celine; Tóth, Balázs I; Bíró, Tamás; Paus, Ralf

    2012-03-01

    Mitochondrial capacity and metabolic potential are under the control of hormones, such as thyroid hormones. The most proximal regulator of the hypothalamic-pituitary-thyroid (HPT) axis, TRH, is the key hypothalamic integrator of energy metabolism via its impact on thyroid hormone secretion. Here, we asked whether TRH directly modulates mitochondrial functions in normal, TRH-receptor-positive human epidermis. Organ-cultured human skin was treated with TRH (5-100 ng/ml) for 12-48 h. TRH significantly increased epidermal immunoreactivity for the mitochondria-selective subunit I of respiratory chain complex IV (MTCO1). This resulted from an increased MTCO1 transcription and protein synthesis and a stimulation of mitochondrial biogenesis as demonstrated by transmission electron microscopy and TRH-enhanced mitochondrial DNA synthesis. TRH also significantly stimulated the transcription of several other mitochondrial key genes (TFAM, HSP60, and BMAL1), including the master regulator of mitochondrial biogenesis (PGC-1α). TRH significantly enhanced mitochondrial complex I and IV enzyme activity and enhanced the oxygen consumption of human skin samples, which shows that the stimulated mitochondria are fully vital because the main source for cellular oxygen consumption is mitochondrial endoxidation. These findings identify TRH as a potent, novel neuroendocrine stimulator of mitochondrial activity and biogenesis in human epidermal keratinocytes in situ. Thus, human epidermis offers an excellent model for dissecting neuroendocrine controls of human mitochondrial biology under physiologically relevant conditions and for exploring corresponding clinical applications.

  16. Proteomic Dissection of the Mitochondrial DNA Metabolism Apparatus in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    SAlly A. Mackenzie

    2004-01-06

    This study involves the investigation of nuclear genetic components that regulate mitochondrial genome behavior in higher plants. The approach utilizes the advanced plant model system of Arabidopsis thaliana to identify and functionally characterize multiple components of the mitochondrial DNA replication, recombination and mismatch repair system and their interaction partners. The rationale for the research stems from the central importance of mitochondria to overall cellular metabolism and the essential nature of the mitochondrial genome to mitochondrial function. Relatively little is understood about mitochondrial DNA maintenance and transmission in higher eukaryotes, and the higher plant mitochondrial genome displays unique properties and behavior. This investigation has revealed at least three important properties of plant mitochondrial DNA metabolism components. (1) Many are dual targeted to mitochondrial and chloroplasts by novel mechanisms, suggesting that the mitochondria a nd chloroplast share their genome maintenance apparatus. (2)The MSH1 gene, originating as a component of mismatch repair, has evolved uniquely in plants to participate in differential replication of the mitochondrial genome. (3) This mitochondrial differential replication process, termed substoichiometric shifting and also involving a RecA-related gene, appears to represent an adaptive mechanism to expand plant reproductive capacity and is likely present throughout the plant kingdom.

  17. Mosaic origins of a complex chimeric mitochondrial gene in Silene vulgaris.

    Directory of Open Access Journals (Sweden)

    Helena Storchova

    Full Text Available Chimeric genes are significant sources of evolutionary innovation that are normally created when portions of two or more protein coding regions fuse to form a new open reading frame. In plant mitochondria astonishingly high numbers of different novel chimeric genes have been reported, where they are generated through processes of rearrangement and recombination. Nonetheless, because most studies do not find or report nucleotide variation within the same chimeric gene, evolution after the origination of these chimeric genes remains unstudied. Here we identify two alleles of a complex chimera in Silene vulgaris that are divergent in nucleotide sequence, genomic position relative to other mitochondrial genes, and expression patterns. Structural patterns suggest a history partially influenced by gene conversion between the chimeric gene and functional copies of subunit 1 of the mitochondrial ATP synthase gene (atp1. We identified small repeat structures within the chimeras that are likely recombination sites allowing generation of the chimera. These results establish the potential for chimeric gene divergence in different plant mitochondrial lineages within the same species. This result contrasts with the absence of diversity within mitochondrial chimeras found in crop species.

  18. Deoxyribonucleoside kinases in mitochondrial DNA depletion.

    Science.gov (United States)

    Saada-Reisch, Ann

    2004-10-01

    Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a heterogeneous group of mitochondrial disorders, manifested by a decreased mtDNA copy number and respiratory chain dysfunction. Primary MDS are inherited autosomally and may affect a single organ or multiple tissues. Mutated mitochondrial deoxyribonucleoside kinases; deoxyguanosine kinase (dGK) and thymidine kinase 2 (TK2), were associated with the hepatocerebral and myopathic forms of MDS respectively. dGK and TK2 are key enzymes in the mitochondrial nucleotide salvage pathway, providing the mitochondria with deoxyribonucleotides (dNP) essential for mtDNA synthesis. Although the mitochondrial dNP pool is physically separated from the cytosolic one, dNP's may still be imported through specific transport. Non-replicating tissues, where cytosolic dNP supply is down regulated, are thus particularly vulnerable to dGK and TK2 deficiency. The overlapping substrate specificity of deoxycytidine kinase (dCK) may explain the relative sparing of muscle in dGK deficiency, while low basal TK2 activity render this tissue susceptible to TK2 deficiency. The precise pathophysiological mechanisms of mtDNA depletion due to dGK and TK2 deficiencies remain to be determined, though recent findings confirm that it is attributed to imbalanced dNTP pools.

  19. The mitochondrial genome of Toxocara canis.

    Science.gov (United States)

    Jex, Aaron R; Waeschenbach, Andrea; Littlewood, D Timothy J; Hu, Min; Gasser, Robin B

    2008-08-06

    Toxocara canis (Ascaridida: Nematoda), which parasitizes (at the adult stage) the small intestine of canids, can be transmitted to a range of other mammals, including humans, and can cause the disease toxocariasis. Despite its significance as a pathogen, the genetics, epidemiology and biology of this parasite remain poorly understood. In addition, the zoonotic potential of related species of Toxocara, such as T. cati and T. malaysiensis, is not well known. Mitochondrial DNA is known to provide genetic markers for investigations in these areas, but complete mitochondrial genomic data have been lacking for T. canis and its congeners. In the present study, the mitochondrial genome of T. canis was amplified by long-range polymerase chain reaction (long PCR) and sequenced using a primer-walking strategy. This circular mitochondrial genome was 14162 bp and contained 12 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes consistent for secementean nematodes, including Ascaris suum and Anisakis simplex (Ascaridida). The mitochondrial genome of T. canis provides genetic markers for studies into the systematics, population genetics and epidemiology of this zoonotic parasite and its congeners. Such markers can now be used in prospecting for cryptic species and for exploring host specificity and zoonotic potential, thus underpinning the prevention and control of toxocariasis in humans and other hosts.

  20. The mitochondrial genome of Toxocara canis.

    Directory of Open Access Journals (Sweden)

    Aaron R Jex

    2008-08-01

    Full Text Available Toxocara canis (Ascaridida: Nematoda, which parasitizes (at the adult stage the small intestine of canids, can be transmitted to a range of other mammals, including humans, and can cause the disease toxocariasis. Despite its significance as a pathogen, the genetics, epidemiology and biology of this parasite remain poorly understood. In addition, the zoonotic potential of related species of Toxocara, such as T. cati and T. malaysiensis, is not well known. Mitochondrial DNA is known to provide genetic markers for investigations in these areas, but complete mitochondrial genomic data have been lacking for T. canis and its congeners. In the present study, the mitochondrial genome of T. canis was amplified by long-range polymerase chain reaction (long PCR and sequenced using a primer-walking strategy. This circular mitochondrial genome was 14162 bp and contained 12 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes consistent for secementean nematodes, including Ascaris suum and Anisakis simplex (Ascaridida. The mitochondrial genome of T. canis provides genetic markers for studies into the systematics, population genetics and epidemiology of this zoonotic parasite and its congeners. Such markers can now be used in prospecting for cryptic species and for exploring host specificity and zoonotic potential, thus underpinning the prevention and control of toxocariasis in humans and other hosts.

  1. The Mitochondrial Genome of Toxocara canis

    Science.gov (United States)

    Littlewood, D. Timothy J.; Hu, Min; Gasser, Robin B.

    2008-01-01

    Toxocara canis (Ascaridida: Nematoda), which parasitizes (at the adult stage) the small intestine of canids, can be transmitted to a range of other mammals, including humans, and can cause the disease toxocariasis. Despite its significance as a pathogen, the genetics, epidemiology and biology of this parasite remain poorly understood. In addition, the zoonotic potential of related species of Toxocara, such as T. cati and T. malaysiensis, is not well known. Mitochondrial DNA is known to provide genetic markers for investigations in these areas, but complete mitochondrial genomic data have been lacking for T. canis and its congeners. In the present study, the mitochondrial genome of T. canis was amplified by long-range polymerase chain reaction (long PCR) and sequenced using a primer-walking strategy. This circular mitochondrial genome was 14162 bp and contained 12 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes consistent for secernentean nematodes, including Ascaris suum and Anisakis simplex (Ascaridida). The mitochondrial genome of T. canis provides genetic markers for studies into the systematics, population genetics and epidemiology of this zoonotic parasite and its congeners. Such markers can now be used in prospecting for cryptic species and for exploring host specificity and zoonotic potential, thus underpinning the prevention and control of toxocariasis in humans and other hosts. PMID:18682828

  2. Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals.

    Science.gov (United States)

    Luo, Arong; Zhang, Aibing; Ho, Simon Yw; Xu, Weijun; Zhang, Yanzhou; Shi, Weifeng; Cameron, Stephen L; Zhu, Chaodong

    2011-01-28

    A well-informed choice of genetic locus is central to the efficacy of DNA barcoding. Current DNA barcoding in animals involves the use of the 5' half of the mitochondrial cytochrome oxidase 1 gene (CO1) to diagnose and delimit species. However, there is no compelling a priori reason for the exclusive focus on this region, and it has been shown that it performs poorly for certain animal groups. To explore alternative mitochondrial barcoding regions, we compared the efficacy of the universal CO1 barcoding region with the other mitochondrial protein-coding genes in eutherian mammals. Four criteria were used for this comparison: the number of recovered species, sequence variability within and between species, resolution to taxonomic levels above that of species, and the degree of mutational saturation. Based on 1,179 mitochondrial genomes of eutherians, we found that the universal CO1 barcoding region is a good representative of mitochondrial genes as a whole because the high species-recovery rate (> 90%) was similar to that of other mitochondrial genes, and there were no significant differences in intra- or interspecific variability among genes. However, an overlap between intra- and interspecific variability was still problematic for all mitochondrial genes. Our results also demonstrated that any choice of mitochondrial gene for DNA barcoding failed to offer significant resolution at higher taxonomic levels. We suggest that the CO1 barcoding region, the universal DNA barcode, is preferred among the mitochondrial protein-coding genes as a molecular diagnostic at least for eutherian species identification. Nevertheless, DNA barcoding with this marker may still be problematic for certain eutherian taxa and our approach can be used to test potential barcoding loci for such groups.

  3. Mitochondrial function, ornamentation, and immunocompetence.

    Science.gov (United States)

    Koch, Rebecca E; Josefson, Chloe C; Hill, Geoffrey E

    2017-08-01

    Understanding the mechanisms that link ornamental displays and individual condition is key to understanding the evolution and function of ornaments. Immune function is an aspect of individual quality that is often associated with the expression of ornamentation, but a general explanation for why the expression of some ornaments seems to be consistently linked to immunocompetence remains elusive. We propose that condition-dependent ornaments may be linked to key aspects of immunocompetence through co-dependence on mitochondrial function. Mitochondrial involvement in immune function is rarely considered outside of the biomedical literature, but the role of mitochondria as the primary energy producers of the cell and the centres of biosynthesis, the oxidative stress response, and cellular signalling place them at the hub of a variety of immune pathways. A promising new mechanistic explanation for correlations between a wide range of ornamental traits and the properties of individual quality is that mitochondrial function may be the 'shared pathway' responsible for links between ornament production and individual condition. Herein, we first review the role of mitochondria as both signal transducers and metabolic regulators of immune function. We then describe connections between hormonal pathways and mitochondria, with implications for both immune function and the expression of ornamentation. Finally, we explore the possibility that ornament expression may link directly to mitochondrial function. Considering condition-dependent traits within the framework of mitochondrial function has the potential to unify central tenets within the study of sexual selection, eco-immunology, oxidative stress ecology, stress and reproductive hormone biology, and animal physiology. © 2016 Cambridge Philosophical Society.

  4. The plant mitochondrial proteome

    DEFF Research Database (Denmark)

    Millar, A.H.; Heazlewood, J.L.; Kristensen, B.K.

    2005-01-01

    The plant mitochondrial proteome might contain as many as 2000-3000 different gene products, each of which might undergo post-translational modification. Recent studies using analytical methods, such as one-, two- and three-dimensional gel electrophoresis and one- and two-dimensional liquid...... context to be defined for them. There are indications that some of these proteins add novel activities to mitochondrial protein complexes in plants....

  5. A mutation in the mitochondrial protein UQCRB promotes angiogenesis through the generation of mitochondrial reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Junghwa [Chemical Genomics National Research Lab., Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Jung, Hye Jin [Department of Pharmaceutical Engineering, Sun Moon University, Asansi, Chungnam 330-150 (Korea, Republic of); Jeong, Seung Hun; Kim, Hyoung Kyu; Han, Jin [National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Department of Health Sciences and Technology, Cardiovascular and Metabolic Disease Center, Inje University, Busan (Korea, Republic of); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Lab., Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2014-12-12

    Highlights: • We constructed mitochondrial protein UQCRB mutant stable cell lines on the basis of a human case report. • These mutant cell lines exhibit pro-angiogenic activity with enhanced VEGF expression. • Proliferation of mutant cell lines was regulated by UQCRB inhibitors. • UQCRB may have a functional role in angiogenesis. - Abstract: Ubiquinol-cytochrome c reductase binding protein (UQCRB) is one of the subunits of mitochondrial complex III and is a target protein of the natural anti-angiogenic small molecule terpestacin. Previously, the biological role of UQCRB was thought to be limited to the maintenance of complex III. However, the identification and validation of UQCRB as a target protein of terpestacin enabled the role of UQCRB in oxygen sensing and angiogenesis to be elucidated. To explore the biological role of this protein further, UQCRB mutant stable cell lines were generated on the basis of a human case report. We demonstrated that these cell lines exhibited glycolytic and pro-angiogenic activities via mitochondrial reactive oxygen species (mROS)-mediated HIF1 signal transduction. Furthermore, a morphological abnormality in mitochondria was detected in UQCRB mutant stable cell lines. In addition, the proliferative effect of the UQCRB mutants was significantly regulated by the UQCRB inhibitors terpestacin and A1938. Collectively, these results provide a molecular basis for UQCRB-related biological processes and reveal potential key roles of UQCRB in angiogenesis and mitochondria-mediated metabolic disorders.

  6. A mutation in the mitochondrial protein UQCRB promotes angiogenesis through the generation of mitochondrial reactive oxygen species

    International Nuclear Information System (INIS)

    Chang, Junghwa; Jung, Hye Jin; Jeong, Seung Hun; Kim, Hyoung Kyu; Han, Jin; Kwon, Ho Jeong

    2014-01-01

    Highlights: • We constructed mitochondrial protein UQCRB mutant stable cell lines on the basis of a human case report. • These mutant cell lines exhibit pro-angiogenic activity with enhanced VEGF expression. • Proliferation of mutant cell lines was regulated by UQCRB inhibitors. • UQCRB may have a functional role in angiogenesis. - Abstract: Ubiquinol-cytochrome c reductase binding protein (UQCRB) is one of the subunits of mitochondrial complex III and is a target protein of the natural anti-angiogenic small molecule terpestacin. Previously, the biological role of UQCRB was thought to be limited to the maintenance of complex III. However, the identification and validation of UQCRB as a target protein of terpestacin enabled the role of UQCRB in oxygen sensing and angiogenesis to be elucidated. To explore the biological role of this protein further, UQCRB mutant stable cell lines were generated on the basis of a human case report. We demonstrated that these cell lines exhibited glycolytic and pro-angiogenic activities via mitochondrial reactive oxygen species (mROS)-mediated HIF1 signal transduction. Furthermore, a morphological abnormality in mitochondria was detected in UQCRB mutant stable cell lines. In addition, the proliferative effect of the UQCRB mutants was significantly regulated by the UQCRB inhibitors terpestacin and A1938. Collectively, these results provide a molecular basis for UQCRB-related biological processes and reveal potential key roles of UQCRB in angiogenesis and mitochondria-mediated metabolic disorders

  7. Nuclear-Encoded Mitochondrial mRNAs: A Powerful Force in Axonal Growth and Development.

    Science.gov (United States)

    Gale, Jenna R; Aschrafi, Armaz; Gioio, Anthony E; Kaplan, Barry B

    2018-04-01

    Axons, their growth cones, and synaptic nerve terminals are neuronal subcompartments that have high energetic needs. As such, they are enriched in mitochondria, which supply the ATP necessary to meet these demands. To date, a heterogeneous population of nuclear-encoded mitochondrial mRNAs has been identified in distal axons and growth cones. Accumulating evidence suggests that the local translation of these mRNAs is required for mitochondrial maintenance and axonal viability. Here, we review evidence that suggests a critical role for axonal translation of nuclear-encoded mitochondrial mRNAs in axonal growth and development. Additionally, we explore the role that site-specific translation at the mitochondria itself may play in this process. Finally, we briefly review the clinical implications of dysregulation of local translation of mitochondrial-related mRNAs in neurodevelopmental disorders.

  8. Mitochondrial events responsible for morphine's cardioprotection against ischemia/reperfusion injury

    International Nuclear Information System (INIS)

    He, Haiyan; Huh, Jin; Wang, Huihua; Kang, Yi; Lou, Jianshi; Xu, Zhelong

    2016-01-01

    Morphine may induce cardioprotection by targeting mitochondria, but little is known about the exact mitochondrial events that mediate morphine's protection. We aimed to address the role of the mitochondrial Src tyrosine kinase in morphine's protection. Isolated rat hearts were subjected to 30 min ischemia and 2 h of reperfusion. Morphine was given before the onset of ischemia. Infarct size and troponin I release were measured to evaluate cardiac injury. Oxidative stress was evaluated by measuring mitochondrial protein carbonylation and mitochondrial ROS generation. HL-1 cells were subjected to simulated ischemia/reperfusion and LDH release and mitochondrial membrane potential (ΔΨm) were measured. Morphine reduced infarct size as well as cardiac troponin I release which were aborted by the selective Src tyrosine kinase inhibitors PP2 and Src-I1. Morphine also attenuated LDH release and prevented a loss of ΔΨm at reperfusion in a Src tyrosine kinase dependent manner in HL-1 cells. However, morphine failed to reduce LDH release in HL-1 cells transfected with Src siRNA. Morphine increased mitochondrial Src phosphorylation at reperfusion and this was abrogated by PP2. Morphine attenuated mitochondrial protein carbonylation and mitochondrial superoxide generation at reperfusion through Src tyrosine kinase. The inhibitory effect of morphine on the mitochondrial complex I activity was reversed by PP2. These data suggest that morphine induces cardioprotection by preventing mitochondrial oxidative stress through mitochondrial Src tyrosine kinase. Inhibition of mitochondrial complex I at reperfusion by Src tyrosine kinase may account for the prevention of mitochondrial oxidative stress by morphine. - Highlights: • Morphine induced mito-Src phosphorylation and reduced infarct size in rat hearts. • Morphine failed to reduce I/R-induced LDH release in Src-silencing HL-1 cells. • Morphine prevented mitochondria damage caused by I/R through Src. • Morphine reduced

  9. Mitochondrial quality control pathways as determinants of metabolic health

    NARCIS (Netherlands)

    Held, Ntsiki M.; Houtkooper, Riekelt H.

    2015-01-01

    Mitochondrial function is key for maintaining cellular health, while mitochondrial failure is associated with various pathologies, including inherited metabolic disorders and age-related diseases. In order to maintain mitochondrial quality, several pathways of mitochondrial quality control have

  10. Clueless, a protein required for mitochondrial function, interacts with the PINK1-Parkin complex in Drosophila

    Directory of Open Access Journals (Sweden)

    Aditya Sen

    2015-06-01

    Full Text Available Loss of mitochondrial function often leads to neurodegeneration and is thought to be one of the underlying causes of neurodegenerative diseases such as Parkinson's disease (PD. However, the precise events linking mitochondrial dysfunction to neuronal death remain elusive. PTEN-induced putative kinase 1 (PINK1 and Parkin (Park, either of which, when mutated, are responsible for early-onset PD, mark individual mitochondria for destruction at the mitochondrial outer membrane. The specific molecular pathways that regulate signaling between the nucleus and mitochondria to sense mitochondrial dysfunction under normal physiological conditions are not well understood. Here, we show that Drosophila Clueless (Clu, a highly conserved protein required for normal mitochondrial function, can associate with Translocase of the outer membrane (TOM 20, Porin and PINK1, and is thus located at the mitochondrial outer membrane. Previously, we found that clu genetically interacts with park in Drosophila female germ cells. Here, we show that clu also genetically interacts with PINK1, and our epistasis analysis places clu downstream of PINK1 and upstream of park. In addition, Clu forms a complex with PINK1 and Park, further supporting that Clu links mitochondrial function with the PINK1-Park pathway. Lack of Clu causes PINK1 and Park to interact with each other, and clu mutants have decreased mitochondrial protein levels, suggesting that Clu can act as a negative regulator of the PINK1-Park pathway. Taken together, these results suggest that Clu directly modulates mitochondrial function, and that Clu's function contributes to the PINK1-Park pathway of mitochondrial quality control.

  11. Prospects for therapeutic mitochondrial transplantation.

    Science.gov (United States)

    Gollihue, Jenna L; Rabchevsky, Alexander G

    2017-07-01

    Mitochondrial dysfunction has been implicated in a multitude of diseases and pathological conditions- the organelles that are essential for life can also be major players in contributing to cell death and disease. Because mitochondria are so well established in our existence, being present in all cell types except for red blood cells and having the responsibility of providing most of our energy needs for survival, then dysfunctional mitochondria can elicit devastating cellular pathologies that can be widespread across the entire organism. As such, the field of "mitochondrial medicine" is emerging in which disease states are being targeted therapeutically at the level of the mitochondrion, including specific antioxidants, bioenergetic substrate additions, and membrane uncoupling agents. New and compelling research investigating novel techniques for mitochondrial transplantation to replace damaged or dysfunctional mitochondria with exogenous healthy mitochondria has shown promising results, including tissue sparing accompanied by increased energy production and decreased oxidative damage. Various experimental techniques have been attempted and each has been challenged to accomplish successful transplantation. The purpose of this review is to present the history of mitochondrial transplantation, the different techniques used for both in vitro and in vivo delivery, along with caveats and pitfalls that have been discovered along the way. Results from such pioneering studies are promising and could be the next big wave of "mitochondrial medicine" once technical hurdles are overcome. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  12. Yeast as a Tool to Study Signaling Pathways in Mitochondrial Stress Response and Cytoprotection

    Directory of Open Access Journals (Sweden)

    Maša Ždralević

    2012-01-01

    Full Text Available Cell homeostasis results from the balance between cell capability to adapt or succumb to environmental stress. Mitochondria, in addition to supplying cellular energy, are involved in a range of processes deciding about cellular life or death. The crucial role of mitochondria in cell death is well recognized. Mitochondrial dysfunction has been associated with the death process and the onset of numerous diseases. Yet, mitochondrial involvement in cellular adaptation to stress is still largely unexplored. Strong interest exists in pharmacological manipulation of mitochondrial metabolism and signaling. The yeast Saccharomyces cerevisiae has proven a valuable model organism in which several intracellular processes have been characterized in great detail, including the retrograde response to mitochondrial dysfunction and, more recently, programmed cell death. In this paper we review experimental evidences of mitochondrial involvement in cytoprotection and propose yeast as a model system to investigate the role of mitochondria in the cross-talk between prosurvival and prodeath pathways.

  13. Mitochondrial mislocalization underlies Abeta42-induced neuronal dysfunction in a Drosophila model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Kanae Iijima-Ando

    2009-12-01

    Full Text Available The amyloid-beta 42 (Abeta42 is thought to play a central role in the pathogenesis of Alzheimer's disease (AD. However, the molecular mechanisms by which Abeta42 induces neuronal dysfunction and degeneration remain elusive. Mitochondrial dysfunctions are implicated in AD brains. Whether mitochondrial dysfunctions are merely a consequence of AD pathology, or are early seminal events in AD pathogenesis remains to be determined. Here, we show that Abeta42 induces mitochondrial mislocalization, which contributes to Abeta42-induced neuronal dysfunction in a transgenic Drosophila model. In the Abeta42 fly brain, mitochondria were reduced in axons and dendrites, and accumulated in the somata without severe mitochondrial damage or neurodegeneration. In contrast, organization of microtubule or global axonal transport was not significantly altered at this stage. Abeta42-induced behavioral defects were exacerbated by genetic reductions in mitochondrial transport, and were modulated by cAMP levels and PKA activity. Levels of putative PKA substrate phosphoproteins were reduced in the Abeta42 fly brains. Importantly, perturbations in mitochondrial transport in neurons were sufficient to disrupt PKA signaling and induce late-onset behavioral deficits, suggesting a mechanism whereby mitochondrial mislocalization contributes to Abeta42-induced neuronal dysfunction. These results demonstrate that mislocalization of mitochondria underlies the pathogenic effects of Abeta42 in vivo.

  14. Mitochondrial dysfunction and human immunodeficiency virus ...

    African Journals Online (AJOL)

    Human immunodeficiency virus (HIV) infection and the pharmacological treatment thereof have both been shown to affect mitochondrial function in a number of tissues, and each may cause specific organ pathology through specific mitochondrial pathways. HIV has been shown to kill various tissue cells by activation of ...

  15. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore.

    Science.gov (United States)

    Rottenberg, Hagai; Hoek, Jan B

    2017-10-01

    Excessive production of mitochondrial reactive oxygen species (mROS) is strongly associated with mitochondrial and cellular oxidative damage, aging, and degenerative diseases. However, mROS also induces pathways of protection of mitochondria that slow aging, inhibit cell death, and increase lifespan. Recent studies show that the activation of the mitochondrial permeability transition pore (mPTP), which is triggered by mROS and mitochondrial calcium overloading, is enhanced in aged animals and humans and in aging-related degenerative diseases. mPTP opening initiates further production and release of mROS that damage both mitochondrial and nuclear DNA, proteins, and phospholipids, and also releases matrix NAD that is hydrolyzed in the intermembrane space, thus contributing to the depletion of cellular NAD that accelerates aging. Oxidative damage to calcium transporters leads to calcium overload and more frequent opening of mPTP. Because aging enhances the opening of the mPTP and mPTP opening accelerates aging, we suggest that mPTP opening drives the progression of aging. Activation of the mPTP is regulated, directly and indirectly, not only by the mitochondrial protection pathways that are induced by mROS, but also by pro-apoptotic signals that are induced by DNA damage. We suggest that the integration of these contrasting signals by the mPTP largely determines the rate of cell aging and the initiation of cell death, and thus animal lifespan. The suggestion that the control of mPTP activation is critical for the progression of aging can explain the conflicting and confusing evidence regarding the beneficial and deleterious effects of mROS on health and lifespan. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  16. Peripheral neuropathy associated with mitochondrial disease in children.

    Science.gov (United States)

    Menezes, Manoj P; Ouvrier, Robert A

    2012-05-01

    Mitochondrial diseases in children are often associated with a peripheral neuropathy but the presence of the neuropathy is under-recognized because of the overwhelming involvement of the central nervous system (CNS). These mitochondrial neuropathies are heterogeneous in their clinical, neurophysiological, and histopathological characteristics. In this article, we provide a comprehensive review of childhood mitochondrial neuropathy. Early recognition of neuropathy may help with the identification of the mitochondrial syndrome. While it is not definite that the characteristics of the neuropathy would help in directing genetic testing without the requirement for invasive skin, muscle or liver biopsies, there appears to be some evidence for this hypothesis in Leigh syndrome, in which nuclear SURF1 mutations cause a demyelinating neuropathy and mitochondrial DNA MTATP6 mutations cause an axonal neuropathy. POLG1 mutations, especially when associated with late-onset phenotypes, appear to cause a predominantly sensory neuropathy with prominent ataxia. The identification of the peripheral neuropathy also helps to target genetic testing in the mitochondrial optic neuropathies. Although often subclinical, the peripheral neuropathy may occasionally be symptomatic and cause significant disability. Where it is symptomatic, recognition of the neuropathy will help the early institution of rehabilitative therapy. We therefore suggest that nerve conduction studies should be a part of the early evaluation of children with suspected mitochondrial disease. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  17. Phylogenetic Reconstruction Shows Independent Evolutionary Origins of Mitochondrial Transcription Factors from an Ancient Family of RNA Methyltransferase Proteins.

    Science.gov (United States)

    Aj Harris; Goldman, Aaron David

    2018-04-25

    Here, we generate a robust phylogenetic framework for the rRNA adenine N(6)-methyltransferase (RAMTase) protein family that shows a more ancient and complex evolutionary history within the family than previously reported. RAMTases occur universally by descent across the three domains of life, and typical orthologs within the family perform methylation of the small subunits of ribosomal RNA (rRNA). However, within the RAMTase family, two different groups of mitochondrial transcription factors, mtTFB1 and mtTFB2, have evolved in eukaryotes through neofunctionalization. Previous phylogenetic analyses have suggested that mtTFB1 and mtTFB2 comprise sister clades that arose via gene duplication, which occurred sometime following the endosymbiosis event that produced the mitochondrion. Through dense and taxonomically broad sampling of RAMTase family members especially within bacteria, we found that these eukaryotic mitochondrial transcription factors, mtTFB1 and mtTFB2, have independent origins in phylogenetically distant clades such that their divergence most likely predates the last universal common ancestor of life. The clade of mtTFB2s comprises orthologs in Opisthokonts and the clade of mtTFB1s includes orthologs in Amoebozoa and Metazoa. Thus, we clearly demonstrate that the neofunctionalization producing the transcription factor function evolved twice independently within the RAMTase family. These results are consistent with and help to elucidate outcomes from prior experimental studies, which found that some members of mtTFB1 still perform the ancestral rRNA methylation function, and the results have broader implications for understanding the evolution of new protein functions. Our phylogenetic reconstruction is also in agreement with prior studies showing two independent origins of plastid RAMTases in Viridiplantae and other photosynthetic autotrophs. We believe that this updated phylogeny of RAMTases should provide a robust evolutionary framework for ongoing

  18. FAM49B, a novel regulator of mitochondrial function and integrity that suppresses tumor metastasis.

    Science.gov (United States)

    Chattaragada, M S; Riganti, C; Sassoe, M; Principe, M; Santamorena, M M; Roux, C; Curcio, C; Evangelista, A; Allavena, P; Salvia, R; Rusev, B; Scarpa, A; Cappello, P; Novelli, F

    2018-02-08

    Mitochondrial dysregulation plays a central role in cancers and drives reactive oxygen species (ROS)-dependent tumor progression. We investigated the pro-tumoral roles of mitochondrial dynamics and altered intracellular ROS levels in pancreatic ductal adenocarcinoma (PDAC). We identified 'family with sequence similarity 49 member B' (FAM49B) as a mitochondria-localized protein that regulates mitochondrial fission and cancer progression. Silencing FAM49B in PDAC cells resulted in increased fission and mitochondrial ROS generation, which enhanced PDAC cell proliferation and invasion. Notably, FAM49B expression levels in PDAC cells were downregulated by the tumor microenvironment. Overall, the results of this study show that FAM49B acts as a suppressor of cancer cell proliferation and invasion in PDAC by regulating tumor mitochondrial redox reactions and metabolism.

  19. Large number of ultraconserved elements were already present in the jawed vertebrate ancestor.

    KAUST Repository

    Wang, Jianli; Lee, Alison P; Kodzius, Rimantas; Brenner, Sydney; Venkatesh, Byrappa

    2009-01-01

    Stephen (2008) identified 13,736 ultraconserved elements (UCEs) in placental mammals and investigated their evolution in opossum, chicken, frog, and fugu. They found that there was a massive expansion of UCEs during tetrapod evolution and the substitution rate in UCEs showed a significant decline in tetrapods compared with fugu, suggesting they were exapted in tetrapods. They considered it unlikely that these elements are ancient but evolved at a higher rate in teleost fishes. In this study, we investigated the evolution of UCEs in a cartilaginous fish, the elephant shark and show that nearly half the UCEs were present in the jawed vertebrate ancestor. The substitution rate in UCEs is higher in fugu than in elephant shark, and approximately one-third of ancient UCEs have diverged beyond recognition in teleost fishes. These data indicate that UCEs have evolved at a higher rate in teleost fishes, which may have implications for their vast diversity and evolutionary success.

  20. Large number of ultraconserved elements were already present in the jawed vertebrate ancestor.

    KAUST Repository

    Wang, Jianli

    2009-03-01

    Stephen (2008) identified 13,736 ultraconserved elements (UCEs) in placental mammals and investigated their evolution in opossum, chicken, frog, and fugu. They found that there was a massive expansion of UCEs during tetrapod evolution and the substitution rate in UCEs showed a significant decline in tetrapods compared with fugu, suggesting they were exapted in tetrapods. They considered it unlikely that these elements are ancient but evolved at a higher rate in teleost fishes. In this study, we investigated the evolution of UCEs in a cartilaginous fish, the elephant shark and show that nearly half the UCEs were present in the jawed vertebrate ancestor. The substitution rate in UCEs is higher in fugu than in elephant shark, and approximately one-third of ancient UCEs have diverged beyond recognition in teleost fishes. These data indicate that UCEs have evolved at a higher rate in teleost fishes, which may have implications for their vast diversity and evolutionary success.

  1. Unravelling Mitochondrial Dysfunction in Rheumatoid Arthritis patients

    Directory of Open Access Journals (Sweden)

    Shweta Khanna

    2017-10-01

    Full Text Available Rheumatoid arthritis (RA is a chronic, inflammatory, autoimmune disease associated with systemic, extra-articular and articular effects, causing permanent disability, early morbidity; making the patient compromised with a worldwide prevalence of 0.8%, commonly effecting women with a rate of 0.7% in India. With improved and developing therapeutics, this disease needs special focus for improved diagnosis and better treatment. The hyperactivity of immune cells is responsible for pathogenesis and progression of the disease. This study unravels the changes in mitochondria of RA patients which may be a potential reason for abnormal functioning of immune cells against self-antigens and occurrence of the disease. In this study we examine the following aspects of mitochondrial functions in the peripheral blood mononuclear cells (PBMCs of patients and their paired control samples: 1 Change in mitochondrial membrane potential (MMP; 2 mitochondrial mass; 3 mitochondrial superoxide and 4 ATP levels. Patients satisfying the 2010 ACR/EULAR classification criteria for RA diagnosis were enrolled in this study. PBMCs of RA patients and controls were collected by differential gradient centrifugation. MMP, mass and superoxide levels were measured using respective commercially available dye using flow cytometry. ATP levels were measured by lysing equal number of cells from patients and controls using ATP measurement kit. In our case control cohort, we found a significant decrease in MMP (p<0.005 in PBMCs of RA patients where the change in mitochondrial mass was insignificant. The mitochondrial superoxide levels were found to be significantly low (p<0.05 in PBMCs of RA patients with significantly low (p<0.005 total cellular ATP as compared to controls. Our results indicate reduced potential and mitochondrial superoxides with decreased total cellular ATP. Reduced potential will disturb proper functioning of mitochondria in PBMCs which may affect most important

  2. Mitochondrial DNA depletion, mitochondrial mutations and high TFAM expression in hepatocellular carcinoma

    OpenAIRE

    Qiao, Lihua; Ru, Guoqing; Mao, Zhuochao; Wang, Chenghui; Nie, Zhipeng; Li, Qiang; Huang-yang, Yiyi; Zhu, Ling; Liang, Xiaoyang; Yu, Jialing; Jiang, Pingping

    2017-01-01

    We investigated the role of mitochondrial genetic alterations in hepatocellular carcinoma by directly comparing the mitochondrial genomes of 86 matched pairs of HCC and non-tumor liver samples. Substitutions in 637 mtDNA sites were detected, comprising 89.80% transitions and 6.60% transversions. Forty-six somatic variants, including 15 novel mutations, were identified in 40.70% of tumor tissues. Of those, 21 were located in the non-coding region and 25 in the protein-coding region. Twenty-two...

  3. [MELAS: Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-Like Episodes].

    Science.gov (United States)

    Murakami, Hidetomo; Ono, Kenjiro

    2017-02-01

    Mitochondrial disease is caused by a deficiency in the energy supply to cells due to mitochondrial dysfunction. Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) is a mitochondrial disease that presents with stroke-like episodes such as acute onset of neurological deficits and characteristic imaging findings. Stroke-like episodes in MELAS have the following features: 1) neurological deficits due to localization of lesions in the brain, 2) episodes often accompany epilepsy, 3) lesions do not follow the vascular supply area, 4) lesions are more often seen in the posterior brain than in the anterior brain, 5) lesions spread to an adjacent area in the brain, and 6) neurological symptoms often disappear together with imaging findings, but later relapse. About 80% of patients with MELAS have an A-to-G transition mutation at the nucleotide pair 3243 in the dihydrouridine loop of mitochondrial tRNALeu(UUR), which causes the absence of posttranscriptional taurine modification at the wobble nucleotide of mitochondrial tRNALeu(UUR) and disrupts protein synthesis. However, the precise pathophysiology of stroke-like episodes is under investigation, with possible hypotheses for these episodes including mitochondrial angiopathy, mitochondrial cytopathy, and neuron-astrocyte uncoupling. With regard to treatment, L-arginine and taurine have recently been suggested for relief of clinical symptoms.

  4. The Complete Chloroplast Genome of a Key Ancestor of Modern Roses, Rosa chinensis var. spontanea, and a Comparison with Congeneric Species

    Directory of Open Access Journals (Sweden)

    Hong-Ying Jian

    2018-02-01

    Full Text Available Rosa chinensis var. spontanea, an endemic and endangered plant of China, is one of the key ancestors of modern roses and a source for famous traditional Chinese medicines against female diseases, such as irregular menses and dysmenorrhea. In this study, the complete chloroplast (cp genome of R. chinensis var. spontanea was sequenced, analyzed, and compared to congeneric species. The cp genome of R. chinensis var. spontanea is a typical quadripartite circular molecule of 156,590 bp in length, including one large single copy (LSC region of 85,910 bp and one small single copy (SSC region of 18,762 bp, separated by two inverted repeat (IR regions of 25,959 bp. The GC content of the whole genome is 37.2%, while that of LSC, SSC, and IR is 42.8%, 35.2% and 31.2%, respectively. The genome encodes 129 genes, including 84 protein-coding genes (PCGs, 37 transfer RNA (tRNA genes, and eight ribosomal RNA (rRNA genes. Seventeen genes in the IR regions were found to be duplicated. Thirty-three forward and five inverted repeats were detected in the cp genome of R. chinensis var. spontanea. The genome is rich in SSRs. In total, 85 SSRs were detected. A genome comparison revealed that IR contraction might be the reason for the relatively smaller cp genome size of R. chinensis var. spontanea compared to other congeneric species. Sequence analysis revealed that the LSC and SSC regions were more divergent than the IR regions within the genus Rosa and that a higher divergence occurred in non-coding regions than in coding regions. A phylogenetic analysis showed that the sampled species of the genus Rosa formed a monophyletic clade and that R. chinensis var. spontanea shared a more recent ancestor with R. lichiangensis of the section Synstylae than with R. odorata var. gigantea of the section Chinenses. This information will be useful for the conservation genetics of R. chinensis var. spontanea and for the phylogenetic study of the genus Rosa, and it might also

  5. The Complete Chloroplast Genome of a Key Ancestor of Modern Roses, Rosa chinensis var. spontanea, and a Comparison with Congeneric Species.

    Science.gov (United States)

    Jian, Hong-Ying; Zhang, Yong-Hong; Yan, Hui-Jun; Qiu, Xian-Qin; Wang, Qi-Gang; Li, Shu-Bin; Zhang, Shu-Dong

    2018-02-12

    Rosa chinensis var. spontanea , an endemic and endangered plant of China, is one of the key ancestors of modern roses and a source for famous traditional Chinese medicines against female diseases, such as irregular menses and dysmenorrhea. In this study, the complete chloroplast (cp) genome of R. chinensis var. spontanea was sequenced, analyzed, and compared to congeneric species. The cp genome of R. chinensis var. spontanea is a typical quadripartite circular molecule of 156,590 bp in length, including one large single copy (LSC) region of 85,910 bp and one small single copy (SSC) region of 18,762 bp, separated by two inverted repeat (IR) regions of 25,959 bp. The GC content of the whole genome is 37.2%, while that of LSC, SSC, and IR is 42.8%, 35.2% and 31.2%, respectively. The genome encodes 129 genes, including 84 protein-coding genes (PCGs), 37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. Seventeen genes in the IR regions were found to be duplicated. Thirty-three forward and five inverted repeats were detected in the cp genome of R. chinensis var. spontanea. The genome is rich in SSRs. In total, 85 SSRs were detected. A genome comparison revealed that IR contraction might be the reason for the relatively smaller cp genome size of R. chinensis var. spontanea compared to other congeneric species. Sequence analysis revealed that the LSC and SSC regions were more divergent than the IR regions within the genus Rosa and that a higher divergence occurred in non-coding regions than in coding regions. A phylogenetic analysis showed that the sampled species of the genus Rosa formed a monophyletic clade and that R. chinensis var. s pontanea shared a more recent ancestor with R. lichiangensis of the section Synstylae than with R. odorata var. gigantea of the section Chinenses . This information will be useful for the conservation genetics of R. chinensis var. spontanea and for the phylogenetic study of the genus Rosa , and it might also facilitate the

  6. Mitochondrial rejuvenation after induced pluripotency.

    Directory of Open Access Journals (Sweden)

    Steven T Suhr

    2010-11-01

    Full Text Available As stem cells of the early embryo mature and differentiate into all tissues, the mitochondrial complement undergoes dramatic functional improvement. Mitochondrial activity is low to minimize generation of DNA-damaging reactive oxygen species during pre-implantation development and increases following implantation and differentiation to meet higher metabolic demands. It has recently been reported that when the stem cell type known as induced pluripotent stem cells (IPSCs are re-differentiated for several weeks in vitro, the mitochondrial complement progressively re-acquires properties approximating input fibroblasts, suggesting that despite the observation that IPSC conversion "resets" some parameters of cellular aging such as telomere length, it may have little impact on other age-affected cellular systems such as mitochondria in IPSC-derived cells.We have examined the properties of mitochondria in two fibroblast lines, corresponding IPSCs, and fibroblasts re-derived from IPSCs using biochemical methods and electron microscopy, and found a dramatic improvement in the quality and function of the mitochondrial complement of the re-derived fibroblasts compared to input fibroblasts. This observation likely stems from two aspects of our experimental design: 1 that the input cell lines used were of advanced cellular age and contained an inefficient mitochondrial complement, and 2 the re-derived fibroblasts were produced using an extensive differentiation regimen that may more closely mimic the degree of growth and maturation found in a developing mammal.These results - coupled with earlier data from our laboratory - suggest that IPSC conversion not only resets the "biological clock", but can also rejuvenate the energetic capacity of derived cells.

  7. Mitochondrial replacement techniques: egg donation, genealogy and eugenics.

    Science.gov (United States)

    Palacios-González, César

    2016-03-01

    Several objections against the morality of researching or employing mitochondrial replacement techniques have been advanced recently. In this paper, I examine three of these objections and show that they are found wanting. First I examine whether mitochondrial replacement techniques, research and clinical practice, should not be carried out because of possible harms to egg donors. Next I assess whether mitochondrial replacement techniques should be banned because they could affect the study of genealogical ancestry. Finally, I examine the claim that mitochondrial replacement techniques are not transferring mitochondrial DNA but nuclear DNA, and that this should be prohibited on ethical grounds.

  8. Epilepsy in adults with mitochondrial disease: A cohort study.

    Science.gov (United States)

    Whittaker, Roger G; Devine, Helen E; Gorman, Grainne S; Schaefer, Andrew M; Horvath, Rita; Ng, Yi; Nesbitt, Victoria; Lax, Nichola Z; McFarland, Robert; Cunningham, Mark O; Taylor, Robert W; Turnbull, Douglass M

    2015-12-01

    The aim of this work was to determine the prevalence and progression of epilepsy in adult patients with mitochondrial disease. We prospectively recruited a cohort of 182 consecutive adult patients attending a specialized mitochondrial disease clinic in Newcastle upon Tyne between January 1, 2005 and January 1, 2008. We then followed this cohort over a 7-year period, recording primary outcome measures of occurrence of first seizure, status epilepticus, stroke-like episode, and death. Overall prevalence of epilepsy in the cohort was 23.1%. Mean age of epilepsy onset was 29.4 years. Prevalence varied widely between genotypes, with several genotypes having no cases of epilepsy, a prevalence of 34.9% in the most common genotype (m.3243A>G mutation), and 92.3% in the m.8344A>G mutation. Among the cohort as a whole, focal seizures, with or without progression to bilateral convulsive seizures, was the most common seizure type. Conversely, all of the patients with the m.8344A>G mutation and epilepsy experienced myoclonic seizures. Patients with the m.3243A>G mutation remain at high risk of developing stroke-like episodes (1.16% per year). However, although the standardized mortality ratio for the entire cohort was high (2.86), this ratio did not differ significantly between patients with epilepsy (2.96) and those without (2.83). Epilepsy is a common manifestation of mitochondrial disease. It develops early in the disease and, in the case of the m.3243A>G mutation, often presents in the context of a stroke-like episode or status epilepticus. However, epilepsy does not itself appear to contribute to the increased mortality in mitochondrial disease. © 2015 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.

  9. Mitochondrial Causes of Epilepsy: Evaluation, Diagnosis, and Treatment.

    Science.gov (United States)

    Steele, Hannah E; Chinnery, Patrick F

    2015-06-01

    Mitochondrial disorders are frequently associated with seizures. In this review, the authors discuss the seizure patterns and distinguishing features of mitochondrial epilepsy, alongside the indications for investigating, and how to investigate epilepsy from a mitochondrial perspective. Finally, they discuss management strategies for this complex group of patients. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  10. Mitochondrial morphology transitions and functions: implications for retrograde signaling?

    Science.gov (United States)

    Picard, Martin; Shirihai, Orian S.; Gentil, Benoit J.

    2013-01-01

    In response to cellular and environmental stresses, mitochondria undergo morphology transitions regulated by dynamic processes of membrane fusion and fission. These events of mitochondrial dynamics are central regulators of cellular activity, but the mechanisms linking mitochondrial shape to cell function remain unclear. One possibility evaluated in this review is that mitochondrial morphological transitions (from elongated to fragmented, and vice-versa) directly modify canonical aspects of the organelle's function, including susceptibility to mitochondrial permeability transition, respiratory properties of the electron transport chain, and reactive oxygen species production. Because outputs derived from mitochondrial metabolism are linked to defined cellular signaling pathways, fusion/fission morphology transitions could regulate mitochondrial function and retrograde signaling. This is hypothesized to provide a dynamic interface between the cell, its genome, and the fluctuating metabolic environment. PMID:23364527

  11. [Diagnosis of mitochondrial disorders in children with next generation sequencing].

    Science.gov (United States)

    Liu, Zhimei; Fang, Fang; Ding, Changhong; Zhang, Weihua; Li, Jiuwei; Yang, Xinying; Wang, Xiaohui; Wu, Yun; Wang, Hongmei; Liu, Liying; Han, Tongli; Wang, Xu; Chen, Chunhong; Lyu, Junlan; Wu, Husheng

    2015-10-01

    To explore the application value of next generation sequencing (NGS) in the diagnosis of mitochondrial disorders. According to mitochondrial disease criteria, genomic DNA was extracted using standard procedure from peripheral venous blood of patients with suspected mitochondrial disease collected from neurological department of Beijing Children's Hospital Affiliated to Capital Medical University between October 2012 and February 2014. Targeted NGS to capture and sequence the entire mtDNA and exons of the 1 000 nuclear genes related to mitochondrial structure and function. Clinical data were collected from patients diagnosed at a molecular level, then clinical features and the relationship between genotype and phenotype were analyzed. Mutation was detected in 21 of 70 patients with suspected mitochondrial disease, in whom 10 harbored mtDNA mutation, while 11 nuclear DNA (nDNA) mutation. In 21 patients, 1 was diagnosed congenital myasthenic syndrome with episodic apnea due to CHAT gene p.I187T homozygous mutation, and 20 were diagnosed mitochondrial disease, in which 10 were Leigh syndrome, 4 were mitochondrial encephalomyopathy with lactic acidosis and stroke like episodes syndrome, 3 were Leber hereditary optic neuropathy (LHON) and LHON plus, 2 were mitochondrial DNA depletion syndrome and 1 was unknown. All the mtDNA mutations were point mutations, which contained A3243G, G3460A, G11778A, T14484C, T14502C and T14487C. Ten mitochondrial disease patients harbored homozygous or compound heterozygous mutations in 5 genes previously shown to cause disease: SURF1, PDHA1, NDUFV1, SUCLA2 and SUCLG1, which had 14 mutations, and 7 of the 14 mutations have not been reported. NGS has a certain application value in the diagnosis of mitochondrial diseases, especially in Leigh syndrome atypical mitochondrial syndrome and rare mitochondrial disorders.

  12. Environmental Adaptation from the Origin of Life to the Last Universal Common Ancestor

    Science.gov (United States)

    Cantine, Marjorie D.; Fournier, Gregory P.

    2018-03-01

    Extensive fundamental molecular and biological evolution took place between the prebiotic origins of life and the state of the Last Universal Common Ancestor (LUCA). Considering the evolutionary innovations between these two endpoints from the perspective of environmental adaptation, we explore the hypothesis that LUCA was temporally, spatially, and environmentally distinct from life's earliest origins in an RNA world. Using this lens, we interpret several molecular biological features as indicating an environmental transition between a cold, radiation-shielded origin of life and a mesophilic, surface-dwelling LUCA. Cellularity provides motility and permits Darwinian evolution by connecting genetic material and its products, and thus establishing heredity and lineage. Considering the importance of compartmentalization and motility, we propose that the early emergence of cellularity is required for environmental dispersal and diversification during these transitions. Early diversification and the emergence of ecology before LUCA could be an important pre-adaptation for life's persistence on a changing planet.

  13. AMPK Activation Prevents and Reverses Drug-Induced Mitochondrial and Hepatocyte Injury by Promoting Mitochondrial Fusion and Function.

    Directory of Open Access Journals (Sweden)

    Sun Woo Sophie Kang

    Full Text Available Mitochondrial damage is the major factor underlying drug-induced liver disease but whether conditions that thwart mitochondrial injury can prevent or reverse drug-induced liver damage is unclear. A key molecule regulating mitochondria quality control is AMP activated kinase (AMPK. When activated, AMPK causes mitochondria to elongate/fuse and proliferate, with mitochondria now producing more ATP and less reactive oxygen species. Autophagy is also triggered, a process capable of removing damaged/defective mitochondria. To explore whether AMPK activation could potentially prevent or reverse the effects of drug-induced mitochondrial and hepatocellular damage, we added an AMPK activator to collagen sandwich cultures of rat and human hepatocytes exposed to the hepatotoxic drugs, acetaminophen or diclofenac. In the absence of AMPK activation, the drugs caused hepatocytes to lose polarized morphology and have significantly decreased ATP levels and viability. At the subcellular level, mitochondria underwent fragmentation and had decreased membrane potential due to decreased expression of the mitochondrial fusion proteins Mfn1, 2 and/or Opa1. Adding AICAR, a specific AMPK activator, at the time of drug exposure prevented and reversed these effects. The mitochondria became highly fused and ATP production increased, and hepatocytes maintained polarized morphology. In exploring the mechanism responsible for this preventive and reversal effect, we found that AMPK activation prevented drug-mediated decreases in Mfn1, 2 and Opa1. AMPK activation also stimulated autophagy/mitophagy, most significantly in acetaminophen-treated cells. These results suggest that activation of AMPK prevents/reverses drug-induced mitochondrial and hepatocellular damage through regulation of mitochondrial fusion and autophagy, making it a potentially valuable approach for treatment of drug-induced liver injury.

  14. AMPK Activation Prevents and Reverses Drug-Induced Mitochondrial and Hepatocyte Injury by Promoting Mitochondrial Fusion and Function

    Science.gov (United States)

    Taniane, Caitlin; Farrell, Geoffrey; Arias, Irwin M.; Lippincott-Schwartz, Jennifer; Fu, Dong

    2016-01-01

    Mitochondrial damage is the major factor underlying drug-induced liver disease but whether conditions that thwart mitochondrial injury can prevent or reverse drug-induced liver damage is unclear. A key molecule regulating mitochondria quality control is AMP activated kinase (AMPK). When activated, AMPK causes mitochondria to elongate/fuse and proliferate, with mitochondria now producing more ATP and less reactive oxygen species. Autophagy is also triggered, a process capable of removing damaged/defective mitochondria. To explore whether AMPK activation could potentially prevent or reverse the effects of drug-induced mitochondrial and hepatocellular damage, we added an AMPK activator to collagen sandwich cultures of rat and human hepatocytes exposed to the hepatotoxic drugs, acetaminophen or diclofenac. In the absence of AMPK activation, the drugs caused hepatocytes to lose polarized morphology and have significantly decreased ATP levels and viability. At the subcellular level, mitochondria underwent fragmentation and had decreased membrane potential due to decreased expression of the mitochondrial fusion proteins Mfn1, 2 and/or Opa1. Adding AICAR, a specific AMPK activator, at the time of drug exposure prevented and reversed these effects. The mitochondria became highly fused and ATP production increased, and hepatocytes maintained polarized morphology. In exploring the mechanism responsible for this preventive and reversal effect, we found that AMPK activation prevented drug-mediated decreases in Mfn1, 2 and Opa1. AMPK activation also stimulated autophagy/mitophagy, most significantly in acetaminophen-treated cells. These results suggest that activation of AMPK prevents/reverses drug-induced mitochondrial and hepatocellular damage through regulation of mitochondrial fusion and autophagy, making it a potentially valuable approach for treatment of drug-induced liver injury. PMID:27792760

  15. BID links ferroptosis to mitochondrial cell death pathways

    Directory of Open Access Journals (Sweden)

    Sandra Neitemeier

    2017-08-01

    Full Text Available Ferroptosis has been defined as an oxidative and iron-dependent pathway of regulated cell death that is distinct from caspase-dependent apoptosis and established pathways of death receptor-mediated regulated necrosis. While emerging evidence linked features of ferroptosis induced e.g. by erastin-mediated inhibition of the Xc- system or inhibition of glutathione peroxidase 4 (Gpx4 to an increasing number of oxidative cell death paradigms in cancer cells, neurons or kidney cells, the biochemical pathways of oxidative cell death remained largely unclear. In particular, the role of mitochondrial damage in paradigms of ferroptosis needs further investigation.In the present study, we find that erastin-induced ferroptosis in neuronal cells was accompanied by BID transactivation to mitochondria, loss of mitochondrial membrane potential, enhanced mitochondrial fragmentation and reduced ATP levels. These hallmarks of mitochondrial demise are also established features of oxytosis, a paradigm of cell death induced by Xc- inhibition by millimolar concentrations of glutamate. Bid knockout using CRISPR/Cas9 approaches preserved mitochondrial integrity and function, and mediated neuroprotective effects against both, ferroptosis and oxytosis. Furthermore, the BID-inhibitor BI-6c9 inhibited erastin-induced ferroptosis, and, in turn, the ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 prevented mitochondrial dysfunction and cell death in the paradigm of oxytosis. These findings show that mitochondrial transactivation of BID links ferroptosis to mitochondrial damage as the final execution step in this paradigm of oxidative cell death. Keywords: Ferroptosis, BID, Mitochondria, CRISPR, Oxytosis, Neuronal death

  16. Oxidative stress induces mitochondrial dysfunction in a subset of autistic lymphoblastoid cell lines

    Science.gov (United States)

    Rose, S; Frye, R E; Slattery, J; Wynne, R; Tippett, M; Melnyk, S; James, S J

    2014-01-01

    There is an increasing recognition that mitochondrial dysfunction is associated with autism spectrum disorders. However, little attention has been given to the etiology of mitochondrial dysfunction and how mitochondrial abnormalities might interact with other physiological disturbances such as oxidative stress. Reserve capacity is a measure of the ability of the mitochondria to respond to physiological stress. In this study, we demonstrate, for the first time, that lymphoblastoid cell lines (LCLs) derived from children with autistic disorder (AD) have an abnormal mitochondrial reserve capacity before and after exposure to reactive oxygen species (ROS). Ten (44%) of 22 AD LCLs exhibited abnormally high reserve capacity at baseline and a sharp depletion of reserve capacity when challenged with ROS. This depletion of reserve capacity was found to be directly related to an atypical simultaneous increase in both proton-leak respiration and adenosine triphosphate-linked respiration in response to increased ROS in this AD LCL subgroup. In this AD LCL subgroup, 48-hour pretreatment with N-acetylcysteine, a glutathione precursor, prevented these abnormalities and improved glutathione metabolism, suggesting a role for altered glutathione metabolism associated with this type of mitochondrial dysfunction. The results of this study suggest that a significant subgroup of AD children may have alterations in mitochondrial function, which could render them more vulnerable to a pro-oxidant microenvironment as well as intrinsic and extrinsic sources of ROS such as immune activation and pro-oxidant environmental toxins. These findings are consistent with the notion that AD is caused by a combination of genetic and environmental factors. PMID:24690598

  17. Involvement of the mitochondrial compartment in human NCL fibroblasts

    International Nuclear Information System (INIS)

    Pezzini, Francesco; Gismondi, Floriana; Tessa, Alessandra; Tonin, Paola; Carrozzo, Rosalba; Mole, Sara E.; Santorelli, Filippo M.; Simonati, Alessandro

    2011-01-01

    Highlights: ► Mitochondrial reticulum fragmentation occurs in human CLN1 and CLN6 fibroblasts. ► Likewise mitochondrial shift-to periphery and decreased mitochondrial density are seen. ► Enhanced caspase-mediated apoptosis occurs following STS treatment in CLN1 fibroblasts. -- Abstract: Neuronal ceroid lipofuscinosis (NCL) are a group of progressive neurodegenerative disorders of childhood, characterized by the endo-lysosomal storage of autofluorescent material. Impaired mitochondrial function is often associated with neurodegeneration, possibly related to the apoptotic cascade. In this study we investigated the possible effects of lysosomal accumulation on the mitochondrial compartment in the fibroblasts of two NCL forms, CLN1 and CLN6. Fragmented mitochondrial reticulum was observed in all cells by using the intravital fluorescent marker Mitotracker, mainly in the perinuclear region. This was also associated with intense signal from the lysosomal markers Lysotracker and LAMP2. Likewise, mitochondria appeared to be reduced in number and shifted to the cell periphery by electron microscopy; moreover the mitochondrial markers VDCA and COX IV were reduced following quantitative Western blot analysis. Whilst there was no evidence of increased cell death under basal condition, we observed a significant increase in apoptotic nuclei following Staurosporine treatment in CLN1 cells only. In conclusion, the mitochondrial compartment is affected in NCL fibroblasts invitro, and CLN1 cells seem to be more vulnerable to the negative effects of stressed mitochondrial membrane than CLN6 cells.

  18. A highly rearranged mitochondrial genome in Nycteria parasites (Haemosporidia) from bats

    OpenAIRE

    Karadjian , Gregory; Hassanin , Alexandre; Saintpierre , Benjamin; Gembu Tungaluna , Guy-Crispin; Ariey , Frederic; Ayala , Francisco J.; Landau , Irene; Duval , Linda

    2016-01-01

    International audience; Haemosporidia parasites have mostly and abundantly been described using mitochondrial genes, and in particular cytochrome b (cytb). Failure to amplify the mitochondrial cytb gene of Nycteria parasites isolated from Nycteridae bats has been recently reported. Bats are hosts to a diverse and profuse array of Haemosporidia parasites that remain largely unstudied. There is a need to obtain more molecular data from chiropteran parasites. Such data would help to better under...

  19. Nucleotide sequence preservation of human mitochondrial DNA

    International Nuclear Information System (INIS)

    Monnat, R.J. Jr.; Loeb, L.A.

    1985-01-01

    Recombinant DNA techniques have been used to quantitate the amount of nucleotide sequence divergence in the mitochondrial DNA population of individual normal humans. Mitochondrial DNA was isolated from the peripheral blood lymphocytes of five normal humans and cloned in M13 mp11; 49 kilobases of nucleotide sequence information was obtained from 248 independently isolated clones from the five normal donors. Both between- and within-individual differences were identified. Between-individual differences were identified in approximately = to 1/200 nucleotides. In contrast, only one within-individual difference was identified in 49 kilobases of nucleotide sequence information. This high degree of mitochondrial nucleotide sequence homogeneity in human somatic cells is in marked contrast to the rapid evolutionary divergence of human mitochondrial DNA and suggests the existence of mechanisms for the concerted preservation of mammalian mitochondrial DNA sequences in single organisms

  20. The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Yajin Liao

    2017-02-01

    Full Text Available The mitochondrial calcium uniporter (MCU—a calcium uniporter on the inner membrane of mitochondria—controls the mitochondrial calcium uptake in normal and abnormal situations. Mitochondrial calcium is essential for the production of adenosine triphosphate (ATP; however, excessive calcium will induce mitochondrial dysfunction. Calcium homeostasis disruption and mitochondrial dysfunction is observed in many neurodegenerative disorders. However, the role and regulatory mechanism of the MCU in the development of these diseases are obscure. In this review, we summarize the role of the MCU in controlling oxidative stress-elevated mitochondrial calcium and its function in neurodegenerative disorders. Inhibition of the MCU signaling pathway might be a new target for the treatment of neurodegenerative disorders.

  1. β-Lapachone attenuates mitochondrial dysfunction in MELAS cybrid cells.

    Science.gov (United States)

    Jeong, Moon Hee; Kim, Jin Hwan; Seo, Kang-Sik; Kwak, Tae Hwan; Park, Woo Jin

    2014-11-21

    Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a mitochondrial disease caused by mutations in the mitochondrial genome. This study investigated the efficacy of β-lapachone (β-lap), a natural quinone compound, in rescuing mitochondrial dysfunction in MELAS cybrid cells. β-Lap significantly restored energy production and mitochondrial membrane potential as well as normalized the elevated ROS level in MELAS cybrid cells. Additionally, β-lap reduced lactic acidosis and restored glucose uptake in the MELAS cybrid cells. Finally, β-lap activated Sirt1 by increasing the intracellular NAD(+)/NADH ratio, which was accompanied by increased mtDNA content. Two other quinone compounds (idebenone and CoQ10) that have rescued mitochondrial dysfunction in previous studies of MELAS cybrid cells had a minimal effect in the current study. Taken together, these results demonstrated that β-lap may provide a novel therapeutic modality for the treatment of MELAS. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A chemical screen probing the relationship between mitochondrial content and cell size.

    Directory of Open Access Journals (Sweden)

    Toshimori Kitami

    Full Text Available The cellular content of mitochondria changes dynamically during development and in response to external stimuli, but the underlying mechanisms remain obscure. To systematically identify molecular probes and pathways that control mitochondrial abundance, we developed a high-throughput imaging assay that tracks both the per cell mitochondrial content and the cell size in confluent human umbilical vein endothelial cells. We screened 28,786 small molecules and observed that hundreds of small molecules are capable of increasing or decreasing the cellular content of mitochondria in a manner proportionate to cell size, revealing stereotyped control of these parameters. However, only a handful of compounds dissociate this relationship. We focus on one such compound, BRD6897, and demonstrate through secondary assays that it increases the cellular content of mitochondria as evidenced by fluorescence microscopy, mitochondrial protein content, and respiration, even after rigorous correction for cell size, cell volume, or total protein content. BRD6897 increases uncoupled respiration 1.6-fold in two different, non-dividing cell types. Based on electron microscopy, BRD6897 does not alter the percent of cytoplasmic area occupied by mitochondria, but instead, induces a striking increase in the electron density of existing mitochondria. The mechanism is independent of known transcriptional programs and is likely to be related to a blockade in the turnover of mitochondrial proteins. At present the molecular target of BRD6897 remains to be elucidated, but if identified, could reveal an important additional mechanism that governs mitochondrial biogenesis and turnover.

  3. Mitochondrial multifaceted dysfunction in schizophrenia; complex I as a possible pathological target.

    Science.gov (United States)

    Ben-Shachar, Dorit

    2017-09-01

    Mitochondria are key players in various essential cellular processes beyond being the main energy supplier of the cell. Accordingly, they are involved in neuronal synaptic transmission, neuronal growth and sprouting and consequently neuronal plasticity and connectivity. In addition, mitochondria participate in the modulation of gene transcription and inflammation as well in physiological responses in health and disease. Schizophrenia is currently regarded as a neurodevelopmental disorder associated with impaired immune system, aberrant neuronal differentiation and abnormalities in various neurotransmitter systems mainly the dopaminergic, glutaminergic and GABAergic. Ample evidence has been accumulated over the last decade indicating a multifaceted dysfunction of mitochondria in schizophrenia. Indeed, mitochondrial deficit can be of relevance for the majority of the pathologies observed in this disease. In the present article, we overview specific deficits of the mitochondria in schizophrenia, with a focus on the first complex (complex I) of the mitochondrial electron transport chain (ETC). We argue that complex I, being a major factor in the regulation of mitochondrial ETC, is a possible key modulator of various functions of the mitochondria. We review biochemical, molecular, cellular and functional evidence for mitochondrial impairments and their possible convergence to impact in-vitro neuronal differentiation efficiency in schizophrenia. Mitochondrial function in schizophrenia may advance our knowledge of the disease pathophysiology and open the road for new treatment targets for the benefit of the patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Tools for assessing mitochondrial dynamics in mouse tissues and neurodegenerative models

    Science.gov (United States)

    Pham, Anh H.

    Mitochondria are dynamic organelles that undergo membrane fusion and fission and transport. The dynamic properties of mitochondria are important for regulating mitochondrial function. Defects in mitochondrial dynamics are linked neurodegenerative diseases and affect the development of many tissues. To investigate the role of mitochondrial dynamics in diseases, versatile tools are needed to explore the physiology of these dynamic organelles in multiple tissues. Current tools for monitoring mitochondrial dynamics have been limited to studies in cell culture, which may be inadequate model systems for exploring the network of tissues. Here, we have generated mouse models for monitoring mitochondrial dynamics in a broad spectrum of tissues and cell types. The Photo-Activatable Mitochondrial (PhAM floxed) line enables Cre-inducible expression of a mitochondrial targeted photoconvertible protein, Dendra2 (mito-Dendra2). In the PhAMexcised line, mito-Dendra2 is ubiquitously expressed to facilitate broad analysis of mitochondria at various developmental processes. We have utilized these models to study mitochondrial dynamics in the nigrostriatal circuit of Parkinson's disease (PD) and in the development of skeletal muscles. Increasing evidences implicate aberrant regulation of mitochondrial fusion and fission in models of PD. To assess the function of mitochondrial dynamics in the nigrostriatal circuit, we utilized transgenic techniques to abrogate mitochondrial fusion. We show that deletion of the Mfn2 leads to the degeneration of dopaminergic neurons and Parkinson's-like features in mice. To elucidate the dynamic properties of mitochondria during muscle development, we established a platform for examining mitochondrial compartmentalization in skeletal muscles. This model system may yield clues to the role of mitochondrial dynamics in mitochondrial myopathies.

  5. Current perspectives on mitochondrial inheritance in fungi

    Directory of Open Access Journals (Sweden)

    Xu J

    2015-08-01

    Full Text Available Jianping Xu,1,2 He Li2 1Department of Biology, McMaster University, Hamilton, Canada; 2The Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Federal Ministry of Education, Central South University of Forestry and Technology, Changsha, People’s Republic of China Abstract: The mitochondrion is an essential organelle of eukaryotes, generating the universal energy currency, adenosine triphosphate, through oxidative phosphorylation. However, aside from generation of adenosine triphosphate, mitochondria have also been found to impact a diversity of cellular functions and organ system health in humans and other eukaryotes. Thus, inheriting and maintaining functional mitochondria are essential for cell health. Due to the relative ease of conducting genetic and molecular biological experiments using fungi, they (especially the budding yeast Saccharomyces cerevisiae have been used as model organisms for investigating the patterns of inheritance and intracellular dynamics of mitochondria and mitochondrial DNA. Indeed, the diversity of mitochondrial inheritance patterns in fungi has contributed to our broad understanding of the genetic, cellular, and molecular controls of mitochondrial inheritance and their evolutionary implications. In this review, we briefly summarize the patterns of mitochondrial inheritance in fungi, describe the genes and processes involved in controlling uniparental mitochondrial DNA inheritance in sexual crosses in basidiomycete yeasts, and provide an overview of the molecular and cellular processes governing mitochondrial inheritance during asexual budding in S. cerevisiae. Together, these studies reveal that complex regulatory networks and molecular processes are involved in ensuring the transmission of healthy mitochondria to the progeny. Keywords: uniparental inheritance, biparental inheritance, mating type, actin cable, mitochore, mitochondrial partition 

  6. Clinical case of Mitochondrial DNA Depletion

    Directory of Open Access Journals (Sweden)

    A. V. Degtyareva

    2017-01-01

    Full Text Available The article reports clinical case of early neonatal manifestation of a rare genetic disease – mitochondrial DNA depletion syndrome, confirmed in laboratory in Russia. Mutations of FBXL4, which encodes an orphan mitochondrial F-box protein, involved in the maintenance of mitochondrial DNA (mtDNA, ultimately leading to disruption of mtDNA replication and decreased activity of mitochondrial respiratory chain complexes. It’s a reason of abnormalities in clinically affected tissues, most of all the muscular system and the brain. In our case hydronephrosis on the right, subependimal cysts of the brain, partial intestinal obstruction accompanied by polyhydramnios were diagnosed antenatal. Baby’s condition at birth was satisfactory and worsened dramatically towards the end of the first day of life. Clinical presentation includes sepsis-like symptom complex, neonatal depression, muscular hypotonia, persistent decompensated lactic acidosis, increase in the concentration of mitochondrial markers in blood plasma and urine, and changes in the basal ganglia of the brain. Imaging of the brain by magnetic resonance imaging (MRI demonstrated global volume loss particularly the subcortical and periventricular white matter with significant abnormal signal in bilateral basal ganglia and brainstem with associated delayed myelination. Differential diagnosis was carried out with hereditary diseases that occur as a «sepsis-like» symptom complex, accompanied by lactic acidosis: a group of metabolic disorders of amino acids, organic acids, β-oxidation defects of fatty acids, respiratory mitochondrial chain disorders and glycogen storage disease. The diagnosis was confirmed after sequencing analysis of 62 mytochondrial genes by NGS (Next Generation Sequencing. Reported disease has an unfavorable prognosis, however, accurate diagnosis is very important for genetic counseling and helps prevent the re-birth of a sick child in the family.

  7. Peripheral neuropathy is a common manifestation of mitochondrial diseases: a single-centre experience.

    Science.gov (United States)

    Luigetti, M; Sauchelli, D; Primiano, G; Cuccagna, C; Bernardo, D; Lo Monaco, M; Servidei, S

    2016-06-01

    Peripheral neuropathy in mitochondrial diseases (MDs) may vary from a subclinical finding in a multisystem syndrome to a severe, even isolated, manifestation in some patients. To investigate the involvement of the peripheral nervous system in MDs extensive electrophysiological studies were performed in 109 patients with morphological, biochemical and genetic diagnosis of MD [12 A3243G progressive external ophthalmoplegia (PEO)/mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), 16 myoclonic epilepsy with ragged-red fibres (MERRF), four mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), 67 PEO with single or multiple deletions of mitochondrial DNA, 10 others]. A neuropathy was found in 49 patients (45%). The incidence was very high in MNGIE (100%), MELAS (92%) and MERRF (69%), whilst 28% of PEO patients had evidence of peripheral involvement. The most frequent abnormality was a sensory axonal neuropathy found in 32/49 patients (65%). A sensory-motor axonal neuropathy was instead detected in 16% of the patients and sensory-motor axonal demyelinating neuropathy in 16%. Finally one Leigh patient had a motor axonal neuropathy. It is interesting to note that the great majority had preserved tendon reflexes and no sensory disturbances. In conclusion, peripheral involvement in MD is frequent even if often mild or asymptomatic. The correct identification and characterization of peripheral neuropathy through electrophysiological studies represents another tile in the challenge of MD diagnosis. © 2016 EAN.

  8. Mitochondrial transcription factor A protects human retinal ...

    African Journals Online (AJOL)

    Purpose: To investigate the impact of mitochondrial transcription factor A (TFAM), as a modulator of NF-κB, on proliferation of hypoxia-induced human retinal endothelial cell (HREC), and the probable mechanism. Methods: After exposure to hypoxia (1 % O2) for 5 days, cell proliferation and cell cycle of HREC were ...

  9. The bipartite mitochondrial genome of Ruizia karukerae (Rhigonematomorpha, Nematoda).

    Science.gov (United States)

    Kim, Taeho; Kern, Elizabeth; Park, Chungoo; Nadler, Steven A; Bae, Yeon Jae; Park, Joong-Ki

    2018-05-10

    Mitochondrial genes and whole mitochondrial genome sequences are widely used as molecular markers in studying population genetics and resolving both deep and shallow nodes in phylogenetics. In animals the mitochondrial genome is generally composed of a single chromosome, but mystifying exceptions sometimes occur. We determined the complete mitochondrial genome of the millipede-parasitic nematode Ruizia karukerae and found its mitochondrial genome consists of two circular chromosomes, which is highly unusual in bilateral animals. Chromosome I is 7,659 bp and includes six protein-coding genes, two rRNA genes and nine tRNA genes. Chromosome II comprises 7,647 bp, with seven protein-coding genes and 16 tRNA genes. Interestingly, both chromosomes share a 1,010 bp sequence containing duplicate copies of cox2 and three tRNA genes (trnD, trnG and trnH), and the nucleotide sequences between the duplicated homologous gene copies are nearly identical, suggesting a possible recent genesis for this bipartite mitochondrial genome. Given that little is known about the formation, maintenance or evolution of abnormal mitochondrial genome structures, R. karukerae mtDNA may provide an important early glimpse into this process.

  10. Impairment of ER-mitochondrial coupling provides neuroprotection in a model of oxytosis

    NARCIS (Netherlands)

    Honrath, Birgit; Metz, Isabell; Bendridi, Nadia; Rieusset, Jennifer; Culmsee, Carsten; Dolga, Amalia Mihalea

    2017-01-01

    The crosstalk between the endoplasmic reticulum (ER) and mitochondria facilitates calcium transfer between these organelles, thereby maintaining the driving force for calcium into the mitochondrial matrix to modulate mitochondrial respiration. Glucose-regulated protein 75 (GRP75/mortalin) physically

  11. Human 2'-phosphodiesterase localizes to the mitochondrial matrix with a putative function in mitochondrial RNA turnover

    DEFF Research Database (Denmark)

    Poulsen, Jesper Buchhave; Andersen, Kasper Røjkjær; Kjær, Karina Hansen

    2011-01-01

    . Interestingly, 2′-PDE shares both functionally and structurally characteristics with the CCR4-type exonuclease–endonuclease–phosphatase family of deadenylases. Here we show that 2′-PDE locates to the mitochondrial matrix of human cells, and comprise an active 3′–5′ exoribonuclease exhibiting a preference...

  12. Mitochondrial epigenetics : an overlooked layer of regulation?

    NARCIS (Netherlands)

    van der Wijst, Monique G. P.; Rots, Marianne G.

    Despite decades of research, mitochondrial epigenetics remains a controversial notion. Recent findings, however, indicate that dysfunctional mitochondrial DNA (mtDNA) methylation could underlie aging and disease. Unraveling such a level of regulation will be essential in the understanding of and in

  13. The Last Universal Common Ancestor: emergence, constitution and genetic legacy of an elusive forerunner

    Directory of Open Access Journals (Sweden)

    Labedan Bernard

    2008-07-01

    Full Text Available Abstract Background Since the reclassification of all life forms in three Domains (Archaea, Bacteria, Eukarya, the identity of their alleged forerunner (Last Universal Common Ancestor or LUCA has been the subject of extensive controversies: progenote or already complex organism, prokaryote or protoeukaryote, thermophile or mesophile, product of a protracted progression from simple replicators to complex cells or born in the cradle of "catalytically closed" entities? We present a critical survey of the topic and suggest a scenario. Results LUCA does not appear to have been a simple, primitive, hyperthermophilic prokaryote but rather a complex community of protoeukaryotes with a RNA genome, adapted to a broad range of moderate temperatures, genetically redundant, morphologically and metabolically diverse. LUCA's genetic redundancy predicts loss of paralogous gene copies in divergent lineages to be a significant source of phylogenetic anomalies, i.e. instances where a protein tree departs from the SSU-rRNA genealogy; consequently, horizontal gene transfer may not have the rampant character assumed by many. Examining membrane lipids suggest LUCA had sn1,2 ester fatty acid lipids from which Archaea emerged from the outset as thermophilic by "thermoreduction," with a new type of membrane, composed of sn2,3 ether isoprenoid lipids; this occurred without major enzymatic reconversion. Bacteria emerged by reductive evolution from LUCA and some lineages further acquired extreme thermophily by convergent evolution. This scenario is compatible with the hypothesis that the RNA to DNA transition resulted from different viral invasions as proposed by Forterre. Beyond the controversy opposing "replication first" to metabolism first", the predictive arguments of theories on "catalytic closure" or "compositional heredity" heavily weigh in favour of LUCA's ancestors having emerged as complex, self-replicating entities from which a genetic code arose under natural

  14. The mitochondrial genomes of the ciliates Euplotes minuta and Euplotes crassus

    Directory of Open Access Journals (Sweden)

    Huynh Minh

    2009-11-01

    Full Text Available Abstract Background There are thousands of very diverse ciliate species from which only a handful mitochondrial genomes have been studied so far. These genomes are rather similar because the ciliates analysed (Tetrahymena spp. and Paramecium aurelia are closely related. Here we study the mitochondrial genomes of the hypotrichous ciliates Euplotes minuta and Euplotes crassus. These ciliates are only distantly related to Tetrahymena spp. and Paramecium aurelia, but more closely related to Nyctotherus ovalis, which possesses a hydrogenosomal (mitochondrial genome. Results The linear mitochondrial genomes of the hypotrichous ciliates Euplotes minuta and Euplotes crassus were sequenced and compared with the mitochondrial genomes of several Tetrahymena species, Paramecium aurelia and the partially sequenced mitochondrial genome of the anaerobic ciliate Nyctotherus ovalis. This study reports new features such as long 5'gene extensions of several mitochondrial genes, extremely long cox1 and cox2 open reading frames and a large repeat in the middle of the linear mitochondrial genome. The repeat separates the open reading frames into two blocks, each having a single direction of transcription, from the repeat towards the ends of the chromosome. Although the Euplotes mitochondrial gene content is almost identical to that of Paramecium and Tetrahymena, the order of the genes is completely different. In contrast, the 33273 bp (excluding the repeat region piece of the mitochondrial genome that has been sequenced in both Euplotes species exhibits no difference in gene order. Unexpectedly, many of the mitochondrial genes of E. minuta encoding ribosomal proteins possess N-terminal extensions that are similar to mitochondrial targeting signals. Conclusion The mitochondrial genomes of the hypotrichous ciliates Euplotes minuta and Euplotes crassus are rather different from the previously studied genomes. Many genes are extended in size compared to mitochondrial

  15. Mitochondrial role in cell aging

    Science.gov (United States)

    Miquel, J.; Fleming, J.; Economos, A. C.; Johnson, J. E., Jr.

    1980-01-01

    The experimental studies on the mitochondria of insect and mammalian cells are examined with a view to an analysis of intrinsic mitochondrial senescence, and its relation to the age-related changes in other cell organelles. The fine structural and biochemical data support the concept that the mitochondria of fixed postmitotic cells may be the site of intrinsic aging because of the attack by free radicals and lipid peroxides originating in the organelles as a by-product of oxygen reduction during respiration. Although the cells have numerous mechanisms for counteracting lipid peroxidation injury, there is a slippage in the antioxidant protection. Intrinsic mitochondrial aging could thus be considered as a specific manifestation of oxygen toxicity. It is proposed that free radical injury renders an increasing number of the mitochondria unable to divide, probably because of damage to the lipids of the inner membrane and to mitochondrial DNA.

  16. Skeletal Muscle Mitochondrial Function in Polycystic Ovarian Syndrome

    DEFF Research Database (Denmark)

    Rabøl, Rasmus; Svendsen, Pernille Maj; Skovbro, Mette

    2011-01-01

    Hyperinsulinemic euglycemic clamps (40 mU/min/m2) and muscle biopsies were performed on 23 women with PCOS (9 lean (body mass index (BMI) 25 kg/m2)) and 17 age- and weight-matched controls (6 lean and 11 obese). Western blotting and high-resolution respirometry was used to determine mitochondrial function. Results......Objective Polycystic ovarian syndrome (PCOS) is associated with skeletal muscle insulin resistance, which has been linked to decreased mitochondrial function. We measured mitochondrial respiration in lean and obese women with and without PCOS using high-resolution respirometry. Methods...... Insulin sensitivity decreased with PCOS and increasing body weight. Mitochondrial respiration with substrates for complex I and complex I+II were similar in all groups, and PCOS was not associated with a decrease in mitochondrial content as measured by mtDNA/genomicDNA. We found no correlation between...

  17. The pathophysiology of mitochondrial disease as modeled in the mouse.

    Science.gov (United States)

    Wallace, Douglas C; Fan, Weiwei

    2009-08-01

    It is now clear that mitochondrial defects are associated with a plethora of clinical phenotypes in man and mouse. This is the result of the mitochondria's central role in energy production, reactive oxygen species (ROS) biology, and apoptosis, and because the mitochondrial genome consists of roughly 1500 genes distributed across the maternal mitochondrial DNA (mtDNA) and the Mendelian nuclear DNA (nDNA). While numerous pathogenic mutations in both mtDNA and nDNA mitochondrial genes have been identified in the past 21 years, the causal role of mitochondrial dysfunction in the common metabolic and degenerative diseases, cancer, and aging is still debated. However, the development of mice harboring mitochondrial gene mutations is permitting demonstration of the direct cause-and-effect relationship between mitochondrial dysfunction and disease. Mutations in nDNA-encoded mitochondrial genes involved in energy metabolism, antioxidant defenses, apoptosis via the mitochondrial permeability transition pore (mtPTP), mitochondrial fusion, and mtDNA biogenesis have already demonstrated the phenotypic importance of mitochondrial defects. These studies are being expanded by the recent development of procedures for introducing mtDNA mutations into the mouse. These studies are providing direct proof that mtDNA mutations are sufficient by themselves to generate major clinical phenotypes. As more different mtDNA types and mtDNA gene mutations are introduced into various mouse nDNA backgrounds, the potential functional role of mtDNA variation in permitting humans and mammals to adapt to different environments and in determining their predisposition to a wide array of diseases should be definitively demonstrated.

  18. Most Compositae (Asteraceae) are descendants of a paleohexaploid and all share a paleotetraploid ancestor with the Calyceraceae.

    Science.gov (United States)

    Barker, Michael S; Li, Zheng; Kidder, Thomas I; Reardon, Chris R; Lai, Zhao; Oliveira, Luiz O; Scascitelli, Moira; Rieseberg, Loren H

    2016-07-01

    Like many other flowering plants, members of the Compositae (Asteraceae) have a polyploid ancestry. Previous analyses found evidence for an ancient duplication or possibly triplication in the early evolutionary history of the family. We sought to better place this paleopolyploidy in the phylogeny and assess its nature. We sequenced new transcriptomes for Barnadesia, the lineage sister to all other Compositae, and four representatives of closely related families. Using a recently developed algorithm, MAPS, we analyzed nuclear gene family phylogenies for evidence of paleopolyploidy. We found that the previously recognized Compositae paleopolyploidy is also in the ancestry of the Calyceraceae. Our phylogenomic analyses uncovered evidence for a successive second round of genome duplication among all sampled Compositae except Barnadesia. Our analyses of new samples with new tools provide a revised view of paleopolyploidy in the Compositae. Together with results from a high density Lactuca linkage map, our results suggest that the Compositae and Calyceraceae have a common paleotetraploid ancestor and that most Compositae are descendants of a paleohexaploid. Although paleohexaploids have been previously identified, this is the first example where the paleotetraploid and paleohexaploid lineages have survived over tens of millions of years. The complex polyploidy in the ancestry of the Compositae and Calyceraceae represents a unique opportunity to study the long-term evolutionary fates and consequences of different ploidal levels. © 2016 Botanical Society of America.

  19. Actin and myosin contribute to mammalian mitochondrial DNA maintenance

    Science.gov (United States)

    Reyes, A.; He, J.; Mao, C. C.; Bailey, L. J.; Di Re, M.; Sembongi, H.; Kazak, L.; Dzionek, K.; Holmes, J. B.; Cluett, T. J.; Harbour, M. E.; Fearnley, I. M.; Crouch, R. J.; Conti, M. A.; Adelstein, R. S.; Walker, J. E.; Holt, I. J.

    2011-01-01

    Mitochondrial DNA maintenance and segregation are dependent on the actin cytoskeleton in budding yeast. We found two cytoskeletal proteins among six proteins tightly associated with rat liver mitochondrial DNA: non-muscle myosin heavy chain IIA and β-actin. In human cells, transient gene silencing of MYH9 (encoding non-muscle myosin heavy chain IIA), or the closely related MYH10 gene (encoding non-muscle myosin heavy chain IIB), altered the topology and increased the copy number of mitochondrial DNA; and the latter effect was enhanced when both genes were targeted simultaneously. In contrast, genetic ablation of non-muscle myosin IIB was associated with a 60% decrease in mitochondrial DNA copy number in mouse embryonic fibroblasts, compared to control cells. Gene silencing of β-actin also affected mitochondrial DNA copy number and organization. Protease-protection experiments and iodixanol gradient analysis suggest some β-actin and non-muscle myosin heavy chain IIA reside within human mitochondria and confirm that they are associated with mitochondrial DNA. Collectively, these results strongly implicate the actomyosin cytoskeleton in mammalian mitochondrial DNA maintenance. PMID:21398640

  20. Mitochondrial fusion is increased by the nuclear coactivator PGC-1beta.

    Directory of Open Access Journals (Sweden)

    Marc Liesa

    Full Text Available There is no evidence to date on whether transcriptional regulators are able to shift the balance between mitochondrial fusion and fission events through selective control of gene expression.Here, we demonstrate that reduced mitochondrial size observed in knock-out mice for the transcriptional regulator PGC-1beta is associated with a selective reduction in Mitofusin 2 (Mfn2 expression, a mitochondrial fusion protein. This decrease in Mfn2 is specific since expression of the remaining components of mitochondrial fusion and fission machinery were not affected. Furthermore, PGC-1beta increases mitochondrial fusion and elongates mitochondrial tubules. This PGC-1beta-induced elongation specifically requires Mfn2 as this process is absent in Mfn2-ablated cells. Finally, we show that PGC-1beta increases Mfn2 promoter activity and transcription by coactivating the nuclear receptor Estrogen Related Receptor alpha (ERRalpha.Taken together, our data reveal a novel mechanism by which mammalian cells control mitochondrial fusion. In addition, we describe a novel role of PGC-1beta in mitochondrial physiology, namely the control of mitochondrial fusion mainly through Mfn2.

  1. Mitochondrial metabolism and the control of vascular smooth muscle cell proliferation

    Directory of Open Access Journals (Sweden)

    Mario eChiong

    2014-12-01

    Full Text Available Differentiation and dedifferentiation of vascular smooth muscle cells (VSMCs are essential processes of vascular development. VSMCs have biosynthetic, proliferative and contractile roles in the vessel wall. Alterations in the differentiated state of the VSMCs play a critical role in the pathogenesis of a variety of cardiovascular diseases, including atherosclerosis, hypertension and vascular stenosis. This review provides an overview of the current state of knowledge of molecular mechanisms involved in the control of VSMC proliferation, with particular focus on mitochondrial metabolism. Mitochondrial activity can be controlled by regulating mitochondrial dynamics, i.e. mitochondrial fusion and fission, and by regulating mitochondrial calcium handling through the interaction with the endoplasmic reticulum (ER. Alterations in both VSMC proliferation and mitochondrial function can be triggered by dysregulation of mitofusin-2, a small GTPase associated with mitochondrial fusion and mitochondrial-ER interaction. Several lines of evidence highlight the relevance of mitochondrial metabolism in the control of VSMC proliferation, indicating a new area to be explored in the treatment of vascular diseases.

  2. DNA polymerase beta participates in mitochondrial DNA repair

    DEFF Research Database (Denmark)

    Sykora, P; Kanno, S; Akbari, M

    2017-01-01

    We have detected DNA polymerase beta (Polβ), known as a key nuclear base excision repair (BER) protein, in mitochondrial protein extracts derived from mammalian tissue and cells. Manipulation of the N-terminal sequence affected the amount of Polβ in the mitochondria. Using Polβ fragments, mitocho......We have detected DNA polymerase beta (Polβ), known as a key nuclear base excision repair (BER) protein, in mitochondrial protein extracts derived from mammalian tissue and cells. Manipulation of the N-terminal sequence affected the amount of Polβ in the mitochondria. Using Polβ fragments......, mitochondrial-specific protein partners were identified, with the interactors mainly functioning in DNA maintenance and mitochondrial import. Of particular interest was the identification of the proteins TWINKLE, SSBP1 and TFAM, all of which are mitochondria specific DNA effectors and are known to function...... in the nucleoid. Polβ directly interacted with, and influenced the activity of, the mitochondrial helicase TWINKLE. Human kidney cells with Polβ knock-out (KO) had higher endogenous mtDNA damage. Mitochondrial extracts derived from heterozygous Polβ mouse tissue and KO cells had lower nucleotide incorporation...

  3. A Novel Non-Apoptotic Role of Procaspase-3 in the Regulation of Mitochondrial Biogenesis Activators.

    Science.gov (United States)

    Kim, Ji-Soo; Ha, Ji-Young; Yang, Sol-Ji; Son, Jin H

    2018-01-01

    The executioner caspase-3 has been proposed as a pharmacological intervention target to preserve degenerating dopaminergic (DA) neurons because apoptotic mechanisms involving caspase-3 contribute, at least in part, to the loss of DA neurons in patients and experimental models of Parkinson's disease (PD). Here, we determined that genetic intervention of caspase-3 was sufficient to prevent cell death against oxidative stress (OS), accompanied by unexpected severe mitochondrial dysfunction. Specifically, as we expected, caspase-3-deficient DA neuronal cells were very significantly resistant to OS-induced cell death, while the activation of the initiator caspase-9 by OS was preserved. Moreover, detailed phenotypic characterization of caspase-3-deficient DA cells revealed severe mitochondrial dysfunction, including an accumulation of damaged mitochondria with a characteristic swollen structure and broken cristae, reduced membrane potential, increased levels of reactive oxygen species (ROS), and deficits in mitochondrial oxidative phosphorylation (OXPHOS) enzymes. Of great interest, we found that mitochondrial biogenesis was dramatically decreased in caspase-3-deficient DA cells, whereas their capability of mitophagy was normal. In accordance with this observation, caspase-3 gene knock down (KD) resulted in dramatically decreased expression of the key transcriptional activators of mitochondrial biogenesis, such as Tfam and Nrf-1, implicating a non-apoptotic role of procaspase-3 in mitochondrial biogenesis. Therefore, a prolonged anti-apoptotic intervention targeting caspase-3 should be considered with caution due to the potential adverse effects in mitochondria dynamics resulting from a novel potential functional role of procaspase-3 in mitochondrial biogenesis via regulating the expression of mitochondrial biogenesis activators. J. Cell. Biochem. 119: 347-357, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. A Role for Mitochondrial Phosphoenolpyruvate Carboxykinase (PEPCK-M) in the Regulation of Hepatic Gluconeogenesis*

    Science.gov (United States)

    Stark, Romana; Guebre-Egziabher, Fitsum; Zhao, Xiaojian; Feriod, Colleen; Dong, Jianying; Alves, Tiago C.; Ioja, Simona; Pongratz, Rebecca L.; Bhanot, Sanjay; Roden, Michael; Cline, Gary W.; Shulman, Gerald I.; Kibbey, Richard G.

    2014-01-01

    Synthesis of phosphoenolpyruvate (PEP) from oxaloacetate is an absolute requirement for gluconeogenesis from mitochondrial substrates. Generally, this reaction has solely been attributed to the cytosolic isoform of PEPCK (PEPCK-C), although loss of the mitochondrial isoform (PEPCK-M) has never been assessed. Despite catalyzing the same reaction, to date the only significant role reported in mammals for the mitochondrial isoform is as a glucose sensor necessary for insulin secretion. We hypothesized that this nutrient-sensing mitochondrial GTP-dependent pathway contributes importantly to gluconeogenesis. PEPCK-M was acutely silenced in gluconeogenic tissues of rats using antisense oligonucleotides both in vivo and in isolated hepatocytes. Silencing PEPCK-M lowers plasma glucose, insulin, and triglycerides, reduces white adipose, and depletes hepatic glycogen, but raises lactate. There is a switch of gluconeogenic substrate preference to glycerol that quantitatively accounts for a third of glucose production. In contrast to the severe mitochondrial deficiency characteristic of PEPCK-C knock-out livers, hepatocytes from PEPCK-M-deficient livers maintained normal oxidative function. Consistent with its predicted role, gluconeogenesis rates from hepatocytes lacking PEPCK-M are severely reduced for lactate, alanine, and glutamine, but not for pyruvate and glycerol. Thus, PEPCK-M has a direct role in fasted and fed glucose homeostasis, and this mitochondrial GTP-dependent pathway should be reconsidered for its involvement in both normal and diabetic metabolism. PMID:24497630

  5. A role for mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) in the regulation of hepatic gluconeogenesis.

    Science.gov (United States)

    Stark, Romana; Guebre-Egziabher, Fitsum; Zhao, Xiaojian; Feriod, Colleen; Dong, Jianying; Alves, Tiago C; Ioja, Simona; Pongratz, Rebecca L; Bhanot, Sanjay; Roden, Michael; Cline, Gary W; Shulman, Gerald I; Kibbey, Richard G

    2014-03-14

    Synthesis of phosphoenolpyruvate (PEP) from oxaloacetate is an absolute requirement for gluconeogenesis from mitochondrial substrates. Generally, this reaction has solely been attributed to the cytosolic isoform of PEPCK (PEPCK-C), although loss of the mitochondrial isoform (PEPCK-M) has never been assessed. Despite catalyzing the same reaction, to date the only significant role reported in mammals for the mitochondrial isoform is as a glucose sensor necessary for insulin secretion. We hypothesized that this nutrient-sensing mitochondrial GTP-dependent pathway contributes importantly to gluconeogenesis. PEPCK-M was acutely silenced in gluconeogenic tissues of rats using antisense oligonucleotides both in vivo and in isolated hepatocytes. Silencing PEPCK-M lowers plasma glucose, insulin, and triglycerides, reduces white adipose, and depletes hepatic glycogen, but raises lactate. There is a switch of gluconeogenic substrate preference to glycerol that quantitatively accounts for a third of glucose production. In contrast to the severe mitochondrial deficiency characteristic of PEPCK-C knock-out livers, hepatocytes from PEPCK-M-deficient livers maintained normal oxidative function. Consistent with its predicted role, gluconeogenesis rates from hepatocytes lacking PEPCK-M are severely reduced for lactate, alanine, and glutamine, but not for pyruvate and glycerol. Thus, PEPCK-M has a direct role in fasted and fed glucose homeostasis, and this mitochondrial GTP-dependent pathway should be reconsidered for its involvement in both normal and diabetic metabolism.

  6. Current Experience in Testing Mitochondrial Nutrients in Disorders Featuring Oxidative Stress and Mitochondrial Dysfunction: Rational Design of Chemoprevention Trials

    OpenAIRE

    Giovanni Pagano; Annarita Aiello Talamanca; Giuseppe Castello; Mario D. Cordero; Marco d'Ischia; Maria Nicola Gadaleta; Federico V. Pallardó; Sandra Petrović; Luca Tiano; Adriana Zatterale

    2014-01-01

    An extensive number of pathologies are associated with mitochondrial dysfunction (MDF) and oxidative stress (OS). Thus, mitochondrial cofactors termed “mitochondrial nutrients” (MN), such as α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and l-carnitine (CARN) (or its derivatives) have been tested in a number of clinical trials, and this review is focused on the use of MN-based clinical trials. The papers reporting on MN-based clinical trials were retrieved in MedLine up to July 2014, and evaluat...

  7. Mitochondrial oxidative stress causes hyperphosphorylation of tau.

    Directory of Open Access Journals (Sweden)

    Simon Melov

    2007-06-01

    Full Text Available Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD: tau phosphorylation, and beta-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2 die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576 with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Ass load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD.

  8. Mitochondrial disease in autism spectrum disorder patients: a cohort analysis.

    Science.gov (United States)

    Weissman, Jacqueline R; Kelley, Richard I; Bauman, Margaret L; Cohen, Bruce H; Murray, Katherine F; Mitchell, Rebecca L; Kern, Rebecca L; Natowicz, Marvin R

    2008-01-01

    Previous reports indicate an association between autism spectrum disorders (ASD) and disorders of mitochondrial oxidative phosphorylation. One study suggested that children with both diagnoses are clinically indistinguishable from children with idiopathic autism. There are, however, no detailed analyses of the clinical and laboratory findings in a large cohort of these children. Therefore, we undertook a comprehensive review of patients with ASD and a mitochondrial disorder. We reviewed medical records of 25 patients with a primary diagnosis of ASD by DSM-IV-TR criteria, later determined to have enzyme- or mutation-defined mitochondrial electron transport chain (ETC) dysfunction. Twenty-four of 25 patients had one or more major clinical abnormalities uncommon in idiopathic autism. Twenty-one patients had histories of significant non-neurological medical problems. Nineteen patients exhibited constitutional symptoms, especially excessive fatigability. Fifteen patients had abnormal neurological findings. Unusual developmental phenotypes included marked delay in early gross motor milestones (32%) and unusual patterns of regression (40%). Levels of blood lactate, plasma alanine, and serum ALT and/or AST were increased at least once in 76%, 36%, and 52% of patients, respectively. The most common ETC disorders were deficiencies of complex I (64%) and complex III (20%). Two patients had rare mtDNA mutations of likely pathogenicity. Although all patients' initial diagnosis was idiopathic autism, careful clinical and biochemical assessment identified clinical findings that differentiated them from children with idiopathic autism. These and prior data suggest a disturbance of mitochondrial energy production as an underlying pathophysiological mechanism in a subset of individuals with autism.

  9. Mitochondrial disease in autism spectrum disorder patients: a cohort analysis.

    Directory of Open Access Journals (Sweden)

    Jacqueline R Weissman

    Full Text Available Previous reports indicate an association between autism spectrum disorders (ASD and disorders of mitochondrial oxidative phosphorylation. One study suggested that children with both diagnoses are clinically indistinguishable from children with idiopathic autism. There are, however, no detailed analyses of the clinical and laboratory findings in a large cohort of these children. Therefore, we undertook a comprehensive review of patients with ASD and a mitochondrial disorder.We reviewed medical records of 25 patients with a primary diagnosis of ASD by DSM-IV-TR criteria, later determined to have enzyme- or mutation-defined mitochondrial electron transport chain (ETC dysfunction. Twenty-four of 25 patients had one or more major clinical abnormalities uncommon in idiopathic autism. Twenty-one patients had histories of significant non-neurological medical problems. Nineteen patients exhibited constitutional symptoms, especially excessive fatigability. Fifteen patients had abnormal neurological findings. Unusual developmental phenotypes included marked delay in early gross motor milestones (32% and unusual patterns of regression (40%. Levels of blood lactate, plasma alanine, and serum ALT and/or AST were increased at least once in 76%, 36%, and 52% of patients, respectively. The most common ETC disorders were deficiencies of complex I (64% and complex III (20%. Two patients had rare mtDNA mutations of likely pathogenicity.Although all patients' initial diagnosis was idiopathic autism, careful clinical and biochemical assessment identified clinical findings that differentiated them from children with idiopathic autism. These and prior data suggest a disturbance of mitochondrial energy production as an underlying pathophysiological mechanism in a subset of individuals with autism.

  10. Mitochondrial Myopathies

    Science.gov (United States)

    ... noting “soft signs” in unaffected relatives. These include deaf- ness, short stature, migraine headaches and PEO. Muscle ... mitochondrial defects and provide valuable information for family planning. Perhaps most important, knowing the genetic defects that ...

  11. Mitochondrial DNA replication: a PrimPol perspective

    Science.gov (United States)

    Bailey, Laura J.

    2017-01-01

    PrimPol, (primase–polymerase), the most recently identified eukaryotic polymerase, has roles in both nuclear and mitochondrial DNA maintenance. PrimPol is capable of acting as a DNA polymerase, with the ability to extend primers and also bypass a variety of oxidative and photolesions. In addition, PrimPol also functions as a primase, catalysing the preferential formation of DNA primers in a zinc finger-dependent manner. Although PrimPol's catalytic activities have been uncovered in vitro, we still know little about how and why it is targeted to the mitochondrion and what its key roles are in the maintenance of this multicopy DNA molecule. Unlike nuclear DNA, the mammalian mitochondrial genome is circular and the organelle has many unique proteins essential for its maintenance, presenting a differing environment within which PrimPol must function. Here, we discuss what is currently known about the mechanisms of DNA replication in the mitochondrion, the proteins that carry out these processes and how PrimPol is likely to be involved in assisting this vital cellular process. PMID:28408491

  12. Mitochondrial mutagenesis induced by tumor-specific radiation bystander effects.

    LENUS (Irish Health Repository)

    Gorman, Sheeona

    2012-02-01

    The radiation bystander effect is a cellular process whereby cells not directly exposed to radiation display cellular alterations similar to directly irradiated cells. Cellular targets including mitochondria have been postulated to play a significant role in this process. In this study, we utilized the Random Mutation Capture assay to quantify the levels of random mutations and deletions in the mitochondrial genome of bystander cells. A significant increase in the frequency of random mitochondrial mutations was found at 24 h in bystander cells exposed to conditioned media from irradiated tumor explants (p = 0.018). CG:TA mutations were the most abundant lesion induced. A transient increase in the frequency of random mitochondrial deletions was also detected in bystander cells exposed to conditioned media from tumor but not normal tissue at 24 h (p = 0.028). The increase in both point mutations and deletions was transient and not detected at 72 h. To further investigate mitochondrial dysfunction, mitochondrial membrane potential and reactive oxygen species were assessed in these bystander cells. There was a significant reduction in mitochondrial membrane potential and this was positively associated with the frequency of random point mutation and deletions in bystander cells treated with conditioned media from tumor tissue (r = 0.71, p = 0.02). This study has shown that mitochondrial genome alterations are an acute consequence of the radiation bystander effect secondary to mitochondrial dysfunction and suggests that this cannot be solely attributable to changes in ROS levels alone.

  13. Mitochondrial Recombination and Introgression during Speciation by Hybridization.

    Science.gov (United States)

    Leducq, Jean-Baptiste; Henault, Mathieu; Charron, Guillaume; Nielly-Thibault, Lou; Terrat, Yves; Fiumera, Heather L; Shapiro, B Jesse; Landry, Christian R

    2017-08-01

    Genome recombination is a major source of genotypic diversity and contributes to adaptation and speciation following interspecies hybridization. The contribution of recombination in these processes has been thought to be largely limited to the nuclear genome because organelles are mostly uniparentally inherited in animals and plants, which prevents recombination. Unicellular eukaryotes such as budding yeasts do, however, transmit mitochondria biparentally, suggesting that during hybridization, both parents could provide alleles that contribute to mitochondrial functions such as respiration and metabolism in hybrid populations or hybrid species. We examined the dynamics of mitochondrial genome transmission and evolution during speciation by hybridization in the natural budding yeast Saccharomyces paradoxus. Using population-scale mitochondrial genome sequencing in two endemic North American incipient species SpB and SpC and their hybrid species SpC*, we found that both parental species contributed to the hybrid mitochondrial genome through recombination. We support our findings by showing that mitochondrial recombination between parental types is frequent in experimental crosses that recreate the early step of this speciation event. In these artificial hybrids, we observed that mitochondrial genome recombination enhances phenotypic variation among diploid hybrids, suggesting that it could play a role in the phenotypic differentiation of hybrid species. Like the nuclear genome, the mitochondrial genome can, therefore, also play a role in hybrid speciation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Mechanisms of ER Stress-Mediated Mitochondrial Membrane Permeabilization.

    LENUS (Irish Health Repository)

    Gupta, Sanjeev

    2010-01-01

    During apoptosis, the process of mitochondrial outer membrane permeabilization (MOMP) represents a point-of-no-return as it commits the cell to death. Here we have assessed the role of caspases, Bcl-2 family members and the mitochondrial permeability transition pore on ER stress-induced MOMP and subsequent cell death. Induction of ER stress leads to upregulation of several genes such as Grp78, Edem1, Erp72, Atf4, Wars, Herp, p58ipk, and ERdj4 and leads to caspase activation, release of mitochondrial intermembrane proteins and dissipation of mitochondrial transmembrane potential (DeltaPsim). Mouse embryonic fibroblasts (MEFs) from caspase-9, -2 and, -3 knock-out mice were resistant to ER stress-induced apoptosis which correlated with decreased processing of pro-caspase-3 and -9. Furthermore, pretreatment of cells with caspase inhibitors (Boc-D.fmk and DEVD.fmk) attenuated ER stress-induced loss of DeltaPsim. However, only deficiency of caspase-9 and -2 could prevent ER stress-mediated loss of DeltaPsim. Bcl-2 overexpression or pretreatment of cells with the cell permeable BH4 domain (BH4-Tat) or the mitochondrial permeability transition pore inhibitors, bongkrekic acid or cyclosporine A, attenuated the ER stress-induced loss of DeltaPsim. These data suggest a role for caspase-9 and -2, Bcl-2 family members and the mitochondrial permeability transition pore in loss of mitochondrial membrane potential during ER stress-induced apoptosis.

  15. Tempol, a superoxide dismutase mimetic agent, ameliorates cisplatin-induced nephrotoxicity through alleviation of mitochondrial dysfunction in mice.

    Directory of Open Access Journals (Sweden)

    Lamiaa A Ahmed

    Full Text Available Mitochondrial dysfunction is a crucial mechanism by which cisplatin, a potent chemotherapeutic agent, causes nephrotoxicity where mitochondrial electron transport complexes are shifted mostly toward imbalanced reactive oxygen species versus energy production. In the present study, the protective role of tempol, a membrane-permeable superoxide dismutase mimetic agent, was evaluated on mitochondrial dysfunction and the subsequent damage induced by cisplatin nephrotoxicity in mice.Nephrotoxicity was assessed 72 h after a single i.p. injection of cisplatin (25 mg/kg with or without oral administration of tempol (100 mg/kg/day. Serum creatinine and urea as well as glucosuria and proteinuria were evaluated. Both kidneys were isolated for estimation of oxidative stress markers, adenosine triphosphate (ATP content and caspase-3 activity. Moreover, mitochondrial oxidative phosphorylation capacity, complexes I-IV activities and mitochondrial nitric oxide synthase (mNOS protein expression were measured along with histological examinations of renal tubular damage and mitochondrial ultrastructural changes. Tempol was effective against cisplatin-induced elevation of serum creatinine and urea as well as glucosuria and proteinuria. Moreover, pretreatment with tempol notably inhibited cisplatin-induced oxidative stress and disruption of mitochondrial function by restoring mitochondrial oxidative phosphorylation, complexes I and III activities, mNOS protein expression and ATP content. Tempol also provided significant protection against apoptosis, tubular damage and mitochondrial ultrastructural changes. Interestingly, tempol did not interfere with the cytotoxic effect of cisplatin against the growth of solid Ehrlich carcinoma.This study highlights the potential role of tempol in inhibiting cisplatin-induced nephrotoxicity without affecting its antitumor activity via amelioration of oxidative stress and mitochondrial dysfunction.

  16. MELAS syndrome and cardiomyopathy: linking mitochondrial function to heart failure pathogenesis.

    Science.gov (United States)

    Hsu, Ying-Han R; Yogasundaram, Haran; Parajuli, Nirmal; Valtuille, Lucas; Sergi, Consolato; Oudit, Gavin Y

    2016-01-01

    Heart failure remains an important clinical burden, and mitochondrial dysfunction plays a key role in its pathogenesis. The heart has a high metabolic demand, and mitochondrial function is a key determinant of myocardial performance. In mitochondrial disorders, hypertrophic remodeling is the early pattern of cardiomyopathy with progression to dilated cardiomyopathy, conduction defects and ventricular pre-excitation occurring in a significant proportion of patients. Cardiac dysfunction occurs in approximately a third of patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, a stereotypical example of a mitochondrial disorder leading to a cardiomyopathy. We performed unique comparative ultrastructural and gene expression in a MELAS heart compared with non-failing controls. Our results showed a remarkable increase in mitochondrial inclusions and increased abnormal mitochondria in MELAS cardiomyopathy coupled with variable sarcomere thickening, heterogeneous distribution of affected cardiomyocytes and a greater elevation in the expression of disease markers. Investigation and management of patients with mitochondrial cardiomyopathy should follow the well-described contemporary heart failure clinical practice guidelines and include an important role of medical and device therapies. Directed metabolic therapy is lacking, but current research strategies are dedicated toward improving mitochondrial function in patients with mitochondrial disorders.

  17. BID links ferroptosis to mitochondrial cell death pathways.

    Science.gov (United States)

    Neitemeier, Sandra; Jelinek, Anja; Laino, Vincenzo; Hoffmann, Lena; Eisenbach, Ina; Eying, Roman; Ganjam, Goutham K; Dolga, Amalia M; Oppermann, Sina; Culmsee, Carsten

    2017-08-01

    Ferroptosis has been defined as an oxidative and iron-dependent pathway of regulated cell death that is distinct from caspase-dependent apoptosis and established pathways of death receptor-mediated regulated necrosis. While emerging evidence linked features of ferroptosis induced e.g. by erastin-mediated inhibition of the X c - system or inhibition of glutathione peroxidase 4 (Gpx4) to an increasing number of oxidative cell death paradigms in cancer cells, neurons or kidney cells, the biochemical pathways of oxidative cell death remained largely unclear. In particular, the role of mitochondrial damage in paradigms of ferroptosis needs further investigation. In the present study, we find that erastin-induced ferroptosis in neuronal cells was accompanied by BID transactivation to mitochondria, loss of mitochondrial membrane potential, enhanced mitochondrial fragmentation and reduced ATP levels. These hallmarks of mitochondrial demise are also established features of oxytosis, a paradigm of cell death induced by X c - inhibition by millimolar concentrations of glutamate. Bid knockout using CRISPR/Cas9 approaches preserved mitochondrial integrity and function, and mediated neuroprotective effects against both, ferroptosis and oxytosis. Furthermore, the BID-inhibitor BI-6c9 inhibited erastin-induced ferroptosis, and, in turn, the ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 prevented mitochondrial dysfunction and cell death in the paradigm of oxytosis. These findings show that mitochondrial transactivation of BID links ferroptosis to mitochondrial damage as the final execution step in this paradigm of oxidative cell death. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. The mitochondrial membrane potential in human platelets: a sensitive parameter for platelet quality

    NARCIS (Netherlands)

    Verhoeven, Arthur J.; Verhaar, Robin; Gouwerok, Eric G. W.; de Korte, Dirk

    2005-01-01

    BACKGROUND: Deterioration of platelet (PLT) quality during storage is accompanied by an increase in lactate production, indicating a decrease in mitochondrial function. In this study, the optimal conditions under which the fluorescent dye JC-1 can be used to detect changes in mitochondrial function

  19. Abolition of peroxiredoxin-5 mitochondrial targeting during canid evolution.

    Directory of Open Access Journals (Sweden)

    Valérie Van der Eecken

    Full Text Available In human, the subcellular targeting of peroxiredoxin-5 (PRDX5, a thioredoxin peroxidase, is dependent on the use of multiple alternative transcription start sites and two alternative in-frame translation initiation sites, which determine whether or not the region encoding a mitochondrial targeting sequence (MTS is translated. In the present study, the abolition of PRDX5 mitochondrial targeting in dog is highlighted and the molecular mechanism underlying the loss of mitochondrial PRDX5 during evolution is examined. Here, we show that the absence of mitochondrial PRDX5 is generalized among the extant canids and that the first events leading to PRDX5 MTS abolition in canids involve a mutation in the more 5' translation initiation codon as well as the appearance of a STOP codon. Furthermore, we found that PRDX5 MTS functionality is maintained in giant panda and northern elephant seal, which are phylogenetically closely related to canids. Also, the functional consequences of the restoration of mitochondrial PRDX5 in dog Madin-Darby canine kidney (MDCK cells were investigated. The restoration of PRDX5 mitochondrial targeting in MDCK cells, instead of protecting, provokes deleterious effects following peroxide exposure independently of its peroxidase activity, indicating that mitochondrial PRDX5 gains cytotoxic properties under acute oxidative stress in MDCK cells. Altogether our results show that, although mitochondrial PRDX5 cytoprotective function against oxidative stress has been clearly demonstrated in human and rodents, PRDX5 targeting to mitochondria has been evolutionary lost in canids. Moreover, restoration of mitochondrial PRDX5 in dog MDCK cells, instead of conferring protection against peroxide exposure, makes them more vulnerable.

  20. Loss of Dendritic Complexity Precedes Neurodegeneration in a Mouse Model with Disrupted Mitochondrial Distribution in Mature Dendrites

    Directory of Open Access Journals (Sweden)

    Guillermo López-Doménech

    2016-10-01

    Full Text Available Correct mitochondrial distribution is critical for satisfying local energy demands and calcium buffering requirements and supporting key cellular processes. The mitochondrially targeted proteins Miro1 and Miro2 are important components of the mitochondrial transport machinery, but their specific roles in neuronal development, maintenance, and survival remain poorly understood. Using mouse knockout strategies, we demonstrate that Miro1, as opposed to Miro2, is the primary regulator of mitochondrial transport in both axons and dendrites. Miro1 deletion leads to depletion of mitochondria from distal dendrites but not axons, accompanied by a marked reduction in dendritic complexity. Disrupting postnatal mitochondrial distribution in vivo by deleting Miro1 in mature neurons causes a progressive loss of distal dendrites and compromises neuronal survival. Thus, the local availability of mitochondrial mass is critical for generating and sustaining dendritic arbors, and disruption of mitochondrial distribution in mature neurons is associated with neurodegeneration.

  1. Genetic variation and phylogeographic structure of the cotton aphid, Aphis gossypii, based on mitochondrial DNA and microsatellite markers.

    Science.gov (United States)

    Wang, Xing-Ya; Yang, Xian-Ming; Lu, Bin; Zhou, Li-Hong; Wu, Kong-Ming

    2017-05-15

    Aphis gossypii, one of the most important agricultural pests in the world, can cause serious economic losses in the main crop-producing areas. To clarify issues such as the genetic differentiation, genetic structure, and demographic history of A. gossypii populations, we used 10 nuclear microsatellite loci (SSR) and two mitochondrial gene sequences (COI and Cytb) to investigate genetic diversity and population structure of A. gossypii populations that were collected from 33 sampling sites in China from different climatic zones. SSR and mtDNA data suggested low to moderate levels of genetic diversity. A star-shaped network of mtDNA haplotypes indicated that the maternal ancestor of China cotton aphids likely originated in Xinjiang. The POPTREE, STRUCTURE and principal coordinate analysis (PCoA) revealed two genetic clusters: an eastern and a western region group. Isolation by distance (IBD) results showed a positive correlation between geographic distance and genetic distance in the vast eastern region but not in the western region. Neutrality testing and mismatch distribution analysis provided strong evidence for a recent rapid expansion in most populations. Genetic bottleneck was not detected in A. gossypii populations of China. The present work can help us to develop strategies for managing this pest.

  2. Mitochondrial Mutations in Subjects with Psychiatric Disorders

    NARCIS (Netherlands)

    V. Sequeira (Vasco); S.M. Rollins; C. Magnan (Christophe); M. van Oven (Mannis); P. Baldi (Pierre); R.M. Myers (Richard M.); J.D. Barchas (Jack D.); A.F. Schatzberg (Alan F); S.J. Watson (Stanley J); H. Akil (Huda); W.E. Bunney (William E.); M.P. Vawter (Marquis)

    2015-01-01

    textabstractA considerable body of evidence supports the role of mitochondrial dysfunction in psychiatric disorders and mitochondrial DNA (mtDNA) mutations are known to alter brain energy metabolism, neurotransmission, and cause neurodegenerative disorders. Genetic studies focusing on common nuclear

  3. Lack of mitochondrial MutS homolog 1 in Toxoplasma gondii disrupts maintenance and fidelity of mitochondrial DNA and reveals metabolic plasticity.

    Directory of Open Access Journals (Sweden)

    Tamila Garbuz

    Full Text Available The importance of maintaining the fidelity of the mitochondrial genome is underscored by the presence of various repair pathways within this organelle. Presumably, the repair of mitochondrial DNA would be of particular importance in organisms that possess only a single mitochondrion, like the human pathogens Plasmodium falciparum and Toxoplasma gondii. Understanding the machinery that maintains mitochondrial DNA in these parasites is of particular relevance, as mitochondrial function is a validated and effective target for anti-parasitic drugs. We previously determined that the Toxoplasma MutS homolog TgMSH1 localizes to the mitochondrion. MutS homologs are key components of the nuclear mismatch repair system in mammalian cells, and both yeast and plants possess MutS homologs that localize to the mitochondria where they regulate DNA stability. Here we show that the lack of TgMSH1 results in accumulation of single nucleotide variations in mitochondrial DNA and a reduction in mitochondrial DNA content. Additionally, parasites lacking TgMSH1 function can survive treatment with the cytochrome b inhibitor atovaquone. While the Tgmsh1 knockout strain has several missense mutations in cytochrome b, none affect amino acids known to be determinants of atovaquone sensitivity and atovaquone is still able to inhibit electron transport in the Tgmsh1 mutants. Furthermore, culture of Tgmsh1 mutant in the presence atovaquone leads to parasites with enhanced atovaquone resistance and complete shutdown of respiration. Thus, parasites lacking TgMSH1 overcome the disruption of mitochondrial DNA by adapting their physiology allowing them to forgo the need for oxidative phosphorylation. Consistent with this idea, the Tgmsh1 mutant is resistant to mitochondrial inhibitors with diverse targets and exhibits reduced ability to grow in the absence of glucose. This work shows TgMSH1 as critical for the maintenance and fidelity of the mitochondrial DNA in Toxoplasma

  4. RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity

    DEFF Research Database (Denmark)

    Croteau, Deborah L; Rossi, Marie L; Canugovi, Chandrika

    2012-01-01

    in premature aging. There is no information about whether any of the RecQ helicases play roles in mitochondrial biogenesis, which is strongly implicated in the aging process. Here, we used microscopy to visualize RECQL4 in mitochondria. Fractionation of human and mouse cells also showed that RECQL4 was present...... in mitochondria. Q-PCR amplification of mitochondrial DNA demonstrated that mtDNA damage accumulated in RECQL4-deficient cells. Microarray analysis suggested that mitochondrial bioenergetic pathways might be affected in RTS. Measurements of mitochondrial bioenergetics showed a reduction in the mitochondrial......Q helicase to be found in both human and mouse mitochondria, and the loss of RECQL4 alters mitochondrial integrity....

  5. [Two patients with mitochondrial respiratory chain disease].

    Science.gov (United States)

    Bangma, H R; Smit, G P A; Kuks, J B M; Grevink, R G; Wolffenbuttel, B H R

    2008-10-18

    A 23-year-old woman and a 13-year-old boy were diagnosed with mitochondrial respiratory chain disease. The woman had muscle pain, fatigue and bilateral ophthalmoplegia--symptoms consistent with Kearns-Sayre syndrome. The boy had aspecific symptoms; eventually, reduced activity of complex 1 was found to be the cause of the mitochondrial respiratory chain disease in the boy and his mother, who had suffered from unexplained fatigue and muscle pain for 15 years. Mitochondrial diseases often involve several organ systems. Diagnosis can be difficult, because laboratory tests such as serum and urinary lactate and creatine kinase have low sensitivity and specificity. Biochemical assessment of muscle biopsy can reveal reduced oxidation ATP synthesis and sometimes specific abnormalities in individual protein complexes. DNA analysis may be helpful in demonstrating mitochondrial or nuclear mutations or deletions. The goal of treatment is to increase mitochondrial ATP production, improve clinical symptoms and enhance stamina. Replacement of the following substances (also referred to as cofactors) may be attempted: co-enzyme Q10, antioxidants (lipoic acid, vitamins C and E), riboflavin, thiamine, creatine and carnitine. Evidence regarding the optimal treatment approach is lacking; one usually has to rely on observing effects in the individual patient.

  6. Hepatocellular toxicity of benzbromarone: Effects on mitochondrial function and structure

    International Nuclear Information System (INIS)

    Felser, Andrea; Lindinger, Peter W.; Schnell, Dominik; Kratschmar, Denise V.; Odermatt, Alex; Mies, Suzette; Jenö, Paul; Krähenbühl, Stephan

    2014-01-01

    Highlights: • Benzbromarone impairs the electron transport chain and uncouples mitochondria. • Benzbromarone impairs mitochondrial β-oxidation by inhibiting fatty acid activation. • Benzbromarone disrupts the mitochondrial network and induces apoptosis. - Abstract: Benzbromarone is an uricosuric structurally related to amiodarone and a known mitochondrial toxicant. The aim of the current study was to improve our understanding in the molecular mechanisms of benzbromarone-associated hepatic mitochondrial toxicity. In HepG2 cells and primary human hepatocytes, ATP levels started to decrease in the presence of 25–50 μM benzbromarone for 24–48 h, whereas cytotoxicity was observed only at 100 μM. In HepG2 cells, benzbromarone decreased the mitochondrial membrane potential starting at 50 μM following incubation for 24 h. Additionally, in HepG2 cells, 50 μM benzbromarone for 24 h induced mitochondrial uncoupling,and decreased mitochondrial ATP turnover and maximal respiration. This was accompanied by an increased lactate concentration in the cell culture supernatant, reflecting increased glycolysis as a compensatory mechanism to maintain cellular ATP. Investigation of the electron transport chain revealed a decreased activity of all relevant enzyme complexes. Furthermore, treatment with benzbromarone was associated with increased cellular ROS production, which could be located specifically to mitochondria. In HepG2 cells and in isolated mouse liver mitochondria, benzbromarone also reduced palmitic acid metabolism due to an inhibition of the long-chain acyl CoA synthetase. In HepG2 cells, benzbromarone disrupted the mitochondrial network, leading to mitochondrial fragmentation and a decreased mitochondrial volume per cell. Cell death occurred by both apoptosis and necrosis. The study demonstrates that benzbromarone not only affects the function of mitochondria in HepG2 cells and human hepatocytes, but is also associated with profound changes in mitochondrial

  7. Mitochondrial Dynamics in Cardiovascular Health and Disease

    OpenAIRE

    Ong, Sang-Bing; Hall, Andrew R.; Hausenloy, Derek J.

    2013-01-01

    Significance: Mitochondria are dynamic organelles capable of changing their shape and distribution by undergoing either fission or fusion. Changes in mitochondrial dynamics, which is under the control of specific mitochondrial fission and fusion proteins, have been implicated in cell division, embryonic development, apoptosis, autophagy, and metabolism. Although the machinery for modulating mitochondrial dynamics is present in the cardiovascular system, its function there has only recently be...

  8. The importance of mitochondrial DNA in aging and cancer

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Espersen, Maiken Lise Marcker; Singh, Keshav K

    2011-01-01

    Mitochondrial dysfunction has been implicated in premature aging, age-related diseases, and tumor initiation and progression. Alterations of the mitochondrial genome accumulate both in aging tissue and tumors. This paper describes our contemporary view of mechanisms by which alterations...... of the mitochondrial genome contributes to the development of age- and tumor-related pathological conditions. The mechanisms described encompass altered production of mitochondrial ROS, altered regulation of the nuclear epigenome, affected initiation of apoptosis, and a limiting effect on the production...

  9. Renal disease and mitochondrial genetics.

    Science.gov (United States)

    Rötig, Agnès

    2003-01-01

    Respiratory chain (RC) deficiencies have long been regarded as neuromuscular diseases mainly originating from mutations in the mitochondrial DNA. Oxidative phosphorylation, i.e. adenosine triphosphate (ATP) synthesis-coupled electron transfer from substrate to oxygen through the RC, does not occur only in the neuromuscular system. Therefore, a RC deficiency can theoretically give rise to any symptom, in any organ or tissue, at any age and with any mode of inheritance, owing to the dual genetic origin of RC enzymes (nuclear DNA and mitochondrial DNA). Mitochondrial diseases can give rise to various syndromes or association, namely, neurologic and neuromuscular diseases, cardiac, renal, hepatic, hematological and endocrin or dermatological presentations. The most frequent renal symptom is proximal tubular dysfunction with a more or less complete de Toni-Debre-Fanconi Syndrome. A few patients have been reported with tubular acidosis, Bartter Syndrome, chronic tubulointerstitial nephritis or nephrotic syndrome. The diagnosis of a RC deficiency is difficult when only renal symptoms are present, but should be easier when another, seemingly unrelated symptom is observed. Metabolic screening for abnormal oxidoreduction status in plasma, including lactate/pyruvate and ketone body molar ratios, can help to identify patients for further investigations. These include the measurement of oxygen consumption by mitochondria and the assessment of mitochondrial respiratory enzyme activities by spectrophotometric studies. Any mode of inheritance can be observed: sporadic, autosomal dominant or recessive, or maternal inheritance.

  10. Mitochondrial encephalomyopathy (MELAS) with mental disorder

    International Nuclear Information System (INIS)

    Suzuki, T.; Koizumi, J.; Shiraishi, H.; Ofuku, K.; Sasaki, M.; Hori, T.; Ishikawa, N.; Anno, I.; Ohkoshi, N.

    1990-01-01

    A case of mitochondrial encephalomyopathy (MELAS) with mental disorder is reported. The SPECT study using 123 I-iodoamphetamine (IMP) and MRI study revealed abnormality in the left parieto-occipital areas without abnormality in the brain CT or brain scintigram. These findings suggest a localized dysfunction of the brain capillary endothelium in association with the cerebral involvement of mitochondrial encephalomyopathy. (orig.)

  11. Mitochondrial dysfunction in the neuro-degenerative and cardio-degenerative disease, Friedreich's ataxia.

    Science.gov (United States)

    Chiang, Shannon; Kalinowski, Danuta S; Jansson, Patric J; Richardson, Des R; Huang, Michael L-H

    2017-08-04

    Mitochondrial homeostasis is essential for maintaining healthy cellular function and survival. The detrimental involvement of mitochondrial dysfunction in neuro-degenerative diseases has recently been highlighted in human conditions, such as Parkinson's, Alzheimer's and Huntington's disease. Friedreich's ataxia (FA) is another neuro-degenerative, but also cardio-degenerative condition, where mitochondrial dysfunction plays a crucial role in disease progression. Deficient expression of the mitochondrial protein, frataxin, is the primary cause of FA, which leads to adverse alterations in whole cell and mitochondrial iron metabolism. Dys-regulation of iron metabolism in these compartments, results in the accumulation of inorganic iron deposits in the mitochondrial matrix that is thought to potentiate oxidative damage observed in FA. Therefore, the maintenance of mitochondrial homeostasis is crucial in the progression of neuro-degenerative conditions, particularly in FA. In this review, vital mitochondrial homeostatic processes and their roles in FA pathogenesis will be discussed. These include mitochondrial iron processing, mitochondrial dynamics (fusion and fission processes), mitophagy, mitochondrial biogenesis, mitochondrial energy production and calcium metabolism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Lee J. Martin

    2010-03-01

    Full Text Available Alzheimer’s disease (AD, Parkinson’s disease (PD and amyotrophic lateral sclerosis (ALS are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy.

  13. Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: Multiple protective roles of cyclosporin A.

    Science.gov (United States)

    Siu, Woen Ping; Pun, Pamela Boon Li; Latchoumycandane, Calivarathan; Boelsterli, Urs A

    2008-03-15

    Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (>500 microM) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 microM) fully inhibited diclofenac-induced cell injury, suggesting that mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca2+ chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca2+-Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury.

  14. Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: Multiple protective roles of cyclosporin A

    International Nuclear Information System (INIS)

    Siu, W.P.; Pun, Pamela Boon Li; Latchoumycandane, Calivarathan; Boelsterli, Urs A.

    2008-01-01

    Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (> 500 μM) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 μM) fully inhibited diclofenac-induced cell injury, suggesting that mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca 2+ chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca 2+ -Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury

  15. Interaction of butylated hydroxyanisole with mitochondrial oxidative phosphorylation.

    Science.gov (United States)

    Fusi, F; Sgaragli, G; Murphy, M P

    1992-03-17

    The antioxidant, butylated hydroxyanisole (BHA), has a number of effects on mitochondrial oxidative phosphorylation. In this study we apply the novel approach developed by Brand (Brand MD, Biochim Biophys Acta 1018: 128-133, 1990) to investigate the site of action of BHA on oxidative phosphorylation in rat liver mitochondria. Using this approach we show that BHA increases the proton leak through the mitochondrial inner membrane and that it also inhibits the delta p (proton motive force across the mitochondrial inner membrane) generating system, but has no effect on the phosphorylation system. This demonstrates that compounds having pleiotypic effects on mitochondrial oxidative phosphorylation in vitro can be analysed and their many effects distinguished. This approach is of general use in analysing many other compounds of pharmacological interest which interact with mitochondria. The implications of these results for the mechanism of interaction of BHA with mitochondrial oxidative phosphorylation are discussed.

  16. Granzyme A Cleaves a Mitochondrial Complex I Protein to Initiate Caspase-Independent Cell Death

    Science.gov (United States)

    Martinvalet, Denis; Dykxhoorn, Derek M.; Ferrini, Roger; Lieberman, Judy

    2010-01-01

    SUMMARY The killer lymphocyte protease granzyme A (GzmA) triggers caspase-independent target cell death with morphological features of apoptosis. We previously showed that GzmA acts directly on mitochondria to generate reactive oxygen species (ROS) and disrupt the transmembrane potential (ΔΨm) but does not permeabilize the mitochondrial outer membrane. Mitochondrial damage is critical to GzmA-induced cell death since cells treated with superoxide scavengers are resistant to GzmA. Here we find that GzmA accesses the mitochondrial matrix to cleave the complex I protein NDUFS3, an iron-sulfur subunit of the NADH:ubiquinone oxidoreductase complex I, after Lys56 to interfere with NADH oxidation and generate superoxide anions. Target cells expressing a cleavage site mutant of NDUFS3 are resistant to GzmA-mediated cell death but remain sensitive to GzmB. PMID:18485875

  17. Identification of two products of mitochondrial protein synthesis associated with mitochondrial adenosine triphosphatase from Neurospora crassa

    International Nuclear Information System (INIS)

    Jackl, G.; Sebald, W.

    1975-01-01

    Soluble mitochondrial ATPase (F 1 ) isolated from Neurospora crassa is resolved by dodecyl-sulfate-gel electrophoresis into five polypeptide bands with apparent molecular weights of 59,000, 55,000, 36,000, 15,000 and 12,000. At least nine further polypeptides remain associated with ATPase after disintegration of mitochondria with Triton X-100 as shown by the analysis of an immunoprecipitate obtained with antiserum to F 1 ATPase. Two of the associated polypeptides with apparent molecular weights of 19,000 and 11,000 are translated on mitochondrial ribosomes, as demonstrated by incorporation in vivo of radioactive leucine in the presence of specific inhibitors of mitochondrial (chloramphenicol) and extramitochondrial (cycloheximide) protein synthesis. The appearance of mitochondrial translation products in the immunoprecipitated ATPase complex is inhibited by cycloheximide. The same applies for some of the extramitochondrial translation products in the presence of chloramphenicol. This suggests that both types of polypeptides are necessary for the assembly of the ATPase complex. (orig.) [de

  18. Mitochondrial Dysfunction: Different Routes to Alzheimer’s Disease Therapy

    Directory of Open Access Journals (Sweden)

    Pasquale Picone

    2014-01-01

    Full Text Available Mitochondria are dynamic ATP-generating organelle which contribute to many cellular functions including bioenergetics processes, intracellular calcium regulation, alteration of reduction-oxidation potential of cells, free radical scavenging, and activation of caspase mediated cell death. Mitochondrial functions can be negatively affected by amyloid β peptide (Aβ, an important component in Alzheimer’s disease (AD pathogenesis, and Aβ can interact with mitochondria and cause mitochondrial dysfunction. One of the most accepted hypotheses for AD onset implicates that mitochondrial dysfunction and oxidative stress are one of the primary events in the insurgence of the pathology. Here, we examine structural and functional mitochondrial changes in presence of Aβ. In particular we review data concerning Aβ import into mitochondrion and its involvement in mitochondrial oxidative stress, bioenergetics, biogenesis, trafficking, mitochondrial permeability transition pore (mPTP formation, and mitochondrial protein interaction. Moreover, the development of AD therapy targeting mitochondria is also discussed.

  19. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects

    DEFF Research Database (Denmark)

    Larsen, Steen; Nielsen, Joachim; Hansen, Christina Neigaard

    2012-01-01

    Key points  Several biochemical measures of mitochondrial components are used as biomarkers of mitochondrial content and muscle oxidative capacity. However, no studies have validated these surrogates against a morphological measure of mitochondrial content in human subjects.  The most commonly used...... markers (citrate synthase activity, cardiolipin content, mitochondrial DNA content (mtDNA), complex I-V protein, and complex I-IV activity) were correlated with a measure of mitochondrial content (transmission electron microscopy) and muscle oxidative capacity (respiration in permeabilized fibres......).  Cardiolipin content followed by citrate synthase activity and complex I activity were the biomarkers showing the strongest association with mitochondrial content.  mtDNA was found to be a poor biomarker of mitochondrial content.  Complex IV activity was closely associated with mitochondrial oxidative...

  20. Ethics of Mitochondrial Replacement Techniques: A Habermasian Perspective.

    Science.gov (United States)

    Palacios-González, César

    2017-01-01

    Jürgen Habermas is regarded as a central bioconservative commentator in the debate on the ethics of human prenatal genetic manipulations. While his main work on this topic, The Future of Human Nature, has been widely examined in regard to his position on prenatal genetic enhancement, his arguments regarding prenatal genetic therapeutic interventions have for the most part been overlooked. In this work I do two things. First, I present the three necessary conditions that Habermas establishes for a prenatal genetic manipulation to be regarded as morally permissible. Second, I examine if mitochondrial replacement techniques meet these necessary conditions. I investigate, specifically, the moral permissibility of employing pronuclear transfer and maternal spindle transfer. I conclude that, according to a Habermasian perspective on prenatal genetic manipulation, maternal spindle transfer (without using a preselected sperm and egg) and pronuclear transfer are morally impermissible. Maternal spindle transfer is, in principle, morally permissible, but only when we have beforehand preselected a sperm and an egg for our reproductive purpose. These findings are relevant for bioconservatives, both for those who hold a Habermasian stance and for those who hold something akin to a Habermasian stance, because they answer the question: what should bioconservatives do regarding mitochondrial replacement techniques? In fact, the answer to this question does not only normatively prescribe what bioconservatives should do in terms of their personal morality, but it also points towards what kind of legislation regulating mitochondrial replacement techniques they should aim at. © 2017 The Authors Bioethics Published by John Wiley & Sons Ltd.

  1. Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica

    Science.gov (United States)

    2011-01-01

    Background Angiosperm mitochondrial genomes are more complex than those of other organisms. Analyses of the mitochondrial genome sequences of at least 11 angiosperm species have showed several common properties; these cannot easily explain, however, how the diverse mitotypes evolved within each genus or species. We analyzed the evolutionary relationships of Brassica mitotypes by sequencing. Results We sequenced the mitotypes of cam (Brassica rapa), ole (B. oleracea), jun (B. juncea), and car (B. carinata) and analyzed them together with two previously sequenced mitotypes of B. napus (pol and nap). The sizes of whole single circular genomes of cam, jun, ole, and car are 219,747 bp, 219,766 bp, 360,271 bp, and 232,241 bp, respectively. The mitochondrial genome of ole is largest as a resulting of the duplication of a 141.8 kb segment. The jun mitotype is the result of an inherited cam mitotype, and pol is also derived from the cam mitotype with evolutionary modifications. Genes with known functions are conserved in all mitotypes, but clear variation in open reading frames (ORFs) with unknown functions among the six mitotypes was observed. Sequence relationship analysis showed that there has been genome compaction and inheritance in the course of Brassica mitotype evolution. Conclusions We have sequenced four Brassica mitotypes, compared six Brassica mitotypes and suggested a mechanism for mitochondrial genome formation in Brassica, including evolutionary events such as inheritance, duplication, rearrangement, genome compaction, and mutation. PMID:21988783

  2. Maintaining ancient organelles: mitochondrial biogenesis and maturation.

    Science.gov (United States)

    Vega, Rick B; Horton, Julie L; Kelly, Daniel P

    2015-05-22

    The ultrastructure of the cardiac myocyte is remarkable for the high density of mitochondria tightly packed between sarcomeres. This structural organization is designed to provide energy in the form of ATP to fuel normal pump function of the heart. A complex system comprised of regulatory factors and energy metabolic machinery, encoded by both mitochondrial and nuclear genomes, is required for the coordinate control of cardiac mitochondrial biogenesis, maturation, and high-capacity function. This process involves the action of a transcriptional regulatory network that builds and maintains the mitochondrial genome and drives the expression of the energy transduction machinery. This finely tuned system is responsive to developmental and physiological cues, as well as changes in fuel substrate availability. Deficiency of components critical for mitochondrial energy production frequently manifests as a cardiomyopathic phenotype, underscoring the requirement to maintain high respiration rates in the heart. Although a precise causative role is not clear, there is increasing evidence that perturbations in this regulatory system occur in the hypertrophied and failing heart. This review summarizes current knowledge and highlights recent advances in our understanding of the transcriptional regulatory factors and signaling networks that serve to regulate mitochondrial biogenesis and function in the mammalian heart. © 2015 American Heart Association, Inc.

  3. Mitochondrial Diseases: Clinical Features- Management of Patients

    Directory of Open Access Journals (Sweden)

    Filiz Koc

    2003-02-01

    Full Text Available Mitochondria are unique organells which their own DNA in cells. Human mitochondrial DNA is circular, double-stranded molecule and small. Because all mitochondria are contributed by the ovum during the formation of the zygote, the mitochondrial genom is transmitted by maternal inheritance. Multisystem disorders such as deafness, cardiomyopathy, miyopathy can be seen in mitochondrial diseases. [Archives Medical Review Journal 2003; 12(0.100: 14-31

  4. Mitochondrial DNA mutations in human tumor cells

    OpenAIRE

    LI, HUI; HONG, ZE-HUI

    2012-01-01

    Mitochondria play significant roles in cellular energy metabolism, free radical generation and apoptosis. The dysfunction of mitochondria is correlated with the origin and progression of tumors; thus, mutations in the mitochondrial genome that affect mitochondrial function may be one of the causal factors of tumorigenesis. Although the role of mitochondrial DNA (mtDNA) mutations in carcinogenesis has been investigated extensively by various approaches, the conclusions remain controversial to ...

  5. Tempol, a Superoxide Dismutase Mimetic Agent, Ameliorates Cisplatin-Induced Nephrotoxicity through Alleviation of Mitochondrial Dysfunction in Mice

    Science.gov (United States)

    Ahmed, Lamiaa A.; Shehata, Nagwa I.; Abdelkader, Noha F.; Khattab, Mahmoud M.

    2014-01-01

    Background Mitochondrial dysfunction is a crucial mechanism by which cisplatin, a potent chemotherapeutic agent, causes nephrotoxicity where mitochondrial electron transport complexes are shifted mostly toward imbalanced reactive oxygen species versus energy production. In the present study, the protective role of tempol, a membrane-permeable superoxide dismutase mimetic agent, was evaluated on mitochondrial dysfunction and the subsequent damage induced by cisplatin nephrotoxicity in mice. Methods and Findings Nephrotoxicity was assessed 72 h after a single i.p. injection of cisplatin (25 mg/kg) with or without oral administration of tempol (100 mg/kg/day). Serum creatinine and urea as well as glucosuria and proteinuria were evaluated. Both kidneys were isolated for estimation of oxidative stress markers, adenosine triphosphate (ATP) content and caspase-3 activity. Moreover, mitochondrial oxidative phosphorylation capacity, complexes I–IV activities and mitochondrial nitric oxide synthase (mNOS) protein expression were measured along with histological examinations of renal tubular damage and mitochondrial ultrastructural changes. Tempol was effective against cisplatin-induced elevation of serum creatinine and urea as well as glucosuria and proteinuria. Moreover, pretreatment with tempol notably inhibited cisplatin-induced oxidative stress and disruption of mitochondrial function by restoring mitochondrial oxidative phosphorylation, complexes I and III activities, mNOS protein expression and ATP content. Tempol also provided significant protection against apoptosis, tubular damage and mitochondrial ultrastructural changes. Interestingly, tempol did not interfere with the cytotoxic effect of cisplatin against the growth of solid Ehrlich carcinoma. Conclusion This study highlights the potential role of tempol in inhibiting cisplatin-induced nephrotoxicity without affecting its antitumor activity via amelioration of oxidative stress and mitochondrial dysfunction

  6. Atypical mitochondrial inheritance patterns in eukaryotes.

    Science.gov (United States)

    Breton, Sophie; Stewart, Donald T

    2015-10-01

    Mitochondrial DNA (mtDNA) is predominantly maternally inherited in eukaryotes. Diverse molecular mechanisms underlying the phenomenon of strict maternal inheritance (SMI) of mtDNA have been described, but the evolutionary forces responsible for its predominance in eukaryotes remain to be elucidated. Exceptions to SMI have been reported in diverse eukaryotic taxa, leading to the prediction that several distinct molecular mechanisms controlling mtDNA transmission are present among the eukaryotes. We propose that these mechanisms will be better understood by studying the deviations from the predominating pattern of SMI. This minireview summarizes studies on eukaryote species with unusual or rare mitochondrial inheritance patterns, i.e., other than the predominant SMI pattern, such as maternal inheritance of stable heteroplasmy, paternal leakage of mtDNA, biparental and strictly paternal inheritance, and doubly uniparental inheritance of mtDNA. The potential genes and mechanisms involved in controlling mitochondrial inheritance in these organisms are discussed. The linkage between mitochondrial inheritance and sex determination is also discussed, given that the atypical systems of mtDNA inheritance examined in this minireview are frequently found in organisms with uncommon sexual systems such as gynodioecy, monoecy, or andromonoecy. The potential of deviations from SMI for facilitating a better understanding of a number of fundamental questions in biology, such as the evolution of mtDNA inheritance, the coevolution of nuclear and mitochondrial genomes, and, perhaps, the role of mitochondria in sex determination, is considerable.

  7. Mitochondrial targeted curcumin exhibits anticancer effects through disruption of mitochondrial redox and modulation of TrxR2 activity.

    Science.gov (United States)

    Jayakumar, Sundarraj; Patwardhan, Raghavendra S; Pal, Debojyoti; Singh, Babita; Sharma, Deepak; Kutala, Vijay Kumar; Sandur, Santosh Kumar

    2017-12-01

    Mitocurcumin is a derivative of curcumin, which has been shown to selectively enter mitochondria. Here we describe the anti-tumor efficacy of mitocurcumin in lung cancer cells and its mechanism of action. Mitocurcumin, showed 25-50 fold higher efficacy in killing lung cancer cells as compared to curcumin as demonstrated by clonogenic assay, flow cytometry and high throughput screening assay. Treatment of lung cancer cells with mitocurcumin significantly decreased the frequency of cancer stem cells. Mitocurcumin increased the mitochondrial reactive oxygen species (ROS), decreased the mitochondrial glutathione levels and induced strand breaks in the mitochondrial DNA. As a result, we observed increased BAX to BCL-2 ratio, cytochrome C release into the cytosol, loss of mitochondrial membrane potential and increased caspase-3 activity suggesting that mitocurcumin activates the intrinsic apoptotic pathway. Docking studies using mitocurcumin revealed that it binds to the active site of the mitochondrial thioredoxin reductase (TrxR2) with high affinity. In corroboration with the above finding, mitocurcumin decreased TrxR activity in cell free as well as the cellular system. The anti-cancer activity of mitocurcumin measured in terms of apoptotic cell death and the decrease in cancer stem cell frequency was accentuated by TrxR2 overexpression. This was due to modulation of TrxR2 activity to NADPH oxidase like activity by mitocurcumin, resulting in higher ROS accumulation and cell death. Thus, our findings reveal mitocurcumin as a potent anticancer agent with better efficacy than curcumin. This study also demonstrates the role of TrxR2 and mitochondrial DNA damage in mitocurcumin mediated killing of cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Mitochondrial oxidative stress in human hepatoma cells exposed to stavudine

    International Nuclear Information System (INIS)

    Velsor, Leonard W.; Kovacevic, Miro; Goldstein, Mark; Leitner, Heather M.; Lewis, William; Day, Brian J.

    2004-01-01

    The toxicity of nucleoside reverse transcriptase inhibitors (NRTIs) is linked to altered mitochondrial DNA (mtDNA) replication and subsequent disruption of cellular energetics. This manifests clinically as elevated concentrations of lactate in plasma. The mechanism(s) underlying how the changes in mtDNA replication lead to lactic acidosis remains unclear. It is hypothesized that mitochondrial oxidative stress links the changes in mtDNA replication to mitochondrial dysfunction and ensuing NRTIs toxicity. To test this hypothesis, changes in mitochondrial function, mtDNA amplification efficiency, and oxidative stress were assessed in HepG2-cultured human hepatoblasts treated with the NRTI stavudine (2',3'-didehydro-2',3'-deoxythymidine or d4T) for 48 h. d4T produced significant mitochondrial dysfunction with a 1.5-fold increase in cellular lactate to pyruvate ratios. In addition, d4T caused a dose-dependent decrease in mtDNA amplification and a correlative increase in abundance of markers of mitochondrial oxidative stress. Manganese (III) meso-tetrakis (4-benzoic acid) porphyrin, MnTBAP, a catalytic antioxidant, ameliorated or reversed d4T-induced changes in cell injury, energetics, mtDNA amplification, and mitochondrial oxidative stress. In conclusion, d4T treatment elevates mitochondrial reactive oxygen species (ROS), enhances mitochondrial oxidative stress, and contributes mechanistically to NRTI-induced toxicity. These deleterious events may be potentiated in acquired immunodeficiency syndrome (AIDS) by human immunodeficiency virus (HIV) infection itself, coinfection (e.g., viral hepatitis), aging, substance, and alcohol use

  9. MU-LOC: A Machine-Learning Method for Predicting Mitochondrially Localized Proteins in Plants

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2018-05-01

    Full Text Available Targeting and translocation of proteins to the appropriate subcellular compartments are crucial for cell organization and function. Newly synthesized proteins are transported to mitochondria with the assistance of complex targeting sequences containing either an N-terminal pre-sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino acid composition, protein position weight matrix, and gene co-expression information, and trained predictors using deep neural network and support vector machine. Benchmarked on two independent datasets, MU-LOC achieved substantial improvements over six state-of-the-art tools for plant mitochondrial targeting prediction. In addition, MU-LOC has the advantage of predicting plant mitochondrial proteins either possessing or lacking N-terminal pre-sequences. We applied MU-LOC to predict candidate mitochondrial proteins for the whole proteome of Arabidopsis and potato. MU-LOC is publicly available at http://mu-loc.org.

  10. How old are chimpanzee communities? Time to the most recent common ancestor of the Y-chromosome in highly patrilocal societies.

    Science.gov (United States)

    Langergraber, Kevin E; Rowney, Carolyn; Schubert, Grit; Crockford, Cathy; Hobaiter, Catherine; Wittig, Roman; Wrangham, Richard W; Zuberbühler, Klaus; Vigilant, Linda

    2014-04-01

    Many human societies are patrilineal, with males passing on their name or descent group affiliation to their offspring. Y-chromosomes are also passed on from father to son, leading to the simple expectation that males sharing the same surname or descent group membership should have similar Y-chromosome haplotypes. Although several studies in patrilineal human societies have examined the correspondence between Y-chromosome variation and surname or descent group membership, similar studies in non-human animals are lacking. Chimpanzees represent an excellent species for examining the relationship between descent group membership and Y-chromosome variation because they live in strongly male philopatric communities that arise by a group-fissioning process. Here we take advantage of recent analytical advances in the calculation of the time to the most recent common male ancestor and a large sample size of 273 Y-chromosome short tandem repeat haplotypes to inform our understanding of the potential ages of eight communities of chimpanzees. We find that the times to the most recent common male ancestor of chimpanzee communities are several hundred to as much as over two thousand years. These genetic estimates of the great time depths of chimpanzee communities accord well with behavioral observations suggesting that community fissions are a very rare event and are similar to genetic estimates of the time depth of patrilineal human groups. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Morphofunctional and Biochemical Approaches for Studying Mitochondrial Changes during Myoblasts Differentiation

    Directory of Open Access Journals (Sweden)

    Elena Barbieri

    2011-01-01

    Full Text Available This study describes mitochondrial behaviour during the C2C12 myoblast differentiation program and proposes a proteomic approach to mitochondria integrated with classical morphofunctional and biochemical analyses. Mitochondrial ultrastructure variations were determined by transmission electron microscopy; mitochondrial mass and membrane potential were analysed by Mitotracker Green and JC-1 stains and by epifluorescence microscope. Expression of PGC1 , NRF1 , and Tfam genes controlling mitochondrial biogenesis was studied by real-time PCR. The mitochondrial functionality was tested by cytochrome c oxidase activity and COXII expression. Mitochondrial proteomic profile was also performed. These assays showed that mitochondrial biogenesis and activity significantly increase in differentiating myotubes. The proteomic profile identifies 32 differentially expressed proteins, mostly involved in oxidative metabolism, typical of myotubes formation. Other notable proteins, such as superoxide dismutase (MnSOD, a cell protection molecule, and voltage-dependent anion-selective channel protein (VDAC1 involved in the mitochondria-mediated apoptosis, were found to be regulated by the myogenic process. The integration of these approaches represents a helpful tool for studying mitochondrial dynamics, biogenesis, and functionality in comparative surveys on mitochondrial pathogenic or senescent satellite cells.

  12. Defects in mitochondrial fission protein dynamin-related protein 1 are linked to apoptotic resistance and autophagy in a lung cancer model.

    Directory of Open Access Journals (Sweden)

    Kelly Jean Thomas

    Full Text Available Evasion of apoptosis is implicated in almost all aspects of cancer progression, as well as treatment resistance. In this study, resistance to apoptosis was identified in tumorigenic lung epithelial (A549 cells as a consequence of defects in mitochondrial and autophagic function. Mitochondrial function is determined in part by mitochondrial morphology, a process regulated by mitochondrial dynamics whereby the joining of two mitochondria, fusion, inhibits apoptosis while fission, the division of a mitochondrion, initiates apoptosis. Mitochondrial morphology of A549 cells displayed an elongated phenotype-mimicking cells deficient in mitochondrial fission protein, Dynamin-related protein 1 (Drp1. A549 cells had impaired Drp1 mitochondrial recruitment and decreased Drp1-dependent fission. Cytochrome c release and caspase-3 and PARP cleavage were impaired both basally and with apoptotic stimuli in A549 cells. Increased mitochondrial mass was observed in A549 cells, suggesting defects in mitophagy (mitochondrial selective autophagy. A549 cells had decreased LC3-II lipidation and lysosomal inhibition suggesting defects in autophagy occur upstream of lysosomal degradation. Immunostaining indicated mitochondrial localized LC3 punctae in A549 cells increased after mitochondrial uncoupling or with a combination of mitochondrial depolarization and ectopic Drp1 expression. Increased inhibition of apoptosis in A549 cells is correlated with impeded mitochondrial fission and mitophagy. We suggest mitochondrial fission defects contribute to apoptotic resistance in A549 cells.

  13. Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis.

    Science.gov (United States)

    Parra, Valentina; Eisner, Veronica; Chiong, Mario; Criollo, Alfredo; Moraga, Francisco; Garcia, Alejandra; Härtel, Steffen; Jaimovich, Enrique; Zorzano, Antonio; Hidalgo, Cecilia; Lavandero, Sergio

    2008-01-15

    In cells, mitochondria are organized as a network of interconnected organelles that fluctuate between fission and fusion events (mitochondrial dynamics). This process is associated with cell death. We investigated whether activation of apoptosis with ceramides affects mitochondrial dynamics and promotes mitochondrial fission in cardiomyocytes. Neonatal rat cardiomyocytes were incubated with C(2)-ceramide or the inactive analog dihydro-C(2)-ceramide for up to 6 h. Three-dimensional images of cells loaded with mitotracker green were obtained by confocal microscopy. Dynamin-related protein-1 (Drp-1) and mitochondrial fission protein 1 (Fis1) distribution and levels were studied by immunofluorescence and western blot. Mitochondrial membrane potential (DeltaPsi(m)) and cytochrome c (cyt c) distribution were used as indexes of early activation of apoptosis. Cell viability and DNA fragmentation were determined by propidium iodide staining/flow cytometry, whereas cytotoxicity was evaluated by lactic dehydrogenase activity. To decrease the levels of the mitochondrial fusion protein mitofusin 2, we used an antisense adenovirus (AsMfn2). C(2)-ceramide, but not dihydro-C(2)-ceramide, promoted rapid fragmentation of the mitochondrial network in a concentration- and time-dependent manner. C(2)-ceramide also increased mitochondrial Drp-1 and Fis1 content, Drp-1 colocalization with Fis1, and caused early activation of apoptosis. AsMfn2 accentuated the decrease in DeltaPsi(m) and cyt c redistribution induced by C(2)-ceramide. Doxorubicin, which induces cardiomyopathy and apoptosis through ceramide generation, also stimulated mitochondrial fragmentation. Ceramides stimulate mitochondrial fission and this event is associated with early activation of cardiomyocyte apoptosis.

  14. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    Science.gov (United States)

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  15. Pupillometric evaluation of the melanopsin containing retinal ganglion cells in mitochondrial and non-mitochondrial optic neuropathies

    DEFF Research Database (Denmark)

    Ba-Ali, Shakoor; Lund-Andersen, Henrik

    2017-01-01

    of pupillary light reflex is primarily driven by the ipRGCs. Optic neuropathies i.e. Leber hereditary optic neuropathy (LHON), autosomal dominant optic atrophy (ADOA), nonarteritic anterior ischemic optic neuropathy (NAION), glaucoma, optic neuritis and idiopathic intracranial hypertension (IIH) are among...... the diseases, which have been subject to pupillometric studies. The ipRGCs are differentially affected in these various optic neuropathies. In mitochondrial optic neuropathies, the ipRGCs are protected against degeneration, whereas in glaucoma, NAION, optic neuritis and IIH the ipRGCs are damaged. Here, we...... will review the results of pupillometric, histopathological and animal studies evaluating the ipRGCs in mitochondrial and non-mitochondrial optic neuropathies....

  16. Mitofilin complexes: conserved organizers of mitochondrial membrane architecture.

    Science.gov (United States)

    Zerbes, Ralf M; van der Klei, Ida J; Veenhuis, Marten; Pfanner, Nikolaus; van der Laan, Martin; Bohnert, Maria

    2012-11-01

    Mitofilin proteins are crucial organizers of mitochondrial architecture. They are located in the inner mitochondrial membrane and interact with several protein complexes of the outer membrane, thereby generating contact sites between the two membrane systems of mitochondria. Within the inner membrane, mitofilins are part of hetero-oligomeric protein complexes that have been termed the mitochondrial inner membrane organizing system (MINOS). MINOS integrity is required for the maintenance of the characteristic morphology of the inner mitochondrial membrane, with an inner boundary region closely apposed to the outer membrane and cristae membranes, which form large tubular invaginations that protrude into the mitochondrial matrix and harbor the enzyme complexes of the oxidative phosphorylation machinery. MINOS deficiency comes along with a loss of crista junction structures and the detachment of cristae from the inner boundary membrane. MINOS has been conserved in evolution from unicellular eukaryotes to humans, where alterations of MINOS subunits are associated with multiple pathological conditions.

  17. AKIP1 expression modulates mitochondrial function in rat neonatal cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Hongjuan Yu

    Full Text Available A kinase interacting protein 1 (AKIP1 is a molecular regulator of protein kinase A and nuclear factor kappa B signalling. Recent evidence suggests AKIP1 is increased in response to cardiac stress, modulates acute ischemic stress response, and is localized to mitochondria in cardiomyocytes. The mitochondrial function of AKIP1 is, however, still elusive. Here, we investigated the mitochondrial function of AKIP1 in a neonatal cardiomyocyte model of phenylephrine (PE-induced hypertrophy. Using a seahorse flux analyzer we show that PE stimulated the mitochondrial oxygen consumption rate (OCR in cardiomyocytes. This was partially dependent on PE mediated AKIP1 induction, since silencing of AKIP1 attenuated the increase in OCR. Interestingly, AKIP1 overexpression alone was sufficient to stimulate mitochondrial OCR and in particular ATP-linked OCR. This was also true when pyruvate was used as a substrate, indicating that it was independent of glycolytic flux. The increase in OCR was independent of mitochondrial biogenesis, changes in ETC density or altered mitochondrial membrane potential. In fact, the respiratory flux was elevated per amount of ETC, possibly through enhanced ETC coupling. Furthermore, overexpression of AKIP1 reduced and silencing of AKIP1 increased mitochondrial superoxide production, suggesting that AKIP1 modulates the efficiency of electron flux through the ETC. Together, this suggests that AKIP1 overexpression improves mitochondrial function to enhance respiration without excess superoxide generation, thereby implicating a role for AKIP1 in mitochondrial stress adaptation. Upregulation of AKIP1 during different forms of cardiac stress may therefore be an adaptive mechanism to protect the heart.

  18. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction

    Directory of Open Access Journals (Sweden)

    Antonio eZorzano

    2015-06-01

    Full Text Available Mitochondrial dynamics is a term that encompasses the movement of mitochondria along the cytoskeleton, regulation of their architecture, and connectivity mediated by tethering and fusion/fission. The importance of these events in cell physiology and pathology has been partially unraveled with the identification of the genes responsible for the catalysis of mitochondrial fusion and fission. Mutations in two mitochondrial fusion genes (MFN2 and OPA1 cause neurodegenerative diseases, namely Charcot-Marie Tooth type 2A and autosomal dominant optic atrophy. Alterations in mitochondrial dynamics may be involved in the pathophysiology of prevalent neurodegenerative conditions. Moreover, impairment of the activity of mitochondrial fusion proteins dysregulates the function of hypothalamic neurons, leading to alterations in food intake and in energy homeostasis. Here we review selected findings in the field of mitochondrial dynamics and their relevance for neurodegeneration and hypothalamic dysfunction.

  19. Involvment of cytosolic and mitochondrial GSK-3beta in mitochondrial dysfunction and neuronal cell death of MPTP/MPP-treated neurons.

    Directory of Open Access Journals (Sweden)

    Agnès Petit-Paitel

    Full Text Available Aberrant mitochondrial function appears to play a central role in dopaminergic neuronal loss in Parkinson's disease (PD. 1-methyl-4-phenylpyridinium iodide (MPP(+, the active metabolite of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, is a selective inhibitor of mitochondrial complex I and is widely used in rodent and cell models to elicit neurochemical alterations associated with PD. Recent findings suggest that Glycogen Synthase Kinase-3beta (GSK-3beta, a critical activator of neuronal apoptosis, is involved in the dopaminergic cell death. In this study, the role of GSK-3beta in modulating MPP(+-induced mitochondrial dysfunction and neuronal death was examined in vivo, and in two neuronal cell models namely primary cultured and immortalized neurons. In both cell models, MPTP/MPP(+ treatment caused cell death associated with time- and concentration-dependent activation of GSK-3beta, evidenced by the increased level of the active form of the kinase, i.e. GSK-3beta phosphorylated at tyrosine 216 residue. Using immunocytochemistry and subcellular fractionation techniques, we showed that GSK-3beta partially localized within mitochondria in both neuronal cell models. Moreover, MPP(+ treatment induced a significant decrease of the specific phospho-Tyr216-GSK-3beta labeling in mitochondria concomitantly with an increase into the cytosol. Using two distinct fluorescent probes, we showed that MPP(+ induced cell death through the depolarization of mitochondrial membrane potential. Inhibition of GSK-3beta activity using well-characterized inhibitors, LiCl and kenpaullone, and RNA interference, prevented MPP(+-induced cell death by blocking mitochondrial membrane potential changes and subsequent caspase-9 and -3 activation. These results indicate that GSK-3beta is a critical mediator of MPTP/MPP(+-induced neurotoxicity through its ability to regulate mitochondrial functions. Inhibition of GSK-3beta activity might provide protection against

  20. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications

    OpenAIRE

    Vernochet, Cecile; Damilano, Federico; Mourier, Arnaud; Bezy, Olivier; Mori, Marcelo A.; Smyth, Graham; Rosenzweig, Anthony; Larsson, Nils-Göran; Kahn, C. Ronald

    2014-01-01

    Mitochondrial dysfunction in adipose tissue occurs in obesity, type 2 diabetes, and some forms of lipodystrophy, but whether this dysfunction contributes to or is the result of these disorders is unknown. To investigate the physiological consequences of severe mitochondrial impairment in adipose tissue, we generated mice deficient in mitochondrial transcription factor A (TFAM) in adipocytes by using mice carrying adiponectin-Cre and TFAM floxed alleles. These adiponectin TFAM-knockout (adipo-...