WorldWideScience

Sample records for 99mtc-mibi single-photon emission

  1. Single photon emission based on coherent state preparation

    Science.gov (United States)

    Ester, P.; Lackmann, L.; Michaelis de Vasconcellos, S.; Hübner, M. C.; Zrenner, A.; Bichler, M.

    2007-09-01

    The authors report here on deterministic single photon emission after coherent optical state preparation in the p-shell of a single InGaAs /GaAs quantum dot. In the approach, they use p-shell Rabi flopping followed by relaxation to the s-shell ground state with subsequent spontaneous single photon emission. Pulsed photon correlation experiments show complete suppression of the correlation peak at zero time delay and hence demonstrate clean single photon emission.

  2. Directional emission of single photons from small atomic samples

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; V. Poulsen, Uffe; Mølmer, Klaus

    2013-01-01

    We provide a formalism to describe deterministic emission of single photons with tailored spatial and temporal profiles from a regular array of multi-level atoms. We assume that a single collective excitation is initially shared by all the atoms in a metastable atomic state, and that this state...

  3. Enhanced and directional single photon emission in hyperbolic metamaterials

    CERN Document Server

    Newman, Ward D; Jacob, Zubin

    2013-01-01

    We propose an approach to enhance and direct the spontaneous emission from isolated emitters embedded inside hyperbolic metamaterials into single photon beams. The approach rests on collective plasmonic Bloch modes of hyperbolic metamaterials which propagate in highly directional beams called quantum resonance cones. We propose a pumping scheme using the transparency window of the hyperbolic metamaterial that occurs near the topological transition. Finally, we address the challenge of outcoupling these broadband resonance cones into vacuum using a dielectric bullseye grating. We give a detailed analysis of quenching and design the metamaterial to have a huge Purcell factor in a broad bandwidth inspite of the losses in the metal. Our work should help motivate experiments in the development of single photon sources for broadband emitters such as nitrogen vacancy centers in diamond.

  4. Single photon emission computed tomography (SPECT) in epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, R.F. [Univ. of Texas Southwestern Medical School, Dallas (United States)

    1991-12-31

    Epilepsy is a common neurologic disorder which has just begun to be studied with single photon emission computerized tomography (SPECT). Epilepsy usually is studied with electroencephalographic (EEG) techniques that demonstrate the physiologic changes that occur during seizures, and with neuroimaging techniques that show the brain structures where seizures originate. Neither method alone has been adequate to describe the pathophysiology of the patient with epilepsy. EEG techniques lack anatomic sensitivity, and there are no structural abnormalities shown by neuroimaging which are specific for epilepsy. Functional imaging (FI) has developed as a physiologic tool with anatomic sensitivity, and SPECT has been promoted as a FI technique because of its potentially wide availability. However, SPECT is early in its development and its clinical utility for epilepsy still has to be demonstrated. To understand this role of SPECT, consideration must be given to the pathophysiology of epilepsy, brain physiology, types of seizure, epileptic syndromes, and the SPECT technique itself. 44 refs., 2 tabs.

  5. Stress-first single photon emission computed myocardial perfusion imaging

    Science.gov (United States)

    Aquino, C I; Scarano, M; Squame, F; Casaburi, G; Nori, S L; Pace, L

    2016-01-01

    Background Myocardial perfusion imaging (MPI) with single photon emission tomography (SPET) is widely used in coronary artery disease evaluation. Recently major dosimetric concerns have arisen. The aim of this study was to evaluate if a pre-test scoring system could predict the results of stress SPET MPI, thus avoiding two radionuclide injections. Methods All consecutive patients (n=309) undergoing SPET MPI during the first 6 months of 2014 constituted the study group. The scoring system is based on these characteristics: age >65 years (1 point), diabetes (2 points), typical chest pain (2 points), congestive heart failure (3 points), abnormal ECG (4 points), male gender (4 points), and documented previous CAD (5 points). The patients were divided on the basis of the prediction score into 3 classes of risk for an abnormal stress-first protocol. Results An abnormal stress SPET MPI was present in 7/31 patients (23%) with a low risk score, in 24/90 (27%) with an intermediate score risk, and in 124/188 (66%) with an high score risk. ROC curve analysis showed good prediction of abnormal stress MPI. Conclusions Our results suggest an appropriate use of a pre-test clinical prediction formula of abnormal stress MPI in a routine clinical setting. PMID:27896227

  6. Brain single photon emission computed tomography in neonates

    Energy Technology Data Exchange (ETDEWEB)

    Denays, R.; Van Pachterbeke, T.; Tondeur, M.; Spehl, M.; Toppet, V.; Ham, H.; Piepsz, A.; Rubinstein, M.; Nol, P.H.; Haumont, D. (Free Universities of Brussels (Belgium))

    1989-08-01

    This study was designed to rate the clinical value of ({sup 123}I)iodoamphetamine (IMP) or ({sup 99m}Tc) hexamethyl propylene amine oxyme (HM-PAO) brain single photon emission computed tomography (SPECT) in neonates, especially in those likely to develop cerebral palsy. The results showed that SPECT abnormalities were congruent in most cases with structural lesions demonstrated by ultrasonography. However, mild bilateral ventricular dilatation and bilateral subependymal porencephalic cysts diagnosed by ultrasound were not associated with an abnormal SPECT finding. In contrast, some cortical periventricular and sylvian lesions and all the parasagittal lesions well visualized in SPECT studies were not diagnosed by ultrasound scans. In neonates with subependymal and/or intraventricular hemorrhage the existence of a parenchymal abnormality was only diagnosed by SPECT. These results indicate that ({sup 123}I)IMP or ({sup 99m}Tc)HM-PAO brain SPECT shows a potential clinical value as the neurodevelopmental outcome is clearly related to the site, the extent, and the number of cerebral lesions. Long-term clinical follow-up is, however, mandatory in order to define which SPECT abnormality is associated with neurologic deficit.

  7. Proceedings of clinical SPECT (single photon emission computed tomography) symposium

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base. (TEM)

  8. Single photon emission and detection at the nanoscale utilizing semiconductor nanowires

    NARCIS (Netherlands)

    Reimer, M.E.; van Kouwen, M.P.; Barkelid, M., et al.

    2011-01-01

    We report recent progress toward on-chip single photon emission and detection in the near infrared utilizing semiconductor nanowires. Our single photon emitter is based on a single InAsP quantum dot embedded in a p-n junction defined along the growth axis of an InP nanowire. Under forward bias,

  9. Single photon emission and detection at the nanoscale utilizing semiconductor nanowires

    NARCIS (Netherlands)

    Reimer, M.E.; van Kouwen, M.P.; Barkelid, M., et al.

    2011-01-01

    We report recent progress toward on-chip single photon emission and detection in the near infrared utilizing semiconductor nanowires. Our single photon emitter is based on a single InAsP quantum dot embedded in a p-n junction defined along the growth axis of an InP nanowire. Under forward bias, ligh

  10. Central benzodiazepine receptor imaging and quantitation with single photon emission computerised tomography

    DEFF Research Database (Denmark)

    Okocha, C I; Kapczinski, F; Lassen, N

    1995-01-01

    This review discusses the current use of single photon emission computerised tomography (SPECT) for central benzodiazepine receptor imaging and quantitation. The general principles underlying SPECT imaging and receptor quantitation methods such as the kinetic, pseudo-equilibrium and steady...

  11. Quantum information-holding single-photon router based on spontaneous emission

    Science.gov (United States)

    Yan, GuoAn; Qiao, HaoXue; Lu, Hua; Chen, AiXi

    2017-09-01

    In this paper, we propose a single-photon router via the use of a four-level atom system coupled with two one-dimensional coupled-resonator waveguides. A single photon can be directed from one quantum channel into another by atomic spontaneous emission. The coherent resonance and the photonic bound states lead to the perfect reflection appearing in the incident channel. The fidelity of the atom is related to the magnitude of the coupling strength and can reach unit when the coupling strength matches g a = g b . This shows that the transfer of a single photon into another quantum channel has no influence on the fidelity at special points.

  12. Bright single photon emission from a quantum dot in a circular Bragg grating microcavity

    CERN Document Server

    Ates, Serkan; Davanco, Marcelo; Badolato, Antonio; Srinivasan, Kartik

    2011-01-01

    Bright single photon emission from single quantum dots in suspended circular Bragg grating microcavities is demonstrated. This geometry has been designed to achieve efficient (> 50 %) single photon extraction into a near-Gaussian shaped far-field pattern, modest (~10x) Purcell enhancement of the radiative rate, and a spectral bandwidth of a few nanometers. Measurements of fabricated devices show progress towards these goals, with collection efficiencies as high as ~10% demonstrated with moderate spectral bandwidth and rate enhancement. Photon correlation measurements are performed under above-bandgap excitation (pump wavelength = 780 nm to 820 nm) and confirm the single photon character of the collected emission. While the measured sources are all antibunched and dominantly composed of single photons, the multi-photon probability varies significantly. Devices exhibiting tradeoffs between collection efficiency, Purcell enhancement, and multi-photon probability are explored and the results are interpreted with ...

  13. p-Shell Rabi-flopping and single photon emission in an InGaAs/GaAs quantum dot

    Science.gov (United States)

    Ester, P.; Lackmann, L.; Hübner, M. C.; Michaelis de Vasconcellos, S.; Zrenner, A.; Bichler, M.

    2008-04-01

    Very clean single photon emission from a single InGaAs/GaAs quantum dot is demonstrated by the use of a coherent optical state preparation. We present a concept for single photon emission, which uses p-shell Rabi-flopping followed by a sequence of relaxation and recombination. The proof of the (clean) single photon emission is performed by photon correlation measurements.

  14. Surface acoustic wave regulated single photon emission from a coupled quantum dot-nanocavity system

    Science.gov (United States)

    Weiß, M.; Kapfinger, S.; Reichert, T.; Finley, J. J.; Wixforth, A.; Kaniber, M.; Krenner, H. J.

    2016-07-01

    A coupled quantum dot-nanocavity system in the weak coupling regime of cavity-quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a fSAW ≃ 800 MHz surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function, g(2). All relevant frequencies of our experiment are faithfully identified in the Fourier transform of g(2), demonstrating high fidelity regulation of the stream of single photons emitted by the system.

  15. Design of highly efficient metallo-dielectric patch antennas for single-photon emission.

    Science.gov (United States)

    Bigourdan, F; Marquier, F; Hugonin, J-P; Greffet, J-J

    2014-02-10

    Quantum emitters such as NV-centers or quantum dots can be used as single-photon sources. To improve their performance, they can be coupled to microcavities or nano-antennas. Plasmonic antennas offer an appealing solution as they can be used with broadband emitters. When properly designed, these antennas funnel light into useful modes, increasing the emission rate and the collection of single-photons. Yet, their inherent metallic losses are responsible for very low radiative efficiencies. Here, we introduce a new design of directional, metallo-dielectric, optical antennas with a Purcell factor of 150, a total efficiency of 74% and a collection efficiency of emitted photons of 99%.

  16. Controlling light emission from single-photon sources using photonic nanowires

    DEFF Research Database (Denmark)

    Gregersen, Niels; Chen, Yuntian; Mørk, Jesper

    2012-01-01

    The photonic nanowire has recently emerged as an promising alternative to microcavity-based single-photon source designs. In this simple structure, a geometrical effect ensures a strong coupling between an embedded emitter and the optical mode of interest and a combination of tapers and mirrors...... are used to tailor the far-field emission pattern. This non-resonant approach relaxes the demands to fabrication perfection, allowing for record-high measured efficiency of fabricated nanowire single-photon sources. We review recent progress in photonic nanowire technology and present next generation...

  17. Evaluation of a 99Tcm bound brain scanning agent for single photon emission computed tomography

    DEFF Research Database (Denmark)

    Andersen, A R; Hasselbalch, S G; Paulson, O B

    1986-01-01

    D,L HM-PAO-99Tcm (PAO) is a lipophilic tracer complex which is avidly taken up by the brain. We have compared the regional distribution of PAO with regional cerebral blood flow (CBF). CBF was measured by single photon emission computed tomography (SPECT) by Tomomatic 64 after 133Xe inhalation in 41...

  18. First experiences from Copenhagen with paediatric single photon emission computed tomography/computed tomography

    DEFF Research Database (Denmark)

    Mortensen, Jann; Bech, Birthe Højlund; Højgaard, Liselotte

    2011-01-01

    OBJECTIVE: This study evaluates the diagnostic value of single photon emission computed tomographic (SPECT)/multislice computed tomographic (MSCT) fusion images compared with planar scintigraphy in children. METHODS: Fifteen children [eight girls, mean age 13 years (range 2-17 years)] who were...

  19. Monitoring CBF in clinical routine by dynamic single photon emission tomography (SPECT) of inhaled xenon-133

    DEFF Research Database (Denmark)

    Sugiyama, H; Christensen, J; Skyhøj Olsen, T

    1986-01-01

    A very simple and low-cost brain dedicated, rapidly rotating Single Photon Emission Tomograph SPECT is described. Its use in following patients with ischemic stroke is illustrated by two middle cerebral artery occlusion cases, one with persistent occlusion and low CBF in MCA territory, and one...

  20. Single-Photon Emission from a Single InAs Quantum Dot

    Institute of Scientific and Technical Information of China (English)

    DOU Xiu-Ming; SUN Bao-Quan; HUANG She-Song; NI Hai-Qiao; NIU Zhi-Chuan

    2008-01-01

    Excitation power-dependent micro-photoluminescence spectra and photon-correlation measurement are used to study the optical properties and photon statistics of single InAs quantum dots.Exciton and biexciton emissions,whose photoluminescence intensities have linear and quadratic excitation power dependences,respectively,are identified.Under pulsed laser excitation,the zero time delay peak of second order correlation function corresponding to exciton emission is well suppressed,which is a clear evidence of single photon emission.

  1. Single-Photon Emission of a Hydrogenlike Atom

    Science.gov (United States)

    Skobelev, V. V.

    2016-11-01

    Implementing a previously obtained, original solution of the Dirac equation for an electron in the field of a nucleus ( Ze) expressed in terms of the wave function of the corresponding Schrödinger equation and its derivatives in spherical coordinates and the spin projection operator Σ3 associated with the eigenfunction, taking into account in each component of the spinor the leading term of the expansion in the small parameter ( Zα), α = e 2 / ħc ≈ 1 / 137, the partial probabilities W of emission of a photon ( Zα)* → ( Zα) + γ have been calculated. Here two orthogonal states of the linear polarization of the photon, and also the spin states of the electron, which previously had not been taken into consideration, have been taken into account in the transverse gauge. It turns out that the probabilities W of emission of a photon per unit time for any allowed transitions are proportional to (Zα)4, as was previously accepted, and the selection rules for the quantum number m have the usual form ∆ m = 0,±1. It was found that a spin flip does not take place during emission. In contrast to the customary situation with the selection rules for the quantum number l being of the form ∆ l = ±1, for ∆ m = ±1 there also exist integrals over dcosθ which are not equal to zero for undetermined odd values of ∆ l. In this, and also in a fundamentally different dependence of the amplitude on the quantum numbers consist the differences from the traditional approach to the problem. Necessary conditions are formulated, under the fulfillment of which the selection rules for l are not changed, having values ∆ l = ±1 for arbitrary ∆ m, but it was not possible, however, to give a complete proof of these rules.

  2. Reconstruction Algorithms for Positron Emission Tomography and Single Photon Emission Computed Tomography and their Numerical Implementation

    CERN Document Server

    Fokas, A S; Marinakis, V

    2004-01-01

    The modern imaging techniques of Positron Emission Tomography and of Single Photon Emission Computed Tomography are not only two of the most important tools for studying the functional characteristics of the brain, but they now also play a vital role in several areas of clinical medicine, including neurology, oncology and cardiology. The basic mathematical problems associated with these techniques are the construction of the inverse of the Radon transform and of the inverse of the so called attenuated Radon transform respectively. We first show that, by employing mathematical techniques developed in the theory of nonlinear integrable equations, it is possible to obtain analytic formulas for these two inverse transforms. We then present algorithms for the numerical implementation of these analytic formulas, based on approximating the given data in terms of cubic splines. Several numerical tests are presented which suggest that our algorithms are capable of producing accurate reconstruction for realistic phanto...

  3. Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities.

    Science.gov (United States)

    Hoang, Thang B; Akselrod, Gleb M; Mikkelsen, Maiken H

    2016-01-13

    Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz.

  4. Diamond based light-emitting diode for visible single-photon emission at room temperature

    Science.gov (United States)

    Lohrmann, A.; Pezzagna, S.; Dobrinets, I.; Spinicelli, P.; Jacques, V.; Roch, J.-F.; Meijer, J.; Zaitsev, A. M.

    2011-12-01

    Diamond-based p-i-n light-emitting diodes capable of single-photon emission in the visible spectral region at room temperature are discussed. The diodes were fabricated on a high quality single crystal diamond grown by chemical vapor deposition. Implantation of boron and phosphorus ions followed by annealing at a temperature of 1600 °C has been used for doping p-type and n-type areas, respectively. Electrical characterization of the devices demonstrates clear diode behavior. Spectra of electroluminescence generated in the i-area reveal sole emission from the neutral nitrogen-vacancy (NV) defects. Photon antibunching implies single-photon character of this emission when generated by individual NV defects.

  5. Single-photon emission in the near infrared from diamond colour centre

    Energy Technology Data Exchange (ETDEWEB)

    Wu, E [Laboratoire de Photonique Quantique et Moleculaire, UMR CNRS 8537, ENS de Cachan, 61 avenue du President Wilson, 94235 Cachan Cedex (France); Key Laboratory of Optical and Magnetic Resonance Spectroscopy, East China Normal University, 3663 Zhongshan Road North, Shanghai 200062 (China); Jacques, V. [Laboratoire de Photonique Quantique et Moleculaire, UMR CNRS 8537, ENS de Cachan, 61 avenue du President Wilson, 94235 Cachan Cedex (France); Treussart, F. [Laboratoire de Photonique Quantique et Moleculaire, UMR CNRS 8537, ENS de Cachan, 61 avenue du President Wilson, 94235 Cachan Cedex (France)]. E-mail: francois.treussart@physique.ens-cachan.fr; Zeng, H. [Key Laboratory of Optical and Magnetic Resonance Spectroscopy, East China Normal University, 3663 Zhongshan Road North, Shanghai 200062 (China); Grangier, P. [Laboratoire Charles Fabry de l' Institut d' Optique, UMR CNRS 8501, BP 147, 91403 Orsay Cedex (France); Roch, J.-F. [Laboratoire de Photonique Quantique et Moleculaire, UMR CNRS 8537, ENS de Cachan, 61 avenue du President Wilson, 94235 Cachan Cedex (France)

    2006-07-15

    Optically active colour centres based on nickel-nitrogen impurities are observed in natural diamond under continuous-wave excitation. The spectral analysis shows that the single emitters have a narrow band emission in the near infrared, around 780 nm, which is almost entirely concentrated in the zero phonon line even at room temperature. The colour centre excited-state lifetime is as short as 2 ns, and the photoluminescence light is linear polarized. These striking features pave the way to the realization of a triggered single-photon source based on this colour centre emission well suited for open-air single-photon Quantum Key Distribution operating in day-light conditions.

  6. Advances in Single-Photon Emission Computed Tomography Hardware and Software.

    Science.gov (United States)

    Piccinelli, Marina; Garcia, Ernest V

    2016-02-01

    Nuclear imaging techniques remain today's most reliable modality for the assessment and quantification of myocardial perfusion. In recent years, the field has experienced tremendous progress both in terms of dedicated cameras for cardiac applications and software techniques for image reconstruction. The most recent advances in single-photon emission computed tomography hardware and software are reviewed, focusing on how these improvements have resulted in an even more powerful diagnostic tool with reduced injected radiation dose and acquisition time.

  7. Combined single photon emission computerized tomography and conventional computerized tomography: Clinical value for the shoulder surgeons?

    Directory of Open Access Journals (Sweden)

    Michael T Hirschmann

    2011-01-01

    Full Text Available With the cases described, we strive to introduce single photon emission computerized tomography in combination with conventional computer tomography (SPECT/CT to shoulder surgeons, illustrate the possible clinical value it may offer as new diagnostic radiologic modality, and discuss its limitations. SPECT/CT may facilitate the establishment of diagnosis, process of decision making, and further treatment for complex shoulder pathologies. Some of these advantages were highlighted in cases that are frequently seen in most shoulder clinics.

  8. Single photon emission computed tomography/computed tomography of the skull in malignant otitis externa.

    Science.gov (United States)

    Chakraborty, Dhritiman; Bhattacharya, Anish; Kamaleshwaran, Koramadai Karuppusamy; Agrawal, Kanhaiyalal; Gupta, Ashok Kumar; Mittal, Bhagwant Rai

    2012-01-01

    Malignant otitis externa is a severe, rare infective condition of the external auditory canal and skull base. The diagnosis is generally made from a range of clinical, laboratory, and imaging findings. Technetium 99m methylene diphosphonate bone scintigraphy is known to detect osteomyelitis earlier than computed tomography. The authors present a patient with bilateral malignant otitis externa where the extent of skull base involvement was determined on 3-phase bone scintigraphy with single photon emission computed tomography/computed tomography.

  9. Surface acoustic wave regulated single photon emission from a coupled quantum dot-nanocavity system

    CERN Document Server

    Weiß, Matthias; Reichert, Thorsten; Finley, Jonathan J; Wixforth, Achim; Kaniber, Michael; Krenner, Hubert J

    2016-01-01

    A coupled quantum dot--nanocavity system in the weak coupling regime of cavity quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a $f_{\\rm SAW}\\simeq800\\,\\mathrm{MHz}$ surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function $g^{(2)}$. All relevant frequencies of our experiment are faithfully identified in the Fourier transform of $g^{(2)}$, demonstrating high fidelity regulation of the stream of single photons emitted by the system. The implemented scheme can be directly extended to strongly coupled systems and acoustically drives non-adiabatic entangling quantum gates based on Landau-Zener transitions.

  10. Single-Photon Emission Computerized Tomography (SPECT in Neuropsychiatry: A Review

    Directory of Open Access Journals (Sweden)

    B. K. Puri

    1992-01-01

    Full Text Available Cranial single-photon emission computerized tomography (SPECT or SPET can now give regional cerebral blood flow images with a resolution approaching that of positron emission tomography (PET. In this paper, the use of high resolution SPECT neuroimaging in neuropsychiatric disorders, including Alzheimer's disease, multi-infarct dementia, Pick's disease, progressive supranuclear palsy, Korsakoff's psychosis, Creutzfeld-Jakob disease, Parkinson's disease, Huntington's disease, schizophrenia, mood disorders, obsessive–compulsive disorder, HIV infection and AIDS is reviewed. Finally, further potential research and clinical uses, based on ligand studies, are outlined.

  11. Massively parallel computers for 3D single-photon-emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Butler, C.S.; Miller, M.I. (Washington Univ., St. Louis, MO (United States). Electronic Systems and Signals Research Lab.); Miller, T.R.; Wallis, J.W. (Washington Univ., St. Louis, MO (United States). Edward Mallinckrodt Inst. of Radiology)

    1994-03-01

    Since the introduction of the expectation-maximization (EM) algorithm for generating maximum-likelihood (ML) and maximum a posteriori (MAP) estimates in emission tomography, there have been many investigators applying the ML method. However, almost all of the previous work has been restricted to two-dimensional (2D) reconstructions. The major focus and contribution of this paper is to demonstrate a fully three-dimensional (3D) implementation of the MAP method for single-photon-emission computed tomography (SPECT). The 3D reconstruction exhibits an improvement in resolution when compared to the generation of the series of separate 2D slice reconstructions. (Author).

  12. Painful spondylolysis or spondylolisthesis studied by radiography and single-photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Collier, B.D.; Johnson, R.P.; Carrera, G.F.; Meyer, G.A.; Schwab, J.P.; Flatley, T.J.; Isitman, A.T.; Hellman, R.S.; Zielonka, J.S.; Knobel, J.

    1985-01-01

    Planar bone scintigraphy (PBS) and single-photon emission computed tomography (SPECT) were compared in 19 adults with radiographic evidence of spondylolysis and/or spondylolisthesis. SPECT was more sensitive than PBS when used to identify symptomatic patients and sites of painful defects in the pars interarticularis. In addition, SPECT allowed more accurate localization than PBS. In 6 patients, spondylolysis or spondylolisthesis was unrealted to low back pain, and SPECT images of the posterior neural arch were normal. The authors conclude that when spondylolysis or spondylolisthesis is the cause of low back pain, pars defects are frequently heralded by increased scintigraphic activity which is best detected and localized by SPECT.

  13. Narrow-band single-photon emission in the near infrared for quantum key distribution.

    Science.gov (United States)

    Wu, E; Jacques, Vincent; Zeng, Heping; Grangier, Philippe; Treussart, François; Roch, Jean-François

    2006-02-06

    We present a detailed study of photophysical properties of single color centers in natural diamond samples emitting in the near infrared under optical excitation. Photoluminescence of these single emitters has several striking features, including narrow-band (FWHM 2 nm) fully polarized emission around 780 nm, a short excited-state lifetime of about 2 ns, and perfect photostability at room temperature under our excitation conditions. Development of a triggered single-photon source relying on this single color center is discussed for application to quantum key distribution.

  14. Narrow-band single-photon emission in the near infrared for quantum key distribution

    CERN Document Server

    Wu, E; Jacques, V; Zeng, H; Grangier, Philippe; Jacques, Vincent; Zeng, Heping

    2005-01-01

    We report on the observation of single colour centers in natural diamond samples emitting in the near infrared region when optically excited. Photoluminescence of these single emitters have several striking features, such as a narrow-band fully polarized emission (FWHM 2 nm) around 780 nm, a short excited-state lifetime of about 2 ns, and perfect photostability at room temperature under our excitation conditions. We present a detailed study of their photophysical properties. Development of a triggered single-photon source relying on this single colour centre is discussed in the prospect of its application to quantum key distribution.

  15. Left ventricular volume determination from single-photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bunker, S.R.; Hartshorne, M.F.; Schmidt, W.P.; Cawthon, M.A.; Karl, R.D. Jr.; Bauman, J.M.; Howard, W.H. III; Rubal, B.J.

    1985-02-01

    To compare the accuracy of single-photon emission computed tomography (SPECT) with that of contrast cineangiography in measuring left ventricular end-diastolic volume, 25 consecutive patients undergoing catheterizaiton for coronary artery or valvular heart disease were first evaluated scintigraphically. SPECT volume values showed a high degree of correlation with those determined by angiography with a standard error of the estimate of 23 ml. SPECT offers a highly accurate and essentially noninvasive method for measuring chamber volumes that is independent of geometric assumptions about ventricular configuration and chest wall attenuation and does not require blood sample counting.

  16. Single photon image from position emission tomography with insertable collimator for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joo Young; Yoo, Do Kun; Suh, Tae Suk [Dept. of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul (Korea, Republic of); Hong, Key Jo [Molecular Imaging Program at Stanford (MIPS), Dept. of Radiology, Stanford University, Stanford (United States)

    2014-04-15

    The aim of our proposed system is to confirm the feasibility of extraction of two types of images from one positron emission tomography (PET) module with an insertable collimator for brain tumor treatment during the boron neutron capture therapy (BNCT). The BNCT theory and conceptual diagram of our proposed system are shown fig.1. Data from the PET module, neutron source, and collimator was entered in the Monte Carlon-particle extende source code. We attempted to acquire the PET and SPECT images simultaneously using only PET without an additional isotope. Single photon images were acquired using an insertable collimator on a PET detector.

  17. Corticobasal degeneration: structural and functional MRI and single-photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ukmar, M. [Department of Radiology, University of Trieste (Italy); Moretti, R.; Bava, A. [Department of Physiology and Pathology, University of Trieste (Italy); Torre, P.; Antonello, R.M. [Department of Internal Medicine and Clinical Neurology, University of Trieste (Italy); Longo, R. [Department of Physics, University of Trieste (Italy)

    2003-10-01

    We studied seven patients with corticobasal degeneration (CBD) from a clinical and imaging perspective. We describe the main morphological features of CBD and, using functional MRI, try to define the possible role of the parietal lobe in simple and complex learned motor sequences. We showed decreased activation of the parietal lobe contralateral to the more affected arm, when movements, simple or complex, are performed with that hand. Moreover we found that functional imaging can demonstrate parietal and motor cortex dysfunction before structural, and even single-photon emission computed tomography changes become evident. (orig.)

  18. Single-photon emission computed tomography and positron-emission tomography assays for tissue oxygenation.

    Science.gov (United States)

    Chapman, J D; Schneider, R F; Urbain, J L; Hanks, G E

    2001-01-01

    Radiotherapy prescription can now be customized to target the major mechanism(s) of resistance of individual tumors. In that regard, functional imaging techniques should be exploited to identify the dominant mechanism(s). Tumor biology research has identified several mechanisms of tumor resistance that may be unique to radiation treatments. These fall into 3 broad areas associated with (1) tumor hypoxic fraction, (2) tumor growth rate, (3) and the intrinsic radiosensitivity of tumor clonogens. Imaging research has markers in various stages of development for quantifying relevant information about each of these mechanisms, and those that measure tumor oxygenation and predict for radioresistance are the most advanced. Positron-emission tomography (PET) measurement of oxygen 15 has yielded important information, particularly about brain tissue perfusion, metabolism, and function. Indirect markers of tumor hypoxia have exploited the covalent binding of bioreductive intermediates of azomycin-containing compounds whose uptakes are inversely proportional to intracellular oxygen concentrations. Pilot clinical studies with single-photon emission computed tomography (SPECT) and PET detection of radiolabeled markers to tumor hypoxia have been reported. Recently, other studies have attempted to exploit the reduction properties of both technetium and copper chelates for the selective deposition of radioactive metals in hypoxic tissues. A growing number of potentially useful isotopes are now available for labeling several novel chemicals that could have the appropriate specificity and sensitivity. Preclinical studies with "microSPECT" and "microPET" will be important to define the optimal radiodiagnostic(s) for measuring tissue oxygenation and for determining the time after their administration for optimal hypoxic signal acquisition. Radiolabeled markers of growth kinetics and intrinsic radiosensitivity of cells in solid tumors are also being developed. We conclude that

  19. High-performance imaging of stem cells using single-photon emissions

    Science.gov (United States)

    Wagenaar, Douglas J.; Moats, Rex A.; Hartsough, Neal E.; Meier, Dirk; Hugg, James W.; Yang, Tang; Gazit, Dan; Pelled, Gadi; Patt, Bradley E.

    2011-10-01

    Radiolabeled cells have been imaged for decades in the field of autoradiography. Recent advances in detector and microelectronics technologies have enabled the new field of "digital autoradiography" which remains limited to ex vivo specimens of thin tissue slices. The 3D field-of-view (FOV) of single cell imaging can be extended to millimeters if the low energy (10-30 keV) photon emissions of radionuclides are used for single-photon nuclear imaging. This new microscope uses a coded aperture foil made of highly attenuating elements such as gold or platinum to form the image as a kind of "lens". The detectors used for single-photon emission microscopy are typically silicon detectors with a pixel pitch less than 60 μm. The goal of this work is to image radiolabeled mesenchymal stem cells in vivo in an animal model of tendon repair processes. Single-photon nuclear imaging is an attractive modality for translational medicine since the labeled cells can be imaged simultaneously with the reparative processes by using the dual-isotope imaging technique. The details our microscope's two-layer gold aperture and the operation of the energy-dispersive, pixellated silicon detector are presented along with the first demonstration of energy discrimination with a 57Co source. Cell labeling techniques have been augmented by genetic engineering with the sodium-iodide symporter, a type of reporter gene imaging method that enables in vivo uptake of free 99mTc or an iodine isotope at a time point days or weeks after the insertion of the genetically modified stem cells into the animal model. This microscopy work in animal research may expand to the imaging of reporter-enabled stem cells simultaneously with the expected biological repair process in human clinical trials of stem cell therapies.

  20. Statistical parametric mapping in brain single photon computed emission tomography after carbon monoxide intoxication.

    Science.gov (United States)

    Watanabe, N; Nohara, S; Matsuda, H; Sumiya, H; Noguchi, K; Shimizu, M; Tsuji, S; Kinuya, S; Shuke, N; Yokoyama, K; Seto, H

    2002-04-01

    The purpose of this retrospective study was to assess regional cerebral blood flow in patients after carbon monoxide intoxication by using brain single photon emission computed tomography and statistical parametric mapping. Eight patients with delayed neuropsychiatric sequelae and ten patients with no neuropsychiatric symptoms after carbon monoxide intoxication were studied with brain single photon emission tomography imaging with 99mTc-hexamethyl-propyleneamine oxime. Forty-four control subjects were also studied. We used the adjusted regional cerebral blood flow images in relative flow distribution (normalization of global cerebral blood flow for each subject to 50 ml x 100 g(-1) x min(-1) with proportional scaling) to compare these groups with statistical parametric mapping. Using this technique, significantly decreased regional cerebral blood flow was noted extensively in the bilateral frontal lobes as well as the bilateral insula and a part of the right temporal lobe in the patients with delayed neuropsychiatric sequelae as compared with normal volunteers (Pparametric mapping is a useful technique for highlighting differences in regional cerebral blood flow in patients following carbon monoxide intoxication as compared with normal volunteers. The selectively reduced blood flow noted in this investigation supports the contention that the decrease following carbon monoxide intoxication may be prolonged and further worsen in the frontal lobe. In addition, the present study may help to clarify the characteristics of the pathophysiological alteration underlying delayed neuropsychiatric sequelae.

  1. DE-BLURRING SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY IMAGES USING WAVELET DECOMPOSITION

    Directory of Open Access Journals (Sweden)

    Neethu M. Sasi

    2016-02-01

    Full Text Available Single photon emission computed tomography imaging is a popular nuclear medicine imaging technique which generates images by detecting radiations emitted by radioactive isotopes injected in the human body. Scattering of these emitted radiations introduces blur in this type of images. This paper proposes an image processing technique to enhance cardiac single photon emission computed tomography images by reducing the blur in the image. The algorithm works in two main stages. In the first stage a maximum likelihood estimate of the point spread function and the true image is obtained. In the second stage Lucy Richardson algorithm is applied on the selected wavelet coefficients of the true image estimate. The significant contribution of this paper is that processing of images is done in the wavelet domain. Pre-filtering is also done as a sub stage to avoid unwanted ringing effects. Real cardiac images are used for the quantitative and qualitative evaluations of the algorithm. Blur metric, peak signal to noise ratio and Tenengrad criterion are used as quantitative measures. Comparison against other existing de-blurring algorithms is also done. The simulation results indicate that the proposed method effectively reduces blur present in the image.

  2. Single-photon emission associated with double electron capture in F9+ + C collisions

    CERN Document Server

    Elkafrawy, Tamer; Tanis, John A; Warczak, Andrzej

    2016-01-01

    Radiative double electron capture (RDEC), the one-step process occurring in ion-atom collisions, has been investigated for bare fluorine ions colliding with carbon. RDEC is completed when two target electrons are captured to a bound state of a projectile simultaneously with the emission of a single photon. This work is a follow-up to our earlier measurement of RDEC for bare oxygen projectiles, thus providing a recipient system free of electron-related Coulomb fields in both cases and allowing for the comparison between the two collision systems as well as with available theoretical studies. The most significant mechanisms of x-ray emission that may contribute to the RDEC energy region as background processes are also addressed.

  3. Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA.

    Science.gov (United States)

    Busson, Mickaël P; Rolly, Brice; Stout, Brian; Bonod, Nicolas; Bidault, Sébastien

    2012-07-17

    A photon interacts efficiently with an atom when its frequency corresponds exactly to the energy between two eigenstates. But at the nanoscale, homogeneous and inhomogeneous broadenings strongly hinder the ability of solid-state systems to absorb, scatter or emit light. By compensating the impedance mismatch between visible wavelengths and nanometre-sized objects, optical antennas can enhance light-matter interactions over a broad frequency range. Here we use a DNA template to introduce a single dye molecule in gold particle dimers that act as antennas for light with spontaneous emission rates enhanced by up to two orders of magnitude and single photon emission statistics. Quantitative agreement between measured rate enhancements and theoretical calculations indicate a nanometre control over the emitter-particle position while 10 billion copies of the target geometry are synthesized in parallel. Optical antennas can thus tune efficiently the photo-physical properties of nano-objects by precisely engineering their electromagnetic environment.

  4. Single-photon emission computed tomography in human immunodeficiency virus encephalopathy: A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Masdeu, J.C.; Yudd, A.; Van Heertum, R.L.; Grundman, M.; Hriso, E.; O' Connell, R.A.; Luck, D.; Camli, U.; King, L.N. (St. Vincent' s Medical Center, New York, NY (USA))

    1991-08-01

    Depression or psychosis in a previously asymptomatic individual infected with the human immunodeficiency virus (HIV) may be psychogenic, related to brain involvement by the HIV or both. Although prognosis and treatment differ depending on etiology, computed tomography (CT) and magnetic resonance imaging (MRI) are usually unrevealing in early HIV encephalopathy and therefore cannot differentiate it from psychogenic conditions. Thirty of 32 patients (94%) with HIV encephalopathy had single-photon emission computed tomography (SPECT) findings that differed from the findings in 15 patients with non-HIV psychoses and 6 controls. SPECT showed multifocal cortical and subcortical areas of hypoperfusion. In 4 cases, cognitive improvement after 6-8 weeks of zidovudine (AZT) therapy was reflected in amelioration of SPECT findings. CT remained unchanged. SPECT may be a useful technique for the evaluation of HIV encephalopathy.

  5. Single photon emission CT perfusion imaging of cerebral blood flow of early syphilis patients

    Institute of Scientific and Technical Information of China (English)

    施辛; 吴锦昌; 刘增礼; 唐军; 苏玉华

    2003-01-01

    Objective To injvestigate the cerebral blood flow of patients with early syphilis. Methods 99Tcm-ECD as brain perfusion imaging agent was used in single photon emission computed tomography (SPECT) for 32 patients with early syphilis and 15 controls. Visual analyses were made on every BSPECT image. Results The 32 patients with early syphilis had general, patchy hypoperfusion of cerebral blood flow. Fourteen of the 32 patients had 48 episodes of marked patchy hypoperfusion of rCBF. The responsible areas of hypoperfusion in a patchy distribution involved the left frontal lobe (6 episodes), right frontal lobe (3), left parietal lobe (7), right parietal lobe (6), left temporal lobe (11), right temporal lobe (5), left occipital lobe (3), left basal ganglia (3), cerebellum (1), and nerve nuceus (1). No abnormality was found in the control group.Conclusions Cerebral blood flow abnormalities exist in patients with early syphilis. General patchy hypoperfusion on SPECT imaging is common.

  6. Single photon emission computerized tomography (SPECT) in detecting neurodegeneration in Huntington's disease.

    Science.gov (United States)

    Reynolds, N C; Hellman, R S; Tikofsky, R S; Prost, R W; Mark, L P; Elejalde, B R; Lebel, R; Hamsher, K S; Swanson, S; Benezra, E E

    2002-01-01

    Single photon emission computerized tomography (SPECT) studies were performed on 34 manifest Huntington's disease (HD) patients at various stages of clinical pathology ranging from early chorea to late dystonia with or without signs of dementia and 12 pre-symptomatic patients with abnormal terminal CAG expansions. Thirty HD patients with obvious clinical signs and seven pre-symptomatic patients without signs or symptoms of HD displayed selective caudate hypoperfusion by direct visual inspection. Such qualitative, selective striatal hypoperfusion patterns can be indicative of early and persistent metabolic changes in striatal neuropathology. SPECT studies can be useful in documenting early pre-clinical changes in patients with abnormal terminal CAG expansions and in confirming the presence of caudate pathology in patients with clinical signs of HD.

  7. Hot water epilepsy: Phenotype and single photon emission computed tomography observations

    Directory of Open Access Journals (Sweden)

    Mehul Patel

    2014-01-01

    Full Text Available We studied the anatomical correlates of reflex hot water epilepsy (HWE using multimodality investigations viz. magnetic resonance imaging (MRI, electroencephalography (EEG, and single photon emission computed tomography (SPECT. Five men (mean age: 27.0 ΁ 5.8 years with HWE were subjected to MRI of brain, video-EEG studies, and SPECT scan. These were correlated with phenotypic presentations. Seizures could be precipitated in three patients with pouring of hot water over the head and semiology of seizures was suggestive of temporal lobe epilepsy. Ictal SPECT showed hyperperfusion in: left medial temporal - one, left lateral temporal - one, and right parietal - one. Interictal SPECT was normal in all five patients and did not help in localization. MRI and interictal EEG was normal in all the patients. The clinical and SPECT studies suggested temporal lobe as the seizure onset zone in some of the patients with HWE.

  8. Single-Photon Emission at Liquid Nitrogen Temperature from a Single InAs/GaAs Quantum Dot

    Institute of Scientific and Technical Information of China (English)

    DOU Xiu-Ming; SUN Bao-Quan; CHANG Xiu-Ying; XIONG Yong-Hua; HUANG She-Song; NI Hai-Qiao; NIU Zhi-Chuan

    2008-01-01

    We report on the single photon emission from single InAs/GaAs self-assembled Stranski-Krastanow quantum dots up to 80 K under pulsed and continuous wave excitations. At temperature 80 K, the second-order correlation function at zero time delay, g(2)(0), is measured to be 0.422 for pulsed excitation. At the same temperature under continuous wave excitation, the photon antibunching effect is observed. Thus, our experimental results demonstrate a promising potential application of self-assembled InAs/GaAs quantum dots in single photon emission at liquid nitrogen temperature.

  9. Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot.

    Science.gov (United States)

    Holmes, Mark J; Choi, Kihyun; Kako, Satoshi; Arita, Munetaka; Arakawa, Yasuhiko

    2014-02-12

    We demonstrate triggered single photon emission at room temperature from a site-controlled III-nitride quantum dot embedded in a nanowire. Moreover, we reveal a remarkable temperature insensitivity of the single photon statistics, and a g((2))[0] value at 300 K of just 0.13. The combination of using high-quality, small, site-controlled quantum dots with a wide-bandgap material system is crucial for providing both sufficient exciton confinement and an emission spectrum with minimal contamination in order to enable room temperature operation. Arrays of such single photon emitters will be useful for room-temperature quantum information processing applications such as on-chip quantum communication.

  10. Enhanced single-photon emission from a diamond–silver aperture

    KAUST Repository

    Choy, Jennifer T.

    2011-10-09

    Solid-state quantum emitters, such as the nitrogen-vacancy centre in diamond, are robust systems for practical realizations of various quantum information processing protocols2-5 and nanoscale magnetometry schemes6,7 at room temperature. Such applications benefit from the high emission efficiency and flux of single photons, which can be achieved by engineering the electromagnetic environment of the emitter. One attractive approach is based on plasmonic resonators8-13, in which sub-wavelength confinement of optical fields can strongly modify the spontaneous emission of a suitably embedded dipole despite having only modest quality factors. Meanwhile, the scalability of solid-state quantum systems critically depends on the ability to control such emitterg-cavity interaction in a number of devices arranged in parallel. Here, we demonstrate a method to enhance the radiative emission rate of single nitrogen-vacancy centres in ordered arrays of plasmonic apertures that promises greater scalability over the previously demonstrated bottom-up approaches for the realization of on-chip quantum networks. © 2011 Macmillan Publishers Limited. All rights reserved.

  11. Controlled Single-Photon Emission from a Single Trapped Two-Level Atom

    CERN Document Server

    Darquié, B; Dingjan, J; Beugnon, J; Bergamini, S; Sortais, Y; Messin, G; Browaeys, A; Grangier, P; Darqui\\'{e}, Benoit; Jones, Matthew; Dingjan, Jos; Beugnon, Jerome; Bergamini, Silvia; Sortais, Yvan; Messin, Gaetan; Browaeys, Antoine; Grangier, Philippe

    2005-01-01

    By illuminating an individual rubidium atom stored in a tight optical tweezer with short resonant light pulses, we create an efficient triggered source of single photons with a well-defined polarization. The measured intensity correlation of the emitted light pulses exhibits almost perfect antibunching. Such a source of high rate, fully controlled single photon pulses has many potential applications for quantum information processing.

  12. Computed tomography angiography and perfusion to assess coronary artery stenosis causing perfusion defects by single photon emission computed tomography

    DEFF Research Database (Denmark)

    Rochitte, Carlos E; George, Richard T; Chen, Marcus Y

    2014-01-01

    AIMS: To evaluate the diagnostic power of integrating the results of computed tomography angiography (CTA) and CT myocardial perfusion (CTP) to identify coronary artery disease (CAD) defined as a flow limiting coronary artery stenosis causing a perfusion defect by single photon emission computed...... tomography (SPECT). METHODS AND RESULTS: We conducted a multicentre study to evaluate the accuracy of integrated CTA-CTP for the identification of patients with flow-limiting CAD defined by ≥50% stenosis by invasive coronary angiography (ICA) with a corresponding perfusion deficit on stress single photon...

  13. Tunable Room-Temperature Single-Photon Emission at Telecom Wavelengths from sp3 Defects in Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, Jeffrey L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ihly, Rachelle R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); He, Xiaowei [Los Alamos National Laboratory; Hartmann, Nicolai F. [Los Alamos National Laboratory; Ma, Xuedan [Los Alamos National Laboratory; Gao, Weilu [Rice University; Kono, Junichiro [Rice University; Yomogida, Yohei [Tokyo Metropolitan University; Hirano, Atsushi [Tokyo Metropolitan University; Tanaka, Takeshi [Tokyo Metropolitan University; Kataura, Hiromichi [Tokyo Metropolitan University; Htoon, Han [Los Alamos National Laboratory; Doorn, Stephen K. [Los Alamos National Laboratory; Kim, Younghee [Los Alamos National Laboratory

    2017-07-31

    Generating quantum light emitters that operate at room temperature and at telecom wavelengths remains a significant materials challenge. To achieve this goal requires light sources that emit in the near-infrared wavelength region and that, ideally, are tunable to allow desired output wavelengths to be accessed in a controllable manner. Here, we show that exciton localization at covalently introduced aryl sp3 defect sites in single-walled carbon nanotubes provides a route to room-temperature single-photon emission with ultrahigh single-photon purity (99%) and enhanced emission stability approaching the shot-noise limit. Moreover, we demonstrate that the inherent optical tunability of single-walled carbon nanotubes, present in their structural diversity, allows us to generate room-temperature single-photon emission spanning the entire telecom band. Single-photon emission deep into the centre of the telecom C band (1.55 um) is achieved at the largest nanotube diameters we explore (0.936 nm).

  14. Design of Slow and Fast Light Photonic Crystal Waveguides for Single-photon Emission Using a Bloch Mode Expansion Technique

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Rigal, B.; Kapon, E.;

    We design slow and fast light photonic crystal waveguides for single-photon emission using a Bloch mode expansion and scattering matrix technique. We propose slow light designs that increase the group index-waveguide mode volume ratio for larger Purcell enhancement, and address efficient slow...

  15. Few-view single photon emission computed tomography (SPECT) reconstruction based on a blurred piecewise constant object model

    DEFF Research Database (Denmark)

    Wolf, Paul A.; Jørgensen, Jakob Sauer; Schmidt, Taly G.

    2013-01-01

    A sparsity-exploiting algorithm intended for few-view Single Photon Emission Computed Tomography (SPECT) reconstruction is proposed and characterized. The algorithm models the object as piecewise constant subject to a blurring operation. To validate that the algorithm closely approximates the true...

  16. Interictal "patchy" regional cerebral blood flow patterns in migraine patients. A single photon emission computerized tomographic study

    DEFF Research Database (Denmark)

    Friberg, L; Olesen, J; Iversen, Helle Klingenberg

    1994-01-01

    In 92 migraine patients and 44 healthy control subjects we recorded regional cerebral blood flow (rCBF) with single photon emission computerized tomography and (133) Xe inhalation or with i.v. (99m) Tc-HMPAO. Migraine patients were studied interictally. A quantitated analysis of right...

  17. Attenuation correction in pulmonary and myocardial single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Almquist, H

    2000-01-01

    The objective was to develop and validate methods for single photon emission computed tomography, SPECT, allowing quantitative physiologic and diagnostic studies of lung and heart. A method for correction of variable attenuation in SPECT, based on transmission measurements before administration of an isotope to the subject, was developed and evaluated. A protocol based upon geometrically well defined phantoms was developed. In a mosaic pattern phantom count rates were corrected from 39-43% to 101-110% of reference. In healthy subjects non-gravitational pulmonary perfusion gradients observed without attenuation correctionwere artefacts caused by attenuation. Pulmonary density in centre of right lung, obtained from the transmission measurement, was 0.28 {+-} 0.03 g/ml in normal subjects. Mean density was lower in large lungs compared to smaller ones. We also showed that regional ventilation/perfusion ratios could be measured with SPECT, using the readily available tracer {sup 133}Xe. Because of the low energy of {sup 133}Xe this relies heavily upon attenuation correction. A commercially available system for attenuation correction with simultaneous emission and transmission, considered to improve myocardial SPECT, performed erroneously. This could lead to clinical misjudgement. We considered that manufacturer-independent pre-clinical tests are required. In a test of two other commercial systems, based on different principles, an adapted variant of our initial protocol was proven useful. Only one of the systems provided correct emission count rates independently on phantom configuration. Errors in the other system were related to inadequate compensation of the influence of emission activity on the transmission study.

  18. QUANTUM CRYPTOGRAPHY: Single Photons.

    Science.gov (United States)

    Benjamin, S

    2000-12-22

    Quantum cryptography offers the potential of totally secure transfer of information, but as Benjamin discusses in this Perspective, its practical implementation hinges on being able to generate single photons (rather than two or more) at a time. Michler et al. show how this condition can be met in a quantum dot microdisk structure. Single molecules were also recently shown to allow controlled single-photon emission.

  19. Advances in pinhole and multi-pinhole collimators for single photon emission computed tomography imaging.

    Science.gov (United States)

    Islamian, Jalil Pirayesh; Azazrm, AhmadReza; Mahmoudian, Babak; Gharapapagh, Esmail

    2015-01-01

    The collimator in single photon emission computed tomography (SPECT), is an important part of the imaging chain. One of the most important collimators that used in research, preclinical study, small animal, and organ imaging is the pinhole collimator. Pinhole collimator can improve the tradeoff between sensitivity and resolution in comparison with conventional parallel-hole collimator and facilities diagnosis. However, a major problem with pinhole collimator is a small field of view (FOV). Multi-pinhole collimator has been investigated in order to increase the sensitivity and FOV with a preserved spatial resolution. The geometry of pinhole and multi-pinhole collimators is a critical factor in the image quality and plays a key role in SPECT imaging. The issue of the material and geometry for pinhole and multi-pinhole collimators have been a controversial and much disputed subject within the field of SPECT imaging. On the other hand, recent developments in collimator optimization have heightened the need for appropriate reconstruction algorithms for pinhole SPECT imaging. Therefore, iterative reconstruction algorithms were introduced to minimize the undesirable effect on image quality. Current researches have focused on geometry and configuration of pinhole and multi-pinhole collimation rather than reconstruction algorithm. The lofthole and multi-lofthole collimator are samples of novel designs. The purpose of this paper is to provide a review on recent researches in the pinhole and multi-pinhole collimators for SPECT imaging.

  20. Bone single photon emission computed tomography (SPECT in a patient with Pancoast tumor: a case report

    Directory of Open Access Journals (Sweden)

    Hamid Javadi

    Full Text Available CONTEXT: Non-small cell lung carcinomas (NSCLCs of the superior sulcus are considered to be the most challenging type of malignant thoracic disease. In this disease, neoplasms originating mostly from the extreme apex of the lung expand to the chest wall and thoracic inlet structures. Multiple imaging procedures have been applied to identify tumors and to stage and predict tumor resectability in surgical operations. Clinical examinations to localize pain complaints in shoulders and down the arms, and to screen for Horner's syndrome and abnormalities seen in paraclinical assessments, have been applied extensively for differential diagnosis of superior sulcus tumors. Although several types of imaging have been utilized for diagnosing and staging Pancoast tumors, there have been almost no reports on the efficiency of whole-body bone scans (WBBS for detecting the level of abnormality in cases of superior sulcus tumors. CASE REPORT: We describe a case of Pancoast tumor in which technetium-99m methylene diphosphonate (Tc-99m MDP bone single-photon emission-computed tomography (SPECT was able to accurately detect multiple areas of abnormality in the vertebrae and ribs. In describing this case, we stress the clinical and diagnostic points, in the hope of stimulating a higher degree of suspicion and thereby facilitating appropriate diagnosis and treatment. From the results of this study, further clinical trials to evaluate the potential of SPECT as an efficient imaging tool for the work-up on cases of Pancoast tumor are recommended.

  1. Reversible Electroencephalographic and Single Photon Emission Computed Tomography Abnormalities in Hashimoto's Encephalopathy

    Directory of Open Access Journals (Sweden)

    Po-Lin Chen

    2005-02-01

    Full Text Available Hashimoto's encephalopathy (HE is a well-established disease that occurs most commonly in patients with euthyroidism. We report 3 patients diagnosed with HE. Cases 1 and 2 were young females who had experienced intractable seizures and presented with cognitive impairment. Reversible slow waves on the electroencephalogram (EEG, and nearly complete recovery of cognition, were noted after steroid treatment. Case 3 was an elderly male who presented with a sudden onset of vertigo, diplopia, and recurrent gait ataxia. Reversible hypoperfusion in the upper portion of the left cerebellum, on 99mTc hexamethylpropyleneamine oxime (HMPAO single photon emission computed tomography (SPECT, was noted after steroid treatment. We also review 25 cases from the literature of patients diagnosed with HE. All patients had antithyroid antibodies. A reversible inflammatory process is supported by brain magnetic resonance imaging, SPECT, EEG and cerebrospinal fluid studies. Vasculitis is the most probable pathogenesis according to laboratory findings. Steroids are the treatment of choice, and result in a favorable outcome when administered early in the disease course.

  2. Imaging of lesions in the posterior cranial fossa using single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Michiro; Uesugi, Yasuo; Higashikawa, Masahiko; Ochi, Mari; Makimoto, Kazuo; Takahashi, Hiroaki; Shin, Akinori; Utsunomiya, Keita; Akagi, Hiroaki

    1988-10-01

    Lesions in the posterior cranial fossa were visualized by single photon emission computed tomography (SPECT) with /sup 123/I-IMP (N-isopropyl-p-/sup 123/I-iodoamphetamine) and /sup 99m/Tc-HM-PAO (/sup 99m/Tc-hexametylpropyleneamine oxime). It is generally held that these radiopharmaceuticals penetrate the walls of cerebral blood vessels and that their accumulations in the brain tissue may reflect the cerebral blood flow. Six patients with lesions in the central nervous system all showed wider areas of abnormality in SPECT than in X-ray CT, indicating a larger lesion of blood flow disturbance. In the next series of 11 patients with vertigo or dizziness of unknown etiology, eight had abnormal findings in the scan with /sup 123/I-IMP as did four of the nine in the scan with /sup 99m/Tc-HM-PAO. Thus, most patients with dizziness of unknown etiology may have some vertebral blood flow disorder, which in some cases is not clearly diagnosed by conventional vestibular examinations or even by X-ray CT scan. The accuracy of the diagnostic measures for otoneurological problems awaits further studies of their sensitivity and specificity.

  3. Single-photon emission computed tomographic findings and motor neuron signs in amyotrophic lateral sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Terao, Shin-ichi; Sobue, Gen; Higashi, Naoki; Takahashi, Masahiko; Suga, Hidemichi; Mitsuma, Terunori [Aichi Medical Univ., Nagakute (Japan)

    1995-03-01

    {sup 123}I-amphetamine-single photon emission computed tomography (SPECT) was performed on 16 patients with amyotrophic lateral sclerosis (ALS) to investigate the correlation between regional cerebral blood flow (rCBF) and upper motor neuron signs. Significant decreased blood flow less than 2 SDs below the mean of controls was observed in the frontal lobe in 4 patients (25%) and in the frontoparietal lobe including the cortical motor area in 4 patients, respectively. The severity of extermity muscular weakness was significantly correlate with decrease in blood flow through the frontal lobe (p<0.05) and through the frontoparietal lobe (p<0.001). A significant correlation was also noted to exist between the severity of bulbar paralysis and decrease in blood flow through the frontoparietal lobe. No correlation, however, was observed between rCBF and severity of spasticity, presence or absence of Babinski`s sign and the duration of illness. Although muscular weakness in the limbs and bulbar paralysis are not pure upper motor neuron signs, the observed reduction in blood flow through the frontal or frontoparietal lobes appears to reflect extensive progression of functional or organic lesions of cortical neurons including the motor area. (author).

  4. Single photon emission computed tomography in the diagnosis of Alzheimer`s disease

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, Haruo; Asano, Tetsuichi; Abe, Shin`e; Arai, Hisayuki; Iwamoto, Toshihiko; Takasaki, Masaru; Shindo, Hiroaki; Abe, Kimihiko [Tokyo Medical Coll. (Japan)

    1997-06-01

    Studies with single photon emission computed tomography (SPECT) have shown temporoparietal (TP) hypoperfusion in patients with Alzheimer`s disease (AD). We evaluated the utility of this findings in the diagnosis of AD. SPECT images with {sup 123}I-iodoamphetamine were analyzed qualitatively by a rater without knowledge of the subject`s clinical status. Sixty-seven of 302 consecutive patients were judged as having TP hypoperfusion by SPECT imaging. This perfusion pattern was observed in 44 of 51 patients with AD, in 5 with mixed dementia, 8 with cerebrovascular disease (including 5 with dementia), 4 with Parkinson`s disease (including 2 with dementia), 1 with normal pressure hydrocephalus, 1 with slowly progressive aphasia, 1 with progressive autonomic failure, 2 with age-associated memory impairment, and 1 with unclassified dementia. The sensitivity for AD was 86.3% (44 of 51 AD), and the specificity was 91.2% (229 of 251 non-AD). Next, we looked for differences in perfusion images between patients with AD and without AD. Some patients without AD had additional hypoperfusion beyond TP areas: deep gray matter hypoperfusion and diffuse frontal hypoperfusion, which could be used to differentiate them from the patients with AD. Others could not be distinguished from patients with AD by their perfusion pattern. Although patients with other cerebral disorders occasionally have TP hypoperfusion, this finding makes the diagnosis of AD very likely. (author)

  5. Towards an optimal reference region in single-photon emission tomography difference images in epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Boussion, N.; Ryvlin, P.; Isnard, J.; Mauguiere, F. [Neurologie Fonctionnelle et Epilepsie, Hopital Neurologique, Lyon (France); Houzard, C. [Centre de Medecine Nucleaire, Hopital Neuro-Cardiologique, Lyon (France); Cinotti, L. [Neurologie Fonctionnelle et Epilepsie, Hopital Neurologique, Lyon (France); Centre de Medecine Nucleaire, Hopital Neuro-Cardiologique, Lyon (France); CERMEP, Hopital Neuro-Cardiologique, Lyon (France)

    2000-02-01

    There is marked variability in the cerebral blood flow (CBF) between the ictal and interictal state in epilepsy, and it would therefore be desirable to increase the reliability of ictal/interictal single-photon emission tomography (SPET) difference images. We aimed to improve the step of quantitative normalization of images by finding the best possible reference region. In 16 patients (11 with lateralization of the epileptogenic focus, five with bilateral foci) both ictal and inter-ictal SPET scans were performed after injection of technetium-99m labelled tracer. Then, each region among a selected set (brain+cerebellum, brain, cerebellum, hemispheres, and for patients with an expected lateralization, cortical lobe containing the focus and symmetrical contralateral lobe) was investigated by comparison of the regional ictal/inter-ictal variance in counts. Among patients with a suspected lateralized focus, the distribution of CBF in the contralateral cortical lobe appeared to vary less between ictal and inter-ictal states than in other investigated areas. As a consequence, this latter region constitutes the best choice as a reference region. For patients with bilateral foci, the cerebellum appears to be a good compromise even though it presents with significant CBF changes. (orig.)

  6. Brain Single Photon Emission Computed Tomography in Anosmic Subjects Ater Closed Head Trauma

    Directory of Open Access Journals (Sweden)

    Roozbeh Banan

    2011-01-01

    Full Text Available Anosmia following head trauma is relatively common and in many cases is persistent and irreversible. The ability to objectively measure such a decline in smelling, for both clinical and medicolegal goals, is very important. The aim of this study was to find results of brain Single Photon Emission Computed Tomography (SPECT in anosmic subjects after closed head trauma. This case-control cross sectional study was conducted in a tertiary referral University Hospital. The brain perfusion state of nineteen anosmic patients and thirteen normal controls was evaluated by means of the SPECT with 99mtc- ECD infusion- before and after olfactory stimulation. The orbitofrontal lobe of the brain was assumed as the region of interest and changes in perfusion of this area before and after the stimulations were compared in two groups. The mean of brain perfusion in controls before and after the stimulation was 8.26% ± 0.19% and 9.89% ± 0.54%, respectively (P < 0.0001. Among patients group, these quantities were 7.97% ± 1.05% and 8.49% ± 1.5%, respectively (P < 0.004. The difference between all the measures in cases and controls were statistically significant (P < 0.0001. There were no differences in age and sex between two groups. The brain SPECT is an objective technique suitable for evaluating anosmia following the head trauma and it may be used with other diagnostic modalities

  7. A study of cerebral perfusion using single photon emission computed tomography in neonates with brain lesions

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, J.; Contantinesco, A.; Brunot, B.; Messer, J. (Hospital Universitaire de Strasbourg (France))

    1994-03-01

    In this study the authors used a single photon emission computed tomography technique (SPECT) with radiolabelled [sup 99m]Tc HMPAO to assess cerebral perfusion in newborn infants with documented cerebral lesions and to determine to what extent brain SPECT might be useful in the neonatal period. A total of 15 newborn infants with the following cerebral pathologies were enrolled: severe parietal bilateral periventricular leucomalacia; moderate parietal bilateral PVL; intraventricular haemorrhage grade II with unilateral parietal parenchymal extension; cerebral infarction in the zone of middle cerebral artery; and post-haemorrhagic hydrocephalus. Follow-up was available in all infants. Alterations in cerebral perfusion were seen in only 12 of 15 infants and at the location of severe PVL, PE and CI. It was noted that the regions of diminished perfusion extended beyond the apparent extent of cerebral pathology delineated by ultrasound or magnetic resonance imaging. Markedly diminished perfusion was seen in one infant with hydrocephalus, which recovered following placement of ventriculo-peritoneal shunt. Regarding outcome, SPECT data failed to provide additional information than that of neuroradiological investigations. It is concluded that the use of SPECT, under these conditions, to assess alteration of cerebral perfusion in the neonatal period will not provide any additional information than that of neuroradiological investigations. 17 refs., 3 figs., 1 tab.

  8. Controlled single-photon emission from a single trapped two-level atom.

    Science.gov (United States)

    Darquié, B; Jones, M P A; Dingjan, J; Beugnon, J; Bergamini, S; Sortais, Y; Messin, G; Browaeys, A; Grangier, P

    2005-07-15

    By illuminating an individual rubidium atom stored in a tight optical tweezer with short resonant light pulses, we created an efficient triggered source of single photons with a well-defined polarization. The measured intensity correlation of the emitted light pulses exhibits almost perfect antibunching. Such a source of high-rate, fully controlled single-photon pulses has many potential applications for quantum information processing.

  9. Endocrine radionuclide scintigraphy with fusion single photon emission computed tomography/computed tomography

    Institute of Scientific and Technical Information of China (English)

    Ka-Kit Wong; Arpit Gandhi; Benjamin L Viglianti; Lorraine M Fig; Domenico Rubello; Milton D Gross

    2016-01-01

    AIM: To review the benefits of single photon emission computed tomography(SPECT)/computed tomography(CT) hybrid imaging for diagnosis of various endocrine disorders.METHODS: We performed MEDLINE and Pub Med searches using the terms: "SPECT/CT"; "functional anatomic mapping"; "transmission emission tomography"; "parathyroid adenoma"; "thyroid cancer"; "neuroendocrine tumor"; "adrenal"; "pheochromocytoma"; "paraganglioma"; in order to identify relevant articles published in English during the years 2003 to 2015. Reference lists from the articles were reviewed to identify additional pertinent articles. Retrieved manuscripts(case reports, reviews, meta-analyses and abstracts) concerning the application of SPECT/CT to endocrine imaging were analyzed to provide a descriptive synthesis of the utility of this technology.RESULTS: The emergence of hybrid SPECT/CT camera technology now allows simultaneous acquisition of combined multi-modality imaging, with seamless fusion of three-dimensional volume datasets. The usefulness of combining functional information to depict the biodistribution of radiotracers that map cellular processes of the endocrine system and tumors of endocrine origin, with anatomy derived from CT, has improved the diagnostic capability of scintigraphy for a range of disorders of endocrine gland function. The literature describes benefits of SPECT/CT for 99mTc-sestamibi parathyroid scintigraphy and 99mTc-pertechnetate thyroid scintigraphy, 123I- or 131I-radioiodine for staging of differentiated thyroid carcinoma, 111In- and 99mTclabeled somatostatin receptor analogues for detection of neuroendocrine tumors, 131I-norcholesterol(NP-59) scans for assessment of adrenal cortical hyperfunction, and 123I- or 131I-metaiodobenzylguanidine imaging for evaluation of pheochromocytoma and paraganglioma.CONCLUSION: SPECT/CT exploits the synergism between the functional information from radiopharmaceutical imaging and anatomy from CT, translating to

  10. Single-photon emission computed tomography/computed tomography in brain tumors.

    Science.gov (United States)

    Schillaci, Orazio; Filippi, Luca; Manni, Carlo; Santoni, Riccardo

    2007-01-01

    Anatomic imaging procedures (computed tomography [CT] and magnetic resonance imaging [MRI]) have become essential tools for brain tumor assessment. Functional images (positron emission tomography [PET] and single-photon emission computed tomography [SPECT]) can provide additional information useful during the diagnostic workup to determine the degree of malignancy and as a substitute or guide for biopsy. After surgery and/or radiotherapy, nuclear medicine examinations are essential to assess persistence of tumor, to differentiate recurrence from radiation necrosis and gliosis, and to monitor the disease. The combination of functional images with anatomic ones is of the utmost importance for a full evaluation of these patients, which can be obtained by means of imaging fusion. Despite the fast-growing diffusion of PET, in most cases of brain tumors, SPECT studies are adequate and provide results that parallel those obtained with PET. The main limitation of SPECT imaging with brain tumor-seeking radiopharmaceuticals is the lack of precise anatomic details; this drawback is overcome by the fusion with morphological studies that provide an anatomic map to scintigraphic data. In the past, software-based fusion of independently performed SPECT and CT or MRI demonstrated usefulness for brain tumor assessment, but this process is often time consuming and not practical for everyday nuclear medicine studies. The recent development of dual-modality integrated imaging systems, which allow the acquisition of SPECT and CT images in the same scanning session, and their co-registration by means of the hardware, has facilitated this process. In SPECT studies of brain tumors with various radiopharmaceuticals, fused images are helpful in providing the precise localization of neoplastic lesions, and in excluding the disease in sites of physiologic tracer uptake. This information is useful for optimizing diagnosis, therapy monitoring, and radiotherapy treatment planning, with a

  11. A Study on Determination of an Optimized Detector for Single Photon Emission Computed Tomography.

    Science.gov (United States)

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Mohammad; Mahmoudian, Babak; Mardanshahi, Ali Reza

    2016-01-01

    The detector is a critical component of the single photon emission computed tomography (SPECT) imaging system for giving accurate information from the exact pattern of radionuclide distribution in the target organ. The SIMIND Monte Carlo program was utilized for the simulation of a Siemen's dual head variable angle SPECT imaging system with a low energy high resolution (LEHR) collimator. The Planar and SPECT scans for a (99m)Tc point source and a Jaszczak Phantom with the both experiment and simulated systems were prepared and after verification and validation of the simulated system, the similar scans of the phantoms were compared (from the point of view of the images' quality), namely, the simulated system with the detectors including bismuth germanate (BGO), yttrium aluminum garnet (YAG:Ce), Cerium-doped yttrium aluminum garnet (YAG:Ce), yttrium aluminum perovslite (YAP:Ce), lutetium aluminum garnet (LuAG:Ce), cerium activated lanthanum bromide (LaBr3), cadmium zinc telluride (CZT), and sodium iodide activated with thallium [NaI(Tl)]. The parameters of full width at half maximum (FWHM), energy and special resolution, sensitivity, and also the comparison of images' quality by the structural similarity (SSIM) algorithm with the Zhou Wang and Rouse/Hemami methods were analyzed. FWHMs for the crystals were calculated at 13.895, 14.321, 14.310, 14.322, 14.184, and 14.312 keV and the related energy resolutions obtained 9.854, 10.229, 10.221, 10.230, 10.131, and 10.223 %, respectively. Finally, SSIM indexes for comparison of the phantom images were calculated at 0.22172, 0.16326, 0.18135, 0.17301, 0.18412, and 0.20433 as compared to NaI(Tl). The results showed that BGO and LuAG: Ce crystals have high sensitivity and resolution, and better image quality as compared to other scintillation crystals.

  12. Proton magnetic resonance spectroscopy and single photon emission CT in patients with olivopontocerebellar atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, Naomi [Yamaguchi Univ., Ube (Japan). School of Medicine

    1998-04-01

    Using proton magnetic resonance spectroscopy ({sup 1}H-MRS) and single photon emission CT (SPECT), the cerebellum of patients with olivopontocerebellar atrophy (OPCA) and of age-matched control subjects was studied. A spectrum was collected from a 27 cm{sup 3} (3 x 3 x 3 cm) voxel in the cerebellum containing white and gray matters in order to measure the distribution and relative signal intensities of N-acetylaspartate (NAA), creatine (Cre) and choline (Cho). In the cerebellum of the patients with OPCA, mean NAA/Cre ratios for OPCA patients were significantly decreased compared with normal control subjects (OPCA, 1.01{+-}0.247; controls, 1.526{+-}0.144: p<0.001). Mean NAA/Cho ratios for OPCA patients were slightly decreased (OPCA, 1.285{+-}0.228; controls 1.702{+-}0.469: p<0.06). Cho/Cre ratios valued in the cerebellum of OPCA patients were not significantly different from those in normal controls (OPCA, 0.793{+-}0.186; controls, 0.946{+-}0.219). The ratio of RI count in the cerebellum to that in the occipital lobe was significantly decreased in OPCA patients (OPCA, 0.947{+-}0.096; controls, 1.06{+-}0.063: p<0.01). Cerebellar signs were assessed including gait ataxia, limb ataxia, dysarthria, saccadic pursuit, and nystagmus separately or in combination. In patients with more severe ataxic gait and dysarthria, MRS revealed slightly lowered NAA/Cre ratio. There was no significant correlation between NAA/Cre ratio and severity of other clinical signs. The MRS and SPECT findings give a confirmative evidence of hypofunction in cerebellum of patients with OPCA. (author)

  13. SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY STUDY OF REGIONAL CEREBRAL BLOOD FLOW IN PATIENTS WITH HEMISPATIAL NEGLECT

    Institute of Scientific and Technical Information of China (English)

    尹雅芙; 任艳; 李亚明

    2003-01-01

    Objective.To explore the correlations between the occurrence and severity of neglect and the region,range or extent of the decrease in regional cerebral blood flow(rCBF). Methods. Nineteen dextromanual patients who were diagnosed as unilateral stroke clinically and hemispatial neglect by a neglect test battery received single photon emission computed tomography(SPECT) scans. Results. On images,the damages of patients with neglect were seen most frequently in the frontal cortex,and then in turn in the parietal cortex,occipital cortex,temporal cortex,basal ganglia and thalamus. Most patients with neglect had two or more regions damaged. The most significant region was temporal-parietal-occipi-tal(TPO)junction. The correlation coefficient between rCBF and the severity of neglect was -0.34(t=-1.5,P>0.05),and that between the decrease percentage of rCBF and the severity of neglect was 0.34(t=1.47,P>0.05). The correlation coefficients between the range,number of foci,the flow deficit size and the severity of neglect were 0.71(t=4.13,P<0.01),0.70(t=4.07,P<0.01)and 0.64(t=3.40, P<0.01),respectively. Conclusions. The severity of neglect correlates with rCBF and the decrease percentage of rCBF insignificantly,but correlates positively with the range,number of foci and the flow deficit size significantly. Hemispatial neglect is caused by the damage of multiple sites and combined damage results in more severe neglect.

  14. Safety of ventilation/perfusion single photon emission computed tomography for pulmonary embolism diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Le Roux, Pierre-Yves; Palard, Xavier; Robin, Philippe; Abgral, Ronan; Querellou, Solene; Salaun, Pierre-Yves [Universite Europeenne de Bretagne, Brest (France); Universite de Brest, Brest (France); CHRU de la Cavale Blanche, Service de medecine nucleaire, Brest (France); Delluc, Aurelien; Couturaud, Francis [Universite Europeenne de Bretagne, Brest (France); Universite de Brest, Brest (France); CHRU de la Cavale Blanche, Departement de medecine interne et de pneumologie, Brest (France); Le Gal, Gregoire [Universite Europeenne de Bretagne, Brest (France); University of Ottawa, Ottawa Hospital Research Institute, Ottawa (Canada); CHRU de la Cavale Blanche, Departement de medecine interne et de pneumologie, Brest (France); Universite de Brest, Brest (France)

    2014-10-15

    The aim of this management outcome study was to assess the safety of ventilation/perfusion single photon emission computed tomography (V/Q SPECT) for the diagnosis of pulmonary embolism (PE) using for interpretation the criteria proposed in the European Association of Nuclear Medicine (EANM) guidelines for V/Q scintigraphy. A total of 393 patients with clinically suspected PE referred to the Nuclear Medicine Department of Brest University Hospital from April 2011 to March 2013, with either a high clinical probability or a low or intermediate clinical probability but positive D-dimer, were retrospectively analysed. V/Q SPECT were interpreted by the attending nuclear medicine physician using a diagnostic cut-off of one segmental or two subsegmental mismatches. The final diagnostic conclusion was established by the physician responsible for patient care, based on clinical symptoms, laboratory test, V/Q SPECT and other imaging procedures performed. Patients in whom PE was deemed absent were not treated with anticoagulants and were followed up for 3 months. Of the 393 patients, the prevalence of PE was 28 %. V/Q SPECT was positive for PE in 110 patients (28 %) and negative in 283 patients (72 %). Of the 110 patients with a positive V/Q SPECT, 78 (71 %) had at least one additional imaging test (computed tomography pulmonary angiography or ultrasound) and the diagnosis of PE was eventually excluded in one patient. Of the 283 patients with a negative V/Q SPECT, 74 (26 %) patients had another test. The diagnosis of PE was finally retained in one patient and excluded in 282 patients. The 3-month thromboembolic risk in the patients not treated with anticoagulants was 1/262: 0.38 % (95 % confidence interval 0.07-2.13). A diagnostic management including V/Q SPECT interpreted with a diagnostic cut-off of ''one segmental or two subsegmental mismatches'' appears safe to exclude PE. (orig.)

  15. Development of correction methods for variable pinhole single-photon emission computed tomography

    Science.gov (United States)

    Bae, S.; Bae, J.; Lee, H.; Lee, K.

    2016-02-01

    We propose a novel pinhole collimator in which the pinhole shape can be changed in real-time, and a new single-photon emission computed tomography (SPECT) system that utilizes this variable pinhole (VP) collimator. The acceptance angle and distance between the collimator and the object of VP SPECT are varied so that the optimum value of the region-of-interest (ROI) can be obtained for each rotation angle. Because of these geometrical variations, new correction methods are required for image reconstruction. In this study, we developed two correction methods. The first is the sensitivity-correction algorithm, which minimizes the variation of a system matrix caused by varying the acceptance angle for each rotation angle. The second is the acquisition-time-correction method, which reduces the variation of uniformity caused by varying the distance between the collimator and the object for each rotation angle. A 3D maximum likelihood expectation maximization (MLEM) algorithm was applied to image reconstruction, and two digital phantoms were studied to evaluate the resolution and sensitivity of the images obtained using the proposed methods. The images obtained by using the proposed correction methods show higher uniformity and resolution than those obtained without using these methods. In particular, the results of the resolution phantom study show that hot rods (0.8-mm-diameter) can be clearly distinguished using the proposed correction methods. A quantitative analysis of the ROI phantom revealed that the mean square error (MSE) was 0.42 without the acquisition-time-correction method, and 0.04 with the acquisition-time-correction method. The MSEs of the resolution phantom without and with the acquisition-time-correction method were calculated as 55.14 and 14.69, respectively.

  16. Phantom evaluation of simultaneous thallium-201/technetium-99m acquisition in single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cao Zongjian [Department of Diagnostic Radiology, University of Maryland Medical Center, Baltimore, MD (United States); Chen, C.C. [Department of Diagnostic Radiology, University of Maryland Medical Center, Baltimore, MD (United States); Maunoury, C. [Department of Diagnostic Radiology, University of Maryland Medical Center, Baltimore, MD (United States); Holder, L.E. [Department of Diagnostic Radiology, University of Maryland Medical Center, Baltimore, MD (United States); Abraham, T.C. [Department of Diagnostic Radiology, University of Maryland Medical Center, Baltimore, MD (United States); Tehan, A. [Department of Diagnostic Radiology, University of Maryland Medical Center, Baltimore, MD (United States)

    1996-11-01

    This study investigated downscatter effects in cardiac single-photon emission tomographic studies with simultaneous thallium-201/technetium-99m acquisition, and evaluated a previously proposed subtraction technique for downscatter compensation. Ten studies were carried out with different defect sizes and locations and varying activity distributions using four energy windows: 70{+-}10% keV, 140{+-}10% keV, 100{+-}10% KeV, and 103{+-}16% keV. The subtraction technique used the 100- or 103-keV data to remove scattered {sup 99m}Tc counts from the 70-keV data. The size and contrast of infarcts in the dual-isotope 70-keV image were artificially decreased compared to those in the 140-keV image, caused by scattered {sup 99m}Tc counts that were comparable to the primary {sup 201}Tl counts in the 70-keV window. The subtraction technique produced larger defects and more heterogeneous activity in the myocardial wall in dual-isotope 70-keV images compared to the corresponding {sup 201}Tl-only images. These artifacts were caused by the markedly different spatial distributions of scattered {sup 99m}Tc counts in the 100-keV (or 103-keV) window as compared with the 70-keV window. It is concluded that scattered {sup 99m}Tc photons may cause overestimation of ischemia and myocardial viability in simultaneous dual-isotope patient studies. The proposed subtraction technique was inaccurate and produced image artifacts. Adequate downscatter compensation methods must be developed before applying simultaneous {sup 201}Tl/{sup 99m}Tc acquisition in clinical practice. (orig.). With 6 figs., 3 tabs.

  17. Measurements of wavelength-dependent double photoelectron emission from single photons in VUV-sensitive photomultiplier tubes

    CERN Document Server

    Faham, C H; Currie, A; Dobi, A; Sorensen, P; Gaitskell, R J

    2015-01-01

    Measurements of double photoelectron emission (DPE) probabilities as a function of wavelength are reported for Hamamatsu R8778, R8520, and R11410 VUV-sensitive photomultiplier tubes (PMTs). In DPE, a single photon strikes the PMT photocathode and produces two photoelectrons instead of a single one. It was found that the fraction of detected photons that result in DPE emission is a function of the incident photon wavelength, and manifests itself below $\\sim$250 nm. For the xenon scintillation wavelength of 175 nm, a DPE probability of 18--24\\% was measured depending on the tube and measurement method. This wavelength-dependent single photon response has implications for the energy calibration and photon counting of current and future liquid xenon detectors such as LUX, LZ, XENON100/1T, Panda-X and XMASS.

  18. Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers

    Science.gov (United States)

    Cook, D. J.; Schlemmer, S.; Balucani, N.; Wagner, D. R.; Harrison, J. A.; Steiner, B.; Saykally, R. J.

    1998-01-01

    Single-photon infrared emission spectroscopy (SPIRES) has been used to measure emission spectra from polycyclic aromatic hydrocarbons (PAHs). A supersonic free-jet expansion has been used to provide emission spectra of rotationally cold and vibrationally excited naphthalene and benzene. Under these conditions, the observed width of the 3.3-micrometers (C-H stretch) band resembles the bandwidths observed in experiments in which emission is observed from naphthalene with higher rotational energy. To obtain complete coverage of IR wavelengths relevant to the unidentified infrared bands (UIRs), UV laser-induced desorption was used to generate gas-phase highly excited PAHs. Lorentzian band shapes were convoluted with the monochromator-slit function in order to determine the widths of PAH emission bands under astrophysically relevant conditions. Bandwidths were also extracted from bands consisting of multiple normal modes blended together. These parameters are grouped according to the functional groups mostly involved in the vibration, and mean bandwidths are obtained. These bandwidths are larger than the widths of the corresponding UIR bands. However, when the comparison is limited to the largest PAHs studied, the bandwidths are slightly smaller than the corresponding UIR bands. These parameters can be used to model emission spectra from PAH cations and cations of larger PAHs, which are better candidate carriers of the UIRs.

  19. [Analysis of single-photon emission computed tomography in patients with hypertensive encephalopathy complicated with previous hypertensive crisis].

    Science.gov (United States)

    Kustkova, H S

    2012-01-01

    In cerebrovascular diseases pefuzionnaya single photon emission computed tomography with lipophilic amines used for the diagnosis of functional disorders of cerebral blood flow. Quantitative calculations helps clarify the nature of vascular disease and clarify the adequacy and effectiveness of the treatment. In this modern program for SPECT ensure conduct not only as to the calculation of blood flow, but also make it possible to compute also the absolute values of cerebral blood flow.

  20. Single photon emission computed tomography/computed tomography for malignant otitis externa: lesion not shown on planar image.

    Science.gov (United States)

    Chen, Yu-Hung; Hsieh, Hung-Jen

    2013-01-01

    Malignant otitis externa is a severe and rare infection of the external acoustic meatus. Triphasic bone and (67)Ga scintigraphies are used to initial detect and follow-up the response of therapy. With single photon emission computed tomography/computed tomography images, the diagnostic sensitivity is higher. We presented a case with malignant otitis externa with initial negative planar scintigraphic finding. The lesion was detected by photon emission computed tomography/computed tomography images. We concluded that the photon emission computed tomography/computed tomography should be performed routinely for patients with suspected malignant otitis externa, even without evidence of lesion on planar images.

  1. Fundamental limitations in spontaneous emission rate of single-photon sources

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Khurgin, Jacob B.

    2016-01-01

    The rate of single-photon generation by quantum emitters (QEs) can be enhanced by placing a QE inside a resonant structure. This structure can represent an all-dielectric micro-resonator or waveguide and thus be characterized by ultra-low loss and dimensions on the order of wavelength. Or it can ...

  2. Tuning of superconducting nanowire single-photon detector parameters for VLSI circuit testing using time-resolved emission

    Science.gov (United States)

    Bahgat Shehata, A.; Stellari, F.

    2015-01-01

    Time-Resolved Emission (TRE) is a truly non-invasive technique based on the detection of intrinsic light emitted by integrated circuits that is used for the detection of timing related faults from the backside of flip-chip VLSI circuits. Single-photon detectors with extended sensitivity in the Near Infrared (NIR) are used to perform time-correlated single-photon counting measurements and retrieve the temporal distribution of the emitted photons, thus identifying gates switching events. The noise, efficiency and jitter performance of the detector are crucial to enable ultra-low voltage waveform sensitivity. For this reason, cryogenically cooled Superconducting Nanowire Single-Photon Detectors (SNSPDs) offer superior performance compared to state-of-the-art Single-Photon Avalanche Diodes (SPADs). In this paper we will discuss how detector front-end electronics parameters, such as bias current, RF attenuation and comparator threshold, can be tailored to optimize the measurement Signal-to-Noise Ratio (SNR), defined as the ratio between the switching emission peak amplitude and the standard deviation of the noise in the time interval in which there are no photons emitted from the circuit. For example, reducing the attenuation and the threshold of the comparator used to detect switching events may lead to an improvement of the jitter, due to the better discrimination of the detector firing, but also a higher sensitivity to external electric noise disturbances. Similarly, by increasing the bias current, both the detection efficiency and the jitter improve, but the noise increases as well. For these reasons an optimization of the SNR is necessary. For this work, TRE waveforms were acquired from a 32 nm Silicon On Insulator (SOI) chip operating down to 0.4 V using different generations of SNSPD systems.

  3. Central representation of phantom limb phenomenon in amputees studied with single photon emission computerized tomography.

    Science.gov (United States)

    Liaw, M Y; You, D L; Cheng, P T; Kao, P F; Wong, A M

    1998-01-01

    To explore the possible mechanisms of phantom limb discomfort after amputation, three amputees with phantom limb pain were studied. This study examined the change of regional cerebral blood flow using technetium-99m hexamethylpropyleneamine oxime-single photon emission computerized tomography, which was arranged at the time of severe phantom limb discomfort and after the discomfort subsided or was completely relieved. Nine representative transverse slices parallel to the orbitomeatal line were selected for quantification. The cortical ribbon (2-cm thickness) was equally subdivided into 12 symmetrical pairs of sector regions of interest in each slice. The irregularly shaped regions of interest were drawn manually around the right thalamus and basal ganglion and then mirrored to the left thalamus and basal ganglion. The contralateral to ipsilateral ratio of regional cerebral blood flow for each area was calculated. The intensity of phantom limb pain was evaluated on a 0 to 10 visual analog scale. In Cases 1 and 2, the contralateral to ipsilateral regional cerebral blood flow ratios of multiple areas of the frontal, temporal, or parietal lobes were increased at the time of more severe phantom limb pain, and the ratios were normalized or even decreased when the phantom limb pain subsided. In Case 3, increased contralateral to ipsilateral regional cerebral blood flow ratios were also found over the frontal, temporal, and parietal lobe. However, most of the increased regional cerebral blood flow ratios of regions of interest in the first study persisted in the follow-up study. Also, the regional cerebral blood flow ratios of greater number of regions of interest of the same gyrus and new gyrus were increased. There was no significant right-left difference of regional cerebral blood flow over bilateral thalami and basal ganglia in all three cases. The results suggested that phantom limb pain might be associated with cortical activation involving the frontal, temporal, or

  4. Image Optimization in Single Photon Emission Computed Tomography by Hardware Modifications with Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Bahreyni Toossi

    2010-06-01

    Full Text Available Introduction: In Single Photon Emission Computed Tomography (SPECT, the projection data used for image reconstruction are distorted by several factors, including attenuation and scattering of gamma rays, collimator structure, data acquisition method, organ motion, and washout of radiopharmaceuticals. All these make reconstruction of a quantitative SPECT image very difficult. Simulation of a SPECT system is a convenient method to assess the impact of these factors on the image quality. Materials and Methods: The SIMIND Monte Carlo program was employed to simulate a Siemens E.CAM SPECT system. Verification of the simulation was performed by comparing the performance parameters of the system. The verified system was used for SPECT simulations of homogenous and inhomogeneous voxelized phantoms in conjugation with hardware modifications. The resulting data were compared with those obtained from the simulated system without any modifications. Image quality was assessed by comparing the Structural SIMularity index (SSIM, contrast, and resolution of images. Results: The energy spectra acquired from both simulated and real SPECT systems demonstrated similar energy peak regions. The resulting full-widths-at-half-maximums were 13.92 keV for the simulation and 13.58 keV for experimental data, corresponding to energy resolutions of 9.95% and 9.61%, and with calculated sensitivities of 85.39 and 85.11 cps/MBq, respectively. Better performance parameters were obtained with a hardware-modified system constructed using a 0.944 cm thickness NaI(Tl crystal covered by a layer of 0.24 cm aluminum, a  slat of 4.5 cm Pyrex as a backscattering medium, and a parallel hole collimator of Pb-Sb alloy with 2.405 cm thickness. Conclusion: The modeling of a Siemens E.CAM SPECT system was performed with the SIMIND Monte Carlo code. Results obtained with the code are in good agreement with experimental results. The findings demonstrate that the proposed hardware modifications

  5. Evaluating image denoising methods in myocardial perfusion single photon emission computed tomography (SPECT) imaging

    Science.gov (United States)

    Skiadopoulos, S.; Karatrantou, A.; Korfiatis, P.; Costaridou, L.; Vassilakos, P.; Apostolopoulos, D.; Panayiotakis, G.

    2009-10-01

    The statistical nature of single photon emission computed tomography (SPECT) imaging, due to the Poisson noise effect, results in the degradation of image quality, especially in the case of lesions of low signal-to-noise ratio (SNR). A variety of well-established single-scale denoising methods applied on projection raw images have been incorporated in SPECT imaging applications, while multi-scale denoising methods with promising performance have been proposed. In this paper, a comparative evaluation study is performed between a multi-scale platelet denoising method and the well-established Butterworth filter applied as a pre- and post-processing step on images reconstructed without and/or with attenuation correction. Quantitative evaluation was carried out employing (i) a cardiac phantom containing two different size cold defects, utilized in two experiments conducted to simulate conditions without and with photon attenuation from myocardial surrounding tissue and (ii) a pilot-verified clinical dataset of 15 patients with ischemic defects. Image noise, defect contrast, SNR and defect contrast-to-noise ratio (CNR) metrics were computed for both phantom and patient defects. In addition, an observer preference study was carried out for the clinical dataset, based on rankings from two nuclear medicine clinicians. Without photon attenuation conditions, denoising by platelet and Butterworth post-processing methods outperformed Butterworth pre-processing for large size defects, while for small size defects, as well as with photon attenuation conditions, all methods have demonstrated similar denoising performance. Under both attenuation conditions, the platelet method showed improved performance with respect to defect contrast, SNR and defect CNR in the case of images reconstructed without attenuation correction, however not statistically significant (p > 0.05). Quantitative as well as preference results obtained from clinical data showed similar performance of the

  6. Quality of myocardial perfusion single-photon emission tomography imaging: multicentre evaluation with a cardiac phantom.

    Science.gov (United States)

    Heikkinen, J; Ahonen, A; Kuikka, J T; Rautio, P

    1999-10-01

    The aim of the study was to evaluate quality of myocardial perfusion single-photon emission tomography (SPET) imaging in Finnish hospitals. Nineteen nuclear medicine departments participated in the study. A myocardial phantom simulating clinical stress and rest conditions was filled with routinely used isotope solution (technetium-99m or thallium-201). The cardiac insert included three reversible defects (simulating ischaemia): 30x30x14 mm(3) septal (90% recovery at rest), 30x20x14 mm(3) posterobasal (full recovery) and 20x20x14 mm(3) lateral (full recovery). There were two fixed defects (simulating infarct): 30x20x14 mm(3) postero-apical and 10x10x6 mm(3) apical. The phantom was imaged and interpreted as a myocardial perfusion patient. Reconstruction, printout and reporting were performed according to the clinical routine of each centre. Three nuclear medicine specialists anonymously evaluated the quality of the image sets. The visual scores of the experts were ranked from 1 to 5. Additionally, points from 0 to 8 were given to research reports according to how well perfusion defects were detected. Quantitative points were calculated by comparing background-subtracted and -normalized counts from 12 regions of interest between stress and rest images. Results for technetium studies (12 departments) were better than those for thallium (7 departments). The average visual scores of the experts were 3.7+/-0. 9 for all image sets, 3.2+/-0.5 for thallium users and 3.9+/-0.6 for technetium users (P=0.003). Five laboratories received a low score which, according to the specialists, is barely sufficient for limited clinical use. Average points for the reports were 5.6+/-2.1, 4.9+/-1.5 and 6.5+/-1.7 (P=0.051), and for the quantitation 8.2+/-1. 0, 7.9+/-0.4 and 8.4+/-1.1 (P=0.185), respectively. Seven out of 22 interpreters did not detect the lateral 20x20x14 mm(3) defect; five of them used thallium. This study demonstrated the heterogeneity of myocardial perfusion SPET in

  7. Quality of myocardial perfusion single-photon emission tomography imaging: multicentre evaluation with a cardiac phantom

    Energy Technology Data Exchange (ETDEWEB)

    Heikkinen, J. [Dept. of Nuclear Medicine, Etela-Savo Hospital District, Mikkeli Central Hospital, Mikkeli (Finland); Ahonen, A. [Dept. of Nuclear Medicine, Oulu University Hospital (Finland); Kuikka, J.T. [Dept. of Clinical Physiology, Kuopio University Hospital and Niuvanniemi Hospital, Kuopio (Finland); Rautio, P. [Dept. of Clinical Physiology, North Karelia Central Hospital, Joensuu (Finland)

    1999-10-01

    The aim of the study was to evaluate quality of myocardial perfusion single-photon emission tomography (SPET) imaging in Finnish hospitals. Nineteen nuclear medicine departments participated in the study. A myocardial phantom simulating clinical stress and rest conditions was filled with routinely used isotope solution (technetium-99m or thallium-201). The cardiac insert included three reversible defects (simulating ischaemia): 30 x 30 x 14 mm{sup 3} septal (90% recovery at rest), 30 x 20 x 14 mm{sup 3} posterobasal (full recovery) and 20 x 20 x 14 mm{sup 3} lateral (full recovery). There were two fixed defects (simulating infarct): 30 x 20 x 14 mm{sup 3} postero-apical and 10 x 10 x 6 mm{sup 3} apical. The phantom was imaged and interpreted as a myocardial perfusion patient. Reconstruction, printout and reporting were performed according to the clinical routine of each centre. Three nuclear medicine specialists anonymously evaluated the quality of the image sets. The visual scores of the experts were ranked from 1 to 5. Additionally, points from 0 to 8 were given to research reports according to how well perfusion defects were detected. Quantitative points were calculated by comparing background-subtracted and -normalized counts from 12 regions of interest between stress and rest images. Results for technetium studies (12 departments) were better than those for thallium (7 departments). The average visual scores of the experts were 3.7{+-}0.9 for all image sets, 3.2{+-}0.5 for thallium users and 3.9{+-}0.6 for technetium users (P=0.003). Five laboratories received a low score which, according to the specialists, is barely sufficient for limited clinical use. Average points for the reports were 5.6{+-}2.1, 4.9{+-}1.5 and 6.5{+-}1.7 (P=0.051), and for the quantitation 8.2{+-}1.0, 7.9{+-}0.4 and 8.4{+-}1.1 (P=0.185), respectively. Seven out of 22 interpreters did not detect the lateral 20 x 20 x 14 mm{sup 3} defect; five of them used thallium. This study demonstrated

  8. Single photon emission computed tomography (SPECT of anxiety disorders before and after treatment with citalopram

    Directory of Open Access Journals (Sweden)

    Seedat Soraya

    2004-10-01

    Full Text Available Abstract Background Several studies have now examined the effects of selective serotonin reuptake inhibitor (SSRI treatment on brain function in a variety of anxiety disorders including obsessive-compulsive disorder (OCD, posttraumatic stress disorder (PTSD, and social anxiety disorder (social phobia (SAD. Regional changes in cerebral perfusion following SSRI treatment have been shown for all three disorders. The orbitofrontal cortex (OFC (OCD, caudate (OCD, medial pre-frontal/cingulate (OCD, SAD, PTSD, temporal (OCD, SAD, PTSD and, thalamic regions (OCD, SAD are some of those implicated. Some data also suggests that higher perfusion pre-treatment in the anterior cingulate (PTSD, OFC, caudate (OCD and antero-lateral temporal region (SAD predicts subsequent treatment response. This paper further examines the notion of overlap in the neurocircuitry of treatment and indeed treatment response across anxiety disorders with SSRI treatment. Methods Single photon emission computed tomography (SPECT using Tc-99 m HMPAO to assess brain perfusion was performed on subjects with OCD, PTSD, and SAD before and after 8 weeks (SAD and 12 weeks (OCD and PTSD treatment with the SSRI citalopram. Statistical parametric mapping (SPM was used to compare scans (pre- vs post-medication, and responders vs non-responders in the combined group of subjects. Results Citalopram treatment resulted in significant deactivation (p = 0.001 for the entire group in the superior (t = 4.78 and anterior (t = 4.04 cingulate, right thalamus (t = 4.66 and left hippocampus (t = 3.96. Deactivation (p = 0.001 within the left precentral (t = 4.26, right mid-frontal (t = 4.03, right inferior frontal (t = 3.99, left prefrontal (3.81 and right precuneus (t= 3.85 was more marked in treatment responders. No pattern of baseline activation distinguished responders from non-responders to subsequent pharmacotherapy. Conclusions Although each of the anxiety disorders may be mediated by different

  9. Coherent properties of single quantum dot transitions and single photon emission

    Energy Technology Data Exchange (ETDEWEB)

    Ester, Patrick

    2008-04-23

    of the first laser pulse. The relative phase of the QDs exciton can be controlled externally via the bias voltage. This effect is the basis for the observation of RAMSEY-fringes, which are presented in this work. The coherent manipulation of the p-shell is the basis for a novel excitation scheme for single photon emission. In this work it is shown that the first excited state can be coherently manipulated, similar to the ground state. (orig.)

  10. Single-photon emission from InAsP quantum dots embedded in density-controlled InP nanowires

    Science.gov (United States)

    Yanase, Shougo; Sasakura, Hirotaka; Hara, Shinjiro; Motohisa, Junichi

    2017-04-01

    We attempted to control the density and size of InP-based nanowires (NWs) and nanowire quantum dots (NW-QDs) during selective-area metalorganic vapor phase epitaxy. InP nanowire arrays with a 5 µm pitch and an average NW diameter d of 67 nm were successfully grown by optimization of growth conditions. InAsP quantum dots were embedded in these density-controlled InP NW arrays, and clear single-photon emission and exciton-biexciton cascaded emission were confirmed by excitation-dependent photoluminescence and photon correlation measurements.

  11. Bright Room-Temperature Single Photon Emission from Defects in Gallium Nitride

    CERN Document Server

    Berhane, Amanuel M; Bodrog, Zoltán; Fiedler, Saskia; Schröder, Tim; Triviño, Noelia Vico; Palacios, Tomás; Gali, Adam; Toth, Milos; Englund, Dirk; Aharonovich, Igor

    2016-01-01

    Single photon emitters play a central role in many photonic quantum technologies. A promising class of single photon emitters consists of atomic color centers in wide-bandgap crystals, such as diamond silicon carbide and hexagonal boron nitride. However, it is currently not possible to grow these materials as sub-micron thick films on low-refractive index substrates, which is necessary for mature photonic integrated circuit technologies. Hence, there is great interest in identifying quantum emitters in technologically mature semiconductors that are compatible with suitable heteroepitaxies. Here, we demonstrate robust single photon emitters based on defects in gallium nitride (GaN), the most established and well understood semiconductor that can emit light over the entire visible spectrum. We show that the emitters have excellent photophysical properties including a brightness in excess of 500x10^3 counts/s. We further show that the emitters can be found in a variety of GaN wafers, thus offering reliable and s...

  12. Nearly Blinking-Free, High-Purity Single-Photon Emission by Colloidal InP/ZnSe Quantum Dots.

    Science.gov (United States)

    Chandrasekaran, Vigneshwaran; Tessier, Mickaël D; Dupont, Dorian; Geiregat, Pieter; Hens, Zeger; Brainis, Edouard

    2017-10-11

    Colloidal core/shell InP/ZnSe quantum dots (QDs), recently produced using an improved synthesis method, have a great potential in life-science applications as well as in integrated quantum photonics and quantum information processing as single-photon emitters. Single-particle spectroscopy of 10 nm QDs with 3.2 nm cores reveals strong photon antibunching attributed to fast (70 ps) Auger recombination of multiple excitons. The QDs exhibit very good photostability under strong optical excitation. We demonstrate that the antibunching is preserved when the QDs are excited above the saturation intensity of the fundamental-exciton transition. This result paves the way toward their usage as high-purity on-demand single-photon emitters at room temperature. Unconventionally, despite the strong Auger blockade mechanism, InP/ZnSe QDs also display very little luminescence intermittency ("blinking"), with a simple on/off blinking pattern. The analysis of single-particle luminescence statistics places these InP/ZnSe QDs in the class of nearly blinking-free QDs, with emission stability comparable to state-of-the-art thick-shell and alloyed-interface CdSe/CdS, but with improved single-photon purity.

  13. CO2BOLD assessment of moyamoya syndrome: Validation with single photon emission computed tomography and positron emission tomography imaging

    Science.gov (United States)

    Pellaton, Alain; Bijlenga, Philippe; Bouchez, Laurie; Cuvinciuc, Victor; Barnaure, Isabelle; Garibotto, Valentina; Lövblad, Karl-Olof; Haller, Sven

    2016-01-01

    AIM To compare the assessment of cerebrovascular reserve (CVR) using CO2BOLD magnetic resonance imaging (MRI) vs positron emission tomography (PET) and single photon emission computed tomography (SPECT) as reference standard. METHODS Ten consecutive patients (8 women, mean age of 41 ± 26 years) with moyamoya syndrome underwent 14 pre-surgical evaluations for external-internal carotid artery bypass surgery. CVR was assessed using CO2BOLD and PET (4)/SPECT (11) with a maximum interval of 36 d, and evaluated by two experienced neuroradiologists. RESULTS The inter-rater agreement was 0.81 for SPECT (excellent), 0.43 for PET (fair) and 0.7 for CO2BOLD (good). In 9/14 cases, there was a correspondence between CO2BOLD and PET/SPECT. In 4/14 cases, CVR was over-estimated in CO2BOLD, while in 1/14 case, CVR was underestimated in CO2BOLD. The sensitivity of CO2BOLD was 86% and a specificity of 43%. CONCLUSION CO2BOLD can be used for pre-surgical assessment of CVR in patients with moyamoya syndrome and combines the advantages of absent irradiation, high availability of MRI and assessment of brain parenchyma, cerebral vessels and surrogate CVR in one stop. PMID:27928470

  14. Sentinel Lymph Node Detection by 3D Freehand Single-Photon Emission Computed Tomography in Early Stage Breast Cancer

    Directory of Open Access Journals (Sweden)

    Salih Sinan Gültekin

    2016-06-01

    Full Text Available We herein present our first experience obtained by 3D freehand single-photon emission computed tomography (SPECT (F-SPECT guidance for sentinel lymph node detection (SLND in two patients with early stage breast cancer. F-SPECT guidance was carried out using one-day protocol in one case and by the two-day protocol in the other one. SLND was performed successfully in both patients. Histopathologic evaluation showed that the excised nodes were tumor negative. Thus, patients underwent breast-conserving surgery alone.

  15. Domestic Development of Single-Photon Emission Computed Tomography (SPECT) Unit with Detector based on Silicon Photomultipliers

    Science.gov (United States)

    Grishakov, S.; Ryzhikova, O.; Sergienko, V.; Ansheles, A.; Novikov, S.

    2017-01-01

    The idea of creating a single-photon emission computed tomography unit with solid-state photomultipliers is not new [1], as the problems of analog-to-digital conversion with a lot of noise and a wide range of values of intrinsic spatial resolution of the detector in a center and relevant fields of view could not be solved by means of gamma-camera detector architectures based on vacuum photomultipliers. This paper offers a new SPECT imaging solution that is free from these problems.

  16. Room-temperature single-photon emission from zinc oxide nanoparticle defects and their in vitro photostable intrinsic fluorescence

    Directory of Open Access Journals (Sweden)

    Chung Kelvin

    2017-01-01

    Full Text Available Zinc oxide (ZnO is a promising semiconductor that is suitable for bioimaging applications due to its intrinsic defect fluorescence. However, ZnO generally suffers from poor photostability. We report room-temperature single-photon emission from optical defects found in ZnO nanoparticles (NPs formed by ion implantation followed by thermal oxidation in a silica substrate. We conduct a thorough investigation into the photophysics of a particularly bright defect and identify other single emitters within the NPs. Photostability was observed when the NPs were removed from the growth substrate and taken up by skin cells for in vitro imaging.

  17. Single-photon emission from electrically driven InP quantum dots epitaxially grown on CMOS-compatible Si(001)

    Science.gov (United States)

    Wiesner, M.; Schulz, W.-M.; Kessler, C.; Reischle, M.; Metzner, S.; Bertram, F.; Christen, J.; Roßbach, R.; Jetter, M.; Michler, P.

    2012-08-01

    The heteroepitaxy of III-V semiconductors on silicon is a promising approach for making silicon a photonic platform. Mismatches in material properties, however, present a major challenge, leading to high defect densities in the epitaxial layers and adversely affecting radiative recombination processes. However, nanostructures, such as quantum dots, have been found to grow defect-free even in a suboptimal environment. Here we present the first realization of indium phosphide quantum dots on exactly oriented Si(001), grown by metal-organic vapour-phase epitaxy. We report electrically driven single-photon emission in the red spectral region, meeting the wavelength range of silicon avalanche photodiodes’ highest detection efficiency.

  18. Effect of expression of P-glycoprotein on technetium-99m methoxyisobutylisonitrile single photon emission computed tomography of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Yasushi; Matsumura, Akira; Nose, Tadao [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    2002-08-01

    The expression of P-glycoprotein was investigated imunohistochemically in 26 brain tumor tissues and compared with the findings of technetium-99m methoxyisobutylisonitrile single photon emission computed tomography ({sup 99m}Tc-MIBI SPECT) to clarify the effect of P-glycoprotein on the diagnostic accuracy. P-glycoprotein labeling index of both tumor cells and vascular endothelial cells showed no clear relationship with the findings of {sup 99m}Tc-MIBI SPECT imaging. Expression of P-glycoprotein has no effect on the diagnostic accuracy of {sup 99m}Tc-MIBI SPECT. (author)

  19. Two Cases of Legionella pneumophila Pneumonia with Prolonged Neurologic Symptoms and Brain Hypoperfusion on Single-Photon Emission Computed Tomography

    Directory of Open Access Journals (Sweden)

    Hiromitsu Ohta

    2016-01-01

    Full Text Available Cerebral and cerebellar symptoms are frequently associated with Legionnaires’ disease. However, corresponding brain lesions are difficult to demonstrate using either computed tomography (CT or magnetic resonance imaging (MRI. We report here two patients with Legionella pneumophila pneumonia accompanied by prolonged neurologic symptoms. In contrast to brain CT and MRI, which failed to detect any abnormalities, single-photon emission computed tomography (SPECT showed multiple sites of hypoperfusion within the brains of both patients. These cases suggest that vasculopathy, which is detectable by SPECT, might be one of the causes of neurologic symptoms in patients with Legionnaires’ disease.

  20. Room-temperature single-photon emission from zinc oxide nanoparticle defects and their in vitro photostable intrinsic fluorescence

    Science.gov (United States)

    Chung, Kelvin; Karle, Timothy J.; Khalid, Asma; Abraham, Amanda N.; Shukla, Ravi; Gibson, Brant C.; Simpson, David A.; Djurišic, Aleksandra B.; Amekura, Hiroshi; Tomljenovic-Hanic, Snjezana

    2017-01-01

    Zinc oxide (ZnO) is a promising semiconductor that is suitable for bioimaging applications due to its intrinsic defect fluorescence. However, ZnO generally suffers from poor photostability. We report room-temperature single-photon emission from optical defects found in ZnO nanoparticles (NPs) formed by ion implantation followed by thermal oxidation in a silica substrate. We conduct a thorough investigation into the photophysics of a particularly bright defect and identify other single emitters within the NPs. Photostability was observed when the NPs were removed from the growth substrate and taken up by skin cells for in vitro imaging.

  1. Right parietal stroke with Gerstmann's syndrome. Appearance on computed tomography, magnetic resonance imaging, and single-photon emission computed tomography.

    Science.gov (United States)

    Moore, M R; Saver, J L; Johnson, K A; Romero, J A

    1991-04-01

    We examined a patient who exhibited Gerstmann's syndrome (left-right disorientation, finger agnosia, dyscalculia, and dysgraphia) in association with a perioperative stroke in the right parietal lobe. This is the first description of the Gerstmann tetrad occurring in the setting of discrete right hemisphere pathologic findings. A well-localized vascular lesion was demonstrated by computed tomography, magnetic resonance imaging, and single-photon emission computed tomographic studies. The patient had clinical evidence of reversed functional cerebral dominance and radiologic evidence of reversed anatomic cerebral asymmetries.

  2. Single photon emission and quantum ring-cavity coupling in InAs/GaAs quantum rings

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, E; Nowak, A K; Sanvitto, D; Meulen, H P van der; Calleja, J M [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); MartInez, L J; Prieto, I; Alija, A R; Granados, D; Taboada, A G; GarcIa, J M; Postigo, P A [Instituto de Microelectronica de Madrid, Centro Nacional de MicrotecnologIa, CSIC, Isaac Newton 8, PTM Tres Cantos, E-28760 Madrid (Spain); Sarkar, D, E-mail: eva.gallardo@uam.e [Department of Physics and Astronomy, University of Sheffield, S3 7RH (United Kingdom)

    2010-02-01

    Different InAs/GaAs quantum rings embedded in a photonic crystal microcavity are studied by quantum correlation measurements. Single photon emission, with g{sup (2)}(0) values around 0.3, is demonstrated for a quantum ring not coupled to the microcavity. Characteristic rise-times are found to be longer for excitons than for biexcitons, resulting in the time asymmetry of the exciton-biexciton cross-correlation. No antibunching is observed in another quantum ring weakly coupled to the microcavity.

  3. Small animal imaging by single photon emission using pinhole and coded aperture collimation

    Energy Technology Data Exchange (ETDEWEB)

    Garibaldi, F.; Accorsi, R.; Cinti, M.N.; Colilli, S.; Cusanno, F.; De Vincentis, G.; Fortuna, A.; Girolami, B.; Giuliani, F.; Gricia, M.; Lanza, R.; Loizzo, A.; Loizzo, S.; Lucentini, M.; Majewski, S.; Santavenere, F.; Pani, R.; Pellegrini, R.; Signore, A.; Scopinaro, F.

    2005-06-01

    The aim of this paper is to investigate the basic properties and limits of the small animal imaging systems based on single photon detectors. The detectors for radio imaging of small animals are challenging because of the very high spatial resolution needed, possibly coupled with high efficiency to allow dynamic studies. These performances are hardly attainable with single photon technique because of the collimator that limits both spatial resolution and sensitivity. In this paper we describe a simple desktop detector based on pixellated NaI(Tl) scintillator array coupled with a pinhole collimator and a PSPMT, the Hamamatsu R2486. The limits of such systems as well as the way to overcome them will be shown. In fact better light sampling at the anode level would allow better pixel identification for higher number of pixel that is one of the parameters defining the image quality. Also the spatial resolution would improve. The performances of such layout are compared with others using PSPMTs differing from R2486 for the light sampling at the anode level and different areas. We show how a further step, namely the substitution of the pinhole collimator with a coded aperture, will allow a great improvement in system sensitivity while maintaining very good spatial resolution, possibly submillimetric. Calculations and simulations show that sensitivity would improve by a factor of 50.

  4. Purcell-Enhanced Single-Photon Emission from Nitrogen-Vacancy Centers Coupled to a Tunable Microcavity

    Science.gov (United States)

    Kaupp, Hanno; Hümmer, Thomas; Mader, Matthias; Schlederer, Benedikt; Benedikter, Julia; Haeusser, Philip; Chang, Huan-Cheng; Fedder, Helmut; Hänsch, Theodor W.; Hunger, David

    2016-11-01

    Optical microcavities are a powerful tool for enhancing the fluorescence of individual quantum emitters. However, the broad emission spectra encountered in the solid state at room temperature limit the influence of a cavity, calling for an ultrasmall mode volume. We demonstrate Purcell-enhanced single-photon emission from nitrogen-vacancy centers in nanodiamonds coupled to a tunable fiber-based microcavity with a mode volume down to 1.0 λ3. We record cavity-enhanced fluorescence images and study several single emitters with one cavity. The Purcell effect is evidenced by enhanced fluorescence collection and tunable lifetime modification, and we infer an effective Purcell factor of up to 2. Furthermore, we show an alternative regime for light confinement, where a Fabry-Perot mode is combined with additional mode confinement by the nanocrystal itself. Simulations predict effective Purcell factors of up to 11 for nitrogen-vacancy centers and 63 for silicon-vacancy centers, holding promise for bright single-photon sources and efficient spin readout under ambient conditions.

  5. Efficient single photon emission from a high-purity hexagonal boron nitride crystal

    Science.gov (United States)

    Martínez, L. J.; Pelini, T.; Waselowski, V.; Maze, J. R.; Gil, B.; Cassabois, G.; Jacques, V.

    2016-09-01

    Among a variety of layered materials used as building blocks in van der Waals heterostructures, hexagonal boron nitride (hBN) appears as an ideal platform for hosting optically active defects owing to its large band gap (˜6 eV ). Here we study the optical response of a high-purity hBN crystal under green laser illumination. By means of photon correlation measurements, we identify individual defects emitting a highly photostable fluorescence under ambient conditions. A detailed analysis of the photophysical properties reveals a high quantum efficiency of the radiative transition, leading to a single photon source with very high brightness (˜4 ×106 counts s-1). These results illustrate how the wide range of applications offered by hBN could be further extended to photonic-based quantum information science and metrology.

  6. Fundamental studies of myocardial defect size quantification using positron emission tomography and single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Tatsuya [Kanazawa Univ. (Japan). School of Medicine

    2001-04-01

    In Flurine-18 fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography (PET) acquisition, a transmission scan is usually performed before the PET tracer injection (cold transmission method), followed by a subsequent emission scan. However, this procedure is time consuming. An alternative approach, in which the transmission scan is performed after the emission scan (hot transmission method), would significantly reduce the time required for data acquisition. Recently, three-dimensional PET acquisition (3D PET) has become available. The counting sensitivity is much higher in 3D PET than in conventional two-dimensional PET (2D PET), resulting in a shorter acquisition time and reduced radiation exposure for the patient. On the other hand, {sup 18}F-FDG imaging using single photon emission computed tomography (SPECT), a more widely available method than PET, has emerged as an alternative to PET. The purpose of this study was to investigate the accuracy of measurement of myocardial defect sizes by these new techniques, using a chest phantom. Acquisitions were performed using an elliptical cylinder chest phantom. Plastic inserts, ranging in size from 2-60% of the myocardium (n=12), were used as simulated models of transmural myocardial infarction. Fluorine-18 was given into each part of the phantom. PET imaging with cold and hot transmission methods, 3D PET, and SPECT imaging were performed with different acquisition times and different radioisotope concentrations. All PET and SPECT data were analyzed using a semiquantitative polar map approach. Defect sizes were quantified using various cutoff thresholds, and were expressed as a percentage of the left ventricular myocardium. The PET and SPECT measurements were compared with the true defect sizes. Among the various cutoff levels tested, the mean absolute difference between the measured and true defect sizes was minimal at 50% of peak activity for both PET and SPECT. The PET measurements with the hot transmission

  7. Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots

    Science.gov (United States)

    Benyoucef, M.; Yacob, M.; Reithmaier, J. P.; Kettler, J.; Michler, P.

    2013-10-01

    We demonstrate pronounced single-photon emission from InAs/AlGaInAs/InP quantum dots (QDs) at wavelengths above 1.5 μm that are compatible with standard long-distance fiber communication. The QDs are grown by molecular beam epitaxy on distributed Bragg reflectors. A low QD density of about 5 × 108 cm-2 was obtained using optimized growth conditions. Low-temperature micro-photoluminescence spectroscopy exhibits sharp excitonic emission lines from single QDs without the necessity of further processing steps. The combination of excitation power-dependent and polarization-resolved photoluminescence measurements reveal a characteristic exciton-biexciton behavior with biexciton binding energies that range from 3.5 to 4 meV and fine-structure splitting values down to 20 μeV.

  8. Development and application of an automated analysis method for individual cerebral perfusion single photon emission tomography images

    CERN Document Server

    Cluckie, A J

    2001-01-01

    Neurological images may be analysed by performing voxel by voxel comparisons with a group of control subject images. An automated, 3D, voxel-based method has been developed for the analysis of individual single photon emission tomography (SPET) scans. Clusters of voxels are identified that represent regions of abnormal radiopharmaceutical uptake. Morphological operators are applied to reduce noise in the clusters, then quantitative estimates of the size and degree of the radiopharmaceutical uptake abnormalities are derived. Statistical inference has been performed using a Monte Carlo method that has not previously been applied to SPET scans, or for the analysis of individual images. This has been validated for group comparisons of SPET scans and for the analysis of an individual image using comparison with a group. Accurate statistical inference was obtained independent of experimental factors such as degrees of freedom, image smoothing and voxel significance level threshold. The analysis method has been eval...

  9. Laparoscopic Sentinel Node Biopsy Using Real-time 3-dimensional Single-photon Emission Computed Tomographic Guidance in Endometrial Cancer.

    Science.gov (United States)

    Fernandez-Prada, Sara; Delgado-Sanchez, Elsa; De Santiago, Javier; Zapardiel, Ignacio

    2015-01-01

    In endometrial cancer, the histopathological analysis of the lymphatic nodes is essential to establish a correct prognosis and tailored adjuvant treatment. It is well-known that patients with early-stage endometrial cancer have a low incidence of nodal disease. In this group, systematic lymphadenectomy is not recommended. To improve the detection rate of sentinel nodes in clinical practice, new techniques are emerging like real-time 3-dimensional single-photon emission computed tomographic (SPECT) imaging. We report our experience using this innovative technique for intraoperative detection of sentinel nodes in endometrial cancer. The real-time 3-dimensional SPECT sentinel node biopsy seems to be feasible and accurate in endometrial cancer although further studies are needed to set the precision and predictive values compared with the current differed SPECT techniques and blue dye techniques. Copyright © 2015 AAGL. Published by Elsevier Inc. All rights reserved.

  10. Left leg apraxia after anterior cerebral artery territory infarction: functional analysis using single-photon emission computed tomography.

    Science.gov (United States)

    Ito, Ikuno; Ito, Kimiteru; Shindo, Naoko

    2013-01-01

    Left hand apraxia is known as a unique symptom of callosal apraxia, but lower limb symptoms are rarely mentioned. We report a patient who experienced left ideomotor apraxia affecting both the upper and lower limbs after a stroke in the territory of the right anterior cerebral artery. His spontaneous gait was normal, but he was unable to move his left leg intentionally either by verbal command or by imitation. His leg symptoms gradually improved over time. We evaluated the change in cerebral blood flow in this patient using single-photon emission computed tomography. The results showed an increase in blood flow in the posterior corpus callosum; therefore, we suggested that the callosal pathway might contribute to left leg as well as left hand volitional movement. Copyright © 2013 S. Karger AG, Basel.

  11. Single photon emission computed tomography with [sup 123]I-IMP in three cases of the neuroleptic malignant syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Nisijima, K. (Dept. of Psychiatry, Jichi Medical School, Tochigi-Ken (Japan)); Matoba, M. (Dept. of Psychiatry, Jichi Medical School, Tochigi-Ken (Japan)); Ishiguro, T. (Dept. of Psychiatry, Jichi Medical School, Tochigi-Ken (Japan))

    1994-05-01

    Single photon emission computed tomography (SPECT) perfusion brain scans using [sup 123]I-N-isopropyl-p-iodoamphetamine ([sup 123]I-IMP) were performed in three patients with the neuroleptic malignant syndrome (NMS). In two accumulation was increased in the left basal ganglia and decreased in the right on the early images during the active phase of NMS; this asymmetry was not seen after recovery. In the third patient two examinations were performed during the active phase; on the first, increased accumulation of [sup 123]I-IMP in the left basal ganglia was found on the early images, but on the second, increased accumulation of tracer was found in the right basal ganglia on the delayed images. These abnormalities disappeared after improvement of the NMS. These results suggest that a disturbance in the basal ganglia is related to the development of NMS. (orig.)

  12. Use of fuzzy edge single-photon emission computed tomography analysis in definite Alzheimer's disease - a retrospective study

    Directory of Open Access Journals (Sweden)

    Rusina Robert

    2010-09-01

    Full Text Available Abstract Background Definite Alzheimer's disease (AD requires neuropathological confirmation. Single-photon emission computed tomography (SPECT may enhance diagnostic accuracy, but due to restricted sensitivity and specificity, the role of SPECT is largely limited with regard to this purpose. Methods We propose a new method of SPECT data analysis. The method is based on a combination of parietal lobe selection (as regions-of-interest (ROI, 3D fuzzy edge detection, and 3D watershed transformation. We applied the algorithm to three-dimensional SPECT images of human brains and compared the number of watershed regions inside the ROI between AD patients and controls. The Student's two-sample t-test was used for testing domain number equity in both groups. Results AD patients had a significantly reduced number of watershed regions compared to controls (p Conclusions Our non-invasive, relatively low-cost, and easy method can contribute to a more precise diagnosis of AD.

  13. Few-view single photon emission computed tomography (SPECT) reconstruction based on a blurred piecewise constant object model

    CERN Document Server

    Wolf, Paul A; Schmidt, Taly G; Sidky, Emil Y

    2012-01-01

    A sparsity-exploiting algorithm intended for few-view Single Photon Emission Computed Tomography (SPECT) reconstruction is proposed and characterized. The algorithm models the object as piecewise constant subject to a blurring operation. To validate that the algorithm closely approximates the true object in the noiseless case, projection data were generated from an object assuming this model and using the system matrix. Monte Carlo simulations were performed to provide more realistic data of a phantom with varying smoothness across the field of view. Reconstructions were performed across a sweep of two primary design parameters. The results demonstrate that the algorithm recovers the object in a noiseless simulation case. While the algorithm assumes a specific blurring model, the results suggest that the algorithm may provide high reconstruction accuracy even when the object does not match the assumed blurring model. Generally, increased values of the blurring parameter and TV weighting parameters reduced noi...

  14. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Directory of Open Access Journals (Sweden)

    J. Mejia

    2013-11-01

    Full Text Available The single photon emission microscope (SPEM is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD. Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  15. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Reis, M.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Miranda, A.C.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Batista, I.R. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Barboza, M.R.F.; Shih, M.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Fu, G. [GE Global Research, Schenectady, NY (United States); Chen, C.T. [Department of Radiology, University of Chicago, Chicago, IL (United States); Meng, L.J. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana-Champaign, IL (United States); Bressan, R.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Amaro, E. Jr [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil)

    2013-11-06

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s{sup -1}·MBq{sup -1} were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging {sup 99m}Tc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using {sup 99m}Tc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  16. Influence of pure dephasing on emission spectra from single photon sources

    DEFF Research Database (Denmark)

    Næsby Rasmussen, Andreas; Skovgård, Troels Suhr; Kristensen, Philip Trøst

    2008-01-01

    We investigate the light-matter interaction of a quantum dot with the electromagnetic field in a lossy microcavity and calculate emission spectra for nonzero detuning and dephasing. It is found that dephasing shifts the intensity of the emission peaks for nonzero detuning. We investigate the char...

  17. Dual-Phase 99MTc-MIBI Parathyroid Imaging Reveals Synchronous Parathyroid Adenoma and Papillary Thyroid Carcinoma: A Case Report

    Directory of Open Access Journals (Sweden)

    Ming-Che Chang

    2008-10-01

    Full Text Available The possibility of a coincidental appearance of hyperparathyroidism and thyroid cancer is not often considered because of its low incidence. Here, we present a case of a 49-year-old woman with a parathyroid adenoma coexisting with two sites of papillary thyroid carcinoma. Dual-phase 99mTc-methoxyisobutylisonitrile (MIBI parathyroid imaging before the operation correctly visualized the site of the parathyroid adenoma. In addition, two papillary thyroid carcinomas showed faint uptake of 99mTc-MIBI on delayed image. Total thyroidectomy and parathyroidectomy of a solitary parathyroid adenoma were performed. The patient subsequently underwent radioiodine-131 ablation and was treated with T4 suppression. This case illustrates the need for clinical awareness of concomitant hyperparathyroidism and thyroid cancer. Dual-phase 99mTc-MIBI parathyroid imaging may be useful for detecting indolent thyroid cancer before it becomes a distinct disease.

  18. Single photon source characterization with a superconducting single photon detector

    CERN Document Server

    Hadfield, R H; Miller, A J; Mirin, R P; Nam, S W; Schwall, R E; Stevens, M J; Gruber, Steven S.; Hadfield, Robert H.; Miller, Aaron J.; Mirin, Richard P.; Nam, Sae Woo; Schwall, Robert E.; Stevens, Martin J.

    2005-01-01

    Superconducting single photon detectors (SSPD) based on nanopatterned niobium nitride wires offer single photon counting at fast rates, low jitter, and low dark counts, from visible wavelengths well into the infrared. We demonstrate the first use of an SSPD, packaged in a commercial cryocooler, for single photon source characterization. The source is an optically pumped, microcavity-coupled InGaAs quantum dot, emitting single photons on demand at 902 nm. The SSPD replaces the second silicon Avalanche Photodiode (APD) in a Hanbury-Brown Twiss interferometer measurement of the source second-order correlation function, g (2) (tau). The detection efficiency of the superconducting detector system is >2 % (coupling losses included). The SSPD system electronics jitter is 170 ps, versus 550 ps for the APD unit, allowing the source spontaneous emission lifetime to be measured with improved resolution.

  19. Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity

    CERN Document Server

    Kaupp, Hanno; Mader, Matthias; Schlederer, Benedikt; Benedikter, Julia; Haeusser, Philip; Chang, Huan-Cheng; Fedder, Helmut; Hänsch, Theodor W; Hunger, David

    2016-01-01

    Optical microcavities are a powerful tool to enhance spontaneous emission of individual quantum emitters. However, the broad emission spectra encountered in the solid state at room temperature limit the influence of a cavity, and call for ultra-small mode volume. We demonstrate Purcell-enhanced single photon emission from nitrogen-vacancy (NV) centers in nanodiamonds coupled to a tunable fiber-based microcavity with a mode volume down to $1.0\\,\\lambda^{3}$. We record cavity-enhanced fluorescence images and study several single emitters with one cavity. The Purcell effect is evidenced by enhanced fluorescence collection, as well as tunable fluorescence lifetime modification, and we infer an effective Purcell factor of up to 2.0. With numerical simulations, we furthermore show that a novel regime for light confinement can be achieved, where a Fabry-Perot mode is combined with additional mode confinement by the nanocrystal itself. In this regime, effective Purcell factors of up to 11 for NV centers and 63 for si...

  20. Noninvasive diagnosis of coronary artery stenosis in women with limited exercise capacity: comparison of dobutamine stress echocardiography and 99mTc sestamibi single-photon emission CT

    NARCIS (Netherlands)

    A. Elhendy (Abdou); J.J. Bax (Jeroen); P.R. Nierop; M.L. Geleijnse (Marcel); M.M. Ibrahim; J.R.T.C. Roelandt (Jos); R.T. van Domburg (Ron)

    1998-01-01

    textabstractOBJECTIVES: To compare the accuracy of dobutamine stress echocardiography (DSE) and simultaneous 99mTc sestamibi (MIBI) single-photon emission CT (SPECT) imaging for the diagnosis of coronary artery stenosis in women. PATIENTS: Seventy women with limited

  1. Value of I-123-subtraction and single-photon emission computed tomography in addition to planar Tc-99m-MIBI scintigraphy before parathyroid surgery

    NARCIS (Netherlands)

    Jorna, Francisca H.; Jager, Pieter L.; Que, Tjin H.; Lemstra, Clara; Plukker, John T. M.

    2007-01-01

    Purpose. To find out if single-photon emission computed tomography (SPECT) and I-123-subtraction can enhance the findings of Tc-99-methoxyisobutylisonitrile (MIBI) scintigraphy for the preoperative localization of parathyroid (PT) tumors. Methods. Among the 111 consecutive patients who underwent pre

  2. Influence of respiratory gating, image filtering, and animal positioning on high-resolution electrocardiography-gated murine cardiac single-photon emission computed tomography

    NARCIS (Netherlands)

    Wu, Chao; Vaissier, Pieter E. B.; Vastenhouw, Brendan; de Jong, Johan R.; Slart, Riemer H. J. A.; Beekman, Freek J.

    2015-01-01

    Cardiac parameters obtained from single-photon emission computed tomographic (SPECT) images can be affected by respiratory motion, image filtering, and animal positioning. We investigated the influence of these factors on ultra-high-resolution murine myocardial perfusion SPECT. Five mice were inject

  3. Assessment of neuroinflammation and microglial activation in Alzheimer's disease with radiolabelled PK11195 and single photon emission computed tomography - A Pilot Study

    NARCIS (Netherlands)

    Versijpt, JJ; Dumont, F; Van Laere, KJ; Decoo, D; Santens, P; Audenaert, K; Achten, E; Slegers, G; Dierckx, RA; Korf, J

    2003-01-01

    Objectives: Inflammation contributes to degeneration in Alzheimer's disease (AD), not simply as a secondary phenomenon, but primarily as a significant source of pathology. [I-123]iodo-PK11195 is a single photon emission computed tomography (SPECT) ligand for the peripheral benzodiazepine receptor, t

  4. Upper limit for the probability of single-photon emission following proton-induced double K-shell ionization of rubidium

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghazi, M.S.A.L.; Birchall, J.; McKee, J.S.C.

    1982-06-01

    The theoretical description of double ionization followed by the emission of a single photon is critically examined. Some numerical calculations based on existing models are carried out and the results obtained subjected to an experimental test in a suitably designed experiment. Some doubt is cast on the accuracy with which the existing theoretical models describe the process.

  5. In vivo measurement of haloperidol affinity to dopamine D2/D3 receptors by [123I]IBZM and single photon emission computed tomography

    DEFF Research Database (Denmark)

    Videbaek, C; Toska, K; Friberg, L

    2001-01-01

    This study examines the feasibility of a steady-state bolus-integration method with the dopamine D2/D3 receptor single photon emission computer tomography (SPECT) tracer, [123I]IBZM, for determination of in vivo affinity of haloperidol. The nonspecific binding of [123I]IBZM was examined in the rat...

  6. Benzodiazepine receptor equilibrium constants for flumazenil and midazolam determined in humans with the single photon emission computer tomography tracer [123I]iomazenil

    DEFF Research Database (Denmark)

    Videbaek, C; Friberg, L; Holm, S

    1993-01-01

    twice, once without receptor blockade and once with a constant degree of partial blockade of the benzodiazepine receptors by infusion of nonradioactive flumazenil (Lanexat) or midazolam (Dormicum). Single photon emission computer tomography and blood sampling were performed intermittently for 6 h after...

  7. Alterations of Regional Cerebral Blood Flow in Tinnitus Patients as Assessed Using Single-Photon Emission Computed Tomography.

    Directory of Open Access Journals (Sweden)

    Takashi Ueyama

    Full Text Available Tinnitus is the perception of phantom sound without an external auditory stimulus. Using neuroimaging techniques, such as positron emission tomography, electroencephalography, magnetoencephalography, and functional magnetic resonance imaging (fMRI, many studies have demonstrated that abnormal functions of the central nervous system are closely associated with tinnitus. In our previous research, we reported using resting-state fMRI that several brain regions, including the rectus gyrus, cingulate gyrus, thalamus, hippocampus, caudate, inferior temporal gyrus, cerebellar hemisphere, and medial superior frontal gyrus, were associated with tinnitus distress and loudness. To reconfirm these results and probe target regions for repetitive transcranial magnetic stimulation (rTMS, we investigated the regional cerebral blood flow (rCBF between younger tinnitus patients (<60 years old and the age-matched controls using single-photon emission computed tomography and easy Z-score imaging system. Compared with that of controls, the rCBF of tinnitus patients was significantly lower in the bilateral medial superior frontal gyri, left middle occipital gyrus and significantly higher in the bilateral cerebellar hemispheres and vermis, bilateral middle temporal gyri, right fusiform gyrus. No clear differences were observed between tinnitus patients with normal and impaired hearing. Regardless of the assessment modality, similar brain regions were identified as characteristic in tinnitus patients. These regions are potentially involved in the pathophysiology of chronic subjective tinnitus.

  8. Dynamic single photon emission computed tomography using N-isopropyl-p-(/sup 123/I)iodoamphetamine for cerebrovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Takashi; Kinoshita, Kazuo; Watanabe, Katsushi; Hoshi, Hiroaki; Jinnouchi, Seishi

    1988-03-01

    Continuous sequential single photon emission computed tomography (dynamic SPECT) with N-isopropyl-p-(/sup 123/I)iodoamphetamine (IMP) was perfomed in 17 patients with cerebrovascular diseases (three with transient ischemic attack, four with cerebral infarction, two with ruptured aneurysms, two with arteriovenous malformations (AVM), one with an unruptured giant aneurysm, and five with moyamoya disease). Dynamic SPECT scans were obtained with a circular-detector array emission CT instrument at a fixed level parallel to the orbitomeatal plane. The scans were taken over a 20-minute period, at 2-minute intervals, immediately after intravenous injection of IMP. Time courses of activity ratio of the affectednon-affected areas were calculated. Accumulation of IMP in ischemic areas was consistently suppressed to approximately 70 to 80% that in the non-affected areas. IMP accumulation in infarcted regions was less than 40 to 50% that in non-affected areas. In the regions of AVM and giant aneurysm, accumulation of IMP was rapid and relatively high, but its removal was prompt. Dynamic IMP SPECT appears useful in the assessment of cerebral perfusion and may have numerous applications in neurosurgery.

  9. Clinical applications of single photon emission tomography in neuromedicine. Part 1. Neuro-oncology, epilepsy, movement disorders, cerebrovascular disease; Klinische Anwendungen der Single-Photon-Emissionstomographie in der Neuromedizin. Teil 1. Neuroonkologie, Epilepsien, Basalganglienerkrankungen, zerebrovaskulaere Erkrankungen

    Energy Technology Data Exchange (ETDEWEB)

    Bartenstein, P.; Gruenwald, F.; Kuwert, T.; Tatsch, K.; Sabri, O.; Benkert, O.; Fahlbusch, R.; Gruender, G.; Herzholz, K.; Weiller, C. [Universitaetsklinikum Mainz (Germany). Klinik und Poliklinik fuer Nuklearmedizinn

    2000-11-01

    Single photon emission tomography is, because of its availability and the relatively low costs, the functional imaging modality currently most widely used for clinical applications in the brain. Beside the application of radiopharmaceuticals for the assessment of regional cerebral blood flow there is an increasing clinical use of more selective SPECT-radiopharmaceuticals, like amino acid analogs or receptor ligands. This article gives in its first part a critical review of the clinical applications of SPECT in neuro-oncology, epilepsy, basal ganglia disorders and cerebrovascular disease. (orig.) [German] Die Single-Photon-Emissionstomographie ist wegen ihrer allgemeinen Verfuegbarkeit und der relativen Kostenguenstigkeit weiterhin das funktionell bildgebende Verfahren mit der groessten klinischen Bedeutung fuer die Diagnostik von Erkrankungen des zentralen Nervensystems. Neben Radiopharmaka, die den regionalen zerebralen Blutfluss erfassen, werden zunehmend selektivere Pharmaka fuer klinische Fragestellungen eingesetzt, wie Aminosaeurederivate oder Rezeptorliganden. Die Arbeit vermittelt in ihrem ersten Teil eine kritisch wertende Uebersicht ueber die klinischen Anwendungsmoeglichkeiten von SPECT-Untersuchungen bei Fragestellungen aus der Neuroonkologie, der Epilepsiediagnostik, bei Basalganglienerkrankungen und zerebrovaskulaeren Erkrankungen. (orig.)

  10. Quantum interference and radiative coupling in two-atom single-photon emission

    Science.gov (United States)

    Kurizki, G.; Ben-Reuven, A.

    1985-10-01

    The recent experiment by Grangier, Aspect, and Vigue on interference in the emission from fragments of electronically photodissociated molecules is treated as a special case of cooperative fluorescence (CF) from products of various molecular processes. This treatment relates time-resolved features of the CF to characteristics (such as orbital symmetry) of the dissociating parent molecule (PM), suggests various PM state preparations (including formation of subradiant states), and discusses the persistence of CF in systems of nonidentical fragments. The diagnostic potentialities of such studies are emphasized.

  11. Degenerative dementia: nosological aspects and results of single photon emission computed tomography; Les demences degeneratives: aspects nosologiques et resultats de la tomographie d'emission monophotonique

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, B.; Habert, M.O. [Hopital Pitie-Salpetriere, 75 - Paris (France)

    1999-12-01

    Ten years ago, the diagnosis discussion of a dementia case for the old patient was limited to two pathologies: the Alzheimer illness and the Pick illness. During these last years, the frame of these primary degenerative dementia has fallen into pieces. The different diseases and the results got with single photon emission computed tomography are discussed. for example: fronto-temporal dementia, primary progressive aphasia, progressive apraxia, visio-spatial dysfunction, dementia at Lewy's bodies, or cortico-basal degeneration. (N.C.)

  12. Telecommunication Wavelength-Band Single-Photon Emission from Single Large InAs Quantum Dots Nucleated on Low-Density Seed Quantum Dots

    Science.gov (United States)

    Chen, Ze-Sheng; Ma, Ben; Shang, Xiang-Jun; He, Yu; Zhang, Li-Chun; Ni, Hai-Qiao; Wang, Jin-Liang; Niu, Zhi-Chuan

    2016-08-01

    Single-photon emission in the telecommunication wavelength band is realized with self-assembled strain-coupled bilayer InAs quantum dots (QDs) embedded in a planar microcavity on GaAs substrate. Low-density large QDs in the upper layer active for ~1.3 μm emission are fabricated by precisely controlling the indium deposition amount and applying a gradient indium flux in both QD layers. Time-resolved photoluminescence (PL) intensity suggested that the radiative lifetime of their exciton emission is 1.5~1.6 ns. The second-order correlation function of g 2(0) < 0.5 which demonstrates a pure single-photon emission.

  13. Telecommunication Wavelength-Band Single-Photon Emission from Single Large InAs Quantum Dots Nucleated on Low-Density Seed Quantum Dots.

    Science.gov (United States)

    Chen, Ze-Sheng; Ma, Ben; Shang, Xiang-Jun; He, Yu; Zhang, Li-Chun; Ni, Hai-Qiao; Wang, Jin-Liang; Niu, Zhi-Chuan

    2016-12-01

    Single-photon emission in the telecommunication wavelength band is realized with self-assembled strain-coupled bilayer InAs quantum dots (QDs) embedded in a planar microcavity on GaAs substrate. Low-density large QDs in the upper layer active for ~1.3 μm emission are fabricated by precisely controlling the indium deposition amount and applying a gradient indium flux in both QD layers. Time-resolved photoluminescence (PL) intensity suggested that the radiative lifetime of their exciton emission is 1.5~1.6 ns. The second-order correlation function of g (2)(0) < 0.5 which demonstrates a pure single-photon emission.

  14. Intracranial blood flow measured with single photon emission computer tomography (SPECT) during transient -6 degrees head-down tilt.

    Science.gov (United States)

    Satake, H; Konishi, T; Kawashima, T; Matsunami, K; Uno, T; Imai, S; Yamada, H; Hirakawa, C

    1994-02-01

    Regional cerebral blood flow (CBF) during a transient head-down tilt of -6 degrees (-6 degrees HDT) was measured with single photon emission computer tomography (SPECT). CBF was measured and averaged for both sides of the brain areas; e.g., the bilateral anterior cerebral artery (bACA) area, the middle cerebral artery (bMCA) area, the posterior cerebral artery (bPCA) area, bilateral basal ganglia, and the cerebellum. Among these areas, a significant increase in CBF was observed in the basal ganglia and the cerebellum during -6 degrees HDT compared to pre-HDT. When CBF was measured separately in the left or right brain area, these significances disappeared, although a trend of increase or decrease was still observable. A trend of increase was observed in the left anterior cerebral artery (IACA) area, the right middle cerebral artery (rMCA) area, the right posterior cerebral artery (rPCA) area, the left and right basal ganglia, and the cerebellum. In rACA, IMCA and IPCA areas, a slight decrease in CBF was observed. At the same time, cardiac parameters were measured. Heart rate (HR), stroke volume (SV) and cardiac output (CO) did not change significantly, although SV slightly increased and HR slightly decreased during -6 degrees HDT.

  15. Magnetic Resonance Spectroscopy and Single-Photon Emission Computed Tomography in the Evaluation of Cerebral Tumors: A Case Report

    Science.gov (United States)

    Siasios, Ioannis; Valotassiou, Varvara; Kapsalaki, Eftychia; Tsougos, Ioannis; Georgoulias, Panagiotis; Fotiadou, Aggeliki; Ioannou, Maria; Koukoulis, Georgios; Dimopoulos, Vassilios; Fountas, Kostas

    2017-01-01

    In their daily clinical practice, physicians have to confront diagnostic dilemmas which cannot be resolved by the application of only one imaging technique. In this case report, we present a 66-year-old woman who was admitted to our institution for the surgical resection of a recently diagnosed brain tumor. The patient had a history of epileptic seizures and was hospitalized in the past for anti-phospholipid syndrome related to a non-Hodgkin lymphoma in remission. Magnetic resonance imaging (MRI) examination revealed an enhancing right parasagittal lesion with significant edema suggestive of a high grade glioma. Advanced MRI techniques including proton magnetic resonance spectroscopy (1H-MRS) showed findings compatible of glioma. An additional examination was performed as part of a protocol that we are routinely performing in our institution for all brain tumors including not only the gold standard advanced MRI techniques but also single-photon emission computed tomography (SPECT) with technetium-99m (Tc99m). Brain SPECT indicated the presence of a meningioma which was verified by the histopathology of the resected specimen. In conclusion, a multimodality approach for the pre-surgical assessment of brain tumors has significant advantages not only for the diagnosis but also for the evaluation of intracranial tumors histology. PMID:27924180

  16. Primary lymphedema of the lower limb: The clinical utility of single photon emission computed tomography/CT

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Mayo; Baumeister, Ruedinger G. H.; Frick, Andreas; Wallmichrath, Jens; Bartenstein, Peter; Rominger, Axel [Ludwig-Maximilians-University of Munich, Muenchen (Germany)

    2015-02-15

    The aim of this prospective study was to determine whether the additional use of the single photon emission computed tomography/CT (SPECT/CT) technique improves the diagnostic value of planar lymphoscintigraphy in patients presenting with primary lymph edema of the lower limb. For a defined period of three years (April 2011-April 2014) a total of 34 consecutive patients (28 females; age range, 27-83 years) presenting with swelling of the leg(s) suspicious of (uni- or bilateral, proximal or distal) primary lymphedema were prospectively examined by planar lymphoscintigraphy (lower limbs, n = 67) and the tomographic SPECT/CT technique (anatomical sides, n = 65). In comparison to pathological planar scintigraphic findings, the addition of SPECT/CT provided relevant additional information regarding the presence of dermal backflow (86%), the anatomical extent of lymphatic disorders (64%), the presence or absence of lymph nodes (46%), and the visualization of lymph vessels (4%). As an adjunct to planar lymphoscintigraphy, SPECT/CT specifies the anatomical correlation of lymphatic disorders and thus improves assessment of the extent of pathology due to the particular advantages of tomographic separation of overlapping sources. The interpretation of scintigraphic data benefits not only in baseline diagnosis, but also in physiotherapeutical and microsurgical treatments of primary lymphedema.

  17. The clinical meaning of gastric-wall hyperactivity observed on sestamibi cardiac single-photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cote, C.; Dumont, M. [Centre Hospitalier Universitaire de Quebec, Dept. of Nuclear Medicine, Quebec, Quebec (Canada)]. E-mail: christian.cote@chuq.qc.ca

    2004-06-01

    To evaluate prospectively the incidence and clinical meaning, if any, of gastric-wall hyperactivity observed on sestamibi cardiac single-photon emission computed tomography (SPECT). This phenomenon is completely different from the well-known intraluminal gastric reflux of sestamibi. A group of 819 patients who underwent sestamibi cardiac SPECT was studied from January 2000 to October 2000. Gastric-wall activity was graded qualitatively. Only patients with gastric-wall activity near or equivalent to their heart activity were considered for subsequent analysis. The medical records of patient candidates were reviewed, and their family physicians were asked to respond to a questionnaire by telephone when further information was needed. We identified 13 patients with significant gastric-wall hyperactivity, which was more intense on rest images. Our review of the clinical data shows that all these patients were suffering from dyspepsia and were taking gastric medication. These 13 cases were assigned to 3 groups: gastroesophageal reflux, chronic functional dyspepsia and nonspecific gastritis. Significant gastric-wall hyperactivity is an infrequent observation on sestamibi cardiac SPECT. Our results indicate that the presence of significant gastric-wall hyperactivity is associated with dyspepsia. It is important to realize that this gastric-wall hyperactivity by its proximity to the inferior myocardial wall could in some circumstances lead to either false-negative or false-positive findings, representing a diagnostic problem. Although infrequent, this situation could be avoided by proper quality control, including a systematic review of the raw cine data before reading the images. (author)

  18. Dopamine transporter single-photon emission computerized tomography supports diagnosis of akinetic crisis of parkinsonism and of neuroleptic malignant syndrome.

    Science.gov (United States)

    Martino, G; Capasso, M; Nasuti, M; Bonanni, L; Onofrj, M; Thomas, A

    2015-04-01

    Akinetic crisis (AC) is akin to neuroleptic malignant syndrome (NMS) and is the most severe and possibly lethal complication of parkinsonism. Diagnosis is today based only on clinical assessments yet is often marred by concomitant precipitating factors. Our purpose is to evidence that AC and NMS can be reliably evidenced by FP/CIT single-photon emission computerized tomography (SPECT) performed during the crisis. Prospective cohort evaluation in 6 patients. In 5 patients, affected by Parkinson disease or Lewy body dementia, the crisis was categorized as AC. One was diagnosed as having NMS because of exposure to risperidone. In all FP/CIT, SPECT was performed in the acute phase. SPECT was repeated 3 to 6 months after the acute event in 5 patients. Visual assessments and semiquantitative evaluations of binding potentials (BPs) were used. To exclude the interference of emergency treatments, FP/CIT BP was also evaluated in 4 patients currently treated with apomorphine. During AC or NMS, BP values in caudate and putamen were reduced by 95% to 80%, to noise level with a nearly complete loss of striatum dopamine transporter-binding, corresponding to the "burst striatum" pattern. The follow-up re-evaluation in surviving patients showed a recovery of values to the range expected for Parkinsonisms of same disease duration. No binding effects of apomorphine were observed. By showing the outstanding binding reduction, presynaptic dopamine transporter ligand can provide instrumental evidence of AC in Parkinsonism and NMS.

  19. Evaluation of dysthymic disorder with technetium-99 m hexamethylpropylene amine oxime brain single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sarikaya, A.; Cermik, T.F. [Department of Nuclear Medicine, Trakya University, Faculty of Medicine, Edirne (Turkey); Karasin, E.; Abay, E. [Department of Psychiatry, Trakya University, Faculty of Medicine, Edirne (Turkey); Berkarda, S.

    1999-03-01

    Dysthymic disorder is a chronic disorder characterised by the presence of a depressed mood and is classified as a distinct category in DSM-IV, separately from major depression. Although brain imaging studies have been performed in major depressive disease, there have to date been no reports of such studies in dysthymic disorder. In this study 36 patients with dysthymic disorder were compared with 16 normal subjects using technetium-99m hexamethylpropylene amine oxime brain single-photon emission tomography. A relative blood flow ratio was calculated for each region of interest using the average tissue activity in the region divided by activity in the cerebellum. There were significant differences in the bilateral inferior frontal, bilateral parietal, right superior frontal and left posterior temporal regions in the patients with dysthymic disorder compared with the healthy controls. These findings support the hypothesis that the biological bases for dysthymic disorder and major depression are similar. Recognition of these regional abnormalities may have clinical utility in both the diagnosis and the treatment of dysthymic disorder. Further studies are needed to confirm our results and to assess the influence of treatment in patients with dysthymic disorder. (orig.) With 1 fig., 1 tab., 26 refs.

  20. Dual-isotope single-photon emission computed tomography for dopamine and serotonin transporters in normal and parkinsonian monkey brains

    Energy Technology Data Exchange (ETDEWEB)

    Li, I-H. [Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan (China); Huang, W.-S. [Department of Nuclear Medicine, Tri-Service General Hospital, Taipei, 114, Taiwan (China); Yeh, C.-B. [Department of Psychiatry, Tri-Service General Hospital, Taipei, 114, Taiwan (China); Liao, M.-H.; Chen, C.-C.; Shen, L.-H. [Division of Isotope Application, Institute of Nuclear Energy Research, Taoyaun, 325 Taiwan (China); Liu, J.-C. [Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan (China); Ma, K.-H. [Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan (China)], E-mail: kuohsing91@yahoo.com.tw

    2009-08-15

    Introduction: Parkinson's disease (PD) affects both dopaminergic and serotonergic systems. In this study, we simultaneously evaluated dopamine and serotonin transporters in primates using dual-isotope single-photon emission computed tomography (SPECT) imaging and compared the results with traditional single-isotope imaging. Methods: Four healthy and one 6-OHDA-induced PD monkeys were used for this study. SPECT was performed over 4 h after individual or simultaneous injection of [{sup 99m}Tc]TRODAT-1 (a dopamine transporter imaging agent) and [{sup 123}I]ADAM (a serotonin transporter imaging agent). Results: The results showed that the image quality and uptake ratios in different brain regions were comparable between single- and dual-isotope studies. The striatal [{sup 99m}Tc]TRODAT-1 uptake in the PD monkey was markedly lower than that in normal monkeys. The uptake of [{sup 123}I]ADAM in the midbrain of the PD monkey was comparable to that in the normal monkeys, but there were decreased uptakes in the thalamus and striatum of the PD monkey. Conclusions: Our results suggest that dual-isotope SPECT using [{sup 99m}Tc]TRODAT-1 and [{sup 123}I]ADAM can simultaneously evaluate changes in dopaminergic and serotonergic systems in a PD model.

  1. Effect of beta blockade on single photon emission computed tomographic (SPECT) thallium-201 images in patients with coronary disease

    Energy Technology Data Exchange (ETDEWEB)

    Narahara, K.A.; Thompson, C.J.; Hazen, J.F.; Brizendine, M.; Mena, I.

    1989-05-01

    We evaluated the effect of beta blockers on thallium-201 (Tl-201) single photon emission computed tomographic (SPECT) imaging in 12 patients with coronary disease using an automated computer algorithm. Maximal exercise heart rate and blood pressure were reduced and exercise time was increased with beta blockers. Estimated stress defect size decreased from 47 +/- 36.3 gm during placebo treatment to 32 +/- 27.1 gm during beta blocker therapy (-32%; p less than 0.01). The placebo treatment redistribution defect was estimated to be 28 +/- 29.8 gm. It fell to 15 +/- 23.3 gm with beta blockade (-46%; p less than 0.005). All patients had a stress Tl-201 defect during placebo treatment and eight had redistribution defects consistent with residual scar. During beta blocker therapy, 2 of 12 patients had normal stress-redistribution studies and only five patients had redistribution defects. Beta blockade can reduce exercise and redistribution Tl-201 SPECT defect size significantly while simultaneously increasing exercise time and reducing angina. Beta blockers may unmask or may eliminate evidence of redistribution. Tl-201 SPECT imaging may be useful in defining the reduction in ischemia produced by cardiac drugs.

  2. Intellectual function and radiological images in patients with amyotrophic lateral sclerosis. Special reference to single photon emission computed tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Hiroo; Kanda, Mikio; Fukui, Toshiya; Sugita, Koujiro [Showa Univ., Tokyo (Japan). School of Medicine

    1994-10-01

    To clarify cognitive decline in amyotrophic lateral sclerosis (ALS), we compared cognitive and motor signs with neuroradiological features, with special reference to single photon emission computed tomography (SPECT), in 23 patients with ALS. Of these 23 patients, five demented patients (ALS-D) showed a decrease in voluntary speech output, abnormal behavior or character change. SPECT images in these patients were specifically characterized by marked uptake reduction in the frontal lobes. ALS patients with normal mentality (ALS-N) showed either a normal pattern or non-specific patchy uptake reduction on SPECT, but never showed the diffuse frontal uptake reduction that was observed in ALS-D patients. None of the ALS-N patients showed cognitive decline or frontal uptake reduction during the follow-up period of up to 29 months. There was no relation in either ALS-D or ALS-N patients between the degree of tracer uptake reduction and clinical features of ALS including severity and duration of illness. Clinical and neuroradiological features in ALS-D patients were compatible with those of `frontal lobe dementia`. ALS-D patients may compose a distinct group because cognitive decline is unlikely to occur in ALS-N patients with a long clinical course. ALS-D patients may be differentiated from other non-demented ALS patients in the early clinical course by the characteristic diffuse frontal uptake reduction on SPECT. (author).

  3. Evaluation of myocardial infarction size with three-dimensional speckle tracking echocardiography: a comparison with single photon emission computed tomography.

    Science.gov (United States)

    Wang, Qiushuang; Zhang, Chunhong; Huang, Dangsheng; Zhang, Liwei; Yang, Feifei; An, Xiuzhi; Ouyang, Qiaohong; Zhang, Meiqing; Wang, Shuhua; Guo, Jiarui; Ji, Dongdong

    2015-12-01

    To assess whether global and regional myocardial strains from three-dimensional speckle tracking echocardiography (3D-STE) correlate with myocardial infarction size (MIS) detected by single photon emission computed tomography (SPECT). Fifty-seven patients with a history of ST-segment elevation myocardial infarction (MI) within 3-6 months were enrolled, alongside 24 healthy volunteers. Left ventricular (LV) global area strain, global longitudinal strain (GLS), global radial strain, global circumferential strain, left ventricular ejection fraction (LVEF) and wall motion score index (WMSI) were measured and compared with the corresponding SPECT-detected MISs. Patients were sub-grouped into massive MIS group (MIS ≥ 12%) and small MIS group (MIS Myocardial strains of all the LV segments were compared with the corresponding MIS. Global myocardial strain parameters, LVEF and WMSI of the patients were significantly different from the control group (all P myocardial strain parameters were found between the massive and small MIS groups (all P myocardial strain parameters were observed between segments with and without transmural MIs (P myocardial strain parameters evaluated LV global MIS, 3D GLS had the highest diagnostic value. It also preliminarily gauged the degree of ischemia and necrosis of regional myocardial segments.

  4. Evaluation of dilated cardiomyopathy by /sup 201/Tl myocardial single photon emission computed tomography. Morphological and quantitative analysis

    Energy Technology Data Exchange (ETDEWEB)

    Futagami, Yasuo; Makino, Katsutoshi; Ichikawa, Takehiko

    1984-08-01

    To estimate dilated cardiomyopathy (DCM)morphologically and quantitatively, /sup 201/Tl myocardial single photon emission computed tomography (SPECT) was performed in 14 DCM and 5 normal cases. Using a rotating dual-gamma camera system, resting SPECT data were collected for 6 minutes. Quantitative analysis of clinical cases was based on phantom studies. Marked spherical left ventricular (LV) dilatation (14/14), localized-diffuse low uptake or defect (12/14), and right ventricular visualization (6/14) were characteristic features in DCM. Differentiation of DCM from ischemic heart disease by SPECT was possible through the feature indicating disproportionately large LV cavity to defect size or degree. Quantitative analysis When DCM was compared with normal control (n-5), following 3 features were impressive: DCM was significantly higher in LV myocardial /sup 201/Tl uptake ratio and LV volume than normal control; DCM was significantly lower in LV myocardial /sup 201/Tl uptake ratio of unit volume (1 ml) than normal control; DCM was significantly lower in mean myocardial count/mean lung count.ratio than normal control.

  5. Technetium-99m sestamibi single-photon emission tomography detects subclinical myocardial perfusion abnormalities in patients with systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Schillaci, O. [Nuclear Medicine, University of l`Aquila (Italy); Lagana, B.; Gentile, R.; Tubani, L.; Baratta, L. [Department of Clinical Medicine, University ``La Sapienza``, Rome (Italy); Danieli, R.; Scopinaro, F. [Section of Nuclear Medicine, Department of Experimental Medicine and Pathology, University ``La Sapienza``, Rome (Italy)

    1999-07-01

    In patients with systemic lupus erythematosus, involvement of the cardiovascular system is the third leading cause of death. However, although autopsy studies have demonstrated a high incidence of abnormalities in both the myocardium and coronary vessels, clinical manifestations have been reported in only a small percentage of cases. The aim of this study was to evaluate myocardial perfusion in asymptomatic lupus patients using technetium-99m sestamibi single-photon emission tomography (SPET). Twenty-eight patients without overt cardiac involvement and risk factors were studied with {sup 99m}Tc-sestamibi SPET at rest and after dipyridamole infusion. Perfusion abnormalities were detected in 18 cases: six had persistent defects, three had reversible defects, seven had both persistent and reversible defects, and two showed rest defects which normalized on dipyridamole images (``reverse redistribution pattern``). Coronary angiography was performed in eight patients with positive {sup 99m}Tc-sestamibi SPET, and showed normal epicardial vessels in all the cases. These results indicate that {sup 99m}Tc-sestamibi SPET reveals a high prevalence (18 out of 28 patients in this study, i.e. 64%) of myocardial perfusion abnormalities in asymptomatic lupus patients, probably due to the primary immunological damage of this autoimmune disease. In conclusion, rest/dipyridamole {sup 99m}Tc-sestamibi SPET can be a useful non-invasive method to identify subclinical myocardial involvement in systemic lupus erythematosus, and patients potentially at risk of later cardiac events. (orig.) With 2 figs., 2 tabs., 21 refs.

  6. Abnormal response to mental stress in patients with Takotsubo cardiomyopathy detected by gated single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sciagra, Roberto; Genovese, Sabrina; Pupi, Alberto [University of Florence, Nuclear Medicine Unit, Department of Clinical Physiopathology, Florence (Italy); Parodi, Guido; Bellandi, Benedetta; Antoniucci, David [Careggi Hospital, Division of Cardiology, Florence (Italy); Del Pace, Stefano; Zampini, Linda; Gensini, Gian Franco [Careggi Hospital, Department of Heart and Vessels, Unit of General Cardiology, Florence (Italy)

    2010-04-15

    Persistent abnormalities are usually not detected in patients with Takotsubo cardiomyopathy (TTC). Since sympathetically mediated myocardial damage has been proposed as a causative mechanism of TTC, we explored whether mental stress could evoke abnormalities in these patients. One month after an acute event, 22 patients fulfilling all TTC diagnostic criteria and 11 controls underwent resting and mental stress gated single photon emission computed tomography (SPECT). Perfusion, wall motion, transient ischaemic dilation (TID) and left ventricular (LV) ejection fraction (EF) were evaluated. None of the controls showed stress-induced abnormalities. Mental stress evoked regional changes (perfusion defects and/or wall motion abnormality) in 16 TTC subjects and global abnormalities (LVEF fall >5% and/or TID >1.10) in 13; 3 had a completely negative response. TID, delta LVEF and delta wall motion score were significantly different in TTC vs control patients: 1.08 {+-} 0.20 vs 0.95 {+-} 0.11 (p < 0.05), -1.7 {+-} 6% vs 4 {+-} 5% (p < 0.02) and 2.5 (0, 4.25) vs 0 (0, 0) (p < 0.002), respectively. Mental stress may evoke regional and/or global abnormalities in most TTC patients. The abnormal response to mental stress supports the role of sympathetic stimulation in TTC. Mental stress could thus be helpful for TTC evaluation. (orig.)

  7. Room Temperature Single-Photon Emission from Individual Perovskite Quantum Dots.

    Science.gov (United States)

    Park, Young-Shin; Guo, Shaojun; Makarov, Nikolay S; Klimov, Victor I

    2015-10-27

    Lead-halide-based perovskites have been the subject of numerous recent studies largely motivated by their exceptional performance in solar cells. Electronic and optical properties of these materials have been commonly controlled by varying the composition (e.g., the halide component) and/or crystal structure. Use of nanostructured forms of perovskites can provide additional means for tailoring their functionalities via effects of quantum confinement and wave function engineering. Furthermore, it may enable applications that explicitly rely on the quantum nature of electronic excitations. Here, we demonstrate that CsPbX3 quantum dots (X = I, Br) can serve as room-temperature sources of quantum light, as indicated by strong photon antibunching detected in single-dot photoluminescence measurements. We explain this observation by the presence of fast nonradiative Auger recombination, which renders multiexciton states virtually nonemissive and limits the fraction of photon coincidence events to ∼6% on average. We analyze limitations of these quantum dots associated with irreversible photodegradation and fluctuations ("blinking") of the photoluminescence intensity. On the basis of emission intensity-lifetime correlations, we assign the "blinking" behavior to random charging/discharging of the quantum dot driven by photoassisted ionization. This study suggests that perovskite quantum dots hold significant promise for applications such as quantum emitters; however, to realize this goal, one must resolve the problems of photochemical stability and photocharging. These problems are largely similar to those of more traditional quantum dots and, hopefully, can be successfully resolved using advanced methodologies developed over the years in the field of colloidal nanostructures.

  8. Single-photon emission tomography of a computerised model of pulmonary embolism

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, J.S.; Chicco, P.; Bush, V.; Mackey, D.W.; Storey, G.; Magee, M.; Van der Wall, H. [Concord Hospital, Sydney (Australia). Dept. of Nuclear Medicine; Palmer, A.W. [St. George Hospital, Sydney (Australia). Dept. of Radiology; Bautovich, G. [Royal North Shore Hospital, Sydney (Australia). Dept. of Nuclear Medicine

    1999-11-01

    Planar pulmonary scintigraphy is currently the standard investigation for the diagnosis of pulmonary embolism. There are a number of problems with the technique, particularly in patients with an intermediate scan report under the PIOPED criteria. The technique is also under threat from the increasing use of spiral CT angiography. A putative improvement may be gained by use of tomography. The incremental value of tomography over planar studies was therefore evaluated in a virtual model of pulmonary scintigraphy. A model of the segmental anatomy of the lungs was developed from computed tomography, cadaveric human lungs and available anatomical texts. Counts were generated within the phantom by Monte Carlo simulation of photon emission. Eighteen single segmental lesions were interspersed with 47 subsegmental defects and displayed on an Icon reporting station. These were presented in the transaxial, sagittal and coronal planes to four experienced reporters to obtain assessment of defect size. Planar studies of the same defects were displayed to the same observers in the standard eight views with a normal study for comparison. With planar studies, the accuracy of estimation of defect size was 51% compared with 97% using tomographic studies. Defects in the medial basal segment of the right lower lobe were not identified in planar studies but were easily seen by all observers in the tomographic study. It is concluded that there is marked improvement in the accuracy of determination of defect size for tomographic studies over the planar equivalents. This is especially important in the lung bases, the most common reported site of pulmonary emboli. Tomography permits visualisation of defects in the medial basal segment of the right lung, which are not seen in planar studies. (orig.)

  9. Single-photon property characterization of 1.3 μm emissions from InAs/GaAs quantum dots using silicon avalanche photodiodes

    Science.gov (United States)

    Zhou, P. Y.; Dou, X. M.; Wu, X. F.; Ding, K.; Li, M. F.; Ni, H. Q.; Niu, Z. C.; Jiang, D. S.; Sun, B. Q.

    2014-01-01

    We developed a new approach to test the single-photon emissions of semiconductor quantum dots (QDs) in the optical communication band. A diamond-anvil cell pressure device was used for blue-shifting the 1.3 μm emissions of InAs/GaAs QDs to 0.9 μm for detection by silicon avalanche photodiodes. The obtained g(2)(0) values from the second-order autocorrelation function measurements of several QD emissions at 6.58 GPa were less than 0.3, indicating that this approach provides a convenient and efficient method of characterizing 1.3 μm single-photon source based on semiconductor materials. PMID:24407193

  10. Single-photon property characterization of 1.3 μm emissions from InAs/GaAs quantum dots using silicon avalanche photodiodes.

    Science.gov (United States)

    Zhou, P Y; Dou, X M; Wu, X F; Ding, K; Li, M F; Ni, H Q; Niu, Z C; Jiang, D S; Sun, B Q

    2014-01-10

    We developed a new approach to test the single-photon emissions of semiconductor quantum dots (QDs) in the optical communication band. A diamond-anvil cell pressure device was used for blue-shifting the 1.3 μm emissions of InAs/GaAs QDs to 0.9 μm for detection by silicon avalanche photodiodes. The obtained g((2))(0) values from the second-order autocorrelation function measurements of several QD emissions at 6.58 GPa were less than 0.3, indicating that this approach provides a convenient and efficient method of characterizing 1.3 μm single-photon source based on semiconductor materials.

  11. In vivo imaging of brain dopaminergic neurotransmission system in small animals with high-resolution single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Hideo; Kawashima, Hidekazu; Ogawa, Mikako; Kitamura, Youji; Mukai, Takahiro [Kyoto University, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Iida, Yasuhiko; Shimazu, Seiichiro; Yoneda, Fumiro [Fujimoto Pharmaceutical Corporation, Matsubara, Osaka (Japan)

    2003-01-01

    High-resolution single photon emission computed tomography (SPECT) provides a unique capability to image the biodistribution of radiolabeled molecules in small laboratory animals. Thus, we applied the high-resolution SPECT to in vivo imaging of the brain dopaminergic neurotransmission system in common marmosets using two radiolabeled ligands, [{sup 123}I]2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)tropane ({beta}-CIT) as a dopamine transporter(DAT) ligand and [{sup 123}I]iodobenzamide (IBZM) as a dopamine D{sub 2} receptor (D{sub 2}R) ligand. Specific images of the striatum, a region with a high density of dopaminergic synapses, were obtained at 240 min and 60 min after injection of [{sup 123}I]{beta}-CIT and [{sup 123}I]IBZM, respectively. Furthermore, a significantly low accumulation of [{sup 123}I]{beta}-CIT in the striatum was observed in MPTP-treated animals compared with results for a control group, and a similar accumulation in the control group was observed with the pretreatment of deprenyl in the MPTP-treated animals. However, the striatal accumulation of [{sup 123}I]IBZM showed no changes among the control, MPTP-treated, and deprenyl-MPTP-treated groups. These SPECT imaging results agreed well with those of DA concentration and motor behavior. Since MPTP destroys nigrostriatal dopamine nerves and produces irreversible neurodegeneration associated with Parkinsonian syndrome, SPECDT imaging data in this study demonstrated that deprenyl shows its neuroprotective effect on Parkinsonism by protecting against the destruction of presynaptic dopamine neutrons. (author)

  12. Property of electrocardiogram gated single photon emission tomography by sup 99m Tc-methoxy isobutyl isonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Kamon; Nishio, Yukari; Araki, Yasushi; Saito, Satoshi; Ozawa, Yukio; Yasugi, Tadao; Hagiwara, Kazuo; Kamata, Rikisaburo (Nihon Univ., Tokyo (Japan). School of Medicine)

    1992-06-01

    {sup 99m}Tc-methoxy isobutyl isonitrile (MIBI) is a new developed myocardial perfusion imaging agent. Because this compound has higher photon energy than thallium (Tl), electrocardiogram gated single photon emission tomography (SPECT): end-diastolic (ED) and end-systolic (ES) short axis (SA) images could be taken. To investigate property of gated MIBI SPECT, MIBI myocardial scintigraphy, Tl scintigraphy (TMS) and analysis of left ventricular wall motion were performed in 6 patients with myocardial infarction. Left ventricule was divided into 8 segments. Perfusion defect (PD) was scored: '0' (normal), '1' (hypo-perfusion), '2' (defect). Wall motion abnormality (WMA) was also scored: '0' (normo-kinesis), '1' (hypo-kinesis), '2' (a-, dys-kinesis). Severity and extent of PD and WMA were calculated. Severity of WMA was 3.0{+-}2.0 (M{+-}SD), severity of PD was 3.3{+-}1.7 in TMS, 3.7{+-}1.3 in no-gated MIBI, 5.0{+-}0.6 in ES-MIBI, 7.3{+-}2.0 in ED-MIBI. Extent of WMA was 2.3{+-}1.0. Extent of PD was 2.5{+-}1.3 in TMS, 3.0{+-}1.6 in no-gated MIBI, 3.5{+-}0.8 in ES-MIBI, 4.8{+-}1.0 in ED-MIBI. Compared with wall motion abnormality, severity and extent of PD in ED-MIBI was larger. From our data, it is concluded that perfusion defect in ED-MIBI was overestimated significantly. When we evaluate gated MIBI image, we must consider this property. (author).

  13. The Prognostic Role of Magnetic Resonance Imaging and Single-Photon Emission Computed Tomography in Viral Encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Misra, U.K.; Kalita, J.; Srivastav, A.; Pradhan, P.K. (Depts. of Neurology and Nuclear Medicine, Sanjay Gandhi Post Graduate Inst. of Medical Sciences, Lucknow (India))

    2008-09-15

    Background: There is a paucity of studies evaluating the prognostic role of magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) changes in viral encephalitis. Purpose: To study MRI and SPECT changes in patients with viral encephalitis, and to correlate these changes with clinical findings and outcome. Material and Methods: During 1997-2006, 31 encephalitis patients (aged 2-60 years; nine females, 22 males) underwent both MRI and SPECT studies. Their demographic and clinical data and 6-month outcome were recorded. For the diagnosis of encephalitis, polymerase chain reaction (PCR) and IgM enzyme-linked immunosorbent assay (ELISA) were carried out. Cranial MRI was done on a 1.5 T scanner, and 99mTc ethylene cysteine dimer (ECD) SPECT using a gamma camera. Outcome was defined at 6 months as complete, partial, or poor recovery. Results: 19 patients had Japanese encephalitis (JE), one had herpes simplex encephalitis (HSE), and 11 had nonspecific encephalitis. Movement disorders were present in 21, parkinsonian features in 19, and dystonia in 16 patients. MRI was abnormal in 20 patients, and revealed thalamic involvement in 17, basal ganglia in eight, brainstem in 11, and cortical in two. SPECT revealed hypoperfusion in 22 patients, which was cortical in 11, thalamic in 10, basal ganglia in six, and midbrain in one. Cortical involvement was more frequently found by SPECT and brainstem involvement by MRI. Outcome of encephalitis did not differ in the different groups of encephalitis and MRI changes. Conclusion: MRI and SPECT show a spectrum of findings in encephalitis, but these do not correlate with 6-month outcome

  14. Brain areas involved in acupuncture needling sensation of de qi: a single-photon emission computed tomography (SPECT) study.

    Science.gov (United States)

    Chen, Jia-Rong; Li, Gan-Long; Zhang, Gui-Feng; Huang, Yong; Wang, Shu-Xia; Lu, Na

    2012-12-01

    De qi is a sensory response elicited by acupuncture stimulation. According to traditional Chinese medicine (TCM), de qi is essential for clinical efficacy. However, the understanding of the neurobiological basis of de qi is still limited. To investigate the relationship between brain activation and de qi by taking a single-photon emission computed tomography (SPECT) scan while applying acupuncture at TE5. A total of 24 volunteers were randomly divided into 4 groups, and received verum or sham acupuncture at true acupuncture point TE5 or a nearby sham point according to grouping. All subjects then received a (99m)Tc-ethylcysteinate dimer (ECD) SPECT scan. All six subjects in the verum acupuncture at true acupuncture point group experienced de qi sensation; in contrast, all six subjects in the sham acupuncture at the sham point group responded with nothing other than non-sensation. Compared to the scan results from subjects who experienced non-sensation, SPECT scans from subjects with de qi sensation demonstrated significant activated points mainly located in brodmann areas 6, 8, 19, 21, 28, 33, 35, 37, 47, the parahippocampal gyrus, lentiform nucleus, claustrum and red nucleus; deactivated points were seen in brodmann areas 9 and 25. Verum acupuncture at true acupuncture points is more likely to elicit de qi sensation. De qi sensations mainly resulted in brain area activations, but not deactivations. These brain areas are related to the curative effect of Te5. The acupuncture needle sensations of de qi and sharp pain are associated with different patterns of activations and deactivations in the brain.

  15. Measurement of acute Q-wave myocardial infarct size with single photon emission computed tomography imaging of indium-111 antimyosin

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, M.L.; Seldin, D.W.; Wall, R.M.; Johnson, L.L.

    1989-04-01

    Myocardial infarct size was measured by single photon emission computed tomography (SPECT) following injection of indium-111 antimyosin in 27 patients (18 male and 9 female; mean age 57.4 +/- 10.5 years, range 37 to 75) who had acute transmural myocardial infarction (MI). These 27 patients represent 27 of 35 (77%) consecutive patients with acute Q-wave infarctions who were injected with indium-111 antimyosin. In the remaining 8 patients either tracer uptake was too faint or the scans were technically inadequate to permit infarct sizing from SPECT reconstructions. In the 27 patients studied, infarct location by electrocardiogram was anterior in 15 and inferoposterior in 12. Nine patients had a history of prior infarction. Each patient received 2 mCi of indium-111 antimyosin followed by SPECT imaging 48 hours later. Infarct mass was determined from coronal slices using a threshold value obtained from a human torso/cardiac phantom. Infarct size ranged from 11 to 87 g mean (48.5 +/- 24). Anterior infarcts were significantly (p less than 0.01) larger (60 +/- 20 g) than inferoposterior infarcts (34 +/- 21 g). For patients without prior MI, there were significant inverse correlations between infarct size and ejection fraction (r = 0.71, p less than 0.01) and wall motion score (r = 0.58, p less than 0.01) obtained from predischarge gated blood pool scans. Peak creatine kinase-MB correlated significantly with infarct size for patients without either reperfusion or right ventricular infarction (r = 0.66). Seven patients without prior infarcts had additional simultaneous indium-111/thallium-201 SPECT studies using dual energy windows.

  16. Brain single-photon emission tomography using technetium-99m bicisate (ECD) in a case of complex partial seizure

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, C. [Dept. of Nuclear Medicine, Univ. of Bonn (Germany); Gruenwald, F. [Dept. of Nuclear Medicine, Univ. of Bonn (Germany); Pavics, L. [Dept. of Nuclear Medicine, Univ. of Szeged (Hungary); Hufnagel, A. [Dept. of Epileptology, Univ. of Bonn (Germany); Stawovy, B. [Dept. of Epileptology, Univ. of Bonn (Germany); Reichmann, K. [Dept. of Nuclear Medicine, Univ. of Bonn (Germany); Elger, C.E. [Dept. of Epileptology, Univ. of Bonn (Germany); Biersack, H.J. [Dept. of Nuclear Medicine, Univ. of Bonn (Germany)

    1994-11-01

    The clinical application of technetium-99m bicisate (ethyl cysteinate dimer, ECD) for ictal and interictal studies of regional cerebral blood flow (rCBF) in a patient suffering from medically intractable simple and complex partial seizures is reported. The interictal study was performed 60 min p.i. and the ictal studies were performed at 60 min p.i. using an annular crystal single-photon emission tomography (SPET) system dedicated for high-resolution brain SPET imaging. Visual evaluation of the studies was carried out, as well as semiquantitative measurement of regional tracer uptake. Magnetic resonance imaging (MRI) scans revealed atrophy of almost the complete left frontal lobe and the ventral parts of the left temporal lobe, including in part the temporomesial structures. The left parietal and occipital structures and the right hemisphere were normal. The interictal study showed a large perfusion defect involving the whole left frontal lobe as well as the left temporal lobe with remaining small areas of normal cortical tracer uptake. The ictal studies detected circumscribed hyperperfusion within the left mesial temporal lobe (ventral part of the hippocampus). Additionally an increase in perfusion could be seen within the entire remaining left temporal lobe. Semiquantitative evaluation of tracer uptake comparing both studies detected markedly increased uptake within the focus compared to the remaining left temporal lobe. On this basis the newly available tracer for studies of rCBF, {sup 99m}Tc-bicisate, seems to be of value for the detection of epileptogenic foci. Additionally, the value of ictal rCBF studies in the presurgical evaluation of those patients presenting severe morphological alterations on MRI is clearly underlined by this case. (orig.)

  17. Regional cerebral blood flow in acute stage ischemic cerebrovascular disease by xenon-133 inhalation and single photon emission computerized tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kurokawa, Hiroyuki (Akita Univ. (Japan). School of Medicine)

    1989-03-01

    During the period from February 1984 through June 1985, single photon emission computerized tomography (SPECT) with xenon-133 inhalation method has been performed for the measurement of regional cerebral blood flow (rCBF) during the first 48 hours of onset of cerebral infarction (n=71) and transient ischemic attack (n=21). X-ray CT (CT) and carotid arteriography were concurrently performed in all the patients. In repeated studies performed for 15 normal volunteers, rCBF measurement by SPECT was found reproducible. Mean values of rCBF for the right and left cerebral hemispheres were 60.3{plus minus}6.52 and 61.8{plus minus}6.91 ml/100 g/min, respectively. For cerebral infarction, ischemic foci corresponding to clinical symptoms were detected more frequently on SPECT than on CT (93% vs 63%). In all of the evaluable 35 patients with cerebral infarction, rCBF within the first 8 hours of onset was decreased: 31.0 ml/100 g/min for the internal carotid artery (ICA) occlusion and 36.0 ml/100 g/min for the middle cerebral artery (MCA) occlusion. Crossed cerebellar diaschisis was observed in 50% (9/18) for ICA occlusion and 37% (14/38) for MCA occlusion. For transient ischemic attack, there was no significant difference in the detection of ischemic foci between SPECT and CT (38% vs 43%). In detecting small foci especially in the deep regions such as the basal ganglia, SPECT was inferior to CT. Mean rCBF for transient ischemic attack tended to be lower than the normal rCBF (50.7 ml/100 g/min for the right cerebral hemisphere and 50.6 ml/100 g/min for the left cerebral hemisphere). SPECT may aid in predicting prognosis and chosing treatment strategy, as well as in determining cerebral hemodynamics. (N.K.).

  18. Beneficial effect of coronary artery bypass grafting as assessed by quantitative gated single-photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hida, Satoshi; Chikamori, Taishiro; Hirayama, Tetsuzo; Usui, Yasuhiro; Yanagisawa, Hidefumi; Morishima, Takayuki; Ishimaru, Shin; Yamashina, Akira [Tokyo Medical Coll. (Japan)

    2003-06-01

    The development of quantitative gated single-photon emission computed tomography (SPECT) has enabled the assessment of left ventricular perfusion, function and wall thickness in a single examination. Accordingly, the present study used gated SPECT to assess the benefit of coronary artery bypass grafting (CABG) in patients with coronary artery disease; 47 of those patients were evaluated before and 5 months after CABG. As a result of coronary revascularization, a significant improvement was observed in global ejection fraction (50{+-}12{yields}53{+-}11%; p<0.05). In 107 revascularized territories, the average regional reversible defect score (0.8{+-}0.5{yields}0.2{+-}0.3; p<0.0001), average regional perfusion score at rest (0.6{+-}0.6{yields}0.3{+-}0.4; p<0.0001), average regional wall motion score (0.9{+-}0.7{yields}0.7{+-}0.5; p<0.05), and end-diastolic wall thickness (8.1{+-}1.3{yields}8.6{+-}1.5 mm; p<0.0005) all improved significantly. Even in 34 non-revascularized territories, the average regional reversible defect score (0.5{+-}0.7{yields}0.2{+-}0.5; p<0.03), average regional wall motion score (0.8{+-}1.1{yields}0.5{+-}1.0; p<0.03) and end-diastolic wall thickness (8.0{+-}1.4{yields}9.1{+-}2.0 mm; p<0.03) all improved significantly. These results indicate that improvement in myocardial ischemia, hibernation and left ventricular function with CABG can be assessed in detail with gated SPECT. (author)

  19. Scintimammography and single-photon emission computed tomography for postoperative image guidance for radiation treatment planning in breast cancer patients.

    Science.gov (United States)

    Piperkova, E; Chavdarova, L; Garanina, Z; Gocheva, L; Parvanova, V; Tzonevska, A; Dimitrova, M

    2011-01-01

    To evaluate post-surgical tumor-metabolic regions outside of the computed tomography (CT)-defined volume for radiation therapy (RT) planning using functional imaging of scintimammography (SMG) ± single photon emission computerized tomography (SPECT) in breast cancer (BC) patients. 62 operated high-risk BC females, mean age 50.45 years, underwent SMG±SPECT before RT planning. Twenty-one and twelve patients with stage I and IIa respectively had lumpectomy (LT) with axillary lymph node dissection (ALND), and modified radical mastectomy (Patay) + ALND was realized in 29 stage IIb-III patients. All SMG images, positive for viable tumor tissue (VTT) or metastatically involved lymph nodes (LNs) were verified cytologically/ histologically. Three early planar and delayed images were acquired after i.v. administration of 550-740 MBq 99mTc- MIBI or 99mTc-TF. Uptake values (UV) > 1.65 revealed VTT. Data in 49 (79%) of 62 patients were characterized as true-negative (TN; UVVTT in scars, 1 newly defined BC in the contralateral breast and 18 regional LN metastases (6 axillary, 6 parasternal, 1 sub- and 5 supraclavicular). All 22 TP VTT lesions were imaged by scintigraphy using different tumor-seeking radiopharmaceuticals: 99mTc-MIBI - 17 (77%) and 99mTc- TF - 5 (23%) of the TP lesions. One false-positive (FP) (inflammation: UV>1.65) and one false-negative (FN) (UVVTT, LN metastases or altered biological activity in the scars after BC surgery and could modify the irradiated volume, optimizing the therapeutic effect and minimizing RT side effects.

  20. 99mTc-methylene diphosphonate single-photon emission computed tomography/computed tomography improves the diagnostic accuracy of osteoid osteoma

    Science.gov (United States)

    Squier, Samuel Brian; Lewis, Jacob Ian; Accurso, Joseph Matthew; Jain, Manoj Kumar

    2016-01-01

    We present a case of a 17-year-old football player who had previously received multiple facet joint injections for presumed secondary osteoarthritis. 99mTc-methylene diphosphonate single-photon emission computed tomography/computed tomography imaging of the cervical spine demonstrated focal increased radiopharmaceutical activity in the right C2 lamina, which was associated with an osteolytic lesion with a central irregular sclerotic nidus. Surgical pathology confirmed an osteoid osteoma. PMID:27833319

  1. Single-photon source characterization with infrared-sensitive superconducting single-photon detectors

    CERN Document Server

    Hadfield, R H; Nam, S W; Stevens, M J; Hadfield, Robert H.; Mirin, Richard P.; Nam, Sae Woo; Stevens, Martin J.

    2006-01-01

    Single-photon sources and detectors are key enabling technologies in quantum information processing. Nanowire-based superconducting single-photon detectors (SSPDs) offer single-photon detection from the visible well into the infrared with low dark counts, low jitter and short dead times. We report on the high fidelity characterization (via antibunching and spontaneous emission lifetime measurements) of a cavity-coupled single-photon source at 902 nm using a pair of SSPDs. The twin SSPD scheme reported here is well-suited to the characterization of single-photon sources at telecom wavelengths (1310 nm, 1550 nm).

  2. CdSe quantum dot in vertical ZnSe nanowire and photonic wire for efficient single-photon emission

    DEFF Research Database (Denmark)

    Cremel, Thibault; Bellet-Amalric, Edith; Cagnon, Laurent;

    as a single photon source. We have grown vertically oriented ZnSe NWs (with typical diameter of 10 nm) by molecular beam epitaxy on a ZnSe(111)B buffer layer. The growth of a ZnMgSe passivating shell increases the (otherwise weak) ZnSe near-band-edge luminescence by two orders of magnitude. This has allowed...

  3. All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of a metamorphic InAs Quantum Dot

    Science.gov (United States)

    Muñoz-Matutano, G.; Barrera, D.; Fernández-Pousa, C. R.; Chulia-Jordan, R.; Seravalli, L.; Trevisi, G.; Frigeri, P.; Sales, S.; Martínez-Pastor, J.

    2016-06-01

    New optical fiber based spectroscopic tools open the possibility to develop more robust and efficient characterization experiments. Spectral filtering and light reflection have been used to produce compact and versatile fiber based optical cavities and sensors. Moreover, these technologies would be also suitable to study N-photon correlations, where high collection efficiency and frequency tunability is desirable. We demonstrated single photon emission of a single quantum dot emitting at 1300 nm, using a Fiber Bragg Grating for wavelength filtering and InGaAs Avalanche Photodiodes operated in Geiger mode for single photon detection. As we do not observe any significant fine structure splitting for the neutral exciton transition within our spectral resolution (46 μeV), metamorphic QD single photon emission studied with our all-fiber Hanbury Brown & Twiss interferometer could lead to a more efficient analysis of entangled photon sources at telecom wavelength. This all-optical fiber scheme opens the door to new first and second order interferometers to study photon indistinguishability, entangled photon and photon cross correlation in the more interesting telecom wavelengths.

  4. All-Optical Fiber Hanbury Brown &Twiss Interferometer to study 1300 nm single photon emission of a metamorphic InAs Quantum Dot.

    Science.gov (United States)

    Muñoz-Matutano, G; Barrera, D; Fernández-Pousa, C R; Chulia-Jordan, R; Seravalli, L; Trevisi, G; Frigeri, P; Sales, S; Martínez-Pastor, J

    2016-06-03

    New optical fiber based spectroscopic tools open the possibility to develop more robust and efficient characterization experiments. Spectral filtering and light reflection have been used to produce compact and versatile fiber based optical cavities and sensors. Moreover, these technologies would be also suitable to study N-photon correlations, where high collection efficiency and frequency tunability is desirable. We demonstrated single photon emission of a single quantum dot emitting at 1300 nm, using a Fiber Bragg Grating for wavelength filtering and InGaAs Avalanche Photodiodes operated in Geiger mode for single photon detection. As we do not observe any significant fine structure splitting for the neutral exciton transition within our spectral resolution (46 μeV), metamorphic QD single photon emission studied with our all-fiber Hanbury Brown &Twiss interferometer could lead to a more efficient analysis of entangled photon sources at telecom wavelength. This all-optical fiber scheme opens the door to new first and second order interferometers to study photon indistinguishability, entangled photon and photon cross correlation in the more interesting telecom wavelengths.

  5. The value of quantitative gallium-67 single-photon emission tomography in the clinical management of malignant external otitis

    Energy Technology Data Exchange (ETDEWEB)

    Stokkel, M.P.M.; Eck-Smit, B.L.F. van [Department of Nuclear Medicine and Diagnostic Radiology, Leiden University Hospital (Netherlands); Takes, R.P.; Baatenburg de Jong, R.J. [Department of Otorhinolaryngology and Head and Neck Surgery, Leiden University Hospital (Netherlands)

    1997-11-01

    The objective of this study was to establish whether quantitative gallium-67 single-photon emission tomography (SPET) represents an accurate method for the assessment of infection and, moreover, for the monitoring of therapeutic effect. Eight patients (five males, three females) with the clinical diagnosis of MEO were studied. In three patients antibiotic treatment was prolonged for several weeks because visual analysis of gallium scintigraphy still showed slightly increased uptake in the affected area on the first follow-up scan. In one patient, it was decided to stop antibiotic treatment despite a slight increase in uptake on the second follow-up scan. Lesion to non-lesion (L/NL) ratios obtained from {sup 67}Ga SPET images at initial diagnosis and during follow-up were assessed in correlation with clinical and biochemical data and with the results of CT scans. In addition to a raised erythrocyte sedimentation rate (ESR), all patients showed increased uptake on the affected side, with L/NL ratios ranging from 1.4 to 3.6 at the time of diagnosis. CT scans failed to demonstrate abnormalities in four patients. Including four scans demonstrating slightly increased uptake in the affected area, L/NL ratios after 6-8 weeks of antibiotic treatment were 1.0{+-}0.1. Despite a persistently elevated ESR in the majority of patients, none of them demonstrated local recurrence or complications during follow-up. In all patients, leucocyte count was within the normal range throughout the course. No relation was found between the slightly increased uptake on the follow-up scans and surgical treatment. It is concluded that in addition to the visual analysis of {sup 67}Ga SPET imaging, L/NL ratios should be calculated for a more accurate assessment of disease activity in MEO. Despite visually slightly increased uptake, L/NL ratios of 1.0{+-}0.1 during follow-up are highly indicative of complete recovery, regardless of ESR values or leucocytosis. CT scans are of little value for

  6. [A comparison of ventilation/perfusion single photon emission CT and CT pulmonary angiography for diagnosis of pulmonary embolism].

    Science.gov (United States)

    Meng, Jing-jing; Zhang, Li-jun; Wang, Qian; Fang, Wei; Dai, Hao-jie; Yan, Jue; Wang, Tie; Yao, Zhi-ming; He, Jia; Li, Mei; Mi, Hong-zhi; Jiao, Jian; Zheng, Yu-min

    2013-03-01

    To assess the diagnostic accuracy of ventilation/perfusion (V/Q) single photon emission CT (SPECT) as compared to computed tomographic pulmonary angiography (CTPA) for pulmonary embolism (PE). In this prospective multicenter study, 111 patients in whom acute or sub-acute PE was clinically confirmed or suspected were enrolled. The patients underwent one-day method V/Q lung scan (including SPECT and planar imaging) within 3 days before and after completion of CTPA. The European Association of Nuclear Medicine (EANM) guidelines for ventilation/perfusion scintigraphy (2009) reference was used as the evaluation criteria of V/Q SPECT imaging. The refined modified prospective investigation of pulmonary embolism diagnosis (RM-PIOPED) criteria was used for evaluation of planar imaging. According to the direct and indirect signs of PE, the imaging of CTPA was evaluated. All patients were followed for at least 6 months. A diagnosis was finally made by consensus of respiratory physicians, radiologists and nuclear medicine physicians based on the clinical data, laboratory tests, imaging features and follow-up results. The difference among diagnostic methods was evaluated for significance using chi-square test. The receiver operator characteristic (ROC) curve was drawn according to the results of the 3 diagnostic tests. The area under ROC curve (AUC) was calculated and compared. P < 0.05 was considered statistically significant. Among the 111 patients, PE was confirmed in 80, and excluded in 31. The diagnostic sensitivity/specificity/accuracy of V/Q SPECT, planar imaging, and CTPA were 85.9%/93.5%/88.1%, 75.7%/92.9%/81.4%, and 85.5%/90.0%/86.8%, respectively. By ROC curve analysis, the AUC values of V/Q SPECT, planar imaging and CTPA were 0.898, 0.838, and 0.877, respectively; with 95% confidence intervals [CI] 0.831 to 0.966, 0.759 to 0.917, and 0.801 to 0.954, respectively. The area of the fitted smooth ROC curve was statistically significant (P < 0.05) as compared with the

  7. Single photon emission computer tomography of dopamine transporters in monkeys and humans with 99mTc-TRODAT-1

    Institute of Scientific and Technical Information of China (English)

    胡平; 陈玲; 张海琴; 黎锦如; 梁宏

    2004-01-01

    Background The diagnosis of Parkinson's disease is presently based on non-specific symptoms. However, radionuclide dopamine transporters imaging can provide specific diagnostic tool for Parkinson's disease. This study was designed to investigate the effects of imaging of dopamine transporters with 99mTc-TRODAT-1 in early diagnosis or differential diagnosis of Parkinson's disease.Methods Nine normal monkeys were used to establish N-methyl-4-phenyl-1, 2, 3, 6-tetra-hydropyridine (MPTP) hemi-Parkinsonian animal models, and they were subjected to imaging. Twenty-nine patients with Parkinson's disease, 12 age-matched healthy volunteers, and 18 age-matched patients with Parkinson's syndrome were investigated. Single photon emission computer tomography (SPECT) was performed 3 hours after intravenous injection of 740 MBq 99mTc-TRODAT-1. Striatum specific uptake of 99mTc-TRODAT-1 was calculated according to the ratio of striatum (ST) to cerebellum (CB)in dopamine transporters uptake.Results In normal monkeys, bilateral ratio of ST/CB was 2.34±0.41. After the injection of MPTP, uptake rate of 99mTc-TRODAT-1 at damaged region was much lower than that at the contralateral region, resulting in a significant difference in the ratio of ST/CB (right: ST/CB=1.73±0.35; left: ST/CB=1.90±0.30), especially in hemi-Parkinsonian model monkeys (right: ST/CB=1.29±0.17; left: ST/CB=1.80±0.33). The ratios of ST/CB were 1.57±0.17 and 1.61±0.14 for the right and left respectively in the healthy volunteers, 1.04±0.29 and 1.06±0.30 in the age-matched patients with Parkinson's disease, and 1.56±0.17 and 1.59±0.18 in the age-matched patients with Parkinson's disease syndrome. A significant difference was noted between group of Parkinson's disease, normal controls and Parkinson's disease syndrome. Conclusion The results suggest that 99mTc-TRODAT-1 dopamine transporters SPECT has clinical application value in early diagnosis or differential diagnosis of Parkinson's disease.

  8. A simple method for the quantification of benzodiazepine receptors using iodine-123 iomazenil and single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroshi [Dept. of Nuclear Medicine and Radiology, Div. of Brain Sciences, Inst. of Development, Aging and Cancer, Tohoku Univ. Sendai (Japan); Goto, Ryoui [Dept. of Nuclear Medicine and Radiology, Div. of Brain Sciences, Inst. of Development, Aging and Cancer, Tohoku Univ. Sendai (Japan); Koyama, Masamichi [Dept. of Nuclear Medicine and Radiology, Div. of Brain Sciences, Inst. of Development, Aging and Cancer, Tohoku Univ. Sendai (Japan); Kawashima, Ryuta [Dept. of Nuclear Medicine and Radiology, Div. of Brain Sciences, Inst. of Development, Aging and Cancer, Tohoku Univ. Sendai (Japan); Ono, Shuichi [Dept. of Nuclear Medicine and Radiology, Div. of Brain Sciences, Inst. of Development, Aging and Cancer, Tohoku Univ. Sendai (Japan); Sato, Kazunori [Dept. of Nuclear Medicine and Radiology, Div. of Brain Sciences, Inst. of Development, Aging and Cancer, Tohoku Univ. Sendai (Japan); Fukuda, Hiroshi [Dept. of Nuclear Medicine and Radiology, Div. of Brain Sciences, Inst. of Development, Aging and Cancer, Tohoku Univ. Sendai (Japan)

    1996-07-01

    Iodine-123 iomazenil (Iomazenil) is a ligand for central type benzodiazepine receptors that is suitable for single-photon emission tomography (SPET). The purpose of this study was to develop a simple method for the quantification of its binding potential (BP). The method is based on a two-compartment model (K{sub 1}, influx rate constant; k{sub 2}`, efflux rate constant; V{sub T}`(=K{sub 1}/k{sub 2}`), the total distribution volumes relative to the total arterial tracer concentration), and requires two SPET scans and one blood sampling. For a given input function, the radioactivity ratio of the early to delayed scans can be considered to tabulate as a function of k{sub 2}`, and a table lookup procedure provides the corresponding k{sub 2}` value, from which K{sub 1} and V{sub t}` values are then calculated. The arterial input function is obtained by calibration of the standard input function by the single blood sampling. SPET studies were performed on 14 patients with cerebrovascular diseases, dementia or brain tumours (mean age {+-}SD, 56.0{+-}12.2). None of the patients had any heart, renal or liver disease. A dynamic SPET scan was performed following intravenous bolus injection of Iomazenil. A static SPET scan was performed at 180 min after injection. Frequent blood sampling from the brachial artery was performed on all subjects for determination of the arterial input function. Two-compartment model analysis was validated for calculation of the V{sub T}` value of Iomazenil. Good correlations were observed between V{sub T}` values calculated by three-compartment model analysis and those calculated by the present method, in which the scan time combinations (early scan/delayed scan) used were 15/180 min, 30/180 min or 45/180 min (all combinations: r=0.92), supporting the validity of this method. The present method is simple and applicable for clinical use. (orig.)

  9. Protection of lung function by introducing single photon emission computed tomography lung perfusion image into radiotherapy plan of lung cancer

    Institute of Scientific and Technical Information of China (English)

    YIN Yong; CHEN Jin-hu; LI Bao-sheng; LIU Tong-hai; LU jie; BAI Tong; DONG Xiao-ling; YU Jin-ming

    2009-01-01

    Background The lung functional status could be displayed on lung perfusion images. With the images, the radiotherapy plans of lung cancer could be guided to more optimized. This study aimed to assess quantitatively the impact of incorporating functional lung imaging into 3-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiation therapy (IMRT) planning for non-small cell lung cancer (NSCLC).Methods Ten patients with NSCLC who had undergone radiotherapy were included in this study. Before radiotherapy,each patient underwent CT simulation and lung perfusion imaging with single photon emission computed tomography (SPECT). The SPECT images were registered with simulation planning CT and used to contour functional lung (lung-F) and non-functional lung (lung-NF). Two 3DCRT plans and two IMRT plans were designed and compared in each patient:two anatomic plans using simulation CT alone and two functional plans using SPECT-CT in addition to the simulation CT.Dosimetric parameters of the four types of plans were compared in terms of tumor coverage and avoidance of normal tissues. Total radiation dose was set at 66 Gy (2 Gy×33 fractions).Results In incorporating perfusion information in 3DCRT and IMRT planning, the reductions on average in the mean doses to the functional lung in the functional plan were 168 cGy and 89 cGy, respectively, compared with those in the anatomic plans. The median reductions in the percentage of volume irradiated with >5 Gy, >10 Gy, >20 Gy, >30 Gy and >40 Gy for functional lung in the functional plans were 6.50%, 10.21%, 14.02%, 22.30% and 23.46% in 3DCRT planning,respectively, and 3.05%, 15.52%, 14.16%, 4.87%, and 3.33% in IMRT planning, respectively. No greater degree of sparing of the functional lung was achieved in functional IMRT than in 3DCRT.Conclusion Function-guided 3DCRT and IMRT plannings both appear to be effective in preserving functional lung in NSCLC patients.

  10. Nonclassical emission from single colloidal nanocrystals in a microcavity: a route towards room temperature single photon sources

    Energy Technology Data Exchange (ETDEWEB)

    Qualtieri, Antonio; Morello, Giovanni; Todaro, Maria T; Stomeo, Tiziana; Martiradonna, Luigi; De Giorgi, Milena; Cingolani, Roberto; De Vittorio, Massimo [National Nanotechnology Laboratory (NNL) of CNR-INFM, Distretto Tecnologico ISUFI, Universita del Salento, via per Arnesano, 73100 Lecce (Italy); Spinicelli, Piernicola; Bramati, Alberto; Hermier, Jean P [Laboratoire Kastler Brossel-Universite Paris 6, Ecole Normale Superieure et CNRS, UPMC case 74, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Quelin, Xavier; Buil, Stephanie [Groupe d' etude de la Matiere Condensee, CNRS UMR8635, Universite de Versailles Saint Quentin, 45 avenue des Etats-Unis, 78035 Versailles Cedex (France)], E-mail: antonio.qualtieri@unile.it

    2009-03-15

    Secure quantum communication systems (QCS) based on the transmission of crucial information through single photons are among the most appealing frontiers for telecommunications, though their development is still hindered by the lack of cheap and bright single photon sources (SPSs) operating at room temperature (RT). In this paper, we show the occurrence of photon antibunching at RT from single colloidal CdSe/ZnS nanocrystals (NCs) inserted in a vertical microcavity. Moreover, by using high-resolution lithographic techniques, we conceived a general route for positioning single colloidal quantum dots in the microcavity. The findings and the technique presented here can be considered a first step towards the development of SPS devices operating at RT.

  11. Superconducting Single Photon Detectors

    NARCIS (Netherlands)

    Dorenbos, S.N.

    2011-01-01

    This thesis is about the development of a detector for single photons, particles of light. New techniques are being developed that require high performance single photon detection, such as quantum cryptography, single molecule detection, optical radar, ballistic imaging, circuit testing and fluoresc

  12. Single-photon imaging

    CERN Document Server

    Seitz, Peter

    2011-01-01

    The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncoooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialist´s view from different domains to the forthcoming “single-photon imaging” revolution. The various aspects of single-photon imaging are treated by internati...

  13. Single photon quantum cryptography

    CERN Document Server

    Beveratos, A; Gacoin, T; Villing, A; Poizat, J P; Grangier, P; Beveratos, Alexios; Brouri, Rosa; Gacoin, Thierry; Villing, Andre; Poizat, Jean-Philippe; Grangier, Philippe

    2002-01-01

    We report the full implementation of a quantum cryptography protocol using a stream of single photon pulses generated by a stable and efficient source operating at room temperature. The single photon pulses are emitted on demand by a single nitrogen-vacancy (NV) color center in a diamond nanocrystal. The quantum bit error rate is less that 4.6% and the secure bit rate is 9500 bits/s. The overall performances of our system reaches a domain where single photons have a measurable advantage over an equivalent system based on attenuated light pulses.

  14. Single photon quantum cryptography.

    Science.gov (United States)

    Beveratos, Alexios; Brouri, Rosa; Gacoin, Thierry; Villing, André; Poizat, Jean-Philippe; Grangier, Philippe

    2002-10-28

    We report the full implementation of a quantum cryptography protocol using a stream of single photon pulses generated by a stable and efficient source operating at room temperature. The single photon pulses are emitted on demand by a single nitrogen-vacancy color center in a diamond nanocrystal. The quantum bit error rate is less that 4.6% and the secure bit rate is 7700 bits/s. The overall performances of our system reaches a domain where single photons have a measurable advantage over an equivalent system based on attenuated light pulses.

  15. Single photon emission from impurity centers in AlGaAs epilayers on Ge and Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Minari, S.; Cavigli, L.; Sarti, F.; Abbarchi, M.; Accanto, N.; Munoz Matutano, G.; Vinattieri, A.; Gurioli, M. [Dipartimento di Fisica e Astronomia, LENS and CNISM, Universita di Firenze, Via Sansone 1, I-50019 Firenze (Italy); Bietti, S.; Sanguinetti, S. [Dipartimento di Scienza dei Materiali and L-NESS, Universita di Milano Bicocca, Via Cozzi 53, I-20125 Milano (Italy)

    2012-10-22

    We show that the epitaxial growth of thin layers of AlGaAs on Ge and Si substrates allows to obtain single photon sources by exploiting the sparse and unintentional contamination with acceptors of the AlGaAs. Very bright and sharp single photoluminescence lines are observed in confocal microscopy. These lines behave very much as single excitons in quantum dots, but their implementation is by far much easier, since it does not require 3D nucleation. The photon antibunching is demonstrated by time resolved Hanbury Brown and Twiss measurements.

  16. Single photon emission dynamics of InP-InGaP quantum dots under p-shell excitation

    Science.gov (United States)

    Nowak, A. K.; Martín, M. D.; van der Meulen, H. P.; Ripalda, J. M.; González, L.; González, Y.; Viña, L.; Calleja, J. M.

    2014-10-01

    Single photon emitters based on InP/GaInP quantum dots have been studied under p-shell excitation by time-resolved photoluminescence and photon correlation spectroscopy. By tuning the excitation energy in resonance with quantum dot excited states, we observe a marked decrease of the antibunching time as a result of the increased excitation rate for decreasing energy detuning. A similar behavior is observed by increasing the pump power. The spectral dependence of the antibunching rate follows the energy profile of the excited state, as measured by photoluminescence excitation.

  17. Importance of 123I-metaiodobenzylguanidine scintigraphy/single photon emission computed tomography for diagnosis and differential diagnostics of Parkinson syndromes.

    Science.gov (United States)

    Jost, Wolfgang H; Del Tredici, Kelly; Landvogt, Christian; Braune, Stefan

    2010-01-01

    The goal of Parkinson syndrome diagnostics is twofold: early diagnosis on the one hand, and accurate differentiation among idiopathic and atypical Parkinson syndromes on the other. (123)I-metaiodobenzylguanidine scintigraphy is the only method that can distinguish with a high degree of sensitivity and specificity between atypical Parkinson syndromes and Parkinson's disease or dementia with Lewy bodies. Additional advantages are the method's widespread availability and radioactive exposure dose comparable to that for single photon emission computed tomography imaging with much lower costs. Only a single radiotracer study is necessary. (123)I-metaiodobenzylguanidine scintigraphy is an indispensable tool for purposes of differentiating among the various Parkinson syndromes.

  18. Association of Novelty Seeking Scores and Striatal Dopamine D2/D3 Receptor Availability of Healthy Volunteers: Single Photon Emission Computed Tomography With 123I-iodobenzamide

    Directory of Open Access Journals (Sweden)

    Hsiang Yu Huang

    2010-10-01

    Full Text Available It has been speculated that novelty seeking (NS behavior is related to the dopaminergic system. Fifty-two subjects completed the Tridimensional Personality Questionnaire and underwent single photon emission computed tomography with 123I-iodobenzamide. A marginally positive correlation was noted between NS and striatal dopamine D2/D3 receptor availability (r = 0.25, p =0.07. A positive association was noted between the NS scores and left striatal D2/D3 receptor availability (r= 0.29, p =0.04. The results suggest that a relationship might exist between NS score and dopaminergic activity.

  19. Hemimegalencephaly: A rare cause of hemihypoperfusion on 99m technetium-ethyl cysteinate dimer brain perfusion single-photon emission computed tomography.

    Science.gov (United States)

    Damle, Nishikant A; Singhal, Abhinav; Mukherjee, Anirban; Sahoo, Manas Kumar; Tripathi, Madhavi; Bal, Chandrasekhar

    2013-04-01

    Hemimegalencephaly is a rare congenital neuronal migration disorder that can presents with the equally rare finding of hemihypoperfusion on brain perfusion single-photon emission computed tomography (SPECT). It is an extremely rare cause of intractable epilepsy. Technetium-99m ethyl cysteinate dimer (ECD) brain perfusion SPECT is useful in excluding other foci of hypoperfusion in the contralateral since hemispherectomy has been suggested to be the treatment of choice. Furthermore, hemimegalencephaly may present with hyper as well as hypoperfusion on ECD SPECT. We present the case of an 11-year-old male child with intractable seizures who showed hemihypoperfusion in the hemimegalecephalic hemisphere.

  20. Resting state rCBF mapping with single-photon emission tomography and positron emission tomography: magnitude and origin of differences

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, C.; Kimiaei, S.; Larsson, S.A. [Section of Nuclear Medicine, Department of Hospital Physics, Karolinska Hospital and Department of Medical Radiation Physics, Stockholm University, Stockholm (Sweden); Pagani, M. [Institute of Experimental Medicine, CNR, Rome (Italy); Ingvar, M. [Section of Cognitive Neurophysiology, Karolinska Hospital, Stockholm (Sweden); Thurfjell, L. [Center of Image Analysis, Uppsala University, Uppsala (Sweden); Jacobsson, H. [Department of Diagnostic Radiology, Karolinska Hospital, Stockholm (Sweden)

    1998-02-01

    Single-photon emission tomography (SPET), using technetium-99m hexamethylpropylene amine oxime, and positron emission tomography (PET), using oxygen-15 butanol were compared in six healthy male volunteers with regard to the mapping of resting state regional cerebral blood flow (rCBF). A computerized brain atlas was utilized for 3D regional analyses and comparison of 64 selected and normalized volumes of interest (VOIs). The normalized mean rCBF values in SPET, as compared to PET, were higher in most of the Brodmann areas in the frontal and parietal lobes (4.8% and 8.7% respectively). The average differences were small in the temporal (2.3%) and occipital (1.1%) lobes. PET values were clearly higher in small VOIs like the thalamus (12.3%), hippocampus (12.3%) and basal ganglia (9.9%). A resolution phantom study showed that the in-plane SPET/PET system resolution was 11.0/7.5 mm. In conclusion, SPET and PET data demonstrated a fairly good agreement despite the superior spatial resolution of PET. The differences between SPET and PET rCBF are mainly due to physiological and physical factors, the data processing, normalization and co-registration methods. In order to further improve mapping of rCBF with SPET it is imperative not only to improve the spatial resolution but also to apply accurate correction techniques for scatter, attenuation and non-linear extraction. (orig.) With 6 figs., 3 tabs., 23 refs.

  1. Single photon emission up to liquid nitrogen temperature from charged excitons confined in GaAs-based epitaxial nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Dusanowski, Ł., E-mail: lukasz.dusanowski@pwr.edu.pl; Syperek, M.; Maryński, A.; Misiewicz, J.; Sęk, G. [Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław (Poland); Li, L. H. [Ecole Polytechnique Fédérale de Lausanne, Institute of Quantum Electronics and Photonics, Station 3, CH-1015 Lausanne (Switzerland); Höfling, S. [Technische Physik and Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, University of Würzburg, Am Hubland, D-97074 Würzburg (Germany); SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, KY16 9SS St. Andrews (United Kingdom); Kamp, M. [Technische Physik and Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems, University of Würzburg, Am Hubland, D-97074 Würzburg (Germany); Fiore, A. [Ecole Polytechnique Fédérale de Lausanne, Institute of Quantum Electronics and Photonics, Station 3, CH-1015 Lausanne (Switzerland); COBRA Research Institute, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2015-06-08

    We demonstrate a non-classical photon emitter at near infrared wavelength based on a single (In,Ga)As/GaAs epitaxially grown columnar quantum dot. Charged exciton complexes have been identified in magneto-photoluminescence. Photon auto-correlation histograms from the recombination of a trion confined in a columnar dot exhibit sub-Poissonian statistics with an antibunching dip yielding g{sup (2)}(0) values of 0.28 and 0.46 at temperature of 10 and 80 K, respectively. Our experimental findings allow considering the GaAs-based columnar quantum dot structure as an efficient single photon source operating at above liquid nitrogen temperatures, which in some characteristics can outperform the existing solutions of any material system.

  2. Direct evidence of single quantum dot emission from GaN islands formed at threading dislocations using nanoscale cathodoluminescence: A source of single photons in the ultraviolet

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Gordon, E-mail: Gordon.Schmidt@ovgu.de; Berger, Christoph; Veit, Peter; Metzner, Sebastian; Bertram, Frank; Bläsing, Jürgen; Dadgar, Armin; Strittmatter, André; Christen, Jürgen [Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg (Germany); Callsen, Gordon; Kalinowski, Stefan; Hoffmann, Axel [Institute of Solid State Physics, Technical University Berlin, 10623 Berlin (Germany)

    2015-06-22

    Intense emission from GaN islands embedded in AlN resulting from GaN/AlN quantum well growth is directly resolved by performing cathodoluminescence spectroscopy in a scanning transmission electron microscope. Line widths down to 440 μeV are measured in a wavelength region between 220 and 310 nm confirming quantum dot like electronic properties in the islands. These quantum dot states can be structurally correlated to islands of slightly enlarged thicknesses of the GaN/AlN quantum well layer preferentially formed in vicinity to dislocations. The quantum dot states exhibit single photon emission in Hanbury Brown-Twiss experiments with a clear antibunching in the second order correlation function at zero time delay.

  3. Narrow-band single photon emission at room temperature based on a single Nitrogen-vacancy center coupled to an all-fiber-cavity

    CERN Document Server

    Albrecht, Roland; Pauly, Christoph; Mücklich, Frank; Schell, Andreas W; Engel, Philip; Schröder, Tim; Benson, Oliver; Reichel, Jakob; Becher, Christoph

    2014-01-01

    We report the realization of a device based on a single Nitrogen-vacancy (NV) center in diamond coupled to a fiber-cavity for use as single photon source (SPS). The device consists of two concave mirrors each directly fabricated on the facets of two optical fibers and a preselected nanodiamond containing a single NV center deposited onto one of these mirrors. Both, cavity in- and output are directly fiber-coupled and the emission wavelength is easily tunable by variation of the separation of the two mirrors with a piezo-electric crystal. By coupling to the cavity we achieve an increase of the spectral photon rate density by two orders of magnitude compared to free-space emission of the NV center. With this work we establish a simple all-fiber based SPS with promising prospects for the integration into photonic quantum networks.

  4. Induced arousal following zolpidem treatment in a vegetative state after brain injury in 7 cases Analysis using visual single photon emission computerized tomography and digitized cerebral state monitor

    Institute of Scientific and Technical Information of China (English)

    Bo Du; Aijun Shan; Di Yang; Wei Xiang

    2008-01-01

    BACKGROUND: Several studies have reported the use of zolpidem for induced arousal after permanent vegetative states. However, changes in brain function and EMG after zolpidem treatment requires further investigation. OBJECTIVE: To investigate the effect of zolpidem, an unconventional drug, on inducing arousal in patients in a permanent vegetative state after brain injury using visual single photon emission computerized tomography and digitized cerebral state monitor. DESIGN: A self-controlled observation. SETTING: Shenzhen People's Hospital.PARTICIPANTS: Seven patients in a permanent vegetative state were selected from the Department of Neurosurgery, Shenzhen People's Hospital from March 2005 to May 2007. The group included 5 males and 2 females, 24–55 years of age, with a mean age of 38.5 years. All seven patients had been in a permanent vegetative statement for at least six months. The patient group included three comatose patients, who had sustained injuries to the cerebral cortex, basal ganglia, or thalamus in motor vehicle accidents, and four patients, who had suffered primary/secondary brain stem injury. Informed consents were obtained from the patients’ relatives. METHODS: The patients brains were imaged by 99Tcm ECD single photon emission computerized tomography prior to treatment with zolpidem [Sanofi Winthrop Industrie, France, code number approved by the State Food & Drug Administration (SFDA) J20040033, specification 10 mg per tablet. At 8:00 p.m., 10 mg zolpidem was dissolved with distilled water and administered through a nasogastric tube at 1 hour before and after treatment and 1 week following treatment, respectively. Visual analysis of cerebral perfusion changes in the injured brain regions before and after treatment was performed. Simultaneously, three monitoring parameters were obtained though a cerebral state monitor, which included cerebral state index, electromyographic index, and burst suppression index. MAIN OUTCOME MEASURES: Comparison

  5. Single photon emission computed tomography (SPECT) findings using N-isopropyl-p-[{sup 123}I]iodoamphetamine ({sup 123}I-IMP) in schizophrenia and atypical psychosis

    Energy Technology Data Exchange (ETDEWEB)

    Suga, Hidemichi; Hayashi, Takuji; Mitsugi, Ohara [Aichi Medical Univ., Nagakute (Japan)

    1994-12-01

    As a basis for possible classification of schinzophrenic psychoses into schizophrenia and atypical psychosis, we studied the brain functional differences among 16 schizophrenic patients, 16 atypical psychosis patients and 16 healthy volunteers by single photon emission computed tomography (SPECT) using N-isopropyl-p-[{sup 123}I] iodoamphetamine. As a result, schizophrenics showed hypofrontality. On the other hand, atypical psychotics had no such hypofrontality but showed a reduced uptake rate in the right thalamic region. No influence of sex, duration of illness and medication was confirmed by the findings. The results suggest that schizophrenics might have some lesions in the frontal regions, whereas atypical psychotics might have no such lesions, but dysfunction in the right thalamic region. Consequently, the SPECT findings as least indicate possibly different etiologies for schizophrenia and atypical psychosis. (author).

  6. An incidentally found inflamed uterine myoma Causing low abdominal pain, using TC-99m-tektrotyd single photon emission computed tomography-CT hybrid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zandieh, Shahin; Schuetz, Matthias; Bernt, Reinhard; Zwerina, Jochen; Haller, Joerg [Hanusch-Hospital, Teaching Hospital of Medical University of Vienna, Vienna (Australia)

    2013-10-15

    We report the case of a 50-year-old woman presented with a history of right hemicolectomy due to an ileocecal neuroendocrine tumor and left breast metastasis. Owing to a slightly elevated chromogranin A-level and lower abdominal pain, single photon emission computed tomography-computer tomography (SPECT-CT) was performed. There were no signs of recurrence on the SPECT-CT scan, but the patient was incidentally found to have an inflamed intramural myoma. We believe that the slightly elevated chromogranin A-level was caused by the hypertension that the patient presented. In the clinical context, this is a report of an inflamed uterine myoma seen as a false positive result detected by TC-99m-Tc-EDDA/HYNIC-Tyr3-Octreotide (Tektrotyd) SPECT-CT hybrid imaging.

  7. Single photon emission computed tomography with [sup 123]I-N-isopropyl-p-iodoamphetamine in three cases of neuroleptic malignant syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Nishijima, Koichi; Matoba, Masaki; Takano, Kenji; Ishiguro, Takeo (Jichi Medical School, Minamikawachi, Tochigi (Japan)); Nakamura, Megumi; Nagano, Mitsuru

    1992-11-01

    Three patients with neuroleptic malignant syndrome underwent single photon emission computd tomography (SPECT) with I-123-N-isopropyl-p-iodoamphetamine (I-123 IMP). In two patients, there was bilateral difference in tracer uptake on early images: decreased uptake in the right basal ganglion and increased uptake in the left basal ganglion. In the third patient, similar findings were seen on early images; however, in contrast to early images, delayed images showed more noticeable tracer uptake in the right basal ganglion than the left basal ganglion. These findings were not associated with the recovery from neuroleptic malignant syndrome. This suggested that some abnormality in the basal ganglion may be involved in the occurrence of neuroleptic malignant syndrome. SPECT with I-123 IMP was considered useful in searching for pathophysiology of neuroleptic malignant syndrome. (N.K.).

  8. Acute effect of electroconvulsive therapy on brain perfusion assessed by Tc99m-hexamethylpropyleneamineoxim and single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bajc, M.; Basic, M.; Topuzovic, N.; Babic, D.; Ivancevic, D. (Department of Nuclear Medicine, University Hospital Rebro, Zagreb (Yugoslavia)); Medved, V. (Psychiatric Clinic, University Hospital Rebro, Zagreb (Yugoslavia))

    1989-01-01

    Regional cerebral blood flow (rCBF) was measured in relative terms with Tc99m-hexamethylpropyleneamineoxim and single photon emission computed tomography in 11 patients undergoing electroconvulsive therapy (ECT). The patients suffered from major depressive disorder (n=8) or schizoaffective disorders (n=3). rCBF was measured under general anesthesia 3 days prior to the ECT treatment and coinciding with the ECT stimualtion. ECT caused a redistribution of the tracers uptake. The uptake became more pronounced in frontal parts of the brain and in the basal ganglia than in posterior parts of the cortex, and the thalamus. This selective effect of ECT on rCBF may be related to catecholaminergic projections to anterior parts of the brain. (author).

  9. Phantom study to evaluate quantitative changes in myocardial radioisotope concentration for single photon emission computed tomography; Comparison between Tl-201 and Tc-99m

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Takashi; Kitabata, Yoshiki; Tanaka, Takeshi; Hasegawa, Mitsuo; Kato, Kazuzo (Cardiovascular Inst., Tokyo (Japan)); Okabe, Akifumi

    1990-01-01

    Quantitative changes in Tl-201 and Tc-99m in myocardial single photon emission computed tomography (SPECT) were evaluated using phantom studies. The absorption rate of gamma ray by the tissues surrounding the myocardium was less for Tc-99m (maximum, 61.2%) than Tl-201 (maximum, 70.8%). In studies on quantification of defects with various concentrations of the radioisotopes, Tc-99m was found superior to Tl-201. In comparing a focal defect in the anterior wall near the surface of the thorax (Defect A) with that in the posterior wall deep in the thorax (Defect B), Defect A had a better quantification than Defect B. Absorber, scattering, and background, however, precluded quantification, especially in Defect B. Although scatter subtraction may in part improve quantification, quantification seemed to be dependent on algorithm in image reconstruction, as well as spatial resolution of the equipment. (N.K.).

  10. Single photon emission computed tomography of technetium-99m tetrofosmin myocardial perfusion imaging in patients with systemic lupus erythematosus-A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jen-Jhy; Hsu, Hsiu-Bao; Sun, Shung-Shung; Kao, Chia-Hung [China Medical Coll., Taichung, Taiwan (China). Hospital; Wang, Jhi-Joung [Chi-Mei Medical Center, Tainan, Taiwan (China); Ho, Shung-Tai [National Defense Medical Center, Taipei, Taiwan (China). School of Medicine

    2003-01-01

    The purpose of this study was to evaluate the utility of single-photon emission computed tomography (SPECT) of technetium-99m tetrofosmin (Tc-99m TF) myocardial perfusion imaging to detect myocardial involvement in patients with systemic lupus erythematosus (SLE). Three groups of subjects-group 1: 25 SLE female patients with non-specific cardiac symptoms and signs, group 2: 25 female SLE patients without any cardiac symptoms and signs, and group 3: 25 female healthy controls-were evaluated by comparing rest and dipyridamole-stress Tc-99m TF myocardial perfusion SPECT. Tc-99m TF myocardial perfusion SPECT revealed perfusion defects in 88% and 40% of the cases in groups 1 and 2, respectively. However, no cases in group 3 demonstrated myocardial perfusion defects. Tc-99m TF myocardial perfusion SPECT is a useful noninvasive imaging modality to detect cardiac involvement in SLE patients with or without cardiac symptoms and signs. (author)

  11. Striatal dopamine release in reading and writing measured with [123I]iodobenzamide and single photon emission computed tomography in right handed human subjects.

    Science.gov (United States)

    Schommartz, B; Larisch, R; Vosberg, H; Müller-Gärtner, H M

    2000-09-29

    Competition between endogenous dopamine and a radioligand for postsynaptic dopamine D(2) receptor binding was examined in two groups of eight subjects each who had to read or write off a text, respectively, and in a control group. Single photon emission computed tomography (SPECT) and the ligand [(123)I]iodobenzamide (IBZM) were used for in vivo imaging. Subjects commenced reading or writing immediately before IBZM injection and continued for 30min thereafter. SPECT images were acquired 60min later. Striatum-to-parietal-cortex IBZM uptake ratios were lower in subjects who wrote off the text than in controls indicating competition of IBZM and dopamine. There was no difference between subjects who read the text and controls. Thus, dopamine release occurs as a consequence of the motoric activity involved in writing rather than of cognitive functions necessary for reading the text.

  12. Variable uptake feature of focal nodular hyperplasia in Tc-99m phytate hepatic scintigraphy/single-photon emission computed tomography-A parametric analysis.

    Science.gov (United States)

    Hsu, Yu-Ling; Chen, Yu-Wen; Lin, Chia-Yang; Lai, Yun-Chang; Chen, Shinn-Cherng; Lin, Zu-Yau

    2015-12-01

    Tc-99m phytate hepatic scintigraphy remains the standard method for evaluating the functional features of Kupffer cells. In this study, we demonstrate the variable uptake feature of focal nodular hyperplasia (FNH) in Tc-99m phytate scintigraphy. We reviewed all patients who underwent Tc-99m phytate hepatic scintigraphy between 2008 and 2012 in Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. Cases with FNH were diagnosed on the basis of pathology or at least one or more prior imaging with a periodic clinical follow-up. All patients received a standard protocol of dynamic flow study and planar and Tc-99m phytate single-photon emission computed tomography (E. CAM; Siemens). The correlation of variable nodular radioactivity with parameters such as tumor size and localization was analyzed. In total, 15 lesions of 14 patients in the clinic were diagnosed as FNH. The tumor size was approximately 2.9-7.4 cm (mean size 4.6 cm). Four lesions were larger than 5 cm. The major anatomic distribution was in the right hepatic lobe (10 lesions), particularly in the superior segments (7 lesions). Tc-99m phytate single-photon emission computed tomography imaging for determining the functional features of Kupffer cells included cool/cold (8 lesions), isoradioactive/warm (6 lesions), and hot (1 lesion) patterns of uptake. We did not observe any statistically significant correlation between variable nodular radioactivity and tumor size (p=0.68) or localization (p=0.04). Herein, we demonstrate the variable uptake feature of FNH in Tc-99m phytate scintigraphy. In small FNH tumors (< 5 cm), increased or equal uptake still provided specificity for the differential diagnosis of hepatic solid tumors.

  13. Imaging of soft-tissue tumors using L-3-[iodine-123]iodo-alpha-methyl-tyrosine single photon emission computed tomography: comparison with proliferative and mitotic activity, cellularity, and vascularity.

    NARCIS (Netherlands)

    Jager, P L; Plaat, B E; Vries, E G de; Molenaar, W M; Vaalburg, W; Piers, D A; Hoekstra, H J

    2000-01-01

    The radiolabeled amino acid L-3-[123I]-iodo-alpha-methyltyrosine (IMT) is a new tumor tracer that accumulates in many tumors and is suitable for single photon emission computed tomography (SPECT) imaging. Using IMT SPECT, we studied 32 patients with a soft-tissue tumor suspected to be a soft-tissue

  14. High-resolution nuclear magnetic resonance imaging and single photon emission computerized tomography--cerebral blood flow in a case of pure sensory stroke and mild dementia owing to subcortical arteriosclerotic encephalopathy (Binswanger's disease)

    DEFF Research Database (Denmark)

    De Chiara, S; Lassen, N A; Andersen, A R

    1987-01-01

    involving visiospatial apraxia; this pointed to decreased function of the right parietal cortex, which was structurally intact on CT and NMRI. Single photon emission computerized tomography by Xenon-133 injection and by hexamethyl-propyleneamine-oxim labeled with Technetium-99m showed asymmetric...

  15. Monoamine oxidase B single-photon emission tomography with [{sup 123}I]Ro 43-0463: imaging in volunteers and patients with temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Buck, A. [Division of Nuclear Medicine, University Hospital Zurich (Switzerland); Frey, L.D. [Department of Nuclear Medicine, Kantonsspital Aarau (Switzerland); Blaeuenstein, P.; Schubiger, P. [Paul Scherrer Institut, Radiopharmacy Division, Villigen (Switzerland); Kraemer, G. [Swiss Epilepsy Clinic, Zurich (Switzerland); Siegel, A.; Weber, B.; Wieser, H.G. [Department of Neurology, University Hospital Zurich (Switzerland)

    1998-05-01

    Imaging of monoamine oxidase of subtype B (MAO B) is of interest in various neurological diseases. In the past non-invasive assessment of MAO B has only been possible with positron emission tomography (PET) ligands. Given the limited availability of PET, a single-photon emission tomography (SPET) ligand would be desirable. In this study SPET imaging with the new MAO B inhibitor [{sup 123}I]Ro 43-0463 was performed in five volunteers and nine patients with temporal lobe epilepsy (TLE). In two volunteers a second study was performed 12 h following blockade with deprenyl. In the TLE patients the tracer was administered as bolus (n = 4) or as prolonged infusion (n = 5). The regional uptake pattern correlated well with the known distribution of MAO B. In the two blocking studies ligand uptake was substantially reduced compared with baseline. In the TLE patients increased uptake was found in the ipsilateral mesial temporal lobe and, surprisingly, in the ipsilateral putamen. This study indicates the potential of the new SPET ligand [{sup 123}I]Ro 43-0463 to map MAO B concentration in the human brain. The new finding of increased MAO B in the putamen of TLE patients needs further studies to elucidate its exact pathophysiology. (orig.) With 3 figs., 3 tabs., 28 refs.

  16. Single photons on demand

    Energy Technology Data Exchange (ETDEWEB)

    Grangier, P. [Institut d' Optique, Laboratoire Charles Fabry, Orsay (France)]. E-mail: philippe.grangier@iota.u-psud.fr; Abram, I. [Laboratoire de Photonique et Nanostructures, Route de Nozay, Marcoussis (France)]. E-mail: izo.abram@lpn.cnrs.fr

    2003-02-01

    Quantum cryptography and information processing are set to benefit from developments in novel light sources that can emit photons one by one. Quantum mechanics has gained a reputation for making counter-intuitive predictions. But we rarely get the chance to witness these effects directly because, being humans, we are simply too big. Take light, for example. The light sources that are familiar to us, such as those used in lighting and imaging or in CD and DVD players, are so huge that they emit billions and billions of photons. But what if there was a light source that emitted just one photon at a time? Over the past few years, new types of light source that are able to emit photons one by one have been emerging from laboratories around the world. Pulses of light composed of a single photon correspond to power flows in the femtowatt range - a million billion times less than that of a table lamp. The driving force behind the development of these single-photon sources is a range of novel applications that take advantage of the quantum nature of light. Quantum states of superposed and entangled photons could lead the way to guaranteed-secure communication, to information processing with unprecedented speed and efficiency, and to new schemes for quantum teleportation. (U.K.)

  17. Simple partial status epilepticus localized by single-photon emission computed tomography subtraction in chronic cerebral paragonimiasis.

    Science.gov (United States)

    Joo, Eun Yeon; Kim, Jee Hyun; Tae, Woo Suk; Han, Sun Jung; Kim, Seunghwan; Kim, Myoung-Hee; Byun, Hong Sik; Hong, Seung Bong

    2004-10-01

    A patient with chronic cerebral paragonimiasis began to have new motor seizures of the right face manifested by clonic contractions that occurred several hundred times a day, consistent with simple partial status epilepticus. Ictal electroencephalogram discharges started from the left frontal region and then spread to the left hemisphere with left frontal maximum. But clinical seizures were limited to the right face. The frequent partial seizures were controlled by the intravenous infusion of phenytoin. Brain magnetic resonance imaging showed multiple conglomerated round nodules with encephalomalacia in the left temporal and occipital lobes. Applying the technique of ictal-interictal single-photo emission computed tomography subtraction, the authors were able to localize the focal ictal-hyperperfusion on left precentral cortex adjacent to the lesions that correspond to the anatomical distribution of left face motor area.

  18. Microscopic theory of indistinguishable single-photon emission from a quantum dot coupled to a cavity: The role of non-Markovian phonon-induced decoherence

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Lodahl, Peter; Jauho, Antti-Pekka;

    2013-01-01

    We study the fundamental limit on single-photon indistinguishability imposed by decoherence due to phonon interactions in semiconductor quantum dot-cavity quantum electrodynamics systems. Employing an exact diagonalization approach we find large differences compared to standard methods...

  19. Relation of gender to physician use of test results and to the prognostic value of stress technetium 99m sestamibi myocardial single-photon emission computed tomography scintigraphy.

    Science.gov (United States)

    Travin, M I; Duca, M D; Kline, G M; Herman, S D; Demus, D D; Heller, G V

    1997-07-01

    We analyzed potential gender differences in the use and prognostic value of stress technetium 99m sestamibi tomography, image results, and cardiac event rates over a period of 15 +/- 8 months in 1226 men and 1151 women. Men had more abnormal tomographic images, but referral for catheterization and revascularization similarly increased in relation to the number of defects. Men and women with abnormal images had similar event rates, 19.6% and 18.2%, respectively, although men more often had myocardial infarction or cardiac death (7.6% vs 4.1 %, p < 0.05), whereas women had an increased likelihood of unstable angina or congestive heart failure (11.5% vs 7.6%, p < 0.05). Normal images predicted a low yearly rate of myocardial infarction or death: 1.7% for men and 0.8% for women. Image findings, particularly defect extent, were independent predictors of events in both groups. Thus, after stress Tc-99m sestamibi single-photon emission computed tomography perfusion imaging, there was no gender bias in referral for invasive procedures, and for both men and women image findings were strongly associated with prognostic outcome.

  20. Indium-111 antimyosin antibody imaging and thallium-201 imaging. A comparative myocardial scintigraphic study using single-photon emission computed tomography in patients with myocarditis and dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Takehiko; Matsumori, Akira; Nohara, Ryuji; Konishi, Junji; Sasayama, Shigetake [Kyoto Univ. (Japan). Faculty of Medicine; Tamaki, Nagara

    1997-10-01

    Indium-111 antimyosin antibody imaging (a tracer of myocardial necrosis) and thallium-201 imaging (a tracer of myocardial perfusion) were compared in patients with myocarditis and dilated cardiomyopathy. The distribution of each tracer and antimyosin/thallium-201 overlapping were evaluated with single-photon emission computed tomography (SPECT). Scintigraphic data were classified into 5 patterns according to the distribution of both images and were compared with histologic findings of endomyocardial biopsy: AM-D, intense and diffuse antimyosin uptake and no perfusion abnormality (active myocarditis); AM-L, localized antimyosin uptake and no perfusion abnormality (active myocarditis); HM, no antimyosin uptake with or without perfusion abnormality (healed myocarditis); DCM-NH, diffuse antimyosin uptake and inhomogeneous thallium-201 uptake (dilated cardiomyopathy); DCM-PD, diffuse or localized antimyosin uptake and myocardial perfusion defect(s) (dilated cardiomyopathy). Patients with dilated-phase hypertrophic cardiomyopathy were frequently found in the DCM-PD group. Taken together, comparative antimyosin/thallium-201 SPECT images are useful for evaluating the activity of myocarditis and ongoing myocardial damage even in areas with no perfusion in patients with dilated cardiomyopathy. (author)

  1. Immunotargeting of Integrin α6β4 for Single-Photon Emission Computed Tomography and Near-Infrared Fluorescence Imaging in a Pancreatic Cancer Model

    Directory of Open Access Journals (Sweden)

    Winn Aung MBBS, PhD

    2016-01-01

    Full Text Available To explore suitable imaging probes for early and specific detection of pancreatic cancer, we demonstrated that α6β4 integrin is a good target and employed single-photon emission computed tomography (SPECT or near-infrared (NIR imaging for immunotargeting. Expression levels of α6β4 were examined by Western blotting and flow cytometry in certain human pancreatic cancer cell lines. The human cell line BxPC-3 was used for α6β4-positive and a mouse cell line, A4, was used for negative counterpart. We labeled antibody against α6β4 with Indium-111 (111In or indocyanine green (ICG. After injection of 111In-labeled probe to tumor-bearing mice, biodistribution, SPECT, autoradiography (ARG, and immunohistochemical (IHC studies were conducted. After administration of ICG-labeled probe, in vivo and ex vivo NIR imaging and fluorescence microscopy of tumors were performed. BxPC-3 tumor showed a higher radioligand binding in SPECT and higher fluorescence intensity as well as a delay in the probe washout in NIR imaging when compared to A4 tumor. The biodistribution profile of 111In-labeled probe, ARG, and IHC confirmed the α6β4 specific binding of the probe. Here, we propose that α6β4 is a desirable target for the diagnosis of pancreatic cancer and that it could be detected by radionuclide imaging and NIR imaging using a radiolabeled or ICG-labeled α6β4 antibody.

  2. Brain MRI and single photon emission computed tomography in severe athetotic cerebral palsy. A comparative study with mental and motor disorders

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Kazutaka; Tsuzura, Shigenobu [Metropolitan Medical Center of the Severely Handicapped, Fuchu, Tokyo (Japan); Matsuda, Hiroshi

    1995-07-01

    Single photon emission computed tomography (SPECT) using N-isopropyl-p-[{sup 123}I]-iodoamphetamine ({sup 123}I-IMP) was performed in twelve patients with severe athetotic cerebral palsy (Ath; 5 males and 7 females) who had both motor delay (unable to move) and mental retardation (I.Q, or D.Q, below 30). The neuroimaging findings of those patients were compared with those of patients mental and motor disorders. In five caes suffering from neonatal asphyxia, SPECT demonstrated a decreased regional cerebral blood flow (rCBF) in corpus striatum, thalamus, orbitofrontal areas, pericentral gyrus areas, prefrontal areas and medial temporal areas. In seven cases suffering from neonatal jaundice, SPECT demonstrated a decreased rCBF in orbito-frontal areas, prefrontal areas and medial temporal areas. SPECT showed hypoperfusion of peri-central gyrus areas in cases with complications of spastic palsy. The decreased rCBF in medial temporal areas mostly corresponded to an alteration in hippocampal formation as assessed by magnetic resonance imaging (MRI). Cases with hypoperfusion of bilateral medial temporal areas showed a lower score of language understanding than those with the unilateral damage. In cases with hypofusion of bilateral prefrontal areas and bilateral medial temporal areas, the grade of understanding of language was almost below 12 months. In cases with hypoperfusion of orbitofrontal areas, psychomotor hypersensitivity had been observed. Those results suggest that IMP-SPECT and MRI of the brain is useful tool for neurological assessment in handicapped patients with athetotic cerebral palsy. (author).

  3. Cerebral blood flow measurement in patients with impaired consciousness: usefulness of {sup 99m}Tc-HMPAO single-photon emission tomography in clinical practice

    Energy Technology Data Exchange (ETDEWEB)

    Chang Chia-Cheng; Kuwana, Nobumasa; Noji, Masato; Tanabe, Yutaka; Koike, Y. [Department of Neurosurgery, Yokohama Minami Kyosai Hospital, Yokohama (Japan); Ikegami, Tadashi [Department of Radiology, Yokohama Minami Kyosai Hospital, Yokohama (Japan)

    1998-09-01

    The relationship between impairment of consciousness and quantitative cerebral blood flow (CBF) was investigated. The mean CBF of the whole brain was measured by the Patlak-plot method using technetium-99m hexamethylpropylene amine oxime single-photon emission tomography ({sup 99m}Tc-HMPAO SPET) in patients with the following diseases: cerebral infarction, intraparenchymal haemorrhage, subarachnoid haemorrhage, brain tumour and cerebral contusion. The clinical symptoms were evaluated according to the severity of impaired consciousness, aphasia and dementia. Four hundred and eighty-five CBF measurements were performed. Patients with alert consciousness showed an age-related decline in mean CBF. Patients with aphasia showed a significant reduction in mean CBF compared with those without aphasia. Impaired consciousness was proportional to reduction in mean CBF regardless of types of pathology, and the size of lesion did not influence the mean CBF. Patients with dementia showed a significant reduction in mean CBF proportional to the severity of dementia. The quantitative measurement of CBF using {sup 99m}Tc-HMPAO SPET is reliable in clinical evaluations. (orig.) With 3 tabs., 10 refs.

  4. The effect of the superficial temporal to middle cerebral artery bypass based on the data of motor activation single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Shoichiro; Uranishi, Ryunosuke; Morimoto, Tetsuya; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime [Nara Medical Univ., Kashihara (Japan)

    1999-07-01

    We evaluated and analyzed the effect of the superficial temporal to middle cerebral artery (STA-MCA) bypass for the pure motor function in the ischemic cerebrovascular diseases (CVDs) using the motor activation single photon emission computed tomography (SPECT). Motor activation SPECT was performed on the 25 cases with ischemic CVD treated with STA-MCA bypass. Motor activation SPECT studies using the finger opposition task on the affected side were performed before surgery, at 1 month, and at 3 months after the bypass. The result of the motor activation SPECT was expressed as negative and positive by the visual inspection. During the follow-up period (mean; 2.2 years), there has been no recurrent or worsening clinical symptom. Before bypass, 10 cases were positive in the motor activation SPECT. The other 15 cases were negative. At one month after bypass, 14 cases were positive in the motor activation SPECT. At three months after bypass, 23 cases were positive in the motor activation SPECT. Twenty-two cases showed the improvement of the resting CBF. STA-MCA bypass is useful for pure motor function in the ischemic CVDs based on the motor activation SPECT coupling with their clinical symptoms. (author)

  5. Receptor binding characterization of the benzodiazepine radioligand sup 125 I-Ro16-0154: Potential probe for SPECT (Single Photon Emission Computed Tomography) brain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.W.; Woods, S.W.; Zoghbi, S.; Baldwin, R.M.; Innis, R.B. (Yale Univ., West Haven, CT (USA)); McBride, B.J. (Medi-Physics, Inc., Emeryville, CA (USA))

    1990-01-01

    The binding of an iodinated benzodiazepine (BZ) radioligand has been characterized, particularly in regard to its potential use as a neuroreceptor brain imaging agent with SPECT (Single Photon Emission Computed Tomography). Ro16-0154 is an iodine-containing BZ antagonist and a close analog of Ro15-1788. In tissue homogenates prepared from human and monkey brain, the binding of {sup 125}I-labeled Ro16-0154 was saturable, of high affinity, and had high ratios of specific to non-specific binding. Physiological concentrations of NaCl enhanced specific binding approximately 15% compared to buffer without this salt. Kinetic studies of association and dissociation demonstrated a temperature dependent decrease in affinity with increasing temperature. Drug displacement studies confirmed that {sup 125}I-Ro16-0154 binds to the central type BZ receptor: binding is virtually identical to that of {sup 3}H-Ro15-1788 except that {sup 125}I-Ro16-0154 shows an almost 10 fold higher affinity at 37{degree}C. These in vitro results suggest that {sup 123}I-labeled Ro16-0154 shows promise as a selective, high affinity SPECT probe of the brain's BZ receptor.

  6. Single photon emission computed tomography (SPECT) findings using N-isopropyl-p-[[sup 123]I]iodoamphetamine ([sup 123]I-IMP) in schizophrenia and atypical psychosis

    Energy Technology Data Exchange (ETDEWEB)

    Suga, Hidemichi (Aichi Medical Univ., Nagakute (Japan))

    1993-05-01

    Sixteen schizophrenic patients, 16 atypical psychosis patients, and 16 healthy volunteers were subjected to single photon emission computed tomography (SPECT) of the brain using N-isopropyl-p-[[sup 123]I]iodoamphetamine ([sup 123]I-IMP). The basal ganglia region was in particular examined not only in transverse sections, but in coronal sections. Schizophrenics showed significantly decreased uptake rates in the bilateral frontal regions and increased uptakes in the bilateral basal ganglia. On the other hand, atypical psychotics had a reduced uptake rate only in the right thalamic region, compared to the controls. The increased uptake rates in the basal ganglia were associated with auditory hallucination, but gender difference, duration of illness and dose of neuroleptics had no influence on these SPECT findings. The results suggest that schizophrenics might have some lesions in the frontal area of the brain, whereas atypical psychotics might have no lesion in the frontal region but dysfunction in the right thalamic region. Subsequently, using only SPECT findings, all the cases were divided by cluster analysis into 4 groups and a residue group. Schizophrenics distributed mainly in the 2 groups that have lesion in the frontal regions. Atypical psychotics distributed principally in the other 2 groups that have alterations in the bilateral thalamic region. The present study suggests that schizophrenia and atypical psychosis might have different etiologies. (author).

  7. Regional cerebral blood flow measured with N-isopropyl-p-[[sup 123]I]iodoamphetamine single-photon emission tomography in patients with Joseph disease

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Naoya (Dept. of Radiology, Niigata Univ. School of Medicine, Niigata (Japan)); Odano, Ikuo (Dept. of Radiology, Niigata Univ. School of Medicine, Niigata (Japan)); Nishihara, Mamiko (Dept. of Radiology, Niigata Univ. School of Medicine, Niigata (Japan)); Yuasa, Tatsuhiko (Dept. of Neurology, Tokyo Medical and Dental Univ. School of Medicine, Tokyo (Japan)); Sakai, Kunio (Dept. of Radiology, Niigata Univ. School of Medicine, Niigata (Japan))

    1994-07-01

    Regional cerebral blood flow (rCBF) was measured in five Japanese patients who were clinically diagnosed as having Joseph disease, also called Machado-Joseph disease or Azorean disease, using N-isopropyl-p-[[sup 123]I]iodoamphetamine (IMP) and single-photon emission tomography (SPET). Cerebellar atrophy was evaluated by a five-step rating scale as defined on X-ray computed tomography (X-CT). Compared with ten age-matched normal controls (mean cerebellar CBF [+-] SD: 66.9 [+-] 6.6 ml/100 g/min), rCBF in patients with Joseph disease was significantly decreased in the cerebellum (mean [+-] SD: 50.2 [+-] 7.3 ml/100 g/min). No significant relationship, however, was found between the decrease in rCBF in the cerebellum and the degree of cerebellar atrophy on X-CT. rCBF in the cerebellum was minimally decreased in one patient who had severe cerebellar atrophy and in two patients with moderate atrophy. These data may support the findings that Purkinje cells in the cerebellum are almost normal in Joseph disease, and that the granular and molecular layers remain intact in spite of cortical atrophy of the cerebellum. It is concluded that [[sup 123]I]-IMP SPET is able to identify pathological and metabolic changes in the cerebellum that do not appear on X-CT or magnetic resonance imaging, and thus is useful for the diagnosis of Joseph disease. (orig.)

  8. Three-dimensional stereotactic surface projection in the statistical analysis of single photon emission computed tomography data for distinguishing between Alzheimer's disease and depression.

    Science.gov (United States)

    Kirino, Eiji

    2017-06-22

    To evaluate usefulness of single photon emission computed tomography (SPECT) with three-dimensional stereotactic surface projection (3D-SSP) in distinguishing between Alzheimer's disease (AD) and depression. We studied 43 patients who presented with both depressive symptoms and memory disturbance. Each subject was evaluated using the following: (1) the Minimal Mental State Examination; (2) the Hamilton Rating Scale for Depression; (3) Clinical Global Impression-Severity scale (CGI-S); and (4) SPECT imaging with 3D-SSP. The MMSE scores correlated significantly with the maximum Z-scores of AD-associated regions. CGI-S scores correlated significantly with the maximum Z-scores of depression-associated regions. Factor analysis identified three significant factors. Of these, Factor 1 could be interpreted as favouring a tendency for AD, Factor 2 as favouring a tendency for pseudo-dementia, and Factor 3 as favouring a depressive tendency. We investigated whether these patients could be categorized as types: Type A (true AD), Type B (pseudo-dementia), Type C (occult AD), and Type D (true depression). The factor scores in factor analysis supported the validity of this classification. Our results suggest that SPECT with 3D-SSP is highly useful for distinguishing between depression and depressed mood in the early stage of AD.

  9. Aortic knob width reflects left ventricular diastolic function assessed by gated myocardial perfusion single photon emission computed tomography in patients with normal myocardial perfusion.

    Science.gov (United States)

    Kurisu, Satoshi; Higaki, Tadanao; Sumimoto, Yoji; Ikenaga, Hiroki; Watanabe, Noriaki; Ishibashi, Ken; Dohi, Yoshihiro; Fukuda, Yukihiro; Kihara, Yasuki

    2017-04-01

    Aortic knob width on chest radiography represents the extent of aortic dialation and tortuosity of the aortic arch. We tested the hypothesis that aortic knob width reflected left ventricular (LV) diastolic function assessed by gated myocardial perfusion single photon emission computed tomography (SPECT) in patients with normal myocardial perfusion. One hundred and thirty patients with preserved LV ejection fraction and normal myocardial perfusion were enrolled in this study. Aortic knob width was measured along the horizontal line from the point of the lateral edge of the trachea to the left lateral wall of the aortic knob. The peak filling rate (PFR) and the one-third mean filling rate (1/3 MFR) were obtained as LV diastolic parameters. There were 114 male and 16 female patients. Age ranged from 43 to 88 years (69.9 ± 8.9 years). Aortic knob width ranged from 24.2 to 53.4 mm (37.6 ± 5.7 mm). There was a significant correlation between age and aortic knob width (r = 0.34, p perfusion.

  10. Head sinuses, melon, and jaws of bottlenose dolphins, Tursiops truncatus, observed with computed tomography structural and single photon emission computed tomography functional imaging

    Science.gov (United States)

    Ridgway, Sam; Houser, Dorian; Finneran, James J.; Carder, Don; van Bonn, William; Smith, Cynthia; Hoh, Carl; Corbeil, Jacqueline; Mattrey, Robert

    2003-04-01

    The head sinuses, melon, and lower jaws of dolphins have been studied extensively with various methods including radiography, chemical analysis, and imaging of dead specimens. Here we report the first structural and functional imaging of live dolphins. Two animals were imaged, one male and one female. Computed tomography (CT) revealed extensive air cavities posterior and medial to the ear as well as between the ear and sound-producing nasal structures. Single photon emission computed tomography (SPECT) employing 50 mCi of the intravenously injected ligand technetium [Tc-99m] biscisate (Neurolite) revealed extensive and uptake in the core of the melon as well as near the pan bone area of the lower jaw. Count density on SPECT images was four times greater in melon as in the surrounding tissue and blubber layer suggesting that the melon is an active rather than a passive tissue. Since the dolphin temporal bone is not attached to the skull except by fibrous suspensions, the air cavities medial and posterior to the ear as well as the abutment of the temporal bone, to the acoustic fat bodies of each lower jaw, should be considered in modeling the mechanism of sound transmission from the environment to the dolphin ear.

  11. Dopamine D[sub 2]-receptors in human narcolepsy. A SPECT study with [sup 123]I-IB. [Single Photon Emission Computed Tomography. Iodobenzamide

    Energy Technology Data Exchange (ETDEWEB)

    Hublin, C. (Department of Ullanlinna Sleep Research Centre, Kivelae Hospital, Helsinki (Finland)); Launes, J. (Department of Neurology, Helsinki University Central Hospital (Finland)); Nikkinen, P. (Department of Clinical Chemistry, Division of Nuclear Medicine, Helsinki University Central Hospital (Finland)); Partinen, M. (Department of Neurological Unit of Kivelae Hospital, Helsinki (Finland))

    1994-09-01

    Increased dopamine D[sub 2] receptor binding in basal ganglia has been reported in human narcolepsy. These studies have been based on post-mortem material of 8 patients, most of them also medicated for narcolepsy. We studied six narcoleptics without stimulant or anticataplectic medication. The patients had an unambiguous history of cataplexy, and they were also studied polygraphically. Single photon emission computed tomography (SPECT) imaging was performed. The D[sub 2] receptor density wad determined by using [sup 123]I-iodobenzamide (IBZM). The control subjects were 8 unmedicated Parkinson patients with one-sided (hemiparkinsonian) clinical symptoms. The D[sub 2] receptor density in them is known to be normal or somewhat increased compared to healthy normals. The striatum/frontal D[sub 2] activity ratio was 1.331 [+-] 0.084 (with phantom study correction 2.101 [+-] 0.300) in the narcoleptic patients, and in the parkinsonian controls 1.321 [+-] 0.052 (2.067 [+-] 0.185) for the asymptomatic side and 1.335 [+-] 0.025 (2.117 [+-] 0.090) for the symptomatic side (i.e. contralateral to the side with the clinical extrapyramidal signs). There was no statistical difference between the groups or between the symptomatic and asymptomatic side in the Parkinson patients. Thus, our results differ from the earlier post-mortem studies. (au) (28 refs.).

  12. Rapid and efficient radiosynthesis of [{sup 123}I]I-PK11195, a single photon emission computed tomography tracer for peripheral benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Pimlott, Sally L. [Department of Clinical Physics, West of Scotland Radionuclide Dispensary, Western Infirmary, G11 6NT Glasgow (United Kingdom)], E-mail: s.pimlott@clinmed.gla.ac.uk; Stevenson, Louise [Department of Chemistry, WestCHEM, University of Glasgow, G12 8QQ Glasgow (United Kingdom); Wyper, David J. [Institute of Neurological Sciences, Southern General Hospital, G51 4TF Glasgow (United Kingdom); Sutherland, Andrew [Department of Chemistry, WestCHEM, University of Glasgow, G12 8QQ Glasgow (United Kingdom)

    2008-07-15

    Introduction: [{sup 123}I]I-PK11195 is a high-affinity single photon emission computed tomography radiotracer for peripheral benzodiazepine receptors that has previously been used to measure activated microglia and to assess neuroinflammation in the living human brain. This study investigates the radiosynthesis of [{sup 123}I]I-PK11195 in order to develop a rapid and efficient method that obtains [{sup 123}I]I-PK11195 with a high specific activity for in vivo animal and human imaging studies. Methods: The synthesis of [{sup 123}I]I-PK11195 was evaluated using a solid-state interhalogen exchange method and an electrophilic iododestannylation method, where bromine and trimethylstannyl derivatives were used as precursors, respectively. In the electrophilic iododestannylation method, the oxidants peracetic acid and chloramine-T were both investigated. Results: Electrophilic iododestannylation produced [{sup 123}I]I-PK11195 with a higher isolated radiochemical yield and a higher specific activity than achievable using the halogen exchange method investigated. Using chloramine-T as oxidant provided a rapid and efficient method of choice for the synthesis of [{sup 123}I]I-PK11195. Conclusions: [{sup 123}I]I-PK11195 has been successfully synthesized via a rapid and efficient electrophilic iododestannylation method, producing [{sup 123}I]I-PK11195 with a higher isolated radiochemical yield and a higher specific activity than previously achieved.

  13. Direct evaluation of adrenocortical function by measurement of adrenal percent uptake of sup 131 I-6. beta. -iodomethyl-19-norcholesterol using single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ishimura, Junji (Hyogo Coll. of Medicine, Nishinomiya (Japan))

    1990-12-01

    In 55 patients (110 adrenal glands) with suspected adrenocortical abnormalities, I assessed the clinical usefulness of adrenal percent uptake of {sup 131}I-6{beta}-iodomethyl-19-norcholesterol (NCL-6-{sup 131}I) by single photon emission computed tomography (SPECT). The percent uptake of NCL-6-{sup 131}I in 6 hyperfunctioning glands of patients with the final diagnosis of Cushing's syndrome (2.62{+-}1.13(SD)%) was significantly (p<0.01) higher than that in 10 glands of patients with the final diagnosis of adenoma of primary aldosteronism (1.16{+-}0.09(SD)%). Moreover, the percent uptake of NCL-6-{sup 131}I in adrenal glands with hyperfunctioning lesions was significantly (p<0.01) higher than those in 10 contralateral normal glands of primary aldosteronism (0.55{+-}0.23(SD)%), 30 right glands (0.57{+-}0.24(SD)%) and 30 left glands (0.53{+-}0.22(SD)%) of essential hypertension with normally functioning adrenal cortices. The adrenal percent uptake of NCL-6-{sup 131}I in 24 glands with hypofunctioning adrenal cortices, including 4 glands suppressed by adenomas of Cushing's syndrome, was below the detectable limit. The data presented above show that the adrenocortical function can be evaluated directly based on measurement of adrenal percent uptake of NCL-6-{sup 131}I using SPECT. (author).

  14. Measurement of infarct size and percentage myocardium infarcted in a dog preparation with single photon-emission computed tomography, thallium-201, and indium 111-monoclonal antimyosin Fab

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.L.; Lerrick, K.S.; Coromilas, J.; Seldin, D.W.; Esser, P.D.; Zimmerman, J.M.; Keller, A.M.; Alderson, P.O.; Bigger, J.T. Jr.; Cannon, P.J.

    1987-07-01

    Single photon-emission tomography (SPECT) and indium 111-labeled monoclonal antimyosin Fab fragments were used to measure myocardial infarct size in 12 dogs, six subjected to balloon catheter-induced coronary artery occlusion for 6 hr (late reperfusion) and six subjected to occlusion with reperfusion at 2 hr (early reperfusion). Tomographic imaging was performed 24 hr after the intravenous injection of labeled Fab fragments with the use of a dual-head SPECT camera with medium-energy collimators. Immediately after the first tomographic scan, thallium-201 was injected into nine of 12 dogs and imaging was repeated. Estimated infarct size in grams was calculated from transaxially reconstructed, normalized, and background-corrected indium SPECT images with the use of a threshold technique for edge detection. Estimated noninfarcted myocardium in grams was calculated from obliquely reconstructed thallium SPECT images by a similar method. The animals were killed and infarct size in grams and true infarct size as a percentage of total left ventricular myocardial volume were measured by triphenyl tetrazolium chloride staining. Estimated infarct size from indium SPECT images showed an excellent correlation with true infarct size (r = .95, SEE = 4.1 g). Estimated percentage myocardium infarcted was calculated by dividing estimated infarct size from indium images by the sum of estimated infarct size plus estimated noninfarcted myocardium obtained from thallium images. Correlation between the estimated percentage of myocardium infarcted and true percentage of myocardium infarcted was excellent.

  15. Phantom study of thallium-201 myocadial single photon emission computed tomography for evaluating its ability to quantify residual myocardium in infarct area

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Tohru; Watanabe, Toshiaki; Kosaka, Noboru; Momose, Toshimitsu; Nishikawa, Junichi; Iio, Masahiro

    1988-03-01

    We studied the relationship between the count of myocardial wall in single photon emission computed tomography (SPECT) image and the thickness of wall or the concentration of Thallium-201 (Tl) in wall. For this purpose, we used phantom of thorax and myocardium. Thoracic phantom consists of mediastinum filled with low concentrated Tl solution and lung filled with wooden tip. Myocardial phantom consists of eight parts (upper and lower parts of anterior wall, septum, posteroinferior wall and lateral wall). In one phantom we changed the thickness of wall (10 mm, 7.5 mm, 5 mm, 2.5 mm, 0 mm) and in another phantom we changed the Tl concentration (100 %, 75 %, 50 %, 25 %, 0 %). In our results, the thickness and the concentration correlated well with the count and five grades (100 %, 75 %, 50 %, 25 %, 0 %) were well separated though it was said that SPECT is inaccurate in quantification. But in 180 deg half scan, the count of upper part was 10 - 15 % lower than that of lower part and the count of posteroinferior wall was about 10 % lower than that of anterior wall. We have to take it into account in quantification. In conclusion, using Tl-201 myocardial SPECT residual myocardium in infarct area can be evaluated from the severity of defect, and from that the severity of ischemia can be evaluated.

  16. Estimation of infarct size by three-dimensional surface display method of myocardial single photon emission CT with /sup 201/Tl

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Masahiro; Tsuda, Takatoshi; Akiba, Hidenari; Morita, Kazuo; Hosoba, Minoru; Ban, Ryuichi; Hirano, Takako

    1987-11-01

    To estimate infarct size, we devised three-dimensional (3D) surface display method of /sup 201/Tl myocardial single photon emission CT (SPECT). The method was performed with maximum-count circumferential profiles (CPs) of short axis views of /sup 201/Tl myocardial SPECT. The counts of maximum-count CP were put into a pixel line with the calculated left ventricular circumferential length on each short axis slice. A 3D-surface display map was created by arrangement of these pixel lines from apex to base of left ventricle in order. The sizes of defects in myocardial phantom were calculated by this method. There was a high correlation between the real defect sizes and the calculated defect sizes. In 6 patients with anterior myocardial infarction, the infarct sizes were calculated by this method. The extent of abnormality was identified by automatic computer comparison of each patient's profiles with corresponding lower limits of normal profiles. The infarct sizes calculated by 3D-surface display method were closely correlated not only with the infarct sizes calculated by summation of defect sizes in short axis views, but also with left ventricular ejection fractions. We concluded that the 3D-surface display method of /sup 201/Tl myocardial SPECT is effective for noninvasive assessment of the extent of myocardial infarction.

  17. Investigation of the effects of attenuation correction on the compatibility of two single photon emission computed tomography systems with the use of segmentation through registration

    Science.gov (United States)

    Lampaskis, M.; Killilea, K.; Metherall, P.; Harris, A.; Barber, D.

    2011-09-01

    The aim of this work was to compare images acquired from two Single Photon Emission Computed Tomography (SPECT), performing attenuation correction using different systems, to evaluate the level at which images from these systems can be used on patients to assess myocardial perfusion. The two systems are the Siemens E-cam with profile attenuation correction and the General Electric Hawkeye system. This study was performed using an anthropomorphic torso phantom. The motivation was to examine if attenuation corrected images from these systems are comparable when assessing the myocardial function of patients, with different conditions regarding background (adjacent tissues) activity and the presence or not of defects on the cardiac wall. To perform the analysis of the acquired images specialized software were used to extract information relating to the activity distribution within the cardiac insert (simulated myocardium). This was based on standardized myocardial segmentation used clinically, by the application of image registration using an artificial reference model. The results show that adjacent tissue activity did not affect the ability to detect defects. Further, the application of attenuation correction may reduce the comparability of the two systems to a small degree.

  18. Regional cerebral blood flow in acute stage with ischemic cerebrovascular disease by xenon-133 inhalation and single photon emission computerized tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kurokawa, Hiroyuki; Iino, Katsuro; Kojima, Hisashi; Saito, Hitoshi; Suzuki, Mikio; Watanabe, Kazuo; Kato, Toshiro

    1987-05-01

    Single photon emission computed tomography (SPECT) with xenon-133 inhalation method was undertaken within 48 hr after the onset in 68 patients with ischemic cerebrovascular disease. The results for regional cerebral blood flow (rCBF) were compared with concurrently available computed tomography (CT) scans. In patients with cerebral infarction, SPECT detected ischemic lesions earlier than CT, with the detectability being 92 %. The area with a decreased blood flow, as seen on SPECT, was more extensive than the low density area on CT, with a concomitant decrease in blood flow in the contralateral cerebral hemisphere. Crossed cerebellar diaschisis was associated with stenosis of the internal carotid artery in 50 % (7/14), and with stenosis of the middle cerebral artery in 35 % (9/26). Abnormal SPECT findings were seen in 47 % (8/17) of the patients with transient ischemic attack (TIA). Five TIA patients had a decreased rCBF on SPECT, which was not provided by CT scans. On the contrary, small infarct lesions in the cerebral basal ganglia, as observed in 4 patients, was not detected by SPECT, but detected by CT. This may imply the limitations of SPECT in the detection of deep-seated lesions of the cerebrum. The results led to the conclusion that SPECT can be performed safely even in acute, seriously ill patients to know changes in rCBF because it is noninvasive and is capable of being repeated in a short time. (Namekawa, K.).

  19. Dynamic Observation of the Three-Dimensional Distribution of Labeled Liposomes Using the Novel High-Resolution Single-Photon Emission Computed Tomography

    Directory of Open Access Journals (Sweden)

    Andreas Wirrwar

    2008-09-01

    Full Text Available The aim of this study was to show that the multipinhole technique (high-resolution single-photon emission computed tomography [HiSPECT] is suitable for dynamic imaging of both biodistribution and temporal uptake behavior of radiolabeled cationic liposomes in Balb/c-mice. HiSPECT uses multipinhole collimators adapted to a clinical SPECT scanner, together with a dedicated iterative reconstruction program. This technique provides both high spatial resolution and an improvement in sensitivity. Six male Balb/c mice received 9.8 ± 4.0 MBq of the In 111-labeled liposomes. The measurements started directly after the injection and tomographic data were acquired in steps of 5 minutes. The regional evaluation displayed a high initial uptake of liposomes in the lungs (45.4%, which decreased to 25.1% after 30 minutes and to below 2% after 48 hours. In contrast, liver uptake increased in the first 30 minutes from 13.1 to 21.2% and remained relatively stable at 24.4% (24 hours and 18.8% (48 hours. The data are interpreted as a slow shift of liposomes from the lungs into the liver and later to other organs such as the spleen and bladder. This study shows that the HiSPECT technique is capable of dynamically visualizing the uptake behavior of radioactively labeled liposomes in vivo with high temporal and spatial resolution.

  20. Prognostic value of technetium-99m-labeled single-photon emission computerized tomography in the follow-up of patients after their first myocardial revascularization surgery

    Directory of Open Access Journals (Sweden)

    Márcia Maria Sales dos Santos

    2003-01-01

    Full Text Available OBJECTIVE: To assess the prognostic value of Technetium-99m-labeled single-photon emission computerized tomography (SPECT in the follow-up of patients who had undergone their first myocardial revascularization. METHODS: We carried out a retrospective study of 280 revascularized patients undergoing myocardial scintigraphy under stress (exercise or pharmacological stress with dipyridamole and at rest according to a 2-day protocol. A set of clinical, stress electrocardiographic and scintigraphic variables was assessed. Cardiac events were classified as "major" (death, infarction, unstable angina and "any" (major event or coronary angioplasty or new myocardial revascularization surgery. RESULTS: Thirty-six major events occurred as follows: 3 deaths, 11 infarctions, and 22 unstable anginas. In regard to any event, 22 angioplasties and 7 new surgeries occurred in addition to major events, resulting a total of 65 events. The sensitivity of scintigraphy in prognosticating a major event or any event was, respectively, 55% and 58%, showing a negative predictive value of 90% and 83%, respectively. Diabetes mellitus, inconclusive stress electrocardiography, and a scintigraphic visualization of left ventricular enlargement were significant variables for the occurrence of a major event. On multivariate analysis, abnormal myocardial scintigraphy was a predictor of any event. CONCLUSION: Myocardial perfusion tomography with Technetium-99m may be used to identify high-risk patients after their first myocardial revascularization surgery.

  1. Thallium-201 single photon emission computed tomography (SPECT) in patients with Duchenne's progressive muscular dystrophy. A histopathologic correlation study

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Toru; Yanagisawa, Atsuo; Sakata, Konomi; Shimoyama, Katsuya; Yoshino, Hideaki; Ishikawa, Kyozo [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine; Sakata, Hitomi; Ishihara, Tadayuki

    2001-02-01

    The pathomorphologic mechanism responsible for abnormal perfusion imaging during thallium-201 myocardial single photon emission computed tomography ({sup 201}Tl-SPECT) in patients with Duchenne's progressive muscular dystrophy (DMD) was investigated. Hearts from 7 patients with DMD were evaluated histopathologically at autopsy and the results correlated with findings on initial and delayed resting {sup 201}Tl-SPECT images. The location of segments with perfusion defects correlated with the histopathologically abnormal segments in the hearts. Both the extent and degree of myocardial fibrosis were severe, especially in the posterolateral segment of the left ventricle. Severe transmural fibrosis and severe fatty infiltration were common in segments with perfusion defects. In areas of redistribution, the degree of fibrosis appeared to be greater than in areas of normal perfusion; and intermuscular edema was prominent. Thus, the degree and extent of perfusion defects detected by {sup 201}Tl-SPECT were compatible with the histopathology. The presence of the redistribution phenomenon may indicate ongoing fibrosis. Initial and delayed resting {sup 201}Tl-SPECT images can predict the site and progress of myocardial degeneration in patients with DMD. (author)

  2. Influence of Respiratory Gating, Image Filtering, and Animal Positioning on High-Resolution Electrocardiography-Gated Murine Cardiac Single-Photon Emission Computed Tomography

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2015-01-01

    Full Text Available Cardiac parameters obtained from single-photon emission computed tomographic (SPECT images can be affected by respiratory motion, image filtering, and animal positioning. We investigated the influence of these factors on ultra-high-resolution murine myocardial perfusion SPECT. Five mice were injected with 99m technetium (99mTc-tetrofosmin, and each was scanned in supine and prone positions in a U-SPECT-II scanner with respiratory and electrocardiographic (ECG gating. ECG-gated SPECT images were created without applying respiratory motion correction or with two different respiratory motion correction strategies. The images were filtered with a range of three-dimensional gaussian kernels, after which end-diastolic volumes (EDVs, end-systolic volumes (ESVs, and left ventricular ejection fractions were calculated. No significant differences in the measured cardiac parameters were detected when any strategy to reduce or correct for respiratory motion was applied, whereas big differences (> 5% in EDV and ESV were found with regard to different positioning of animals. A linear relationship (p < .001 was found between the EDV or ESV and the kernel size of the gaussian filter. In short, respiratory gating did not significantly affect the cardiac parameters of mice obtained with ultra-high-resolution SPECT, whereas the position of the animals and the image filters should be the same in a comparative study with multiple scans to avoid systematic differences in measured cardiac parameters.

  3. Assessment of Gastric Accommodation in Patients with Functional Dyspepsia by 99mTc-Pertechtenate Single Photon Emission Computed Tomography Imaging: Practical but not Widely Accepted

    Directory of Open Access Journals (Sweden)

    Taghi Amiriani

    2015-10-01

    Full Text Available Objective: Impaired gastric accommodation is one of the main symptoms in patients with functional dyspepsia. The aim of the present study was to assess gastric accommodation in patients with functional dyspepsia using single photon emission computed tomography (SPECT imaging. Methods: Twenty-four patients with functional dyspepsia and 50 healthy volunteers as control group were enrolled in this study. All participants were given 5 mCi 99mTc-pertechtenate intravenously, served with a low fat meal, and underwent SPECT scanning 20 minutes after the meal. Results: Based on the scintigraphic data, gastric volumes were found to be significantly increased after food ingestion in both patient and control groups. We also found that while there was no significant difference between patient and control groups in terms of fasting gastric volumes, postprandial gastric volume was significantly lower in patients as compared to healthy individuals (p<0.05. Conclusion: Measuring gastric volume by using SPECT can be a valuable method in the detection of functional dyspepsia and in differentiation of this entity from other organic disorders.

  4. Imaging by single photon emission computed tomography: interest in the pre surgical check up of epilepsy; L'imagerie par tomographie d'emission monophotonique: interet dans le bilan pre-chirurgical de l'epilepsie

    Energy Technology Data Exchange (ETDEWEB)

    Biraben, A. [UPRES EA 2232, Cortex Cerebral et epilepsie, 35 - Rennes (France); Bernard, A.M. [Centre Eugene-Marquis, 35 - Rennes (France)

    1999-12-01

    With the single photon emission computed tomography, it is a more reliable technique that is at someone's disposal, especially to limit spatially the evolution of epilepsy crisis before any surgery act. The determination of the precise area is necessary to make sure that the crisis come really from this area and the determination of the functionality of this area is checked to be sure that the ablation of the zone will not lead to an unacceptable functional deficit. (N.C.)

  5. Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm

    Science.gov (United States)

    Kettler, Jan; Paul, Matthias; Olbrich, Fabian; Zeuner, Katharina; Jetter, Michael; Michler, Peter

    2016-03-01

    InAs quantum dots grown on a GaAs substrate have been one of the most successful semiconductor material systems to demonstrate single-photon-based quantum optical phenomena. In this context, we present the feasibility to extend the low-temperature photoluminescence emission range of In(Ga)As/GaAs quantum dots grown by metal-organic vapor-phase epitaxy from the typical window between 880 and 960 nm to wavelengths above 1.3 μm. A low quantum dot density can be obtained throughout this range, enabling the demonstration of single- and cascaded photon emission. We further analyze polarization-resolved micro-photoluminescence from a large number of individual quantum dots with respect to anisotropy and size of the underlying fine-structure splittings in the emission spectra. For samples with elevated emission wavelengths, we observe an increasing tendency of the emitted photons to be polarized along the main crystal axes.

  6. Anti-3-[18F]FACBC Positron Emission Tomography-Computerized Tomography and 111In-Capromab Pendetide Single Photon Emission Computerized Tomography-Computerized Tomography for Recurrent Prostate Carcinoma: Results of a Prospective Clinical Trial

    Science.gov (United States)

    Schuster, David M.; Nieh, Peter T.; Jani, Ashesh B.; Amzat, Rianot; Bowman, F. DuBois; Halkar, Raghuveer K.; Master, Viraj A.; Nye, Jonathon A.; Odewole, Oluwaseun A.; Osunkoya, Adeboye O.; Savir-Baruch, Bital; Alaei-Taleghani, Pooneh; Goodman, Mark M.

    2014-01-01

    Purpose We prospectively evaluated the amino acid analogue positron emission tomography radiotracer anti-3-[18F]FACBC compared to ProstaScint® (111In-capromab pendetide) single photon emission computerized tomography-computerized tomography to detect recurrent prostate carcinoma. Materials and Methods A total of 93 patients met study inclusion criteria who underwent anti-3-[18F]FACBC positron emission tomography-computerized tomography plus 111In-capromab pendetide single photon emission computerized tomography-computerized tomography for suspected recurrent prostate carcinoma within 90 days. Reference standards were applied by a multidisciplinary board. We calculated diagnostic performance for detecting disease. Results In the 91 of 93 patients with sufficient data for a consensus on the presence or absence of prostate/bed disease anti-3-[18F]FACBC had 90.2% sensitivity, 40.0% specificity, 73.6% accuracy, 75.3% positive predictive value and 66.7% negative predictive value compared to 111In-capromab pendetide with 67.2%, 56.7%, 63.7%, 75.9% and 45.9%, respectively. In the 70 of 93 patients with a consensus on the presence or absence of extraprostatic disease anti-3-[18F]FACBC had 55.0% sensitivity, 96.7% specificity, 72.9% accuracy, 95.7% positive predictive value and 61.7% negative predictive value compared to 111In-capromabpendetide with10.0%, 86.7%, 42.9%, 50.0% and 41.9%, respectively. Of 77 index lesions used to prove positivity histological proof was obtained in 74 (96.1%). Anti-3-[18F]FACBC identified 14 more positive prostate bed recurrences (55 vs 41) and 18 more patients with extraprostatic involvement (22 vs 4). Anti-3-[18F]FACBC positron emission tomography-computerized tomography correctly up-staged 18 of 70 cases (25.7%) in which there was a consensus on the presence or absence of extraprostatic involvement. Conclusions Better diagnostic performance was noted for anti-3-[18F]FACBC positron emission tomography-computerized tomography than for 111In

  7. Brain single-photon emission tomography with {sup 99m}Tc-HMPAO in neuropsychiatric systemic lupus erythematosus: relations with EEG and MRI findings and clinical manifestations

    Energy Technology Data Exchange (ETDEWEB)

    Colamussi, P. [Dept. of Nuclear Medicine, Univ. of Ferrara (Italy); Giganti, M. [Dept. of Nuclear Medicine, Univ. of Ferrara (Italy); Cittanti, C. [Dept. of Nuclear Medicine, Univ. of Ferrara (Italy); Dovigo, L. [Inst. of Neurology, Univ. of Ferrara (Italy); Trotta, F. [Inst. of Neurology, Univ. of Ferrara (Italy); Tola, M.R. [Div. of Rheumatology, S. Anna Hospital, Ferrara (Italy); Tamarozzi, R. [Radiology Dept., S. Anna Hospital, Ferrara (Italy); Lucignani, G. [INB-CNR Dept. of Nuclear Medicine, H.S. Raffaele, Milan (Italy); Piffanelli, A. [Dept. of Nuclear Medicine, Univ. of Ferrara (Italy)

    1995-01-01

    In the reported study the role of single-photon emission tomography (SPET) with technetium-99m hexamethylpropylene amine oxime (HMPAO) in the evaluation of CNS involvement in SLE was assessed and the relations between SPET perfusion defects, EEG examination, magnetic resonance imaging (MRI) findings and clinical presentation were examined. Twenty SLE patients with different NP manifestations were studied. Multiple areas of hypoperfusion, especially in the territory of the middle cerebral artery, were demonstrated by SPET analysis in all 20 patients. The number of hypoperfused areas and the degree of hypoperfusion, expressed by an asymmetry index (AI), were more marked in patients with multiple NP manifestations. MRI and EEG evaluations were positive for 14 of 18 and for 12 of 20 patients, respectively. In the patients with positive SPET and MRI, 87 MRI focal lesions and 63 hypoperfused areas were found, and for 51 of these 63 at least one MRI lesion was found in the same anatomical region. SPET examination of patients with a normal EEG showed fewer hypoperfused areas and a lower degree of asymmetry compared to patients with an abnormal EEG. SPET of patients with focal EEG abnormalities showed more hypoperfused areas (difference not statistically significant) and a higher AI than did SPET of the patients with diffuse EEG abnormalities. Seven of 11 anatomical regions with focal EEG abnormalities. Seven of 11 anatomical regions with focal EEG abnormalities had co-localized hypoperfused areas and in two of these seven no detectable MRI lesions were found. The analysis of SPET and NP manifestations showed that 12 of 20 patients had at least one positive correlation, always involving the areas with the highest AI. In total, 51/88 (58%) hypoperfused areas correlated with the MRI findings and 31/88 (35%) with NP manifestations; for seven of the latter no concurrent MRI lesions were detected in the same anatomical region. (orig.)

  8. Potential advantage of preoperative three-dimensional mapping of sentinel nodes in breast cancer by a hybrid single photon emission CT (SPECT)/CT system.

    Science.gov (United States)

    Ibusuki, Mutsuko; Yamamoto, Yutaka; Kawasoe, Teru; Shiraishi, Shinya; Tomiguchi, Seiji; Yamashita, Yasuyuki; Honda, Yumi; Iyama, Kenichi; Iwase, Hirotaka

    2010-06-01

    This study aims to assess the role of three-dimensional single-photon emission computed tomography (3D-SPECT/CT) in sentinel node (SN) identification, and to analyze the impact of such information on estimating metastases to SNs. Nodal status is a key factor for breast cancer. SN biopsy has been established as the alternative to routine axillary dissection these days. We investigated both the anatomical location of SNs demonstrated by our 3D-SPECT/CT system and the correlation to SN positivity. Two hundred and twenty-three clinically node-negative patients underwent SN biopsy. All of the axillary structures, including SNs, were visualized by a SPECT/CT combined system after subcutaneous injection of (99m)Tc-phytate. By plotting the visualized SNs, the most frequent SN location 'Pedestal area (PA)' was designated. SPECT/CT detected (99m)Tc uptake in 217 cases (97.3%). 3D-SPECT/CT images visualized the accurate location of SNs in each case. In patients whose SNs were histopathologically negative (SN-), 228 (98.3%) SNs were found in the PA, and 4 (1.7%) were in other zones. In those with histopathologically positive SNs (SN+), 65 (78.3%) SNs were in the PA and 18 (21.7%) were outside it. The difference in SN distribution (i.e., in or out of the PA) between SN+ and SN- patients was statistically significant (pSNs in patients with breast cancer. Atypical distribution of SNs out of the PA may suggest SN positivity, reflecting failure of the lymphatic drainage systems.

  9. Regadenoson-stress myocardial CT perfusion and single-photon emission CT: rationale, design, and acquisition methods of a prospective, multicenter, multivendor comparison.

    Science.gov (United States)

    Cury, Ricardo C; Kitt, Therese M; Feaheny, Kathleen; Akin, Jamie; George, Richard T

    2014-01-01

    Pharmacologic stress myocardial CT perfusion (CTP) has been reported to be a viable imaging modality for detection of myocardial ischemia compared with single-photon emission CT (SPECT) in several single-center studies. However, regadenoson-stress CTP has not previously been compared with SPECT in a multicenter, multivendor study. The rationale and design of a phase 2, randomized, cross-over study of regadenoson-stress myocardial perfusion imaging by CTP compared with SPECT are described herein. The study will be conducted at approximately 25 sites by using 6 different CT scanner models, including 64-, 128-, 256-, and 320-slice systems. Subjects with known/suspected coronary artery disease will be randomly assigned to 1 of 2 imaging procedure sequences; rest and regadenoson-stress SPECT on day 1, then regadenoson-stress CTP and rest CTP/coronary CT angiography (same acquisition) on day 2; or regadenoson-stress CTP and rest CTP/CT angiography on day 1, then rest and regadenoson-stress SPECT on day 2. The prespecified primary analysis examines the agreement rate between CTP and SPECT for detecting or excluding ischemia (≥2 or 0-1 reversible defects, respectively), as assessed by 3 independent blinded readers for each modality. Non-inferiority will be indicated if the lower boundary of the 95% CI for the agreement rate is within 0.15 of 0.78 (the observed agreement rate in the regadenoson pivotal trials). The protocol described herein will support the first evaluation of regadenoson-stress CTP by using multiple scanner types compared with SPECT.

  10. Voxel-Based Correlation between Coregistered Single-Photon Emission Computed Tomography and Dynamic Susceptibility Contrast Magnetic Resonance Imaging in Subjects with Suspected Alzheimer Disease

    Energy Technology Data Exchange (ETDEWEB)

    Cavallin, L.; Axelsson, R.; Wahlund, L.O.; Oeksengard, A.R.; Svensson, L.; Juhlin, P.; Wiberg, M. Kristoffersen; Frank, A. [Division of Radiology, Karolinska Inst., Karolinska Univ. Hospital, Stockholm (Sweden)

    2008-12-15

    Background: Current diagnosis of Alzheimer disease is made by clinical, neuropsychologic, and neuroimaging assessments. Neuroimaging techniques such as magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) could be valuable in the differential diagnosis of Alzheimer disease, as well as in assessing prognosis. Purpose: To compare SPECT and MRI in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer disease (AD). Material and Methods: 24 patients, eight with AD, 10 with MCI, and six controls, were investigated with SPECT using {sup 99m}Tc-hexamethylpropyleneamine oxime (HMPAO, Ceretec; GE Healthcare Ltd., Little Chalsont UK) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a contrast-enhancing gadobutrol formula (Gadovist; Bayer Schering Pharma, Berlin, Germany). Voxel-based correlation between coregistered SPECT and DSC-MR images was calculated. Region-of-interest (ROI) analyses were then performed in 24 different brain areas using brain registration and analysis of SPECT studies (BRASS; Nuclear Diagnostics AB, Stockholm (SE)) on both SPECT and DSC-MRI. Results: Voxel-based correlation between coregistered SPECT and DSC-MR showed a high correlation, with a mean correlation coefficient of 0.94. ROI analyses of 24 regions showed significant differences between the control group and AD patients in 10 regions using SPECT and five regions in DSC-MR. Conclusion: SPECT remains superior to DSC-MRI in differentiating normal from pathological perfusion, and DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer disease.

  11. Voxel-Based Correlation between Coregistered Single-Photon Emission Computed Tomography and Dynamic Susceptibility Contrast Magnetic Resonance Imaging in Subjects with Suspected Alzheimer Disease

    Energy Technology Data Exchange (ETDEWEB)

    Cavallin, L.; Axelsson, R.; Wahlund, L.O.; Oeksengard, A.R.; Svensson, L.; Juhlin, P.; Wiberg, M. Kristoffersen; Frank, A. (Division of Radiology, Karolinska Inst., Karolinska Univ. Hospital, Stockholm (Sweden))

    2008-12-15

    Background: Current diagnosis of Alzheimer disease is made by clinical, neuropsychologic, and neuroimaging assessments. Neuroimaging techniques such as magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) could be valuable in the differential diagnosis of Alzheimer disease, as well as in assessing prognosis. Purpose: To compare SPECT and MRI in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer disease (AD). Material and Methods: 24 patients, eight with AD, 10 with MCI, and six controls, were investigated with SPECT using 99mTc-hexamethylpropyleneamine oxime (HMPAO, Ceretec; GE Healthcare Ltd., Little Chalsont UK) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a contrast-enhancing gadobutrol formula (Gadovist; Bayer Schering Pharma, Berlin, Germany). Voxel-based correlation between coregistered SPECT and DSC-MR images was calculated. Region-of-interest (ROI) analyses were then performed in 24 different brain areas using brain registration and analysis of SPECT studies (BRASS; Nuclear Diagnostics AB, Stockholm (Sweden)) on both SPECT and DSC-MRI. Results: Voxel-based correlation between coregistered SPECT and DSC-MR showed a high correlation, with a mean correlation coefficient of 0.94. ROI analyses of 24 regions showed significant differences between the control group and AD patients in 10 regions using SPECT and five regions in DSC-MR. Conclusion: SPECT remains superior to DSC-MRI in differentiating normal from pathological perfusion, and DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer disease

  12. Correlation of uptake patterns on single-photon emission computed tomography/computed tomography (SPECT/CT)and treatment response in patients with knee pain

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Geon; Hwang, Kyung Hoon; Lee, Hae Jin; Kim, Seog Gyun; Lee, Beom Koo [Gachon University Gil Hospital, Incheon (Korea, Republic of)

    2016-06-15

    To determine whether treatment response in patients with knee pain could be predicted using uptake patterns on single-photon emission computed tomography/computed tomography (SPECT/CT) images. Ninety-five patients with knee pain who had undergone SPECT/CT were included in this retrospective study. Subjects were divided into three groups: increased focal uptake (FTU), increased irregular tracer uptake (ITU), and no tracer uptake (NTU). A numeric rating scale (NRS-11) assessed pain intensity. We analyzed the association between uptake patterns and treatment response using Pearson's chi-square test and Fisher's exact test. Uptake was quantified from SPECT/CT with region of interest (ROI) counting, and an intraclass correlation coefficient (ICC) calculated agreement. We used Student' t-test to calculate statistically significant differences of counts between groups and the Pearson correlation to measure the relationship between counts and initial NRS-1k1. Multivariate logistic regression analysis determined which variables were significantly associated with uptake. The FTU group included 32 patients; ITU, 39; and NTU, 24. With conservative management, 64 % of patients with increased tracer uptake (TU, both focal and irregular) and 36 % with NTU showed positive response. Conservative treatment response of FTU was better than NTU, but did not differ from that of ITU. Conservative treatment response of TU was significantly different from that of NTU (OR 3.1; p 0.036). Moderate positive correlation was observed between ITU and initial NRS-11. Age and initial NRS-11 significantly predicted uptake. Patients with uptake in their knee(s) on SPECT/CT showed positive treatment response under conservative treatment.

  13. Technetium-99m hexamethylpropylene amine oxime single-photon emission tomography of regional cerebral blood flow in insulin-dependent diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Keymeulen, B. [Dept. of Internal Medicine, Academic Hospital VUB, Brussels (Belgium); Metz, K. de [Dept. of Nuclear Medicine, Academic Hospital VUB, Brussels (Belgium); Cluydts, R. [Dept. of Psychology, Academic Hospital VUB, Brussels (Belgium); Bossuyt, A. [Dept. of Nuclear Medicine, Academic Hospital VUB, Brussels (Belgium); Somers, G.

    1996-02-01

    The study was performed to investigate subclinical abnormalities in regional cerebral blood flow (rCBF) in patients with insulin-dependent diabetes mellitus (IDDM) and to correlate them with patients` characteristics. After intravenous injection of technetium-99m hexamethylpropylene amine oxime (HMPAO), tracer uptake of the prefrontal, frontal and parieto-occipital zones was measured with a triple-head single-photon emission tomography (SPET) camera system in 35 IDDM patients outside an episode of hypolycaemia. Tracer uptake values in 16 age- and sex-matched healthy volunteers served as reference values. Compared with healthy subjects, increased tracer uptake of both prefrontal regions and the left frontal region could be shown in diabetes. Tracer uptake was negatively correlated with the duration of diabetes in all investigated regions. In diabetic patients with a disease duration of more than 5 years (n=26), stepwise regression analysis revealed a significant positive correlation between their HbA1c levels and tracer uptake. Long-term diabetic patients with reduced (pre)frontal tracer uptake (n=8) had lower HbA1c levels than those without (8.4%{+-}0.2% vs 9.3%{+-}0.3%, P<0.05) and tended to have more frequently a history of hypoglycaemic coma (6/8 v 6/18, P=0.06). It can be concluded that duration of diabetes contributes to subclinical changes in basal rCBF in IDDM as detected with HMPAO SPET of the brain. The positive correlation between the presence of regional hypoperfusion and lower HbA1c levels in long-term diabetic patients may be interpreted in the light of presumed higher incidence of hypoglycaemia as metabolic control improves. (orig.)

  14. Measurement of porto-systemic shunting in mice by novel three-dimensional micro-single photon emission computed tomography imaging enabling longitudinal follow-up.

    Science.gov (United States)

    Van Steenkiste, Christophe; Staelens, Steven; Deleye, Steven; De Vos, Filip; Vandenberghe, Stefaan; Geerts, Anja; Van de Wiele, Christophe; De Vos, Martine; Van Vlierberghe, Hans; Colle, Isabelle

    2010-09-01

    The reference method for diagnosing porto-systemic shunting (PSS) in experimental portal hypertension involves measuring (51)Chrome ((51)Cr)-labelled microspheres. Unfortunately, this technique necessitates the sacrifice of animals. Alternatively, (99m)technetium-macroaggregated albumin ((99m)Tc-MAA) has been used; however, planar scintigraphy imaging techniques are not quantitatively accurate and adequate spatial information is not attained. Here, we describe a reliable, minimally invasive and rapid in vivo imaging technique, using three-dimensional single photon emission computed tomography (3D SPECT) modus, that allows more accurate quantification, serial measurements and spatial discrimination. Partial portal vein ligation, common bile duct ligation and sham were induced in male mice. A mixture of (51)Cr microspheres and (99m)Tc-macroaggregated albumin particles was injected into the splenic pulpa. All mice were scanned in vivo with microSPECT (1 mm spatial resolution) and, when mandatory for localisation, a microSPECT-CT was acquired. A relative quantitative analysis was performed based on the 3D reconstructed datasets. Additionally, (51)Cr was measured in the same animals to calculate the correlation coefficient between the (99m)Tc detection and the gold standard (51)Cr. In each measuring modality, the PSS fraction was calculated using the formula: [(lung counts)/(lung counts+liver counts)] x 100. A significant correlation between the (99m)Tc detection and (51)Cr was demonstrated in partial portal vein ligation, common bile duct ligation and sham mice and there was a good agreement between the two modalities. MicroSPECT scanning delivers high spatial resolution and 3D image reconstructions. We have demonstrated that quantitative high-resolution microSPECT imaging with (99m)Tc-MAA is useful for detecting the extent of PSS in a non-sacrificing set-up. This technology permits serial measurements and high-throughput screening to detect baseline PSS, which is

  15. Novel application of quantitative single-photon emission computed-tomography/computed tomography to predict early response to methimazole in Graves' disease

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Joo; Bang, Ji In; Kim, Ji Young; Moon, Jae Hoon [Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam (Korea, Republic of); So, Young [Dept. of Nuclear Medicine, Konkuk University Medical Center, Seoul (Korea, Republic of); Lee, Won Woo [Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul (Korea, Republic of)

    2017-06-15

    Since Graves' disease (GD) is resistant to antithyroid drugs (ATDs), an accurate quantitative thyroid function measurement is required for the prediction of early responses to ATD. Quantitative parameters derived from the novel technology, single-photon emission computed tomography/computed tomography (SPECT/CT), were investigated for the prediction of achievement of euthyroidism after methimazole (MMI) treatment in GD. A total of 36 GD patients (10 males, 26 females; mean age, 45.3 ± 13.8 years) were enrolled for this study, from April 2015 to January 2016. They underwent quantitative thyroid SPECT/CT 20 minutes post-injection of {sup 99m}Tc-pertechnetate (5 mCi). Association between the time to biochemical euthyroidism after MMI treatment and uptake, standardized uptake value (SUV), functional thyroid mass (SUVmean × thyroid volume) from the SPECT/CT, and clinical/biochemical variables, were investigated. GD patients had a significantly greater %uptake (6.9 ± 6.4%) than historical control euthyroid patients (n = 20, 0.8 ± 0.5%, p < 0.001) from the same quantitative SPECT/CT protocol. Euthyroidism was achieved in 14 patients at 156 ± 62 days post-MMI treatment, but 22 patients had still not achieved euthyroidism by the last follow-up time-point (208 ± 80 days). In the univariate Cox regression analysis, the initial MMI dose (p = 0.014), %uptake (p = 0.015), and functional thyroid mass (p = 0.016) were significant predictors of euthyroidism in response to MMI treatment. However, only uptake remained significant in a multivariate Cox regression analysis (p = 0.034). A uptake cutoff of 5.0% dichotomized the faster responding versus the slower responding GD patients (p = 0.006). A novel parameter of thyroid uptake from quantitative SPECT/CT is a predictive indicator of an early response to MMI in GD patients.

  16. Correlative single photon emission computed tomography imaging of [{sup 123}I]altropane binding in the rat model of Parkinson's

    Energy Technology Data Exchange (ETDEWEB)

    Gleave, Jacqueline A. [Department of Pathology and Molecular Medicine, McMaster University, 1200 Main Street West, Hamilton, Ontario, L8N 3Z5 (Canada); Farncombe, Troy H.; Saab, Chantal [Department of Nuclear Medicine, Hamilton Health Sciences, Hamilton, Ontario, L8N 3Z5 (Canada); Doering, Laurie C., E-mail: doering@mcmaster.ca [Department of Pathology and Molecular Medicine, McMaster University, 1200 Main Street West, Hamilton, Ontario, L8N 3Z5 (Canada)

    2011-07-15

    Introduction: This study used the dopamine transporter (DAT) probe, [{sup 123}I]-2{beta}-carbomethoxy-3{beta}-(4-fluorophenyl)-N-(3-iodo-E-allyl)nortropane ([{sup 123}I]altropane), to assess the DAT levels in the 6-hydroxydopamine rat model of Parkinson's disease. We sought to assess if the right to left [{sup 123}I]altropane striatal ratios correlated with dopamine content in the striatum and substantia nigra and with behavioural outcomes. Methods: [{sup 123}I]altropane images taken pre- and postlesion were acquired before and after the transplantation of neural stem/progenitor cells. The images obtained using [{sup 123}I]altropane and single photon emission computed tomography (SPECT) were compared with specific behavioural tests and the dopamine content assessed by high-performance liquid chromatography. Results: [{sup 123}I]altropane binding correlated with the content of dopamine in the striatum; however, [{sup 123}I]altropane binding did not correlate with the dopamine content in the substantia nigra. There was a significant correlation of altropane ratios with the cylinder test and the postural instability test, but not with amphetamine rotations. The low coefficient of determination (r{sup 2}) for these correlations indicated that [{sup 123}I]altropane SPECT was not a good predictor of behavioural outcomes. Conclusion: Our data reveal that [{sup 123}I]altropane predicts the integrity of the striatal dopamine nerve terminals, but does not predict the integrity of the nigrostriatal system. [{sup 123}I]altropane could be a useful marker to measure dopamine content in cell replacement therapies; however, it would not be able to evaluate outcomes for neuroprotective strategies.

  17. Perfusion impairments in infantile autism on technetium-99m ethyl cysteinate dimer brain single-photon emission tomography: comparison with findings on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Y.H.; Lee, J.D.; Yoon, P.H.; Kim, D.I. [Division of Nuclear Medicine, Department of Diagnostic Radiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, H.B.; Shin, Y.J. [Department of Psychiatry, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1999-03-01

    The neuro-anatomical substrate of autism has been the subject of detailed investigation. Because previous studies have not demonstrated consistent and specific neuro-imaging findings in autism and most such studies have been performed in adults and school-aged children, we performed a retrospective review in young children in search of common functional and anatomical abnormalities with brain single-photon emission tomography (SPET) using technetium-99m ethyl cysteinate dimer (ECD) and correlative magnetic resonance imaging (MRI). The patient population was composed of 23 children aged 28-92 months (mean: 54 months) who met the diagnostic criteria of autism as defined in the DSM-IV and CARS. Brain SPET was performed after intravenous injection of 185-370 MBq of {sup 99m}Tc-ECD using a brain-dedicated annular crystal gamma camera. MRI was performed in all patients, including T1, T2 axial and T1 sagittal sequences. SPET data were assessed visually. Twenty patients had abnormal SPET scans revealing focal areas of decreased perfusion. Decreased perfusion of the cerebellar hemisphere (20/23), thalami (19/23), basal ganglia (5/23) and posterior parietal (10/23) and temporal (7/23) areas were noted on brain SPET. By contrast all patients had normal MRI findings without evidence of abnormalities of the cerebellar vermis, cerebellar hemisphere, thalami, basal ganglia or parietotemporal cortex. In conclusion, extensive perfusion impairments involving the cerebellum, thalami and parietal cortex were found in this study. SPET may be more sensitive in reflecting the pathophysiology of autism than MRI. However, further studies are necessary to determine the significance of thalamic and parietal perfusion impairment in autism. (orig.) With 2 figs., 1 tab., 33 refs.

  18. Imaging of brain tumors in AIDS patients by means of dual-isotope thallium-201 and technetium-99m sestamibi single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    De La Pena, R.C.; Ketonen, L.; Villanueva-Meyer, J. [Dept. of Radiology, Univ. of Texas, Galveston (United States)

    1998-10-01

    Our aim was to evaluate the use of dual-isotope thallium-201 (Tl) and technetium-99m sestamibi (sestamibi) simultaneous acquisition in brain single-photon emission tomography (SPET) for the differentiation between brain lymphoma and benign central nervous system (CNS) lesions in AIDS patients. Thirty-six consecutive patients with enhancing mass lesions on magnetic resonance (MR) imaging were included in the study. SPET of the brain was performed to obtain simultaneous Tl and sestamibi images. Regions-of-interest were drawn around the lesion and on the contralateral side to calculate uptake ratios. The final diagnosis was reached by pathologic findings in 17 patients and clinical and/or MR follow-up in 19 patients. Of the 36 patients, 11 had brain lymphoma, 1 glioblastoma multiforme, 15 toxoplasmosis and 9 other benign CNS lesions. Correlation between SPET and the final diagnosis revealed in 10 true-positive, 23 true-negative, 1 false-positive and 2 false-negative studies. All patients with toxoplasmosis had negative scans. A patient with a purulent infection had positive scans. Tl and sestamibi scans were concordant in every lesion. The same lesions that took up Tl were also visualized with sestamibi. However, sestamibi scans showed higher lesion-to-normal tissue uptake ratios (3.7{+-}1.8) compared with those of Tl (2.3{+-}0.8, P<0.002). Simultaneous acquisition of Tl and sestamibi can help differentiate CNS lymphoma from benign brain lesions in AIDS patients. (orig.) With 2 figs., 2 tabs., 34 refs.

  19. Quantifying regional cerebral blood flow by N-isopropyl-P-[I-123]iodoamphetamine (IMP) using a ring type single-photon emission computed tomography system

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N.; Odano, I.; Ohkubo, M. [Niigata Univ. (Japan)] [and others

    1994-05-01

    We developed a more accurate quantitative measurement of regional cerebral blood flow (rCBF) with the microsphere model using N-isopropyl-p-[I-123] iodoamphetamine (IMP) and a ring type single photon emission computed tomography (SPECT) system. SPECT studies were performed in 17 patients with brain diseases. A dose of 222 MBq (6 mCi) of [I-123]IMP was injected i.v., at the same time a 5 min period of arterial blood withdrawal was begun. SPECT data were acquired from 25 min to 60 min after tracer injection. For obtaining the brain activity concentration at 5 min after IMP injection, total brain counts collections and one minute period short time SPECT studies were performed at 5, 20, and 60 min. Measurement of the values of rCBF was calculated using short time SPECT images at 5 min (rCBF), static SPECT images corrected with total cerebral counts (rCBF{sub Ct}.) and those corrected with reconstructed counts on short time SPECT images (rCBF{sub Cb}). There was a good relationship (r=0.69) between rCBF and rCBF{sub Ct}, however, rCBF{sub Ct} tends to be underestimated in high flow areas and overestimated in low flow areas. There was better relationship between rCBF and rCBF{sub Cb}(r=0.92). The overestimation and underestimation shown in rCBF{sub Ct} was considered to be due to the correction of reconstructed counts using a total cerebral time activity curve, because of the kinetic behavior of [I-123]IMP was different in each region. We concluded that more accurate rCBF values could be obtained using the regional time activity curves.

  20. Redistribution in I-123 N-isopropyl-p iodoamphetamine single-photon emission computed tomography in cerebrovascular disease and the effects of rehabilitation

    Energy Technology Data Exchange (ETDEWEB)

    Fukumitsu, N.; Kawakami, G.; Uchiyama, M.; Mori, Y. [Dept. of Radiology, Jikei University School of Medicine, Tokyo (Japan); Ogi, S. [Dept. of Radiology, Ichikawa Hospital of Tokyo Dental University, Tokyo (Japan); Takehara, I.; Miyano, S. [Dept. of Rehabilitation Medicine, Jikei Daisan Hospital (Japan); Katagiri, N. [Dept. of Rehabilitation Medicine, Kanagawa Rehabilitation Centre (Japan)

    2001-06-01

    We performed N-isopropyl-p (I-123) iodoamphetamine (IMP) single-photon emission computed tomography (SPECT) on 28 patients with severe cerebrovascular disease before rehabilitation, and compared the degree of redistribution and the assessment of activities of daily living (ADL). We calculated a redistribution (RD) ratio in the central and peripheral parts of the lesions: RD ratio (c) and RD ratio (p). We classified the patients into four groups based on the degree of redistribution: complete: both RD ratio (c) and (p) {>=} 75; peripheral: RD ratio (c) < 75, RD ratio (p) {>=} 75; incomplete: both RD ratio (c) and (p) < 75 and at least one of RD ratio (c) or (p) {>=} 25; no redistribution: both RD ratio (c) and (p) < 25. We assessed the ADL using the modified Barthel index (BI). {delta}BI was defined as BI after rehabilitation-BI before rehabilitation (BIpost-BIpre). The {delta}BI of the four groups were as follows: complete-redistribution group (40.8 {+-} 22.8), peripheral-redistribution group (40.0 {+-} 15.8), incomplete-redistribution group (27.2 {+-} 22.6), no-redistribution group (8.8 {+-} 12.3). The {delta}BI of the complete and peripheral redistribution groups were significantly higher than that of the no-redistribution group. However, {delta}BI was almost the same in the complete- and peripheral-redistribution groups. This suggests that the effect of rehabilitation might be closely related to the viability of the peripheral part of the lesion. (orig.)

  1. The Incremental Prognostic Value of Cardiac Computed Tomography in Comparison with Single-Photon Emission Computed Tomography in Patients with Suspected Coronary Artery Disease.

    Science.gov (United States)

    Lee, Heesun; Yoon, Yeonyee E; Park, Jun-Bean; Kim, Hack-Lyoung; Park, Hyo Eun; Lee, Seung-Pyo; Kim, Hyung-Kwan; Choi, Su-Yeon; Kim, Yong-Jin; Cho, Goo-Yeong; Zo, Joo-Hee; Sohn, Dae-Won

    2016-01-01

    Coronary computed tomographic angiography (CCTA) facilitates comprehensive evaluation of coronary artery disease (CAD), including plaque characterization, and can provide additive diagnostic value to single-photon emission computed tomography (SPECT). However, data regarding the incremental prognostic value of CCTA to SPECT remain sparse. We evaluated the independent and incremental prognostic value of CCTA, as compared with clinical risk factors and SPECT. A total of 1,077 patients with suspected CAD who underwent both SPECT and cardiac CT between 2004 and 2012 were enrolled retrospectively. Presence of reversible or fixed perfusion defect (PD) and summed stress score were evaluated on SPECT. Presence, extent of coronary atherosclerosis and diameter stenosis (DS) were evaluated on CCTA. Plaque composition was categorized as non-calcified, mixed, or calcified according to the volume of calcified component (>130 Hounsfield Units). Patients were followed up for the occurrence of adverse cardiac events including cardiac death, non-fatal myocardial infarction, unstable angina, and late revascularization (>90 days after imaging studies). During follow-up (median 23 months), adverse cardiac events were observed in 71 patients (6.6%). When adjusted for clinical risk factors and SPECT findings, the presence of any coronary plaque, any plaque in ≥3 segments, coronary artery calcium score (CACS) ≥400, a plaque ≥50% DS, presence of non-calcified plaque (NCP) or mixed plaque (MP), and NCP/MP in ≥2 segments were independent predictors of adverse cardiac events; however, the presence of calcified plaque (CP) was not. Conventional CCTA findings, including CACS ≥400 and a plaque ≥50% DS, demonstrated incremental prognostic value over clinical risk factors and SPECT (χ² 54.19 to 101.03; p incremental prognostic value in relation to SPECT evaluation of myocardial ischemia. Specifically, segmentally-analyzed plaque composition with CCTA provides further risk

  2. A technetium-99m hexamethylpropylene amine oxime brain single-photon emission tomography study in adolescent patients with major depressive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Tutus, A. [Department of Nuclear Medicine, Erciyes University School of Medicine, Kayseri (Turkey); Kibar, M. [Department of Nuclear Medicine, Cukurova University School of Medicine, Kayseri (Turkey); Sofuoglu, S.; Basturk, M.; Goenuel, A.S. [Department of Psychiatry, Erciyes University School of Medicine, Kayseri (Turkey)

    1998-06-01

    We have not encountered any brain single-photon emission tomography (SPET) study performed in adolescent depressed patients in the literature. Therefore, we used technetium-99m hexamethylpropylene amine oxime ({sup 99m}Tc-HMPAO) brain SPET in adolescent patients with major depressive disorder (MDD) to examine the possible changes in cerebral perfusion and the possible association between perfusion indices and clinical variables. Fourteen adolescent out-patients (nine females, five males; mean{+-}SD age: 13.11{+-}1.43 years; range: 11-15 years) fulfilling the DSM-IV criteria for MDD and 11 age-matched healthy control subjects (six females, five males; mean{+-}SD age: 13.80{+-}1.60 years; range: 12-15 years) were included in the study. {sup 99}Tc-HMPAO brain SPET was performed twice in the patient group and once in the control group. The first SPET investigation was performed under non-medicated conditions and the second was performed after depressive symptoms had subsided. A relative perfusion index (PI) was calculated as the ratio of regional cortical activity to the whole brain activity. We found significant differences between the PI values of the untreated depressed patients and those of the controls, indicating relatively reduced perfusion in the left anterofrontal and left temporal cortical areas. No significant differences in regional PI values were found between the remitted depressed patients and the controls. Our study suggests that adolescent patients with MDD may have regional cerebral blood flow deficits in frontal regions and a greater anterofrontal right-left perfusion asymmetry compared with normal subjects. The fact that these abnormalities in perfusion indices have a trend toward normal values with symptomatic improvement suggests that they may be state-dependent markers for adolescent MDD. (orig.) With 3 figs., 2 tabs., 37 refs.

  3. Noncontrast perfusion single-photon emission CT/CT scanning: a new test for the expedited, high-accuracy diagnosis of acute pulmonary embolism.

    Science.gov (United States)

    Lu, Yang; Lorenzoni, Alice; Fox, Josef J; Rademaker, Jürgen; Vander Els, Nicholas; Grewal, Ravinder K; Strauss, H William; Schöder, Heiko

    2014-05-01

    Standard ventilation and perfusion (V˙/Q˙) scintigraphy uses planar images for the diagnosis of pulmonary embolism (PE). To evaluate whether tomographic imaging improves the diagnostic accuracy of the procedure, we compared noncontrast perfusion single-photon emission CT (Q˙-SPECT)/CT scans with planar V˙/Q˙scans in patients at high risk for PE. Between 2006 and 2010, most patients referred for diagnosis of PE underwent both Q˙-SPECT/CT scan and planar V˙/Q˙scintigraphy. All scans were reviewed retrospectively by four observers; planar scans were read with modified Prospective Investigation of Pulmonary Embolism Diagnosis (PIOPED) II and Prospective Investigative Study of Pulmonary Embolism Diagnosis (PISA-PED) criteria. On Q˙-SPECT/CT scan, any wedge-shaped peripheral perfusion defect occupying > 50% of a segment without corresponding pulmonary parenchymal or pleural disease was considered to show PE. The final diagnosis was established with a composite reference standard that included ECG, ultrasound of lower-extremity veins, D-dimer levels, CT pulmonary angiography (when available), and clinical follow-up for at least 3 months. One hundred six patients with cancer and mean Wells score of 4.4 had sufficient follow-up; 22 patients were given a final diagnosis of PE, and 84 patients were given a final diagnosis of no PE. According to PIOPED II, 13 studies were graded as intermediate probability. Sensitivity and specificity for PE were 50% and 98%, respectively, based on PIOPED II criteria; 86% and 93%, respectively, based on PISA-PED criteria; and 91% and 94%, respectively, based on Q˙-SPECT/CT scan. Seventy-six patients had additional relevant findings on the CT image of the Q˙-SPECT/CT scan. Noncontrast Q˙-SPECT/CT imaging has a higher accuracy than planar V˙/Q˙imaging based on PIOPED II criteria in patients with cancer and a high risk for PE.

  4. Decrease in benzodiazepine receptor binding in a patient with Angelman syndrome detected by iodine-123 iomazenil and single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Odano, Ikuo [Dept. of Radiology, Niigata Univ. School of Medicine, Niigata (Japan); Anezaki, Toshiharu [Dept. of Neurology, Brain Research Inst., Niigata Univ., Niigata (Japan); Ohkubo, Masaki [Dept. of Radiology, Niigata Univ. School of Medicine, Niigata (Japan); Yonekura, Yoshiharu [Nihon Medi-Physics Co. Ltd., Hyogo (Japan); Onishi, Yoshihiro [Biomedical Imaging Research Center, Fukui Medical School, Fukui (Japan); Inuzuka, Takashi [Dept. of Neurology, Brain Research Inst., Niigata Univ., Niigata (Japan); Takahashi, Makoto [Dept. of Radiology, Niigata Univ. School of Medicine, Niigata (Japan); Tsuji, Shoji [Dept. of Neurology, Brain Research Inst., Niigata Univ., Niigata (Japan)

    1996-05-01

    A receptor mapping technique using iodine-123 iomazenil and single-photon emission tomography (SPET) was employed to examine benzodiazepine receptor binding in a patient with Angelman syndrome (AS). AS is characterized by developmental delay, seizures, inappropriate laughter and ataxic movement. In this entity there is a cytogenic deletion of the proximal long arm of chromosome 15q11-q13, where the gene encoding the GABA{sub A} receptor {beta}3 subunit (GABRB3) is located. Since the benzodiazepine receptor is constructed as a receptor-ionophore complex that contains the GABA{sub A} receptor, it is a suitable marker for GABA-ergic synapsis. To determine whether benzodiazepine receptor density, which indirectly indicates changes in GABA{sub A} receptor density, is altered in the brain in patients with AS, we investigated a 27-year-old woman with AS using {sup 123}I-iomazenil and SPET. Receptor density was quantitatively assessed by measuring the binding potential using a simplified method. Regional cerebral blood flow was also measured with N-isopropyl-p-[{sup 123}]iodoamphetamine. We demonstrated that benzodiazepine receptor density is severely decreased in the cerebellum, and mildly decreased in the frontal and temporal cortices and basal ganglia, a result which is considered to indicate decreased GABA{sub A} receptor density in these regions. Although the deletion of GABRB3 was not observed in the present study, we indirectly demonstrated the disturbance of inhibitory neurotransmission mediated by the GABA{sub A} receptor in the investigated patient. {sup 123}I-iomazenil with SPET was useful to map benzodiazepine receptors, which indicate GABA{sub A} receptor distribution and their density. (orig.)

  5. Echocardiography versus (201)Tl semi-quantitative gated single photon emission tomography for the evaluation of cardiac disease associated with late stage Duchenne muscular dystrophy.

    Science.gov (United States)

    Fujita, Atsushi; Arahata, Hajime; Sugawara, Miwa; Watanabe, Akihiro; Kawano, Yuji; Sasagasako, Naokazu; Fujii, Naoki

    2016-01-01

    In Duchenne muscular dystrophy (DMD) patients cardiac abnormalities are often detected. In adult DMD patients cardiac disease (CD) is a cause of death which increases by age and is related to respiratory dysfunction. Studies have demonstrated that CD in early DMD can be detected by echocardiography (EC) or semi-quantitative gated single photon emission tomography ((201)Tl SQGS), and the accuracy of these two tests is similar. As the disease advances, evaluation of CD by EC becomes difficult due to thoracic deformity and scoliosis. We compared (201)Tl SQGS and EC in the evaluation of cardiac function in late stage DMD, based on the ejection fraction (EF) value calculated by both tests. Twenty-three males with late stage DMD, 12 to 35 years of age (22.2±7.5), were studied by (201)Tl SQGS and EC. The mean EF value by (201)Tl SQGS was 60.8%±14.1%, which differed from that obtained by EC (52.7%±9.8%, P=0.003). Eleven patients less than 20 years old did not demonstrate a significant difference between the two tests (P=0.06), however, 12 patients over 20 years of age had significantly different results between tests (P=0.002). Although our patients were few we indicated that in DMD patients, aged older than 20 years, at an advanced stage of the disease, the EF values calculated by EC were lower than those by (201)Tl SQGS possibly due to thoracic deformity.

  6. Clinical studies on thallium-201 myocardial single-photon emission computed tomography in patients with ischemic heart disease. Clinical evaluation using the polar map method

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Naohiko

    1987-06-01

    In order to evaluate briefly the relative 3-dimensional distribution of /sup 201/Tl in the myocardium, a 2-dimensional polar map was developed from short axis tomograms of single-photon emission computed tomography (SPECT) using circumferential profile analysis. The data collected from 180 deg rotational scan around a body were used in clinical study to acquire the projection data in a short time, although, with a heart phantom study, there was more uniformity with the 360 deg collection than with 180 deg collection. So, the polar map of relative distribution and % washout rate (% WR) were created from 180 deg data collection. To detect ischemic area, the lower limit (M-SD) of the profile curve in 10 normal subjects was processed and compared with that of patients. Then, abnormal /sup 201/Tl distribution and % WR were identified comparing each patient's profile with the corresponding normal lower limits. In 24 patients with myocardial infarction, defect score (DS), estimated as infarcted size from the relative polar map, was compared with the size of abnormal wall motion in left ventriculography. There was a good correlation (r = 0.834) between them. Also, there were close correlations between DS and regional contraction (r = -0.869), and between DS and left ventricular ejection fraction (r = -0.775) respectively. In 24 patients with non-MI angina pectoris, the diagnostic sensitivity of exercise induced ischemia was 65 % and accuracy was 76 % by relative distribution map. However, the sensitivity of % WR map was superior (84 %) to that of relative map, especially in the patients with mild ischemia and multi-vessel disease. In conclusion, this comprehensive polar map method represented well a 3-dimensional myocardial distribution of /sup 201/Tl. The clinical usefulness in determination of infarct size and in diagnosis of myocardial ischemia were evaluated.

  7. Pre-targeted immunodetection in glioma patients: tumour localization and single-photon emission tomography imaging of [[sup 99m]Tc ]PnAO-biotin

    Energy Technology Data Exchange (ETDEWEB)

    Paganelli, G. (INB-CNR, Milan Univ. (Italy). Dept. of Nuclear Medicine Scientific Inst. H San Raffaele, Milan (Italy)); Magnani, P. (INB-CNR, Milan Univ. (Italy). Dept. of Nuclear Medicine Scientific Inst. H San Raffaele, Milan (Italy)); Zito, F. (INB-CNR, Milan Univ. (Italy). Dept. of Nuclear Medicine Scientific Inst. H San Raffaele, Milan (Italy)); Lucignani, G. (INB-CNR, Milan Univ. (Italy). Dept. of Nuclear Medicine Scientific Inst. H San Raffaele, Milan (Italy)); Sudati, F. (INB-CNR, Milan Univ. (Italy). Dept. of Nuclear Medicine Scientific Inst. H San Raffaele, Milan (Italy)); Truci, G. (Div. of Neurology, Milan Univ. (Italy) Scientific Inst. H San Raffaele, Milan (Italy)); Motti, E. (Div. of Neurosurgery, Milan Univ. (Italy) Scientific Inst. H San Raffaele, Milan (Italy)); Terreni, M. (Dept. of Pathology, Scientific Inst. H San Raffaele, Milan (Italy)); Pollo, B. (Dept. of Pathology, Scientific Inst. G. Besta, Milan (Italy)); Giovanelli, M. (Div. of Neurosurgery, Milan

    1994-04-01

    We have developed a three-step pre-targeting method using the avidin-biotin system. The rationale of this technique consists in vivo labelling of biotinylated MoAbs targeted onto tumour deposits, when most of the unbound antibodies have been cleared from the bloodstream as avidin-bound complexes. The anti-tenascin MoAb BC2, specific for the majority of gliomas, was biotinylated and 1 mg was administered i.v. in 20 patients with histologically documented cerebral lesions. After 24-36 h, 5 mg avidin was injected i.v. followed 24 h later by a third i.v. injection of 0.2 mg PnAO-biotin labelled with 15-20 mCi technetium-99m. No evidence of toxicity was observed. Whole-body biodistribution was measured at 20 min, 3 h and 5 h post-injection. [[sup 99m]Tc]PnAO-biotin had a fast blood clearance and was primarily excreted through the biliary system. A dedicated single-photon emission tomography system was used to acquire brain tomographic images 1-2 h after the administration of [[sup 99m]Tc]PnAO-biotin. Tumours were detected in 15/18 glioma patients with a tumour to non-tumour ratio of up 14:1. This three-step method, based on the sequential adminsitration of anti-tenascin MoAb BC2, avidin and [[sup 99m]Tc]PnAO-biotin, can support computed tomography or magnetic resonance imaging for the diagnosis and follow-up of patients with glioma. (orig./MG)

  8. Postoperative myocardial infarction documented by technetium pyrophosphate scan using single-photon emission computed tomography: Significance of intraoperative myocardial ischemia and hemodynamic control

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, D.C.; Chung, F.; Burns, R.J.; Houston, P.L.; Feindel, C.M. (Toronto Hospital, Ontario (Canada))

    1989-12-01

    The aim of this prospective study was to document postoperative myocardial infarction (PMI) by technetium pyrophosphate scan using single-photon emission computed tomography (TcPPi-SPECT) in 28 patients undergoing elective coronary bypass grafting (CABG). The relationships of intraoperative electrocardiographic myocardial ischemia, hemodynamic responses, and pharmacological requirements to this incidence of PMI were correlated. Radionuclide cardioangiography and TcPPi-SPECT were performed 24 h preoperatively and 48 h postoperatively. A standard high-dose fentanyl anesthetic protocol was used. Twenty-five percent of elective CABG patients were complicated with PMI, as documented by TcPPi-SPECT with an infarcted mass of 38.0 +/- 5.5 g. No significant difference in demographic, preoperative right and left ventricular function, number of coronary vessels grafted, or aortic cross-clamp time was observed between the PMI and non-PMI groups. The distribution of patients using preoperative beta-adrenergic blocking drugs or calcium channel blocking drugs was found to have no correlation with the outcome of PMI. As well, no significant differences in hemodynamic changes or pharmacological requirements were observed in the PMI and non-PMI groups during prebypass or postbypass periods, indicating careful intraoperative control of hemodynamic indices did not prevent the outcome of PMI in these patients. However, the incidence of prebypass ischemia was 39.3% and significantly correlated with the outcome of positive TcPPi-SPECT, denoting a 3.9-fold increased risk of developing PMI. Prebypass ischemic changes in leads II and V5 were shown to correlate with increased CPK-MB release (P less than 0.05) and tends to occur more frequently with lateral myocardial infarction.

  9. Diagnostic imaging of dementia with Lewy bodies by susceptibility-weighted imaging of nigrosomes versus striatal dopamine transporter single-photon emission computed tomography: a retrospective observational study

    Energy Technology Data Exchange (ETDEWEB)

    Kamagata, Koji; Sato, Kanako; Suzuki, Michimasa; Hori, Masaaki; Kumamaru, Kanako K.; Aoki, Shigeki [Juntendo University Graduate School of Medicine, Department of Radiology, Bunkyo-ku, Tokyo (Japan); Nakatsuka, Tomoya; Inaoka, Tsutomu; Terada, Hitoshi [Toho University Sakura Medical Center, Department of Radiology, Sakura, Sakura (Japan); Sakakibara, Ryuji; Tsuyusaki, Yohei [Toho University Sakura Medical Center, Department of Neurology, Sakura, Sakura (Japan); Takamura, Tomohiro [University of Yamanashi, Department of Radiology, Chuo-shi, Yamanashi (Japan)

    2017-01-15

    The characteristics of dementia with Lewy bodies (DLB), Alzheimer's disease (AD) and amnestic mild cognitive impairment (a-MCI) overlap but require different treatments; therefore, it is important to differentiate these pathologies. Assessment of dopamine uptake in the striatum using dopamine transporter (DaT) single-photon emission computed tomography (SPECT) is the gold standard for diagnosing DLB; however, this modality is expensive, time consuming and involves radiation exposure. Degeneration of the substantia nigra nigrosome-1, which occurs in DLB, but not in AD/a-MCI, can be identified by 3T susceptibility-weighted imaging (SWI). Therefore, the aim of this retrospective observational study was to compare SWI with DaT-SPECT for differentiation of DLB from AD/a-MCI. SWI data were acquired for patients with clinically diagnosed DLB (n = 29), AD (n = 18), a-MCI (n = 13) and healthy controls (n = 26). Images were analysed for nigrosome-1 degeneration. Diagnostic accuracy was evaluated for DLB, AD and a-MCI compared with striatal dopamine uptake using DaT-SPECT. SWI achieved 90% diagnostic accuracy (93% sensitivity, 87% specificity) for the detection of nigrosome-1 degeneration in DLB and not in AD/a-MCI as compared with 88.3% accuracy (93% sensitivity, 84% specificity) using DaT-SPECT. SWI nigrosome-1 evaluation was useful in differentiating DLB from AD/a-MCI, with high accuracy. This less invasive and less expensive method is a potential alternative to DaT-SPECT for the diagnosis of DLB. (orig.)

  10. Preliminary clinical study in patients with hemispatial neglect after stroke by neglect test battery and 99mTc-ECD single-photon emission computed tomography.

    Science.gov (United States)

    Yin, Yafu; Li, Xuena; Li, Yaming; Gu, Hui; Han, Chunqi; Liu, Hao

    2009-05-01

    To explore the presence, clinical characteristics, anatomical foci in image and mechanism of hemispatial neglect (HSN), neglect test battery and single-photon emission computed tomography (SPECT) regional cerebral blood flow (rCBF) imaging were performed on patients with stroke. Thirty dextromanual patients who were diagnosed as having unilateral stroke clinically were recruited. A neglect test battery including line bisection test, star cancellation test and drawing test was performed on the subjects. The severity of neglect was measured on neglect tests. The lowest rCBF, the range with decreased rCBF, number of the foci with decreased rCBF, the flow deficit size and the total number of pixels in the foci were measured on SPECT rCBF imaging. Twenty-five patients were diagnosed as having HSN by the neglect test battery. Contralateral neglect (CN) and ipsilateral neglect (IN) were observed in both right and left hemisphere strokes. On SPECT imaging, the patients with neglect had decreased rCBF in the frontal cortex most often; followed by the parietal, occipital and temporal cortices; and basal ganglia and thalamus in some cases. The patients who had two or more regions damaged showed neglect more often and severity. The correlation coefficients between rCBF in the foci, the decreased percentage of rCBF of the foci and the severity of neglect were -0.119 (P>.05) and 0.221 (P>.05). The correlation coefficients between the range, number of foci, the flow deficit size, the total number of pixels of the foci and the severity of neglect were 0.537 (Prange, number of foci, the flow deficit size and the total numbers of pixels of the foci significantly. And the patients with CN and IN did not show any difference in the presence of HSN, the manifestation on the neglect test battery and SPECT images. HSN showed damage on multiple sites, with combined damages resulting in more severe neglect.

  11. Sensitivity and Specificity of Dual-Isotope 99mTc-Tetrofosmin and 123I Sodium Iodide Single Photon Emission Computed Tomography (SPECT) in Hyperparathyroidism.

    Science.gov (United States)

    Sommerauer, Michael; Graf, Carmen; Schäfer, Niklaus; Huber, Gerhard; Schneider, Paul; Wüthrich, Rudolf; Schmid, Christoph; Steinert, Hans

    2015-01-01

    Despite recommendations for 99mTc-tetrofosmin dual tracer imaging for hyperparathyroidism in current guidelines, no report was published on dual-isotope 99mTc-tetrofosmin and 123I sodium iodide single-photon-emission-computed-tomography (SPECT). We evaluated diagnostic accuracy and the impact of preoperative SPECT on the surgical procedures and disease outcomes. Analysis of 70 consecutive patients with primary hyperparathyroidism and 20 consecutive patients with tertiary hyperparathyroidism. Imaging findings were correlated with surgical results. Concomitant thyroid disease, pre- and postoperative laboratory measurements, histopathological results, type and duration of surgery were assessed. In primary hyperparathyroidism, SPECT had a sensitivity of 80% and a positive predictive value of 93% in patient-based analysis. Specificity was 99% in lesion-based analysis. Patients with positive SPECT elicit higher levels of parathyroid hormone and higher weight of resected parathyroids than SPECT-negative patients. Duration of parathyroid surgery was on average, approximately 40 minutes shorter in SPECT-positive than in SPECT-negative patients (89 ± 46 vs. 129 ± 41 minutes, p = 0.006); 86% of SPECT-positive and 50% of SPECT-negative patients had minimal invasive surgery (p = 0.021). SPECT had lower sensitivity (60%) in patients with tertiary hyperparathyroidism; however, 90% of these patients had multiple lesions and all of these patients had bilateral lesions. Dual-isotope SPECT with 99mTc-tetrofosmin and 123I sodium iodide has a high diagnostic value in patients with primary hyperparathyroidism and allows for saving of operation time. Higher levels of parathyroid hormone and higher glandular weight facilitated detection of parathyroid lesion. Diagnostic accuracy of preoperative imaging was lower in patients with tertiary hyperparathyroidism.

  12. SemiSPECT: a small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays.

    Science.gov (United States)

    Kim, Hyunki; Furenlid, Lars R; Crawford, Michael J; Wilson, Donald W; Barber, H Bradford; Peterson, Todd E; Hunter, William C J; Liu, Zhonglin; Woolfenden, James M; Barrett, Harrison H

    2006-02-01

    The first full single-photon emission computed tomography (SPECT) imager to exploit eight compact high-intrinsic-resolution cadmium zinc telluride (CZT) detectors, called SemiSPECT, has been completed. Each detector consists of a CZT crystal and a customized application-specific integrated circuit (ASIC). The CZT crystal is a 2.7 cm x 2.7 cm x -0.2 cm slab with a continuous top electrode and a bottom electrode patterned into a 64 x 64 pixel array by photolithography. The ASIC is attached to the bottom of the CZT crystal by indium-bump bonding. A bias voltage of -180 V is applied to the continuous electrode. The eight detectors are arranged in an octagonal lead-shielded ring. Each pinhole in the eight-pinhole aperture placed at the center of the ring is matched to each individual detector array. An object is imaged onto each detector through a pinhole, and each detector is operated independently with list-mode acquisition. The imaging subject can be rotated about a vertical axis to obtain additional angular projections. The performance of SemiSPECT was characterized using 99mTc. When a 0.5 mm diameter pinhole is used, the spatial resolution on each axis is about 1.4 mm as estimated by the Fourier crosstalk matrix, which provides an algorithm-independent average resolution over the field of view. The energy resolution achieved by summing neighboring pixel signals in a 3 x 3 window is about 10% full-width-at-half-maximum of the photopeak. The overall system sensitivity is about 0.5 x 10(-4) with the energy window of +/-10% from the photopeak. Line-phantom images are presented to visualize the spatial resolution provided by SemiSPECT, and images of bone, myocardium, and human tumor xenografts in mice demonstrate the feasibility of preclinical small-animal studies with SemiSPECT.

  13. Impact of Gender on the Prognostic Value of Coronary Artery Calcium in Symptomatic Patients With Normal Single-Photon Emission Computed Tomography Myocardial Perfusion.

    Science.gov (United States)

    Engbers, Elsemiek M; Timmer, Jorik R; Ottervanger, Jan Paul; Mouden, Mohamed; Knollema, Siert; Jager, Pieter L

    2016-12-01

    The coronary artery calcium (CAC) score provides independent prognostic value on top of single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). We sought to determine whether the prognostic value of the CAC score in patients with normal SPECT MPI is gender specific. We studied 3,705 consecutive symptomatic patients without a history of coronary artery disease with normal SPECT MPI. All patients underwent concomitant CAC scoring, which was categorized as CAC score 0, 1 to 99, 100 to 399, 400 to 999, or ≥1,000. Major adverse cardiac events were defined as revascularization, nonfatal myocardial infarction, or all-cause mortality. The median CAC score was 9 in women (interquartile range 0 to 113) and 47 in men (interquartile range 1 to 307, p CAC score, annual event rates were similar (for women and men, respectively: CAC score 0, 0.6% and 0.5%, p = 0.95; CAC score 1 to 99, 0.9% and 1.2%, p = 0.45; CAC score 100 to 399, 2.7% and 3.8%, p = 0.23; CAC score 400 to 999, 3.8% and 5.3%, p = 0.34; CAC score ≥1,000, 8.4% and 8.7%, p = 0.99). The CAC score was an independent predictor of major adverse cardiac events in both genders (CAC score ≥1,000: hazard ratio for women 8.5, 95% confidence interval 4.0 to 18.1; hazard ratio for men 14.8, 95% confidence interval 5.3 to 41.1). In conclusion, risk for events is similar for both genders when stratified by CAC score, wherein a high CAC score carries a high risk for events despite normal SPECT MPI. Our findings do not reveal a gender-specific prognostic value of the CAC score.

  14. Clinical studies of cerebral circulation using single photon emission computed tomography, 2; Evaluation of cerebral blood flow after acetazolamide loading on moyamoya disease

    Energy Technology Data Exchange (ETDEWEB)

    Uno, Toshiro [Gifu Univ. (Japan). Faculty of Medicine

    1993-09-01

    To evaluate cerebral blood flow (CBF) in patients with moyamoya disease, single photon emission computed tomography (SPECT) was performed using acetazolamide-activated {sup 133}Xe inhalation method. In the present investigation, 15 patients were subjected: 6 pediatric cases with the mean age of 10.8 years and 9 adult cases with the mean age of 44.6 years. The regional CBF (rCBF) was measured in the territory of anterior cerebral artery (ACA), middle cerebral artery (MCA), posterior cerebral artery (PCA), basal ganglia, and cerebellum. Cerebrovascular acetazolamide reactivity was evaluated from the rCBF measured before and after administration of acetazolamide. Namely, cerebrovascular acetazolamide reactivity was expressed as %CBF and calculated as follows: %CBF=100 x (CBF after acetazolamide administration-CBF at rest)/CBF at rest. rCBF in adult patients was decreased in the cerebral hemisphere, while that in childhood was significantly decreased in the territory of ACA. The %CBF after acetazolamide loading was decreased in the territory of ACA and MCA in both adult and childhood. When cerebral %CBF was compared to the cerebellar %CBF, the ratio of cerebral %CBF and cerebellar %CBF resulted in markedly lower in childhood than adult. rCBF and cerebrovascular acetazolamide reactivity were also measured before and after extracranial and intracranial (EC-IC) bypass surgery in three pediatric moyamoya patients. Although rCBF was increased immediately after EC-IC bypass surgery, the cerebrovascular acetazolamide reactivity remained blunted. These results meant that in the pediatric moyamoya patients cerebrovascular acetazolamide reactivity is more blunted than adult moyamoya patients. Also, the cerebral vessels in moyamoya disease were considered to be dilated to their limitation by the blood supplied through the EC-IC bypass and not to be expandable any more by acetazolamide. (author) 45 refs.

  15. Differentiation of myocardial ischemia and infarction assessed by dynamic computed tomography perfusion imaging and comparison with cardiac magnetic resonance and single-photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Yuki; Kido, Teruhito; Kurata, Akira; Miyagawa, Masao; Mochizuki, Teruhito [Ehime University Graduate School of Medicine, Department of Radiology, Toon, Ehime (Japan); Uetani, Teruyoshi; Kono, Tamami; Ogimoto, Akiyoshi [Ehime University Graduate School of Medicine, Department of Cardiology, Pulmonology, Hypertension and Nephrology, Toon, Ehime (Japan); Soma, Tsutomu [FUJIFILM RI Pharma Co., Ltd., QMS Group, Quality Assurance Department, Tokyo (Japan); Graduate School of Medicine, University of Tokyo, Department of Radiology, Tokyo (Japan); Murase, Kenya [Osaka University Graduate School of Medicine, Department of Medical Physics and Engineering, Division of Medical Technology and Science, Faculty of Health Science, Osaka (Japan); Iwaki, Hirotaka [Ehime University Graduate School of Medicine, Center for Clinical Research Data and Biostatistics, Toon, Ehime (Japan)

    2016-11-15

    To evaluate the feasibility of myocardial blood flow (MBF) by computed tomography from dynamic CT perfusion (CTP) for detecting myocardial ischemia and infarction assessed by cardiac magnetic resonance (CMR) or single-photon emission computed tomography (SPECT). Fifty-three patients who underwent stress dynamic CTP and either SPECT (n = 25) or CMR (n = 28) were retrospectively selected. Normal and abnormal perfused myocardium (ischemia/infarction) were assessed by SPECT/CMR using 16-segment model. Sensitivity and specificity of CT-MBF (mL/g/min) for detecting the ischemic/infarction and severe infarction were assessed. The abnormal perfused myocardium and severe infarction were seen in SPECT (n = 90 and n = 19 of 400 segments) and CMR (n = 223 and n = 36 of 448 segments). For detecting the abnormal perfused myocardium, sensitivity and specificity were 80 % (95 %CI, 71-90) and 86 % (95 %CI, 76-91) in SPECT (cut-off MBF, 1.23), and 82 % (95 %CI, 76-88) and 87 % (95 %CI, 80-92) in CMR (cut-off MBF, 1.25). For detecting severe infarction, sensitivity and specificity were 95 % (95 %CI, 52-100) and 72 % (95 %CI, 53-91) in SPECT (cut-off MBF, 0.92), and 78 % (95 %CI, 67-97) and 80 % (95 %CI, 58-86) in CMR (cut-off MBF, 0.98), respectively. Dynamic CTP has a potential to detect abnormal perfused myocardium and severe infarction assessed by SPECT/CMR using comparable cut-off MBF. (orig.)

  16. False-positive defects in technetium-99m sestamibi myocardial single-photon emission tomography in healthy athletes with left ventricular hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Bartram, P.; Hanel, B.; Gustafsson, F.; Mortensen, J.; Hesse, B. [Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital (Denmark); Toft, J. [Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital (Denmark)]|[Copenhagen City Heart Study, Epidemiological Research Unit (Denmark); Ali, S. [Dept. of Cardiology, Copenhagen University Hospital (Denmark)

    1998-09-01

    Exercise ECG and myocardial single-photon emission tomography (SPET) are fundamental in the non-invasive evaluation of patients suspected of having coronary artery disease (CAD). The purpose of the present study was to investigate the influence of physiological left ventricular hypertrophy (LVH) on myocardial sestamibi SPET in healthy young and old athletes. Eighteen young male elite athletes (ten rowers, five power/weight lifters and three triathletes) and 14 well-trained elderly rowers were studied. All underwent a bicycle test as part of a 2-day sestamibi SPET protocol. Attenuation correction was not performed. The studies were evaluated visually and quantitatively analysed by the CEqual program with its reference files and with a file from a local non-athletic age-matched population. Echocardiographic LVH was an inclusion criterion in the young athletes. Exercise ECG was normal in all subjects. In at least three of the young athletes a reversible defect was observed by visual analysis. On quantitative analysis one-third of the young athletes had ``significant`` (>10 pixels) defects compared with both the local reference base and the CEqual reference population. Nearly all defects were found in the anterior or inferior wall. The remaining subjects, including all old rowers, had normal SPET findings. Anterior and inferior wall defects are so common in healthy athletes with physiological LVH that the specificity of myocardial SPET, in contrast to exercise ECG, seems to be too low for evaluation of chest pain in this group. The mechanism of anterior and inferior defects may be related to hot spots (papillary muscles?) in the lateral wall. The specificity of SPET is maintained in athletes without LVH. (orig.) With 1 fig., 26 tabs., 22 refs.

  17. Non-invasive evaluation of myocardial reperfusion by transthoracic Doppler echocardiography and single-photon emission computed tomography in patients with anterior acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Celutkiene Jelena

    2011-05-01

    Full Text Available Abstract Background The study was designed to evaluate whether the preserved coronary flow reserve (CFR 72 hours after reperfused acute myocardial infarction (AMI is associated with less microvascular dysfunction and is predictive of left ventricular (LV functional recovery and the final infarct size at follow-up. Methods In our study, CFR was assessed by transthoracic Doppler echocardiography (TDE in 44 patients after the successful percutaneous coronary intervention during the acute AMI phase. CFR was correlated with contractile reserve assessed by low-dose dobutamine echocardiography and with the total perfusion defect measured by single-photon emission computed tomography 72 hours after reperfusion and at 5 months follow-up. The ROC analysis was performed to determine test sensitivity and specificity based on CFR. Categorical data were compared by an χ2 analysis, continuous variables were analysed with the independent Student's t test. In order to analyse correlation between CFR and the parameters of LV function and perfusion, the Pearson correlation analysis was conducted. The linear regression analysis was used to assess the relationship between CFR and myocardial contractility as well as the final infarct size. Results We estimated the CFR cut-off value of 1.75 as providing the maximal accuracy to distinguish between patients with preserved and impaired CFR during the acute AMI phase (sensitivity 91.7%, specificity 75%. Wall motion score index was better in the subgroup with preserved CFR as compared to the subgroup with reduced CFR: 1.74 (0.29 vs. 1.89 (0.17 (p Conclusion The early measurement of CFR by TDE can be of high value for the assessment of successful reperfusion in AMI and can be used to predict LV functional recovery, myocardial viability and the final infarct size.

  18. The contribution of single photon emission computed tomography in the clinical assessment of Alzheimer type dementia; Apport de la tomographie d'emission monophonique cerebrale dans l'evaluation des demences de type Alzheimer

    Energy Technology Data Exchange (ETDEWEB)

    Boudousq, V.; Collombier, L.; Kotzki, P.O. [Centre Hospitalier Universitaire de Nimes, 30 (France)

    1999-12-01

    Interest of brain single-photon emission computed tomography to support clinical diagnosis of Alzheimer-type dementia is now established. Numerous studies have reported a decreased perfusion in the association cortex of the parietal lobe and the posterior temporal regions. In patients with mild cognitive complaints, the presence of focal hypoperfusion may increase substantially the probability of the disease. In addition, emission tomography emerges as a helpful tool in situation in which there is diagnostic doubt. In this case, the presence of temporo-parietal perfusion deficit associated with hippocampal atrophy on MRI or X-ray computed tomography contributes to diagnostic accuracy. However, some studies suggest that emission tomography may be useful for preclinical prediction of Alzheimer's disease and to predict cognitive decline. (author)

  19. Growth and characterization of InP/In{sub 0.48}Ga{sub 0.52}P quantum dots optimized for single-photon emission

    Energy Technology Data Exchange (ETDEWEB)

    Ugur, Asli

    2012-08-28

    In this work the growth of self-assembled InP/InGaP quantum dots, as well as their optical and structural properties are presented and discussed. The QDs were grown on In{sub 0.48}Ga{sub 0.52}P, lattice matched to GaAs. Self-assembled InP quantum dots are grown using gas-source molecular beam epitaxy over a wide range of InP deposition rates, using an ultra-low growth rate of about 0.01 atomic monolayers/s, a quantum-dot density of 1 dot/μm{sup 2} is realized. The resulting isolated InP quantum dots are individually characterized without the need for lithographical patterning and masks on the substrate. Both excitonic and biexcitonic emissions are observed from single dots, appearing as doublets with a fine-structure splitting of 320 μeV. Hanbury Brown-Twiss correlation measurements for the excitonic emission under cw excitation show anti-bunching behavior with an autocorrelation value of g{sup (2)}(0)=0.2. This system is applicable as a single-photon source for applications such as quantum cryptography. The formation of well-ordered chains of InP quantum dots on GaAs (001) substrates by using self-organized In{sub 0.48}Ga{sub 0.52}P surface undulations as a template is also demonstrated. The ordering requires neither stacked layers of quantum dots nor substrate misorientation. The structures are investigated by polarization-dependent photoluminescence together with transmission electron microscopy. Luminescence from the In{sub 0.48}Ga{sub 0.52}P matrix is polarized in one crystallographic direction due to anisotropic strain arising from a lateral compositional modulation. The photoluminescence measurements show enhanced linear polarization in the alignment direction of quantum dots. A polarization degree of 66% is observed. The optical anisotropy is achieved with a straightforward heterostructure, requiring only a single layer of QDs.

  20. Assessment of the relationship between stenosis severity and distribution of coronary artery stenoses on multislice computed tomographic angiography and myocardial ischemia detected by single photon emission computed tomography

    Science.gov (United States)

    Tamarappoo, Balaji K.; Gutstein, Ariel; Cheng, Victor Y.; Nakazato, Ryo; Gransar, Heidi; Dey, Damini; Thomson, Louise E. J.; Hayes, Sean W.; Friedman, John D.; Germano, Guido; Slomka, Piotr J.

    2010-01-01

    Background The relationship between luminal stenosis measured by coronary CT angiography (CCTA) and severity of stress-induced ischemia seen on single photon emission computed tomographic myocardial perfusion imaging (SPECT-MPI) is not clearly defined. We sought to evaluate the relationship between stenosis severity assessed by CCTA and ischemia on SPECT-MPI. Methods and Results ECG-gated CCTA (64 slice dual source CT) and SPECT-MPI were performed within 6 months in 292 patients (ages 26-91, 73% male) with no prior history of coronary artery disease. Maximal coronary luminal narrowing, graded as 0, ≥25%, 50%, 70%, or 90% visual diameter reduction, was consensually assessed by two expert readers. Perfusion defect on SPECT-MPI was assessed by computer-assisted visual interpretation by an expert reader using the standard 17 segment, 5 point-scoring model (stress perfusion defect of ≥5% = abnormal). By SPECT-MPI, abnormal perfusion was seen in 46/292 patients. With increasing stenosis severity, positive predictive value (PPV) increased (42%, 51%, and 74%, P = .01) and negative predictive value was relatively unchanged (97%, 95%, and 91%) in detecting perfusion abnormalities on SPECT-MPI. In a receiver operator curve analysis, stenosis of 50% and 70% were equally effective in differentiating between the presence and absence of ischemia. In a multivariate analysis that included stenosis severity, multivessel disease, plaque composition, and presence of serial stenoses in a coronary artery, the strongest predictors of ischemia were stenosis of 50-89%, odds ratio (OR) 7.31, P = .001, stenosis ≥90%, OR 34.05, P = .0001, and serial stenosis ≥50% OR of 3.55, P = .006. Conclusions The PPV of CCTA for ischemia by SPECT-MPI rises as stenosis severity increases. Luminal stenosis ≥90% on CCTA strongly predicts ischemia, while stenosis strongly predicts the absence of ischemia. Serial stenosis of ≥50% in a vessel may offer incremental value in addition to

  1. Evaluation of external beam hardening filters on image quality of computed tomography and single photon emission computed tomography/computed tomography.

    Science.gov (United States)

    Rana, Nivedita; Rawat, Dinesh; Parmar, Madan; Dhawan, Devinder Kumar; Bhati, Ashok Kumar; Mittal, Bhagwant Rai

    2015-01-01

    This study was undertaken to evaluate the effect of external metal filters on the image quality of computed tomography (CT) and single photon emission computed tomography (SPECT)/CT images. Images of Jaszack phantom filled with water and containing iodine contrast filled syringes were acquired using CT (120 kV, 2.5 mA) component of SPECT/CT system, ensuring fixation of filter on X-ray collimator. Different thickness of filters of Al and Cu (1 mm, 2 mm, 3 mm, and 4 mm) and filter combinations Cu 1 mm, Cu 2 mm, Cu 3 mm each in combination with Al (1 mm, 2 mm, 3 mm, and 4 mm), respectively, were used. All image sets were visually analyzed for streak artifacts and contrast to noise ratio (CNR) was derived. Similar acquisition was done using Philips CT quality control (QC) phantom and CNR were calculated for its lexan, perspex, and teflon inserts. Attenuation corrected SPECT/CT images of Jaszack phantom filled with 444-555 MBq (12-15 mCi) of (99m)Tc were obtained by applying attenuation correction map generated by hardened X-ray beam for different filter combination, on SPECT data. Uniformity, root mean square (rms) and contrast were calculated in all image sets. Less streak artifacts at iodine water interface were observed in images acquired using external filters as compared to those without a filter. CNR for syringes, spheres, and inserts of Philips CT QC phantom was almost similar to Al 2 mm, Al 3 mm, and without the use of filters. CNR decreased with increasing copper thickness and other filter combinations. Uniformity and rms were lower, and value of contrast was higher for SPECT/CT images when CT was acquired with Al 2 mm and 3 mm filter than for images acquired without a filter. The study suggests that for Infinia Hawkeye 4, SPECT/CT system, Al 2 mm, and 3 mm are the optimum filters for improving image quality of SPECT/CT images of Jaszack or Philips CT QC phantom keeping other parameters of CT constant.

  2. Evaluation of brain perfusion with technetium-99m bicisate single-photon emission tomography in patients with depressive disorder before and after drug treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kocmur, M. [Department of Psychiatry, University Medical Centre, Ljubljana (Slovenia); Milcinski, M.; Budihna, N.V. [Department of Nuclear Medicine, University Medical Centre, Ljubljana (Slovenia)

    1998-10-01

    Depression is one of the most common psychiatric illnesses. Its influence on brain perfusion has been demonstrated, but conflicting data exist on follow-up after drug treatment. The aim of our study was to evaluate the effects of antidepressant drugs on regional cerebral blood flow (rCBF) in patients with depression after 3 weeks and 6 months of drug therapy. Clinical criteria for depression without psychosis were met according to psychiatric evaluation. Severity of depression was evaluated with the Hamilton Depression Rating Scale (HAMD) before every scintigraphic study. rCBF was assessed using technetium-99m bicisate (Neurolite) brain single-photon emission tomography in nine patients with severe depression before the beginning of antidepressant drug therapy and 3 weeks and six months after initiation of therapy. Only patients with no change in antidepressant medication during the study were included. No antipsychotic drugs were used. Cerebellum was used as the reference region. rCBF was evaluated for eight regions in each study in three consecutive transversal slices. Follow-up studies were compared with the baseline study. The mean HAMD score was 25.5 points initially, 16 at the second examination and 8.8 after 6 months. Global CBF was decreased compared with the reference region in drug-free patients. Perfusion of left frontal and temporal regions was significantly lower (P<0.005) in comparison with the contralateral side. After therapy, a moderate decrease in perfusion was seen in the right frontal region (P<0.05). Perfusion decreased further after 6 months in the right frontal (P<0.005) and temporal regions (P<0.01). The highly significant asymmetry in perfusion between the left and right frontal and temporal lobes almost disappeared during treatment. Our findings implicate dysfunction of the frontal and temporal cortex in clinically depressed patients before specific drug treatment. Clinical improvement and decreases in HAMD score after 3 weeks and after 6

  3. Dobutamine stress thallium-201 single-photon emission tomography versus echocardiography for evaluation of the extent and location of coronary artery disease late after myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Elhendy, A.; Bax, J.J.; Domburg, R.T. van; Cornel, J.H.; Roelandt, J.R.T.C. [Thoraxcenter, Univ. Hospital Rotterdam-Dijkzigt, Rotterdam (Netherlands); Valkema, R.; Reijs, A.E.M.; Krenning, E.P. [Dept. of Nuclear Medicine, University Hospital Rotterdam-Dijkzigt, Rotterdam (Netherlands)

    1999-05-01

    Dobutamine stress echocardiography and thallium-201 myocardial perfusion scintigraphy are clinically useful methods for the evaluation of coronary artery disease (CAD). However, the relative merits of these imaging modalities in the evaluation of the extent of CAD after myocardial infarction have not been well studied. The aim of this study was to compare the accuracy of dobutamine stress echocardiography and simultaneous {sup 201}Tl single-photon emission tomography (SPET) imaging for the diagnosis and localization of CAD late after acute myocardial infarction. Dobutamine (up to 40 {mu}g kg{sup -1} min{sup -1})-atropine (up to 1 mg) stress echocardiography in conjunction with stress-reinjection {sup 201}Tl SPET was performed for the evaluation of myocardial ischaemia in 90 patients with previous myocardial infarction who underwent coronary angiography. Significant CAD was predicted on bases of myocardial ischemia (new or worsening wall motion abnormalities on echocardiography and reversible perfusion defects on {sup 201}Tl SPET). Significant CAD ({>=} 50% luminal diameter stenosis) was detected in 73 (81%) patients. The sensitivity, specificity and accuracy of echocardiography in detecting remote ischaemia for the diagnosis of remote CAD (present in 53 patients) were, respectively, 79% (CI 70%-88%), 85% (CI 77%-93%) and 81% (CI 73%-90%), while the corresponding figures for {sup 201}Tl SPET were 75% (CI 66%-85%), 78% (CI 69%-87%) and 76% (CI 67%-86%) respectively (P = NS vs echocardiography). The sensitivity, specificity and accuracy of echocardiography in detecting peri-infarction ischaemia for the diagnosis of infarct-related artery stenosis (present in 70 patients) were, rspectively, 77% (CI 68%-86%), 85% (CI 78%-92%) and 79% (CI 70%-87%) while the corresponding figures for {sup 201}Tl SPET were 73% (CI 64%-82%), 85% (CI 78%-92%) and 76% (CI 67%-84%) respectively (P = NS vs echocardiography). The agreement between the two methods for the diagnosis of peri

  4. Initial multicentre experience of high-speed myocardial perfusion imaging: comparison between high-speed and conventional single-photon emission computed tomography with angiographic validation

    Energy Technology Data Exchange (ETDEWEB)

    Neill, Johanne [University College London Hospital, Institute of Nuclear Medicine, London (United Kingdom); The Prince Charles Hospital, Brisbane (Australia); Prvulovich, Elizabeth M.; Bomanji, Jamshed B. [University College London Hospital, Institute of Nuclear Medicine, London (United Kingdom); Fish, Matthews B. [Sacred Heart Medical Center (SHMC), Springfield, OR (United States); Berman, Daniel S.; Slomka, Piotr J. [Cedars-Sinai Medical Center, Los Angeles, CA (United States); Sharir, Tali [Procardia Maccabi Healthcare Services (PMHS), Tel Aviv (Israel); Martin, William H. [Vanderbilt University Medical Center (VUMC), Nashville, TN (United States); DiCarli, Marcelo F. [Brigham and Women' s Hospital (BWH), Boston, MA (United States); Ziffer, Jack A. [Baptist Hospital of Miami (BHM), Miami, FL (United States); Shiti, Dalia [Spectrum-Dynamics, Caesarea (Israel); Ben-Haim, Simona [University College London Hospital, Institute of Nuclear Medicine, London (United Kingdom); Chaim Sheba Medical Center, Department of Nuclear Medicine, Tel-Hashomer (Israel)

    2013-07-15

    High-speed (HS) single-photon emission computed tomography (SPECT) with a recently developed solid-state camera shows comparable myocardial perfusion abnormalities to those seen in conventional SPECT. We aimed to compare HS and conventional SPECT images from multiple centres with coronary angiographic findings. The study included 50 patients who had sequential conventional SPECT and HS SPECT myocardial perfusion studies and coronary angiography within 3 months. Stress and rest perfusion images were visually analysed and scored semiquantitatively using a 17-segment model by two experienced blinded readers. Global and coronary territorial summed stress scores (SSS) and summed rest scores (SRS) were calculated. Global SSS {>=}3 or coronary territorial SSS {>=}2 was considered abnormal. In addition the total perfusion deficit (TPD) was automatically derived. TPD >5 % and coronary territorial TPD {>=}3 % were defined as abnormal. Coronary angiograms were analysed for site and severity of coronary stenosis; {>=}50 % was considered significant. Of the 50 patients, 13 (26 %) had no stenosis, 22 (44 %) had single-vessel disease, 6 (12 %) had double-vessel disease and 9 (18 %) had triple-vessel disease. There was a good linear correlation between the visual global SSS and SRS (Spearman's {rho} 0.897 and 0.866, respectively; p < 0.001). In relation to coronary angiography, the sensitivities, specificities and accuracies of HS SPECT and conventional SPECT by visual assessment were 92 % (35/38), 83 % (10/12) and 90 % (45/50) vs. 84 % (32/38), 50 % (6/12) and 76 % (38/50), respectively (p < 0.001). The sensitivities, specificities and accuracies of HS SPECT and conventional SPECT in relation to automated TPD assessment were 89 % (31/35), 57 % (8/14) and 80 % (39/49) vs. 86 % (31/36), 77 % (10/13) and 84 % (41/49), respectively. HS SPECT allows fast acquisition of myocardial perfusion images that correlate well with angiographic findings with overall accuracy by visual

  5. Differential distribution of striatal [{sup 123}I]{beta}-CIT in Parkinson`s disease and progressive supranuclear palsy, evaluated with single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Messa, C.; Volonte, M.A.; Fazio, F.; Zito, F.; Carpinelli, A.; D`Amico, A.; Rizzo, G.; Moresco, R.M.; Paulesu, E.; Franceschi, M.; Lucignani, G. [INB-CNR, University of Milan, H San Raffaele Institute of Milan (Italy)

    1998-09-01

    Functional imaging of the presynaptic dopaminergic activity using single-photon emission tomography (SPET) and iodine-123 labelled 2-{beta}-carboxymethoxy-3-{beta}-(4-iodophenyl)tropane ([{sup 123}I]{beta}-CIT) is important for the assessment of disease severity and progression in patients with Parkinson`s disease (PD). However, its capability to discriminate between different extrapyramidal disorders has not yet been assessed. The aim of this study was to evaluate the possibility of differentiating patients with PD and with progressive supranuclear palsy (PSP) by means of this method. The distribution of [{sup 123}I]{beta}-CIT in the basal ganglia was assessed in six normal subjects, 13 petients with PD and five patients with PSP in whom the disease was mild. SPET images were obtained 24{+-}2 h after i.v. injection of the tracer using a brain-dedicated system (CERASPECT). MR and SPET images were co-registered in four normal subjects and used to define a standard set of 16 circular regions of interest (ROIs) on the slice showing the highest striatal activity. The basal ganglia ROIs corresponded to (1) the head of caudate, (2) a region of transition between the head of caudate and the anterior putamen, (3) the anterior putamen and (4) the posterior putamen. A ratio of specific to non-displaceable striatal uptake was calculated normalising the activity of the basal ganglia ROIs to that of the occipital cortex (V3``). ANOVA revealed a global reduction of V3`` in all ROIs of PD and PSP patients compared with normal controls (P<0.0001). A Mann-Whitney U test showed that the difference between PD and PSP patients was statistically significant for the caudate region only (Z value: 2.6; P<0.01). By subtracting V3`` caudate values from those of the putamen, differentiation from PSP was possible in 10/13 PD patients. In conclusion, analysis of [{sup 123}I]{beta}-CIT distribution in discrete striatal areas provides information on the relative caudate-putamen damage, with

  6. Prediction of traumatic avascular necrosis of the femoral head by single photon emission computerized tomography and computerized tomography: an experimental study in dogs

    Institute of Scientific and Technical Information of China (English)

    SHEN Feng; YAN Zuo-qin; GUO Chang-an; SHI Hong-cheng; GU Yu-shen; ZENG Meng-su; LU Xiao-yu; LIU Jun

    2011-01-01

    Objective: To evaluate the femoral head perfusion and to predict the traumatic avascular necrosis (AVN) of the femoral head by single photon emission computerized tomography and computerized tomography (SPECT/CT). Methods: Totally 18 adult beagle dogs were divided randomly into three equal-sized (n=6) groups. Subsequently different degrees of ischemia model were developed by destroying blood vessels of the femoral head. The left hip received sham operation as normal control and the right hip underwent blood interruption. In Group A, the ligamentum teres was cut off. In Group B, the marrow cavity of the right femoral neck was destroyed while in Group C, the soft tissues at the base of the femoral neck were stripped in addition to the resection of the ligamentum teres and destruction of the marrow cavity. Three hours after surgery, SPECT/ CT was performed. Laser Doppler Flowmetry (LDF) measurements were also obtained at three different time points (before operation, immediately and three hours after operation) in order to assess the change process of blood supply to the femoral head. Results: SPECT/CT showed no significant difference in the radionuclide uptake between the right and left femoral heads in Group A (t=-0.09, P=0.94) and Group B (t= 0.52, P=0.62). However, in Group C, it was 261 ±62 for the right femoral head, only 12% of that in the left femoral head. LDF measurements indicated that the femoral head perfusion was decreased from (45.0±3.3) PU to (39.1±3.7) PU in Group A, from (44.0±2.7) PU to (34.3±2.6) PU in Group B, and from (47.3 ±2.1) PU to (4.96±0.6) PU in Group C immediately after operation. However, the perfusion was restored and returned to normal values three hours after operation except in Group C. Conclusion: SPECT/CT could assess the perfusion of the femoral head semiquantitatively, which might be useful in predicting the development of traumatic AVN.

  7. Longitudinal Evaluation of Sympathetic Nervous System and Perfusion in Normal and Spontaneously Hypertensive Rat Hearts with Dynamic Single-Photon Emission Computed Tomography

    Directory of Open Access Journals (Sweden)

    Yunlong Zan

    2015-07-01

    Full Text Available The objective of this work was to evaluate the sympathetic nervous system and structure remodeling during the progression of heart failure in a rodent model using dynamic cardiac single-photon emission computed tomography (SPECT. The spontaneously hypertensive rat (SHR model was used to study changes in the nervous system innervation and perfusion in the left ventricular (LV myocardium with the progression of left ventricular hypertrophy (LVH to heart failure. Longitudinal dynamic SPECT studies were performed with seven SHR and seven Wistar-Kyoto (WKY rats over 1.5 years using a dual-head SPECT scanner with pinhole collimators. Time-activity curves (TACs of the 123I-MIBG and 201Tl distribution in the LV blood pool and myocardium were extracted from dynamic SPECT data and fitted to compartment models to determine the influx rate, washout rate, and distribution volume (DV of 123I-MIBG and 201Tl in the LV myocardium. The standardized uptake values (SUVs of 123I-MIBG and 201Tl in the LV myocardium were also calculated from the static reconstructed images. The influx and washout rates of 123I-MIBG did not show a significant difference between SHRs and WKY rats. The DVs of 123I-MIBG were greater in the SHRs than in the WKY rats (p = .0028. Specifically, the DV of 123I-MIBG became greater in the SHRs by 6 months of age (p = .0017 and was still significant at the age of 22 months. The SUV of 123I-MIBG in SHRs exhibited abnormal values compared to WKY rats from the age of 18 months. There was no difference in the influx rate and the washout rate of 201Tl between the SHRs and WKY rats. The SHRs exhibited greater DV of 201Tl than WKY rats after the age of 18 months (p = .034. The SUV of 201Tl in SHRs did not show any significant difference from WKY at all ages. The higher DV of 123I-MIBG in the LV myocardium reveals abnormal nervous system activity of the SHRs at an age of 6 months, whereas a greater DV of 201Tl in the LV myocardium can only be detected at

  8. 微腔增强发射的半导体量子点单光子源%Microcavity enhanced single-photon emission from single semiconductor quantum dots

    Institute of Scientific and Technical Information of China (English)

    曹硕; 许秀来

    2014-01-01

    单光子源是实现量子密匙分配、线性光学量子计算的基本单元。作者回顾了单光子源在量子信息科学发展中的作用,讨论了光子的统计特性,分析了具有类似原子二能级结构的半导体量子点作为单光子发射源的特点,介绍了微腔与二能级系统的耦合以及微腔量子电动力学基本原理。在弱耦合区,Purcell效应导致微腔中量子点激子复合寿命降低,因此可用微腔来改善量子点单光子发射效率。文章总结了近年来在半导体微腔增强量子点单光子发射领域的进展,探讨了分布式布拉格反射微腔、柱状微腔和光子晶体微腔等结构对改善半导体量子点单光子发射和收集效率、光子极化以及光子全同性等方面的作用,并对未来半导体量子点单光子源的发展进行了展望。%Single-photon sources are a basic resource for the implementation of quantum key distribution and linear optical-quantum computation. In this article, we review the photon statistical properties of light, in particular, single photons and their applications in quantum information science, semiconductor quantum dot based single-photon sources, and the principles of cavity quantum electrodynamics including the coupling between a two-level emitter and an optical cavity in the strong or weak coupling regime. In the weak coupling regime, the spontaneous emission rate can be enhanced by the cavity due to the Purcell effect. We then review the recent development of single-photon sources using single self-assembled quantum dots coupled with optical cavities. Semiconductor cavities employing distributed Bragg reflectors, micropillars and photonic crystals are used to enhance the repetition rate, collection efficiency, polarization and indistinguishability of single photons. Finally, future prospects of semiconductor quantum dot based single-photon sources are discussed.

  9. Nanodiamond Emitters of Single Photons

    Directory of Open Access Journals (Sweden)

    Vlasov I.I.

    2015-01-01

    Full Text Available Luminescence properties of single color centers were studied in nanodiamonds of different origin. It was found that single photon emitters could be realized even in molecularsized diamond (less than 2 nm capable of housing stable luminescent center “silicon-vacancy.” First results on incorporation of single-photon emitters based on luminescent nanodiamonds in plasmonic nanoantennas to enhance the photon count rate and directionality, diminish the fluorescence decay time, and provide polarization selectivity are presented.

  10. III-Nitride high temperature single-photon sources

    Science.gov (United States)

    Bhattacharya, Pallab; Deshpande, Saniya; Frost, Thomas; Hazari, Arnab

    2015-03-01

    Nitride based GaN and InGaN quantum dots are excellent single-photon emitters at high temperature owing to their wide bandgap and large exciton binding energy [1-5]. In this work, two different molecular beam epitaxy (MBE) grown nanostructures have been investigated for single-photon emission: InGaN/GaN disk-in-nanowire and InGaN/GaN self-organized quantum dot. Single-photon emission under both optical and electrical excitation has been observed from a single InGaN quantum contained in a GaN nanowire p-n junction. We demonstrate electrically driven single-photon emission, with a g (2)(0) = 0.35, from a single InGaN quantum dot emitting in the green spectral range (λ=520 nm) up to 125 K. Additionally, a self-organized InGaN/GaN single quantum dot diode was grown and fabricated. Emission from a single quantum dot (λ=620 nm) shows single-photon emission with g(2)(0) = 0.29 at room temperature. On-demand single-photon emission by electrical pumping of the quantum dot at an excitation repetition rate of 200 MHz was demonstrated.

  11. Dopamine transporter distribution in patients with Parkinson disease of different stages detected using single-photon emission computed tomography brain imaging

    Institute of Scientific and Technical Information of China (English)

    Jiwu Zhang; Lijuan Zhu; Jianqiang Du; Bo Liu

    2007-01-01

    BACKGROUND: Literatures have reported that the density changes of dopamine transporter is negatively correlated with the severity degree and grading of disease condition of Parkinson disease (PD). However, the distribution of dopamine transporter in each nucleus of corpora striatum at each period is still unclear.OBJECTIVE: To observe the radioactive uptake distribution of dopamine transporter in bilateral corpora striata of patients with different stages of PD using single photon emission computed tomography (SPECT),and make a comparison with healthy controls.DESIGN: Case-control analysis.SETTING: Department of Imageology, Second Hospital Affiliated to Guangzhou University of Chinese Medicine.PARTICIPANTS: Thirty patients with PD admitted to Second Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine between January and December 2005 were recruited. The involved patients,19 male and 11 female, were aged from 36 to 80 years and with disease course of 2.5 months to 10 years.They all met the clinical diagnosis criteria of Britain Parkinson's disease Association Think Tank; Following Hoehn-Yahr grading: grade Ⅰ: unilateral morbidity; grade Ⅱ: bilateral morbidity, but without balance disorder; grade Ⅲ: bilateral morbidity, accompanied with early posture balance disorder; grade Ⅳ: severe morbidity, needs more help; grade Ⅴ: without help, only in bed or wheelchair. There were 11 patients with mild PD (grade Ⅰ - Ⅱ ), 9 patients with moderate PD (grade Ⅲ) and 10 patients with advanced PD (grade Ⅳ -V). Meanwhile, 6 healthy persons were selected as normal controls. Informed consents were obtained from all the subjects.METHODS: Twenty-four hours after withdrawal of PD drugs, 30 patients with PD and 6 healthy controls took kalium perchloricum 400 mg orally. After lying down for 30 minutes, all the subjects were intravenously injected with 740 MBq 99Tc m-TRODAT-1 (Jiangsu Institute of Atomic Medicine, Batch No.20040310) at elbow part

  12. Potential advantage of preoperative three-dimensional mapping of sentinel nodes in breast cancer by a hybrid single photon emission CT (SPECT)/CT system

    OpenAIRE

    Ibusuki, Mutsuko; Yamamoto, Yutaka; Kawasoe, Teru; Shiraishi, Shinya; Tomiguchi, Seiji; Yamashita, Yasuyuki; Honda, Yumi; Iyama, Kenichi; Iwase, Hirotaka; イブスキ, ムツコ; ヤマモト, ユタカ; カワソエ, テル; シライシ, シンヤ; トミグチ, セイジ; ヤマシタ, ヤスユキ

    2010-01-01

    Objective: This study aims to assess the role of three dimensional single-photon emissioncomputed tomography (3D-SPECT/CT) in sentinel node (SN) identification, and toanalyze the impact of such information on estimating metastases to SNs.Background: Nodal status is a key factor for breast cancer. SN biopsy has beenestablished as the alternative to routine axillary dissection these days. We investigatedboth the anatomical location of SNs demonstrated by our 3D-SPECT/CT system and thecorrelatio...

  13. Heralded single photon absorption by a single atom

    CERN Document Server

    Piro, Nicolas; Schuck, Carsten; Almendros, Marc; Huwer, Jan; Ghosh, Joyee; Haase, Albrecht; Hennrich, Markus; Dubin, Francois; Eschner, Jürgen

    2010-01-01

    The emission and absorption of single photons by single atomic particles is a fundamental limit of matter-light interaction, manifesting its quantum mechanical nature. At the same time, as a controlled process it is a key enabling tool for quantum technologies, such as quantum optical information technology [1, 2] and quantum metrology [3, 4, 5, 6]. Controlling both emission and absorption will allow implementing quantum networking scenarios [1, 7, 8, 9], where photonic communication of quantum information is interfaced with its local processing in atoms. In studies of single-photon emission, recent progress includes control of the shape, bandwidth, frequency, and polarization of single-photon sources [10, 11, 12, 13, 14, 15, 16, 17], and the demonstration of atom-photon entanglement [18, 19, 20]. Controlled absorption of a single photon by a single atom is much less investigated; proposals exist but only very preliminary steps have been taken experimentally such as detecting the attenuation and phase shift o...

  14. T-shaped single-photon router.

    Science.gov (United States)

    Lu, Jing; Wang, Z H; Zhou, Lan

    2015-09-07

    We study the transport properties of a single photon scattered by a two-level system (TLS) in a T-shaped waveguide, which is made of two coupled-resonator waveguides (CRWs)- an infinite CRW and a semi-infinite CRW. The spontaneous emission of the TLS directs single photons from one CRW to the other. Although the transfer rate is different for the wave incident from different CRWs, due to the boundary breaking the translational symmetry, the boundary can enhance the transfer rate found in Phys. Rev. Lett. 111, 103604 (2013) and Phys. Rev. A 89, 013805 (2014), as the transfer rate could be unity for the wave incident from the semi-infinite CRW.

  15. Analysis of regional cerebral blood flow and distribution volume in Machado-Joseph disease by iodine-{sup 123}I IMP single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Tsunemi; Nakajima, Takashi; Fukuhara, Nobuyoshi [National Saigata Hospital, Ohagata, Niigata (Japan)

    2001-09-01

    Machado-Joseph disease (MJD) is an autosomal dominant spinocerebellar ataxia. Its clinical features vary greatly in different generations of the same family. Regional cerebral blood flow (rCBF) and distribution volume (V{sub d}) in the pons, cerebellum, and cerebral cortex were measured in 12 patients with MJD by autoradiography (ARG) and the table look-up (TLU) method of iodine-123 IMP ({sup 123}I-IMP) single photon emission computed tomography (SPECT). Representative cases were as follows: A 46-year-old woman first experienced gait ataxia at age 38. Computed tomography (CT) and magnetic resonance imaging (MRI) showed no atrophy in the pons or cerebellum, but rCBF measured by the {sup 123}I-IMP SPECT ARG method detected hypoperfusion in the pons, and cerebellar vermis and hemisphere. A 76-year-old woman first experienced gait ataxia at age 69. CT and MRI findings showed severe atrophy in the pons, and cerebellar vermis and hemisphere. Moreover, rCBF was decreased in the pons, whereas it was not decreased in the cerebellar vermis and hemisphere. In the pons of patients with MJD, rCBF was markedly decreased regardless of disease severity. Because this SPECT finding for the pons looked like a 'dot', we have called it the 'pontine dot sign'. In the MJD group, rCBF was significantly decreased in the pons (Student's t test, p<0.01) and cerebellar vermis (p<0.05). The V{sub d} was also significantly decreased in the pons (p<0.005) in comparison with that for normal subjects. Pearson's correlation analysis yielded a significant relationship between the rCBF in the pons and age at onset (r=0.578, p<0.05). There was a strong correlation between the V{sub d} for the pons and age at onset (r=0.59, p<0.05). Person's correlation analysis also showed a significant relationship between the V{sub d} in the cerebellar hemispheres and International Cooperative Ataxia Rating Scale (r=0.644, p<0.05). The pontine rCBFs in patients with early onset MJD

  16. Quantification of Tc-99m-ethyl cysteinate dimer brain single photon emission computed tomography images using statistical probabilistic brain atlas in depressive end-stage renal disease patients Correlation with disease severity and symptom factors

    Institute of Scientific and Technical Information of China (English)

    Heeyoung Kim; In Joo Kim; Seong-Jang Kim; Sang Heon Song; Kyoungjune Pak; Keunyoung Kim

    2012-01-01

    This study adapted a statistical probabilistic anatomical map of the brain for single photon emission computed tomography images of depressive end-stage renal disease patients. This research aimed to investigate the relationship between symptom clusters, disease severity, and cerebral blood flow. Twenty-seven patients (16 males, 11 females) with stages 4 and 5 end-stage renal disease were enrolled, along with 25 healthy controls. All patients underwent depressive mood assessment and brain single photon emission computed tomography. The statistical probabilistic anatomical map images were used to calculate the brain single photon emission computed tomography counts. Asymmetric index was acquired and Pearson correlation analysis was performed to analyze the correlation between symptom factors, severity, and regional cerebral blood flow. The depression factors of the Hamilton Depression Rating Scale showed a negative correlation with cerebral blood flow in the left amygdale. The insomnia factor showed negative correlations with cerebral blood flow in the left amygdala, right superior frontal gyrus, right middle frontal gyrus, and left middle frontal gyrus. The anxiety factor showed a positive correlation with cerebral glucose metabolism in the cerebellar vermis and a negative correlation with cerebral glucose metabolism in the left globus pallidus, right inferior frontal gyrus, both temporal poles, and left parahippocampus. The overall depression severity (total scores of Hamilton Depression Rating Scale) was negatively correlated with the statistical probabilistic anatomical map results in the left amygdala and right inferior frontal gyrus. In conclusion, our results demonstrated that the disease severity and extent of cerebral blood flow quantified by a probabilistic brain atlas was related to various brain areas in terms of the overall severity and symptom factors in end-stage renal disease patients.

  17. Single-photon decision maker

    CERN Document Server

    Naruse, Makoto; Drezet, Aurelien; Huant, Serge; Aono, Masashi; Hori, Hirokazu; Kim, Song-Ju

    2015-01-01

    Decision making is critical in our daily lives and for society in general and is finding evermore practical applications in information and communication technologies. Herein, we demonstrate experimentally that single photons can be used to make decisions in uncertain, dynamically changing environments. Using a nitrogen-vacancy in a nanodiamond as a single-photon source, we demonstrate the decision-making capability by solving the multi-armed bandit problem. This capability is directly and immediately associated with single-photon detection in the proposed architecture, leading to adequate and adaptive autonomous decision making. This study makes it possible to create systems that benefit from the quantum nature of light to perform practical and vital intelligent functions.

  18. Dystrophic calcification in muscles of legs in calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasia syndrome: Accurate evaluation of the extent with (99m)Tc-methylene diphosphonate single photon emission computed tomography/computed tomography.

    Science.gov (United States)

    Chakraborty, Partha Sarathi; Karunanithi, Sellam; Dhull, Varun Singh; Kumar, Kunal; Tripathi, Madhavi

    2015-01-01

    We present the case of a 35-year-old man with calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly and telangiectasia variant scleroderma who presented with dysphagia, Raynaud's phenomenon and calf pain. (99m)Tc-methylene diphosphonate bone scintigraphy was performed to identify the extent of the calcification. It revealed extensive dystrophic calcification in the left thigh and bilateral legs which was involving the muscles and was well-delineated on single photon emission computed tomography/computed tomography. Calcinosis in scleroderma usually involves the skin but can be found in deeper periarticular tissues. Myopathy is associated with a poor prognosis.

  19. Extramedullary pulmonary hematopoiesis causing pulmonary hypertension and severe tricuspid regurgitation detected by {sup 99m} technetium sulfur colloid bone marrow scan and single-photon emission computed tomography/CT

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Syed Zama; Clarke, Michael John; Kannivelu, Anbalagan; Chinchure, Dinesh; Srinivasan, Sivasubramanian [Dept. of Diagnostic Radiology, Khoo Teck Puat Hospital, Singapore (Singapore)

    2014-06-15

    Extramedullary pulmonary hematopoiesis is a rare entity with a limited number of case reports in the available literature only. We report the case of a 66-year-old man with known primary myelofibrosis, in whom a {sup 99m}technetium sulfur colloid bone marrow scan with single-photon emission computed tomography (SPECT)/CT revealed a pulmonary hematopoiesis as the cause of pulmonary hypertension and severe tricuspid regurgitation. To the best of our knowledge, this is the first description of {sup 99m} technetium sulfur colloid SPECT/CT imaging in this rare condition.

  20. Hologram of a single photon

    Science.gov (United States)

    Chrapkiewicz, Radosław; Jachura, Michał; Banaszek, Konrad; Wasilewski, Wojciech

    2016-09-01

    The spatial structure of single photons is becoming an extensively explored resource to facilitate free-space quantum communication and quantum computation as well as for benchmarking the limits of quantum entanglement generation with orbital angular momentum modes or reduction of the photon free-space propagation speed. Although accurate tailoring of the spatial structure of photons is now routinely performed using methods employed for shaping classical optical beams, the reciprocal problem of retrieving the spatial phase-amplitude structure of an unknown single photon cannot be solved using complementary classical holography techniques that are known for excellent interferometric precision. Here, we introduce a method to record a hologram of a single photon that is probed by another reference photon, on the basis of a different concept of the quantum interference between two-photon probability amplitudes. As for classical holograms, the hologram of a single photon encodes the full information about the photon's ‘shape’ (that is, its quantum wavefunction) whose local amplitude and phase are retrieved in the demonstrated experiment.

  1. All-optical tailoring of single-photon spectra in a quantum-dot microcavity system

    CERN Document Server

    Breddermann, Dominik; Binder, Rolf; Zrenner, Artur; Schumacher, Stefan

    2016-01-01

    Semiconductor quantum-dot cavity systems are promising sources for solid-state based on-demand generation of single photons for quantum communication. Commonly, the spectral characteristics of the emitted single photon are fixed by system properties such as electronic transition energies and spectral properties of the cavity. In the present work we study single-photon generation from the quantum-dot biexciton through a partly stimulated non-degenerate two-photon emission. We show that frequency and linewidth of the single photon can be fully controlled by the stimulating laser pulse, ultimately allowing for efficient all-optical spectral shaping of the single photon.

  2. Recent Advances for High-Efficiency Sources of Single Photons Based on Photonic Nanowires

    DEFF Research Database (Denmark)

    Gerard, J. M.; Claudon, J.; Munsch, M.

    2012-01-01

    Photonic nanowires have recently been used to tailor the spontaneous emission of embedded quantum dots, and to develop record efficiency single-photon sources. We will present recent developments in this field mainly 1) the observation of a strong inhibition of the spontaneous emission of quantum...... dots in ultrathin photonic wires 2) the control of the linear polarization of the single photons by photonic wires with an elliptical section, 3) the joint observation (unlike-cavity-based devices) of a record high efficiency and pure single photon emission process in a photonic wire single photon...

  3. Ramsey Interference with Single Photons

    Science.gov (United States)

    Clemmen, Stéphane; Farsi, Alessandro; Ramelow, Sven; Gaeta, Alexander L.

    2016-11-01

    Interferometry using discrete energy levels of nuclear, atomic, or molecular systems is the foundation for a wide range of physical phenomena and enables powerful techniques such as nuclear magnetic resonance, electron spin resonance, Ramsey-based spectroscopy, and laser or maser technology. It also plays a unique role in quantum information processing as qubits may be implemented as energy superposition states of simple quantum systems. Here, we demonstrate quantum interference involving energy states of single quanta of light. In full analogy to the energy levels of atoms or nuclear spins, we implement a Ramsey interferometer with single photons. We experimentally generate energy superposition states of a single photon and manipulate them with unitary transformations to realize arbitrary projective measurements. Our approach opens the path for frequency-encoded photonic qubits in quantum information processing and quantum communication.

  4. High brightness single photon sources based on photonic wires

    DEFF Research Database (Denmark)

    Claudon, J.; Bleuse, J.; Bazin, M.

    2009-01-01

    We present a novel single-photon-source based on the emission of a semiconductor quantum dot embedded in a single-mode photonic wire. This geometry ensures a very large coupling (> 95%) of the spontaneous emission to the guided mode. Numerical simulations show that a photon collection efficiency...

  5. MediSPECT: Single photon emission computed tomography system for small field of view small animal imaging based on a CdTe hybrid pixel detector

    Science.gov (United States)

    Accorsi, R.; Autiero, M.; Celentano, L.; Chmeissani, M.; Cozzolino, R.; Curion, A. S.; Frallicciardi, P.; Laccetti, P.; Lanza, R. C.; Lauria, A.; Maiorino, M.; Marotta, M.; Mettivier, G.; Montesi, M. C.; Riccio, P.; Roberti, G.; Russo, P.

    2007-02-01

    We describe MediSPECT, a new scanner developed at University and INFN Napoli, for SPECT studies on small animals with a small field of view (FOV) and high spatial resolution. The CdTe pixel detector (a 256×256 matrix of 55 μm square pixels) operating in single photon counting for detection of gamma-rays with low and medium energy (e.g. 125I, 27-35 keV, 99mTc, 140 keV), is bump bonded to the Medipix2 readout chip. The FOV of the MediSPECT scanner with a coded aperture mask collimator ranges from 6.3 mm (system spatial resolution 110 μm at 27-35 keV) to 24.3 mm. With a 0.30 mm pinhole the FOV ranges from 2.4 to 29 mm (where the system spatial resolution is 1.0 mm at 27-35 keV and 2.0 mm at 140 keV). MediSPECT will be used for in vivo imaging of small organs or tissue structures in mouse, e.g., brain, thyroid, heart or tumor.

  6. A novel high-efficiency single-mode quantum dot single photon source

    DEFF Research Database (Denmark)

    Gerard, J.M.; Gregersen, Niels; Nielsen, Torben Roland

    2008-01-01

    We present a novel single-mode single photon source exploiting the emission of a semiconductor quantum dot (QD) located inside a photonic wire. Besides an excellent coupling (>95%) of QD spontaneous emission to the fundamental guided mode [1], we show that a single photon collection efficiency...

  7. The use of technetium-99m hexamethylpropylene amine oxime labelled granulocytes with single-photon emission tomography imaging in the detection and follow-up of recurrence of infective endocarditis complicating transvenous endocardial pacemaker

    Energy Technology Data Exchange (ETDEWEB)

    Ramackers, J.M. [Department of Nuclear Medicine, CHU E. Herriot, Lyon (France); Kotzki, P.O. [Department of Nuclear Medicine, CHU Lapeyronie et A. de Villeneuve, Montpellier (France); Couret, I. [Department of Nuclear Medicine, CHU Lapeyronie et A. de Villeneuve, Montpellier (France); Messner-Pellenc, P. [Department of Cardiology, CHU Lapeyronie et A. Villeneuve, Montpellier (France); Davy, J.M. [Department of Cardiology, CHU Lapeyronie et A. Villeneuve, Montpellier (France); Rossi, M. [Department of Nuclear Medicine, CHU Lapeyronie et A. de Villeneuve, Montpellier (France)

    1995-11-01

    In this case report we present a patient with a recurrence of subacute bacterial infectious endocarditis (IE) complicating a transvenous endocardial pacemaker. Technetium-99m hexamethylpropylene amine oxime ({sup 99m}Tc-HMPAO) labelled granulocytes were used for diagnosis and follow-up under medical treatment only, since surgical removal of the pacemaker lead was ruled out because of the general condition of the patient. Single-photon emission tomography (SPET) imaging displayed the active lesion previously suspected on echography. At the end of antibiotic therapy, SPET indicated a favourable disease outcome whereas echocardiographic abnormalities remained nearly unchanged. The medical treatment had eradicated the IE, and the patient did well for more than 1 year thereafter. (orig.)

  8. Better Randomness with Single Photons

    CERN Document Server

    Oberreiter, Lukas

    2014-01-01

    Randomness is one of the most important resources in modern information science, since encryption founds upon the trust in random numbers. Since it is impossible to prove if an existing random bit string is truly random, it is relevant that they be generated in a trust worthy process. This requires specialized hardware for random numbers, for example a die or a tossed coin. But when all input parameters are known, their outcome might still be predicted. A quantum mechanical superposition allows for provably true random bit generation. In the past decade many quantum random number generators (QRNGs) were realized. A photonic implementation is described as a photon which impinges on a beam splitter, but such a protocol is rarely realized with non-classical light or anti-bunched single photons. Instead, laser sources or light emitting diodes are used. Here we analyze the difference in generating a true random bit string with a laser and with anti-bunched light. We show that a single photon source provides more r...

  9. Characterizing heralded single-photon sources with imperfect measurement devices

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, M; Soellner, I; Bocquillon, E; Couteau, C; Laflamme, R; Weihs, G [Institute for Quantum Computing, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1 (Canada)], E-mail: mrazavi@iqc.ca

    2009-06-14

    Any characterization of a single-photon source is not complete without specifying its second-order degree of coherence, i.e., its g{sup (2)} function. An accurate measurement of such coherence functions commonly requires high-precision single-photon detectors, in whose absence only time-averaged measurements are possible. It is not clear, however, how the resulting time-averaged quantities can be used to properly characterize the source. In this paper, we investigate this issue for a heralded source of single photons that relies on continuous-wave parametric down-conversion. By accounting for major shortcomings of the source and the detectors-i.e., the multiple-photon emissions of the source, the time resolution of photodetectors and our chosen width of coincidence window-our theory enables us to infer the true source properties from imperfect measurements. Our theoretical results are corroborated by an experimental demonstration using a PPKTP crystal pumped by a blue laser that results in a single-photon generation rate about 1.2 millions per second per milliwatt of pump power. This work takes an important step towards the standardization of such heralded single-photon sources.

  10. Single photon sources with single semiconductor quantum dots

    Science.gov (United States)

    Shan, Guang-Cun; Yin, Zhang-Qi; Shek, Chan Hung; Huang, Wei

    2014-04-01

    In this contribution, we briefly recall the basic concepts of quantum optics and properties of semiconductor quantum dot (QD) which are necessary to the understanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantum emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as optical properties of the QDs. We then review the localization of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and performances in terms of strong coupling regime, efficiency, directionality, and polarization control. Furthermore, we will discuss the recent progress on the fabrication of single photon sources, and various approaches for embedding single QDs into microcavities or photonic crystal nanocavities and show how to extend the wavelength range. We focus in particular on new generations of electrically driven QD single photon source leading to high repetition rates, strong coupling regime, and high collection efficiencies at elevated temperature operation. Besides, new developments of room temperature single photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for practical single-photon sources are also discussed.

  11. Efficient Generation of Frequency-Multiplexed Entangled Single Photons

    Science.gov (United States)

    Qiu, Tian-Hui; Xie, Min

    2016-12-01

    We present two schemes to generate frequency-multiplexed entangled (FME) single photons by coherently mapping photonic entanglement into and out of a quantum memory based on Raman interactions. By splitting a single photon and performing subsequent state transfer, we separate the generation of entanglement and its frequency conversion, and find that the both progresses have the characteristic of inherent determinacy. Our theory can reproduce the prominent features of observed results including pulse shapes and the condition for deterministically generating the FME single photons. The schemes are suitable for the entangled photon pairs with a wider frequency range, and could be immune to the photon loss originating from cavity-mode damping, spontaneous emission, and the dephasing due to atomic thermal motion. The sources might have significant applications in wavelength-division-multiplexing quantum key distribution.

  12. Absolute calibration of fiber-coupled single-photon detector.

    Science.gov (United States)

    Lunghi, Tommaso; Korzh, Boris; Sanguinetti, Bruno; Zbinden, Hugo

    2014-07-28

    We show a setup for characterising the efficiency of a single-photon-detector absolutely and with a precision better than 1%. Since the setup does not rely on calibrated devices and can be implemented with standard-optic components, it can be realised in any laboratory. Our approach is based on an Erbium-Doped-Fiber-Amplifier (EDFA) radiometer as a primary measurement standard for optical power, and on an ultra-stable source of spontaneous emission. As a proof of principle, we characterise the efficiency of an InGaAs/InP single-photon detector. We verified the correctness of the characterisation with independent measurements. In particular, the measurement of the optical power made with the EDFA radiometer has been compared to that of the Federal Institute of Metrology using a transfer power meter. Our approach is suitable for frequent characterisations of high-efficient single-photon detectors.

  13. Absolute calibration of fiber-coupled single-photon detector

    CERN Document Server

    Lunghi, Tommaso; Sanguinetti, Bruno; Zbinden, Hugo

    2014-01-01

    We show a setup for characterising the efficiency of a single-photon-detector absolutely and with a precision better of 1%. Since the setup does not rely on calibrated devices and can be implemented with standard-optic components, it can be realised in any laboratory. Our approach is based on an Erbium-Doped-Fiber-Amplifier (EDFA) radiometer as a primary measurement standard for optical power, and on an ultra-stable source of spontaneous emission. As a proof of principle, we characterise the efficiency of an InGaAs/InP single-photon detector. We verified the correctness of the characterisation with independent measurements. In particular, the measurement of the optical power made with the EDFA radiometer has been compared to that of the Swiss Federal Office of Metrology using a transfer power meter. Our approach is suitable for frequent characterisations of high-efficient single-photon detectors.

  14. Photonic wires and trumpets for ultrabright single photon sources

    DEFF Research Database (Denmark)

    Gérard, Jean-Michel; Claudon, Julien; Bleuse, Joël

    2013-01-01

    Photonic wires have recently demonstrated very attractive assets in the field of high-efficiency single photon sources. After presenting the basics of spontaneous emission control in photonic wires, we compare the two possible tapering strategies that can be applied to their output end so...... as to tailor their radiation diagram in the far-field. We highlight the novel “photonic trumpet” geometry, which provides a clean Gaussian beam, and is much less sensitive to fabrication imperfections than the more common needle-like taper geometry. S4Ps based on a single QD in a PW with integrated bottom...... mirror and tapered tip display jointly a record-high efficiency (0.75±0.1 photon per pulse) and excellent single photon purity. Beyond single photon sources, photonic wires and trumpets appear as a very attractive resource for solid-state quantum optics experiments....

  15. Spectral compression of single photons

    CERN Document Server

    Lavoie, Jonathan; Wright, Logan G; Fedrizzi, Alessandro; Resch, Kevin J

    2013-01-01

    Photons are critical to quantum technologies since they can be used for virtually all quantum information tasks: in quantum metrology, as the information carrier in photonic quantum computation, as a mediator in hybrid systems, and to establish long distance networks. The physical characteristics of photons in these applications differ drastically; spectral bandwidths span 12 orders of magnitude from 50 THz for quantum-optical coherence tomography to 50 Hz for certain quantum memories. Combining these technologies requires coherent interfaces that reversibly map centre frequencies and bandwidths of photons to avoid excessive loss. Here we demonstrate bandwidth compression of single photons by a factor 40 and tunability over a range 70 times that bandwidth via sum-frequency generation with chirped laser pulses. This constitutes a time-to-frequency interface for light capable of converting time-bin to colour entanglement and enables ultrafast timing measurements. It is a step toward arbitrary waveform generatio...

  16. The Single-Photon Router

    CERN Document Server

    Hoi, Io-Chun; Johansson, Göran; Palomaki, Tauno; Peropadre, Borja; Delsing, Per

    2011-01-01

    We have embedded an artificial atom, a superconducting "transmon" qubit, in an open transmission line and investigated the strong scattering of incident microwave photons ($\\sim6$ GHz). When an input coherent state, with an average photon number $N\\ll1$ is on resonance with the artificial atom, we observe extinction of up to 90% in the forward propagating field. We use two-tone spectroscopy to study scattering from excited states and we observe electromagnetically induced transparency (EIT). We then use EIT to make a single-photon router, where we can control to what output port an incoming signal is delivered. The maximum on-off ratio is around 90% with a rise and fall time on the order of nanoseconds, consistent with theoretical expectations. The router can easily be extended to have multiple output ports and it can be viewed as a rudimentary quantum node, an important step towards building quantum information networks.

  17. Highly efficient heralding of entangled single photons.

    Science.gov (United States)

    Ramelow, Sven; Mech, Alexandra; Giustina, Marissa; Gröblacher, Simon; Wieczorek, Witlef; Beyer, Jörn; Lita, Adriana; Calkins, Brice; Gerrits, Thomas; Nam, Sae Woo; Zeilinger, Anton; Ursin, Rupert

    2013-03-25

    Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down-conversion in collinear bulk optics, and fiber-coupled bolometric transition-edge sensors. Without correcting for background, losses, or detection inefficiencies, we measure an overall heralding efficiency of 83%. By violating a Bell inequality, we confirm the single-photon character and high-quality entanglement of our heralded single photons which, in combination with the high heralding efficiency, are a necessary ingredient for advanced quantum communication protocols such as one-sided device-independent quantum key distribution.

  18. Diagnostic performance of exercise bicycle testing and single-photon emission computed tomography: Comparison with 64-slice computed tomography coronary angiography

    NARCIS (Netherlands)

    A.C. Weustink (Annick); L.A.E. Neefjes (Lisan); A. Rossi (Alexia); W.B. Meijboom (Willem Bob); K. Nieman (Koen); E. Capuano (Ermanno); H. Boersma (Eric); N.R.A. Mollet (Nico); G.P. Krestin (Gabriel); P.J. de Feyter (Pim)

    2012-01-01

    textabstractTo conduct a comparison of the diagnostic performance of exercise bicycle testing and singlephoton emission computed tomography (SPECT) with computed tomography coronary angiography (CTCA) for the detection of obstructive coronary artery disease (CAD) in patients with stable angina. 376

  19. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    Energy Technology Data Exchange (ETDEWEB)

    Razali, Azhani Mohd, E-mail: azhani@nuclearmalaysia.gov.my; Abdullah, Jaafar, E-mail: jaafar@nuclearmalaysia.gov.my [Plant Assessment Technology (PAT) Group, Industrial Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang (Malaysia)

    2015-04-29

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.

  20. Single-photon emission at 1.55 μm from MOVPE-grown InAs quantum dots on InGaAs/GaAs metamorphic buffers

    Science.gov (United States)

    Paul, Matthias; Olbrich, Fabian; Höschele, Jonatan; Schreier, Susanne; Kettler, Jan; Portalupi, Simone Luca; Jetter, Michael; Michler, Peter

    2017-07-01

    By metal-organic vapor-phase epitaxy, we have fabricated InAs quantum dots (QDs) on InGaAs/GaAs metamorphic buffer layers on a GaAs substrate with area densities that allow addressing single quantum dots. The photoluminescence emission from the quantum dots is shifted to the telecom C-band at 1.55 μm with a high yield due to the reduced stress in the quantum dots. The lowered residual strain at the surface of the metamorphic buffer layer results in a reduced lattice mismatch between the quantum dot material and growth surface. The quantum dots exhibit resolution-limited linewidths (mean value: 59 μeV) and low fine-structure splittings. Furthermore, we demonstrate single-photon emission ( g ( 2 ) ( 0 ) = 0.003 ) at 1.55 μm and decay times on the order of 1.4 ns comparable to InAs QDs directly deposited on GaAs substrates. Our results suggest that these quantum dots can not only compete with their counterparts deposited on InP substrates but also constitute an InAs/GaAs-only approach for the development of non-classical light sources in the telecom C-band.

  1. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    Science.gov (United States)

    Razali, Azhani Mohd; Abdullah, Jaafar

    2015-04-01

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.

  2. Normal regional distribution of cerebral blood flow in dogs: comparison between (99m) Tc-ethylcysteinate dimer and (99m) Tc- hexamethylpropylene amine oxime single photon emission computed tomography.

    Science.gov (United States)

    Adriaens, Antita; Polis, Ingeborgh; Waelbers, Tim; Vandermeulen, Eva; Dobbeleir, André; De Spiegeleer, Bart; Peremans, Kathelijne

    2013-01-01

    Functional imaging provides important insights into canine brain pathologies such as behavioral problems. Two (99m) Tc-labeled single photon emission computed tomography (SPECT) cerebral blood flow tracers-ethylcysteinate dimer (ECD) and hexamethylpropylene amine oxime (HMPAO)-are commonly used in human medicine and have been used previously in dogs but intrasubject comparison of both tracers in dogs is lacking. Therefore, this study investigated whether regional distribution differences between both tracers occur in dogs as is reported in humans. Eight beagles underwent two SPECT examinations first with (99m) Tc-ECD and followed by (99m) Tc-HMPAO. SPECT scanning was performed with a triple head gamma camera equipped with ultrahigh resolution parallel hole collimators. Images were reconstructed using filtered backprojection with a Butterworth filter. Emission data were fitted to a template permitting semiquantification using predefined regions or volumes of interest (VOIs). For each VOI, perfusion indices were calculated by normalizing the regional counts per voxel to total brain counts per voxel. The obtained perfusion indices for each region for both tracers were compared with a paired Student's T-test. Significant (P < 0.05) regional differences were seen in the subcortical region and the cerebellum. Both tracers can be used to visualize regional cerebral blood flow in dogs, however, due to the observed regional differences, they are not entirely interchangeable. © 2013 Veterinary Radiology & Ultrasound.

  3. Hiding Single Photons With Spread Spectrum Technology

    CERN Document Server

    Belthangady, Chinmay; Yu, Ite A; Yin, G Y; Kahn, J M; Harris, S E

    2010-01-01

    We describe a proof-of-principal experiment demonstrating the use of spread spectrum technology at the single photon level. We show how single photons with a prescribed temporal shape, in the presence of interfering noise, may be hidden and recovered.

  4. Single-photon superradiance and radiation trapping by atomic shells

    Science.gov (United States)

    Svidzinsky, Anatoly A.; Li, Fu; Li, Hongyuan; Zhang, Xiwen; Ooi, C. H. Raymond; Scully, Marlan O.

    2016-04-01

    The collective nature of light emission by atomic ensembles yields fascinating effects such as superradiance and radiation trapping even at the single-photon level. Light emission is influenced by virtual transitions and the collective Lamb shift which yields peculiar features in temporal evolution of the atomic system. We study how two-dimensional atomic structures collectively emit a single photon. Namely, we consider spherical, cylindrical, and spheroidal shells with two-level atoms continuously distributed on the shell surface and find exact analytical solutions for eigenstates of such systems and their collective decay rates and frequency shifts. We identify states which undergo superradiant decay and states which are trapped and investigate how size and shape of the shell affects collective light emission. Our findings could be useful for quantum information storage and the design of optical switches.

  5. Polarization Properties of Quantum-Dot-Based Single Photon Sources

    Institute of Scientific and Technical Information of China (English)

    HAN Shuo; HAO Zhi-Biao; LUO Yi

    2007-01-01

    Polarization properties of single photons emitted by optical pumping from a single quantum dot (QD) are studied by using a four-level system model. The model is capable of explaining the polarization uncertainty observed in single photon emission experiments. It is found that the dependence of photon emission efficiency and polarization visibility on pump power are opposite in general cases. By employing QDs with small size and strong carrier confinement, the photon polarization visibility under high pump power can be improved. In addition, embedding a QD into a well designed microcavity is also found to be favourable, whereas the trade-off between high polarization visibility and multi-photon emission is noted.

  6. Real-Time Three-Dimensional Echocardiography as a Novel Approach to Quantify Left Ventricular Dyssynchrony: A Comparison Study with Phase Analysis of Gated Myocardial Perfusion Single Photon Emission Computed Tomography

    Science.gov (United States)

    Marsan, Nina Ajmone; Henneman, Maureen M.; Chen, Ji; Ypenburg, Claudia; Dibbets, Petra; Ghio, Stefano; Bleeker, Gabe B.; Stokkel, Marcel P.; van der Wall, Ernst E.; Tavazzi, Luigi; Garcia, Ernest V.; Bax, Jeroen J.

    2010-01-01

    Background Different imaging modalities have been explored for assessment of left ventricular (LV) dyssynchrony. Gated myocardial perfusion single photon emission computed tomography (GMPS) with phase analysis is a reliable technique to quantify LV dyssynchrony and predict response to cardiac resynchronization therapy. Objective Real-time 3-dimensional echocardiography (RT3DE) is a novel imaging technique that provides a LV systolic dyssynchrony index, based on regional volumetric changes as a function of time and calculated as the SD of time to minimum systolic volume of 16 standard myocardial segments expressed in percentage of cardiac cycle. The aim of this study was to compare LV dyssynchrony evaluated with GMPS with LV dyssynchrony assessed with RT3DE. Methods The study population consisted of 40 patients with heart failure who underwent both GMPS and RT3DE. Results Good correlations between LV dyssynchrony assessed with RT3DE and GMPS were demonstrated (r = 0.76 for histogram bandwidth, r = 0.80 for phase SD, P < .0001). Patients with substantial LV dyssynchrony on GMPS (defined as ≥135 degrees for histogram bandwidth and ≥43 degrees for phase SD) had significantly higher LV systolic dyssynchrony index than patients without substantial LV dyssynchrony. Conclusions The good correlations between LV dyssynchrony assessed with GMPS and with RT3DE provide further support for the use of RT3DE for reliable assessment of LV dyssynchrony. PMID:18222645

  7. Ictal technetium-99 m ethyl cysteinate dimer single-photon emission tomographic findings in epileptic patients with polymicrogyria syndromes: A subtraction of ictal-interictal SPECT coregistered to MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Wichert-Ana, Lauro [University of Sao Paulo, Center for Epilepsy Surgery, Department of Neurology, Psychiatry and Clinical Psychology, Ribeirao Preto (Brazil); Hospital das Clinicas, USP, Centro de Cirurgia de Epilepsia, CIREP, Ribeirao Preto, SP (Brazil); Mazzoncini de Azevedo-Marques, Paulo; Santos, Antonio C.; Araujo, David [University of Sao Paulo, Center for Imaging Science and Medical Physics, Department of Internal Medicine, Ribeirao Preto (Brazil); Ferrari Oliveira, Lucas [Federal University of Pelotas, Informatics Department, Pelotas, RS (Brazil); Fernandes, Regina M.F.; Velasco, Tonicarlo R.; Sakamoto, Americo C. [University of Sao Paulo, Center for Epilepsy Surgery, Department of Neurology, Psychiatry and Clinical Psychology, Ribeirao Preto (Brazil); Kato, Mery [University of Sao Paulo, Division of Nuclear Medicine, Department of Internal Medicine from the Ribeirao Preto Medical School, Ribeirao Preto (Brazil); Muxfeldt Bianchin, Marino [Rio Grande do Sul Federal University, Neurology Division, HCPA, Porto Alegre, RS (Brazil)

    2008-06-15

    To describe the ictal technetium-99 m-ECD SPECT findings in polymicrogyria syndromes (PMG) during epileptic seizures. We investigated 17 patients with PMG syndromes during presurgical workup, which included long-term video-electroencephalographic (EEG) monitoring, neurological and psychiatry assessments, invasive EEG, and the subtraction of ictal-interictal SPECT coregistered to magnetic resonance imaging (MRI) (SISCOM). The analysis of the PMG cortex, using SISCOM, revealed intense hyperperfusion in the polymicrogyric lesion during epileptic seizures in all patients. Interestingly, other localizing investigations showed heterogeneous findings. Twelve patients underwent epilepsy surgery, three achieved seizure-freedom, five have worthwhile improvement, and four patients remained unchanged. Our study strongly suggests the involvement of PMG in seizure generation or early propagation. Both conventional ictal single-photon emission computed tomography (SPECT) and SISCOM appeared as the single contributive exam to suggest the localization of the epileptogenic zone. Despite the limited number of resective epilepsy surgery in our study (n = 9), we found a strong prognostic role of SISCOM in predicting surgical outcome. This result may be of great value on surgical decision-making of whether or not the whole or part of the PMG lesion should be surgically resected. (orig.)

  8. Single photon emission computed tomography of the brain in Sturge-Weber syndrome using N-isopropyl-p-( sup 123 I) iodoamphetamine; A comparative study with X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Horita, Hideki; Nozaki, Hidetsugu; Hamano, Shinichiro; Aihara, Toshinori (Saitama Children' s Medical Center, Iwatsuki (Japan))

    1990-07-01

    Single photon emission computed tomography (SPECT) of the brain using N-isopropyl-p-({sup 123}I) iodoamphetamine ({sup 123}I-IMP) was performed in 11 children with port wine stain on the face or head, aged 1.0{approx}14.2 years at investigation. Four cases without neurologic symptoms had no specific abnormality on SPECT and X-ray computed tomography (CT). In 4 cases of so-called Sturge-Weber syndrome with developmental quotients (DQ) or intelligence quotients (IQ) more than 80 and the neurologic symptoms consisting of seizures and hemiplegia, SPECT showed localized reduction of IMP accumulation, and CT exhibited calcification, atrophy and enhancement in 2 cases of 3 with contrast medium infusion in the same areas. In 3 cases with DQ of 50{approx}60 and severer neurologic symptoms, SPECT showed diffuse reduction or defect of IMP accumulation in the ipsilateral hemisphere, and CT exhibited remarkable atrophy, calcifications and enhancement in 2 cases with contrast medium infusion in the same hemisphere. In one case with severe neurologic symptoms, SPECT performed at an early stage showed high IMP accumulation in the ipsilateral hemisphere. (author).

  9. Use of a tantalum-178 generator and a multiwire gamma camera to study the effect of the Mueller maneuver on left ventricular performance: comparison to hemodynamics and single photon emission computed tomography perfusion patterns.

    Science.gov (United States)

    Gioia, G; Lin, B; Katz, R; DiMarino, A J; Ogilby, J D; Cassel, D; DePace, N L; Heo, J; Iskandrian, A S

    1995-11-01

    During the Mueller maneuver, there is a decrease in intrathoracic pressure and an increase in transmural left ventricular pressure. The changes in loading conditions cause transient left ventricular dysfunction. This study examined the effects of the Mueller maneuver on left ventricular performance using tantalum (Ta)-178 (half-life 9.3 min) and a multiwire gamma camera. First-pass radionuclide angiograms were obtained at baseline and during Mueller maneuver in 41 patients aged 58 +/- 10 years. In 34 patients, stress single photon emission computed tomography (SPECT) myocardial perfusion imaging with thallium-201 or sestamibi was also performed. Hemodynamic measurements during the Mueller maneuver (n = 10) showed a decrease in systemic pressure (139 +/- 25 mm Hg vs 123 +/- 24 mm Hg, p or = 5%) in 17 patients (group 2) (55% +/- 13% vs 40% +/- 16%, p = 0.001). The stress SPECT images showed no or only fixed defects in 11 (65%) patients in group 1 and 3 (18%) patients in group 2 (p = 0.02), and reversible defects in 6 (35%) patients in group 1 and 14 (82%) patients in group 2 (p = 0.04).(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Radiolabeled cyclic arginine-glycine-aspartic (RGD)-conjugated iron oxide nanoparticles as single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) dual-modality agents for imaging of breast cancer

    Science.gov (United States)

    Deng, Shengming; Zhang, Wei; Zhang, Bin; Hong, Ruoyu; Chen, Qing; Dong, Jiajia; Chen, Yinyiin; Chen, Zhiqiang; Wu, Yiwei

    2015-01-01

    Ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) modified with a novel cyclic arginine-glycine-aspartate (RGD) peptide were made and radiolabeled as single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) dual-modality agents for imaging of breast cancer. The probe was tested both in vitro and in vivo to determine its receptor targeting efficacy and feasibility for SPECT and MRI. The radiochemical syntheses of 125I-cRGD-USPIO were accomplished with a radiochemical purity of 96.05 ± 0.33 %. High radiochemical stability was found in fresh human serum and in phosphate-buffered saline. The average hydrodynamic size of 125I-cRGD-USPIO determined by dynamic light scattering was 51.3 nm. Results of in vitro experiments verified the specificity of the radiolabeled nanoparticles to tumor cells. Preliminary biodistribution studies of 125I-radiolabeled cRGD-USPIO in Bcap37-bearing nude mice showed that it had long circulation half-life, high tumor uptake, and high initial blood retention with moderate liver uptake. In vivo tumor targeting and uptake of the radiolabeled nanoparticles in mice model were visualized by SPECT and MRI collected at different time points. Our results strongly indicated that the 125I-cRGD-USPIO could be used as a promising bifunctional radiotracer for early clinical tumor detection with high sensitivity and high spatial resolution by SPECT and MRI.

  11. Significance of exercise-induced ST segment depression in patients with myocardial infarction involving the left circumflex artery. Evaluation by exercise thallium-201 myocardial single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Koitabashi, Norimichi; Toyama, Takuji; Hoshizaki, Hiroshi [Gunma Prefectural Cardiovascular Center, Maebashi (Japan)] [and others

    2000-04-01

    The significance of exercise-induced ST segment depression in patients with left circumflex artery involvement was investigated by comparing exercise electrocardiography with exercise thallium-201 single photon emission computed tomography (Tl-SPECT) and the wall motion estimated by left ventriculography. Tl-SPECT and exercise electrocardiography were simultaneously performed in 51 patients with left circumflex artery involvement (angina pectoris 30, myocardial infarction 21). In patients with myocardial infarction, exercise-induced ST depression was frequently found in the V{sub 2}, V{sub 3} and V{sub 4} leads. In patients with angina pectoris, ST depression was frequently found in the II, III, aV{sub F}, V{sub 5} and V{sub 6} leads. There was no obvious difference in the leads of ST depression in patients with myocardial infarction with ischemia and without ischemia on Tl-SPECT images. In patients with myocardial infarction, the lateral wall motion of the infarcted area evaluated by left ventriculography was more significantly impaired in the patients with ST depression than without ST depression (p<0.01). Exercise-induced ST depression in the precordial leads possibly reflects wall motion abnormality rather than ischemia in the lateral infarcted myocardium. (author)

  12. Effect of long-term cholesterol-lowering treatment with HMG-CoA reductase inhibitor (Simvastatin) of myocardial perfusion evaluated by thallium-201 single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Ryohei; Nohara, Ryuji; Linxue, Li; Sasayama, Shigetake [Kyoto Univ. (Japan). Graduate School of Medicine; Tamaki, Shunichi; Hashimoto, Tetsuo; Tanaka, Masahiro; Miki, Shinji

    2000-03-01

    Fifteen patients with either angina pectoris or old myocardial infarction, who had positive {sup 201}Tl single photon emission computed tomography (SPECT) imaging and coronary sclerosis of more than 50%, were treated with an HMG-CoA reductase inhibitor (simvastatin) for more than 1 year. They were compared with an untreated control group (n=25). Total cholesterol decreased 22% and high-density lipoprotein (HDL) increased 9% with simvastatin; both changes were significantly different from those in controls. Long-term simvastatin induced improvement of myocardial perfusion on {sup 201}Tl SPECT images both during exercise and at rest, which was also significantly different from controls. In addition, the improvement of myocardial perfusion on {sup 201}Tl SPECT images was clearly related to the improvements in cholesterol values, especially nonHDL cholesterol. Thus, the greater the decrease in nonHDL cholesterol, the greater the improvement in myocardial perfusion at rest or during exercise with long-term treatment using an HMG-CoA reductase inhibitor. These findings indicate that the improvements in cholesterol values caused by HMG-CoA reductase inhibitor therapy are related to improvements of myocardial perfusion seen on {sup 201}Tl SPECT images. (author)

  13. Comparison of image uniformity with photon counting and conventional scintillation single-photon emission computed tomography system: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Chul; Lee, Young Jin [Dept. of Radiological Science, Eulji University, Seongnam (Korea, Republic of); Kim, Hee Joung; Kim, Kyuseok; Lee, Min Hee [Yonsei University, Wonju (Korea, Republic of)

    2017-06-15

    To avoid imaging artifacts and interpretation mistakes, an improvement of the uniformity in gamma camera systems is a very important point. We can expect excellent uniformity using cadmium zinc telluride (CZT) photon counting detector (PCD) because of the direct conversion of the gamma rays energy into electrons. In addition, the uniformity performance such as integral uniformity (IU), differential uniformity (DU), scatter fraction (SF), and contrast-to-noise ratio (CNR) varies according to the energy window setting. In this study, we compared a PCD and conventional scintillation detector with respect to the energy windows (5%, 10%, 15%, and 20%) using a {sup 99m}Tc gamma source with a Geant4 Application for Tomography Emission simulation tool. The gamma camera systems used in this work are a CZT PCD and NaI(Tl) conventional scintillation detector with a 1-mm thickness. According to the results, although the IU and DU results were improved with the energy window, the SF and CNR results deteriorated with the energy window. In particular, the uniformity for the PCD was higher than that of the conventional scintillation detector in all cases. In conclusion, our results demonstrated that the uniformity of the CZT PCD was higher than that of the conventional scintillation detector.

  14. Prediction of Changes in Left Ventricular Ejection Fraction after Off-Pump Coronary Artery Bypass Grafting Surgery by Myocardial Perfusion Single-Photon Emission Computed Tomography

    Directory of Open Access Journals (Sweden)

    Maryam Mirzaie

    2015-09-01

    Full Text Available Introduction: Left ventricular ejection fraction (LVEF is considered to be the single most important prognostic factor in patients with previous myocardial infarction. LVEF is not improved in all patients after coronary artery bypass grafting (CABG. This study aimed to assess the possibility of prediction of LVEF changes after CABG using myocardial perfusion gated signle photon emission computed tomography (GSPECT. Materials and Methods: Overall, 48 patients with mean LVEF of 30.2% (±4.7 underwent Echocardiography and GSPECT after injection of Tc-99m-MIBI at rest. Myocardial uptake was evaluated in 17 myocardial segments and was compared with age and gender matched normal data pool. The risks and benefits of CABG were explained to the patients and 16 cases (15 male and 1 female with the mean age of 61.1 years (±10.8 accepted to undergo off-pump CABG. All the patients were followed-up for at least six months and echocardiography and GSPECT were repeated at the end of follow up. Results: The mean LVEF was increased from of 31.1% (±3.5 to 34.5% (±3.6 after surgery (P

  15. Comparison of Image Uniformity with Photon Counting and Conventional Scintillation Single-Photon Emission Computed Tomography System: A Monte Carlo Simulation Study

    Directory of Open Access Journals (Sweden)

    Ho Chul Kim

    2017-06-01

    Full Text Available To avoid imaging artifacts and interpretation mistakes, an improvement of the uniformity in gamma camera systems is a very important point. We can expect excellent uniformity using cadmium zinc telluride (CZT photon counting detector (PCD because of the direct conversion of the gamma rays energy into electrons. In addition, the uniformity performance such as integral uniformity (IU, differential uniformity (DU, scatter fraction (SF, and contrast-to-noise ratio (CNR varies according to the energy window setting. In this study, we compared a PCD and conventional scintillation detector with respect to the energy windows (5%, 10%, 15%, and 20% using a 99mTc gamma source with a Geant4 Application for Tomography Emission simulation tool. The gamma camera systems used in this work are a CZT PCD and NaI(Tl conventional scintillation detector with a 1-mm thickness. According to the results, although the IU and DU results were improved with the energy window, the SF and CNR results deteriorated with the energy window. In particular, the uniformity for the PCD was higher than that of the conventional scintillation detector in all cases. In conclusion, our results demonstrated that the uniformity of the CZT PCD was higher than that of the conventional scintillation detector.

  16. Changes in distribution of reticuloendothelial function in transcatheter arterial embolization (TAE) for hepatocellular carcinoma (HCC), estimated by single photon emission computed tomography (SPECT)

    Energy Technology Data Exchange (ETDEWEB)

    Taniai, Nobuhiko; Onda, Masahiko; Tajiri, Takashi; Kim, Tokuei [Nippon Medical School, Tokyo (Japan)

    1995-06-01

    In order to study the changes in distribution of reticuloendothelial function in transcatheter arterial embolization (TAE) for hepatocellular carcinoma (HCC), the radioactivity of {sup 99m}Tc-phytate was calculated by the accumulation rate in the organs by means of the single emission computed tomography (SPECT). It was regarded as the reticuloendothelial function in the liver and spleen, and was evaluated independently. Before TAE, the significant increases were noted in both splenic activity and splenic volume in the cirrhotic patients, as compared with non-cirrhotic patients. After TAE, the activity in the liver was reduced at the first day after TAE, which returned to the normal level by 5 days. While that in the spleen increased immediately after TAE. After one day of TAE, reticuloendothelial functions of the spleen was significantly higher in the cirrhotic cases then in the non-cirrhotic cases. Furthermore, in the cirrhotic patients, it was significantly higher in the cases embolizated in more than two segments than in those embolizated in one segment only. In conclusion, the reticuloendothelial function of the liver was significantly reduced by the TAE in the cirrhotic patients as compared with non-cirrhotic patients. However the reduced reticuloendothelial function of the liver in the cirrhotic patients was compensated by the increased reticuloendothelial function of the spleen. (author).

  17. Ictal technetium-99m ethyl cysteinate dimer single-photon emission tomographic findings and propagation of epileptic seizure activity in patients with extratemporal epilepsies

    Energy Technology Data Exchange (ETDEWEB)

    Noachtar, S.; Arnold, S.; Werhahn, K.J. [Department Neurologie, Ludwig-Maximilians Universitaet, Muenchen (Germany); Yousry, T.A. [Muenchen Univ. (Germany). Abt. fuer Neuroradiologie; Bartenstein, P. [Department of Nuclear Medicine, Technical University of Munich, Munich (Germany); Tatsch, K. [Department of Nuclear Medicine, Ludwig-Maximilians University of Munich, Munich (Germany)

    1998-02-01

    We investigated the influence of the propagation of extratemporal epileptic seizure activity on the regional increase in cerebral blood flow, which is usually associated with epileptic seizure activity. Forty-two consecutive patients with extratemporal epilepsies were prospectively evaluated. All patients underwent ictal SPET studies with simultaneous electroencephalography (EEG) and video recordings of habitual seizures and imaging studies including cranial magnetic resonance imaging and positron emission tomography with 2-[{sup 18}F]-fluoro-2 deoxy-d-glucose. Propagation of epilptic seizure activity (PESA) was defined as the absence of hyperperfusion on ictal ECD SPET in the lobe of seizure onset, but its presence in another ipsilateral or contralateral lobe. Observers analysing the SPET images were not informed of the other results. PESA was observed in 8 of the 42 patients (19%) and was ipsilateral to the seizure onset in five (63%) of these eight patients. The time between clinical seizure onset and injection of the ECD tracer ranged from 14 to 61 s (mean 34 s). Seven patients (88%) with PESA had parieto-occipital epilepsy and one patient had a frontal epilepsy. PESA was statistically more frequent in patients with parieto-occipital lobe epilepsies (58%) than in the remaining extratemporal epilepsy syndromes (3%) (P<0.0002). These findings indicate that ictal SPET studies require simultaneous EEG-video recordings in patients with extratemporal epilepsies. PESA should be considered when interpreting ictal SPET studies in these patients. Patients with PESA are more likely to have parieto-occipital lobe epilepsy than seizure onset in other extratemporal regions. (orig./MG) (orig.) With 1 fig., 2 tabs., 23 refs.

  18. Weaving single photon imaging into new drug development.

    Science.gov (United States)

    Mozley, P David

    2005-01-01

    The specific aim of this review is to assess the potential contribution of single photon emitting radiopharmaceutical technologies to new drug development. For each phase of therapeutic drug development, published literature was sought that shows single photon emitters can add value by quantifying pharmacokinetics, visualizing mechanisms of drug action, estimating therapeutic safety indices, or measuring dose-dependent pharmacodynamic effects. Not any published reports were found that describe using nuclear medicine techniques to help manage the progress of a new drug development program. As a consequence, most of the case in favor of weaving single photon imaging into the process had to be built on extrapolations from studies that showed feasibility post hoc. The strongest evidence of potential value was found for drug candidates that hope to influence diseases characterized by cell proliferation or cell death, particularly in the fields of oncology, cardiology, nephrology, and inflammation. Receptor occupancy studies were observed to occasionally offer unique advantages over analogous studies with positron emission tomography (PET). Enough hard data sets were found to justify the costs of using single photon imaging in a variety of new drug development paradigms.

  19. Room temperature triggered single-photon source in the near infrared

    Energy Technology Data Exchange (ETDEWEB)

    Wu, E [Laboratoire de Photonique Quantique et Moleculaire, UMR CNRS 8537, Ecole Normale Superieure de Cachan (France); Rabeau, J R [Department of Physics, Macquarie University, Sydney, New South Wales 2109 (Australia); Roger, G [Laboratoire Charles Fabry de l' Institut d' Optique, UMR CNRS 8501, Palaiseau (France); Treussart, F [Laboratoire de Photonique Quantique et Moleculaire, UMR CNRS 8537, Ecole Normale Superieure de Cachan (France); Zeng, H [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China (China); Grangier, P [Laboratoire Charles Fabry de l' Institut d' Optique, UMR CNRS 8501, Palaiseau (France); Prawer, S [Centre of Excellence for Quantum Computer Technology and Quantum Communications Victoria, School of Physics, University of Melbourne, Victoria 3010 (Australia); Roch, J-F [Laboratoire de Photonique Quantique et Moleculaire, UMR CNRS 8537, Ecole Normale Superieure de Cachan (France)

    2007-12-15

    We report the realization of a solid-state triggered single-photon source with narrow emission in the near infrared at room temperature. It is based on the photoluminescence of a single nickel-nitrogen NE8 colour centre in a chemical vapour deposited diamond nanocrystal. Stable single-photon emission has been observed in the photoluminescence under both continuous-wave and pulsed excitations. The realization of this source represents a step forward in the application of diamond-based single-photon sources to quantum key distribution (QKD) under practical operating conditions.

  20. A highly efficient single-photon source based on a quantum dot in a photonic nanowire

    DEFF Research Database (Denmark)

    Claudon, Julien; Bleuse, Joel; Malik, Nitin Singh

    2010-01-01

    The development of efficient solid-state sources of single photons is a major challenge in the context of quantum communication,optical quantum information processing and metrology1. Such a source must enable the implementation of a stable, single-photon emitter, like a colour centre in diamond2...... with carefully tailored ends13. Under optical pumping, we demonstrate a record source efficiency of 0.72, combined with pure single-photon emission. This non-resonant approach also provides broadband spontaneous emission control, thus offering appealing novel opportunities for the development of single...

  1. A novel high-efficiency single-mode quantum dot single photon source

    DEFF Research Database (Denmark)

    Gerard, J.M.; Gregersen, Niels; Nielsen, Torben Roland

    2008-01-01

    We present a novel single-mode single photon source exploiting the emission of a semiconductor quantum dot (QD) located inside a photonic wire. Besides an excellent coupling (>95%) of QD spontaneous emission to the fundamental guided mode [1], we show that a single photon collection efficiency...... above 80% within a 0.5 numerical aperture can be achieved using a bottom Bragg mirror and a tapering of the nanowire tip. Because this photon collection strategy does not exploit the Purcell effect, it could also be efficiently applied to broadband single photon emitters such as F-centers in diamond....

  2. Localization of Narrowband Single Photon Emitters in Nanodiamonds.

    Science.gov (United States)

    Bray, Kerem; Sandstrom, Russell; Elbadawi, Christopher; Fischer, Martin; Schreck, Matthias; Shimoni, Olga; Lobo, Charlene; Toth, Milos; Aharonovich, Igor

    2016-03-23

    Diamond nanocrystals that host room temperature narrowband single photon emitters are highly sought after for applications in nanophotonics and bioimaging. However, current understanding of the origin of these emitters is extremely limited. In this work, we demonstrate that the narrowband emitters are point defects localized at extended morphological defects in individual nanodiamonds. In particular, we show that nanocrystals with defects such as twin boundaries and secondary nucleation sites exhibit narrowband emission that is absent from pristine individual nanocrystals grown under the same conditions. Critically, we prove that the narrowband emission lines vanish when extended defects are removed deterministically using highly localized electron beam induced etching. Our results enhance the current understanding of single photon emitters in diamond and are directly relevant to fabrication of novel quantum optics devices and sensors.

  3. Localization of narrowband single photon emitters in nanodiamonds

    CERN Document Server

    Bray, Kerem; Elbadawi, Christopher; Fischer, Martin; Schreck, Matthias; Shimoni, Olga; Lobo, Charlene; Toth, Milos; Aharonovich, Igor

    2016-01-01

    Diamond nanocrystals that host room temperature narrowband single photon emitters are highly sought after for applications in nanophotonics and bio-imaging. However, current understanding of the origin of these emitters is extremely limited. In this work we demonstrate that the narrowband emitters are point defects localized at extended morphological defects in individual nanodiamonds. In particular, we show that nanocrystals with defects such as twin boundaries and secondary nucleation sites exhibit narrowband emission that is absent from pristine individual nanocrystals grown under the same conditions. Critically, we prove that the narrowband emission lines vanish when extended defects are removed deterministically using highly localized electron beam induced etching. Our results enhance the current understanding of single photon emitters in diamond, and are directly relevant to fabrication of novel quantum optics devices and sensors.

  4. Entangling single photons from independently tuned semiconductor nanoemitters.

    Science.gov (United States)

    Sanaka, Kaoru; Pawlis, Alexander; Ladd, Thaddeus D; Sleiter, Darin J; Lischka, Klaus; Yamamoto, Yoshihisa

    2012-09-12

    Quantum communication systems based on nanoscale semiconductor devices is challenged by inhomogeneities from device to device. We address this challenge using ZnMgSe/ZnSe quantum-well nanostructures with local laser-based heating to tune the emission of single impurity-bound exciton emitters in two separate devices. The matched emission in combination with photon bunching enables quantum interference from the devices and allows the postselection of polarization-entangled single photons. The ability to entangle single photons emitted from nanometer-sized sources separated by macroscopic distances provides an essential step for a solid-state realization of a large-scale quantum optical network. This paves the way toward measurement-based entanglement generation between remote electron spins localized at macroscopically separated fluorine impurities.

  5. Integrated optomechanical single-photon frequency shifter

    Science.gov (United States)

    Fan, Linran; Zou, Chang-Ling; Poot, Menno; Cheng, Risheng; Guo, Xiang; Han, Xu; Tang, Hong X.

    2016-12-01

    The ability to manipulate single photons is of critical importance for fundamental quantum optics studies and practical implementations of quantum communications. While extraordinary progresses have been made in controlling spatial, temporal, spin and orbit angular momentum degrees of freedom, frequency-domain control of single photons so far relies on nonlinear optical effects, which have faced obstacles such as noise photons, narrow bandwidth and demanding optical filtering. Here, we demonstrate the first integrated optomechanical single-photon frequency shifter with near-unity efficiency. A frequency shift up to 150 GHz at telecom wavelength is realized without measurable added noise and the preservation of quantum coherence is verified through quantum interference between twin photons of different colours. This single-photon frequency shifter will be invaluable for increasing the channel capacity of quantum communications and compensating frequency mismatch between quantum systems, paving the road towards a hybrid quantum network.

  6. Single-photon detection, truth, and misinterpretation

    Science.gov (United States)

    Berloffa, E. H.

    2013-10-01

    Within this investigation it is critically questioned, if we really can detect "single photons", respectively the response of a single quantum transition by use of modern photon detectors. In the course it is shown that avalanche photodiodes (AVDs) especially in the "Geiger" mode by virtue of its geometry (effective area) indeed can detect "single photon" events as proclaimed by the manufacturers, but they tacitly assume the bandwidth of originating visible source being not greater than ~ 2.107 [Hz]. A short excurse to solid state basic physics makes it obvious applying the adequate doping accomplishes "single photon detection". Nevertheless this does not mean there is a 1:1 correspondence between a photon emanated from the source location and that detected within the detector module. Propagation characteristics were simply overlooked during the numerous discussions about "single photon" detection. Practical examples are worked out on hand of a pin- / and a AVDphotodiode.

  7. Stroing single-photons in microcavities arrays

    Science.gov (United States)

    Mirza, Imran M.; Enk, S. J. Van; Kimble, H. J.

    2014-03-01

    Coupling light to arrays of microcavities is one of the most promising avenues to store/delay classical light pulses [F. Krauss, Nat. Phot. 2, 448-450 (2008)]. However, from the perspective of benefiting quantum communication protocols, the same ideas in principle can be extended down to the single-photon (quantum) level as well. Particularly, for the purposes of entanglement purification and quantum repeaters a reliable storage of single photons is needed. We consider in our work [I. M. Mirza, S. Van Enk, H. Kimble JOSA B, 30,10 (2013)] cavities that are coupled through an optical fiber which is assumed to be forming a Markovian bath. For this study two powerful open quantum system techniques, Input-Output theory for cascaded quantum systems and the Quantum Trajectory approach are used in combination. For the confirmation of photon delays the Time-Dependent Spectrum of such a single photon is obtained. Interestingly this leads to a hole-burning effect showing that only certain frequency components in the single photon wavepackets are stored inside the cavities and hence are delayed in time. Since on-demand production of single photons is not an easy task we include in our description the actual generation of the single photon by assuming a single emitter in one the resonators.

  8. Indium-111 pentetreotide single-photon emission tomography in patients with TSH-secreting pituitary adenomas: correlation with the effect of a single administration of octreotide on serum TSH levels

    Energy Technology Data Exchange (ETDEWEB)

    Losa, M. [Department of Neurosurgery, IRCCS San Raffaele, University of Milan (Italy); Magnani, P. [INB-CNR Department of Nuclear Medicine, IRCCS San Raffaele, University of Milan (Italy); Mortini, P. [Department of Neurosurgery, IRCCS San Raffaele, University of Milan (Italy); Persani, L. [Centro Auxologico Italiano IRCCS, University of Milan (Italy); Acerno, S. [Department of Neurosurgery, IRCCS San Raffaele, University of Milan (Italy); Giugni, E. [Department of Neurosurgery, IRCCS San Raffaele, University of Milan (Italy); Songini, C. [INB-CNR Department of Nuclear Medicine, IRCCS San Raffaele, University of Milan (Italy); Fazio, F. [INB-CNR Department of Nuclear Medicine, IRCCS San Raffaele, University of Milan (Italy); Beck-Peccoz, P. [Institute of Endocrine Sciences, Istituto Clinico Humanitas, University of Milan (Italy); Giovanelli, M. [Department of Neurosurgery, IRCCS San Raffaele, University of Milan (Italy)

    1997-07-01

    Few data are available on the visualization of somatostatin receptors in vivo in patients with thyrotropin (TSH)-secreting adenoma. We studied five patients with TSH-secreting adenomas using single-photon emission tomography (SPET) after administration of indium-111 pentetreotide. The intensity of {sup 111}In-pentetreotide uptake by the tumours was correlated with the degree of TSH suppression after a single administration of 100 {mu}g octreotide s.c. Five patients (three women and two men) aged 27-46 years were investigated. Except for one patient with acromegaly, all had pure TSH-secreting tumours. One patient was previously untreated, while two had received octreotide, one antithyroid drugs, and one radioiodine. In all patients SPET demonstrated increased uptake of {sup 111}In-pentetreotide by the pituitary adenoma. The target to non-target ratio (T/nT) of {sup 111}In-pentetreotide uptake was higher than 10 in three patients. Administration of 100 {mu}g octreotide s.c. caused a significant reduction in TSH levels from 4.8{+-}1.4 mU/l to a nadir of 3.1{+-}1.1 mU/l after 6 h (P<0.001 by ANOVA). Suppression of TSH secretion ranged from 30% to 60% of the baseline value. The T/nT ratio showed a trend toward a direct relationship with the degree of TSH inhibition after acute octreotide administration (r=0.67; P=NS). Our study showed that {sup 111}In-pentetreotide scan visualized somatostatin receptors in all five of the patients with TSH-secreting pituitary adenomas, confirming the frequent presence of somatostatin receptors in these rare tumours, even though the correlation with the TSH inhibition after a single administration of octreotide did not reach significance. (orig.). With 1 fig., 1 tab.

  9. Diagnostic performance of coronary CT angiography, stress dual-energy CT perfusion, and stress perfusion single-photon emission computed tomography for coronary artery disease: Comparison with combined invasive coronary angiography and stress perfusion cardiac MRI

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hyun Woo; Ko, Sung Min; Hwang, Hweung Kon; So, Young; Yi, Jeong Geun [Konkuk University Medical Center, Research Institute of Biomedical Science, Konkuk University School of Medicine, Seoul (Korea, Republic of); Lee, Eun Jeong [Dept. of Nuclear Medicine, Seoul Medical Center, Seoul (Korea, Republic of)

    2017-06-15

    To investigate the diagnostic performance of coronary computed tomography angiography (CCTA), stress dual-energy computed tomography perfusion (DE-CTP), stress perfusion single-photon emission computed tomography (SPECT), and the combinations of CCTA with myocardial perfusion imaging (CCTA + DE-CTP and CCTA + SPECT) for identifying coronary artery stenosis that causes myocardial hypoperfusion. Combined invasive coronary angiography (ICA) and stress perfusion cardiac magnetic resonance (SP-CMR) imaging are used as the reference standard. We retrospectively reviewed the records of 25 patients with suspected coronary artery disease, who underwent CCTA, DE-CTP, SPECT, SP-CMR, and ICA. The reference standard was defined as ≥ 50% stenosis by ICA, with a corresponding myocardial hypoperfusion on SP-CMR. For per-vascular territory analysis, the sensitivities of CCTA, DE-CTP, SPECT, CCTA + DE-CTP, and CCTA + SPECT were 96, 96, 68, 93, and 68%, respectively, and specificities were 72, 75, 89, 85, and 94%, respectively. The areas under the receiver operating characteristic curve (AUCs) were 0.84 ± 0.05, 0.85 ± 0.05, 0.79 ± 0.06, 0.89 ± 0.04, and 0.81 ± 0.06, respectively. For per-patient analysis, the sensitivities of CCTA, DE-CTP, SPECT, CCTA + DE-CTP, and CCTA + SPECT were 100, 100, 89, 100, and 83%, respectively; the specificities were 14, 43, 57, 43, and 57%, respectively; and the AUCs were 0.57 ± 0.13, 0.71 ± 0.11, 0.73 ± 0.11, 0.71 ± 0.11, and 0.70 ± 0.11, respectively. The combination of CCTA and DE-CTP enhances specificity without a loss of sensitivity for detecting hemodynamically significant coronary artery stenosis, as defined by combined ICA and SP-CMR.

  10. Impact of intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction on left ventricular perfusion and function: a 6-month follow-up gated {sup 99m}Tc-MIBI single-photon emission computed tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Lipiec, Piotr [Medical University of Lodz, 2nd Department of Cardiology, Lodz (Poland); Medical University of Lodz, 2nd Department of Cardiology, Bieganski Hospital, Lodz (Poland); Krzeminska-Pakula, Maria; Plewka, Michal; Kasprzak, Jaroslaw D. [Medical University of Lodz, 2nd Department of Cardiology, Lodz (Poland); Kusmierek, Jacek; Plachcinska, Anna; Szuminski, Remigiusz [Medical University of Lodz, Department of Nuclear Medicine, Lodz (Poland); Robak, Tadeusz; Korycka, Anna [Medical University of Lodz, Department of Hematology, Lodz (Poland)

    2009-04-15

    We investigated the impact of intracoronary injection of autologous mononuclear bone marrow cells (BMC) in patients with acute ST elevation myocardial infarction (STEMI) on left ventricular volumes, global and regional systolic function and myocardial perfusion. The study included 39 patients with first anterior STEMI treated successfully with primary percutaneous coronary intervention. They were randomly assigned to the treatment group or the control group in a 2:1 ratio. The patients underwent baseline gated single-photon emission computed tomography (G-SPECT) 3-10 days after STEMI with quantitative and qualitative analysis of left ventricular perfusion and systolic function. On the following day, patients from the BMC treatment group were subjected to bone marrow aspiration, mononuclear BMC isolation and intracoronary injection. No placebo procedure was performed in the control group. G-SPECT was repeated 6 months after STEMI. Baseline and follow-up G-SPECT studies were available for 36 patients. At 6 months in the BMC group we observed a significantly enhanced improvement in the mean extent of the perfusion defect, the left ventricular perfusion score index, the infarct area perfusion score and the infarct area wall motion score index compared to the control group (p=0.01-0.04). However, the changes in left ventricular volume, ejection fraction and the left ventricular wall motion score index as well as the relative changes in the infarct area wall motion score index did not differ significantly between the groups. Intracoronary injection of autologous mononuclear BMC in patients with STEMI improves myocardial perfusion at 6 months. The benefit in infarct area systolic function is less pronounced and there is no apparent improvement of global left ventricular systolic function. (orig.)

  11. Regional cerebral blood flow single-photon emission tomography with {sup 99m}Tc-HMPAO and the acetazolamide test in the evaluation of vascular and Alzheimer`s dementia

    Energy Technology Data Exchange (ETDEWEB)

    Pavics, L.; Csernay, L. [Department of Nuclear Medicine, Albert Szent-Gyoergyi Medical University, Szeged (Hungary); Gruenwald, F.; Reichmann, K.; Menzel, C.; Schomburg, A.G.; Overbeck, B.; Biersack, H.J. [Department of Nuclear Medicine, University of Bonn (Germany); Horn, R.; Kitschenberg, A.; Hartmann, A. [Department of Neurology, University of Bonn (Germany)

    1999-03-01

    The diagnostic potential of technetium-99m hexamethylpropylene amine oxime (HMPAO) following systemic administration of the cerebral vasodilator acetazolamide (acetazolamide test) was evaluated by regional cerebral blood flow (rCBF) single-photon emission tomography (SPET) in patients with Alzheimer`s disease (AD) or vascular dementia (VD). An initial, high-resolution SPET study was performed with {sup 99m}Tc-HMPAO, and after 2 days the patients were re-evaluated with {sup 99m}Tc-HMPAO following systemic administration of acetazolamide. Reconstructed SPET slices were evaluated visually and semiquantitatively by a semi-automatic rCBF map method. When {sup 99m}Tc-HMPAO alone was used, bilateral hypoperfusion was found in the temporal and/or parietal regions in 33% (6/18) of the VD patients and in 70% (23/33) of the AD patients. The corresponding data obtained by quantitative evaluation were 41% (7/17) and 71% (15/21), respectively. The vascular reserve capacity, as determined with the acetazolamide test, was preserved visually in 22% (4/18) and quantitatively in 29% (5/17) of the VD patients, but in 73% (24/33) and 76% (16/21) of the AD patients. The differences in the perfusion patterns between the VD and AD patients were statistically significant (P<0.01, Fischer`s exact test). Of the VD patients with hypoperfusion (bilateral temporal and/or parietal), 4/6 (67%, visual evaluation) and 4/7 (57%, quantitative evaluation) had a decreased vascular reserve capacity as determined with the acetazolamide test. In the AD group of patients the corresponding results were 3/23 (13%) and 4/15 (27%). It is concluded that the acetazolamide test is promising in rCBF SPET to differentiate VD from AD. (orig.) With 4 figs., 3 tabs., 29 refs.

  12. Prognostic Contribution of Exercise Capacity, Heart Rate Recovery, Chronotropic Incompetence, and Myocardial Perfusion Single-Photon Emission Computerized Tomography in the Prediction of Cardiac Death and All-Cause Mortality.

    Science.gov (United States)

    Arbit, Boris; Azarbal, Babak; Hayes, Sean W; Gransar, Heidi; Germano, Guido; Friedman, John D; Thomson, Louise; Berman, Daniel S

    2015-12-01

    Chronotropic incompetence, measured by the percentage (%) of heart rate (HR) reserve achieved (%HR reserve), abnormal HR recovery, reduced exercise capacity (EC), and myocardial perfusion single-photon emission computerized tomography (SPECT MPS) abnormalities are known predictors of all-cause mortality (ACM) and cardiac death (CD). The aim of this study was to determine if EC, %HR reserve, and HR recovery add incremental value to MPS in the prediction of ACM and CD. A total of 11,218 patients without valvular disease and not on β blockers underwent symptom-limited exercise MPS. %HR reserve was (peak HR - rest HR)/(220 - age - rest HR) × 100, with %HR reserve recovery was peak HR - recovery HR. An HR recovery recovery, χ(2) = 18.45; diabetes, χ(2) = 17.75; and previous coronary artery disease, χ(2) = 11.85 (p ≤0.0006). The independent predictors of CD were SSS, χ(2) = 54.25; EC, χ(2) = 49.34; age, χ(2) = 46.45; abnormal electrocardiogram at rest, χ(2) = 30.60; previous coronary artery disease, χ(2) = 20.69; Duke treadmill score, χ(2) = 19.50; %HR reserve, χ(2) = 11.43; diabetes, χ(2) = 10.23 (all p ≤0.0014); and HR recovery, χ(2) = 5.30 (p = 0.0214). The exercise variables showed increases in Harrell's C static and net improvement reclassification, with EC showing the strongest incremental improvement in predicting ACM and CD (respective C-index 76.5% and 83.3% and net reclassification index 0.3201 and 0.4996). In conclusion, EC, %HR reserve, and HR recovery are independent predictors of ACM and CD and add incremental prognostic value to extent and severity of MPS.

  13. A Pilot Study Measuring the Distribution and Permeability of a Vaginal HIV Microbicide Gel Vehicle Using Magnetic Resonance Imaging, Single Photon Emission Computed Tomography/Computed Tomography, and a Radiolabeled Small Molecule.

    Science.gov (United States)

    Fuchs, Edward J; Schwartz, Jill L; Friend, David R; Coleman, Jenell S; Hendrix, Craig W

    2015-11-01

    Vaginal microbicide gels containing tenofovir have proven effective in HIV prevention, offering the advantage of reduced systemic toxicity. We studied the vaginal distribution and effect on mucosal permeability of a gel vehicle. Six premenopausal women were enrolled. In Phase 1, a spreading gel containing (99m)technetium-DTPA ((99m)Tc) radiolabel and gadolinium contrast for magnetic resonance imaging (MRI) was dosed intravaginally. MRI was obtained at 0.5, 4, and 24 h, and single photon emission computed tomography with conventional computed tomography (SPECT/CT) at 1.5, 5, and 25 h postdosing. Pads and tissues were measured for activity to determine gel loss. In Phase 2, nonoxynol-9 (N-9), containing (99m)Tc-DTPA, was dosed as a permeability control; permeability was measured in blood and urine for both phases. SPECT/CT showed the distribution of spreading gel throughout the vagina with the highest concentration of radiosignal in the fornices and ectocervix; signal intensity diminished over 25 h. MRI showed the greatest signal accumulation in the fornices, most notably 1-4 h postdosing. The median (interquartile range) isotope signal loss from the vagina through 6 h was 29.1% (15.8-39.9%). Mucosal permeability to (99m)Tc-DTPA following spreading gel was negligible, in contrast to N-9, with detectable radiosignal in plasma, peaking at 8 h (5-12). Following spreading gel dosing, 0.004% (0.001-2.04%) of the radiosignal accumulated in urine over 12 h compared to 8.31% (7.07-11.01%) with N-9, (p=0.043). Spreading gel distributed variably throughout the vagina, persisting for 24 h, with signal concentrating in the fornices and ectocervix. The spreading gel had no significant effect on vaginal mucosal permeability.

  14. Bone and Gallium Single-Photon Emission Computed Tomography-Computed Tomography is Equivalent to Magnetic Resonance Imaging in the Diagnosis of Infectious Spondylodiscitis: A Retrospective Study.

    Science.gov (United States)

    Tamm, Alexander S; Abele, Jonathan T

    2017-02-01

    Spondylodiscitis has historically been a difficult clinical diagnosis. Two imaging techniques that address this problem are magnetic resonance imaging (MRI) and combined bone ((99m)Tc-methylene diphosphonate) and gallium-67 single-photon emission computed tomography-computed tomography (SPECT-CT). Their accuracies have not been adequately compared. The purpose of this study is to compare the sensitivities and specificities of bone and gallium SPECT-CT and MRI in infectious spondylodiscitis. This retrospective study assessed all patients who underwent a bone or gallium SPECT-CT of the spine to assess for infectious spondylodiscitis from January 1, 2010, to May 2, 2012, at a single tertiary care centre. Thirty-four patients (23 men; average 62 ± 14 years of age) were included. The results of the bone or gallium SPECT-CT were compared against MRI for all patients in the cohort who underwent an MRI within 12 weeks of the SPECT-CT. A diagnosis of spondylodiscitis in the discharge summary was considered the reference standard, and was based on a combination of clinical scenario, response to therapy, imaging, or microbiology. Spondylodiscitis was diagnosed in 18 patients and excluded in 16. Bone or gallium SPECT-CT and MRI had similar (P > .05; κ = 0.74) sensitivities (0.94 vs 0.94), specificities (1.00 vs 1.00), positive predictive values (1.00 vs 1.00), negative predictive values (0.94 vs 0.80), and accuracies (0.97 vs 0.95) when compared to the reference standard. Although MRI remains the initial modality of choice in diagnosing spondylodiscitis, bone and gallium SPECT-CT appears diagnostically equivalent and should be considered a viable supplementary or alternative imaging modality particularly if there is contraindication or inaccessibility to MRI. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  15. Reduced regional cerebral blood flow in aged noninsulin-dependent diabetic patients with no history of cerebrovascular disease: evaluation by N-isopropyl- sup 123 I-p-iodoamphetamine with single-photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Wakisaka, M.; Nagamachi, S.; Inoue, K.; Morotomi, Y.; Nunoi, K.; Fujishima, M. (Higashi Hospital, (Japan))

    1990-10-01

    Regional cerebral blood flow was measured using N-isopropyl-{sup 123}I-iodoamphetamine with single-photon emission computed tomography (CT) in 16 aged patients with noninsulin-dependent diabetes mellitus (NIDDM, average age 72.8 years, average fasting plasma glucose 7.7 mmol/L), and 12 nondiabetic subjects (71.6 years, 5.3 mmol/L). None had any history of a cerebrovascular accident. Systolic blood pressure (SBP), total cholesterol, and triglyceride levels did not differ between groups. Areas of hypoperfusion were observed in 14 diabetic patients (12 patients had multiple lesions) and in 6 nondiabetic subjects (3 had multiple lesions). Areas where radioactivity was greater than or equal to 65% of the maximum count of the slice was defined as a region with normal cerebral blood flow (region of interest A, ROI-A), and areas where the count was greater than or equal to 45% were defined as brain tissue regions other than ventricles (ROI-B). The average ROI-A/B ratio of 16 slices was used as a semiquantitative indicator of normal cerebral blood flow throughout the entire brain. Mean ROI-A/B ratio was 49.6 +/- 1.7% in the diabetic group, significantly lower than the 57.9 +/- 1.6% at the nondiabetic group (p less than 0.005). The ratio was inversely correlated with SBP (r = -0.61, p less than 0.05), total cholesterol (r = -0.51, p less than 0.05), and atherogenic index (r = -0.64, p less than 0.01), and was positively correlated with high-density lipoprotein (HDL) cholesterol (r = 0.51, p less than 0.05) in the diabetic, but not the nondiabetic group. These observations suggest that the age-related reduction in cerebral blood flow may be accelerated by a combination of hyperglycemia plus other risk factors for atherosclerosis.

  16. Impaired coronary flow reserve is the most important marker of viable myocardium in the myocardial segment-based analysis of dual-isotope gated myocardial perfusion single-photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Woo [Dept. of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam (Korea, Republic of); So, Young [Dept. of Nuclear Medicine, Konkuk University School of Medicine, Seoul (Korea, Republic of); Kim, Ki Bong; Lee, Dong Soo [Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2014-04-15

    The aim of this study was to investigate the most robust predictor of myocardial viability among stress/rest reversibility (coronary flow reserve [CFR] impairment), {sup 201}Tl perfusion status at rest, {sup 201}Tl 24 hours redistribution and systolic wall thickening of {sup 99m}Tc-methoxyisobutylisonitrile using a dual isotope gated myocardial perfusion single-photon emission computed tomography (SPECT) in patients with coronary artery disease (CAD) who were re-vascularized with a coronary artery bypass graft (CABG) surgery. A total of 39 patients with CAD was enrolled (34 men and 5 women), aged between 36 and 72 years (mean 58 ± 8 standard in years) who underwent both pre- and 3 months post-CABG myocardial SPECT. We analyzed 17 myocardial segments per patient. Perfusion status and wall motion were semi-quantitatively evaluated using a 4-point grading system. Viable myocardium was defined as dysfunctional myocardium which showed wall motion improvement after CABG. The left ventricular ejection fraction (LVEF) significantly increased from 37.8 ± 9.0% to 45.5 ± 12.3% (p < 0.001) in 22 patients who had a pre-CABG LVEF lower than 50%. Among 590 myocardial segments in the re-vascularized area, 115 showed abnormal wall motion before CABG and 73.9% (85 of 115) had wall motion improvement after CABG. In the univariate analysis (n = 115 segments), stress/rest reversibility (p < 0.001) and {sup 201}Tl rest perfusion status (p = 0.024) were significant predictors of wall motion improvement. However, in multiple logistic regression analysis, stress/rest reversibility alone was a significant predictor for post-CABG wall motion improvement (p < 0.001). Stress/rest reversibility (impaired CFR) during dual-isotope gated myocardial perfusion SPECT was the single most important predictor of wall motion improvement after CABG.

  17. Regional Cerebral Blood Flow in [123]I-IMP Single-photon Emission Computed Tomography and the Wechsler Memory Scale-revised in Nondemented Elderly Subjects with Subjective Cognitive Impairment.

    Science.gov (United States)

    Niwa, Fumitoshi; Kondo, Masaki; Sakurada, Kumi; Nakagawa, Masanori; Imanishi, Jiro; Mizuno, Toshiki

    Objective Regional cerebral blood flow (rCBF) imaging with single-photon emission computed tomography (SPECT) is useful in the early diagnosis of dementia. We aimed to investigate the association between the rCBF and various domains related to the memory function in elderly subjects with subjective cognitive impairment (SCI). Methods Thirty-two subjects with SCI were included in the present study. Patients with dementia and mild cognitive impairment (MCI) were excluded based on the presence of logical memory impairment. N-isopropyl-p-[(123)I]-iodoamphetamine SPECT was performed and Wechsler Memory Scale-Revised (WMS-R) was administered to all subjects (mean age, 68.4 years; average Mini-Mental State Examination score, 27.6). The SPECT results were analyzed using the easy Z-score imaging system and the voxel-based stereotactic extraction estimation method. Correlation analyses were performed to investigate the correlation between the mean positive Z-scores in the decrease of the rCBF and the WMS-R indices. Results The SPECT study indicated marked hypoperfusion in some areas, including the bilateral temporal areas, the caudate, and the thalamus, in these subjects in comparison to the normal database. The decrease in the rCBF that was observed in several regions, including the left precuneus and left inferior frontal gyrus (LIFG), showed a significant negative correlation with several indices of the memory function, particularly visual memory. Conclusion The regional hypoperfusion observed in the study using the voxel-based stereotactic extraction estimation method suggest that the regional cerebral dysfunction is associated with the memory function of patients with SCI, even though the subjects in the present study were cognitively intact. The correlation analysis with the WMS-R suggested the contribution of the LIFG to the memory function and indicated the significance of visual memory dysfunction in the neuropsychological assessment to determine the stage of SCI.

  18. Single Photon Emission Computed Tomography (SPECT) Experience with (S)-5-[123I]iodo-3-(2-azetidinylmethoxy)pyridine (5-[123I]IA) in the Living Human Brain of Smokers and Nonsmokers

    Science.gov (United States)

    BRAŠIĆ, JAMES ROBERT; ZHOU, YUN; MUSACHIO, JOHN L.; HILTON, JOHN; FAN, HONG; CRABB, ANDREW; ENDRES, CHRISTOPHER J.; REINHARDT, MELVIN J.; DOGAN, AHMET S.; ALEXANDER, MOHAB; ROUSSET, OLIVIER; MARIS, MARIKA A.; GALECKI, JEFFREY; NANDI, AYON; WONG, DEAN F.

    2009-01-01

    (S)-5-[123I]iodo-3-(2-azetidinylmethoxy)pyridine (5-[123I]IA), a novel potent radioligand for high-affinity α4β2* neuronal nicotinic acetylcholine receptors (nAChRs), provides a means to evaluate the density and the distribution of nAChRs in the living human brain. We sought in healthy adult smokers and nonsmokers to (1) evaluate the safety, tolerability, and efficacy of 5-[123I]IA in an open nonblind trial and (2) to estimate the density and distribution of α4β2* nAChRs in the brain. Single photon emission computed tomography (SPECT) was performed for five hours after the intravenous administration of approximately 0.001 μg/kg (approximately 10 mCi) 5-[123I]IA. Blood pressure, heart rate, and neurobehavioral status were monitored before, during, and after the administration of 5-[123I]IA to twelve healthy adults (8 men and 4 women) (6 smokers and 6 nonsmokers) ranging in age from 19 to 46 years (mean = 28.25, standard deviation = 8.20). High plasma nicotine level was significantly associated with low 5-[123I]IA binding in (1) the caudate head, the cerebellum, the cortex, and the putamen, utilizing both the Sign and Mann-Whitney U tests, (2) the fusiform gyrus, the hippocampus, the parahippocampus, and the pons utilizing the Mann-Whitney U test, and (3)the thalamus utilizing the Sign test. We conclude that 5-[123I]IA is a safe, well-tolerated, and effective pharmacologic agent for human subjects to estimate high-affinity α4/β2 nAChRs in the living human brain. PMID:19140167

  19. Dual myocardial single photon emission computed tomography (SPECT) using thallium-201 and I-123-{beta}-methyl-i-pentadecanoic acid in patients with Duchenne's progressive muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, Katsuya [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1999-10-01

    Dual single photon emission computed tomography (SPECT) was performed in 31 patients with Duchenne's progressive muscular dystrophy (DMD) using {sup 123}I-{beta}-methyl pentadecanoic acid (BMIPP) for myocardial fatty acid metabolism and {sup 201}thallium (Tl)-chloride for myocardial perfusion. The left ventricle was divided into 9 segments, and accumulation of the radiotracers was assessed visually for each segment to calculate defect score for each tracer. There was some degree of decrease in myocardial accumulation of both tracers in all DMD patients. Reduced accumulation was most common at the apex (BMIPP: 67%, Tl: 63%), followed by the posterior wall, lateral wall, and anterior wall. On the other hand, reduced accumulation was less common at the septum. BMIPP showed a higher accumulation than Tl in all segments but the septum. When BMIPP defect score was larger than Tl defect score, BMIPP defect score tended to increase during 4 years follow-up (p<0.042). However, when Tl defect score was larger than BMIPP defect score, an increase in Tl defect score was slight. A significant negative correlation was found between the sum of the BMIPP and Tl defect scores and the left ventricular ejection fraction (LVEF) (r=0.66, p<0.0001). According to the histo-pathological study of two autopsied hearts, severe myocardial fibrosis was seen in segments with fixed perfusion defect. In addition, the mismatched segments of BMIPP defect score > Tl defect score revealed a slight fibrosis or normal myocardium. It can be concluded that the dual SPECT myocardial scintigraphy using BMIPP and Tl provides accurate information about disease progression of the heart in patients with DMD by detecting abnormalities of the myocardial metabolism of each substance, thereby enabling the assessment of left ventricular function. (author)

  20. Influence of intravenously administered lidocaine on cerebral blood flow in a baboon model standardized under controlled general anaesthesia using single-photon emission tomography and technetium-99m hexamethylpropylene amine oxime

    Energy Technology Data Exchange (ETDEWEB)

    Dormehl, I.C. (AEC Inst. for Life Sciences, Pretoria Univ. (South Africa)); Lipp, M.D.W. (Klinik fuer Anaesthesiologie, Johannes Gutenberg Univ., Mainz (Germany)); Hugo, N. (AEC Inst. for Life Sciences, Pretoria Univ. (South Africa)); Daublaender, M. (Stadtkrankenhaus Landau, Abt. fuer Mund-, Kiefer- und Gesichtschirurgie (Germany)); Picard, J.A. (H.A. Grove Research Centre, Pretoria (South Africa))

    1993-11-01

    The baboon under general anaesthesia as a model to assess druginduced cerebral blood flow changes ([Delta] CBF) using single-photon emission tomography (SPET) offers great in vivo possibilities but has to comply with demands on control of anaestesia-related influencing factors, such as P[sub a]CO[sub 2] changes. The model sought in this study and described here allows control of P[sub a]CO[sub 2], in the baboon under thiopentone anaesthesia by ventilation, and was evaluated for the functioal dependence of [Delta] CBF vs [Delta] P[sub a]CO[sub 2], using SPET technetium-99m hexamethylpropylene amine oxime (HMPAO) and the split-dose method together with controlled ventilation. During the experiment the model was validated for normal reactivity to P[sub a]CO[sub 2] changes, and subsequently applied to investigate the mechanisms (still uncertain) of CBF increase known to follow administration of the local anaesthetic lidocaine. Six baboons received 6 mg/kg lidocaine intravenously. CBF was measured between two consecutive SPET acquisitions (split-dose method) respectively relating to HMPAO distributions in the brain before and after the injection of lidocaine. Meanwhile the animals were maintained at constant respiratory rate and volume. The results indicate that the correlation between D CBF and the ensuing fall in P[sub a]CO[sub 2] deviated from the baseline pattern from the model and confirmed a cerebrovascular contribution to the lidocaine-induced CBF increase. This agreed well with mean and systolic blood pressure changes and heart rate. (orig.)

  1. Prognostic value of myocardial perfusion single photon emission computed tomography for major adverse cardiac cerebrovascular and renal events in patients with chronic kidney disease: results from first year of follow-up of the Gunma-CKD SPECT multicenter study

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Toyama, Takuji [Department of Cardiovascular Medicine, Gunma Prefectural Cardiovascular Center, Maebashi (Japan); Sato, Makito [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Tatebayashi Kosei Hospital, Department of Internal Medicine, Gunma (Japan); Sano, Hirokazu [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Isesaki Municipal Hospital, Department of Cardiovascular Medicine, Isesaki (Japan); Ueda, Tetsuya [Fujioka General Hospital, Division of Cardiology, Fujioka (Japan); Sasaki, Toyoshi [Takasaki General Medical Center, Division of Cardiology, Takasaki (Japan); Nakahara, Takehiro; Kurabayashi, Masahiko [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Higuchi, Tetsuya; Tsushima, Yoshito [Gunma University Graduate School of Medicine, Department of Diagnostic Radiology and Nuclear Medicine, Maebashi (Japan)

    2016-02-15

    Patients with chronic kidney disease (CKD) have an increased risk of adverse cardio-cerebrovascular events. We examined whether stress myocardial perfusion single photon emission computed tomography (SPECT) provides reliable prognostic markers for these patients. In this multicenter, prospective cohort trial from the Gunma-CKD SPECT study protocol, patients with CKD [estimated glomerular filtration rate (eGFR) < 60 min/ml per 1.73 m{sup 2}] undergoing stress {sup 99m}Tc-tetrofosmin SPECT for suspected or possible ischemic heart disease were initially followed for 1 year, with the following study endpoints: primary, the occurrence of cardiac deaths (CDs), and secondary, major adverse cardiac, cerebrovascular, and renal events (MACCREs). The summed stress score (SSS), summed rest score, and summed difference score (SDS) were estimated with the standard 17-segment, 5-point scoring model. Left ventricular end-diastolic volume, end-systolic volume (ESV), and ejection fraction were measured using electrocardiogram-gated SPECT. During the first year of follow-up, 69 of 299 patients experienced MACCREs (CD, n = 7; non-fatal myocardial infarction, n = 3; hospitalization for heart failure, n = 13; cerebrovascular accident, n = 1; need for revascularization, n = 38; and renal failure, i.e., hemodialysis initiation, n = 7). ESV and SSS were associated with CDs (p < 0.05), and eGFR and SDS were associated with MACCREs (p < 0.05), in multivariate logistic analysis. Patients with high ESV and high SSS had a significantly higher CD rate during the first year than the other CKD patient subgroups (p < 0.05). Patients with low eGFR and high SDS had a significantly higher MACCRE rate than the other subgroups (p < 0.05). Myocardial perfusion SPECT can provide reliable prognostic markers for patients with CKD. (orig.)

  2. Distribution of Functional Liver Volume in Hepatocellular Carcinoma Patients with Portal Vein Tumor Thrombus in the 1st Branch and Main Trunk Using Single Photon Emission Computed Tomography—Application to Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Akira Ikoma

    2011-10-01

    Full Text Available Purpose: To analyze the distribution of functional liver volume (FLV in the margin volume (MV surrounding hepatocellular carcinoma (HCC with portal vein tumor thrombus (PVTT before radiation therapy (RT and to verify the safety of single photon emission computed tomography-based three-dimensional conformal radiotherapy (SPECT-B3DCRT by exploring the relation of FLV in MV to radiation-induced liver disease (RILD. Methods and Materials: Clinical target volume (CTV included main tumor and PVTT, and planning target volume (PTV included CTV with a 10 mm margin. MV was defined as PTV–CTV. FLV ratio in MV was calculated as FLV in MV/MV × 100 (%. The two high-dose beams were planned to irradiate FLV as little as possible. Fifty-seven cases of HCC (26/57, 46%; Child–Pugh grade B with PVTT underwent SPECT-B3DCRT which targeted the CTV to a total dose of 45 Gy/18 fractions. The destructive ratio was defined as radiation induced dysfunctional volume/FLV × 100 (%. Results: We observed a significant negative correlation between FLV ratio in MV and CTV (p < 0.001. Three cases with CTVs of 287, 587 and 1184 cm3 experienced transient RILD. The FLV ratio in MV was highest in patients with RILD: nine patients with CTV of 200–300 cm3, three with CTV of 500–600 cm3, and two with CTV of 1100–1200 cm3. The destructive ratio yielded a mean value of 24.2 ± 1.5%. Conclusions: Radiation planning that takes into account the distribution of FLV appears to result in the least possible RILD.

  3. Very bright, near-infrared single photon emitters in diamond

    Directory of Open Access Journals (Sweden)

    D. W. M. Lau

    2013-09-01

    Full Text Available We demonstrate activation of bright diamond single photon emitters in the near infrared range by thermal annealing alone, i.e., without ion implantation. The activation is crucially dependent on the annealing ambient. The activation of the single photon emitters is only observed when the sample is annealed in forming gas (4% H2 in Ar above temperatures of 1000 °C. By contrast, no emitters are activated by annealing in vacuum, oxygen, argon or deuterium. The emitters activated by annealing in forming gas exhibit very bright emission in the 730-760 nm wavelength range and have linewidths of ∼1.5-2.5 nm at room temperature.

  4. A review on single photon sources in silicon carbide

    Science.gov (United States)

    Lohrmann, A.; Johnson, B. C.; McCallum, J. C.; Castelletto, S.

    2017-03-01

    This paper summarizes key findings in single-photon generation from deep level defects in silicon carbide (SiC) and highlights the significance of these individually addressable centers for emerging quantum applications. Single photon emission from various defect centers in both bulk and nanostructured SiC are discussed as well as their formation and possible integration into optical and electrical devices. The related measurement protocols, the building blocks of quantum communication and computation network architectures in solid state systems, are also summarized. This includes experimental methodologies developed for spin control of different paramagnetic defects, including the measurement of spin coherence times. Well established doping, and micro- and nanofabrication procedures for SiC may allow the quantum properties of paramagnetic defects to be electrically and mechanically controlled efficiently. The integration of single defects into SiC devices is crucial for applications in quantum technologies and we will review progress in this direction.

  5. Efficient generation of indistinguishable single photons on-demand at telecom wavelengths

    Science.gov (United States)

    Kim, Jehyung; Cai, Tao; Richardson, Christopher; Leavitt, Richard; Waks, Edo

    Highly efficient single photon sources are important building blocks for optical quantum information processing. For practical use and long-distance quantum communication, single photons should have fiber-compatible telecom wavelengths. In addition, most quantum communication applications require high degree of indistinguishability of single photons, such that they exhibit interference on a beam splitter. However, deterministic generation of indistinguishable single photons with high brightness remains a challenging problem in particular at telecom wavelengths. We demonstrate a telecom wavelength source of indistinguishable single photons using an InAs/InP quantum dot in a nanophotonic cavity. To obtain the efficient single quantum dot emission, we employ the higher order mode in L3 photonic crystal cavity that shows a nearly Gaussian transverse mode profile and results in out-coupling efficiency exceeding 46 % and unusual bright single quantum dot emission exceeding 1.5 million counts per second at a detector. We also observe Purcell enhanced spontaneous emission rate as large as 4 and high linear polarization ratio of 0.96 for the coupled dots. Using this source, we generate high purity single photons at 1.3 μm wavelength and demonstrate the indistinguishable nature of the emission using a two-photon interference measurement.

  6. Ultrafast room temperature single-photon source from nanowire-quantum dots.

    Science.gov (United States)

    Bounouar, S; Elouneg-Jamroz, M; Hertog, M den; Morchutt, C; Bellet-Amalric, E; André, R; Bougerol, C; Genuist, Y; Poizat, J-Ph; Tatarenko, S; Kheng, K

    2012-06-13

    Epitaxial semiconductor quantum dots are particularly promising as realistic single-photon sources for their compatibility with manufacturing techniques and possibility to be implemented in compact devices. Here, we demonstrate for the first time single-photon emission up to room temperature from an epitaxial quantum dot inserted in a nanowire, namely a CdSe slice in a ZnSe nanowire. The exciton and biexciton lines can still be resolved at room temperature and the biexciton turns out to be the most appropriate transition for single-photon emission due to a large nonradiative decay of the bright exciton to dark exciton states. With an intrinsically short radiative decay time (≈300 ps) this system is the fastest room temperature single-photon emitter, allowing potentially gigahertz repetition rates.

  7. A bright on-demand source of indistinguishable single photons at telecom wavelengths

    CERN Document Server

    Kim, Je-Hyung; Richardson, Christopher J K; Leavitt, Richard P; Waks, Edo

    2015-01-01

    Long-distance quantum communication relies on the ability to efficiently generate and prepare single photons at telecom wavelengths. In many applications these photons must also be indistinguishable such that they exhibit interference on a beamsplitter, which implements effective photon-photon interactions. However, deterministic generation of indistinguishable single photons with high brightness remains a challenging problem. We demonstrate a telecom wavelength source of indistinguishable single photons using an InAs/InP quantum dot in a nanophotonic cavity. The cavity enhances the quantum dot emission, resulting in a nearly Gaussian transverse mode profile with high out-coupling efficiency exceeding 46%, leading to detected photon count rates that would exceed 1.5 million counts per second. We also observe Purcell enhanced spontaneous emission rate as large as 4. Using this source, we generate linearly polarized, high purity single photons at telecom-wavelength and demonstrate the indistinguishable nature o...

  8. A highly efficient single-photon source based on a quantum dot in a photonic nanowire

    DEFF Research Database (Denmark)

    Claudon, Julien; Bleuse, Joel; Malik, Nitin Singh

    2010-01-01

    The development of efficient solid-state sources of single photons is a major challenge in the context of quantum communication,optical quantum information processing and metrology1. Such a source must enable the implementation of a stable, single-photon emitter, like a colour centre in diamond2...... with carefully tailored ends13. Under optical pumping, we demonstrate a record source efficiency of 0.72, combined with pure single-photon emission. This non-resonant approach also provides broadband spontaneous emission control, thus offering appealing novel opportunities for the development of single-photon......–4 or a semiconductor quantum dot5–7. Achieving a high extraction efficiency has long been recognized as a major issue, and both classical solutions8 and cavity quantum electrodynamics effects have been applied1,9–12. We adopt a different approach, based on an InAs quantum dot embedded in a GaAs photonic nanowire...

  9. Coherent single-photon absorption by single emitters coupled to one-dimensional nanophotonic waveguides

    DEFF Research Database (Denmark)

    Chen, Yuntian; Wubs, Martijn; Mørk, Jesper;

    2011-01-01

    We study the dynamics of single-photon absorption by a single emitter coupled to a one-dimensional waveguide that simultaneously provides channels for spontaneous emission (SE) decay and a channel for the input photon. We have developed a time-dependent theory that allows us to specify any input ...... can be improved by a further 4% by engineering the dispersion. Efficient single-photon absorption by a single emitter has potential applications in quantum communication and quantum computation....

  10. Modeling and Design of High-Efficiency Single-Photon Sources

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Per Kær; Mørk, Jesper

    2013-01-01

    Solid-state sources capable of emitting single photons on demand are of great interest in quantum information applications. Ideally, such a source should emit exactly one photon into the collection optics per trigger, the emitted photons should be indistinguishable, and the source should...... the light emission profile and the possibilities of tailoring it as well as the mechanisms governing the coherence are elucidated. The major design strategies pursued to optimize the single-photon source performance and the remaining challenges are reviewed....

  11. Solid-state single-photon emitters

    Science.gov (United States)

    Aharonovich, Igor; Englund, Dirk; Toth, Milos

    2016-10-01

    Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.

  12. Superconducting nanowire single-photon imager

    CERN Document Server

    Zhao, Qing-Yuan; Calandri, Niccolò; Dane, Andrew E; McCaughan, Adam N; Bellei, Francesco; Wang, Hao-Zhu; Santavicca, Daniel F; Berggren, Karl K

    2016-01-01

    Detecting spatial and temporal information of individual photons is a crucial technology in today's quantum information science. Among the existing single-photon detectors, superconducting nanowire single-photon detectors (SNSPDs) have been demonstrated with a sub-50 ps timing jitter, near unity detection efficiency1, wide response spectrum from visible to infrared and ~10 ns reset time. However, to gain spatial sensitivity, multiple SNSPDs have to be integrated into an array, whose spatial and temporal resolutions are limited by the multiplexing circuit. Here, we add spatial sensitivity to a single nanowire while preserving the temporal resolution from an SNSPD, thereby turning an SNSPD into a superconducting nanowire single-photon imager (SNSPI). To achieve an SNSPI, we modify a nanowire's electrical behavior from a lumped inductor to a transmission line, where the signal velocity is slowed down to 0.02c (where c is the speed of light). Consequently, we are able to simultaneously read out the landing locati...

  13. Room temperature stable single-photon source

    CERN Document Server

    Beveratos, A; Brouri, R; Gacoin, T; Poizat, J P; Grangier, P; Beveratos, Alexios; Kuehn, Sergei; Brouri, Rosa; Gacoin, Thierry; Poizat, Jean-Philippe; Grangier, Philippe

    2001-01-01

    We report on the realization of a stable solid state room temperature source for single photons. It is based on the fluorescence of a single nitrogen-vacancy (NV) color center in a diamond nanocrystal. Antibunching has been observed in the fluorescence light under both continuous and pulsed excitation. Our source delivers 2*10^4 single-photon pulses per second at an excitation repetition rate of 10 MHz. The number of two-photon pulses is reduced by a factor of five compared to strongly attenuated coherent sources.

  14. Advantages of gated silicon single photon detectors

    CERN Document Server

    Lunghi, T; Barreiro, C; Stucki, D; Sanguinetti, B; Zbinden, H

    2012-01-01

    We present a gated silicon single photon detector based on a commercially available avalanche photodiode. Our detector achieves a photon detection efficiency of 45\\pm5% at 808 nm with 2x 10^-6 dark count per ns at -30V of excess bias and -30{\\deg}C. We compare gated and free-running detectors and show that this mode of operation has significant advantages in two representative experimental scenarios: detecting a single photon either hidden in faint continuous light or after a strong pulse. We also explore, at different temperatures and incident light intensities, the "charge persistence" effect, whereby a detector clicks some time after having been illuminated.

  15. Quantum identity authentication with single photon

    Science.gov (United States)

    Hong, Chang ho; Heo, Jino; Jang, Jin Gak; Kwon, Daesung

    2017-10-01

    Quantum identity authentication with single photons is proposed in the paper. It can verify a user's identity without exposing to an authentication key information. The protocol guarantees high efficiency in that it can verify two bits of authentication information using just a single photon. The security of our authentication scheme is analyzed and confirmed in the case of a general attack. Moreover, the proposed protocol is practicable with current technology. Our quantum identity authentication protocol does not require quantum memory registration and any entangled photon sources.

  16. Quantitation of regional cerebral blood flow by single photon emission computed tomography of CBF-tracer combined with whole-brain CBF; A comparison between [sup 123]I-IMP and [sup 99m]Tc-HMPAO in healthy volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Isaka, Yoshinari; Imaizumi, Masatoshi; Ashida, Keiichi; Ohe, Yosuke; Okamoto, Masaya; Abe, Tohru; Tanaka, Seiji (Osaka National Hospital (Japan))

    1994-05-01

    A simple, noninvasive method of measuring cerebral blood flow (CBF) that uses single-photon emission computed tomography (SPECT) of CBF-tracer and whole brain CBF obtained by xenon-133 ([sup 133]Xe) clearance technique was developed. In nine healthy volunteers, SPECT data were normalized to the count density of [sup 123]I-IMP or [sup 99m]Tc-HMPAO uptake in the whole-brain, and then converted to the absolute units of CBF by multiplying average [sup 133]Xe-CBF in the whole brain. The CBF values measured by [sup 99m]Tc-HMPA CBF-SPECT was significantly lower in the high flow regions of cortical gray matter (bilateral frontal lobe; p<0.05 and right occipital lobe; p<0.05), and was significantly higher in the bilateral white matter (p<0.05 or 0.01) and the cerebellum (p<0.005) compared with the flow values measured by [sup 123]I-IMP CBF-SPECT. Whereas, the IMP-CBF values were significantly lower in the bilateral striatum (p<0.02 or 0.05) compared with the HMPAO-CBF values. Good correlations were found between IMP-CBF and the HMPAO-CBF values in the cortical gray matter (r[sub s]=0.761; p<0.001, n=108), the white matter (r[sub s]=0.739; p<0.001, n=18) and the cerebellum (r[sub s]=0.731; p<0.001, n=18). In the striatum (r[sub s]=0.58; p<0.05, n=18) and the thalamus (r[sub s]=0.628; p<0.05, n=18), the correlations between IMP-CBF and HMPAO-CBF values were inferior to those of the other three regions. The results indicated that the contrast between high and low CBF regions in the HMPAO CBF-SPECT was significantly less than that in the IMP CBF-SPECT. However, this assumption is not applicable in all of the cerebral regions. (author).

  17. SPECT评估脑梗死后远隔功能抑制与预后的关系%Prognostic Value of Diaschisis in the Subacute Stage:Single-Photon Emission CT in Patients with Superatentorial Infarct

    Institute of Scientific and Technical Information of China (English)

    张翼; 孙德锦; 张学勤; 戴浩杰; 李眉; 罗莎; 任凌; 刘喷飓

    2011-01-01

    Objective: Recovery of motor function after stroke has been shown to involve reorganization in motor and premotor cortical areas. Poststroke recovery also depends on changes in remote brain structures. Our aim was to determine whether measurements of diaschisis in the subacute stages obtained at single-photon emission CT(SPECT) facilliate the prediction of superatentorial infarct outcome. Methods:Patients with onset of unilateral superatentorial infarct were examined in the early subacute(5~14days) stage by using 99mTc-ECD SPECT.The patients with diaschisis were semi-quantitative analyzed. From the total counts obtained from each region of interest,the asymmetry index(AI)was calculated as follows:[(value in unaffected region-value in afected region)/value in unaffected region]× 100.The patients were divided into 3 groups according to the grade of Al..Clinical outcome(at 60days) was assessed by means of the Scandinavian Storke Scale(SSS)and Barthel Index(BI).Results:Of the 66 patients with unilateral superatentorial infact of first onset with diaschisis, 23 were in mild group, 27 in moderate group, and 16 in severe group. Differences between the three groups were significant. The severity of AI in the subacute stage and clinical outcome (ie, SSS and BI scores) correlated significantly with both RI (r=-0.564, P<0.01) and BI scores (r=-0.552, P<0.01).Conclusion:AI in the early subacute stage in patients with supratentorial infarct predicts a clinical outcome. The hypoperfusion of cerebral blood flow can be detected by by 99mTc-HMPAO SPECT.%目的:大脑半球卒中后运动功能的恢复不仅包括运动区、运动前区的重组,还和远隔区域的变化相关.本文旨在探讨单光子发射计算机断层显像(single photon emission computed tomography,SPECT)观察到的亚急性期幕上脑梗死患者远隔区域低灌注程度与卒中预后的关系.方法:选择首次发病的单侧幕上脑梗死患者,于亚急性期(5~14天)进行SPECT脑

  18. Interactive Screen Experiments with Single Photons

    Science.gov (United States)

    Bronner, Patrick; Strunz, Andreas; Silberhorn, Christine; Meyn, Jan-Peter

    2009-01-01

    Single photons are used for fundamental quantum physics experiments as well as for applications. Originally being a topic of advance courses, such experiments are increasingly a subject of undergraduate courses. We provide interactive screen experiments (ISE) for supporting the work in a real laboratory, and for students who do not have access to…

  19. Simulating single photons with realistic photon sources

    Science.gov (United States)

    Yuan, Xiao; Zhang, Zhen; Lütkenhaus, Norbert; Ma, Xiongfeng

    2016-12-01

    Quantum information processing provides remarkable advantages over its classical counterpart. Quantum optical systems have been proved to be sufficient for realizing general quantum tasks, which, however, often rely on single-photon sources. In practice, imperfect single-photon sources, such as a weak-coherent-state source, are used instead, which will inevitably limit the power in demonstrating quantum effects. For instance, with imperfect photon sources, the key rate of the Bennett-Brassard 1984 (BB84) quantum key distribution protocol will be very low, which fortunately can be resolved by utilizing the decoy-state method. As a generalization, we investigate an efficient way to simulate single photons with imperfect ones to an arbitrary desired accuracy when the number of photonic inputs is small. Based on this simulator, we can thus replace the tasks that involve only a few single-photon inputs with the ones that make use of only imperfect photon sources. In addition, our method also provides a quantum simulator to quantum computation based on quantum optics. In the main context, we take a phase-randomized coherent state as an example for analysis. A general photon source applies similarly and may provide some further advantages for certain tasks.

  20. Infrared Superconducting Single-Photon Detectors

    Science.gov (United States)

    2012-10-05

    group realized small microstrip devices, the next iteration of which may narrow the line width to below 100 nm, entering the single-photon detection...and will explore superconducting detectors with integrated waveguide circuits and novel deposition techniques. 15. SUBJECT...world record quantum cryptography demonstrations [9] and operation of quantum waveguide circuits at telecom wavelengths [10]. Beyond the quantum

  1. Single Photon Experiments and Quantum Complementarity

    Directory of Open Access Journals (Sweden)

    Georgiev D. D.

    2007-04-01

    Full Text Available Single photon experiments have been used as one of the most striking illustrations of the apparently nonclassical nature of the quantum world. In this review we examine the mathematical basis of the principle of complementarity and explain why the Englert-Greenberger duality relation is not violated in the configurations of Unruh and of Afshar.

  2. Single-photon imaging in CMOS

    NARCIS (Netherlands)

    Charbon, E.

    2010-01-01

    We report on the architectural design and fabrication of medium and large arrays of single-photon avalanche diodes (SPADs) for a variety of applications in physics, medicine, and the life sciences. Due to dynamic nature of SPADs, designs featuring a large number of SPADs require careful analysis of

  3. A gallium nitride single-photon source operating at 200 K.

    Science.gov (United States)

    Kako, Satoshi; Santori, Charles; Hoshino, Katsuyuki; Götzinger, Stephan; Yamamoto, Yoshihisa; Arakawa, Yasuhiko

    2006-11-01

    Fundamentally secure quantum cryptography has still not seen widespread application owing to the difficulty of generating single photons on demand. Semiconductor quantum-dot structures have recently shown great promise as practical single-photon sources, and devices with integrated optical cavities and electrical-carrier injection have already been demonstrated. However, a significant obstacle for the application of commonly used III-V quantum dots to quantum-information-processing schemes is the requirement of liquid-helium cryogenic temperatures. Epitaxially grown gallium nitride quantum dots embedded in aluminium nitride have the potential for operation at much higher temperatures. Here, we report triggered single-photon emission from gallium nitride quantum dots at temperatures up to 200 K, a temperature easily reachable with thermo-electric cooling. Gallium nitride quantum dots also open a new wavelength region in the blue and near-ultraviolet portions of the spectrum for single-photon sources.

  4. High performance guided-wave asynchronous heralded single photon source

    OpenAIRE

    Alibart, Olivier; Ostrowsky, Daniel Barry; Baldi, Pascal; Tanzilli, Sébastien

    2005-01-01

    International audience; We report on a guided wave heralded photon source based on the creation of non-degenerate photon pairs by spontaneous parametric down conversion in a Periodically Poled Lithium Niobate waveguide. Using the signal photon at 1310 nm as a trigger, a gated detection process permits announcing the arrival of single photons at 1550 nm at the output of a single mode optical fiber with a high probability of 0.38. At the same time the multi-photon emission probability is reduce...

  5. Nanofabrication of Plasmonic Circuits Containing Single Photon Sources

    DEFF Research Database (Denmark)

    Siampour Ashkavandi, Hamidreza; Kumar, Shailesh; Bozhevolnyi, Sergey I.

    2017-01-01

    -photon emitters, using electron-beam lithography of hydrogen silsesquioxane (HSQ) resist on silver-coated silicon substrates. A propagation length of 20 ± 5 μm for the NV single-photon emission is measured with DLSPPWs. A 5-fold enhancement in the total decay rate, and 58% coupling efficiency to the DLSPPW mode...... is achieved, indicating significant mode confinement. Finally, we demonstrate routing of single plasmons with DLSPPW-based directional couplers, revealing the potential of our approach for on-chip realization of quantum optical networks....

  6. Electrically Driven InAs Quantum-Dot Single-Photon Sources

    Institute of Scientific and Technical Information of China (English)

    XIONG Yong-Hua; NIU Zhi-Chuan; DOU Xiu-Ming; SUN Bao-Quan; HUANG She-Song; NI Hai-Qiao; DU Yun; XIA Jian-Bai

    2009-01-01

    Electrically driven single photon source based on single InAs quantum dot (QDs) is demonstrated. The device contains InAs QDs within a planar cavity formed between a bottom AIGaAs/GaAs distributed Bragg reflector (DBR) and a surface GaAs-air interface. The device is characterized by Ⅰ-Ⅴ curve and electroluminescence, and a single sharp exciton emission line at 966 nm is observed. Hanbury Brown and Twiss (HBT) correlation measurements demonstrate single photon emission with suppression of multiphoton emission to below 45% at 80 K

  7. Single photonics at telecom wavelengths using nanowire superconducting detectors

    CERN Document Server

    Zinoni, C; Fiore, A; Gerardino, A; Goltsman, G N; Li, L H; Lunghi, L; Marsili, F; Smirnov, K V; Vakhtomin, Y B; Vakhtomin, Yu. B.

    2006-01-01

    Single photonic applications - such as quantum key distribution - rely on the transmission of single photons, and require the ultimate sensitivity that an optical detector can achieve. Single-photon detectors must convert the energy of an optical pulse containing a single photon into a measurable electrical signal. We report on fiber-coupled superconducting single-photon detectors (SSPDs) with specifications that exceed those of avalanche photodiodes (APDs), operating at telecommunication wavelength, in sensitivity, temporal resolution and repetition frequency. The improved performance is demonstrated by measuring the intensity correlation function g(2)(t) of single-photon states at 1300nm produced by single semiconductor quantum dots (QDs).

  8. Room-temperature single-photon generation from solitary dopants of carbon nanotubes

    Science.gov (United States)

    Ma, Xuedan; Hartmann, Nicolai F.; Baldwin, Jon K. S.; Doorn, Stephen K.; Htoon, Han

    2015-08-01

    On-demand single-photon sources capable of operating at room temperature and the telecom wavelength range of 1,300-1,500 nm hold the key to the realization of novel technologies that span from sub-diffraction imaging to quantum key distribution and photonic quantum information processing. Here, we show that incorporation of undoped (6,5) single-walled carbon nanotubes into a SiO2 matrix can lead to the creation of solitary oxygen dopant states capable of fluctuation-free, room-temperature single-photon emission in the 1,100-1,300 nm wavelength range. We investigated the effects of temperature on photoluminescence emission efficiencies, fluctuations and decay dynamics of the dopant states and determined the conditions most suitable for the observation of single-photon emission. This emission can in principle be extended to 1,500 nm by doping of smaller-bandgap single-walled carbon nanotubes. This easy tunability presents a distinct advantage over existing defect centre single-photon emitters (for example, diamond defect centres). Our SiO2-encapsulated sample also presents exciting opportunities to apply Si/SiO2-based micro/nano-device fabrication techniques in the development of electrically driven single-photon sources and integration of these sources into quantum photonic devices and networks.

  9. In vivo effects of olanzapine on striatal dopamine D{sub 2}/D{sub 3} receptor binding in schizophrenic patients: an iodine-123 iodobenzamide single-photon emission tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, S.; Rossmueller, B.; Hahn, K.; Tatsch, K. [Department of Nuclear Medicine, University of Munich (Germany); Mager, T.; Meisenzahl, E.; Moeller, H.J. [Department of Psychiatry, University of Munich (Germany)

    1999-08-01

    Olanzapine is a new atypical antipsychotic agent that belongs to the same chemical class as clozapine. The pharmacological efficacy of olanzapine (in contrast to that of risperidone) has been shown to be comparable to that of clozapine, but olanzapine has the advantage of producing a less pronounced bone marrow depressing effect than clozapine. The specific aims of this study were (a) to assess dopamine D{sub 2}/D{sub 3} receptor availability in patients treated with olanzapine by means of iodine-123 iodobenzamide [{sup 123}I]IBZM single-photon emission tomography (SPET), (b) to compare the results with findings of [{sup 123}I]IBZM SPET in patients under treatment with risperidone and (c) to correlate the results with the occurrance of extrapyramidal side-effects (EPMS). Brain SPET scans were performed in 20 schizophrenic patients (DSM III R) at 2 h after i.v. administration of 185 MBq [{sup 123}I]IBZM. Images were acquired using a triple-head gamma camera (Picker Prism 3000 XP). For semiquantitative evaluation of D{sub 2}/D{sub 3} receptor binding, transverse slices corrected for attenuation were used to calculate specific uptake values [STR-BKG]/BKG (STR=striatum; BKG=background). The mean daily dose of olanzapine ranged from 0.05 to 0.6 mg/kg body weight. The dopamine D{sub 2}/D{sub 3} receptor binding was reduced in all patients treated with olanzapine. Specific IBZM binding [STR-BKG]/BKG ranged from 0.13 to 0.61 (normal controls >0.95). The decreased D{sub 2}/D{sub 3} receptor availability revealed an exponential dose-response relationship (r=-0.85, P<0.001). The slope of the curve was similar to that of risperidone and considerably higher than that of clozapine as compared with the results of a previously published study. EPMS were observed in only one patient, presenting with the lowest D{sub 2}/D{sub 3} availability. The frequency of EPMS induced by olanzapine (5%) was considerably lower than the frequency under risperidone treatment (40%). Our findings

  10. In vivo effects of olanzapine on striatal dopamine D[sub 2]/D[sub 3] receptor binding in schizophrenic patients: an iodine-123 iodobenzamide single-photon emission tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, S.; Rossmueller, B.; Hahn, K.; Tatsch, K. (Department of Nuclear Medicine, University of Munich (Germany)); Mager, T.; Meisenzahl, E.; Moeller, H.J. (Department of Psychiatry, University of Munich (Germany))

    1999-08-01

    Olanzapine is a new atypical antipsychotic agent that belongs to the same chemical class as clozapine. The pharmacological efficacy of olanzapine (in contrast to that of risperidone) has been shown to be comparable to that of clozapine, but olanzapine has the advantage of producing a less pronounced bone marrow depressing effect than clozapine. The specific aims of this study were (a) to assess dopamine D[sub 2]/D[sub 3] receptor availability in patients treated with olanzapine by means of iodine-123 iodobenzamide [[sup 123]I]IBZM single-photon emission tomography (SPET), (b) to compare the results with findings of [[sup 123]I]IBZM SPET in patients under treatment with risperidone and (c) to correlate the results with the occurrance of extrapyramidal side-effects (EPMS). Brain SPET scans were performed in 20 schizophrenic patients (DSM III R) at 2 h after i.v. administration of 185 MBq [[sup 123]I]IBZM. Images were acquired using a triple-head gamma camera (Picker Prism 3000 XP). For semiquantitative evaluation of D[sub 2]/D[sub 3] receptor binding, transverse slices corrected for attenuation were used to calculate specific uptake values [STR-BKG]/BKG (STR=striatum; BKG=background). The mean daily dose of olanzapine ranged from 0.05 to 0.6 mg/kg body weight. The dopamine D[sub 2]/D[sub 3] receptor binding was reduced in all patients treated with olanzapine. Specific IBZM binding [STR-BKG]/BKG ranged from 0.13 to 0.61 (normal controls >0.95). The decreased D[sub 2]/D[sub 3] receptor availability revealed an exponential dose-response relationship (r=-0.85, P<0.001). The slope of the curve was similar to that of risperidone and considerably higher than that of clozapine as compared with the results of a previously published study. EPMS were observed in only one patient, presenting with the lowest D[sub 2]/D[sub 3] availability. The frequency of EPMS induced by olanzapine (5%) was considerably lower than the frequency under risperidone treatment (40%). Our findings

  11. Observation of Single-Photon Switching

    CERN Document Server

    Chen, Y F; Liu, Y C; Yu, I A; Chen, Yong-Fan; Tsai, Zen-Hsiang; Liu, Yu-Chen; Yu, Ite A.

    2005-01-01

    We report an experimental demonstration of single-photon switching in laser-cooled $^{87}$Rb atoms. A resonant probe pulse with an energy per unit area of one photon per $\\lambda^2/2\\pi$ propagates through the optically thick atoms. Its energy transmittance is greater than 63% or loss is less than $e^{-1}$ due to the effect of electromagnetically induced transparency. In the presence of a switching pulse with an energy per unit area of 1.4 photons per $\\lambda^2/2\\pi$, the energy transmittance of the same probe pulse becomes less than 37% or $e^{-1}$. This substantial reduction of the probe transmittance caused by single switching photons has potential applications in single-photon-level nonlinear optics and the manipulation of quantum information.

  12. SINGLE: single photon sensitive cryogenic light detectors

    Science.gov (United States)

    Biassoni, Matteo; SINGLE Collaboration

    2017-09-01

    Thermal detectors operated at few mK as calorimeters are a powerful tool for the study of rare particle physics processes. In order to implement particle identification, light detection can be effectively performed by means of other thermal detectors operated as light sensors. This configuration can be used also in large scale, thousand-channels setups, but the light sensors must be sensitive enough to detect few, possibly a single, photons. The SINGLE project described here aims at producing silicon based, large area devices that can be operated as thermal detectors with single-photon sensitivity, and demonstrate the reliability of the performance, scalability of the production process and integrability with present and next generation cryogenic experiments for the search for rare events.

  13. Advantages of gated silicon single photon detectors

    Science.gov (United States)

    Legré, Matthieu; Lunghi, Tommaso; Stucki, Damien; Zbinden, Hugo

    2013-05-01

    We present gated silicon single photon detectors based on two commercially available avalanche photodiodes (APDs) and one customised APD from ID Quantique SA. This customised APD is used in a commercially available device called id110. A brief comparison of the two commercial APDs is presented. Then, the charge persistence effect of all of those detectors that occurs just after a strong illumination is shown and discussed.

  14. Transmitting more than 10 bit with a single photon

    NARCIS (Netherlands)

    Tentrup, T.B.H.; Hummel, T.; Wolterink, T.A.W.; Uppu, R.; Mosk, A.P.; Pinkse, P.W.H.

    2016-01-01

    Encoding information in the position of single photons has no known limits, given infinite resources. Using a heralded single-photon source and a Spatial Light Modulator (SLM), we steer single photons to specific positions in a virtual grid on a large-area spatially resolving photon-counting detecto

  15. Very Efficient Single-Photon Sources Based on Quantum Dots in Photonic Wires

    DEFF Research Database (Denmark)

    Gerard, Jean-Michel; Claudon, Julien; Bleuse, Joel

    2014-01-01

    We review the recent development of high efficiency single photon sources based on a single quantum dot in a photonic wire. Unlike cavity-based devices, very pure single photon emission and efficiencies exceeding 0.7 photon per pulse are jointly demonstrated under non-resonant pumping conditions....... By placing a tip-shaped or trumpet-like tapering at the output end of the wire, a highly directional Gaussian far-field emission pattern is obtained. More generally, a photonic wire containing a quantum dot appears as an attractive template to explore and exploit in a solid-state system the unique optical...

  16. Multimodal imaging analysis of single-photon emission computed tomography and magnetic resonance tomography for improving diagnosis of Parkinson's disease; Multimodale SPECT- und MRT-Bilddatenanalyse zur Verbesserung der Diagnostik des idiopathischen Parkinson-Syndroms

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, H.; Georgi, P. [Leipzig Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin; Mueller, U.; Waechter, T.; Murai, T. [Max-Planck-Inst. fuer Neuropsychologische Forschung, Leipzig (Germany); Slomka, P. [Universitaet West-Ontario, London (Canada). Abt. fuer Nuklearmedizin; Dannenberg, C.; Kahn, T. [Leipzig Univ. (Germany). Klinik und Poliklinik fuer Diagnostische Radiologie

    2000-10-01

    Parkinson's disease (PD) is characterized by a degeneration of nigrostriated dopaminergic neurons, which can be imaged with {sup 123}I-labeled 2{beta}-carbomethoxy-3{beta}-(4-iodophenyl) tropane ([{sup 123}I]{beta}-CIT) and single-photon emission computed tomography (SPECT). However, the quality of the region of interest (ROI) technique used for quantitative analysis of SPECT data is compromised by limited anatomical information in the images. We investigated whether the diagnosis of PD can be improved by combining the use of SPECT images with morphological image data from magnetic resonance imaging (MRI)/computed tomography (CT). We examined 27 patients (8 men, 19 women; aged 55{+-}13 years) with PD (Hoehn and Yahr stage 2.1{+-}0.8) by high-resolution [{sup 123}I]{beta}-CIT SPECT (185-200 MBq, Ceraspect camera). SPECT images were analyzed both by a unimodal technique (ROIs defined directly within the SPECT studies) and a multimodal technique (ROIs defined within individual MRI/CT studies and transferred to the corresponding interactively coregistered SPECT studies). [{sup 123}I]{beta}-CIT binding ratios (cerebellum as reference), which were obtained for heads of caudate nuclei (CA), putamina (PU), and global striatal structures were compared with clinical parameters. Differences between contra- and ipsilateral (related to symptom dominance) striatal [{sup 123}I]{beta}-CIT binding ratios proved to be larger in the multimodal ROI technique than in the unimodal approach (e.g., for PU: 1.2*** vs. 0.7**). Binding ratios obtained by the unimodal ROI technique were significantly correlated with those of the multimodal technique (e.g., for CA: y=0.97x+2.8; r=0.70; P<0.001). Concerning the correlations between SPECT data and clinical parameters, the significance levels in the multimodal ROI technique exceeded those of the unimodal technique, for example, for the correlation between CA and the UPDRS{sub com} subscore (r=-0.49* vs. -0.32). These results show that the

  17. Ultrabright single-photon source on diamond with electrical pumping at room and high temperatures

    Science.gov (United States)

    Fedyanin, D. Yu; Agio, M.

    2016-07-01

    The recently demonstrated electroluminescence of color centers in diamond makes them one of the best candidates for room temperature single-photon sources. However, the reported emission rates are far off what can be achieved by state-of-the-art electrically driven epitaxial quantum dots. Since the electroluminescence mechanism has not yet been elucidated, it is not clear to what extent the emission rate can be increased. Here we develop a theoretical framework to study single-photon emission from color centers in diamond under electrical pumping. The proposed model comprises electron and hole trapping and releasing, transitions between the ground and excited states of the color center as well as structural transformations of the center due to carrier trapping. It provides the possibility to predict both the photon emission rate and the wavelength of emitted photons. Self-consistent numerical simulations of the single-photon emitting diode based on the proposed model show that the photon emission rate can be as high as 100 kcounts s-1 at standard conditions. In contrast to most optoelectronic devices, the emission rate steadily increases with the device temperature achieving of more than 100 Mcount s-1 at 500 K, which is highly advantageous for practical applications. These results demonstrate the potential of color centers in diamond as electrically driven non-classical light emitters and provide a foundation for the design and development of single-photon sources for optical quantum computation and quantum communication networks operating at room and higher temperatures.

  18. Interfacing single photons and single quantum dots with photonic nanostructures

    CERN Document Server

    Lodahl, Peter; Stobbe, Søren

    2013-01-01

    Photonic nanostructures provide a way of tailoring the interaction between light and matter and the past decade has witnessed a tremendous experimental and theoretical progress on this subject. In particular, the combination with semiconductor quantum dots has proven very successful. This manuscript reviews quantum optics with excitons in single quantum dots embedded in photonic nanostructures. The ability to engineer the interaction strength in integrated photonic nanostructures enables a range of fundamental quantum-electrodynamics experiments on, e.g., spontaneous-emission control, modified Lamb shifts, and enhanced dipole-dipole interaction. Furthermore, highly efficient single-photon sources and giant photon nonlinearities may be constructed with immediate applications for photonic quantum-information processing. The review summarizes the general theoretical framework of photon emission including the role of dephasing processes, and applies it to photonic nanostructures of current interest, such as photo...

  19. Room temperature single photon source using fiber-integrated hexagonal boron nitride

    Science.gov (United States)

    Vogl, Tobias; Lu, Yuerui; Lam, Ping Koy

    2017-07-01

    Single photons are a key resource for quantum optics and optical quantum information processing. The integration of scalable room temperature quantum emitters into photonic circuits remains to be a technical challenge. Here we utilize a defect center in hexagonal boron nitride (hBN) attached by Van der Waals force onto a multimode fiber as a single photon source. We perform an optical characterization of the source in terms of spectrum, state lifetime, power saturation and photostability. A special feature of our source is that it allows for easy switching between fiber-coupled and free space single photon generation modes. In order to prove the quantum nature of the emission we measure the second-order correlation function {{g}(2)}≤ft(τ \\right) . For both fiber-coupled and free space emission, the {{g}(2)}≤ft(τ \\right) dips below 0.5 indicating operation in the single photon regime. The results so far demonstrate the feasibility of 2D material single photon sources for scalable photonic quantum information processing.

  20. Design of Si/SiO2 micropillar cavities for Purcell-enhanced single photon emission at 1.55 μm from InAs/InP quantum dots.

    Science.gov (United States)

    Song, Hai-Zhi; Takemoto, Kazuya; Miyazawa, Toshiyuki; Takatsu, Motomu; Iwamoto, Satoshi; Yamamoto, Tsuyoshi; Arakawa, Yasuhiko

    2013-09-01

    Numerical simulations were carried out on micropillar cavities consisting of Si/SiO2 distributed Bragg reflectors (DBRs) with an InP spacer layer. Owing to a large refractive index contrast of ~2 in DBRs, cavities with just 4/6.5 top/bottom DBR pairs that give a low pillar height (~4.5 μm), have noticeable Purcell-enhancement effect in the 1.55-μm band. With careful designs on cavities with diameters of ~2.30 μm, a quality factor of up to 3300, a nominal Purcell factor of up to 110, and an output efficiency of ~60% are obtainable. These results ensure improvement of operation frequency and enhancement of photon indistinguishability for 1.55-μm single photon sources based on InAs/InP quantum dots.

  1. Detecting single photons: a supramolecular matter?

    Science.gov (United States)

    Cangiano, Lorenzo; Dell'Orco, Daniele

    2013-01-04

    Rod photoreceptors detect single photons through a tradeoff of light collecting ability, amplification and speed. Key roles are played by rhodopsin (Rh) and transducin (G(t)), whose complex supramolecular organization in outer segment disks begs for a functional interpretation. Here we review past and recent evidence of a temperature-dependence of photon detection by mammalian rods, and link this phenomenon with the putative oligomeric organization of Rh and new ideas on the dynamics of Rh-G(t) interaction. Identifying an electrophysiological correlate of the supramolecular organization of Rh and G(t) may shed light on the evolutionary advantage it confers to night vision.

  2. Discriminating orthogonal single-photon images

    Science.gov (United States)

    Broadbent, Curtis J.; Zerom, Petros; Shin, Heedeuk; Howell, John C.; Boyd, Robert W.

    2009-03-01

    We can encode an image from an orthogonal basis set onto a single photon from a downconverted pair via the use of an amplitude mask. We can then discriminate the image imprinted on the photon from other images in the set using holographic-matched filtering techniques. We demonstrate this procedure experimentally for an image space of two objects, and we discuss the possibility of applying this method to a much larger image space. This process could have important implications for the manipulation of images at the quantum level.

  3. Purification of a single photon nonlinearity

    CERN Document Server

    Snijders, H; Norman, J; Bakker, M P; Gossard, A; Bowers, J E; van Exter, M P; Bouwmeester, D; Löffler, W

    2016-01-01

    We show that the lifetime-reduced fidelity of a semiconductor quantum dot-cavity single photon nonlinearity can be restored by polarization pre- and postselection. This is realized with a polarization degenerate microcavity in the weak coupling regime, where an output polarizer enables quantum interference of the two orthogonally polarized transmission amplitudes. This allows us to transform incident coherent light into a stream of strongly correlated photons with a second-order correlation function of g2(0)~40, larger than previous experimental results even in the strong-coupling regime. This purification technique might also be useful to improve the fidelity of quantum dot based logic gates.

  4. Single-Photon Detection at Telecom Wavelengths

    Institute of Scientific and Technical Information of China (English)

    SUN Zhi-Bin; MA Hai-Qiang; LEI Ming; WANG Di; LIU Zhao-Jie; YANG Han-Dong; WU Ling-An; ZHAI Guang-Jie; FENG Ji

    2007-01-01

    A single-photon detector based on an InGaAs avalanche photodiode has been developed for use at telecom wavelengths. A suitable delay and sampling gate modulation circuit are used to prevent positive and negative transient pulses from influencing the detection of true photon induced avalanches. A monostable trigger circuit eliminates the influence of avalanche peak jitter, and a dead time modulation feedback control circuit decreases the afterpulsing. From performance tests we find that at the optimum operation point, the quantum efficiency is 12% and the dark count rate 1.5 × 10-6 ns-1, with a detection rate of 500 kHz.

  5. An experimental demonstration of single photon nonlocality

    CERN Document Server

    Hessmo, B; Heydari, H; Björk, G; Hessmo, Bj\\"orn; Usachev, Pavel; Heydari, Hoshang; Bj\\"ork, Gunnar

    2003-01-01

    In this letter we experimentally implement a single photon Bell test based on the ideas of S. Tan et al. [Phys. Rev. Lett., vol. 66, 252 (1991)] and L. Hardy [Phys. Rev. Lett.,vol. 73, 2279 (1994)]. A double heterodyne measurement is used to measure correlations in the Fock space spanned by zero and one photons. Local oscillators used in the correlation measurement are distributed to two observers by co-propagating it in an orthogonal polarization mode. This method eliminates the need for interferometrical stability in the setup, consequently making it a robust and scalable method.

  6. Sub-megahertz linewidth single photon source

    Science.gov (United States)

    Rambach, Markus; Nikolova, Aleksandrina; Weinhold, Till J.; White, Andrew G.

    2016-12-01

    We report 100% duty cycle generation of sub-MHz single photon pairs at the rubidium D1 line using cavity-enhanced spontaneous parametric downconversion. The temporal intensity cross correlation function exhibits a bandwidth of 666 ±16 kHz for the single photons, an order of magnitude below the natural linewidth of the target transition. A half-wave plate inside our cavity helps to achieve triple resonance between pump, signal, and idler photon, reducing the bandwidth and simplifying the locking scheme. Additionally, stabilisation of the cavity to the pump frequency enables the 100% duty cycle. The quantum nature of the source is confirmed by the idler-triggered second-order autocorrelation function at τ =0 to be gs,s (2 )(0 ) = 0.016 ±0.002 for a heralding rate of 5 kHz. The generated photons are well-suited for storage in quantum memory schemes with sub-natural linewidths, such as gradient echo memories.

  7. Sub-megahertz linewidth single photon source

    Directory of Open Access Journals (Sweden)

    Markus Rambach

    2016-12-01

    Full Text Available We report 100% duty cycle generation of sub-MHz single photon pairs at the rubidium D1 line using cavity-enhanced spontaneous parametric downconversion. The temporal intensity cross correlation function exhibits a bandwidth of 666±16 kHz for the single photons, an order of magnitude below the natural linewidth of the target transition. A half-wave plate inside our cavity helps to achieve triple resonance between pump, signal, and idler photon, reducing the bandwidth and simplifying the locking scheme. Additionally, stabilisation of the cavity to the pump frequency enables the 100% duty cycle. The quantum nature of the source is confirmed by the idler-triggered second-order autocorrelation function at τ=0 to be gs,s(2(0= 0.016±0.002 for a heralding rate of 5 kHz. The generated photons are well-suited for storage in quantum memory schemes with sub-natural linewidths, such as gradient echo memories.

  8. A bright single-photon source based on a photonic trumpet

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Malik, Nitin S.; Bleuse, Joël

    be brought close to unity with a proper engineering of the wire ends. In particular, a tapering of the top wire end is necessary to achieve a directive far-field emission pattern [1]. Recently, we have realized a single-photon source featuring a needle-like taper. The source efficiency, though record...... top-down fabrication techniques, we have fabricated a single photon source based on this geometry. The trumpet lies on an integrated mirror and embeds a single layer of InAs QDs, located 110 nm above the mirror. We obtain collection efficiencies higher than 40% for a bunch of QDs spread over 35 nm...

  9. High-efficiency single-photon source: The photonic wire geometry

    DEFF Research Database (Denmark)

    Claudon, J.; Bazin, Maela; Malik, Nitin S.

    2009-01-01

    We present a single-photon-source design based on the emission of a quantum dot embedded in a semiconductor (GaAs) nanowire. The nanowire ends are engineered (efficient metallic mirror and tip taper) to reach a predicted record-high collection efficiency of 90% with a realistic design. Preliminary...

  10. Electrically pumped photonic nanowire single-photon source with an efficienty of 89%

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Torben Roland; Mørk, Jesper

    2011-01-01

    We propose a new electrically-pumped single-photon source design based on a quantum dot in a photonic nanowire. For realistic parameters, the design features an efficiency of 89 % predicted by numerical simulations. Unlike cavity-based designs, our approach allows for broadband spontaneous emission...

  11. Near-unity efficiency, single-photon sources based on tapered photonic nanowires

    DEFF Research Database (Denmark)

    Bleuse, Joël; Munsch, Mathieu; Claudon, Julien

    2012-01-01

    Single-photon emission from excitons in InAs Quantum Dots (QD) embedded in GaAs Tapered Photonic Wires (TPW) already demonstrated a 0.72 collection efficiency, with TPWs were the apex is the sharp end of the cone. Going to alternate designs, still based on the idea of the adiabatic deconfinement...

  12. Quantum interference between two single photons emitted by independently trapped atoms.

    Science.gov (United States)

    Beugnon, J; Jones, M P A; Dingjan, J; Darquié, B; Messin, G; Browaeys, A; Grangier, P

    2006-04-06

    When two indistinguishable single photons are fed into the two input ports of a beam splitter, the photons will coalesce and leave together from the same output port. This is a quantum interference effect, which occurs because two possible paths-in which the photons leave by different output ports-interfere destructively. This effect was first observed in parametric downconversion (in which a nonlinear crystal splits a single photon into two photons of lower energy), then from two separate downconversion crystals, as well as with single photons produced one after the other by the same quantum emitter. With the recent developments in quantum information research, much attention has been devoted to this interference effect as a resource for quantum data processing using linear optics techniques. To ensure the scalability of schemes based on these ideas, it is crucial that indistinguishable photons are emitted by a collection of synchronized, but otherwise independent sources. Here we demonstrate the quantum interference of two single photons emitted by two independently trapped single atoms, bridging the gap towards the simultaneous emission of many indistinguishable single photons by different emitters. Our data analysis shows that the observed coalescence is mainly limited by wavefront matching of the light emitted by the two atoms, and to a lesser extent by the motion of each atom in its own trap.

  13. Cavity-Enhanced Single-Photon Source Based on the Silicon-Vacancy Center in Diamond

    Science.gov (United States)

    Benedikter, Julia; Kaupp, Hanno; Hümmer, Thomas; Liang, Yuejiang; Bommer, Alexander; Becher, Christoph; Krueger, Anke; Smith, Jason M.; Hänsch, Theodor W.; Hunger, David

    2017-02-01

    Single-photon sources are an integral part of various quantum technologies, and solid-state quantum emitters at room temperature appear to be a promising implementation. We couple the fluorescence of individual silicon-vacancy centers in nanodiamonds to a tunable optical microcavity to demonstrate a single-photon source with high efficiency, increased emission rate, and improved spectral purity compared to the intrinsic emitter properties. We use a fiber-based microcavity with a mode volume as small as 3.4 λ3 and a quality factor of 1.9 ×1 04 and observe an effective Purcell factor of up to 9.2. Furthermore, we study modifications of the internal rate dynamics and propose a rate model that closely agrees with the measurements. We observe lifetime changes of up to 31%, limited by the finite quantum efficiency of the emitters studied here. With improved materials, our achieved parameters predict single-photon rates beyond 1 GHz.

  14. Electromagnetic fields, size, and copy of a single photon

    CERN Document Server

    Liu, Shan-Liang

    2016-01-01

    We propose the expressions of electromagnetic fields of a single photon which properly describe the known characteristics of a photon, derive the relations between the photon size and wavelength on basis of the expressions, reveal the differences between a photon and its copy, and give the specific expressions of annihilation and creation operators of a photon. The results show that a photon has length of half the wavelength, and its radius is proportional to square root of the wavelength; a photon and its copy have the phase difference of {\\pi} and constitute a phase-entangled state; the N-photon phase-entangled state, which is formed by the sequential stimulated emission and corresponds to the wave train in optics, is not a coherent state, but it is the eigenstate of the number operator of photons.

  15. Producing high fidelity single photons with optimal brightness

    CERN Document Server

    Laiho, K; Silberhorn, Ch

    2009-01-01

    Parametric down-conversion (PDC) offers the possibility to control the fabrication of non-Gaussian states such as Fock states. However, in conventional PDC sources energy and momentum conservation introduce strict frequency and photon number correlations, which impact the fidelity of the prepared state. In our work we optimize the preparation of single-photon Fock state from the emission of waveguided PDC via spectral filtering. We study the effect of correlations via photon number resolving detection and quantum interference. Our measurements show how the reduction of mixness due to filtering can be evaluated. Interfering the prepared photon with a coherent state we establish an experimentally measured fidelity of the produced target state of 78%.

  16. Near-infrared single-photon spectroscopy of a whispering gallery mode resonator using energy-resolving transition edge sensors

    CERN Document Server

    Förtsch, Michael; Stevens, Martin J; Strekalov, Dmitry; Schunk, Gerhard; Fürst, Josef U; Vogl, Ulrich; Sedlmeir, Florian; Schwefel, Harald G L; Leuchs, Gerd; Nam, Sae Woo; Marquardt, Christoph

    2014-01-01

    We demonstrate a method to perform spectroscopy of near-infrared single photons without the need of dispersive elements. This method is based on a photon energy resolving transition edge sensor and is applied for the characterization of widely wavelength tunable narrow-band single photons emitted from a crystalline whispering gallery mode resonator. We measure the emission wavelength of the generated signal and idler photons with an uncertainty of up to 2 nm.

  17. Circuit electromechanics with single photon strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Zheng-Yuan, E-mail: zyxue@scnu.edu.cn; Yang, Li-Na [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Zhou, Jian, E-mail: jianzhou8627@163.com [Department of Electronic Communication Engineering, Anhui Xinhua University, Hefei 230088 (China); Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2015-07-13

    In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics.

  18. Atomic metasurfaces for manipulation of single photons

    CERN Document Server

    Zhou, Ming; Kats, Mikhail; Yu, Zongfu

    2016-01-01

    Metasurfaces are an emerging platform for the manipulation of light on a two-dimensional plane. Existing metasurfaces comprise arrays of optical resonators such as plasmonic antennas or high-index nanoparticles. In this letter, we describe a new type of metasurface based on electronic transitions in two-level systems (TLSs). Specifically, we investigated a sheet of rubidium (Rb) atoms, whose energy levels can be tuned with structured illumination from a control laser, which enables dynamically tunable single-photon steering. These metasurface elements are lossless and orders of magnitude smaller than conventional optical resonators, which allows for the overlapping of multiple metasurfaces in a single plane, enabling multi-band operation. We demonstrate that atomic metasurfaces can be passive optical elements, and can also be utilized for beaming of spontaneously emitted photons. Though conceptually similar to conventional metasurfaces, the use of TLSs, which are inherently Fermionic, will lead to numerous ne...

  19. Purification of a single-photon nonlinearity

    Science.gov (United States)

    Snijders, H.; Frey, J. A.; Norman, J.; Bakker, M. P.; Langman, E. C.; Gossard, A.; Bowers, J. E.; van Exter, M. P.; Bouwmeester, D.; Löffler, W.

    2016-01-01

    Single photon nonlinearities based on a semiconductor quantum dot in an optical microcavity are a promising candidate for integrated optical quantum information processing nodes. In practice, however, the finite quantum dot lifetime and cavity-quantum dot coupling lead to reduced fidelity. Here we show that, with a nearly polarization degenerate microcavity in the weak coupling regime, polarization pre- and postselection can be used to restore high fidelity. The two orthogonally polarized transmission amplitudes interfere at the output polarizer; for special polarization angles, which depend only on the device cooperativity, this enables cancellation of light that did not interact with the quantum dot. With this, we can transform incident coherent light into a stream of strongly correlated photons with a second-order correlation value up to 40, larger than previous experimental results, even in the strong-coupling regime. This purification technique might also be useful to improve the fidelity of quantum dot based logic gates. PMID:27573361

  20. Single-photon indistinguishability: influence of phonons

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Lodahl, Peter; Jauho, Antti-Pekka

    2012-01-01

    effects is important in linear optical quantum computing [1], where a device emitting fully coherent indistinguishable single photons on demand, is the essential ingredient. In this contribution we present a numerically exact simulation of the effect of phonons on the degree of indistinguishability......Recent years have demonstrated that the interaction with phonons plays an important role in semiconductor based cavity QED systems [2], consisting of a quantum dot (QD) coupled to a single cavity mode [Fig. 1(a)], where the phonon interaction is the main decoherence mechanism. Avoiding decoherence...... of photons emitted from a solid-state cavity QED system. Our model rigorously describes non-Markovian effects to all orders in the phonon coupling constant, being based on an exact diagonalization procedure accounting for the time evoluiton of one-time and two-time photon correlation funcitons. We compare...

  1. Prostate cancer and abdomino-pelvic masses with {sup 99m}Tc-HDP uptake. Contribution of the single photon emission computerized tomography guided by computerized tomography (SPECT/CT); Cancer de la prostate et masses abdominopelviennes fixant le {sup 99m}Tc-HDP. Apport de la tomographie d'emission monophotonique couplee a la tomodensitometrie (TEMP-TDM)

    Energy Technology Data Exchange (ETDEWEB)

    Granier, P.; Mourad, M. [Centre Hospitalier Antoine-Gayraud, Service de Medecine Nucleaire, 11 - Carcassonne (France)

    2009-06-15

    We report the case of a 63-year-old man, investigated for staging of a prostatic cancer, diagnosed by biopsy, following a rise in the prostatic specific antigen (P.S.A.) on a systematic assessment. The interrogation before examination revealed signs of beginning right crural neuropathy. The hydroxy-methylene diphosphonate technetium 99 m-labeled ({sup 99m}Tc-H.D.P.) whole-body bone scintigraphy highlighted two extraosseous uptake images, the first of moderated intensity in the right iliac area, the second milder, in the abdominal median area. Osseous metastases were not visualized. The single photon emission computerized tomography guided by computerized tomography (SPECT/CT) identified the median abdominal mass which corresponded to a bulky aneurysm of the under renal abdominal aorta. The right iliac mass could be accurately analyzed and differentiated from the various organs of the abdomino-pelvic cavity. Its lymphatic origin was hypothesized, but the diagnosis of lymphatic metastasis of the prostatic cancer was obtained by the pathologic examination of CT scan-guided biopsy. (authors)

  2. A single photon emission computed tomograph based on a limited dumber of detectors for fluid flow visualization; Tomographie d'emission gamma a partir d'un nombre limite de detecteurs appliquee a la visualisation d'ecoulements

    Energy Technology Data Exchange (ETDEWEB)

    Legoupil, S

    1999-07-01

    We present in this work a method for fluid flow visualization in a system using radioactive tracers. The method is based on single photon emission computed tomography techniques, applied to a limited number of discrete detectors. We propose in this work a method for the estimation of the transport matrix of photons, associated to the acquisition system.This method is based on the modelization of profiles acquired for a set of point sources located in the imaged volume. Monte Carlo simulations allow to separate scattered photons from those directly collected by the system. The influence of the energy tracer is exposed. The reconstruction method is based on the maximum likelihood - expectation maximization algorithm. An experimental device, based on 36 detectors was realised for the visualization of water circulation in a vessel. A video monitoring allows to visualize the dye water tracer. Dye and radioactive tracers are injected simultaneously in a water flow circulating in the vessel. Reconstructed and video images are compared. Quantitative and qualitative analysis show that fluid flow visualization is feasible with a limited number of detectors. This method can be applied for system involving circulations of fluids. (author)

  3. Spectral compression of single-photon-level laser pulse

    Science.gov (United States)

    Li, Yuanhua; Xiang, Tong; Nie, Yiyou; Sang, Minghuang; Chen, Xianfeng

    2017-01-01

    We experimentally demonstrate that the bandwidth of single photons laser pulse is compressed by a factor of 58 in a periodically poled lithium niobate (PPLN) waveguide chip. A positively chirped single photons laser pulse and a negatively chirped classical laser pulse are employed to produce a narrowband single photon pulse with new frequency through sum-frequency generation. In our experiment, the frequency and bandwidth of single photons at 1550 nm are simultaneously converted. Our results mark a critical step towards the realization of coherent photonic interface between quantum communication at 1550 nm and quantum memory in the near-visible window. PMID:28240245

  4. Generation and Detection of Infrared Single Photons and their Applications

    Institute of Scientific and Technical Information of China (English)

    ZENG He-ping; WU Guang; WU E; PAN Hai-feng; ZHOU Chun-yuan; WU E.,F.Treussart; J.-F.Roch

    2006-01-01

    Unbreakable secret communication has been a dream from ancient time.It is quantum physics that gives us hope to turn this wizardly dream into reality.The rapid development of quantum cryptography may put an end to the history of eavesdropping.This will be largely due to the advanced techniques related to single quanta,especially infrared single photons.In this paper,we report on our research works on single-photon control for quantum cryptography,ranging from single-photon generation to single-photon detection and their applications.

  5. Clinical impact of (11)C-Pittsburgh compound-B positron emission tomography carried out in addition to magnetic resonance imaging and single-photon emission computed tomography on the diagnosis of Alzheimer's disease in patients with dementia and mild cognitive impairment.

    Science.gov (United States)

    Omachi, Yoshie; Ito, Kimiteru; Arima, Kunimasa; Matsuda, Hiroshi; Nakata, Yasuhiro; Sakata, Masuhiro; Sato, Noriko; Nakagome, Kazuyuki; Motohashi, Nobutaka

    2015-12-01

    The purpose of this study was to evaluate the clinical impact of addition of [(11)C]Pittsburgh compound-B positron emission tomography ((11)C-PiB PET) on routine clinical diagnosis of Alzheimer's disease (AD) dementia and mild cognitive impairment (MCI), and to assess diagnostic agreement between clinical criteria and research criteria of the National Institute on Aging-Alzheimer's Association. The diagnosis in 85 patients was made according to clinical criteria. Imaging examinations, including both magnetic resonance imaging and single-photon emission computed tomography/computed tomography to identify neuronal injury (NI), and (11)C-PiB PET to identify amyloid were performed, and all subjects were re-categorized according to the research criteria. Among 40 patients with probable AD dementia (ProAD), 37 were NI-positive, 29 were (11)C-PiB-positive, and 27 who were both NI- and (11C-PiB-positive were categorized as having 'ProAD dementia with a high level of evidence of the AD pathophysiological process'. Among 20 patients with possible AD dementia (PosAD), 17 were NI-positive, and six who were both NI- and (11)C-PiB-positive were categorized as having 'PosAD with evidence of the AD pathophysiological process'. Among 25 patients with MCI, 18 were NI-positive, 13 were (11)C-PiB-positive, and 10 who were both NI- and (11)C-PiB-positive were categorized as having 'MCI due to AD-high likelihood'. Diagnostic concordance between clinical criteria and research criteria may not be high in this study. (11)C-PiB PET may be of value in making the diagnosis of dementia and MCI in cases with high diagnostic uncertainty. © 2015 The Authors. Psychiatry and Clinical Neurosciences © 2015 Japanese Society of Psychiatry and Neurology.

  6. Single-photon imaging in complementary metal oxide semiconductor processes

    NARCIS (Netherlands)

    Charbon, E.

    2014-01-01

    This paper describes the basics of single-photon counting in complementary metal oxide semiconductors, through single-photon avalanche diodes (SPADs), and the making of miniaturized pixels with photon-counting capability based on SPADs. Some applications, which may take advantage of SPAD image senso

  7. Heralded single-photon ghost imaging

    CERN Document Server

    Aspden, Reuben S; Boyd, Robert W; Padgett, Miles J

    2013-01-01

    Correlated-photon imaging, popularly known as ghost imaging, is a technique whereby an image is formed from light that has never interacted with the object. In ghost imaging experiments two correlated light fields are produced. One of these fields illuminates the object, and the other field is measured by a spatially resolving detector. In the quantum regime these correlated light fields entail entangled photons produced by spontaneous parametric down-conversion. To date, all correlated-photon ghost-imaging experiments have scanned a single-pixel detector through the field of view to obtain the spatial information. However, scanning leads to a poor sampling efficiency, which becomes worse as the number of pixels N in the image is increased. In this work we overcome such limitations by using a time-gated camera to record the single-photon events across the full scene. We produce high-contrast images in either the image plane or far-field of the down-conversion source, taking advantage of the EPR-like correlati...

  8. Characterization of APDs for single photon counting

    Energy Technology Data Exchange (ETDEWEB)

    Buglak, Wladimir; Hannen, Volker; Joehren, Raphael; Surholt, Martin; Vollbrecht, Jonas; Weinheimer, Christian [Muenster Univ. (Germany). Inst. fuer Kernphysik; Noertershaeuser, Wilfried [Mainz Univ. (Germany). Inst. fuer Kernchemie; GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Sanchez, Rodolfo [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2013-07-01

    For the SPECTRAP experiment at GSI, Germany, a detector system with single-photon counting capability operating in the wavelength region from 300 nm up to 1100 nm has been developed at the University of Muenster. The detector system utilises a silicon avalanche photo diode (APD) cooled to liquid nitrogen temperatures and operated near the breakdown voltage to obtain high gain values. While the current setup uses a 2 x 2 mm{sup 2} APD (type RMD S0223), it would be advantageous to have a larger active area for easier adjustment of the experiment optics. On the other hand a larger active area is accompanied by increased thermal noise which might harm the photon counting performance of the device. The characterization of a 8 x 8 mm{sup 2} APD (RMD S0814) is the subject of this poster. Furthermore a signal analysis software was developed to supress noise signals, e.g. caused by microphonic effects. The software processes signal waveforms recorded by a Flash ADC and should allow for a lower trigger threshold and thus higher detection efficiency.

  9. Indistinguishable single photons with real-time-programmable electronic triggering

    CERN Document Server

    Dada, Adetunmise C; Malein, Ralph N E; Koutroumanis, Antonios; Ma, Yong; Zajac, Joanna M; Lim, Ju Y; Song, Jin D; Gerardot, Brian D

    2016-01-01

    A key ingredient for quantum photonic technologies is an on-demand source of indistinguishable single photons. State-of-the-art indistinguishable-single-photon sources typically employ resonant excitation pulses with fixed repetition rates, creating a string of single photons with predetermined arrival times. However, in future applications, an independent electronic signal from a larger quantum circuit or network will trigger the generation of an indistinguishable photon. Further, operating the photon source up to the limit imposed by its lifetime is desirable. Here we report on the application of a true on-demand approach in which we can electronically trigger the precise arrival time of a single photon as well as control the excitation pulse duration. We investigate in detail the effect of finite duration of an excitation $\\pi$ pulse on the degree of photon antibunching. Finally, we demonstrate that highly indistinguishable single photons can be generated using this on-demand approach, enabling maximum fle...

  10. Single-photon absorber based on strongly interacting Rydberg atoms

    CERN Document Server

    Tresp, Christoph; Mirgorodskiy, Ivan; Gorniaczyk, Hannes; Paris-Mandoki, Asaf; Hofferberth, Sebastian

    2016-01-01

    Removing exactly one photon from an arbitrary input pulse is an elementary operation in quantum optics and enables applications in quantum information processing and quantum simulation. Here we demonstrate a deterministic single-photon absorber based on the saturation of an optically thick free-space medium by a single photon due to Rydberg blockade. Single-photon subtraction adds a new component to the Rydberg quantum optics toolbox, which already contains photonic logic building-blocks such as single-photon sources, switches, transistors, and conditional $\\pi$-phase shifts. Our approach is scalable to multiple cascaded absorbers, essential for preparation of non-classical light states for quantum information and metrology applications, and, in combination with the single-photon transistor, high-fidelity number-resolved photon detection.

  11. Linearly polarized single photon antibunching from a site-controlled InGaN quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Jemsson, Tomas; Machhadani, Houssaine; Karlsson, K. Fredrik; Hsu, Chih-Wei; Holtz, Per-Olof [Department of Physics, Chemistry, and Biology (IFM), Semiconductor Materials, Linköping University, S-58183 Linköping (Sweden)

    2014-08-25

    We report on the observation of linearly polarized single photon antibunching in the excitonic emission from a site-controlled InGaN quantum dot. The measured second order coherence function exhibits a significant dip at zero time difference, corresponding to g{sub m}{sup 2}(0)=0.90 under continuous laser excitation. This relatively high value of g{sub m}{sup 2}(0) is well understood by a model as the combination of short exciton life time (320 ps), limited experimental timing resolution and the presence of an uncorrelated broadband background emission from the sample. Our result provides the first rigorous evidence of InGaN quantum dot formation on hexagonal GaN pyramids, and it highlights a great potential in these dots as fast polarized single photon emitters if the background emission can be eliminated.

  12. Photon Statistics of Single-Photon Quantum States in Real Single Photon Detection

    Institute of Scientific and Technical Information of China (English)

    李刚; 李园; 王军民; 彭堃墀; 张天才

    2004-01-01

    @@ Single photon detection (SPD) with high quantum efficiency has been widely used for measurement of different quantum states with different photon distributions.Based on the direct single SPD and double-SPD of HBT configuration, we discuss the effect of a real SPD on the photon statistics measurement and it shows that the measured photon distributions for different quantum states are corrected in different forms.The results are confirmed by experiment with the strongly attenuated coherent light and thermal light.This system can be used to characterize the photon statistics of the fluorescence light from single atom or single molecular.

  13. Angular distribution of single-photon superradiance in a dilute and cold atomic ensemble

    Science.gov (United States)

    Kuraptsev, A. S.; Sokolov, I. M.; Havey, M. D.

    2017-08-01

    On the basis of a quantum microscopic approach we study the dynamics of the afterglow of a dilute Gaussian atomic ensemble excited by pulsed radiation. Taking into account the vector nature of the electromagnetic field we analyze in detail the angular and polarization distribution of single-photon superradiance of such an ensemble. The dependence of the angular distribution of superradiance on the length of the pulse and its carrier frequency as well as on the size and the shape of the atomic clouds is studied. We show that there is substantial dependence of the superradiant emission on the polarization and the direction of fluorescence. We observe essential peculiarities of superradiance in the region of the forward diffraction zone and in the area of the coherent backscattering cone. We demonstrate that there are directions for which the rate of fluorescence is several times more than the decay rate of the timed-Dicke state. We show also that single-photon superradiance can be excited by incoherent excitation when atomic polarization in the ensemble is absent. Besides a quantum microscopic approach, we analyze single-photon superradiance on the basis of the theory of incoherent multiple scattering in optically thick media (random walk theory). In the case of very short resonant and long nonresonant pulses we derive simple analytical expressions for the decay rate of single-photon superradiance for incoherent fluorescence in an arbitrary direction.

  14. Quantum Overloading Cryptography Using Single-Photon Nonlocality

    Institute of Scientific and Technical Information of China (English)

    TAN Yong-Gang; CAI Qing-Yu; SHI Ting-Yun

    2007-01-01

    @@ Using the single-photon nonlocality, we propose a quantum novel overloading cryptography scheme, in which a single photon carries two bits information in one-way quantum channel. Two commutative modes of the single photon, the polarization mode and the spatial mode, are used to encode secret information. Strict time windows are set to detect the impersonation attack. The spatial mode which denotes the existence of photons is noncommutative with the phase of the photon, so that our scheme is secure against photon-number-splitting attack. Our protocol may be secure against individual attack.

  15. Secure quantum dialogue based on single-photon

    Institute of Scientific and Technical Information of China (English)

    Ji Xin; Zhang Shou

    2006-01-01

    In this paper a quantum dialogue scheme is proposed by using N batches of single photons. The same secret message is encoded on each batch of single photons by the sender with two different unitary operations, and then the N batches of single photons are sent to the receiver. After eavesdropping check, the message is encoded on the one remaining batch by the receiver. It is shown that the intercept-and-resend attack and coupling auxiliary modes attack can be resisted more efficiently, because the photons are sent only once in our quantum dialogue scheme.

  16. Blue-to-green single photons from InGaN/GaN dot-in-a-nanowire ordered arrays

    Science.gov (United States)

    Chernysheva, E.; Gačević, Ž.; García-Lepetit, N.; van der Meulen, H. P.; Müller, M.; Bertram, F.; Veit, P.; Torres-Pardo, A.; González Calbet, J. M.; Christen, J.; Calleja, E.; Calleja, J. M.; Lazić, S.

    2015-07-01

    Single-photon emitters (SPEs) are at the basis of many applications for quantum information management. Semiconductor-based SPEs are best suited for practical implementations because of high design flexibility, scalability and integration potential in practical devices. Single-photon emission from ordered arrays of InGaN nano-disks embedded in GaN nanowires is reported. Intense and narrow optical emission lines from quantum dot-like recombination centers are observed in the blue-green spectral range. Characterization by electron microscopy, cathodoluminescence and micro-photoluminescence indicate that single photons are emitted from regions of high In concentration in the nano-disks due to alloy composition fluctuations. Single-photon emission is determined by photon correlation measurements showing deep anti-bunching minima in the second-order correlation function. The present results are a promising step towards the realization of on-site/on-demand single-photon sources in the blue-green spectral range operating in the GHz frequency range at high temperatures.

  17. Generation and transfer of single photons on a photonic crystal chip

    CERN Document Server

    Englund, D; Zhang, B; Yamamoto, Y; Vuckovic, J; Englund, Dirk; Faraon, Andrei; Zhang, Bingyang; Yamamoto, Yoshihisa; Vuckovic, Jelena

    2006-01-01

    We present a basic building block of a quantum network consisting of a quantum dot coupled to a source cavity, which in turn is coupled to a target cavity via a waveguide. The single photon emission from the high-Q/V source cavity is characterized by a twelve-fold spontaneous emission (SE) rate enhancement that results in a SE coupling efficiency near 0.98 into the source cavity mode. Single photons are efficiently transferred into the target cavity through the waveguide, with a source/target field intensity ratio of 0.12 (up to 0.49 observed in other structures without coupled quantum dots). This system shows great promise as a building block of future on-chip quantum information processing systems.

  18. Design of diamond microcavities for single photon frequency down-conversion.

    Science.gov (United States)

    Lin, Z; Johnson, S G; Rodriguez, A W; Loncar, M

    2015-09-21

    We propose monolithic diamond cavities that can be used to convert color-center Fock-state single photons from emission wavelengths to telecommunication bands. We present a detailed theoretical description of the conversion process, analyzing important practical concerns such as nonlinear phase shifts and frequency mismatch. Our analysis predicts sustainable power requirements (≲ 1 W) for a chipscale nonlinear device with high conversion efficiencies.

  19. Design of diamond microcavities for single photon frequency down-conversion

    CERN Document Server

    Lin, Zin; Rodriguez, Alejandro W; Loncar, M

    2015-01-01

    We propose monolithic diamond cavities that can be used to convert color-center Fock-state single photons from emission wavelengths to telecommunication bands. We present a detailed theoretical description of the conversion process, analyzing important practical concerns such as nonlinear phase shifts and frequency mismatch. Our analysis predicts sustainable power requirements ($ \\lesssim 1~\\mathrm{W}$) for a chipscale nonlinear device with high conversion efficiencies.

  20. Reach of Environmental Influences on the Indistinguishability of Single Photons from Quantum Dots

    CERN Document Server

    Huber, Tobias; Föger, Daniel; Solomon, Glenn; Weihs, Gregor

    2015-01-01

    In this letter, we present a detailed, all optical study of the influence of different excitation schemes on the indistinguishability of single photons from a single InAs quantum dot. For this study, we measure the Hong-Ou-Mandel interference of consecutive photons from the spontaneous emission of an InAs quantum dot state under various excitation schemes and different excitation conditions and give a comparison.

  1. Producing high fidelity single photons with optimal brightness via waveguided parametric down-conversion

    OpenAIRE

    Laiho K.; Cassemiro K.N.; Silberhorn C.

    2009-01-01

    Parametric down-conversion (PDC) offers the possibility to control the fabrication of non-Gaussian states such as Fock states. However, in conventional PDC sources energy and momentum conservation introduce strict frequency and photon number correlations, which impact the fidelity of the prepared state. In our work we optimize the preparation of single-photon Fock states from the emission of waveguided PDC via spectral filtering. We study the effect of correlations via photon number resolving...

  2. Single-photon quantum router with multiple output ports.

    Science.gov (United States)

    Yan, Wei-Bin; Fan, Heng

    2014-04-28

    The routing capability is a requisite in quantum network. Although the quantum routing of signals has been investigated in various systems both in theory and experiment, the general form of quantum routing with many output terminals still needs to be explored. Here we propose a scheme to achieve the multi-channel quantum routing of the single photons in a waveguide-emitter system. The channels are composed by the waveguides and are connected by intermediate two-level emitters. By adjusting the intermediate emitters, the output channels of the input single photons can be controlled. This is demonstrated in the cases of one output channel, two output channels and the generic N output channels. The results show that the multi-channel quantum routing of single photons can be well achieved in the proposed system. This offers a scheme for the experimental realization of general quantum routing of single photons.

  3. Category theoretic analysis of single-photon decision maker

    CERN Document Server

    Kim, Makoto Naruse Song-Ju; Berthel, Martin; Drezet, Aurélien; Huant, Serge; Hori, Hirokazu

    2016-01-01

    Decision making is a vital function in the era of artificial intelligence; however, its physical realizations and their theoretical fundamentals are not yet known. In our former study [Sci. Rep. 5, 513253 (2015)], we demonstrated that single photons can be used to make decisions in uncertain, dynamically changing environments. The multi-armed bandit problem was successfully solved using the dual probabilistic and particle attributes of single photons. Herein, we present the category theoretic foundation of the single-photon-based decision making, including quantitative analysis that agrees well with the experimental results. The category theoretic model unveils complex interdependencies of the entities of the subject matter in the most simplified manner, including a dynamically changing environment. In particular, the octahedral structure in triangulated categories provides a clear understanding of the underlying mechanisms of the single-photon decision maker. This is the first demonstration of a category the...

  4. Continuous variable teleportation of single photon states (Proceedings version)

    OpenAIRE

    Ide, Toshiki; Hofmann, Holger F.; Kobayashi, Takayoshi; Furusawa, Akira

    2001-01-01

    We investigate the changes to a single photon state caused by the non-maximal entanglement in continuous variable quantum teleportation. It is shown that the teleportation measurement introduces field coherence in the output.

  5. Extraction of a single photon from an optical pulse

    Science.gov (United States)

    Rosenblum, Serge; Bechler, Orel; Shomroni, Itay; Lovsky, Yulia; Guendelman, Gabriel; Dayan, Barak

    2016-01-01

    Removing a single photon from a pulse is one of the most elementary operations that can be performed on light, having both fundamental significance and practical applications in quantum communication and computation. So far, photon subtraction, in which the removed photon is detected and therefore irreversibly lost, has been implemented in a probabilistic manner with inherently low success rates using low-reflectivity beam splitters. Here we demonstrate a scheme for the deterministic extraction of a single photon from an incoming pulse. The removed photon is diverted to a different mode, enabling its use for other purposes, such as a photon number-splitting attack on quantum key distribution protocols. Our implementation makes use of single-photon Raman interaction (SPRINT) with a single atom near a nanofibre-coupled microresonator. The single-photon extraction probability in our current realization is limited mostly by linear loss, yet probabilities close to unity should be attainable with realistic experimental parameters.

  6. Controllable single photon stimulation of retinal rod cells

    CERN Document Server

    Phan, Nam Mai; Bessarab, Dmitri A; Krivitsky, Leonid A

    2013-01-01

    Retinal rod cells are commonly assumed to be sensitive to single photons [1, 2, 3]. Light sources used in prior experiments exhibit unavoidable fluctuations in the number of emitted photons [4]. This leaves doubt about the exact number of photons used to stimulate the rod cell. In this letter, we interface rod cells of Xenopus laevis with a light source based on Spontaneous Parametric Down Conversion (SPDC) [5], which provides one photon at a time. Precise control of generation of single photons and directional delivery enables us to provide unambiguous proof of single photon sensitivity of rod cells without relying on the statistical assumptions. Quantum correlations between single photons in the SPDC enable us to determine quantum efficiency of the rod cell without pre-calibrated reference detectors [6, 7, 8]. These results provide the path for exploiting resources offered by quantum optics in generation and manipulation of light in visual studies. From a more general perspective, this method offers the ult...

  7. The analysis of the integral gated mode single photon detector

    Institute of Scientific and Technical Information of China (English)

    Wei Zheng-Jun; Li Kai-Zhen; Zhou Peng; Wang Jin-Dong; Liao Chang-Jun; Guo Jian-Ping; Liang Rui-Sheng; Liu Song-Hao

    2008-01-01

    This paper critically analyses and simulates the circuit configuration of the integral gated mode single photon detector which is proposed for eliminating the transient spikes problem of conventional gated mode single photon detector.The relationship between the values of the circuit elements and the effect of transient spikes cancellation has been obtained.With particular emphasis,the bias voltage of the avalanche photodiode and the output signal voltage of the integrator have been calculated.The obtained analysis results indicate that the output signal voltage of the integrator only relates to the total quantity of electricity of the avalanche charges by choosing the correct values of the circuit elements and integral time interval.These results can be used to optimize the performance of single photon detectors and provide guides for the design of single photon detectors.

  8. Correction of ultraviolet single photon counting image distortion

    Institute of Scientific and Technical Information of China (English)

    Xinghua Zhang; Baosheng Zhao; Zhenhua Miao; Wei Li; Xiangping Zhu; Yong'an Liu; Wei Zou

    2008-01-01

    Single photon counting imaging technology has been widely used in space environment detection, astronomy observation, nuclear physics, and ultraweak bioluminescence. However, the distortion of the single photon counting image will badly affect the measurement results. Therefore, the correction of distortion for single photon counting image is very significant. Ultraviolet single photon imaging system with wedge and strip anode is introduced and the influence factor leading to image distortion is analyzed. To correct original distorted image, three different image correction methods, namely, the physical correction, the global correction, and the local correction, are applied. In addition, two parameters, i.e, the position index and the linearity index, are defined to evaluate the performance of the three methods. The results suggest that the correction methods can improve the quality of the initial image without losing gray information of each counting light spot. And the local correction can provide the best visual inspections and performance evaluation among the three methods.

  9. Single photon laser altimeter data processing, analysis and experimental validation

    Science.gov (United States)

    Vacek, Michael; Peca, Marek; Michalek, Vojtech; Prochazka, Ivan

    2015-10-01

    Spaceborne laser altimeters are common instruments on-board the rendezvous spacecraft. This manuscript deals with the altimeters using a single photon approach, which belongs to the family of time-of-flight range measurements. Moreover, the single photon receiver part of the altimeter may be utilized as an Earth-to-spacecraft link enabling one-way ranging, time transfer and data transfer. The single photon altimeters evaluate actual altitude through the repetitive detections of single photons of the reflected laser pulses. We propose the single photon altimeter signal processing and data mining algorithm based on the Poisson statistic filter (histogram method) and the modified Kalman filter, providing all common altimetry products (altitude, slope, background photon flux and albedo). The Kalman filter is extended for the background noise filtering, the varying slope adaptation and the non-causal extension for an abrupt slope change. Moreover, the algorithm partially removes the major drawback of a single photon altitude reading, namely that the photon detection measurement statistics must be gathered. The developed algorithm deduces the actual altitude on the basis of a single photon detection; thus, being optimal in the sense that each detected signal photon carrying altitude information is tracked and no altitude information is lost. The algorithm was tested on the simulated datasets and partially cross-probed with the experimental data collected using the developed single photon altimeter breadboard based on the microchip laser with the pulse energy on the order of microjoule and the repetition rate of several kilohertz. We demonstrated that such an altimeter configuration may be utilized for landing or hovering a small body (asteroid, comet).

  10. HAPD time-resolution study under single-photon irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, S.; Akatsu, M.; Enari, Y.; Fujimoto, K.; Higashino, Y.; Hirose, M.; Hokuue, T.; Inami, K.; Ishikawa, A.; Matsumoto, T.; Misono, K.; Ohshima, T. E-mail: ohshima@hepl.phys.nagoya-u.ac.jp; Sugi, A.; Sugiyama, A.; Suzuki, S.; Tomoto, M

    2001-05-01

    We have studied the timing property of a Hybrid Avalanche PhotoDiode, Hamamatsu R7110U-07, and attained a time resolution of {sigma}{sub t}{approx}150 ps for single photons and {<=}100 ps for a few photons under certain conditions of photocathode voltage and diode reverse bias voltage. Relation between the achievable timing resolution and a multiplication gain is discussed, especially in realizing {sigma}{sub t}{<=}100 ps for single photons.

  11. Single-Photon Momentum Displacement in Resonator Array with Optomechanics

    Science.gov (United States)

    Tian, T.; Li, Q.; Zhou, Lan; Song, L. J.

    2016-10-01

    We present the single-photon scattering in a resonator array system with optomechanical by solving the Lippmann-Schwinger equation iteratively. Up to the first order of the radiation pressure interaction, the single-photon transport is formulated as a three-channel scattering process. We calculate the scattering currents in different channels and obtain the transmission spectrum which shows a momentum displacement effect.

  12. Optimal storage and retrieval of single-photon waveforms.

    Science.gov (United States)

    Zhou, Shuyu; Zhang, Shanchao; Liu, Chang; Chen, J F; Wen, Jianming; Loy, M M T; Wong, G K L; Du, Shengwang

    2012-10-22

    We report an experimental demonstration of optimal storage and retrieval of heralded single-photon wave packets using electromagnetically induced transparency (EIT) in cold atoms at a high optical depth. We obtain an optimal storage efficiency of (49 ± 3)% for single-photon waveforms with a temporal likeness of 96%. Our result brings the EIT quantum light-matter interface closer to practical quantum information applications.

  13. Quasi-secure quantum dialogue using single photons

    Institute of Scientific and Technical Information of China (English)

    YANG; YuGuang; WEN; QiaoYan

    2007-01-01

    A quasi-secure quantum dialogue protocol using single photons was proposed. Different from the previous entanglement-based protocols, the present protocol uses batches of single photons which run back and forth between the two parties. A round run for each photon makes the two parties each obtain a classical bit of information. So the efficiency of information transmission can be increased. The present scheme is practical and well within the present-day technology.

  14. A Single-Photon Subtractor for Multimode Quantum States

    Science.gov (United States)

    Ra, Young-Sik; Jacquard, Clément; Averchenko, Valentin; Roslund, Jonathan; Cai, Yin; Dufour, Adrien; Fabre, Claude; Treps, Nicolas

    2016-05-01

    In the last decade, single-photon subtraction has proved to be key operations in optical quantum information processing and quantum state engineering. Implementation of the photon subtraction has been based on linear optics and single-photon detection on single-mode resources. This technique, however, becomes unsuitable with multimode resources such as spectrally multimode squeezed states or continuous variables cluster states. We implement a single-photon subtractor for such multimode resources based on sum-frequency generation and single-photon detection. An input multimode quantum state interacts with a bright control beam whose spectrum has been engineered through ultrafast pulse-shaping. The multimode quantum state resulting from the single-photon subtractor is analyzed with multimode homodyne detection whose local oscillator spectrum is independently engineered. We characterize the single-photon subtractor via coherent-state quantum process tomography, which provides its mode-selectivity and subtraction modes. The ability to simultaneously control the state engineering and its detection ensures both flexibility and scalability in the production of highly entangled non-Gaussian quantum states.

  15. Experimental Quantum Cloning of Single Photons

    CERN Document Server

    Lamas-Linares, A; Howell, J C; Bouwmeester, D; Lamas-Linares, Antia; Simon, Christoph; Howell, John C.; Bouwmeester, Dik

    2002-01-01

    Although perfect copying of unknown quantum systems is forbidden by the laws of quantum mechanics, approximate cloning is possible. A natural way of realizing quantum cloning of photons is by stimulated emission. In this context the fundamental quantum limit to the quality of the clones is imposed by the unavoidable presence of spontaneous emission. In our experiment a single input photon stimulates the emission of additional photons from a source based on parametric down-conversion. This leads to the production of quantum clones with near optimal fidelity. We also demonstrate universality of the copying procedure by showing that the same fidelity is achieved for arbitrary input states.

  16. The effects of the N atom collective Lamb shift on single photon superradiance

    Science.gov (United States)

    Scully, Marlan O.; Svidzinsky, Anatoly A.

    2009-03-01

    The problem of single photon collective spontaneous emission, a.k.a. superradiance, from N atoms prepared by a single photon pulse of wave vector k has been the subject of recent interest. It has been shown that a single photon absorbed uniformly by the N atoms will be followed by spontaneous emission in the same direction [M. Scully, E. Fry, C.H.R. Ooi, K. Wodkiewicz, Phys. Rev. Lett. 96 (2006) 010501; M. Scully, Laser Phys. 17 (2007) 635]; and in extensions of this work we have found a new kind of cavity QED in which the atomic cloud acts as a cavity containing the photon [A.A. Svidzinsky, J.T. Chang, M.O. Scully, Phys. Rev. Lett. 100 (2008) 160504]. In most of our studies, we have neglected virtual photon (“Lamb shift”) contributions. However, in a recent interesting paper, Friedberg and Mannassah [R. Friedberg, J.T. Manassah, Phys. Lett. A 372 (2008) 2514] study the effect of virtual photons investigating ways in which such effects can modify the time dependence and angular distributions of collective single photon emission. In the present Letter, we show that such virtual transitions play no essential role in our problem. The conclusions of [M. Scully, E. Fry, C.H.R. Ooi, K. Wodkiewicz, Phys. Rev. Lett. 96 (2006) 010501; M. Scully, Laser Phys. 17 (2007) 635; A.A. Svidzinsky, J.T. Chang, M.O. Scully, Phys. Rev. Lett. 100 (2008) 160504] stand as published. However, the N atom Lamb shift is an interesting problem in its own right and we here extend previous work both analytically and numerically.

  17. The effects of the N atom collective Lamb shift on single photon superradiance

    Energy Technology Data Exchange (ETDEWEB)

    Scully, Marlan O. [Institute for Quantum Studies and Department of Physics, Texas A and M University, College Station, TX 77843 (United States); Applied Physics and Materials Science Group, Engineering Quad, Princeton University, Princeton, NJ 08544 (United States); Svidzinsky, Anatoly A. [Institute for Quantum Studies and Department of Physics, Texas A and M University, College Station, TX 77843 (United States); Applied Physics and Materials Science Group, Engineering Quad, Princeton University, Princeton, NJ 08544 (United States)], E-mail: asvid@jewel.tamu.edu

    2009-03-23

    The problem of single photon collective spontaneous emission, a.k.a. superradiance, from N atoms prepared by a single photon pulse of wave vector k{sub 0} has been the subject of recent interest. It has been shown that a single photon absorbed uniformly by the N atoms will be followed by spontaneous emission in the same direction [M. Scully, E. Fry, C.H.R. Ooi, K. Wodkiewicz, Phys. Rev. Lett. 96 (2006) 010501; M. Scully, Laser Phys. 17 (2007) 635]; and in extensions of this work we have found a new kind of cavity QED in which the atomic cloud acts as a cavity containing the photon [A.A. Svidzinsky, J.T. Chang, M.O. Scully, Phys. Rev. Lett. 100 (2008) 160504]. In most of our studies, we have neglected virtual photon ('Lamb shift') contributions. However, in a recent interesting paper, Friedberg and Mannassah [R. Friedberg, J.T. Manassah, Phys. Lett. A 372 (2008) 2514] study the effect of virtual photons investigating ways in which such effects can modify the time dependence and angular distributions of collective single photon emission. In the present Letter, we show that such virtual transitions play no essential role in our problem. The conclusions of [M. Scully, E. Fry, C.H.R. Ooi, K. Wodkiewicz, Phys. Rev. Lett. 96 (2006) 010501; M. Scully, Laser Phys. 17 (2007) 635; A.A. Svidzinsky, J.T. Chang, M.O. Scully, Phys. Rev. Lett. 100 (2008) 160504] stand as published. However, the N atom Lamb shift is an interesting problem in its own right and we here extend previous work both analytically and numerically.

  18. A Variable Single Photon Plasmonic Beamsplitter

    DEFF Research Database (Denmark)

    Israelsen, Niels Møller; Kumar, Shailesh; Huck, Alexander

    Plasmonic structures can both be exploited for scaling down optical components beyond the diffraction limit and enhancing andcollecting the emission from a single dipole emitter. Here, we experimentally demonstrate adiabatic coupling between two silvernanowires using a nitrogen vacancy center...

  19. A high-temperature single-photon source from nanowire quantum dots.

    Science.gov (United States)

    Tribu, Adrien; Sallen, Gregory; Aichele, Thomas; André, Régis; Poizat, Jean-Philippe; Bougerol, Catherine; Tatarenko, Serge; Kheng, Kuntheak

    2008-12-01

    We present a high-temperature single-photon source based on a quantum dot inside a nanowire. The nanowires were grown by molecular beam epitaxy in the vapor-liquid-solid growth mode. We utilize a two-step process that allows a thin, defect-free ZnSe nanowire to grow on top of a broader, cone-shaped nanowire. Quantum dots are formed by incorporating a narrow zone of CdSe into the nanowire. We observe intense and highly polarized photoluminescence even from a single emitter. Efficient photon antibunching is observed up to 220 K, while conserving a normalized antibunching dip of at most 36%. This is the highest reported temperature for single-photon emission from a nonblinking quantum-dot source and principally allows compact and cheap operation by using Peltier cooling.

  20. Bright and stable visible-spectrum single photon emitter in silicon carbide

    CERN Document Server

    Lienhard, Benjamin; Mouradian, Sara; Dolde, Florian; Tran, Toan Trong; Aharonovich, Igor; Englund, Dirk R

    2016-01-01

    Single photon sources are of paramount importance in quantum communication, quantum computation, and quantum metrology. In particular, there is great interest to realize scalable solid state platforms that can emit triggered photons on demand to achieve scalable nanophotonic networks. We report on a visible-spectrum single photon emitter in 4H-silicon carbide (SiC). The emitter is photostable at room- and low-temperature enabling photon counts per second (cps) in excess of 2$\\times$10$^6$ from unpatterned, bulk SiC. It exists in two orthogonally polarized states, which have parallel absorption and emission dipole orientations. Low temperature measurements reveal a narrow zero phonon line (linewidth $30~$% of the total photoluminescence spectrum.

  1. Bright single photon source based on self-aligned quantum dot–cavity systems

    DEFF Research Database (Denmark)

    Maier, Sebastian; Gold, Peter; Forchel, Alfred

    2014-01-01

    We report on a quasi-planar quantum-dot-based single-photon source that shows an unprecedented high extraction efficiency of 42% without complex photonic resonator geometries or post-growth nanofabrication. This very high efficiency originates from the coupling of the photons emitted by a quantum...... avenue for efficient (up to 42% demonstrated) and pure (g2(0) value of 0.023) single-photon emission....... dot to a Gaussian shaped nanohill defect that naturally arises during epitaxial growth in a self-aligned manner. We investigate the morphology of these defects and characterize the photonic operation mechanism. Our results show that these naturally arising coupled quantum dot-defects provide a new...

  2. Development of Subtraction Ictal Single-Photon Emission Computed Tomography Coregistered to MRI in Locating the Epileptogenic Focus of Intractable Epilepsy%SISCOM成像术在难治性癫痫致痫灶定位中的研究进展

    Institute of Scientific and Technical Information of China (English)

    金超岭; 王猛; 刘杰; 颜珏

    2015-01-01

    Subtraction ictal single-photon emission computed tomography coregistered to MRI (SISCOM) is a recently developed neuro-imaging method. As a multi-model imaging, SISCOM plays an important role in locating the epileptogenic focus of intractable epilepsy, which combines the advantages of anatomical imaging and functional imaging. This review focuses on the clinical effectiveness and inlfuence factors in locating the epileptogenic focus.%发作期单光子计算机断层减影与核磁共振融合成像术(SISCOM成像术)是一种新兴的神经影像学检查方法。SISCOM成像术作为一种多模态检查,结合了结构影像学和功能影像学的优势,在难治性癫痫致痫灶定位中表现出重要价值。本文主要对SISCOM在难治性癫痫致痫灶定位中的影响因素和临床价值做一综述。

  3. Initial human studies with single-photon emission tomography using iodine-123 labelled 3-(5-cyclopropyl-1,2,4-oxadiazo-3-yl)-7-iodo-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]-benzodiazepine (NNC 13-8241)

    Energy Technology Data Exchange (ETDEWEB)

    Kuikka, J.T. [Dept. of Clinical Physiology, Kuopio Univ. Hospital (Finland); Hiltunen, J. [MAP Medical Technologies Oy, Tikkakoski (Finland); Foged, C. [NOVO Nordisk A/S, Maalov (Denmark); Bergstroem, K.A. [Dept. of Clinical Physiology, Kuopio Univ. Hospital (Finland)]|[Karolinska Inst., Dept. of Clinical Neuroscience, Psychiatry Section, Stockholm (Sweden); Halldin, C. [Karolinska Inst., Dept. of Clinical Neuroscience, Psychiatry Section, Stockholm (Sweden); Aakerman, K. [Dept. of Clinical Physiology, Kuopio Univ. Hospital (Finland); Tiihonen, J. [Niuvaniemi Hospital, Kuopio (Finland); Farde, L. [Karolinska Inst., Dept. of Clinical Neuroscience, Psychiatry Section, Stockholm (Sweden)

    1996-07-01

    The iodine-123 labelled ligand 3-(5-cyclopropyl-1,2,4-oxadiazo-3-yl)-7-iodo-5,6-dihydro-5-methyl-6-oxo-4H-imidazol[1,5-a][1,4]-benzodiazepine ([{sup 123}I]NNC 13-8241) was evaluated as a probe for in vivo imaging of benzodiazepine receptor sites in the human brain. Four healthy volunteers were imaged with a high-resolution single-photon emission tomography (SPET) scanner. The metabolism of [{sup 123}I]NNC 13-8241 in plasma was slow. The total brain uptake was about 1.5-fold higher than that of [{sup 123}I]iomazenil. The specific binding in the cortical areas was high and less intense in the thalamus. The most intense uptake was seen in the occipital cortex. The peak cortical uptake of [{sup 123}I]NNC 13-8241 was observed 6-10 h after the injection of tracer. The radiation burden to the patient was moderate, being 2.5 x 10{sup -2} mSv/MBq (effective dose equivalent). A slow metabolism together with favourable kinetics indicates that [{sup 123}I]NNC 13-8241 is a specific and promising SPET ligand for imaging benzodiazepine receptor sites in the living human brain. (orig.)

  4. Construction of human single-chain variable fragment antibodies of medullary thyroid carcinoma and single photon emission computed tomography/computed tomography imaging in tumor-bearing nude mice.

    Science.gov (United States)

    Liu, Qiong; Pang, Hua; Hu, Xiaoli; Li, Wenbo; Xi, Jimei; Xu, Lu; Zhou, Jing

    2016-01-01

    Medullary thyroid carcinoma (MTC) is a rare tumor of the endocrine system with poor prognosis as it exhibits high resistance against conventional therapy. Recent studies have shown that monoclonal antibodies labeled with radionuclide have become important agents for diagnosing tumors. To elucidate whether single-chain fragment of variable (scFv) antibody labeled with 131I isotope is a potential imaging agent for diagnosing MTC. A human scFv antibody library of MTC using phage display technique was constructed with a capacity of 3x10(5). The library was panned with thyroid epithelial cell lines and MTC cell lines (TT). Western blotting and enzyme-linked immunosorbent assay (ELISA) were used to identify the biological characteristics of the panned scFv. Methyl thiazolyl tetrazolium (MTT) assay was also used to explore the optimal concentration of the TT cell proliferation inhibition rate. They were categorized into TT, SW480 and control groups using phosphate-buffered saline. Western blotting showed that molecular weight of scFv was 28 kDa, cell ELISA showed that the absorbance of TT cell group was significantly increased (P=0.000??) vs. the other three groups, and MTT assay showed that the inhibition rate between the two cell lines was statistically significantly different (Psingle photon emission computed tomography. scFv rapidly and specifically target MTC cells, suggesting the potential of this antibody as an imaging agent for diagnosing MTC.

  5. Incoherent photon conversion in selectively infiltrated hollow-core photonic crystal fibers for single photon generation in the near infrared.

    Science.gov (United States)

    Jiang, Ping; Schroeder, Tim; Bath, Michael; Lesnyak, Vladimir; Gaponik, Nikolai; Eychmüller, Alexander; Benson, Oliver

    2012-05-07

    At present, there exist a number of on-demand single photon sources with high emission rates and stability even at room temperature. However, their emission wavelength is restricted to specific transitions in single quantum emitters. Single photon generation in the near infrared, possibly within the telecom band, though most urgently needed, is particularly crucial. In this paper, we suggest an experimental method to convert visible single photons from a defect center in diamond to the near infrared. The conversion relies on efficient absorption by colloidal quantum dots and subsequent Stokes-shifted emission. The desired target wavelength can be chosen almost arbitrarily by selecting quantum dots with a suitable emission spectrum. A hollow core photonic crystal fiber selectively filled with a solution of quantum dots was used to achieve at the same time a single photon absorption probability of near unity and a very high re-collection efficiency of Stokes-shifted fluorescence (theoretically estimated to be 26%). A total conversion efficiency of light of 0.1% is achieved. Experimental strategies to significantly enhance this number are presented.

  6. Fast time-domain measurements on telecom single photons

    Science.gov (United States)

    Allgaier, Markus; Vigh, Gesche; Ansari, Vahid; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Brecht, Benjamin; Silberhorn, Christine

    2017-09-01

    Direct measurements on the temporal envelope of quantum light are a challenging task and not many examples are known because most classical pulse characterisation methods do not work on the single-photon level. Knowledge of both spectrum and timing can, however, give insights on properties that cannot be determined by the spectral intensity alone. While temporal measurements on single photons on timescales of tens of picoseconds are possible with superconducting photon detectors, and picosecond measurements have been performed using streak cameras, there are no commercial single-photon sensitive devices with femtosecond resolution available. While time-domain sampling using sum-frequency generation has already been exploited for such a measurement, inefficient conversion has necessitated long integration times to build the temporal profile. We demonstrate a highly efficient waveguided sum-frequency generation process in Lithium Niobate to measure the temporal envelope of single photons with femtosecond resolution with short enough acquisition time to provide a live-view of the measurement. We demonstrate the measurement technique and combine it with spectral measurements using a dispersive-fibre time-of-flight spectrometer to determine upper and lower bounds for the spectral purity of heralded single photons. The approach complements the joint spectral intensity measurements as a measure on the purity can be given without knowledge of the spectral phase.

  7. A solid-state single-photon filter

    Science.gov (United States)

    de Santis, Lorenzo; Antón, Carlos; Reznychenko, Bogdan; Somaschi, Niccolo; Coppola, Guillaume; Senellart, Jean; Gómez, Carmen; Lemaître, Aristide; Sagnes, Isabelle; White, Andrew G.; Lanco, Loïc; Auffèves, Alexia; Senellart, Pascale

    2017-07-01

    A strong limitation of linear optical quantum computing is the probabilistic operation of two-quantum-bit gates based on the coalescence of indistinguishable photons. A route to deterministic operation is to exploit the single-photon nonlinearity of an atomic transition. Through engineering of the atom-photon interaction, phase shifters, photon filters and photon-photon gates have been demonstrated with natural atoms. Proofs of concept have been reported with semiconductor quantum dots, yet limited by inefficient atom-photon interfaces and dephasing. Here, we report a highly efficient single-photon filter based on a large optical nonlinearity at the single-photon level, in a near-optimal quantum-dot cavity interface. When probed with coherent light wavepackets, the device shows a record nonlinearity threshold around 0.3 ± 0.1 incident photons. We demonstrate that 80% of the directly reflected light intensity consists of a single-photon Fock state and that the two- and three-photon components are strongly suppressed compared with the single-photon one.

  8. PET image reconstruction with system matrix based on point spread function derived from single photon incidence response

    CERN Document Server

    Xin, Fan; Ming-Kai, Yun; Xiao-Li, Sun; Xue-Xiang, Cao; Shuang-Quanm, Liu; Pei, Chai; Dao-Wu, Li; Long, Wei

    2014-01-01

    In positron emission tomography (PET) imaging, statistical iterative reconstruction (IR) techniques appear particularly promising since they can provide accurate physical model and geometric system description. The reconstructed image quality mainly depends on the system matrix model which describes the relationship between image space and projection space for the IR method. The system matrix can contain some physics factors of detection such as geometrical component and blurring component. Point spread function (PSF) is generally used to describe the blurring component. This paper proposes an IR method based on the PSF system matrix, which is derived from the single photon incidence response function. More specifically, the gamma photon incidence on a crystal array is simulated by the Monte Carlo (MC) simulation, and then the single photon incidence response functions are obtained. Subsequently, using the single photon incidence response functions, the coincidence blurring factor is acquired according to the...

  9. Near-unity efficiency, single-photon sources based on tapered photonic nanowires

    DEFF Research Database (Denmark)

    Bleuse, Joël; Munsch, Mathieu; Claudon, Julien

    2012-01-01

    Single-photon emission from excitons in InAs Quantum Dots (QD) embedded in GaAs Tapered Photonic Wires (TPW) already demonstrated a 0.72 collection efficiency, with TPWs were the apex is the sharp end of the cone. Going to alternate designs, still based on the idea of the adiabatic deconfinement ...... of the quasi-Gaussian emission mode, but with inverted TPW where the apex is the cone's base, leads to even larger efficiencies. In addition, these inverted TPWs make the electric pumping of the emitters compatible with these large efficiencies....

  10. Femtosecond three-photon excitation and single-photon timing detection of α-NPO fluorescence

    Science.gov (United States)

    Volkmer, A.; Hatrick, D. A.; Bai, Y.; Birch, D. J. S.

    1997-04-01

    We demonstrate the application of three-photon excitation to fluorescence probe studies using time-correlated single-photon counting (TCSPC). By exciting with 120 fs Ti:sapphire laser pulses at 800 nm we have observed fluorescence emission from the scintillator 2-(1-napthyl)-5-phenyloxazole (α-NPO) in solutions and small unilamellar vesicles (SUVs) of L-α-dipalmitoylphosphatidylcholine (DPPC). In SUVs the time-resolved excimer emission and fluorescence anisotropy are consistent with a heterogeneous distribution of α-NPO molecules between isolated sites and ground state clusters in a similar manner to that which we reported previously for 2,5-diphenyloxazole (PPO).

  11. Single photon superradiance and cooperative Lamb shift in an optoelectronic device

    CERN Document Server

    Frucci, Giulia; Vasanelli, Angela; Dailly, Baptiste; Todorov, Yanko; Sirtori, Carlo; Beaudoin, Grégoire; Sagnes, Isabelle

    2016-01-01

    Single photon superradiance is a strong enhancement of spontaneous emission appearing when a single excitation is shared between a large number of two-level systems. This enhanced rate can be accompanied by a shift of the emission frequency, the cooperative Lamb shift, issued from the exchange of virtual photons between the emitters. In this work we present a semiconductor optoelectronic device allowing the observation of these two phenomena at room temperature. We demonstrate experimentally and theoretically that plasma oscillations in spatially separated quantum wells interact through real and virtual photon exchange. This gives rise to a superradiant mode displaying a large cooperative Lamb shift.

  12. Investigating and Improving Student Understanding of Quantum Mechanics in the Context of Single Photon Interference

    Science.gov (United States)

    Marshman, Emily; Singh, Chandralekha

    2017-01-01

    Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the…

  13. Superconducting single photon detectors integrated with diamond nanophotonic circuits

    CERN Document Server

    Rath, Patrik; Ferrari, Simone; Sproll, Fabian; Lewes-Malandrakis, Georgia; Brink, Dietmar; Ilin, Konstantin; Siegel, Michael; Nebel, Christoph; Pernice, Wolfram

    2015-01-01

    Photonic quantum technologies promise to repeat the success of integrated nanophotonic circuits in non-classical applications. Using linear optical elements, quantum optical computations can be performed with integrated optical circuits and thus allow for overcoming existing limitations in terms of scalability. Besides passive optical devices for realizing photonic quantum gates, active elements such as single photon sources and single photon detectors are essential ingredients for future optical quantum circuits. Material systems which allow for the monolithic integration of all components are particularly attractive, including III-V semiconductors, silicon and also diamond. Here we demonstrate nanophotonic integrated circuits made from high quality polycrystalline diamond thin films in combination with on-chip single photon detectors. Using superconducting nanowires coupled evanescently to travelling waves we achieve high detection efficiencies up to 66 % combined with low dark count rates and timing resolu...

  14. Economical quantum secure direct communication network with single photons

    Institute of Scientific and Technical Information of China (English)

    Deng Fu-Guo; Li Xi-Han; Li Chun-Yan; Zhou Ping; Zhou Hong-Yu

    2007-01-01

    In this paper a scheme for quantum secure direct communication (QSDC) network is proposed with a sequence of polarized single photons. The single photons are prepared originally in the same state |0> by the servers on the network,which will reduce the difficulty for the legitimate users to check eavesdropping largely. The users code the information on the single photons with two unitary operations which do not change their measuring bases. Some decoy photons,which are produced by operating the sample photons with a Hadamard, are used for preventing a potentially dishonest server from eavesdropping the quantum lines freely. This scheme is an economical one as it is the easiest way for QSDC network communication securely.

  15. Single Photon Avalanche Diodes: Towards the Large Bidimensional Arrays

    Science.gov (United States)

    Privitera, Simona; Tudisco, Salvatore; Lanzanò, Luca; Musumeci, Francesco; Pluchino, Alessandro; Scordino, Agata; Campisi, Angelo; Cosentino, Luigi; Finocchiaro, Paolo; Condorelli, Giovanni; Mazzillo, Massimo; Lombardo, Salvo; Sciacca, Emilio

    2008-01-01

    Single photon detection is one of the most challenging goals of photonics. In recent years, the study of ultra-fast and/or low-intensity phenomena has received renewed attention from the academic and industrial communities. Intense research activity has been focused on bio-imaging applications, bio-luminescence, bio-scattering methods, and, more in general, on several applications requiring high speed operation and high timing resolution. In this paper we present design and characterization of bi-dimensional arrays of a next generation of single photon avalanche diodes (SPADs). Single photon sensitivity, dark noise, afterpulsing and timing resolution of the single SPAD have been examined in several experimental conditions. Moreover, the effects arising from their integration and the readout mode have also been deeply investigated. PMID:27873777

  16. Single Photon Avalanche Diodes: Towards the Large Bidimensional Arrays

    Directory of Open Access Journals (Sweden)

    Emilio Sciacca

    2008-08-01

    Full Text Available Single photon detection is one of the most challenging goals of photonics. In recent years, the study of ultra-fast and/or low-intensity phenomena has received renewed attention from the academic and industrial communities. Intense research activity has been focused on bio-imaging applications, bio-luminescence, bio-scattering methods, and, more in general, on several applications requiring high speed operation and high timing resolution. In this paper we present design and characterization of bi-dimensional arrays of a next generation of single photon avalanche diodes (SPADs. Single photon sensitivity, dark noise, afterpulsing and timing resolution of the single SPAD have been examined in several experimental conditions. Moreover, the effects arising from their integration and the readout mode have also been deeply investigated.

  17. Quantum teleportation with a quantum dot single photon source.

    Science.gov (United States)

    Fattal, D; Diamanti, E; Inoue, K; Yamamoto, Y

    2004-01-23

    We report the experimental demonstration of a quantum teleportation protocol with a semiconductor single photon source. Two qubits, a target and an ancilla, each defined by a single photon occupying two optical modes (dual-rail qubit), were generated independently by the single photon source. Upon measurement of two modes from different qubits and postselection, the state of the two remaining modes was found to reproduce the state of the target qubit. In particular, the coherence between the target qubit modes was transferred to the output modes to a large extent. The observed fidelity is 80%, in agreement with the residual distinguishability between consecutive photons from the source. An improved version of this teleportation scheme using more ancillas is the building block of the recent Knill, Laflamme, and Milburn proposal for efficient linear optics quantum computation.

  18. Single-photon-level quantum memory at room temperature

    CERN Document Server

    Reim, K F; Lee, K C; Nunn, J; Langford, N K; Walmsley, I A

    2010-01-01

    Quantum memories capable of storing single photons are essential building blocks for quantum information processing, enabling the storage and transfer of quantum information over long distances. Devices operating at room temperature can be deployed on a large scale and integrated into existing photonic networks, but so far warm quantum memories have been susceptible to noise at the single photon level. This problem is circumvented in cold atomic ensembles, but these are bulky and technically complex. Here we demonstrate controllable, broadband and efficient storage and retrieval of weak coherent light pulses at the single-photon level in warm atomic caesium vapour using the far off-resonant Raman memory scheme. The unconditional noise floor is found to be low enough to operate the memory in the quantum regime at room temperature.

  19. Integrated spatial multiplexing of heralded single photon sources

    CERN Document Server

    Collins, Matthew J; Rey, Isabella H; Vo, Trung D; He, Jiakun; Shahnia, Shayan; Reardon, Christopher; Steel, M J; Krauss, Thomas F; Clark, Alex S; Eggleton, Benjamin J

    2013-01-01

    The non-deterministic nature of photon sources is a key limitation for single photon quantum processors. Spatial multiplexing overcomes this by enhancing the heralded single photon yield without enhancing the output noise. Here the intrinsic statistical limit of an individual source is surpassed by spatially multiplexing two monolithic silicon correlated photon pair sources, demonstrating a 62.4% increase in the heralded single photon output without an increase in unwanted multi-pair generation. We further demonstrate the scalability of this scheme by multiplexing photons generated in two waveguides pumped via an integrated coupler with a 63.1% increase in the heralded photon rate. This demonstration paves the way for a scalable architecture for multiplexing many photon sources in a compact integrated platform and achieving efficient two photon interference, required at the core of optical quantum computing and quantum communication protocols.

  20. Video recording true single-photon double-slit interference

    Science.gov (United States)

    Aspden, Reuben S.; Padgett, Miles J.; Spalding, Gabriel C.

    2016-09-01

    Commercially available cameras do not have a low-enough dark noise to directly capture double-slit interference at the single photon level. In this work, camera noise levels are significantly reduced by activating the camera only when the presence of a photon has been detected by the independent detection of a time-correlated photon produced via parametric down-conversion. This triggering scheme provides the improvement required for direct video imaging of Young's double-slit experiment with single photons, allowing clarified versions of this foundational demonstration. We present video data of the evolving interference patterns. Also, we introduce variations on this experiment aimed at promoting discussion of the role spatial coherence plays in such a measurement, emphasizing complementary aspects of single-photon measurement and highlighting the roles of transverse position and momentum correlations between down-converted photons, including examples of "ghost" imaging and diffraction.

  1. A Bright Single Photon Source Based on a Diamond Nanowire

    CERN Document Server

    Babinec, T; Khan, M; Zhang, Y; Maze, J; Hemmer, P R; Loncar, M

    2009-01-01

    The development of a robust light source that emits one photon at a time is an outstanding challenge in quantum science and technology. Here, at the transition from many to single photon optical communication systems, fully quantum mechanical effects may be utilized to achieve new capabilities, most notably perfectly secure communication via quantum cryptography. Practical implementations place stringent requirements on the device properties, including fast and stable photon generation, efficient collection of photons, and room temperature operation. Single photon light emitting devices based on fluorescent dye molecules, quantum dots, nanowires, and carbon nanotube material systems have all been explored, but none have simultaneously demonstrated all criteria. Here, we describe the design, fabrication, and characterization of a bright source of single photons consisting of an individual Nitrogen-vacancy color center (NV center) in a diamond nanowire operating in ambient conditions. The nanowire plays a posit...

  2. Generation of single photons with highly tunable wave shape from a cold atomic quantum memory

    CERN Document Server

    Farrera, Pau; Albrecht, Boris; Ho, Melvyn; Chávez, Matías; Teo, Colin; Sangouard, Nicolas; de Riedmatten, Hugues

    2016-01-01

    We report on a single photon source with highly tunable photon shape based on a cold ensemble of Rubidium atoms. We follow the DLCZ scheme to implement an emissive quantum memory, which can be operated as a photon pair source with controllable delay. We find that the temporal wave shape of the emitted read photon can be precisely controlled by changing the shape of the driving read pulse. We generate photons with temporal durations varying over three orders of magnitude up to 10 {\\mu}s without a significant change of the read-out efficiency. We prove the non-classicality of the emitted photons by measuring their antibunching, showing near single photon behavior at low excitation probabilities. We also show that the photons are emitted in a pure state by measuring unconditional autocorrelation functions. Finally, to demonstrate the usability of the source for realistic applications, we create ultra-long single photons with a rising exponential or doubly peaked wave shape which are important for several quantum...

  3. On-demand semiconductor single-photon source with near-unity indistinguishability

    CERN Document Server

    He, Yu-Ming; Wei, Yu-Jia; Wu, Dian; Atatüre, Mete; Schneider, Christian; Höfling, Sven; Kamp, Martin; Lu, Chao-Yang; Pan, Jian-Wei

    2013-01-01

    Single photon sources based on semiconductor quantum dots offer distinct advantages for quantum information, including a scalable solid-state platform, ultrabrightness, and interconnectivity with matter qubits. A key prerequisite for their use in optical quantum computing and solid-state networks is a high level of efficiency and indistinguishability. Pulsed resonance fluorescence (RF) has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing. Here, we generate pulsed RF single photons on demand from a single, microcavity-embedded quantum dot under s-shell excitation with 3-ps laser pulses. The pi-pulse excited RF photons have less than 0.3% background contributions and a vanishing two-photon emission probability. Non-postselective Hong-Ou-Mandel interference between two successively emitted photons is observed with a visibility of 0.97(2), comparable to trapped atoms and ions. Two single photons are further used to implement a h...

  4. A view on progress of silicon single-photon avalanche diodes and quenching circuits

    Science.gov (United States)

    Cova, Sergio; Ghioni, Massimo; Zappa, Franco; Rech, Ivan; Gulinatti, Angelo

    2006-10-01

    Silicon Single-Photon Avalanche-Diodes (SPAD) are nowadays considered a solid-state alternative to Photomultiplier Tubes (PMT) in single photon counting (SPC) and time-correlated single photon-counting (TCSPC) over the visible spectral range up to 1 micron wavelength. SPADs implemented in planar epitaxial technology compatible with CMOS circuits offer the typical advantages of microelectronic devices (small size, ruggedness, low voltage and low power, etc.). Furthermore, they have inherently higher photon detection efficiency, since they do not rely on electron emission in vacuum from a photocathode as PMT, but instead on the internal photoelectric effect. However, PMTs offer much wider sensitive area, which greatly simplifies the design of optical systems; they provide position-sensitive photon detection and imaging capability; they attain remarkable performance at high counting rate and offer picosecond timing resolution with Micro-Channel Plate (MCP) models. In order to make SPADs more competitive in a broader range of SPC and TCPC applications it is necessary to face both semiconductor technology issues and circuit design issues, which will be here dealt with. Technology issues will be discussed in the context of two possible approaches: employing a standard industrial high-voltage compatible CMOS technology or developing a dedicated CMOS-compatible technology. Circuit design issues will be discussed taking into account problems arising from conflicting requirements set by various required features, such as fast and efficient avalanche quenching and reset, high resolution photon timing, etc.

  5. Theory of single photon on demand from a single molecule source.

    Science.gov (United States)

    He, Yong; Barkai, Eli

    2006-11-21

    We consider the theory of single photon on demand from a two level atom or molecule source. Using optical Bloch equations and the generating function formalism we investigate three approaches to single photon control: (i) the square laser pulse; (ii) the square modulation of absorption frequency; and (iii) the rapid adiabatic following approach investigated in the experiments of Brunel et al., Phys. Rev. Lett., 1999, 83, 2722. We discuss the conditions for obtaining the maximum of the probability of emission of a single photon and a pair of photons, under the constrains of finite field strength and finite interaction time with excitation field. We obtain analytical expression for the probability of emitting zero, one, and two photons for the square pulse, and discuss semi-classical and strongly quantum limiting cases. Numerical results obtained from the generating function formalism are compared with experimental results showing that the two level system approach is suitable for the description of cryogenic temperature single molecules, and that experiments were conducted very close to the optimal conditions.

  6. CMOS-compatible photonic devices for single-photon generation

    Directory of Open Access Journals (Sweden)

    Xiong Chunle

    2016-09-01

    Full Text Available Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal–oxide–semiconductor (CMOS-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon and processes that are compatible with CMOS fabrication facilities for the generation of single photons.

  7. Investigation of Hamamatsu H8500 phototubes as single photon detectors

    CERN Document Server

    Hoek, M; Mirazita, M; Montgomery, R A; Orlandi, A; Pereira, S Anefalos; Pisano, S; Rossi, P; Viticchiè, A; Witchger, A

    2014-01-01

    We have investigated the response of a significant sample of Hamamatsu H8500 MultiAnode PhotoMultiplier Tubes (MAPMTs) as single photon detectors, in view of their use in a ring imaging Cherenkov counter for the CLAS12 spectrometer at the Thomas Jefferson National Accelerator Facility. For this, a laser working at 407.2nm wavelength was employed. The sample is divided equally into standard window type, with a spectral response in the visible light region, and UV-enhanced window type MAPMTs. The studies confirm the suitability of these MAPMTs for single photon detection in such a Cherenkov imaging application.

  8. Graphene-Based Josephson-Junction Single-Photon Detector

    Science.gov (United States)

    Walsh, Evan D.; Efetov, Dmitri K.; Lee, Gil-Ho; Heuck, Mikkel; Crossno, Jesse; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung

    2017-08-01

    We propose to use graphene-based Josephson junctions (GJJs) to detect single photons in a wide electromagnetic spectrum from visible to radio frequencies. Our approach takes advantage of the exceptionally low electronic heat capacity of monolayer graphene and its constricted thermal conductance to its phonon degrees of freedom. Such a system could provide high-sensitivity photon detection required for research areas including quantum information processing and radio astronomy. As an example, we present our device concepts for GJJ single-photon detectors in both the microwave and infrared regimes. The dark count rate and intrinsic quantum efficiency are computed based on parameters from a measured GJJ, demonstrating feasibility within existing technologies.

  9. Optimizing optical Bragg scattering for single-photon frequency conversion

    CERN Document Server

    Lefrancois, Simon; Eggleton, Benjamin J

    2014-01-01

    We develop a systematic theory for optimising single-photon frequency conversion using optical Bragg scattering. The efficiency and phase-matching conditions for the desired Bragg scattering conversion as well as spurious scattering and modulation instability are identified. We find that third-order dispersion can suppress unwanted processes, while dispersion above the fourth order limits the maximum conversion efficiency. We apply the optimisation conditions to frequency conversion in highly nonlinear fiber, silicon nitride waveguides and silicon nanowires. Efficient conversion is confirmed using full numerical simulations. These design rules will assist the development of efficient quantum frequency conversion between multicolour single photon sources for integration in complex quantum networks.

  10. Interferometric measurement of the helical mode of a single photon

    Energy Technology Data Exchange (ETDEWEB)

    Galvez, E J; Coyle, L E; Johnson, E; Reschovsky, B J, E-mail: egalvez@colgate.edu [Department of Physics and Astronomy, Colgate University, 13 Oak Drive, Hamilton, NY 13346 (United States)

    2011-05-15

    We present measurements of the helical mode of single photons and do so by sending heralded photons through a Mach-Zehnder interferometer that prepares the light in a helical mode with topological charge one, and interferes it with itself in the fundamental non-helical mode. Masks placed after the interferometer were used to diagnose the amplitude and phase of the mode of the light. Auxiliary measurements verified that the light was in a non-classical state. The results are in good agreement with theory. The experiments demonstrate in a direct way that single photons carry the entire spatial helical-mode information.

  11. Single-photon heat conduction in electrical circuits

    CERN Document Server

    Jones, P J; Tan, K Y; Möttönen, M

    2011-01-01

    We study photonic heat conduction between two resistors coupled weakly to a single superconducting microwave cavity. At low enough temperature, the dominating part of the heat exchanged between the resistors is transmitted by single-photon excitations of the fundamental mode of the cavity. This manifestation of single-photon heat conduction should be experimentally observable with the current state of the art. Our scheme can possibly be utilized in remote interference-free temperature control of electric components and environment engineering for superconducting qubits coupled to cavities.

  12. Single-photon transistor in circuit quantum electrodynamics.

    Science.gov (United States)

    Neumeier, Lukas; Leib, Martin; Hartmann, Michael J

    2013-08-01

    We introduce a circuit quantum electrodynamical setup for a "single-photon" transistor. In our approach photons propagate in two open transmission lines that are coupled via two interacting transmon qubits. The interaction is such that no photons are exchanged between the two transmission lines but a single photon in one line can completely block or enable the propagation of photons in the other line. High on-off ratios can be achieved for feasible experimental parameters. Our approach is inherently scalable as all photon pulses can have the same pulse shape and carrier frequency such that output signals of one transistor can be input signals for a consecutive transistor.

  13. Using single photons to improve fiber optic communication systems

    Science.gov (United States)

    Pinto, Armando N.; Silva, Nuno A.; Almeida, Álvaro J.; Muga, Nelson J.

    2014-08-01

    We show how to generate, encode, transmit and detect single photons. By using single photons we can address two of the more challenging problems that communication engineers face nowadays: capacity and security. Indeed, by decreasing the number of photons used to encode each bit, we can efficiently explore the full capacity to carry information of optical fibers, and we can guarantee privacy at the physical layer. We present results for single and entangled photon generation. We encode information in the photons polarization and after transmission we retrieve that information. We discuss the impact of fiber birefringence on the photons polarization.

  14. Combustion study with synchrotron radiation single photon ionization technique

    Institute of Scientific and Technical Information of China (English)

    YANG Rui; WANG Jing; HUANG Chaoqun; YANG Bin; WEI Lixia; SHAN Xiaobin; SHENG Liusi; ZHANG Yunwu; QI Fei

    2005-01-01

    Here we report a combustion endstation at National Synchrotron Radiation Laboratory (NSRL) and some primary experimental results. Synchrotron radiation can provide the tunable vacuum ultraviolet (VUV) photon with the high intensity and the good collimation. VUV photoionization is a single-photon ionization process. Combined with molecular-beam mass spectrometry (MBMS), the VUV single-photon ionization can be applied to detect the combustion products, especially the intermediates and free radicals produced from combustion process. This method is proved to be a powerful tool for combustion study, which could be helpful for developing combustion kinetic models and understanding the mechanism of combustion reactions.

  15. CMOS-compatible photonic devices for single-photon generation

    Science.gov (United States)

    Xiong, Chunle; Bell, Bryn; Eggleton, Benjamin J.

    2016-09-01

    Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal-oxide-semiconductor (CMOS)-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon) and processes that are compatible with CMOS fabrication facilities for the generation of single photons.

  16. Design and simulations of highly efficient single-photon sources

    DEFF Research Database (Denmark)

    Gregersen, Niels; de Lasson, Jakob Rosenkrantz; Mørk, Jesper

    The realization of the highly-efficient single-photon source represents not only an experimental, but also a numerical challenge. We will present the theory of the waveguide QED approach, the design challenges and the current limitations. Additionally, the important numerical challenges in the si......The realization of the highly-efficient single-photon source represents not only an experimental, but also a numerical challenge. We will present the theory of the waveguide QED approach, the design challenges and the current limitations. Additionally, the important numerical challenges...

  17. Ordered arrays of InGaN/GaN dot-in-a-wire nanostructures as single photon emitters

    Science.gov (United States)

    Lazić, Snežana; Chernysheva, Ekaterina; Gačević, Žarko; García-Lepetit, Noemi; van der Meulen, Herko P.; Müller, Marcus; Bertram, Frank; Veit, Peter; Christen, Jürgen; Torres-Pardo, Almudena; González Calbet, José M.; Calleja, Enrique; Calleja, José M.

    2015-03-01

    The realization of reliable single photon emitters operating at high temperature and located at predetermined positions still presents a major challenge for the development of solid-state systems for quantum light applications. We demonstrate single-photon emission from two-dimensional ordered arrays of GaN nanowires containing InGaN nanodisks. The structures were fabricated by molecular beam epitaxy on (0001) GaN-on-sapphire templates patterned with nanohole masks prepared by colloidal lithography. Low-temperature cathodoluminescence measurements reveal the spatial distribution of light emitted from a single nanowire heterostructure. The emission originating from the topmost part of the InGaN regions covers the blue-to-green spectral range and shows intense and narrow quantum dot-like photoluminescence lines. These lines exhibit an average linear polarization ratio of 92%. Photon correlation measurements show photon antibunching with a g(2)(0) values well below the 0.5 threshold for single photon emission. The antibunching rate increases linearly with the optical excitation power, extrapolating to the exciton decay rate of ~1 ns-1 at vanishing pump power. This value is comparable with the exciton lifetime measured by time-resolved photoluminescence. Fast and efficient single photon emitters with controlled spatial position and strong linear polarization are an important step towards high-speed on-chip quantum information management.

  18. New cardiac cameras: single-photon emission CT and PET.

    Science.gov (United States)

    Slomka, Piotr J; Berman, Daniel S; Germano, Guido

    2014-07-01

    Nuclear cardiology instrumentation has evolved significantly in the recent years. Concerns about radiation dose and long acquisition times have propelled developments of dedicated high-efficiency cardiac SPECT scanners. Novel collimator designs, such as multipinhole or locally focusing collimators arranged in geometries that are optimized for cardiac imaging, have been implemented to enhance photon-detection sensitivity. Some of these new SPECT scanners use solid-state photon detectors instead of photomultipliers to improve image quality and to reduce the scanner footprint. These new SPECT devices allow dramatic up to 7-fold reduction in acquisition times or similar reduction in radiation dose. In addition, new hardware for photon attenuation correction allowing ultralow radiation doses has been offered by some vendors. To mitigate photon attenuation artifacts for the new SPECT scanners not equipped with attenuation correction hardware, 2-position (upright-supine or prone-supine) imaging has been proposed. PET hardware developments have been primarily driven by the requirements of oncologic imaging, but cardiac imaging can benefit from improved PET image quality and improved sensitivity of 3D systems. The time-of-flight reconstruction combined with resolution recovery techniques is now implemented by all major PET vendors. These new methods improve image contrast and image resolution and reduce image noise. High-sensitivity 3D PET without interplane septa allows reduced radiation dose for cardiac perfusion imaging. Simultaneous PET/MR hybrid system has been developed. Solid-state PET detectors with avalanche photodiodes or digital silicon photomultipliers have been introduced, and they offer improved imaging characteristics and reduced sensitivity to electromagnetic MR fields. Higher maximum count rate of the new PET detectors allows routine first-pass Rb-82 imaging, with 3D PET acquisition enabling clinical utilization of dynamic imaging with myocardial flow measurements for this tracer. The availability of high-end CT component in most PET/CT configurations enables hybrid multimodality cardiac imaging protocols with calcium scoring or CT angiography or both. Copyright © 2014. Published by Elsevier Inc.

  19. SIMIND Monte Carlo simulation of a single photon emission CT

    Directory of Open Access Journals (Sweden)

    Bahreyni Toossi M

    2010-01-01

    Full Text Available In this study, we simulated a Siemens E.CAM SPECT system using SIMIND Monte Carlo program to acquire its experimental characterization in terms of energy resolution, sensitivity, spatial resolution and imaging of phantoms using 99m Tc. The experimental and simulation data for SPECT imaging was acquired from a point source and Jaszczak phantom . Verification of the simulation was done by comparing two sets of images and related data obtained from the actual and simulated systems. Image quality was assessed by comparing image contrast and resolution. Simulated and measured energy spectra (with or without a collimator and spatial resolution from point sources in air were compared. The resulted energy spectra present similar peaks for the gamma energy of 99m Tc at 140 KeV. FWHM for the simulation calculated to14.01 KeV and 13.80 KeV for experimental data, corresponding to energy resolution of 10.01and 9.86% compared to defined 9.9% for both systems, respectively. Sensitivities of the real and virtual gamma cameras were calculated to 85.11 and 85.39 cps/MBq, respectively. The energy spectra of both simulated and real gamma cameras were matched. Images obtained from Jaszczak phantom, experimentally and by simulation, showed similarity in contrast and resolution. SIMIND Monte Carlo could successfully simulate the Siemens E.CAM gamma camera. The results validate the use of the simulated system for further investigation, including modification, planning, and developing a SPECT system to improve the quality of images.

  20. EXPLORING THE REGIONAL CEREBRAL BLOOD FLOW IN A PATIENT WITH ANOREXIA NERVOSA USING 99mTc-ECD SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY%神经性厌食99mTc-ECD局部脑血流变化初探

    Institute of Scientific and Technical Information of China (English)

    金珏; 马莹华; 唐一源; 冯洪波; 于庆宝; 张晔; 杜雪梅; 张延军

    2007-01-01

    神经性厌食(Anorexia Nervosa,AN)是一种病因未明的心理行为综合症,社会文化及生物学因素间的交互作用被认为是该病的病因,脑成像体现出一些病理相关改变,但国内尚未见针对此病的成像报道.为给临床辅助诊断AN提供依据,采用经济、易获得的脑功能显像技术--单光子发射计算机断层显像(Single Photon Emission Computed Tomography,SPECT),扫描3位典型青年女性AN患者的大脑.通过统计参数图(Statistical Parametric Mapping,SPM2),基于体素的局部脑血流灌注分析,与25名正常青年女性脑图相比较发现,患者的前扣带和前额内侧、双侧额叶背外侧、后顶叶、颞叶中上部和小脑血流灌注降低,下丘脑、双侧颞叶中下部血流灌注增高,可能与神经递质回路有关,提示社会学因素可能只是该病的诱因,而生物学人格易感性才是该病的主要原因,同时说明SPECT脑血流成像有助于AN的临床辅助诊断.

  1. Quantum interference of independently generated telecom-band single photons

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Monika [Center for Photonic Communication and Computing, Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3112 (United States); Altepeter, Joseph B.; Huang, Yu-Ping; Oza, Neal N. [Center for Photonic Communication and Computing, Department of Electrical Engineering and Computer Science, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3118 (United States); Kumar, Prem [Center for Photonic Communication and Computing, Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3112, USA and Center for Photonic Communication and Computing, Department of Electrical Engineering (United States)

    2014-12-04

    We report on high-visibility quantum interference of independently generated telecom O-band (1310 nm) single photons using standard single-mode fibers. The experimental data are shown to agree well with the results of simulations using a comprehensive quantum multimode theory without the need for any fitting parameter.

  2. A silicon carbide room-temperature single-photon source

    Science.gov (United States)

    Castelletto, S.; Johnson, B. C.; Ivády, V.; Stavrias, N.; Umeda, T.; Gali, A.; Ohshima, T.

    2014-02-01

    Over the past few years, single-photon generation has been realized in numerous systems: single molecules, quantum dots, diamond colour centres and others. The generation and detection of single photons play a central role in the experimental foundation of quantum mechanics and measurement theory. An efficient and high-quality single-photon source is needed to implement quantum key distribution, quantum repeaters and photonic quantum information processing. Here we report the identification and formation of ultrabright, room-temperature, photostable single-photon sources in a device-friendly material, silicon carbide (SiC). The source is composed of an intrinsic defect, known as the carbon antisite-vacancy pair, created by carefully optimized electron irradiation and annealing of ultrapure SiC. An extreme brightness (2×106 counts s-1) resulting from polarization rules and a high quantum efficiency is obtained in the bulk without resorting to the use of a cavity or plasmonic structure. This may benefit future integrated quantum photonic devices.

  3. The physics of nanowire superconducting single-photon detectors

    NARCIS (Netherlands)

    Renema, Jelmer Jan

    2015-01-01

    We investigate the detection mechanism in superconducting single photon detectors via quantum detector tomography. We find that the detection event is caused by diffusion of quasiparticles from the absorption spot, combined with entrance of a vortex. Moreover, we investigate the behaviour of

  4. Waveguide-Coupled Superconducting Nanowire Single-Photon Detectors

    Science.gov (United States)

    Beyer, Andrew D.; Briggs, Ryan M.; Marsili, Francesco; Cohen, Justin D.; Meenehan, Sean M.; Painter, Oskar J.; Shaw, Matthew D.

    2015-01-01

    We have demonstrated WSi-based superconducting nanowire single-photon detectors coupled to SiNx waveguides with integrated ring resonators. This photonics platform enables the implementation of robust and efficient photon-counting detectors with fine spectral resolution near 1550 nm.

  5. Deterministic teleportation using single-photon entanglement as a resource

    DEFF Research Database (Denmark)

    Björk, Gunnar; Laghaout, Amine; Andersen, Ulrik L.

    2012-01-01

    We outline a proof that teleportation with a single particle is, in principle, just as reliable as with two particles. We thereby hope to dispel the skepticism surrounding single-photon entanglement as a valid resource in quantum information. A deterministic Bell-state analyzer is proposed which...

  6. Potential of semiconductor nanowires for single photon sources

    NARCIS (Netherlands)

    Harmand, J.-C.; Liu, L.; Patriarche, G.; Tchernycheva, M.; Akopian, N.; Perinetti, U.; Zwiller, V.

    2009-01-01

    The catalyst-assisted growth of semiconductor nanowires heterostructures offers a very flexible way to design and fabricate single photon emitters. The nanowires can be positioned by organizing the catalyst prior to growth. Single quantum dots can be formed in the core of single nanowires which can

  7. Multiple-Event, Single-Photon Counting Imaging Sensor

    Science.gov (United States)

    Zheng, Xinyu; Cunningham, Thomas J.; Sun, Chao; Wang, Kang L.

    2011-01-01

    The single-photon counting imaging sensor is typically an array of silicon Geiger-mode avalanche photodiodes that are monolithically integrated with CMOS (complementary metal oxide semiconductor) readout, signal processing, and addressing circuits located in each pixel and the peripheral area of the chip. The major problem is its single-event method for photon count number registration. A single-event single-photon counting imaging array only allows registration of up to one photon count in each of its pixels during a frame time, i.e., the interval between two successive pixel reset operations. Since the frame time can t be too short, this will lead to very low dynamic range and make the sensor merely useful for very low flux environments. The second problem of the prior technique is a limited fill factor resulting from consumption of chip area by the monolithically integrated CMOS readout in pixels. The resulting low photon collection efficiency will substantially ruin any benefit gained from the very sensitive single-photon counting detection. The single-photon counting imaging sensor developed in this work has a novel multiple-event architecture, which allows each of its pixels to register as more than one million (or more) photon-counting events during a frame time. Because of a consequently boosted dynamic range, the imaging array of the invention is capable of performing single-photon counting under ultra-low light through high-flux environments. On the other hand, since the multiple-event architecture is implemented in a hybrid structure, back-illumination and close-to-unity fill factor can be realized, and maximized quantum efficiency can also be achieved in the detector array.

  8. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors

    Science.gov (United States)

    Takemoto, Kazuya; Nambu, Yoshihiro; Miyazawa, Toshiyuki; Sakuma, Yoshiki; Yamamoto, Tsuyoshi; Yorozu, Shinichi; Arakawa, Yasuhiko

    2015-09-01

    Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy states, which is at least threefold larger than the rate obtained in the previously reported 50-km-long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. The experimental results demonstrate the potential applicability of QD SPSs to practical telecom QKD networks.

  9. Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime

    Science.gov (United States)

    Jeantet, A.; Chassagneux, Y.; Raynaud, C.; Roussignol, Ph.; Lauret, J. S.; Besga, B.; Estève, J.; Reichel, J.; Voisin, C.

    2016-06-01

    The narrow emission of a single carbon nanotube at low temperature is coupled to the optical mode of a fiber microcavity using the built-in spatial and spectral matching brought by this flexible geometry. A thorough cw and time-resolved investigation of the very same emitter both in free space and in cavity shows an efficient funneling of the emission into the cavity mode together with a strong emission enhancement corresponding to a Purcell factor of up to 5. At the same time, the emitted photons retain a strong sub-Poissonian statistics. By exploiting the cavity feeding effect on the phonon wings, we locked the emission of the nanotube at the cavity resonance frequency, which allowed us to tune the frequency over a 4 THz band while keeping an almost perfect antibunching. By choosing the nanotube diameter appropriately, this study paves the way to the development of carbon-based tunable single-photon sources in the telecom bands.

  10. Interfering Heralded Single Photons from Two Separate Silicon Nanowires Pumped at Different Wavelengths

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2016-08-01

    Full Text Available Practical quantum photonic applications require on-demand single photon sources. As one possible solution, active temporal and wavelength multiplexing has been proposed to build an on-demand single photon source. In this scheme, heralded single photons are generated from different pump wavelengths in many temporal modes. However, the indistinguishability of these heralded single photons has not yet been experimentally confirmed. In this work, we achieve 88% ± 8% Hong–Ou–Mandel quantum interference visibility from heralded single photons generated from two separate silicon nanowires pumped at different wavelengths. This demonstrates that active temporal and wavelength multiplexing could generate indistinguishable heralded single photons.

  11. Single-photon superradiance and cooperative Lamb shift in an optoelectronic device (Conference Presentation)

    Science.gov (United States)

    Sirtori, Carlo

    2017-02-01

    Superradiance is one of the many fascinating phenomena predicted by quantum electrodynamics that have first been experimentally demonstrated in atomic systems and more recently in condensed matter systems like quantum dots, superconducting q-bits, cyclotron transitions and plasma oscillations in quantum wells (QWs). It occurs when a dense collection of N identical two-level emitters are phased via the exchange of photons, giving rise to enhanced light-matter interaction, hence to a faster emission rate. Of great interest is the regime where the ensemble interacts with one photon only and therefore all of the atoms, but one, are in the ground state. In this case the quantum superposition of all possible configurations produces a symmetric state that decays radiatively with a rate N times larger than that of the individual oscillators. This phenomenon, called single photon superradiance, results from the exchange of real photons among the N emitters. Yet, to single photon superradiance is also associated another collective effect that renormalizes the emission frequency, known as cooperative Lamb shift. In this work, we show that single photon superradiance and cooperative Lamb shift can be engineered in a semiconductor device by coupling spatially separated plasma resonances arising from the collective motion of confined electrons in QWs. These resonances hold a giant dipole along the growth direction z and have no mutual Coulomb coupling. They thus behave as a collection of macro-atoms on different positions along the z axis. Our device is therefore a test bench to simulate the low excitation regime of quantum electrodynamics.

  12. Hyperbolic Metamaterial Nano-Resonators Make Poor Single Photon Sources

    CERN Document Server

    Axelrod, Simon; Wong, Herman M K; Helmy, Amr S; Hughes, Stephen

    2016-01-01

    We study the optical properties of quantum dipole emitters coupled to hyperbolic metamaterial nano-resonators using a semi-analytical quasinormal mode approach. We show that coupling to metamaterial nano-resonators can lead to significant Purcell enhancements that are nearly an order of magnitude larger than those of plasmonic resonators with comparable geometry. However, the associated single photon output $\\beta$-factors are extremely low (around 10%), far smaller than those of comparable sized metallic resonators (70%). Using a quasinormal mode expansion of the photon Green function, we describe how the low $\\beta$-factors are due to increased Ohmic quenching arising from redshifted resonances, larger quality factors and stronger confinement of light within the metal. In contrast to current wisdom, these results suggest that hyperbolic metamaterial nano-structures make poor choices for single photon sources.

  13. Protecting single-photon entanglement with practical entanglement source

    Science.gov (United States)

    Zhou, Lan; Ou-Yang, Yang; Wang, Lei; Sheng, Yu-Bo

    2017-06-01

    Single-photon entanglement (SPE) is important for quantum communication and quantum information processing. However, SPE is sensitive to photon loss. In this paper, we discuss a linear optical amplification protocol for protecting SPE. Different from the previous protocols, we exploit the practical spontaneous parametric down-conversion (SPDC) source to realize the amplification, for the ideal entanglement source is unavailable in current quantum technology. Moreover, we prove that the amplification using the entanglement generated from SPDC source as auxiliary is better than the amplification assisted with single photons. The reason is that the vacuum state from SPDC source will not affect the amplification, so that it can be eliminated automatically. This protocol may be useful in future long-distance quantum communications.

  14. Advanced time-correlated single photon counting applications

    CERN Document Server

    Becker, Wolfgang

    2015-01-01

    This book is an attempt to bridge the gap between the instrumental principles of multi-dimensional time-correlated single photon counting (TCSPC) and typical applications of the technique. Written by an originator of the technique and by sucessful users, it covers the basic principles of the technique, its interaction with optical imaging methods and its application to a wide range of experimental tasks in life sciences and clinical research. The book is recommended for all users of time-resolved detection techniques in biology, bio-chemistry, spectroscopy of live systems, live cell microscopy, clinical imaging, spectroscopy of single molecules, and other applications that require the detection of low-level light signals at single-photon sensitivity and picosecond time resolution.

  15. Tunable single-photon frequency conversion in a Sagnac interferometer

    Science.gov (United States)

    Yan, Wei-Bin; Huang, Jin-Feng; Fan, Heng

    2013-12-01

    Quantum information carriers like photons might be manipulated, stored and transmitted in different quantum systems. It is important to integrate those systems efficiently. The capability of converting photons from one wavelength to another wavelength is a key requirement for combining the photons in telecommunications band for quantum transmission and the photons in near-visible band for quantum storage. Here, we investigate the tunable single-photon frequency conversion in the five-level emitter-Sagnac interferometer system. We show that the efficient single-photon conversion can be achieved in this scheme, at the same time, the frequencies of the input and output photons can be tuned in a large scale by controlling the frequencies and Rabi frequencies of the external driving fields. The realization of this scheme may lead to the efficient combination of quantum storage system with the quantum communication system.

  16. State-independent quantum contextuality with single photons

    CERN Document Server

    Amselem, Elias; Bourennane, Mohamed; Cabello, Adan

    2009-01-01

    Bell's theorem states that quantum predictions cannot be reproduced with hidden variable theories satisfying locality. The Kochen-Specker theorem states that quantum mechanics cannot be reproduced with non-contextual hidden variables. The result of a measurement is non-contextual when it is not affected by other compatible measurements being carried out on the same individual system. While Bell's theorem applies only to entangled states of composite systems, a distinguishing feature of the Kochen-Specker theorem is that it is valid for any quantum state, entangled or not, of any system, even for single systems. We present the first experimental state-independent violation of an inequality for non-contextual theories on single particles in the spirit of the original Kochen-Specker theorem. The tested inequality involves correlations between results of sequential compatible measurements on single photons. We show that 20 different single-photon states, ranging from states with maximal internal entanglement to m...

  17. Authenticated Quantum Key Distribution with Collective Detection using Single Photons

    Science.gov (United States)

    Huang, Wei; Xu, Bing-Jie; Duan, Ji-Tong; Liu, Bin; Su, Qi; He, Yuan-Hang; Jia, Heng-Yue

    2016-10-01

    We present two authenticated quantum key distribution (AQKD) protocols by utilizing the idea of collective (eavesdropping) detection. One is a two-party AQKD protocol, the other is a multiparty AQKD protocol with star network topology. In these protocols, the classical channels need not be assumed to be authenticated and the single photons are used as the quantum information carriers. To achieve mutual identity authentication and establish a random key in each of the proposed protocols, only one participant should be capable of preparing and measuring single photons, and the main quantum ability that the rest of the participants should have is just performing certain unitary operations. Security analysis shows that these protocols are free from various kinds of attacks, especially the impersonation attack and the man-in-the-middle (MITM) attack.

  18. Multi-group dynamic quantum secret sharing with single photons

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongwei [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Ma, Haiqiang, E-mail: hqma@bupt.edu.cn [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Wei, Kejin [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Yang, Xiuqing [School of Science, Beijing Jiaotong University, Beijing 100044 (China); Qu, Wenxiu; Dou, Tianqi; Chen, Yitian; Li, Ruixue; Zhu, Wu [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2016-07-15

    In this letter, we propose a novel scheme for the realization of single-photon dynamic quantum secret sharing between a boss and three dynamic agent groups. In our system, the boss can not only choose one of these three groups to share the secret with, but also can share two sets of independent keys with two groups without redistribution. Furthermore, the security of communication is enhanced by using a control mode. Compared with previous schemes, our scheme is more flexible and will contribute to a practical application. - Highlights: • A multi-group dynamic quantum secret sharing with single photons scheme is proposed. • Any one of the groups can be chosen to share secret through controlling the polarization of photons. • Two sets of keys can be shared simultaneously without redistribution.

  19. Video recording true single-photon double-slit interference

    CERN Document Server

    Aspden, Reuben S; Spalding, Gabriel C

    2016-01-01

    As normally used, no commercially available camera has a low-enough dark noise to directly produce video recordings of double-slit interference at the photon-by-photon level, because readout noise significantly contaminates or overwhelms the signal. In this work, noise levels are significantly reduced by turning on the camera only when the presence of a photon has been heralded by the arrival, at an independent detector, of a time-correlated photon produced via parametric down-conversion. This triggering scheme provides the improvement required for direct video imaging of Young's double-slit experiment with single photons, allowing clarified versions of this foundational demonstration. Further, we introduce variations on this experiment aimed at promoting discussion of the role spatial coherence plays in such a measurement. We also emphasize complementary aspects of single-photon measurement, where imaging yields (transverse) position information, while diffraction yields the transverse momentum, and highligh...