WorldWideScience

Sample records for 7li solid-state mas

  1. Structural biology applications of solid state MAS DNP NMR

    Science.gov (United States)

    Akbey, Ümit; Oschkinat, Hartmut

    2016-08-01

    Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance.

  2. Charge transfer in Li/CFx-silver vanadium oxide hybrid cathode batteries revealed by solid state 7Li and 19F nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Sideris, Paul J.; Yew, Rowena; Nieves, Ian; Chen, Kaimin; Jain, Gaurav; Schmidt, Craig L.; Greenbaum, Steve G.

    2014-05-01

    Solid state 7Li and 19F magic angle spinning nuclear magnetic resonance (MAS NMR) experiments are conducted on several cathodes containing CFx-Silver vanadium oxide (CFx-Ag2V4O11) hybrid cathodes discharged to 50% depth of discharge (DoD) and stored at their open-circuit voltage for a period of one and three months. Three carbonaceous sources for the CFx phase are investigated: petroleum coke-based, fibrous, and mixed fibrous. For each hybrid cathode, a measurable increase in the relative amount of lithium fluoride is observed after a three month resting period in both the 7Li and 19F NMR spectra. These changes are attributed to lithium ion migration from the silver vanadium oxide to the CFx phase during the resting period, and help clarify the mechanism behind high power handling capability of this cathode.

  3. Optimized multiple quantum MAS lineshape simulations in solid state NMR

    Science.gov (United States)

    Brouwer, William J.; Davis, Michael C.; Mueller, Karl T.

    2009-10-01

    The majority of nuclei available for study in solid state Nuclear Magnetic Resonance have half-integer spin I>1/2, with corresponding electric quadrupole moment. As such, they may couple with a surrounding electric field gradient. This effect introduces anisotropic line broadening to spectra, arising from distinct chemical species within polycrystalline solids. In Multiple Quantum Magic Angle Spinning (MQMAS) experiments, a second frequency dimension is created, devoid of quadrupolar anisotropy. As a result, the center of gravity of peaks in the high resolution dimension is a function of isotropic second order quadrupole and chemical shift alone. However, for complex materials, these parameters take on a stochastic nature due in turn to structural and chemical disorder. Lineshapes may still overlap in the isotropic dimension, complicating the task of assignment and interpretation. A distributed computational approach is presented here which permits simulation of the two-dimensional MQMAS spectrum, generated by random variates from model distributions of isotropic chemical and quadrupole shifts. Owing to the non-convex nature of the residual sum of squares (RSS) function between experimental and simulated spectra, simulated annealing is used to optimize the simulation parameters. In this manner, local chemical environments for disordered materials may be characterized, and via a re-sampling approach, error estimates for parameters produced. Program summaryProgram title: mqmasOPT Catalogue identifier: AEEC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3650 No. of bytes in distributed program, including test data, etc.: 73 853 Distribution format: tar.gz Programming language: C, OCTAVE Computer: UNIX

  4. Indirect detection of infinite-speed MAS solid-state NMR spectra

    Science.gov (United States)

    Perras, Frédéric A.; Venkatesh, Amrit; Hanrahan, Michael P.; Goh, Tian Wei; Huang, Wenyu; Rossini, Aaron J.; Pruski, Marek

    2017-03-01

    Heavy spin-1/2 nuclides are known to possess very large chemical shift anisotropies that can challenge even the most advanced magic-angle-spinning (MAS) techniques. Wide manifolds of overlapping spinning sidebands and insufficient excitation bandwidths often obfuscate meaningful spectral information and force the use of static, low-resolution solid-state (SS)NMR methods for the characterization of materials. To address these issues, we have merged fast-magic-angle-turning (MAT) and dipolar heteronuclear multiple-quantum coherence (D-HMQC) experiments to obtain D-HMQC-MAT pulse sequences which enable the rapid acquisition of 2D SSNMR spectra that correlate isotropic 1H chemical shifts to the indirectly detected isotropic "infinite-MAS" spectra of heavy spin-1/2 nuclides. For these nuclides, the combination of fast MAS and 1H detection provides a high sensitivity, which rivals the DNP-enhanced ultra-wideline SSNMR. The new pulse sequences were used to determine the Pt coordination environments in a complex mixture of decomposition products of transplatin and in a metal-organic framework with Pt ions coordinated to the linker ligands.

  5. Hydration properties and phosphorous speciation in native, gelatinized and enzymatically modified potato starch analyzed by solid-state MAS NMR

    DEFF Research Database (Denmark)

    Larsen, Flemming H.; Kasprzak, Miroslaw Marek; Lærke, Helle Nygaard

    2013-01-01

    Hydration of granular, gelatinized and molecularly modified states of potato starch in terms of molecular mobility were analyzed by 13C and 31P solid-state MAS NMR. Gelatinization (GEL) tremendously reduced the immobile fraction compared to native (NA) starch granules. This effect was enhanced...... by enzyme-assisted catalytic branching with branching enzyme (BE) or combined BE and β-amylase (BB) catalyzed exo-hydrolysis. Carbons of the glycosidic α-1,6 linkages required high hydration rates before adopting uniform chemical shifts indicating solid-state disorder and poor water accessibility...

  6. Lithium Ion Mobility in Lithium Phosphidosilicates: Crystal Structure, (7) Li, (29) Si, and (31) P MAS NMR Spectroscopy, and Impedance Spectroscopy of Li8 SiP4 and Li2 SiP2.

    Science.gov (United States)

    Toffoletti, Lorenzo; Kirchhain, Holger; Landesfeind, Johannes; Klein, Wilhelm; van Wüllen, Leo; Gasteiger, Hubert A; Fässler, Thomas F

    2016-12-05

    The need to improve electrodes and Li-ion conducting materials for rechargeable all-solid-state batteries has drawn enhanced attention to the investigation of lithium-rich compounds. The study of the ternary system Li-Si-P revealed a series of new compounds, two of which, Li8 SiP4 and Li2 SiP2 , are presented. Both phases represent members of a new family of Li ion conductors that display Li ion conductivity in the range from 1.15(7)×10(-6) Scm(-1) at 0 °C to 1.2(2)×10(-4) Scm(-1) at 75 °C (Li8 SiP4 ) and from 6.1(7)×10(-8) Scm(-1) at 0 °C to 6(1)×10(-6) Scm(-1) at 75 °C (Li2 SiP2 ), as determined by impedance measurements. Temperature-dependent solid-state (7) Li NMR spectroscopy revealed low activation energies of about 36 kJ mol(-1) for Li8 SiP4 and about 47 kJ mol(-1) for Li2 SiP2 . Both compounds were structurally characterized by X-ray diffraction analysis (single crystal and powder methods) and by (7) Li, (29) Si, and (31) P MAS NMR spectroscopy. Both phases consist of tetrahedral SiP4 anions and Li counterions. Li8 SiP4 contains isolated SiP4 units surrounded by Li atoms, while Li2 SiP2 comprises a three-dimensional network based on corner-sharing SiP4 tetrahedra, with the Li ions located in cavities and channels.

  7. Quantitative analysis of backbone motion in proteins using MAS solid-state NMR spectroscopy.

    Science.gov (United States)

    Chevelkov, Veniamin; Fink, Uwe; Reif, Bernd

    2009-09-01

    We present a comprehensive analysis of protein dynamics for a micro-crystallin protein in the solid-state. Experimental data include (15)N T (1) relaxation times measured at two different magnetic fields as well as (1)H-(15)N dipole, (15)N CSA cross correlated relaxation rates which are sensitive to the spectral density function J(0) and are thus a measure of T (2) in the solid-state. In addition, global order parameters are included from a (1)H,(15)N dipolar recoupling experiment. The data are analyzed within the framework of the extended model-free Clore-Lipari-Szabo theory. We find slow motional correlation times in the range of 5 and 150 ns. Assuming a wobbling in a cone motion, the amplitude of motion of the respective amide moiety is on the order of 10 degrees for the half-opening angle of the cone in most of the cases. The experiments are demonstrated using a perdeuterated sample of the chicken alpha-spectrin SH3 domain.

  8. Polydisperse methyl β-cyclodextrin–epichlorohydrin polymers: variable contact time 13C CP-MAS solid-state NMR characterization

    Science.gov (United States)

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio

    2015-01-01

    Summary The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state 13C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices. PMID:26877800

  9. Polydisperse methyl β-cyclodextrin–epichlorohydrin polymers: variable contact time 13C CP-MAS solid-state NMR characterization

    Directory of Open Access Journals (Sweden)

    Isabelle Mallard

    2015-12-01

    Full Text Available The polymerization of partially methylated β-cyclodextrin (CRYSMEB with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3 of imprinted polymers were obtained and characterized by solid-state 13C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: TCH (the CP time constant and T1ρ (the proton spin-lattice relaxation time in the rotating frame. The results and the analysis presented in the paper pointed out that TCH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of TCH and T1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices.

  10. Local environments and lithium adsorption on the iron oxyhydroxides lepidocrocite (gamma-FeOOH) and goethite (alpha-FeOOH): A 2H-2 and 7Li solid-state MAS NMR study

    DEFF Research Database (Denmark)

    Nielsen, Ulla Gro; Grey, Clare P.; Paik, Jonkim

    2008-01-01

    2H and 7LiMAS NMR spectroscopy techniques were applied to study the local surface and bulk environments of iron oxyhydroxide lepiclocrocite (gamma-FeOOH). 2H variable-temperature (VT) MAS NMR experiments were performed, showing the presence of short-range, strong antiferromagnetic correlations, e...

  11. Solid-state 51V MAS NMR spectroscopy determines component concentration and crystal phase in co-crystallised mixtures of vanadium complexes

    DEFF Research Database (Denmark)

    Nielsen, Ulla Gro; Hazell, Alan Charles; Skibsted, Jørgen Bengaard

    2010-01-01

    resonances are sensitive to intermolecular interactions specific to each crystal phase. The solid-state V-51 MAS NMR spectroscopic data show that the different phases do not co-precipitate but the concentration of the solute (which can be either 1 or 2) can vary. Thus co-crystallised mixtures of 1 and 2 can...... be classed as a molecular mixture capable of forming continuous solid solutions....... for the vanadium atoms of the two complexes mean that V-51 solution state and MAS NMR spectroscopy can be used to determine the concentration of 1 and 2 in bulk samples. Significantly, however, V-51 MAS NMR spectroscopy also reports on the identity of the crystal phase. This is possible because the isotropic V-51...

  12. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy.

    Science.gov (United States)

    Mote, Kaustubh R; Gopinath, T; Veglia, Gianluigi

    2013-10-01

    The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD ~0.44 Å, a tilt angle of 24° ± 1°, and an azimuthal angle of 55° ± 6°. This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR.

  13. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    Science.gov (United States)

    Arévalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernández-Maldonado, Arturo J.

    2012-07-01

    The location of extraframework cations in Sr2+ and Ba2+ ion-exchanged SAPO-34 was estimated by means of 1H and 23Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium.

  14. Accurate determination of order parameters from 1H,15N dipolar couplings in MAS solid-state NMR experiments.

    Science.gov (United States)

    Chevelkov, Veniamin; Fink, Uwe; Reif, Bernd

    2009-10-01

    A reliable site-specific estimate of the individual N-H bond lengths in the protein backbone is the fundamental basis of any relaxation experiment in solution and in the solid-state NMR. The N-H bond length can in principle be influenced by hydrogen bonding, which would result in an increased N-H distance. At the same time, dynamics in the backbone induces a reduction of the experimental dipolar coupling due to motional averaging. We present a 3D dipolar recoupling experiment in which the (1)H,(15)N dipolar coupling is reintroduced in the indirect dimension using phase-inverted CP to eliminate effects from rf inhomogeneity. We find no variation of the N-H dipolar coupling as a function of hydrogen bonding. Instead, variations in the (1)H,(15)N dipolar coupling seem to be due to dynamics of the protein backbone. This is supported by the observed correlation between the H(N)-N dipolar coupling and the amide proton chemical shift. The experiment is demonstrated for a perdeuterated sample of the alpha-spectrin SH3 domain. Perdeuteration is a prerequisite to achieve high accuracy. The average error in the analysis of the H-N dipolar couplings is on the order of +/-370 Hz (+/-0.012 A) and can be as small as 150 Hz, corresponding to a variation of the bond length of +/-0.005 A.

  15. Resolution and measurement of heteronuclear dipolar couplings of a noncrystalline protein immobilized in a biological supramolecular assembly by proton-detected MAS solid-state NMR spectroscopy

    Science.gov (United States)

    Park, Sang Ho; Yang, Chen; Opella, Stanley J.; Mueller, Leonard J.

    2013-12-01

    Two-dimensional 15N chemical shift/1H chemical shift and three-dimensional 1H-15N dipolar coupling/15N chemical shift/1H chemical shift MAS solid-state NMR correlation spectra of the filamentous bacteriophage Pf1 major coat protein show single-site resolution in noncrystalline, intact-phage preparations. The high sensitivity and resolution result from 1H detection at 600 MHz under 50 kHz magic angle spinning using ∼0.5 mg of perdeuterated and uniformly 15N-labeled protein in which the exchangeable amide sites are partially or completely back-exchanged (reprotonated). Notably, the heteronuclear 1H-15N dipolar coupling frequency dimension is shown to select among 15N resonances, which will be useful in structural studies of larger proteins where the resonances exhibit a high degree of overlap in multidimensional chemical shift correlation spectra.

  16. Solid state structure by X-ray and 13C CP/MAS NMR of new 5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarins

    Science.gov (United States)

    Ostrowska, Kinga; Maciejewska, Dorota; Dobrzycki, Łukasz; Socha, Pawel

    2016-05-01

    5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarin (1) and 6-acetyl-5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarin (2), structurally related, were synthesized using both conventional and microwave-assisted approach. An impact of acetyl groups on the molecular structure of coumarin derivatives has been examined. Crystals of 2 were investigated using single crystal and powder X-ray diffraction techniques. Compound 2 crystallizes forming two polymorphs (denoted as 2_1 and 2_2), both belonging to P21/c space group. Both polymorphs are comparably stable and can be formed simultaneously during crystallization process. The solid state structure was also analysed using the fully resolved 13C CP/MAS NMR. The double signals with the intensity ratio of about 1:1 which were observed in the 13C CP/MAS NMR spectrum of compound 1 must arise due to the presence of two conformers of 1. In contrast, NMR spectrum recorded for powder mixture of two polymorphs of compound 2 displays no signal splitting. This is related to structural similarities of molecules in both polymorphs.

  17. A spectrometer designed for 6.7 and 14.1 T DNP-enhanced solid-state MAS NMR using quasi-optical microwave transmission.

    Science.gov (United States)

    Pike, Kevin J; Kemp, Thomas F; Takahashi, Hiroki; Day, Robert; Howes, Andrew P; Kryukov, Eugeny V; MacDonald, James F; Collis, Alana E C; Bolton, David R; Wylde, Richard J; Orwick, Marcella; Kosuga, Kosuke; Clark, Andrew J; Idehara, Toshitaka; Watts, Anthony; Smith, Graham M; Newton, Mark E; Dupree, Ray; Smith, Mark E

    2012-02-01

    A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer operating at 6.7 T is described and demonstrated. The 187 GHz TE(13) fundamental mode of the FU CW VII gyrotron is used as the microwave source for this magnetic field strength and 284 MHz (1)H DNP-NMR. The spectrometer is designed for use with microwave frequencies up to 395 GHz (the TE(16) second-harmonic mode of the gyrotron) for DNP at 14.1T (600 MHz (1)H NMR). The pulsed microwave output from the gyrotron is converted to a quasi-optical Gaussian beam using a Vlasov antenna and transmitted to the NMR probe via an optical bench, with beam splitters for monitoring and adjusting the microwave power, a ferrite rotator to isolate the gyrotron from the reflected power and a Martin-Puplett interferometer for adjusting the polarisation. The Gaussian beam is reflected by curved mirrors inside the DNP-MAS-NMR probe to be incident at the sample along the MAS rotation axis. The beam is focussed to a ~1 mm waist at the top of the rotor and then gradually diverges to give much more efficient coupling throughout the sample than designs using direct waveguide irradiation. The probe can be used in triple channel HXY mode for 600 MHz (1)H and double channel HX mode for 284 MHz (1)H, with MAS sample temperatures ≥85 K. Initial data at 6.7 T and ~1 W pulsed microwave power are presented with (13)C enhancements of 60 for a frozen urea solution ((1)H-(13)C CP), 16 for bacteriorhodopsin in purple membrane ((1)H-(13)C CP) and 22 for (15)N in a frozen glycine solution ((1)H-(15)N CP) being obtained. In comparison with designs which irradiate perpendicular to the rotation axis the approach used here provides a highly efficient use of the incident microwave beam and an NMR-optimised coil design.

  18. Solid state structural analysis of new pentamidine analogs designed as chemotherapeutics that target DNA by X-ray diffraction and 13C, 15N CP/MAS NMR methods

    Science.gov (United States)

    Żabiński, Jerzy; Maciejewska, Dorota; Wolska, Irena

    2010-12-01

    The paper presents the solid-state analysis of the crystalline form of 1,5- bis[(4-cyanophenyl)- N-methylamino]pentane ( 1) and polycrystalline powder sample of 1,5- bis[(4-amidinophenyl)- N-methylamino]pentane dihydrochloride ( 2). The methods used are X-ray diffraction technique and 13C, 15N CP/MAS NMR spectroscopy in an attempt to detect the effects of possible polymorphism. Both methods indicate that only single conformers exist in the solid-state for 1 and 2. 1,5- Bis[(4-cyanophenyl)- N-methylamino]pentane 1, crystallizes in the orthorhombic space group P2 12 12. The asymmetric unit contains one half of the ordered molecule. Only weak intermolecular interactions were found in solid-state, in which methyl groups are engaged.

  19. Structure determination of uniformly {sup 13}C, {sup 15}N labeled protein using qualitative distance restraints from MAS solid-state {sup 13}C-NMR observed paramagnetic relaxation enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Tamaki, Hajime [Hokkaido University, Graduate School of Life Science (Japan); Egawa, Ayako [Osaka University, Institute for Protein Research (Japan); Kido, Kouki [Hokkaido University, Graduate School of Life Science (Japan); Kameda, Tomoshi [National Institute of Advanced Industrial Science and Technology, Biotechnology Research Institute for Drug Discovery (Japan); Kamiya, Masakatsu; Kikukawa, Takashi; Aizawa, Tomoyasu [Hokkaido University, Faculty of Advanced Life Science (Japan); Fujiwara, Toshimichi [Osaka University, Institute for Protein Research (Japan); Demura, Makoto, E-mail: demura@sci.hokudai.ac.jp [Hokkaido University, Faculty of Advanced Life Science (Japan)

    2016-01-15

    Magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) is a powerful method for structure determination of insoluble biomolecules. However, structure determination by MAS solid-state NMR remains challenging because it is difficult to obtain a sufficient amount of distance restraints owing to spectral complexity. Collection of distance restraints from paramagnetic relaxation enhancement (PRE) is a promising approach to alleviate this barrier. However, the precision of distance restraints provided by PRE is limited in solid-state NMR because of incomplete averaged interactions and intermolecular PREs. In this report, the backbone structure of the B1 domain of streptococcal protein G (GB1) has been successfully determined by combining the CS-Rosetta protocol and qualitative PRE restraints. The derived structure has a Cα RMSD of 1.49 Å relative to the X-ray structure. It is noteworthy that our protocol can determine the correct structure from only three cysteine-EDTA-Mn{sup 2+} mutants because this number of PRE sites is insufficient when using a conventional structure calculation method based on restrained molecular dynamics and simulated annealing. This study shows that qualitative PRE restraints can be employed effectively for protein structure determination from a limited conformational sampling space using a protein fragment library.

  20. Investigating sorption on iron-oxyhydroxide soil minerals by solid-state NMR spectroscopy: a 6Li MAS NMR study of adsorption and absorption on goethite

    DEFF Research Database (Denmark)

    Nielsen, Ulla Gro; Paik, Younkee; Julmis, Keinia;

    2005-01-01

    High-resolution 2H MAS NMR spectra can be obtained for nanocrystalline particles of goethite (alpha-FeOOH, particle size approximately 4-10 nm) at room temperature, facilitating NMR studies of sorption under environmentally relevant conditions. Li sorption was investigated as a function of pH, th...

  1. Observation of immobile regions in natural rubber at ambient temperature by solid-state C-13 CP/MAS NMR spectroscopy

    DEFF Research Database (Denmark)

    Larsen, F.H.; Rasmussen, T.; Pedersen, Walther Batsberg

    1999-01-01

    Employing C-13 CP/MAS NMR spectroscopy, the existence of immobile regions in natural rubber (cis-1,4-polyisoprene) corresponding to a few percent of the monomer units has been detected at ambient temperature. For synthetic rubbers no immobile regions have been detected at all. Applying different...

  2. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance.

    Science.gov (United States)

    Tan, Kong Ooi; Agarwal, Vipin; Meier, Beat H; Ernst, Matthias

    2016-09-01

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.

  3. Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra

    Energy Technology Data Exchange (ETDEWEB)

    Bellstedt, Peter [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany); Herbst, Christian [Ubon Ratchathani University, Department of Physics, Faculty of Science (Thailand); Haefner, Sabine; Leppert, Joerg; Goerlach, Matthias; Ramachandran, Ramadurai, E-mail: raman@fli-leibniz.de [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany)

    2012-12-15

    We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH with dual receivers, 3D NC Prime C and 3D C Prime NCA with sequential {sup 13}C acquisitions, 3D NHH and 3D NC Prime H with sequential {sup 1}H acquisitions and 3D CANH and 3D C'NH with broadband {sup 13}C-{sup 15}N mixing are demonstrated using microcrystalline samples of the {beta}1 immunoglobulin binding domain of protein G (GB1) and the chicken {alpha}-spectrin SH3 domain.

  4. Spin-transfer pathways in paramagnetic lithium transition-metal phosphates from combined broadband isotropic solid-state MAS NMR spectroscopy and DFT calculations.

    Science.gov (United States)

    Clément, Raphaële J; Pell, Andrew J; Middlemiss, Derek S; Strobridge, Fiona C; Miller, Joel K; Whittingham, M Stanley; Emsley, Lyndon; Grey, Clare P; Pintacuda, Guido

    2012-10-17

    Substituted lithium transition-metal (TM) phosphate LiFe(x)Mn(1-x)PO(4) materials with olivine-type structures are among the most promising next generation lithium ion battery cathodes. However, a complete atomic-level description of the structure of such phases is not yet available. Here, a combined experimental and theoretical approach to the detailed assignment of the (31)P NMR spectra of the LiFe(x)Mn(1-x)PO(4) (x = 0, 0.25, 0.5, 0.75, 1) pure and mixed TM phosphates is developed and applied. Key to the present work is the development of a new NMR experiment enabling the characterization of complex paramagnetic materials via the complete separation of the individual isotropic chemical shifts, along with solid-state hybrid DFT calculations providing the separate hyperfine contributions of all distinct Mn-O-P and Fe-O-P bond pathways. The NMR experiment, referred to as aMAT, makes use of short high-powered adiabatic pulses (SHAPs), which can achieve 100% inversion over a range of isotropic shifts on the order of 1 MHz and with anisotropies greater than 100 kHz. In addition to complete spectral assignments of the mixed phases, the present study provides a detailed insight into the differences in electronic structure driving the variations in hyperfine parameters across the range of materials. A simple model delimiting the effects of distortions due to Mn/Fe substitution is also proposed and applied. The combined approach has clear future applications to TM-bearing battery cathode phases in particular and for the understanding of complex paramagnetic phases in general.

  5. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo-Hidalgo, Ana G. [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico); Dugar, Sneha; Fu, Riqiang [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Hernandez-Maldonado, Arturo J., E-mail: arturoj.hernandez@upr.edu [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico)

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  6. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS.

    Science.gov (United States)

    Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2016-01-01

    Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).

  7. Electric dipolarizability of 7Li

    Indian Academy of Sciences (India)

    Sudhir R Jain; Arun K Jain; S Kailas

    2008-12-01

    We calculate the electric dipolarizability of 7Li nucleus within the cluster model and estimate a value of about 0.0188 fm3. We also discuss the possibility of observing this in the scattering of 7Li from a 208Pb target at energies about 30 MeV.

  8. Solid state video cameras

    CERN Document Server

    Cristol, Y

    2013-01-01

    Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.

  9. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    Solid State Physics, International Edition covers the fundamentals and the advanced concepts of solid state physics. The book is comprised of 18 chapters that tackle a specific aspect of solid state physics. Chapters 1 to 3 discuss the symmetry aspects of crystalline solids, while Chapter 4 covers the application of X-rays in solid state science. Chapter 5 deals with the anisotropic character of crystals. Chapters 6 to 8 talk about the five common types of bonding in solids, while Chapters 9 and 10 cover the free electron theory and band theory. Chapters 11 and 12 discuss the effects of moveme

  10. Solid State Division

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  11. /sup 7/Li production in Nova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Starrfield, S.; Truran, J.W.; Sparks, W.M.; Arnould, M.

    1978-06-01

    Calculations of /sup 7/Li production occurring as a concomitant of thermonuclear runaways in hydrogen envelopes of white dwarfs are reported. It is found that sufficient /sup 7/Li can be produced in models displaying fast--nova-like features to suggest that the corresponding objects represent significant contributors to the /sup 7/Li enrichment of galactic matter. The sensitivities of these results to various assumptions and uncertainties are discussed.

  12. Out-and-back {sup 13}C-{sup 13}C scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS

    Energy Technology Data Exchange (ETDEWEB)

    Barbet-Massin, Emeline; Pell, Andrew J. [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France); Jaudzems, Kristaps [Latvian Institute of Organic Synthesis (Latvia); Franks, W. Trent; Retel, Joren S. [Leibniz-Institut fuer Molekulare Pharmakologie (Germany); Kotelovica, Svetlana; Akopjana, Inara; Tars, Kaspars [Biomedical Research and Study Center (Latvia); Emsley, Lyndon [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France); Oschkinat, Hartmut [Leibniz-Institut fuer Molekulare Pharmakologie (Germany); Lesage, Anne; Pintacuda, Guido, E-mail: guido.pintacuda@ens-lyon.fr [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France)

    2013-08-15

    We present here {sup 1}H-detected triple-resonance H/N/C experiments that incorporate CO-CA and CA-CB out-and-back scalar-transfer blocks optimized for robust resonance assignment in biosolids under ultra-fast magic-angle spinning (MAS). The first experiment, (H)(CO)CA(CO)NH, yields {sup 1}H-detected inter-residue correlations, in which we record the chemical shifts of the CA spins in the first indirect dimension while during the scalar-transfer delays the coherences are present only on the longer-lived CO spins. The second experiment, (H)(CA)CB(CA)NH, correlates the side-chain CB chemical shifts with the NH of the same residue. These high sensitivity experiments are demonstrated on both fully-protonated and 100 %-H{sup N} back-protonated perdeuterated microcrystalline samples of Acinetobacter phage 205 (AP205) capsids at 60 kHz MAS.

  13. The solid state maser

    CERN Document Server

    Orton, J W; Walling, J C; Ter Haar, D

    1970-01-01

    The Solid State Maser presents readings related to solid state maser amplifier from the first tentative theoretical proposals that appeared in the early 1950s to the successful realization of practical devices and their application to satellite communications and radio astronomy almost exactly 10 years later. The book discusses a historical account of the early developments (including that of the ammonia maser) of solid state maser; the properties of paramagnetic ions in crystals; the development of practical low noise amplifiers; and the characteristics of maser devices designed for communica

  14. Theoretical solid state physics

    CERN Document Server

    Haug, Albert

    2013-01-01

    Theoretical Solid State Physics, Volume 1 focuses on the study of solid state physics. The volume first takes a look at the basic concepts and structures of solid state physics, including potential energies of solids, concept and classification of solids, and crystal structure. The book then explains single-electron approximation wherein the methods for calculating energy bands; electron in the field of crystal atoms; laws of motion of the electrons in solids; and electron statistics are discussed. The text describes general forms of solutions and relationships, including collective electron i

  15. Understanding solid state physics

    CERN Document Server

    Holgate, Sharon Ann

    2009-01-01

    Where Sharon Ann Holgate has succeeded in this book is in packing it with examples of the application of solid state physics to technology. … All the basic elements of solid state physics are covered … . The range of materials is good, including as it does polymers and glasses as well as crystalline solids. In general, the style makes for easy reading. … Overall this book succeeds in showing the relevance of solid state physics to the modern world … .-Contemporary Physics, Vol. 52, No. 2, 2011I was indeed amused and inspired by the wonderful images throughout the book, carefully selected by th

  16. Characterization of polysulfone and polysulfone/vanillin microcapsules by 1H NMR spectroscopy, solid-state 13C CP/MAS-NMR spectroscopy, and N2 adsorption-desorption analyses.

    Science.gov (United States)

    Peña, Brisa; de Ménorval, Louis-Charles; Garcia-Valls, Ricard; Gumí, Tània

    2011-11-01

    Textile detergent and softener industries have incorporated perfume microencapsulation technology to improve their products. Perfume encapsulation allows perfume protection until use and provides a long-lasting fragrance release. But, certain industrial microcapsules show low encapsulation capacity and low material stability. Polysulfone capsules have been already proposed to solve these drawbacks. Among them, PSf/Vanillin capsules were considered as a desirable system. They present both good material stability and high encapsulation capacity. However, several factors such as the final location of the perfume in the polymeric matrix, the aggregation state that it has in the capsule and its interaction with the capsule components have not been studied yet. These factors can provide vast information about the capsule performance and its improvement. With the aim to characterize these parameters, the physical and chemical properties of PSf/Vanillin capsules have been investigated by nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and N(2) adsorption-desorption measurements. AFM micrograph and N(2) isotherms confirm that the presence of vanillin modify the physical structure of PSf/Vanillin microcapsules as it is trapped in the capsule porosity. NMR results show that vanillin is present in solid state in PSf/Vanillin microcapsules.

  17. Solid-state circuits

    CERN Document Server

    Pridham, G J

    2013-01-01

    Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided

  18. Solid state theory

    CERN Document Server

    Harrison, Walter A

    2011-01-01

    ""A well-written text . . . should find a wide readership, especially among graduate students."" - Dr. J. I. Pankove, RCA.The field of solid state theory, including crystallography, semi-conductor physics, and various applications in chemistry and electrical engineering, is highly relevant to many areas of modern science and industry. Professor Harrison's well-known text offers an excellent one-year graduate course in this active and important area of research. While presenting a broad overview of the fundamental concepts and methods of solid state physics, including the basic quantum theory o

  19. Solid-state dynamics of uranyl polyoxometalates.

    Science.gov (United States)

    Alam, Todd M; Liao, Zuolei; Zakharov, Lev N; Nyman, May

    2014-07-01

    Understanding fundamental uranyl polyoxometalate (POM) chemistry in solution and the solid state is the first step to defining its future role in the development of new actinide materials and separation processes that are vital to every step of the nuclear fuel cycle. Many solid-state geometries of uranyl POMs have been described, but we are only beginning to understand their chemical behavior, which thus far includes the role of templates in their self-assembly, and the dynamics of encapsulated species in solution. This study provides unprecedented detail into the exchange dynamics of the encapsulated species in the solid state through Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy. Although it was previously recognized that capsule-like molybdate and uranyl POMs exchange encapsulated species when dissolved in water, analogous exchange in the solid state has not been documented, or even considered. Here, we observe the extremely high rate of transport of Li(+) and aqua species across the uranyl shell in the solid state, a process that is affected by both temperature and pore blocking by larger species. These results highlight the untapped potential of emergent f-block element materials and vesicle-like POMs.

  20. Solid-State Devices.

    Science.gov (United States)

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine Corps enlisted personnel with the principles of solid-state devices and their functions. The course contains four study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the unit. The study units are divided into numbered work…

  1. Solid state physics

    CERN Document Server

    Brewster, Hilary D

    2009-01-01

    Solid state physics is an exhaustive introductory text for the students of physics. Keeping in mind, this book has been prepared to present the subject-matter in an easily understandable way without sacrificing the essential details and principles an yet avoiding redundant matter and unnecessary complications. This book is expected to meet adequately the need of the students for whom it is meant.

  2. Solid State Laser

    Science.gov (United States)

    1990-01-01

    The Titan-CW Ti:sapphire (titanium-doped sapphire) tunable laser is an innovation in solid-state laser technology jointly developed by the Research and Solid State Laser Divisions of Schwartz Electro-optics, Inc. (SEO). SEO is producing the laser for the commercial market, an outgrowth of a program sponsored by Langley Research Center to develop Ti:sapphire technology for space use. SEO's Titan-CW series of Ti:sapphire tunable lasers have applicability in analytical equipment designed for qualitative analysis of carbohydrates and proteins, structural analysis of water, starch/sugar analyses, and measurements of salt in meat. Further applications are expected in semiconductor manufacture, in medicine for diagnosis and therapy, and in biochemistry.

  3. Solid-state memcapacitor

    OpenAIRE

    Martinez, J; Di Ventra, M.; Pershin, Yu. V.

    2009-01-01

    We suggest a possible realization of a solid-state memory capacitive (memcapacitive) system. Our approach relies on the slow polarization rate of a medium between plates of a regular capacitor. To achieve this goal, we consider a multi-layer structure embedded in a capacitor. The multi-layer structure is formed by metallic layers separated by an insulator so that non-linear electronic transport (tunneling) between the layers can occur. The suggested memcapacitor shows hysteretic charge-voltag...

  4. Lattice dynamics in Bosonic 7 Li

    Science.gov (United States)

    Chen, Huiyao Y.; Jung, Minwoo; Rabinowitz, Jacob; Madjarov, Ivaylo S.; Cheung, Hil F. H.; Patil, Yogesh Sharad; Vengalattore, Mukund

    2016-05-01

    The light mass and strong spin-dependent interactions in 7 Li make it an attractive candidate to study Bosonic quantum magnetism and lattice dynamics in regimes where rapid dynamics is favored, e.g. percolative transport and entropy segregation. Such studies require large ensembles of quantum degenerate 7 Li atoms which has proved to be a technical challenge. We describe our ongoing efforts to overcome this challenge using Raman sideband cooling (RSC). In addition to enabling the rapid production of large degenerate gases, RSC is also a very powerful means of local control of lattice gas dynamics. Extending this to a spinful 7 Li Bose gas will also enable studies of transport and defect dynamics in F=1 lattice gases. This work is supported by the ARO MURI on non-equilibrium dynamics.

  5. Solid state physics

    CERN Document Server

    Burns, Gerald

    2013-01-01

    The objective of Solid State Physics is to introduce college seniors and first-year graduate students in physics, electrical engineering, materials science, chemistry, and related areas to this diverse and fascinating field. I have attempted to present this complex subject matter in a coherent, integrated manner, emphasizing fundamental scientific ideas to give the student a strong understanding and ""feel"" for the physics and the orders of magnitude involved. The subject is varied, covering many important, sophisticated, and practical areas, which, at first, may appear unrelated but which ar

  6. Solid state physics

    CERN Document Server

    Grosso, Giuseppe

    2013-01-01

    Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials. This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully de

  7. Solid state devices

    Science.gov (United States)

    1991-01-01

    The Solid State Device research program is directed toward developing innovative devices for space remote and in-situ sensing, and for data processing. Innovative devices can result from the standard structures in innovative materials such as low and high temperature superconductors, strained layer superlattices, or diamond films. Innovative devices can also result from innovative structures achieved using electron tunneling or nanolithography in standard materials. A final step is to use both innovative structures and innovative materials. A new area of emphasis is the miniaturization of sensors and instruments molded by using the techniques of electronic device fabrication to micromachine silicon into micromechanical and electromechanical sensors and actuators.

  8. Solid state phenomena

    CERN Document Server

    Lawrance, R

    1972-01-01

    Solid State Phenomena explores the fundamentals of the structure and their influence on the properties of solids. This book is composed of five chapters that focus on the electrical and thermal conductivities of crystalline solids. Chapter 1 describes the nature of solids, particularly metals and crystalline materials. This chapter also presents a model to evaluate crystal structure, the forces between atom pairs, and the mechanism of plastic and elastic deformation. Chapter 2 demonstrates random vibrations of atoms in a solid using a one-dimensional array, while Chapter 3 examines the resista

  9. Solid State Research.

    Science.gov (United States)

    2014-09-26

    Diadiuk, M.C. Plonko. and D.L. Hovey (to be published in AppI . Phys. Lett., January 1985). 3. CA-f. Cox. III (unpublished). 4. D. Yap and L.M. Johnson... AppI . Opt. 23. 2991 (1984). 5. L.M. Johnson and D. Yap. AppI . Opt. 23. 2988 (1984). 6. Solid State Research Report. Lincoln Laboratory, M.I.T. (1983...drift current. 21. A. Carenco, L. Menegaux, and N.T. Lenh, Appi . Phys. Lett. 40, 653 (1982). 22. F.J. Leonberger, J.P. Donnelly, and C.O. Bozler

  10. Sol-gel chemistry synthesis and DTA-TGA, XRPD, SIC and {sup 7}Li, {sup 31}P, {sup 29}Si MAS-NMR studies on the Li-NASICON Li{sub 3}Zr{sub 2-y}Si{sub 2-4y}P{sub 1+4y}O{sub 12} (0 Less-Than-Or-Slanted-Equal-To y Less-Than-Or-Slanted-Equal-To 0.5) system

    Energy Technology Data Exchange (ETDEWEB)

    Belam, W., E-mail: WahidBelam@yahoo.fr [Chemistry Department, Bizerta Science Faculty, 7021 Jarzouna, Bizerta (Tunisia)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer The samples of Li-NASICON were elaborated by sol-gel chemistry. Black-Right-Pointing-Pointer The calcined temperatures of the studied samples were deduced from their thermograms. Black-Right-Pointing-Pointer The recorded X-ray powder diffractograms were indexed in the rhombohedral system. Black-Right-Pointing-Pointer The synthesized Li-NASICON materials are excellent lithium fast cation conductors. - Abstract: Five selected compounds of Li-NASICON, Li{sub 3}Zr{sub 2-y}Si{sub 2-4y}P{sub 1+4y}O{sub 12} (0 Less-Than-Or-Slanted-Equal-To y Less-Than-Or-Slanted-Equal-To 0.5), were synthesized by sol-gel chemistry in order to obtain pure polycrystalline powder and then analyzed by different physicochemical characterizations such as coupled DTA (differential thermal analysis)-TGA (thermogravimetric analysis), XRPD (X-ray powder diffraction), CIS (complex impedance spectroscopy) and MAS (magic angle spinning)-NMR (nuclear magnetic resonance). So the calcined temperature of each sample has been deduced from its corresponding DTA-TGA thermogram. However, the recorded X-ray powder diffractograms were indexed in the rhombohedral system with R3{sup Macron }c space group which corresponds to the ideal structure of NASICON. Whereas, the complex impedance spectroscopy study showed that these Li-NASICON materials are excellent lithium fast cation conductors with total electric conductivity maximal value 1.97 Multiplication-Sign 10{sup -3} S cm{sup -1} at 293 K in the case of Li{sub 3}Zr{sub 1.5}P{sub 3}O{sub 12}. Furthermore, {sup 7}Li, {sup 31}P and {sup 29}Si MAS-NMR spectroscopy study and DFT/B3LYP theoretical calculations of chemical shifts were performed to discuss the ambiguousness that exists between the resonance peak number in the experimental spectrum and the crystallographic site number relative to Li{sub 3}Zr{sub 2}Si{sub 2}PO{sub 12}.

  11. Solid state magnetism

    CERN Document Server

    Crangle, John

    1991-01-01

    Solid state magnetism is important and attempts to understand magnetic properties have led to an increasingly deep insight into the fundamental make up of solids. Both experimental and theoretical research into magnetism continue to be very active, yet there is still much ground to cover before there can be a full understanding. There is a strong interplay between the developments of materials science and of magnetism. Hundreds of new materials have been dis­ covered, often with previously unobserved and puzzling magnetic prop­ erties. A large and growing technology exists that is based on the magnetic properties of materials. Very many devices used in everyday life involve magnetism and new applications are being invented all the time. Under­ standing the fundamental background to the applications is vital to using and developing them. The aim of this book is to provide a simple, up-to-date introduction to the study of solid state magnetism, both intrinsic and technical. It is designed to meet the needs a...

  12. Reaction mechanism study of 7Li(7Li, 6He) reaction at above Coulomb barrier energies

    Indian Academy of Sciences (India)

    V V Parkar; V Jha; S Santra; B J Roy; K Ramachandran; A Shrivastava; K Mahata; A Chatterjee; S Kailas

    2009-02-01

    The elastic scattering and the 6He angular distributions were measured in 7Li + 7Li reaction at two energies, lab = 20 and 25 MeV. FRDWBA calculations have been performed to explain the measured 6He data. The calculations were very sensitive to the choice of the optical model potentials in entrance and exit channels. The one-step proton transfer was found to be the dominant reaction mechanism in 6He production.

  13. Position sensitive solid state detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schnatterly, S.E.; Husk, D.

    1986-05-15

    Solid state detectors have been used for years as high quantum efficiency detectors for visible light. In this paper the use of PDA and CCD, solid state detectors, in the X-ray region will be discussed. In particular examples of data in the soft X-ray region are presented. Finally the use of phosphor coatings to enhance the sensitivity of solid state detectors is described.

  14. Solid state chemistry an introduction

    CERN Document Server

    Smart, Lesley E

    2012-01-01

    ""Smart and Moore are engaging writers, providing clear explanations for concepts in solid-state chemistry from the atomic/molecular perspective. The fourth edition is a welcome addition to my bookshelves. … What I like most about Solid State Chemistry is that it gives simple clear descriptions for a large number of interesting materials and correspondingly clear explanations of their applications. Solid State Chemistry could be used for a solid state textbook at the third or fourth year undergraduate level, especially for chemistry programs. It is also a useful resource for beginning graduate

  15. Luminescence and the solid state

    CERN Document Server

    Ropp, Richard C

    2013-01-01

    Since the discovery of the transistor in 1948, the study of the solid state has been burgeoning. Recently, cold fusion and the ceramic superconductor have given cause for excitement. There are two approaches possible to this area of science, namely, that of solid state physics and solid state chemistry, although both overlap extensively. The former is more concerned with electronic states in solids (including electromagnetics) whereas the latter is more concerned with interactions of atoms in solids. The area of solid state physics is well documented, however, there are very few texts which de

  16. Solid state research

    Science.gov (United States)

    McWhorter, Alan L.

    1989-03-01

    The Solid State division of Lexington Lincoln Lab reports on its progress for this quarter. The areas of study are: Time Dye Laser Using Integrated Optics; GaP Microlenses by Mass Transport; A New OMVPE Reactor for Growth of InP and Related Alloys; Microchannel Heat Sinks for Two-Dimensional High Power-Density Diode Laser Arrays; Novel Scalloped-Mirror Diffraction-Coupled Laser Arrays; Three-Mirror Ti:Al2O3 Ring Laser Cavity; Femtosecond TiAl2O3 Injection-Seeded Laser; End-Pumped Nd:LaF3 and Nd:LaMgA11O19 Lasers; Single Frequency Mixing of Frequency Modulated Laser Radiation; Vertical Rotating Disk OMVPE Reactor; New Electron Beam Lithography System; Dry Etching Induced Damage on Vertical Sidewalls of GaAs Channels; Homoepitaxial Semiconducting Diamond; 420 X 420 CCD Frame Transfer Imager; Technique for Monolithically Integrating GaAs/AlGaAs Lasers of Different Wavelengths; Superconducting Thin Films of BiSrCaCuO; and Nb Thin Film Capacitors for Superconductive Circuits.

  17. A Solid State Pyranometer

    Directory of Open Access Journals (Sweden)

    Dumitrescu Anca Laura

    2015-12-01

    Full Text Available The construction of a solid state device-based pyranometer designated to broadband irradiance measurements is presented in this paper. The device is built on the physical basis that the temperature difference between two bodies of identical shape and external surface area, identically exposed to the incident radiation, but having different absorption and heat transfer coefficients (e.g. one body is painted white and the other is painted black, is proportional to the incident irradiance. This proportionality may be put in evidence if the two bodies consisting of identical arrays of correspondingly painted semiconductor diodes, due to the thermal behaviour of their p-n junction. It is theoretically predicted and experimentally confirmed that the voltage drop across a diode passed through a constant forward current linearly decreases with the temperature of the junction. In other words, a signal proportional to the irradiance of the light source may be obtained via conventional analog electronics. The calibration of the apparatus, as performed by means of a professional device (LP PYRA 03, indicates a good linearity.

  18. Radio Frequency Solid State Amplifiers

    CERN Document Server

    Jacob, J

    2015-01-01

    Solid state amplifiers are being increasingly used instead of electronic vacuum tubes to feed accelerating cavities with radio frequency power in the 100 kW range. Power is obtained from the combination of hundreds of transistor amplifier modules. This paper summarizes a one hour lecture on solid state amplifiers for accelerator applications.

  19. Glass for Solid State Devices

    Science.gov (United States)

    Bailey, R. F.

    1982-01-01

    Glass film has low intrinsic compressive stress for isolating active layers of magnetic-bubble and other solid-state devices. Solid-state device structure incorporates low-stress glasses as barrier and spacer layers. Glass layers mechanically isolate substrate, conductor, and nickel/iron layers.

  20. Solid State NMR Characterization of Complex Metal Hydrides systems for Hydrogen Storage Applications

    Directory of Open Access Journals (Sweden)

    Son-Jong Hwang

    2011-12-01

    Full Text Available Solid state NMR is widely applied in studies of solid state chemistries for hydrogen storage reactions. Use of 11B MAS NMR in studies of metal borohydrides (BH4 is mainly focused, revisiting the issue of dodecaborane formation and observation of 11B{1H} Nuclear Overhauser Effect.

  1. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1996-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, mode locking, ultrashort-pulse generation etc. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  2. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1999-01-01

    Solid-State Laser Engineering, written from an industrial perspective, discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. This new edition has extensively been updated to account for recent developments in the areas of diode-laser pumping, laser materials, and nonlinear crystals. Walter Koechner received a doctorate in Electrical Engineering from the University of Technology in Vienna, Austria, in 1965. He has published numerous papers in the fields of solid-state physics, optics, and lasers. Dr. Koechner is founder and president of Fibertek, Inc., a research firm specializing in the design, development, and production of advanced solid-state lasers, optical radars, and remote-sensing systems.

  3. Solid State Photovoltaic Research Branch

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  4. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1988-01-01

    Solid-State Laser Engineering is written from an industrial perspective and discusses in detail the characteristics, design, construction and practical problems of solid-state lasers. Emphasis is placed on engineering and practical considerations, with a phenomenological treatment using modelsbeing preferred to abstract mathematical derivations. This new edition has been updated and revised to include important developments, concepts and technologies that have emerged since the publication of the first edition.

  5. Organic solid-state lasers

    CERN Document Server

    Forget, Sébastien

    2013-01-01

    Organic lasers are broadly tunable coherent sources, potentially compact, convenient and manufactured at low-costs. Appeared in the mid 60’s as solid-state alternatives for liquid dye lasers, they recently gained a new dimension after the demonstration of organic semiconductor lasers in the 90's. More recently, new perspectives appeared at the nanoscale, with organic polariton and surface plasmon lasers. After a brief reminder to laser physics, a first chapter exposes what makes organic solid-state organic lasers specific. The laser architectures used in organic lasers are then reviewed, with a state-of-the-art review of the performances of devices with regard to output power, threshold, lifetime, beam quality etc. A survey of the recent trends in the field is given, highlighting the latest developments with a special focus on the challenges remaining for achieving direct electrical pumping of organic semiconductor lasers. A last chapter covers the applications of organic solid-state lasers.

  6. Solid-State Laser Engineering

    CERN Document Server

    Koechner, Walter

    2006-01-01

    Written from an industrial perspective, Solid-State Laser Engineering discusses in detail the characteristics, design, construction, and performance of solid-state lasers. Emphasis is placed on engineering and practical considerations; phenomenological aspects using models are preferred to abstract mathematical derivations. Since its first edition almost 30 years ago this book has become the standard in the field of solid-state lasers for scientists,engineers and graduate students. This new edition has been extensively revised and updated to account for recent developments in the areas of diode-laser pumping, laser materials and nonlinear crystals. Completely new sections have been added dealing with frequency control, the theory of mode-locking, femto second lasers, high efficiency harmonic generation, passive and acousto-optic Q-switching, semiconductor saturable absorber mirrors (SESAM) and peridically poled nonlinear crystals.

  7. Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR

    Science.gov (United States)

    Rosay, Melanie; Blank, Monica; Engelke, Frank

    2016-03-01

    Advances in dynamic nuclear polarization (DNP) instrumentation and methodology have been key factors in the recent growth of solid-state DNP NMR applications. We review the current state of the art of solid-state DNP NMR instrumentation primarily based on available commercial platforms. We start with a general system overview, including options for microwave sources and DNP NMR probes, and then focus on specific developments for DNP at 100 K with magic angle spinning (MAS). Gyrotron microwave sources, passive components to transmit microwaves, the DNP MAS probe, a cooling device for low-temperature MAS, and sample preparation procedures including radicals for DNP are considered.

  8. Introduction to solid state electronics

    CERN Document Server

    Wang, FFY

    1989-01-01

    This textbook is specifically tailored for undergraduate engineering courses offered in the junior year, providing a thorough understanding of solid state electronics without relying on the prerequisites of quantum mechanics. In contrast to most solid state electronics texts currently available, with their generalized treatments of the same topics, this is the first text to focus exclusively and in meaningful detail on introductory material. The original text has already been in use for 10 years. In this new edition, additional problems have been added at the end of most chapters. These proble

  9. Solid state physics for metallurgists

    CERN Document Server

    Weiss, Richard J

    2013-01-01

    Metal Physics and Physical Metallurgy, Volume 6: Solid State Physics for Metallurgists provides an introduction to the basic understanding of the properties that make materials useful to mankind. This book discusses the electronic structure of matter, which is the domain of solid state physics.Organized into 12 chapters, this volume begins with an overview of the electronic structure of free atoms and the electronic structure of solids. This text then examines the basis of the Bloch theorem, which is the exact periodicity of the potential. Other chapters consider the fundamental assumption in

  10. Solid state physics an introduction

    CERN Document Server

    Hofmann, Philip

    2015-01-01

    A must-have textbook for any undergraduate studying solid state physics. This successful brief course in solid state physics is now in its second edition. The clear and concise introduction not only describes all the basic phenomena and concepts, but also such advanced issues as magnetism and superconductivity. Each section starts with a gentle introduction, covering basic principles, progressing to a more advanced level in order to present a comprehensive overview of the subject. The book is providing qualitative discussions that help undergraduates understand concepts even if they can?t foll

  11. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  12. Solid-state NMR structures of integral membrane proteins.

    Science.gov (United States)

    Patching, Simon G

    2015-01-01

    Solid-state NMR is unique for its ability to obtain three-dimensional structures and to measure atomic-resolution structural and dynamic information for membrane proteins in native lipid bilayers. An increasing number and complexity of integral membrane protein structures have been determined by solid-state NMR using two main methods. Oriented sample solid-state NMR uses macroscopically aligned lipid bilayers to obtain orientational restraints that define secondary structure and global fold of embedded peptides and proteins and their orientation and topology in lipid bilayers. Magic angle spinning (MAS) solid-state NMR uses unoriented rapidly spinning samples to obtain distance and torsion angle restraints that define tertiary structure and helix packing arrangements. Details of all current protein structures are described, highlighting developments in experimental strategy and other technological advancements. Some structures originate from combining solid- and solution-state NMR information and some have used solid-state NMR to refine X-ray crystal structures. Solid-state NMR has also validated the structures of proteins determined in different membrane mimetics by solution-state NMR and X-ray crystallography and is therefore complementary to other structural biology techniques. By continuing efforts in identifying membrane protein targets and developing expression, isotope labelling and sample preparation strategies, probe technology, NMR experiments, calculation and modelling methods and combination with other techniques, it should be feasible to determine the structures of many more membrane proteins of biological and biomedical importance using solid-state NMR. This will provide three-dimensional structures and atomic-resolution structural information for characterising ligand and drug interactions, dynamics and molecular mechanisms of membrane proteins under physiological lipid bilayer conditions.

  13. Fusion around the barrier for 7Li + 12C

    Indian Academy of Sciences (India)

    A Mukherjee; M Dasgupta; D J Hinde; C R Morton; A C Berriman; R D Butt; J O Newton; H Timmers

    2001-07-01

    Fusion cross-sections for the 7Li + 12C reaction have been measured at energies above the Coulomb barrier by the direct detection of evaporation residues. The heavy evaporation residues with energies below 3 MeV could not be separated out from the -particles in the spectrum and hence their contribution was estimated using statistical model calculations. The present work indicates that suppression of fusion cross-sections due to the breakup of 7Li may not be significant for 7Li + 12C reaction at energies around the barrier.

  14. Solid-state membrane module

    Science.gov (United States)

    Gordon, John Howard; Taylor, Dale M.

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  15. Advances in Solid State Physics

    CERN Document Server

    Kramer, B

    2006-01-01

    The present volume 45 of Advances in Solid-State Physics contains the written versions of selected invited lectures from the spring meeting of the Arbeitskreis Festkörperphysik of the Deutsche Physikalische Gesellschaft in the World Year of Physics 2005, the Einstein Year, which was held from 4 - 11 March 2005 in Berlin, Germany. Many topical talks given at the numerous symposia are included. Most of these were organized collaboratively by several of the divisions of the Arbeitskreis. The book presents, to some extent, the status of the field of solid-state physics in 2005 not only in Germany but also internationally. It is ''nanoscience'', namely the physics of quantum dots and wires, electrical transport, optical properties, spin transport in nanostructures, and magnetism on the nanoscale, that is of central interest to the physics community. Also, soft matter and biological systems are covered.

  16. Solid-state laser engineering

    CERN Document Server

    Koechner, Walter

    1992-01-01

    This book is written from an industrial perspective and provides a detailed discussion of solid-state lasers, their characteristics, design and construction. Emphasis is placed on engineering and practical considerations. The book is aimed mainly at the practicing scientist or engineer who is interested in the design or use of solid-state lasers, but the comprehensive treatment of the subject will make the work useful also to students of laser physics who seek to supplement their theoretical knowledge with engineering information. In order to present the subject as clearly as possible, phenomenological descriptions using models have been used rather than abstract mathematical descriptions. This results in a simplified presentation. The descriptions are enhanced by the inclusion of numerical and technical data, tables and graphs. This new edition has been updated and revised to take account of important new developments, concepts, and technologies that have emerged since the publication of the first and second...

  17. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2007-01-01

    The present volume 46 of Advances in Solid State Physics contains the written versions of selected invited lectures from the spring meeting of the Arbeitskreis Festkörperphysik of the Deutsche Physikalische Gesellschaft which was held from 27 to 31 March 2006 in Dresden, Germany. Many topical talks given at the numerous symposia are included. Most of these were organized collaboratively by several of the divisions of the Arbeitskreis. The topis range from zero-dimensional physics in quantum dots, molecules and nanoparticles over one-dimensional physics in nanowires and 1d systems to more applied subjects like optoelectronics and materials science in thin films. The contributions span the whole width of solid-state physics from truly basic science to applications.

  18. Solid state physics at ISOLDE

    CERN Document Server

    Deicher, M; Wichert, T

    2003-01-01

    Radioactive atoms have been used in solid state physics and in materials science for decades. Besides their classical applications as tracers for diffusion studies, nuclear techniques such as Mossbauer spectroscopy, perturbed gamma gamma angular correlation, beta -NMR, and emission channeling make use of nuclear properties (via hyperfine interactions or emitted alpha or beta particles) to gain microscopic information on structural and dynamical properties of solids. During the last decade, the availability of many different radioactive isotopes as clean ion beams at ISOL facilities like ISOLDE/CERN has triggered a new era involving methods sensitive to the optical and electronic properties of solids, especially in the field of semiconductor physics. This overview will browse through ongoing solid state physics experiments with radioactive ion beams at ISOLDE. A wide variety of problems is under study, involving bulk properties, surfaces and interfaces in many different systems like semiconductors, superconduc...

  19. Solid-State Nuclear Power

    Science.gov (United States)

    George, Jeffrey A.

    2012-01-01

    A strategy for "Solid-State" Nuclear Power is proposed to guide development of technologies and systems into the second 50 years of nuclear spaceflight. The strategy emphasizes a simple and highly integrated system architecture with few moving parts or fluid loops; the leverage of modern advances in materials, manufacturing, semiconductors, microelectromechanical and nanotechnology devices; and the targeted advancement of high temperature nuclear fuels, materials and static power conversion to enable high performance from simple system topologies.

  20. Modeling solid-state precipitation

    CERN Document Server

    Nebylov, AlexanderKozeschnik, Ernst

    2012-01-01

    Over recent decades, modeling and simulation of solid-state precipitation has attracted increased attention in academia and industry due to their important contributions in designing properties of advanced structural materials and in increasing productivity and decreasing costs for expensive alloying. In particular, precipitation of second phases is an important means for controlling the mechanical-technological properties of structural materials. However, profound physical modeling of precipitation is not a trivial task. This book introduces you to the classical methods of precipitation model

  1. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2008-01-01

    The present volume 47 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2007 Spring Meeting of the Arbeitskreis Festkörperphysik which was held in Regensburg, Germany, from March 26 to 30, 2007 in conjunction with the 71st Annual Meeting of the Deutsche Physikalische Gesellschaft.It gives an overview of the present status of solid state physics where low-dimensional systems such as quantum dots and quantum wires are dominating. The importance of magnetic materials is reflected by the large number of contributions in the part dealing with ferromagnetic films and particles. One of the most exciting achievements of the last couple of years is the successful application of electrical contacts to and the investigation of single layers of graphene. This exciting physics is covered in Part IV of this book. Terahertz physics is another rapidly moving field which is presented here by five contributions. Achievements in solid state physics are only rarely...

  2. Structural characterisation of amorphous materials by solid state NMR

    CERN Document Server

    Mollison, N B

    2002-01-01

    Solid state nuclear magnetic resonance (NMR) is a structural elucidation technique that is ideal as a probe in the investigation of atomic structure of highly complex amorphous materials. In this study, NMR is employed in the structural characterisation of a series of sodium-lithium disilicate glasses. These so-called 'mixed-alkali' glasses are of great scientific interest, since they exhibit non-linear ionic transport related properties; the theory of which is not understood, but is thought to be related to the cation distribution in the disilicate network. This project attempts to utilise solid state NMR to its fullest potential, by combining several techniques, including the novel MQMAS experiment and a series of double resonance measurements. The double resonance techniques TRAPDOR and SEDOR have been attempted to measure sup 2 sup 9 Si-left brace sup 2 sup 3 Na right brace and sup 6 sup , sup 7 Li-left brace sup 7 sup , sup 6 Li right brace interactions respectively. Since these experiments rely on the d...

  3. Neglect of Solid State Chemistry Scored

    Science.gov (United States)

    Chemical and Engineering News, 1974

    1974-01-01

    At a recent symposium concerning the teaching of solid state chemistry in the classroom, many educators indicated that important areas of solid state chemistry were being neglected in college curricula. (RH)

  4. The Oxford solid state basics

    CERN Document Server

    Simon, Steven H

    2013-01-01

    The study of solids is one of the richest, most exciting, and most successful branches of physics. While the subject of solid state physics is often viewed as dry and tedious this new book presents the topic instead as an exciting exposition of fundamental principles and great intellectual breakthroughs. Beginning with a discussion of how the study of heat capacity of solids ushered in the quantum revolution, the author presents the key ideas of the field while emphasizing the deepunderlying concepts. The book begins with a discussion of the Einstein/Debye model of specific heat, and the Drude

  5. Contamination and solid state welds.

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Bernice E.

    2007-05-01

    Since sensitivity to contamination is one of the verities of solid state joining, there is a need for assessing contamination of the part(s) to be joined, preferably nondestructively while it can be remedied. As the surfaces that are joined in pinch welds are inaccessible and thus provide a greater challenge, most of the discussion is of the search for the origin and effect of contamination on pinch welding and ways to detect and mitigate it. An example of contamination and the investigation and remediation of such a system is presented. Suggestions are made for techniques for nondestructive evaluation of contamination of surfaces for other solid state welds as well as for pinch welds. Surfaces that have good visual access are amenable to inspection by diffuse reflection infrared Fourier transform (DRIFT) spectroscopy. Although other techniques are useful for specific classes of contaminants (such as hydrocarbons), DRIFT can be used most classes of contaminants. Surfaces such as the interior of open tubes or stems that are to be pinch welded can be inspected using infrared reflection spectroscopy. It must be demonstrated whether or not this tool can detect graphite based contamination, which has been seen in stems. For tubes with one closed end, the technique that should be investigated is emission infrared spectroscopy.

  6. Solid-state proton conductors

    Energy Technology Data Exchange (ETDEWEB)

    Jewulski, J.R.; Osif, T.L.; Remick, R.J.

    1990-12-01

    The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling and optimization studies. Correlation and optimization studies, to include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells including the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms. 164 refs., 27 figs., 13 tabs.

  7. Advances in Solid State Physics

    CERN Document Server

    Haug, Rolf

    2009-01-01

    The present volume 48 of the Advances in Solid State Physics contains the written version of a large number of the invited talks of the 2008 Spring Meeting of the DPG section Condensed Matter Physics (Sektion kondensierte Materie der DPG) which was held in Berlin, Germany, and gives a nice overview of the present status of condensed matter physics. Low-dimensional systems are dominating the field and especially nanowires and quantum dots. In recent years one learned how to produce nanowires directly during a growth process. Therefore, a number of articles is related to such nanowires. In nanoparticles and quantum dots, the dimensionality is further reduced and we learn more and more how to produce such systems in a defined way and what effects result from the confinement in all three dimensions. Spin effects and magnetism is another important field of present-day research in solid state physics. The third chapter covers this physics. The growing interest into organic materials and biological systems is reflec...

  8. Solid-state proton conductors

    Science.gov (United States)

    Jewulski, J. R.; Osif, T. L.; Remick, R. J.

    1990-12-01

    The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling, and optimization studies. Correlation and optimization studies are described which include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells are presented which include the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms.

  9. Solid state chemistry and its applications

    CERN Document Server

    West, Anthony R

    2013-01-01

    Solid State Chemistry and its Applications, 2nd Edition: Student Edition is an extensive update and sequel to the bestselling textbook Basic Solid State Chemistry, the classic text for undergraduate teaching in solid state chemistry worldwide. Solid state chemistry lies at the heart of many significant scientific advances from recent decades, including the discovery of high-temperature superconductors, new forms of carbon and countless other developments in the synthesis, characterisation and applications of inorganic materials. Looking forward, solid state chemistry will be crucial for the

  10. Solid State Lighting Program (Falcon)

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, Steven

    2012-06-30

    Over the past two years, KLA-Tencor and partners successfully developed and deployed software and hardware tools that increase product yield for High Brightness LED (HBLED) manufacturing and reduce product development and factory ramp times. This report summarizes our development effort and details of how the results of the Solid State Light Program (Falcon) have started to help HBLED manufacturers optimize process control by enabling them to flag and correct identified killer defect conditions at any point of origin in the process manufacturing flow. This constitutes a quantum leap in yield management over current practice. Current practice consists of die dispositioning which is just rejection of bad die at end of process based upon probe tests, loosely assisted by optical in-line monitoring for gross process deficiencies. For the first time, and as a result of our Solid State Lighting Program, our LED manufacturing partners have obtained the software and hardware tools that optimize individual process steps to control killer defects at the point in the processes where they originate. Products developed during our two year program enable optimized inspection strategies for many product lines to minimize cost and maximize yield. The Solid State Lighting Program was structured in three phases: i) the development of advanced imaging modes that achieve clear separation between LED defect types, improves signal to noise and scan rates, and minimizes nuisance defects for both front end and back end inspection tools, ii) the creation of defect source analysis (DSA) software that connect the defect maps from back-end and front-end HBLED manufacturing tools to permit the automatic overlay and traceability of defects between tools and process steps, suppress nuisance defects, and identify the origin of killer defects with process step and conditions, and iii) working with partners (Philips Lumileds) on product wafers, obtain a detailed statistical correlation of automated

  11. Solid-State Random Lasers

    CERN Document Server

    Noginov, Mikhail A

    2005-01-01

    Random lasers are the simplest sources of stimulated emission without cavity, with the feedback provided by scattering in a gain medium. First proposed in the late 60’s, random lasers have grown to a large research field. This book reviews the history and the state of the art of random lasers, provides an outline of the basic models describing their behavior, and describes the recent advances in the field. The major focus of the book is on solid-state random lasers. However, it also briefly describes random lasers based on liquid dyes with scatterers. The chapters of the book are almost independent of each other. So, the scientists or engineers interested in any particular aspect of random lasers can read directly the relevant section. Researchers entering the field of random lasers will find in the book an overview of the field of study. Scientists working in the field can use the book as a reference source.

  12. Solid state sciences committee forum

    Science.gov (United States)

    Smith, Philip

    1992-05-01

    The 1991 SSSC Forum was conducted under the auspices of the Board on Physics and Astronomy's Solid State Sciences Committee (SSSC) and cosponsored with the National Materials Advisory Board (NMAB). The Forum was the culmination of a year-long dissemination effort following up the NCR study Materials Science and Engineering for the 1990s that was released in September of 1989 and successfully brought together experts and policy makers in the field of advanced materials processing to discuss issues pertinent to the field. Support for the Forum was provided by the Air Force office of Scientific Research (AFOSR), the Department of Energy (DOE), the National Science Foundation (NSF), and the office of Naval Research (ONR).

  13. Inside Solid State Drives (SSDs)

    CERN Document Server

    Micheloni, Rino; Eshghi, Kam

    2013-01-01

    Solid State Drives (SSDs) are gaining momentum in enterprise and client applications, replacing Hard Disk Drives (HDDs) by offering higher performance and lower power. In the enterprise, developers of data center server and storage systems have seen CPU performance growing exponentially for the past two decades, while HDD performance has improved linearly for the same period. Additionally, multi-core CPU designs and virtualization have increased randomness of storage I/Os. These trends have shifted performance bottlenecks to enterprise storage systems. Business critical applications such as online transaction processing, financial data processing and database mining are increasingly limited by storage performance. In client applications, small mobile platforms are leaving little room for batteries while demanding long life out of them. Therefore, reducing both idle and active power consumption has become critical. Additionally, client storage systems are in need of significant performance improvement as well ...

  14. Solid State Multinuclear Magnetic Resonance Investigation of Electrolyte Decomposition Products on Lithium Ion Electrodes

    Science.gov (United States)

    DeSilva, J .H. S. R.; Udinwe, V.; Sideris, P. J.; Smart, M. C.; Krause, F. C.; Hwang, C.; Smith, K. A.; Greenbaum, S. G.

    2012-01-01

    Solid electrolyte interphase (SEI) formation in lithium ion cells prepared with advanced electrolytes is investigated by solid state multinuclear (7Li, 19F, 31P) magnetic resonance (NMR) measurements of electrode materials harvested from cycled cells subjected to an accelerated aging protocol. The electrolyte composition is varied to include the addition of fluorinated carbonates and triphenyl phosphate (TPP, a flame retardant). In addition to species associated with LiPF6 decomposition, cathode NMR spectra are characterized by the presence of compounds originating from the TPP additive. Substantial amounts of LiF are observed in the anodes as well as compounds originating from the fluorinated carbonates.

  15. Solid-state rechargeable magnesium battery

    Science.gov (United States)

    Shao, Yuyan; Liu, Jun; Liu, Tianbiao; Li, Guosheng

    2016-09-06

    Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency .gtoreq.95% and exhibit cycling stability for at least 50 cycles.

  16. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  17. 1020MHz single-channel proton fast magic angle spinning solid-state NMR spectroscopy.

    Science.gov (United States)

    Pandey, Manoj Kumar; Zhang, Rongchun; Hashi, Kenjiro; Ohki, Shinobu; Nishijima, Gen; Matsumoto, Shinji; Noguchi, Takashi; Deguchi, Kenzo; Goto, Atsushi; Shimizu, Tadashi; Maeda, Hideaki; Takahashi, Masato; Yanagisawa, Yoshinori; Yamazaki, Toshio; Iguchi, Seiya; Tanaka, Ryoji; Nemoto, Takahiro; Miyamoto, Tetsuo; Suematsu, Hiroto; Saito, Kazuyoshi; Miki, Takashi; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-12-01

    This study reports a first successful demonstration of a single channel proton 3D and 2D high-throughput ultrafast magic angle spinning (MAS) solid-state NMR techniques in an ultra-high magnetic field (1020MHz) NMR spectrometer comprised of HTS/LTS magnet. High spectral resolution is well demonstrated.

  18. Solid state NMR and pair distribution function studies of silicon electrodes for lithium-ion batteries

    Science.gov (United States)

    Key, Baris

    observed in the in situ NMR experiments; this mechanism results in self-discharge, and potentially capacity loss. The rate of this self-discharge process is much slower when CMC (carboxymethylcellulose) is used as the binder. Previous work has shown that the electrochemical performance of nanoparticulate crystalline silicon is different from the bulk. The lithiation and delithiation mechanisms of nano-Si for lithium ion batteries are studied by using ex-situ solid state MAS NMR and PDF analysis. The main differences vs. bulk lithiation and delithiation are identified by characterizing the amorphous phases formed.

  19. Solid-state proton conductors

    Energy Technology Data Exchange (ETDEWEB)

    Remick, R.J.; Jewulski, J.; Osif, T.

    1989-01-01

    Work on this project is divided into three tasks. In the first, a comprehensive literature review was performed for the purpose of collecting data on solid proton conductors. The data was then analyzed with the goal of correlating physical and chemical characteristics with protonic conductivity in order to gain a better understanding of the phenomenon. In the second task, the results of the correlation study were used to choose an electrolyte system in which to work and to aid in the formulation of new candidate proton conductors. Under the third task, a universal test stand was constructed which can measure both electronic and protonic conductivity and which can be converted to use as a solid state fuel cell test stand. Samples of doped SrCe{sub 0.95}Yb{sub 0.05}O{sub 3} have been coated with palladium electrodes and the mechanism responsible for ionic conductivity through this material is currently under study. 6 refs., 1 fig.

  20. Materials for diode pumped solid state lasers

    Science.gov (United States)

    Chase, L. L.; Davis, L. E.; Krupke, W. F.; Payne, S. A.

    1991-07-01

    The advantages of semiconductor diode lasers and laser arrays as pump sources for solid state lasers are reviewed. The properties that are desirable in solid state laser media for various diode pumping applications are discussed, and the characteristics of several promising media are summarized.

  1. Macroscopic modelling of solid-state fermentation

    NARCIS (Netherlands)

    Hoogschagen, M.J.

    2007-01-01

    Solid-state fermentation is different from the more well known process of liquid fermentation because no free flowing water is present. The technique is primarily used in Asia. Well-known products are the foods tempe, soy sauce and saké. In industrial solid-state fermentation, the substrate usually

  2. Solid-state polymeric dye lasers

    CERN Document Server

    Singh, S; Sridhar, G; Muthuswamy, V; Raja, K

    2003-01-01

    This paper presents a review of the organic solid-state polymer materials, which have become established as a new laser media. The photostability of these materials is discussed. Different types of solid-state lasers built around these materials are also reviewed.

  3. Quantum Computing in Solid State Systems

    CERN Document Server

    Ruggiero, B; Granata, C

    2006-01-01

    The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.

  4. Solid State Reactor Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mays, G.T.

    2004-03-10

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas

  5. Solid State Nuclear Magnetic Resonance Investigation of Polymer Backbone Dynamics in Poly(Ethylene Oxide) Based Lithium and Sodium Polyether-ester-sulfonate Ionomers

    Energy Technology Data Exchange (ETDEWEB)

    Roach, David J.; Dou, Shichen; Colby, Ralph H.; Mueller, Karl T.

    2013-01-01

    Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (Tg) have been investigated using solid-state nuclear magnetic resonance (NMR). Experiments detecting 13C with 1H decoupling under magic angle spinning (MAS) conditions identified the different components of the polymer backbone (PEO spacer and isophthalate groups) and their relative mobilities for a suite of lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) 1H-13C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content and identity. Each of the main backbone components exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and 1H spin-lattice relaxation rate measurements. Previous 1H and 7Li spin-lattice relaxation measurements focused on both the polymer backbone and cation motion on the nanosecond timescale. The studies presented here assess the slower timescale motion of the polymer backbone allowing for a more comprehensive understanding of the polymer dynamics. The temperature dependences of 13C linewidths were used to both qualitatively and quantitatively examine the effects of cation content and identity on PEO spacer mobility. Variable contact time 1H-13C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, reported via the rate of magnetization transfer from 1H to 13C nuclei, becomes similar for T ≳ 1.1 Tg in all ionic samples, indicating that at similar elevated reduced temperatures the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results present an improved picture, beyond those of previous findings, for

  6. Solid-state devices and applications

    CERN Document Server

    Lewis, Rhys

    1971-01-01

    Solid-State Devices and Applications is an introduction to the solid-state theory and its devices and applications. The book also presents a summary of all major solid-state devices available, their theory, manufacture, and main applications. The text is divided into three sections. The first part deals with the semiconductor theory and discusses the fundamentals of semiconductors; the kinds of diodes and techniques in their manufacture; the types and modes of operation of bipolar transistors; and the basic principles of unipolar transistors and their difference with bipolar transistors. The s

  7. Silicon solid state devices and radiation detection

    CERN Document Server

    Leroy, Claude

    2012-01-01

    This book addresses the fundamental principles of interaction between radiation and matter, the principles of working and the operation of particle detectors based on silicon solid state devices. It covers a broad scope with respect to the fields of application of radiation detectors based on silicon solid state devices from low to high energy physics experiments including in outer space and in the medical environment. This book covers stateof- the-art detection techniques in the use of radiation detectors based on silicon solid state devices and their readout electronics, including the latest developments on pixelated silicon radiation detector and their application.

  8. Solid State Lighting Reliability Components to Systems

    CERN Document Server

    Fan, XJ

    2013-01-01

    Solid State Lighting Reliability: Components to Systems begins with an explanation of the major benefits of solid state lighting (SSL) when compared to conventional lighting systems including but not limited to long useful lifetimes of 50,000 (or more) hours and high efficacy. When designing effective devices that take advantage of SSL capabilities the reliability of internal components (optics, drive electronics, controls, thermal design) take on critical importance. As such a detailed discussion of reliability from performance at the device level to sub components is included as well as the integrated systems of SSL modules, lamps and luminaires including various failure modes, reliability testing and reliability performance. This book also: Covers the essential reliability theories and practices for current and future development of Solid State Lighting components and systems Provides a systematic overview for not only the state-of-the-art, but also future roadmap and perspectives of Solid State Lighting r...

  9. Nanorod Array Solid State Neutron Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR project, Synkera proposes to develop and commercialize solid-state neutron detectors of a unique architecture that will enable sensor modules...

  10. Solid-state diffusion in amorphous zirconolite

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.; Dove, M. T.; Trachenko, K. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Zarkadoula, E. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6138 (United States); Todorov, I. T. [STFC Daresbury Laboratory, Warrington WA4 1EP (United Kingdom); Geisler, T. [Steinmann-Institut für Geologie, Mineralogie und Paläontologie, University of Bonn, D-53115 Bonn (Germany); Brazhkin, V. V. [Institute for High Pressure Physics, RAS, 142190 Moscow (Russian Federation)

    2014-11-14

    We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.

  11. Crystal structure and tautomerism of Pigment Yellow 138 determined by X-ray powder diffraction and solid-state NMR

    DEFF Research Database (Denmark)

    Gumbert, Silke D.; Körbitzer, Meike; Alig, Edith;

    2016-01-01

    The crystal structure of C.I. Pigment Yellow 138 was determined from X-ray powder diffraction data using real-space methods with subsequent Rietveld refinements. The tautomeric state was investigated by solid-state 1D and 2D multinuclear NMR experiments. In the crystals, the compound exhibits...... the NH-tautomer with a hydrogen atom situated at the nitrogen of the quinoline moiety. Direct evidence of the presence of the NH-tautomer is provided by 1H–14N HMQC solid-state NMR at very fast MAS. Solid-state dispersion-corrected density functional theory calculations with BLYP-D3 confirm...

  12. Thermal management of solid state power switches

    OpenAIRE

    Tighe, Christopher James Frederick

    2011-01-01

    The transient temperature of solid state power switches is investigated using thermal resistance network modelling and experimental testing. The ability of a heat sink mounted to the top of the device to reduce the transient temperature is assessed. Transient temperatures for heat pulses of up to 100ms are of most interest. The transient temperature distribution inside a typical stack-up of a solid state power switch is characterised. The thermal effects of adding a heat sink to the top o...

  13. Research of solid state recorder for spacecraft

    OpenAIRE

    Shirakura, Masashi; Ichikawa, Satoshi; Sasada, Takeshi; Ohashi, Eiji; 白倉 政志; 市川 愉; 笹田 武志; 大橋 永嗣

    2006-01-01

    This research is to develop advanced, small, light-weight and low power consumption Solid State Recorder (SSR) on spacecraft utilizing the newest commercial semi-conductor memory device. We have manufactured, tested and evaluated next generation solid state recorder, researched high-efficient Error Detection And Correction code (EDAC). And also experimented and analyzed mission data of SSR on Mission Demonstration Satellite-1 (MDS-1) on orbit.

  14. Research of solid state recorder on spacecraft

    OpenAIRE

    Ichikawa, Satoshi; Shirakura, Masashi; Sasada, Takeshi; 市川 愉; 白倉 政志; 笹田 武志

    2004-01-01

    This research is to develop advanced, small, light-weight and low power consumption solid state recorder (SSR) on spacecraft utilizing the newest commercial semi-conductor memory device. Next generation solid state recorder has been manufactured, tested and evaluated, high-efficient error detection and correction code (EDAC) have been researched, and also mission data of SSR on Mission Demonstration Satellite-1 (MDS-1) on orbit has been experimented and analyzed.

  15. In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach.

    Science.gov (United States)

    Zhang, Weiping; Xu, Shutao; Han, Xiuwen; Bao, Xinhe

    2012-01-07

    In situ solid-state NMR is a well-established tool for investigations of the structures of the adsorbed reactants, intermediates and products on the surface of solid catalysts. The techniques allow identifications of both the active sites such as acidic sites and reaction processes after introduction of adsorbates and reactants inside an NMR rotor under magic angle spinning (MAS). The in situ solid-state NMR studies of the reactions can be achieved in two ways, i.e. under batch-like or continuous-flow conditions. The former technique is low cost and accessible to the commercial instrument while the latter one is close to the real catalytic reactions on the solids. This critical review describes the research progress on the in situ solid-state NMR techniques and the applications in heterogeneous catalysis under batch-like and continuous-flow conditions in recent years. Some typical probe molecules are summarized here to detect the Brønsted and Lewis acidic sites by MAS NMR. The catalytic reactions discussed in this review include methane aromatization, olefin selective oxidation and olefin metathesis on the metal oxide-containing zeolites. With combining the in situ MAS NMR spectroscopy and the density functional theoretical (DFT) calculations, the intermediates on the catalyst can be identified, and the reaction mechanism is revealed. Reaction kinetic analysis in the nanospace instead of in the bulk state can also be performed by employing laser-enhanced MAS NMR techniques in the in situ flow mode (163 references).

  16. Solid State Physics Introduction to the Theory

    CERN Document Server

    Patterson, James D

    2007-01-01

    Learning Solid State Physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One definition of Solid State Physics is it is the study of the physical (e.g. the electrical, dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. In one sense, Solid State Physics is more like chemistry than some other branches of physics because it focuses on common properties of large classes of materials. It is typical that Solid State Physics emphasizes how physics properties link to electronic structure. We have retained the term Solid State Physics, even though Condensed Matter Physics is more commonly used. Condensed Matter Physics includes liquids and non-crystalline solids such as glass, which we shall not discuss in detail. Modern Solid State Physics came of age in ...

  17. Ultra fast magic angle spinning solid - state NMR spectroscopy of intact bone.

    Science.gov (United States)

    Singh, Chandan; Rai, Ratan Kumar; Kayastha, Arvind M; Sinha, Neeraj

    2016-02-01

    Ultra fast magic angle spinning (MAS) has been a potent method to significantly average out homogeneous/inhomogeneous line broadening in solid-state nuclear magnetic resonance (ssNMR) spectroscopy. It has given a new direction to ssNMR spectroscopy with its different applications. We present here the first and foremost application of ultra fast MAS (~60 kHz) for ssNMR spectroscopy of intact bone. This methodology helps to comprehend and elucidate the organic content in the intact bone matrix with resolution and sensitivity enhancement. At this MAS speed, amino protons from organic part of intact bone start to appear in (1) H NMR spectra. The experimental protocol of ultra-high speed MAS for intact bone has been entailed with an additional insight achieved at 60 kHz.

  18. Pharmaceutical polymorphism. An investigation using solid-state nuclear magnetic resonance spectroscopy

    CERN Document Server

    Campbell, S C

    1998-01-01

    evaluated through the course of this Ph.D. and solid-state NMR spectral editing techniques have been developed and applied to identify these phenomena. Recrystallisation studies have produced two samples that appear to exist in an intermediate state between the rigid and mobile structural limits. Temperature variation causes interesting changes in the relaxation characteristics and natural abundance sup 1 sup 5 N and sup 1 sup 3 C CP/MAS spectra. Residual dipolar coupling effects vary in their manifestation within the sup 1 sup 3 C CP/MAS spectra of the polymorphic systems studied and comparison with the literature yields important information regarding molecular conformation. Nitrogen-15 enrichment and operation at higher magnetic field have been applied to reduce these second order effects. Finally, some distance has been travelled along the path towards decoupling sup 1 sup 4 N. Future development of this technique holds potential for resolution enhancement in the solid state spectra of most naturally occu...

  19. Physics of Nanostructured Solid State Devices

    CERN Document Server

    Bandyopadhyay, Supriyo

    2012-01-01

    Physics of Nanostructured Solid State Devices introduces readers to theories and concepts such as semi-classical and quantum mechanical descriptions of electron transport, methods for calculations of band structures in solids with applications in calculation of optical constants, and other advanced concepts.  The information presented here will equip readers with the necessary tools to carry out cutting edge research in modern solid state nanodevices. This book also: Covers sophisticated models of charge transport including the drift-diffusion model, Boltzmann transport model and various quantum transport models Discusses the essential elements of quantum mechanics necessary for an understanding of nanostructured solid state devices Presents band structure calculation methods based on time-independent perturbation theory Discusses theory of optical transitions and optical devices employing quantum-confined structures such as quantum wells,wires and dots Elucidates quantum mechanics of electrons in a magneti...

  20. Driver circuit for solid state light sources

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  1. Solid state recording current meter conversion

    Science.gov (United States)

    Cheng, Ralph T.; Wang, Lichen

    1985-01-01

    The authors describe the conversion of an Endeco-174 current meter to a solid-state recording current meter. A removable solid-state module was designed to fit in the space originally occupied by an 8-track tape cartridge. The module contains a CPU and 128 kilobytes of nonvolatile CMOS memory. The solid-state module communicates with any terminal or computer using an RS-232C interface at 4800 baud rate. A primary consideration for conversion was to keep modifications of the current meter to a minimum. The communication protocol was designed to emulate the Endeco tape translation unit, thus the need for a translation unit was eliminated and the original data reduction programs can be used without any modification. After conversion, the data recording section of the current meter contains no moving parts; the storage capacity of the module is equivalent to that of the original tape cartridge.

  2. Solid State Laser Rangefinders: A Review

    Directory of Open Access Journals (Sweden)

    N. Mansharamani

    1995-10-01

    Full Text Available Describes the development of solid-state laser rangefinders, during the last thirty years. The laser rangefinders using solid-state laser materials operating in visible, near and mid-infrared spectrum of light are in use. Considering the cost, efficiency, atmospheric transmission and detection capability, neodymium laser rangefinders operating in near-infrared region are still the state-of-the-art and are more in use as compared to rangefinders using other solid-state materials. The neodymium laser rangefinders in different configurations and use, developed in this Establishment are also described. The neodymium and diode lasers with improved detection capability in multiple pulse operation with pulse correlation techniques are under development to make these rangefinders eyesafe.

  3. 13C high resolution solid state NMR spectra of Chinese coals

    Institute of Scientific and Technical Information of China (English)

    陈德玉; 胡建治; 叶朝辉

    1997-01-01

    Several typical exinites in China including alginite, cultinite, suberinite and bituminite are analysed by means of 13C high solution solid state CP MAS TOSS NMR spectra to determine their chemical structures and hydrocarbon potential. Thermal simulation solid products (TSSP) of hydrogen-rich coals arc studied to discuss the generation and expulsion mechanism of coal-generating hydrocarbon. The preliminary results are quite encouraging, containing useful information about genesis of coal-generating oil and gases.

  4. An introduction to solid state diffusion

    CERN Document Server

    Borg, Richard J

    2012-01-01

    The energetics and mechanisms of diffusion control the kinetics of such diverse phenomena as the fabrication of semiconductors and superconductors, the tempering of steel, geological metamorphism, the precipitation hardening of nonferrous alloys and corrosion of metals and alloys. This work explains the fundamentals of diffusion in the solid state at a level suitable for upper-level undergraduate and beginning graduate students in materials science, metallurgy, mineralogy, and solid state physics and chemistry. A knowledge of physical chemistry such as is generally provided by a one-year under

  5. Ultrasonic methods in solid state physics

    CERN Document Server

    Truell, John; Elbaum, Charles

    1969-01-01

    Ultrasonic Methods in Solid State Physics is devoted to studies of energy loss and velocity of ultrasonic waves which have a bearing on present-day problems in solid-state physics. The discussion is particularly concerned with the type of investigation that can be carried out in the megacycle range of frequencies from a few megacycles to kilomegacycles; it deals almost entirely with short-duration pulse methods rather than with standing-wave methods. The book opens with a chapter on a classical treatment of wave propagation in solids. This is followed by separate chapters on methods and techni

  6. Nanographite Films for Solid State Electronic Applications

    Directory of Open Access Journals (Sweden)

    Sergey G. Lebedev

    2013-01-01

    Full Text Available The structure and properties of nanographite films useful for applications in solid state devices are described. The possibility to use low conducting state of nanographite film for detecting radiation in the segmented solid state detectors is considered. Other interesting phenomena include the field effect conductivity switching which can be used in contactless current limiters and circuit breakers, the rf-to-dc conversion which can be utilized in microwave and photo detectors, and light emitting subsequent to the conductivity switching with possible application as light sources. The possible underlying gears of the mentioned effects are discussed.

  7. Handbook of Applied Solid State Spectroscopy

    CERN Document Server

    Vij, D. R

    2006-01-01

    Solid-State spectroscopy is a burgeoning field with applications in many branches of science, including physics, chemistry, biosciences, surface science, and materials science. Handbook of Applied Solid-State Spectroscopy brings together in one volume information about various spectroscopic techniques that is currently scattered in the literature of these disciplines. This concise yet comprehensive volume covers theory and applications of a broad range of spectroscopies, including NMR, NQR, EPR/ESR, ENDOR, scanning tunneling, acoustic resonance, FTIR, auger electron emission, x-ray photoelectron emission, luminescence, and optical polarization, and more. Emphasis is placed on fundamentals and current methods and procedures, together with the latest applications and developments in the field.

  8. Scalar operators in solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Boqin

    1991-11-01

    Selectivity and resolution of solid-state NMR spectra are determined by dispersion of local magnetic fields originating from relaxation effects and orientation-dependent resonant frequencies of spin nuclei. Theoretically, the orientation-dependent resonant frequencies can be represented by a set of irreducible tensors. Among these tensors, only zero rank tensors (scalar operators) are capable of providing high resolution NMR spectra. This thesis presents a series of new developments in high resolution solid-state NMR concerning the reconstruction of various scalar operators motion in solid C{sub 60} is analyzed.

  9. Exploring contributions from incomplete fusion in $^{6,7}$Li+$^{209}$Bi and $^{6,7}$Li+$^{198}$Pt reactions

    CERN Document Server

    Parkar, V V; Kailas, S

    2016-01-01

    We use the breakup absorption model to simultaneously describe the measured cross-sections of the Complete fusion (CF), Incomplete fusion (ICF), and Total fusion (TF) in nuclear reactions induced by weakly bound nuclei $^{6,7}$Li on $^{209}$Bi and $^{198}$Pt targets. The absorption cross-sections are calculated using the Continuum Discretized Coupled Channels (CDCC) method with different choices of short range imaginary potentials to get the ICF, CF and TF cross-sections. It is observed that the cross-sections for deuteron-ICF/deuteron-capture are of similar magnitude as the $\\alpha$-ICF/$\\alpha$-capture, in case of $^{6}$Li projectile, while the cross-sections for triton-ICF/triton-capture is more dominant than $\\alpha$-ICF/$\\alpha$-capture in case of $^{7}$Li projectile. Both these observations are also corroborated by the experimental data. The ratio of ICF to TF cross-sections, which defines the value of fusion suppression factor is found to be in agreement with the data available from the literature. The...

  10. Thin target sup 7 Li(p, p'gamma) sup 7 Li inelastic gamma-ray yield measurements

    CERN Document Server

    Aslam; McNeill, F E

    2002-01-01

    Thin target angular distributions of inelastic gamma-ray yields resulting from sup 7 Li(p, p'gamma) sup 7 Li interaction have been measured for incident proton energies between 1.0 and 1.8 MeV. McMaster 3 MV KN Van de Graaff accelerator facility primarily dedicated to in-vivo neutron activation measurements has been used to perform experiments using a thin lithium metal target and 7.62 cm x 7.62 cm, 12.7 cm x 12.7 cm NaI(Tl) scintillation detectors and HPGe detectors. The uncertainty in the relative yield determination is based on the statistics of the data, uncertainty in the 478 keV peak area determination due to other interfering reactions, and the uncertainty in the recording of the proton charge. The results for the angular distribution provide an evidence for anisotropic nature of the radiation as compared to the presumed isotropic nature. The total relative yield was determined from the angular distributions and then compared with the published total cross sections for the reaction. Thick target yields...

  11. 31P Solid-state NMR based monitoring of permeation of cell penetrating peptides into skin

    Science.gov (United States)

    Desai, Pinaki R.; Cormier, Ashley R.; Shah, Punit P.; Patlolla, Ram R.; Paravastu, Anant K.; Singh, Mandip

    2013-01-01

    The main objective of the current study was to investigate penetration of cell penetrating peptides (CPPs: TAT, R8, R11 and YKA) through skin intercellular lipids using 31P magic angle spinning (MAS) solid-state NMR. In vitro skin permeation studies were performed on rat skin, sections (0–60, 61–120 and 121–180 µm) were collected and analyzed for 31P NMR signal. The concentration dependent shift of 0, 25, 50, 100 and 200 mg/ml of TAT on skin layers, diffusion of TAT, R8, R11 and YKA in the skin and time dependent permeation of R11 was measured on various skin sections using 31P solid-state NMR. Further, CPPs and CPP-tagged fluorescent dye encapsulate liposomes (FLip) in skin layers were tagged using confocal microscopy. The change in 31P NMR chemical shift was found to depend monotonically on the amount of CPP applied on skin, with saturation behavior above 100 mg/ml CPP concentration. R11 and TAT caused more shift in solid-state NMR peaks compared to other peptides. Furthermore, NMR spectra showed R11 penetration up to 180 µm within 30 min. The results of the solid-state NMR study were in agreement with confocal microscopy studies. Thus, 31P solid-state NMR can be used to track CPP penetration into different skin layers. PMID:23702274

  12. Co-existence of Distinct Supramolecular Assemblies in Solution and in the Solid State.

    Science.gov (United States)

    Reddy, G N Manjunatha; Huqi, Aida; Iuga, Dinu; Sakurai, Satoshi; Marsh, Andrew; Davis, Jeffery T; Masiero, Stefano; Brown, Steven P

    2017-02-16

    The formation of distinct supramolecular assemblies, including a metastable species, is revealed for a lipophilic guanosine (G) derivative in solution and in the solid state. Structurally different G-quartet-based assemblies are formed in chloroform depending on the nature of the cation, anion and the salt concentration, as characterized by circular dichroism and time course diffusion-ordered NMR spectroscopy data. Intriguingly, even the presence of potassium ions that stabilize G-quartets in chloroform was insufficient to exclusively retain such assemblies in the solid state, leading to the formation of mixed quartet and ribbon-like assemblies as revealed by fast magic-angle spinning (MAS) NMR spectroscopy. Distinct N-H⋅⋅⋅N and N-H⋅⋅⋅O intermolecular hydrogen bonding interactions drive quartet and ribbon-like self-assembly resulting in markedly different 2D (1) H solid-state NMR spectra, thus facilitating a direct identification of mixed assemblies. A dissolution NMR experiment confirmed that the quartet and ribbon interconversion is reversible-further demonstrating the changes that occur in the self-assembly process of a lipophilic nucleoside upon a solid-state to solution-state transition and vice versa. A systematic study for complexation with different cations (K(+) , Sr(2+) ) and anions (picrate, ethanoate and iodide) emphasizes that the existence of a stable solution or solid-state structure may not reflect the stability of the same supramolecular entity in another phase.

  13. An explanation for the high stability of polycarboxythiophenes in photovoltaic devices—A solid-state NMR dipolar recoupling study

    DEFF Research Database (Denmark)

    Bierring, M.; Nielsen, J.S.; Siu, Ana

    2008-01-01

    observed in photovoltaic devices employing polythiophene substituted with carboxylic-acid moieties under oxygen free conditions. H-1 and C-13 solid-state NMR, IR, and ESR spectroscopy of unmodified and isotopically labeled polythiophenes were studied. Distances between the isotopically labeled carboxylic...... acid carbon atoms were measured by C-13 solid-state magic-angle-spinning (MAS) NMR using symmetry-based double-quantum (2Q) dipolar recoupling. This revealed the presence of C-13-C-13 distances of 3.85 angstrom, which correspond to the C-C distance in hydrogen-bonded carboxylic acid dimers. In spite...... of the presence of carboxylic groups in the polymer as demonstrated by C-13 CP/MAS NMR and IR spectroscopy, the absence of carboxylic protons in solid state H-1 NMR spectra indicate that they are mobile. We link the extraordinary stability of this system to the rigid nature, cross-linking through a hydrogen...

  14. Dynamics of solid state coherent light sources

    NARCIS (Netherlands)

    Pollnau, M.; Di Bartolo, B.; Forte, O.

    2005-01-01

    This book chapter aims at reviewing in brief the fundamentals of rare-earth-ion spectroscopy in dielectric solids, with special emphasis on energy-transfer upconversion between neighboring active ions in a solid-state host lattice. The energy-level scheme of the 4f sub-shell of rare-earth ions is ex

  15. Solid State Electrochemical DeNOx

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2010-01-01

    The literature on direct electrochemical reduction of NOx in a solid state cell has been reviewed. It is shown that that the reduction of nitric oxide either occurs on the electrode or on the electrolyte if F-centers are formed. It is also shown that some oxide based electrodes has a high apparent...

  16. Modelling end-pumped solid state lasers

    NARCIS (Netherlands)

    Bernhardi, E.H.; Bollig, C.; Forbes, A.; Esser, M.J.D.; Wörhoff, K.; Agazzi, L.; Ismail, N.; Leijtens, X.

    2008-01-01

    The operation dynamics of end-pumped solid-state lasers are investigated by means of a spatially resolved numerical rate-equation model and a time-dependent analytical thermal model. The rate-equation model allows the optimization of parameters such as the output coupler transmission and gain medium

  17. Advances in tunable solid-state lasers

    Energy Technology Data Exchange (ETDEWEB)

    De Shazer, L.G.

    1987-02-01

    Continuing problems in solid-state lasers including low efficiency and lack of frequency diversity have limited their applicability in past years. Through recent materials technological developments, both of these problems are starting to be solved. Many new tunable lasers operating at wavelengths ranging from 650 nm to 3..mu..m have been demonstrated in the laboratory, and applications now are being considered for space and terrestrial remote sensors. Comparable progress also has been made towards more efficient solid-state lasers, for example, new neodymium (Nd) lasers having 6% overall efficiency. These advances in solid-state lasers depend on the interplay between the fields of materials science and lasers. To develop this association between the two disciplines, an Optical Society of America (OSA) topical meeting on Tunable Solid State lasers was held in Zigzag, Oreg. As well as covering research and development of tunable lasers based on ion-doped dielectric solids, this meeting discussed crystal growth and laser applications. Also included were rare earth laser sources operating at new wavelengths, an expansion in the agenda from the first meeting, held last year in May in Arlington, Va.

  18. Nanoscale solid-state cooling: a review

    Science.gov (United States)

    Ziabari, Amirkoushyar; Zebarjadi, Mona; Vashaee, Daryoosh; Shakouri, Ali

    2016-09-01

    The recent developments in nanoscale solid-state cooling are reviewed. This includes both theoretical and experimental studies of different physical concepts, as well as nanostructured material design and device configurations. We primarily focus on thermoelectric, thermionic and thermo-magnetic coolers. Particular emphasis is given to the concepts based on metal-semiconductor superlattices, graded materials, non-equilibrium thermoelectric devices, Thomson coolers, and photon assisted Peltier coolers as promising methods for efficient solid-state cooling. Thermomagnetic effects such as magneto-Peltier and Nernst-Ettingshausen cooling are briefly described and recent advances and future trends in these areas are reviewed. The ongoing progress in solid-state cooling concepts such as spin-calorimetrics, electrocalorics, non-equilibrium/nonlinear Peltier devices, superconducting junctions and two-dimensional materials are also elucidated and practical achievements are reviewed. We explain the thermoreflectance thermal imaging microscopy and the transient Harman method as two unique techniques developed for characterization of thermoelectric microrefrigerators. The future prospects for solid-state cooling are briefly summarized.

  19. Thermal management of solid state lighting module

    NARCIS (Netherlands)

    Ye, H.

    2014-01-01

    Solid-State Lighting (SSL), powered by Light-Emitting Diodes (LEDs), is an energy-efficient technology for lighting systems. In contrast to incandescent lights which obtain high efficiency at high temperatures, the highest efficiency of LEDs is reached at low temperatures. The thermal management in

  20. Nanoscale solid-state cooling: a review.

    Science.gov (United States)

    Ziabari, Amirkoushyar; Zebarjadi, Mona; Vashaee, Daryoosh; Shakouri, Ali

    2016-09-01

    The recent developments in nanoscale solid-state cooling are reviewed. This includes both theoretical and experimental studies of different physical concepts, as well as nanostructured material design and device configurations. We primarily focus on thermoelectric, thermionic and thermo-magnetic coolers. Particular emphasis is given to the concepts based on metal-semiconductor superlattices, graded materials, non-equilibrium thermoelectric devices, Thomson coolers, and photon assisted Peltier coolers as promising methods for efficient solid-state cooling. Thermomagnetic effects such as magneto-Peltier and Nernst-Ettingshausen cooling are briefly described and recent advances and future trends in these areas are reviewed. The ongoing progress in solid-state cooling concepts such as spin-calorimetrics, electrocalorics, non-equilibrium/nonlinear Peltier devices, superconducting junctions and two-dimensional materials are also elucidated and practical achievements are reviewed. We explain the thermoreflectance thermal imaging microscopy and the transient Harman method as two unique techniques developed for characterization of thermoelectric microrefrigerators. The future prospects for solid-state cooling are briefly summarized.

  1. Solid state aspects of oxidation catalysis

    NARCIS (Netherlands)

    Gellings, Paul J.; Bouwmeester, Henny J.M.

    2000-01-01

    The main subject of this review is the consideration of catalytic oxidation reactions, which are greatly influenced by solid state effects in the catalyst material. Emphasis is laid upon the correlation between the presence of mobile ionic defects, together with the associated ionic conductivity, an

  2. Fungal mats in solid-state fermentation

    NARCIS (Netherlands)

    Rahardjo, Y.S.P.

    2005-01-01

    Since over 2000 years man has cultivated fungi on grains, beans or other (by)products from agriculture or agro-industries, in order to produce tastier and healthier foods. Nowadays, cultivation on solid substrates (solid-state fermentation, SSF) is also used to produce industrial enzymes, drugs and

  3. Solid state fermentation for foods and beverages

    NARCIS (Netherlands)

    Chen, J.; Zhu, Y.; Nout, M.J.R.; Sarkar, P.K.

    2013-01-01

    The book systematically describes the production of solid-state fermented food and beverage in terms of the history and development of SSF technology and SSF foods, bio-reactor design, fermentation process, various substrate origins and sustainable development. It emphasizes Oriental traditional foo

  4. Density functional theory in the solid state.

    Science.gov (United States)

    Hasnip, Philip J; Refson, Keith; Probert, Matt I J; Yates, Jonathan R; Clark, Stewart J; Pickard, Chris J

    2014-03-13

    Density functional theory (DFT) has been used in many fields of the physical sciences, but none so successfully as in the solid state. From its origins in condensed matter physics, it has expanded into materials science, high-pressure physics and mineralogy, solid-state chemistry and more, powering entire computational subdisciplines. Modern DFT simulation codes can calculate a vast range of structural, chemical, optical, spectroscopic, elastic, vibrational and thermodynamic phenomena. The ability to predict structure-property relationships has revolutionized experimental fields, such as vibrational and solid-state NMR spectroscopy, where it is the primary method to analyse and interpret experimental spectra. In semiconductor physics, great progress has been made in the electronic structure of bulk and defect states despite the severe challenges presented by the description of excited states. Studies are no longer restricted to known crystallographic structures. DFT is increasingly used as an exploratory tool for materials discovery and computational experiments, culminating in ex nihilo crystal structure prediction, which addresses the long-standing difficult problem of how to predict crystal structure polymorphs from nothing but a specified chemical composition. We present an overview of the capabilities of solid-state DFT simulations in all of these topics, illustrated with recent examples using the CASTEP computer program.

  5. Solid-state NMR of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Mirau, P

    2001-07-01

    Nuclear magnetic resonance (NMR) spectroscopy has emerged as one of the most important methods for the solid-state characterisation of polymers. The popularity of NMR is due to the fact that many molecular level features can be measured from the NMR spectra, including the polymer chain conformation, the morphology and the dynamics. The spectral features and relaxation times are affected by local interactions, so they provide information about the structure of polymers on a length scale (2-200 A) that is difficult to measure by other methods. In favourable cases, the NMR experiments provide a molecular-level explanation for the transitions observed by differential scanning calorimetry (DSC) and other methods, and the NMR properties can often be related to the bulk properties. Solid-state NMR has long been of interest in polymer science, and the first solid-state NMR studies of polymers were reported approximately a year after the discovery of nuclear resonance in bulk matter. It was reported in this initial study that the proton line width for natural rubber at room temperature is more like that of a mobile liquid than of a solid, but that the resonance broadens near the glass transition temperature (T{sub g}). This was recognised as being related to a change in chain dynamics above and below the T{sub g}. NMR methods developed rapidly after these initial observations, first for polymers in solution and, more recently, for polymers in the solid-state. Solid-state NMR studies of polymers were developed more slowly than their solution-state counterparts because solid-state NMR requires more specialised equipment. Solid-state NMR is now such an important tool that most modern spectrometers are capable of performing these studies. The interest in the NMR of solid polymers is due in part to the fact that most polymers are used in the solid state, and in many cases the NMR properties can be directly related to the macroscopic properties. Polymers have restricted mobility

  6. Coordinated garbage collection for raid array of solid state disks

    Science.gov (United States)

    Dillow, David A; Ki, Youngjae; Oral, Hakki S; Shipman, Galen M; Wang, Feiyi

    2014-04-29

    An optimized redundant array of solid state devices may include an array of one or more optimized solid-state devices and a controller coupled to the solid-state devices for managing the solid-state devices. The controller may be configured to globally coordinate the garbage collection activities of each of said optimized solid-state devices, for instance, to minimize the degraded performance time and increase the optimal performance time of the entire array of devices.

  7. Solid State Physics Principles and Modern Applications

    CERN Document Server

    Quinn, John J

    2009-01-01

    Intended for a two semester advanced undergraduate or graduate course in Solid State Physics, this treatment offers modern coverage of the theory and related experiments, including the group theoretical approach to band structures, Moessbauer recoil free fraction, semi-classical electron theory, magnetoconductivity, electron self-energy and Landau theory of Fermi liquid, and both quantum and fractional quantum Hall effects. Integrated throughout are developments from the newest semiconductor devices, e.g. space charge layers, quantum wells and superlattices. The first half includes all material usually covered in the introductory course, but in greater depth than most introductory textbooks. The second half includes most of the important developments in solid-state researches of the past half century, addressing e.g. optical and electronic properties such as collective bulk and surface modes and spectral function of a quasiparticle, which is a basic concept for understanding LEED intensities, X ray fine struc...

  8. Phosphate Phosphors for Solid-State Lighting

    CERN Document Server

    Shinde, Kartik N; Swart, H C; Park, Kyeongsoon

    2012-01-01

    The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  9. Development of Solid State Laser Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Byung Heon; Kwon, Seong Ok; Kim, Yong Ki (and others)

    2007-04-15

    Recently, diode-pumped solid state lasers(DPSSL) have been developed to have a diffraction limited beam quality and high average output powers beyond kW. The lifetime extends to have several thousand hours. Due to such merits, the DPSSLs are now replacing previous application fields of CO{sub 2} laser, lamp-pumped solid-state lasers, Excimer laser, etc. The DPSSLs have broad application fields, such as laser spectroscopy and analysis, laser micromachining, precision measurement, laser range findings, laser pump sources, medical lasers, etc. In this project, various DPSSLs are developed for use in laser isotope production. Many new laser modules are designed and used to develop high power pulsed IR lasers and green lasers. In addition, a quasi CW driven compact DPSSL is developed to have high pulse energy DPSSL technologies.

  10. Solid-state-laser-rod holder

    Science.gov (United States)

    Gettemy, D.J.; Barnes, N.P.; Griggs, J.E.

    1981-08-11

    The disclosure relates to a solid state laser rod holder comprising Invar, copper tubing, and epoxy joints. Materials and coefficients of expansion of the components of the holder combine with the rod to produce a joint which will give before the rod itself will. The rod may be lased at about 70 to 80/sup 0/K and returned from such a temperature to room temperature repeatedly without its or the holder's destruction.

  11. Solid State Research, 1980:4

    Science.gov (United States)

    1980-10-31

    W. Geis D. A. Antoniadie D. J. Silversmith R. W. Mountain H. I. Smith 12th Conference on Solid State Devices, Tokyo. Japan, 26 Au- gust 1980...Lateral Epitaxial Over* growth of Silicon on St02 D.D. Jtathman D. J. Silversmith Electrochemical Society Mtg«. Hollywood. Florida. 6-10 Octo...qualitatively in agreement. DJ# silversmith B. E. Burke R. W. Mountain C. CHARGE-COUPLED DEVICES: PROGRAMMABLE TRANSVERSAL FILTER As previously

  12. Phosphate phosphors for solid-state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Kartik N. [N.S. Science and Arts College, Bhadrawati (India). Dept. of Physics; Swart, H.C. [University of the Orange Free State, Bloemfontein (South Africa). Dept. of Physics; Dhoble, S.J. [R.T.M. Nagpur Univ. (India). Dept. of Physics; Park, Kyeongsoon [Sejong Univ., Seoul (Korea, Republic of). Faculty of Nanotechnology and Advanced Materials Engineering

    2012-07-01

    Essential information for students in researchers working towards new and more efficient solid-state lighting. Comprehensive survey based on the authors' long experience. Useful both for teaching and reference. The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  13. SPS solid state antenna power combiner

    Science.gov (United States)

    Fitzsimmons, G. W.

    1980-01-01

    A concept for a solar power satellite antenna power combiner which utilizes solid state dc-rf converters is described. To avoid the power combining losses associated with circuit hybrids it is proposed that the power from multiple solid state amplifiers be combined by direct coupling of each amplifier's output to the radiating antenna structure. The selected power-combining antenna consists of a printed (metalized) microstrip circuit on a ceramic type dielectric substrate which is backed by a shallow lightweight aluminum cavity which sums the power of four microwave sources. The antenna behaves like two one-half wavelength slot-line antennas coupled together via their common cavity structure. A significant feature of the antenna configuration selected is that the radiated energy is summed to yield a single radiated output phase which represents the average insertion phase of the four power amplifiers. This energy may be sampled and, by comparison with the input signal, one can phase error correct to maintain the insertion phase of all solid state power combining modules at exactly the same value. This insures that the insertion phase of each SPS power combining antenna module is identical. An experiment verification program is described.

  14. Solid state NMR of biopolymers and synthetic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Jelinski, Lynn W. [Cornell Univ., Geneva, NY (United States)

    1995-12-31

    Solid state NMR has been invaluable in evaluating the structure, phase separation, and dynamics of polymers. Because polymers are generally used in the solid state, solid state NMR is especially powerful because it provides information about the materials in their native state. This review gives a general overview of solid state NMR, concentrating on solid state {sup 13} C and {sup 2} H NMR. It then focuses on two examples: the biopolymer spider silka and the engineering material polyurethane. It illustrates how solid state NMR can provide new information about synthetic and bio-polymers. (author) 11 refs., 5 figs., 3 tabs.

  15. Theory of laser enhancement and suppression of cold reactions: the fermion-boson 6Li+7Li2(variant Planck's over 2pi omega0) 6Li7Li+7Li radiative collision.

    Science.gov (United States)

    Li, Xuan; Parker, Gregory A; Brumer, Paul; Thanopulos, Ioannis; Shapiro, Moshe

    2008-03-28

    We present a nonperturbative time-dependent quantum mechanical theory of the laser catalysis and control of a bifurcating A+BC(variant Planck's over 2pi omega(0))ABC*(v)(variant Planck's over 2pi omega(0) )AB+C reaction, with ABC*(v) denoting an intermediate, electronically excited, complex of ABC in the vth vibrational state. We apply this theory to the low collision energy fermion-boson light-induced exchange reaction, (6)Li((2)S)+(7)Li(2)((3)Sigma(u)(+))(variant Planck's over 2pi omega(0))((6)Li(7)Li(7)Li)*(variant Planck's over 2pi omega(0))(6)Li(7)Li((3)Sigma(+))+(7)Li((2)S). We show that at very low collision energies and energetically narrow (approximately 0.01 cm(-1)) initial reactant wave packets, it is possible to tune the yield of the exchange reaction from 0 to near-unity (yield >or=99%) values. Controllability is somewhat reduced at collisions involving energetically wider (approximately 1 cm(-1)) initial reactant wave packets. At these energetic bandwidths, the radiative reactive control, although still impressive, is limited to the 0%-76% reactive-probabilities range.

  16. Solid State NMR Studies of Energy Conversion and Storage Materials

    Science.gov (United States)

    Jankuru Hennadige, Sohan Roshel De Silva

    NMR (Nuclear magnetic resonance) spectroscopy is utilized to study energy conversion and storage materials. Different types of NMR techniques including Magic Angle Spinning, Cross-polarization and relaxation measurement experiments were employed. Four different projects are discussed in this dissertation. First, three types of CFx battery materials were investigated. Electrochemical studies have demonstrated different electrochemical performances by one type, delivering superior performance over the other two. 13C and 19F MAS NMR techniques are employed to identify the atomic/molecular structural factors that might account for differences in electrochemical performance among different types. Next as the second project, layered polymer dielectrics were investigated by NMR. Previous studies have shown that thin film capacitors are improved by using alternate layers of two polymers with complementary properties: one with a high breakdown strength and one with high dielectric constant as opposed to monolithic layers. 13C to 1H cross-polarization techniques were used to investigate any inter-layer properties that may cause the increase in the dielectric strength. The third project was to study two types of thermoelectric materials. These samples were made of heavily doped phosphorous and boron in silicon by two different methods: ball-milled and annealed. These samples were investigated by NMR to determine the degree of disorder and obtain insight into the doping efficiency. The last ongoing project is on a lithium-ion battery system. The nature of passivating layers or the solid electrolyte interphase (SEI) formed on the electrodes surface is important because of the direct correlation between the SEI and the battery life time/durability. Multinuclear (7Li, 19F, 31P) techniques are employed to identify the composition of the SEI formation of both positive and negative electrodes.

  17. 6Li/7Li estimates for metal-poor stars

    CERN Document Server

    Perez, A E Garcia; Inoue, S; Ryan, S G; Suzuki, T K; Chiba, M

    2009-01-01

    The presence of the lithium-6 isotope in some metal-poor stars is a matter of surprise because of the high values observed. Non-standard models of Big Bang nucleosynthesis and pre-Galactic cosmic ray fusion and spallation have been proposed to explain these values. However, the observations of this light isotope are challenging which may make some detections disputable. The goal was to determine 6Li/7Li for a sample of metal-poor stars; three of them have been previously studied and the remaining two are new for this type of study. The purpose was to increase, if possible, the number of lithium-6 detections and to confirm previously published results. Spectra of the resonance doublet line of neutral lithium Li I 670.78nm were taken with the High Dispersion Spectrograph at the Subaru 8.2m-telescope for a sample of five metal-poor stars (-3.12 < [Fe/H] < -2.19). The contribution of lithium-6 to the total observed line profile was estimated from the 1D-LTE analysis of the line asymmetry. Observed asymmetri...

  18. Studies of the Efimov Effect in 7 Li

    Science.gov (United States)

    Luo, D.; Nguyen, J. H. V.; Hulet, R. G.

    2016-05-01

    Ultracold atomic gases provide an ideal environment to study few body physics in the universal regime. Passive techniques, such as monitoring loss of the atomic sample while varying the hold time allows us to explore properties such as the scaling behavior of Efimov trimers. In our experiment, we explore how the Efimov states are affected by non-zero temperature. We measure the three-body loss rate for a 7 Li atom gas at different scattering lengths and extract the location and width of an Efimov recombination minimum for various temperatures. Alternatively, we may perform more active experiments such as creating dimers using RF-field modulation as a probe of molecular binding energies. We use RF-association to form Feshbach dimers and Efimov trimers, and find a strong enhancement of the dimer formation rate at the atom-dimer resonance, which could be explained by an avalanche mechanism. In the past the enhancement in the three-body recombination rate at the same location had also been observed, and attributed to the avalanche. We explore the link between these findings with a side-by-side comparison of the dimer-formation rate and the three-body loss rate. Work supported by the NSF, an ARO MURI Grant, and the Welch Foundation.

  19. Non-Gaussian error distribution of 7Li abundance measurements

    Science.gov (United States)

    Crandall, Sara; Houston, Stephen; Ratra, Bharat

    2015-07-01

    We construct the error distribution of 7Li abundance measurements for 66 observations (with error bars) used by Spite et al. (2012) that give A(Li) = 2.21 ± 0.065 (median and 1σ symmetrized error). This error distribution is somewhat non-Gaussian, with larger probability in the tails than is predicted by a Gaussian distribution. The 95.4% confidence limits are 3.0σ in terms of the quoted errors. We fit the data to four commonly used distributions: Gaussian, Cauchy, Student’s t and double exponential with the center of the distribution found with both weighted mean and median statistics. It is reasonably well described by a widened n = 8 Student’s t distribution. Assuming Gaussianity, the observed A(Li) is 6.5σ away from that expected from standard Big Bang Nucleosynthesis (BBN) given the Planck observations. Accounting for the non-Gaussianity of the observed A(Li) error distribution reduces the discrepancy to 4.9σ, which is still significant.

  20. Solid-state NMR spectra of lipid-anchored proteins under magic angle spinning.

    Science.gov (United States)

    Nomura, Kaoru; Harada, Erisa; Sugase, Kenji; Shimamoto, Keiko

    2014-03-01

    Solid-state NMR is a promising tool for elucidating membrane-related biological phenomena. We achieved the measurement of high-resolution solid-state NMR spectra for a lipid-anchored protein embedded in lipid bilayers under magic angle spinning (MAS). To date, solid-state NMR measurements of lipid-anchored proteins have not been accomplished due to the difficulty in supplying sufficient amount of stable isotope labeled samples in the overexpression of lipid-anchored proteins requiring complex posttranslational modification. We designed a pseudo lipid-anchored protein in which the protein component was expressed in E. coli and attached to a chemically synthesized lipid-anchor mimic. Using two types of membranes, liposomes and bicelles, we demonstrated different types of insertion procedures for lipid-anchored protein into membranes. In the liposome sample, we were able to observe the cross-polarization and the (13)C-(13)C chemical shift correlation spectra under MAS, indicating that the liposome sample can be used to analyze molecular interactions using dipolar-based NMR experiments. In contrast, the bicelle sample showed sufficient quality of spectra through scalar-based experiments. The relaxation times and protein-membrane interaction were capable of being analyzed in the bicelle sample. These results demonstrated the applicability of two types of sample system to elucidate the roles of lipid-anchors in regulating diverse biological phenomena.

  1. Solid state NMR investigation of a novel Li ion ceramic electrolyte. Li doped BPO sub 4

    CERN Document Server

    Dodd, A J

    2002-01-01

    Over the last decade lithium ion conducting batteries have emerged as the leading technology in battery materials. Their performance, however, is limited to applications below around 50 deg C by the liquid nature of the electrolytes used. In the quest for a solid state electrolyte for use in high temperature applications the nano-crystalline ceramic lithium doped boron phosphate material was developed. Solid state nuclear magnetic resonance (NMR) has been employed to investigate some of the fundamental properties of this material including ionic mobility, defect structure, sample purity and ionic distribution. The findings of this work show that when synthesised at a reaction temperature above 600 deg C the loss of boron from the structure results in the incorporation of vacancy sites about which the Li ions gather in small clusters. Multiple-pulse multiple-quantum spin counting techniques are employed in an effort to count the number of quadrupolar sup 7 Li nuclei interacting in a cluster though it is ultima...

  2. Microwave power transmission system workshop, session on solid state

    Science.gov (United States)

    Finnell, W.

    1980-01-01

    The development of solid state technology for solar power satellite systems is briefly addressed. The economic advantages of solid state based systems are listed along with some conclusions and issues regarding specific design concepts.

  3. BOOK REVIEW: Solid State Physics: An Introduction

    Science.gov (United States)

    Jakoby, Bernhard

    2009-07-01

    There's a wealth of excellent textbooks on solid state physics. The author of the present book is well aware of this fact and does not attempt to write just another one. Rather, he has provided a very compact introduction to solid state physics for third-year students. As we are faced with the continuous appearance interdisciplinary fields and associated study curricula in natural and engineering sciences (biophysics, mechatronics, etc), a compact text in solid state physics would be appreciated by students of these disciplines as well. The book features 11 chapters where each is provided with supplementary discussion questions and problems. The first chapters deal with a review of chemical bonding mechanisms, crystal structures and mechanical properties of solids, which are brief but by no means superficial. The following, somewhat more detailed chapter on thermal properties of lattices includes a nice introduction to phonons. The foundations of solid state electronics are treated in the next three chapters. Here the author first discusses the classical treatment of electronic behaviour in metals (Drude model) and continues with a quantum-theoretical approach starting with the free-electron model and leading to the band structures in conductive solids. The next chapter is devoted to semiconductors and ends with a brief but, with respect to the topical scope, adequate discussion of semiconductor devices. The classical topics of magnetic and dielectric behaviour are treated in the sequel. The book closes with a chapter on superconductivity and a brief chapter covering the modern topics of quantum confinement and aspects of nanoscale physics. In my opinion, the author has succeeded in creating a very concise yet not superficial textbook. The account presented often probes subjects deep enough to lay the basis for a thorough understanding, preparing the reader for more specialized textbooks. For instance, I think that this book may serve as an excellent first

  4. The Galileo Solid-State Imaging experiment

    Science.gov (United States)

    Belton, Michael J. S.; Klaasen, Kenneth P.; Clary, Maurice C.; Anderson, James L.; Anger, Clifford D.; Carr, Michael H.; Chapman, Clark R.; Davies, Merton E.; Greeley, Ronald; Anderson, Donald

    1992-01-01

    The Galileo Orbiter's Solid-State Imaging (SSI) experiment uses a 1.5-m focal length TV camera with 800 x 800 pixel, virtual-phase CCD detector in order to obtain images of Jupiter and its satellites which possess a combination of sensitivity levels, spatial resolutions, geometric fidelity, and spectral range that are unmatched by earlier imaging data. After describing the performance of this equipment on the basis of ground calibrations, attention is given to the SSI experiment's Jupiter system observation objectives; these encompass atmospheric science, satellite surfaces, ring structure, and 'darkside' experiments.

  5. Solid state electrochemical synthesis of titanium carbide

    Science.gov (United States)

    Osarinmwian, C.; Roberts, E. P. L.; Mellor, I. M.

    2015-02-01

    We have observed the formation of substoichiometric TiC1-x on the surface of cathodes during the solid state electroreduction of TiO2 to Ti in CaCl2 melt electrolytes at ∼950 °C for 11-22 h. This synthetic method for generating TiC1-x relies on reducing carbonate ions, transported from a graphite annulus anode to a partially reduced cathode, to CaO and C followed by the interstitial diffusion of C into α-Ti at the cathode surface.

  6. Solid state opening switches of new type

    Science.gov (United States)

    Kudasov, Yu. B.; Makarov, I. V.; Pavlov, V. N.

    2001-04-01

    We discuss two new types of high-current solid-state opening switches based on nonlinear diffusion of a strong magnetic field into a substance. In the first case, a magnetic field penetrates into solid solution (V 1- xCr x) 2O 3, which undergoes a metal-insulator phase transition of the first order under Joule heating. In the second case, a switching of current occurs due to the Hall diffusion of magnetic field into n-InAs. Results of numerical analysis are presented.

  7. Theoretical solid state physics, v.2

    CERN Document Server

    Haug, Albert

    2013-01-01

    Theoretical Solid State Physics, Volume 2 deals with the electron-lattice interaction and the effect of lattice imperfections. Conductivity, semiconductors, and luminescence are discussed, with emphasis on the basic physical problems and the various phenomena derived from them. The theoretical basis of interaction between electrons and lattices is considered, along with basic concepts of conduction theory, scattering of electrons by imperfections, and radiationless transitions. This volume is comprised of 19 chapters and begins with an overview of the coupling of electrons and the crystal latt

  8. Solid State Marx Modulators for Emerging Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, M.A.; /SLAC

    2012-09-14

    Emerging linear accelerator applications increasingly push the boundaries of RF system performance and economics. The power modulator is an integral part of RF systems whose characteristics play a key role in the determining parameters such as efficiency, footprint, cost, stability, and availability. Particularly within the past decade, solid-state switch based modulators have become the standard in high-performance, high power modulators. One topology, the Marx modulator, has characteristics which make it particularly attractive for several emerging applications. This paper is an overview of the Marx topology, some recent developments, and a case study of how this architecture can be applied to a few proposed linear accelerators.

  9. Pulsed Power for Solid-State Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M

    2007-04-19

    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  10. High Speed Solid State Circuit Breaker

    Science.gov (United States)

    Podlesak, Thomas F.

    1993-01-01

    The U.S. Army Research Laboratory, Fort Monmouth, NJ, has developed and is installing two 3.3 MW high speed solid state circuit breakers at the Army's Pulse Power Center. These circuit breakers will interrupt 4160V three phase power mains in no more than 300 microseconds, two orders of magnitude faster than conventional mechanical contact type circuit breakers. These circuit breakers utilize Gate Turnoff Thyristors (GTO's) and are currently utility type devices using air cooling in an air conditioned enclosure. Future refinements include liquid cooling, either water or two phase organic coolant, and more advanced semiconductors. Each of these refinements promises a more compact, more reliable unit.

  11. Space groups for solid state scientists

    CERN Document Server

    Glazer, Michael; Glazer, Alexander N

    2014-01-01

    This Second Edition provides solid state scientists, who are not necessarily experts in crystallography, with an understandable and comprehensive guide to the new International Tables for Crystallography. The basic ideas of symmetry, lattices, point groups, and space groups are explained in a clear and detailed manner. Notation is introduced in a step-by-step way so that the reader is supplied with the tools necessary to derive and apply space group information. Of particular interest in this second edition are the discussions of space groups application to such timely topics as high-te

  12. Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    De Paul, Susan M. [Univ. of California, Berkeley, CA (United States)

    1997-08-01

    The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.

  13. Radioactive ion beams for solid state research

    CERN Document Server

    Correia, J G

    1996-01-01

    Radioactive isotopes are widely used in many research fields. In some applications they are used as tracers after diffusion or after activation in the material itself through nuclear reactions. For research in solid state physics, the ion implantation technique is the most flexible and convenient method to introduce the radioactive isotopes in the materials to be studied, since it allows the control of the ion dose, the implantation depth and the isotopic purity. The on-line coupling of isotope separators to particle accelerators, as is the case of the ISOLDE facility at CERN, allows the obtention of a wide range of high purity short lived isotopes. Currently, the most stringent limitation for some applications is the low acceleration energy of 60 keV of the ISOLDE beam. In this communication a short review of the current applications of the radioactive beams for research in solid state physics at ISOLDE is done. The development of a post-accelerator facility for MeV radioactive ions is introduced and the adv...

  14. Solid state lighting and photobiological safety

    Science.gov (United States)

    Soskind, Y. G.; Campin, J. A.; Hopler, M. D.; Pettit, G. H.

    2007-02-01

    Recent advancements in Light-Emitting Diode (LED) technology have led to significant proliferation of solid-state lighting in our every-day life. White light and monochrome LED-based solid-state sources provide a small size, lower power consumption, and longer life alternative to several types of traditional light sources, such as incandescent lights. However, the spectral characteristics of LEDs are significantly different from the spectra of self-luminous objects that human eyes are adapted to through evolution and, therefore, may pose a real threat of photic-induced eye injury. In this paper the spectral characteristics of individual sources are considered from a photobiological safety perspective, and are used to estimate the retinal hazard potential of LEDs relative to that for daylight and blackbody radiators. The presented LED source retinal hazard exposure ranking considerations could be accounted for during illumination system design to minimize photic-induced eye injury risk. The importance of the material presented herein can not be underestimated since high power LED sources are found in a variety of high volume lighting applications and systems including automotive lamps, signal lighting, flash lights and other illumination devices.

  15. Ultra-low temperature MAS-DNP

    Science.gov (United States)

    Lee, Daniel; Bouleau, Eric; Saint-Bonnet, Pierre; Hediger, Sabine; De Paëpe, Gaël

    2016-03-01

    Since the infancy of NMR spectroscopy, sensitivity and resolution have been the limiting factors of the technique. Regular essential developments on this front have led to the widely applicable, versatile, and powerful spectroscopy that we know today. However, the Holy Grail of ultimate sensitivity and resolution is not yet reached, and technical improvements are still ongoing. Hence, high-field dynamic nuclear polarization (DNP) making use of high-frequency, high-power microwave irradiation of electron spins has become very promising in combination with magic angle sample spinning (MAS) solid-state NMR experiments. This is because it leads to a transfer of the much larger polarization of these electron spins under suitable irradiation to surrounding nuclei, greatly increasing NMR sensitivity. Currently, this boom in MAS-DNP is mainly performed at minimum sample temperatures of about 100 K, using cold nitrogen gas to pneumatically spin and cool the sample. This Perspective deals with the desire to improve further the sensitivity and resolution by providing "ultra"-low temperatures for MAS-DNP, using cryogenic helium gas. Different designs on how this technological challenge has been overcome are described. It is shown that stable and fast spinning can be attained for sample temperatures down to 30 K using a large cryostat developed in our laboratory. Using this cryostat to cool a closed-loop of helium gas brings the additional advantage of sample spinning frequencies that can greatly surpass those achievable with nitrogen gas, due to the differing fluidic properties of these two gases. It is shown that using ultra-low temperatures for MAS-DNP results in substantial experimental sensitivity enhancements and according time-savings. Access to this temperature range is demonstrated to be both viable and highly pertinent.

  16. Radioactive isotopes in solid-state physics

    CERN Document Server

    Deicher, M

    2002-01-01

    Radioactive atoms have been used in solid-state physics and in material science for many decades. Besides their classical application as tracer for diffusion studies, nuclear techniques such as M\\"ossbauer spectroscopy, perturbed angular correlation, $\\beta$-NMR, and emission channelling have used nuclear properties (via hyperfine interactions or emitted particles) to gain microscopical information on the structural and dynamical properties of solids. During the last decade, the availability of many different radioactive isotopes as a clean ion beam at ISOL facilities such as ISOLDE at CERN has triggered a new era involving methods sensitive for the optical and electronic properties of solids, especially in the field of semiconductor physics. Extremely sensitive spectroscopic techniques like deep-level transient spectroscopy (DLTS), photoluminescence (PL), and Hall effect have gained a new quality by using radioactive isotopes. Because of their decay the chemical origin of an observed electronic and optical b...

  17. Efficient scalable solid-state neutron detector

    Science.gov (United States)

    Moses, Daniel

    2015-06-01

    We report on scalable solid-state neutron detector system that is specifically designed to yield high thermal neutron detection sensitivity. The basic detector unit in this system is made of a 6Li foil coupled to two crystalline silicon diodes. The theoretical intrinsic efficiency of a detector-unit is 23.8% and that of detector element comprising a stack of five detector-units is 60%. Based on the measured performance of this detector-unit, the performance of a detector system comprising a planar array of detector elements, scaled to encompass effective area of 0.43 m2, is estimated to yield the minimum absolute efficiency required of radiological portal monitors used in homeland security.

  18. Ionic conduction in the solid state

    Indian Academy of Sciences (India)

    P Padma Kumar; S Yashonath

    2006-01-01

    Solid state ionic conductors are important from an industrial viewpoint. A variety of such conductors have been found. In order to understand the reasons for high ionic conductivity in these solids, there have been a number of experimental, theoretical and computational studies in the literature. We provide here a survey of these investigations with focus on what is known and elaborate on issues that still remain unresolved. Conductivity depends on a number of factors such as presence of interstitial sites, ion size, temperature, crystal structure etc. We discuss the recent results from atomistic computer simulations on the dependence of conductivity in NASICONs as a function of composition, temperature, phase change and cation among others. A new potential for modelling of NASICON structure that has been proposed is also discussed.

  19. Bright Solid State Source of Photon Triplets

    CERN Document Server

    Khoshnegar, Milad; Predojević, Ana; Dalacu, Dan; Prilmüller, Maximilian; Lapointe, Jean; Wu, Xiaohua; Tamarat, Philippe; Lounis, Brahim; Poole, Philip; Weihs, Gregor; Majedi, Hamed

    2015-01-01

    Producing advanced quantum states of light is a priority in quantum information technologies. While remarkable progress has been made on single photons and photon pairs, multipartite correlated photon states are usually produced in purely optical systems by post-selection or cascading, with extremely low efficiency and exponentially poor scaling. Multipartite states enable improved tests of the foundations of quantum mechanics as well as implementations of complex quantum optical networks and protocols. It would be favorable to directly generate these states using solid state systems, for better scaling, simpler handling, and the promise of reversible transfer of quantum information between stationary and flying qubits. Here we use the ground states of two optically active coupled quantum dots to directly produce photon triplets. The wavefunctions of photogenerated excitons localized in these ground states are correlated via molecular hybridization and Coulomb interactions. The formation of a triexciton leads...

  20. Nanoengineering for solid-state lighting.

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, E. Fred (Rensselaer Polytechnic Institute,Troy, NY); Koleske, Daniel David; Wetzel, Christian (Rensselaer Polytechnic Institute,Troy, NY); Lee, Stephen Roger; Missert, Nancy A.; Lin, Shawn-Yu (Rensselaer Polytechnic Institute,Troy, NY); Crawford, Mary Hagerott; Fischer, Arthur Joseph

    2009-09-01

    This report summarizes results from a 3-year Laboratory Directed Research and Development project performed in collaboration with researchers at Rensselaer Polytechnic Institute. Our collaborative effort was supported by Sandia's National Institute for Nanoengineering and focused on the study and application of nanoscience and nanoengineering concepts to improve the efficiency of semiconductor light-emitting diodes for solid-state lighting applications. The project explored LED efficiency advances with two primary thrusts: (1) the study of nanoscale InGaN materials properties, particularly nanoscale crystalline defects, and their impact on internal quantum efficiency, and (2) nanoscale engineering of dielectric and metal materials and integration with LED heterostructures for enhanced light extraction efficiency.

  1. Solid state synthesis of homoleptic tetracyanamidoaluminates.

    Science.gov (United States)

    Unverfehrt, Leonid; Kalmutzki, Markus; Ströbele, Markus; Meyer, H-Jürgen

    2011-10-14

    Tetracyanamidoaluminates of the type LiM(2)[Al(CN(2))(4)] with M = Eu and Sr were prepared by solid-state metathesis reactions departing from EuF(2) (or SrF(2)), AlF(3), and Li(2)(CN(2)) in a 2 : 1 : 4 molar ratio. The ignition temperature of the exothermic formation of LiSr(2)[Al(CN(2))(4)] was obtained near 420 °C. An X-ray single-crystal structure refinement performed for LiEu(2)[Al(CN(2))(4)] revealed the presence of the novel homoleptic [Al(CN(2))(4)](5-) ion in the structure. The X-ray powder diffraction pattern of LiSr(2)[Al(CN(2))(4)] was indexed isotypically.

  2. Solid-state ring laser gyroscope

    Science.gov (United States)

    Schwartz, S.

    The ring laser gyroscope is a rotation sensor used in most kinds of inertial navigation units. It usually consists in a ring cavity filled with a mixture of helium and neon, together with high-voltage pumping electrodes. The use of a gaseous gain medium, while resulting naturally in a stable bidirectional regime enabling rotation sensing, is however the main industrially limiting factor for the ring laser gyroscopes in terms of cost, reliability and lifetime. We study in this book the possibility of substituting for the gaseous gain medium a solid-state medium (diode-pumped Nd-YAG). For this, a theoretical and experimental overview of the lasing regimes of the solid-state ring laser is reported. We show that the bidirectional emission can be obtained thanks to a feedback loop acting on the states of polarization and inducing differential losses proportional to the difference of intensity between the counterpropagating modes. This leads to the achievement of a solid-state ring laser gyroscope, whose frequency response is modified by mode coupling effects. Several configurations, either mechanically or optically based, are then successively studied, with a view to improving the quality of this frequency response. In particular, vibration of the gain crystal along the longitudinal axis appears to be a very promising technique for reaching high inertial performances with a solid-state ring laser gyroscope. Gyrolaser à état solide. Le gyrolaser est un capteur de rotation utilisé dans la plupart des centrales de navigation inertielle. Dans sa forme usuelle, il est constitué d'une cavité laser en anneau remplie d'un mélange d'hélium et de néon pompé par des électrodes à haute tension. L'utilisation d'un milieu amplificateur gazeux, si elle permet de garantir naturellement le fonctionnement bidirectionnel stable nécessaire à la mesure des rotations, constitue en revanche la principale limitation industrielle des gyrolasers actuels en termes de coût, fiabilit

  3. Solid-state electronic devices an introduction

    CERN Document Server

    Papadopoulos, Christo

    2014-01-01

    A modern and concise treatment of the solid state electronic devices that are fundamental to electronic systems and information technology is provided in this book. The main devices that comprise semiconductor integrated circuits are covered in a clear manner accessible to the wide range of scientific and engineering disciplines that are impacted by this technology. Catering to a wider audience is becoming increasingly important as the field of electronic materials and devices becomes more interdisciplinary, with applications in biology, chemistry and electro-mechanical devices (to name a few) becoming more prevalent. Updated and state-of-the-art advancements are included along with emerging trends in electronic devices and their applications. In addition, an appendix containing the relevant physical background will be included to assist readers from different disciplines and provide a review for those more familiar with the area. Readers of this book can expect to derive a solid foundation for understanding ...

  4. Solid state NMR of sulfa-drugs

    CERN Document Server

    Portieri, A

    2001-01-01

    deducted. Exact positions of the hydrogen has proved to be essential as well in order to improve the calculations. Finally a case study for the REDOR pulse sequence has been carried out. Different attempts to understand the effects influencing this particular experiment have been carried out on 20% and 99% doubly enriched glycine, as well as on a particular sample, doubly enriched BRL55834, but the internuclear distances measured with this technique still displayed some uncertainties that made results not thoroughly reliable. This work has been a study of systems, mostly of sulfa-drugs, showing polymorphic behaviour. Using different means as solid state NMR, X-ray analysis, * and theoretical calculations, we have seen how it is possible to understand results obtained from the different techniques, proving how the study of polymorphic systems needs cooperative advice from the different techniques that are able to detect polymorphic differences. Within the sulfa-drugs I have been mostly concentrating on sulfani...

  5. Solid-state single-photon emitters

    Science.gov (United States)

    Aharonovich, Igor; Englund, Dirk; Toth, Milos

    2016-10-01

    Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.

  6. Generating Squeezed States in Solid State Circuits

    Institute of Scientific and Technical Information of China (English)

    REN Xin-An; WEN Yi-Huo; ZHANG Li-You; LONG Gui-Lu

    2008-01-01

    We propose a scheme for generating squeezed states in solid state circuits which consist a superconducting transmission line resonator (STLR), a superconducting Cooper-pair box (CPB) and a nanoelectromechanical resonator (NMR). The nonlinear interaction between the STLR and the CPB can be implemented by setting the external biased flux of the CPB at some certain points. The interaction Hamiltonian between the STLR and the NMR is derived by performing Fr 5hlich transformation on the total Hamiltonian of the combined system. Just by adiabatically keeping the CPB at the ground state, we get the standard parametric down-conversion Hamiltonian, and the squeezed states of the STLR can be easily generated, which is similar to the three-wave mixing in quantum optics.

  7. Supramolecular interactions in the solid state.

    Science.gov (United States)

    Resnati, Giuseppe; Boldyreva, Elena; Bombicz, Petra; Kawano, Masaki

    2015-11-01

    In the last few decades, supramolecular chemistry has been at the forefront of chemical research, with the aim of understanding chemistry beyond the covalent bond. Since the long-range periodicity in crystals is a product of the directionally specific short-range intermolecular interactions that are responsible for molecular assembly, analysis of crystalline solids provides a primary means to investigate intermolecular interactions and recognition phenomena. This article discusses some areas of contemporary research involving supramolecular interactions in the solid state. The topics covered are: (1) an overview and historical review of halogen bonding; (2) exploring non-ambient conditions to investigate intermolecular interactions in crystals; (3) the role of intermolecular interactions in morphotropy, being the link between isostructurality and polymorphism; (4) strategic realisation of kinetic coordination polymers by exploiting multi-interactive linker molecules. The discussion touches upon many of the prerequisites for controlled preparation and characterization of crystalline materials.

  8. Solid-state lighting technology perspective.

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, Jeffrey Yeenien; Coltrin, Michael Elliott

    2006-08-01

    Solid-State Lighting (SSL) uses inorganic light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) to convert electricity into light for illumination. SSL has the potential for enormous energy savings and accompanying environmental benefits if its promise of 50% (or greater) energy efficiencies can be achieved. This report provides a broad summary of the technologies that underlie SSL. The applications for SSL and potential impact on U.S. and world-wide energy consumption, and impact on the human visual experience are discussed. The properties of visible light and different technical metrics to characterize its properties are summarized. The many factors contributing to the capital and operating costs for SSL and traditional lighting sources (incandescent, fluorescent, and high-intensity discharge lamps) are discussed, with extrapolations for future SSL goals. The technologies underlying LEDs and OLEDs are also described, including current and possible alternative future technologies and some of the present limitations.

  9. Bonding, structure and solid-state chemistry

    CERN Document Server

    Ladd, Mark

    2016-01-01

    This book is aimed at undergraduate students in both chemistry and those degree subjects in which chemistry forms a significant part. It does not reflect any particular academic year, and so finds a place during the normal span of degree studies in the physical sciences. An A-level standard in science and mathematics is presumed; additional mathematical treatments are discussed in Appendices. An introductory first chapter leads into the main subject matter, which is treated through four chapters in terms of the principle bonding forces of cohesion in the solid state; a further chapter discusses nanosize materials. Important applications of the study topics are interspersed at appropriate points within the text. Each chapter is provided with a set of problems of varying degrees of difficulty, so as to assist the reader in gaining a facility with the subject matter and its applications. The problems are supplemented by detailed tutorial solutions, some of which present additional relevant material that indicate...

  10. Supramolecular interactions in the solid state

    Directory of Open Access Journals (Sweden)

    Giuseppe Resnati

    2015-11-01

    Full Text Available In the last few decades, supramolecular chemistry has been at the forefront of chemical research, with the aim of understanding chemistry beyond the covalent bond. Since the long-range periodicity in crystals is a product of the directionally specific short-range intermolecular interactions that are responsible for molecular assembly, analysis of crystalline solids provides a primary means to investigate intermolecular interactions and recognition phenomena. This article discusses some areas of contemporary research involving supramolecular interactions in the solid state. The topics covered are: (1 an overview and historical review of halogen bonding; (2 exploring non-ambient conditions to investigate intermolecular interactions in crystals; (3 the role of intermolecular interactions in morphotropy, being the link between isostructurality and polymorphism; (4 strategic realisation of kinetic coordination polymers by exploiting multi-interactive linker molecules. The discussion touches upon many of the prerequisites for controlled preparation and characterization of crystalline materials.

  11. Solid-state 13C NMR and molecular modeling studies of acetyl aleuritolic acid obtained from Croton cajucara Benth

    Science.gov (United States)

    da Silva San Gil, Rosane Aguiar; Albuquerque, Magaly Girão; de Alencastro, Ricardo Bicca; da Cunha Pinto, Angelo; do Espírito Santo Gomes, Fabiano; de Castro Dantas, Tereza Neuma; Maciel, Maria Aparecida Medeiros

    2008-08-01

    Solid-state 13C nuclear magnetic resonance ( 13C NMR) with magic-angle spinning (MAS) and with cross-polarization and magic-angle spinning (CP/MAS) spectra, and differential scanning calorimetry (DSC) techniques were used to obtain structural data from a sample of acetyl aleuritolic acid (AAA) extracted from the stem bark of Croton cajucara Benth. (Euphorbiaceae) and recrystallized from acetone. Since solid-state 13C NMR results suggested the presence of more than one molecule in the unitary cell for the AAA, DSC analysis and molecular modeling calculations were used to access this possibility. The absence of phase transition peaks in the DSC spectra and the dimeric models of AAA simulated using the semi-empirical PM3 method are in agreement with that proposal.

  12. Hexameric Capsules Studied by Magic Angle Spinning Solid-State NMR Spectroscopy: Identifying Solvent Molecules in Pyrogallol[4]arene Capsules.

    Science.gov (United States)

    Avram, Liat; Goldbourt, Amir; Cohen, Yoram

    2016-01-18

    Powders of pyrogallol[4]arene hexamers were produced by evaporation from organic solvents and were studied, for the first time, by magic angle spinning solid-state NMR (MAS ssNMR). Evaporation selectively removed non-encapsulated solvent molecules leaving stable hexameric capsules encapsulating solvent molecules. After exposure of the powder to solvent vapors, (1)H/(13)C heteronuclear correlation MAS ssNMR experiments were used to assign the signals of the external and encapsulated solvent molecules. The formed capsules were stable for months and the process of solvent encapsulation was reversible. According to the ssNMR experiments, the encapsulated solvent molecules occupy different sites and those sites differ in their mobility. The presented approach paves the way for studying guest exchange, guest affinity, and gas storage in hexamers of this type in the solid state.

  13. Solid state lighting devices and methods with rotary cooling structures

    Energy Technology Data Exchange (ETDEWEB)

    Koplow, Jeffrey P.

    2017-03-21

    Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipation methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.

  14. Lithium Polymer Electrolytes and Solid State NMR

    Science.gov (United States)

    Berkeley, Emily R.

    2004-01-01

    Research is being done at the Glenn Research Center (GRC) developing new kinds of batteries that do not depend on a solution. Currently, batteries use liquid electrolytes containing lithium. Problems with the liquid electrolyte are (1) solvents used can leak out of the battery, so larger, more restrictive, packages have to be made, inhibiting the diversity of application and decreasing the power density; (2) the liquid is incompatible with the lithium metal anode, so alternative, less efficient, anodes are required. The Materials Department at GRC has been working to synthesize polymer electrolytes that can replace the liquid electrolytes. The advantages are that polymer electrolytes do not have the potential to leak so they can be used for a variety of tasks, small or large, including in the space rover or in space suits. The polymers generated by Dr. Mary Ann Meador's group are in the form of rod -coil structures. The rod aspect gives the polymer structural integrity, while the coil makes it flexible. Lithium ions are used in these polymers because of their high mobility. The coils have repeating units of oxygen which stabilize the positive lithium by donating electron density. This aids in the movement of the lithium within the polymer, which contributes to higher conductivity. In addition to conductivity testing, these polymers are characterized using DSC, TGA, FTIR, and solid state NMR. Solid state NMR is used in classifying materials that are not soluble in solvents, such as polymers. The NMR spins the sample at a magic angle (54.7') allowing the significant peaks to emerge. Although solid state NMR is a helpful technique in determining bonding, the process of preparing the sample and tuning it properly are intricate jobs that require patience; especially since each run takes about six hours. The NMR allows for the advancement of polymer synthesis by showing if the expected results were achieved. Using the NMR, in addition to looking at polymers, allows for

  15. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  16. Thermal Design and Flight Validation for Solid-state Transmitter

    Directory of Open Access Journals (Sweden)

    Wang Lei

    2014-06-01

    Full Text Available Solid-state transmitter with large power and high heat flux is a key equipment of an HJ-1-C satellite; therefore, it has a great influence on satellite thermal design. Thermal design ensures that the solid-state transmitter works well within the allowable temperature limits of the equipment. The solid-state transmitter thermal design and solved key problems are provided in accordance with the HJ-1-C characteristics. Moreover, an analysis of satellites on orbit was performed. Based on the telemetry data, the thermal control design is shown to satisfy the temperature requirements of the solid-state transmitter.

  17. Solid state NMR studies of gels derived from low molecular mass gelators.

    Science.gov (United States)

    Nonappa; Kolehmainen, E

    2016-07-13

    Since its invention more than six decades ago, nuclear magnetic resonance (NMR) spectroscopy has evolved as an inevitable part of chemical as well as structural analysis of small molecules, polymers, biomaterials and hybrid materials. In the solution state, due to the increased viscosity of complex viscoelastic fluids such as gels, liquid crystals and other soft materials, the rate of molecular tumbling is reduced, which in turn affects the chemical shift anisotropy, dipolar and quadrupolar interactions. As a consequence the solution state NMR spectra show broad lines, and therefore, extracting detailed structural information is a challenging task. In this context, solid state (SS) NMR has the ability to distinguish between a minute amount of polymorphic forms, conformational changes, and the number of non-equivalent molecules in an asymmetric unit of a crystal lattice, and to provide both qualitative as well as quantitative analytical data with a short-range order. Therefore, SS NMR has continued to evolve as an indispensable tool for structural analysis and gave birth to a new field called NMR crystallography. Solid state cross polarization (CP) and high resolution (HR) magic angle spinning (MAS) NMR spectroscopy has been used to study weak interactions in polymer gels. However, the application of SS NMR spectroscopy to study gels derived from low molecular weight gelators has been limited until recently. In this review, we will focus on the importance of solid state NMR spectroscopy in understanding and elucidating the structure of supramolecular gels derived from low molecular weight gelators with selected examples.

  18. Solid state crystallisation of oligosaccharide ester derivatives

    CERN Document Server

    Wright, E A

    2002-01-01

    An investigation of the solid state properties of oligosaccharide ester derivatives (OEDs) with potential applications in drug delivery has been carried out. The amorphous form of two OEDs, trehalose octa-acetate (TOAC) and 6:6'-di-(beta-tetraacetyl glucuronyl)-hexaacetyl trehalose (TR153), was investigated as a matrix for the sustained release of active ingredients. The matrices showed a tendency to crystallise and so polymorph screens were performed to provide crystalline samples for structural analysis. The crystal structures of TOAC methanolate and TR153 acetonitrile solvate have been determined by single-crystal laboratory X-ray diffraction. TOAC methanolate crystallises in the orthorhombic space group P2 sub 1 2 sub 1 2 sub 1 with a = 15.429(18) A, b = 17.934(19) A and c = 13.518(4) A at 123 K. The structure is isomorphous with the previously reported structure of TOAC monohydrate form II. TR153 acetonitrile solvate crystallises in the monoclinic spacegroup C2 with a = 30:160(6) A, b = 11.878(3) A, c 20...

  19. Solid State Replacement of Rotating Mirror Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Frank, A M; Bartolick, J M

    2006-08-25

    Rotating mirror cameras have been the mainstay of mega-frame per second imaging for decades. There is still no electronic camera that can match a film based rotary mirror camera for the combination of frame count, speed, resolution and dynamic range. The rotary mirror cameras are predominantly used in the range of 0.1 to 100 micro-seconds per frame, for 25 to more than a hundred frames. Electron tube gated cameras dominate the sub microsecond regime but are frame count limited. Video cameras are pushing into the microsecond regime but are resolution limited by the high data rates. An all solid state architecture, dubbed ''In-situ Storage Image Sensor'' or ''ISIS'', by Prof. Goji Etoh, has made its first appearance into the market and its evaluation is discussed. Recent work at Lawrence Livermore National Laboratory has concentrated both on evaluation of the presently available technologies and exploring the capabilities of the ISIS architecture. It is clear though there is presently no single chip camera that can simultaneously match the rotary mirror cameras, the ISIS architecture has the potential to approach their performance.

  20. Introduction to cryogenic solid state cooling

    Science.gov (United States)

    Heremans, Joseph P.

    2016-05-01

    Thermoelectric (Peltier) coolers have historically not been used for cooling to temperatures much below 200 K, because of limitations with existing thermoelectric materials. There are many advantages to solid-state coolers: they have no moving parts, are compact, vibration-free, inherently durable, and scalable to low power levels. A significant drawback is their low coefficient of performance. The figure of merit, zT, is the materials characteristic that sets this efficiency in Peltier coolers. The zT decreases rapidly with temperature, roughly following a T7/2 law. However, new material developments have taken place in the last decade that have made it possible to reach zT>0.5 down to 50 K. Many new ideas have also been put forward that enable better ZT's and lower temperatures. This article reviews the difficulties associated with Peltier cooling at cryogenic temperatures, as an introduction to the following presentations and proceeding entries that will present solutions that have been developed since 2010.

  1. Prediction of recrystallization behavior of troglitazone/polyvinylpyrrolidone solid dispersion by solid-state NMR.

    Science.gov (United States)

    Ito, Atsutoshi; Watanabe, Tomoyuki; Yada, Shuichi; Hamaura, Takeshi; Nakagami, Hiroaki; Higashi, Kenjirou; Moribe, Kunikazu; Yamamoto, Keiji

    2010-01-04

    The purpose of this study was to elaborate the relationship between the (13)C CP/MAS NMR spectra and the recrystallization behavior during the storage of troglitazone solid dispersions. The solid dispersions were prepared by either the solvent method or by co-grinding. The recrystallization behavior under storage conditions at 40 degrees C/94% RH was evaluated by the Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation. Solid dispersions prepared by the solvent method or by prolonged grinding brought about inhibition of the nucleation and the nuclei growth at the same time. No differences in the PXRD profiles were found in the samples prepared by the co-grinding and solvent methods, however, (13)C CP/MAS NMR showed significant differences in the spectra. The correlation coefficients using partial least square regression analysis between the PXRD profiles and the apparent nuclei-growth constant or induction period to nucleation were 0.1305 or 0.6350, respectively. In contrast, those between the (13)C CP/MAS NMR spectra and the constant or the period were 0.9916 or 0.9838, respectively. The (13)C CP/MAS NMR spectra had good correlation with the recrystallization kinetic parameters evaluated by the KJMA equation. Consequently, solid-state NMR was judged to be a useful tool for the prediction of the recrystallization behavior of solid dispersions.

  2. DFT calculations of quadrupolar solid-state NMR properties: Some examples in solid-state inorganic chemistry.

    Science.gov (United States)

    Cuny, Jerome; Messaoudi, Sabri; Alonzo, Veronique; Furet, Eric; Halet, Jean-François; Le Fur, Eric; Ashbrook, Sharon E; Pickard, Chris J; Gautier, Regis; Le Polles, Laurent

    2008-10-01

    This article presents results of first-principles calculations of quadrupolar parameters measured by solid-state nuclear magnetic measurement (NMR) spectroscopy. Different computational methods based on density functional theory were used to calculate the quadrupolar parameters. Through a series of illustrations from different areas of solid state inorganic chemistry, it is shown how quadrupolar solid-state NMR properties can be tackled by a theoretical approach and can yield structural information.

  3. Solid-state 17O NMR of pharmaceutical compounds: salicylic acid and aspirin.

    Science.gov (United States)

    Kong, Xianqi; Shan, Melissa; Terskikh, Victor; Hung, Ivan; Gan, Zhehong; Wu, Gang

    2013-08-22

    We report solid-state NMR characterization of the (17)O quadrupole coupling (QC) and chemical shift (CS) tensors in five site-specifically (17)O-labeled samples of salicylic acid and o-acetylsalicylic acid (Aspirin). High-quality (17)O NMR spectra were obtained for these important pharmaceutical compounds under both static and magic angle spinning (MAS) conditions at two magnetic fields, 14.0 and 21.1 T. A total of 14 (17)O QC and CS tensors were experimentally determined for the seven oxygen sites in salicylic acid and Aspirin. Although both salicylic acid and Aspirin form hydrogen bonded cyclic dimers in the solid state, we found that the potential curves for the concerted double proton transfer in these two compounds are significantly different. In particular, while the double-well potential curve in Aspirin is nearly symmetrical, it is highly asymmetrical in salicylic acid. This difference results in quite different temperature dependencies in (17)O MAS spectra of the two compounds. A careful analysis of variable-temperature (17)O MAS NMR spectra of Aspirin allowed us to obtain the energy asymmetry (ΔE) of the double-well potential, ΔE = 3.0 ± 0.5 kJ/mol. We were also able to determine a lower limit of ΔE for salicylic acid, ΔE > 10 kJ/mol. These asymmetrical features in potential energy curves were confirmed by plane-wave DFT computations, which yielded ΔE = 3.7 and 17.8 kJ/mol for Aspirin and salicylic acid, respectively. To complement the solid-state (17)O NMR data, we also obtained solid-state (1)H and (13)C NMR spectra for salicylic acid and Aspirin. Using experimental NMR parameters obtained for all magnetic nuclei present in salicylic acid and Aspirin, we found that plane-wave DFT computations can produce highly accurate NMR parameters in well-defined crystalline organic compounds.

  4. Solid state NMR study calcium phosphate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Miquel, J.L.; Facchini, L.; Legrand, A.P. (Laboratoire de Physique Quantique, Paris (France). CNRS, URA421, ESPCI); Rey, C. (CNRS, Toulouse (France). ENSC. Laboratoire de Physico-chimie des Solides); Lemaitre, J. (EPF Lausanne (France). Laboratoire de Technologie des Poudres)

    1990-04-01

    High-resolution {sup 31}P and {sup 1}H NMR spectra at 40 and 121 MHz {sup 31}P and 300 MHz {sup 1}H of synthetic and biological samples of calcium phosphates have been obtained by magic angle spinning (MAS) at spinning speeds up to 6.5 kHz, and high power proton decoupling. The samples include crystalline hydroxyapatite, a deficient hydroxyapatite characterized by a Ca/P atomic ratio of 1.5, a poorly crystallized hydroxyapatite, monetite, brushite, octacalcium phosphate, {beta}-tricalcium phosphate and rabbit femoral bone. The interactions between nuclei in unlike structures and the mobility of acid protons are discussed. (author). 11 refs.; 2 figs.; 1 tab.

  5. Fabrication and characterization of solid-state thermal neutron detectors based on hexagonal boron nitride epilayers

    Energy Technology Data Exchange (ETDEWEB)

    Doan, T.C.; Majety, S.; Grenadier, S.; Li, J.; Lin, J.Y.; Jiang, H.X., E-mail: hx.jiang@ttu.edu

    2014-06-01

    Solid-state thermal neutron detectors with improved detection efficiencies are highly sought after for many applications. Hexagonal boron nitride (hBN) epilayers have been synthesized by metal organic chemical vapor deposition on sapphire substrates. Important material parameters including the mobility-lifetime (μτ) product and the thermal neutron absorption length (λ) have been measured. For hBN epilayers with a room temperature resistivity of 5.3×10{sup 10} Ω cm, the measured μτ product of electrons is 4.46×10{sup −8} cm{sup 2}/V and of holes is 7.07×10{sup −9} cm{sup 2}/V. The measured λ values are 277 μm and 77 μm for natural and {sup 10}B enriched hBN epilayers, respectively. Metal–semiconductor–metal detectors incorporating 0.3 µm thick hBN epilayers were fabricated. The reaction product pulse-height spectra were measured under thermal neutron irradiation produced by a {sup 252}Cf source moderated by high density polyethylene block. The measured pulse-height spectra revealed distinguishable peaks corresponding to the product energies of {sup 10}B and neutron reaction with the 0.84 MeV {sup 7}Li peak being the most prominent. The detectors exhibited negligible responses to gamma rays produced by {sup 137}Cs decay. Our results indicate that hBN epilayers are highly promising for realizing highly sensitive solid-state thermal neutron detectors with expected advantages resulting from semiconductor technologies, including compact size, light weight, ability to integrate with other functional devices, and low cost.

  6. SOLID-STATE CERAMIC LIGHTING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Wayne D. Brown

    2003-06-01

    Meadow River Enterprises, Inc. (MRE) and the New York State College of Ceramics at Alfred University (NYSCC) received a DOE cooperative agreement award in September 1999 to develop an energy-efficient Solid-State Ceramic Lamp (SSCL). The program spanned a nominal two(2) year period ending in February of 2002. The federal contribution to the program totaled $1.6 million supporting approximately 78% of the program costs. The SSCL is a rugged electroluminescent lamp designed for outdoor applications. MRE has filed a provisional patent for this ''second generation'' technology and currently produces and markets blue-green phosphor SSCL devices. White phosphor SSCL devices are also available in prototype quantities. In addition to reducing energy consumption, the ceramic EL lamp offers several economic and societal advantages including lower lifecycle costs and reduced ''light pollution''. Significant further performance improvements are possible but will require a dramatic change in device physical construction related to the use of micro-powder materials and processes. The subject ''second-generation'' program spans a 27 month period and combines the materials and processing expertise of NYSCC, the manufacturing expertise of Meadow River Enterprises, and the phosphor development expertise of OSRAM Sylvania to develop an improved SSCL system. The development plan also includes important contributions by Marshall University (a part of the West Virginia University system). All primary development objectives have been achieved with the exception of improved phosphor powders. The performance characteristics of the first generation SSCL devices were carefully analyzed in year 1 and a second generation lamp was defined and optimized in year 2. The provisional patent was ''perfected'' through a comprehensive patent application filed in November 2002. Lamp efficiency was improved more than 2:1.

  7. Solid state NMR study of bone mineral

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.

    1992-01-01

    In high field (9.4 T) CP MASS (cross polarization magic angle sample spinning) studies, in contrast to the scheme in the literature that infers the presence of minor constituents in spectra, we developed a new scheme to suppress the main part of the spectra to show the minor constituents. In order to perform in vivo solid state NMR studies, a double tuned two port surface coil probe was constructed. This probe is a modified version of the traditional Cross probe, which utilizes two 1/4 wave length 50 ohm transmission line, one with open ended and the other with shorted end, to isolate the high and low frequency circuits. The two resonance frequencies in Cross probe were proton and carbon. Our probe is designed to resonate at the proton and phosphorus frequencies, which are much closer to each other and hence more difficult to be tuned and matched simultaneously. Our approach to solve this problem is that instead of using standard 50 ohm transmission lines, we constructed a low capacity open end coaxial transmission line and low inductance shorted end coaxial transmission line. The Q of the phosphorus channel is high. We developed a short contact time cross polarization technique for non-MASS spectroscopy which reduces the signal of the major component of bone mineral to emphasize the minor component. By applying this technique on intact pork bone samples with our home made surface coil, we observed the wide line component, acid phosphate, for the first time. Hydroxyapatite, brushite and octacalcium are considered in the literature to be the model compounds for bone mineral. Cross polarization dynamics has been studied on hydroxyapatite and brushite, which yielded an NMR value for the distance between proton and phosphorus. One and two dimensional CP MASS spectroscopy of octacalcium phosphate were also studied, which revealed the different cross polarization rates and anisotropic channel shifts of acid phosphate and phosphate ions in octacalcium phosphate.

  8. Nanoprobes, nanostructured materials and solid state materials

    Science.gov (United States)

    Yin, Houping

    2005-07-01

    Novel templates have been developed to prepare nanostructured porous materials through nonsurfactant templated pathway. And new applications of these materials, such as drug delivery and molecular imprinting, have been explored. The relationship between template content and pore structure has been investigated. The composition and pore structures were studied in detail using IR, TGA, SEM, TEM, BET and XRD. The obtained mesoporous materials have tunable diameters in the range of 2--12 nm. Due to the many advantages of this nonsurfactant templated pathway, such as environment friendly and biocompatibility, controlled release of antibiotics in the nanoporous materials were studied. The in vitro release properties were found to depend on the silica structures which were well tuned by varying the template content. A controlled long-term release pattern of vancomycin was achieved when the template content was 30 wt% or lower. Nanoscale electrochemical probes with dimensions as small as 50 nm in diameter and 1--2 mum in length were fabricated using electron beam deposition on the apex of conventional micron size electrodes. The electroactive region was limited to the extreme tip of the nanoprobe by coating with an insulating polymer and re-opening of the coating at the extreme tip. The novel nanoelectrodes thus prepared were employed to probe neurons in mouse brain slice and the results suggest that the nanoprobes were capable of recording neuronal excitatory postsynaptic potential signals. Interesting solid state chemistry was found in oxygenated iron phthalocyanine. Their Mossbauer spectra show the formation of four oxygenated species apart from the unoxygenated parent compound. The oxygen-bridged compounds formed in the solid matrix bear no resemblance to the one formed by solution chemistry. Tentative assignment of species has been made with the help of Mossbauer and IR spectroscopy. An effort to modify aniline trimer for potential nanoelectronics applications and to

  9. Miniaturized radioisotope solid state power sources

    Science.gov (United States)

    Fleurial, J.-P.; Snyder, G. J.; Patel, J.; Herman, J. A.; Caillat, T.; Nesmith, B.; Kolawa, E. A.

    2000-01-01

    Electrical power requirements for the next generation of deep space missions cover a wide range from the kilowatt to the milliwatt. Several of these missions call for the development of compact, low weight, long life, rugged power sources capable of delivering a few milliwatts up to a couple of watts while operating in harsh environments. Advanced solid state thermoelectric microdevices combined with radioisotope heat sources and energy storage devices such as capacitors are ideally suited for these applications. By making use of macroscopic film technology, microgenrators operating across relatively small temperature differences can be conceptualized for a variety of high heat flux or low heat flux heat source configurations. Moreover, by shrinking the size of the thermoelements and increasing their number to several thousands in a single structure, these devices can generate high voltages even at low power outputs that are more compatible with electronic components. Because the miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints, we are developing novel microdevices using integrated-circuit type fabrication processes, electrochemical deposition techniques and high thermal conductivity substrate materials. One power source concept is based on several thermoelectric microgenerator modules that are tightly integrated with a 1.1W Radioisotope Heater Unit. Such a system could deliver up to 50mW of electrical power in a small lightweight package of approximately 50 to 60g and 30cm3. An even higher degree of miniaturization and high specific power values (mW/mm3) can be obtained when considering the potential use of radioisotope materials for an alpha-voltaic or a hybrid thermoelectric/alpha-voltaic power source. Some of the technical challenges associated with these concepts are discussed in this paper. .

  10. Long chain branching on linear polypropylene by solid state reactions

    NARCIS (Netherlands)

    Borsig, E.; Gotsis, A. D.; Picchioni, F.

    2008-01-01

    A method was developed for the long chain branching (LCB) of isotactic polypropylene (iPP) via modification in the solid state. PP long chains have been linked as branches to the original linear iPP chains using solid state reactions in the presence of a free radical initiator and a multifunctional

  11. Applications and Technologies of All-Solid State Blue Laser

    Institute of Scientific and Technical Information of China (English)

    JING Zhuo; XUE Jun-wen; JIA Fu-qiang; ZHENG Quan; YE Zi-qing

    2006-01-01

    @@ 1 Introduction Along with the matureness of laser diode (LD) manufacturing technology, the performance of LD has been improved greatly since 1980s, so various kinds of laser devices based on LD have been developed rapidly, especially the all-solid state lasers. After early experiments and researches, the all-solid state lasers have been commercialized successfully.

  12. Solid state device technology for Solar Power Satellite

    Science.gov (United States)

    Weir, D. G.

    1980-01-01

    The feasibility of using solid state elements in the solar power satellite transmitter system is addressed. Recommendations are given concerning device types, the antenna modules, and the overall antenna system. The development of a solid state amplifier based on GaAs field effect transistor devices is also described.

  13. Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy, a new approach to study humic material?

    Science.gov (United States)

    Knicker, Heike; Lange, Sascha; van Rossum, Barth; Oschkinat, Hartmut

    2016-04-01

    Compared to solution NMR spectroscopy, solid-state NMR spectra suffer from broad resonance lines and low resolution. This could be overcome by the use of 2-dimenstional solid-state NMR pulse sequences. Until recently, this approach has been unfeasible as a routine tool in soil chemistry, mainly because of the low NMR sensitivity of the respective samples. A possibility to circumvent those sensitivity problems represents high-field Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy (Barnes et al., 2008), allowing considerable signal enhancements (Akbey et al., 2010). This is achieved by a microwave-driven transfer of polarization from a paramagnetic center to nuclear spins. Application of DNP to MAS spectra of biological systems (frozen solutions) showed enhancements of the factor 40 to 50 (Hall et al., 1997). Enhancements of this magnitude, thus may enable the use of at least some of the 2D solid-state NMR techniques that are presently already applied for pure proteins but are difficult to apply to soil peptides in their complex matrix. After adjusting the required acquisition parameters to the system "soil organic matter", lower but still promising enhancement factors were achieved. Additional optimization was performed and allowed the acquisition of 2D 13C and 15N solid-state NMR spectra of humified 13C and 15N enriched plant residues. Within the present contribution, the first solid-state DNP NMR spectra of humic material are presented. Those data demonstrate the great potential of this approach which certainly opens new doors for a better understanding of biochemical processes in soils, sediments and water. Akbey, Ü., Franks, W.T., Linden, A., Lange, S., Griffin, R.G., van Rossum, B.-J., Oschkinat, H., 2010. Dynamic nuclear polarization of deuterated proteins. Angewandte Chemie International Edition 49, 7803-7806. Barnes, A.B., De Paëpe, G., van der Wel, P.C.A., Hu, K.N., Joo, C.G., Bajaj, V.S., Mak-Jurkauskas, M.L., Sirigiri, J.R., Herzfeld, J

  14. Breakup mechanisms for 7Li + 197Au, 204Pb systems at sub-barrier energies

    Directory of Open Access Journals (Sweden)

    Luong D.H.

    2013-12-01

    Full Text Available Coincidence measurements of breakup fragments were carried out for the 7Li + 197Au and 204Pb systems at sub-barrier energies. The mechanisms triggering breakup, and time-scales of each process, were identified through the reaction Q-values and the relative energy of the breakup fragments. Binary breakup of 7Li were found to be predominantly triggered by nucleon transfer, with p-pickup leading to 8Be → α + α decay being the preferred breakup mode. From the time-scales of each process, the coincidence yields were separated into prompt and delayed components, allowing the identification of breakup process important in the suppression of complete fusion of 7Li at above-barrier energies.

  15. An efficient method and device for transfer of semisolid materials into solid-state NMR spectroscopy rotors.

    Science.gov (United States)

    Hisao, Grant S; Harland, Michael A; Brown, Robert A; Berthold, Deborah A; Wilson, Thomas E; Rienstra, Chad M

    2016-04-01

    The study of mass-limited biological samples by magic angle spinning (MAS) solid-state NMR spectroscopy critically relies upon the high-yield transfer of material from a biological preparation into the MAS rotor. This issue is particularly important for maintaining biological activity and hydration of semi-solid samples such as membrane proteins in lipid bilayers, pharmaceutical formulations, microcrystalline proteins and protein fibrils. Here we present protocols and designs for rotor-packing devices specifically suited for packing hydrated samples into Pencil-style 1.6 mm, 3.2 mm standard, and 3.2 mm limited speed MAS rotors. The devices are modular and therefore readily adaptable to other rotor and/or ultracentrifugation tube geometries.

  16. Solid state crystallisation of oligosaccharide ester derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Elaine Ann

    2002-07-01

    An investigation of the solid state properties of oligosaccharide ester derivatives (OEDs) with potential applications in drug delivery has been carried out. The amorphous form of two OEDs, trehalose octa-acetate (TOAC) and 6:6'-di-({beta}-tetraacetyl glucuronyl)-hexaacetyl trehalose (TR153), was investigated as a matrix for the sustained release of active ingredients. The matrices showed a tendency to crystallise and so polymorph screens were performed to provide crystalline samples for structural analysis. The crystal structures of TOAC methanolate and TR153 acetonitrile solvate have been determined by single-crystal laboratory X-ray diffraction. TOAC methanolate crystallises in the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} with a = 15.429(18) A, b = 17.934(19) A and c = 13.518(4) A at 123 K. The structure is isomorphous with the previously reported structure of TOAC monohydrate form II. TR153 acetonitrile solvate crystallises in the monoclinic spacegroup C2 with a = 30:160(6) A, b = 11.878(3) A, c 20.6645(5) A and {beta} = 115.027 (10) deg at 123 K. The crystal structures of both TOAC methanolate and TR153 acetonitrile solvate are stabilised by complex networks of intermolecular C--H...O contacts. Two model compounds were selected for dissolution studies: diltiazem hydrochloride, as a water- soluble organic salt, and ketoprofen as a poorly water-soluble organic compound. Dissolution of both compounds from amorphous TOAC and TR153 matrices was investigated. The release of both drugs was more rapid and complete from TOAC matrices than from TR153 matrices, with both matrices showing a tendency to crystallise (devitrify) during the course of the dissolution experiments. This tendency was greater for the TOAC matrix, which transformed to the extent of ca. 100% within 48 hours. The available evidence suggests that devitrification of the matrix in contact with water produces a polycrystalline, non-monolithic structure rich in microscopic cracks and pores

  17. Solid State Joining of Dissimilar Titanium Alloys

    Science.gov (United States)

    Morton, Todd W.

    Solid state joining of titanium via friction stir welding and diffusion bonding have emerged as enablers of efficient monolithic structural designs by the eliminations fasteners for the aerospace industry. As design complexity and service demands increase, the need for joints of dissimilar alloys has emerged. Complex thermomechanical conditions in friction stir weld joints and high temperature deformation behavior differences between alloys used in dissimilar joints gives rise to a highly variable flow pattern within a stir zone. Experiments performed welding Ti-6Al-4V to beta21S show that mechanical intermixing of the two alloys is the primary mechanism for the generation of the localized chemistry and microstructure, the magnitude of which can be directly related to pin rotation and travel speed weld parameters. Mechanical mixing of the two alloys is heavily influenced by strain rate softening phenomena, and can be used to manipulate weld nugget structure by switching which alloy is subjected to the advancing side of the pin. Turbulent mixing of a weld nugget and a significant reduction in defects and weld forces are observed when the beta21S is put on the advancing side of the weld where higher strain rates are present. Chemical diffusion driven by the heat of weld parameters is characterized using energy dispersive x-ray spectroscopy (EDS) and is shown to be a secondary process responsible for generating short-range chemical gradients that lead to a gradient of alpha particle structures. Diffusion calculations are inconsistent with an assumption of steady-state diffusion and show that material interfaces in the weld nugget evolve through the break-down of turbulent interface features generated by material flows. A high degree of recrystallization is seen throughout the welds, with unique, hybrid chemistry grains that are generated at material interfaces in the weld nugget that help to unify the crystal structure of dissimilar alloys. The degree of

  18. Radioactive contamination of {sup 7}LiI(Eu) crystal scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Belli, P. [INFN sezione Roma “Tor Vergata”, I-00133 Rome (Italy); Dipartimento di Fisica, Università di Roma “Tor Vergata”, I-00133 Rome (Italy); Bernabei, R., E-mail: rita.bernabei@roma2.infn.it [INFN sezione Roma “Tor Vergata”, I-00133 Rome (Italy); Dipartimento di Fisica, Università di Roma “Tor Vergata”, I-00133 Rome (Italy); Budakovsky, S.V. [Institute for Scintillation Materials, 61001 Kharkiv (Ukraine); Cappella, F. [INFN sezione Roma “La Sapienza”, I-00185 Rome (Italy); Dipartimento di Fisica, Università di Roma “La Sapienza”, I-00185 Rome (Italy); Cerulli, R. [INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi (AQ) (Italy); Danevich, F.A. [Institute for Nuclear Research, MSP 03680 Kyiv (Ukraine); D' Angelo, S. [INFN sezione Roma “Tor Vergata”, I-00133 Rome (Italy); Dipartimento di Fisica, Università di Roma “Tor Vergata”, I-00133 Rome (Italy); Incicchitti, A. [INFN sezione Roma “La Sapienza”, I-00185 Rome (Italy); Dipartimento di Fisica, Università di Roma “La Sapienza”, I-00185 Rome (Italy); Laubenstein, M. [INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi (AQ) (Italy); Poda, D.V. [Institute for Nuclear Research, MSP 03680 Kyiv (Ukraine); and others

    2013-03-11

    The radioactive contamination of two 26 g samples of low background lithium iodide crystal scintillators doped by europium and enriched in {sup 7}Li to 99.9% ({sup 7}LiI(Eu)) has been investigated by scintillation method at the sea level, and by ultra-low background HPGe γ spectrometry deep underground. No radioactive contamination was detected. In particular, the contamination of the crystal scintillators by {sup 226}Ra and {sup 228}Th does not exceed 1 mBq/kg, and the activity of {sup 40}K is less than 0.5 Bq/kg.

  19. Report for in-situ 7Li NMR experiment in PNNL Phase -1

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi [Pacific Northwest National Laboratory

    2014-08-19

    To understand the detailed local structural evolution, an in-situ 7Li NMR study was performed. An operando identification of the lithium germanide phases under various cycling regimens permitted understanding of the kinetics of phase transition between different structural phases, including the amorphous phases, and how these correlated with capacity retention. Combining data from TEM and in-situ 7Li NMR, we discovered that the phase inter-conversion during cycling was mediated by co-existing amorphous and crystalline phases, and that the high capacity observed was correlated with an over-lithiated lithium germanide phase.

  20. Search for higher excited states of $^{8}$Be* to study the cosmological $^{7}$Li problem

    CERN Multimedia

    We would like to study the unresolved $^{7}$Li abundance anomaly by carrying out experiments that destroy the rare isotope $^{7}$Be, the main source of $^{7}$Li. Utilizing a 35 MeV $^{7}$Be beam from HIE-ISOLDE, we would like to measure the (d,p) and (d,d) reactions with T-REX. The higher beam energy, for the first time, would allow us to measure higher excitation energies in $^{8}$Be up to about 20 MeV. With a wider angular coverage, we can make improved average cross-section measurement without assuming isotropy done in earlier works.

  1. Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.

    Science.gov (United States)

    Kempgens, Pierre; Britton, Jonathan

    2016-05-01

    Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr  = 2 kHz for TiN, ZrN, and GaN; νr  = 1 kHz for InN) and 'high speed' (νr  = 15 kHz for TiN; νr  = 5 kHz for ZrN; νr  = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied.

  2. The solid state detector technology for picosecond laser ranging

    Science.gov (United States)

    Prochazka, Ivan

    1993-01-01

    We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.

  3. Solid state nuclear track detection principles, methods and applications

    CERN Document Server

    Durrani, S A; ter Haar, D

    1987-01-01

    Solid State Nuclear Track Detection: Principles, Methods and Applications is the second book written by the authors after Nuclear Tracks in Solids: Principles and Applications. The book is meant as an introduction to the subject solid state of nuclear track detection. The text covers the interactions of charged particles with matter; the nature of the charged-particle track; the methodology and geometry of track etching; thermal fading of latent damage trails on tracks; the use of dielectric track recorders in particle identification; radiation dossimetry; and solid state nuclear track detecti

  4. Solid-State Metalloproteins—An Alternative to Immobilisation

    Directory of Open Access Journals (Sweden)

    Trevor D. Rapson

    2016-07-01

    Full Text Available This commentary outlines a protein engineering approach as an alternative to immobilisation developed in our laboratory. We use a recombinant silk protein into which metal active sites can be incorporated to produce solid-state metalloprotein materials. The silk protein directly coordinates to the metal centres providing control over their reactivity akin to that seen in naturally occurring metalloproteins. These solid-state materials are remarkably stable at a range of temperatures and different solvent conditions. I discuss the genesis of this approach and highlight areas where such solid-state materials could find application.

  5. Thermal Design and Flight Validation for Solid-state Transmitter

    OpenAIRE

    Wang Lei; Wen Yao-pu

    2014-01-01

    Solid-state transmitter with large power and high heat flux is a key equipment of an HJ-1-C satellite; therefore, it has a great influence on satellite thermal design. Thermal design ensures that the solid-state transmitter works well within the allowable temperature limits of the equipment. The solid-state transmitter thermal design and solved key problems are provided in accordance with the HJ-1-C characteristics. Moreover, an analysis of satellites on orbit was performed. Based on the tele...

  6. High Extraction Phosphors for Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Summers, Chris [Phosphortech Corporation, Kennesaw, GA (United States); Menkara, Hisham [Phosphortech Corporation, Kennesaw, GA (United States); Wagner, Brent [Phosphortech Corporation, Kennesaw, GA (United States)

    2011-09-01

    We have developed high-index, high efficiency bulk luminescent materials and novel nano-sized phosphors for improved solid-state white LED lamps. These advances can potentially contribute to reducing the loss in luminous efficiencies due to scattering, re-absorption, and thermal quenching. The bulk and nanostructured luminescent materials investigated are index matched to GaN and have broad and size-tunable absorption bands, size and impurity tuned emission bands, size-driven elimination of scattering effects, and a separation between absorption and emission bands. These innovations were accomplished through the use of novel synthesis techniques suitable for high volume production for LED lamp applications. The program produced a full-color set of high quantum yield phosphors with high chemical stability. In the bulk phosphor study, the ZnSeS:Cu,Ag phosphor was optimized to achieve >91% efficiency using erbium (Er) and other activators as sensitizers. Detailed analysis of temperature quenching effects on a large number of ZnSeS:Cu,Ag,X and strontium- and calcium-thiogallate phosphors lead to a breakthrough in the understanding of the anti-quenching behavior and a physical bandgap model was developed of this phenomena. In a follow up to this study, optimized phosphor blends for high efficiency and color performance were developed and demonstrated a 2-component phosphor system with good white chromaticity, color temperature, and high color rendering. By extending the protocols of quantum dot synthesis, large nanocrystals, greater than 20 nm in diameter were synthesized and exhibited bulk-like behavior and blue light absorption. The optimization of ZnSe:Mn nanophosphors achieved ~85% QE The limitations of core-shell nanocrystal systems were addressed by investigating alternative deltadoped structures. To address the manufacturability of these systems, a one-pot manufacturing protocol was developed for ZnSe:Mn nanophosphors. To enhance the stability of these material

  7. The Galileo Solid-State Imaging experiment

    Science.gov (United States)

    Belton, M.J.S.; Klaasen, K.P.; Clary, M.C.; Anderson, J.L.; Anger, C.D.; Carr, M.H.; Chapman, C.R.; Davies, M.E.; Greeley, R.; Anderson, D.; Bolef, L.K.; Townsend, T.E.; Greenberg, R.; Head, J. W.; Neukum, G.; Pilcher, C.B.; Veverka, J.; Gierasch, P.J.; Fanale, F.P.; Ingersoll, A.P.; Masursky, H.; Morrison, D.; Pollack, James B.

    1992-01-01

    The Solid State Imaging (SSI) experiment on the Galileo Orbiter spacecraft utilizes a high-resolution (1500 mm focal length) television camera with an 800 ?? 800 pixel virtual-phase, charge-coupled detector. It is designed to return images of Jupiter and its satellites that are characterized by a combination of sensitivity levels, spatial resolution, geometric fiedelity, and spectral range unmatched by imaging data obtained previously. The spectral range extends from approximately 375 to 1100 nm and only in the near ultra-violet region (??? 350 nm) is the spectral coverage reduced from previous missions. The camera is approximately 100 times more sensitive than those used in the Voyager mission, and, because of the nature of the satellite encounters, will produce images with approximately 100 times the ground resolution (i.e., ??? 50 m lp-1) on the Galilean satellites. We describe aspects of the detector including its sensitivity to energetic particle radiation and how the requirements for a large full-well capacity and long-term stability in operating voltages led to the choice of the virtual phase chip. The F/8.5 camera system can reach point sources of V(mag) ??? 11 with S/N ??? 10 and extended sources with surface brightness as low as 20 kR in its highest gain state and longest exposure mode. We describe the performance of the system as determined by ground calibration and the improvements that have been made to the telescope (same basic catadioptric design that was used in Mariner 10 and the Voyager high-resolution cameras) to reduce the scattered light reaching the detector. The images are linearly digitized 8-bits deep and, after flat-fielding, are cosmetically clean. Information 'preserving' and 'non-preserving' on-board data compression capabilities are outlined. A special "summation" mode, designed for use deep in the Jovian radiation belts, near Io, is also described. The detector is 'preflashed' before each exposure to ensure the photometric linearity

  8. Dynamics and interactions of ibuprofen in cyclodextrin nanosponges by solid-state NMR spectroscopy

    Science.gov (United States)

    Ferro, Monica; Pastori, Nadia; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco

    2017-01-01

    Two different formulations of cyclodextrin nanosponges (CDNS), obtained by polycondensation of β-cyclodextrin with ethylenediaminetetraacetic acid dianhydride (EDTAn), were treated with aqueous solutions of ibuprofen sodium salt (IbuNa) affording hydrogels that, after lyophilisation, gave two solid CDNS-drug formulations. 1H fast MAS NMR and 13C CP-MAS NMR spectra showed that IbuNa was converted in situ into its acidic and dimeric form (IbuH) after freeze-drying. 13C CP-MAS NMR spectra also indicated that the structure of the nanosponge did not undergo changes upon drug loading compared to the unloaded system. However, the 13C NMR spectra collected under variable contact time cross-polarization (VCT-CP) conditions showed that the polymeric scaffold CDNS changed significantly its dynamic regime on passing from the empty CDNS to the drug-loaded CDNS, thus showing that the drug encapsulation can be seen as the formation of a real supramolecular aggregate rather than a conglomerate of two solid components. Finally, the structural features obtained from the different solid-state NMR approaches reported matched the information from powder X-ray diffraction profiles. PMID:28228859

  9. Solid state and solution nitrate photochemistry: photochemical evolution of the solid state lattice.

    Science.gov (United States)

    Asher, Sanford A; Tuschel, David D; Vargson, Todd A; Wang, Luling; Geib, Steven J

    2011-05-01

    We examined the deep UV 229 nm photochemistry of NaNO(3) in solution and in the solid state. In aqueous solution excitation within the deep UV NO(3)¯ strong π → π* transition causes the photochemical reaction NO(3)¯ → NO(2)¯ + O·. We used UV resonance Raman spectroscopy to examine the photon dose dependence of the NO(2)¯ band intensities and measure a photochemical quantum yield of 0.04 at pH 6.5. We also examined the response of solid NaNO(3) samples to 229 nm excitation and also observe formation of NO(2)¯. The quantum yield is much smaller at ∼10(-8). The solid state NaNO(3) photochemistry phenomena appear complex by showing a significant dependence on the UV excitation flux and dose. At low flux/dose conditions NO(2)¯ resonance Raman bands appear, accompanied by perturbed NO(3)¯ bands, indicating stress in the NaNO(3) lattice. Higher flux/dose conditions show less lattice perturbation but SEM shows surface eruptions that alleviate the stress induced by the photochemistry. Higher flux/dose measurements cause cratering and destruction of the NaNO(3) surface as the surface layers are converted to NO(2)¯. Modest laser excitation UV beams excavate surface layers in the solid NaNO(3) samples. At the lowest incident fluxes a pressure buildup competes with effusion to reach a steady state giving rise to perturbed NO(3)¯ bands. Increased fluxes result in pressures that cause the sample to erupt, relieving the pressure.

  10. Hyperfine structure in photoassociative spectra of 6Li2 and 7Li2

    NARCIS (Netherlands)

    Abraham, E.R.I.; McAlexander, W.I.; Stoof, H.T.C.; Hulet, R.G.

    1996-01-01

    We present spectra of hyperfine resolved vibrational levels of the A1Σu+and 1 3Σg+ states of 6Li2 and 7Li2 obtained via photoassociation of colliding ultracold atoms in a magneto-optical trap. A simple first-order perturbation theory analysis accurately accounts for the frequency splittings and rela

  11. A Solid State Tissue Equivalent Detector for Microdosimetry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — QEL proposes to construct a tissue equivalent microdosimeter using a solid state tissue equivalent detector (SSTED). The Phase I study will produce the working...

  12. Solid state conformational classification of eight-membered rings

    DEFF Research Database (Denmark)

    Pérez, J.; García, L.; Kessler, M.;

    2005-01-01

    A statistical classification of the solid state conformation in the title complexes using data retrieved from the Cambridge Structural Database (CSD) has been made. Phosphate and phosphinate complexes show a chair conformation preferably. In phosphonate complexes, the most frequent conformations...

  13. Novel All Solid-state Polymer Electrolytes for Lithium Battery

    Institute of Scientific and Technical Information of China (English)

    Hui Jiang; Shibi Fang

    2005-01-01

    @@ 1Introduction All solid-state polymer electrolytes for lithium battery was proved to be an attractive direction. Compared with prevenient polymer electrolytes all solid-state polymer electrolytes were superiority in more broad electrochemical window, more stable/low interfacial resistance especially when situ-polymerization utilized, excellent mechanical properties and dissepiment free. A lithium secondary battery using all solid-state polymer electrolyte meet the challenge of energy source for both portable electronic devices and electric vehicles (EV) or engine/battery hybrid vehicles (HEV). All solid-state comb-like network polymer electrolytes (CNPE) based on polysiloxane with internal plasticizing chain (IPC) has been designed and synthesized. See Fig. 1.

  14. Solid state division progress report, period ending February 29, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Research is reported concerning theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; crystal growth and characterization; and isotope research materials.

  15. Solid state technology: A compilation. [on semiconductor devices

    Science.gov (United States)

    1973-01-01

    A compilation, covering selected solid state devices developed and integrated into systems by NASA to improve performance, is presented. Data are also given on device shielding in hostile radiation environments.

  16. Solid-State Powered X-band Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Mohamed A.K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nann, Emilio A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dolgashev, Valery A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tantawi, Sami [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neilson, Jeff [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2017-03-06

    In this report we disseminate the hot test results of an X-band 100-W solid state amplifier chain for linear accelerator (linac) applications. Solid state power amplifiers have become increasingly attractive solutions for achieving high power in radar and maritime applications. Here the performance of solid state amplifiers when driving an RF cavity is investigated. Commercially available, matched and fully-packaged GaN on SiC HEMTs are utilized, comprising a wideband driver stage and two power stages. The amplifier chain has a high poweradded- efficiency and is able to supply up to ~1.2 MV/m field gradient at 9.2 GHz in a simple test cavity, with a peak power exceeding 100 W. These findings set forth the enabling technology for solid-state powered linacs.

  17. ASAS = NASA's Advanced Solid-state Array Spectroradiometer: 1988 -2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Advanced Solid-State Array Spectroradiometer (ASAS) data collection contains data collected by the ASAS sensor flown aboard NASA aircraft. A fundamental use of...

  18. A hybrid electromechanical solid state switch for ac power control

    Science.gov (United States)

    1972-01-01

    Bidirectional thyristor coupled to a series of actuator driven electromechanical contacts generates hybrid electromechanical solid state switch for ac power control. Device is useful in power control applications where zero crossover switching is required.

  19. Solid state reactions of nitrogenous heterocyclic compounds (Ⅱ)——Solid state reactions of indole with carbonyl compounds

    Institute of Scientific and Technical Information of China (English)

    李晓陆; 王永梅; 杜大明; 文忠; 熊国祥; 孟继本

    1997-01-01

    Solid state Michael addition reaction of indole with α,β-unsaturaled carbonyl compounds was carried out,by which a series of compounds containing three different heterocyclic groups binding to one carbon atom were obtained.In the presence of Lewis acid,indole could undergo the solid state condensation reaction with aromatic ketones and aldehydes or quinones.The solid state reaction showed higher selectivity and yield than solution reaction The structures of products were identified by IR,1H NMR,MS,elemental analysis and X-ray crystal analysis.The reaction mechanism was also proposed.

  20. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies

  1. Solid state proton conductors properties and applications in fuel cells

    CERN Document Server

    Knauth, Philippe

    2012-01-01

    Proton conduction can be found in many different solid materials, from organic polymers at room temperature to inorganic oxides at high temperature. Solid state proton conductors are of central interest for many technological innovations, including hydrogen and humidity sensors, membranes for water electrolyzers and, most importantly, for high-efficiency electrochemical energy conversion in fuel cells. Focusing on fundamentals and physico-chemical properties of solid state proton conductors, topics covered include: Morphology and Structure of Solid Acids Diffusion in Soli

  2. Perspectives on a Solid State NMR Quantum Computer

    OpenAIRE

    Fel'dman, Edward B.; Lacelle, Serge

    2001-01-01

    A quantum information processing device, based on bulk solid state NMR of the quasi-one dimensional material hydroxyapatite, is proposed following the magnetic resonance force microscopy work of Yamamoto et al (quant-ph/0009122). In a macroscopic sample of hydroxyapatite, our solid state NMR model yields a limit of 10^8 qubits imposed by physics, while development of current technological considerations should allow an upper bound in the range of hundreds to thousands of qubits.

  3. A zwitterionic gel electrolyte for efficient solid-state supercapacitors

    OpenAIRE

    Peng, Xu; Liu, Huili; Yin, Qin; Wu, Junchi; Chen, Pengzuo; Zhang, Guangzhao; Liu, Guangming; Wu, Changzheng; Xie, Yi

    2016-01-01

    Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic advantages of robust water retention ability and ion migration channels, manifesting in superior electro...

  4. Solid-state resistor for pulsed power machines

    Energy Technology Data Exchange (ETDEWEB)

    Stoltzfus, Brian; Savage, Mark E.; Hutsel, Brian Thomas; Fowler, William E.; MacRunnels, Keven Alan; Justus, David; Stygar, William A.

    2016-12-06

    A flexible solid-state resistor comprises a string of ceramic resistors that can be used to charge the capacitors of a linear transformer driver (LTD) used in a pulsed power machine. The solid-state resistor is able to absorb the energy of a switch prefire, thereby limiting LTD cavity damage, yet has a sufficiently low RC charge time to allow the capacitor to be recharged without disrupting the operation of the pulsed power machine.

  5. Solid-State Physics Introduction to the Theory

    CERN Document Server

    Patterson, James

    2010-01-01

    Learning Solid State Physics involves a certain degree of maturity, since it involves tying together diverse concepts from many areas of physics. The objective is to understand, in a basic way, how solid materials behave. To do this one needs both a good physical and mathematical background. One definition of Solid State Physics is it is the study of the physical (e.g. the electrical, dielectric, magnetic, elastic, and thermal) properties of solids in terms of basic physical laws. In one sense, Solid State Physics is more like chemistry than some other branches of physics because it focuses on common properties of large classes of materials. It is typical that Solid State Physics emphasizes how physics properties link to electronic structure. We have retained the term Solid Modern solid state physics came of age in the late thirties and forties and is now is part of condensed matter physics which includes liquids, soft materials, and non-crystalline solids. This solid state/condensed matter physics book begin...

  6. 1H MAS and 1H --> 31P CP/MAS NMR study of human bone mineral.

    Science.gov (United States)

    Kaflak-Hachulska, A; Samoson, A; Kolodziejski, W

    2003-11-01

    Chemical structure of human bone mineral was studied by solid-state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS). Trabecular and cortical bone samples from adult subjects were compared with mineral standards: hydroxyapatite (HA), hydrated and calcined, carbonatoapatite of type B with 9 wt% of CO3(2-) (CHA-B), brushite (BRU) and mixtures of HA with BRU. Proton spectra were acquired with excellent spectral resolution provided by ultra-high speed MAS at 40 kHz. 2D 1H-31P NMR heteronuclear correlation was achieved by cross-polarization (CP) under fast MAS at 12 kHz. 31P NMR was applied with CP from protons under slow MAS at 1 kHz. Appearance of 31P rotational sidebands together with their CP kinetics were analyzed. It was suggested that the sidebands of CP spectra are particularly suitable for monitoring the state of apatite crystal surfaces. The bone samples appeared to be deficient in structural hydroxyl groups analogous to those in HA. We found no direct evidence that the HPO4(2-) brushite-like ions are present in bone mineral. The latter problem is extensively discussed in the literature. The study proves there is a similarity between CHA-B and bone mineral expressed by their similar NMR behavior.

  7. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR

    Science.gov (United States)

    Simmons, Thomas J.; Mortimer, Jenny C.; Bernardinelli, Oigres D.; Pöppler, Ann-Christin; Brown, Steven P.; Deazevedo, Eduardo R.; Dupree, Ray; Dupree, Paul

    2016-12-01

    Exploitation of plant lignocellulosic biomass is hampered by our ignorance of the molecular basis for its properties such as strength and digestibility. Xylan, the most prevalent non-cellulosic polysaccharide, binds to cellulose microfibrils. The nature of this interaction remains unclear, despite its importance. Here we show that the majority of xylan, which forms a threefold helical screw in solution, flattens into a twofold helical screw ribbon to bind intimately to cellulose microfibrils in the cell wall. 13C solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy, supported by in silico predictions of chemical shifts, shows both two- and threefold screw xylan conformations are present in fresh Arabidopsis stems. The twofold screw xylan is spatially close to cellulose, and has similar rigidity to the cellulose microfibrils, but reverts to the threefold screw conformation in the cellulose-deficient irx3 mutant. The discovery that induced polysaccharide conformation underlies cell wall assembly provides new principles to understand biomass properties.

  8. Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR

    Science.gov (United States)

    Vacchi, Isabella A.; Spinato, Cinzia; Raya, Jésus; Bianco, Alberto; Ménard-Moyon, Cécilia

    2016-07-01

    Graphene oxide (GO) is an attractive nanomaterial for many applications. Controlling the functionalization of GO is essential for the design of graphene-based conjugates with novel properties. But, the chemical composition of GO has not been fully elucidated yet. Due to the high reactivity of the oxygenated moieties, mainly epoxy, hydroxyl and carboxyl groups, several derivatization reactions may occur concomitantly. The reactivity of GO with amine derivatives has been exploited in the literature to design graphene-based conjugates, mainly through amidation. However, in this study we undoubtedly demonstrate using magic angle spinning (MAS) solid-state NMR that the reaction between GO and amine functions occurs via ring opening of the epoxides, and not by amidation. We also prove that there is a negligible amount of carboxylic acid groups in two GO samples obtained by a different synthesis process, hence eliminating the possibility of amidation reactions with amine derivatives. This work brings additional insights into the chemical reactivity of GO, which is fundamental to control its functionalization, and highlights the major role of MAS NMR spectroscopy for a comprehensive characterization of derivatized GO.Graphene oxide (GO) is an attractive nanomaterial for many applications. Controlling the functionalization of GO is essential for the design of graphene-based conjugates with novel properties. But, the chemical composition of GO has not been fully elucidated yet. Due to the high reactivity of the oxygenated moieties, mainly epoxy, hydroxyl and carboxyl groups, several derivatization reactions may occur concomitantly. The reactivity of GO with amine derivatives has been exploited in the literature to design graphene-based conjugates, mainly through amidation. However, in this study we undoubtedly demonstrate using magic angle spinning (MAS) solid-state NMR that the reaction between GO and amine functions occurs via ring opening of the epoxides, and not by

  9. Zero-quantum stochastic dipolar recoupling in solid state nuclear magnetic resonance.

    Science.gov (United States)

    Qiang, Wei; Tycko, Robert

    2012-09-14

    We present the theoretical description and experimental demonstration of a zero-quantum stochastic dipolar recoupling (ZQ-SDR) technique for solid state nuclear magnetic resonance (NMR) studies of (13)C-labeled molecules, including proteins, under magic-angle spinning (MAS). The ZQ-SDR technique combines zero-quantum recoupling pulse sequence blocks with randomly varying chemical shift precession periods to create randomly amplitude- and phase-modulated effective homonuclear magnetic dipole-dipole couplings. To a good approximation, couplings between different (13)C spin pairs become uncorrelated under ZQ-SDR, leading to spin dynamics (averaged over many repetitions of the ZQ-SDR sequence) that are fully described by an orientation-dependent N × N polarization transfer rate matrix for an N-spin system, with rates that are inversely proportional to the sixth power of internuclear distances. Suppression of polarization transfers due to non-commutivity of pairwise couplings (i.e., dipolar truncation) does not occur under ZQ-SDR, as we show both analytically and numerically. Experimental demonstrations are reported for uniformly (13)C-labeled L-valine powder (at 14.1 T and 28.00 kHz MAS), uniformly (13)C-labeled protein GB1 in microcrystalline form (at 17.6 T and 40.00 kHz MAS), and partially labeled (13)C-labeled protein GB1 (at 14.1 T and 40.00 kHz MAS). The experimental results verify that spin dynamics under ZQ-SDR are described accurately by rate matrices and suggest the utility of ZQ-SDR in structural studies of (13)C-labeled solids.

  10. Solid-state Hadamard NMR spectroscopy: simultaneous measurements of multiple selective homonuclear scalar couplings.

    Science.gov (United States)

    Kakita, Veera Mohana Rao; Kupče, Eriks; Bharatam, Jagadeesh

    2015-02-01

    Unambiguous measurement of homonuclear scalar couplings (J) in multi-spin scalar network systems is not straightforward. Further, the direct measurement of J-couplings is obscured in solid-state samples due to the dipolar and chemical shift anisotropy (CSA)-dominated line broadening, even under the magic angle spinning (MAS). We present a new multiple frequency selective spin-echo method based on Hadamard matrix encoding, for simultaneous measurement of multiple homonuclear scalar couplings (J) in the solid-state. In contrast to the Hadamard encoded selective excitation schemes known for the solution-state, herein the selectivity is achieved during refocusing period. The Hadamard encoded refocusing scheme concurrently allows to create the spin-spin commutation property between number of spin-pairs of choice in uniformly labelled molecules, which, therefore avoids (1) the repetition of the double selective refocusing experiments for each spin-pair and (2) the synthesis of expensive selective labelled molecules. The experimental scheme is exemplified for determining (1)JCC and (3)JCC values in (13)C6l-Histidine.HCl molecule, which are found to be in excellent agreement with those measured in conventional double frequency selective refocusing mode as well as in the solution-state. This method can be simply extended to 2D/3D pulse schemes and be applied to small bio-molecular solids.

  11. Development of solid-state NMR techniques for the characterisation of pharmaceutical compounds

    Science.gov (United States)

    Tatton, Andrew S.

    Structural characterisation in the solid state is an important step in understanding the physical and chemical properties of a material. Solid-state NMR techniques applied to solid delivery forms are presented as an alternative to more established structural characterisation methods. The effect of homonuclear decoupling upon heteronuclear couplings is investigated using a combination of experimental and density-matrix simulation results acquired from a 13C-1H spinecho pulse sequence, modulated by scalar couplings. It is found that third-order cross terms under MAS and homonuclear decoupling contribute to strong dephasing effects in the NMR signal. Density-matrix simulations allow access to parameters currently unattainable in experiment, and demonstrate that higher homonuclear decoupling rf nutation frequencies reduce the magnitude of third-order cross terms. 15N-1H spinecho experiments were applied to pharmaceutically relevant samples to differentiate between the number of directly attached protons. Using this method, proton transfer in an acid-base reaction is proven in pharmaceutical salts. The indirect detection of 14N lineshapes via protons obtained using 2D 14N-1H HMQC experiments is presented, where coherence transfer is achieved via heteronuclear through-space dipolar couplings. The importance of fast MAS frequencies is demonstrated, and it is found that increasing the recoupling duration reveals longer range NH proximities. The 2D 14N-1H HMQC method is used to demonstrate the presence of specific hydrogen bonding interactions, and thus aid in identifying molecular association in a cocrystal and an amorphous dispersion. In addition, hydrogen bonding motifs were identified by observing the changes in the 14N quadrupolar parameters between individual molecular components relative to the respective solid delivery form. First-principles calculations of NMR chemical shifts and quadrupolar parameters using the GIPAW method were combined with 14N-1H experimental

  12. Nano-mole scale sequential signal assignment by 1 H-detected protein solid-state NMR

    KAUST Repository

    Wang, Songlin

    2015-01-01

    We present a 3D 1H-detected solid-state NMR (SSNMR) approach for main-chain signal assignments of 10-100 nmol of fully protonated proteins using ultra-fast magic-angle spinning (MAS) at ∼80 kHz by a novel spectral-editing method, which permits drastic spectral simplification. The approach offers ∼110 fold time saving over a traditional 3D 13C-detected SSNMR approach. This journal is © The Royal Society of Chemistry 2015.

  13. Applications of solid-state Nuclear Magnetic Resonance (NMR) in studies of Portland cements-based materials

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Andersen, Morten Daugaard; Jakobsen, Hans Jørgen

    2007-01-01

    Solid-state NMR spectroscopy represents an important research tool in the characterization of a range of structural properties for cement-based materials. Different approaches of the technique can be used to obtain information on hydration kinetics, mobile and bound water, porosity, and local...... atomic structures. After a short introduction to these NMR techniques, it is exemplified how magic-angle spinning (MAS) NMR can provide quantitative and structural information about specific phases in anhydrous and hydrated Portland cements with main emphasis on the incorporation of Al3+ ions...

  14. Solid-State Cloud Radar System (CRS) Upgrade and Deployment

    Science.gov (United States)

    McLinden, Matt; Heymsfield, Gerald; Li, Lihua; Racette, Paul; Coon, Michael; Venkatesh, Vijay

    2015-01-01

    The recent decade has brought rapid development in solid-state power amplifier (SSPA) technology. This has enabled the use of solid-state precipitation radar in place of high-power and high-voltage systems such as those that use Klystron or Magnetron transmitters. The NASA Goddard Space Flight Center has recently completed a comprehensive redesign of the 94 gigahertz Cloud Radar System (CRS) to incorporate a solid-state transmitter. It is the first cloud radar to achieve sensitivity comparable to that of a high-voltage transmitter using solid-state. The NASA Goddard Space Flight Center's Cloud Radar System (CRS) is a 94 gigahertz Doppler radar that flies on the NASA ER-2 high-altitude aircraft. The upgraded CRS system utilizes a state-of-the-art solid-state 94 gigahertz power amplifier with a peak transmit power of 30 watts. The modernized CRS system is detailed here with data results from its deployment during the 2014 Integrated Precipitation and Hydrology Experiment (IPHEX).

  15. A zwitterionic gel electrolyte for efficient solid-state supercapacitors

    Science.gov (United States)

    Peng, Xu; Liu, Huili; Yin, Qin; Wu, Junchi; Chen, Pengzuo; Zhang, Guangzhao; Liu, Guangming; Wu, Changzheng; Xie, Yi

    2016-05-01

    Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic advantages of robust water retention ability and ion migration channels, manifesting in superior electrochemical performance. When applying the zwitterionic gel electrolyte, our graphene-based solid-state supercapacitor reaches a volume capacitance of 300.8 F cm-3 at 0.8 A cm-3 with a rate capacity of only 14.9% capacitance loss as the current density increases from 0.8 to 20 A cm-3, representing the best value among the previously reported graphene-based solid-state supercapacitors, to the best of our knowledge. We anticipate that zwitterionic gel electrolyte may be developed as a gel electrolyte in solid-state supercapacitors.

  16. A zwitterionic gel electrolyte for efficient solid-state supercapacitors.

    Science.gov (United States)

    Peng, Xu; Liu, Huili; Yin, Qin; Wu, Junchi; Chen, Pengzuo; Zhang, Guangzhao; Liu, Guangming; Wu, Changzheng; Xie, Yi

    2016-05-26

    Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic advantages of robust water retention ability and ion migration channels, manifesting in superior electrochemical performance. When applying the zwitterionic gel electrolyte, our graphene-based solid-state supercapacitor reaches a volume capacitance of 300.8 F cm(-3) at 0.8 A cm(-3) with a rate capacity of only 14.9% capacitance loss as the current density increases from 0.8 to 20 A cm(-3), representing the best value among the previously reported graphene-based solid-state supercapacitors, to the best of our knowledge. We anticipate that zwitterionic gel electrolyte may be developed as a gel electrolyte in solid-state supercapacitors.

  17. 1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems

    Science.gov (United States)

    Berns, Anne E.; Conte, Pellegrino

    2010-05-01

    Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (γ), such as protons, to the less abundant 13C nuclei with low γ values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kögel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90° x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched

  18. Role of the cluster structure of {sup 7}Li in the dynamics of fragment capture

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, A., E-mail: aradhana@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Navin, A. [GANIL, CEA/DSM - CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Diaz-Torres, A. [ECT, Villa Tambosi, I-38123 Villazzano, Trento (Italy); Nanal, V. [DNAP, Tata Institute of Fundamental Research, Mumbai 400005 (India); Ramachandran, K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Rejmund, M. [GANIL, CEA/DSM - CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Bhattacharyya, S. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Chatterjee, A.; Kailas, S. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Lemasson, A. [GANIL, CEA/DSM - CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Palit, R. [DNAP, Tata Institute of Fundamental Research, Mumbai 400005 (India); Parkar, V.V. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Pillay, R.G. [DNAP, Tata Institute of Fundamental Research, Mumbai 400005 (India); Rout, P.C. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sawant, Y. [DNAP, Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2013-01-08

    Exclusive measurements of prompt {gamma}-rays from the heavy-residues with various light charged particles in the {sup 7}Li + {sup 198}Pt system, at an energy near the Coulomb barrier (E/V{sub b}{approx}1.6) are reported. Recent dynamic classical trajectory calculations, constrained by the measured fusion, {alpha}- and t-capture cross-sections have been used to explain the excitation energy dependence of the residue cross-sections. These calculations distinctly illustrate a two-step process, breakup followed by fusion, in case of the capture of t and {alpha} clusters; whereas for {sup 6}He+p and {sup 5}He+d configurations, massive transfer is inferred to be the dominant mechanism. The present work clearly demonstrates the role played by the cluster structures of {sup 7}Li in understanding the reaction dynamics at energies around the Coulomb barrier.

  19. Role of the cluster structure of $^7$Li in the dynamics of fragment capture

    CERN Document Server

    Shrivastava, A; Diaz-Torres, A; Nanal, V; Ramachandran, K; Rejmund, M; Bhattacharyya, S; Chatterjee, A; Kailas, S; Lemasson, A; Palit, R; Parkar, V V; Pillay, R G; Rout, P C; Sawant, Y

    2012-01-01

    Exclusive measurements of prompt $\\gamma$-rays from the heavy-residues with various light charged particles in the $^7$Li + $^{198}$Pt system, at an energy near the Coulomb barrier (E/$V_b$ $\\sim$ 1.6) are reported. Recent dynamic classical trajectory calculations, constrained by the measured fusion, $\\alpha$ and $t$ capture cross-sections have been used to explain the excitation energy dependence of the residue cross-sections. These calculations distinctly illustrate a two step process, breakup followed by fusion in case of the capture of $t$ and $\\alpha$ clusters; whereas for $^{6}$He + $p$ and $^{5}$He + $d$ configurations, massive transfer is inferred to be the dominant mechanism. The present work clearly demonstrates the role played by the cluster structures of $^7$Li in understanding the reaction dynamics at energies around the Coulomb barrier.

  20. Probing transfer to unbound states of the ejectile with weakly bound 7Li on 93Nb

    CERN Document Server

    Pandit, S K; Mahata, K; Keeley, N; Parkar, V V; Rout, P C; Martel, I; Palshetkar, C S; Kumar, A; Ramachandran, K; Patale, P; Chatterjee, A; Kailas, S

    2016-01-01

    The two-step process of transfer followed by breakup is explored by measuring a rather complete set of exclusive data for reaction channels populating states in the ejectile continua of the $^7$Li+$^{93}$Nb system at energies close to the Coulomb barrier. The cross sections for $\\alpha+\\alpha$ events from one proton pickup were found to be smaller than those for $\\alpha+d$ events from one neutron stripping and $\\alpha+t$ events from direct breakup of $^7$Li. Coupled channels Born approximation and continuum discretized coupled channels calculations describe the data well and support the conclusion that the $\\alpha+d$ and $\\alpha+\\alpha$ events are produced by direct transfer to unbound states of the ejectile.

  1. Chemical shift tensor determination using magnetically oriented microcrystal array (MOMA): 13C solid-state CP NMR without MAS

    Science.gov (United States)

    Kusumi, R.; Kimura, F.; Song, G.; Kimura, T.

    2012-10-01

    Chemical shift tensors for the carboxyl and methyl carbons of L-alanine crystals were determined using a magnetically oriented microcrystal array (MOMA) prepared from a microcrystalline powder sample of L-alanine. A MOMA is a single-crystal-like composite in which microcrystals are aligned three-dimensionally in a matrix resin. The single-crystal rotation method was applied to the MOMA to determine the principal values and axes of the chemical shift tensors. The result showed good agreement with the literature data for the single crystal of L-alanine. This demonstrates that the present technique is a powerful tool for determining the chemical shift tensor of a crystal from a microcrystal powder sample.

  2. New measurement of the 10B(n,α)7 Li through the Trojan Horse Method

    Science.gov (United States)

    Spartá, Roberta

    2016-04-01

    B(n,α) Li reaction cross section has been measured using the Trojan Horse method, with the specific aim to separate the α1 contribution (coming from the first Li excited level) by the αo (related to the Li ground state), using a very thin target. Preliminary results are shown of the three-body B(d,α7 Li)H cross section.

  3. Perspectives of Solid State Fermentation for Production of Food Enzymes

    Directory of Open Access Journals (Sweden)

    Cristobal Noe Aguilar

    2008-01-01

    Full Text Available Food industry represents one of the economic sectors where microbial metabolites have found a wide variety of applications. This is the case of some enzymes, such as amylases, cellulases, pectinases and proteases which have played a very important role as food additives. Most of these enzymes have been produced by submerged cultures at industrial level. Many works in the literature present detailed aspects involved with those enzymes and their importance in the food industry. However, the production and application studies of those enzymes produced by solid state fermentations are scarce in comparison with submerged fermentation. This review involves production aspects of the seven enzymes: tannases, pectinases, caffeinases, mannanases, phytases, xylanases and proteases, which can be produced by solid state fermentation showing attractive advantages. Additionally, process characteristics of solid state fermentation are considered.

  4. Fabrication and characterization of solid state conducting polymer actuators

    Science.gov (United States)

    Xie, Jian; Sansinena, Jose-Maria; Gao, Junbo; Wang, Hsing-Lin

    2004-07-01

    We report here the fabrication and characterization of solid-state conducting polymer actuators. The electrochemical activity of polyaniline (PANI) thin film coated with solid-state polyelectrolyte is very similar to the polyaniline thin film in an aqueous solution. The solid-state actuator is adhered to a lever arm of a force transducer and the force generation is measured in real time. The force generated by the actuator is found to be length dependent. However, the overall torque generated by the actuators with different lengths remains essentially the same. The effect of stimulation signals such as voltage, and current, on the bending angle and displacement is also studied using square wave potential.

  5. All solid-state SBS phase conjugate mirror

    Science.gov (United States)

    Dane, C.B.; Hackel, L.A.

    1999-03-09

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  6. Solid-State 2MW Klystron Power Control System

    CERN Document Server

    Kempkes, Michael; Gaudreau, Marcel; Hawkey, Timothy; Roth, Ian

    2005-01-01

    Under an SBIR effort for the DOE, Diversified Technologies, Inc. designed, built, and installed a solid state power control system for the Advanced Light Source klystrons at Argonne National Laboratory (ANL). This system consists of two major elements - a 100 kV, 20 A CW solid state series switch, and a solid state voltage regulator for the mod-anode of the klystron. The series switch replaces the existing mercury ignitron crowbar, eliminating these environmentally hazardous components while providing enhanced arc protection and faster return to transmit. The mod-anode voltage regulator uses series IGBTs, operating in the linear regime, to provide highly rapid and accurate control of the mod-anode voltage, and therefore the output power from the klystron. Results from the installation and testing of this system at ANL will be presented.

  7. Interface Limited Lithium Transport in Solid-State Batteries.

    Science.gov (United States)

    Santhanagopalan, Dhamodaran; Qian, Danna; McGilvray, Thomas; Wang, Ziying; Wang, Feng; Camino, Fernando; Graetz, Jason; Dudney, Nancy; Meng, Ying Shirley

    2014-01-16

    Understanding the role of interfaces is important for improving the performance of all-solid-state lithium ion batteries. To study these interfaces, we present a novel approach for fabrication of electrochemically active nanobatteries using focused ion beams and their characterization by analytical electron microscopy. Morphological changes by scanning transmission electron microscopy imaging and correlated elemental concentration changes by electron energy loss spectroscopy mapping are presented. We provide first evidence of lithium accumulation at the anode/current collector (Si/Cu) and cathode/electrolyte (LixCoO2/LiPON) interfaces, which can be accounted for the irreversible capacity losses. Interdiffusion of elements at the Si/LiPON interface was also witnessed with a distinct contrast layer. These results highlight that the interfaces may limit the lithium transport significantly in solid-state batteries. Fabrication of electrochemically active nanobatteries also enables in situ electron microscopy observation of electrochemical phenomena in a variety of solid-state battery chemistries.

  8. Solid-state dosimeters: A new approach for mammography measurements

    Energy Technology Data Exchange (ETDEWEB)

    Brateman, Libby F., E-mail: bratel@radiology.ufl.edu [Department of Radiology, University of Florida College of Medicine Box 100374, Gainesville, Florida 32610-0374 (United States); Heintz, Philip H. [Department of Radiology, University of New Mexico, MSC10 5530, Albuquerque, New Mexico 87131 (United States)

    2015-02-15

    Purpose: To compare responses of modern commercially available solid-state dosimeters (SStDs) used in mammography medical physics surveys for two major vendors of current digital mammography units. To compare differences in dose estimates among SStD responses with ionization chamber (IC) measurements for several target/filter (TF) combinations and report their characteristics. To review scientific bases for measurements of quantities required for mammography for traditional measurement procedures and SStDs. Methods: SStDs designed for use with modern digital mammography units were acquired for evaluation from four manufacturers. Each instrument was evaluated under similar conditions with the available mammography beams provided by two modern full-field digital mammography units in clinical use: a GE Healthcare Senographe Essential (Essential) and a Hologic Selenia Dimensions 5000 (Dimensions), with TFs of Mo/Mo, Mo/Rh; and Rh/Rh and W/Rh, W/Ag, and W/Al, respectively. Measurements were compared among the instruments for the TFs over their respective clinical ranges of peak tube potentials for kVp and half-value layer (HVL) measurements. Comparisons for air kerma (AK) and their associated relative calculated average glandular doses (AGDs), i.e., using fixed mAs, were evaluated over the limited range of 28–30 kVp. Measurements were compared with reference IC measurements for AK, reference HVLs and calculated AGD, for two compression paddle heights for AK, to evaluate scatter effects from compression paddles. SStDs may require different positioning from current mammography measurement protocols. Results: Measurements of kVp were accurate in general for the SStDs (within −1.2 and +1.1 kVp) for all instruments over a wide range of set kVp’s and TFs and most accurate for Mo/Mo and W/Rh. Discrepancies between measurements and reference values were greater for HVL and AK. Measured HVL values differed from reference values by −6.5% to +3.5% depending on the SStD and

  9. In-beam PET measurement of $^{7}Li^{3+}$ irradiation induced $\\beta^+}$-activity

    CERN Document Server

    Priegnitz, M; Parodi, K; Sommerer, F; Fiedler, F; Enghardt, W

    2008-01-01

    At present positron emission tomography (PET) is the only feasible method of an in situ and non-invasive monitoring of patient irradiation with ions. At the experimental carbon ion treatment facility of the Gesellschaft für Schwerionenforschung (GSI) Darmstadt an in-beam PET scanner has been integrated into the treatment site and lead to a considerable quality improvement of the therapy. Since ions other than carbon are expected to come into operation in future patient treatment facilities, it is highly desirable to extend in-beam PET also to other therapeutic relevant ions, e.g. 7Li. Therefore, by means of the in-beam PET scanner at GSI the β+-activity induced by 7Li3+ ions has been investigated for the first time. Targets of PMMA, water, graphite and polyethylene were irradiated with monoenergetic, pencil-like beams of 7Li3+ with energies between 129.1 A MeV and 205.3 A MeV and intensities ranging from 3.0 × 107 to 1.9 × 108 ions s−1. This paper presents the measured β+-activity profiles as well as d...

  10. Line shift, line asymmetry, and the 6Li/7Li isotopic ratio determination

    CERN Document Server

    Cayrel, Roger; Chand, Hum; Bonifacio, Piercarlo; Spite, Monique; Spite, François; Petitjean, Patrick; Ludwig, Hans-Günter; Caffau, Elisabetta

    2007-01-01

    Context: Line asymmetries are generated by convective Doppler shifts in stellar atmospheres, especially in metal-poor stars, where convective motions penetrate to higher atmospheric levels. Such asymmetries are usually neglected in abundance analyses. The determination of the 6Li/7Li isotopic ratio is prone to suffering from such asymmetries, as the contribution of 6Li is a slight blending reinforcement of the red wing of each component of the corresponding 7Li line, with respect to its blue wing. Aims: The present paper studies the halo star HD 74000 and estimates the impact of convection-related asymmetries on the Li isotopic ratio determination. Method: Two methods are used to meet this aim. The first, which is purely empirical, consists in deriving a template profile from another element that can be assumed to originate in the same stellar atmospheric layers as Li I, producing absorption lines of approximately the same equivalent width as individual components of the 7Li I resonance line. The second metho...

  11. What would Edison do with solid state lighting?

    Science.gov (United States)

    Ferguson, Ian T.; Melton, Andrew; Xu, Tianming; Jamil, Muhammad; Fenwick, Will

    2010-08-01

    Thomas Edison is widely regarded as the greatest inventor in history and the most prominent individual behind the invention of the electric light. His impressive characteristics as an individual that led to his amazing success as an innovator continue to be an inspiration for researchers today. This paper considers how Edison might proceed in developing solid state lighting into a technology capable of displacing incumbent light sources, including his own incandescent lamps, then reviews some of the "Edison-like" contributions made to solid state lighting by the Next Generation Lighting research program at Georgia Tech.

  12. Novel transparent ceramics for solid-state lasers

    Institute of Scientific and Technical Information of China (English)

    Hao; Yang; Jian; Zhang; Dewei; Luo; Hui; Lin; Deyuan; Shen; Dingyuan; Tang

    2013-01-01

    Recent progress on rare-earth doped polycrystalline YAG transparent ceramics has made them an alternative novel solid-state laser gain material. In this paper, we present results of our research on polycrystalline RE:YAG transparent ceramics. High optical quality YAG ceramics doped with various rare-earth(RE) ions such as Nd3+, Yb3+, Er3+,Tm3+, and Ho3+have been successfully fabricated using the solid-state reactive sintering method. Highly efficient laser oscillations of the fabricated ceramics are demonstrated.

  13. Solid-State Source of Subcycle Pulses in the Midinfrared.

    Science.gov (United States)

    Stepanov, E A; Lanin, A A; Voronin, A A; Fedotov, A B; Zheltikov, A M

    2016-07-22

    We demonstrate a robust, all-solid-state approach for the generation of microjoule subcycle pulses in the midinfrared through a cascade of carefully optimized parametric-amplification, difference-frequency-generation, spectral-broadening, and chirp-compensation stages. This method of subcycle waveform generation becomes possible due to an unusual, ionization-assisted solid-state pulse self-compression dynamics, where highly efficient spectral broadening is enabled by ultrabroadband four-wave parametric amplification phase matched near the zero-group-velocity wavelength of the material.

  14. Solid-State Modulators for RF and Fast Kickers

    CERN Document Server

    Cook, Edward; Brooksby, Craig A; Cassel, Richard; De Lamare, Jeffrey E; Gower, Edward J; Hawkins, Steven; Hickman, Bradley C; Nguyen, Minh N; Pappas, Chris

    2005-01-01

    As the capabilities of solid-state devices increase, these devices are being incorporated into modulator designs for high voltage accelerator applications. Solid-state modulators based on inductive adder circuit topology have demonstrated great versatility with regard to pulse width and pulse repetition rate while maintaining fast pulse rise and fall times. Additionally, these modulators are capable of being scaled to higher output voltage and power levels. An explanation of the basic circuit operation will be presented as well as test data of several different hardware systems.

  15. High power RF solid state power amplifier system

    Science.gov (United States)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2011-01-01

    A high power, high frequency, solid state power amplifier system includes a plurality of input multiple port splitters for receiving a high-frequency input and for dividing the input into a plurality of outputs and a plurality of solid state amplifier units. Each amplifier unit includes a plurality of amplifiers, and each amplifier is individually connected to one of the outputs of multiport splitters and produces a corresponding amplified output. A plurality of multiport combiners combine the amplified outputs of the amplifiers of each of the amplifier units to a combined output. Automatic level control protection circuitry protects the amplifiers and maintains a substantial constant amplifier power output.

  16. Solid State Welding Development at Marshall Space Flight Center

    Science.gov (United States)

    Ding, Robert J.; Walker, Bryant

    2012-01-01

    What is TSW and USW? TSW is a solid state weld process consisting of an induction coil heating source, a stir rod, and non-rotating containment plates Independent heating, stirring and forging controls Decouples the heating, stirring and forging process elements of FSW. USW is a solid state weld process consisting of an induction coil heating source, a stir rod, and a non-rotating containment plate; Ultrasonic energy integrated into non-rotating containment plate and stir rod; Independent heating, stirring and forging controls; Decouples the heating, stirring and forging process elements of FSW.

  17. STUDY ON SOLID STATE POLYCONDENSATION OF POLYETHYLENE TEREPHTHALATE COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    WU Rongrui; DENG Yuan; HUANG Guanbao; DENG Jianyuan; LI Huiping

    1994-01-01

    The kinetic data of solid state polycondensation of PET and its copolymers are determined.It is shown that the reaction rate of copolycondensation is higher than that of PET polycondensation, and increases with the comonomers content. But the reaction rate of copolycondensation in melt state of this kind of copolymers is lower than that of PET. It is considered that the chemical reactivity of comonomer is the main factor which affect the polycondensation in melt state,whereas the aggregative structure of the polymer is the main factor in solid state. The crystallinity and crystallite size of the copolymers have been measured by X-ray method.

  18. {sup 7}Li NMR spectroscopy and ion conduction mechanism of composite gel polymer electrolyte: A comparative study with variation of salt and plasticizer with filler

    Energy Technology Data Exchange (ETDEWEB)

    Saikia, D. [Department of Chemistry, Center for Nanotechnology and R and D Center for Membrane Technology, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); Chen-Yang, Y.W. [Department of Chemistry, Center for Nanotechnology and R and D Center for Membrane Technology, Chung Yuan Christian University, Chung Li 32023, Taiwan (China)], E-mail: yuiwhei@cycu.edu.tw; Chen, Y.T.; Li, Y.K.; Lin, S.I. [Department of Chemistry, Center for Nanotechnology and R and D Center for Membrane Technology, Chung Yuan Christian University, Chung Li 32023, Taiwan (China)

    2009-01-30

    Microporous composite gel polymer electrolyte (CGPE) has been prepared by incorporating the home-made silica aerogel (SAG) particles into the poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) copolymer/LiClO{sub 4} matrix. The ionic transport behavior of the electrolyte is studied with various experimental techniques such as AC impedance, X-ray diffraction (XRD), infrared (IR) spectra, nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA), etc. The results reveal that the SAG particles are well dispersed in the electrolytes and incorporate with the other components of the CGPEs. The solid-state {sup 7}Li NMR study has confirmed the interactions of lithium ion with SAG, polymer and plasticizers, causing to form the microporous structure and reduce the glass transition temperature and crystallinity, resulting in an increase in ionic conductivity of the CGPE. The best ionic conductivity (1.04 x 10{sup -2} S/cm at room temperature) is obtained from the composite polymer electrolyte containing 4 wt% of SAG, which is approximately four times higher than the ionic conductivity of the electrolyte without the filler.

  19. Phosphorus speciation in calcite speleothems determined from solid-state NMR spectroscopy

    Science.gov (United States)

    Mason, Harris E.; Frisia, Silvia; Tang, Yuanzhi; Reeder, Richard J.; Phillips, Brian L.

    2007-02-01

    Variations in speleothem P concentration show cyclic patterns that have important implications for high resolution palaeoclimate and palaeoenvironmental reconstructions. However, little is known about the speciation of P in calcite speleothems. Here we employ solid-state 31P and 1H magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopic techniques as a non-destructive method for analyzing the distribution of P in speleothems. The 31P MAS NMR results show three peaks indicating the presence of three primary types of phosphate species in samples from the Grotta di Ernesto (northeastern Italy): a broad peak at a chemical shift δP-31 = 3.1 to 3.7 ppm from individual phosphate ions incorporated within calcite, a narrow set of peaks near δP-31 = - 0.9 ppm from crystalline monetite and a narrow peak at δP-31 = 2.9 ppm from an unidentified crystalline phosphate phase. Essentially identical results were obtained for a synthetic calcite/phosphate coprecipitate. Spectra collected for a sample from Grotte de Clamouse (southern France) show only a broad peak near 3.5 ppm suggesting a possible limit for phosphate incorporation into the calcite structure. These data suggest that P in this system can interact to form calcium phosphate surface precipitates during infiltration events and are subsequently enclosed during calcite growth.

  20. Solid-State NMR Spectroscopy for the Physical Chemistry Laboratory

    Science.gov (United States)

    Kinnun, Jacob J.; Leftin, Avigdor; Brown, Michael F.

    2013-01-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy finds growing application to inorganic and organic materials, biological samples, polymers, proteins, and cellular membranes. However, this technique is often neither included in laboratory curricula nor typically covered in undergraduate courses. On the other hand, spectroscopy and…

  1. Ultrafast laser spectroscopy in complex solid state materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianqi [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  2. Solid-state Nanopore for Detecting Individual Biopolymers

    Science.gov (United States)

    Li, Jiali; Golovchenko, Jene A.

    2011-01-01

    Solid-state nanopores have been fabricated and used to characterize single DNA and protein molecules. Here we describe the details on how these nanopores were fabricated and characterized, the nanopore sensing system setup, and the protocols of using these nanopores to characterize DNA and protein molecules. PMID:19488695

  3. Chinese vinegar and its solid-state fermentation process

    NARCIS (Netherlands)

    Liu Dengru,; Yang Zhu, Yang; Beeftink, H.H.; Ooijkaas, L.P.; Rinzema, A.; Jian Chen,; Tramper, J.

    2004-01-01

    China uses solid-state fermentation (SSF) processes on a large scale for products such as vinegar, Chinese distilled spirit, soy sauce, Furu, and other national foods that are consumed around the world. In this article, the typical SSF process is discussed, with a focus on Chinese vinegars, especial

  4. White blood cell differentiation using a solid state flow cytometer

    NARCIS (Netherlands)

    Doornbos, R.M.P.; Hennink, E.J.; Putman, C.A.J.; Grooth, de Bart G.; Greve, Jan

    1993-01-01

    A flow cytometer using a solid state light source and detector was designed and built. For illumination of the sample stream two types of diode lasers (670 nm and 780 nm) were tested in a set-up designed to differentiate human leukocytes by means of light scattering. The detector is an avalanche pho

  5. Solid state physics advances in research and applications

    CERN Document Server

    Ehrenreich, Henry

    1994-01-01

    The latest volume in the world renowned Solid State Physics series marks the fruition of Founding Editor David Turnbull''s outstanding tenure as series editor. Volume 47 presents five articles written by leadingexperts on areas including crystal-melt interfacial tension, order-disorder transformation in alloys, brittle matrix composites, surfaces and interfaces, and magnetoresistance.

  6. High power solid state retrofit lamp thermal characterization and modeling

    NARCIS (Netherlands)

    Jakovenko, J.; Formánek, J.; Vladimír, J.; Husák, M.; Werkhoven, R.J.

    2012-01-01

    Thermal and thermo-mechanical modeling and characterization of solid state lightening (SSL) retrofit LED Lamp are presented in this paper. Paramount Importance is to design SSL lamps for reliability, in which thermal and thermo-mechanical aspects are key points. The main goal is to get a precise 3D

  7. Solid-state nanopores for probing DNA and protein

    NARCIS (Netherlands)

    Plesa, C.

    2015-01-01

    Solid-state nanopores are small nanometer-scale holes in thin membranes. When used to separate two chambers containing salt solution, any biomolecule passing from one chamber to the other is forced to pass through the pore constriction. An electric field applied across the membrane is used to create

  8. Diode pumped solid-state laser oscillators for spectroscopic applications

    Science.gov (United States)

    Byer, R. L.; Basu, S.; Fan, T. Y.; Kozlovsky, W. J.; Nabors, C. D.; Nilsson, A.; Huber, G.

    1987-01-01

    The rapid improvement in diode laser pump sources has led to the recent progress in diode laser pumped solid state lasers. To date, electrical efficiencies of greater than 10 percent were demonstrated. As diode laser costs decrease with increased production volume, diode laser and diode laser array pumped solid state lasers will replace the traditional flashlamp pumped Nd:YAG laser sources. The use of laser diode array pumping of slab geometry lasers will allow efficient, high peak and average power solid state laser sources to be developed. Perhaps the greatest impact of diode laser pumped solid state lasers will be in spectroscopic applications of miniature, monolithic devices. Single-stripe diode-pumped operation of a continuous-wave 946 nm Nd:YAG laser with less than 10 m/w threshold was demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. The KNbO3 and periodically poled LiNbO3 appear to be the most promising.

  9. Solid-state fermentation: modelling fungal growth and activity.

    NARCIS (Netherlands)

    Smits, J.P.

    1998-01-01

    In solid-state fermentation (SSF) research, it is not possible to separate biomass quantitatively from the substrate. The evolution of biomass dry weight in time can therefore not be measured. Of the aiternatives to dry weight available, glucosamine content is most promising.Glucosamine is the monom

  10. TL and TSC Solid State Detectors in Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G.A.P.; Sabini, M.G.; Bruzzi, M.; Bucciolini, M.; Cuttone, G.; Guasti, A.; Lo Nigro, S.; Mazzocchi, S.; Pirollo, S.; Raffaele, L.; Sciortino, S.

    2000-12-31

    The necessity to develop methods and techniques for a better determination of absorbed dose in the radiotherapy field stimulates new clinical applications of solid state detectors. In this work we have studied the possibility to use of TLD-100 and synthetic CVD diamond detectors as dosimeters for high-energy proton beams.

  11. Development of diode-pumped medical solid-state lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Kim, Min Suk

    2000-09-01

    Two thirds of human body consists of water and the absorption of laser by water is an important factor in medical laser treatment. Er medical lasers have been used in the dermatology, ophthalmology and dental treatments due to its highest absorption by water. However, 2.9 um Er laser can not be transmitted through an optical fiber. On the other hand, Tm laser can be transmitted through an fiber and also has very high absorption by water. Therefore, Tm lasers are used in ophthalmology and heart treatment wherein the fiber delivery is very important for the treatment. Until now, mainly lamp-pumped solid-state lasers have been used in medical treatments, but the lamp-pumped solid-state lasers are being replaced with the diode-pumped solid-state lasers because the diode-pumped solid-state lasers are more compact and much easier to maintain. Following this trend, end-pumped Er and side-pumped Tm lasers have been developed and the output power of 1 W was obtained for Er and Tm respectively.

  12. Organic Materials Degradation in Solid State Lighting Applications

    NARCIS (Netherlands)

    Yazdan Mehr, M.

    2015-01-01

    In this thesis the degradation and failure mechanisms of organic materials in the optical part of LED-based products are studied. The main causes of discoloration of substrate/lens in remote phosphor of LED-based products are also comprehensively investigated. Solid State Lighting (SSL) technology i

  13. Pulse Design in Solid-State Nuclear Magnetic Resonance

    DEFF Research Database (Denmark)

    Palani, Ravi Shankar

    2017-01-01

    The work presented in this dissertation is centred on the theory of experimental methods in solid-state Nuclear Magnetic Resonance (NMR) spectroscopy, which deals with interaction of electromagnetic radiation with nuclei in a magnetic field and possessing a fundamental quantum mechanical property...

  14. Coherent manipulation of single quantum systems in the solid state

    Science.gov (United States)

    Childress, Lilian Isabel

    2007-12-01

    The controlled, coherent manipulation of quantum-mechanical systems is an important challenge in modern science and engineering, with significant applications in quantum information science. Solid-state quantum systems such as electronic spins, nuclear spins, and superconducting islands are among the most promising candidates for realization of quantum bits (qubits). However, in contrast to isolated atomic systems, these solid-state qubits couple to a complex environment which often results in rapid loss of coherence, and, in general, is difficult to understand. Additionally, the strong interactions which make solid-state quantum systems attractive can typically only occur between neighboring systems, leading to difficulties in coupling arbitrary pairs of quantum bits. This thesis presents experimental progress in understanding and controlling the complex environment of a solid-state quantum bit, and theoretical techniques for extending the distance over which certain quantum bits can interact coherently. Coherent manipulation of an individual electron spin associated with a nitrogen-vacancy center in diamond is used to gain insight into its mesoscopic environment. Furthermore, techniques for exploiting coherent interactions between the electron spin and a subset of the environment are developed and demonstrated, leading to controlled interactions with single isolated nuclear spins. The quantum register thus formed by a coupled electron and nuclear spin provides the basis for a theoretical proposal for fault-tolerant long-distance quantum communication with minimal physical resource requirements. Finally, we consider a mechanism for long-distance coupling between quantum dots based on chip-scale cavity quantum electrodynamics.

  15. Solid-state interactions between trimethoprim and parabens

    DEFF Research Database (Denmark)

    Pedersen, S.; Kristensen, H. G.; Cornett, Claus

    1994-01-01

    Solid-state interactions between trimethoprim and the esters of 4-hydroxybenzoic acid (parahydroxybenzoates or parabens) used for anti-microbial preservation are investigated. The formation of a crystalline 1/1 molecular compound between trimethoprim and methyl parahydroxybenzoate is demonstrated...

  16. Solid-State Imaging Device With Carbon Film

    Science.gov (United States)

    Frazer, Robert E.

    1992-01-01

    Performance of solid-state imaging device enhanced by coating surface through which photons enter with thin film of carbon or diamondlike carbon. Film beneficial in two ways: acts as antireflection coat, and helps to dissipate undesired static electric charges that otherwise accumulate on surface.

  17. Charge pump DC-DC converter comprising solid state batteries

    NARCIS (Netherlands)

    Reefman, D.; Roozeboom, F.; Notten, P.H.L.; Klootwijk, J.H.

    2013-01-01

    An electronic device is provided which comprises a DC-DC converter. The DC-DC converter comprises at least one solid-state rechargeable battery (B1, B2) for storing energy for the DC-DC conversion and an output capacitor (C2).

  18. Organic solid-state integrated amplifiers and lasers

    NARCIS (Netherlands)

    Grivas, Christos; Pollnau, Markus

    2012-01-01

    Solid-state organic amplifiers and lasers are attractive for hybrid integration due to their compatibility with different material platforms, straightforward processing, and possibility to optimize easily their optical and electronic properties by molecular engineering. Advances in the gain medium d

  19. Molecular electronics with single molecules in solid-state devices

    DEFF Research Database (Denmark)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-01-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule...

  20. Screening Plastic-Encapsulated Solid-State Devices

    Science.gov (United States)

    Buldhaupt, L.

    1984-01-01

    Suitability of plastic-encapsulated solid-state electronic devices for use in spacecraft discussed. Conclusion of preliminary study was plasticencapsulated parts sufficiently reliable to be considered for use in lowcost equipment used at moderate temperature and low humidity. Useful to engineers as guides to testing or use of plastic encapsulated semiconductors in severe terrestrial environments.

  1. Lithium-ion transport in inorganic solid state electrolyte

    Science.gov (United States)

    Jian, Gao; Yu-Sheng, Zhao; Si-Qi, Shi; Hong, Li

    2016-01-01

    An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and designing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state electrolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes. Project supported by the National Natural Science Foundation of China (Grant No. 51372228), the Shanghai Pujiang Program, China (Grant No. 14PJ1403900), and the Shanghai Institute of Materials Genome from the Shanghai Municipal Science and Technology Commission, China (Grant No. 14DZ2261200).

  2. Introduction of Materials Science Through Solid State Chemistry.

    Science.gov (United States)

    Mueller, William M.

    Presented is a report of a program of the American Society for Metals, designed to introduce materials science principles via solid state chemistry into high school chemistry courses. At the time of the inception of this program in the mid-sixties, it was felt that high school students were not being adequately exposed to career opportunities in…

  3. Friction Regimes in the Lubricants Solid-State Regime

    NARCIS (Netherlands)

    Schipper, D.J.; Maathuis, O.; Dowson, D.; Taylor, C.M.; Childs, T.H.C.; Dalmaz, G.

    1995-01-01

    Friction measurements were performed in the lubricant's solid-state regime to study the transition from full-film lubrication, in which the separation is maintained by a solidified lubricant, to mixed lubrication. Special attention is paid to the influence of temperature (inlet viscosity) and roughn

  4. Electrochemical impedance spectroscopy in solid state ionics: recent advances

    NARCIS (Netherlands)

    Boukamp, Bernard A.

    2004-01-01

    Electrochemical Impedance Spectroscopy (EIS) has become an important research tool in Solid State Ionics. Some new developments are highlighted: new methods of automatic parameter extraction from impedance measurements are briefly discussed. The Kramers–Kronig data validation test presents another p

  5. Solid State Ionic Materials - Proceedings of the 4th Asian Conference on Solid State Ionics

    Science.gov (United States)

    Chowdari, B. V. R.; Yahaya, M.; Talib, I. A.; Salleh, M. M.

    1994-07-01

    SO4 (X=Si, Ge, Ti) Systems * A DSC and Conductivity Study of the Influence of Cesium Ion on the Beta-Alpha Transition in Silver Iodide * Phase Diagrams, Stoichiometries and Properties of Bi4V2O11:M2+ Solid Electrolytes * Physical Properties of Electrodeposited Silver Chromotungstate * Pseudopotential Study of Bonding in the Superionic Material AgI: The Effect of Statistical Distribution of Mobile Ions * Cubic Phase Dominant Region in Submicron BaTiO3 Particles * The Crystallization of CoZr Amorphous Alloys via Electrical Resistivity * Cation Ratio Related Properties of Synthetic Mg/Al Layered Double Hydroxide and it's Nanocomposite * DC Conductivity of Nano-Particles of Silver Iodide * Effect of Anomalous Diffusion on Quasielastic Scattering in Superionic Conductors * Computer Simulation Study of Conductivity Enhancement in Superionic-Insulator Composites * Dynamics of Superionic Silver and Copper Iodide Salt Melts * Influence of Dopant Salt AgI, Glass Modifier Ag2O and Glass Formers (SeO3 + MoO3) on Electrical Conductivity in Quaternary Glassy System * Fast Ion Conductivity in the Presence of Competitive Network Formers * Role of Alkali Ions in Borate Glasses * Inelastic Light Scattering in Cadmium Borate Glasses * Investigation on Transport Properties of Mixed Glass System 0.75 [0.75AgI:0.25AgCl]. 0.25[Ag2O:CrO3] * Conduction Mechanism in Lithium Tellurite Glasses * Optimized Silver Tungstoarsenate Glass Electrolyte * Stabilized Superfine Zirconia Powder Prepared by Sol-Gel Process * Study of New PAN-based Electrolytes * Electrical and Thermal Characterization of PVA based Polymer Electrolytes * Conductive Electroactive Polymers: Versatile Solid State Ionic Materials * The Role of Ag2O Addition on the Superconducting Properties of Y-124 Compound * Absorption Spectra Studies of the C60 Films on Transition Metal Film Substrates * Effect of Alumina Dispersal on the Conductivity and Crystallite Size of Polymer Electrolyte * New Mixed Galss-Polymer Solid Electrolytes

  6. Solid-State Spectroscopic Investigation of Molecular Interactions between Clofazimine and Hypromellose Phthalate in Amorphous Solid Dispersions.

    Science.gov (United States)

    Nie, Haichen; Su, Yongchao; Zhang, Mingtao; Song, Yang; Leone, Anthony; Taylor, Lynne S; Marsac, Patrick J; Li, Tonglei; Byrn, Stephen R

    2016-11-07

    It has been technically challenging to specify the detailed molecular interactions and binding motif between drugs and polymeric inhibitors in the solid state. To further investigate drug-polymer interactions from a molecular perspective, a solid dispersion of clofazimine (CLF) and hypromellose phthalate (HPMCP), with reported superior amorphous drug loading capacity and physical stability, was selected as a model system. The CLF-HPMCP interactions in solid dispersions were investigated by various solid state spectroscopic methods including ultraviolet-visible (UV-vis), infrared (IR), and solid-state NMR (ssNMR) spectroscopy. Significant spectral changes suggest that protonated CLF is ionically bonded to the carboxylate from the phthalyl substituents of HPMCP. In addition, multivariate analysis of spectra was applied to optimize the concentration of polymeric inhibitor used to formulate the amorphous solid dispersions. Most interestingly, proton transfer between CLF and carboxylic acid was experimentally investigated from 2D (1)H-(1)H homonuclear double quantum NMR spectra by utilizing the ultrafast magic-angle spinning (MAS) technique. The molecular interaction pattern and the critical bonding structure in CLF-HPMCP dispersions were further delineated by successfully correlating ssNMR findings with quantum chemistry calculations. These high-resolution investigations provide critical structural information on active pharmaceutical ingredient-polymer interaction, which can be useful for rational selection of appropriate polymeric carriers, which are effective crystallization inhibitors for amorphous drugs.

  7. Probing the nanostructure, interfacial interaction, and dynamics of chitosan-based nanoparticles by multiscale solid-state NMR.

    Science.gov (United States)

    Wang, Fenfen; Zhang, Rongchun; Wu, Qiang; Chen, Tiehong; Sun, Pingchuan; Shi, An-Chang

    2014-12-10

    Chitosan-based nanoparticles (NPs) are widely used in drug and gene delivery, therapy, and medical imaging, but a molecular-level understanding of the internal morphology and nanostructure size, interface, and dynamics, which is critical for building fundamental knowledge for the precise design and efficient biological application of the NPs, remains a great challenge. Therefore, the availability of a multiscale (0.1-100 nm) and nondestructive analytical technique for examining such NPs is of great importance for nanotechnology. Herein, we present a new multiscale solid-state NMR approach to achieve this goal for the investigation of chitosan-poly(N-3-acrylamidophenylboronic acid) NPs. First, a recently developed (13)C multiple cross-polarization magic-angle spinning (MAS) method enabled fast quantitative determination of the NPs' composition and detection of conformational changes in chitosan. Then, using an improved (1)H spin-diffusion method with (13)C detection and theoretical simulations, the internal morphology and nanostructure size were quantitatively determined. The interfacial coordinated interaction between chitosan and phenylboronic acid was revealed by one-dimensional MAS and two-dimensional (2D) triple-quantum MAS (11)B NMR. Finally, dynamic-editing (13)C MAS and 2D (13)C-(1)H wide-line separation experiments provided details regarding the componential dynamics of the NPs in the solid and swollen states. On the basis of these NMR results, a model of the unique nanostructure, interfacial interaction, and componential dynamics of the NPs was proposed.

  8. Preliminary Analysis of a Fully Solid State Magnetocaloric Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL

    2016-01-01

    Magnetocaloric refrigeration is an alternative refrigeration technology with significant potential energy savings compared to conventional vapor compression refrigeration technology. Most of the reported active magnetic regenerator (AMR) systems that operate based on the magnetocaloric effect use heat transfer fluid to exchange heat, which results in complicated mechanical subsystems and components such as rotating valves and hydraulic pumps. In this paper, we propose an alternative mechanism for heat transfer between the AMR and the heat source/sink. High-conductivity moving rods/sheets (e.g. copper, brass, iron, graphite, aluminum or composite structures from these) are utilized instead of heat transfer fluid significantly enhancing the heat transfer rate hence cooling/heating capacity. A one-dimensional model is developed to study the solid state AMR. In this model, the heat exchange between the solid-solid interfaces is modeled via a contact conductance, which depends on the interface apparent pressure, material hardness, thermal conductivity, surface roughness, surface slope between the interfaces, and material filled in the gap between the interfaces. Due to the tremendous impact of the heat exchange on the AMR cycle performance, a sensitivity analysis is conducted employing a response surface method, in which the apparent pressure, effective surface roughness and grease thermal conductivity are the uncertainty factors. COP and refrigeration capacity are presented as the response in the sensitivity analysis to reveal the important factors influencing the fully solid state AMR and optimize the solid state AMR efficiency. The performances of fully solid state AMR and traditional AMR are also compared and discussed in present work. The results of this study will provide general guidelines for designing high performance solid state AMR systems.

  9. Solid State Physics in the People's Republic of China. A Trip Report of the American Solid State Physics Delegation.

    Science.gov (United States)

    Fitzgerald, Anne; Slichter, Charles P.

    This is the fifth chapter of a six chapter report which discusses Chinese research and education in solid state physics, and their relations to technology and the other sciences. This specific chapter concerns the communication of information in the scientific community and the transfer of information to students and practical users…

  10. Angular Distribution of the 12C(6He, 7Li)11B Reaction

    Institute of Scientific and Technical Information of China (English)

    LI Er-Tao; LI Zhi-Hong; LI Yun-Ju; YAN Sheng-Quan; BAI Xi-Xiang; GUO Bing; SU Jun; WANG You-Bao; WANG Bao-Xiang; LIAN Gang; ZENG Sheng; FANG Xiao; ZHAO Wei-Juan; LIU Wei-Ping

    2009-01-01

    Angular distribution of the 12C(6He, 7Li)11B transfer reaction is measured with a secondary 6He beam of 36.4 Me V for the first time. The experimental angular distribution is well reproduced by the distorted-wave Born approxima-tion (DWBA) calculation. The success of the present experiment shows that it is feasible to measure one-nucleon transfer reaction on a light nucleus target with the secondary beam facility of the HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE), Beifing.

  11. Tunable solid state laser system for dermatology applications

    Science.gov (United States)

    Azar, Zion; Bank, Alexander; Donskoy, Dmitri M.; Nechitailo, Vladimir S.

    1994-12-01

    The Q-switched Nd:YAG laser is the most recent in a series of pulsed laser systems for plastic surgery. The 532 nm wavelength has been shown to be absorbed by a variety of chromophores. These include tattoo pigments, oxygenated hemoglobin and melanin-containing epidermal cells. A simple multi-line solid state laser module pumped by double-frequency Q- switched YAG laser is presented. This solid state multi-line module enables tuning of the wavelength in the yellow spectral range to 560 nm or to 580 nm for dermatology applications. Conversion efficiency in excess of 70% was achieved at 10 Hz pulse repetition frequency and output energy per pulse of approximately 200 mJ.

  12. PLGA and PHBV Microsphere Formulations and Solid-State Characterization

    DEFF Research Database (Denmark)

    Yang, Chiming; Plackett, David; Needham, David

    2009-01-01

    To develop and characterize the solid-state properties of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) microspheres for the localized and controlled release of fusidic acid (FA). The effects of FA loading and polymer composition on the mean...... diameter, encapsulation efficiency and FA released from the microspheres were determined. The solid-state and phase separation properties of the microspheres were characterized using DSC, XRPD, Raman spectroscopy, SEM, laser confocal and real time recording of single microspheres formation. Above a loading...... of 1% (w/w) FA phase separated from PLGA polymer and formed distinct spherical FA-rich amorphous microdomains throughout the PLGA microsphere. For FA-loaded PLGA microspheres, encapsulation efficiency and cumulative release increased with initial drug loading. Similarly, cumulative release from FA...

  13. Future Solid State Lighting using LEDs and Diode Lasers

    DEFF Research Database (Denmark)

    Petersen, Paul Michael

    2014-01-01

    significant savings. Solid state lighting (SSL) based on LEDs is today the most efficient light source for generation of high quality white light. Diode lasers, however, have the potential of being more efficient than LEDs for the generation of white light. A major advantage using diode lasers for solid state...... applications. Within the coming years, it is expected that the efficiency of blue laser diodes will approach the efficiency of infrared diode lasers. This will enable high efficiency white light generation with very high lumen per watt values. SSL today is mainly based on phosphor converted blue light emitting...... diodes (LEDs). Blue emitting 445-460 nm LED chips with conversion in phosphorescent materials have undergone tremendous development in the last decade with ultra high efficiencies. However, the technology suffers from a decrease in efficiency at high input current densities, known as the “efficiency...

  14. Detection of pulsed neutrons with solid-state electronics

    Science.gov (United States)

    Chatzakis, J.; Rigakis, I.; Hassan, S. M.; Clark, E. L.; Lee, P.

    2016-09-01

    Measurements of the spatial and time-resolved characteristics of pulsed neutron sources require large area detection materials and fast circuitry that can process the electronic pulses readout from the active region of the detector. In this paper, we present a solid-state detector based on the nuclear activation of materials by neutrons, and the detection of the secondary particle emission of the generated radionuclides’ decay. The detector utilizes a microcontroller that communicates using a modified SPI protocol. A solid-state, pulse shaping filter follows a charge amplifier, and it is designed as an inexpensive, low-noise solution for measuring pulses measured by a digital counter. An imaging detector can also be made by using an array of these detectors. The system can communicate with an interface unit and pass an image to a personal computer.

  15. Solid State Modulators for the International Linear Collider (ILC)

    CERN Document Server

    Kempkes, Michael; Casey, Jeffrey; Gaudreau, Marcel; Roth, Ian

    2005-01-01

    Diversified Technologies, Inc. is developing two solid state modulator designs for the ILC under SBIR funding from the DOE. The first design consists of a 150 kV hard switch. The key development in this design is the energy storage system, which must provide 25 kJ per pulse, at very tight voltage regulation over the 1.5 millisecond pulse. DTI's design uses a quasi-resonant bouncer (with a small auxiliary power supply and switch) to maintain the voltage flattop, eliminating the need for massive capacitor banks. The second design uses a solid state Marx bank, with ~10 kV stages, to drive the ILC klystron. In this design, staggered turn-on of the Marx stages provides voltage regulation without the need for large capacitor banks. This paper will discuss design tradeoffs, power supply and control considerations, and energy storage requirements and alternatives for both designs.

  16. Solid-State Ultracapacitor for Improved Energy Storage

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA's Marshall Space Flight Center has developed a solid-state ultracapacitor using a novel nanocomposite, dielectric material. The material's design is based on the internal barrier layer capacitance (IBLC) concept, and it uses novel dielectric and metallic conductive ink formulations. Novel processing methods developed by NASA provide for unique dielectric properties at the grain level. Nanoscale raw material powders are tailored using a variety of techniques and then formulated into a special ink. This dielectric ink is used with novel metallic conductive ink to print a capacitor layer structure into any design necessary to meet a range of technical requirements. The innovation is intended to replace current range safety batteries that NASA uses to power the systems that destroy off-course space vehicles. A solid-state design provides the needed robustness and safety for this demanding application.

  17. Solid-state recycling of light metals: A review

    Directory of Open Access Journals (Sweden)

    Shazarel Shamsudin

    2016-08-01

    Full Text Available This article provides an intensive review of the past and current research work on the solid-state recycling of light metals. The review includes an experimental aspect of the relevant works that clearly clarify the effects of several critical factors noted as chip preparation, reinforcing phases, die geometry, process parameter selection and performance of miscellaneous methods over the quality of the extruded profiles. Likewise, reviews of numerical and analytical works on the solid-state recycling were presented to understand the strengthening phenomena of chip-based billet through the plastic deformation. Finally, concluding remarks underline challenges of direct recycling method and subsequently highlight the potential future work on making the method as a promising alternative for sustainable manufacturing agenda.

  18. Modeling of efficient solid-state cooler on layered multiferroics.

    Science.gov (United States)

    Starkov, Ivan; Starkov, Alexander

    2014-08-01

    We have developed theoretical foundations for the design and optimization of a solid-state cooler working through caloric and multicaloric effects. This approach is based on the careful consideration of the thermodynamics of a layered multiferroic system. The main section of the paper is devoted to the derivation and solution of the heat conduction equation for multiferroic materials. On the basis of the obtained results, we have performed the evaluation of the temperature distribution in the refrigerator under periodic external fields. A few practical examples are considered to illustrate the model. It is demonstrated that a 40-mm structure made of 20 ferroic layers is able to create a temperature difference of 25K. The presented work tries to address the whole hierarchy of physical phenomena to capture all of the essential aspects of solid-state cooling.

  19. Introduction to solid state physics and crystalline nanostructures

    CERN Document Server

    Iadonisi, Giuseppe; Chiofalo, Maria Luisa

    2014-01-01

    This textbook provides conceptual, procedural, and factual knowledge on solid state and nanostructure physics. It is designed to acquaint readers with key concepts and their connections, to stimulate intuition and curiosity, and to enable the acquisition of competences in general strategies and specific procedures for problem solving and their use in specific applications. To these ends, a multidisciplinary approach is adopted, integrating physics, chemistry, and engineering and reflecting how these disciplines are converging towards common tools and languages in the field. Each chapter discusses essential ideas before the introduction of formalisms and the stepwise addition of complications. Questions on everyday manifestations of the concepts are included, with reasoned linking of ideas from different chapters and sections and further detail in the appendices. The final section of each chapter describes experimental methods and strategies that can be used to probe the phenomena under discussion. Solid state...

  20. 2006 Fundamental Research Underlying Solid-State Lighting: Contractors Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Fitzsimmons, Tim [Dept. of Energy (DOE), Washington, DC (United States). Office of Basic Energy Sciences. Division of Materials Sciences and Engineering; Kini, Arvind [Dept. of Energy (DOE), Washington, DC (United States). Office of Basic Energy Sciences. Division of Materials Sciences and Engineering; Kelley, Dick [Dept. of Energy (DOE), Washington, DC (United States). Office of Basic Energy Sciences. Division of Materials Sciences and Engineering

    2006-02-01

    This volume highlights the scientific content of the 2006 Fundamental Research Underlying Solid-State Lighting Contractors Meeting sponsored by the Division of Materials Sciences and Engineering (DMS&E) in the Office of Basic Energy Sciences (BES) of the U. S. Department of Energy (DOE). This meeting is the second in a series of research theme-based Contractors Meetings and will focus on BES/DMS&E-funded research that underpins solid-state lighting technology. The meeting will feature research that cuts across several DMS&E core research program areas. The major programmatic emphasis is on developing a fundamental scientific base, in terms of new concepts and new materials that could be used or mimicked in designing novel materials, processes or devices.

  1. Subpicosecond pulse generation from an all solid-state laser

    Science.gov (United States)

    Keen, S. J.; Ferguson, A. I.

    1989-11-01

    An all-solid-state (holosteric) laser source which produces subpicosecond pulses at 1.4 microns is described. The system consists of a diode laser pumped Nd:YAG laser which is frequency-modulated (FM) mode-locked and Q-switched at 1.32 microns. In continuous wave operation the laser produces pulses of 19 ps while simultaneous Q-switching and mode-locking result in 30 ps pulses being contained in a Q-switched envelope of energy 2.1 microJ. The output of the laser, when passed through a 1 km single-mode optical fiber, produces a spectrally broad Raman signal with its peak at 1.4 microns and the overall conversion efficiency at 12 percent. The pulse duration at 1.4 microns has been measured to be 280 fs. This is the first time that subpicosecond light pulses have been generated by an all-solid-state laser system.

  2. Conductors, semiconductors, superconductors an introduction to solid state physics

    CERN Document Server

    Huebener, Rudolf P

    2016-01-01

    This undergraduate textbook provides an introduction to the fundamentals of solid state physics, including a description of the key people in the field and the historic context. The book concentrates on the electric and magnetic properties of materials. It is written for students up to the bachelor level in the fields of physics, materials science, and electric engineering. Because of its vivid explanations and its didactic approach, it can also serve as a motivating pre-stage and supporting companion in the study of the established and more detailed textbooks of solid state physics. The textbook is suitable for a quick repetition prior to examinations. This second edition is extended considerably by detailed mathematical treatments in many chapters, as well as extensive coverage of magnetic impurities.

  3. Solid-State Nanopore-Based DNA Sequencing Technology

    Directory of Open Access Journals (Sweden)

    Zewen Liu

    2016-01-01

    Full Text Available The solid-state nanopore-based DNA sequencing technology is becoming more and more attractive for its brand new future in gene detection field. The challenges that need to be addressed are diverse: the effective methods to detect base-specific signatures, the control of the nanopore’s size and surface properties, and the modulation of translocation velocity and behavior of the DNA molecules. Among these challenges, the realization of the high-quality nanopores with the help of modern micro/nanofabrication technologies is a crucial one. In this paper, typical technologies applied in the field of solid-state nanopore-based DNA sequencing have been reviewed.

  4. Robust Solid State Quantum System Operating at 800 K

    CERN Document Server

    Kianinia, Mehran; Regan, Blake; Tran, Toan Trong; Ford, Michael J; Aharonovich, Igor; Toth, Milos

    2016-01-01

    Realization of Quantum information and communications technologies requires robust, stable solid state single photon sources. However, most existing sources cease to function above cryogenic or room temperature due to thermal ionization or strong phonon coupling which impede their emissive and quantum properties. Here we present an efficient single photon source based on a defect in a van der Waals crystal that is optically stable and operates at elevated temperatures of up to 800 K. The quantum nature of the source and the photon purity are maintained upon heating to 800 K and cooling back to room temperature. Our report of a robust high temperature solid state single photon source constitutes a significant step to-wards practical, integrated quantum technologies for real-world environments.

  5. Advanced Solid State Lighting for AES Deep Space Hab Project

    Science.gov (United States)

    Holbert, Eirik

    2015-01-01

    The advanced Solid State Lighting (SSL) assemblies augmented 2nd generation modules under development for the Advanced Exploration Systems Deep Space Habitat in using color therapy to synchronize crew circadian rhythms. Current RGB LED technology does not produce sufficient brightness to adequately address general lighting in addition to color therapy. The intent is to address both through a mix of white and RGB LEDs designing for fully addressable alertness/relaxation levels as well as more dramatic circadian shifts.

  6. PVD materials for electrochromic all-solid-state devices

    Science.gov (United States)

    Ottermann, Clemens R.; Segner, Johannes G.; Bange, Klaus

    1992-11-01

    The electrochromic properties of all solid state devices (ASSDs) are strongly defined by thin film materials used as well as the method of deposition. Various thin film materials deposited by evaporation and sputtering are described serving as electrode, reflector, electrolyte, storage medium, or electrochromic film in ASSD. The impact of process parameters upon the device functionality is shown. In addition, the long-term stability of ASSDs for the different thin film systems is reported.

  7. Cladding for transverse-pumped solid-state laser

    Science.gov (United States)

    Byer, Robert L. (Inventor); Fan, Tso Y. (Inventor)

    1989-01-01

    In a transverse pumped, solid state laser, a nonabsorptive cladding surrounds a gain medium. A single tranverse mode, namely the Transverse Electromagnetic (TEM) sub 00 mode, is provided. The TEM sub 00 model has a cross sectional diameter greater than a transverse dimension of the gain medium but less than a transverse dimension of the cladding. The required size of the gain medium is minimized while a threshold for laser output is lowered.

  8. DNA-functionalized solid state nanopore for biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Mussi, V; Fanzio, P; Repetto, L; Firpo, G; Valbusa, U [Nanomed Labs, Physics Department, University of Genova, Advanced Biotechnology Center, Largo R. Benzi, 10 Genova, 16132 (Italy); Scaruffi, P; Stigliani, S; Tonini, G P, E-mail: mussi@fisica.unige.it [Translational Pediatric Oncology, National Institute for Cancer Research (IST), Largo R. Benzi, 10 Genova, 16132 (Italy)

    2010-04-09

    The possible use of nanopores for single DNA molecules biosensing has been demonstrated, but much remains to do in order to develop advanced engineered devices with enhanced stability, and controlled geometry and surface properties. Here we present morphological and electrical characterization of solid state silicon nitride nanopores fabricated by focused ion beam direct milling and chemically functionalized by probe oligonucleotides, with the final aim of developing a versatile tool for biosensing and gene expression profiling.

  9. Molecular Structure of Humin and Melanoidin via Solid State NMR

    OpenAIRE

    Herzfeld, Judith; Rand, Danielle; Matsuki, Yoh; Daviso, Eugenio; Mak-Jurkauskas, Melody; Mamajanov, Irena

    2011-01-01

    Sugar-derived humins and melanoidins figure significantly in food chemistry, agricultural chemistry, biochemistry and prebiotic chemistry. Despite wide interest and significant experimental attention, the amorphous and insoluble nature of the polymers has made them resistant to conventional structural characterization. Here we make use of solid-state NMR methods, including selective 13C substitution, 1H-dephasing, and double quantum filtration. The spectra, and their interpretation, are simpl...

  10. Overview on conductometric solid-state gas dosimeters

    OpenAIRE

    I. Marr; Groß, A.; Moos, R.

    2014-01-01

    The aim of this article is to introduce the operation principles of conductometric solid-state dosimeter-type gas sensors, which have found increased attention in the past few years, and to give a literature overview on promising materials for this purpose. Contrary to common gas sensors, gas dosimeters are suitable for directly detecting the dose (also called amount or cumulated or integrated exposure of analyte gases) rather than the actual analyte concentration. Therefore...

  11. All solid state pulsed power system for water discharge

    OpenAIRE

    Sakugawa, Takashi; Yamaguchi, Takahiro; Yamamoto, Kunihiro; Kiyan, Tsuyoshi; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori; サクガワ, タカシ; ヤマグチ, タカヒロ; ヤマモト, クニヒロ; キヤン, ツヨシ; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 佐久川, 貴志

    2005-01-01

    Pulsed power has been used to produce non-thermal plasmas in gases that generate a high electric field at the tip of streamer discharges, where high energy electrons, free radicals, and ozone are produced. Recently, all solid state pulsed power generators, which are operated with high repetition rate, long lifetime and high reliability, have been developed for industrial applications, such as high repetition rate pulsed gas lasers, high energy density plasma (EUV sources) and water discharges...

  12. Solid-state radiation detectors technology and applications

    CERN Document Server

    2015-01-01

    The book discusses the current solid state material used in advance detectors manufacturing and their pros and cons and how one can tailor them using different techniques, to get the maximum performance. The book is application oriented to radiation detectors for medical, X and gamma rays application, and good reference with in-depth discussion of detector's physics as it relates to medical application tailored for engineers and scientists.

  13. Impact crater formation: a simple application of solid state physics

    OpenAIRE

    Celebonovic, V.; Souchay, J.

    2010-01-01

    This contribution is a first step aiming to address a general question: what can be concluded on impact craters which exist on various planetary system objects, by combining astronomical data and known theoretical results from solid state physics. Assuming that the material of the target body is of crystaline structure,it is shown that a simple calculation gives the possibility of estimating the speed of the impactor responsible for the creation of a crater.A test value,calculated using obser...

  14. Fast and Highly Efficient Solid State Oxidation of Thiols

    Directory of Open Access Journals (Sweden)

    Nasrin Haghighat

    2007-03-01

    Full Text Available A fast and efficient solid state method for the chemoselective room temperature oxidative coupling of thiols to afford their corresponding disulfides using inexpensive and readily available moist sodiumperiodate as the reagent is described. The reaction was applicable to a variety of thiols giving high yields after short reaction times. Comparison of yield/time ratios of this method with some of those reported in the literature shows the superiority of this reagent over others under these conditions.

  15. An overview of Engineering Aspects of Solid State Fermentation

    OpenAIRE

    Prabhakar, A.; Krishnaiah, K.; Janaun, J.; Bono, A.

    2005-01-01

    Solid substrate cultivation (SSC) or solid state fermentation (SSF) is envisioned as a prominent bio conversion technique to transform natural raw materials into a wide variety of chemical as well as bio-chemical products. This process involves the fermentation of solid substrate medium with microorganism in the absence of free flowing water. Recent developments and concerted focus on SSF enabled it to evolve as a potential bio- technology as an alternative to thetraditional chemical synthesi...

  16. Performance of Several Solid State Photomultipliers with CLYC Scintillator

    CERN Document Server

    Mesick, Katherine E; Morrell, Jonathan T; Coupland, Daniel D S

    2015-01-01

    $Cs_2LiYCl_6:Ce^{3+}$ (CLYC) is an inorganic scintillator that has recently garnered attention for its ability to detect and discriminate between gammas and thermal neutrons. We investigate several important performance parameters of three different solid state photomultipliers (SSPMs) when reading out CLYC crystals: linearity, energy resolution, and pulse shape and discrimination ability. These performance parameters are assessed at a variety of temperatures between -20$^{\\circ}$C and +50$^{\\circ}$C.

  17. Solid state capacitor discharge pulsed power supply for railguns

    OpenAIRE

    2007-01-01

    This thesis presents a solid state thyristor switched power supply capable of providing 50 kJ from a high voltage capacitor to a railgun. The efficiency with which energy is transferred from a power supply to a projectile depends strongly on power supply characteristics. This design will provide a better impedance match to the railgun than power supplies utilizing spark gap switches. This supply will cost less and take up less volume than a similar supply using spark gap switches; it wil...

  18. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-01-01

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm-3 at an energy density of 9 mW h cm-3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds. © The Royal Society of Chemistry 2015.

  19. Solid-state characterization of the HIV protease inhibitor

    CERN Document Server

    Kim, Y A

    2002-01-01

    The LB71350, (3S, 4R)-Epoxy-(5S)-[[N-(1-methylethoxy) carbonyl]-3-(methylsulfonyl)-L-valinyl]amin= o]-N-[2-methyl-(1R)-[(phenyl)carbonyl]propyl-6-phenylhexanamide, is a novel HIV protease inhibitor. Its equilibrium solubility at room temperature was less than 40 mu g/mL. It was speculated that the low aqueous solubility might be due to the high crystalline lattice energy resulting from intermolecular hydrogen bonds. The present study was carried out to learn the solid-state characteristics of LB71350 using analytical methods such as NMR, FT-IR and XRD. sup 1 sup 3 C Solid-state NMR, solution NMR, and FT-IR spectra of the various solid forms of LB71350 were used to identify the conformation and structure of the solid forms. The chemical shifts of sup 1 sup 3 C solid-state NMR spectra suggest that the crystalline form might have 3 intermolecular hydrogen bondings between monomers.

  20. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-02-16

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm−3 at an energy density of 9 mW h cm−3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds.

  1. High power diode lasers for solid-state laser pumps

    Science.gov (United States)

    Linden, Kurt J.; McDonnell, Patrick N.

    1994-02-01

    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  2. Solid State Fermentation of Mexican Oregano (Lippia Berlandieri Schauer Waste

    Directory of Open Access Journals (Sweden)

    Paola Melendez-Renteria

    2012-01-01

    Full Text Available Problem statement: Mexican oregano is recognized for their aromatic characteristics and flavor quality. Principal products obtained from the plant and marketing are the leaves and essential oil; however the extraction of the essential oil generates large amounts of agro industrial wastes; that can be used as support-substrates in Solid-State Fermentations (SSF. Approach: In this study a fungal bioprocess, as solid state fermentation using Mexican oregano wastes as support, for the use of these residues to obtain adds value products and/or molecules were developed. The fungal strain was selects by its adaptability to the support. The aqueous and non polar extracts were obtained kinetically until 120 h and then it was partially characterized (hydrolysable tannins, total sugar and proteins contents, antioxidant activity, tymol and carvacrol concentration. Results: Solid state fermentation of oregano wastes, with Aspergillus niger PSH, allowed the accumulation of a phenolic compound with catechin similar characteristics and could be responsible of the biotransformation of small amounts of carvacrol to thymol. Conclusion: These results could give an add value to Mexican oregano wastes and with more investigation the obtained products can be used in several industries.

  3. Solid state photosensitive devices which employ isolated photosynthetic complexes

    Science.gov (United States)

    Peumans, Peter; Forrest, Stephen R.

    2009-09-22

    Solid state photosensitive devices including photovoltaic devices are provided which comprise a first electrode and a second electrode in superposed relation; and at least one isolated Light Harvesting Complex (LHC) between the electrodes. Preferred photosensitive devices comprise an electron transport layer formed of a first photoconductive organic semiconductor material, adjacent to the LHC, disposed between the first electrode and the LHC; and a hole transport layer formed of a second photoconductive organic semiconductor material, adjacent to the LHC, disposed between the second electrode and the LHC. Solid state photosensitive devices of the present invention may comprise at least one additional layer of photoconductive organic semiconductor material disposed between the first electrode and the electron transport layer; and at least one additional layer of photoconductive organic semiconductor material, disposed between the second electrode and the hole transport layer. Methods of generating photocurrent are provided which comprise exposing a photovoltaic device of the present invention to light. Electronic devices are provided which comprise a solid state photosensitive device of the present invention.

  4. Solid-state flat panel imager with avalanche amorphous selenium

    Science.gov (United States)

    Scheuermann, James R.; Howansky, Adrian; Goldan, Amir H.; Tousignant, Olivier; Levéille, Sébastien; Tanioka, K.; Zhao, Wei

    2016-03-01

    Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 +/- 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 +/- 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.

  5. Conductors, semiconductors, superconductors an introduction to solid state physics

    CERN Document Server

    Huebener, Rudolf P

    2015-01-01

    In the second half of the last century solid state physics and materials science experienced a great advance and established itself as an important and independent new field. This book provides an introduction to the fundamentals of solid state physics, including a description of the key people in the field and the historic context. The book concentrates on the electric and magnetic properties of materials. It is written for students up to the bachelor in the fields of physics, materials science, and electric engineering. Because of its vivid explanations and its didactic approach, it can also serve as a motivating pre-stage and supporting companion in the study of the established and more detailed textbooks of solid state physics. The book is suitable for a quick repetition prior to examinations. For his scientific accomplishments, in 1992 the author received the Max-Planck Research Price and in 2001 the Cryogenics Price. He studied physics and mathematics at the University of Marburg, as well at the Technic...

  6. Corrosion barriers processed by Al electroplating and their resistance against flowing Pb–15.7Li

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Wolfgang, E-mail: wolfgang.krauss@kit.edu; Konys, Jürgen; Wulf, Sven-Erik

    2014-12-15

    In the HCLL blanket design, ferritic–martensitic steels are in direct contact with the flowing liquid breeder Pb–15.7Li and have to withstand severe corrosion attack. Beyond corrosion, T-permeation from the breeder into the RAFM-steels is also an important issue and has to be reduced significantly. Earlier work showed that Al-based coatings can act as barriers for both, however, applied processes e.g. HDA or VPS exhibited strong drawbacks in the past. Meanwhile new industrial relevant coating processes, using electroplating technology are under development and called ECA (electrochemical aluminization) and ECX (electrochemical deposition from ionic liquids) process. In this study electrochemically Al-coated and heat-treated Eurofer samples were tested in PICOLO loop for exposure times up to 12,000 h (ECA) and 2000 h (first results ECX) respectively to determine corrosion properties in flowing Pb–15.7Li (550 °C, 0.1 m/s). Cross section analysis afterward corrosion testing proved the ability of thin Al-based barriers made by electrochemical techniques to protect the bare Eurofer from corrosion attack even at exposure times of 12,000 h. Determined radial corrosion rates lay between 10 and 20 μm/a. First results for ECX coated samples (2000 h) revealed more homogeneous corrosion behavior of the barrier layer itself compared to ECA.

  7. "Diode Pumped Solid State Lasers At 2 And 3 µm"

    Science.gov (United States)

    Esterowitz, Leon

    1988-06-01

    The most attractive alternative to flashlamp pumping of solid state lasers is the diode laser. In the past two decades numerous laboratory devices have been assembled which incorporated single diode lasers, small laser diode arrays or LED's for pumping of Nd:YAG, Nd:glass and a host of other Nd lasers. The low power output, low packaging density, and extremely high cost of diode lasers prevented any serious applications for laser pumping in the past. The reason for the continued interest in this area stems from the potential dramatic increase in system efficiency and component lifetime, and reduction of thermal load of the solid-state laser material. The latter not only will reduce thereto-optic effects and therefore lead to better beam quality but also will enable an increase in pulse repetition frequency. The attractive operating parameters combined with low voltage operation and the compactness of an all solid-state laser system have a potential high payoff. The high pumping efficiency compared to flashlamps stems from the good spectral match between the laser diode emission and the rare earth activator absorption bands. A significant advantage of laser diode pumping compared to arc lamps is system lifetime and reliability. Laser diode arrays have exhibited lifetimes on the order of 10,000 hours in cw operation and 109 shots in the pulsed mode. Flashlamp life is on the order of 107 shots, and about 200 hours for cw operation. In addition, the high pump flux combined with a substantial UV content in lamp pumped systems causes material degradation in the pump cavity and in the coolant. Such problems are virtually eliminated with laser diode pump sources. The absence of high voltage pulses, high temperatures and UV radiation encountered with arc lamps leads to much more benign operating features for solid state laser systems employing laser diode pumps. Laser diode technology dates back to 1962 when laser action in GaAs diodes was first demonstrated. However, it

  8. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.

    Science.gov (United States)

    Blanc, Frédéric; Leskes, Michal; Grey, Clare P

    2013-09-17

    Electrochemical cells, in the form of batteries (or supercapacitors) and fuel cells, are efficient devices for energy storage and conversion. These devices show considerable promise for use in portable and static devices to power electronics and various modes of transport and to produce and store electricity both locally and on the grid. For example, high power and energy density lithium-ion batteries are being developed for use in hybrid electric vehicles where they improve the efficiency of fuel use and help to reduce greenhouse gas emissions. To gain insight into the chemical reactions involving the multiple components (electrodes, electrolytes, interfaces) in the electrochemical cells and to determine how cells operate and how they fail, researchers ideally should employ techniques that allow real-time characterization of the behavior of the cells under operating conditions. This Account reviews the recent use of in situ solid-state NMR spectroscopy, a technique that probes local structure and dynamics, to study these devices. In situ NMR studies of lithium-ion batteries are performed on the entire battery, by using a coin cell design, a flat sealed plastic bag, or a cylindrical cell. The battery is placed inside the NMR coil, leads are connected to a potentiostat, and the NMR spectra are recorded as a function of state of charge. (7)Li is used for many of these experiments because of its high sensitivity, straightforward spectral interpretation, and relevance to these devices. For example, (7)Li spectroscopy was used to detect intermediates formed during electrochemical cycling such as LixC and LiySiz species in batteries with carbon and silicon anodes, respectively. It was also used to observe and quantify the formation and growth of metallic lithium microstructures, which can cause short circuits and battery failure. This approach can be utilized to identify conditions that promote dendrite formation and whether different electrolytes and additives can help

  9. Systematic evaluation of heteronuclear spin decoupling in solid-state NMR at the rotary-resonance conditions in the regime of fast magic-angle spinning.

    Science.gov (United States)

    Sharma, Kshama; Madhu, P K; Agarwal, Vipin

    2016-09-01

    The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1=n·νr). Recently, two schemes, namely, PISSARRO and rCW(ApA), have been shown to be less affected by the problem of MAS and RF interference, specifically at the n=2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n=1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power (1)H irradiation of ca.195kHz.

  10. {sup 6}Li({sup 18}O, {sup 17}O){sup 7}Li reaction and comparison of {sup 6, 7}Li + {sup 16, 17, 18}O potentials

    Energy Technology Data Exchange (ETDEWEB)

    Rudchik, A.T., E-mail: rudchik@kinr.kiev.ua [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Chercas, K.A. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Kemper, K.W. [Physics Department, Florida State University, Tallahassee, FL 32306-4350 (United States); Rudchik, A.A. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Kliczewski, S. [H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland); Koshchy, E.I. [Kharkiv National University, pl. Svobody 4, 61077 Kharkiv (Ukraine); Rusek, K. [National Center for Nuclear Reseaches, ul. Hoża 69, PL-00-681 Warsaw (Poland); Heavy Ion Laboratory of Warsaw University, ul. L. Pasteura 5A, PL-02-093 Warsaw (Poland); Mezhevych, S.Yu.; Ponkratenko, O.A.; Pirnak, Val.M. [Institute for Nuclear Research, Ukrainian Academy of Sciences, Prospect Nauki 47, 03680 Kyiv (Ukraine); Plujko, V.A. [Taras Shevchenko National University, ul. Volodymyrska 64, 01033 Kyiv (Ukraine); Choiński, J. [Heavy Ion Laboratory of Warsaw University, ul. L. Pasteura 5A, PL-02-093 Warsaw (Poland); Czech, B.; Siudak, R.; Szczurek, A. [H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland)

    2014-07-15

    Angular distributions of the {sup 6}Li({sup 18}O, {sup 17}O){sup 7}Li reaction were measured at E{sub lab}({sup 18}O)=114 MeV for ground and excited states of the exit channel nuclei for the first time. The data were analyzed within the coupled-reaction-channels method (CRC). The {sup 6}Li + {sup 18}O elastic and inelastic scattering channels as well as simplest one- and two-step reactions were included in the coupled-reaction-channels scheme. The {sup 7}Li + {sup 17}O potential was deduced by fitting CRC calculations to the reaction data. The spectroscopic amplitudes for single nucleon and nuclear cluster configurations were calculated within the translationally invariant shell model. Isotopic differences of the {sup 7}Li + {sup 16, 17, 18}O and {sup 7, 8}Li + {sup 17}O potentials and the reaction mechanisms were studied.

  11. SIMPSON: a general simulation program for solid-state NMR spectroscopy.

    Science.gov (United States)

    Bak, M; Rasmussen, J T; Nielsen, N C

    2000-12-01

    A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tcl scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basically, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple 1D experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.

  12. High-Resolution NMR of Quadrupolar Nuclei in the Solid State

    Energy Technology Data Exchange (ETDEWEB)

    Gann, Sheryl Lee

    1995-11-30

    This dissertation describes recent developments in solid state nuclear magnetic resonance (NMR), for the most part involving the use of dynamic-angle spinning (DAS) NMR to study quadrupolar nuclei. Chapter 1 introduces some of the basic concepts and theory that will be referred to in later chapters, such as the density operator, product operators, rotations, coherence transfer pathways, phase cycling, and the various nuclear spin interactions, including the quadrupolar interaction. Chapter 2 describes the theory behind motional averaging experiments, including DAS, which is a technique where a sample is spun sequentially about two axis oriented at different angles with respect to the external magnetic field such that the chemical shift and quadrupolar anisotropy are averaged to zero. Work done on various rubidium-87 salts is presented as a demonstration of DAS. Chapter 3 explains how to remove sidebands from DAS and magic-angle spinning (MAS) experiments, which result from the time-dependence of the Hamiltonian under sample spinning conditions, using rotor-synchronized {pi}-pulses. Data from these experiments, known as DAH-180 and MAH-180, respectively, are presented for both rubidium and lead salts. In addition, the applicability of this technique to double rotation (DOR) experiments is discussed. Chapter 4 concerns the addition of cross-polarization to DAS (CPDAS). The theory behind spin locking and cross polarizing quadrupolar nuclei is explained and a method of avoiding the resulting problems by performing cross polarization at 0{sup o} (parallel) with respect to the magnetic field is presented. Experimental results are shown for a sodium-23 compound, sodium pyruvate, and for oxygen-17 labeled L-akmine. In Chapter 5, a method for broadening the Hartmann-Hahn matching condition under MAS, called variable effective field cross-polarization (VEFCI?), is presented, along with experimental work on adamantane and polycarbonate.

  13. Structural investigation of aluminium doped ZnO nanoparticles by solid-state NMR spectroscopy.

    Science.gov (United States)

    Avadhut, Yamini S; Weber, Johannes; Hammarberg, Elin; Feldmann, Claus; Schmedt auf der Günne, Jörn

    2012-09-07

    The electrical conductivity of aluminium doped zinc oxide (AZO, ZnO:Al) materials depends on doping induced defects and grain structure. This study aims at relating macroscopic electrical conductivity of AZO nanoparticles with their atomic structure, which is non-trivial because the derived materials are heavily disordered and heterogeneous in nature. For this purpose we synthesized AZO nanoparticles with different doping levels and narrow size distribution by a microwave assisted polyol method followed by drying and a reductive treatment with forming gas. From these particles electrically conductive, optically transparent films were obtained by spin-coating. Characterization involved energy-dispersive X-ray analysis, wet chemical analysis, X-ray diffraction, electron microscopy and dynamic light scattering, which provided a basis for a detailed structural solid-state NMR study. A multinuclear ((27)Al, (13)C, (1)H) spectroscopic investigation required a number of 1D MAS NMR and 2D MAS NMR techniques (T(1)-measurements, (27)Al-MQMAS, (27)Al-(1)H 2D-PRESTO-III heteronuclear correlation spectroscopy), which were corroborated by quantum chemical calculations with an embedded cluster method (EEIM) at the DFT level. From the combined data we conclude that only a small part of the provided Al is incorporated into the ZnO structure by substitution of Zn. The related (27)Al NMR signal undergoes a Knight shift when the material is subjected to a reductive treatment with forming gas. At higher (formal) doping levels Al forms insulating (Al, H and C containing) side-phases, which cover the surface of the ZnO:Al particles and increase the sheet resistivity of spin-coated material. Moreover, calculated (27)Al quadrupole coupling constants serve as a spectroscopic fingerprint by which previously suggested point-defects can be identified and in their great majority be ruled out.

  14. Variability of cork from Portuguese Quercus suber studied by solid-state (13)C-NMR and FTIR spectroscopies.

    Science.gov (United States)

    Lopes, M H; Barros, A S; Pascoal Neto, C; Rutledge, D; Delgadillo, I; Gil, A M

    2001-01-01

    A new approach is presented for the study of the variability of Portuguese reproduction cork using solid-state (13)C-NMR spectroscopy and photoacoustic (PAS) FTIR (FTIR-PAS) spectroscopy combined with chemometrics. Cork samples were collected from 12 different geographical sites, and their (13)C-cross-polarization with magic angle spinning (CP/MAS) and FTIR spectra were registered. A large spectral variability among the cork samples was detected by principal component analysis and found to relate to the suberin and carbohydrate contents. This variability was independent of the sample geographical origin but significantly dependent on the cork quality, thus enabling the distinction of cork samples according to the latter property. The suberin content of the cork samples was predicted using multivariate regression models based on the (13)C-NMR and FTIR spectra of the samples as reported previously. Finally, the relationship between the variability of the (13)C-CP/MAS spectra with that of the FTIR-PAS spectra was studied by outer product analysis. This type of multivariate analysis enabled a clear correlation to be established between the peaks assigned to suberin and carbohydrate in the FTIR spectrum and those appearing in the (13)C-CP/MAS spectra.

  15. High Tech M&As

    DEFF Research Database (Denmark)

    Toppenberg, Gustav

    2013-01-01

    of findings are not applicable to the high-tech industry; in fact this industry has many additional challenges. In this study, we aim to explore the process of M&A in the high-tech industry by drawing on extant literature and empirical field work. The paper outlines a research project in progress which...... intends to provide theoretical, empirical and practical contributions in answering the research question: what role does Operations and IT play in creating value in high-tech M&As? The research adds a needed perspective on M&A literature by unveiling unique challenges and opportunities faced by the M...

  16. Porous Organic Nanolayers for Coating of Solid-state Devices

    Directory of Open Access Journals (Sweden)

    Asghar Waseem

    2011-05-01

    Full Text Available Abstract Background Highly hydrophobic surfaces can have very low surface energy and such low surface energy biological interfaces can be obtained using fluorinated coatings on surfaces. Deposition of biocompatible organic films on solid-state surfaces is attained with techniques like plasma polymerization, biomineralization and chemical vapor deposition. All these require special equipment or harsh chemicals. This paper presents a simple vapor-phase approach to directly coat solid-state surfaces with biocompatible films without any harsh chemical or plasma treatment. Hydrophilic and hydrophobic monomers were used for reaction and deposition of nanolayer films. The monomers were characterized and showed a very consistent coating of 3D micropore structures. Results The coating showed nano-textured surface morphology which can aid cell growth and provide rich molecular functionalization. The surface properties of the obtained film were regulated by varying monomer concentrations, reaction time and the vacuum pressure in a simple reaction chamber. Films were characterized by contact angle analysis for surface energy and with profilometer to measure the thickness. Fourier Transform Infrared Spectroscopy (FTIR analysis revealed the chemical composition of the coated films. Variations in the FTIR results with respect to different concentrations of monomers showed the chemical composition of the resulting films. Conclusion The presented approach of vapor-phase coating of solid-state structures is important and applicable in many areas of bio-nano interface development. The exposure of coatings to the solutions of different pH showed the stability of the coatings in chemical surroundings. The organic nanocoating of films can be used in bio-implants and many medical devices.

  17. Dynamics of fragment capture for cluster structures of weakly bound 7Li

    Directory of Open Access Journals (Sweden)

    Shrivastava A.

    2013-12-01

    Full Text Available Role of cluster structures of 7Li on reaction dynamics have been studied by performing exclusive measurements of prompt-γ rays from residues with scattered particles at energy, E/Vb = 1.6, with 198Pt target. Yields of the residues resulting after capture of t and 4,5,6He, corresponding to different excitation energies of the composite system were estimated. The results were compared with three body classical-dynamical model for breakup fusion, constrained by the measured fusion, α and t capture cross-sections. The cross-section of residues from capture of α and t agreed well with the prediction of the model showing dominance of the two step process - breakup fusion, while those from tightly bound 6He showed massive transfer to be the dominant mechanism.

  18. Solid state tautomerism in 2-((phenylimino)methyl)naphthalene-1-ol

    DEFF Research Database (Denmark)

    Nedeltcheva, Daniela; Kamounah, Fadhil S.; Mirolo, Laurent

    2009-01-01

    The solid state tautomerism of 2-((phenylimino)methyl)naphthalene-1-ol was studied using X-ray measurements and absorption spectroscopy. In the solid state, the keto tautomer predominates. The observed shift in the equilibrium from the enol (dilute solution) to the keto (solid state) forms is exp...

  19. Solid-state microwave switches: Circuitry, manufacturing technologies and development trends. Review (Part 2)

    OpenAIRE

    Berezniak, Anatolii; Korotkov, Alexander S.

    2013-01-01

    This paper presents an overview of the process and design capabilities of state-of-the-art in the field of microwave solid state switches. The paper describes types of solid state switches, switch specifications, a review of technological advances in this area. The overview results indicate that AlGaN/GaN MMICs including solid state switches are realizable.

  20. Solid-state microwave switches: circuitry, manufacturing technologies and development trends. Review (Part 1)

    OpenAIRE

    Berezniak, Anatolii; Korotkov, Alexander S.

    2013-01-01

    This paper presents an overview of the process and design capabilities of state-of-the-art in the field of microwave solid state switches. The paper describes types of solid state switches, switch specifications, a review of technological advances in this area. The overview results indicate that AlGaN/GaN MMICs including solid state switches are realizable.

  1. Characterising of solid state electrochemical cells under operation

    DEFF Research Database (Denmark)

    Holtappels, Peter

    2014-01-01

    Compared to significant progress in PEMFC especially regarding the utilization of complex fuels such as methanol significant progress has been made by applying spectroscopic / differential IR and spectrometric techniques to working fuel cells, the processes in solid state high temperature...... electrochemical cells are still a "black box". In order to identify local reaction sites, surface coverage and potential/current introduced materials and surface modifications, in situ techniques are needed to gain a better understanding of the elementary and performance limiting steps for these cells...

  2. White blood cell differentiation using a solid state flow cytometer

    OpenAIRE

    Doornbos, R.M.P.; Hennink, E J; Putman, C.A.J.; Grooth, de, Bart G.; Greve, Jan

    1993-01-01

    A flow cytometer using a solid state light source and detector was designed and built. For illumination of the sample stream two types of diode lasers (670 nm and 780 nm) were tested in a set-up designed to differentiate human leukocytes by means of light scattering. The detector is an avalanche photodiode, which was used to detect the weak scattered light in the orthogonal direction. The new flow cytometer set-up is very small, relatively cheap and yields similar results as a standard flow c...

  3. Design Considerations of a Solid State Thermal Energy Storage

    Science.gov (United States)

    Janbozorgi, Mohammad; Houssainy, Sammy; Thacker, Ariana; Ip, Peggy; Ismail, Walid; Kavehpour, Pirouz

    2016-11-01

    With the growing governmental restrictions on carbon emission, renewable energies are becoming more prevalent. A reliable use of a renewable source however requires a built-in storage to overcome the inherent intermittent nature of the available energy. Thermal design of a solid state energy storage has been investigated for optimal performance. The impact of flow regime, laminar vs. turbulent, on the design and sizing of the system is also studied. The implications of low thermal conductivity of the storage material are discussed and a design that maximizes the round trip efficiency is presented. This study was supported by Award No. EPC-14-027 Granted by California Energy Commission (CEC).

  4. A solid state Marx generator for TEL2

    Energy Technology Data Exchange (ETDEWEB)

    Kamerdzhiev, V.; Pfeffer, H.; Saewert, G.; Shiltsev, V.; /Fermilab

    2007-06-01

    The solid-state Marx generator modulates the anode of the electron gun to produce the electron beam pulses in the second Tevatron Electron Lens (TEL2). It is capable of driving the 60 pF terminal with 600 ns pulses of up to 6 kV with a p.r.r. of 50 kHz. The rise and fall times are 150 ns. Stangenes Industries developed the unit and is working on a second version which will go to higher voltage and have the ability to vary its output in 396 ns intervals over a 5 {micro}s pulse.

  5. Advanced Solid State Lighting for Human Evaluation Project

    Science.gov (United States)

    Zeitlin, Nancy; Holbert, Eirik

    2015-01-01

    Lighting intensity and color have a significant impact on human circadian rhythms. Advanced solid state lighting was developed for the Advanced Exploration System (AES) Deep Space Habitat(DSH) concept demonstrator. The latest generation of assemblies using the latest commercially available LED lights were designed for use in the Bigelow Aerospace Environmental Control and Life Support System (ECLSS) simulator and the University of Hawaii's Hawaii Space Exploration Analog and Simulation (Hi-SEAS) habitat. Agreements with both these organizations will allow the government to receive feedback on the lights and lighting algorithms from long term human interaction.

  6. THERMOTROPIC LIQUID CRYSTALLINE COPOLYESTERS-SOLID STATE POLYMORPHISM

    Institute of Scientific and Technical Information of China (English)

    XIE ping; LU Daohui; BAO Jingsheng

    1988-01-01

    This paper offers some new evidence on the polymorphism of solid state of liquid crystalline aromatic copolyesters which were prepared in our laboratory. The effects of different treatment conditions(quenching and annealing) on solid structure have been examined mainly by DSC and X-ray diffraction. The discussion focuses on the supercooled mesophase and low temperature solid-solid transition, the shifting of double melting peaks of annealed samples and the changing of their △H data depending on the treatment temperature, time and thermal scanning rate.

  7. TESTING AND SIMULATION OF SOLID STATE HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    CHAKIB ALAOUI

    2011-02-01

    Full Text Available The latest model of solid state Peltier thermoelectric pumps was reviewed and improved. A heating-cooling chamber was designed and fabricated by using the Peltier modules, and its equivalent circuit was extracted and simulated. This chamber was tested under various values of input power in both cooling and heating modes of operations. The experimental results were compared with the proposed model. This model is proven to be accurate and can be extend to any Peltier based thermoelectric system for simulation, and can be used to simulated thermoelectric systems based on these modules.

  8. Impact crater formation: a simple application of solid state physics

    CERN Document Server

    Celebonovic, V

    2010-01-01

    This contribution is a first step aiming to address a general question: what can be concluded on impact craters which exist on various planetary system objects, by combining astronomical data and known theoretical results from solid state physics. Assuming that the material of the target body is of crystaline structure,it is shown that a simple calculation gives the possibility of estimating the speed of the impactor responsible for the creation of a crater.A test value,calculated using observed data on the composition of some asteroids,gives a value of the speed in good agreement with results of celestial mechanics.

  9. Reaction diffusion and solid state chemical kinetics handbook

    CERN Document Server

    Dybkov, V I

    2010-01-01

    This monograph deals with a physico-chemical approach to the problem of the solid-state growth of chemical compound layers and reaction-diffusion in binary heterogeneous systems formed by two solids; as well as a solid with a liquid or a gas. It is explained why the number of compound layers growing at the interface between the original phases is usually much lower than the number of chemical compounds in the phase diagram of a given binary system. For example, of the eight intermetallic compounds which exist in the aluminium-zirconium binary system, only ZrAl3 was found to grow as a separate

  10. Saccharide blocking layers in solid state dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Handa, S.; Haque, S.A.; Durrant, J.R. [Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, SW7 2AZ. London (United Kingdom)

    2007-10-15

    The adsorption of saccharides on dye sensitized, nanocrystalline metal oxide films is shown to improve the efficiency of solid state dye sensitized solar cells. The function of the saccharide treatment is evaluated by transient optical studies, and correlated with device photovoltaic performance. A range of saccharides, including cyclodextrins and their linear analogue amylose, are investigated. The saccharide blocking layer is shown to retard interfacial charge recombination losses, resulting in increased device open circuit voltage. Highest device performance is achieved with linear saccharide amylose, resulting in a 60 % improvement in device efficiency relative to the non-treated control, with a device open circuit voltage of 1 V. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  11. Solid state synthesis of nano-mineral particles

    Institute of Scientific and Technical Information of China (English)

    S.Sakthivel; R.Prasanna Venkatesh

    2012-01-01

    Many researchers in academia and industries are interested in reducing particle sizes from few submicrometers to nano-meter levels.These nano-particles find application in several areas including ceramics,paints,cosmetics,microelectronics,sensors,textiles and biomedical,etc.This article reviews the present state of the art for solid state synthesis of mineral nano-particles by wet milling,including their operating variables such as ball size,solid mass fraction and suspension stability.This article concludes and recommends with a critical discussion of nano-particles synthesis and a few common strategies to overcome stability issues.

  12. Solid-state Synthesis of Carbon-nanostructures

    Institute of Scientific and Technical Information of China (English)

    R.Wilhelm; A.Winkel; D.Jain

    2007-01-01

    1 Results In addition to single wall and multiwall carbon nanotubes[1], several structures,which are more or less related to fullerenes,including carbon nanohorns[2a], carbon nanospheres[2b] and onion like carbon structures[2c] have been reported.A new simple straight forward method to access some of these structures is the solid-state pyrolysis of different organometallic complexes in a sealed vessel,which led so far to carbon nanotubes[3a,b], carbon nanocables[3c] and onions[3d].

  13. High power solid state rf amplifier for proton accelerator.

    Science.gov (United States)

    Jain, Akhilesh; Sharma, Deepak Kumar; Gupta, Alok Kumar; Hannurkar, P R

    2008-01-01

    A 1.5 kW solid state rf amplifier at 352 MHz has been developed and tested at RRCAT. This rf source for cw operation will be used as a part of rf system of 100 MeV proton linear accelerator. A rf power of 1.5 kW has been achieved by combining output power from eight 220 W rf amplifier modules. Amplifier modules, eight-way power combiner and divider, and directional coupler were designed indigenously for this development. High efficiency, ease of fabrication, and low cost are the main features of this design.

  14. Alkaline protease production by solid state fermentation on polyurethane foam

    OpenAIRE

    Hongzhang, Chen; Hui, Wang; Aijun, Zhang; Zuohu, Li

    2006-01-01

    This paper investigated the process of solid state fermentation (SSF) using PUF (polyurethane foam) as inert solid support to produce alkaline protease. Maximal enzyme activity was 2185U/ml at pH 9.0, incubation temperature 32 0C inoculum amount of 1.0 % (v/v) , nutrient solution3.75 ml/g PUF, incubation time for 2 h and 15.0 mM of added CaCl2. Under the same conditions, the yield of alkaline protease produced by SSF using PUF as support is higher than that by submerged fermentation (SMF).

  15. Quantum theory of the solid state part B

    CERN Document Server

    Callaway, Joseph

    1974-01-01

    Quantum Theory of the Solid State, Part B describes the concepts and methods of the central problems of the quantum theory of solids. This book discusses the developed machinery applied to impurities, disordered systems, effects of external fields, transport phenomena, and superconductivity. The representation theory, low field diamagnetic susceptibility, electron-phonon interaction, and Landau theory of fermi liquids are also deliberated. This text concludes with an introduction to many-body theory and some applications. This publication is a suitable textbook for students who have completed

  16. Solid-State NMR Studies of Chemically Lithiated CFx

    Science.gov (United States)

    Leifer, N. D.; Johnson, V. S.; Ben-Ari, R.; Gan, H.; Lehnes, J. M.; Guo, R.; Lu, W.; Muffoletto, B. C.; Reddy, T.; Stallworth, P. E.; Greenbaum, S. G.

    2010-01-01

    Three types of fluorinated carbon, all in their original form and upon sequential chemical lithiations via n-butyllithium, were investigated by 13C and 19F solid-state NMR methods. The three starting CFx materials [where x = 1 (nominally)] were fiber based, graphite based, and petroleum coke based. The aim of the current study was to identify, at the atomic/molecular structural level, factors that might account for differences in electrochemical performance among the different kinds of CFx. Differences were noted in the covalent F character among the starting compounds and in the details of LiF production among the lithiated samples. PMID:20676233

  17. Lovastatin production by Aspergillus terreus in solid-state fermentation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Lovastatin production by Aspergillus terreus ATCC 20542 in solid-state fermentation (SSF) was studied. Various substrates were used to evaluate the ability of A. terreus to produce lovastatin. The results showed that either rice or wheat bran was suitable substrate for lovastatin production in SSF. The maximum yield of lovastatin (2.9 mg/g dry substrate) using rice as substrate was achieved after incubating for 11 d at the following optimized process parameters: 50%~60% initial moisture content,pH 5.5, incubation temperature 28 ℃.

  18. MPS/CAS Cooperation on Solid State Chemistry

    Institute of Scientific and Technical Information of China (English)

    Zhao Jingtai; Rüdiger Kniep

    2004-01-01

    @@ The cooperation between Zhao Jingtai and the Max Planck Institute for Chemical Physics of Solids was initiated immediately after the research field Inorganic Chemistry (headed by Rüdiger Kniep) started its work in Dresden. The first contact was established when Zhao Jingtai came from the Xiamen University as a Max Planck fellow. At that time, the chemistry of the intermetallic compounds of rare-earth metals was chosen as a topic of joint investigations with Yuri Grin. Later, the solid state chemistry of the borophosphates was added to the program of concerted research in the group of Zhao Jingtai and the Max Planck Institute for Chemical Physics of Solids.

  19. Solid-State Recorders Enhance Scientific Data Collection

    Science.gov (United States)

    2010-01-01

    Under Small Business Innovation Research (SBIR) contracts with Goddard Space Flight Center, SEAKR Engineering Inc., of Centennial, Colorado, crafted a solid-state recorder (SSR) to replace the tape recorder onboard a Spartan satellite carrying NASA's Inflatable Antenna Experiment. Work for that mission and others has helped SEAKR become the world leader in SSR technology for spacecraft. The company has delivered more than 100 systems, more than 85 of which have launched onboard NASA, military, and commercial spacecraft including imaging satellites that provide much of the high-resolution imagery for online mapping services like Google Earth.

  20. Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR.

    Science.gov (United States)

    Knight, Michael J; Pell, Andrew J; Bertini, Ivano; Felli, Isabella C; Gonnelli, Leonardo; Pierattelli, Roberta; Herrmann, Torsten; Emsley, Lyndon; Pintacuda, Guido

    2012-07-10

    We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with (1)H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of (15)N and (13)C nuclear relaxation rates. The system on which we demonstrate these methods is the enzyme Cu, Zn superoxide dismutase (SOD), which coordinates a Cu ion available either in Cu(+) (diamagnetic) or Cu(2+) (paramagnetic) form. Paramagnetic relaxation enhancements are obtained from the difference in rates measured in the two forms and are employed as structural constraints for the determination of the protein structure. When added to (1)H-(1)H distance restraints, they are shown to yield a twofold improvement of the precision of the structure. Site-specific order parameters and timescales of motion are obtained by a gaussian axial fluctuation (GAF) analysis of the relaxation rates of the diamagnetic molecule, and interpreted in relation to backbone structure and metal binding. Timescales for motion are found to be in the range of the overall correlation time in solution, where internal motions characterized here would not be observable.

  1. Molecular structure of crude beeswax studied by solid-state 13C NMR.

    Science.gov (United States)

    Kameda, Tsunenori

    2004-01-01

    13C solid-state NMR experiments were performed to investigate the structure of beeswax in the native state (crude beeswax) for the first time. From quantitative direct polarization 13C MAS NMR spectrum, it was found that the fraction of internal-chain methylene (int-(CH2)) component compared to other components of crude beeswax was over 95%. The line shape of the int-(CH2) carbon resonance region was comprehensively analyzed in terms of NMR chemical shift. The 13C broad peak component covering from 31 to 35 ppm corresponds to int-(CH2) carbons with trans conformation in crystalline domains, whereas the sharp signal at 30.3 ppm corresponds to gauche conformation in the non-crystalline domain. From peak deconvolution of the aliphatic region, it was found that over 85% of the int-(CH2) has a crystal structure and several kinds of molecular packing for int-(CH2), at least three, exist in the crystalline domain.

  2. Probing Silica-Biomolecule Interactions by Solid-State NMR and Molecular Dynamics Simulations.

    Science.gov (United States)

    Brückner, Stephan Ingmar; Donets, Sergii; Dianat, Arezoo; Bobeth, Manfred; Gutiérrez, Rafael; Cuniberti, Gianaurelio; Brunner, Eike

    2016-11-08

    Understanding the molecular interactions between inorganic phases such as silica and organic material is fundamental for chromatographic applications, for tailoring silica-enzyme interactions, and for elucidating the mechanisms of biomineralization. The formation, structure, and properties of the organic/inorganic interface is crucial in this context. Here, we investigate the interaction of selectively (13)C-labeled choline with (29)Si-labeled monosilicic acid/silica at the molecular level. Silica/choline nanocomposites were analyzed by solid-state NMR spectroscopy in combination with extended molecular dynamics (MD) simulations to understand the silica/organic interface. Cross-polarization magic angle spinning (CP MAS)-based NMR experiments like (1)H-(13)C CP-REDOR (rotational-echo double resonance), (1)H-(13)C HETCOR (heteronuclear correlation), and (1)H-(29)Si-(1)H double CP are employed to determine spatial parameters. The measurement of (29)Si-(13)C internuclear distances for selectively (13)C-labeled choline provides an experimental parameter that allows the direct verification of MD simulations. Atomistic modeling using classical MD methodologies is performed using the INTERFACE force field. The modeling results are in excellent agreement with the experimental data and reveal the relevant molecular conformations as well as the nature and interplay of the interactions between the choline cation and the silica surface. Electrostatic interactions and hydrogen bonding are both important and depend strongly on the hydration level as well as the charge state of the silica surface.

  3. Solar radiation pumped solid state of lasers for Solar Power Satellites

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ruiyi [New Jersey (United States)

    2000-07-01

    The Laser Solar Power Satellites (L-SPS) is the most promising way to overcome global energy and environmental and economical problems. The purpose was to use the favorable combination of solar radiation, modern lasers and the extremely promising phenomenon Optical Phase Conjugation (OPC). Direct conversion of solar energy to energy of a high-power laser beam has the advantage of high efficiency and precise energy transportation. In this paper, direct solar radiation pumping of the laser is compared with the pumping using the intermediate stage of the conversion of the solar radiation in electrical energy. Possible solid-state lasers that can be used in L-SPS are also discussed (including optical system and cooling system). [Spanish] Los Satelites de Energia Solar Laser (L-SPS) son la forma mas prometedora para contrarrestar los problemas globales de energia, ambientales y problemas economicos. El proposito fue el de usar la combinacion favorable de radiacion solar, laseres modernos y el fenomeno extremadamente prometedor de conjugacion de fase optica (OPC). La conversion directa de energia solar a energia de un rayo laser de alta potencia tiene la ventaja de la alta eficiencia y precision de la transportacion de la energia. En este documento la radiacion solar directa impulsada por el laser se compara con la impulsion usando el estado intermedio de conversion de la radiacion solar en energia electrica. Tambien se analizan los posibles laseres de estado solido que pueden usarse en L-SPS (incluyendo el sistema optico y el sistema de enfriamiento).

  4. Fast neutron measurements with {sup 7}Li and {sup 6}Li enriched CLYC scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Giaz, A., E-mail: agnese.giaz@mi.infn.it [INFN Milano, Via Celoria 16, 20133 Milano (Italy); Blasi, N.; Boiano, C.; Brambilla, S. [INFN Milano, Via Celoria 16, 20133 Milano (Italy); Camera, F. [INFN Milano, Via Celoria 16, 20133 Milano (Italy); Università degli Studi di Milano, Physics Department, Via Celoria 16, 20133 Milano (Italy); Cattadori, C. [INFN sezione di Milano Bicocca, Piazza della Scienza 3, 20125 Milano (Italy); Ceruti, S. [INFN Milano, Via Celoria 16, 20133 Milano (Italy); Università degli Studi di Milano, Physics Department, Via Celoria 16, 20133 Milano (Italy); Gramegna, F.; Marchi, T. [INFN Laboratori Nazionali di Legnaro, Viale dell’Università, 2, 35020 Legnaro, PD (Italy); Mattei, I. [INFN Milano, Via Celoria 16, 20133 Milano (Italy); Mentana, A. [INFN Milano, Via Celoria 16, 20133 Milano (Italy); Università degli Studi di Milano, Physics Department, Via Celoria 16, 20133 Milano (Italy); Million, B.; Pellegri, L. [INFN Milano, Via Celoria 16, 20133 Milano (Italy); Rebai, M. [Università degli Studi di Milano Bicocca, Physics Department, Piazza della Scienza 3, 20126 Milano (Italy); Riboldi, S. [INFN Milano, Via Celoria 16, 20133 Milano (Italy); Università degli Studi di Milano, Physics Department, Via Celoria 16, 20133 Milano (Italy); Salamida, F. [INFN sezione di Milano Bicocca, Piazza della Scienza 3, 20125 Milano (Italy); Tardocchi, M. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Via R. Cozzi 53, 2015 Milano (Italy)

    2016-07-21

    The recently developed Cs{sub 2}LiYCl{sub 6}:Ce (CLYC) crystals are interesting scintillation detectors not only for their gamma energy resolution (<5% at 662 keV) but also for their capability to identify and measure the energy of both gamma rays and fast/thermal neutrons. The thermal neutrons were detected by the {sup 6}Li(n,α)t reaction while for the fast neutrons the {sup 35}Cl(n,p){sup 35}S and {sup 35}Cl(n,α){sup 32}P neutron-capture reactions were exploited. The energy of the outgoing proton or α particle scales linearly with the incident neutron energy. The kinetic energy of the fast neutrons can be measured using both the Time Of Flight (TOF) technique and using the CLYC energy signal. In this work, the response to monochromatic fast neutrons (1.9–3.8 MeV) of two CLYC 1″×1″ crystals was measured using both the TOF and the energy signal. The observables were combined to identify fast neutrons, to subtract the thermal neutron background and to identify different fast neutron-capture reactions on {sup 35}Cl, in other words to understand if the detected particle is an α or a proton. We performed a dedicated measurement at the CN accelerator facility of the INFN Legnaro National Laboratories (Italy), where the fast neutrons were produced by impinging a proton beam (4.5, 5.0 and 5.5 MeV) on a {sup 7}LiF target. We tested a CLYC detector {sup 6}Li-enriched at about 95%, which is ideal for thermal neutron measurements, in parallel with another CLYC detector {sup 7}Li-enriched at more than 99%, which is suitable for fast neutron measurements.

  5. Fast neutron measurements with 7Li and 6Li enriched CLYC scintillators

    Science.gov (United States)

    Giaz, A.; Blasi, N.; Boiano, C.; Brambilla, S.; Camera, F.; Cattadori, C.; Ceruti, S.; Gramegna, F.; Marchi, T.; Mattei, I.; Mentana, A.; Million, B.; Pellegri, L.; Rebai, M.; Riboldi, S.; Salamida, F.; Tardocchi, M.

    2016-07-01

    The recently developed Cs2LiYCl6:Ce (CLYC) crystals are interesting scintillation detectors not only for their gamma energy resolution (<5% at 662 keV) but also for their capability to identify and measure the energy of both gamma rays and fast/thermal neutrons. The thermal neutrons were detected by the 6Li(n,α)t reaction while for the fast neutrons the 35Cl(n,p)35S and 35Cl(n,α)32P neutron-capture reactions were exploited. The energy of the outgoing proton or α particle scales linearly with the incident neutron energy. The kinetic energy of the fast neutrons can be measured using both the Time Of Flight (TOF) technique and using the CLYC energy signal. In this work, the response to monochromatic fast neutrons (1.9-3.8 MeV) of two CLYC 1″×1″ crystals was measured using both the TOF and the energy signal. The observables were combined to identify fast neutrons, to subtract the thermal neutron background and to identify different fast neutron-capture reactions on 35Cl, in other words to understand if the detected particle is an α or a proton. We performed a dedicated measurement at the CN accelerator facility of the INFN Legnaro National Laboratories (Italy), where the fast neutrons were produced by impinging a proton beam (4.5, 5.0 and 5.5 MeV) on a 7LiF target. We tested a CLYC detector 6Li-enriched at about 95%, which is ideal for thermal neutron measurements, in parallel with another CLYC detector 7Li-enriched at more than 99%, which is suitable for fast neutron measurements.

  6. Investigations of adsorption sites on oxide surfaces using solid-state NMR and TPD-IGC

    Science.gov (United States)

    Golombeck, Rebecca A.

    diameters and thermal histories. The bulk structural features in both compositions of glass fibers were identified using high-resolution 29Si, 27Al, and 11B magic-angle spinning (MAS) NMR spectroscopic measurements. In multi-component glasses, the determination of silicon, aluminum, and boron distributions becomes difficult due to the competitive nature of the network-modifying oxides among the network-forming oxides. In pure silicates, 29Si MAS NMR can often resolve resonances arising from silicate tetrahedron having varying numbers of bridging oxygens. In aluminoborosilicate glasses, aluminum is present in four-, five-, and six- coordination with oxygen as neighbors. The speciation of the aluminum can be determined using 27Al MAS NMR. The fraction of tetrahedral boron species in the glass fibers were measured using 11B MAS NMR, which is typically used to study the short-range structure of borate containing glasses such as alkali borate, borosilicate, and aluminoborosilicate glasses. While solid-state NMR is a powerful tool for elucidating bonding environments and coordination changes in the glass structure, it cannot quantitatively probe low to moderate surface area samples due to insufficient spins. Chemical probes either physisorbed or chemisorbed to the fiber's surface can increase the surface selectivity of NMR for analysis of samples with low surface areas and provide information about the local molecular structure of the reactive surface site. Common chemical probe molecules contain NMR active nuclei such as 19F or may be enriched with 13C. A silyating agent, (3,3,3-trifluoropropyl)dimethylchlorosilane (TFS), reacts with reactive surface hydroxyls, which can be quantified by utilizing the NMR active nucleus (19F) contained in the probe molecule. The observed 19F MAS NMR peak area is integrated and compared against a standard of known fluorine spins (concentration), allowing the number of reactive hydroxyl sites to be quantified. IGC is a method used to study the

  7. Diode-pumped all-solid-state lasers and applications

    CERN Document Server

    Parsons-Karavassilis, D

    2002-01-01

    This thesis describes research carried out by the within the Physics Department at Imperial College that was aimed at developing novel all-solid-state laser sources and investigating potential applications of this technology. A description of the development, characterisation and application of a microjoule energy level, diode-pumped all-solid-state Cr:LiSGAF femtosecond oscillator and regenerative amplifier system is presented. The femtosecond oscillator was pumped by two commercially available laser diodes and produced an approx 80 MHz pulse train of variable pulse duration with approx 30 mW average output power and a tuning range of over approx 60 nm. This laser oscillator was used to seed a regenerative amplifier, resulting in adjustable repetition rate (single pulse to 20 kHz) approx 1 mu J picosecond pulses. These pulses were compressed to approx 150 fs using a double-pass twin-grating compressor. The amplifier's performance was investigated with respect to two different laser crystals and different pul...

  8. Hot bending with a fiber coupled solid state laser

    Science.gov (United States)

    Bammer, F.; Schumi, T.; Schuöcker, D.

    2010-09-01

    For bending of brittle materials it is necessary to heat up the forming zone. This can be done with a fiber coupled solid state laser, whose beam is evenly distributed on the bending line with a beam splitter installed in the lower tool (die) of a bending press. With polarization optics the laser beam is divided there into partial beams that are evenly distributed on the bending line with lenses and prisms. A setup for a bending length of 200mm heated by a fiber-coupled 3kW Nd:YAG-laser shows the feasibility of the concept. Successful operation was shown for the Mg-alloy AZ31, which breaks during forming at room temperature, but can be well formed at temperatures in the range of 200-300°C. Other materials benefiting from this method are Ti-alloys, high-strength-Al-alloys, and high-strength-steels. Typical heating times are in the range of up to 5s and much of the heat input is generated during the bending operation where the laser continues to work. Laser Assisted Bending with a fiber coupled solid state laser is a straightforward way to perform the bending of brittle materials in a process as simple as cold bending.

  9. Low temperature solid-state synthesis of nanocrystalline gallium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liangbiao, E-mail: wlb6641@163.com [Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shi, Liang; Li, Qianwen; Si, Lulu; Zhu, Yongchun; Qian, Yitai [Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► GaN nanocrystalline was prepared via a solid-state reacion at relatively low temperature. ► The sizes and crystallinities of the GaN samples obtained at the different temperatures are investigated. ► The GaN sample has oxidation resistance and good thermal stability below 1000 °C. -- Abstract: Nanocrystalline gallium nitride was synthesized by a solid-state reaction of metallic magnesium powder, gallium sesquioxide and sodium amide in a stainless steel autoclave at a relatively low temperature (400–550 °C). The structures and morphologies of the obtained products were derived from X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). XRD patterns indicated that the products were hexagonal GaN (JCPDS card no. 76-0703). The influence of reaction temperature on size of the products was studied by XRD and TEM. Furthermore, the thermal stability and oxidation resistance of the nanocrystalline GaN were also investigated. It had good thermal stability and oxidation resistance below 800 °C in air.

  10. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul T. Fini; Prof. Shuji Nakamura

    2002-09-01

    In this annual report we summarize the progress obtained in the first year with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

  11. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul T. Fini; Prof. Shuji Nakamura

    2002-04-30

    In this semiannual report we summarize the progress obtained in the first six months with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

  12. Transcending the replacement paradigm of solid-state lighting.

    Science.gov (United States)

    Kim, Jong Kyu; Schubert, E Fred

    2008-12-22

    The field of photonics starts with the efficient generation of light. The generation of efficient yet highly controllable light can indeed be accomplished with light-emitting diodes (LEDs), which are, in principle, capable of generating white light with a 20 times greater efficiency than conventional light bulbs. Deployed on a global scale to replace conventional sources, such solid-state light sources will result in enormous benefits that, over a period of 10 years, include (1) gigantic energy savings of 1.9 x 1020 joule, (2) a very substantial reduction in global-warming CO2 emissions, (3) a strong reduction in the emission of pollutants such as acid-rain-causing SO2, mercury (Hg), and uranium (U), and (4) financial savings exceeding a trillion (10(12)) US$. These benefits can be accomplished by the "replacement paradigm" in which conventional light sources are replaced by more energy efficient, more durable, and non-toxic light sources. However, it will be shown that solid-state light sources can go beyond the replacement paradigm, by providing new capabilities including the control of spectrum, color temperature, polarization, temporal modulation, and spatial emission pattern. We will show that such future, "smart" light sources, can harness the huge potential of LEDs by offering multi-dimensional controllability that will enhance the functionality and performance of light sources in a wide range of applications. These applications include optical microscopy, imaging, display technologies, communications, networking, and transportation systems.

  13. 1D quantum simulation using a solid state platform

    Science.gov (United States)

    Kirkendall, Megan; Irvin, Patrick; Huang, Mengchen; Levy, Jeremy; Lee, Hyungwoo; Eom, Chang-Beom

    Understanding the properties of large quantum systems can be challenging both theoretically and numerically. One experimental approach-quantum simulation-involves mapping a quantum system of interest onto a physical system that is programmable and experimentally accessible. A tremendous amount of work has been performed with quantum simulators formed from optical lattices; by contrast, solid-state platforms have had only limited success. Our experimental approach to quantum simulation takes advantage of nanoscale control of a metal-insulator transition at the interface between two insulating complex oxide materials. This system naturally exhibits a wide variety of ground states (e.g., ferromagnetic, superconducting) and can be configured into a variety of complex geometries. We will describe initial experiments that explore the magnetotransport properties of one-dimensional superlattices with spatial periods as small as 4 nm, comparable to the Fermi wavelength. The results demonstrate the potential of this solid-state quantum simulation approach, and also provide empirical constraints for physical models that describe the underlying oxide material properties. We gratefully acknowledge financial support from AFOSR (FA9550-12-1- 0057 (JL), FA9550-10-1-0524 (JL) and FA9550-12-1-0342 (CBE)), ONR N00014-15-1-2847 (JL), and NSF DMR-1234096 (CBE).

  14. Solid-state photogalvanic dye-sensitized solar cells.

    Science.gov (United States)

    Berhe, Seare A; Gobeze, Habtom B; Pokharel, Sundari D; Park, Eunsol; Youngblood, W Justin

    2014-07-09

    Photogalvanic cells are photoelectrochemical systems wherein the semiconductor electrode is not a participant in primary photoinduced charge formation. The discovery of photoelectrochemical systems that successfully exploit secondary (thermal) electron injection at dye-semiconductor interfaces may enable studies of electron transfer at minimal driving force for electron injection into the semiconductor. In this study, we have examined thermal electron transfer from molecular sensitizers to nanostructured semiconductor electrodes composed of titanium dioxide nanorods by means of transient spectroscopy and the assembly and testing of photoelectrochemical cells. Electron-accepting molecular dyes have been studied alongside an arylamine electron donor. Thermal injection is estimated for a naphthacenequinone radical anion as a multiexponential decay process with initial decay lifetimes of 6 and 27 ps. The ambient electric field present during charge separation at a surface-adsorbed dye monolayer causes Stark shifts of the radical ion pair absorbance peaks that confounded kinetic estimation of thermal injection for a fullerene sensitizer. Electron-accepting dyes that operate by thermal injection into titanium dioxide function better in solid-state photoelectrochemical cells than in liquid-junction cells due to the kinetic advantage of solid-state cells with respect to photoinduced acceptor-quenching to form the necessary radical anion sensitizers.

  15. Highly flexible and all-solid-state paperlike polymer supercapacitors.

    Science.gov (United States)

    Meng, Chuizhou; Liu, Changhong; Chen, Luzhuo; Hu, Chunhua; Fan, Shoushan

    2010-10-13

    In recent years, much effort have been dedicated to achieve thin, lightweight and even flexible energy-storage devices for wearable electronics. Here we demonstrate a novel kind of ultrathin all-solid-state supercapacitor configuration with an extremely simple process using two slightly separated polyaniline-based electrodes well solidified in the H(2)SO(4)-polyvinyl alcohol gel electrolyte. The thickness of the entire device is much comparable to that of a piece of commercial standard A4 print paper. Under its highly flexible (twisting) state, the integrate device shows a high specific capacitance of 350 F/g for the electrode materials, well cycle stability after 1000 cycles and a leakage current of as small as 17.2 μA. Furthermore, due to its polymer-based component structure, it has a specific capacitance of as high as 31.4 F/g for the entire device, which is more than 6 times that of current high-level commercial supercapacitor products. These highly flexible and all-solid-state paperlike polymer supercapacitors may bring new design opportunities of device configuration for energy-storage devices in the future wearable electronic area.

  16. All-solid-state Z-scheme photocatalytic systems.

    Science.gov (United States)

    Zhou, Peng; Yu, Jiaguo; Jaroniec, Mietek

    2014-08-06

    The current rapid industrial development causes the serious energy and environmental crises. Photocatalyts provide a potential strategy to solve these problems because these materials not only can directly convert solar energy into usable or storable energy resources but also can decompose organic pollutants under solar-light irradiation. However, the aforementioned applications require photocatalysts with a wide absorption range, long-term stability, high charge-separation efficiency and strong redox ability. Unfortunately, it is often difficult for a single-component photocatalyst to simultaneously fulfill all these requirements. The artificial heterogeneous Z-scheme photocatalytic systems, mimicking the natural photosynthesis process, overcome the drawbacks of single-component photocatalysts and satisfy those aforementioned requirements. Such multi-task systems have been extensively investigated in the past decade. Especially, the all-solid-state Z-scheme photocatalytic systems without redox pair have been widely used in the water splitting, solar cells, degradation of pollutants and CO2 conversion, which have a huge potential to solve the current energy and environmental crises facing the modern industrial development. Thus, this review gives a concise overview of the all-solid-state Z-scheme photocatalytic systems, including their composition, construction, optimization and applications.

  17. Studies of the fundamentals of solids state batteries

    Science.gov (United States)

    Abraham, K. M.; Alamgir, M.

    1990-11-01

    Several methods have been developed to dimensionally stabilize polymer electrolytes based on poly-(bis (methoxy ethoxy ethoxide) phosphazene), known as MEEP. In contrast to the poor dimensional stability exhibited by complexes of MEEP with most Li salts, those prepared with LiAlCl4 have been isolated as the first example of free-standing MEEP-(LiX)n films. The mechanical properties of dimensionally unstable MEEP-(LIX)n complexes can be significantly improved by forming composites with polymers such as poly(ethylene oxide), poly(propylene oxide), poly(ethylene glycol diacrylate) and poly(vinyl pyrrolidinone). The conductivity of 6.7 x 10(exp -5) ohm(exp -1) cm(exp -1) at 25 C exhibited by 55 w/o MEEP/45 w/o PEO-(LiN(CF3SO2)2)0.13 is among the highest values reported to date for a dimensionally stable electrolyte. The preparation, and conductivity, calorimetric and electrochemical studies of these electrolytes are described. Cyclic voltammetric data indicated that these electrolytes have anodic stability at least up to 4.5V versus Li(+)/Li. They have shown excellent compatibility with Li metal making them suitable for use as Li(+) conductive solid electrolytes in solid-state Li batteries. Li/TiS2 solid-state cells utilizing some of these electrolytes have exceeded 200 cycles.

  18. Hydrogen release from solid state NaBH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Urgnani, J.; Torres, F.J.; Palumbo, M.; Baricco, M. [Dipartimento di Chimica I.F.M. and NIS/INSTM/CNISM, Universita di Torino, via Giuria 9, 10125 Torino (Italy)

    2008-06-15

    The aim of this work is the study of the H{sub 2} release from the thermal decomposition reaction of sodium tetrahydroboride (NaBH{sub 4}) in the solid state. Computational and experimental methods have been used. NaBH{sub 4} thermodynamic properties at room temperature and its energy of formation from NaH and BH{sub 3} have been theoretically studied using a first-principles approach. Results obtained from ab initio calculations compared well with thermodynamic properties assessed by the CALPHAD method. The effect of annealing on phase transformations in NaBH{sub 4} has been followed with various experimental analytical techniques and the structure of the samples, after suitable thermal treatments, has been analysed by X-ray diffraction. A multi-step reaction has been observed after annealing, in both isothermal and scanning conditions. The conditions for H{sub 2} release from NaBH{sub 4} in the solid state have been clarified combining experimental and computational results. (author)

  19. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to

  20. Fast magic-angle sample spinning solid-state NMR at 60-100kHz for natural abundance samples.

    Science.gov (United States)

    Nishiyama, Yusuke

    2016-09-01

    In spite of tremendous progress made in pulse sequence designs and sophisticated hardware developments, methods to improve sensitivity and resolution in solid-state NMR (ssNMR) are still emerging. The rate at which sample is spun at magic angle determines the extent to which sensitivity and resolution of NMR spectra are improved. To this end, the prime objective of this article is to give a comprehensive theoretical and experimental framework of fast magic angle spinning (MAS) technique. The engineering design of fast MAS rotors based on spinning rate, sample volume, and sensitivity is presented in detail. Besides, the benefits of fast MAS citing the recent progress in methodology, especially for natural abundance samples are also highlighted. The effect of the MAS rate on (1)H resolution, which is a key to the success of the (1)H inverse detection methods, is described by a simple mathematical factor named as the homogeneity factor k. A comparison between various (1)H inverse detection methods is also presented. Moreover, methods to reduce the number of spinning sidebands (SSBs) for the systems with huge anisotropies in combination with (1)H inverse detection at fast MAS are discussed.

  1. How to control solid state dewetting: A short review

    Science.gov (United States)

    Leroy, F.; Borowik, Ł.; Cheynis, F.; Almadori, Y.; Curiotto, S.; Trautmann, M.; Barbé, J. C.; Müller, P.

    2016-06-01

    In the past decade there have been many theoretical and experimental efforts to study the mechanisms of solid state dewetting, that means the spontaneous agglomeration of a thin solid film on a substrate into an assembly of 3D islands. The dewetting studies of solid films on solid substrates have not yet reached the degree of maturity achieved for liquids but there is now enough experimental data to consider the possibility of a future "dewetting engineering". By dewetting engineering we mean all the ways to tune and/or control the kinetics of dewetting as well as the morphology of the final dewetted state. The ultimate goal is to avoid dewetting when it complicates the fabrication of thin film-based devices or to use it for the spontaneous production of an assembly of nanoscaled islands on solid substrates. For this purpose we review the different parameters that influence the dewetting then illustrate how the dewetted state may be tuned by varying the thickness of the film, the annealing temperature, or the state of strain in the film. Moreover, adsorbed or absorbed species (by deposition or ionic impingement/ion bombardment) may modify the surface properties of the film or the mobility properties of the contact line film/substrate and thus the dewetting properties. Anisotropic properties of the film may also be used to initiate the dewetting from perfectly oriented edge fronts, leading to highly ordered 3D islands. New approaches using substrate pre-patterning or film patterning are very promising to achieve the dewetting engineering. Ideal systems for studying solid state dewetting are single crystalline films deposited or bonded on amorphous substrates, so that, among the numerous dewetting systems reported in the literature, ultra-thin crystalline silicon-on-insulator (SOI) film (a Si film bonded on an amorphous SiO2 substrate) is considered as a model system for studying how to control solid state dewetting. Other systems, as Ni epitaxially grown on MgO, are

  2. Colour-rendition properties of solid-state lamps

    Science.gov (United States)

    Žukauskas, A.; Vaicekauskas, R.; Shur, M. S.

    2010-09-01

    The applicability of colour-quality metrics to solid-state light sources is validated and the results of the assessment of colour-rendition characteristics of various lamps are presented. The standard colour-rendering index metric or a refined colour-quality scale metric fails to distinguish between two principle colour-rendition properties of illumination: the ability to render object colours with high fidelity and the ability to increase chromatic contrast, especially when the spectra of light sources contain a few narrow-band electroluminescence components. Supplementing these metrics by the known figures of merit that measure the gamut area of a small number of test colour samples does not completely resolve this issue. In contrast, the statistical approach, which is based on sorting a very large number of test colour samples in respect of just-perceivable colour distortions of several kinds, offers a comprehensive assessment of colour-rendition properties of solid-state light sources. In particular, two statistical indices, colour-fidelity index (CFI) and colour-saturation index (CSI), which are the relative numbers of object colours rendered with high fidelity and increased saturation, respectively, are sufficient to reveal and assess three distinct types of solid-state light sources. These are (i) high-fidelity lamps, which cover the entire spectrum with the spectral components present in the wavelength ranges of both 530-610 nm and beyond 610 nm (e.g. trichromatic warm white phosphor-converted (pc) light-emitting diodes (LEDs), red-amber-green-blue LED clusters, complementary clusters of white and coloured LEDs); (ii) colour-saturating lamps, which lack power in the 530-610 nm wavelength range (e.g. red-green-blue or red-cyan-blue LED clusters) and (iii) colour-dulling lamps, which lack power for wavelengths longer than 610 nm (dichromatic daylight pc LEDs and amber-green-blue LED clusters). Owing to a single statistical format, CSI and CFI can be used for

  3. High efficiency solid-state sensitized heterojunction photovoltaic device

    KAUST Repository

    Wang, Mingkui

    2010-06-01

    The high molar extinction coefficient heteroleptic ruthenium dye, NaRu(4,4′-bis(5-(hexylthio)thiophen-2-yl)-2,2′-bipyridine) (4-carboxylic acid-4′-carboxylate-2,2′-bipyridine) (NCS) 2, exhibits certified 5% electric power conversion efficiency at AM 1.5 solar irradiation (100 mW cm-2) in a solid-state dye-sensitized solar cell using 2,2′,7,7′-tetrakis-(N,N-di-pmethoxyphenylamine)-9, 9′-spirobifluorene (spiro-MeOTAD) as the organic hole-transporting material. This demonstration elucidates a class of photovoltaic devices with potential for low-cost power generation. © 2010 Elsevier Ltd. All rights reserved.

  4. Co-operativity in a nanocrystalline solid-state transition

    Science.gov (United States)

    White, Sarah L.; Smith, Jeremy G.; Behl, Mayank; Jain, Prashant K.

    2013-12-01

    Co-operativity is a remarkable phenomenon mostly seen in biology, where initial reaction events significantly alter the propensity of subsequent reaction events, giving rise to a nonlinear tightly regulated synergistic response. Here we have found unique evidence of atomic level co-operativity in an inorganic material. A thousand-atom nanocrystal (NC) of the inorganic solid cadmium selenide exhibits strong positive co-operativity in its reaction with copper ions. A NC doped with a few copper impurities becomes highly prone to be doped even further, driving an abrupt transition of the entire NC to the copper selenide phase, as manifested by a strongly sigmoidal response in optical spectroscopy and electron diffraction measurements. The examples presented here suggest that cooperative phenomena may have an important role in the solid state, especially in the nucleation of new chemical phases, crystal growth, and other materials’ transformations.

  5. Witnessing Quantum Coherence: from solid-state to biological systems

    CERN Document Server

    Li, Che-Ming; Chen, Yueh-Nan; Chen, Guang-Yin; Nori, Franco; 10.1038/srep00885

    2012-01-01

    Quantum coherence is one of the primary non-classical features of quantum systems. While protocols such as the Leggett-Garg inequality (LGI) and quantum tomography can be used to test for the existence of quantum coherence and dynamics in a given system, unambiguously detecting inherent "quantumness" still faces serious obstacles in terms of experimental feasibility and efficiency, particularly in complex systems. Here we introduce two "quantum witnesses" to efficiently verify quantum coherence and dynamics in the time domain, without the expense and burden of non-invasive measurements or full tomographic processes. Using several physical examples, including quantum transport in solid-state nanostructures and in biological organisms, we show that these quantum witnesses are robust and have a much finer resolution in their detection window than the LGI has. These robust quantum indicators may assist in reducing the experimental overhead in unambiguously verifying quantum coherence in complex systems.

  6. Factors influencing particle agglomeration during solid-state sintering

    Institute of Scientific and Technical Information of China (English)

    Chao Wang; Shao-Hua Chen

    2012-01-01

    Discrete element method (DEM) is used to study the factors affecting agglomeration in three-dimensional copper particle systems during solid-state sintering.A new parameter is proposed to characterize agglomeration.The effects of a series of factors are studied,including particle size,size distribution,inter-particle tangential viscosity,temperature,initial density and initial distribution of particles on agglomeration.We find that the systems with smaller particles,broader particle size distribution,smaller viscosity,higher sintering temperature and smaller initial density have stronger particle agglomeration and different distributions of particles induce different agglomerations.This study should be very useful for understanding the phenomenon of agglomeration and the micro-structural evolution during sintering and guiding sintering routes to avoid detrimental agglomeration.

  7. Solid state modulator for klystron power supply XFEL TDS INJ

    Science.gov (United States)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Zybin, D. A.; Churanov, D. V.; Shemarykin, P. V.

    2016-09-01

    The transverse deflecting system XFEL TDS INJ for European X-ray Free Electron Laser includes power supply for the CPI VKS-8262HS klystron. It has been designed for pulse high-voltage, cathode heating, solenoid and klystron ion pump. The klystron power supply includes solid state modulator, pulse transformer, controlled power supply for cathode heating and commercial power supplies for solenoid and ion pump. Main parameters of the modulator are 110 kV of peak voltage, 72 A peak current, and pulse length up to 6 μs. The klystron power supply has been developed, designed, manufactured, tuned, tested and installed in the XFEL building. All designed parameters are satisfied.

  8. Solid-State Calculation of Crystalline Color Superconductivity

    CERN Document Server

    Cao, Gaoqing; Zhuang, Pengfei

    2015-01-01

    It is generally believed that the inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase appears in a color superconductor when the pairing between different quark flavors is under the circumstances of mismatched Fermi surfaces. However, the real crystal structure of the LOFF phase is still unclear because an exact treatment of 3D crystal structures is rather difficult. In this work we calculate the ground-state energy of the body-centered cubic (BCC) structure for two-flavor pairing by diagonalizing the Hamiltonian matrix in the Bloch space, in analogy to the \\emph{ab initio} calculations in solid-state physics. We develop a computational scheme to overcome the difficulties in diagonalizing huge matrices. Our results show that the BCC structure is energetically more favorable than the 1D modulation in a narrow window around the conventional LOFF-normal phase transition point, which indicates the significance of the higher-order terms in the Ginzburg-Landau approach.

  9. Solid state physics advances in research and applications

    CERN Document Server

    Turnbull, David

    1991-01-01

    The explosion of the science of mesoscopic structures is having a great impact on physics and electrical engineering because of the possible applications of these structures in microelectronic and optoelectronic devices of the future. This volume of Solid State Physics consists of two comprehensive and authoritative articles that discuss most of the physical problems that have so far been identified as being of importance in semiconductor nanostructures. Much of the volume is tutorial in characture--while at the same time time presenting current and vital theoretical and experimental results and a copious reference list--so it will be essential reading to all those taking a part in the research and development of this emerging technology.

  10. Monitoring Cocrystal Formation via In Situ Solid-State NMR.

    Science.gov (United States)

    Mandala, Venkata S; Loewus, Sarel J; Mehta, Manish A

    2014-10-01

    A detailed understanding of the mechanism of organic cocrystal formation remains elusive. Techniques that interrogate a reacting system in situ are preferred, though experimentally challenging. We report here the results of a solid-state in situ NMR study of the spontaneous formation of a cocrystal between a pharmaceutical mimic (caffeine) and a coformer (malonic acid). Using (13)C magic angle spinning NMR, we show that the formation of the cocrystal may be tracked in real time. We find no direct evidence for a short-lived, chemical shift-resolved amorphous solid intermediate. However, changes in the line width and line center of the malonic acid methylene resonance, in the course of the reaction, provide subtle clues to the mode of mass transfer that underlies cocrystal formation.

  11. Solid State Electrolytes Prepared from PEO (360) Silanated Silica

    Science.gov (United States)

    Maitra, P.; Ding, J.; Liu, B.; Wunder, S. L.; Lin, H.-P.; Chua, D.; Salomon, M.

    2002-01-01

    All solid state composite electrolytes were prepared using fumed silica (SiO2) silanated with an oligomeric polyethylene oxide (PEO) silane containing 6-9 ethylene oxide repeat units, a PEO matrix and LiClO4 (8/1 O/Li). The PEO-silane covalently attached to the silica was amorphous, with a T(sub g) that increased from -90 C to -53 C after attachment. The conductivity of films prepared using the PEO-silanated silica increased to approx. 6 x 10(exp -5) S/cm at RT compared with approx. 1 x 10(-5) S/cm for films prepared with unsilanated SiO2.

  12. Solid-state pulse forming module with adjustable pulse duration

    Science.gov (United States)

    Wang, Langning; Liu, Jinliang; Qiu, Yongfeng; Chu, Xu; Zhang, Qingmeng

    2017-03-01

    A new solid-state pulse forming module is described in this paper. The pulse forming module is fabricated on a glass ceramic substrate, with the dimension of 250 mm × 95 mm × 4 mm. By changing the copper strips used in the pulse forming modules, the pulse duration of the obtained pulsed can range from 80 ns to 140 ns. Both the simulation and tests show that the pulse forming module has a good pulse forming ability. Under a high voltage in microsecond's time, the new pulse forming modules can hold off a voltage up to 25 kV higher than that of the previous study. In addition, future optimization for the field enhancement near the thin electrode edge has been proposed and simulated.

  13. Facile Solid-State Synthesis Route to Metal Nitride Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Yinxiao DU; Ming LEI; Hui YANG

    2008-01-01

    By a facile and efficient solid-state reaction route using an organic reagent cyanamide (CN2H2) as a precursor with another one being metal oxides, we successfully synthesized seven technologically important metal nitrides including cubic VN, CrN, NbN, hexagonal GaN, AIN, BN, and WN at moderate temperatures. The experimental results show that cyanamide (CN2H2) is a powerfully reducing and nitridizing reagent and the metal oxides are completely converted into the corresponding nitride nanoparticles at lower temperatures than that reported in the conventional methods. It is found that CN2H2 can exhibit some interesting condensation processes, and the final products, highly active carbon nitride species, play a crucial role in the reducing and nitridizing processes.

  14. PRODUCTION OF AN EXTRACELLULAR CELLOBIASE IN SOLID STATE FERMENTATION

    Directory of Open Access Journals (Sweden)

    Ruchi Agrawal

    2013-02-01

    Full Text Available The bioethanol production from lignocellulosic biomass has attracted wide interest globally in last decade. One of the main reasons for the high cost of bioethanol production from lignocellulosic biomass is the expensive enzymes involved in enzymatic hydrolysis of cellulose (cellulase. The utilization of agro-industrial waste as a potential substrate for producing enzymes may serve a dual purpose of reducing the environmental pollution along with producing a high value commercial product. Twelve different agro-industrial wastes were evaluated for extracellular cellobiose or β-glucosidase production by a mutant of Bacillus subtilis on solid state fermentations (SSF. The Citrus sinensis peel waste was found to be the most suitable substrate with highest BGL titre (35 U/gds. Optimum incubation time, inoculum size, moisture content and volume of buffer for enzyme extraction were 72 h, 40 % v/w, 10 mL and 20 mL respectively.

  15. Solid-state, resistive hydrogen sensors for safety monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hoffheins, B.S.; Lauf, R.J.; Fleming, P.H. [Oak Ridge National Lab., TN (United States); Nave, S.E. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-07-01

    Solid-state, resistive hydrogen sensors have been designed and fabricated at Oak Ridge National Laboratory. Sensor response has been successfully tested with H{sub 2} gas in argon and air under ambient temperature and pressure, while immersed in transformer oil at temperatures between 25{degrees}C and 90{degrees}C, and under site-specific conditions at Westinghouse Savannah River Co. Current versions of the sensors (25 {times} 25 {times} 0.6 mm) are small enough to be incorporated into hand-held leak detectors or distributed sensor systems for safety monitoring throughout a large area. Another foreseeable application is in electrical power transformers where the buildup of hydrogen gas accompanies oil breakdown. The use of these sensors to monitor transformer oil changes could help predict and prevent catastrophic failure.

  16. A solid state laser development program for remote atmospheric sensors

    Science.gov (United States)

    Newcomb, A. L.

    1987-01-01

    The current status of NASA Langley efforts to develop solid-state lasers for use in the Lidar Atmospheric Sounder and Altimeter (LASA) of the Space Station Earth Observing System is surveyed. The types of observations to be performed with LASA are listed, and the parameters of presently available lasers are compared with the LASA baseline goals: 2 kW output power; 500 kg weight; tunability to 727, 760, and 943 nm to within 500 fm; high spectral purity; efficiency greater than 3 percent; energy about 1 J/pulse, pulse length less than 100 nsec, and lifetime greater than 108 shots. The use of sensitized flashlamp-pumped laser materials or diode-laser pumping to improve performance is discussed, and particular attention is given to materials research on Ti:sapphire lasers, studies of higher-efficiency detectors, and the LASE and LITE airborne lidar and DIAL experiments.

  17. Multiport solid-state imager characterization at variable pixel rates

    Science.gov (United States)

    Yates, George J.; Albright, Kevin L.; Turko, Bojan T.

    1993-10-01

    The imaging performance of an 8-port Full Frame Transfer Charge Coupled Device (FFT CCD) as a function of several parameters including pixel clock rate is presented. The device, model CCD-13, manufactured by English Electric Valve (EEV), is a 512 X 512 pixel array designed with four individual programmable bidirectional serial registers and eight output amplifiers permitting simultaneous readout of eight segments (128 horizontal X 256 vertical pixels) of the array. The imager was evaluated in Los Alamos National Laboratory's High-Speed Solid-State Imager Test Station at true pixel rates as high as 50 MHz for effective imager pixel rates approaching 400 MHz from multiporting. Key response characteristics measured include absolute responsivity, Charge-Transfer-Efficiency (CTE), dynamic range, resolution, signal-to-noise ratio, and electronic and optical crosstalk among the eight video channels. Preliminary test results and data obtained from the CCD-13 are presented and the versatility/capabilities of the test station are reviewed.

  18. Solid-state electro-cumulation effect numerical simulation

    CERN Document Server

    Grishin, V G

    2001-01-01

    It is an attempt to simulate as really as possible a crystal's interatomic interaction under conditions of "Solid-state electro-cumulation (super-polarization) effect". Some theoretical and experimental reasons to believe that within solid substances an interparticles interaction could concentrate from the surface to a centre were given formerly. Now, numerical results show the conditions that could make the cumulation more effective. Another keywords: ion, current, solid, symmetry, cumulation, polarization, depolarization, ionic conductor,superionic conductor, ice, crystal, strain, V-center, V-centre, doped crystal, interstitial impurity, intrinsic color center, high pressure technology, Bridgman, anvil, experiment, crowdion, dielectric, proton, layer, defect, lattice, dynamics, electromigration, mobility, muon catalysis, concentration, doping, dopant, conductivity, pycnonuclear reaction, permittivity, dielectric constant, point defects, interstitials, polarizability, imperfection, defect centers, glass, epi...

  19. All-Solid-State Four-Color Laser

    Energy Technology Data Exchange (ETDEWEB)

    Gosnell, T.R.; Xie, P.

    1999-06-03

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The goal of this project is to develop a solid state laser that produces visible output wavelengths, including the commercially compelling blue wavelength. The basic architecture of the device consists of a single-mode optical fiber doped with Pr{sup 3+} and Yb{sup 3+} ions. When the ions are simultaneously pumped with a near infrared laser (860 nm), complex energy transfer processes involving multiple excited ions leads to population of a high-lying energy level of Pr{sup 3+}. Results include the demonstration of the existence of a photon avalanche mechanism responsible for creation of the population inversion and demonstration of the highest optical-to-optical efficiency of any up-conversion laser reported to date. A US Patent was awarded for this invention in 1998.

  20. Extreme solid state refrigeration using nanostructured Bi-Te alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Lima Sharma, Ana L. (San Jose State University, San Jose, CA); Spataru, Dan Catalin; Medlin, Douglas L.; Sharma, Peter Anand; Morales, Alfredo Martin

    2009-09-01

    Materials are desperately needed for cryogenic solid state refrigeration. We have investigated nanostructured Bi-Te alloys for their potential use in Ettingshausen refrigeration to liquid nitrogen temperatures. These alloys form alternating layers of Bi{sub 2} and Bi{sub 2}Te{sub 3} blocks in equilibrium. The composition Bi{sub 4}Te{sub 3} was identified as having the greatest potential for having a high Ettingshausen figure of merit. Both single crystal and polycrystalline forms of this material were synthesized. After evaluating the Ettingshausen figure of merit for a large, high quality polycrystal, we simulated the limits of practical refrigeration in this material from 200 to 77 K using a simple device model. The band structure was also computed and compared to experiments. We discuss the crystal growth, transport physics, and practical refrigeration potential of Bi-Te alloys.

  1. Highly efficient solid state catalysis by reconstructed (001) Ceria surface

    Energy Technology Data Exchange (ETDEWEB)

    Solovyov, VF; Ozaki, T; Atrei, A; Wu, LJ; Al-Mahboob, A; Sadowski, JT; Tong, X; Nykypanchuk, D; Li, Q

    2014-04-10

    Substrate engineering is a key factor in the synthesis of new complex materials. The substrate surface has to be conditioned in order to minimize the energy threshold for the formation of the desired phase or to enhance the catalytic activity of the substrate. The mechanism of the substrate activity, especially of technologically relevant oxide surfaces, is poorly understood. Here we design and synthesize several distinct and stable CeO2 (001) surface reconstructions which are used to grow epitaxial films of the high-temperature superconductor YBa2Cu3O7. The film grown on the substrate having the longest, fourfold period, reconstruction exhibits a twofold increase in performance over surfaces with shorter period reconstructions. This is explained by the crossover between the nucleation site dimensions and the period of the surface reconstruction. This result opens a new avenue for catalysis mediated solid state synthesis.

  2. Solid State Synthesis and Crystal Structure of K3SI

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhen-Qian; LIU Xi; CHEN Wen-Tong; LI Yan; WU A-Qing; ZENG Hui-Yi; GUO Guo-Cong; HUANG Jin-Shun

    2006-01-01

    A new ternary alkali metal chalcogenide halide, K3SI, has been synthesized by solid state reaction method and structurally characterized by X-ray crystallography. The crystal belongs to hexagonal, space group P63cm with a = 11.699(1), c = 5.8279(9) (A), Mr = 276.26, V = 690.8(1)(A)3, Z = 6, Dc = 3.985 g/cm3, F(000) = 756, μ= 9.913 mm-1, S = 1.004, R = 0.0719 and wR = 0.2204. The title compound is the first example containing S anion in the ternary alkali metal chalcogenide halides family M3QX (M = alkali metal, Q = chalcogenide, X = halide), which crystallizes in the hexagonal anti-perovskite structure type.

  3. Diallyl phthalate (DAP) solid state nuclear track detector

    CERN Document Server

    Koguchi, Y; Ashida, T; Tsuruta, T

    2003-01-01

    Diallyl phthalate (DAP) solid state nuclear track detector is suitable for detecting heavy ions such as fission fragments, because it is insensitive to right ions such as alpha particles and protons. Detection efficiency of fission tracks is about 100%, which is unaffected under conditions below 240degC lasting for 1h or below 1 MGy of gamma-ray irradiation. Optimum etching condition for the DAP detector for detection of fission fragments is 2-4 h using 30% KOH aqueous solution at 90degC or 8-15 min using PEW-65 solution at 60degC. DAP detector is useful in detecting induced fission tracks for dating of geology or measuring intense heavy ions induced by ultra laser plasma. The fabrication of copolymers of DAP and CR-39 makes it possible to control the discrimination level for detection threshold of heavy ions. (author)

  4. The 20 GHz spacecraft FET solid state transmitter

    Science.gov (United States)

    1983-01-01

    The engineering development of a solid state transmitter amplifier operating in the 20 GHz frequency band using GaAs field effect transistors (FETs) was detailed. The major efforts include GaAs FET device development, single-ended amplifier stage, balanced amplifier stage, cascaded stage and radial combiner designs, and amplifier integration and test. A multistage GaAs FET amplifier capable of 8.2 W CW output over the 17.9 to 19.1 GHz frequency band was developed. The GaAs FET devices developed represent state of the art FET power device technology. Further device improvements are necessary to increase the bandwidth to 2.5 GHz, improve dc-to-RF efficiency, and increase power capability at the device level. Higher power devices will simplify the amplifier combining scheme, reducing the size and weight of the overall amplifier.

  5. Zirconia-based solid state chemical gas sensors

    CERN Document Server

    Zhuiykov, S

    2000-01-01

    This paper presents an overview of chemical gas sensors, based on solid state technology, that are sensitive to environmental gases, such as O sub 2 , SO sub x , NO sub x , CO sub 2 and hydrocarbons. The paper is focussed on performance of electrochemical gas sensors that are based on zirconia as a solid electrolyte. The paper considers sensor structures and selection of electrode materials. Impact of interfaces on sensor performance is discussed. This paper also provides a brief overview of electrochemical properties of zirconia and their effect on sensor performance. Impact of auxiliary materials on sensors performance characteristics, such as sensitivity, selectivity, response time and recovery time, is also discussed. Dual gas sensors that can be applied for simultaneous monitoring of the concentration of both oxygen and other gas phase components, are briefly considered

  6. DNA translocations through solid-state plasmonic nanopores.

    Science.gov (United States)

    Nicoli, Francesca; Verschueren, Daniel; Klein, Misha; Dekker, Cees; Jonsson, Magnus P

    2014-12-10

    Nanopores enable label-free detection and analysis of single biomolecules. Here, we investigate DNA translocations through a novel type of plasmonic nanopore based on a gold bowtie nanoantenna with a solid-state nanopore at the plasmonic hot spot. Plasmonic excitation of the nanopore is found to influence both the sensor signal (nanopore ionic conductance blockade during DNA translocation) and the process that captures DNA into the nanopore, without affecting the duration time of the translocations. Most striking is a strong plasmon-induced enhancement of the rate of DNA translocation events in lithium chloride (LiCl, already 10-fold enhancement at a few mW of laser power). This provides a means to utilize the excellent spatiotemporal resolution of DNA interrogations with nanopores in LiCl buffers, which is known to suffer from low event rates. We propose a mechanism based on plasmon-induced local heating and thermophoresis as explanation of our observations.

  7. Solid State Energy Conversion Alliance 2nd Annual Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2001-03-30

    The National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) are pleased to provide the proceedings of the second annual Solid State Energy Conversion Alliance (SECA) Workshop held on March 29-30, 2001 in Arlington. The package includes the presentations made during the workshop, a list of participants, and the results of the breakout sessions. Those sessions covered stack materials and processes, power electronics, balance of plant and thermal integration, fuel processing technologies, and stack and system performance modeling. The breakout sessions have been reported as accurately as possible; however, due to the recording and transcription process errors may have occurred. If you note any significant omissions or wish to provide additional information, we welcome your comments and hope that all stakeholder groups will use the enclosed information in their planning endeavors.

  8. Solid State Division progress report, September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed. (WHK)

  9. Co-operativity in a nanocrystalline solid-state transition.

    Science.gov (United States)

    White, Sarah L; Smith, Jeremy G; Behl, Mayank; Jain, Prashant K

    2013-01-01

    Co-operativity is a remarkable phenomenon mostly seen in biology, where initial reaction events significantly alter the propensity of subsequent reaction events, giving rise to a nonlinear tightly regulated synergistic response. Here we have found unique evidence of atomic level co-operativity in an inorganic material. A thousand-atom nanocrystal (NC) of the inorganic solid cadmium selenide exhibits strong positive co-operativity in its reaction with copper ions. A NC doped with a few copper impurities becomes highly prone to be doped even further, driving an abrupt transition of the entire NC to the copper selenide phase, as manifested by a strongly sigmoidal response in optical spectroscopy and electron diffraction measurements. The examples presented here suggest that cooperative phenomena may have an important role in the solid state, especially in the nucleation of new chemical phases, crystal growth, and other materials' transformations.

  10. Progress of solid-state quantum computers at NRIM

    Science.gov (United States)

    Kido, G.; Shinagawa, H.; Terai, K.; Hashi, K.; Goto, A.; Yakabe, T.; Takamasu, T.; Uji, S.; Shimizu, T.; Kitazawa, H.

    2001-04-01

    In the last five years, we have investigated quantum phenomena of low-dimensional materials and strongly correlated electron systems at high-magnetic fields under the Center of Excellence Development Program (COE project) at the National Research Institute for Metal. The second stage towards the realization of the solid-state quantum devices and measurement of the quantum properties began in April of this year. NMR spectra have been studied in CeP and various lithium fluoride crystals in anticipation of the crystal lattice quantum computer. The magneto-transport effect on tiny aluminum devices fabricated on semiconductors has been studied, and negative magnetoresistance has clearly been observed. An SPM which can be operated at various temperatures in the presence of high-magnetic fields has been developed to construct a magnetic resonance force microscope. The magnetic field effect on the magnetic recording pattern of an HDD was clearly measured up to 7 T.

  11. High brightness diode-pumped organic solid-state laser

    CERN Document Server

    Zhao, Zhuang; Nafa, Malik; Chénais, Sébastien; Forget, Sébastien

    2015-01-01

    High-power, diffraction-limited organic solid-state laser operation has been achieved in a vertical external cavity surface-emitting organic laser (VECSOL), pumped by a low-cost compact blue laser diode. The diode-pumped VECSOLs were demonstrated with various dyes in a polymer matrix, leading to laser emissions from 540 nm to 660 nm. Optimization of both the pump pulse duration and output coupling leads to a pump slope efficiency of 11% for a DCM based VECSOLs. We report output pulse energy up to 280 nJ with 100 ns long pump pulses, leading to a peak power of 3.5 W in a circularly symmetric, diffraction-limited beam.

  12. High brightness diode-pumped organic solid-state laser

    Science.gov (United States)

    Zhao, Zhuang; Mhibik, Oussama; Nafa, Malik; Chénais, Sébastien; Forget, Sébastien

    2015-02-01

    High-power, diffraction-limited organic solid-state laser operation has been achieved in a vertical external cavity surface-emitting organic laser (VECSOL), pumped by a low-cost compact blue laser diode. The diode-pumped VECSOLs were demonstrated with various dyes in a polymer matrix, leading to laser emissions from 540 nm to 660 nm. Optimization of both the pump pulse duration and output coupling leads to a pump slope efficiency of 11% for a DCM based VECSOLs. We report output pulse energy up to 280 nJ with 100 ns long pump pulses, leading to a peak power of 3.5 W in a circularly symmetric, diffraction-limited beam.

  13. Fatty acids polymorphism and solid-state miscibility

    Energy Technology Data Exchange (ETDEWEB)

    Gbabode, Gabin [Centre de Physique Moleculaire Optique et Hertzienne, Universite Bordeaux I, 33405 Talence (France)], E-mail: ggbabode@ulb.ac.be; Negrier, Philippe; Mondieig, Denise [Centre de Physique Moleculaire Optique et Hertzienne, Universite Bordeaux I, 33405 Talence (France); Moreno, Evelyn; Calvet, Teresa; Cuevas-Diarte, Miquel Angel [Departament de Cristallografia, Mineralogia i Diposits Minerals, Universitat de Barcelona, 08028 Barcelona (Spain)

    2009-02-05

    The pentadecanoic acid-hexadecanoic acid (C{sub 15}H{sub 29}OOH-C{sub 16}H{sub 31}OOH) binary system is dealt with in this article. The polymorphism of 20 mixed materials has been investigated combining calorimetric measurements, isothermal and versus temperature X-ray powder diffraction and also FTIR spectroscopy. In particular, the cell parameters of the stable forms, temperatures and heats of phase changes for the two constituents and a proposal of phase diagram are given in this article. Three solid forms are created by mixing in addition with the four solid forms of the pure components. All these solid forms are stabilized on narrow domains of composition, implying a reduced solid-state miscibility of the pentadecanoic and hexadecanoic acids.

  14. Direct Solid-State Conversion of Recyclable Metals and Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Manchiraju

    2012-03-27

    Friction Stir Extrusion (FSE) is a novel energy-efficient solid-state material synthesis and recycling technology capable of producing large quantity of bulk nano-engineered materials with tailored, mechanical, and physical properties. The novelty of FSE is that it utilizes the frictional heating and extensive plastic deformation inherent to the process to stir, consolidate, mechanically alloy, and convert the powders, chips, and other recyclable feedstock materials directly into useable product forms of highly engineered materials in a single step (see Figure 1). Fundamentally, FSE shares the same deformation and metallurgical bonding principles as in the revolutionary friction stir welding process. Being a solid-state process, FSE eliminates the energy intensive melting and solidification steps, which are necessary in the conventional metal synthesis processes. Therefore, FSE is highly energy-efficient, practically zero emissions, and economically competitive. It represents a potentially transformational and pervasive sustainable manufacturing technology for metal recycling and synthesis. The goal of this project was to develop the technological basis and demonstrate the commercial viability of FSE technology to produce the next generation highly functional electric cables for electricity delivery infrastructure (a multi-billion dollar market). Specific focus of this project was to (1) establish the process and material parameters to synthesize novel alloys such as nano-engineered materials with enhanced mechanical, physical, and/or functional properties through the unique mechanical alloying capability of FSE, (2) verifying the expected major energy, environmental, and economic benefits of FSE technology for both the early stage 'showcase' electric cable market and the anticipated pervasive future multi-market applications across several industry sectors and material systems for metal recycling and sustainable manufacturing.

  15. Elastic and inelastic scattering of {sup 14}N ions by {sup 7}Li at 80 MeV (c.m. 26.7 MeV)

    Energy Technology Data Exchange (ETDEWEB)

    Rudchik, A.T.; Herashchenko, O.V.; Rudchik, A.A.; Mezhevych, S.Yu.; Mokhnach, A.V.; Pirnak, V.M.; Ponkratenko, O.A.; Ilyin, A.P.; Uleshchenko, V.V. [Institute for Nuclear Research, Kyiv (Ukraine); Kemper, K.W. [Florida State University, Physics Department, Tallahassee, Florida (United States); Rusek, K. [National Institute for Nuclear Research, Warsaw (Poland); Heavy Ion Laboratory of Warsaw University, Warsaw (Poland); Koshchy, E.I. [Kharkiv National University, Kharkiv (Ukraine); Kliczewski, S.; Siudak, R.; Szczurek, A. [H. Niewodniczanski Institute of Nuclear Physics, Cracow (Poland); Plujko, V.A. [Taras Shevchenko Kyiv National University, Kyiv (Ukraine); Choinski, J. [Heavy Ion Laboratory of Warsaw University, Warsaw (Poland); Stolarz, A. [National Institute for Nuclear Research, Warsaw (Poland)

    2014-10-15

    New angular distribution data for {sup 7}Li + {sup 14}N elastic and inelastic scattering at the energy E{sub lab} ({sup 14}N) = 80 MeV (c.m. 26.7MeV) are presented. The data were analyzed within the optical model and the coupled-reaction-channels method using a channels-coupling scheme that included the {sup 7}Li and {sup 14}N inelastic scattering channels, spin reorientations of {sup 7}Li and {sup 14}N as well as most important transfer reactions. The low-energy excited states of {sup 7}Li and {sup 14}N were assumed to be collective in nature. The {sup 7}Li + {sup 14}N potential parameters as well as deformation parameters of {sup 7}Li and {sup 14}N were deduced. The {sup 7}Li + {sup 14}N potential and the data were compared with those of {sup 6}Li + {sup 14}N to observe isotopic differences. The enhanced large-angle elastic and inelastic scattering data are shown to have a large contribution from the ground-state reorientation of {sup 7}Li. (orig.)

  16. Systematics of the breakup probability function for {sup 6}Li and {sup 7}Li projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Capurro, O.A., E-mail: capurro@tandar.cnea.gov.ar [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); Pacheco, A.J.; Arazi, A. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Carnelli, P.F.F. [CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, 25 de Mayo y Francia, B1650BWA San Martín, Buenos Aires (Argentina); Fernández Niello, J.O. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, 25 de Mayo y Francia, B1650BWA San Martín, Buenos Aires (Argentina); and others

    2016-01-15

    Experimental non-capture breakup cross sections can be used to determine the probability of projectile and ejectile fragmentation in nuclear reactions involving weakly bound nuclei. Recently, the probability of both type of dissociations has been analyzed in nuclear reactions involving {sup 9}Be projectiles onto various heavy targets at sub-barrier energies. In the present work we extend this kind of systematic analysis to the case of {sup 6}Li and {sup 7}Li projectiles with the purpose of investigating general features of projectile-like breakup probabilities for reactions induced by stable weakly bound nuclei. For that purpose we have obtained the probabilities of projectile and ejectile breakup for a large number of systems, starting from a compilation of the corresponding reported non-capture breakup cross sections. We parametrize the results in accordance with the previous studies for the case of beryllium projectiles, and we discuss their systematic behavior as a function of the projectile, the target mass and the reaction Q-value.

  17. Elastic scattering and fusion cross-sections in 7Li + 27Al reaction

    Indian Academy of Sciences (India)

    D Patel; S Santra; S Mukherjee; B K Nayak; P K Rath; V V Parkar; R K Choudhury

    2013-10-01

    With an aim to understand the effects of breakup and transfer channels on elastic scattering and fusion cross-sections in the 7Li + 27Al reaction, simultaneous measurement of elastic scattering angular distributions and fusion cross-sections have been carried out at various energies (lab = 8.0–16.0 MeV) around the Coulomb barrier. Optical model (OM) analysis of the elastic scattering data does not show any threshold anomaly or breakup threshold anomaly behaviour in the energy dependence of the real and imaginary parts of the OM potential. Fusion cross-section at each bombarding energy is extracted from the measured -particle evaporation energy spectra at backward angles by comparing with the statistical model prediction. Results on fusion cross-sections from the present measurements along with data from the literature have been compared with the coupled-channels predictions. Detailed coupled-channels calculations have been carried out to study the effect of coupling of breakup, inelastic and transfer, channels on elastic scattering and fusion. The effect of 1-stripping transfer coupling was found to be significant compared to that of the projectile breakup couplings in the present system.

  18. Proton detection for signal enhancement in solid-state NMR experiments on mobile species in membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Meaghan E.; Ritz, Emily [University of Guelph, Department of Physics (Canada); Ahmed, Mumdooh A. M. [Suez University, The Department of Physics, Faculty of Science (Egypt); Bamm, Vladimir V.; Harauz, George [University of Guelph, Biophysics Interdepartmental Group (Canada); Brown, Leonid S.; Ladizhansky, Vladimir, E-mail: vladizha@uoguelph.ca [University of Guelph, Department of Physics (Canada)

    2015-12-15

    Direct proton detection is becoming an increasingly popular method for enhancing sensitivity in solid-state nuclear magnetic resonance spectroscopy. Generally, these experiments require extensive deuteration of the protein, fast magic angle spinning (MAS), or a combination of both. Here, we implement direct proton detection to selectively observe the mobile entities in fully-protonated membrane proteins at moderate MAS frequencies. We demonstrate this method on two proteins that exhibit different motional regimes. Myelin basic protein is an intrinsically-disordered, peripherally membrane-associated protein that is highly flexible, whereas Anabaena sensory rhodopsin is composed of seven rigid transmembrane α-helices connected by mobile loop regions. In both cases, we observe narrow proton linewidths and, on average, a 10× increase in sensitivity in 2D insensitive nuclear enhancement of polarization transfer-based HSQC experiments when proton detection is compared to carbon detection. We further show that our proton-detected experiments can be easily extended to three dimensions and used to build complete amino acid systems, including sidechain protons, and obtain inter-residue correlations. Additionally, we detect signals which do not correspond to amino acids, but rather to lipids and/or carbohydrates which interact strongly with membrane proteins.

  19. Intermolecular alignment in Y145Stop human prion protein amyloid fibrils probed by solid-state NMR spectroscopy.

    Science.gov (United States)

    Helmus, Jonathan J; Surewicz, Krystyna; Apostol, Marcin I; Surewicz, Witold K; Jaroniec, Christopher P

    2011-09-07

    The Y145Stop mutant of human prion protein, huPrP23-144, has been linked to PrP cerebral amyloid angiopathy, an inherited amyloid disease, and also serves as a valuable in vitro model for investigating the molecular basis of amyloid strains. Prior studies of huPrP23-144 amyloid by magic-angle-spinning (MAS) solid-state NMR spectroscopy revealed a compact β-rich amyloid core region near the C-terminus and an unstructured N-terminal domain. Here, with the focus on understanding the higher-order architecture of huPrP23-144 fibrils, we probed the intermolecular alignment of β-strands within the amyloid core using MAS NMR techniques and fibrils formed from equimolar mixtures of (15)N-labeled protein and (13)C-huPrP23-144 prepared with [1,3-(13)C(2)] or [2-(13)C]glycerol. Numerous intermolecular correlations involving backbone atoms observed in 2D (15)N-(13)C spectra unequivocally suggest an overall parallel in-register alignment of the β-sheet core. Additional experiments that report on intermolecular (15)N-(13)CO and (15)N-(13)Cα dipolar couplings yielded an estimated strand spacing that is within ∼10% of the distances of 4.7-4.8 Å typical for parallel β-sheets.

  20. Solid state reactions of nitrogenous heterocyclic compounds(Ⅰ)——Solid state reactions of 3-methyl-l-phenyl-5-pyrazolone with carbonyl compounds

    Institute of Scientific and Technical Information of China (English)

    李晓陆; 杜大明; 王永梅; 孟继本

    1997-01-01

    The solid state reaction of 3-methyl-1-phenyl-5-pyrazolone (MPP) with aromatic aldehydes and ke-tones benzil derivatives and imides,and the solid state Michael addition reaction of MPP with 4-arylidene-3-methyl-1-phenyl-5-pyrnzolone 2 were investigated.Some new solid state reactions between the reactants were found,from which a series of new compounds were obtained The structures of the products were identified by IR,1H NMR,MS,elemental analyses and also by X-ray crystal analysis,and the reaction mechanism of MPP with aromatic aldehydes and ketones was proposed

  1. The Surface of Nanoparticle Silicon as Studied by Solid-State NMR

    Directory of Open Access Journals (Sweden)

    Gary E. Maciel

    2012-12-01

    Full Text Available The surface structure and adjacent interior of commercially available silicon nanopowder (np-Si was studied using multinuclear, solid-state NMR spectroscopy. The results are consistent with an overall picture in which the bulk of the np-Si interior consists of highly ordered (“crystalline” silicon atoms, each bound tetrahedrally to four other silicon atoms. From a combination of 1H, 29Si and 2H magic-angle-spinning (MAS NMR results and quantum mechanical 29Si chemical shift calculations, silicon atoms on the surface of “as-received” np-Si were found to exist in a variety of chemical structures, with apparent populations in the order (a (Si–O–3Si–H > (b (Si–O–3SiOH > (c (HO–nSi(Sim(–OSi4−m−n ≈ (d (Si–O–2Si(HOH > (e (Si–O–2Si(–OH2 > (f (Si–O–4Si, where Si stands for a surface silicon atom and Si represents another silicon atom that is attached to Si by either a Si–Si bond or a Si–O–Si linkage. The relative populations of each of these structures can be modified by chemical treatment, including with O2 gas at elevated temperature. A deliberately oxidized sample displays an increased population of (Si–O–3Si–H, as well as (Si–O–3SiOH sites. Considerable heterogeneity of some surface structures was observed. A combination of 1H and 2H MAS experiments provide evidence for a substantial population of silanol (Si–OH moieties, some of which are not readily H-exchangeable, along with the dominant Si–H sites, on the surface of “as-received” np-Si; the silanol moieties are enhanced by deliberate oxidation. An extension of the DEPTH background suppression method is also demonstrated that permits measurement of the T2 relaxation parameter simultaneously with background suppression.

  2. High-Performance Solid-State and Fiber Lasers Controlled by Volume Bragg Gratings

    Science.gov (United States)

    2013-09-01

    poral shaping of laser pulses, integration of different laser components in the same material and fabrica - tion of monolithic solid state lasers...shaping of laser pulses, integration of different laser components in the same material and fabrica - tion of monolithic solid state lasers; and...same material and fabrica - tion of monolithic solid state lasers; and passive and active coherent combining along with high density spectral

  3. Evaluation of Bidirectional Silicon Carbide Solid-State Circuit Breaker v3.2

    Science.gov (United States)

    2013-07-01

    Evaluation of Bidirectional Silicon Carbide Solid-State Circuit Breaker v3.2 by D. Urciuoli ARL-MR-0845 July 2013...Evaluation of Bidirectional Silicon Carbide Solid-State Circuit Breaker v3.2 D. Urciuoli Sensors and Electron Devices Directorate, ARL...2012 to 20 March 2013 4. TITLE AND SUBTITLE Evaluation of Bidirectional Silicon Carbide Solid-State Circuit Breaker v3.2 5a. CONTRACT NUMBER 5b

  4. Calcination products of gibbsite studied by X-ray diffraction, XPS and solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Malki, A. [Laboratoire des structures, propriétés et interactions inter atomiques (LASPI2A), Faculté des sciences et technologies, Université Abbes Laghrour, Khenchela 40000 (Algeria); Mekhalif, Z.; Detriche, S.; Fonder, G. [Laboratoire de Chimie et Electrochimie des Surfaces, Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61, B-5000 Namur (Belgium); Boumaza, A., E-mail: charif_boumaza@yahoo.com [Laboratoire des structures, propriétés et interactions inter atomiques (LASPI2A), Faculté des sciences et technologies, Université Abbes Laghrour, Khenchela 40000 (Algeria); Djelloul, A. [Laboratoire des structures, propriétés et interactions inter atomiques (LASPI2A), Faculté des sciences et technologies, Université Abbes Laghrour, Khenchela 40000 (Algeria)

    2014-07-01

    The changes caused by heat treatment of gibbsite powder at 300–1473 K were studied using the X-ray diffraction (XRD), X-ray photoemission (XPS) spectra and {sup 27}Al magic angle spinning nuclear magnetic resonance spectroscopy ({sup 27}Al MAS NMR). XRD analysis indicates that the transformation sequence involves the formation of κ-Al{sub 2}O{sub 3} as an intermediate phase between χ- and α-Al{sub 2}O{sub 3}. The crystallite size of χ-Al{sub 2}O{sub 3} is as small as 10 nm. XPS analysis indicates that the ratio of aluminium atoms to oxygen atoms in χ-Al{sub 2}O{sub 3} and κ-Al{sub 2}O{sub 3} increases, whereas the expected ratio is observed in α-Al{sub 2}O{sub 3}. The percentage of AlO{sub 4} units in the transition aluminas follows the same behaviour as the ratio of Al/O. - Graphical abstract: The percentage of AlO{sub 4} units in transition aluminas follows the same behaviour as the ratio of Al/O. - Highlights: • Calcination products of gibbsite studied by XRD, XPS and solid-state NMR. • The crystallite size of χ-Al{sub 2}O{sub 3} is as small as 10 nm. • The Al/O atomic ratio determined by XPS is larger than 2/3 in χ-Al{sub 2}O{sub 3} and κ-Al{sub 2}O{sub 3}. • The percentage of AlO{sub 4} in the aluminas follows the same behaviour as the Al/O atomic ratio.

  5. Solid-state characterization of amorphous and mesomorphous calcium ketoprofen.

    Science.gov (United States)

    Atassi, Faraj; Mao, Chen; Masadeh, Ahmad S; Byrn, Stephen R

    2010-09-01

    This article is concerned with exploring the application of pair distribution in pharmaceutical analysis. The solid-state characterization of amorphous and mesomorphous (liquid crystalline) calcium ketoprofen is used as an example and the structures of the amorphous and mesomorphous phases of calcium ketoprofen are compared to that of the crystalline phase. An approach to calculating the optimal experimental parameters in pair distribution function (PDF) analysis as well as a suggested method to help assign the many different peaks in a PDF diagram of an organic material are discussed. The studied salts were analyzed by X-ray powder diffraction (XRPD), single crystal X-ray diffraction, Raman spectroscopy, polarized light microscopy (PLM), solid-state NMR (SSNMR), variable-temperature SSNMR, and PDF. Raman and SSNMR were useful techniques in identifying and differentiating the crystalline phase from the other two phases but failed, alone, to differentiate between the amorphous and mesomorphous phases. The absence of significant changes in chemical shifts in SSNMR and peak shifts in Raman spectra suggested that the differences in the molecular environment of the major chemical groups in the amorphous and mesomorphous phases were minimal. However, the broadening of the Raman and SSNMR peaks in the noncrystalline phases indicated an increase in the disorder in these systems. PDF analysis of the disordered phases revealed that upon dehydration or quench cooling where the system transformed from crystalline to become disordered, the calcium-calcium and calcium-oxygen (oxygen of the carboxylic acid) distances remained intact meanwhile the rest of the molecule became disordered. The preliminary results from variable-temperature SSNMR showed two different T(1) relaxation time profiles for the amorphous and mesomorphous phases. This was consistent with the hypothesis that part of the molecule remained ordered while the rest of the molecule became disordered and the amorphous

  6. Laser (cooling) refrigeration in erbium based solid state materials

    Science.gov (United States)

    Lynch, Jonathan W.

    The objective of this study was to investigate the potential of erbium based solid state materials for laser refrigeration in bulk material. A great deal of work in the field has been focused on the use of ytterbium based ZBLAN glass. Some experiments have also reported cooling in thulium based solid state materials but with considerably less success. We proposed that erbium had many attractive features compared to ytterbium and therefore should be tried for cooling. The low lying energy level structure of erbium provides energy levels that could bring obtainable temperatures two orders of magnitude lower. Erbium transitions of interest for cooling fall in the near IR region (0.87 microns and 1.5 microns). Lasers for one of these transitions, in the 1.5 micron region, are well developed for communication and are in the eye-safe and water and atmosphere transparent region. Theoretical calculations are also presented so as to identify energy levels of the eleven 4f electrons in Er3+ in Cs2NaYCl 6:Er3+ and the transitions between them. The strengths of the optical transitions between them have been calculated. Knowledge of such energy levels and the strength of the laser induced transitions between them is crucial for understanding the refrigeration mechanisms and different energy transfer pathways following the laser irradiation. The crystal host for erbium was a hexa-chloro-elpasolite crystal, Cs 2NaYCl6:Er3+ with an 80% (stoichiometric) concentration of erbium. The best cooling results were obtained using the 0.87 micron transition. We have demonstrated bulk cooling in this crystal with a temperature difference of ~6.2 K below the surrounding temperature. The temperatures of the crystal and its immediate surrounding environment were measured using differential thermometry. Refrigeration experiments using the 1.5 micron transition were performed and the results are presented. The demonstrated temperature difference was orders of magnitude smaller. Only a temperature

  7. Solid state carbon nanotube device for controllable trion electroluminescence emission

    Science.gov (United States)

    Liang, Shuang; Ma, Ze; Wei, Nan; Liu, Huaping; Wang, Sheng; Peng, Lian-Mao

    2016-03-01

    Semiconducting carbon nanotubes (CNTs) have a direct chirality-dependent bandgap and reduced dimensionality-related quantum confinement effects, which are closely related to the performance of optoelectronic devices. Here, taking advantage of the large energy separations between neutral singlet excitons and charged excitons, i.e. trions in CNTs, we have achieved for the first time all trion electroluminescence (EL) emission from chirality-sorted (8,3) and (8,4) CNT-based solid state devices. We showed that strong trion emission can be obtained as a result of localized impact excitation and electrically injected holes, with an estimated efficiency of ~5 × 10-4 photons per injected hole. The importance of contact-controlled carrier injection (including symmetric and asymmetric contact configurations) and EL spectral stability for gradually increasing bias were also investigated. The realization of electrically induced pure trion emission opens up a new opportunity for CNT film-based optoelectronic devices, providing a new degree of freedom in controlling the devices to extend potential applications in spin or magnetic optoelectronics fields.Semiconducting carbon nanotubes (CNTs) have a direct chirality-dependent bandgap and reduced dimensionality-related quantum confinement effects, which are closely related to the performance of optoelectronic devices. Here, taking advantage of the large energy separations between neutral singlet excitons and charged excitons, i.e. trions in CNTs, we have achieved for the first time all trion electroluminescence (EL) emission from chirality-sorted (8,3) and (8,4) CNT-based solid state devices. We showed that strong trion emission can be obtained as a result of localized impact excitation and electrically injected holes, with an estimated efficiency of ~5 × 10-4 photons per injected hole. The importance of contact-controlled carrier injection (including symmetric and asymmetric contact configurations) and EL spectral stability for

  8. Solid State Division annual progress report for period ending December 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, M.K.; Young, F.W. Jr.

    1976-05-01

    Research activities are reported in programs on theoretical solid state physics, physical properties of solids, radiation effects in metals, neutron scattering, research materials, and isotope research materials. (JRD)

  9. Correlations between (51)V solid-state NMR parameters and chemical structure of vanadium (V) complexes as models for related metalloproteins and catalysts.

    Science.gov (United States)

    Fenn, Annika; Wächtler, Maria; Gutmann, Torsten; Breitzke, Hergen; Buchholz, Axel; Lippold, Ines; Plass, Winfried; Buntkowsky, Gerd

    2009-12-01

    The parameters describing the quadrupolar and CSA interactions of 51V solid-state MAS NMR investigations of model complexes mimicking vanadoenzymes as well as vanadium containing catalysts and enzyme complexes are interpreted with respect to the chemical structure. The interpretation is based on the data of 15 vanadium complexes including two new complexes with previously unpublished data and 13 complexes with data previously published by us. Correlations between the chemical structure and the 51V solid-state NMR data of this class of compounds have been established. Especially for the isotropic chemical shift delta(iso) and the chemical shift anisotropy delta(sigma), correlations with specific structural features like the coordination number of the vanadium atom, the number of coordinating nitrogens, the number of oxygen atoms and the chemical surrounding of the complex could be established for these compounds. Moreover, quantitative correlations between the solid-state NMR parameters and specific bond angles and bond lengths have been obtained. Our results can be of particular interest for future investigations concerning the structure and the mode of action of related vanadoenzymes and vanadate protein assemblies, including the use of vanadate adducts as transition state analogs for phosphate metabolizing systems.

  10. Sensitivity and Resolution Enhanced Solid-State NMR for Paramagnetic Systems and Biomolecules under Very Fast Magic Angle Spinning

    KAUST Repository

    Parthasarathy, Sudhakar

    2013-09-17

    Recent research in fast magic angle spinning (MAS) methods has drastically improved the resolution and sensitivity of NMR spectroscopy of biomolecules and materials in solids. In this Account, we summarize recent and ongoing developments in this area by presenting (13)C and (1)H solid-state NMR (SSNMR) studies on paramagnetic systems and biomolecules under fast MAS from our laboratories. First, we describe how very fast MAS (VFMAS) at the spinning speed of at least 20 kHz allows us to overcome major difficulties in (1)H and (13)C high-resolution SSNMR of paramagnetic systems. As a result, we can enhance both sensitivity and resolution by up to a few orders of magnitude. Using fast recycling (∼ms/scan) with short (1)H T1 values, we can perform (1)H SSNMR microanalysis of paramagnetic systems on the microgram scale with greatly improved sensitivity over that observed for diamagnetic systems. Second, we discuss how VFMAS at a spinning speed greater than ∼40 kHz can enhance the sensitivity and resolution of (13)C biomolecular SSNMR measurements. Low-power (1)H decoupling schemes under VFMAS offer excellent spectral resolution for (13)C SSNMR by nominal (1)H RF irradiation at ∼10 kHz. By combining the VFMAS approach with enhanced (1)H T1 relaxation by paramagnetic doping, we can achieve extremely fast recycling in modern biomolecular SSNMR experiments. Experiments with (13)C-labeled ubiquitin doped with 10 mM Cu-EDTA demonstrate how effectively this new approach, called paramagnetic assisted condensed data collection (PACC), enhances the sensitivity. Lastly, we examine (13)C SSNMR measurements for biomolecules under faster MAS at a higher field. Our preliminary (13)C SSNMR data of Aβ amyloid fibrils and GB1 microcrystals acquired at (1)H NMR frequencies of 750-800 MHz suggest that the combined use of the PACC approach and ultrahigh fields could allow for routine multidimensional SSNMR analyses of proteins at the 50-200 nmol level. Also, we briefly discuss the

  11. Data analysis methods for solid-state nanopores

    Science.gov (United States)

    Plesa, Calin; Dekker, Cees

    2015-02-01

    We describe a number of techniques for the analysis of solid-state nanopore ionic current traces and introduce a new package of Matlab analysis scripts with GUI front ends. We discuss methods for the detection of the local baseline and propose a new detection algorithm that bypasses some of the classical weaknesses of moving-average detection. Our new approach removes detected events and re-creates an ideal event-free baseline subsequently used to recalculate the local baseline. Iterative operation of this algorithm causes both the moving average of the baseline current and its standard deviation to converge to their correct values. We explain different approaches to selecting events and building event populations, and we show the value of keeping track of the changes in parameters, such as the event rate and the pore resistance, throughout the course of the experiment. Finally, we introduce a new technique for separating unfolded events and detecting current spikes present within translocation events. This open source software package is available online at: http://ceesdekkerlab.tudelft.nl/downloads/

  12. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    Energy Technology Data Exchange (ETDEWEB)

    Paul T. Fini; Shuji Nakamura

    2003-10-30

    In this second annual report we summarize the progress in the second-year period of Department of Energy contract DE-FC26-01NT41203, entitled ''High- Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has recently made significant progress in the development of light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV), resonant-cavity LEDs (RCLEDs), as well as lateral epitaxial overgrowth (LEO) techniques to obtain large-area non-polar GaN films with low average dislocation density. The Rensselaer team has benchmarked the performance of commercially available LED systems and has also conducted efforts to develop an optimized RCLED packaging scheme, including development of advanced epoxy encapsulant chemistries.

  13. Multidimensional solid-state NMR spectroscopy of plant cell walls.

    Science.gov (United States)

    Wang, Tuo; Phyo, Pyae; Hong, Mei

    2016-09-01

    Plant biomass has become an important source of bio-renewable energy in modern society. The molecular structure of plant cell walls is difficult to characterize by most atomic-resolution techniques due to the insoluble and disordered nature of the cell wall. Solid-state NMR (SSNMR) spectroscopy is uniquely suited for studying native hydrated plant cell walls at the molecular level with chemical resolution. Significant progress has been made in the last five years to elucidate the molecular structures and interactions of cellulose and matrix polysaccharides in plant cell walls. These studies have focused on primary cell walls of growing plants in both the dicotyledonous and grass families, as represented by the model plants Arabidopsis thaliana, Brachypodium distachyon, and Zea mays. To date, these SSNMR results have shown that 1) cellulose, hemicellulose, and pectins form a single network in the primary cell wall; 2) in dicot cell walls, the protein expansin targets the hemicellulose-enriched region of the cellulose microfibril for its wall-loosening function; and 3) primary wall cellulose has polymorphic structures that are distinct from the microbial cellulose structures. This article summarizes these key findings, and points out future directions of investigation to advance our fundamental understanding of plant cell wall structure and function.

  14. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Aaron Christopher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sarobol, Pylin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Argibay, Nicolas [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Clark, Blythe [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Diantonio, Christopher [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. We demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.

  15. PEO nanocomposite polymer electrolyte for solid state symmetric capacitors

    Indian Academy of Sciences (India)

    Nirbhay K Singh; Mohan L Verma; Manickam Minakshi

    2015-10-01

    Physical and electrochemical properties of polyethylene oxide (PEO)-based nanocomposite solid polymer electrolytes (NPEs) were investigated for symmetric capacitor applications. Nanosize fillers, i.e., Al2O3 and SiO2 incorporated polymer electrolyte exhibited higher ionic conductivity than those with filler-free composites. The composites have been synthesized by the completely dry (solution-free) hot-press method. The addition of filler in fractional amount to the solid polymer matrix at room temperature further enhances the ionic conductivity. Nature of the NPEs were studied using X-ray diffraction and energy-dispersive spectra analyses. Thermal stability of the resulting electrolyte was analysed by thermogravimetric analysis and differential scanning calorimetric studies. Morphology changes occurred during the addition of fillers was evidenced by scanning electronic microscope images. Solid polymer electrolytes exhibiting these parameters was found to be suitable for solid state capacitors. The results obtained from the electrolytes with an optimum compositions (PEO70AgI30)93 (Al2O3)7 and (PEO70AgI30)95 (SiO2)5 used in the (PEO70AgI30)70 (AC)30 electrodes for symmetric capacitor applications and their performances were analysed by impedance spectroscopic, Bode plot, cyclic voltammetry, discharge characteristics and leakage current profile.

  16. Solid-state lighting: an energy-economics perspective

    Science.gov (United States)

    Tsao, J. Y.; Saunders, H. D.; Creighton, J. R.; Coltrin, M. E.; Simmons, J. A.

    2010-09-01

    Artificial light has long been a significant factor contributing to the quality and productivity of human life. As a consequence, we are willing to use huge amounts of energy to produce it. Solid-state lighting (SSL) is an emerging technology that promises performance features and efficiencies well beyond those of traditional artificial lighting, accompanied by potentially massive shifts in (a) the consumption of light, (b) the human productivity and energy use associated with that consumption and (c) the semiconductor chip area inventory and turnover required to support that consumption. In this paper, we provide estimates of the baseline magnitudes of these shifts using simple extrapolations of past behaviour into the future. For past behaviour, we use recent studies of historical and contemporary consumption patterns analysed within a simple energy-economics framework (a Cobb-Douglas production function and profit maximization). For extrapolations into the future, we use recent reviews of believed-achievable long-term performance targets for SSL. We also discuss ways in which the actual magnitudes could differ from the baseline magnitudes of these shifts. These include: changes in human societal demand for light; possible demand for features beyond lumens; and guidelines and regulations aimed at economizing on consumption of light and associated energy.

  17. Ring Bus Architecture for a Solid-State Recorder

    Science.gov (United States)

    Walker, W. John; Kopf, Edward; Cox, Brian

    2008-01-01

    A document concisely describes a ring bus architecture for a proposed solid-state recorder (SSR) that would serve as buffer of data to be transmitted from a spacecraft to Earth. This architecture would afford fault tolerance needed for reliable operation in an anticipated high-radiation environment in which traditional SSRs cannot operate reliably. Features of the architecture include one or more controller boards and multiple memory boards interconnected in a ringlike topology. The interconnections would be high-speed serial links complying with the Institute of Electrical and Electronics Engineers (IEEE) standard 1393 (which pertains to a spaceborne fiber-optic data bus). Accordingly, each controller and memory board would be equipped with an IEEE-1393-compliant ring-bus-interface unit. The ringlike topology and the multiplicity of memory boards (and, optionally, of controller boards) would afford the redundancy needed for fault tolerance. Each board would be a fault-containment region. The IEEE 1393 links could be routed so that the SSR would continue to function even in the event of multiple failures. This architecture would also support scalability over a wide range. In a fully redundant configuration, it could accommodate between 1 and 125 memory boards.

  18. Nanocrystalline spinel ferrites by solid state reaction route

    Indian Academy of Sciences (India)

    T K Kundu; S Mishra

    2008-06-01

    Nanostructured NiFe2O4, MnFe2O4 and (NiZn)Fe2O4 were synthesized by aliovalent ion doping using conventional solid-state reaction route. With the doping of Nb2O5, the size of NiFe2O4 is reduced down to 33 nm. Similarly, nanostructured manganese ferrites (MnFe2O4) with diameters in the range of 45–30 nm were synthesized by Ti4+ ion doping. Particle diameters in all the specimens are found to decrease with increasing dopant content. The substitution of Nb5+ or Ti3+ ions essentially breaks up the ferrimagnetically active oxygen polyhedra. This created nanoscale regions of ferrites. Saturation magnetization and coercive field show a strong dependence on the size of the ferrite grains. Superparamagnetic behaviour is observed from the Mössbauer spectra of nanostructured NiFe2O4, if the particle size is reduced to 30 nm. Zero field cooled and field cooled curves from 30 nm sized MnFe2O4 particles showed a peak at B (∼ 125 K), typical of superparamagnetic blocking temperature. These results are explained in terms of core/shell structure of the materials. The d.c. resistivity of the doped specimens decreases by atleast five orders of magnitude compared to pure sample. This is ascribed to the presence of an interfacial amorphous phase between the sites.

  19. Characterization of an all solid-state electrochromic window

    Science.gov (United States)

    Tonazzi, Juan C. L.; Valla, Bruno; Macedo, Marcelo A.; Baudry, Paul; Aegerter, Michel A.; Martins Rodrigues, Ana C.; Bulhoes, Luis O.

    1990-11-01

    Sol-gel cerium - titanium oxide layers present potential application as transparent counter-electrode (ion storage layer) in electrochromic windows and mirrors using lithium conducting electrolyte and W03 electrochromic coating. The precursor sol, prepared by mixing Ti(OPri)4 and Ce(N03)6 (NH4)2 in ethanol, is initially dark red and becomes transparent after a few days aging indicating the presence of Ce3 complexes. The layers have been obtained by dip coating technique and heat treated at 4509C during 15 minutes.They have been characterized by XRD, SIMS, optical absorption and electrochemical techniques; it is shown that the electrochemical reaction corresponds to a reversible insertion-extraction oflithium ions within a Ti02 amorphous film containing small Ce02 crystallites. At low sweep frequencies the process is controlled by a diffusion mechanism (DLi ~= 6.4 lOl2cm2/s at 259C). Characterizations of an all solid state electrochromic window/glass/JTO/ W03/ POE-Li N (502 CF3)2 1 Ti02 - Ce02 I ITO I glass I are also presented.

  20. Complete solid state lighting (SSL) line at CEA LETI

    Science.gov (United States)

    Robin, I. C.; Ferret, P.; Dussaigne, A.; Bougerol, C.; Salomon, D.; Chen, X. J.; Charles, M.; Tchoulfian, P.; Gasse, A.; Lagrange, A.; Consonni, M.; Bono, H.; Levy, F.; Desieres, Y.; Aitmani, A.; Makram-Matta, S.; Bialic, E.; Gorrochategui, P.; Mendizabal, L.

    2014-09-01

    With a long experience in optoelectronics, CEA-LETI has focused on Light Emitting Diode (LED) lighting since 2006. Today, all the technical challenges in the implementation of GaN LED based solid state lighting (SSL) are addressed at CEA-LETI who is now an RandD player throughout the entire value chain of LED lighting. The SSL Line at CEA-LETI first deals with the simulation of the active structures and LED devices. Then the growth is addressed in particular 2D growth on 200 mm silicon substrates. Then, technological steps are developed for the fabrication of LED dies with innovative architectures. For instance, Versatile LED Array Devices are currently being developed with a dedicated μLED technology. The objective in this case is to achieve monolithical LED arrays reported and interconnected through a silicon submount. In addition to the required bonding and 3D integration technologies, new solutions for LED chip packaging, thermal management of LED lamps and luminaires are also addressed. LETI is also active in Smart Lighting concepts which offer the possibility of new application fields for SSL technologies. An example is the recent development at CEA LETI of Visible Light Communication Technology also called LiFi. With this technology, we demonstrated a transmission rate up to 10 Mb/s and real time HD-Video transmission.

  1. Computer Simulations of Polytetrafluoroethylene in the Solid State

    Science.gov (United States)

    Holt, D. B.; Farmer, B. L.; Eby, R. K.; Macturk, K. S.

    1996-03-01

    Force field parameters (Set I) for fluoropolymers were previously derived from MOPAC AM1 semiempirical data on model molecules. A second set (Set II) was derived from the AM1 results augmented by ab initio calculations. Both sets yield reasonable helical and phase II packing structures for polytetrafluoroethylene (PTFE) chains. However, Set I and Set II differ in the strength of van der Waals interactions, with Set II having deeper potential wells (order of magnitude). To differentiate which parameter set provides a better description of PTFE behavior, molecular dynamics simulations have been performed with Biosym Discover on clusters of PTFE chains which begin in a phase II packing environment. Added to the model are artificial constraints which allow the simulation of thermal expansion without having to define periodic boundary conditions for each specific temperature of interest. The preliminary dynamics simulations indicate that the intra- and intermolecular interactions provided by Set I are too weak. The degree of helical disorder and chain motion are high even at temperatures well below the phase II-phase IV transition temperature (19 C). Set II appears to yield a better description of PTFE in the solid state.

  2. A compact, all solid-state LC high voltage generator.

    Science.gov (United States)

    Fan, Xuliang; Liu, Jinliang

    2013-06-01

    LC generator is widely applied in the field of high voltage generation technology. A compact and all solid-state LC high voltage generator based on saturable pulse transformer is proposed in this paper. First, working principle of the generator is presented. Theoretical analysis and circuit simulation are used to verify the design of the generator. Experimental studies of the proposed LC generator with two-stage main energy storage capacitors are carried out. And the results show that the proposed LC generator operates as expected. When the isolation inductance is 27 μH, the output voltage is 1.9 times larger than the charging voltage on single capacitor. The multiplication of voltages is achieved. On the condition that the primary energy storage capacitor is charged to 857 V, the output voltage of the generator can reach to 59.5 kV. The step-up ratio is nearly 69. When self breakdown gas gap switch is used as main switch, the rise time of the voltage pulse on load resistor is 8.7 ns. It means that the series-wound inductance in the discharging circuit is very small in this system. This generator can be employed in two different applications.

  3. Quantum dots enabled LCD displays and solid-state lighting

    Science.gov (United States)

    Bi, Wengang; Xu, Shu; Geng, Chong; Zhao, Fei; Jiang, Xiaofang

    2016-09-01

    Quantum dots (QDs) with unique properties have evolved to be a key player in the next generation display and lighting applications. Followed by studies on the optimization of QD nanomaterials with low self-absorption properties, we analyze and identify the key parameters of the QDs that impact the color gamut and energy efficiency features of LCD displays using QD-enabled LED backlights, which consist of red and green QDs as well as blue LEDs that act as pumping sources. It is found that both the full width at half maximum (FWHM) and the emission peak positions of the green and the red QDs affect the color gamut. A narrower FWHM for both color QDs is preferred to achieve a wider color gamut while a combination of green QDs with shorter wavelength and red QDs with longer wavelength within the studied wavelength range (520 nm to 540 nm for the green and 610 nm to 635 nm for the red) is also desired. Nevertheless, QD-enabled LED backlight with a combination of longer-wavelength green QDs and shorter-wavelength red QDs is more energy efficient than the reverse case. Therefore, one needs balance these two key factors based on the targeted display performance requirements. On the solid-state lighting application side with QDs, we propose and show a QD-enabled LED light engine architecture that is more energy efficient with high light quality.

  4. Neutron detectors based on CMOS solid state photomultipliers

    Science.gov (United States)

    Sia, Radia; Christian, James F.; Stapels, Christopher J.; Prettyman, Thomas; Squillante, Michael R.

    2008-08-01

    CMOS solid-state photomultipliers (CMOS-SSPM) are new, potentially very inexpensive, photodetectors that have the promise of supplanting photomultiplier tubes and standard photodiodes for many nuclear radiation detection measurements using scintillator crystals. The compact size and very high gain make SSPMs attractive for use in applications where photomultiplier tubes cannot be used and standard photodiodes have insufficient sensitivity. In this effort, the use of SSPMs was investigated for the detection of neutrons with the goal of designing a detector for portable systems that has the capability of discriminating neutrons from gamma rays. The neutron scintillation signatures were measured using boron-loaded plastic scintillators. Our detector concept design incorporates a dual-scintillator design with both a neutrons sensitive organic scintillator (a boron-loaded gel) and a gamma ray sensitive inorganic scintillator (LYSO). Using this design, the gamma ray signal is suppressed and the neutron events are clearly resolved. The design was modeled to optimize the detection efficiency for both thermal and energetic neutrons. In addition, the detection of thermal neutrons in the presence of gamma rays was examined using the SSPM coupled to Cs2LiYCl6:Ce scintillator (CLYC).

  5. High Power, Solid-State RF Generation for Plasma Heating

    Science.gov (United States)

    Prager, James; Ziemba, Timothy; Miller, Kenneth; Pierren, Chris

    2016-10-01

    Radio Frequency heating systems are rarely used by the small-scale validation platform experiments due to the high cost and complexity of these systems. Eagle Harbor Technologies (EHT), Inc. is developing an all-solid-state RF plasma heating system that uses EHT's nanosecond pulser technology in an inductive adder configuration to drive nonlinear transmission lines (NLTL). The system under development does not require the use of vacuum tube technology, is inherently lower cost, and is more robust than traditional high power RF heating schemes. The inductive adder can produce 0 to20 kV pulses into 50 Ohms with sub-10 ns rise times. The inductive adder has been used to drive NLTLs near 2 GHz with other frequencies to be tested in the future. EHT will present experimental results, including RF measurements with D-dot probes and capacitve voltage probes. During this program, EHT will test the system on Helicity Injected Torus at the University of Washington and the High Beta Tokamak at Columbia University.

  6. Multiport solid-state imager characterization at variable pixel rates

    Energy Technology Data Exchange (ETDEWEB)

    Yates, G.J.; Albright, K.A. [Los Alamos National Lab., NM (United States); Turko, B.T. [Lawrence Berkeley Lab., CA (United States)

    1993-08-01

    The imaging performance of an 8-port Full Frame Transfer Charge Coupled Device (FFT CCD) as a function of several parameters including pixel clock rate is presented. The device, model CCD- 13, manufactured by English Electric Valve (EEV) is a 512 {times} 512 pixel array designed with four individual programmable bidirectional serial registers and eight output amplifiers permitting simultaneous readout of eight segments (128 horizontal {times} 256 vertical pixels) of the array. The imager was evaluated in Los Alamos National Laboratory`s High-Speed Solid-State Imager Test Station at true pixel rates as high as 50 MHz for effective imager pixel rates approaching 400 MHz from multiporting. Key response characteristics measured include absolute responsivity, Charge-Transfer-Efficiency (CTE), dynamic range, resolution, signal-to-noise ratio, and electronic and optical crosstalk among the eight video channels. Preliminary test results and data obtained from the CCD-13 will be presented and the versatility/capabilities of the test station will be reviewed.

  7. Guanidinium nonaflate as a solid-state proton conductor

    DEFF Research Database (Denmark)

    Chen, Xiaoli; Tang, Haolin; Putzeys, Tristan

    2016-01-01

    Protic organic ionic plastic crystals (POIPCs) are a type of novel solid-state proton conductors. In this work, guanidinium nonaflate ([Gdm-H][NfO]) is reported to be a model POIPC. Its structure-property relationship has been investigated comprehensively. Infrared analysis of [Gdm-H][NfO] and its...... deuterated analogue [Gdm-D][NfO] confirms the complete formation of the protic salts. The cations in as-prepared [Gdm-D][NfO] are estimated to consist of [C(ND2)2(NHD)]+ and [C(ND2)3]+ with a molar ratio of around 1:1. The deuteration also proves that each guanidinium cation has six displaceable protons...... order in the plastic crystalline phases. Dielectric spectroscopy measurements show that its ionic conductivity reaches 2.1 × 10-3 S cm-1 at 185 °C. The proton conduction in the plastic crystalline phases of [Gdm-H][NfO] is assumed to happen via the vehicle mechanism. In the molten state, the proton...

  8. High Efficiency LED Lamp for Solid-State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    James Ibbetson

    2006-12-31

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

  9. Solid State Neutral Particle Analyzer Array on NSTX

    Science.gov (United States)

    Liu, D.; Shinohara, K.; Darrow, D. S.; Roquemore, A. L.; Medley, S. S.; Cecil, F. E.; Heidbrink, W. W.

    2004-11-01

    A Solid State Neutral Particle Analyzer (SSNPA) array has been installed on the National Spherical Torus Experiment (NSTX) to measure the energy distribution of charge exchange fast neutral particles. The array consists of four Si diode detectors on chords with fixed tangency radii (60, 90, 100, and 120 cm), which view across the three co-injection neutral beam (NB) lines. The calibrated energy range is 40 120KeV and its energy resolution is about 10KeV. Time resolved measurements have been obtained and compared with the E//B Neutral Particle Analyzer (NPA) results. It is observed that particle fluxes increase strongly and then decay rapidly to a steady level just after NB injection commences. Though this temporal behavior is also observed in the E//B NPA, it is not predicted in TRANSP simulations. In addition, the increase and decay rates in the two NPA systems are different. Example data from plasma discharges will be presented with explanations of these differences.

  10. Solid State Synthesis and Properties of Monoclinic Celsian

    Science.gov (United States)

    Bansal, Narottam P.

    1996-01-01

    Monoclinic celsian of Ba(0.75)Sr(0.25)Al2Si2O8 (BSAS-1) and B(0.85)Sr(O.15)Al2Si2O8 (BSAS-2) compositions have been synthesized from metal carbonates and oxides by solid state reaction. A mixture of BaCO3, SrCO3, Al2O3, and SiO2 powders was precalcined at approx. 900-940 C to decompose the carbonates followed by hot pressing at approx. 1300 C. The hot pressed BSAS-1 material was almost fully dense and contained the monoclinic celsian phase, with complete absence of the undesirable hexacelsian as indicated by x-ray diffraction. In contrast, a small fraction of hexacelsian was still present in hot pressed BSAS-2. However, on further heat treatment at 1200 C for 24 h, the hexacelsian phase was completely eliminated. The average linear thermal expansion coefficients of BSAS-1 and BSAS-2 compositions, having the monoclinic celsian phase, were measured to be 5.28 x 10(exp -6)/deg C and 5.15 x 10(exp -6)/deg C, respectively from room temperature to 1200 C. The hot pressed BSAS-1 celsian showed room temperature flexural strength of 131 MPa, elastic modulus of 96 GPa and was stable in air up to temperatures as high as approx. 1500 C.

  11. 2010 Ceramics, Solid State Studies in Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    John Halloran

    2010-08-20

    The 2010 Gordon Conference on Solid State Studies in Ceramics will present forefront research on ceramic materials in energy conversion, storage, and environmental sustainability. Oxide materials in advanced Li-ion batteries will be featured, including first principles computational methods, new experimental methods, novel synthesis, and the design of batteries that exploit nanoscale cathode materials. Several speakers address advances in oxides for solar applications, including photo-catalysts for solar hydrogen production and dye sensitized solar cells, along with thin film photovoltaics. Fast ionic conducting ceramics in electrochemical energy conversion and storage will be addressed for fuel cells and electrochemical storage. New concepts for electrochemical capacitor materials will be addressed, as will thermoelectric, geopolymers, and ceramics in nuclear energy. The Conference will bring together investigators at the forefront of their field as well as junior scientists in a collegial atmosphere, with programmed discussion sessions and informal gatherings in the afternoons and evenings. Poster presentations provide opportunities for junior scientists and graduate students to present their work and exchange ideas with leaders in the field. This Conference provides an avenue for scientists from different disciplines to explore new ideas and promotes cross-disciplinary collaborations in the various research areas represented.

  12. Improving Application Launch Performance on Solid State Drives

    Institute of Scientific and Technical Information of China (English)

    Yongsoo Joo; Junhee Ryu; Sangsoo Park; Kang G.Shin

    2012-01-01

    Application launch performance is of great importance to system platform developers and vendors as it greatly affects the degree of users' satisfaction.The single most effective way to improve application launch performance is to replace a hard disk drive (HDD) with a solid state drive (SSD),which has recently become affordable and popular.A natural question is then whether or not to replace the traditional HDD-aware application launchers with a new SSD-aware optimizer.We address this question by analyzing the inefficiency of the HDD-aware application launchers on SSDs and then proposing a new SSD-aware application prefetching scheme,called the Fast Application STarter (FAST).The key idea of FAST is to overlap the computation (CPU) time with the SSD access (I/O) time during an application launch.FAST is composed of a set of user-level components and system debugging tools provided by Linux OS (operating system).Hence,FAST can be easily deployed in any recent Linux versions without kernel recompilation.We implement FAST on a desktop PC with an SSD running Linux 2.6.32 OS and evaluate it by launching a set of widely-used applications,demonstrating an average of 28% reduction of application launch time as compared to PC without a prefetcher.

  13. Solid state carbon nanotube device for controllable trion electroluminescence emission.

    Science.gov (United States)

    Liang, Shuang; Ma, Ze; Wei, Nan; Liu, Huaping; Wang, Sheng; Peng, Lian-Mao

    2016-03-28

    Semiconducting carbon nanotubes (CNTs) have a direct chirality-dependent bandgap and reduced dimensionality-related quantum confinement effects, which are closely related to the performance of optoelectronic devices. Here, taking advantage of the large energy separations between neutral singlet excitons and charged excitons, i.e. trions in CNTs, we have achieved for the first time all trion electroluminescence (EL) emission from chirality-sorted (8,3) and (8,4) CNT-based solid state devices. We showed that strong trion emission can be obtained as a result of localized impact excitation and electrically injected holes, with an estimated efficiency of ∼5 × 10(-4) photons per injected hole. The importance of contact-controlled carrier injection (including symmetric and asymmetric contact configurations) and EL spectral stability for gradually increasing bias were also investigated. The realization of electrically induced pure trion emission opens up a new opportunity for CNT film-based optoelectronic devices, providing a new degree of freedom in controlling the devices to extend potential applications in spin or magnetic optoelectronics fields.

  14. Environment-protected solid-state-based distributed charge qubit

    Science.gov (United States)

    Tayebi, Amin; Hoatson, Tanya Nicole; Wang, Joie; Zelevinsky, Vladimir

    2016-12-01

    A solid-state-based charge qubit is presented. The system consists of a one-dimensional wire with a pair of qubits embedded at its center. It is shown that the system supports collective states localized in the left and right sides of the wire and therefore, as a whole, performs as a single qubit. The couplings between the ground and excited states of the two central qubits are inversely proportional making them fully asynchronized and allowing for coherent manipulation and gate operations. Initialization and measurement devices, such as leads and charge detectors, connected to the edges of the wire are modeled by a continuum of energy states. The coupling to the continuum is discussed using the effective non-Hermitian Hamiltonian. At weak continuum coupling, all internal states uniformly acquire small decay widths. This changes dramatically as the coupling strength increases: the width distribution undergoes a sharp restructuring and is no longer uniformly divided among the eigenstates. Two broad resonances localized at the ends of the wire are formed. These superradiant states (analogous to Dicke states in quantum optics) effectively protect the remaining internal states from decaying into the continuum and hence increase the lifetime of the qubit. Environmental noise is introduced by considering random Gaussian fluctuations of electronic energies. The interplay between decoherence and superradiance is studied by solving the stochastic Liouville equation. In addition to increasing the lifetime, the emergence of the superradiant states increases the qubit coherence.

  15. Automatic diagnosis and control of distributed solid state lighting systems.

    Science.gov (United States)

    Dong, Jianfei; van Driel, Willem; Zhang, Guoqi

    2011-03-28

    This paper describes a new design concept of automatically diagnosing and compensating LED degradations in distributed solid state lighting (SSL) systems. A failed LED may significantly reduce the overall illumination level, and destroy the uniform illumination distribution achieved by a nominal system. To our knowledge, an automatic scheme to compensate LED degradations has not yet been seen in the literature, which requires a diagnostic step followed by control reconfigurations. The main challenge in diagnosing LED degradations lies in the usually unsatisfactory observability in a distributed SSL system, because the LED light output is usually not individually measured. In this work, we tackle this difficulty by using pulse width modulated (PWM) drive currents with a unique fundamental frequency assigned to each LED. Signal processing methods are applied in estimating the individual illumination flux of each LED. Statistical tests are developed to diagnose the degradation of LEDs. Duty cycle of the drive current signal to each LED is re-optimized once a fault is detected, in order to compensate the destruction of the uniform illumination pattern by the failed LED.

  16. Variational Calculations for Hydrogen in Introductory Solid State

    Science.gov (United States)

    Hasbun, Javier

    2012-02-01

    Molecular hydrogen is very important in the introductory solid state physics course because it is used as one of the simplest molecular realistic models where bonding and anti-bonding takes place. This system is one of the first examples in which interactions among the ions and the electrons is incorporated realistically. To this end, we approach the system starting from the hydrogen atom. Here we introduce a numerical approach that reproduces the known analytic result for the ground state. The idea is to expand the hydrogenic wavefunction in terms of Gaussians (four of them) with variational parameters. As the parameters are varied the numerical approach stops when the energy is a minimum. The scheme is consistently extended through the ionized hydrogen molecule and the reproduction of its analytically known ground state energy result. We finally culminate with the hydrogen molecule using a variational wavefunction, a la Hartree, and proceed to repeat the process with a particular flavor of a Hartree-Fock wavefunction [1] and finally obtaining a hydrogen molecule total ground state energy of -31.10 eV with a bond length of 1.37 Bohr radius.[4pt] [1] ``Atomic and Electronic Structure of Solids,'' Efthimios Kaxiras (Cambridge UP, Cambridge UK, 2003).

  17. Chemically modified solid state nanopores for high throughput nanoparticle separation

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, Anmiv S; Kim, Min Jun [School of Biomedical Engineering and Health Science, Drexel University, Philadelphia, PA 19104 (United States); Jubery, Talukder Zaki N; Dutta, Prashanta [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 (United States); Freedman, Kevin J; Mulero, Rafael, E-mail: mkim@coe.drexel.ed [Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104 (United States)

    2010-11-17

    The separation of biomolecules and other nanoparticles is a vital step in several analytical and diagnostic techniques. Towards this end we present a solid state nanopore-based set-up as an efficient separation platform. The translocation of charged particles through a nanopore was first modeled mathematically using the multi-ion model and the surface charge density of the nanopore membrane was identified as a critical parameter that determines the selectivity of the membrane and the throughput of the separation process. Drawing from these simulations a single 150 nm pore was fabricated in a 50 nm thick free-standing silicon nitride membrane by focused-ion-beam milling and was chemically modified with (3-aminopropyl)triethoxysilane to change its surface charge density. This chemically modified membrane was then used to separate 22 and 58 nm polystyrene nanoparticles in solution. Once optimized, this approach can readily be scaled up to nanopore arrays which would function as a key component of next-generation nanosieving systems.

  18. Six-color solid state illuminator for cinema projector

    Science.gov (United States)

    Huang, Junejei; Wang, Yuchang

    2014-09-01

    Light source for cinema projector requires reliability, high brightness, good color and 3D for without silver screens. To meet these requirements, a laser-phosphor based solid state illuminator with 6 primary colors is proposed. The six primary colors are divided into two groups and include colors of R1, R2, G1, G2, B1 and B2. Colors of B1, B2 and R2 come from lasers of wavelengths 440 nm, 465 nm and 639 nm. Color of G1 comes from G-phosphor pumped by B2 laser. Colors of G2 and R1 come from Y-phosphor pumped by B1 laser. Two groups of colors are combined by a multiband filter and working by alternately switching B1 and B2 lasers. The combined two sequences of three colors are sent to the 3-chip cinema projector and synchronized with frame rate of 120Hz. In 2D mode, the resulting 6 primary colors provide a very wide color gamut. In 3D mode, two groups of red, green and blue primary colors provide two groups of images that received by left and right eyes.

  19. Monitoring tetracycline through a solid-state nanopore sensor

    Science.gov (United States)

    Zhang, Yuechuan; Chen, Yanling; Fu, Yongqi; Ying, Cuifeng; Feng, Yanxiao; Huang, Qimeng; Wang, Chao; Pei, De-Sheng; Wang, Deqiang

    2016-06-01

    Antibiotics as emerging environmental contaminants, are widely used in both human and veterinary medicines. A solid-state nanopore sensing method is reported in this article to detect Tetracycline, which is based on Tet-off and Tet-on systems. rtTA (reverse tetracycline-controlled trans-activator) and TRE (Tetracycline Responsive Element) could bind each other under the action of Tetracycline to form one complex. When the complex passes through nanopores with 8 ~ 9 nanometers in diameter, we could detect the concentrations of Tet from 2 ng/mL to 2000 ng/mL. According to the Logistic model, we could define three growth zones of Tetracycline for rtTA and TRE. The slow growth zone is 0-39.5 ng/mL. The rapid growth zone is 39.5-529.7 ng/mL. The saturated zone is > 529.7 ng/mL. Compared to the previous methods, the nanopore sensor could detect and quantify these different kinds of molecule at the single-molecule level.

  20. Solid-state-drives (SSDs) modeling simulation tools & strategies

    CERN Document Server

    2017-01-01

    This book introduces simulation tools and strategies for complex systems of solid-state-drives (SSDs) which consist of a flash multi-core microcontroller plus NAND flash memories. It provides a broad overview of the most popular simulation tools, with special focus on open source solutions. VSSIM, NANDFlashSim and DiskSim are benchmarked against performances of real SSDs under different traffic workloads. PROs and CONs of each simulator are analyzed, and it is clearly indicated which kind of answers each of them can give and at a what price. It is explained, that speed and precision do not go hand in hand, and it is important to understand when to simulate what, and with which tool. Being able to simulate SSD’s performances is mandatory to meet time-to-market, together with product cost and quality. Over the last few years the authors developed an advanced simulator named “SSDExplorer” which has been used to evaluate multiple phenomena with great accuracy, from QoS (Quality Of Service) to Read Retry, fr...

  1. Potential of high-average-power solid state lasers

    Energy Technology Data Exchange (ETDEWEB)

    Emmett, J.L.; Krupke, W.F.; Sooy, W.R.

    1984-09-25

    We discuss the possibility of extending solid state laser technology to high average power and of improving the efficiency of such lasers sufficiently to make them reasonable candidates for a number of demanding applications. A variety of new design concepts, materials, and techniques have emerged over the past decade that, collectively, suggest that the traditional technical limitations on power (a few hundred watts or less) and efficiency (less than 1%) can be removed. The core idea is configuring the laser medium in relatively thin, large-area plates, rather than using the traditional low-aspect-ratio rods or blocks. This presents a large surface area for cooling, and assures that deposited heat is relatively close to a cooled surface. It also minimizes the laser volume distorted by edge effects. The feasibility of such configurations is supported by recent developments in materials, fabrication processes, and optical pumps. Two types of lasers can, in principle, utilize this sheet-like gain configuration in such a way that phase and gain profiles are uniformly sampled and, to first order, yield high-quality (undistorted) beams. The zig-zag laser does this with a single plate, and should be capable of power levels up to several kilowatts. The disk laser is designed around a large number of plates, and should be capable of scaling to arbitrarily high power levels.

  2. Enhanced solid-state metathesis routes to carbon nanotubes.

    Science.gov (United States)

    Mack, Julia J; Tari, Susanne; Kaner, Richard B

    2006-05-15

    Ignition of three solids creates multiwalled carbon nanotubes in seconds. A solid-state metathesis (exchange) reaction between hexachloroethane (C2Cl6) and lithium acetylide (Li2C2) with 5% cobalt dichloride (CoCl2) added as an initiator produces up to 7% carbon nanotubes, as observed via transmission electron microscopy. Using the concept that sulfur can promote nanotube growth, the reaction yield can be increased to 15% by switching to CoS as the initiator. The more readily available, inexpensive calcium carbide (CaC2) can be substituted for lithium acetylide while maintaining comparable yields. Switching initiators to FeS can be used to further enhance the yield. A systematic study of the C2Cl6/CaC2 reaction system indicates that a yield up to 25% can be realized by using 6% FeS as the initiator. Reaction temperatures for the C(2)Cl6/CaC2 system of up to 3550 degrees C are calculated using thermodynamic data assuming quantitative yield and adiabatic conditions.

  3. Local solid-state modification of nanopore surface charges

    CERN Document Server

    Kox, Ronald; Chen, Chang; Arjmandi, Nima; Lagae, Liesbet; Borghs, Gustaaf; 10.1088/0957-4484/21/33/335703

    2012-01-01

    The last decade, nanopores have emerged as a new and interesting tool for the study of biological macromolecules like proteins and DNA. While biological pores, especially alpha-hemolysin, have been promising for the detection of DNA, their poor chemical stability limits their use. For this reason, researchers are trying to mimic their behaviour using more stable, solid-state nanopores. The most successful tools to fabricate such nanopores use high energy electron or ions beams to drill or reshape holes in very thin membranes. While the resolution of these methods can be very good, they require tools that are not commonly available and tend to damage and charge the nanopore surface. In this work, we show nanopores that have been fabricated using standard micromachning techniques together with EBID, and present a simple model that is used to estimate the surface charge. The results show that EBID with a silicon oxide precursor can be used to tune the nanopore surface and that the surface charge is stable over a...

  4. $^{7}Li(p,n)$ Nuclear Data Library for Incident Proton Energies to 150 MeV

    CERN Document Server

    Mashnik, S G; Hughes, H G; Little, R C; MacFarlane, R E; Waters, L S; Young, P G

    2000-01-01

    We describe evaluation methods that make use of experimental data, and nuclear model calculations, to develop an ENDF-formatted data library for the reaction p + Li7 for incident protons with energies up to 150 MeV. The important 7-Li(p,n_0) and 7-Li(p,n_1) reactions are evaluated from the experimental data, with their angular distributions represented using Lengendre polynomial expansions. The decay of the remaining reaction flux is estimated from GNASH nuclear model calculations. The evaluated ENDF-data are described in detail, and illustrated in numerous figures. We also illustrate the use of these data in a representative application by a radiation transport simulation with the code MCNPX.

  5. Probing lipid-cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and (13)C solid-state NMR.

    Science.gov (United States)

    Fritzsching, Keith J; Kim, Jihyun; Holland, Gregory P

    2013-08-01

    The interaction between cholesterol (Chol) and phospholipids in bilayers was investigated for the ternary model lipid rafts, DOPC/eSM/Chol and DOPC/DPPC/Chol, with differential scanning calorimetry (DSC) and (13)C cross polarization magic angle spinning (CP-MAS) solid-state NMR. The enthalpy and transition temperature (Tm) of the Lα liquid crystalline phase transition from DSC was used to probe the thermodynamics of the different lipids in the two systems as a function of Chol content. The main chain (13)C (CH2)n resonance is resolved in the (13)C CP-MAS NMR spectra for the unsaturated (DOPC) and saturated (eSM or DPPC) chain lipid in the ternary lipid raft mixtures. The (13)C chemical shift of this resonance can be used to detect differences in chain ordering and overall interactions with Chol for the different lipid constituents in the ternary systems. The combination of DSC and (13)C CP-MAS NMR results indicate that there is a preferential interaction between SM and Chol below Tm for the DOPC/eSM/Chol system when the Chol content is ≤20mol%. In contrast, no preferential interaction between Chol and DPPC is observed in the DOPC/DPPC/Chol system above or below Tm. Finally, (13)C CP-MAS NMR resolves two Chol environments in the DOPC/eSM/Chol system below Tm at Chol contents >20mol% while, a single Chol environment is observed for DOPC/DPPC/Chol at all compositions.

  6. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2014-05-14

    We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  7. Performance of RINEPT is amplified by dipolar couplings under ultrafast MAS conditions.

    Science.gov (United States)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2014-06-01

    The refocused insensitive nuclei enhanced by polarization transfer (RINEPT) technique is commonly used for heteronuclear polarization transfer in solution and solid-state NMR spectroscopy. Suppression of dipolar couplings, either by fast molecular motions in solution or by a combination of MAS and multiple pulse sequences in solids, enables the polarization transfer via scalar couplings. However, the presence of unsuppressed dipolar couplings could alter the functioning of RINEPT, particularly under fast/ultrafast MAS conditions. In this study, we demonstrate, through experiments on rigid solids complemented by numerical simulations, that the polarization transfer efficiency of RINEPT is dependent on the MAS frequency. In addition, we show that heteronuclear dipolar coupling is the dominant factor in the polarization transfer, which is strengthened by the presence of (1)H-(1)H dipolar couplings. In fact, the simultaneous presence of homonuclear and heteronuclear dipolar couplings is the premise for the polarization transfer by RINEPT, whereas the scalar coupling plays an insignificant role under ultrafast MAS conditions on rigid solids. Our results additionally reveal that the polarization transfer efficiency decreases with the increasing duration of RF pulses used in the RINEPT sequence.

  8. AB-BNCT beam shaping assembly based on {sup 7}Li(p,n){sup 7}Be reaction optimization

    Energy Technology Data Exchange (ETDEWEB)

    Minsky, D.M., E-mail: minsky@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. de Irigoyen 3100 (1650), San Martin (Argentina)] [CONICET, Av. Rivadavia 1917 (C1033AAJ), Buenos Aires (Argentina); Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. de Irigoyen 3100 (1650), San Martin (Argentina)] [CONICET, Av. Rivadavia 1917 (C1033AAJ), Buenos Aires (Argentina); Valda, A.A. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. de Irigoyen 3100 (1650), San Martin (Argentina)

    2011-12-15

    A numerical optimization of a Beam Shaping Assembly (BSA) for Accelerator Based-Boron Neutron Capture Therapy (AB-BNCT) has been performed. The reaction {sup 7}Li(p,n){sup 7}Be has been considered using a proton beam on a lithium fluoride target. Proton energy and the dimensions of a simple BSA geometry have been varied to obtain a set of different configurations. The optimal configuration of this set is shown.

  9. Experimental probe for the production of 97Ru from the 7Li+93Nb reaction: A study of precompound emissions

    Science.gov (United States)

    Kumar, Deepak; Maiti, Moumita; Lahiri, Susanta

    2016-10-01

    Background: Interaction of weakly bound heavy ions with an intermediate or heavy target is not yet understood completely due to the scarcity of experimental data. In order to develop a clear understanding of breakup fusion or preequilibrium emission even in the low energy range, 3-10 MeV/nucleon, more experimental investigations are necessary. Purpose: We aim to study the reaction mechanisms involved in the weakly bound heavy-ion induced reaction 7Li+93Nb at low energies by measuring the production cross sections of the residual radionuclides. Method: Natural niobium (93Nb) foil, backed by an aluminum (Al) catcher, arranged in a stack was bombarded by 7Li ions of 20-45 MeV energy. Activity of the residues produced in each 93Nb target was measured by off line γ -ray spectrometry after the end of bombardment (EOB) and cross sections were calculated. Experimental cross sections were compared with those computed using compound and precompound models. Results: In general, measured excitation functions of all residues produced in the 7Li+93Nb reaction showed good agreement with the model calculations based on the Hauser-Feshbach formalism and the exciton model for compound and precompound processes, respectively. Significant preequilibrium emission of neutrons was observed at the relatively high energy tail of the excitation function of 97Ru. Conclusions: Preequilibrium processes played an important role in the enhancement of the cross section in the x n reaction channel over the compound reaction mechanism at higher energies for the 7Li+93Nb reaction. Additionally, indirect evidence of incomplete or breakup fusion was also perceived.

  10. Preliminary study of the 19F(7Li,7Be)19O reaction at 52 MeV with MAGNEX

    CERN Document Server

    Cavallaro, M; Cappuzzello, F; Carbone, D; Foti, A; Orrigo, S E A; Rodrigues, M R D; Schillaci, M; Borello-Lewin, T; Petrascu, H

    2010-01-01

    The 19F(7Li,7Be)19O charge-exchange reaction at 52 MeV incident energy has been performed at INFN-LNS in Catania using the MAGNEX spectrometer. The use of an algebraic ray-reconstruction technique has allowed to extract the 19O excitation energy spectrum and the experimental angular distributions obtained with a single angular setting of the spectrometer.

  11. Solid-State 13C NMR Spectroscopy Applied to the Study of Carbon Blacks and Carbon Deposits Obtained by Plasma Pyrolysis of Natural Gas

    Directory of Open Access Journals (Sweden)

    Jair C. C. Freitas

    2016-01-01

    Full Text Available Solid-state 13C nuclear magnetic resonance (NMR spectroscopy was used in this work to analyze the physical and chemical properties of plasma blacks and carbon deposits produced by thermal cracking of natural gas using different types of plasma reactors. In a typical configuration with a double-chamber reactor, N2 or Ar was injected as plasma working gas in the first chamber and natural gas was injected in the second chamber, inside the arc column. The solid residue was collected at different points throughout the plasma apparatus and analyzed by 13C solid-state NMR spectroscopy, using either cross polarization (CP or direct polarization (DP, combined with magic angle spinning (MAS. The 13C CP/MAS NMR spectra of a number of plasma blacks produced in the N2 plasma reactor showed two resonance bands, broadly identified as associated with aromatic and aliphatic groups, with indication of the presence of oxygen- and nitrogen-containing groups in the aliphatic region of the spectrum. In contrast to DP experiments, only a small fraction of 13C nuclei in the plasma blacks are effectively cross-polarized from nearby 1H nuclei and are thus observed in spectra recorded with CP. 13C NMR spectra are thus useful to distinguish between different types of carbon species in plasma blacks and allow a selective study of groups spatially close to hydrogen in the material.

  12. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: Chemical shifts assignment.

    Science.gov (United States)

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika Agnieszka; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations.

  13. Threshold behavior of interaction potential for the system 7Li + 64Ni: Comparison with 6Li + 64Ni

    Science.gov (United States)

    Shaikh, Md. Moin; Das, Mili; Roy, Subinit; Sinha, M.; Pradhan, M. K.; Basu, P.; Datta, U.; Ramachandran, K.; Shrivastava, A.

    2016-09-01

    The elastic scattering angular distributions for the system 7Li + 64Ni were measured in the bombarding energy range of 12 MeV ≤Elab ≤ 26.4 MeV. A phenomenological optical model analysis was performed for the measured data. The strengths of the fitted potential components at the surface were estimated to extract their variation with energy. Further analyses of the measured angular distributions were performed with a hybrid potential composed of a renormalized folded real and a phenomenological imaginary potential. Both the model potentials predict similar energy dependent behavior for the effective interaction potential around the barrier. Unlike the heavy targets, 7Li + 64Ni does not show a normal threshold behavior. It also does not clearly exhibit a behavior similar to 6Li + 64Ni. The real potential for 7Li + 64Ni does not exhibit any significant energy dependence and the imaginary potential strength remains almost independent of energy above the Coulomb barrier (∼ 14 MeV). However, at energies below the barrier, a sudden drop in the imaginary potential strength is observed.

  14. Prediction of a weakly bound excited state of Efimov character in a 7LiHe42 system

    Science.gov (United States)

    Wu, Meng-Shan; Han, Hui-Li; Li, Cheng-Bin; Shi, Ting-Yun

    2014-12-01

    We carry out calculations on the van der Waals trimer 7LiHe42 using the mapping method within the frame of hyperspherical coordinates, which allows us to give accurate binding energies and wave functions for both the ground and excited state of the system. When the realistic two-body potentials are adopted, the system presents an excited state which shows Efimov character. We study the range of the interaction strength in which the excited state could exist and find that the state persists within the experiment error band for binding energy of LiHe molecule. We also study the three-body parameter (3BP) of 7LiHe42 system and its relationship with the background scattering length aHeHe. Our calculations demonstrate that the 3BP of 7LiHe42 system is dependent on the value of the scattering length aHeHe, independent of the short-range details of the He-He interaction. The results confirm the prediction of Wang et al. [Phys. Rev. Lett. 109, 243201 (2012), 10.1103/PhysRevLett.109.243201] that the 3BP for a heteronuclear atomic system is universally determined from the van der Waals lengths and the homonuclear scattering length.

  15. Interspecies collision-induced losses in a dual species 7Li-85Rb magneto-optical trap

    Science.gov (United States)

    Dutta, Sourav; Altaf, Adeel; Lorenz, John; Elliott, D. S.; Chen, Yong P.

    2014-05-01

    In this article, we report the measurement of collision-induced loss rate coefficients βLi, Rb and βRb, Li, and also discuss means to significantly suppress such collision-induced losses. We first describe our dual-species magneto-optical trap (MOT) that allows us to simultaneously trap ≥5 × 108 7Li atoms loaded from a Zeeman slower and ≥2 × 108 85Rb atoms loaded from a dispenser. We observe strong interspecies collision-induced losses in the MOTs which dramatically reduce the maximum atom number achievable in the MOTs. We measure the trap loss rate coefficients βLi, Rb and βRb, Li, and, from a study of their dependence on the MOT parameters, determine the cause for the losses observed. Our results provide valuable insights into ultracold collisions between 7Li and 85Rb, guide our efforts to suppress collision-induced losses, and also pave the way for the production of ultracold 7Li85Rb molecules.

  16. Interspecies collision-induced losses in a dual species 7Li-85Rb magneto-optical trap

    CERN Document Server

    Dutta, Sourav; Lorenz, John; Elliott, D S; Chen, Yong P

    2013-01-01

    In this article, we report the measurement of collision-induced loss coefficients \\beta_{Li,Rb} and \\beta_{Rb,Li}, and also discuss means to significantly suppress such collision induced losses. We first describe our dual-species magneto-optical trap (MOT) that allows us to simultaneously trap > 5x10^8 7Li atoms loaded from a Zeeman slower and > 2x10^8 85Rb atoms loaded from a dispenser. We observe strong interspecies collision-induced losses in the MOTs which dramatically reduce the maximum atom number achievable in the MOTs. We measure the trap loss rate coefficients \\beta_{Li,Rb} and \\beta_{Rb,Li}, and, from a study of their dependence on the MOT parameters, determine the cause for the losses observed. Our results provide valuable insights into ultracold collisions between 7Li and 85Rb, guide our efforts to suppress collision induced losses, and also pave the way for the production of ultracold 7Li85Rb molecules.

  17. Fluid flow dynamics in MAS systems.

    Science.gov (United States)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  18. MAS NMR of HIV-1 protein assemblies

    Science.gov (United States)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  19. Solid State Ionics Advanced Materials for Emerging Technologies

    Science.gov (United States)

    Chowdari, B. V. R.; Careem, M. A.; Dissanayake, M. A. K. L.; Rajapakse, R. M. G.; Seneviratne, V. A.

    2006-06-01

    Keynote lecture. Challenges and opportunities of solid state ionic devices / W. Weppner -- pt. I. Ionically conducting inorganic solids. Invited papers. Multinuclear NMR studies of mass transport of phosphoric acid in water / J. R. P. Jayakody ... [et al.]. Crystalline glassy and polymeric electrolytes: similarities and differences in ionic transport mechanisms / J.-L. Souquet. 30 years of NMR/NQR experiments in solid electrolytes / D. Brinkmann. Analysis of conductivity and NMR measurements in Li[symbol]La[symbol]TiO[symbol] fast Li[symbol] ionic conductor: evidence for correlated Li[symbol] motion / O. Bohnké ... [et al.]. Transport pathways for ions in disordered solids from bond valence mismatch landscapes / S. Adams. Proton conductivity in condensed phases of water: implications on linear and ball lightning / K. Tennakone -- Contributed papers. Proton transport in nanocrystalline bioceramic materials: an investigative study of synthetic bone with that of natural bone / H. Jena, B. Rambabu. Synthesis and properties of the nanostructured fast ionic conductor Li[symbol]La[symbol]TiO[symbol] / Q. N. Pham ... [et al.]. Hydrogen production: ceramic materials for high temperature water electrolysis / A. Hammou. Influence of the sintering temperature on pH sensor ability of Li[symbol]La[symbol]TiO[symbol]. Relationship between potentiometric and impedance spectroscopy measurements / Q. N. Pham ... [et al.]. Microstructure chracterization and ionic conductivity of nano-sized CeO[symbol]-Sm[symbol]O[symbol] system (x=0.05 - 0.2) prepared by combustion route / K. Singh, S. A. Acharya, S. S. Bhoga. Red soil in Northern Sri Lanka is a natural magnetic ceramic / K. Ahilan ... [et al.]. Neutron scattering of LiNiO[symbol] / K. Basar ... [et al.]. Preparation and properties of LiFePO[symbol] nanorods / L. Q. Mai ... [et al.]. Structural and electrochemical properties of monoclinic and othorhombic MoO[symbol] phases / O. M. Hussain ... [et al.]. Preparation of Zircon (Zr

  20. Radiation induced degradation of xanthan gum in the solid state

    Science.gov (United States)

    Şen, Murat; Hayrabolulu, Hande; Taşkın, Pınar; Torun, Murat; Demeter, Maria; Cutrubinis, Mihalis; Güven, Olgun

    2016-07-01

    In this study, the effect of ionizing radiation on xanthan gum was investigated. Xanthan samples were irradiated with gamma rays in air at ambient temperature in the solid state at different dose rates and doses. Change in their molecular weights was followed by size exclusion chromatography (SEC). Chain scission yield (G(S)), and degradation rate constants (k) were calculated. The calculated G(S) values are 0.0151±0.0015, 0.0144±0.0020, 0.0098±0.0010 μmol/J and k values are 1.4×10-8±1.4×10-9, 1.3×10-8±2.0×10-9, 8.7×10-9±1.0×10-9 Gy-1 for 0.1, 3.3 and 7.0 kGy/h dose rates, respectively. It was observed that the dose rate was an important factor controlling the G(S) and degradation rate of xanthan gum. Considering its use in food industry, the effect of irradiation on rheological properties of xanthan gum solutions was also investigated and flow model parameters were determined for all dose rates and doses. Rheological analysis showed that xanthan solution showed non-Newtonian shear thinning behaviour and ionizing radiation does not change the non-Newtonian and shear thinning flow behaviour of xanthan gum solutions in concentration ranges of this work. It was determined that, Power Law model well described the flow behaviour of unirradiated and irradiated xanthan solutions.