WorldWideScience

Sample records for 64cu-labeled linear peptide

  1. Imaging of urokinase-type plasminogen activator receptor expression using a 64Cu-labeled linear peptide antagonist by microPET

    DEFF Research Database (Denmark)

    Li, Z.B.; Niu, G.; Wang, H.;

    2008-01-01

    for positron emission tomography (PET) imaging. A linear, high-affinity uPAR-binding peptide antagonist AE105 was conjugated with 1,4,7,10-tetraazadodecane-N,N',N'',N'''-tetraacetic acid (DOTA) and labeled with (64)Cu for microPET imaging of mice bearing U87MG human glioblastoma (uPAR positive) and MDA-MB-435...... human breast cancer (uPAR negative). RESULTS: Surface plasmon resonance measurements show that AE105 with DOTA conjugated at the alpha-amino group (DOTA-AE105) has high affinity toward uPAR. microPET imaging reveals a rapid and high accumulation of (64)Cu-DOTA-AE105 in uPAR-positive U87MG tumors (10......-->Glu) does not target U87MG tumors in vivo. Second, targeting of U87MG tumors by (64)Cu-DOTA-AE105 is specifically inhibited by a nonlabeled antagonist. CONCLUSION: The successful demonstration of the ability of a (64)Cu labeled uPAR-specific probe to visualize uPAR expression in vivo may allow clinical...

  2. Evaluation of two novel {sup 64}Cu-labeled RGD peptide radiotracers for enhanced PET imaging of tumor integrin α{sub v}β{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Reinier; Graves, Stephen A.; Nickles, Robert J. [University of Wisconsin, Department of Medical Physics, Madison, WI (United States); Czerwinski, Andrzej; Valenzuela, Francisco [Peptides International, Inc., Louisville, KY (United States); Chakravarty, Rubel; Yang, Yunan; England, Christopher G. [University of Wisconsin, Department of Radiology, Madison, WI (United States); Cai, Weibo [University of Wisconsin, Department of Medical Physics, Madison, WI (United States); University of Wisconsin, Department of Radiology, Madison, WI (United States); University of Wisconsin Carbone Cancer Center, Madison, WI (United States)

    2015-11-15

    Our goal was to demonstrate that suitably derivatized monomeric RGD peptide-based PET tracers, targeting integrin α{sub v}β{sub 3}, may offer advantages in image contrast, time for imaging, and low uptake in nontarget tissues. Two cyclic RGDfK derivatives, (PEG){sub 2}-c(RGDfK) and PEG{sub 4}-SAA{sub 4}-c(RGDfK), were constructed and conjugated to NOTA for {sup 64}Cu labeling. Their integrin α{sub v}β{sub 3}-binding properties were determined via a competitive cell binding assay. Mice bearing U87MG tumors were intravenously injected with each of the {sup 64}Cu-labeled peptides, and PET scans were acquired during the first 30 min, and 2 and 4 h after injection. Blocking and ex vivo biodistribution studies were carried out to validate the PET data and confirm the specificity of the tracers. The IC{sub 50} values of NOTA-(PEG){sub 2}-c(RGDfK) and NOTA-PEG{sub 4}-SAA{sub 4}-c(RGDfK) were 444 ± 41 nM and 288 ± 66 nM, respectively. Dynamic PET data of {sup 64}Cu-NOTA-(PEG){sub 2}-c(RGDfK) and {sup 64}Cu-NOTA-PEG{sub 4}-SAA{sub 4}-c(RGDfK) showed similar circulation t{sub 1/2} and peak tumor uptake of about 4 %ID/g for both tracers. Due to its marked hydrophilicity, {sup 64}Cu-NOTA-PEG{sub 4}-SAA{sub 4}-c(RGDfK) provided faster clearance from tumor and normal tissues yet maintained excellent tumor-to-background ratios. Static PET scans at later time-points corroborated the enhanced excretion of the tracer, especially from abdominal organs. Ex vivo biodistribution and receptor blocking studies confirmed the accuracy of the PET data and the integrin α{sub v}β{sub 3}-specificity of the peptides. Our two novel RGD-based radiotracers with optimized pharmacokinetic properties allowed fast, high-contrast PET imaging of tumor-associated integrin α{sub v}β{sub 3}. These tracers may facilitate the imaging of abdominal malignancies, normally precluded by high background uptake. (orig.)

  3. Data on biodistribution and radiation absorbed dose profile of a novel 64Cu-labeled high affinity cell-specific peptide for positron emission tomography imaging of tumor vasculature

    Directory of Open Access Journals (Sweden)

    Joseph R. Merrill

    2016-06-01

    Full Text Available New peptide-based diagnostic and therapeutic approaches hold promise for highly selective targeting of cancer leading to more precise and effective diagnostic and therapeutic modalities. An important feature of these approaches is to reach the tumor tissue while limiting or minimizing the dose to normal organs. In this context, efforts to design and engineer materials with optimal in vivo targeting and clearance properties are important. This Data In Brief article reports on biodistribution and radiation absorbed dose profile of a novel high affinity radiopeptide specific for bone marrow-derived tumor vasculature. Background information on the design, preparation, and in vivo characterization of this peptide-based targeted radiodiagnostic is described in the article “Synthesis and comparative evaluation of novel 64Cu-labeled high affinity cell-specific peptides for positron emission tomography of tumor vasculature” (Merrill et al., 2016 [1]. Here we report biodistribution measurements in mice and calculate the radiation absorbed doses to normal organs using a modified Medical Internal Radiation Dosimetry (MIRD methodology that accounts for physical and geometric factors and cross-organ beta doses.

  4. Improving Tumor Uptake and Pharmacokinetics of 64Cu-Labeled Cyclic RGD Peptide Dimers with Gly3 and PEG4 Linkers

    OpenAIRE

    Shi, Jiyun; Kim, Young-Seung; Zhai, Shizhen; Liu, Zhaofei; Chen, Xiaoyuan; Liu, Shuang

    2009-01-01

    Radiolabeled cyclic RGD (Arg-Gly-Asp) peptides represent a new class of radiotracers with potential for the early tumor detection and non-invasive monitoring of tumor metastasis and therapeutic response in cancer patients. This report describes the synthesis of two cyclic RGD peptide dimer conjugates, DOTA-PEG4-E[PEG4-c(RGDfK)]2 (DOTA-3PEG4-dimer: DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; PEG4 = 15-amino-4,7,10,13-tetraoxapentadecanoic acid) and DOTA-G3-E[G3-c(RGDfK)]2 ...

  5. Comparison of Two Kinds of 64Cu Labelled Octreotide Analogues

    Directory of Open Access Journals (Sweden)

    HAN Zhen-yi1;LIANG Ji-xin1;HU Ji2;LUO Hong-yi1;QING Jing2;CHEN Yu-qing2;LI Guang2;LI Hong-yu1,2

    2016-10-01

    Full Text Available Octreotide analogues DOTA-TOC and DOTA-TATE were labeled with 64Cu. The influences of the ratio of peptide mass to 64Cu activity, pH value, temperature and reaction time on labeling yield were investigated. The optimum labeling was determined. In vitro stability tests in saline and 10% bovine serum had been carried out. Biodistribution of the two radiolabelled compounds in normal mice and Micro PET imaging in nude mice bearing U87MG tumor had been evaluated. The results showed that the labeling yields of 64Cu-DOTA-TOC and 64Cu-DOTA-TATE were higher than 95%. Two kinds of octreotide analogues labeled with 64Cu were quite stable in saline and decomposed slowly in 10% bovine serum at 37 ℃. Biodistribution results in normal mice showed that two 64Cu labelled tracers had similar profiles. Both of the compounds washed out from the blood quickly. High uptake of radioactivity in liver and kidneys indicated the tracers were excreted via both hepatobiliary system and renal system. At the same time, compared to 64Cu-DOTA-TOC, higher radioactivity accumulation of 64Cu-DOTA-TATE in liver and kidneys was observed. Micro PET images of U87MG tumor-bearing nude mice with 64Cu-DOTA-TOC and 64Cu-DOTA-TATE showed the tumors very clearly. The radioactivity uptake of 64Cu-DOTA-TATE in tumor was higher than that of 64Cu-DOTA-TOC. This work has paved the way for further preclinical and clinical application of 64Cu-DOTA-TOC and 64Cu-DOTA-TATE as PET tumor imaging agents.

  6. Evaluation of 64Cu-labeled bifunctional chelate-bombesin conjugates.

    Science.gov (United States)

    Ait-Mohand, Samia; Fournier, Patrick; Dumulon-Perreault, Véronique; Kiefer, Garry E; Jurek, Paul; Ferreira, Cara L; Bénard, François; Guérin, Brigitte

    2011-08-17

    Several bifunctional chelates (BFCs) were investigated as carriers of (64)Cu for PET imaging. The most widely used chelator for (64)Cu labeling of BFCs is DOTA (1,4,7,10-tetraazacyclododecane-N,N',N″,N'''-tretraacetic acid), even though this complex exhibits only moderate in vivo stability. In this study, we prepared a series of alternative chelator-peptide conjugates labeled with (64)Cu, measured in vitro receptor binding affinities in human breast cancer T47D cells expressing the gastrin-releasing peptide receptor (GRPR) and compared their in vivo stability in mice. DOTA-, NOTA-(1,4,7-triazacyclononane-1,4,7-triacetic acid), PCTA-(3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid), and Oxo-DO3A-(1-oxa-4,7,10-triazacyclododecane-4,7,10-triacetic acid) peptide conjugates were prepared using H(2)N-Aoc-[d-Tyr(6),βAla(11),Thi(13),Nle(14)]bombesin(6-14) (BBN) as a peptide template. The BBN moiety was selected since it binds with high affinity to the GRPR, which is overexpressed on human breast cancer cells. A convenient synthetic approach for the attachment of aniline-BFC to peptides on solid support is also presented. To facilitate the attachment of the aniline-PCTA and aniline-Oxo-DO3A to the peptide via an amide bond, a succinyl spacer was introduced at the N-terminus of BBN. The partially protected aniline-BFC (p-H(2)N-Bn-PCTA(Ot-Bu)(3) or p-H(2)N-Bn-DO3A(Ot-Bu)(3)) was then coupled to the resulting N-terminal carboxylic acid preactivated with DEPBT/ClHOBt on resin. After cleavage and purification, the peptide-conjugates were labeled with (64)Cu using [(64)Cu]Cu(OAc)(2) in 0.1 M ammonium acetate buffer at 100 °C for 15 min. Labeling efficacy was >90% for all peptides; Oxo-DO3A-BBN was incubated an additional 150 min at 100 °C to achieve this high yield. Specific activities varied from 76 to 101 TBq/mmol. Competition assays on T47D cells showed that all BFC-BBN complexes retained high affinity for the GRPR. All BFC-BBN (64)Cu

  7. Comparison of DOTA and NODAGA as chelators for 64Cu-labeled immunoconjugates

    International Nuclear Information System (INIS)

    Introduction: Bifunctional chelators have been shown to impact the biodistribution of monoclonal antibody (mAb)-based imaging agents. Recently, radiolabeled 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA)-peptide complexes have demonstrated improved in vivo stability and performance compared to their 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) counterparts. Here, we investigated if similar utility could be achieved with mAbs and compared 64Cu-labeled DOTA and NODAGA-immunoconjugates for the detection of epithelial cell adhesion molecule (EpCAM) in a prostate cancer model. Methods: DOTA and NODAGA-immunoconjugates of an EpCAM targeting mAb (mAb7) were synthesized and radiolabeled with 64Cu (DOTA: 40 °C for 1 hr; NODAGA: 25 °C for 1 hr). The average number of chelators per mAb was quantified by isotopic dilution, and the biological activity of the immunoconjugates was evaluated by flow cytometry and ELISA. Radioligand assays were performed to compare cellular uptake and determine the dissociation constant (Kd) and maximum number of binding sites (Bmax) for the immunoconjugates using DsRed-transfected PC3-cells. A PC3-DsRed xenograft tumor model was established in nude mice and used to perform biodistribution studies to compare organ uptake and pharmacokinetics. Results: 64Cu-DOTA-mAb7 and 64Cu-NODAGA-mAb7 were prepared with chelator/protein ratios of 2–3 and obtained in comparable radiochemical yields ranging from 59 to 71%. Similar immunoreactivity was observed with both agents, and mock labeling studies indicated that incubation at room temperature or 40 °C did not affect potency. 64Cu-NODAGA-mAb7 demonstrated higher in vitro cellular uptake while 64Cu-DOTA-mAb7 had higher Kd and Bmax values. From the biodistribution data, we found similar tumor uptake (13.44 ± 1.21%ID/g and 13.24 ± 4.86%ID/g for 64Cu-DOTA-mAb7 and 64Cu-NODAGA-mAb7, respectively) for both agents at 24 hr, although normal prostate tissue was significantly

  8. 64Cu-labeled phosphonium cations as PET radiotracers for tumor imaging.

    Science.gov (United States)

    Zhou, Yang; Liu, Shuang

    2011-08-17

    Alteration in mitochondrial transmembrane potential (ΔΨ(m)) is an important characteristic of cancer. The observation that the enhanced negative mitochondrial potential is prevalent in tumor cell phenotype provides a conceptual basis for development of mitochondrion-targeting therapeutic drugs and molecular imaging probes. Since plasma and mitochondrial potentials are negative, many delocalized organic cations, such as rhodamine-123 and (3)H-tetraphenylphosphonium, are electrophoretically driven through these membranes, and able to localize in the energized mitochondria of tumor cells. Cationic radiotracers, such as (99m)Tc-Sestamibi and (99m)Tc-Tetrofosmin, have been clinically used for diagnosis of cancer by single photon emission computed tomography (SPECT) and noninvasive monitoring of the multidrug resistance (MDR) transport function in tumors of different origin. However, their diagnostic and prognostic values are often limited due to their insufficient tumor localization (low radiotracer tumor uptake) and high radioactivity accumulation in the chest and abdominal regions (low tumor selectivity). In contrast, the (64)Cu-labeled phosphonium cations represent a new class of PET (positron emission tomography) radiotracers with good tumor uptake and high tumor selectivity. This review article will focus on our recent experiences in evaluation of (64)Cu-labeled phosphonium cations as potential PET radiotracers. The main objective is to illustrate the impact of radiometal chelate on physical, chemical, and biological properties of (64)Cu radiotracers. It will also discuss some important issues related to their tumor selectivity and possible tumor localization mechanism.

  9. [64Cu]-Labelled Trastuzumab: Optimisation of Labelling by DOTA and NODAGA Conjugation and Initial Evaluation in Mice

    DEFF Research Database (Denmark)

    Schjøth-Eskesen, Christina; Nielsen, Carsten Haagen; Heissel, Søren;

    2015-01-01

    The human epidermal growth factor receptor-2 (HER2) is overexpressed in 20-30% of all breast cancer cases, leading to increased cell proliferation, growth and migration. The monoclonal antibody, trastuzumab, binds to HER2 and is used for treatment of HER2-positive breast cancer. Trastuzumab has...... previously been labelled with copper-64 by conjugation of a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator. The aim of this study was to optimise the (64) Cu-labelling of DOTA-trastuzumab and as the first to produce and compare with its 1,4,7-triazacyclononane, 1-glutaric acid-5...

  10. 64Cu-labeled alpha-melanocyte-stimulating hormone analog for microPET imaging of melanocortin 1 receptor expression.

    Science.gov (United States)

    Cheng, Zhen; Xiong, Zhengming; Subbarayan, Murugesan; Chen, Xiaoyuan; Gambhir, Sanjiv Sam

    2007-01-01

    The alpha-melanocyte-stimulating hormone (alpha-MSH) receptor (melanocortin type 1 receptor, or MC1R) plays an important role in the development and growth of melanoma cells. It was found that MC1R was overexpressed on most murine and human melanoma, making it a promising molecular target for melanoma imaging and therapy. Radiolabeled alpha-MSH peptide and its analogs that can specifically bind with MC1R have been extensively explored for developing novel agents for melanoma detection and radionuclide therapy. The goal of this study was to evaluate a 64Cu-labeled alpha-MSH analog, Ac-Nle-Asp-His-D-Phe-Arg-Trp-Gly-Lys(DOTA)-NH2 (DOTA-NAPamide), as a potential molecular probe for microPET imaging of melanoma and MC1R expression in melanoma xenografted mouse models. 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) conjugated NAPamide was synthesized and radiolabeled with 64Cu (t1/2=12 h) in NH4OAc (0.1 M; pH 5.5) buffered solution for 60 min at 50 degrees C. Cell culture studies reveal rapid and high uptake and internalization of 64Cu-DOTA-NAPamide in B16F10 cells. Over 90% of receptor-bound tracer is internalized at 3 h incubation. A cellular retention study demonstrates that the receptor-bound 64Cu-DOTA-NAPamide is slowly released from the B16F10 cells into the medium; 66% of the radioactivity is still associated with the cells even after 3 h incubation. The biodistribution of 64Cu-DOTA-NAPamide was then investigated in C57BL/6 mice bearing subcutaneous murine B16F10 melanoma tumors with high capacity of MC1R and Fox Chase Scid mice bearing human A375M melanoma with a relatively low number of MC1R receptors. Tumor uptake values of 64Cu-DOTA-NAPamide are found to be 4.63 +/- 0.45% and 2.49 +/- 0.31% ID/g in B16F10 and A375M xenografted melanoma at 2 h postinjection (pi), respectively. The B16F10 tumor uptake at 2 h pi is further inhibited to 2.29 +/- 0.24% ID/g, while A375M tumor uptake at 2 h pi remains 2.20 +/- 0.41% ID/g with a coinjection of excess

  11. A Novel PET Imaging Using 64Cu-Labeled Monoclonal Antibody against Mesothelin Commonly Expressed on Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kazuko Kobayashi

    2015-01-01

    Full Text Available Mesothelin (MSLN is a 40-kDa cell differentiation-associated glycoprotein appearing with carcinogenesis and is highly expressed in many human cancers, including the majority of pancreatic adenocarcinomas, ovarian cancers, and mesotheliomas, while its expression in normal tissue is limited to mesothelial cells lining the pleura, pericardium, and peritoneum. Clone 11-25 is a murine hybridoma secreting monoclonal antibody (mAb against human MSLN. In this study, we applied the 11-25 mAb to in vivo imaging to detect MSLN-expressing tumors. In in vitro and ex vivo immunochemical studies, we demonstrated specificity of 11-25 mAb to membranous MSLN expressed on several pancreatic cancer cells. We showed the accumulation of Alexa Fluor 750-labeled 11-25 mAb in MSLN-expressing tumor xenografts in athymic nude mice. Then, 11-25 mAb was labeled with 64Cu via a chelating agent DOTA and was used in both in vitro cell binding assay and in vivo positron emission tomography (PET imaging in the tumor-bearing mice. We confirmed that 64Cu-labeled 11-25 mAb highly accumulated in MSLN-expressing tumors as compared to MSLN-negative ones. The 64Cu-labeled 11-25 mAb is potentially useful as a PET probe capable of being used for wide range of tumors, rather than 18F-FDG that occasionally provides nonspecific accumulation into the inflammatory lesions.

  12. Investigation into {sup 64}Cu-labeled Bis(selenosemicarbazone) and Bis(thiosemicarbazone) complexes as hypoxia imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    McQuade, Paul [Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Martin, Katherine E. [Biosciences Department, University of Kent, Canterbury CT2 7NJ (United Kingdom); Castle, Thomas C. [Biosciences Department, University of Kent, Canterbury CT2 7NJ (United Kingdom); Went, Michael J. [Biosciences Department, University of Kent, Canterbury CT2 7NJ (United Kingdom); Blower, Philip J. [Biosciences Department, University of Kent, Canterbury CT2 7NJ (United Kingdom); Welch, Michael J. [Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110 (United States); Lewis, Jason S. [Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110 (United States)]. E-mail: j.s.lewis@wustl.edu

    2005-02-01

    Background: Cu-diacetyl-bis(N{sup 4}-methylthiosemicarbazone) [Cu-ATSM], although excellent for oncology applications, may not be suitable for delineating cardiovascular or neurological hypoxia. For this reason, new Cu hypoxia positron emission tomography (PET) imaging agents are being examined to search for a higher selectivity for hypoxic or ischemic tissue at higher oxygen concentrations found in these tissues. Two approaches are to increase alkylation or to replace the sulfur atoms with selenium, resulting in the formation of selenosemicarbazones. Methods: Three {sup 64}Cu-labeled selenosemicarbazone complexes were synthesized and one was screened for hypoxia selectivity in vitro using EMT-6 mouse mammary carcinoma cells. Rodent biodistribution and small animal PET images were obtained from BALB/c mice implanted with EMT-6 tumors. One alkylated thiosemicarbazone was synthesized and examined. Results: Of the three bis(selenosemicarbazone) ligands synthesized and examined, only {sup 64}Cu-diacetyl-bis(selenosemicarbazone) [{sup 64}Cu-ASSM] was isolated in high-enough radiochemical purity to undertake cell uptake experiments where uptake was shown to be independent of oxygen concentration. The bis(thiosemicarbazone) complex synthesized, {sup 64}Cu-diacetyl-bis(N{sup 4}-ethylthiosemicarbazone) [{sup 64}Cu-ATSE], showed hypoxia selectivity similar to {sup 64}Cu-ATSM although at a higher oxygen concentration. Biodistribution studies for {sup 64}Cu-ASSM and {sup 64}Cu-ATSE showed high tumor uptake at 20 min ({sup 64}Cu-ASSM, 10.33{+-}0.78% ID/g; {sup 64}Cu-ATSE, 7.71{+-}0.46% ID/g). PET images of EMT-6 tumor-bearing mice visualized the tumor with {sup 64}Cu-ATSE and revealed hypoxia selectivity consistent with the in vitro data. Conclusion: Of the compounds synthesized, only {sup 64}Cu-ASSM and {sup 64}Cu-ATSE could be examined in vitro and in vivo. Although the stability of bis(selenosemicarbazone) complexes increased upon addition of methyl groups to the diimine

  13. Investigation into 64Cu-labeled Bis(selenosemicarbazone) and Bis(thiosemicarbazone) complexes as hypoxia imaging agents

    International Nuclear Information System (INIS)

    Background: Cu-diacetyl-bis(N4-methylthiosemicarbazone) [Cu-ATSM], although excellent for oncology applications, may not be suitable for delineating cardiovascular or neurological hypoxia. For this reason, new Cu hypoxia positron emission tomography (PET) imaging agents are being examined to search for a higher selectivity for hypoxic or ischemic tissue at higher oxygen concentrations found in these tissues. Two approaches are to increase alkylation or to replace the sulfur atoms with selenium, resulting in the formation of selenosemicarbazones. Methods: Three 64Cu-labeled selenosemicarbazone complexes were synthesized and one was screened for hypoxia selectivity in vitro using EMT-6 mouse mammary carcinoma cells. Rodent biodistribution and small animal PET images were obtained from BALB/c mice implanted with EMT-6 tumors. One alkylated thiosemicarbazone was synthesized and examined. Results: Of the three bis(selenosemicarbazone) ligands synthesized and examined, only 64Cu-diacetyl-bis(selenosemicarbazone) [64Cu-ASSM] was isolated in high-enough radiochemical purity to undertake cell uptake experiments where uptake was shown to be independent of oxygen concentration. The bis(thiosemicarbazone) complex synthesized, 64Cu-diacetyl-bis(N4-ethylthiosemicarbazone) [64Cu-ATSE], showed hypoxia selectivity similar to 64Cu-ATSM although at a higher oxygen concentration. Biodistribution studies for 64Cu-ASSM and 64Cu-ATSE showed high tumor uptake at 20 min (64Cu-ASSM, 10.33±0.78% ID/g; 64Cu-ATSE, 7.71±0.46% ID/g). PET images of EMT-6 tumor-bearing mice visualized the tumor with 64Cu-ATSE and revealed hypoxia selectivity consistent with the in vitro data. Conclusion: Of the compounds synthesized, only 64Cu-ASSM and 64Cu-ATSE could be examined in vitro and in vivo. Although the stability of bis(selenosemicarbazone) complexes increased upon addition of methyl groups to the diimine backbone, the fully alkylated species, 64Cu-ASSM, demonstrated no hypoxia selectivity. However

  14. 64Cu标记两种奥曲肽类似物的比较%Comparison of Two Kinds of 64 Cu Labelled Octreotide Analogues

    Institute of Scientific and Technical Information of China (English)

    韩振义; 梁积新; 胡骥; 罗洪义; 卿晶; 陈玉清; 李光; 李洪玉

    2016-01-01

    Octreotide analogues DOTA-TOC and DOTA-TATE were labeled with 64Cu . The influences of the ratio of peptide mass to 64 Cu activity ,pH value ,temperature and reaction time on labeling yield were investigated . The optimum labeling was deter-mined .In v itro stability tests in saline and 10% bovine serum had been carried out .Bio-distribution of the two radiolabelled compounds in normal mice and Micro PET imaging in nude mice bearing U87MG tumor had been evaluated .The results showed that the labeling yields of 64Cu-DOTA-TOC and 64Cu-DOTA-TATE were higher than 95% .Two kinds of octreotide analogues labeled with 64 Cu were quite stable in saline and decom-posed slowly in 10% bovine serum at 37 ℃ .Biodistribution results in normal mice showed that two 64 Cu labelled tracers had similar profiles . Both of the compounds washed out from the blood quickly .High uptake of radioactivity in liver and kidneys indicated the tracers were excreted via both hepatobiliary system and renal system .At the same time ,compared to 64Cu-DOTA-TOC , higher radioactivity accumulation of 64Cu-DOTA-TATE in liver and kidneys was observed .Micro PET images of U87MG tumor-bearing nude mice with 64Cu-DOTA-TOC and 64Cu-DOTA-TATE showed the tumors very clearly .The radioactivity uptake of 64Cu-DOTA-TATE in tumor was high-er than that of 64Cu-DOTA-TOC .This work has paved the way for further preclinical and clinical application of 64Cu-DOTA-TOC and 64Cu-DOTA-TATE as PET tumor imaging agents .%对奥曲肽类似物DOTA-TOC和DOTA-TATE进行64 Cu标记,研究多肽用量与64 Cu活度比值、p H、反应温度、反应时间对标记率的影响,优化标记条件;考察标记物在10%胎牛血清与生理盐水中的体外稳定性;评价标记物在正常小鼠体内分布情况以及在 U87M G人脑神经胶质瘤中的摄取情况。结果表明:64Cu-DOTA-TOC和64Cu-DOTA-TATE标记率均>95%;在生理盐水中具有良好稳定性,10%胎牛血清中发生缓慢分解;

  15. 64Cu-Labeled Alpha-Melanocyte-Stimulating Hormone Analog for MicroPET Imaging of Melanocortin 1 Receptor Expression

    OpenAIRE

    CHENG Zhen; Xiong, Zhengming; Subbarayan, Murugesan; Chen, Xiaoyuan; Gambhir, Sanjiv Sam

    2007-01-01

    The alpha-melanocyte-stimulating hormone (α-MSH) receptor (melanocortin type 1 receptor, or MC1R) plays an important role in the development and growth of melanoma cells. It was found that MC1R was overexpressed on most murine and human melanoma, making it a promising molecular target for melanoma imaging and therapy. Radiolabeled α-MSH peptide and its analogs that can specifically bind with MC1R have been extensively explored for developing novel agents for melanoma detection and radionuclid...

  16. Quantitative PET of EGFR expression in xenograft-bearing mice using {sup 64}Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Weibo; Chen, Kai; He, Lina; Cao, Qizhen; Chen, Xiaoyuan [Stanford University School of Medicine, The Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford, CA (United States); Koong, Albert [Stanford University School of Medicine, Department of Radiation Oncology, Stanford, CA (United States)

    2007-06-15

    Cetuximab, a chimeric monoclonal antibody targeting epidermal growth factor receptor (EGFR) on the surface of cancer cells, was approved by the FDA to treat patients with metastatic colorectal cancer. It is currently also in advanced-stage development for the treatment of several other solid tumors. Here we report for the first time the quantitative positron emission tomography (PET) imaging of EGFR expression in xenograft-bearing mice using {sup 64}Cu-labeled cetuximab. We conjugated cetuximab with macrocyclic chelating agent 1,4,7,10-tetraazadodecane-N,N',N'',N'''-tetraacetic acid (DOTA), labeled with {sup 64}Cu, and tested the resulting {sup 64}Cu-DOTA-cetuximab in seven xenograft tumor models. The tracer uptake measured by PET was correlated with the EGFR expression quantified by western blotting. The estimated human dosimetry based on the PET data in Sprague-Dawley rats was also calculated. MicroPET imaging showed that {sup 64}Cu-DOTA-cetuximab had increasing tumor activity accumulation over time in EGFR-positive tumors but relatively low uptake in EGFR-negative tumors at all times examined (<5%ID/g). There was a good correlation (R {sup 2} = 0.80) between the tracer uptake (measured by PET) and the EGFR expression level (measured by western blotting). Human dosimetry estimation indicated that the tracer may be safely administered to human patients for tumor diagnosis, with the dose-limiting organ being the liver. The success of EGFR-positive tumor imaging using {sup 64}Cu-DOTA-cetuximab can be translated into the clinic to characterize the pharmacokinetics, to select the right population of patients for EGFR-targeted therapy, to monitor the therapeutic efficacy of anti-EGFR treatment, and to optimize the dosage of either cetuximab alone or cetuximab in combination with other therapeutic agents. (orig.)

  17. Differential self-assembly behaviors of cyclic and linear peptides.

    Science.gov (United States)

    Choi, Sung-ju; Jeong, Woo-jin; Kang, Seong-Kyun; Lee, Myongsoo; Kim, Eunhye; Ryu, Du Yeol; Lim, Yong-beom

    2012-07-01

    Here we ask the fundamental questions about the effect of peptide topology on self-assembly. The study revealed that the self-assembling behaviors of cyclic and linear peptides are significantly different in several respects, in addition to sharing several similarities. Their clear differences included the morphological dissimilarities of the self-assembled nanostructures and their thermal stability. The similarities include their analogous critical aggregation concentration values and cytotoxicity profiles, which are in fact closely related. We believe that understanding topology-dependent self-assembly behavior of peptides is important for developing tailor-made self-assembled peptide nanostructures.

  18. Enzymatic cyclization of linear peptide to plant cyclopeptide heterophyllin B

    Institute of Scientific and Technical Information of China (English)

    JIA; Aiqun; LI; Xiang; TAN; Ninghua; LIU; Xiaozhu; SHEN; Yuemao; ZHOU; Jun

    2006-01-01

    The crude enzyme (PH-1) isolated from Pseudostellaria heterophylla by our group has catalyzed enzymatic cyclization of linear peptide NH2-Gly1-Gly2-Leu-Pro-Pro-Pro-Ile-Phe-COOH (4) into cyclopeptide heterophyllin B (HB) from plant for the first time. To ensure this reaction, some analytical methods including TLC, HPLC, MS, NMR, and 13C labeling were used to prove that the reaction of substrate 4 sharing residue of NH-Phe-Gly-CO was successful.

  19. Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides.

    Science.gov (United States)

    Leikoski, Niina; Liu, Liwei; Jokela, Jouni; Wahlsten, Matti; Gugger, Muriel; Calteau, Alexandra; Permi, Perttu; Kerfeld, Cheryl A; Sivonen, Kaarina; Fewer, David P

    2013-08-22

    Ribosomal peptides are produced through the posttranslational modification of short precursor peptides. Cyanobactins are a growing family of cyclic ribosomal peptides produced by cyanobacteria. However, a broad systematic survey of the genetic capacity to produce cyanobactins is lacking. Here we report the identification of 31 cyanobactin gene clusters from 126 genomes of cyanobacteria. Genome mining suggested a complex evolutionary history defined by horizontal gene transfer and rapid diversification of precursor genes. Extensive chemical analyses demonstrated that some cyanobacteria produce short linear cyanobactins with a chain length ranging from three to five amino acids. The linear peptides were N-prenylated and O-methylated on the N and C termini, respectively, and named aeruginosamide and viridisamide. These findings broaden the structural diversity of the cyanobactin family to include highly modified linear peptides with rare posttranslational modifications. PMID:23911585

  20. PET/CT Based In Vivo Evaluation of 64Cu Labelled Nanodiscs in Tumor Bearing Mice.

    Directory of Open Access Journals (Sweden)

    Pie Huda

    Full Text Available 64Cu radiolabelled nanodiscs based on the 11 α-helix MSP1E3D1 protein and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine lipids were, for the first time, followed in vivo by positron emission tomography for evaluating the biodistribution of nanodiscs. A cancer tumor bearing mouse model was used for the investigations, and it was found that the approximately 13 nm nanodiscs, due to their size, permeate deeply into cancer tissue. This makes them promising candidates for both drug delivery purposes and as advanced imaging agents. For the radiolabelling, a simple approach for 64Cu radiolabelling of proteins via a chelating agent, DOTA, was developed. The reaction was performed at sufficiently mild conditions to be compatible with labelling of the protein part of a lipid-protein particle while fully conserving the particle structure including the amphipathic protein fold.

  1. PET/CT Based In Vivo Evaluation of 64Cu Labelled Nanodiscs in Tumor Bearing Mice

    Science.gov (United States)

    Huda, Pie; Binderup, Tina; Pedersen, Martin Cramer; Midtgaard, Søren Roi; Elema, Dennis Ringkjøbing; Kjær, Andreas; Jensen, Mikael; Arleth, Lise

    2015-01-01

    64Cu radiolabelled nanodiscs based on the 11 α-helix MSP1E3D1 protein and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine lipids were, for the first time, followed in vivo by positron emission tomography for evaluating the biodistribution of nanodiscs. A cancer tumor bearing mouse model was used for the investigations, and it was found that the approximately 13 nm nanodiscs, due to their size, permeate deeply into cancer tissue. This makes them promising candidates for both drug delivery purposes and as advanced imaging agents. For the radiolabelling, a simple approach for 64Cu radiolabelling of proteins via a chelating agent, DOTA, was developed. The reaction was performed at sufficiently mild conditions to be compatible with labelling of the protein part of a lipid-protein particle while fully conserving the particle structure including the amphipathic protein fold. PMID:26132074

  2. PET/CT Based In Vivo Evaluation of 64Cu Labelled Nanodiscs in Tumor Bearing Mice

    DEFF Research Database (Denmark)

    Huda, Pie; Binderup, Tina; Pedersen, Martin Cramer;

    2015-01-01

    used for the investigations, and it was found that the approximately 13 nm nanodiscs, due to their size, permeate deeply into cancer tissue. This makes them promising candidates for both drug delivery purposes and as advanced imaging agents. For the radiolabelling, a simple approach for 64Cu...

  3. Effect of intratumoral administration on biodistribution of 64Cu-labeled nanoshells

    Directory of Open Access Journals (Sweden)

    Xie H

    2012-05-01

    Full Text Available Huan Xie1, Beth Goins2, Ande Bao2, Zheng Jim Wang3, William T Phillips21Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 2Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 3MPI Research Inc, Mattawan, MIBackground: Gold nanoshells are excellent agents for photothermal ablation cancer therapy and are currently under clinical trial for solid tumors. Previous studies showed that passive delivery of gold nanoshells through intravenous administration resulted in limited tumor accumulation, which represents a major challenge for this therapy. In this report, the impact of direct intratumoral administration on the pharmacokinetics and biodistribution of the nanoshells was systematically investigated.Methods: The gold nanoshells were labeled with the radionuclide, copper-64 (64Cu. Intratumoral infusion of 64Cu-nanoshells and two controls, ie, 64Cu-DOTA (1,4,7,10-tetraazaciclododecane-1,4,7,10-tetraacetic acid and 64Cu-DOTA-PEG (polyethylene glycol, as well as intravenous injection of 64Cu-nanoshells were performed in nude rats, each with a head and neck squamous cell carcinoma xenograft. The pharmacokinetics was determined by radioactive counting of serial blood samples collected from the rats at different time points post-injection. Using positron emission tomography/computed tomography imaging, the in vivo distribution of 64Cu-nanoshells and the controls was monitored at various time points after injection. Organ biodistribution in the rats at 46 hours was analyzed by radioactive counting and compared between the different groups.Results: The resulting pharmacokinetic curves indicated a similar trend between the intratumorally injected agents, but a significant difference with the intravenously injected 64Cu-nanoshells. Positron emission tomography images and organ biodistribution results on rats after intratumoral administration showed higher retention of 64Cu-nanoshells in tumors and less concentration in other healthy organs, with a significant difference from the controls. It was also found that, compared with intravenous injection, tumor concentrations of 64Cu-nanoshells improved substantially and were stable at 44 hours post-injection.Conclusion: There was a higher intratumoral retention of 64Cu-nanoshells and a lower concentration in other healthy tissues, suggesting that intratumoral administration is a potentially better approach for nanoshell-based photothermal therapy.Keywords: gold nanoshells, intratumoral administration, positron emission tomography, biodistribution

  4. PET/CT Based In Vivo Evaluation of 64Cu Labelled Nanodiscs in Tumor Bearing Mice

    DEFF Research Database (Denmark)

    Huda, Pie; Binderup, Tina; Pedersen, Martin Cramer;

    2015-01-01

    64Cu radiolabelled nanodiscs based on the 11 α-helix MSP1E3D1 protein and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine lipids were, for the first time, followed in vivo by positron emission tomography for evaluating the biodistribution of nanodiscs. A cancer tumor bearing mouse model...

  5. Recombinant peptide replicates immunogenicity of synthetic linear peptide chimera for use as pre-erythrocytic stage malaria vaccine

    OpenAIRE

    Silva-Flannery, Luciana M.; Cabrera-Mora, Monica; Jiang, Jianlin; Moreno, Alberto

    2008-01-01

    Synthetic linear peptide chimeras (LPCscys+) show promise as delivery platforms for malaria subunit vaccines. Maximal immune response to LPCscys+ in rodent malaria models depends upon formation of cross-linkages to generate homopolymers, presenting challenges for vaccine production. To replicate the immunogenicity of LPCscys+ using a recombinant approach, we designed a recombinant LPC (rLPC) based on Plasmodium yoelii circumsporozoite protein-specific sequences of 208 amino acids consisting o...

  6. Systematic Comparisons of Formulations of Linear Oligolysine Peptides with siRNA and Plasmid DNA.

    Science.gov (United States)

    Kwok, Albert; McCarthy, David; Hart, Stephen L; Tagalakis, Aristides D

    2016-05-01

    The effects of lysine peptide lengths on DNA and siRNA packaging and delivery were studied using four linear oligolysine peptides with 8 (K8), 16 (K16), 24 (K24) and 32 (K32) lysines. Oligolysine peptides with 16 lysines or longer were effective for stable monodisperse particle formation and optimal transfection efficiency with plasmid DNA (pDNA), but K8 formulations were less stable under anionic heparin challenge and consequently displayed poor transfection efficiency. However, here we show that the oligolysines were not able to package siRNA to form stable complexes, and consequently, siRNA transfection was unsuccessful. These results indicate that the physical structure and length of cationic peptides and their charge ratios are critical parameters for stable particle formation with pDNA and siRNA and that without packaging, delivery and transfection cannot be achieved. PMID:26684657

  7. Plasmodium vivax Promiscuous T-Helper Epitopes Defined and Evaluated as Linear Peptide Chimera Immunogens

    Science.gov (United States)

    Caro-Aguilar, Ivette; Rodríguez, Alexandra; Calvo-Calle, J. Mauricio; Guzmán, Fanny; De la Vega, Patricia; Elkin Patarroyo, Manuel; Galinski, Mary R.; Moreno, Alberto

    2002-01-01

    Clinical trials of malaria vaccines have confirmed that parasite-derived T-cell epitopes are required to elicit consistent and long-lasting immune responses. We report here the identification and functional characterization of six T-cell epitopes that are present in the merozoite surface protein-1 of Plasmodium vivax (PvMSP-1) and bind promiscuously to four different HLA-DRB1∗ alleles. Each of these peptides induced lymphoproliferative responses in cells from individuals with previous P. vivax infections. Furthermore, linear-peptide chimeras containing the promiscuous PvMSP-1 T-cell epitopes, synthesized in tandem with the Plasmodium falciparum immunodominant circumsporozoite protein (CSP) B-cell epitope, induced high specific antibody titers, cytokine production, long-lasting immune responses, and immunoglobulin G isotype class switching in BALB/c mice. A linear-peptide chimera containing an allele-restricted P. falciparum T-cell epitope with the CSP B-cell epitope was not effective. Two out of the six promiscuous T-cell epitopes exhibiting the highest anti-peptide response also contain B-cell epitopes. Antisera generated against these B-cell epitopes recognize P. vivax merozoites in immunofluorescence assays. Importantly, the anti-peptide antibodies generated to the CSP B-cell epitope inhibited the invasion of P. falciparum sporozoites into human hepatocytes. These data and the simplicity of design of the chimeric constructs highlight the potential of multimeric, multistage, and multispecies linear-peptide chimeras containing parasite promiscuous T-cell epitopes for malaria vaccine development. PMID:12065487

  8. Mathematical aspects of the kinetics of formation and degradation of linear peptide or protein aggregates.

    Science.gov (United States)

    Zhdanov, Vladimir P

    2016-08-01

    In cells, peptides and proteins are sometimes prone to aggregation. In neurons, for example, amyloid β peptides form plaques related to Alzheimer's disease (AD). The corresponding kinetic models either ignore or do not pay attention to degradation of these species. Here, the author proposes a generic kinetic model describing formation and degradation of linear aggregates. The process is assumed to occur via reversible association of monomers and attachment of monomers to or detachment from terminal parts of aggregates. Degradation of monomers is described as a first-order process. Degradation of aggregates is considered to occur at their terminal and internal parts with different rates and these steps are described by first-order equations as well. Irrespective of the choice of the values of the rate constants, the model predicts that eventually the system reaches a stable steady state with the aggregate populations rapidly decreasing with increasing size at large sizes. The corresponding steady-state size distributions of aggregates are illustrated in detail. The transient kinetics are also shown. The observation of AD appears, however, to indicate that the peptide production becomes eventually unstable, i.e., the growth of the peptide population is not properly limited. This is expected to be related to the specifics of the genetic networks controlling the peptide production. Following this line, two likely general networks with, respectively, global negative and positive feedbacks in the peptide production are briefly discussed. PMID:27132946

  9. PET imaging detection of macrophages with a formyl peptide receptor antagonist

    International Nuclear Information System (INIS)

    Macrophages are a major inflammatory cell type involved in the development and progression of many important chronic inflammatory diseases. We previously found that apolipoprotein E-deficient (Apoe−/−) mice with the C57BL/6 (B6) background develop type 2 diabetes mellitus (T2DM) and accelerated atherosclerosis when fed a Western diet and that there are increased macrophage infiltrations in pancreatic islets and aorta. The formyl peptide receptor 1 (FPR1) is abundantly expressed on the surface of macrophages. The purpose of this study was to evaluate the applicability of cinnamoyl-F-(D)L-F-(D)L-F (cFLFLF), a natural FPR1 antagonist, to detection of macrophages in the pancreatic islets and aorta. 64Cu labeled cFLFLF and 18 F-fluorodeoxyglucose (FDG) were administered to mice with or without T2DM. Diabetic mice showed an increased 18FDG uptake in the subcutaneous fat compared with control mice, but pancreatic uptake was minimal for either group. In contrast, diabetic mice exhibited visually noticeable more cFLFLF-64Cu retention in pancreas and liver than control mice. The heart and pancreas isolated from diabetic mice contained more macrophages and showed stronger PET signals than those of control mice. Flow cytometry analysis revealed the presence of macrophages but not neutrophils in pancreatic islets. Real-time PCR analysis revealed much higher FPR1 expression in pancreatic islets of diabetic over control mice. Autoradiography and immunohistochemical analysis confirmed abundant FPR1 expression in atherosclerotic lesions. Thus, 64Cu-labeled cFLFLF peptide is a more effective PET agent for detecting macrophages compared to FDG

  10. HPLC monitoring of spontaneous non-linear peptidization dynamics of selected amino acids in solution.

    Science.gov (United States)

    Godziek, Agnieszka; Maciejowska, Anna; Sajewicz, Mieczysław; Kowalska, Teresa

    2015-03-01

    This is our new study in a series of publications devoted to exploration of applicability of high-performance liquid chromatography (HPLC) to providing answers to difficult questions from the area of the reaction kinetics and mechanisms with non-linear reactions. Although an excellent analytical performance of HPLC is an indisputable fact, so far its performance as a tool in the kinetic and mechanistic studies has been tested to a lesser extent. In our earlier studies, spontaneous peptidization dynamics of amino acids in solution was demonstrated by means of HPLC upon a few amino acid examples, and on that basis a theoretical model has been developed, anticipating an interdependence of dynamics on chemical structures of amino acids involved. In order to expand the spectrum of experimentally investigated amino acid cases, in this study we present the results valid for three novel amino acids of significant life sciences importance, which differ in terms of peptidization dynamics. Experimental evidence originates from the achiral HPLC with the evaporative light scattering detection and MS detection. A conclusion is drawn that different spontaneous peptidization dynamics of amino acids may significantly influence chemical composition of proteins encountered in living organisms. Hence, a need emerges for systematic physicochemical studies on spontaneous non-linear peptidization dynamics of proteinogenic amino acids in liquid abiotic (but also in the biotic) systems.

  11. Linear and nonlinear optical waveguiding in bio-inspired peptide nanotubes.

    Science.gov (United States)

    Handelman, Amir; Apter, Boris; Turko, Nir; Rosenman, Gil

    2016-01-01

    Unique linear and nonlinear optical properties of bioinspired peptide nanostructures such as wideband transparency and high second-order nonlinear optical response, combined with elongated tubular shape of variable size and rapid self-assembly fabrication process, make them promising for diverse bio-nano-photonic applications. This new generation of nanomaterials of biological origin possess physical properties similar to those of biological structures. Here, we focus on new specific functionality of ultrashort peptide nanotubes to guide light at fundamental and second-harmonic generation (SHG) frequency in horizontal and vertical peptide nanotubes configurations. Conducted simulations and experimental data show that these self-assembled linear and nonlinear optical bio-waveguides provide strong optical power confinement factor, demonstrate pronounced directionality of SHG and high conversion efficiency of SHG ∼10(-5). Our study gives new insight on physics of light propagation in nanostructures of biological origin and opens the avenue towards new and unexpected applications of these waveguiding effects in bio-nanomaterials both for biomedical nonlinear microscopy imaging recognition and development of novel integrated nanophotonic devices.

  12. Design and evaluation of antimalarial peptides derived from prediction of short linear motifs in proteins related to erythrocyte invasion.

    Directory of Open Access Journals (Sweden)

    Alessandra Bianchin

    Full Text Available The purpose of this study was to investigate the blood stage of the malaria causing parasite, Plasmodium falciparum, to predict potential protein interactions between the parasite merozoite and the host erythrocyte and design peptides that could interrupt these predicted interactions. We screened the P. falciparum and human proteomes for computationally predicted short linear motifs (SLiMs in cytoplasmic portions of transmembrane proteins that could play roles in the invasion of the erythrocyte by the merozoite, an essential step in malarial pathogenesis. We tested thirteen peptides predicted to contain SLiMs, twelve of them palmitoylated to enhance membrane targeting, and found three that blocked parasite growth in culture by inhibiting the initiation of new infections in erythrocytes. Scrambled peptides for two of the most promising peptides suggested that their activity may be reflective of amino acid properties, in particular, positive charge. However, one peptide showed effects which were stronger than those of scrambled peptides. This was derived from human red blood cell glycophorin-B. We concluded that proteome-wide computational screening of the intracellular regions of both host and pathogen adhesion proteins provides potential lead peptides for the development of anti-malarial compounds.

  13. Differential dynamic engagement within 24 SH3 domain: peptide complexes revealed by co-linear chemical shift perturbation analysis.

    Directory of Open Access Journals (Sweden)

    Elliott J Stollar

    Full Text Available There is increasing evidence for the functional importance of multiple dynamically populated states within single proteins. However, peptide binding by protein-protein interaction domains, such as the SH3 domain, has generally been considered to involve the full engagement of peptide to the binding surface with minimal dynamics and simple methods to determine dynamics at the binding surface for multiple related complexes have not been described. We have used NMR spectroscopy combined with isothermal titration calorimetry to comprehensively examine the extent of engagement to the yeast Abp1p SH3 domain for 24 different peptides. Over one quarter of the domain residues display co-linear chemical shift perturbation (CCSP behavior, in which the position of a given chemical shift in a complex is co-linear with the same chemical shift in the other complexes, providing evidence that each complex exists as a unique dynamic rapidly inter-converting ensemble. The extent the specificity determining sub-surface of AbpSH3 is engaged as judged by CCSP analysis correlates with structural and thermodynamic measurements as well as with functional data, revealing the basis for significant structural and functional diversity amongst the related complexes. Thus, CCSP analysis can distinguish peptide complexes that may appear identical in terms of general structure and percent peptide occupancy but have significant local binding differences across the interface, affecting their ability to transmit conformational change across the domain and resulting in functional differences.

  14. Synthesis of a chiral amino acid with bicyclo[1.1.1]pentane moiety and its incorporation into linear and cyclic antimicrobial peptides.

    Science.gov (United States)

    Pritz, Stephan; Pätzel, Michael; Szeimies, Günter; Dathe, Margitta; Bienert, Michael

    2007-06-01

    The synthesis of the lipophilic chiral amino acid 1 bearing the bicyclo[1.1.1]pentane moiety is described. Linear and cyclic hexapeptides of the type Arg-Arg-Xaa-Yaa-Arg-Phe containing 1 instead of one or two tryptophan residues are prepared by solid phase peptide synthesis and the antimicrobial and hemolytic activity of the peptides obtained are discussed.

  15. Linear short histidine and cysteine modified arginine peptides constitute a potential class of DNA delivery agents.

    Science.gov (United States)

    Mann, Anita; Shukla, Vasundhara; Khanduri, Richa; Dabral, Spoorti; Singh, Harpal; Ganguli, Munia

    2014-03-01

    The success of gene therapy relies on the development of safe and efficient multifunctional carriers of nucleic acids that can overcome extra- and intracellular barriers, protect the nucleic acid and mediate its release at the desired site allowing gene expression. Peptides bear unique properties that are indispensable for any carrier, e.g., they can mediate DNA condensation, cellular targeting, membrane translocation, endosomal escape and nuclear localization. In an effort to design a multifunctional peptide, we have modified an arginine homopeptide R16 by replacement of seven arginines with histidines and addition of one cysteine at each end respectively to impart endosomal escape property while maintaining the DNA condensation and release balance. Addition of histidines imparts endosomal escape property to arginine homopeptide, but their arrangement with respect to arginines is more critical in controlling DNA condensation, release and transfection efficiency. Intriguingly, R5H7R4 peptide where charge/arginine is distributed in blocks is preferred for strong condensation while more efficient transfection is seen in the variants R9H7 and H4R9H3, which exhibit weak condensation and strong release. Addition of cysteine to each of these peptides further fine-tuned the condensation-release balance without application of any oxidative procedure unlike other similar systems reported in the literature. This resulted in a large increase in the transfection efficiency in all of the histidine modified peptides irrespective of the arginine and histidine positions. This series of multifunctional peptides shows comparable transfection efficiency to commercially available transfection reagent Lipofectamine 2000 at low charge ratios, with simple preparative procedure and exhibits much less toxicity. PMID:24476132

  16. Precision and linearity targets for validation of an IFNγ ELISPOT, cytokine flow cytometry, and tetramer assay using CMV peptides

    Directory of Open Access Journals (Sweden)

    Lyerly Herbert K

    2008-03-01

    Full Text Available Abstract Background Single-cell assays of immune function are increasingly used to monitor T cell responses in immunotherapy clinical trials. Standardization and validation of such assays are therefore important to interpretation of the clinical trial data. Here we assess the levels of intra-assay, inter-assay, and inter-operator precision, as well as linearity, of CD8+ T cell IFNγ-based ELISPOT and cytokine flow cytometry (CFC, as well as tetramer assays. Results Precision was measured in cryopreserved PBMC with a low, medium, or high response level to a CMV pp65 peptide or peptide mixture. Intra-assay precision was assessed using 6 replicates per assay; inter-assay precision was assessed by performing 8 assays on different days; and inter-operator precision was assessed using 3 different operators working on the same day. Percent CV values ranged from 4% to 133% depending upon the assay and response level. Linearity was measured by diluting PBMC from a high responder into PBMC from a non-responder, and yielded R2 values from 0.85 to 0.99 depending upon the assay and antigen. Conclusion These data provide target values for precision and linearity of single-cell assays for those wishing to validate these assays in their own laboratories. They also allow for comparison of the precision and linearity of ELISPOT, CFC, and tetramer across a range of response levels. There was a trend toward tetramer assays showing the highest precision, followed closely by CFC, and then ELISPOT; while all three assays had similar linearity. These findings are contingent upon the use of optimized protocols for each assay.

  17. Synthesis of a highly hydrophobic cyclic decapeptide by solid-phase synthesis of linear peptide and cyclization in solution

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A general method was described to synthesize a highly hydrophobic cyclic peptide,cyclo[LWLWLWLWLQ]where underlines indicate D-configuration of the amino acid,by a two-step solid-phase/solution synthesis strategy.The linear decapeptide was assembled by standard Boc chemistry on solid-phase and subsequently cyclized in solution with high efficiency and reproducibility. In subsequent purification by semi-preparative HPLC,50%(v/v) DMF/H_2O was employed as the solvent to overcome the difficulty of solubilizat...

  18. PACE4-Based Molecular Targeting of Prostate Cancer Using an Engineered 64Cu-Radiolabeled Peptide Inhibitor

    Directory of Open Access Journals (Sweden)

    Frédéric Couture

    2014-08-01

    Full Text Available The potential of PACE4 as a pharmacological target in prostate cancer has been demonstrated as this proprotein convertase is strongly overexpressed in human prostate cancer tissues and its inhibition, using molecular or pharmacological approaches, results in reduced cell proliferation and tumor progression in mouse tumor xenograft models. We developed a PACE4 high-affinity peptide inhibitor, namely, the multi-leucine (ML, and sought to determine whether this peptide could be exploited for the targeting of prostate cancer for diagnostic or molecular imaging purposes. We conjugated a bifunctional chelator 1,4,7-triazacyclononane-1,4,7- triacetic acid (NOTA to the ML peptide for copper-64 (64Cu labeling and positron emission tomography (PET– based prostate cancer detection. Enzyme kinetic assays against recombinant PACE4 showed that the NOTA-modified ML peptide displays identical inhibitory properties compared to the unmodified peptide. In vivo biodistribution of the 64Cu/NOTA-ML peptide evaluated in athymic nude mice bearing xenografts of two human prostate carcinoma cell lines showed a rapid and high uptake in PACE4-expressing LNCaP tumor at an early time point and in PACE4-rich organs. Co-injection of unlabeled peptide confirmed that tumor uptake was target-specific. PACE4-negative tumors displayed no tracer uptake 15 minutes after injection, while the kidneys, demonstrated high uptake due to rapid renal clearance of the peptide. The present study supports the feasibility of using a 64Cu/NOTA-ML peptide for PACE4-targeted prostate cancer detection and PACE4 status determination by PET imaging but also provides evidence that ML inhibitor–based drugs would readily reach tumor sites under in vivo conditions for pharmacological intervention or targeted radiation therapy.

  19. Plasmodium vivax Promiscuous T-Helper Epitopes Defined and Evaluated as Linear Peptide Chimera Immunogens

    OpenAIRE

    Caro-Aguilar, Ivette; Rodríguez, Alexandra; Calvo-Calle, J. Mauricio; Guzmán, Fanny; De La Vega, Patricia; Elkin Patarroyo, Manuel; Galinski, Mary R.; Moreno, Alberto

    2002-01-01

    Clinical trials of malaria vaccines have confirmed that parasite-derived T-cell epitopes are required to elicit consistent and long-lasting immune responses. We report here the identification and functional characterization of six T-cell epitopes that are present in the merozoite surface protein-1 of Plasmodium vivax (PvMSP-1) and bind promiscuously to four different HLA-DRB1∗ alleles. Each of these peptides induced lymphoproliferative responses in cells from individuals with previous P. viva...

  20. MRM screening/biomarker discovery with linear ion trap MS: a library of human cancer-specific peptides

    International Nuclear Information System (INIS)

    The discovery of novel protein biomarkers is essential in the clinical setting to enable early disease diagnosis and increase survivability rates. To facilitate differential expression analysis and biomarker discovery, a variety of tandem mass spectrometry (MS/MS)-based protein profiling techniques have been developed. For achieving sensitive detection and accurate quantitation, targeted MS screening approaches, such as multiple reaction monitoring (MRM), have been implemented. MCF-7 breast cancer protein cellular extracts were analyzed by 2D-strong cation exchange (SCX)/reversed phase liquid chromatography (RPLC) separations interfaced to linear ion trap MS detection. MS data were interpreted with the Sequest-based Bioworks software (Thermo Electron). In-house developed Perl-scripts were used to calculate the spectral counts and the representative fragment ions for each peptide. In this work, we report on the generation of a library of 9,677 peptides (p < 0.001), representing ~1,572 proteins from human breast cancer cells, that can be used for MRM/MS-based biomarker screening studies. For each protein, the library provides the number and sequence of detectable peptides, the charge state, the spectral count, the molecular weight, the parameters that characterize the quality of the tandem mass spectrum (p-value, DeltaM, Xcorr, DeltaCn, Sp, no. of matching a, b, y ions in the spectrum), the retention time, and the top 10 most intense product ions that correspond to a given peptide. Only proteins identified by at least two spectral counts are listed. The experimental distribution of protein frequencies, as a function of molecular weight, closely matched the theoretical distribution of proteins in the human proteome, as provided in the SwissProt database. The amino acid sequence coverage of the identified proteins ranged from 0.04% to 98.3%. The highest-abundance proteins in the cellular extract had a molecular weight (MW)<50,000. Preliminary experiments have

  1. Synthesis and Biological Activities of Some New (Nα-Dinicotinoyl- bis-L-Leucyl Linear and Macrocyclic Peptides

    Directory of Open Access Journals (Sweden)

    Suzan Khayyat

    2014-07-01

    Full Text Available A series of linear and macrocyclic peptides 3–12 were synthesized using 3,5-pyridinedicarboxylic acid (1 as starting material and screened for their antimicrobial, anti-inflammatory and anticancer activities. Bis-ester 3 was prepared from 1 and L-leucine methyl ester. Hydrazinolysis and hydrolysis of dipeptide methyl ester 3 with hydrazine hydrate or 1 N sodium hydroxide afforded compounds 4 and 5, respectively. Cyclization of the dipeptide 5 with L-lysine methyl ester afforded cyclic pentapeptide ester 6. Compounds 7–9 were synthesized by reacting hydrazide 4 with phthalic anhydride, 1,8-naphthalene anhydride or acetophenone derivatives. Treatment of acid hydrazide 4 with aromatic aldehydes or tetraacid dianhydrides afforded the corresponding bis-dipeptide hydrazones 10a–e and macrocyclic peptides 11 and 12, respectively. The structures of newly synthesized compounds were confirmed by IR, 1H-NMR, MS spectral data and elemental analysis. The detailed synthesis, spectroscopic data, biological and pharmacological activities of the synthesized compounds was reported.

  2. Comparison of Linear and Cyclic His-Ala-Val Peptides in Modulating the Blood-Brain Barrier Permeability: Impact on Delivery of Molecules to the Brain.

    Science.gov (United States)

    Alaofi, Ahmed; On, Ngoc; Kiptoo, Paul; Williams, Todd D; Miller, Donald W; Siahaan, Teruna J

    2016-02-01

    The aim of this study is to evaluate the effect of peptide cyclization on the blood-brain barrier (BBB) modulatory activity and plasma stability of His-Ala-Val peptides, which are derived from the extracellular 1 domain of human E-cadherin. The activities to modulate the intercellular junctions by linear HAV4 (Ac-SHAVAS-NH2), cyclic cHAVc1 (Cyclo(1,8)Ac-CSHAVASC-NH2), and cyclic cHAVc3 (Cyclo(1,6)Ac-CSHAVC-NH2) were compared in in vitro and in vivo BBB models. Linear HAV4 and cyclic cHAVc1 have the same junction modulatory activities as assessed by in vitro MDCK monolayer model and in situ rat brain perfusion model. In contrast, cyclic cHAVc3 was more effective than linear HAV4 in modulating MDCK cell monolayers and in improving in vivo brain delivery of Gd-DTPA on i.v. administration in Balb/c mice. Cyclic cHAVc3 (t1/2 = 12.95 h) has better plasma stability compared with linear HAV4 (t1/2 = 2.4 h). The duration of the BBB modulation was longer using cHAVc3 (2-4 h) compared with HAV4 (<1 h). Both HAV4 and cHAVc3 peptides also enhanced the in vivo brain delivery of IRdye800cw-PEG (25 kDa) as detected by near IR imaging. The result showed that cyclic cHAVc3 peptide had better activity and plasma stability than linear HAV4 peptide.

  3. Imaging cancer using PET - the effect of the bifunctional chelator on the biodistribution of a {sup 64}Cu-labeled antibody

    Energy Technology Data Exchange (ETDEWEB)

    Dearling, Jason L.J., E-mail: jason.dearling@childrens.harvard.ed [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Voss, Stephan D. [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Dunning, Patricia; Snay, Erin [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Fahey, Frederic [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States); Smith, Suzanne V. [Australian National Science and Technology Organisation (ANSTO), New Illawarra Road, PMB1, Menai, New South Wales 2234 (Australia); Huston, James S. [EMD Serono Research Center, 45A Middlesex Turnpike, Billerica, MA 01821-3936 (United States); Boston Biomedical Research Institute, Watertown, MA 02472-2899 (United States); Meares, Claude F. [Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616-5295 (United States); Treves, S. Ted; Packard, Alan B. [Division of Nuclear Medicine and Department of Radiology, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Harvard Medical School, Boston, MA 02115 (United States)

    2011-01-15

    Introduction: Use of copper radioisotopes in antibody radiolabeling is challenged by reported loss of the radionuclide from the bifunctional chelator used to label the protein. The objective of this study was to investigate the relationship between the thermodynamic stability of the {sup 64}Cu-complexes of five commonly used bifunctional chelators (BFCs) and the biodistribution of an antibody labeled with {sup 64}Cu using these chelators in tumor-bearing mice. Methods: The chelators [S-2-(aminobenzyl)1,4,7-triazacyclononane-1,4,7-triacetic acid (p-NH{sub 2}-Bn-NOTA): 6-[p-(bromoacetamido)benzyl]-1, 4, 8, 11-tetraazacyclotetradecane-N, N', N'', N'''-tetraacetic acid (BAT-6): S-2-(4-aminobenzyl)-1,4,7,10-tetraazacyclododocane tetraacetic acid (p-NH{sub 2}-Bn-DOTA): 1,4,7,10-tetraazacyclododocane-N, N', N', N''-tetraacetic acid (DOTA): and 1-N-(4-aminobenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]eicosane-1, 8-diamine (SarAr)] were conjugated to the anti-GD2 antibody ch14.18, and the modified antibody was labeled with {sup 64}Cu and injected into mice bearing subcutaneous human melanoma tumors (M21) (n = 3-5 for each study). Biodistribution data were obtained from positron emission tomography images acquired at 1, 24 and 48 hours post-injection, and at 48 hours post-injection a full ex vivo biodistribution study was carried out. Results: The biodistribution, including tumor targeting, was similar for all the radioimmunoconjugates. At 48 h post-injection, the only statistically significant differences in radionuclide uptake (p < 0.05) were between blood, liver, spleen and kidney. For example, liver uptake of [{sup 64}Cu]ch14.18-p-NH{sub 2}-Bn-NOTA was 4.74 {+-} 0.77 per cent of the injected dose per gram of tissue (%ID/g), and for [{sup 64}Cu]ch14.18-SarAr was 8.06 {+-} 0.77 %ID/g. Differences in tumor targeting correlated with variations in tumor size rather than which BFC was used. Conclusions: The results of this study indicate that differences in the thermodynamic stability of these chelator-Cu(II) complexes were not associated with significant differences in uptake of the tracer by the tumor. However, there were significant differences in tracer concentration in other tissues, including those involved in clearance of the radioimmunoconjugate (e.g., liver and spleen).

  4. Liquid chromatography-electrospray linear ion trap mass spectrometry analysis of targeted neuropeptides in Tac1(-/-) mouse spinal cords reveals significant lower concentration of opioid peptides.

    Science.gov (United States)

    Saidi, Mouna; Beaudry, Francis

    2015-08-01

    Tachykinin and opioid peptides play a central role in pain transmission, modulation and inhibition. The treatment of pain is very important in medicine and many studies using NK1 receptor antagonists failed to show significant analgesic effects in humans. Recent investigations suggest that both pronociceptive tachykinins and the analgesic opioid systems are important for normal pain sensation. The analysis of opioid peptides in Tac1(-/-) spinal cord tissues offers a great opportunity to verify the influence of the tachykinin system on specific opioid peptides. The objectives of this study were to develop an HPLC-MS/MRM assay to quantify targeted peptides in spinal cord tissues. Secondly, we wanted to verify if the Tac1(-/-) mouse endogenous opioid system is hampered and therefore affects significantly the pain modulatory pathways. Targeted neuropeptides were analyzed by high performance liquid chromatography linear ion trap mass spectrometry. Our results reveal that EM-2, Leu-Enk and Dyn A were down-regulated in Tac1(-/-) spinal cord tissues. Interestingly, Dyn A was almost 3 fold down-regulated (p<0.0001). No significant concentration differences were observed in mouse Tac1(-/-) spinal cords for Met-Enk and CGRP. The analysis of Tac1(-/-) mouse spinal cords revealed noteworthy decreases of EM-2, Leu-Enk and Dyn A concentrations which strongly suggest a significant impact on the endogenous pain-relieving mechanisms. These observations may have insightful impact on future analgesic drug developments and therapeutic strategies.

  5. Synthesis of a Natural Product-Like Compound Collection through Oxidative Cleavage and Cyclization of Linear Peptides

    DEFF Research Database (Denmark)

    Petersen, Rico; Le Quement, Sebastian Thordal; Nielsen, Thomas Eiland

    2014-01-01

    synthesis to assemble precursor peptides (oligomers) designed to undergo oxidative cascade reactions. By harnessing the structural side-chain diversity and inherent stereochemical features offered by readily available amino acids (monomers), a proof-of-concept collection of 54 skeletally and stereochem......Massive efforts in molecular library synthesis have strived for the development of synthesis methodology which systematically delivers natural product-like compounds of high spatial complexity. Herein, we present a conceptually simple approach that builds on the power of solid-phase peptide...

  6. Synthesis of a Natural Product-Like Compound Collection through Oxidative Cleavage and Cyclization of Linear Peptides

    DEFF Research Database (Denmark)

    Petersen, Rico; Le Quement, Sebastian Thordal; Nielsen, Thomas Eiland

    2014-01-01

    Massive efforts in molecular library synthesis have strived for the development of synthesis methodology which systematically delivers natural product-like compounds of high spatial complexity. Herein, we present a conceptually simple approach that builds on the power of solid-phase peptide...

  7. Identification of two linear B-cell epitopes from West Nile virus NS1 by screening a phage-displayed random peptide library

    Directory of Open Access Journals (Sweden)

    Qin Yong-Li

    2011-07-01

    Full Text Available Abstract Background The West Nile virus (WNV nonstructural protein 1 (NS1 is an important antigenic protein that elicits protective antibody responses in animals and can be used for the serological diagnosis of WNV infection. Although previous work has demonstrated the vital role of WNV NS1-specific antibody responses, the specific epitopes in the NS1 have not been identified. Results The present study describes the identification of two linear B-cell epitopes in WNV NS1 through screening a phage-displayed random 12-mer peptide library with two monoclonal antibodies (mAbs 3C7 and 4D1 that directed against the NS1. The mAbs 3C7 and 4D1 recognized phages displaying peptides with the consensus motifs LTATTEK and VVDGPETKEC, respectively. Exact sequences of both motifs were found in the NS1 (895LTATTEK901 and 925VVDGPETKEC934. Further identification of the displayed B cell epitopes were conducted using a set of truncated peptides expressed as MBP fusion proteins. The data indicated that 896TATTEK901 and925VVDGPETKEC934 are minimal determinants of the linear B cell epitopes recognized by the mAbs 3C7 and 4D1, respectively. Antibodies present in the serum of WNV-positive horses recognized the minimal linear epitopes in Western blot analysis, indicating that the two peptides are antigenic in horses during infection. Furthermore, we found that the epitope recognized by 3C7 is conserved only among WNV strains, whereas the epitope recognized by 4D1 is a common motif shared among WNV and other members of Japanese encephalitis virus (JEV serocomplex. Conclusions We identified TATTEK and VVDGPETKEC as NS1-specific linear B-cell epitopes recognized by the mAbs 3C7 and 4D1, respectively. The knowledge and reagents generated in this study may have potential applications in differential diagnosis and the development of epitope-based marker vaccines against WNV and other viruses of JEV serocomplex.

  8. Nonstereogenic alpha-aminoisobutyryl-glycyl dipeptidyl unit nucleates type I' beta-turn in linear peptides in aqueous solution.

    Science.gov (United States)

    Masterson, Larry R; Etienne, Marcus A; Porcelli, Fernando; Barany, George; Hammer, Robert P; Veglia, Gianluigi

    2007-01-01

    The use of alpha,alpha-disubstituted amino acids represents a valuable strategy to exercise conformational control in peptides. Incorporation of the nonstereogenic alpha-aminoisobutyryl-glycyl (Aib-Gly) dipeptidyl sequence into i+1 and i+2 positions of an acyclic peptide sequence, originally designed and investigated by Gellman and coworkers, [H-Arg-Tyr-Val-Glu-Val-Yyy-Xxx-Orn-Lys-Ile-Leu-Gln-NH2] nucleates a stable [2:4] left-handed type I' beta-turn in water. NMR spectra show that this newly designed beta-hairpin does not aggregate in water up to a concentration of approximately 1 mM, and that its backbone conformation is superimposable on corresponding hairpins containing the DPro-Gly (literature) and Aib-DAla (this work) sequences. The Aib-Gly turn-inducer sequence eliminates complications because of cis-trans isomerization of Zzz-Pro bonds, and constitutes an attractive alternative to the proteogenic Asn-Gly and nonproteogenic DPro-Gly motifs previously suggested as turn-inducer sequences. These design principles could be exploited to prepare water-soluble beta-hairpin peptides with robust structures and novel function. PMID:17427180

  9. Urinary osteocalcin and serum pro-C-type natriuretic peptide predict linear catch-up growth in infants

    DEFF Research Database (Denmark)

    Kilpeläinen, Leena; Ivaska, Kaisa K; Kuiri-Hänninen, Tanja;

    2012-01-01

    Preterm (PT) infants are at risk of growth failure despite advanced early care and nutrition. In addition to poor weight gain, slow postnatal linear growth also is associated with adverse neurological outcome. Markers distinguishing infants at risk for impaired catch-up growth are needed. The aim...

  10. Development of a linear ion trap/orthogonal-time-of-flight mass spectrometer for time-dependent observation of product ions by ultraviolet photodissociation of peptide ions.

    Science.gov (United States)

    Kim, Tae-Young; Schwartz, Jae C; Reilly, James P

    2009-11-01

    A hybrid linear ion trap/orthogonal time-of-flight (TOF) mass spectrometer has been developed to observe time-dependent vacuum ultraviolet photodissociation product ions. In this apparatus, a reflectron TOF mass analyzer is orthogonally interfaced to an LTQ using rf-only octopole and dc quadrupole ion guides. Precursor ions are generated by electrospray ionization and isolated in the ion trap. Subsequently they are directed to the TOF source where photodissociation occurs and product ions are extracted for mass analysis. To detect photodissociation product ions having axially divergent trajectories, a large rectangular detector is utilized. With variation of the time between photodissociation and orthogonal extraction in the TOF source, product ions formed over a range of times after photoexcitation can be sampled. Time-dependent observation of product ions following 157 nm photodissociation of a singly charged tryptic peptide ion (NWDAGFGR) showed that prompt photofragment ions (x- and v-type ions) dominate the tandem mass spectrum up to 1 micros after the laser shot, but the intensities of low energy thermal fragment ions (y-type ions) become comparable several microseconds later. Different proton mobilization time scales were observed for arginine- and lysine-terminated tryptic peptides.

  11. Vaccination of cattle with TickGARD induces cross-reactive antibodies binding to conserved linear peptides of Bm86 homologues in Boophilus decoloratus.

    Science.gov (United States)

    Odongo, David; Kamau, Lucy; Skilton, Robert; Mwaura, Stephen; Nitsch, Cordula; Musoke, Anthony; Taracha, Evans; Daubenberger, Claudia; Bishop, Richard

    2007-01-26

    Vaccines based on recombinant Bm86 gut antigen from Boophilus microplus are a useful component of integrated control strategies against B. microplus infestations of cattle. The capacity of such vaccines to control heterologous infestations by two African tick species was investigated. The mean weight of engorged female ticks and mean egg mass per tick were significantly reduced in B. decoloratus infestations, but there was no effect of the vaccine against adult Rhipicephalus appendiculatus. We cloned, sequenced and expressed two Bm86 homologues (Bd86) from B. decoloratus. Amino acid sequence identity between Bd86 homologues (Bd86-1 and Bd86-2) and Bm86 was 86% and 85%, respectively, compared to 93% identity between the variants. Native Bd86 protein in B. decoloratus tick mid-gut sections and recombinant Bd86-1 reacted strongly with sera from TickGARD vaccinated cattle. TickGARD can therefore protect against a heterologous tick species with multiple antigen sequences. Epitope mapping using sera from TickGARD-vaccinated cattle identified two linear peptides conserved between the Bd86 homologues and Bm86. These epitopes represent candidate synthetic peptide vaccines for control of Boophilus spp. and the pathogens transmitted by these tick vectors. PMID:17070625

  12. Computer-Aided Design of Antimicrobial Peptides

    DEFF Research Database (Denmark)

    Fjell, Christopher D.; Hancock, Robert E.W.; Jenssen, Håvard

    2010-01-01

    chemical parameters with biological activities of the peptide, using statistical methods. In this review we will discuss two different in silico strategies of computer-aided antibacterial peptide design, a linear correlation model build as an extension of traditional principal component analysis (PCA......) and a non-linear artificial neural network model. Studies on structurally diverse peptides, have concluded that the PCA derived model are able to guide the antibacterial peptide design in a meaningful way, however requiring rather a high homology between the peptides in the test-set and the in silico...

  13. Antimicrobial Peptides from Plants

    Science.gov (United States)

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  14. Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    James P. Tam

    2015-11-01

    Full Text Available Plant antimicrobial peptides (AMPs have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic, lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms.

  15. 猪带绦虫六钩蚴TSO45-4B抗原FnⅢ结构域相应的线性B细胞表位肽免疫原性研究%Research on immunity response about Taenia solium oncosphere TSO45-4B antigens FnⅢ structure domain linear B cells epitope peptides

    Institute of Scientific and Technical Information of China (English)

    王媛媛; 陶志勇; 杨小迪; 王小莉; 常雪莲; 陈勇; 孙新; 夏惠; 方强

    2013-01-01

    Objective: To observe the humoral immune response induced by Taenia solium oncosphere TSO45-4B antigens Fn Ⅲ structure domain linear B cells epitope peptides in mice. Methods: The two predicted B cell epitope peptides of TSO45-4B Fn Ⅲ structure domain conjugated with carrier protein of keyhole limpet hemocyanin were synthesized and used to immunize mice. The mice specific serum antibody titer to the epitope peptides synthesized was tested by ELISA. Results: The specific antibody to one of the predicted epitope peptides synthesized was found in mice serum,and the titer was 1: 1 280. Conclusions: One of the two predicted linear B cell epitope peptides of TSO45-4B FnⅢ structure domain can induce the humoral immune response in mice.%目的:观察载体蛋白偶联的TSO45-4B抗原FnⅢ结构域相应的线性B细胞表位肽诱导的体液免疫反应.方法:人工合成TSO45-4B抗原FnⅢ结构域2条预测表位肽,偶联钥孔血蓝蛋白免疫小鼠,采用ELISA法检测小鼠血清中预测表位肽特异性抗体滴度.结果:免疫小鼠血清中检测到1条预测表位肽特异性抗体,其效价达到1:1 280.结论:设计的1条TSO45-4B抗原FnⅢ结构域线性B细胞表位肽可诱导小鼠产生体液免疫反应.

  16. 68Ga-labeling and in vivo evaluation of a uPAR binding DOTA- and NODAGA-conjugated peptide for PET imaging of invasive cancers

    International Nuclear Information System (INIS)

    postinjection. Conclusions: The use of 68Ga-DOTA-AE105-NH2 and 68Ga-NODAGA-AE105-NH2 as the first gallium-68 labeled uPAR radiotracers for noninvasive PET imaging is reported, which combine versatility with good imaging properties. These new tracers thus constitute an interesting alternative to the 64Cu-labeled version (64Cu-DOTA-AE105 and 64Cu-DOTA-AE105-NH2) for detecting uPAR expression in tumor tissue. In our hands, the fractionated elution approach was superior for labeling of peptides, and 68Ga-NODAGA-AE105-NH2 is the favored tracer as it provides the highest tumor-to-background ratio.

  17. Linear algebra

    CERN Document Server

    Shilov, Georgi E

    1977-01-01

    Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional space. Problems with hints and answers.

  18. Antimicrobial peptides.

    Science.gov (United States)

    Zhang, Ling-Juan; Gallo, Richard L

    2016-01-11

    Antimicrobial peptides and proteins (AMPs) are a diverse class of naturally occurring molecules that are produced as a first line of defense by all multicellular organisms. These proteins can have broad activity to directly kill bacteria, yeasts, fungi, viruses and even cancer cells. Insects and plants primarily deploy AMPs as an antibiotic to protect against potential pathogenic microbes, but microbes also produce AMPs to defend their environmental niche. In higher eukaryotic organisms, AMPs can also be referred to as 'host defense peptides', emphasizing their additional immunomodulatory activities. These activities are diverse, specific to the type of AMP, and include a variety of cytokine and growth factor-like effects that are relevant to normal immune homeostasis. In some instances, the inappropriate expression of AMPs can also induce autoimmune diseases, thus further highlighting the importance of understanding these molecules and their complex activities. This Primer will provide an update of our current understanding of AMPs. PMID:26766224

  19. Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ali Adem Bahar

    2013-11-01

    Full Text Available The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs, a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics.

  20. Linear Accelerators

    CERN Document Server

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics.

  1. Linear colliders

    International Nuclear Information System (INIS)

    From November 28 to December 9, the Stanford Linear Accelerator Center hosted an International Workshop on Next Generation Linear Colliders. The attendance, including delegations from CERN, Frascati (Italy), KEK (Japan), Livermore (US), Novosibirsk (USSR), Drsay (France) and SLAC itself reflected the international interest in this new approach to higher energies

  2. Linear algebra

    CERN Document Server

    Stoll, R R

    1968-01-01

    Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand

  3. Linear algebra

    CERN Document Server

    Liesen, Jörg

    2015-01-01

    This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...

  4. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen;

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2...

  5. Quantitative Structure-Activity Relationships and Docking Studies of Calcitonin Gene-Related Peptide Antagonists

    DEFF Research Database (Denmark)

    Jenssen, Håvard; Mehrabian, Mohadeseh; Kyani, Anahita

    2012-01-01

    calcitonin gene-related peptide antagonists was performed using a panel of physicochemical descriptors. The computational studies evaluated different variable selection techniques and demonstrated shuffling stepwise multiple linear regression to be superior over genetic algorithm-multiple linear regression....... The linear quantitative structure-activity relationship model revealed better statistical parameters of cross-validation in comparison with the non-linear support vector regression technique. Implementing only five peptide descriptors into this linear quantitative structure-activity relationship model...

  6. Linear algebra

    CERN Document Server

    Sahai, Vivek

    2013-01-01

    Beginning with the basic concepts of vector spaces such as linear independence, basis and dimension, quotient space, linear transformation and duality with an exposition of the theory of linear operators on a finite dimensional vector space, this book includes the concept of eigenvalues and eigenvectors, diagonalization, triangulation and Jordan and rational canonical forms. Inner product spaces which cover finite dimensional spectral theory and an elementary theory of bilinear forms are also discussed. This new edition of the book incorporates the rich feedback of its readers. We have added new subject matter in the text to make the book more comprehensive. Many new examples have been discussed to illustrate the text. More exercises have been included. We have taken care to arrange the exercises in increasing order of difficulty. There is now a new section of hints for almost all exercises, except those which are straightforward, to enhance their importance for individual study and for classroom use.

  7. Linear algebra

    CERN Document Server

    Edwards, Harold M

    1995-01-01

    In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject

  8. Linear algebra

    CERN Document Server

    Allenby, Reg

    1995-01-01

    As the basis of equations (and therefore problem-solving), linear algebra is the most widely taught sub-division of pure mathematics. Dr Allenby has used his experience of teaching linear algebra to write a lively book on the subject that includes historical information about the founders of the subject as well as giving a basic introduction to the mathematics undergraduate. The whole text has been written in a connected way with ideas introduced as they occur naturally. As with the other books in the series, there are many worked examples.Solutions to the exercises are available onlin

  9. Short peptides allowing preferential detection of Candida albicans hyphae.

    Science.gov (United States)

    Kaba, Hani E J; Pölderl, Antonia; Bilitewski, Ursula

    2015-09-01

    Whereas the detection of pathogens via recognition of surface structures by specific antibodies and various types of antibody mimics is frequently described, the applicability of short linear peptides as sensor molecules or diagnostic tools is less well-known. We selected peptides which were previously reported to bind to recombinant S. cerevisiae cells, expressing members of the C. albicans Agglutinin-Like-Sequence (ALS) cell wall protein family. We slightly modified amino acid sequences to evaluate peptide sequence properties influencing binding to C. albicans cells. Among the selected peptides, decamer peptides with an "AP"-N-terminus were superior to shorter peptides. The new decamer peptide FBP4 stained viable C. albicans cells more efficiently in their mature hyphal form than in their yeast form. Moreover, it allowed distinction of C. albicans from other related Candida spp. and could thus be the basis for the development of a useful tool for the diagnosis of invasive candidiasis.

  10. Linear programming

    CERN Document Server

    Karloff, Howard

    1991-01-01

    To this reviewer’s knowledge, this is the first book accessible to the upper division undergraduate or beginning graduate student that surveys linear programming from the Simplex Method…via the Ellipsoid algorithm to Karmarkar’s algorithm. Moreover, its point of view is algorithmic and thus it provides both a history and a case history of work in complexity theory. The presentation is admirable; Karloff's style is informal (even humorous at times) without sacrificing anything necessary for understanding. Diagrams (including horizontal brackets that group terms) aid in providing clarity. The end-of-chapter notes are helpful...Recommended highly for acquisition, since it is not only a textbook, but can also be used for independent reading and study. —Choice Reviews The reader will be well served by reading the monograph from cover to cover. The author succeeds in providing a concise, readable, understandable introduction to modern linear programming. —Mathematics of Computing This is a textbook intend...

  11. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  12. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  13. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  14. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  15. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  16. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  17. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  18. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  19. Linear systems

    CERN Document Server

    Bourlès, Henri

    2013-01-01

    Linear systems have all the necessary elements (modeling, identification, analysis and control), from an educational point of view, to help us understand the discipline of automation and apply it efficiently. This book is progressive and organized in such a way that different levels of readership are possible. It is addressed both to beginners and those with a good understanding of automation wishing to enhance their knowledge on the subject. The theory is rigorously developed and illustrated by numerous examples which can be reproduced with the help of appropriate computation software. 60 exe

  20. Reduction of Linear Programming to Linear Approximation

    OpenAIRE

    Vaserstein, Leonid N.

    2006-01-01

    It is well known that every Chebyshev linear approximation problem can be reduced to a linear program. In this paper we show that conversely every linear program can be reduced to a Chebyshev linear approximation problem.

  1. Allosterically Regulated Phosphatase Activity from Peptide-PNA Conjugates Folded Through Hybridization.

    Science.gov (United States)

    Machida, Takuya; Dutt, Som; Winssinger, Nicolas

    2016-07-18

    The importance of spatial organization in short peptide catalysts is well recognized. We synthesized and screened a library of peptides flanked by peptide nucleic acids (PNAs) such that the peptide would be constrained in a hairpin loop upon hybridization. A screen for phosphatase activity led to the discovery of a catalyst with >25-fold rate acceleration over the linear peptide. We demonstrated that the hybridization-enforced folding of the peptide is necessary for activity, and designed a catalyst that is allosterically controlled using a complementary PNA sequence. PMID:27320214

  2. Optimization of reversed-phase chromatography methods for peptide analytics.

    Science.gov (United States)

    Khalaf, Rushd; Baur, Daniel; Pfister, David

    2015-12-18

    The analytical description and quantification of peptide solutions is an essential part in the quality control of peptide production processes and in peptide mapping techniques. Traditionally, an important tool is analytical reversed phase liquid chromatography. In this work, we develop a model-based tool to find optimal analytical conditions in a clear, efficient and robust manner. The model, based on the Van't Hoff equation, the linear solvent strength correlation, and an analytical solution of the mass balance on a chromatographic column describing peptide retention in gradient conditions is used to optimize the analytical scale separation between components in a peptide mixture. The proposed tool is then applied in the design of analytical reversed phase liquid chromatography methods of five different peptide mixtures. PMID:26620597

  3. Dissecting and Exploiting Nonribosomal Peptide Synthetases

    Institute of Scientific and Technical Information of China (English)

    Qing-Tao SHEN; Xiu-Lan CHEN; Cai-Yun SUN; Yu-Zhong ZHANG

    2004-01-01

    A large number of therapeutically useful cyclic and linear peptides of bacteria or fungal origin are synthesized via a template-directed, nucleic-acid-independent nonribosomal mechanism. This process is carried out by mega-enzymes called nonribosomal peptide synthetases (NRPSs). NRPSs contain repeated coordinated groups of active sites called modules, and each module is composed of several domains with different catalytic activities. The familiarity to these domains lays base for the future genetic engineering of NRPSs to generate entirely "unnature" Products. The details about NRPSs domain structures and the exploitation of NRPSs are described in this review.

  4. Plant signalling peptides

    OpenAIRE

    Wiśniewska, Justyna; Trejgell, Alina; Tretyn, Andrzej

    2003-01-01

    Biochemical and genetic studies have identified peptides that play crucial roles in plant growth and development, including defence mechanisms in response to wounding by pests, the control of cell division and expansion, and pollen self-incompatibility. The first two signalling peptides to be described in plants were tomato systemin and phytosulfokine (PSK). There is also biochemical evidence that natriuretic peptide-like molecules, immunologically-relatedt o those found ...

  5. Polycyclic peptide therapeutics.

    Science.gov (United States)

    Baeriswyl, Vanessa; Heinis, Christian

    2013-03-01

    Owing to their excellent binding properties, high stability, and low off-target toxicity, polycyclic peptides are an attractive molecule format for the development of therapeutics. Currently, only a handful of polycyclic peptides are used in the clinic; examples include the antibiotic vancomycin, the anticancer drugs actinomycin D and romidepsin, and the analgesic agent ziconotide. All clinically used polycyclic peptide drugs are derived from natural sources, such as soil bacteria in the case of vancomycin, actinomycin D and romidepsin, or the venom of a fish-hunting coil snail in the case of ziconotide. Unfortunately, nature provides peptide macrocyclic ligands for only a small fraction of therapeutic targets. For the generation of ligands of targets of choice, researchers have inserted artificial binding sites into natural polycyclic peptide scaffolds, such as cystine knot proteins, using rational design or directed evolution approaches. More recently, large combinatorial libraries of genetically encoded bicyclic peptides have been generated de novo and screened by phage display. In this Minireview, the properties of existing polycyclic peptide drugs are discussed and related to their interesting molecular architectures. Furthermore, technologies that allow the development of unnatural polycyclic peptide ligands are discussed. Recent application of these technologies has generated promising results, suggesting that polycyclic peptide therapeutics could potentially be developed for a broad range of diseases. PMID:23355488

  6. LINEAR SYSTEMS AND LINEAR INTERPOLATION I

    Institute of Scientific and Technical Information of China (English)

    丁立峰

    2001-01-01

    he linear interpolation of linear system on a family of linear systems is introduced and discussed. Some results and examples on singly generated systems on a finite dimensional vector space are given.

  7. Identification and characterization of high affinity antisense PNAs for the human unr (upstream of N-ras) mRNA which is uniquely overexpressed in MCF-7 breast cancer cells

    OpenAIRE

    Fang, Huafeng; Yue, Xuan; Li, Xiaoxu; Taylor, John-Stephen

    2005-01-01

    We have recently shown that an MCF-7 tumor can be imaged in a mouse by PET with 64Cu-labeled Peptide nucleic acids (PNAs) tethered to the permeation peptide Lys4 that recognize the uniquely overexpressed and very abundant upstream of N-ras or N-ras related gene (unr mRNA) expressed in these cells. Herein we describe how the high affinity antisense PNAs to the unr mRNA were identified and characterized. First, antisense binding sites on the unr mRNA were mapped by an reverse transcriptase rand...

  8. Insulin C-peptide test

    Science.gov (United States)

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin the body produces and insulin someone injects ...

  9. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from...

  10. Linear Algebra and Smarandache Linear Algebra

    OpenAIRE

    Vasantha, Kandasamy

    2003-01-01

    The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and ve...

  11. Characterization of peptide-oligonucleotide heteroconjugates by mass spectrometry.

    OpenAIRE

    Jensen, O N; Kulkarni, S; Aldrich, J V; Barofsky, D F

    1996-01-01

    Two peptide-oligothymidylic acids, prepared by joining an 11 residue synthetic peptide containing one internal carboxyl group (Asp side chain) to amino-linker-5'pdT6 and amino-linker-5'pdT10 oligonucleotides, were analyzed by matrix-assisted laser desorption/ionization (MALDI) on a linear time-of-flight mass spectrometer and by electrospray ionization (ESI) on a triple-quadrupole system. These synthetic compounds model peptide-nucleic acid heteroconjugates encountered in antisense research an...

  12. Molecular detection via hybrid peptide-semiconductor photonic devices

    Science.gov (United States)

    Estephan, E.; Saab, M.-b.; Martin, M.; Cloitre, T.; Larroque, C.; Cuisinier, F. J. G.; Malvezzi, A. M.; Gergely, C.

    2011-03-01

    The aim of this work was to investigate the possibilities to support device functionality that includes strongly confined and localized light emission and detection processes within nano/micro-structured semiconductors for biosensing applications. The interface between biological molecules and semiconductor surfaces, yet still under-explored is a key issue for improving biomolecular recognition in devices. We report on the use of adhesion peptides, elaborated via combinatorial phage-display libraries for controlled placement of biomolecules, leading to user-tailored hybrid photonic systems for molecular detection. An M13 bacteriophage library has been used to screen 1010 different peptides against various semiconductors to finally isolate specific peptides presenting a high binding capacity for the target surfaces. When used to functionalize porous silicon microcavities (PSiM) and GaAs/AlGaAs photonic crystals, we observe the formation of extremely thin (detection was monitored via both linear and nonlinear optical measurements. Our linear reflectance spectra demonstrate an enhanced detection resolution via PSiM devices, when functionalized with the Si-specific peptide. Molecular capture at even lower concentrations (femtomols) is possible via the second harmonic generation of GaAs/AlGaAs photonic crystals when functionalized with GaAs-specific peptides. Our work demonstrates the outstanding value of adhesion peptides as interface linkers between semiconductors and biological molecules. They assure an enhanced molecular detection via both linear and nonlinear answers of photonic crystals.

  13. In-Source Fragmentation and the Sources of Partially Tryptic Peptides in Shotgun Proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Seo; Monroe, Matthew E.; Camp, David G.; Smith, Richard D.; Qian, Wei-Jun

    2013-02-01

    Partially tryptic peptides are often identified in shotgun proteomics using trypsin as the proteolytic enzyme; however, it has been controversial regarding the sources of such partially tryptic peptides. Herein we investigate the impact of in-source fragmentation on shotgun proteomics using three biological samples, including a standard protein mixture, a mouse brain tissue homogenate, and a mouse plasma sample. Since the in-source fragments of a peptide retain the same elution time with its parent fully tryptic peptide, the partially tryptic peptides from in-source fragmentation can be distinguished from the other partially tryptic peptides by plotting the observed retention times against the computationally predicted retention times. Most partially tryptic in-source fragmentation artifacts were misaligned from the linear distribution of fully tryptic peptides. The impact of in-source fragmentation on peptide identifications was clearly significant in a less complex sample such as a standard protein digest, where ~60 % of unique peptides were observed as partially tryptic peptides from in-source fragmentation. In mouse brain or mouse plasma samples, in-source fragmentation contributed to 1-3 % of all identified peptides. The other major source of partially tryptic peptides in complex biological samples is presumably proteolytic processing by endogenous proteases in the samples. By filtering out the in-source fragmentation artifacts from the identified partially tryptic or non-tryptic peptides, it is possible to directly survey in-vivo proteolytic processing in biological samples such as blood plasma.

  14. PNA Peptide chimerae

    DEFF Research Database (Denmark)

    Koch, T.; Næsby, M.; Wittung, P.;

    1995-01-01

    Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields....

  15. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  16. Introduction to Peptide Synthesis

    OpenAIRE

    Stawikowski, Maciej; Fields, Gregg B.

    2002-01-01

    A number of synthetic peptides are significant commercial or pharmaceutical products, ranging from the dipeptide sugar-substitute aspartame to clinically used hormones, such as oxytocin, adrenocorticotropic hormone, and calcitonin. This unit provides an overview of the field of synthetic peptides and proteins. It discusses selecting the solid support and common coupling reagents. Additional information is provided regarding common side reactions and synthesizing modified residues.

  17. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry

    OpenAIRE

    Syka, John E. P.; Coon, Joshua J.; Schroeder, Melanie J.; Shabanowitz, Jeffrey; Hunt, Donald F.

    2004-01-01

    Peptide sequence analysis using a combination of gas-phase ion/ion chemistry and tandem mass spectrometry (MS/MS) is demonstrated. Singly charged anthracene anions transfer an electron to multiply protonated peptides in a radio frequency quadrupole linear ion trap (QLT) and induce fragmentation of the peptide backbone along pathways that are analogous to those observed in electron capture dissociation. Modifications to the QLT that enable this ion/ion chemistry are presented, and automated ac...

  18. Temporin-SHf, a New Type of Phe-rich and Hydrophobic Ultrashort Antimicrobial Peptide*

    OpenAIRE

    Abbassi, Feten; Lequin, Olivier; Piesse, Christophe; Goasdoué, Nicole; Foulon, Thierry; Nicolas, Pierre; Ladram, Ali

    2010-01-01

    Because issues of cost and bioavailability have hampered the development of gene-encoded antimicrobial peptides to combat infectious diseases, short linear peptides with high microbial cell selectivity have been recently considered as antibiotic substitutes. A new type of short antimicrobial peptide, designated temporin-SHf, was isolated and cloned from the skin of the frog Pelophylax saharica. Temporin-SHf has a highly hydrophobic sequence (FFFLSRIFa) and possesses the highest percentage of ...

  19. Linear Accelerator (LINAC)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Linear Accelerator A linear accelerator (LINAC) customizes high energy x-rays to ... ensured? What is this equipment used for? A linear accelerator (LINAC) is the device most commonly used ...

  20. Linearly constrained minimax optimization

    DEFF Research Database (Denmark)

    Madsen, Kaj; Schjær-Jacobsen, Hans

    1978-01-01

    We present an algorithm for nonlinear minimax optimization subject to linear equality and inequality constraints which requires first order partial derivatives. The algorithm is based on successive linear approximations to the functions defining the problem. The resulting linear subproblems are...

  1. Structural pattern matching of nonribosomal peptides

    Directory of Open Access Journals (Sweden)

    Leclère Valérie

    2009-03-01

    Full Text Available Abstract Background Nonribosomal peptides (NRPs, bioactive secondary metabolites produced by many microorganisms, show a broad range of important biological activities (e.g. antibiotics, immunosuppressants, antitumor agents. NRPs are mainly composed of amino acids but their primary structure is not always linear and can contain cycles or branchings. Furthermore, there are several hundred different monomers that can be incorporated into NRPs. The NORINE database, the first resource entirely dedicated to NRPs, currently stores more than 700 NRPs annotated with their monomeric peptide structure encoded by undirected labeled graphs. This opens a way to a systematic analysis of structural patterns occurring in NRPs. Such studies can investigate the functional role of some monomeric chains, or analyse NRPs that have been computationally predicted from the synthetase protein sequence. A basic operation in such analyses is the search for a given structural pattern in the database. Results We developed an efficient method that allows for a quick search for a structural pattern in the NORINE database. The method identifies all peptides containing a pattern substructure of a given size. This amounts to solving a variant of the maximum common subgraph problem on pattern and peptide graphs, which is done by computing cliques in an appropriate compatibility graph. Conclusion The method has been incorporated into the NORINE database, available at http://bioinfo.lifl.fr/norine. Less than one second is needed to search for a pattern in the entire database.

  2. The Molecular Basis for Antimicrobial Activity of Pore-Forming Cyclic Peptides

    NARCIS (Netherlands)

    Cirac, Anna D.; Moiset, Gemma; Mika, Jacek T.; Kocer, Armagan; Salvador, Pedro; Poolman, Bert; Marrink, Siewert J.; Sengupta, Durba

    2011-01-01

    The mechanism of action of antimicrobial peptides is, to our knowledge, still poorly understood. To probe the biophysical characteristics that confer activity, we present here a molecular-dynamics and biophysical study of a cyclic antimicrobial peptide and its inactive linear analog. In the simulati

  3. Development of novel cyclic peptides as pro-apoptotic agents.

    Science.gov (United States)

    Brindisi, Margherita; Maramai, Samuele; Brogi, Simone; Fanigliulo, Emanuela; Butini, Stefania; Guarino, Egeria; Casagni, Alice; Lamponi, Stefania; Bonechi, Claudia; Nathwani, Seema M; Finetti, Federica; Ragonese, Francesco; Arcidiacono, Paola; Campiglia, Pietro; Valenti, Salvatore; Novellino, Ettore; Spaccapelo, Roberta; Morbidelli, Lucia; Zisterer, Daniela M; Williams, Clive D; Donati, Alessandro; Baldari, Cosima; Campiani, Giuseppe; Ulivieri, Cristina; Gemma, Sandra

    2016-07-19

    Our recent finding that paclitaxel behaves as a peptidomimetic of the endogenous protein Nur77 inspired the design of two peptides (PEP1 and PEP2) reproducing the effects of paclitaxel on Bcl-2 and tubulin, proving the peptidomimetic nature of paclitaxel. Starting from these peptide-hits, we herein describe the synthesis and the biological investigation of linear and cyclic peptides structurally related to PEP2. While linear peptides (2a,b, 3a,b, 4, 6a-f) were found inactive in cell-based assays, biological analysis revealed a pro-apoptotic effect for most of the cyclic peptides (5a-g). Cellular permeability of 5a (and also of 2a,b) on HL60 cells was assessed through confocal microscopy analysis. Further cellular studies on a panel of leukemic cell lines (HL60, Jurkat, MEC, EBVB) and solid tumor cell lines (breast cancer MCF-7 cells, human melanoma A375 and 501Mel cells, and murine melanoma B16F1 cells) confirmed the pro-apoptotic effect of the cyclic peptides. Cell cycle analysis revealed that treatment with 5a, 5c, 5d or 5f resulted in an increase in the number of cells in the sub-G0/G1 peak. Direct interaction with tubulin (turbidimetric assay) and with microtubules (immunostaining experiments) was assessed in vitro for the most promising compounds. PMID:27150036

  4. Electron transfer in peptides.

    Science.gov (United States)

    Shah, Afzal; Adhikari, Bimalendu; Martic, Sanela; Munir, Azeema; Shahzad, Suniya; Ahmad, Khurshid; Kraatz, Heinz-Bernhard

    2015-02-21

    In this review, we discuss the factors that influence electron transfer in peptides. We summarize experimental results from solution and surface studies and highlight the ongoing debate on the mechanistic aspects of this fundamental reaction. Here, we provide a balanced approach that remains unbiased and does not favor one mechanistic view over another. Support for a putative hopping mechanism in which an electron transfers in a stepwise manner is contrasted with experimental results that support electron tunneling or even some form of ballistic transfer or a pathway transfer for an electron between donor and acceptor sites. In some cases, experimental evidence suggests that a change in the electron transfer mechanism occurs as a result of donor-acceptor separation. However, this common understanding of the switch between tunneling and hopping as a function of chain length is not sufficient for explaining electron transfer in peptides. Apart from chain length, several other factors such as the extent of the secondary structure, backbone conformation, dipole orientation, the presence of special amino acids, hydrogen bonding, and the dynamic properties of a peptide also influence the rate and mode of electron transfer in peptides. Electron transfer plays a key role in physical, chemical and biological systems, so its control is a fundamental task in bioelectrochemical systems, the design of peptide based sensors and molecular junctions. Therefore, this topic is at the heart of a number of biological and technological processes and thus remains of vital interest.

  5. Electromembrane extraction of peptides.

    Science.gov (United States)

    Balchen, Marte; Reubsaet, Léon; Pedersen-Bjergaard, Stig

    2008-06-20

    Rapid extraction of eight different peptides using electromembrane extraction (EME) was demonstrated for the first time. During an extraction time of 5 min, the model peptides migrated from a 500 microL aqueous acidic sample solution, through a thin supported liquid membrane (SLM) of an organic liquid sustained in the pores in the wall of a porous hollow fiber, and into a 25 microL aqueous acidic acceptor solution present inside the lumen of the hollow fiber. The driving force of the extraction was a 50 V potential sustained across the SLM, with the positive electrode in the sample and the negative electrode in the acceptor solution. The nature and the composition of the SLM were highly important for the EME process, and a mixture of 1-octanol and 15% di(2-ethylhexyl) phosphate was found to work properly. Using 1mM HCl as background electrolyte in the sample and 100 mM HCl in the acceptor solution, and agitation at 1050 rpm, enrichment up to 11 times was achieved. Recoveries were found to be dependent on the structure of the peptide, indicating that the polarity and the number of ionized groups were important parameters affecting the extraction efficiency. The experimental findings suggested that electromembrane extraction of peptides is possible and may be a valuable tool for future extraction of peptides. PMID:18479691

  6. Foundations of linear and generalized linear models

    CERN Document Server

    Agresti, Alan

    2015-01-01

    A valuable overview of the most important ideas and results in statistical analysis Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linear statistical models. The book presents a broad, in-depth overview of the most commonly used statistical models by discussing the theory underlying the models, R software applications, and examples with crafted models to elucidate key ideas and promote practical model building. The book begins by illustrating the fundamentals of linear models,

  7. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity......Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... and hence adjuvants are included to enhance and direct the immune response. Although the vaccine has been tested in ART naïve individuals, we recommend future testing of the vaccine during (early started) ART that improves immune function and to select individuals likely to benefit. Peptides representing...

  8. Synthetic antibiofilm peptides.

    Science.gov (United States)

    de la Fuente-Núñez, César; Cardoso, Marlon Henrique; de Souza Cândido, Elizabete; Franco, Octavio Luiz; Hancock, Robert E W

    2016-05-01

    Bacteria predominantly exist as multicellular aggregates known as biofilms that are associated with at least two thirds of all infections and exhibit increased adaptive resistance to conventional antibiotic therapies. Therefore, biofilms are major contributors to the global health problem of antibiotic resistance, and novel approaches to counter them are urgently needed. Small molecules of the innate immune system called host defense peptides (HDPs) have emerged as promising templates for the design of potent, broad-spectrum antibiofilm agents. Here, we review recent developments in the new field of synthetic antibiofilm peptides, including mechanistic insights, synergistic interactions with available antibiotics, and their potential as novel antimicrobials against persistent infections caused by biofilms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26724202

  9. Biomimetic peptide nanosensors.

    Science.gov (United States)

    Cui, Yue; Kim, Sang N; Naik, Rajesh R; McAlpine, Michael C

    2012-05-15

    The development of a miniaturized sensing platform tailored for sensitive and selective detection of a variety of biochemical analytes could offer transformative fundamental and technological opportunities. Due to their high surface-to-volume ratios, nanoscale materials are extremely sensitive sensors. Likewise, peptides represent robust substrates for selective recognition due to the potential for broad chemical diversity within their relatively compact size. Here we explore the possibilities of linking peptides to nanosensors for the selective detection of biochemical targets. Such systems raise a number of interesting fundamental challenges: What are the peptide sequences, and how can rational design be used to derive selective binders? What nanomaterials should be used, and what are some strategies for assembling hybrid nanosensors? What role does molecular modeling play in elucidating response mechanisms? What is the resulting performance of these sensors, in terms of sensitivity, selectivity, and response time? What are some potential applications? This Account will highlight our early attempts to address these research challenges. Specifically, we use natural peptide sequences or sequences identified from phage display as capture elements. The sensors are based on a variety of nanomaterials including nanowires, graphene, and carbon nanotubes. We couple peptides to the nanomaterial surfaces via traditional surface functionalization methods or self-assembly. Molecular modeling provides detailed insights into the hybrid nanostructure, as well as the sensor detection mechanisms. The peptide nanosensors can distinguish chemically camouflaged mixtures of vapors and detect chemical warfare agents with sensitivities as low as parts-per-billion levels. Finally, we anticipate future uses of this technology in biomedicine: for example, devices based on these sensors could detect disease from the molecular components in human breath. Overall, these results provide a

  10. Dicyclopropylmethyl peptide backbone protectant.

    Science.gov (United States)

    Carpino, Louis A; Nasr, Khaled; Abdel-Maksoud, Adel Ali; El-Faham, Ayman; Ionescu, Dumitru; Henklein, Peter; Wenschuh, Holger; Beyermann, Michael; Krause, Eberhard; Bienert, Michael

    2009-08-20

    The N-dicyclopropylmethyl (Dcpm) residue, introduced into amino acids via reaction of dicyclopropylmethanimine hydrochloride with an amino acid ester followed by sodium cyanoborohydride or triacetoxyborohydride reduction, can be used as an amide bond protectant for peptide synthesis. Examples which demonstrate the amelioration of aggregation effects include syntheses of the alanine decapeptide and the prion peptide (106-126). Avoidance of cyclization to the aminosuccinimide followed substitution of Fmoc-(Dcpm)Gly-OH for Fmoc-Gly-OH in the assembly of sequences containing the sensitive Asp-Gly unit.

  11. Invertebrate FMRFamide related peptides.

    Science.gov (United States)

    Krajniak, Kevin G

    2013-06-01

    In 1977 the neuropeptide FMRFamide was isolated from the clam, Macrocallista nimbosa. Since then several hundred FMRFamide-related peptides (FaRPs) have been isolated from invertebrate animals. Precursors to the FaRPs likely arose in the cnidarians. With the transition to a bilateral body plan FaRPs became a fixture in the invertebrate phyla. They have come to play a critical role as neurotransmitters, neuromodulators, and neurohormones. FaRPs regulate a variety of body functions including, feeding, digestion, circulation, reproduction, movement. The evolution of the molecular form and function of these omnipresent peptides will be considered.

  12. Peptiderive server: derive peptide inhibitors from protein-protein interactions.

    Science.gov (United States)

    Sedan, Yuval; Marcu, Orly; Lyskov, Sergey; Schueler-Furman, Ora

    2016-07-01

    The Rosetta Peptiderive protocol identifies, in a given structure of a protein-protein interaction, the linear polypeptide segment suggested to contribute most to binding energy. Interactions that feature a 'hot segment', a linear peptide with significant binding energy compared to that of the complex, may be amenable for inhibition and the peptide sequence and structure derived from the interaction provide a starting point for rational drug design. Here we present a web server for Peptiderive, which is incorporated within the ROSIE web interface for Rosetta protocols. A new feature of the protocol also evaluates whether derived peptides are good candidates for cyclization. Fast computation times and clear visualization allow users to quickly assess the interaction of interest. The Peptiderive server is available for free use at http://rosie.rosettacommons.org/peptiderive. PMID:27141963

  13. Self-assembly of cyclo-diphenylalanine peptides in vacuum.

    Science.gov (United States)

    Jeon, Joohyun; Shell, M Scott

    2014-06-19

    The diphenylalanine (FF) peptide self-assembles into a variety of nanostructures, including hollow nanotubes that form in aqueous solution with an unusually high degree of hydrophilic surface area. In contrast, diphenylalanine can also be vapor-deposited in vacuum to produce rodlike assemblies that are extremely hydrophobic; in this process FF has been found to dehydrate and cyclize to cyclo-diphenylalanine (cyclo-FF). An earlier study used all-atom molecular dynamics (MD) simulations to understand the early stages of the self-assembly of linear-FF peptides in solution. Here, we examine the self-assembly of cyclo-FF peptides in vacuum and compare it to these previous results to understand the differences underlying the two cases. Using all-atom replica exchange MD simulations, we consider systems of 50 cyclo-FF peptides and examine free energies along various structural association coordinates. We find that cyclo-FF peptides form ladder-like structures connected by double hydrogen bonds, and that multiple such ladders linearly align in a cooperative manner to form larger-scale, elongated assemblies. Unlike linear-FFs which mainly assemble through the interplay between hydrophobic and hydrophilic interactions, the assembly of cyclo-FFs in vacuum is primarily driven by electrostatic interactions along the backbone that induce alignment at long-range, followed by van der Waals interactions between side chains that become important for close-range packing. While both solution and vacuum phase driving forces result in ladder-like structures, the clustering of ladders is opposite: linear-FF peptide ladders form assemblies with side-chains buried inward, while cyclo-FF ladders point outward. PMID:24877752

  14. Natriuretic peptides and cerebral hemodynamics

    DEFF Research Database (Denmark)

    Guo, Song; Barringer, Filippa; Zois, Nora Elisabeth;

    2014-01-01

    Natriuretic peptides have emerged as important diagnostic and prognostic tools for cardiovascular disease. Plasma measurement of the bioactive peptides as well as precursor-derived fragments is a sensitive tool in assessing heart failure. In heart failure, the peptides are used as treatment...

  15. Descriptors for antimicrobial peptides

    DEFF Research Database (Denmark)

    Jenssen, Håvard

    2011-01-01

    Introduction: A frightening increase in the number of isolated multidrug resistant bacterial strains linked to the decline in novel antimicrobial drugs entering the market is a great cause for concern. Cationic antimicrobial peptides (AMPs) have lately been introduced as a potential new class of ...

  16. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    Science.gov (United States)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  17. Biochemical functionalization of peptide nanotubes with phage displayed peptides.

    Science.gov (United States)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering. PMID:27479451

  18. Solvation free energies of alanine peptides: the effect of flexibility.

    Science.gov (United States)

    Kokubo, Hironori; Harris, Robert C; Asthagiri, Dilipkumar; Pettitt, B Montgomery

    2013-12-27

    The electrostatic (ΔGel), van der Waals cavity-formation (ΔGvdw), and total (ΔG) solvation free energies for 10 alanine peptides ranging in length (n) from 1 to 10 monomers were calculated. The free energies were computed both with fixed, extended conformations of the peptides and again for some of the peptides without constraints. The solvation free energies, ΔGel, and components ΔGvdw, and ΔG, were found to be linear in n, with the slopes of the best-fit lines being γel, γvdw, and γ, respectively. Both γel and γ were negative for fixed and flexible peptides, and γvdw was negative for fixed peptides. That γvdw was negative was surprising, as experimental data on alkanes, theoretical models, and MD computations on small molecules and model systems generally suggest that γvdw should be positive. A negative γvdw seemingly contradicts the notion that ΔGvdw drives the initial collapse of the protein when it folds by favoring conformations with small surface areas. When we computed ΔGvdw for the flexible peptides, thereby allowing the peptides to assume natural ensembles of more compact conformations, γvdw was positive. Because most proteins do not assume extended conformations, a ΔGvdw that increases with increasing surface area may be typical for globular proteins. An alternative hypothesis is that the collapse is driven by intramolecular interactions. We find few intramolecular H-bonds but show that the intramolecular van der Waals interaction energy is more favorable for the flexible than for the extended peptides, seemingly favoring this hypothesis. The large fluctuations in the vdw energy may make attributing the collapse of the peptide to this intramolecular energy difficult. PMID:24328358

  19. Switched linear encoding with rectified linear autoencoders

    OpenAIRE

    Johnson, Leif; Corcoran, Craig

    2013-01-01

    Several recent results in machine learning have established formal connections between autoencoders---artificial neural network models that attempt to reproduce their inputs---and other coding models like sparse coding and K-means. This paper explores in depth an autoencoder model that is constructed using rectified linear activations on its hidden units. Our analysis builds on recent results to further unify the world of sparse linear coding models. We provide an intuitive interpretation of ...

  20. Radiolabelled peptides for oncological diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Laverman, Peter; Boerman, Otto C.; Oyen, Wim J.G. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Queen Mary University of London, Centre for Molecular Oncology, Barts Cancer Institute, London (United Kingdom)

    2012-02-15

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of research in nuclear medicine. The {sup 111}In-labelled somatostatin analogue octreotide (OctreoScan trademark) is the most successful radiopeptide for tumour imaging, and was the first to be approved for diagnostic use. Based on the success of these studies, other receptor-targeting peptides such as cholecystokinin/gastrin analogues, glucagon-like peptide-1, bombesin (BN), chemokine receptor CXCR4 targeting peptides, and RGD peptides are currently under development or undergoing clinical trials. In this review, we discuss some of these peptides and their analogues, with regard to their potential for radionuclide imaging of tumours. (orig.)

  1. Identification and characterization of a novel antimicrobial peptide from the venom of the ant Tetramorium bicarinatum.

    Science.gov (United States)

    Rifflet, Aline; Gavalda, Sabine; Téné, Nathan; Orivel, Jérôme; Leprince, Jérôme; Guilhaudis, Laure; Génin, Eric; Vétillard, Angélique; Treilhou, Michel

    2012-12-01

    A novel antimicrobial peptide, named Bicarinalin, has been isolated from the venom of the ant Tetramorium bicarinatum. Its amino acid sequence has been determined by de novo sequencing using mass spectrometry and by Edman degradation. Bicarinalin contained 20 amino acid residues and was C-terminally amidated as the majority of antimicrobial peptides isolated to date from insect venoms. Interestingly, this peptide had a linear structure and exhibited no meaningful similarity with any known peptides. Antibacterial activities against Staphylococcus aureus and S. xylosus strains were evaluated using a synthetic replicate. Bicarinalin had a potent and broad antibacterial activity of the same magnitude as Melittin and other hymenopteran antimicrobial peptides such as Pilosulin or Defensin. Moreover, this antimicrobial peptide has a weak hemolytic activity compared to Melittin on erythrocytes, suggesting potential for development into an anti-infective agent for use against emerging antibiotic-resistant pathogens. PMID:22960382

  2. On Regular Linear Relations

    Institute of Scientific and Technical Information of China (English)

    T. (A)LVAREZ

    2012-01-01

    For a closed linear relation in a Banach space the concept of regularity is introduced and studied.It is shown that many of the results of Mbekhta and other authors for operators remain valid in the context of multivalued linear operators.We also extend the punctured neighbourhood theorem for operators to linear relations and as an application we obtain a characterization of semiFredholm linear relations which are regular.

  3. Classifying Linear Canonical Relations

    OpenAIRE

    Lorand, Jonathan

    2015-01-01

    In this Master's thesis, we consider the problem of classifying, up to conjugation by linear symplectomorphisms, linear canonical relations (lagrangian correspondences) from a finite-dimensional symplectic vector space to itself. We give an elementary introduction to the theory of linear canonical relations and present partial results toward the classification problem. This exposition should be accessible to undergraduate students with a basic familiarity with linear algebra.

  4. De novo peptide design and experimental validation of histone methyltransferase inhibitors.

    Directory of Open Access Journals (Sweden)

    James Smadbeck

    Full Text Available Histones are small proteins critical to the efficient packaging of DNA in the nucleus. DNA-protein complexes, known as nucleosomes, are formed when the DNA winds itself around the surface of the histones. The methylation of histone residues by enhancer of zeste homolog 2 (EZH2 maintains gene repression over successive cell generations. Overexpression of EZH2 can silence important tumor suppressor genes leading to increased invasiveness of many types of cancers. This makes the inhibition of EZH2 an important target in the development of cancer therapeutics. We employed a three-stage computational de novo peptide design method to design inhibitory peptides of EZH2. The method consists of a sequence selection stage and two validation stages for fold specificity and approximate binding affinity. The sequence selection stage consists of an integer linear optimization model that was solved to produce a rank-ordered list of amino acid sequences with increased stability in the bound peptide-EZH2 structure. These sequences were validated through the calculation of the fold specificity and approximate binding affinity of the designed peptides. Here we report the discovery of novel EZH2 inhibitory peptides using the de novo peptide design method. The computationally discovered peptides were experimentally validated in vitro using dose titrations and mechanism of action enzymatic assays. The peptide with the highest in vitro response, SQ037, was validated in nucleo using quantitative mass spectrometry-based proteomics. This peptide had an IC50 of 13.5 [Formula: see text]M, demonstrated greater potency as an inhibitor when compared to the native and K27A mutant control peptides, and demonstrated competitive inhibition versus the peptide substrate. Additionally, this peptide demonstrated high specificity to the EZH2 target in comparison to other histone methyltransferases. The validated peptides are the first computationally designed peptides that directly

  5. De novo peptide design and experimental validation of histone methyltransferase inhibitors.

    Directory of Open Access Journals (Sweden)

    James Smadbeck

    Full Text Available Histones are small proteins critical to the efficient packaging of DNA in the nucleus. DNA–protein complexes, known as nucleosomes, are formed when the DNA winds itself around the surface of the histones. The methylation of histone residues by enhancer of zeste homolog 2 (EZH2 maintains gene repression over successive cell generations. Overexpression of EZH2 can silence important tumor suppressor genes leading to increased invasiveness of many types of cancers. This makes the inhibition of EZH2 an important target in the development of cancer therapeutics. We employed a three-stage computational de novo peptide design method to design inhibitory peptides of EZH2. The method consists of a sequence selection stage and two validation stages for fold specificity and approximate binding affinity. The sequence selection stage consists of an integer linear optimization model that was solved to produce a rank-ordered list of amino acid sequences with increased stability in the bound peptide-EZH2 structure. These sequences were validated through the calculation of the fold specificity and approximate binding affinity of the designed peptides. Here we report the discovery of novel EZH2 inhibitory peptides using the de novo peptide design method. The computationally discovered peptides were experimentally validated in vitro using dose titrations and mechanism of action enzymatic assays. The peptide with the highest in vitro response, SQ037, was validated in nucleo using quantitative mass spectrometry-based proteomics. This peptide had an IC50 of 13.5 mM, demonstrated greater potency as an inhibitor when compared to the native and K27A mutant control peptides, and demonstrated competitive inhibition versus the peptide substrate. Additionally, this peptide demonstrated high specificity to the EZH2 target in comparison to other histone methyltransferases. The validated peptides are the first computationally designed peptides that directly inhibit EZH2

  6. Linear-Algebra Programs

    Science.gov (United States)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  7. Antimicrobial Peptides (AMPs

    Directory of Open Access Journals (Sweden)

    Mehrzad Sadredinamin

    2016-04-01

    Full Text Available Antimicrobial peptides (AMPs are extensive group of molecules that produced by variety tissues of invertebrate, plants, and animal species which play an important role in their immunity response. AMPs have different classifications such as; biosynthetic machines, biological sources, biological functions, molecular properties, covalent bonding patterns, three dimensional structures, and molecular targets.These molecules have multidimensional properties including antimicrobial activity, antiviral activity, antifungal activity, anti-parasite activity, biofilm control, antitumor activity, mitogens activity and linking innate to adaptive immunity that making them promising agents for therapeutic drugs. In spite of this advantage of AMPs, their clinical developments have some limitation for commercial development. But some of AMPs are under clinical trials for the therapeutic purpose such as diabetic foot ulcers, different bacterial infections and tissue damage. In this review, we emphasized on the source, structure, multidimensional properties, limitation and therapeutic applications of various antimicrobial peptides.

  8. Antimicrobial peptides in Echinoderms

    Directory of Open Access Journals (Sweden)

    C Li

    2010-05-01

    Full Text Available Antimicrobial peptides (AMPs are important immune effector molecules for invertebrates, including echinoderms, which lack a vertebrate-type adaptive immune system. Here we summarize the knowledge of such peptides in echinoderms. Strongylocins are a novel family of cysteine-rich AMPs, recently identified in the sea urchins, Strongylocentrotus droebachiensis and S. purpuratus. Although these molecules present diverse amino acid sequences, they share an identical cysteine arrangement pattern, dissimilar to other known AMPs. A family of heterodimeric AMPs, named centrocins, are also present in S. droebachiensis. Lysozymes and fragments of larger proteins, such as beta-thymocins, actin, histone 2A and filamin A have also been shown to display antimicrobial activities in echinoderms. Future studies on AMPs should be aimed in revealing how echinoderms use these AMPs in the immune response against microbial pathogens.

  9. Diversity of peptide toxins from stinging ant venoms.

    Science.gov (United States)

    Aili, Samira R; Touchard, Axel; Escoubas, Pierre; Padula, Matthew P; Orivel, Jérôme; Dejean, Alain; Nicholson, Graham M

    2014-12-15

    Ants (Hymenoptera: Formicidae) represent a taxonomically diverse group of arthropods comprising nearly 13,000 extant species. Sixteen ant subfamilies have individuals that possess a stinger and use their venom for purposes such as a defence against predators, competitors and microbial pathogens, for predation, as well as for social communication. They exhibit a range of activities including antimicrobial, haemolytic, cytolytic, paralytic, insecticidal and pain-producing pharmacologies. While ant venoms are known to be rich in alkaloids and hydrocarbons, ant venoms rich in peptides are becoming more common, yet remain understudied. Recent advances in mass spectrometry techniques have begun to reveal the true complexity of ant venom peptide composition. In the few venoms explored thus far, most peptide toxins appear to occur as small polycationic linear toxins, with antibacterial properties and insecticidal activity. Unlike other venomous animals, a number of ant venoms also contain a range of homodimeric and heterodimeric peptides with one or two interchain disulfide bonds possessing pore-forming, allergenic and paralytic actions. However, ant venoms seem to have only a small number of monomeric disulfide-linked peptides. The present review details the structure and pharmacology of known ant venom peptide toxins and their potential as a source of novel bioinsecticides and therapeutic agents. PMID:25448389

  10. Isolation of Camelid Single-Domain Antibodies Against Native Proteins Using Recombinant Multivalent Peptide Ligands.

    Science.gov (United States)

    Alturki, Norah A; Henry, Kevin A; MacKenzie, C Roger; Arbabi-Ghahroudi, Mehdi

    2015-01-01

    Generation of antibodies against desired epitopes on folded proteins may be hampered by various characteristics of the target protein, including antigenic and immunogenic dominance of irrelevant epitopes and/or steric occlusion of the desired epitope. In such cases, peptides encompassing linear epitopes of the native protein represent attractive alternative reagents for immunization and screening. Peptide antigens are typically prepared by fusing or conjugating the peptide of interest to a carrier protein. The utility of such antigens depends on many factors including the peptide's amino acid sequence, display valency, display format (synthetic conjugate vs. recombinant fusion) and characteristics of the carrier. Here we provide detailed protocols for: (1) preparation of DNA constructs encoding peptides fused to verotoxin (VT) multimerization domain; (2) expression, purification, and characterization of the multivalent peptide-VT ligands; (3) concurrent panning of a non-immune phage-displayed camelid VHH library against the peptide-VT ligands and native protein; and (4) identification of VHHs enriched via panning using next-generation sequencing techniques. These methods are simple, rapid and can be easily adapted to yield custom peptide-VT ligands that appear to maintain the antigenic structures of the peptide. However, we caution that peptide sequences should be chosen with great care, taking into account structural, immunological, and biophysical information on the protein of interest.

  11. Advanced linear algebra

    CERN Document Server

    Cooperstein, Bruce

    2010-01-01

    Vector SpacesFieldsThe Space FnVector Spaces over an Arbitrary Field Subspaces of Vector SpacesSpan and IndependenceBases and Finite Dimensional Vector SpacesBases and Infinite Dimensional Vector SpacesCoordinate VectorsLinear TransformationsIntroduction to Linear TransformationsThe Range and Kernel of a Linear TransformationThe Correspondence and Isomorphism TheoremsMatrix of a Linear TransformationThe Algebra of L(V, W) and Mmn(F)Invertible Transformations and MatricesPolynomialsThe Algebra of PolynomialsRoots of PolynomialsTheory of a Single Linear OperatorInvariant Subspaces of an Operator

  12. Peptide synthesis triggered by comet impacts: A possible method for peptide delivery to the early Earth and icy satellites

    Science.gov (United States)

    Sugahara, Haruna; Mimura, Koichi

    2015-09-01

    We performed shock experiments simulating natural comet impacts in an attempt to examine the role that comet impacts play in peptide synthesis. In the present study, we selected a mixture of alanine (DL-alanine), water ice, and silicate (forsterite) to make a starting material for the experiments. The shock experiments were conducted under cryogenic conditions (77 K), and the shock pressure range achieved in the experiments was 4.8-25.8 GPa. The results show that alanine is oligomerized into peptides up to tripeptides due to the impact shock. The synthesized peptides were racemic, indicating that there was no enantioselective synthesis of peptides from racemic amino acids due to the impact shock. We also found that the yield of linear peptides was a magnitude higher than those of cyclic diketopiperazine. Furthermore, we estimated the amount of cometary-derived peptides to the early Earth based on two models (the Lunar Crating model and the Nice model) during the Late Heavy Bombardment (LHB) using our experimental data. The estimation based on the Lunar Crating model gave 3 × 109 mol of dialanine, 4 × 107 mol of trialanine, and 3 × 108 mol of alanine-diketopiperazine. Those based on the Nice model, in which the main impactor of LHB is comets, gave 6 × 1010 mol of dialanine, 1 × 109 mol of trialanine, and 8 × 109 mol of alanine-diketopiperazine. The estimated amounts were comparable to those originating from terrestrial sources (Cleaves, H.J., Aubrey, A.D., Bada, J.L. [2009]. Orig. Life Evol. Biosph. 39, 109-126). Our results indicate that comet impacts played an important role in chemical evolution as a supplier of linear peptides, which are important for further chemical evolution on the early Earth. Our study also highlights the importance of icy satellites, which were formed by comet accumulation, as prime targets for missions searching for extraterrestrial life.

  13. Confirmation of a new conserved linear epitope of Lyssavirus nucleoprotein.

    Science.gov (United States)

    Xinjun, Lv; Xuejun, Ma; Lihua, Wang; Hao, Li; Xinxin, Shen; Pengcheng, Yu; Qing, Tang; Guodong, Liang

    2012-05-01

    Bioinformatics analysis was used to predict potential epitopes of Lyssavirus nucleoprotein and highlighted some distinct differences in the quantity and localization of the epitopes disclosed by epitope analysis of monoclonal antibodies against Lyssavirus nucleoprotein. Bioinformatics analysis showed that the domain containing residues 152-164 of Lyssavirus nucleoprotein was a conserved linear epitope that had not been reported previously. Immunization of two rabbits with the corresponding synthetic peptide conjugated to the Keyhole Limpe hemocyanin (KLH) macromolecule resulted in a titer of anti-peptide antibody above 1:200,000 in rabbit sera as detected by indirect enzyme-linked immunosorbent assay (ELISA). Western blot analysis demonstrated that the anti-peptide antibody recognized denatured Lyssavirus nucleoprotein in sodium dodecylsulfonate-polyacrylate gel electrophoresis (SDS-PAGE). Affinity chromatography purification and FITC-labeling of the anti-peptide antibody in rabbit sera was performed. FITC-labeled anti-peptide antibody could recognize Lyssavirus nucleoprotein in BSR cells and canine brain tissues even at a 1:200 dilution. Residues 152-164 of Lyssavirus nucleoprotein were verified as a conserved linear epitope in Lyssavirus. PMID:22405880

  14. Membrane interaction and secondary structure of de novo designed arginine-and tryptophan peptides with dual function

    KAUST Repository

    Rydberg, Hanna A.

    2012-10-01

    Cell-penetrating peptides and antimicrobial peptides are two classes of positively charged membrane active peptides with several properties in common. The challenge is to combine knowledge about the membrane interaction mechanisms and structural properties of the two classes to design peptides with membrane-specific actions, useful either as transporters of cargo or as antibacterial substances. Membrane active peptides are commonly rich in arginine and tryptophan. We have previously designed a series of arg/trp peptides and investigated how the position and number of tryptophans affect cellular uptake. Here we explore the antimicrobial properties and the interaction with lipid model membranes of these peptides, using minimal inhibitory concentrations assay (MIC), circular dichroism (CD) and linear dichroism (LD). The results show that the arg/trp peptides inhibit the growth of the two gram positive strains Staphylococcus aureus and Staphylococcus pyogenes, with some individual variations depending on the position of the tryptophans. No inhibition of the gram negative strains Proteus mirabilis or Pseudomonas aeruginosa was noticed. CD indicated that when bound to lipid vesicles one of the peptides forms an α-helical like structure, whereas the other five exhibited rather random coiled structures. LD indicated that all six peptides were somehow aligned parallel with the membrane surface. Our results do not reveal any obvious connection between membrane interaction and antimicrobial effect for the studied peptides. By contrast cell-penetrating properties can be coupled to both the secondary structure and the degree of order of the peptides. © 2012 Elsevier Inc.

  15. The PeptideAtlas Project

    OpenAIRE

    Deutsch, Eric W.

    2010-01-01

    PeptideAtlas is a multi-species compendium of peptides observed with tandem mass spectrometry methods. Raw mass spectrometer output files are collected from the community and reprocessed through a uniform analysis and validation pipeline that continues to advance. The results are loaded into a database and the information derived from the raw data is returned to the community via several web-based data exploration tools. The PeptideAtlas resource is useful for experiment planning, improving g...

  16. Human Antimicrobial Peptides and Proteins

    OpenAIRE

    Guangshun Wang

    2014-01-01

    As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified ...

  17. Non linear system become linear system

    Directory of Open Access Journals (Sweden)

    Petre Bucur

    2007-01-01

    Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.

  18. Peptides that influence membrane topology

    Science.gov (United States)

    Wong, Gerard C. L.

    2014-03-01

    We examine the mechanism of a range of polypeptides that influence membrane topology, including antimicrobial peptides, cell penetrating peptides, viral fusion peptides, and apoptosis proteins, and show how a combination of geometry, coordination chemistry, and soft matter physics can be used to approach a unified understanding. We will also show how such peptides can impact biomedical problems such as auto-immune diseases (psoriasis, lupus), infectious diseases (viral and bacterial infections), and mitochondrial pathologies (under-regulated apoptosis leads to neurodegenerative diseases whereas over-regulated apoptosis leads to cancer.)

  19. NCAM Mimetic Peptides: An Update

    DEFF Research Database (Denmark)

    Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    sequences contain one or several NCAM homophilic binding sites involved in NCAM binding to itself, have been identified. By means of NMR titration analysis and molecular modeling a number of peptides derived from NCAM and targeting NCAM heterophilic ligands such as the fibroblast growth factor receptor...... and heparan sulfate proteoglycans (HSPG) have been identified. The FGL, dekaCAM, FRM/EncaminA, BCL, EncaminC and EncaminE peptides all target the FGF receptor whereas the heparin binding peptide HBP targets HSPG. Moreover, a number of NCAM binding peptides have been identified employing screening...

  20. Improving Peptide Applications Using Nanotechnology.

    Science.gov (United States)

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology. PMID:26279082

  1. Improving Peptide Applications Using Nanotechnology.

    Science.gov (United States)

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology.

  2. Biodiscovery of aluminum binding peptides

    Science.gov (United States)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  3. Basic linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Basic Linear Algebra is a text for first year students leading from concrete examples to abstract theorems, via tutorial-type exercises. More exercises (of the kind a student may expect in examination papers) are grouped at the end of each section. The book covers the most important basics of any first course on linear algebra, explaining the algebra of matrices with applications to analytic geometry, systems of linear equations, difference equations and complex numbers. Linear equations are treated via Hermite normal forms which provides a successful and concrete explanation of the notion of linear independence. Another important highlight is the connection between linear mappings and matrices leading to the change of basis theorem which opens the door to the notion of similarity. This new and revised edition features additional exercises and coverage of Cramer's rule (omitted from the first edition). However, it is the new, extra chapter on computer assistance that will be of particular interest to readers:...

  4. Linearity in Process Languages

    DEFF Research Database (Denmark)

    Nygaard, Mikkel; Winskel, Glynn

    2002-01-01

    The meaning and mathematical consequences of linearity (managing without a presumed ability to copy) are studied for a path-based model of processes which is also a model of affine-linear logic. This connection yields an affine-linear language for processes, automatically respecting open-map bisi......-map bisimulation, in which a range of process operations can be expressed. An operational semantics is provided for the tensor fragment of the language. Different ways to make assemblies of processes lead to different choices of exponential, some of which respect bisimulation.......The meaning and mathematical consequences of linearity (managing without a presumed ability to copy) are studied for a path-based model of processes which is also a model of affine-linear logic. This connection yields an affine-linear language for processes, automatically respecting open...

  5. Adding linear orders

    CERN Document Server

    Shelah, Saharon

    2011-01-01

    We address the following question: Can we expand an NIP theory by adding a linear order such that the expansion is still NIP? Easily, if acl(A)=A for all A, then this is true. Otherwise, we give counterexamples. More precisely, there is a totally categorical theory for which every expansion by a linear order has IP. There is also an \\omega-stable NDOP theory for which every expansion by a linear order interprets bounded arithmetic.

  6. Polyclonal Peptide Antisera.

    Science.gov (United States)

    Pihl, Tina H; Illigen, Kristin E; Houen, Gunnar

    2015-01-01

    Polyclonal antibodies are relatively easy to produce and may supplement monoclonal antibodies for some applications or even have some advantages. The choice of species for production of (peptide) antisera is based on practical considerations, including availability of immunogen (vaccine) and animals. Two major factors govern the production of antisera: the nature of adaptive immune responses, which take place over days/weeks and ethical guidelines for animal welfare. Here, simple procedures for immunization of mice, rabbits, sheep, goats, pigs, horses, and chickens are presented. PMID:26424267

  7. Linear integrated circuits

    CERN Document Server

    Carr, Joseph

    1996-01-01

    The linear IC market is large and growing, as is the demand for well trained technicians and engineers who understand how these devices work and how to apply them. Linear Integrated Circuits provides in-depth coverage of the devices and their operation, but not at the expense of practical applications in which linear devices figure prominently. This book is written for a wide readership from FE and first degree students, to hobbyists and professionals.Chapter 1 offers a general introduction that will provide students with the foundations of linear IC technology. From chapter 2 onwa

  8. Linear models with R

    CERN Document Server

    Faraway, Julian J

    2014-01-01

    A Hands-On Way to Learning Data AnalysisPart of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition.New to the Second EditionReorganiz

  9. Development of second generation peptides modulating cellular adiponectin receptor responses

    Directory of Open Access Journals (Sweden)

    Laszlo eOtvos

    2014-10-01

    Full Text Available The adipose tissue participates in the regulation of energy homeostasis as an important endocrine organ that secretes a number of biologically active adipokines, including adiponectin. Recently we developed and characterized a first-in-class peptide-based adiponectin receptor agonist by using in vitro and in vivo models of glioblastoma and breast cancer (BC. In the current study, we further explored the effects of peptide ADP355 in additional cellular models and found that ADP355 inhibited chronic myeloid leukemia (CML cell proliferation and renal myofibroblast differentiation with mid-nanomolar IC50 values. According to molecular modeling calculations, ADP355 was remarkably flexible in the global minimum with a turn present in the middle of the peptide. Considering these structural features of ADP355 and the fact that adiponectin normally circulates as multimeric complexes, we developed and tested the activity of a linear branched dimer (ADP399. The dimer exhibited approximately 20-fold improved cellular activity inhibiting K562 CML and MCF-7 cell growth with high pM - low nM relative IC50 values. Biodistribution studies suggested superior tissue dissemination of both peptides after subcutaneous administration relative to intraperitoneal inoculation. After screening of a 397-member adiponectin active site library, a novel octapeptide (ADP400 was designed that counteracted 10-1000 nM ADP355- and ADP399-mediated effects on CML and BC cell growth at nanomolar concentrations. ADP400 induced mitogenic effects in MCF-7 BC cells perhaps due to antagonizing endogenous adiponectin actions or acting as an inverse agonist. While the linear dimer agonist ADP399 meets pharmacological criteria of a contemporary peptide drug lead, the peptide showing antagonist activity (ADP400 at similar concentrations will be an important target validation tool to study adiponectin functions.

  10. Development of second generation peptides modulating cellular adiponectin receptor responses

    Science.gov (United States)

    Otvos, Laszlo; Knappe, Daniel; Hoffmann, Ralf; Kovalszky, Ilona; Olah, Julia; Hewitson, Tim; Stawikowska, Roma; Stawikowski, Maciej; Cudic, Predrag; Lin, Feng; Wade, John; Surmacz, Eva; Lovas, Sandor

    2014-10-01

    The adipose tissue participates in the regulation of energy homeostasis as an important endocrine organ that secretes a number of biologically active adipokines, including adiponectin. Recently we developed and characterized a first-in-class peptide-based adiponectin receptor agonist by using in vitro and in vivo models of glioblastoma and breast cancer (BC). In the current study, we further explored the effects of peptide ADP355 in additional cellular models and found that ADP355 inhibited chronic myeloid leukemia (CML) cell proliferation and renal myofibroblast differentiation with mid-nanomolar IC50 values. According to molecular modeling calculations, ADP355 was remarkably flexible in the global minimum with a turn present in the middle of the peptide. Considering these structural features of ADP355 and the fact that adiponectin normally circulates as multimeric complexes, we developed and tested the activity of a linear branched dimer (ADP399). The dimer exhibited approximately 20-fold improved cellular activity inhibiting K562 CML and MCF-7 cell growth with high pM - low nM relative IC50 values. Biodistribution studies suggested superior tissue dissemination of both peptides after subcutaneous administration relative to intraperitoneal inoculation. After screening of a 397-member adiponectin active site library, a novel octapeptide (ADP400) was designed that counteracted 10-1000 nM ADP355- and ADP399-mediated effects on CML and BC cell growth at nanomolar concentrations. ADP400 induced mitogenic effects in MCF-7 BC cells perhaps due to antagonizing endogenous adiponectin actions or acting as an inverse agonist. While the linear dimer agonist ADP399 meets pharmacological criteria of a contemporary peptide drug lead, the peptide showing antagonist activity (ADP400) at similar concentrations will be an important target validation tool to study adiponectin functions.

  11. Racetrack linear accelerators

    International Nuclear Information System (INIS)

    An improved recirculating electron beam linear accelerator of the racetrack type is described. The system comprises a beam path of four straight legs with four Pretzel bending magnets at the end of each leg to direct the beam into the next leg of the beam path. At least one of the beam path legs includes a linear accelerator. (UK)

  12. Linear Logical Voting Protocols

    DEFF Research Database (Denmark)

    DeYoung, Henry; Schürmann, Carsten

    2012-01-01

    . In response, we promote linear logic as a high-level language for both specifying and implementing voting protocols. Our linear logical specifications of the single-winner first-past-the-post (SW- FPTP) and single transferable vote (STV) protocols demonstrate that this approach leads to concise...

  13. Linear Equations: Equivalence = Success

    Science.gov (United States)

    Baratta, Wendy

    2011-01-01

    The ability to solve linear equations sets students up for success in many areas of mathematics and other disciplines requiring formula manipulations. There are many reasons why solving linear equations is a challenging skill for students to master. One major barrier for students is the inability to interpret the equals sign as anything other than…

  14. Handbook on linear motor application

    International Nuclear Information System (INIS)

    This book guides the application for Linear motor. It lists classification and speciality of Linear Motor, terms of linear-induction motor, principle of the Motor, types on one-side linear-induction motor, bilateral linear-induction motor, linear-DC Motor on basic of the motor, linear-DC Motor for moving-coil type, linear-DC motor for permanent-magnet moving type, linear-DC motor for electricity non-utility type, linear-pulse motor for variable motor, linear-pulse motor for permanent magneto type, linear-vibration actuator, linear-vibration actuator for moving-coil type, linear synchronous motor, linear electromagnetic motor, linear electromagnetic solenoid, technical organization and magnetic levitation and linear motor and sensor.

  15. Molecular organization in striated domains induced by transmembrane alpha-helical peptides in dipalmitoyl phosphatidylcholine bilayers.

    Science.gov (United States)

    Sparr, Emma; Ganchev, Dragomir N; Snel, Margot M E; Ridder, Anja N J A; Kroon-Batenburg, Loes M J; Chupin, Vladimir; Rijkers, Dirk T S; Killian, J Antoinette; de Kruijff, Ben

    2005-01-11

    Transmembrane (TM) alpha-helical peptides with neutral flanking residues such as tryptophan form highly ordered striated domains when incorporated in gel-state 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers and inspected by atomic force microscopy (AFM) (1). In this study, we analyze the molecular organization of these striated domains using AFM, photo-cross-linking, fluorescence spectroscopy, nuclear magnetic resonance (NMR), and X-ray diffraction techniques on different functionalized TM peptides. The results demonstrate that the striated domains consist of linear arrays of single TM peptides with a dominantly antiparallel organization in which the peptides interact with each other and with lipids. The peptide arrays are regularly spaced by +/-8.5 nm and are separated by somewhat perturbed gel-state lipids with hexagonally organized acyl chains, which have lost their tilt. This system provides an example of how domains of peptides and lipids can be formed in membranes as a result of a combination of specific peptide-peptide and peptide-lipid interactions. PMID:15628840

  16. Radiolabelled peptides for oncological diagnosis.

    NARCIS (Netherlands)

    Laverman, P.; Sosabowski, J.K.; Boerman, O.C.; Oyen, W.J.G.

    2012-01-01

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of resea

  17. Urinary Peptides in Rett Syndrome.

    Science.gov (United States)

    Solaas, K. M.; Skjeldal, O.; Gardner, M. L. G.; Kase, B. F.; Reichelt, K. L.

    2002-01-01

    A study found a significantly higher level of peptides in the urine of 53 girls with Rett syndrome compared with controls. The elevation was similar to that in 35 girls with infantile autism. Levels of peptides were lower in girls with classic Rett syndrome than those with congenital Rett syndrome. (Contains references.) (Author/CR)

  18. Structural Characterization of Peptide Antibodies

    DEFF Research Database (Denmark)

    Chailyan, Anna; Marcatili, Paolo

    2015-01-01

    The role of proteins as very effective immunogens for the generation of antibodies is indisputable. Nevertheless, cases in which protein usage for antibody production is not feasible or convenient compelled the creation of a powerful alternative consisting of synthetic peptides. Synthetic peptide...

  19. Solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Jensen, Knud Jørgen

    2013-01-01

    This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective....

  20. Efficient Non Linear Loudspeakers

    DEFF Research Database (Denmark)

    Petersen, Bo R.; Agerkvist, Finn T.

    2006-01-01

    Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption.......Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...

  1. Linear algebra done right

    CERN Document Server

    Axler, Sheldon

    2015-01-01

    This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions. No prerequisites are assumed other than the ...

  2. Semidefinite linear complementarity problems

    International Nuclear Information System (INIS)

    Semidefinite linear complementarity problems arise by discretization of variational inequalities describing e.g. elastic contact problems, free boundary value problems etc. In the present paper linear complementarity problems are introduced and the theory as well as the numerical treatment of them are described. In the special case of semidefinite linear complementarity problems a numerical method is presented which combines the advantages of elimination and iteration methods without suffering from their drawbacks. This new method has very attractive properties since it has a high degree of invariance with respect to the representation of the set of all feasible solutions of a linear complementarity problem by linear inequalities. By means of some practical applications the properties of the new method are demonstrated. (orig.)

  3. Poly(Ethylene Glycol-Based Backbones with High Peptide Loading Capacities

    Directory of Open Access Journals (Sweden)

    Aoife O'Connor

    2014-10-01

    Full Text Available Polymer-peptide conjugates are a promising class of compounds, where polymers can be used to overcome some of the limitations associated with peptides intended for therapeutic and/or diagnostic applications. Linear polymers such as poly(ethylene glycol can be conjugated through terminal moieties and have therefore limited loading capacities. In this research, functionalised linear poly(ethylene glycols are utilised for peptide conjugation, to increase their potential loading capacities. These poly(ethylene glycol derivatives are conjugated to peptide sequences containing representative side-chain functionalised amino acids, using different conjugation chemistries, including copper-catalysed azide-alkyne cycloaddition, amide coupling and thiol-ene reactions. Conjugation of a sequence containing the RGD motif to poly(allyl glycidyl ether by the thiol-ene reaction, provided a conjugate which could be used in platelet adhesion studies.

  4. Systematic discovery of new recognition peptides mediating protein interaction networks

    DEFF Research Database (Denmark)

    Neduva, Victor; Linding, Rune; Su-Angrand, Isabelle;

    2005-01-01

    Many aspects of cell signalling, trafficking, and targeting are governed by interactions between globular protein domains and short peptide segments. These domains often bind multiple peptides that share a common sequence pattern, or "linear motif" (e.g., SH3 binding to PxxP). Many domains...... molecular details of how interaction networks are constructed, and can explain how one protein is able to bind to very different partners. Here we show that binding motifs can be detected using data from genome-scale interaction studies, and thus avoid the normally slow discovery process. Our approach based...... that binds Translin with a KD of 43 microM. We estimate that there are dozens or even hundreds of linear motifs yet to be discovered that will give molecular insight into protein networks and greatly illuminate cellular processes.Many aspects of cell signalling, trafficking, and targeting are governed...

  5. Super Linear Algebra

    CERN Document Server

    Kandasamy, W B Vasantha

    2008-01-01

    In this book, the authors introduce the notion of Super linear algebra and super vector spaces using the definition of super matrices defined by Horst (1963). This book expects the readers to be well-versed in linear algebra. Many theorems on super linear algebra and its properties are proved. Some theorems are left as exercises for the reader. These new class of super linear algebras which can be thought of as a set of linear algebras, following a stipulated condition, will find applications in several fields using computers. The authors feel that such a paradigm shift is essential in this computerized world. Some other structures ought to replace linear algebras which are over a century old. Super linear algebras that use super matrices can store data not only in a block but in multiple blocks so it is certainly more powerful than the usual matrices. This book has 3 chapters. Chapter one introduces the notion of super vector spaces and enumerates a number of properties. Chapter two defines the notion of sup...

  6. Applied linear regression

    CERN Document Server

    Weisberg, Sanford

    2005-01-01

    Master linear regression techniques with a new edition of a classic text Reviews of the Second Edition: ""I found it enjoyable reading and so full of interesting material that even the well-informed reader will probably find something new . . . a necessity for all of those who do linear regression."" -Technometrics, February 1987 ""Overall, I feel that the book is a valuable addition to the now considerable list of texts on applied linear regression. It should be a strong contender as the leading text for a first serious course in regression analysis."" -American Scientist, May-June 1987

  7. Applied linear regression

    CERN Document Server

    Weisberg, Sanford

    2013-01-01

    Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus

  8. Elements of linear space

    CERN Document Server

    Amir-Moez, A R; Sneddon, I N

    1962-01-01

    Elements of Linear Space is a detailed treatment of the elements of linear spaces, including real spaces with no more than three dimensions and complex n-dimensional spaces. The geometry of conic sections and quadric surfaces is considered, along with algebraic structures, especially vector spaces and transformations. Problems drawn from various branches of geometry are given.Comprised of 12 chapters, this volume begins with an introduction to real Euclidean space, followed by a discussion on linear transformations and matrices. The addition and multiplication of transformations and matrices a

  9. Matrices and linear algebra

    CERN Document Server

    Schneider, Hans

    1989-01-01

    Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t

  10. Linear Network Fractional Routing

    Directory of Open Access Journals (Sweden)

    S.ASOKAN,

    2011-07-01

    Full Text Available A Network is a finite directed acyclic graph with source messages from a fixed alphabet and message demands at sink nodes. Linear Programming is an algorithm design method. It can be used whenthe solution to a problem can be viewed as the result of a sequence of decisions. The Linear Programming model for the network problem where in every variable has a value one or zero. The problem is todetermine a method of transmitting the messages through the network such that all sink demands are satisfied. We will prove fractional routing capacity for some solvable network using Linear Programmingmodel.

  11. Inhibition of the ferric uptake regulator by peptides derived from anti-FUR peptide aptamers: coupled theoretical and experimental approaches.

    Science.gov (United States)

    Cissé, Cheickna; Mathieu, Sophie V; Abeih, Mohamed B Ould; Flanagan, Lindsey; Vitale, Sylvia; Catty, Patrice; Boturyn, Didier; Michaud-Soret, Isabelle; Crouzy, Serge

    2014-12-19

    The FUR protein (ferric uptake regulator) is an iron-dependent global transcriptional regulator. Specific to bacteria, FUR is an attractive antibacterial target since virulence is correlated to iron bioavailability. Recently, four anti-FUR peptide aptamers, composed of 13 amino acid variable loops inserted into a thioredoxinA scaffold, were identified, which were able to interact with Escherichia coli FUR (EcFUR), inhibit its binding to DNA and to decrease the virulence of pathogenic E. coli in a fly infection model. The first characterization of anti-FUR linear peptides (pF1 6 to 13 amino acids) derived from the variable part of the F1 anti-FUR peptide aptamer is described herein. Theoretical and experimental approaches, in original combination, were used to study interactions of these peptides with FUR in order to understand their mechanism of inhibition. After modeling EcFUR by homology, docking with Autodock was combined with molecular dynamics simulations in implicit solvent to take into account the flexibility of the partners. All calculations were cross-checked either with other programs or with experimental data. As a result, reliable structures of EcFUR and its complex with pF1 are given and an inhibition pocket formed by the groove between the two FUR subunits is proposed. The location of the pocket was validated through experimental mutation of key EcFUR residues at the site of proposed peptide interaction. Cyclisation of pF1, mimicking the peptide constraint in F1, improved inhibition. The details of the interactions between peptide and protein were analyzed and a mechanism of inhibition of these anti-FUR molecules is proposed.

  12. Conus venom peptide pharmacology.

    Science.gov (United States)

    Lewis, Richard J; Dutertre, Sébastien; Vetter, Irina; Christie, MacDonald J

    2012-04-01

    Conopeptides are a diverse group of recently evolved venom peptides used for prey capture and/or defense. Each species of cone snails produces in excess of 1000 conopeptides, with those pharmacologically characterized (≈ 0.1%) targeting a diverse range of membrane proteins typically with high potency and specificity. The majority of conopeptides inhibit voltage- or ligand-gated ion channels, providing valuable research tools for the dissection of the role played by specific ion channels in excitable cells. It is noteworthy that many of these targets are found to be expressed in pain pathways, with several conopeptides having entered the clinic as potential treatments for pain [e.g., pyroglutamate1-MrIA (Xen2174)] and one now marketed for intrathecal treatment of severe pain [ziconotide (Prialt)]. This review discusses the diversity, pharmacology, structure-activity relationships, and therapeutic potential of cone snail venom peptide families acting at voltage-gated ion channels (ω-, μ-, μO-, δ-, ι-, and κ-conotoxins), ligand-gated ion channels (α-conotoxins, σ-conotoxin, ikot-ikot, and conantokins), G-protein-coupled receptors (ρ-conopeptides, conopressins, and contulakins), and neurotransmitter transporters (χ-conopeptides), with expanded discussion on the clinical potential of sodium and calcium channel inhibitors and α-conotoxins. Expanding the discovery of new bioactives using proteomic/transcriptomic approaches combined with high-throughput platforms and better defining conopeptide structure-activity relationships using relevant membrane protein crystal structures are expected to grow the already significant impact conopeptides have had as both research probes and leads to new therapies. PMID:22407615

  13. Potential of phage-displayed peptide library technology to identify functional targeting peptides

    Science.gov (United States)

    Krumpe, Lauren RH; Mori, Toshiyuki

    2010-01-01

    Combinatorial peptide library technology is a valuable resource for drug discovery and development. Several peptide drugs developed through phage-displayed peptide library technology are presently in clinical trials and the authors envision that phage-displayed peptide library technology will assist in the discovery and development of many more. This review attempts to compile and summarize recent literature on targeting peptides developed through peptide library technology, with special emphasis on novel peptides with targeting capacity evaluated in vivo. PMID:20150977

  14. A robust method of determination of high concentrations of peptides and proteins

    DEFF Research Database (Denmark)

    Levashov, Pavel A; Sutherland, Duncan S; Besenbacher, Flemming;

    2009-01-01

    In this paper, we pioneer application of a unique method of protein determination by coloring peptide bonds for analysis of a variety of biomolecules with different grades of purity (e.g., oligopeptides, membrane, and glycol proteins). We demonstrated that the calibration curve for all studied...... molecules is universal and linear within 0.1 to 1.2mg protein content range. The assay thus can be used to analyze peptides without preliminary dilutions and calibration in up to 1g/ml solutions of peptides, which is crucial for many biotechnological processes, such as development of coatings, scaffolds......, and biocompatible materials....

  15. Isolated linear blaschkoid psoriasis.

    Science.gov (United States)

    Nasimi, M; Abedini, R; Azizpour, A; Nikoo, A

    2016-10-01

    Linear psoriasis (LPs) is considered a rare clinical presentation of psoriasis, which is characterized by linear erythematous and scaly lesions along the lines of Blaschko. We report the case of a 20-year-old man who presented with asymptomatic linear and S-shaped erythematous, scaly plaques on right side of his trunk. The plaques were arranged along the lines of Blaschko with a sharp demarcation at the midline. Histological examination of a skin biopsy confirmed the diagnosis of psoriasis. Topical calcipotriol and betamethasone dipropionate ointments were prescribed for 2 months. A good clinical improvement was achieved, with reduction in lesion thickness and scaling. In patients with linear erythematous and scaly plaques along the lines of Blaschko, the diagnosis of LPs should be kept in mind, especially in patients with asymptomatic lesions of late onset. PMID:27663156

  16. Unsupervised Linear Discriminant Analysis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An algorithm for unsupervised linear discriminant analysis was presented. Optimal unsupervised discriminant vectors are obtained through maximizing covariance of all samples and minimizing covariance of local k-nearest neighbor samples. The experimental results show our algorithm is effective.

  17. Protein quantification by MALDI-selected reaction monitoring mass spectrometry using sulfonate derivatized peptides.

    Science.gov (United States)

    Lesur, Antoine; Varesio, Emmanuel; Hopfgartner, Gérard

    2010-06-15

    The feasibility of protein absolute quantification with matrix-assisted laser desorption/ionization (MALDI) using the selected reaction monitoring (SRM) acquisition mode on a triple quadrupole linear ion trap mass spectrometer (QqQ(LIT)) equipped with a high-frequency laser is demonstrated. A therapeutic human monoclonal antibody (mAb) was used as a model protein, and four tryptic peptides generated by fast tryptic digestion were selected as quantification surrogates. MALDI produces mostly singly charged peptides which hardly fragment under low-energy collision-induced dissociation (CID), and therefore the benefits of using 4-sulfophenyl isothiocyanate (SPITC) as a fragmentation enhancer derivatization agent were evaluated. Despite a moderate impact on the sensitivity, the N-terminus sulfonated peptides generate nearly complete y-ion ladders when native peptides produce few fragments. This aspect provides an alternative SRM transition set for each peptide. As a consequence, SRM transitions selectivity can be tuned more easily for peptide quantitation in complex matrices when monitoring several SRM transitions. From a quantitative point of view, the signal response depending on mAb concentration was found to be linear over 2.5 orders of magnitude for the most sensitive peptide, allowing precise and accurate measurement by MALDI-SRM/MS. PMID:20481516

  18. Linear Alopecia Areata

    Science.gov (United States)

    Shetty, Shricharith; Rao, Raghavendra; Kudva, R Ranjini; Subramanian, Kumudhini

    2016-01-01

    Alopecia areata (AA) over scalp is known to present in various shapes and extents of hair loss. Typically it presents as circumscribed patches of alopecia with underlying skin remaining normal. We describe a rare variant of AA presenting in linear band-like form. Only four cases of linear alopecia have been reported in medical literature till today, all four being diagnosed as lupus erythematosus profundus. PMID:27625568

  19. Elementary linear algebra

    CERN Document Server

    Andrilli, Stephen

    2010-01-01

    Elementary Linear Algebra develops and explains in careful detail the computational techniques and fundamental theoretical results central to a first course in linear algebra. This highly acclaimed text focuses on developing the abstract thinking essential for further mathematical study. The authors give early, intensive attention to the skills necessary to make students comfortable with mathematical proofs. The text builds a gradual and smooth transition from computational results to general theory of abstract vector spaces. It also provides flexbile coverage of practical applications, expl

  20. Linear Integer Arithmetic Revisited

    OpenAIRE

    Bromberger, M.; Sturm, T.; Weidenbach, C.

    2015-01-01

    We consider feasibility of linear integer programs in the context of verification systems such as SMT solvers or theorem provers. Although satisfiability of linear integer programs is decidable, many state-of-the-art solvers neglect termination in favor of efficiency. It is challenging to design a solver that is both terminating and practically efficient. Recent work by Jovanovic and de Moura constitutes an important step into this direction. Their algorithm CUTSAT is sound, but does not term...

  1. Linear Alopecia Areata.

    Science.gov (United States)

    Shetty, Shricharith; Rao, Raghavendra; Kudva, R Ranjini; Subramanian, Kumudhini

    2016-01-01

    Alopecia areata (AA) over scalp is known to present in various shapes and extents of hair loss. Typically it presents as circumscribed patches of alopecia with underlying skin remaining normal. We describe a rare variant of AA presenting in linear band-like form. Only four cases of linear alopecia have been reported in medical literature till today, all four being diagnosed as lupus erythematosus profundus. PMID:27625568

  2. Radiopharmaceutical development of radiolabelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Fani, Melpomeni; Maecke, Helmut R. [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany)

    2012-02-15

    Receptor targeting with radiolabelled peptides has become very important in nuclear medicine and oncology in the past few years. The overexpression of many peptide receptors in numerous cancers, compared to their relatively low density in physiological organs, represents the molecular basis for in vivo imaging and targeted radionuclide therapy with radiolabelled peptide-based probes. The prototypes are analogs of somatostatin which are routinely used in the clinic. More recent developments include somatostatin analogs with a broader receptor subtype profile or with antagonistic properties. Many other peptide families such as bombesin, cholecystokinin/gastrin, glucagon-like peptide-1 (GLP-1)/exendin, arginine-glycine-aspartic acid (RGD) etc. have been explored during the last few years and quite a number of potential radiolabelled probes have been derived from them. On the other hand, a variety of strategies and optimized protocols for efficient labelling of peptides with clinically relevant radionuclides such as {sup 99m}Tc, M{sup 3+} radiometals ({sup 111}In, {sup 86/90}Y, {sup 177}Lu, {sup 67/68}Ga), {sup 64/67}Cu, {sup 18}F or radioisotopes of iodine have been developed. The labelling approaches include direct labelling, the use of bifunctional chelators or prosthetic groups. The choice of the labelling approach is driven by the nature and the chemical properties of the radionuclide. Additionally, chemical strategies, including modification of the amino acid sequence and introduction of linkers/spacers with different characteristics, have been explored for the improvement of the overall performance of the radiopeptides, e.g. metabolic stability and pharmacokinetics. Herein, we discuss the development of peptides as radiopharmaceuticals starting from the choice of the labelling method and the conditions to the design and optimization of the peptide probe, as well as some recent developments, focusing on a selected list of peptide families, including somatostatin

  3. Peptide primary messengers in plants

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The peptide primary messengers regulate embryonic development,cell growth and many other activities in animal cells. But recent evidence verified that peptide primary messengers are also involved in plant defense responses, the recognition between pollen and stigma and keep the balance between cell proliferation and differentiations in shoot apical meristems. Those results suggest that plants may actually make wide use of peptide primary messengers, both in embryonic development and late life when they rally their cells to defend against pathogens and insect pests. The recent advance in those aspects is reviewed.

  4. Crystallizing Transmembrane Peptides in Lipidic Mesophases

    Energy Technology Data Exchange (ETDEWEB)

    Höfer, Nicole; Aragão, David; Caffrey, Martin (Trinity)

    2011-09-28

    Structure determination of membrane proteins by crystallographic means has been facilitated by crystallization in lipidic mesophases. It has been suggested, however, that this so-called in meso method, as originally implemented, would not apply to small protein targets having {le}4 transmembrane crossings. In our study, the hypothesis that the inherent flexibility of the mesophase would enable crystallogenesis of small proteins was tested using a transmembrane pentadecapeptide, linear gramicidin, which produced structure-grade crystals. This result suggests that the in meso method should be considered as a viable means for high-resolution structure determination of integral membrane peptides, many of which are predicted to be coded for in the human genome.

  5. Peptides whose uptake by cells is controllable

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tao; Olson, Emilia S.; Whitney, Michael; Tsien, Roger

    2015-07-07

    A generic structure for the peptides of the present invention includes A-X-B-C, where C is a cargo moiety, the B portion includes basic amino acids, X is a cleavable linker sequence, and the A portion includes acidic amino acids. The intact structure is not significantly taken up by cells; however, upon extracellular cleavage of X, the B-C portion is taken up, delivering the cargo to targeted cells. Cargo may be, for example, a contrast agent for diagnostic imaging, a chemotherapeutic drug, or a radiation-sensitizer for therapy. X may be cleaved extracellularly or intracellularly. The molecules of the present invention may be linear, cyclic, branched, or have a mixed structure.

  6. Screening of TACE Peptide Inhibitors from Phage Display Peptide Library

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To obtain the recombinant tumor necrosis factor-α converting enzyme (TACE) ectodomain and use it as a selective molecule for the screening of TACE peptide inhibitors, the cDNA coding catalytic domain (T800) and full-length ectodomain (T1300) of TACE were amplified by RTPCR, and the expression plasmids were constructed by inserting T800 and T1300 into plasmid pET28a and pET-28c respectively. The recombinant T800 and T1300 were induced by IPTG, and SDSPAGE and Western blotting analysis results revealed that T800 and T1300 were highly expressed in the form of inclusion body. After Ni2+-NTA resin affinity chromatography, the recombinant proteins were used in the screening of TACE-binding peptides from phage display peptide library respectively. After 4 rounds of biopanning, the positive phage clones were analyzed by ELISA, competitive inhibition assay and DNA sequencing. A common amino acid sequence (TRWLVYFSRPYLVAT) was found and synthesized. The synthetic peptide could inhibit the TNF-α release from LPS-stimulated human peripheral blood mononuclear cells (PBMC) up to 60.3 %. FACS analysis revealed that the peptide mediated the accumulation of TNF-α on the cell surface. These results demonstrate that the TACE-binding peptide is an effective antagonist of TACE.

  7. Labeling and in vivo evaluation of novel copper(II) dioxotetraazamacrocyclic complexes

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, Cathy S.; Wuest, Melinda; Anderson, Carolyn J. E-mail: AndersonCJ@mir.wustl.edu; Reichert, David E.; Sun, Yizhen; Martell, Arthur E.; Welch, Michael J

    2000-05-01

    {sup 64}Cu shows promise as both a positron emission tomography imaging and radiotherapeutic radionuclide due to its half-life (T{sub 1/2} = 12.7 h), decay characteristics ({beta}{sup +} [19%]; {beta}{sup -} [40%]), and the capability to produce it on a large-scale with high specific activity on a biomedical cyclotron. Macrocyclic chelators are generally used as bifunctional chelators to attach Cu(II) to antibodies and peptides due to their relatively high in vitro stability. To investigate neutral Cu(II) complexes, we performed labeling experiments with six tetraazamacrocyclic ligands with different chelate ring sizes. 1,4,8,11-Tetraazacyclotetradecane-3,9-dione (1), 1,4,8,11-tetraazacyclotetradecane-5,7-dione (2), 1,4,7,10-tetraazacyclotridecane-11,13-dione (3), 1,4,7,10-tetraazacyclotridecane-2,9-dione (4), 1,4,7,10-tetraazacyclododecane-2,9-dione (5), and 1,4,7,10-tetraazacyclotridecane-3,8-dione (6) were radiolabeled with {sup 64}Cu. Only {sup 64}Cu-labeled 1 readily formed a complex in high purity, and therefore was evaluated in vivo. The rapid blood, liver, and kidney clearance of {sup 64}Cu-labeled 1 suggest that ligand 1 may be useful as a macrocyclic structure to design new bifunctional chelators for copper radionuclides in diagnostic or radiotherapeutic studies and is a potential alternative to currently used macrocyclic bifunctional chelators.

  8. New vasoactive peptides in cirrhosis

    DEFF Research Database (Denmark)

    Kimer, Nina; Goetze, Jens Peter; Bendtsen, Flemming;

    2014-01-01

    BACKGROUND: Patients with cirrhosis have substantial circulatory imbalance between vasoconstrictive and vasodilating forces. The study of circulatory vasoactive peptides may provide important pathophysiological information. This study aimed to assess concentrations, organ extraction and relations...

  9. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte;

    2013-01-01

    properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper......(i)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. DNA/RNA target binding affinity and selectivity of the resulting POCs were improved in comparison to LNA/DNA mixmers and unmodified DNA controls. This clearly demonstrates that internal attachment of peptides to oligonucleotides can significantly...... improve biomolecular recognition by synthetic nucleic acid analogues. Circular dichroism (CD) measurements showed no distortion of the duplex structure by the incorporated peptide chains while studies in human serum indicated superior stability of the POCs compared to LNA/DNA mixmers and unmodified DNA...

  10. Peptide nanostructures in biomedical technology.

    Science.gov (United States)

    Feyzizarnagh, Hamid; Yoon, Do-Young; Goltz, Mark; Kim, Dong-Shik

    2016-09-01

    Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website. PMID:26846352

  11. Peptide ligands specific to the oxidized form of escherichia coli thioredoxin.

    Energy Technology Data Exchange (ETDEWEB)

    Scholle, M. D.; Banach, B. S.; Hamdan, S. M.; Richardson, C. C.; Kay, B. K.; Biosciences Division; Amunix, Inc.; Univ. of Illinois at Chicago; Harvard Medical School

    2008-11-01

    Thioredoxin (Trx) is a highly conserved redox protein involved in several essential cellular processes. In this study, our goal was to isolate peptide ligands to Escherichia coli Trx that mimic protein-protein interactions, specifically the T7 polymerase-Trx interaction. To do this, we subjected Trx to affinity selection against a panel of linear and cysteine-constrained peptides using M13 phage display. A novel cyclized conserved peptide sequence, with a motif of C(D/N/S/T/G)D(S/T)-hydrophobic-C-X-hydrophobic-P, was isolated to Trx. These peptides bound specifically to the E. coli Trx when compared to the human and spirulina homologs. An alanine substitution of the active site cysteines (CGPC) resulted in a significant loss of peptide binding affinity to the Cys-32 mutant. The peptides were also characterized in the context of Trx's role as a processivity factor of the T7 DNA polymerase (gp5). As the interaction between gp5 and Trx normally takes place under reducing conditions, which might interfere with the conformation of the disulfide-bridged peptides, we made use of a 22 residue deletion mutant of gp5 in the thioredoxin binding domain (gp5{Delta}22) that bypassed the requirements of reducing conditions to interact with Trx. A competition study revealed that the peptide selectively inhibits the interaction of gp5{Delta}22 with Trx, under oxidizing conditions, with an IC50 of {approx} 10 {micro}M.

  12. Assembly and Structure of alpha-helical Peptide Films on Hydrophobic Fluorocarbon Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, T.; Samual, N; McCrea, K; Gamble, L; Ward, R; Castner, D

    2010-01-01

    The structure, orientation, and formation of amphiphilic {alpha}-helix model peptide films on fluorocarbon surfaces has been monitored with sum frequency generation (SFG) vibrational spectroscopy, near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, and x-ray photoelectron spectroscopy (XPS). The {alpha}-helix peptide is a 14-mer of hydrophilic lysine and hydrophobic leucine residues with a hydrophobic periodicity of 3.5. This periodicity yields a rigid amphiphilic peptide with leucine and lysine side chains located on opposite sides. XPS composition analysis confirms the formation of a peptide film that covers about 75% of the surface. NEXAFS data are consistent with chemically intact adsorption of the peptides. A weak linear dichroism of the amide {pi}* is likely due to the broad distribution of amide bond orientations inherent to the {alpha}-helical secondary structure. SFG spectra exhibit strong peaks near 2865 and 2935 cm{sup -1} related to aligned leucine side chains interacting with the hydrophobic surface. Water modes near 3200 and 3400 cm{sup -1} indicate ordering of water molecules in the adsorbed-peptide fluorocarbon surface interfacial region. Amide I peaks observed near 1655 cm{sup -1} confirm that the secondary structure is preserved in the adsorbed peptide. A kinetic study of the film formation process using XPS and SFG showed rapid adsorption of the peptides followed by a longer assembly process. Peptide SFG spectra taken at the air-buffer interface showed features related to well-ordered peptide films. Moving samples through the buffer surface led to the transfer of ordered peptide films onto the substrates.

  13. On Linear Algebra Education

    Directory of Open Access Journals (Sweden)

    Sinan AYDIN

    2009-04-01

    Full Text Available Linear algebra is a basic course followed in mathematics, science, and engineering university departments.Generally, this course is taken in either the first or second year but there have been difficulties in teachingand learning. This type of active algebra has resulted in an increase in research by mathematics educationresearchers. But there is insufficient information on this subject in Turkish and therefore it has not beengiven any educational status. This paper aims to give a general overview of this subject in teaching andlearning. These education studies can be considered quadruple: a the history of linear algebra, b formalismobstacles of linear algebra and cognitive flexibility to improve teaching and learning, c the relation betweenlinear algebra and geometry, d using technology in the teaching and learning linear algebra.Mathematicseducation researchers cannot provide an absolute solution to overcome the teaching and learning difficultiesof linear algebra. Epistemological analyses and experimental teaching have shown the learning difficulties.Given these results, further advice and assistance can be offered locally.

  14. Further linear algebra

    CERN Document Server

    Blyth, T S

    2002-01-01

    Most of the introductory courses on linear algebra develop the basic theory of finite­ dimensional vector spaces, and in so doing relate the notion of a linear mapping to that of a matrix. Generally speaking, such courses culminate in the diagonalisation of certain matrices and the application of this process to various situations. Such is the case, for example, in our previous SUMS volume Basic Linear Algebra. The present text is a continuation of that volume, and has the objective of introducing the reader to more advanced properties of vector spaces and linear mappings, and consequently of matrices. For readers who are not familiar with the contents of Basic Linear Algebra we provide an introductory chapter that consists of a compact summary of the prerequisites for the present volume. In order to consolidate the student's understanding we have included a large num­ ber of illustrative and worked examples, as well as many exercises that are strategi­ cally placed throughout the text. Solutions to the ex...

  15. Targeting cancer with peptide aptamers

    OpenAIRE

    Seigneuric, Renaud; Gobbo, Jessica; Colas, Pierre; Garrido, Carmen

    2011-01-01

    A major endeavour in cancer chemotherapy is to develop agents that specifically target a biomolecule of interest. There are two main classes of targeting agents: small molecules and biologics. Among biologics (e.g.: antibodies), DNA, RNA but also peptide aptamers are relatively recent agents. Peptide aptamers are seldom described but represent attractive agents that can inhibit a growing panel of oncotargets including Heat Shock Proteins. Potential pitfalls and coming challenges towards succe...

  16. Peptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  17. Kinins and peptide receptors.

    Science.gov (United States)

    Regoli, Domenico; Gobeil, Fernand

    2016-04-01

    This paper is divided into two sections: the first contains the essential elements of the opening lecture presented by Pr. Regoli to the 2015 International Kinin Symposium in S. Paulo, Brazil on June 28th and the second is the celebration of Dr. Regoli's 60 years of research on vasoactive peptides. The cardiovascular homeostasis derives from a balance of two systems, the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS). The biologically active effector entity of RAS is angiotensin receptor-1 (AT-1R), and that of KKS is bradykinin B2 receptor (B2R). The first mediates vasoconstriction, the second is the most potent and efficient vasodilator. Thanks to its complex and multi-functional mechanism of action, involving nitric oxide (NO), prostacyclin and endothelial hyperpolarizing factor (EDHF). B2R is instrumental for the supply of blood, oxygen and nutrition to tissues. KKS is present on the vascular endothelium and functions as an autacoid playing major roles in cardiovascular diseases (CVDs) and diabetes. KKS exerts a paramount role in the prevention of thrombosis and atherosclerosis. Such knowledge emphasizes the already prominent value of the ACE-inhibitors (ACEIs) for the treatment of CVDs and diabetes. Indeed, the ACEIs, thanks to their double action (block of the RAS and potentiation of the KKS) are the ideal agents for a rational treatment of these diseases. PMID:26408609

  18. Antimicrobial peptides in annelids

    Directory of Open Access Journals (Sweden)

    A Tasiemski

    2008-06-01

    Full Text Available Gene encoded antimicrobial peptides (AMPs are widely distributed among living organisms including plants, invertebrates and vertebrates. They constitute important effectors of the innate immune response by exerting multiple roles as mediators of inflammation with impact on epithelial and inflammatory cells influencing diverse processes such as cytokine release, cell proliferation, angiogenesis, wound healing, chemotaxis and immune induction. In invertebrates, most of the data describe the characterization and/or the function of AMPs in the numerically and economically most representative group which are arthropods. Annelids are among the first coelomates and are therefore of special phylogenetic interest. Compared to other invertebrate groups, data on annelid’s immunity reveal heavier emphasis on the cellular than on the humoral response suggesting that immune defense of annelids seems to be principally developed as cellular immunity.This paper gives an overview of the variety of AMPs identified in the three classes of annelids, i.e. polychaetes, oligochaetes and achaetes. Their functions, when they have been studied, in the humoral or cellular response of annelids are also mentioned.

  19. Antimicrobial peptides in crustaceans

    Directory of Open Access Journals (Sweden)

    RD Rosa

    2010-11-01

    Full Text Available Crustaceans are a large and diverse invertebrate animal group that mounts a complex and efficient innate immune response against a variety of microorganisms. The crustacean immune system is primarily related to cellular responses and the production and release of important immune effectors into the hemolymph. Antimicrobial proteins and/or peptides (AMPs are key components of innate immunity and are widespread in nature, from bacteria to vertebrate animals. In crustaceans, 15 distinct AMP families are currently recognized, although the great majority (14 families comes from members of the order Decapoda. Crustacean AMPs are generally cationic, gene-encoded molecules that are mainly produced by circulating immune-competent cells (hemocytes or are derived from unrelated proteins primarily involved in other biological functions. In this review, we tentatively classified the crustacean AMPs into four main groups based on their amino acid composition, structural features and multi-functionality. We also attempted to summarize the current knowledge on their implication both in an efficient response to microbial infections and in crustacean survival.

  20. SYNTHESIS, DOCKING AND BIOLOGICAL STUDIES OF THE LINEAR TETRAPEPTIDE PWPV

    Directory of Open Access Journals (Sweden)

    M. Himaja

    2012-06-01

    Full Text Available Linear Tetrapeptides L-PWPV (Pro-Trp-Pro-Val was designed and synthesized by solution phase peptide synthesis based on dock score. The molecular docking studies of the designed tetrapeptide L-PWPV was carried out using Molegro Virtual Docker software for tumor cancer protein(1OLG. The linear tetrapeptide was synthesized by coupling protected amino acids (dipeptides using EDC (ethyl-3-(N,N-dimethylaminopropyl carbodiimide as coupling reagent. The compounds were analyzed by FTIR, 1H NMR and MASS data and subjected to antioxidant activity using 1,1-dipheny-2-picryl-hydrazil (DPPH method and insecticidal activity using Morita et al method.

  1. Material Binding Peptides for Nanotechnology

    Directory of Open Access Journals (Sweden)

    Urartu Ozgur Safak Seker

    2011-02-01

    Full Text Available Remarkable progress has been made to date in the discovery of material binding peptides and their utilization in nanotechnology, which has brought new challenges and opportunities. Nowadays phage display is a versatile tool, important for the selection of ligands for proteins and peptides. This combinatorial approach has also been adapted over the past decade to select material-specific peptides. Screening and selection of such phage displayed material binding peptides has attracted great interest, in particular because of their use in nanotechnology. Phage display selected peptides are either synthesized independently or expressed on phage coat protein. Selected phage particles are subsequently utilized in the synthesis of nanoparticles, in the assembly of nanostructures on inorganic surfaces, and oriented protein immobilization as fusion partners of proteins. In this paper, we present an overview on the research conducted on this area. In this review we not only focus on the selection process, but also on molecular binding characterization and utilization of peptides as molecular linkers, molecular assemblers and material synthesizers.

  2. Collagen-like antimicrobial peptides.

    Science.gov (United States)

    Masuda, Ryo; Kudo, Masakazu; Dazai, Yui; Mima, Takehiko; Koide, Takaki

    2016-11-01

    Combinatorial library composed of rigid rod-like peptides with a triple-helical scaffold was constructed. The component peptides were designed to have various combinations of basic and neutral (or hydrophobic) amino acid residues based on collagen-like (Gly-Pro-Yaa)-repeating sequences, inspired from the basic and amphiphilic nature of naturally occurring antimicrobial peptides. Screening of the peptide pools resulted in identification of antimicrobial peptides. A structure-activity relationship study revealed that the position of Arg-cluster at N-terminus and cystine knots at C-terminus in the triple helix significantly contributed to the antimicrobial activity. The most potent peptide RO-A showed activity against Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. In addition, Escherichia coli exposed to RO-A resulted in abnormal elongation of the cells. RO-A was also shown to have remarkable stability in human serum and low cytotoxicity to mammalian cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 453-459, 2016. PMID:27271210

  3. Dimension of linear models

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    1996-01-01

    Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four of these cri......Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....

  4. Theory of linear operations

    CERN Document Server

    Banach, S

    1987-01-01

    This classic work by the late Stefan Banach has been translated into English so as to reach a yet wider audience. It contains the basics of the algebra of operators, concentrating on the study of linear operators, which corresponds to that of the linear forms a1x1 + a2x2 + ... + anxn of algebra.The book gathers results concerning linear operators defined in general spaces of a certain kind, principally in Banach spaces, examples of which are: the space of continuous functions, that of the pth-power-summable functions, Hilbert space, etc. The general theorems are interpreted in various mathematical areas, such as group theory, differential equations, integral equations, equations with infinitely many unknowns, functions of a real variable, summation methods and orthogonal series.A new fifty-page section (``Some Aspects of the Present Theory of Banach Spaces'''') complements this important monograph.

  5. Classifications of Linear Controlled Systems

    OpenAIRE

    Li, Jing

    2008-01-01

    This paper is devoted to a study of linear, differential and topological classifications for linear controlled systems governed by ordinary differential equations. The necessary and sufficient conditions for the linear and topological equivalence are given. It is also shown that the differential equivalence is the same as the linear equivalence for the linear controlled systems.

  6. Handbook of linear algebra

    CERN Document Server

    Hogben, Leslie

    2013-01-01

    With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters.New to the Second EditionSeparate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of

  7. Advanced linear algebra

    CERN Document Server

    Cooperstein, Bruce

    2015-01-01

    Advanced Linear Algebra, Second Edition takes a gentle approach that starts with familiar concepts and then gradually builds to deeper results. Each section begins with an outline of previously introduced concepts and results necessary for mastering the new material. By reviewing what students need to know before moving forward, the text builds a solid foundation upon which to progress. The new edition of this successful text focuses on vector spaces and the maps between them that preserve their structure (linear transformations). Designed for advanced undergraduate and beginning graduate stud

  8. Linear Equations in Primes

    OpenAIRE

    Green, Ben; Tao, Terence

    2006-01-01

    Consider a system \\Psi of non-constant affine-linear forms \\psi_1,...,\\psi_t: Z^d -> Z, no two of which are linearly dependent. Let N be a large integer, and let K be a convex subset of [-N,N]^d. A famous and difficult open conjecture of Hardy and Littlewood predicts an asymptotic, as N -> \\infty, for the number of integer points n in K for which the integers \\psi_1(n),...,\\psi_t(n) are simultaneously prime. This implies many other well-known conjectures, such as the Hardy-Littlewood prime tu...

  9. Structured Stochastic Linear Bandits

    OpenAIRE

    Johnson, Nicholas; Sivakumar, Vidyashankar; Banerjee, Arindam

    2016-01-01

    The stochastic linear bandit problem proceeds in rounds where at each round the algorithm selects a vector from a decision set after which it receives a noisy linear loss parameterized by an unknown vector. The goal in such a problem is to minimize the (pseudo) regret which is the difference between the total expected loss of the algorithm and the total expected loss of the best fixed vector in hindsight. In this paper, we consider settings where the unknown parameter has structure, e.g., spa...

  10. Non linear viscoelastic models

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2011-01-01

    Viscoelastic eects are often present in loudspeaker suspensions, this can be seen in the displacement transfer function which often shows a frequency dependent value below the resonance frequency. In this paper nonlinear versions of the standard linear solid model (SLS) are investigated. The...

  11. On Solving Linear Recurrences

    Science.gov (United States)

    Dobbs, David E.

    2013-01-01

    A direct method is given for solving first-order linear recurrences with constant coefficients. The limiting value of that solution is studied as "n to infinity." This classroom note could serve as enrichment material for the typical introductory course on discrete mathematics that follows a calculus course.

  12. Tissue non-linearity.

    Science.gov (United States)

    Duck, F

    2010-01-01

    The propagation of acoustic waves is a fundamentally non-linear process, and only waves with infinitesimally small amplitudes may be described by linear expressions. In practice, all ultrasound propagation is associated with a progressive distortion in the acoustic waveform and the generation of frequency harmonics. At the frequencies and amplitudes used for medical diagnostic scanning, the waveform distortion can result in the formation of acoustic shocks, excess deposition of energy, and acoustic saturation. These effects occur most strongly when ultrasound propagates within liquids with comparatively low acoustic attenuation, such as water, amniotic fluid, or urine. Attenuation by soft tissues limits but does not extinguish these non-linear effects. Harmonics may be used to create tissue harmonic images. These offer improvements over conventional B-mode images in spatial resolution and, more significantly, in the suppression of acoustic clutter and side-lobe artefacts. The quantity B/A has promise as a parameter for tissue characterization, but methods for imaging B/A have shown only limited success. Standard methods for the prediction of tissue in-situ exposure from acoustic measurements in water, whether for regulatory purposes, for safety assessment, or for planning therapeutic regimes, may be in error because of unaccounted non-linear losses. Biological effects mechanisms are altered by finite-amplitude effects. PMID:20349813

  13. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    Directory of Open Access Journals (Sweden)

    Veronika Mäde

    2014-05-01

    Full Text Available The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.

  14. Peptides and Food Intake

    Directory of Open Access Journals (Sweden)

    Carmen Sobrino Crespo

    2014-04-01

    Full Text Available Nutrients created by the digestion of food are proposed to active G protein coupled receptors on the luminal side of enteroendocrine cells e.g. the L-cell. This stimulates the release of gut hormones. Hormones released from the gut and adipose tissue play an important rol in the regulation of food intake and energy expenditure (1.Many circulating signals, including gut hormones, can influence the activity of the arcuate nucleus (ARC neurons directly, after passing across the median eminence. The ARC is adjacent to the median eminence, a circumventricular organ with fenestrated capillaries and hence an incomplete blood-brain barrier (2. The ARC of the hypothalamus is believed to play a crucial role in the regulation of food intake and energy homeostasis. The ARC contains two populations of neurons with opposing effect on food intake (3. Medially located orexigenic neurons (i.e those stimulating appetite express neuropeptide Y (NPY and agouti-related protein (AgRP (4-5. Anorexigenic neurons (i.e. those inhibiting appetite in the lateral ARC express alpha-melanocyte stimulating hormone (α-MSH derived from pro-opiomelanocortin (POMC and cocaine and amphetamine-regulated transcript (CART (6. The balance between activities of these neuronal circuits is critical to body weight regulation.In contrast, other peripheral signals influence the hypothalamus indirectly via afferent neuronal pathway and brainstem circuits. In this context gastrointestinal’s vagal afferents are activated by mechanoreceptors and chemoreceptors, and converge in the nucleus of the tractus solitaries (NTS of the brainstem. Neuronal projections from the NTS, in turn, carry signals to the hypotalamus (1, 7. Gut hormones also alter the activity of the ascending vagal pathway from the gut to the brainstem. In the cases of ghrelin and Peptide tyrosine tyrosine (PYY, there are evidences for both to have a direct action on the arcuate nucleus and an action via the vagus nerve a

  15. Peptides: A new class of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Ryszard Smolarczyk

    2009-07-01

    Full Text Available Peptides are a novel class of anticancer agents embracing two distinct categories: natural antibacterial peptides, which are preferentially bound by cancer cells, and chemically synthesized peptides, which bind specifically to precise molecular targets located on the surface of tumor cells. Antibacterial peptides bind to both cell and mitochondrial membranes. Some of these peptides attach to the cell membrane, resulting in its disorganization. Other antibacterial peptides penetrate cancer cells without causing cell membrane damage, but they disrupt mitochondrial membranes. Thanks to phage and aptamer libraries, it has become possible to obtain synthetic peptides blocking or activating some target proteins found in cancer cells as well as in cells forming the tumor environment. These synthetic peptides can feature anti-angiogenic properties, block enzymes indispensable for sustained tumor growth, and reduce tumor ability to metastasize. In this review the properties of peptides belonging to both categories are discussed and attempts of their application for therapeutic purposes are outlined.

  16. Perspectives and Peptides of the Next Generation

    Science.gov (United States)

    Brogden, Kim A.

    Shortly after their discovery, antimicrobial peptides from prokaryotes and eukaryotes were recognized as the next potential generation of pharmaceuticals to treat antibiotic-resistant bacterial infections and septic shock, to preserve food, or to sanitize surfaces. Initial research focused on identifying the spectrum of antimicrobial agents, determining the range of antimicrobial activities against bacterial, fungal, and viral pathogens, and assessing the antimicrobial activity of synthetic peptides versus their natural counterparts. Subsequent research then focused on the mechanisms of antimicrobial peptide activity in model membrane systems not only to identify the mechanisms of antimicrobial peptide activity in microorganisms but also to discern differences in cytotoxicity for prokaryotic and eukaryotic cells. Recent, contemporary work now focuses on current and future efforts to construct hybrid peptides, peptide congeners, stabilized peptides, peptide conjugates, and immobilized peptides for unique and specific applications to control the growth of microorganisms in vitro and in vivo.

  17. Exploration of the Medicinal Peptide Space.

    Science.gov (United States)

    Gevaert, Bert; Stalmans, Sofie; Wynendaele, Evelien; Taevernier, Lien; Bracke, Nathalie; D'Hondt, Matthias; De Spiegeleer, Bart

    2016-01-01

    The chemical properties of peptide medicines, known as the 'medicinal peptide space' is considered a multi-dimensional subset of the global peptide space, where each dimension represents a chemical descriptor. These descriptors can be linked to biofunctional, medicinal properties to varying degrees. Knowledge of this space can increase the efficiency of the peptide-drug discovery and development process, as well as advance our understanding and classification of peptide medicines. For 245 peptide drugs, already available on the market or in clinical development, multivariate dataexploration was performed using peptide relevant physicochemical descriptors, their specific peptidedrug target and their clinical use. Our retrospective analysis indicates that clusters in the medicinal peptide space are located in a relatively narrow range of the physicochemical space: dense and empty regions were found, which can be explored for the discovery of novel peptide drugs. PMID:26876881

  18. Finite-dimensional linear algebra

    CERN Document Server

    Gockenbach, Mark S

    2010-01-01

    Some Problems Posed on Vector SpacesLinear equationsBest approximationDiagonalizationSummaryFields and Vector SpacesFields Vector spaces Subspaces Linear combinations and spanning sets Linear independence Basis and dimension Properties of bases Polynomial interpolation and the Lagrange basis Continuous piecewise polynomial functionsLinear OperatorsLinear operatorsMore properties of linear operatorsIsomorphic vector spaces Linear operator equations Existence and uniqueness of solutions The fundamental theorem; inverse operatorsGaussian elimination Newton's method Linear ordinary differential eq

  19. Contextual specificity in peptide-mediated protein interactions.

    Directory of Open Access Journals (Sweden)

    Amelie Stein

    Full Text Available Most biological processes are regulated through complex networks of transient protein interactions where a globular domain in one protein recognizes a linear peptide from another, creating a relatively small contact interface. Although sufficient to ensure binding, these linear motifs alone are usually too short to achieve the high specificity observed, and additional contacts are often encoded in the residues surrounding the motif (i.e. the context. Here, we systematically identified all instances of peptide-mediated protein interactions of known three-dimensional structure and used them to investigate the individual contribution of motif and context to the global binding energy. We found that, on average, the context is responsible for roughly 20% of the binding and plays a crucial role in determining interaction specificity, by either improving the affinity with the native partner or impeding non-native interactions. We also studied and quantified the topological and energetic variability of interaction interfaces, finding a much higher heterogeneity in the context residues than in the consensus binding motifs. Our analysis partially reveals the molecular mechanisms responsible for the dynamic nature of peptide-mediated interactions, and suggests a global evolutionary mechanism to maximise the binding specificity. Finally, we investigated the viability of non-native interactions and highlight cases of potential cross-reaction that might compensate for individual protein failure and establish backup circuits to increase the robustness of cell networks.

  20. Linear Complete Differential Resultants and the Implicitization of Linear DPPEs

    OpenAIRE

    Rueda, Sonia L.; Sendra, J. Rafael

    2007-01-01

    The linear complete differential resultant of a finite set of linear ordinary differential polynomials is defined. We study the computation by linear complete differential resultants of the implicit equation of a system of $n$ linear differential polynomial parametric equations in $n-1$ differential parameters. We give necessary conditions to ensure properness of the system of differential polynomial parametric equations.

  1. Peptide Vaccine: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Weidang Li

    2014-07-01

    Full Text Available Conventional vaccine strategies have been highly efficacious for several decades in reducing mortality and morbidity due to infectious diseases. The bane of conventional vaccines, such as those that include whole organisms or large proteins, appear to be the inclusion of unnecessary antigenic load that, not only contributes little to the protective immune response, but complicates the situation by inducing allergenic and/or reactogenic responses. Peptide vaccines are an attractive alternative strategy that relies on usage of short peptide fragments to engineer the induction of highly targeted immune responses, consequently avoiding allergenic and/or reactogenic sequences. Conversely, peptide vaccines used in isolation are often weakly immunogenic and require particulate carriers for delivery and adjuvanting. In this article, we discuss the specific advantages and considerations in targeted induction of immune responses by peptide vaccines and progresses in the development of such vaccines against various diseases. Additionally, we also discuss the development of particulate carrier strategies and the inherent challenges with regard to safety when combining such technologies with peptide vaccines.

  2. Time-Frequency Analysis of Peptide Microarray Data: Application to Brain Cancer Immunosignatures.

    Science.gov (United States)

    O'Donnell, Brian; Maurer, Alexander; Papandreou-Suppappola, Antonia; Stafford, Phillip

    2015-01-01

    One of the gravest dangers facing cancer patients is an extended symptom-free lull between tumor initiation and the first diagnosis. Detection of tumors is critical for effective intervention. Using the body's immune system to detect and amplify tumor-specific signals may enable detection of cancer using an inexpensive immunoassay. Immunosignatures are one such assay: they provide a map of antibody interactions with random-sequence peptides. They enable detection of disease-specific patterns using classic train/test methods. However, to date, very little effort has gone into extracting information from the sequence of peptides that interact with disease-specific antibodies. Because it is difficult to represent all possible antigen peptides in a microarray format, we chose to synthesize only 330,000 peptides on a single immunosignature microarray. The 330,000 random-sequence peptides on the microarray represent 83% of all tetramers and 27% of all pentamers, creating an unbiased but substantial gap in the coverage of total sequence space. We therefore chose to examine many relatively short motifs from these random-sequence peptides. Time-variant analysis of recurrent subsequences provided a means to dissect amino acid sequences from the peptides while simultaneously retaining the antibody-peptide binding intensities. We first used a simple experiment in which monoclonal antibodies with known linear epitopes were exposed to these random-sequence peptides, and their binding intensities were used to create our algorithm. We then demonstrated the performance of the proposed algorithm by examining immunosignatures from patients with Glioblastoma multiformae (GBM), an aggressive form of brain cancer. Eight different frameshift targets were identified from the random-sequence peptides using this technique. If immune-reactive antigens can be identified using a relatively simple immune assay, it might enable a diagnostic test with sufficient sensitivity to detect tumors in a

  3. Database-Guided Discovery of Potent Peptides to Combat HIV-1 or Superbugs

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2013-05-01

    Full Text Available Antimicrobial peptides (AMPs, small host defense proteins, are indispensable for the protection of multicellular organisms such as plants and animals from infection. The number of AMPs discovered per year increased steadily since the 1980s. Over 2,000 natural AMPs from bacteria, protozoa, fungi, plants, and animals have been registered into the antimicrobial peptide database (APD. The majority of these AMPs (>86% possess 11–50 amino acids with a net charge from 0 to +7 and hydrophobic percentages between 31–70%. This article summarizes peptide discovery on the basis of the APD. The major methods are the linguistic model, database screening, de novo design, and template-based design. Using these methods, we identified various potent peptides against human immunodeficiency virus type 1 (HIV-1 or methicillin-resistant Staphylococcus aureus (MRSA. While the stepwise designed anti-HIV peptide is disulfide-linked and rich in arginines, the ab initio designed anti-MRSA peptide is linear and rich in leucines. Thus, there are different requirements for antiviral and antibacterial peptides, which could kill pathogens via different molecular targets. The biased amino acid composition in the database-designed peptides, or natural peptides such as θ-defensins, requires the use of the improved two-dimensional NMR method for structural determination to avoid the publication of misleading structure and dynamics. In the case of human cathelicidin LL-37, structural determination requires 3D NMR techniques. The high-quality structure of LL-37 provides a solid basis for understanding its interactions with membranes of bacteria and other pathogens. In conclusion, the APD database is a comprehensive platform for storing, classifying, searching, predicting, and designing potent peptides against pathogenic bacteria, viruses, fungi, parasites, and cancer cells.

  4. Recent development of peptide self-assembly

    Institute of Scientific and Technical Information of China (English)

    Xiubo Zhao; Fang Pan; Jian R. Lu

    2008-01-01

    Amino acids are the building blocks to build peptides and proteins. Recent development in peptide synthesis has however enabled us to mimic this natural process by preparing various long and short peptides possessing different conformations and biological functions. The self-assembly of short designed peptides into molecular nanostructures is becoming a growing interest in nanobiotechnology. Self-assembled peptides exhibit several attractive features for applications in tissue regeneration, drug delivery, biological surface engineering as well as in food science, cosmetic industry and antibiotics. The aim of this review is to introduce the readers to a number of representative studies on peptide self-assembly.

  5. Extended linear chain compounds

    CERN Document Server

    Linear chain substances span a large cross section of contemporary chemistry ranging from covalent polymers, to organic charge transfer com­ plexes to nonstoichiometric transition metal coordination complexes. Their commonality, which coalesced intense interest in the theoretical and exper­ imental solid state physics/chemistry communities, was based on the obser­ vation that these inorganic and organic polymeric substrates exhibit striking metal-like electrical and optical properties. Exploitation and extension of these systems has led to the systematic study of both the chemistry and physics of highly and poorly conducting linear chain substances. To gain a salient understanding of these complex materials rich in anomalous aniso­ tropic electrical, optical, magnetic, and mechanical properties, the conver­ gence of diverse skills and talents was required. The constructive blending of traditionally segregated disciplines such as synthetic and physical organic, inorganic, and polymer chemistry, crystallog...

  6. Induction linear accelerators

    Science.gov (United States)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typicallymarriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  7. Linearizing nonlinear optics

    CERN Document Server

    Schmidt, Bruno E; Ernotte, Guilmot; Clerici, Matteo; Morandotti, Roberto; Ibrahim, Heide; Legare, Francois

    2016-01-01

    In the framework of linear optics, light fields do not interact with each other in a medium. Yet, when their field amplitude becomes comparable to the electron binding energies of matter, the nonlinear motion of these electrons emits new dipole radiation whose amplitude, frequency and phase differ from the incoming fields. Such high fields are typically achieved with ultra-short, femtosecond (1fs = 10-15 sec.) laser pulses containing very broad frequency spectra. Here, the matter not only couples incoming and outgoing fields but also causes different spectral components to interact and mix through a convolution process. In this contribution, we describe how frequency domain nonlinear optics overcomes the shortcomings arising from this convolution in conventional time domain nonlinear optics1. We generate light fields with previously inaccessible properties because the uncontrolled coupling of amplitudes and phases is turned off. For example, arbitrary phase functions are transferred linearly to the second har...

  8. General linear chirplet transform

    Science.gov (United States)

    Yu, Gang; Zhou, Yiqi

    2016-03-01

    Time-frequency (TF) analysis (TFA) method is an effective tool to characterize the time-varying feature of a signal, which has drawn many attentions in a fairly long period. With the development of TFA, many advanced methods are proposed, which can provide more precise TF results. However, some restrictions are introduced inevitably. In this paper, we introduce a novel TFA method, termed as general linear chirplet transform (GLCT), which can overcome some limitations existed in current TFA methods. In numerical and experimental validations, by comparing with current TFA methods, some advantages of GLCT are demonstrated, which consist of well-characterizing the signal of multi-component with distinct non-linear features, being independent to the mathematical model and initial TFA method, allowing for the reconstruction of the interested component, and being non-sensitivity to noise.

  9. Linearly Refined Session Types

    Directory of Open Access Journals (Sweden)

    Pedro Baltazar

    2012-11-01

    Full Text Available Session types capture precise protocol structure in concurrent programming, but do not specify properties of the exchanged values beyond their basic type. Refinement types are a form of dependent types that can address this limitation, combining types with logical formulae that may refer to program values and can constrain types using arbitrary predicates. We present a pi calculus with assume and assert operations, typed using a session discipline that incorporates refinement formulae written in a fragment of Multiplicative Linear Logic. Our original combination of session and refinement types, together with the well established benefits of linearity, allows very fine-grained specifications of communication protocols in which refinement formulae are treated as logical resources rather than persistent truths.

  10. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  11. Combustion powered linear actuator

    Science.gov (United States)

    Fischer, Gary J.

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  12. Redesigning linear algebra algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J.J.

    1983-01-01

    Many of the standard algorithms in linear algebra as implemented in FORTRAN do not achieve maximum performance on today's large-scale vector computers. The author examines the problem and constructs alternative formulations of algorithms that do not lose the clarity of the original algorithm or sacrifice the FORTRAN portable environment, but do gain the performance attainable on these supercomputers. The resulting implementation not only performs well on vector computers but also increases performance on conventional sequential computers. 13 references.

  13. Redesigning linear algebra algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J.J.

    1983-01-01

    Many of the standard algorithms in linear algebra as implemented in FORTRAN do not achieve maximum performance on today's large-scale vector computers. In this paper we examine the problem and construct alternative formulations of algorithms that do not lose the clarity of the original algorithm or sacrifice the Fortran portable environment, but do gain the performance attainable on these supercomputers. The resulting implementation not only performs well on vector computers but also increases performance on conventional sequential computers.

  14. Fundamentals of linear algebra

    CERN Document Server

    Dash, Rajani Ballav

    2008-01-01

    FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.

  15. Linear network theory

    CERN Document Server

    Sander, K F

    1964-01-01

    Linear Network Theory covers the significant algebraic aspect of network theory, with minimal reference to practical circuits. The book begins the presentation of network analysis with the exposition of networks containing resistances only, and follows it up with a discussion of networks involving inductance and capacity by way of the differential equations. Classification and description of certain networks, equivalent networks, filter circuits, and network functions are also covered. Electrical engineers, technicians, electronics engineers, electricians, and students learning the intricacies

  16. Anti- (conjugate) linearity

    Science.gov (United States)

    Uhlmann, Armin

    2016-03-01

    This is an introduction to antilinear operators. In following Wigner the terminus antilinear is used as it is standard in Physics. Mathematicians prefer to say conjugate linear. By restricting to finite-dimensional complex-linear spaces, the exposition becomes elementary in the functional analytic sense. Nevertheless it shows the amazing differences to the linear case. Basics of antilinearity is explained in sects. 2, 3, 4, 7 and in sect. 1.2: Spectrum, canonical Hermitian form, antilinear rank one and two operators, the Hermitian adjoint, classification of antilinear normal operators, (skew) conjugations, involutions, and acq-lines, the antilinear counterparts of 1-parameter operator groups. Applications include the representation of the Lagrangian Grassmannian by conjugations, its covering by acq-lines. As well as results on equivalence relations. After remembering elementary Tomita-Takesaki theory, antilinear maps, associated to a vector of a two-partite quantum system, are defined. By allowing to write modular objects as twisted products of pairs of them, they open some new ways to express EPR and teleportation tasks. The appendix presents a look onto the rich structure of antilinear operator spaces.

  17. Linear algebraic groups

    CERN Document Server

    Springer, T A

    1998-01-01

    "[The first] ten chapters...are an efficient, accessible, and self-contained introduction to affine algebraic groups over an algebraically closed field. The author includes exercises and the book is certainly usable by graduate students as a text or for self-study...the author [has a] student-friendly style… [The following] seven chapters... would also be a good introduction to rationality issues for algebraic groups. A number of results from the literature…appear for the first time in a text." –Mathematical Reviews (Review of the Second Edition) "This book is a completely new version of the first edition. The aim of the old book was to present the theory of linear algebraic groups over an algebraically closed field. Reading that book, many people entered the research field of linear algebraic groups. The present book has a wider scope. Its aim is to treat the theory of linear algebraic groups over arbitrary fields. Again, the author keeps the treatment of prerequisites self-contained. The material of t...

  18. Linearized Kernel Dictionary Learning

    Science.gov (United States)

    Golts, Alona; Elad, Michael

    2016-06-01

    In this paper we present a new approach of incorporating kernels into dictionary learning. The kernel K-SVD algorithm (KKSVD), which has been introduced recently, shows an improvement in classification performance, with relation to its linear counterpart K-SVD. However, this algorithm requires the storage and handling of a very large kernel matrix, which leads to high computational cost, while also limiting its use to setups with small number of training examples. We address these problems by combining two ideas: first we approximate the kernel matrix using a cleverly sampled subset of its columns using the Nystr\\"{o}m method; secondly, as we wish to avoid using this matrix altogether, we decompose it by SVD to form new "virtual samples," on which any linear dictionary learning can be employed. Our method, termed "Linearized Kernel Dictionary Learning" (LKDL) can be seamlessly applied as a pre-processing stage on top of any efficient off-the-shelf dictionary learning scheme, effectively "kernelizing" it. We demonstrate the effectiveness of our method on several tasks of both supervised and unsupervised classification and show the efficiency of the proposed scheme, its easy integration and performance boosting properties.

  19. Linear capacity storage devices

    International Nuclear Information System (INIS)

    The linearity of information storage in capacitor storage circuits is discussed. The paper describes two storage circuits whose operation is linear over a wide range of output-signal amplitudes. In one of the circuits the error signal is measured by a differential amplifier and, thanks to the high amplification factor of the amplifier, good linearity is obtained. The second circuit was designed for work in the nanosecond pulse-width range. Input pulses of standard width cut off a pentode, in the anode of which there is a memory capacitor. Since the capacitor is charged from the anode supply through a current generator, the charging current remains almost constant during measurement of the capacitor voltage. The pentode has a large internal resistance so that after the end of the input pulse the magnitude of the current through the pentode is almost equal to its initial value, and the charge stored by the capacitor is remembered. The width of the information memory is limited by the output resistance of the current generator and the internal resistance (Ri) of the pentode. To increase the memory width, a diode may be inserted before the capacitor. (author)

  20. Antiviral active peptide from oyster

    Science.gov (United States)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  1. Antiviral active peptide from oyster

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster (Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10-5 kDa, 5-1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10?5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  2. Radioactive labelling of peptidic hormones

    International Nuclear Information System (INIS)

    The labelling of peptidic hormones requires stability, specificity and sensitivity of the label. Introduction of a radioactive atome is one way to satisfy these criteria. Several processes have been described to prepare radioactive TRF: synthesis of the peptide with labelled aminoacids or introduction of the label into the hormone. In that approach, tritium can be substituted in the imidazole ring, via precursors activating the proper carbon. Monoiodo TRF leads essentially to tritium labelling of the 5 positions whereas monoazo TRF allows the preparation of 3H TRF labelled in the 2 positions. Di-substituted TRF leads to labelling into the 2 and 5 carbons. Labelled analogs of TRF can be prepared with labelled iodine; further developments of peptide labelling, will be presented. In particular, the homolytic scission of the C-iodine, bond by photochemical activation. The nascent carbon radical can be stabilized by a tritiated scavenger. This approach eliminates the use of heavy metal catalysts

  3. Fluorescent monitoring of copper-occupancy in His-ended catalytic oligo-peptides.

    Science.gov (United States)

    Inokuchi, Reina; Kawano, Tomonori

    2016-01-01

    Controlled generation of reactive oxygen species (ROS) is widely beneficial to various medical, environmental, and agricultural studies. As inspired by the functional motifs in natural proteins, our group has been engaged in development of catalytically active oligo-peptides as minimum-sized metalloenzymes for generation of superoxide anion, an active member of ROS. In such candidate molecules, catalytically active metal-binding minimal motif was determined to be X-X-H, where X can be most amino acids followed by His. Based on above knowledge, we have designed a series of minimal copper-binding peptides designated as G n H series peptides, which are composed of oligo-glycyl chains ended with C-terminal His residue such as GGGGGH sequence (G5H). In order to further study the role of copper binding to the peptidic catalysts sharing the X-X-H motif such as G5H-conjugated peptides, we should be able to score the occupancy of the peptide population by copper ion in the reaction mixture. Here, model peptides with Cu-binding affinity which show intrinsic fluorescence due to tyrosyl residue (Y) in the UV region (excitation at ca. 230 and 280 nm, and emission at ca. 320 nm) were synthesized to score the effect of copper occupancy. Synthesized peptides include GFP-derived fluorophore sequence, TFSYGVQ (designated as Gfp), and Gfp sequence fused to C-terminal G5H (Gfp-G5H). In addition, two Y-containing tri-peptides derived from natural GFP fluorophores, namely, TYG and SYG were fused to the G5H (TYG-G5H and SYG-G5H). Conjugation of metal-binding G5H sequence to GFP-fluorophore peptide enhanced the action of Cu(2+) on quenching of intrinsic fluorescence due to Y residue. Two other Y-containing peptides, TYG-G5H and SYG-G5H, also showed intrinsic fluorescence which is sensitive to addition of Cu(2+). There was linear relationship between the loading of Cu(2+) and the quenching of fluorescence in these peptide, suggesting that Cu(2+)-dependent quenching of Y

  4. Molecular architecture with carbohydrate functionalized β-peptides adopting 314-helical conformation

    Directory of Open Access Journals (Sweden)

    Nitin J. Pawar

    2014-04-01

    Full Text Available Carbohydrate recognition is essential in cellular interactions and biological processes. It is characterized by structural diversity, multivalency and cooperative effects. To evaluate carbohydrate interaction and recognition, the structurally defined attachment of sugar units to a rigid template is highly desired. β-Peptide helices offer conformationally stable templates for the linear presentation of sugar units in defined distances. The synthesis and β-peptide incorporation of sugar-β-amino acids are described providing the saccharide units as amino acid side chain. The respective sugar-β-amino acids are accessible by Michael addition of ammonia to sugar units derivatized as α,β-unsaturated esters. Three sugar units were incorporated in β-peptide oligomers varying the sugar (glucose, galactose, xylose and sugar protecting groups. The influence of sugar units and the configuration of sugar-β-amino acids on β-peptide secondary structure were investigated by CD spectroscopy.

  5. Selection of a Mimotope Peptide of S-adenosyl-l-homocysteine and Its Application in Immunoassays

    Directory of Open Access Journals (Sweden)

    Chun Wu

    2013-10-01

    Full Text Available A competitive immunoassay for S-adenosyl-l-homocysteine (SAH has been used in the clinical test for homocysteine via an enzymatic conversion reaction. Since S-adenosyl-l-homocysteine is a relatively unstable compound, we have used peptide library phage display to select a new mimotope peptide that interacts with the anti-SAH antibody. By immobilizing the synthetic peptide on solid phase as a competitive surrogate for SAH, we demonstrate its utility in a competitive ELISA assay. The linear range of the assay for SAH was 0.4–6.4 µM, in good correlation to the conventional assay using an SAH-conjugated plate. Our results show that the mimotope peptide has potential to substitute for SAH in immunoassays.

  6. Abiotic formation of valine peptides under conditions of high temperature and high pressure.

    Science.gov (United States)

    Furukawa, Yoshihiro; Otake, Tsubasa; Ishiguro, Takato; Nakazawa, Hiromoto; Kakegawa, Takeshi

    2012-12-01

    We investigated the oligomerization of solid valine and the stabilities of valine and valine peptides under conditions of high temperature (150-200 °C) and high pressure (50-150 MPa). Experiments were performed under non-aqueous condition in order to promote dehydration reaction. After prolonged exposure of monomeric valine to elevated temperatures and pressures, the products were analyzed by liquid chromatography mass spectrometry comparing their retention times and masses. We identified linear peptides that ranged in size from dimer to hexamer, as well as a cyclic dimer. Previous studies that attempted abiotic oligomerization of valine in the absence of a catalyst have never reported valine peptides larger than a dimer. Increased reaction temperature increased the dissociative decomposition of valine and valine peptides to products such as glycine, β-alanine, ammonia, and amines by processes such as deamination, decarboxylation, and cracking. The amount of residual valine and peptide yields was greater at higher pressures at a given temperature, pressure, and reaction time. This suggests that dissociative decomposition of valine and valine peptides is reduced by pressure. Our findings are relevant to the investigation of diagenetic processes in prebiotic marine sediments where similar pressures occur under water-poor conditions. These findings also suggest that amino acids, such as valine, could have been polymerized to peptides in deep prebiotic marine sediments within a few hundred million years.

  7. Modified atomic force microscope applied to the measurement of elastic modulus for a single peptide molecule

    Science.gov (United States)

    Ptak, Arkadiusz; Takeda, Seiji; Nakamura, Chikashi; Miyake, Jun; Kageshima, Masami; Jarvis, Suzanne P.; Tokumoto, Hiroshi

    2001-09-01

    A modified atomic force microscopy (AFM) system, based on a force modulation technique, has been used to find an approximate value for the elastic modulus of a single peptide molecule directly from a mechanical test. For this purpose a self-assembled monolayer built from two kinds of peptides, reactive (able to anchor to the AFM tip) and nonreactive, was synthesized. In a typical experiment a single C3K30C (C=cysteine, K=lysine) peptide molecule was stretched between a Au(111) substrate and the gold-coated tip of an AFM cantilever to which it was attached via gold-sulfur bonds. The amplitude of the cantilever oscillations, due to an external force applied via a magnetic particle to the cantilever, was recorded by a lock-in amplifier and recalculated into stiffness of the stretched molecule. A longitudinal Young's modulus for the α-helix of a single peptide molecule and for the elongated state of this molecule has been estimated. The obtained values; 1.2±0.3 and 50±15 GPa, for the peptide α-helix and elongated peptide backbone, respectively, seem to be reasonable comparing them to the Young's modulus of protein crystals and linear organic polymers. We believe this research opens up a means by which scientists can perform quantitative studies of the elastic properties of single molecule, especially of biologically important polymers like peptides or DNA.

  8. Abiotic Formation of Valine Peptides Under Conditions of High Temperature and High Pressure

    Science.gov (United States)

    Furukawa, Yoshihiro; Otake, Tsubasa; Ishiguro, Takato; Nakazawa, Hiromoto; Kakegawa, Takeshi

    2012-12-01

    We investigated the oligomerization of solid valine and the stabilities of valine and valine peptides under conditions of high temperature (150-200 °C) and high pressure (50-150 MPa). Experiments were performed under non-aqueous condition in order to promote dehydration reaction. After prolonged exposure of monomeric valine to elevated temperatures and pressures, the products were analyzed by liquid chromatography mass spectrometry comparing their retention times and masses. We identified linear peptides that ranged in size from dimer to hexamer, as well as a cyclic dimer. Previous studies that attempted abiotic oligomerization of valine in the absence of a catalyst have never reported valine peptides larger than a dimer. Increased reaction temperature increased the dissociative decomposition of valine and valine peptides to products such as glycine, β-alanine, ammonia, and amines by processes such as deamination, decarboxylation, and cracking. The amount of residual valine and peptide yields was greater at higher pressures at a given temperature, pressure, and reaction time. This suggests that dissociative decomposition of valine and valine peptides is reduced by pressure. Our findings are relevant to the investigation of diagenetic processes in prebiotic marine sediments where similar pressures occur under water-poor conditions. These findings also suggest that amino acids, such as valine, could have been polymerized to peptides in deep prebiotic marine sediments within a few hundred million years.

  9. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    is considered poor compared to medicines for lifestyle diseases. According to the WHO we could be moving towards a post-antibiotic era in which previously treatable infections become fatal. Of special importance are multidrug resistant bacteria from the ESKAPE group (Enterococcus faecium, Staphylococcus aureus...... a cecropin-mellitin hybrid peptide and proved effective in killing colistin resistant Gram-negative A. baumannii in vitro. The molecule was improved with regard to toxicity, as measured by hemolytic ability. Further, this peptide is capable of specifically killing non-growing cells of colistin resistant A...

  10. Peptides and the new endocrinology

    Science.gov (United States)

    Schwyzer, Robert

    1982-01-01

    The discovery of regulatory peptides common to the nervous and the endocrine systems (brain, gut, and skin) has brought about a revolution in our concepts of endocrinology and neurology. We are beginning to understand some of the complex interrelationships between soma and psyche that might, someday, be important for an integrated treatment of diseases. Examples of the actions of certain peptides in the periphery and in the central nervous system are given, and their biosynthesis and molecular anatomy as carriers for information are discussed.

  11. Novel Formulations for Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2014-10-01

    Full Text Available Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  12. An enhancer peptide for membrane-disrupting antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Zhang Hong

    2010-02-01

    Full Text Available Abstract Background NP4P is a synthetic peptide derived from a natural, non-antimicrobial peptide fragment (pro-region of nematode cecropin P4 by substitution of all acidic amino acid residues with amides (i.e., Glu → Gln, and Asp → Asn. Results In the presence of NP4P, some membrane-disrupting antimicrobial peptides (ASABF-α, polymyxin B, and nisin killed microbes at lower concentration (e.g., 10 times lower minimum bactericidal concentration for ASABF-α against Staphylococcus aureus, whereas NP4P itself was not bactericidal and did not interfere with bacterial growth at ≤ 300 μg/mL. In contrast, the activities of antimicrobial agents with a distinct mode of action (indolicidin, ampicillin, kanamycin, and enrofloxacin were unaffected. Although the membrane-disrupting activity of NP4P was slight or undetectable, ASABF-α permeabilized S. aureus membranes with enhanced efficacy in the presence of NP4P. Conclusions NP4P selectively enhanced the bactericidal activities of membrane-disrupting antimicrobial peptides by increasing the efficacy of membrane disruption against the cytoplasmic membrane.

  13. Differential Equations with Linear Algebra

    CERN Document Server

    Boelkins, Matthew R; Potter, Merle C

    2009-01-01

    Linearity plays a critical role in the study of elementary differential equations; linear differential equations, especially systems thereof, demonstrate a fundamental application of linear algebra. In Differential Equations with Linear Algebra, we explore this interplay between linear algebra and differential equations and examine introductory and important ideas in each, usually through the lens of important problems that involve differential equations. Written at a sophomore level, the text is accessible to students who have completed multivariable calculus. With a systems-first approach, t

  14. Fermionic Linear Optics and Matchgates

    OpenAIRE

    Knill, E.

    2001-01-01

    Fermionic linear optics is efficiently classically simulatable. Here it is shown that the set of states achievable with fermionic linear optics and particle measurements is the closure of a low dimensional Lie group. The weakness of fermionic linear optics and measurements can therefore be explained and contrasted with the strength of bosonic linear optics with particle measurements. An analysis of fermionic linear optics is used to show that the two-qubit matchgates and the simulatable match...

  15. Strategic approaches to optimizing peptide ADME properties.

    Science.gov (United States)

    Di, Li

    2015-01-01

    Development of peptide drugs is challenging but also quite rewarding. Five blockbuster peptide drugs are currently on the market, and six new peptides received first marketing approval as new molecular entities in 2012. Although peptides only represent 2% of the drug market, the market is growing twice as quickly and might soon occupy a larger niche. Natural peptides typically have poor absorption, distribution, metabolism, and excretion (ADME) properties with rapid clearance, short half-life, low permeability, and sometimes low solubility. Strategies have been developed to improve peptide drugability through enhancing permeability, reducing proteolysis and renal clearance, and prolonging half-life. In vivo, in vitro, and in silico tools are available to evaluate ADME properties of peptides, and structural modification strategies are in place to improve peptide developability. PMID:25366889

  16. Histidine-Containing Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2000-01-01

    Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics.......Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics....

  17. Lipoxygenase inhibitor peptides and their use

    OpenAIRE

    Schurink, M.; Boeriu, C.G.; Berkel, van, A.M.; Wichers, H J

    2006-01-01

    The present invention is in the field of enzyme inhibition. In particular it relates to peptide inhibitors for lipoxygenases. The lipoxygenase peptide inhibitors of have the potential to be used as therapeutic drugs as well as food preservatives.

  18. Natriuretic peptides in cardiometabolic regulation and disease

    DEFF Research Database (Denmark)

    Zois, Nora Elisabeth; Bartels, Emil Daniel; Hunter, Ingrid;

    2014-01-01

    decade. Dysregulation of the natriuretic peptide system has been associated with obesity, glucose intolerance, type 2 diabetes mellitus, and essential hypertension. Moreover, the natriuretic peptides have been implicated in the protection against atherosclerosis, thrombosis, and myocardial ischaemia. All...

  19. Self-assembly of 33-mer gliadin peptide oligomers.

    Science.gov (United States)

    Herrera, M G; Benedini, L A; Lonez, C; Schilardi, P L; Hellweg, T; Ruysschaert, J-M; Dodero, V I

    2015-11-28

    The 33-mer gliadin peptide, LQLQPF(PQPQLPY)3PQPQPF, is a highly immunogenic peptide involved in celiac disease and probably in other immunopathologies associated with gliadin. Herein, dynamic light scattering measurements showed that 33-mer, in the micromolar concentration range, forms polydisperse nano- and micrometer range particles in aqueous media. This behaviour is reminiscent of classical association of colloids and we hypothesized that the 33-mer peptide self-assembles into micelles that could be the precursors of 33-mer oligomers in water. Deposition of 33-mer peptide aqueous solution on bare mica generated nano- and microstructures with different morphologies as revealed by atomic force microscopy. At 6 μM, the 33-mer is organised in isolated and clusters of spherical nanostructures. In the 60 to 250 μM concentration range, the spherical oligomers associated mainly in linear and annular arrangements and structures adopting a "sheet" type morphology appeared. At higher concentrations (610 μM), mainly filaments and plaques immersed in a background of nanospherical structures were detected. The occurrence of different morphologies of oligomers and finally the filaments suggests that the unique specific geometry of the 33-mer oligomers has a crucial role in the subsequent condensation and organization of their fractal structures into the final filaments. The self-assembly process on mica is described qualitatively and quantitatively by a fractal diffusion limited aggregation (DLA) behaviour with the fractal dimension in the range of 1.62 ± 0.02 to 1.73 ± 0.03. Secondary structure evaluation of the oligomers by Attenuated Total Reflection FTIR spectroscopy (ATR-FTIR) revealed the existence of a conformational equilibrium of self-assembled structures, from an extended conformation to a more folded parallel beta elongated structures. Altogether, these findings provide structural and morphological information about supramolecular organization of the 33-mer

  20. Automated Detection of Conformational Epitopes Using Phage Display Peptide Sequences

    Directory of Open Access Journals (Sweden)

    Surendra S Negi

    2009-01-01

    Full Text Available Background: Precise determination of conformational epitopes of neutralizing antibodies represents a key step in the rational design of novel vaccines. A powerful experimental method to gain insights on the physical chemical nature of conformational epitopes is the selection of linear peptides that bind with high affinities to a monoclonal antibody of interest by phage display technology. However, the structural characterization of conformational epitopes from these mimotopes is not straightforward, and in the past the interpretation of peptide sequences from phage display experiments focused on linear sequence analysis to find a consensus sequence or common sequence motifs.Results: We present a fully automated search method, EpiSearch that predicts the possible location of conformational epitopes on the surface of an antigen. The algorithm uses peptide sequences from phage display experiments as input, and ranks all surface exposed patches according to the frequency distribution of similar residues in the peptides and in the patch. We have tested the performance of the EpiSearch algorithm for six experimental data sets of phage display experiments, the human epidermal growth factor receptor-2 (HER-2/neu, the antibody mAb Bo2C11 targeting the C2 domain of FVIII, antibodies mAb 17b and mAb b12 of the HIV envelope protein gp120, mAb 13b5 targeting HIV-1 capsid protein and 80R of the SARS coronavirus spike protein. In all these examples the conformational epitopes as determined by the X-ray crystal structures of the antibody-antigen complexes, were found within the highest scoring patches of EpiSearch, covering in most cases more than 50% residues of experimental observed conformational epitopes. Input options of the program include mapping of a single peptide or a set of peptides on the antigen structure, and the results of the calculation can be visualized on our interactive web server.Availability: Users can access the EpiSearch from our web

  1. Purification, structure and function of bioactive peptides

    OpenAIRE

    Eriste, Elo

    2004-01-01

    Peptides are vitally important molecules and many evoke cellular responses. The completion of several genome sequencing projects has revealed a number of new genes. However, as functional peptides often contain posttranslational modifications and/or occur at various lengths, it is of great importance to detect, purify and characterize novel bioactive peptides. To achieve these goals, new methods for peptide detection, isolation and functional characterization have to be d...

  2. Development and use of engineered peptide deformylase in chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Di Toma, Claudia

    2012-01-01

    Deze thesis beschrijft het onderzoek naar potentieel van het gebruik van het peptide deformylase (PDF) in chemo enzymatische peptide synthese. PDF is geschikt voor selective N terminale deformylatie van bepaalde N-formyl-peptides zonder gelijktijdige hydrolyse van de peptide binding. Door de uitdagi

  3. F-Linear

    OpenAIRE

    Conceição, Ana; PEREIRA, José; Silva, Cátia; Simão, Cristina

    2012-01-01

    The article (see http://hdl.handle.net/10400.1/1105) was first presented in the 1st National Conference on Symbolic Computation in Education and Research, IST Portugal 2012, where distinguished with the Timberlake Award for Best Article by a Young Researcher. On how to work with the CDF format please see http://www.wolfram.com/cdf-player/. F-Linear is a F-Tool (see http://hdl.handle.net/10400.1/1105), that is, a visual, dynamic, and interactive teaching tool that allow to explore in an inn...

  4. Optical linear algebra

    Energy Technology Data Exchange (ETDEWEB)

    Casasent, D.; Ghosh, A.

    1983-01-01

    Many of the linear algebra operations and algorithms possible on optical matrix-vector processors are reviewed. Emphasis is given to the use of direct solutions and their realization on systolic optical processors. As an example, implicit and explicit solutions to partial differential equations are considered. The matrix-decomposition required is found to be the major operation recommended for optical realization. The pipelining and flow of data and operations are noted to be key issues in the realization of any algorithm on an optical systolic array processor. A realization of the direct solution by householder qr decomposition is provided as a specific case study. 19 references.

  5. Matlab linear algebra

    CERN Document Server

    Lopez, Cesar

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Linear Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an introduction to

  6. Linear Probability Forecasting

    CERN Document Server

    Zhdanov, Fedor

    2010-01-01

    Multi-class classification is one of the most important tasks in machine learning. In this paper we consider two online multi-class classification problems: classification by a linear model and by a kernelized model. The quality of predictions is measured by the Brier loss function. We suggest two computationally efficient algorithms to work with these problems and prove theoretical guarantees on their losses. We kernelize one of the algorithms and prove theoretical guarantees on its loss. We perform experiments and compare our algorithms with logistic regression.

  7. Interpreting peptide mass spectra by VEMS

    DEFF Research Database (Denmark)

    Mathiesen, Rune; Lundsgaard, M.; Welinder, Karen G.;

    2003-01-01

    of peptide MS/MS spectra imported in text file format. Peaks are annotated, the monoisotopic peaks retained, and the b-and y-ion series identified in an interactive manner. The called peptide sequence is searched against a local protein database for sequence identity and peptide mass. The report compares...

  8. Synthetic Procedures for Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  9. Characterization of synthetic peptides by mass spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala Krishna; Mirza, Osman Asghar; Højrup, Peter;

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI-TOF-MS an...

  10. Double-Stranded Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2001-01-01

    A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  11. Peptides and metallic nanoparticles for biomedical applications.

    NARCIS (Netherlands)

    Kogan, M.J.; Olmedo, I.; Hosta, L.; Guerrero, A.R.; Cruz Ricondo, L.J.; Albericio, F.

    2007-01-01

    In this review, we describe the contribution of peptides to the biomedical applications of metallic nanoparticles. We also discuss strategies for the preparation of peptide-nanoparticle conjugates and the synthesis of the peptides and metallic nanoparticles. An overview of the techniques used for th

  12. Diversity of wheat anti-microbial peptides.

    Science.gov (United States)

    Egorov, Tsezi A; Odintsova, Tatyana I; Pukhalsky, Vitaliy A; Grishin, Eugene V

    2005-11-01

    From seeds of Triticum kiharae Dorof. et Migusch., 24 novel anti-microbial peptides were isolated and characterized by a combination of three-step HPLC (affinity, size-exclusion and reversed-phase) with matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and Edman degradation. Based on sequence similarity and cysteine motifs, partially sequenced peptides were assigned to 7 families: defensins, thionins, lipid-transfer proteins, hevein-like peptides, knottin-like peptides, glycine-rich peptides, and MBP-1 homologs. A novel subfamily of defensins consisting of 6 peptides and a new family of glycine-rich (8 peptides with different repeat motifs) were identified. Three 6-cysteine knottin-like peptides represented by N- and C-terminally truncated variants revealed no sequence homology to any known plant anti-microbial peptides. A new 8-cysteine hevein-like peptide and three 4-cysteine peptides homologous to MBP-1 from maize were isolated. This is the first communication on the occurrence of nearly all families of plant anti-microbial peptides in a single species. PMID:16269343

  13. Toxins and antimicrobial peptides: interactions with membranes

    Science.gov (United States)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of peptide potency, was monitored with a sensitive fluorescence leakage assay. Detailed molecular information on peptidemembrane interactions and peptide structure was further gained through vibrational spectroscopy combined with circular dichroism. Finally, steady-state fluorescence experiments yielded insight into the local environment of native or engineered tryptophan residues in melittin and human cathelicidin embedded in bilayer vesicles. Collectively, our results provide clues to the functional structures of the engineered and toxic peptides and may impact the design of synthetic antibiotic peptides that can be used against the growing number of antibiotic-resistant pathogens.

  14. Bioactive peptides in dairy products

    Directory of Open Access Journals (Sweden)

    Donata Marletta

    2010-01-01

    Full Text Available Bioactive peptides are specific protein fragments that have a positive impact on body functions and conditions and may ultimately influence health. Most of the biological activities are encrypted within the primary sequence of the native protein and can be released by enzymatic hydrolysis and proteolysis or by food processing. Milk is a rich source of bioactive peptides which may contribute to regulate the nervous, gastrointestinal and cardiovascular systems as well as the immune system, confirming the added value of dairy products that, in certain cases, can be considered functional foods. The main biological activities of these peptides and their bioavailability in dairy products are reviewed. The natural concentration of these biomolecules is quite low and, to date one of the main goals has been to realize products enriched with bioactive peptides that have beneficial effects on human health and proven safety. Even though several health-enhancing products have already been launched and their integration in the diet could help in the prevention of chronic diseases such as hypertension, cancer and osteoporosis, more clinical trials are required in order to develop a deeper understanding of the activity of biopeptides on the human physiological mechanisms and also to assess the efficacy of their effects in a long term view. New scientific data are also needed to support their commercialisation in compliance with current regulations.

  15. Linear wind generator

    International Nuclear Information System (INIS)

    The purpose of the linear wind-power generator described in this article is to decrease the following disadvantages of the common wind-powered turbine: 1) large bending and twisting moments to the blades and the shaft, especially when strong winds and turbulence exist; 2) significant values of the natural oscillation period of the construction result in the possibility of occurrence of destroying resonance oscillations; 3) high velocity of the peripheral parts of the rotor creating a danger for birds; 4) difficulties, connected with the installation and the operation on the mountain ridges and passages where the wind energy potential is the largest. The working surfaces of the generator in questions driven by the wind are not connected with a joint shaft but each moves along a railway track with few oscillations. So the sizes of each component are small and their number can be rather large. The mechanical trajectory is not a circle but a closed outline in a vertical plain, which consists of two rectilinear sectors, one above the other, connected in their ends by semi-circumferences. The mechanical energy of each component turns into electrical on the principle of the linear electrical generator. A regulation is provided when the direction of the wind is perpendicular to the route. A possibility of effectiveness is shown through aiming of additional quantities of air to the movable components by static barriers

  16. Linear atomic quantum coupler

    CERN Document Server

    El-Orany, Faisal A A

    2009-01-01

    In this paper, we develop the notion of the linear atomic quantum coupler. This device consists of two modes propagating into two waveguides, each of them includes a localized and/or a trapped atom. These waveguides are placed close enough to allow exchanging energy between them via evanescent waves. Each mode interacts with the atom in the same waveguide in the standard way, i.e. as the Jaynes-Cummings model (JCM), and with the atom-mode in the second waveguide via evanescent wave. We present the Hamiltonian for the system and deduce the exact form for the wavefunction. We investigate the atomic inversions and the second-order correlation function. In contrast to the conventional linear coupler, the atomic quantum coupler is able to generate nonclassical effects. The atomic inversions can exhibit long revival-collapse phenomenon as well as subsidiary revivals based on the competition among the switching mechanisms in the system. Finally, under certain conditions, the system can yield the results of the two-m...

  17. On the linear programming bound for linear Lee codes.

    Science.gov (United States)

    Astola, Helena; Tabus, Ioan

    2016-01-01

    Based on an invariance-type property of the Lee-compositions of a linear Lee code, additional equality constraints can be introduced to the linear programming problem of linear Lee codes. In this paper, we formulate this property in terms of an action of the multiplicative group of the field [Formula: see text] on the set of Lee-compositions. We show some useful properties of certain sums of Lee-numbers, which are the eigenvalues of the Lee association scheme, appearing in the linear programming problem of linear Lee codes. Using the additional equality constraints, we formulate the linear programming problem of linear Lee codes in a very compact form, leading to a fast execution, which allows to efficiently compute the bounds for large parameter values of the linear codes.

  18. Synthesis and evaluation of amphiphilic peptides as nanostructures and drug delivery tools

    Science.gov (United States)

    Sayeh, Naser Ali

    conjugates although one limitation lies in the effort of controlling the rate of drug release. The encapsulated or complexed drugs tend to be released rapidly (before reaching the target site) and in the dendrimer--drug conjugates, it is the chemical linkage that controls the drug release. Thus, future studies in this field are urgently required to create more efficient and stable biomaterials. Peptides are considered as efficient vectors for achieving optimal cellular uptake. The potential use of peptides as drug delivery vectors received much attention by the discovery of several cell-penetrating peptides (CPPs). The first CPPs discovered in 1988, that were sequences from HIV-1 encoded TAT protein, TAT (48--60), and penetrated very efficiently through cell membranes of cultured mammalian cells. CPPs are a class of diverse peptides, typically with 8--25 amino acids, and unlike most peptides, they can cross the cellular membrane with more efficiency. CPPs have also shown to undergo self-assembly and generate nanostructures. The generation of self-assembled peptides and nanostructures occur through various types of interactions between functional groups of amino acid residues, such as electrostatic, hydrophobic, and hydrogen bonding. Appropriate design and functionalization of peptides are critical for generating nanostructures. Chemically CPPs are classified into two major groups: linear and cyclic peptides. It has been previously reported that linear peptides containing hydrophilic and hydrophobic amino acids could act as membrane protein stabilizers. These compounds are short hydrophilic or amphiphilic peptides that have positively charged amino acids, such as arginine, lysine or histidine, which can interact with the negative charge phospholipids layer on the cell membrane and translocate the cargo into the cells. Conjugation to cationic linear CPPs, such as TAT, penetratin, or oligoarginine efficiently improves the cellular uptake of large hydrophilic molecules, but the

  19. Novel and Convenient Method for the Preparation of Phosphonate Peptides and Phosphonamidate Peptides

    Institute of Scientific and Technical Information of China (English)

    XU Jia-Xi; FU Nan-Yan; GAO Yuan-He; ZHNAG Qi-Han; DUAN Li-Fang

    2003-01-01

    @@ Phosphonate and phosphonamidate peptides are phosphorus analogues of natural peptides. They have been great used as stable mimetics of tetrahedral transition states as enzyme inhibitors and as haptens for catalytic antibody research in recent years. Although several methods are available for the preparation of phosphonate peptides and phosphonamidate peptides, all of them use phosphonic acid derivatives as starting materials. The overall yields from the synthesis of phosphonic acid derivatives to desired peptides are not satisfactory in most cases.

  20. Linear algebra, geometry and transformation

    CERN Document Server

    Solomon, Bruce

    2014-01-01

    Vectors, Mappings and Linearity Numeric Vectors Functions Mappings and Transformations Linearity The Matrix of a Linear Transformation Solving Linear Systems The Linear SystemThe Augmented Matrix and RRE Form Homogeneous Systems in RRE Form Inhomogeneous Systems in RRE Form The Gauss-Jordan Algorithm Two Mapping Answers Linear Geometry Geometric Vectors Geometric/Numeric Duality Dot-Product Geometry Lines, Planes, and Hyperplanes System Geometry and Row/Column Duality The Algebra of Matrices Matrix Operations Special Matrices Matrix Inversion A Logical Digression The Logic of the Inversion Alg

  1. Comparative biodistribution of 12 {sup 111}In-labelled gastrin/CCK2 receptor-targeting peptides

    Energy Technology Data Exchange (ETDEWEB)

    Laverman, Peter; Joosten, Lieke; Eek, Annemarie; Roosenburg, Susan; Oyen, Wim J.G.; Boerman, Otto C. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Peitl, Petra Kolenc [University Medical Centre Ljubljana, Department of Nuclear Medicine, Ljubljana (Slovenia); Maina, Theodosia [National Center for Scientific Research Demokritos, Molecular Radiopharmacy, Institute of Radioisotopes-Radiodiagnostic Products, Athens (Greece); Maecke, Helmut [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany); Aloj, Luigi [Fondazione ' ' G. Pascale' ' , Department of Nuclear Medicine, Istituto Nazionale Tumouri, Naples (Italy); Guggenberg, Elisabeth von [Innsbruck Medical University, Department of Nuclear Medicine, Innsbruck (Austria); Sosabowski, Jane K. [Queen Mary, University of London, Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine and Dentistry, London (United Kingdom); Jong, Marion de [Erasmus MC, Department of Nuclear Medicine, Rotterdam (Netherlands); Reubi, Jean-Claude [University of Berne, Institute of Pathology, Berne (Switzerland)

    2011-08-15

    Cholecystokinin 2 (CCK-2) receptor overexpression has been demonstrated in various tumours such as medullary thyroid carcinomas and small-cell lung cancers. Due to this high expression, CCK-2 receptors might be suitable targets for radionuclide imaging and/or radionuclide therapy. Several CCK-2 receptor-binding radiopeptides have been developed and some have been tested in patients. Here we aimed to compare the in vivo tumour targeting properties of 12 {sup 111}In-labelled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated gastrin/CCK2 receptor-binding peptides. Two CCK8-based peptides and ten gastrin-based peptide analogues were tested. All peptides were conjugated with DOTA and labelled with {sup 111}In. Biodistribution studies were performed in mice with subcutaneous CCK2/gastrin receptor-expressing tumours and with receptor-negative tumours contralaterally. Biodistribution was studied by counting dissected tissues at 1 and 4 h after injection. Both the CCK analogues displayed relatively low tumour uptake (approximately 2.5%ID/g) as compared to minigastrin analogues. Two linear minigastrin peptides (MG0 and sargastrin) displayed moderate tumour uptake at both 1 and 4 h after injection, but also very high kidney uptake (both higher than 48%ID/g). The linear MG11, lacking the penta-Glu sequence, showed lower tumour uptake and also low kidney uptake. Varying the N-terminal Glu residues in the minigastrin analogues led to improved tumour targeting properties, with PP-F11 displaying the optimal biodistribution. Besides the monomeric linear peptides, a cyclized peptide and a divalent peptide were tested. Based on these studies, optimal peptides for peptide receptor radionuclide targeting of CCK2/gastrin receptor-expressing tumours were the linear minigastrin analogue with six D-Glu residues (PP-F11), the divalent analogue MGD5 and the cyclic peptide cyclo-MG1. These peptides combined high tumour uptake with low kidney retention, and may

  2. Side-chain interactions form late and cooperatively in the binding reaction between disordered peptides and PDZ domains

    DEFF Research Database (Denmark)

    Haq, S Raza; Chi, Celestine N; Bach, Anders;

    2012-01-01

    used short peptides as a model system for intrinsically disordered proteins. Linear free-energy relationships based on rate and equilibrium constants for the binding of these peptides to ordered target proteins, PDZ domains, demonstrate that native side-chain interactions form mainly after the rate......-limiting barrier for binding, in a cooperative fashion. This finding suggests that these disordered peptides first form a weak encounter complex with non-native interactions. The data do not support the recent notion that the affinities of intrinsically disordered proteins towards their targets are generally...

  3. Fabrication of Odor Sensor Using Peptide

    Science.gov (United States)

    Hotokebuchi, Yuta; Hayashi, Kenshi; Toko, Kiyoshi; Chen, Ronggang; Ikezaki, Hidekazu

    We report fabrication of an odor sensor using peptides. Peptides were designed to acquire the specific reception for a target odor molecule. Au surface of the sensor electrode was coated by the designed peptide using the method of self assembled monolayers (SAMs). Functionalized Au surfaces by the peptides were confirmed by ellipsometry and cyclic voltammetry. The odorants of vanillin, phenethyl alcohol and hexanol were discriminated by QCM sensor with the peptide surface. Moreover, we verified specific interaction between amino acid (Trp) and vanillin by fluorescence assay.

  4. Introduction to linear elasticity

    CERN Document Server

    Gould, Phillip L

    2013-01-01

    Introduction to Linear Elasticity, 3rd Edition, provides an applications-oriented grounding in the tensor-based theory of elasticity for students in mechanical, civil, aeronautical, and biomedical engineering, as well as materials and earth science. The book is distinct from the traditional text aimed at graduate students in solid mechanics by introducing the subject at a level appropriate for advanced undergraduate and beginning graduate students. The author's presentation allows students to apply the basic notions of stress analysis and move on to advanced work in continuum mechanics, plasticity, plate and shell theory, composite materials, viscoelasticity and finite method analysis. This book also:  Emphasizes tensor-based approach while still distilling down to explicit notation Provides introduction to theory of plates, theory of shells, wave propagation, viscoelasticity and plasticity accessible to advanced undergraduate students Appropriate for courses following emerging trend of teaching solid mechan...

  5. Standing wave linear accelerator

    International Nuclear Information System (INIS)

    Consideration is being given to standing wave linear accelerator containing generator, phase shifter, two accelerating resonator sections, charged particle injector and waveguide bridge. Its first arm is oined up with generator via the phase shifter, the second and the third ones-with accelerating sections and the fourth one - with HF-power absorber. HF-power absorber represents a section of circular diaphragmatic wavequide with transformer with input wave and intrawaveguide output load located between injector and the first accelerating section. The section possesses holes in side walls lying on accelerator axis. The distances between centers of the last cell of the fast accelerating section and the first cell of the second accelerating sectiOn equal (2n+3)lambda/4, where n=1, 2, 3..., lambda - wave length of generator. The suggested system enables to improve by one order spectral characteristics of accelerators as compared to the prototype in which magnetrons are used as generator

  6. Linear induction accelerator

    International Nuclear Information System (INIS)

    This paper examines a new layout for the injector and accelerating sectins of a linear induction accelerator. The sections are combined in a single housing: an induction system with a current-pulse generator based on double strip shaping lines laid over ferromagnetic cores; a multichannel spark discharger with forced current division among channels; and a system for core demagnetization and electron-beam formation and transport. The results of formation of an electron beam in the injector system and its acceleration in the first accelerating section of the accelerator for injection of beams with energies of 0.2-0.4 MeV, currents of 1-2 kA, and pulse durations of 60 nsec are given

  7. Peptide-enhanced oral delivery of therapeutic peptides and proteins

    DEFF Research Database (Denmark)

    Kristensen, Mie; Foged, Camilla; Berthelsen, Jens;

    2013-01-01

    Systemic therapy upon oral delivery of biologics, such as peptide and protein drugs is limited due to their large molecular size, their low enzymatic stability and their inability to cross the intestinal epithelium. Ways to overcome the epithelial barrier include the use of peptide-based excipients...... throughout the gastrointestinal (GI) tract, chemical stability is an inherent challenge when employing amino acid-based excipients for oral delivery, and multiple approaches have been investigated to improve this. The exact mechanisms of transepithelial translocation are discussed, and it is believed...... that CPP-mediated translocation involves transcytosis and/or direct translocation through the epithelial cells; whereas TJMP-mediated translocation is dependent on interaction with transmembrane or peripheral TJ proteins. This review focuses on the CPPs and the TJMPs currently employed as excipients...

  8. Computer Program For Linear Algebra

    Science.gov (United States)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  9. Towards the MHC-peptide combinatorics.

    Science.gov (United States)

    Kangueane, P; Sakharkar, M K; Kolatkar, P R; Ren, E C

    2001-05-01

    The exponentially increased sequence information on major histocompatibility complex (MHC) alleles points to the existence of a high degree of polymorphism within them. To understand the functional consequences of MHC alleles, 36 nonredundant MHC-peptide complexes in the protein data bank (PDB) were examined. Induced fit molecular recognition patterns such as those in MHC-peptide complexes are governed by numerous rules. The 36 complexes were clustered into 19 subgroups based on allele specificity and peptide length. The subgroups were further analyzed for identifying common features in MHC-peptide binding pattern. The four major observations made during the investigation were: (1) the positional preference of peptide residues defined by percentage burial upon complex formation is shown for all the 19 subgroups and the burial profiles within entries in a given subgroup are found to be similar; (2) in class I specific 8- and 9-mer peptides, the fourth residue is consistently solvent exposed, however this observation is not consistent in class I specific 10-mer peptides; (3) an anchor-shift in positional preference is observed towards the C terminal as the peptide length increases in class II specific peptides; and (4) peptide backbone atoms are proportionately dominant at the MHC-peptide interface.

  10. Linear Versus Non-linear Supersymmetry, in General

    CERN Document Server

    Ferrara, Sergio; Van Proeyen, Antoine; Wrase, Timm

    2016-01-01

    We study superconformal and supergravity models with constrained superfields. The underlying version of such models with all unconstrained superfields and linearly realized supersymmetry is presented here, in addition to the physical multiplets there are Lagrange multiplier (LM) superfields. Once the equations of motion for the LM superfields are solved, some of the physical superfields become constrained. The linear supersymmetry of the original models becomes non-linearly realized, its exact form can be deduced from the original linear supersymmetry. Known examples of constrained superfields are shown to require the following LM's: chiral superfields, linear superfields, general complex superfields, some of them are multiplets with a spin.

  11. Natural and synthetic peptides with antifungal activity.

    Science.gov (United States)

    Ciociola, Tecla; Giovati, Laura; Conti, Stefania; Magliani, Walter; Santinoli, Claudia; Polonelli, Luciano

    2016-08-01

    In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections. PMID:27502155

  12. Flourescent Peptide-Stabilized Silver-Nanoclusters

    DEFF Research Database (Denmark)

    Gregersen, Simon

    for instance small molecules, DNA oligomers, and proteins. Peptides are an intriguing class of biomolecular ligands, due to the large combinatorial space these provide. Furthermore, as peptides have a propensity to fold up into well-defined and somewhat rigid secondary structures, they may serve as excellent...... throughput dramatically with regards to discovery of novel ligands. Our approach employs Fmoc solid-phase peptide synthesis on a PEGA resin which allows for on-resin screening of peptide ligands which, in turn, removes the tedious and labor-intensive work-up of synthesized peptides. The method allows for on......-resin formation of peptide-stabilized Ag-NCs in a reversible manner, which makes identification of novel lead compound from combinatorial peptide libraries possible with a few simple steps. This resulted in the discovery of at least one promising candidate (P262) showing brighter emission, spectral homogeneity...

  13. A primer on linear models

    CERN Document Server

    Monahan, John F

    2008-01-01

    Preface Examples of the General Linear Model Introduction One-Sample Problem Simple Linear Regression Multiple Regression One-Way ANOVA First Discussion The Two-Way Nested Model Two-Way Crossed Model Analysis of Covariance Autoregression Discussion The Linear Least Squares Problem The Normal Equations The Geometry of Least Squares Reparameterization Gram-Schmidt Orthonormalization Estimability and Least Squares Estimators Assumptions for the Linear Mean Model Confounding, Identifiability, and Estimability Estimability and Least Squares Estimators F

  14. Templates for Linear Algebra Problems

    NARCIS (Netherlands)

    Bai, Z.; Day, D.; Demmel, J.; Dongarra, J.; Gu, M.; Ruhe, A.; Vorst, H.A. van der

    2001-01-01

    The increasing availability of advanced-architecture computers is having a very signicant eect on all spheres of scientic computation, including algorithm research and software development in numerical linear algebra. Linear algebra {in particular, the solution of linear systems of equations and eig

  15. Linear Logic on Petri Nets

    DEFF Research Database (Denmark)

    Engberg, Uffe Henrik; Winskel, Glynn

    This article shows how individual Petri nets form models of Girard's intuitionistic linear logic. It explores questions of expressiveness and completeness of linear logic with respect to this interpretation. An aim is to use Petri nets to give an understanding of linear logic and give some apprai...

  16. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions

    DEFF Research Database (Denmark)

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco;

    2016-01-01

    . In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited...... for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions...... determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide...

  17. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.

    Science.gov (United States)

    Mohan, Aishwarya; McClements, David Julian; Udenigwe, Chibuike C

    2016-12-15

    Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes. PMID:27451165

  18. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions.

    Science.gov (United States)

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco; Østergaard, Jesper

    2016-10-10

    Protein-protein and peptide-peptide (self-)interactions are of key importance in understanding the physiochemical behavior of proteins and peptides in solution. However, due to the small size of peptide molecules, characterization of these interactions is more challenging than for proteins. In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide solutions increased with concentration. Our results indicate that a viscosity difference between run buffer and sample in Taylor Dispersion Analysis may result in overestimation of the measured diffusion coefficient. Thus, Taylor Dispersion Analysis provides a practical, but as yet primarily qualitative, approach to assessment of the colloidal stability of both peptide and protein formulations.

  19. Optical properties of bio-inspired peptide nanotubes

    Science.gov (United States)

    Handelman, Amir; Apter, Boris; Rosenman, Gil

    2016-04-01

    Supramolecular self-assembled bio-inspired peptide nanostructures are favorable to be implemented in diverse nanophotonics applications due to their superior physical properties such as wideband optical transparency, high second-order nonlinear response, waveguiding properties and more. Here, we focus on the optical properties found in di-phenylalanine peptide nano-architectures, with special emphasize on their linear and nonlinear optical waveguiding effects. Using both simulation and experiments, we show their ability to passively guide light at both fundamental and second-harmonic frequencies. In addition, we show that at elevated temperatures, 140-180°C, these native supramolecular structures undergo irreversible thermally induced transformation via re-assembling into completely new thermodynamically stable phase having nanofiber morphology similar to those of amyloid fibrils. In this new phase, the peptide nanofibers lose their second-order nonlinear response, while exhibit profound modification of optoelectronic properties followed by the appearance of visible (blue and green) photoluminescence (PL). Our study propose a new generation of multifunctional optical waveguides with variety of characteristics, which self-assembled into 1D-elongated nanostructures and could be used as building blocks of many integrated photonic devices.

  20. Acid-catalyzed oxygen-18 labeling of peptides.

    Science.gov (United States)

    Niles, Richard; Witkowska, H Ewa; Allen, Simon; Hall, Steven C; Fisher, Susan J; Hardt, Markus

    2009-04-01

    In enzymatic (18)O-labeling strategies for quantitative proteomics, the exchange of carboxyl oxygens at low pH is a common, undesired side reaction. We asked if acid-catalyzed back exchange could interfere with quantitation and whether the reaction itself could be used as method for introducing (18)O label into peptides. Several synthetic peptides were dissolved in dilute acid containing 50% (v/v) H(2)(18)O and incubated at room temperature. Aliquots were removed over a period of 3 weeks and analyzed by tandem mass spectrometry (MS/MS). (18)O-incorporation ratios were determined by linear regression analysis that allowed for multiple stable-isotope incorporations. At low pH, peptides exchanged their carboxyl oxygen atoms with the aqueous solvent. The isotope patterns gradually shifted to higher masses until they reached the expected binomial distribution at equilibrium after approximately 11 days. Reaction rates were residue- and sequence-specific. Due to its slow nature, the acid-catalyzed back exchange is expected to minimally interfere with enzymatic (18)O-labeling studies provided that storage and analysis conditions minimize low-pH exposure times. On its own, acid-catalyzed (18)O labeling is a general tagging strategy that is an alternative to the chemical, metabolic, and enzymatic isotope-labeling schemes currently used in quantitative proteomics. PMID:19243188

  1. Temporin-SHf, a New Type of Phe-rich and Hydrophobic Ultrashort Antimicrobial Peptide*

    Science.gov (United States)

    Abbassi, Feten; Lequin, Olivier; Piesse, Christophe; Goasdoué, Nicole; Foulon, Thierry; Nicolas, Pierre; Ladram, Ali

    2010-01-01

    Because issues of cost and bioavailability have hampered the development of gene-encoded antimicrobial peptides to combat infectious diseases, short linear peptides with high microbial cell selectivity have been recently considered as antibiotic substitutes. A new type of short antimicrobial peptide, designated temporin-SHf, was isolated and cloned from the skin of the frog Pelophylax saharica. Temporin-SHf has a highly hydrophobic sequence (FFFLSRIFa) and possesses the highest percentage of Phe residues of any known peptide or protein. Moreover, it is the smallest natural linear antimicrobial peptide found to date, with only eight residues. Despite its small size and hydrophobicity, temporin-SHf has broad-spectrum microbicidal activity against Gram-positive and Gram-negative bacteria and yeasts, with no hemolytic activity. CD and NMR spectroscopy combined with restrained molecular dynamics calculations showed that the peptide adopts a well defined non-amphipathic α-helical structure from residue 3 to 8, when bound to zwitterionic dodecyl phosphocholine or anionic SDS micelles. Relaxation enhancement caused by paramagnetic probes showed that the peptide adopts nearly parallel orientations to the micelle surface and that the helical structure is stabilized by a compact hydrophobic core on one face that penetrates into the micelle interior. Differential scanning calorimetry on multilamellar vesicles combined with membrane permeabilization assays on bacterial cells indicated that temporin-SHf disrupts the acyl chain packing of anionic lipid bilayers, thereby triggering local cracks and microbial membrane disintegration through a detergent-like effect probably via the carpet mechanism. The short length, compositional simplicity, and broad-spectrum activity of temporin-SHf make it an attractive candidate to develop new antibiotic agents. PMID:20308076

  2. Novel peptide-mediated interactions derived from high-resolution 3-dimensional structures.

    Science.gov (United States)

    Stein, Amelie; Aloy, Patrick

    2010-05-01

    Many biological responses to intra- and extracellular stimuli are regulated through complex networks of transient protein interactions where a globular domain in one protein recognizes a linear peptide from another, creating a relatively small contact interface. These peptide stretches are often found in unstructured regions of proteins, and contain a consensus motif complementary to the interaction surface displayed by their binding partners. While most current methods for the de novo discovery of such motifs exploit their tendency to occur in disordered regions, our work here focuses on another observation: upon binding to their partner domain, motifs adopt a well-defined structure. Indeed, through the analysis of all peptide-mediated interactions of known high-resolution three-dimensional (3D) structure, we found that the structure of the peptide may be as characteristic as the consensus motif, and help identify target peptides even though they do not match the established patterns. Our analyses of the structural features of known motifs reveal that they tend to have a particular stretched and elongated structure, unlike most other peptides of the same length. Accordingly, we have implemented a strategy based on a Support Vector Machine that uses this features, along with other structure-encoded information about binding interfaces, to search the set of protein interactions of known 3D structure and to identify unnoticed peptide-mediated interactions among them. We have also derived consensus patterns for these interactions, whenever enough information was available, and compared our results with established linear motif patterns and their binding domains. Finally, to cross-validate our identification strategy, we scanned interactome networks from four model organisms with our newly derived patterns to see if any of them occurred more often than expected. Indeed, we found significant over-representations for 64 domain-motif interactions, 46 of which had not been

  3. Novel peptide-mediated interactions derived from high-resolution 3-dimensional structures.

    Directory of Open Access Journals (Sweden)

    Amelie Stein

    2010-05-01

    Full Text Available Many biological responses to intra- and extracellular stimuli are regulated through complex networks of transient protein interactions where a globular domain in one protein recognizes a linear peptide from another, creating a relatively small contact interface. These peptide stretches are often found in unstructured regions of proteins, and contain a consensus motif complementary to the interaction surface displayed by their binding partners. While most current methods for the de novo discovery of such motifs exploit their tendency to occur in disordered regions, our work here focuses on another observation: upon binding to their partner domain, motifs adopt a well-defined structure. Indeed, through the analysis of all peptide-mediated interactions of known high-resolution three-dimensional (3D structure, we found that the structure of the peptide may be as characteristic as the consensus motif, and help identify target peptides even though they do not match the established patterns. Our analyses of the structural features of known motifs reveal that they tend to have a particular stretched and elongated structure, unlike most other peptides of the same length. Accordingly, we have implemented a strategy based on a Support Vector Machine that uses this features, along with other structure-encoded information about binding interfaces, to search the set of protein interactions of known 3D structure and to identify unnoticed peptide-mediated interactions among them. We have also derived consensus patterns for these interactions, whenever enough information was available, and compared our results with established linear motif patterns and their binding domains. Finally, to cross-validate our identification strategy, we scanned interactome networks from four model organisms with our newly derived patterns to see if any of them occurred more often than expected. Indeed, we found significant over-representations for 64 domain-motif interactions, 46 of

  4. Correlation of in vitro and in vivo models for the oral absorption of peptide drugs.

    Science.gov (United States)

    Föger, F; Kopf, A; Loretz, B; Albrecht, K; Bernkop-Schnürch, A

    2008-06-01

    The aim of this study was to evaluate two in vitro models, Caco-2 monolayer and rat intestinal mucosa, regarding their linear correlation with in vivo bioavailability data of therapeutic peptide drugs after oral administration in rat and human. Furthermore the impact of molecular mass (Mm) of the according peptides on their permeability was evaluated. Transport experiments with commercially available water soluble peptide drugs were conducted using Caco-2 cell monolayer grown on transwell filter membranes and with freshly excised rat intestinal mucosa mounted in Using type chambers. Apparent permeability coefficients (P (app)) were calculated and compared with in vivo data derived from the literature. It was shown that, besides a few exceptions, the Mm of peptides linearly correlates with permeability across rat intestinal mucosa (R (2) = 0.86; y = -196.22x + 1354.24), with rat oral bioavailability (R (2) = 0.64; y = -401.90x + 1268.86) as well as with human oral bioavailability (R (2) = 0.91; y = -359.43x + 1103.83). Furthermore it was shown that P (app) values of investigated hydrophilic peptides across Caco-2 monolayer displayed lower permeability than across rat intestinal mucosa. A correlation between P (app) values across rat intestinal mucosa and in vivo oral bioavailability in human (R (2) = 0.98; y = 2.11x + 0.34) attests the rat in vitro model to be a very useful prediction model for human oral bioavailability of hydrophilic peptide drugs. Presented correlations encourage the use of the rat in vitro model for the prediction of human oral bioavailabilities of hydrophilic peptide drugs.

  5. Antibody Peptide Based Antifungal Immunotherapy

    OpenAIRE

    Magliani, Walter; Conti, Stefania; Giovati, Laura; Zanello, Pier Paolo; Sperindè, Martina; Ciociola, Tecla; Polonelli, Luciano

    2012-01-01

    Fungal infections still represent relevant human illnesses worldwide and some are accompanied by unacceptably high mortality rates. The limited current availability of effective and safe antifungal agents makes the development of new drugs and approaches of antifungal vaccination/immunotherapy every day more needed. Among them, small antibody(Ab)-derived peptides are arousing great expectations as new potential antifungal agents. In this topic, the search path from the study of the yeast kill...

  6. Antimicrobial peptides in human sepsis

    Directory of Open Access Journals (Sweden)

    Lukas eMartin

    2015-08-01

    Full Text Available Nearly 100 years ago, antimicrobial peptides (AMPs were identified as an important part of innate immunity. They exist in species from bacteria to mammals and can be isolated in body fluids and on surfaces constitutively or induced by inflammation. Defensins have anti-bacterial effects against Gram-positive and Gram-negative bacteria as well as anti-viral and anti-yeast effects. Human neutrophil peptides (HNP 1-3 and human beta-defensins (HBDs 1-3 are some of the most important defensins in humans. Recent studies have demonstrated higher levels of HNP -1-3 and HBD-2 in sepsis. The bactericidal/permeability increasing protein (BPI attenuates local inflammatory response and decreases systemic toxicity of endotoxins. Moreover, BPI might reflect the severity of organ dysfunction in sepsis. Elevated plasma lactoferrin is detected in patients with organ failure. HNP-1-3, lactoferrin, BPI and heparin-binding protein (HBP are increased in sepsis. Human lactoferrin peptide 1-11 (hLF 1-11 possesses antimicrobial activity and modulates inflammation. The recombinant form of lactoferrin (talactoferrin alpha, TLF has been shown to decrease mortality in critically ill patients. A phase II/III study with TLF in sepsis did not confirm this result. The growing number of multiresistant bacteria is an ongoing problem in sepsis therapy. Furthermore, antibiotics are known to promote the liberation of pro-inflammatory cell components and thus augment the severity of sepsis. Compared to antibiotics, AMPs kill bacteria but also neutralize pathogenic factors such as lipopolysaccharide (LPS. The obstacle to applying naturally occurring AMPs is their high nephro- and neurotoxicity. Therefore, the challenge is to develop peptides to treat septic patients effectively without causing harm. This overview focuses on natural and synthetic AMPs in human and experimental sepsis and their potential to provide significant improvements in the treatment of critically ill with severe

  7. On constructing disjoint linear codes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Weiguo; CAI Mian; XIAO Guozhen

    2007-01-01

    To produce a highly nonlinear resilient function,the disjoint linear codes were originally proposed by Johansson and Pasalic in IEEE Trans.Inform.Theory,2003,49(2):494-501.In this paper,an effective method for finding a set of such disjoint linear codes is presented.When n≥2k,we can find a set of[n,k] disjoint linear codes with joint linear codes exists with cardinality at least 2.We also describe a result on constructing a set of [n,k] disjoint linear codes with minimum distance at least some fixed positive integer.

  8. Disposable pencil graphite electrode modified with peptide nanotubes for Vitamin B{sub 12} analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pala, Betül Bozdoğan [Nanotechnology and Nanomedicine Division, Institute of Science, Hacettepe University, 06800 Ankara (Turkey); Vural, Tayfun [Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Kuralay, Filiz [Department of Chemistry, Faculty of Science and Arts, Ordu University, 52200 Ordu (Turkey); Çırak, Tamer [Nanotechnology and Nanomedicine Division, Institute of Science, Hacettepe University, 06800 Ankara (Turkey); Bolat, Gülçin; Abacı, Serdar [Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Denkbaş, Emir Baki, E-mail: denkbas@hacettepe.edu.tr [Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Beytepe, Ankara (Turkey)

    2014-06-01

    In this study, peptide nanostructures from diphenylalanine were synthesized in various solvents with various polarities and characterized with Scanning Electron Microscopy (SEM) and Powder X-ray Diffraction (PXRD) techniques. Formation of peptide nanofibrils, nanovesicles, nanoribbons, and nanotubes was observed in different solvent mediums. In order to investigate the effects of peptide nanotubes (PNT) on electrochemical behavior of disposable pencil graphite electrodes (PGE), electrode surfaces were modified with fabricated peptide nanotubes. Electrochemical activity of the pencil graphite electrode was increased with the deposition of PNTs on the surface. The effects of the solvent type, the peptide nanotube concentration, and the passive adsorption time of peptide nanotubes on pencil graphite electrode were studied. For further electrochemical studies, electrodes were modified for 30 min by immobilizing PNTs, which were prepared in water at 6 mg/mL concentration. Vitamin B{sub 12} analyses were performed by the Square Wave (SW) voltammetry method using modified PGEs. The obtained data showed linearity over the range of 0.2 μM and 9.50 μM Vitamin B{sub 12} concentration with high sensitivity. Results showed that PNT modified PGEs were highly simple, fast, cost effective, and feasible for the electro-analytical determination of Vitamin B{sub 12} in real samples.

  9. Neutral polymers as coatings for high resolution electrophoretic separation of Aβ peptides on glass microchips.

    Science.gov (United States)

    Mesbah, Kiarach; Verpillot, Romain; Chiari, Marcella; Pallandre, Antoine; Taverna, Myriam

    2014-12-21

    This study reports a comparison of the performances of two neutral polymers, poly ethylene-oxide (PEO) and poly(dimethylacrylamide-co-allyl glycidyl ether) (EpDMA), in glass microchips to achieve zone electrophoresis separation of several truncated forms of beta amyloid (Aβ) peptides, sharing very similar structures. The peptides were derivatized by FluoProbes 488 NHS to allow their fluorescence detection. Two protocols based either on PEO or EpDMA led to good pH stabilities in addition to a significant reduction of the electroosmotic flow. These two polymer coatings allowed repeatable analyses and high resolution for the simultaneous analysis of three Aβ peptides, Aβ 1-38, Aβ 1-40 and Aβ 1-42, considered as potential biomarkers of Alzheimer's disease. A recovery study showed that EpDMA was superior in reducing the adsorption of the Aβ peptides on the coated inner wall. Finally, the separation method relying on the EpDMA coated microchips was validated as linear using a calibration curve and the LOD was estimated to be close to 200 nM. Despite very short migration distances, different N-terminal or C-terminal truncated Aβ peptides, corresponding to promising biomarker combinations for the future diagnostic, were fully resolved. The method was successfully applied to detect these peptides in spiked cerebrospinal fluid and has provided a first achievement towards the development of a microsystem that would integrate preconcentration and separation steps.

  10. Immune Responses to Six Synthetic Peptides of Capsid Protein with Sera from HIV-1 Infected Individuals

    Institute of Scientific and Technical Information of China (English)

    Guangjie Liu; Liumeng Yang; Jianhua Wang; Gaohong Zhang; Xiangmei Chen; Yongtang Zheng

    2005-01-01

    Many B cell epitopes within p24 of human immunodeficiency virus type 1 (HIV-1) were identified, while most of them were determined by using murine monoclonal antibodies reacting with overlapping peptides of p24.Therefore these epitopes may not represent the actual epitopes recognized by the HIV-1 infected individuals. In the present study, immune responses of 67 HIV-1 positive sera from Yunnan Province, China to five peptides on p24 of HIV-1 and one of HIV-2 were analyzed. All of 67 sera did not recognize peptide GA-12 on HIV-1 and peptide AG-23 on HIV-2, which indicated that GA-12 was not human B cell epitope and AG-23 did not cross-react with HIV-1 positive serum. Except 13 sera (19.4%), all remaining sera did not recognize peptides NI-15, DR-16, DC-22and PS-18, which indicated that these four peptides represented B cell linear epitopes of HIV-1 p24 in some HIV-1infected individuals but not the immuno-dominant epitopes in most individuals.

  11. Disposable pencil graphite electrode modified with peptide nanotubes for Vitamin B12 analysis

    International Nuclear Information System (INIS)

    In this study, peptide nanostructures from diphenylalanine were synthesized in various solvents with various polarities and characterized with Scanning Electron Microscopy (SEM) and Powder X-ray Diffraction (PXRD) techniques. Formation of peptide nanofibrils, nanovesicles, nanoribbons, and nanotubes was observed in different solvent mediums. In order to investigate the effects of peptide nanotubes (PNT) on electrochemical behavior of disposable pencil graphite electrodes (PGE), electrode surfaces were modified with fabricated peptide nanotubes. Electrochemical activity of the pencil graphite electrode was increased with the deposition of PNTs on the surface. The effects of the solvent type, the peptide nanotube concentration, and the passive adsorption time of peptide nanotubes on pencil graphite electrode were studied. For further electrochemical studies, electrodes were modified for 30 min by immobilizing PNTs, which were prepared in water at 6 mg/mL concentration. Vitamin B12 analyses were performed by the Square Wave (SW) voltammetry method using modified PGEs. The obtained data showed linearity over the range of 0.2 μM and 9.50 μM Vitamin B12 concentration with high sensitivity. Results showed that PNT modified PGEs were highly simple, fast, cost effective, and feasible for the electro-analytical determination of Vitamin B12 in real samples.

  12. Phosphorylated Peptide Functionalization of Lanthanide Upconversion Nanoparticles for Tuning Nanomaterial-Cell Interactions.

    Science.gov (United States)

    Yao, Chi; Wei, Caiyi; Huang, Zhi; Lu, Yiqing; El-Toni, Ahmed Mohamed; Ju, Dianwen; Zhang, Xiangmin; Wang, Wenning; Zhang, Fan

    2016-03-23

    Peptide modification of nanoparticles with high efficiency is critical in determining the properties and bioapplications of nanoparticles, but the methodology remains a challenging task. Here, by using the phosphorylated linear and cyclic peptide with the arginine-glycine-aspartic acid (RGD) targeting motifs as typical examples, the peptides binding efficiency for the inorganic metal compound nanoparticles was increased significantly after the phosphorylation treatment, and the modification allowed for improving the selectivity and signal-to-noise ratio for cancer targeting and reduced the toxicity derived from nonspecific interactions of nanoparticles with cells owing to the higher amount of phosphopeptide binding. In addition, molecular dynamics (MD) simulations of various peptides on inorganic metal compound surfaces revealed that the peptide adsorption on the surface is mainly driven by electrostatic interactions between phosphate oxygen and the polarized interfacial water layer, consistent with the experimental observation of the strong binding propensity of phosphorylated peptides. Significantly, with the RGD phosphopeptide surface modification, these nanoparticles provide a versatile tool for tuning material-cell interactions to achieve the desired level of autophagy and may prove useful for various diagnostic and therapeutic applications.

  13. Phosphorylated Peptide Functionalization of Lanthanide Upconversion Nanoparticles for Tuning Nanomaterial-Cell Interactions.

    Science.gov (United States)

    Yao, Chi; Wei, Caiyi; Huang, Zhi; Lu, Yiqing; El-Toni, Ahmed Mohamed; Ju, Dianwen; Zhang, Xiangmin; Wang, Wenning; Zhang, Fan

    2016-03-23

    Peptide modification of nanoparticles with high efficiency is critical in determining the properties and bioapplications of nanoparticles, but the methodology remains a challenging task. Here, by using the phosphorylated linear and cyclic peptide with the arginine-glycine-aspartic acid (RGD) targeting motifs as typical examples, the peptides binding efficiency for the inorganic metal compound nanoparticles was increased significantly after the phosphorylation treatment, and the modification allowed for improving the selectivity and signal-to-noise ratio for cancer targeting and reduced the toxicity derived from nonspecific interactions of nanoparticles with cells owing to the higher amount of phosphopeptide binding. In addition, molecular dynamics (MD) simulations of various peptides on inorganic metal compound surfaces revealed that the peptide adsorption on the surface is mainly driven by electrostatic interactions between phosphate oxygen and the polarized interfacial water layer, consistent with the experimental observation of the strong binding propensity of phosphorylated peptides. Significantly, with the RGD phosphopeptide surface modification, these nanoparticles provide a versatile tool for tuning material-cell interactions to achieve the desired level of autophagy and may prove useful for various diagnostic and therapeutic applications. PMID:26927957

  14. Disposable pencil graphite electrode modified with peptide nanotubes for Vitamin B12 analysis

    Science.gov (United States)

    Pala, Betül Bozdoğan; Vural, Tayfun; Kuralay, Filiz; Çırak, Tamer; Bolat, Gülçin; Abacı, Serdar; Denkbaş, Emir Baki

    2014-06-01

    In this study, peptide nanostructures from diphenylalanine were synthesized in various solvents with various polarities and characterized with Scanning Electron Microscopy (SEM) and Powder X-ray Diffraction (PXRD) techniques. Formation of peptide nanofibrils, nanovesicles, nanoribbons, and nanotubes was observed in different solvent mediums. In order to investigate the effects of peptide nanotubes (PNT) on electrochemical behavior of disposable pencil graphite electrodes (PGE), electrode surfaces were modified with fabricated peptide nanotubes. Electrochemical activity of the pencil graphite electrode was increased with the deposition of PNTs on the surface. The effects of the solvent type, the peptide nanotube concentration, and the passive adsorption time of peptide nanotubes on pencil graphite electrode were studied. For further electrochemical studies, electrodes were modified for 30 min by immobilizing PNTs, which were prepared in water at 6 mg/mL concentration. Vitamin B12 analyses were performed by the Square Wave (SW) voltammetry method using modified PGEs. The obtained data showed linearity over the range of 0.2 μM and 9.50 μM Vitamin B12 concentration with high sensitivity. Results showed that PNT modified PGEs were highly simple, fast, cost effective, and feasible for the electro-analytical determination of Vitamin B12 in real samples.

  15. Intrinsically disordered amphiphilic peptides as potential targets in drug delivery vehicles.

    Science.gov (United States)

    Vincenzi, Marian; Accardo, Antonella; Costantini, Susan; Scala, Stefania; Portella, Luigi; Trotta, Annamaria; Ronga, Luisa; Guillon, Jean; Leone, Marilisa; Colonna, Giovanni; Rossi, Filomena; Tesauro, Diego

    2015-11-01

    Intrinsically disordered proteins/peptides play a crucial role in many physiological and pathological events and may assume a precise conformation upon binding to a specific target. Recently, we have described the conformational and functional properties of two linear ester peptides provided with the following sequences: Y-G-E-C-P-C-K-OAllyl (PepK) and Y-G-E-C-P-C-E-OAllyl (PepE). Both peptides are characterized by the presence of the "CPC" motif together with a few amino acids able to promote disorder. The CPC sequence is a binding motif for the CXCR4 receptor that represents a well-known target for cancer therapies. In this paper, we report on synthetic amphiphilic peptides that consist of lipophilic derivatives of PepE and PepK bearing two stearic alkyl chains and/or an ethoxylic spacer. These peptide amphiphiles form stable supramolecular aggregates; they present conformational features that are typical of intrinsically disordered molecules as shown by CD spectroscopy. Solution fluorescence and DLS studies have been performed to evaluate Critical Micellar Concentrations and the dimension of supramolecular aggregates. Moreover, preliminary in vitro cell-based assays have been conducted to investigate the molecular recognition processes involving the CXCR4 receptor. In the end, the results obtained have been compared with the previous data generated by the corresponding non-amphiphilic peptides (PepE and PepK). PMID:26263446

  16. Intrinsically disordered amphiphilic peptides as potential targets in drug delivery vehicles.

    Science.gov (United States)

    Vincenzi, Marian; Accardo, Antonella; Costantini, Susan; Scala, Stefania; Portella, Luigi; Trotta, Annamaria; Ronga, Luisa; Guillon, Jean; Leone, Marilisa; Colonna, Giovanni; Rossi, Filomena; Tesauro, Diego

    2015-11-01

    Intrinsically disordered proteins/peptides play a crucial role in many physiological and pathological events and may assume a precise conformation upon binding to a specific target. Recently, we have described the conformational and functional properties of two linear ester peptides provided with the following sequences: Y-G-E-C-P-C-K-OAllyl (PepK) and Y-G-E-C-P-C-E-OAllyl (PepE). Both peptides are characterized by the presence of the "CPC" motif together with a few amino acids able to promote disorder. The CPC sequence is a binding motif for the CXCR4 receptor that represents a well-known target for cancer therapies. In this paper, we report on synthetic amphiphilic peptides that consist of lipophilic derivatives of PepE and PepK bearing two stearic alkyl chains and/or an ethoxylic spacer. These peptide amphiphiles form stable supramolecular aggregates; they present conformational features that are typical of intrinsically disordered molecules as shown by CD spectroscopy. Solution fluorescence and DLS studies have been performed to evaluate Critical Micellar Concentrations and the dimension of supramolecular aggregates. Moreover, preliminary in vitro cell-based assays have been conducted to investigate the molecular recognition processes involving the CXCR4 receptor. In the end, the results obtained have been compared with the previous data generated by the corresponding non-amphiphilic peptides (PepE and PepK).

  17. Towards a peptide-based suspension array for the detection of pestivirus antibodies in swine.

    Science.gov (United States)

    van der Wal, Fimme J; Jelsma, Tinka; Fijten, Helmi; Achterberg, René P; Loeffen, Willie L A

    2016-09-01

    Classical swine fever (CSF) is a highly contagious and lethal disease in swine. Serological tests for the diagnosis of CSF need not only to detect antibodies against CSFV, but also need to differentiate these from antibodies against other pestiviruses. To investigate the possibilities of specific peptide-based serology, various synthetic peptides that represent a well-described linear epitope of the CSFV E2 protein (TAVSPTTLR) were used to test the viability of a peptide-based suspension array for the detection of antibodies against pestiviruses in swine. The results show that N-terminally biotinylated peptides can bind to avidin conjugated beads, and function in detection of the corresponding monoclonal antibody WH303. There are indications that the length of the spacer between epitope and biotin affect the efficiency of the peptide-antibody interaction. A protocol was established that enables probing for antibodies in porcine sera, where neutravidin-blocking of serum and the use of empty control beads for normalization was crucial. With a set of porcine sera with antibodies against various pestiviruses, the proof of concept of a peptide-based suspension array for specific detection of antibodies against pestiviruses in porcine sera was demonstrated. PMID:27166561

  18. Antimicrobial Peptides: Versatile Biological Properties

    Directory of Open Access Journals (Sweden)

    Muthuirulan Pushpanathan

    2013-01-01

    Full Text Available Antimicrobial peptides are diverse group of biologically active molecules with multidimensional properties. In recent past, a wide variety of AMPs with diverse structures have been reported from different sources such as plants, animals, mammals, and microorganisms. The presence of unusual amino acids and structural motifs in AMPs confers unique structural properties to the peptide that attribute for their specific mode of action. The ability of these active AMPs to act as multifunctional effector molecules such as signalling molecule, immune modulators, mitogen, antitumor, and contraceptive agent makes it an interesting candidate to study every aspect of their structural and biological properties for prophylactic and therapeutic applications. In addition, easy cloning and recombinant expression of AMPs in heterologous plant host systems provided a pipeline for production of disease resistant transgenic plants. Besides these properties, AMPs were also used as drug delivery vectors to deliver cell impermeable drugs to cell interior. The present review focuses on the diversity and broad spectrum antimicrobial activity of AMPs along with its multidimensional properties that could be exploited for the application of these bioactive peptides as a potential and promising drug candidate in pharmaceutical industries.

  19. Antihypertensive Peptides from Milk Proteins

    Directory of Open Access Journals (Sweden)

    Heikki Vapaatalo

    2010-01-01

    Full Text Available Dietary proteins possess a wide range of nutritional and functional properties. They are used as a source of energy and amino acids, which are needed for growth and development. Many dietary proteins, especially milk proteins, contain physiologically active peptides encrypted in the protein sequence. These peptides may be released during gastrointestinal digestion or food processing and once liberated, cause different physiological functions. Milk-derived bioactive peptides are shown to have antihypertensive, antimicrobial, immunomodulatory, antioxidative and mineral-binding properties. During the fermentation of milk with certain lactobacilli, two interesting tripeptides Ile-Pro-Pro and Val-Pro-Pro are released from casein to the final product. These lactotripeptides have attenuated the development of hypertension in several animal models and lowered blood pressure in clinical studies. They inhibit ACE in vitro at micromolar concentrations, protect endothelial function in vitro and reduce arterial stiffness in humans. Thus, milk as a traditional food product can after certain processing serve as a functional food and carry specific health-promoting effects, providing an option to control blood pressure.

  20. Generalized Linear Covariance Analysis

    Science.gov (United States)

    Carpenter, James R.; Markley, F. Landis

    2014-01-01

    This talk presents a comprehensive approach to filter modeling for generalized covariance analysis of both batch least-squares and sequential estimators. We review and extend in two directions the results of prior work that allowed for partitioning of the state space into solve-for'' and consider'' parameters, accounted for differences between the formal values and the true values of the measurement noise, process noise, and textita priori solve-for and consider covariances, and explicitly partitioned the errors into subspaces containing only the influence of the measurement noise, process noise, and solve-for and consider covariances. In this work, we explicitly add sensitivity analysis to this prior work, and relax an implicit assumption that the batch estimator's epoch time occurs prior to the definitive span. We also apply the method to an integrated orbit and attitude problem, in which gyro and accelerometer errors, though not estimated, influence the orbit determination performance. We illustrate our results using two graphical presentations, which we call the variance sandpile'' and the sensitivity mosaic,'' and we compare the linear covariance results to confidence intervals associated with ensemble statistics from a Monte Carlo analysis.

  1. Berkeley Proton Linear Accelerator

    Science.gov (United States)

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  2. Chemical Methods for Peptide and Protein Production

    Directory of Open Access Journals (Sweden)

    Istvan Toth

    2013-04-01

    Full Text Available Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported a-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  3. Rational modification of a dendrimeric peptide with antimicrobial activity: consequences on membrane-binding and biological properties.

    Science.gov (United States)

    Batoni, Giovanna; Casu, Mariano; Giuliani, Andrea; Luca, Vincenzo; Maisetta, Giuseppantonio; Mangoni, Maria Luisa; Manzo, Giorgia; Pintus, Manuela; Pirri, Giovanna; Rinaldi, Andrea C; Scorciapino, Mariano A; Serra, Ilaria; Ulrich, Anne S; Wadhwani, Parvesh

    2016-03-01

    Peptide-based antibiotics might help containing the rising tide of antimicrobial resistance. We developed SB056, a semi-synthetic peptide with a dimeric dendrimer scaffold, active against both Gram-negative and Gram-positive bacteria. Being the mechanism of SB056 attributed to disruption of bacterial membranes, we enhanced the amphiphilic profile of the original, empirically derived sequence [WKKIRVRLSA-NH2] by interchanging the first two residues [KWKIRVRLSA-NH2], and explored the effects of this modification on the interaction of peptide, both in linear and dimeric forms, with model membranes and on antimicrobial activity. Results obtained against Escherichia coli and Staphylococcus aureus planktonic strains, with or without salts at physiological concentrations, confirmed the added value of dendrimeric structure over the linear one, especially at physiological ionic strength, and the impact of the higher amphipathicity obtained through sequence modification on enhancing peptide performances. SB056 peptides also displayed intriguing antibiofilm properties. Staphylococcus epidermidis was the most susceptible strain in sessile form, notably to optimized linear analog lin-SB056-1 and the wild-type dendrimer den-SB056. Membrane affinity of all peptides increased with the percentage of negatively charged lipids and was less influenced by the presence of salt in the case of dendrimeric peptides. The analog lin-SB056-1 displayed the highest overall affinity, even for zwitterionic PC bilayers. Thus, in addition to electrostatics, distribution of charged/polar and hydrophobic residues along the sequence might have a significant role in driving peptide-lipid interaction. Supporting this view, dendrimeric analog den-SB056-1 retained greater membrane affinity in the presence of salt than den-SB056, despite the fact that they bear exactly the same net positive charge. PMID:26614437

  4. Human Antimicrobial Peptides and Proteins

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2014-05-01

    Full Text Available As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32 can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized

  5. Synthesis and Delivery of Peptides by Comet Impacts: A Possibility of Chemical Evolution in Enceladus's Subsurface Sea

    Science.gov (United States)

    Sugahara, H.; Mimura, K.

    2014-12-01

    Comet impacts are ubiquitous phenomena in the Solar system and the frequency was extremely high in the early history. Comets contain abundant organic materials, including bio-essential amino acids. Thus, it is proposed that comets have delivered organic molecules, which are important for the origins of life, to the outer solar bodies as well as the Earth. In the study, we conducted shock experiments on icy mixtures of amino acids (glycine and alanine), water ice, and forsterite at cryogenic condition (77 K), simulating comet impacts. The purpose of the study is to examine the effect of impact shock on amino acids in comets. We also focused on the oligomerization of amino acids to produce peptides. Peptides are important molecules for the origins of life, because they are building block of proteins and also act as catalysts to form other biomolecules. In the experiments, the starting mixture was kept frozen in a reaction capsule placed in liquid nitrogen (77K) and was impacted by a vertical propellant gun. The shock pressure range achieved in the experiments was 4.8-26.3 GPa. The results showed that amino acids were oligomerized into peptides up to tripeptides by impact shock at cryogenic condition. In addition, the yields of linear dipeptides were higher than those of cyclic diketopiperazines. These results are in contrast to the results of shock experiments to amino acid solutions at room temperature, which resulted in the synthesis of comparable amount of diketopiperazines to that of linear peptides (Blank et al., 2001). Thus, the cryogenic condition at impact shock would be a key to facilitate the formation of linear peptides. If we apply our results to the event of icy satellite formation, comet impacts should play an important role to supply linear peptides to the satellites. The shock-synthesized peptides would have been spread over the subsurface seas of the icy satellites (e.g. Enceladus) and might have been an important source for chemical evolution on the

  6. Computational Framework for Prediction of Peptide Sequences That May Mediate Multiple Protein Interactions in Cancer-Associated Hub Proteins.

    Directory of Open Access Journals (Sweden)

    Debasree Sarkar

    Full Text Available A considerable proportion of protein-protein interactions (PPIs in the cell are estimated to be mediated by very short peptide segments that approximately conform to specific sequence patterns known as linear motifs (LMs, often present in the disordered regions in the eukaryotic proteins. These peptides have been found to interact with low affinity and are able bind to multiple interactors, thus playing an important role in the PPI networks involving date hubs. In this work, PPI data and de novo motif identification based method (MEME were used to identify such peptides in three cancer-associated hub proteins-MYC, APC and MDM2. The peptides corresponding to the significant LMs identified for each hub protein were aligned, the overlapping regions across these peptides being termed as overlapping linear peptides (OLPs. These OLPs were thus predicted to be responsible for multiple PPIs of the corresponding hub proteins and a scoring system was developed to rank them. We predicted six OLPs in MYC and five OLPs in MDM2 that scored higher than OLP predictions from randomly generated protein sets. Two OLP sequences from the C-terminal of MYC were predicted to bind with FBXW7, component of an E3 ubiquitin-protein ligase complex involved in proteasomal degradation of MYC. Similarly, we identified peptides in the C-terminal of MDM2 interacting with FKBP3, which has a specific role in auto-ubiquitinylation of MDM2. The peptide sequences predicted in MYC and MDM2 look promising for designing orthosteric inhibitors against possible disease-associated PPIs. Since these OLPs can interact with other proteins as well, these inhibitors should be specific to the targeted interactor to prevent undesired side-effects. This computational framework has been designed to predict and rank the peptide regions that may mediate multiple PPIs and can be applied to other disease-associated date hub proteins for prediction of novel therapeutic targets of small molecule PPI

  7. Computational Framework for Prediction of Peptide Sequences That May Mediate Multiple Protein Interactions in Cancer-Associated Hub Proteins.

    Science.gov (United States)

    Sarkar, Debasree; Patra, Piya; Ghosh, Abhirupa; Saha, Sudipto

    2016-01-01

    A considerable proportion of protein-protein interactions (PPIs) in the cell are estimated to be mediated by very short peptide segments that approximately conform to specific sequence patterns known as linear motifs (LMs), often present in the disordered regions in the eukaryotic proteins. These peptides have been found to interact with low affinity and are able bind to multiple interactors, thus playing an important role in the PPI networks involving date hubs. In this work, PPI data and de novo motif identification based method (MEME) were used to identify such peptides in three cancer-associated hub proteins-MYC, APC and MDM2. The peptides corresponding to the significant LMs identified for each hub protein were aligned, the overlapping regions across these peptides being termed as overlapping linear peptides (OLPs). These OLPs were thus predicted to be responsible for multiple PPIs of the corresponding hub proteins and a scoring system was developed to rank them. We predicted six OLPs in MYC and five OLPs in MDM2 that scored higher than OLP predictions from randomly generated protein sets. Two OLP sequences from the C-terminal of MYC were predicted to bind with FBXW7, component of an E3 ubiquitin-protein ligase complex involved in proteasomal degradation of MYC. Similarly, we identified peptides in the C-terminal of MDM2 interacting with FKBP3, which has a specific role in auto-ubiquitinylation of MDM2. The peptide sequences predicted in MYC and MDM2 look promising for designing orthosteric inhibitors against possible disease-associated PPIs. Since these OLPs can interact with other proteins as well, these inhibitors should be specific to the targeted interactor to prevent undesired side-effects. This computational framework has been designed to predict and rank the peptide regions that may mediate multiple PPIs and can be applied to other disease-associated date hub proteins for prediction of novel therapeutic targets of small molecule PPI modulators. PMID

  8. Design and Characterization of a Peptide Mimotope of the HIV-1 gp120 Bridging Sheet

    Directory of Open Access Journals (Sweden)

    Guido Poli

    2012-05-01

    Full Text Available The Bridging Sheet domain of HIV-1 gp120 is highly conserved among the HIV-1 strains and allows HIV-1 binding to host cells via the HIV-1 coreceptors. Further, the bridging sheet domain is a major target to neutralize HIV-1 infection. We rationally designed four linear peptide epitopes that mimic the three-dimensional structure of bridging sheet by using molecular modeling. Chemically synthesized peptides BS3 and BS4 showed a fair degree of antigenicity when tested in ELISA with IgG purified from HIV+ broadly neutralizing sera while the production of synthetic peptides BS1 and BS2 failed due to their high degree of hydrophobicity. To overcome this limitation, we linked all four BS peptides to the COOH-terminus of GST protein to test both their antigenicity and immunogenicity. Only the BS1 peptide showed good antigenicity; however, no envelope specific antibodies were elicited upon mice immunization. Therefore we performed further analyses by linking BS1 peptide to the NH2-terminus of the E2 scaffold from the Geobacillus Stearothermophylus PDH complex. The E2-BS1 fusion peptide showed good antigenic results, however only one immunized rabbit elicited good antibody titers towards both the monomeric and oligomeric viral envelope glycoprotein (Env. In addition, moderate neutralizing antibodies response was elicited against two HIV-1 clade B and one clade C primary isolates. These preliminary data validate the peptide mimotope approach as a promising tool to obtain an effective HIV-1 vaccine.

  9. Molecular imaging probes derived from natural peptides.

    Science.gov (United States)

    Charron, C L; Hickey, J L; Nsiama, T K; Cruickshank, D R; Turnbull, W L; Luyt, L G

    2016-06-01

    Covering: up to the end of 2015.Peptides are naturally occurring compounds that play an important role in all living systems and are responsible for a range of essential functions. Peptide receptors have been implicated in disease states such as oncology, metabolic disorders and cardiovascular disease. Therefore, natural peptides have been exploited as diagnostic and therapeutic agents due to the unique target specificity for their endogenous receptors. This review discusses a variety of natural peptides highlighting their discovery, endogenous receptors, as well as their derivatization to create molecular imaging agents, with an emphasis on the design of radiolabelled peptides. This review also highlights methods for discovering new and novel peptides when knowledge of specific targets and endogenous ligands are not available. PMID:26911790

  10. Use of Galerina marginata genes and proteins for peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2016-03-01

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  11. Antimicrobial Peptides in Toroidal and Cylindrical Pores

    OpenAIRE

    Mihajlovic, Maja; Lazaridis, Themis

    2010-01-01

    Antimicrobial peptides (AMPs) are small, usually cationic peptides, which permeabilize biological membranes. Their mechanism of action is still not well understood. Here we investigate the preference of alamethicin and melittin for pores of different shapes, using molecular dynamics (MD) simulations of the peptides in pre-formed toroidal and cylindrical pores. When an alamethicin hexamer is initially embedded in a cylindrical pore, at the end of the simulation the pore remains cylindrical or ...

  12. Interaction of small peptides with lipid bilayers.

    OpenAIRE

    Damodaran, K. V.; Merz, K M; Gaber, B P

    1995-01-01

    Molecular dynamics simulations of the tripeptide Ala-Phe-Ala-O-tert-butyl interacting with dimyristoylphosphatidylcholine lipid bilayers have been carried out. The lipid and aqueous environments of the peptide, the alkyl chain order, and the lipid and peptide dynamics have been investigated with use of density profiles, radial distribution functions, alkyl chain order parameter profiles, and time correlation functions. It appears that the alkyl chain region accommodates the peptides in the bi...

  13. Self-assembly of tetraphenylalanine peptides

    OpenAIRE

    Mayans Tayadella, Enric; Ballano Ballano, María Gema; Casanovas Salas, Jordi; Díaz Andrade, Angélica María; Pérez Madrigal, Maria del Mar; Estrany Coda, Francesc; Puiggalí Bellalta, Jordi; Cativiela Marín, Carlos A.; Alemán Llansó, Carlos

    2015-01-01

    Three different tetraphenylalanine (FFFF) based peptides that differ at the N- and C-termini have been synthesized by using standard procedures to study their ability to form different nanoassemblies under a variety of conditions. The FFFF peptide assembles into nanotubes that show more structural imperfections at the surface than those formed by the diphenylalanine (FF) peptide under the same conditions. Periodic DFT calculations (M06L functional) were used to propose a model that consists o...

  14. Salt-resistant short antimicrobial peptides.

    Science.gov (United States)

    Mohanram, Harini; Bhattacharjya, Surajit

    2016-05-01

    Antimicrobial peptides (AMPs) are promising leads for the development of antibiotics against drug resistant bacterial pathogens. However, in vivo applications of AMPs remain obscure due to salt and serum mediated inactivation. The high cost of chemical synthesis of AMPs also impedes potential clinical application. Consequently, short AMPs resistant toward salt and serum inactivation are desirable for the development of peptide antibiotics. In this work, we designed a 12-residue amphipathic helical peptide RR12 (R-R-L-I-R-L-I-L-R-L-L-R-amide) and two Trp containing analogs of RR12 namely RR12Wpolar (R-R-L-I-W-L-I-L-R-L-L-R-amide), and RR12Whydro (R-R-L-I-R-L-W-L-R-L-L-R-amide). Designed peptides demonstrated potent antibacterial activity; MIC ranging from 2 to 8 μM, in the presence of sodium chloride (150 mM and 300 mM). Antibacterial activity of these peptides was also detected in the presence of human serum. Designed peptides, in particular RR12 and RR12Whydro, were only poorly hemolytic. As a mode of action; these peptides demonstrated efficient permeabilization of bacterial cell membrane and lysis of cell structure. We further investigated interactions of the designed peptides with lipopolysaccharide (LPS), the major component of the outer membrane permeability barrier of Gram-negative bacteria. Designed peptides adopted helical conformations in complex with LPS. Binding of peptides with LPS has yielded dissociation the aggregated structures of LPS. Collectively, these designed peptides hold ability to be developed for salt-resistant antimicrobial compounds. Most importantly, current work provides insights for designing salt-resistant antimicrobial peptides. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 345-356, 2016. PMID:26849911

  15. Genome-based peptide fingerprint scanning

    OpenAIRE

    Giddings, Michael C.; Shah, Atul A.; Gesteland, Ray; Moore, Barry

    2002-01-01

    We have implemented a method that identifies the genomic origins of sample proteins by scanning their peptide-mass fingerprint against the theoretical translation and proteolytic digest of an entire genome. Unlike previously reported techniques, this method requires no predefined ORF or protein annotations. Fixed-size windows along the genome sequence are scored by an equation accounting for the number of matching peptides, the number of missed enzymatic cleavages in each peptide, the number ...

  16. The Function and Development of Soybean Peptides

    Institute of Scientific and Technical Information of China (English)

    Yang Caiyan; Song Junmei

    2009-01-01

    Soybean peptides are small molecules hydrolyzed soy protein,from three to six amino acid composition of the peptide mixture,in 1000Da molecular weight below.Because it has a lot of good physical and chemical properties and physiological functions,in many areas has been widely used.This paper reviews the soybean peptide physical and chemical characteristics,physiological functions,technology and applications in the food industry.

  17. Insect inducible antimicrobial peptides and their applications.

    Science.gov (United States)

    Ezzati-Tabrizi, Reyhaneh; Farrokhi, Naser; Talaei-Hassanloui, Reza; Alavi, Seyed Mehdi; Hosseininaveh, Vahid

    2013-12-01

    Antimicrobial peptides (AMPs) are found as important components of the innate immune system (host defense) of all invertebrates. These peptides can be constitutively expressed or induced in response to microbial infections. Indeed, they vary in their amino acid sequences, potency and antimicrobial activity spectra. The smaller AMPs act greatly by disrupting the structure or function of microbial cell membranes. Here, the insect innate immune system with emphasis on inducible antimicrobial peptide properties against microbial invaders has been discussed.

  18. Sparse Linear Identifiable Multivariate Modeling

    DEFF Research Database (Denmark)

    Henao, Ricardo; Winther, Ole

    2011-01-01

    In this paper we consider sparse and identifiable linear latent variable (factor) and linear Bayesian network models for parsimonious analysis of multivariate data. We propose a computationally efficient method for joint parameter and model inference, and model comparison. It consists of a fully...... Bayesian hierarchy for sparse models using slab and spike priors (two-component δ-function and continuous mixtures), non-Gaussian latent factors and a stochastic search over the ordering of the variables. The framework, which we call SLIM (Sparse Linear Identifiable Multivariate modeling), is validated...... computational complexity. We attribute this mainly to the stochastic search strategy used, and to parsimony (sparsity and identifiability), which is an explicit part of the model. We propose two extensions to the basic i.i.d. linear framework: non-linear dependence on observed variables, called SNIM (Sparse Non-linear...

  19. Linearization of CIF Through SOS

    CERN Document Server

    Agut, Damian Nadales; 10.4204/EPTCS.64.6

    2011-01-01

    Linearization is the procedure of rewriting a process term into a linear form, which consist only of basic operators of the process language. This procedure is interesting both from a theoretical and a practical point of view. In particular, a linearization algorithm is needed for the Compositional Interchange Format (CIF), an automaton based modeling language. The problem of devising efficient linearization algorithms is not trivial, and has been already addressed in literature. However, the linearization algorithms obtained are the result of an inventive process, and the proof of correctness comes as an afterthought. Furthermore, the semantic specification of the language does not play an important role on the design of the algorithm. In this work we present a method for obtaining an efficient linearization algorithm, through a step-wise refinement of the SOS rules of CIF. As a result, we show how the semantic specification of the language can guide the implementation of such a procedure, yielding a simple ...

  20. Feature-Weighted Linear Stacking

    CERN Document Server

    Sill, Joseph; Mackey, Lester; Lin, David

    2009-01-01

    Ensemble methods, such as stacking, are designed to boost predictive accuracy by blending the predictions of multiple machine learning models. Recent work has shown that the use of meta-features, additional inputs describing each example in a dataset, can boost the performance of ensemble methods, but the greatest reported gains have come from nonlinear procedures requiring significant tuning and training time. Here, we present a linear technique, Feature-Weighted Linear Stacking (FWLS), that incorporates meta-features for improved accuracy while retaining the well-known virtues of linear regression regarding speed, stability, and interpretability. FWLS combines model predictions linearly using coefficients that are themselves linear functions of meta-features. This technique was a key facet of the solution of the second place team in the recently concluded Netflix Prize competition. Significant increases in accuracy over standard linear stacking is demonstrated on the Netflix Prize collaborative filtering da...

  1. Linear algebra and projective geometry

    CERN Document Server

    Baer, Reinhold

    2005-01-01

    Geared toward upper-level undergraduates and graduate students, this text establishes that projective geometry and linear algebra are essentially identical. The supporting evidence consists of theorems offering an algebraic demonstration of certain geometric concepts. These focus on the representation of projective geometries by linear manifolds, of projectivities by semilinear transformations, of collineations by linear transformations, and of dualities by semilinear forms. These theorems lead to a reconstruction of the geometry that constituted the discussion's starting point, within algebra

  2. Linear Programming and Network Flows

    CERN Document Server

    Bazaraa, Mokhtar S; Sherali, Hanif D

    2011-01-01

    The authoritative guide to modeling and solving complex problems with linear programming-extensively revised, expanded, and updated The only book to treat both linear programming techniques and network flows under one cover, Linear Programming and Network Flows, Fourth Edition has been completely updated with the latest developments on the topic. This new edition continues to successfully emphasize modeling concepts, the design and analysis of algorithms, and implementation strategies for problems in a variety of fields, including industrial engineering, management science, operations research

  3. LINEAR2007, Linear-Linear Interpolation of ENDF Format Cross-Sections

    International Nuclear Information System (INIS)

    1 - Description of program or function: LINEAR converts evaluated cross sections in the ENDF/B format into a tabular form that is subject to linear-linear interpolation in energy and cross section. The code also thins tables of cross sections already in that form. Codes used subsequently need thus to consider only linear-linear data. IAEA1311/15: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. Modifications from previous versions: - Linear VERS. 2007-1 (JAN. 2007): checked against all ENDF/B-VII; increased page size from 60,000 to 600,000 points 2 - Method of solution: Each section of data is considered separately. Each section of File 3, 23, and 27 data consists of a table of cross section versus energy with any of five interpolation laws. LINEAR will replace each section with a new table of energy versus cross section data in which the interpolation law is always linear in energy and cross section. The histogram (constant cross section between two energies) interpolation law is converted to linear-linear by substituting two points for each initial point. The linear-linear is not altered. For the log-linear, linear-log and log- log laws, the cross section data are converted to linear by an interval halving algorithm. Each interval is divided in half until the value at the middle of the interval can be approximated by linear-linear interpolation to within a given accuracy. The LINEAR program uses a multipoint fractional error thinning algorithm to minimize the size of each cross section table

  4. Modulation of autoimmunity with artificial peptides

    Science.gov (United States)

    La Cava, Antonio

    2010-01-01

    The loss of immune tolerance to self antigens leads to the development of autoimmune responses. Since self antigens are often multiple and/or their sequences may not be known, one approach to restore immune tolerance uses synthetic artificial peptides that interfere or compete with self peptides in the networks of cellular interactions that drive the autoimmune process. This review describes the rationale behind the use of artificial peptides in autoimmunity and their mechanisms of action. Examples of use of artificial peptides in preclinical studies and in the management of human autoimmune diseases are provided. PMID:20807590

  5. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang;

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase...... pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending...... of this peptidic inhibitor, a concept different from conventional attempts at improving inhibitor affinity by reducing the entropic burden....

  6. The art of linear electronics

    CERN Document Server

    Hood, John Linsley

    2013-01-01

    The Art of Linear Electronics presents the principal aspects of linear electronics and techniques in linear electronic circuit design. The book provides a wide range of information on the elucidation of the methods and techniques in the design of linear electronic circuits. The text discusses such topics as electronic component symbols and circuit drawing; passive and active semiconductor components; DC and low frequency amplifiers; and the basic effects of feedback. Subjects on frequency response modifying circuits and filters; audio amplifiers; low frequency oscillators and waveform generato

  7. Improvement of Hartman's linearization theorem

    Institute of Scientific and Technical Information of China (English)

    SHI; Jinlin(史金麟)

    2003-01-01

    Hartman's linearization theorem tells us that if matrix A has no zero real part and f(x) isbounded and satisfies Lipchitz condition with small Lipchitzian constant, then there exists a homeomorphismof Rn sending the solutions of nonlinear system x' = Ax + f(x) onto the solutions of linear system x' = Ax.In this paper, some components of the nonlinear item f(x) are permitted to be unbounded and we provethe result of global topological linearization without any special limitation and adding any condition. Thus,Hartman's linearization theorem is improved essentially.

  8. Elementary linear programming with applications

    CERN Document Server

    Kolman, Bernard

    1995-01-01

    Linear programming finds the least expensive way to meet given needs with available resources. Its results are used in every area of engineering and commerce: agriculture, oil refining, banking, and air transport. Authors Kolman and Beck present the basic notions of linear programming and illustrate how they are used to solve important common problems. The software on the included disk leads students step-by-step through the calculations. The Second Edition is completely revised and provides additional review material on linear algebra as well as complete coverage of elementary linear program

  9. Linear operator inequalities for strongly stable weakly regular linear systems

    NARCIS (Netherlands)

    Curtain, RF

    2001-01-01

    We consider the question of the existence of solutions to certain linear operator inequalities (Lur'e equations) for strongly stable, weakly regular linear systems with generating operators A, B, C, 0. These operator inequalities are related to the spectral factorization of an associated Popov funct

  10. Targeting Leishmania major parasite with peptides derived from a combinatorial phage display library.

    Science.gov (United States)

    Rhaiem, Rafik Ben; Houimel, Mehdi

    2016-07-01

    Cutaneous leishmaniasis (CL) is a global problem caused by intracellular protozoan pathogens of the genus Leishmania for which there are no suitable vaccine or chemotherapy options. Thus, de novo identification of small molecules binding to the Leishmania parasites by direct screening is a promising and appropriate alternative strategy for the development of new drugs. In this study, we used a random linear hexapeptide library fused to the gene III protein of M13 filamentous bacteriophage to select binding peptides to metacyclic promastigotes from a highly virulent strain of Leishmania major (Zymodeme MON-25; MHOM/TN/94/GLC94). After four rounds of stringent selection and amplification, polyclonal and monoclonal phage-peptides directed against L. major metacyclic promastigotes were assessed by ELISA, and the optimal phage-peptides were grown individually and characterized for binding to L. major by monoclonal phage ELISA. The DNA of 42 phage-peptides clones was amplified by PCR, sequenced, and their amino acid sequences deduced. Six different peptide sequences were obtained with frequencies of occurrence ranging from 2.3% to 85.7%. The biological effect of the peptides was assessed in vitro on human monocytes infected with L. major metacyclic promastigotes, and in vivo on susceptible parasite-infected BALB/c mice. The development of cutaneous lesions in the right hind footpads of infected mice after 13 weeks post-infection showed a protection rate of 81.94% with the injected peptide P2. Moreover, Western blots revealed that the P2 peptide interacted with the major surface protease gp63, a protein of 63kDa molecular weight. Moreover, bioinformatics were used to predict the interaction between peptides and the major surface molecule of the L. major. The molecular docking showed that the P2 peptide has the minimum interaction energy and maximum shape complimentarity with the L. major gp63 active site. Our study demonstrated that the P2 peptide occurs at high frequency

  11. Targeting Leishmania major parasite with peptides derived from a combinatorial phage display library.

    Science.gov (United States)

    Rhaiem, Rafik Ben; Houimel, Mehdi

    2016-07-01

    Cutaneous leishmaniasis (CL) is a global problem caused by intracellular protozoan pathogens of the genus Leishmania for which there are no suitable vaccine or chemotherapy options. Thus, de novo identification of small molecules binding to the Leishmania parasites by direct screening is a promising and appropriate alternative strategy for the development of new drugs. In this study, we used a random linear hexapeptide library fused to the gene III protein of M13 filamentous bacteriophage to select binding peptides to metacyclic promastigotes from a highly virulent strain of Leishmania major (Zymodeme MON-25; MHOM/TN/94/GLC94). After four rounds of stringent selection and amplification, polyclonal and monoclonal phage-peptides directed against L. major metacyclic promastigotes were assessed by ELISA, and the optimal phage-peptides were grown individually and characterized for binding to L. major by monoclonal phage ELISA. The DNA of 42 phage-peptides clones was amplified by PCR, sequenced, and their amino acid sequences deduced. Six different peptide sequences were obtained with frequencies of occurrence ranging from 2.3% to 85.7%. The biological effect of the peptides was assessed in vitro on human monocytes infected with L. major metacyclic promastigotes, and in vivo on susceptible parasite-infected BALB/c mice. The development of cutaneous lesions in the right hind footpads of infected mice after 13 weeks post-infection showed a protection rate of 81.94% with the injected peptide P2. Moreover, Western blots revealed that the P2 peptide interacted with the major surface protease gp63, a protein of 63kDa molecular weight. Moreover, bioinformatics were used to predict the interaction between peptides and the major surface molecule of the L. major. The molecular docking showed that the P2 peptide has the minimum interaction energy and maximum shape complimentarity with the L. major gp63 active site. Our study demonstrated that the P2 peptide occurs at high frequency

  12. Linear and non-linear optics of condensed matter

    International Nuclear Information System (INIS)

    Part I - Linear optics: 1. General introduction. 2. Frequency dependence of epsilon(ω, k vector). 3. Wave-vector dependence of epsilon(ω, k vector). 4. Tensor character of epsilon(ω, k vector). Part II - Non-linear optics: 5. Introduction. 6. A classical theory of non-linear response in one dimension. 7. The generalization to three dimensions. 8. General properties of the polarizability tensors. 9. The phase-matching condition. 10. Propagation in a non-linear dielectric. 11. Second harmonic generation. 12. Coupling of three waves. 13. Materials and their non-linearities. 14. Processes involving energy exchange with the medium. 15. Two-photon absorption. 16. Stimulated Raman effect. 17. Electro-optic effects. 18. Limitations of the approach presented here. (author)

  13. Synthetic peptide vaccines: palmitoylation of peptide antigens by a thioester bond increases immunogenicity

    DEFF Research Database (Denmark)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Tesser, G.I.;

    1997-01-01

    or an amide bond. It was found that these S-palmitoylated peptides were much more immunogenic than N-palmitoylated peptides and at least similar to KLH-conjugated peptides with respect to appearance and magnitude of induced antibodies (canine parvovirus) or immunocastration effect (gonadotropin...

  14. Driving engineering of novel antimicrobial peptides from simulations of peptide-micelle interactions

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Langham, Allison A; Kaznessis, Yiannis N

    2006-01-01

    peptides and their interaction with membrane mimics. In this article, we discuss the promise and the challenges of widely used models and detail our recent work on peptide-micelle simulations as an attractive alternative to peptide-bilayer simulations. We detail our results with two large structural...

  15. Peptide Nucleic Acids Complexes of Two Peptide Nucleic Acid Strands and One

    DEFF Research Database (Denmark)

    1999-01-01

    Peptide nucleic acids and analogues of peptide nucleic acids are used to form duplex, triplex, and other structures with nucleic acids and to modify nucleic acids. The peptide nucleic acids and analogues thereof also are used to modulate protein activity through, for example, transcription arrest...

  16. Mechanism and kinetics of peptide partitioning into membranes from all-atom simulations of thermostable peptides

    OpenAIRE

    Ulmschneider, Martin B.; Doux, Jacques P F; Killian, J. Antoinette; Smith, Jeremy C.; Ulmschneider, Jakob P.

    2010-01-01

    Partitioning properties of transmembrane (TM) polypeptide segments directly determine membrane protein folding, stability, and function, and their understanding is vital for rational design of membrane active peptides. However, direct determination of water-to-bilayer transfer of TM peptides has proved difficult. Experimentally, sufficiently hydrophobic peptides tend to aggregate, while atomistic computer simulations at physiological temperatures cannot yet reach the long time scales required...

  17. Glucagon-like peptide-1

    DEFF Research Database (Denmark)

    Deacon, C F; Holst, Jens Juul; Carr, R D

    1999-01-01

    Type 2 diabetes mellitus is a metabolic disease resulting in raised blood sugar which, if not satisfactorily controlled, can cause severe and often debilitating complications. Unfortunately, for many patients, the existing therapies do not give adequate control. Glucagon-like peptide-1 (GLP-1) is...... an incretin hormone which has a spectrum of activities which oppose the symptoms of diabetes. Of particular significance is the fact that these actions are glucose-dependent, meaning that the risk of severe hypoglycemia is practically eliminated. The recent elucidation of the key role of dipeptidyl...

  18. Atrial natriuretic peptides in plasma

    DEFF Research Database (Denmark)

    Goetze, Jens P; Holst Hansen, Lasse; Terzic, Dijana;

    2015-01-01

    Measurement of cardiac natriuretic peptides in plasma has gained a diagnostic role in the assessment of heart failure. Plasma measurement is though hampered by the marked instability of the hormones, which has led to the development of analyses that target N-terminal fragments from the prohormone....... These fragments are stable in plasma and represent surrogate markers of the actual natriuretic hormone. Post-translational processing of the precursors, however, is revealing itself to be a complex event with new information still being reported on proteolysis, covalent modifications, and amino acid...

  19. Bioluminescent Ligand-Receptor Binding Assays for Protein or Peptide Hormones.

    Science.gov (United States)

    Liu, Ya-Li; Guo, Zhan-Yun

    2016-01-01

    Bioluminescence has been widely used in biomedical research due to its high sensitivity, low background, and broad linear range. In recent studies, we applied bioluminescence to ligand-receptor binding assays for some protein or peptide hormones based on a newly developed small monomeric Nanoluciferase (NanoLuc) reporter that has the so far brightest bioluminescence. The conventional ligand-receptor binding assays rely on radioligands that have drawbacks, such as radioactive hazards and short shelf lives. In contrast, the novel bioluminescent binding assays use the NanoLuc-based protein or peptide tracers that are safe, stable, and ultrasensitive. Thus, the novel bioluminescent ligand-receptor binding assay would be applied to more and more protein or peptide hormones for ligand-receptor interaction studies in future. In the present article, we provided detailed protocols for setting up the novel bioluminescent ligand-receptor binding assays using two representative protein hormones as examples. PMID:27424896

  20. Synthesis and biological properties of amino acids and peptides containing a tetrazolyl moiety

    Science.gov (United States)

    Popova, E. A.; Trifonov, R. E.

    2015-09-01

    Literature data published mainly in the last 15 years on the synthesis and biological properties of amino acid analogues and derivatives containing tetrazolyl moieties are analyzed. Tetrazolyl analogues and derivatives of amino acids and peptides are shown to be promising for medicinal chemistry. Being polynitrogen heterocyclic systems comprising four endocyclic nitrogen atoms, tetrazoles can behave as acids and bases and form strong hydrogen bonds with proton donors (more rarely, with acceptors). They have high metabolic stability and are able to penetrate biological membranes. The review also considers the synthesis and properties of linear and cyclic peptides based on modified amino acids incorporating a tetrazolyl moiety. A special issue is the discussion of the biological properties of tetrazole-containing amino acids and peptides, which exhibit high biological activity and can be used to design new drugs. The bibliography includes 200 references.

  1. Spatial Processes in Linear Ordering

    Science.gov (United States)

    von Hecker, Ulrich; Klauer, Karl Christoph; Wolf, Lukas; Fazilat-Pour, Masoud

    2016-01-01

    Memory performance in linear order reasoning tasks (A > B, B > C, C > D, etc.) shows quicker, and more accurate responses to queries on wider (AD) than narrower (AB) pairs on a hypothetical linear mental model (A -- B -- C -- D). While indicative of an analogue representation, research so far did not provide positive evidence for spatial…

  2. Linear contextual modal type theory

    DEFF Research Database (Denmark)

    Schack-Nielsen, Anders; Schürmann, Carsten

    Abstract. When one implements a logical framework based on linear type theory, for example the Celf system [?], one is immediately con- fronted with questions about their equational theory and how to deal with logic variables. In this paper, we propose linear contextual modal type theory that gives...

  3. Linear Algebra and Image Processing

    Science.gov (United States)

    Allali, Mohamed

    2010-01-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  4. Non-Linear Mixed Logit

    DEFF Research Database (Denmark)

    Andersen, Steffen; Harrison, Glenn W.; Hole, Arne Risa;

    2012-01-01

    We develop an extension of the familiar linear mixed logit model to allow for the direct estimation of parametric non-linear functions defined over structural parameters. Classic applications include the estimation of coefficients of utility functions to characterize risk attitudes and discountin...

  5. Linear Patterns and Their Equations

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>A linear pattern,the points plotted all lie on the same straight line.In this section we will be looking further into such linear patterns. In this figure,by plotting the points B to F and joining them,

  6. Fuzzy linear regression forecasting models

    Institute of Scientific and Technical Information of China (English)

    吴冲; 惠晓峰; 朱洪文

    2002-01-01

    The fuzzy linear regression forecasting model is deduced from the symmetric triangular fuzzy number.With the help of the degree of fitting and the measure of fuzziness, the determination of symmetric triangularfuzzy numbers is changed into a problem of solving linear programming.

  7. Dynamic Linear Models with R

    CERN Document Server

    Campagnoli, Patrizia; Petris, Giovanni

    2009-01-01

    State space models have gained tremendous popularity in as disparate fields as engineering, economics, genetics and ecology. Introducing general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. It illustrates the fundamental steps needed to use dynamic linear models in practice, using R package.

  8. VUV action spectroscopy of protonated leucine-enkephalin peptide in the 6-14 eV range

    Energy Technology Data Exchange (ETDEWEB)

    Ranković, M. Lj. [Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Canon, F. [INRA, UMR1324 Centre des Sciences du Goût et de l’Alimentation, F-21000 Dijon (France); Nahon, L. [SOLEIL, l’Orme des Merisiers, St Aubin, BP48, 91192 Gif sur Yvette Cedex (France); Giuliani, A. [SOLEIL, l’Orme des Merisiers, St Aubin, BP48, 91192 Gif sur Yvette Cedex (France); INRA, UAR1008, CEPIA, Rue de la Géraudière, BP 71627, 44316 Nantes (France); Milosavljević, A. R., E-mail: vraz@ipb.ac.rs [Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2015-12-28

    We have studied the Vacuum Ultraviolet (VUV) photodissociation of gas-phase protonated leucine-enkephalin peptide ion in the 5.7 to 14 eV photon energy range by coupling a linear quadrupole ion trap with a synchrotron radiation source. We report VUV activation tandem mass spectra at 6.7, 8.4, and 12.8 eV photon energies and photodissociation yields for a number of selected fragments. The obtained results provide insight into both near VUV radiation damage and electronic properties of a model peptide. We could distinguish several absorption bands and assign them to particular electronic transitions, according to previous theoretical studies. The photodissociation yields appear to be very different for the various observed fragmentation channels, depending on both the types of fragments and their position along the peptide backbone. The present results are discussed in light of recent gas-phase spectroscopic data on peptides.

  9. Antimicrobial peptides in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    A Bogaerts

    2010-01-01

    Full Text Available The nematode Caenorhabditis elegans is one of the most successful model species for experimental research because of its sequenced genome, the versatile genetic toolkit and the straightforward breeding among others. In natural conditions however, this tiny worm is constantly surrounded by micro-organisms, simultaneously a source of indispensable nutrition and inevitable pathogens. Lacking an adaptive immune system, the worm solely relies on its innate immune defence to cope with its challenging life style. Hence C. elegans is an excellent model to gain more insight in innate immunity, which is remarkably preserved between invertebrate and vertebrate animals. The innate defence consists of receptors to detect potential pathogens, a complex network of signalling pathways and last but not least, effector molecules to abolish harmful microbes. In this review, we focus on the antimicrobial peptides, a vital subgroup of effector molecules. We summarise the current knowledge of the different families of C. elegans antimicrobial peptides, comprising NLPs, caenacins, ABFs, caenopores, and a recently discovered group with antifungal activity among which thaumatin-like proteins.

  10. Phage Display Screening for Tumor Necrosis Factor-α-Binding Peptides: Detection of Inflammation in a Mouse Model of Hepatitis

    Directory of Open Access Journals (Sweden)

    Coralie Sclavons

    2013-01-01

    Full Text Available TNF-α is one of the most abundant cytokines produced in many inflammatory and autoimmune conditions such as multiple sclerosis, chronic hepatitis C, or neurodegenerative diseases. These pathologies remain difficult to diagnose and consequently difficult to treat. The aim of this work is to offer a new diagnostic tool by seeking new molecular probes for medical imaging. The target-specific part of the probe consists here of heptameric peptides selected by the phage display technology for their affinity for TNF-α. Several affinity tests allowed isolating 2 peptides that showed the best binding capacity to TNF-α. Finally, the best peptide was synthesized in both linear and cyclic forms and tested on the histological sections of concanavalin-A-(ConA-treated mice liver. In this well-known hepatitis mouse model, the best results were obtained with the cyclic form of peptide 2, which allowed for the staining of inflamed areas in the liver. The cyclic form of peptide 2 (2C was, thus, covalently linked to iron oxide nanoparticles (magnetic resonance imaging (MRI contrast agent and tested in the ConA-induced hepatitis mouse model. The vectorized nanoparticles allowed for the detection of inflammation as well as of the free peptide. These ex vivo results suggest that phage display-selected peptides can direct imaging contrast agents to inflammatory areas.

  11. The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Langkilde, Annette E., E-mail: annette.langkilde@sund.ku.dk [University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen (Denmark); Morris, Kyle L.; Serpell, Louise C. [University of Sussex, Falmer, Brighton (United Kingdom); Svergun, Dmitri I. [European Molecular Biology Laboratory, Hamburg Outstation, 22607 Hamburg (Germany); Vestergaard, Bente [University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen (Denmark)

    2015-04-01

    The aggregation process and the fibril state of an amyloidogenic peptide suggest monomer addition to be the prevailing mechanism of elongation and a model of the peptide packing in the fibrils has been obtained. Structural analysis of protein fibrillation is inherently challenging. Given the crucial role of fibrils in amyloid diseases, method advancement is urgently needed. A hybrid modelling approach is presented enabling detailed analysis of a highly ordered and hierarchically organized fibril of the GNNQQNY peptide fragment of a yeast prion protein. Data from small-angle X-ray solution scattering, fibre diffraction and electron microscopy are combined with existing high-resolution X-ray crystallographic structures to investigate the fibrillation process and the hierarchical fibril structure of the peptide fragment. The elongation of these fibrils proceeds without the accumulation of any detectable amount of intermediate oligomeric species, as is otherwise reported for, for example, glucagon, insulin and α-synuclein. Ribbons constituted of linearly arranged protofilaments are formed. An additional hierarchical layer is generated via the pairing of ribbons during fibril maturation. Based on the complementary data, a quasi-atomic resolution model of the protofilament peptide arrangement is suggested. The peptide structure appears in a β-sheet arrangement reminiscent of the β-zipper structures evident from high-resolution crystal structures, with specific differences in the relative peptide orientation. The complexity of protein fibrillation and structure emphasizes the need to use multiple complementary methods.

  12. Production of peptide antisera specific for mouse and rat proinsulin C-peptide 2

    DEFF Research Database (Denmark)

    Blume, N; Madsen, O D; Kofod, Hans;

    1990-01-01

    not seem to increase the end point titre as tested in direct ELISA. The specificity of the antiserum was determined by competitive ELISA and histochemistry on pancreas sections. Only the synthetic C-peptide 2, but not the homologous synthetic C-peptide 1 from mouse and rat competed efficiently in ELISA...... for antibody binding to the immunizing antigen. Antisera to C-peptide 2, stained islet beta-cells on mouse and rat, but not monkey pancreas sections in immunocytochemical analysis. Preabsorption to the synthetic C-peptide 2, but not the synthetic mouse and rat C-peptide 1 abolished staining. In conclusion we...

  13. Determination of peptide content of DOTA-peptides by metal titration and UPLC

    International Nuclear Information System (INIS)

    Radiolabelled DOTA-peptides are in use for Peptide Receptor Radionuclide Scintigraphy (PRS) and Therapy (PRRT), e.g with 177Lu-DOTA-TATE or 90Y-DOTATOC. Labelling conditions are frequently critical. Therefore, the ingredients of the reaction, e.g. radiometal (90Y and 177Lu) and DOTA-peptide should be pure and the content known. Quality control of DOTA-peptide, can be performed with various methods, most commonly by UV. There are numerous conditions in which this is hampered, e.g. impurities may also have UV-absorption. The aim of the study was to quantify content and purity of DOTA-peptide

  14. Engineered Adhesion Peptides for Improved Silicon Adsorption.

    Science.gov (United States)

    Ramakrishnan, Sathish Kumar; Jebors, Said; Martin, Marta; Cloitre, Thierry; Agarwal, Vivechana; Mehdi, Ahmad; Martinez, Jean; Subra, Gilles; Gergely, Csilla

    2015-11-01

    Engineering peptides that present selective recognition and high affinity for a material is a major challenge for assembly-driven elaboration of complex systems with wide applications in the field of biomaterials, hard-tissue regeneration, and functional materials for therapeutics. Peptide-material interactions are of vital importance in natural processes but less exploited for the design of novel systems for practical applications because of our poor understanding of mechanisms underlying these interactions. Here, we present an approach based on the synthesis of several truncated peptides issued from a silicon-specific peptide recovered via phage display technology. We use the photonic response provided by porous silicon microcavities to evaluate the binding efficiency of 14 different peptide derivatives. We identify and engineer a short peptide sequence (SLVSHMQT), revealing the highest affinity for p(+)-Si. The molecular recognition behavior of the obtained peptide fragment can be revealed through mutations allowing identification of the preferential affinity of certain amino acids toward silicon. These results constitute an advance in both the engineering of peptides that reveal recognition properties for silicon and the understanding of biomolecule-material interactions.

  15. [Application on food preservative of antimicrobial peptides].

    Science.gov (United States)

    Zhao, Hongyan; Mu, Yu; Zhao, Baohua

    2009-07-01

    Antimicrobial peptides are an integral component of the innate immune system, it can counteract outer membrane pathogen such as bacteria, fungi, viruses, protozoan and so on. Owing to the sterilization and innocuity, it has the potential to be crude food preservative. In this paper the uses of antibacterial peptides in the food preservative were analyzed.

  16. Prediction of twin-arginine signal peptides

    DEFF Research Database (Denmark)

    Bendtsen, Jannick Dyrløv; Nielsen, Henrik; Widdick, D.;

    2005-01-01

    peptides and 84% of the annotated cleavage sites of these Tat signal peptides were correctly predicted. This method generates far less false positive predictions on various datasets than using simple pattern matching. Moreover, on the same datasets TatP generates less false positive predictions than...

  17. Production and characterization of peptide antibodies

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Hansen, Paul Robert; Houen, Gunnar

    2012-01-01

    Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies are...

  18. Peptide Mass Fingerprinting of Egg White Proteins

    Science.gov (United States)

    Alty, Lisa T.; LaRiviere, Frederick J.

    2016-01-01

    Use of advanced mass spectrometry techniques in the undergraduate setting has burgeoned in the past decade. However, relatively few undergraduate experiments examine the proteomics tools of protein digestion, peptide accurate mass determination, and database searching, also known as peptide mass fingerprinting. In this experiment, biochemistry…

  19. New Biodegradable Peptide-based Polymer Constructs

    NARCIS (Netherlands)

    van Dijk, M.

    2009-01-01

    Peptide-based polymers are of increasing interest, since they can be applied for a variety of purposes such as drug delivery devices, scaffolds for tissue engineering and -repair, and as novel biomaterials. Peptide-based polymers are common in nature and often exhibit special characteristics. Howeve

  20. Protein identification by peptide mass fingerprinting

    DEFF Research Database (Denmark)

    Hjernø, Karin

    2007-01-01

      Peptide mass fingerprinting is an effective way of identifying, e.g., gel-separated proteins, by matching experimentally obtained peptide mass data against large databases. However, several factors are known to influence the quality of the resulting matches, such as proteins contaminating the s...

  1. Peptidomic Identification of Serum Peptides Diagnosing Preeclampsia.

    Directory of Open Access Journals (Sweden)

    Qiaojun Wen

    Full Text Available We sought to identify serological markers capable of diagnosing preeclampsia (PE. We performed serum peptide analysis (liquid chromatography mass spectrometry of 62 unique samples from 31 PE patients and 31 healthy pregnant controls, with two-thirds used as a training set and the other third as a testing set. Differential serum peptide profiling identified 52 significant serum peptides, and a 19-peptide panel collectively discriminating PE in training sets (n = 21 PE, n = 21 control; specificity = 85.7% and sensitivity = 100% and testing sets (n = 10 PE, n = 10 control; specificity = 80% and sensitivity = 100%. The panel peptides were derived from 6 different protein precursors: 13 from fibrinogen alpha (FGA, 1 from alpha-1-antitrypsin (A1AT, 1 from apolipoprotein L1 (APO-L1, 1 from inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4, 2 from kininogen-1 (KNG1, and 1 from thymosin beta-4 (TMSB4. We concluded that serum peptides can accurately discriminate active PE. Measurement of a 19-peptide panel could be performed quickly and in a quantitative mass spectrometric platform available in clinical laboratories. This serum peptide panel quantification could provide clinical utility in predicting PE or differential diagnosis of PE from confounding chronic hypertension.

  2. B-Type allatostatins and sex peptides

    Science.gov (United States)

    In many species, mating induces a number of behavioral changes in the female. For Drosophila melanogaster, the sex peptide (SP) has been identified as the main molecular factor behind these responses. Recently, the sex peptide receptor (SPR), a GPCR activated by SP has also been characterized as res...

  3. Trandermal Peptides for Large Molecule Delivery

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ A research team, led by Prof. WEN Longping from the University of Science and Technology of China under CAS,has successfully screened out a trandermal peptide, using biotechnology. The new peptide is able to deliver insulin into human body through skin, rendering an immediate therapeutic effect. The finding was published in the March 27 issue of the journal Natural Biotechnology.

  4. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang;

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase...

  5. Antioxidant activity of yoghurt peptides: Part 2 – Characterisationof peptide fractions

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Baron, Caroline; Nielsen, Nina Skall;

    2010-01-01

    The aim of the present study was to elucidate previous findings showing that peptide fractions isolated from yoghurt had antioxidant effects. Therefore, peptides and free amino acids released during fermentation of milk were characterised. Yoghurt samples were stripped from sugars and lactic acid...... antioxidant activity in these fractions.......The aim of the present study was to elucidate previous findings showing that peptide fractions isolated from yoghurt had antioxidant effects. Therefore, peptides and free amino acids released during fermentation of milk were characterised. Yoghurt samples were stripped from sugars and lactic acid...... the peptides identified contained at least one proline residue. Some of the identified peptides included the hydrophobic amino acid residues Val or Leu at the N-terminus and Pro, His or Tyr in the amino acid sequence, which is characteristic of antioxidant peptides. In addition, the yoghurt contained...

  6. Role of peptide bond in the realization of biological activity of short peptides.

    Science.gov (United States)

    Khavinson, V Kh; Tarnovskaya, S I; Lin'kova, N S; Chervyakova, N A; Nichik, T E; Elashkina, E V; Chalisova, N I

    2015-02-01

    We performed a comparative analysis of biological activity of Lys-Glu peptide and its amino acid constituents. It was established that Lys-Glu stimulated proliferation of splenic cells in organotypic culture, while the mixture of glutamic acid and lysine inhibited culture growth. Using the method of molecular docking, we showed that glutamic acid, lysine, and Lys-Glu peptide can interact with different DNA sequences. The energy of interaction and the most beneficial localization of glutamic acid, lysine, and Lys-Glu peptide in DNA molecule was calculated. We demonstrated the interaction of the peptide and amino acids with DNA along the minor groove. The energy of DNA interaction with the peptide is higher than with individual amino acids. The peptide bonds increase the interaction of Lys-Glu peptide with DNA, which potentiates the biological effect on cell proliferation in organotypic culture of splenic cells.

  7. Peptide nanospheres self-assembled from a modified β-annulus peptide of Sesbania mosaic virus.

    Science.gov (United States)

    Matsuura, Kazunori; Mizuguchi, Yusaku; Kimizuka, Nobuo

    2016-11-01

    A novel β-annulus peptide of Sesbania mosaic virus bearing an FKFE sequence at the C terminus was synthesized, and its self-assembling behavior in water was investigated. Dynamic light scattering and transmission electron microscopy showed that the β-annulus peptide bearing an FKFE sequence self-assembled into approximately 30 nm nanospheres in water at pH 3.8, whereas the β-annulus peptide without the FKFE sequence afforded only irregular aggregates. The peptide nanospheres possessed a definite critical aggregation concentration (CAC = 26 μM), above which the size of nanospheres were nearly unaffected by the peptide concentration. The formation of peptide nanospheres was significantly affected by pH; the peptide did not form any assemblies at pH 2.2, whereas larger aggregates were formed at pH 6.4-11.6. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 470-475, 2016. PMID:26573103

  8. Design of Asymmetric Peptide Bilayer Membranes.

    Science.gov (United States)

    Li, Sha; Mehta, Anil K; Sidorov, Anton N; Orlando, Thomas M; Jiang, Zhigang; Anthony, Neil R; Lynn, David G

    2016-03-16

    Energetic insights emerging from the structural characterization of peptide cross-β assemblies have enabled the design and construction of robust asymmetric bilayer peptide membranes. Two peptides differing only in their N-terminal residue, phosphotyrosine vs lysine, coassemble as stacks of antiparallel β-sheets with precisely patterned charged lattices stabilizing the bilayer leaflet interface. Either homogeneous or mixed leaflet composition is possible, and both create nanotubes with dense negative external and positive internal solvent exposed surfaces. Cross-seeding peptide solutions with a preassembled peptide nanotube seed leads to domains of different leaflet architecture within single nanotubes. Architectural control over these cross-β assemblies, both across the bilayer membrane and along the nanotube length, provides access to highly ordered asymmetric membranes for the further construction of functional mesoscale assemblies.

  9. Intracellular signalling by C-peptide.

    Science.gov (United States)

    Hills, Claire E; Brunskill, Nigel J

    2008-01-01

    C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na(+)/K(+) ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes. PMID:18382618

  10. Intracellular Signalling by C-Peptide

    Directory of Open Access Journals (Sweden)

    Claire E. Hills

    2008-01-01

    Full Text Available C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na+/K+ ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes.

  11. Antimicrobial peptides important in innate immunity.

    Science.gov (United States)

    Cederlund, Andreas; Gudmundsson, Gudmundur H; Agerberth, Birgitta

    2011-10-01

    Antimicrobial peptides are present in all walks of life, from plants to animals, and they are considered to be endogenous antibiotics. In general, antimicrobial peptides are determinants of the composition of the microbiota and they function to fend off microbes and prevent infections. Antimicrobial peptides eliminate micro-organisms through disruption of their cell membranes. Their importance in human immunity, and in health as well as disease, has only recently been appreciated. The present review provides an introduction to the field of antimicrobial peptides in general and discusses two of the major classes of mammalian antimicrobial peptides: the defensins and the cathelicidins. The review focuses on their structures, their main modes of action and their regulation.

  12. The linear-non-linear frontier for the Goldstone Higgs

    CERN Document Server

    Gavela, M B; Machado, P A N; Saa, S

    2016-01-01

    The minimal $SO(5)/SO(4)$ sigma model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone boson ancestry. Varying the $\\sigma$ mass allows to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy fermion ultraviolet completions. In addition, one particular fermionic compl...

  13. Endogenous flow of amino acids in the avian ileum as influenced by increasing dietary peptide concentrations.

    Science.gov (United States)

    Ravindran, Velmurugu; Morel, Patrick C H; Rutherfurd, Shane M; Thomas, Donald V

    2009-03-01

    The aim of the present study was to establish whether feeding broiler chickens with diets containing increasing dietary peptide concentrations would cause increases in ileal endogenous amino acid flow. The flow of N and most amino acids increased quadratically (P < 0.05 to 0.001) with increasing dietary concentrations of peptides. The exceptions were the flow of threonine, serine, glycine, tyrosine and cystine, which increased linearly (P < 0.001) with dietary peptide levels. Another notable exception to the general trend was the flow of proline, which was significantly higher (P < 0.01) in birds fed the protein-free diet. The amino acid profile of endogenous protein, expressed as proportion of crude protein, indicated that the ratios of threonine, glutamic acid, proline, glycine, leucine, histidine, arginine and cystine were influenced (P < 0.05) with increasing dietary peptide concentrations. In general, compared with the protein-free diet, the ratios of threonine and arginine in endogenous protein were lower (P < 0.05) and those of glutamic acid, glycine and histidine were greater (P < 0.05) in diets with high concentrations of peptides. The ratio of proline was found to decrease (P < 0.05) with increasing dietary peptide concentrations. These changes in the amino acid profile of endogenous protein are probably reflective of changes in the output of one or more of the components of endogenous protein. Overall, the present results demonstrated that increasing dietary peptide concentrations increased the flow of endogenous amino acid flow at the terminal ileum of broiler chickens in a dose-dependent manner and also caused changes in the composition of endogenous protein. The observed changes in endogenous amino flow will influence the maintenance requirements for amino acids and also have implications for the calculation of true digestibility coefficient of feedstuffs. PMID:18662428

  14. Efficient Searching with Linear Constraints

    DEFF Research Database (Denmark)

    Agarwal, Pankaj K.; Arge, Lars Allan; Erickson, Jeff;

    2000-01-01

    We show how to preprocess a set S of points in d into an external memory data structure that efficiently supports linear-constraint queries. Each query is in the form of a linear constraint xd a0+∑d−1i=1 aixi; the data structure must report all the points of S that satisfy the constraint....... This problem is called halfspace range searching in the computational geometry literature. Our goal is to minimize the number of disk blocks required to store the data structure and the number of disk accesses (I/Os) required to answer a query. For d=2, we present the first data structure that uses linear...... space and answers linear-constraint queries using an optimal number of I/Os in the worst case. For d=3, we present a near-linear-size data structure that answers queries using an optimal number of I/Os on the average. We present linear-size data structures that can answer d-dimensional linear...

  15. Linear and non-linear bias: predictions vs. measurements

    OpenAIRE

    Hoffmann, Kai; Bel, Julien; Gaztanaga, Enrique

    2016-01-01

    We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Accociating galaxies with dark matter haloes in the MICE Grand Challenge N-body simulation we directly measure the bias parameters by comparing the smoothed density fluctuations of halos and matter in the same region at different positions as a function of smoothing scale. Alternatively we mea...

  16. Linear and non-linear calculation of resistive magnetohydrodynamic instabilities

    International Nuclear Information System (INIS)

    The time-dependent, linear and non-linear, resistive magnetohydrodynamic, numerical models that have been developed at MFECC are reviewed. The purpose of these codes is to compute growth rates, mode structure and saturation of tearing, rippling, and interchange modes in fusion experiments. Cartesian, cylindrical, helical, and toroidal geometries are used in the applications. The numerical methods are described and applications to reversed field configurations are presented

  17. High-Throughput Peptide Epitope Mapping Using Carbon Nanotube Field-Effect Transistors

    Directory of Open Access Journals (Sweden)

    Steingrimur Stefansson

    2013-01-01

    Full Text Available Label-free and real-time detection technologies can dramatically reduce the time and cost of pharmaceutical testing and development. However, to reach their full promise, these technologies need to be adaptable to high-throughput automation. To demonstrate the potential of single-walled carbon nanotube field-effect transistors (SWCNT-FETs for high-throughput peptide-based assays, we have designed circuits arranged in an 8 × 12 (96-well format that are accessible to standard multichannel pipettors. We performed epitope mapping of two HIV-1 gp160 antibodies using an overlapping gp160 15-mer peptide library coated onto nonfunctionalized SWCNTs. The 15-mer peptides did not require a linker to adhere to the non-functionalized SWCNTs, and binding data was obtained in real time for all 96 circuits. Despite some sequence differences in the HIV strains used to generate these antibodies and the overlapping peptide library, respectively, our results using these antibodies are in good agreement with known data, indicating that peptides immobilized onto SWCNT are accessible and that linear epitope mapping can be performed in minutes using SWCNT-FET.

  18. Scrutinizing MHC-I binding peptides and their limits of variation.

    Directory of Open Access Journals (Sweden)

    Christian P Koch

    Full Text Available Designed peptides that bind to major histocompatibility protein I (MHC-I allomorphs bear the promise of representing epitopes that stimulate a desired immune response. A rigorous bioinformatical exploration of sequence patterns hidden in peptides that bind to the mouse MHC-I allomorph H-2K(b is presented. We exemplify and validate these motif findings by systematically dissecting the epitope SIINFEKL and analyzing the resulting fragments for their binding potential to H-2K(b in a thermal denaturation assay. The results demonstrate that only fragments exclusively retaining the carboxy- or amino-terminus of the reference peptide exhibit significant binding potential, with the N-terminal pentapeptide SIINF as shortest ligand. This study demonstrates that sophisticated machine-learning algorithms excel at extracting fine-grained patterns from peptide sequence data and predicting MHC-I binding peptides, thereby considerably extending existing linear prediction models and providing a fresh view on the computer-based molecular design of future synthetic vaccines. The server for prediction is available at http://modlab-cadd.ethz.ch (SLiDER tool, MHC-I version 2012.

  19. A peptide factor secreted by Staphylococcus pseudintermedius exhibits properties of both bacteriocins and virulence factors

    Science.gov (United States)

    Wladyka, Benedykt; Piejko, Marcin; Bzowska, Monika; Pieta, Piotr; Krzysik, Monika; Mazurek, Łukasz; Guevara-Lora, Ibeth; Bukowski, Michał; Sabat, Artur J.; Friedrich, Alexander W.; Bonar, Emilia; Międzobrodzki, Jacek; Dubin, Adam; Mak, Paweł

    2015-01-01

    Staphylococcus pseudintermedius is a common commensal bacterium colonizing the skin and mucosal surfaces of household animals. However, it has recently emerged as a dangerous opportunistic pathogen, comparable to S. aureus for humans. The epidemiological situation is further complicated by the increasing number of methicillin-resistant S. pseudintermedius infections and evidence of gene transmission driving antibiotic resistance between staphylococci colonizing human and zoonotic hosts. In the present study, we describe a unique peptide, BacSp222, that possesses features characteristic of both bacteriocins and virulence factors. BacSp222 is secreted in high quantities by S. pseudintermedius strain 222 isolated from dog skin lesions. This linear, fifty-amino-acid highly cationic peptide is plasmid-encoded and does not exhibit significant sequence similarities to any other known peptides or proteins. BacSp222 kills gram-positive bacteria (at doses ranging from 0.1 to several micromol/l) but also demonstrates significant cytotoxic activities towards eukaryotic cells at slightly higher concentrations. Moreover, at nanomolar concentrations, the peptide also possesses modulatory properties, efficiently enhancing interferon gamma-induced nitric oxide release in murine macrophage-like cell lines. BacSp222 appears to be one of the first examples of multifunctional peptides that breaks the convention of splitting bacteriocins and virulence factors into two unrelated groups. PMID:26411997

  20. Cyclic Peptide-Decorated Self-Assembled Nanohybrids for Selective Recognition and Detection of Multivalent RNAs.

    Science.gov (United States)

    Choi, Jun Shik; Han, So-hee; Kim, Hyoseok; Lim, Yong-Beom

    2016-03-16

    Although there has been substantial advancement in the development of nanostructures, the development of self-assembled nanostructures that can selectively recognize multivalent targets has been very difficult. Here we show the proof of concept that topology-controlled peptide nanoassemblies can selectively recognize and detect a multivalent RNA target. We compared the differential behaviors of peptides in a linear or cyclic topology in terms of peptide-gold nanoparticle hybrid nanostructure formation, conformational stabilization, monovalent and multivalent RNA binding in vitro, and multivalent RNA recognition in live cells. When the topology-dependent selectivity amplification of the cyclic peptide hybrids is combined with the noninvasive nature of dark-field microscopy, the cellular localization of the viral Rev response element (RRE) RNA can be monitored in situ. Because intracellular interactions are often mediated by overlapping binding partners with weak affinity, the topology-controlled peptide assemblies can provide a versatile means to convert weak ligands into multivalent ligands with high affinity and selectivity. PMID:26886413

  1. Cyclic Peptide-Decorated Self-Assembled Nanohybrids for Selective Recognition and Detection of Multivalent RNAs.

    Science.gov (United States)

    Choi, Jun Shik; Han, So-hee; Kim, Hyoseok; Lim, Yong-Beom

    2016-03-16

    Although there has been substantial advancement in the development of nanostructures, the development of self-assembled nanostructures that can selectively recognize multivalent targets has been very difficult. Here we show the proof of concept that topology-controlled peptide nanoassemblies can selectively recognize and detect a multivalent RNA target. We compared the differential behaviors of peptides in a linear or cyclic topology in terms of peptide-gold nanoparticle hybrid nanostructure formation, conformational stabilization, monovalent and multivalent RNA binding in vitro, and multivalent RNA recognition in live cells. When the topology-dependent selectivity amplification of the cyclic peptide hybrids is combined with the noninvasive nature of dark-field microscopy, the cellular localization of the viral Rev response element (RRE) RNA can be monitored in situ. Because intracellular interactions are often mediated by overlapping binding partners with weak affinity, the topology-controlled peptide assemblies can provide a versatile means to convert weak ligands into multivalent ligands with high affinity and selectivity.

  2. Rate equation approach to understanding the ion-catalyzed formation of peptides

    Science.gov (United States)

    Dubrovskii, V. G.; Sibirev, N. V.; Eliseev, I. E.; Vyazmin, S. Yu; Boitsov, V. M.; Natochin, Yu. V.; Dubina, M. V.

    2013-06-01

    The salt-induced peptide formation is important for assessing and approaching schemes of molecular evolution. Here, we present experimental data and an exactly solvable kinetic model describing the linear polymerization of L-glutamic amino acid in water solutions with different concentrations of KCl and NaCl. The length distributions of peptides are well fitted by the model. Strikingly, we find that KCl considerably enhances the peptide yield, while NaCl does not show any catalytic effect in most cases under our experimental conditions. The greater catalytic effect of potassium ions is entirely interpreted by one and single parameter, the polymerization rate constant that depends on the concentration of a given salt in the reaction mixture. We deduce numeric estimates for the rate constant at different concentrations of the ions and show that it is always larger for KCl. This leads to an exponential increase of the potassium- to sodium-catalyzed peptide concentration ratio with length. Our results show that the ion-catalyzed peptides have a higher probability to emerge in excess potassium rather than in sodium-rich water solutions.

  3. Modelling water molecules inside cyclic peptide nanotubes

    Science.gov (United States)

    Tiangtrong, Prangsai; Thamwattana, Ngamta; Baowan, Duangkamon

    2016-03-01

    Cyclic peptide nanotubes occur during the self-assembly process of cyclic peptides. Due to the ease of synthesis and ability to control the properties of outer surface and inner diameter by manipulating the functional side chains and the number of amino acids, cyclic peptide nanotubes have attracted much interest from many research areas. A potential application of peptide nanotubes is their use as artificial transmembrane channels for transporting ions, biomolecules and waters into cells. Here, we use the Lennard-Jones potential and a continuum approach to study the interaction of a water molecule in a cyclo[(- D-Ala- L-Ala)_4-] peptide nanotube. Assuming that each unit of a nanotube comprises an inner and an outer tube and that a water molecule is made up of a sphere of two hydrogen atoms uniformly distributed over its surface and a single oxygen atom at the centre, we determine analytically the interaction energy of the water molecule and the peptide nanotube. Using this energy, we find that, independent of the number of peptide units, the water molecule will be accepted inside the nanotube. Once inside the nanotube, we show that a water molecule prefers to be off-axis, closer to the surface of the inner nanotube. Furthermore, our study of two water molecules inside the peptide nanotube supports the finding that water molecules form an array of a 1-2-1-2 file inside peptide nanotubes. The theoretical study presented here can facilitate thorough understanding of the behaviour of water molecules inside peptide nanotubes for applications, such as artificial transmembrane channels.

  4. Dissecting antibodies with regards to linear and conformational epitopes.

    Science.gov (United States)

    Forsström, Björn; Axnäs, Barbara Bisławska; Rockberg, Johan; Danielsson, Hanna; Bohlin, Anna; Uhlen, Mathias

    2015-01-01

    An important issue for the performance and specificity of an antibody is the nature of the binding to its protein target, including if the recognition involves linear or conformational epitopes. Here, we dissect polyclonal sera by creating epitope-specific antibody fractions using a combination of epitope mapping and an affinity capture approach involving both synthesized peptides and recombinant protein fragments. This allowed us to study the relative amounts of antibodies to linear and conformational epitopes in the polyclonal sera as well as the ability of each antibody-fraction to detect its target protein in Western blot assays. The majority of the analyzed polyclonal sera were found to have most of the target-specific antibodies directed towards linear epitopes and these were in many cases giving Western blot bands of correct molecular weight. In contrast, many of the antibodies towards conformational epitopes did not bind their target proteins in the Western blot assays. The results from this work have given us insights regarding the nature of the antibody response generated by immunization with recombinant protein fragments and has demonstrated the advantage of using antibodies recognizing linear epitopes for immunoassay involving wholly or partially denatured protein targets. PMID:25816293

  5. Dissecting antibodies with regards to linear and conformational epitopes.

    Directory of Open Access Journals (Sweden)

    Björn Forsström

    Full Text Available An important issue for the performance and specificity of an antibody is the nature of the binding to its protein target, including if the recognition involves linear or conformational epitopes. Here, we dissect polyclonal sera by creating epitope-specific antibody fractions using a combination of epitope mapping and an affinity capture approach involving both synthesized peptides and recombinant protein fragments. This allowed us to study the relative amounts of antibodies to linear and conformational epitopes in the polyclonal sera as well as the ability of each antibody-fraction to detect its target protein in Western blot assays. The majority of the analyzed polyclonal sera were found to have most of the target-specific antibodies directed towards linear epitopes and these were in many cases giving Western blot bands of correct molecular weight. In contrast, many of the antibodies towards conformational epitopes did not bind their target proteins in the Western blot assays. The results from this work have given us insights regarding the nature of the antibody response generated by immunization with recombinant protein fragments and has demonstrated the advantage of using antibodies recognizing linear epitopes for immunoassay involving wholly or partially denatured protein targets.

  6. Primordial black holes in linear and non-linear regimes

    CERN Document Server

    Allahyari, Alireza; Abolhasani, Ali Akbar

    2016-01-01

    Using the concept of apparent horizon for dynamical black holes, we revisit the formation of primordial black holes (PBH) in the early universe for both linear and non-linear regimes. First, we develop the perturbation theory for spherically symmetric spacetimes to study the formation of spherical PBHs in linear regime and we fix two gauges. We also introduce a well defined gauge invariant quantity for the expansion. Using this quantity, we argue that PBHs do not form in the linear regime. Finally, we study the non-linear regime. We adopt the spherical collapse picture by taking a closed FRW model in the radiation dominated era to investigate PBH formation. Taking the initial condition of the spherical collapse from the linear theory of perturbations, we allow for both density and velocity perturbations. Our model gives a constraint on the velocity perturbation. This model also predicts that the apparent horizon of PBHs forms when $\\delta > 3$. Applying the sound horizon constraint, we have shown the threshol...

  7. Translation of Structure-Activity Relationships from Cyclic Mixed Efficacy Opioid Peptides to Linear Analogues

    OpenAIRE

    Anand, Jessica P.; Porter-Barrus, Vanessa R.; Waldschmidt, Helen V.; Yeomans, Larisa; Pogozheva, Irina D.; Traynor, John R.; Mosberg, Henry I.

    2014-01-01

    Most opioid analgesics used in the treatment of pain are mu opioid receptor (MOR) agonists. While effective, there are significant drawbacks to opioid use, including the development of tolerance and dependence. However, the co-administration of a MOR agonist with a delta opioid receptor (DOR) antagonist slows the development of MOR-related side effects, while maintaining analgesia. We have previously reported a series of cyclic mixed efficacy MOR agonist/DOR antagonist ligands. Here we descri...

  8. Optimal control linear quadratic methods

    CERN Document Server

    Anderson, Brian D O

    2007-01-01

    This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the

  9. The Theory of Linear Prediction

    CERN Document Server

    Vaidyanathan, PP

    2007-01-01

    Linear prediction theory has had a profound impact in the field of digital signal processing. Although the theory dates back to the early 1940s, its influence can still be seen in applications today. The theory is based on very elegant mathematics and leads to many beautiful insights into statistical signal processing. Although prediction is only a part of the more general topics of linear estimation, filtering, and smoothing, this book focuses on linear prediction. This has enabled detailed discussion of a number of issues that are normally not found in texts. For example, the theory of vecto

  10. Practical approach to linear algebra

    CERN Document Server

    Choudhary, Prabhat

    2009-01-01

    ""Linear Algebra is the heart of applied science but there are divergent views concerning its meaning. The field of Linear Algebra is more beautiful and more fundamental than its rather dull name may suggest. More beautiful because it is full of powerful ideas that are quite unlike those normally emphasized in a linear algebra course in a mathematics department. Throughout the book the author follows the practice of first presenting required background material, which is then used to develop the results. The book is divided in ten chapters. Relevant material is included in each chapter from ot

  11. Control linear motor with DSP

    International Nuclear Information System (INIS)

    This book consists of control linear motor with DSP, which is composed of two parts. The title of the first part is control Algorithm and software with introduction and tracking controller, drive profile on decision of motion time, floating point DSP and quantization effect, motion override Algorithm and drive profile summary, design of digital controller on design for controller structure and analysis of PID control Loop and Motor turning, design for IIR digital filter and protocol structure for communication wit host. The second part describes control hardware, which mentions Linear motor and Amplifier, motor and power supply, DSP board and interface, control of Micro Linear Stepping Motor and conclusion.

  12. Cellular Automata Rules and Linear Numbers

    OpenAIRE

    Nayak, Birendra Kumar; Sahoo, Sudhakar; Biswal, Sagarika

    2012-01-01

    In this paper, linear Cellular Automta (CA) rules are recursively generated using a binary tree rooted at "0". Some mathematical results on linear as well as non-linear CA rules are derived. Integers associated with linear CA rules are defined as linear numbers and the properties of these linear numbers are studied.

  13. Homo sapiens natriuretic peptide precursor type C (NPPC) mRNA,partial cds and 3' UTR.

    OpenAIRE

    Landi, Stefano; Melaiu, Ombretta; Cabiati, Manuela; Landi, Debora; Caselli, Chiara; Prescimone, Tommaso; Giannessi, Daniela; Gemignani, Federica; Del Ry, Silvia

    2010-01-01

    LOCUS HQ419060 318 bp mRNA linear PRI 24-NOV-2010 DEFINITION Homo sapiens natriuretic peptide precursor type C (NPPC) mRNA, partial cds and 3' UTR. ACCESSION HQ419060 VERSION HQ419060.1 GI:312261407 KEYWORDS . SOURCE Homo sapiens (human) ORGANISM Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo. REFERENCE 1 (bases 1 to 318) AUTHORS Landi,S., Melaiu,O., Cabiati,M., Landi,D., C...

  14. Investigation of the antibacterial activity and the biosynthesis gene cluster of the peptide antibiotic feglymycin

    OpenAIRE

    Rausch, Saskia

    2012-01-01

    Feglymycin ist ein aus Streptomyces sp. DSM 11171 isoliertes, lineares 13mer-Peptid, das zu einem hohen Anteil aus den nicht-proteinogenen Aminosäuren Hpg (4-Hydroxyphenylglycine) und Dpg (3,5-Dihydroxyphenylglycine) besteht. Zudem besitzt es eine interessante, alternierende Abfolge von D- und L- Aminosäuren und strukturelle Ähnlichkeiten mit den Glycopeptiden der Vancomycin-Gruppe von Antibiotika und den Glycodepsipeptid-Antibiotika Ramoplanin und Enduracidin. Außerdem besitzt Feglymycin ein...

  15. Encapsulation of Enzymes and Peptides

    Science.gov (United States)

    Meesters, Gabrie M. H.

    A large part of formulated peptides and proteins, e.g., enzymes used as food ingredients, are formulated in a liquid form. Often, they are dissolved in water to which glycerol or sorbitol is added to reduce the water activity of the liquid, thus reducing the change of microbial growth. Still, there are reasons to formulate them in a solid form. Often, these reasons are stability, since a dry formulation is often much better than liquid formulations, and less transportation cost, since less mass is transported if one gets rid of the liquid; however, most of the times, the reason is that the product is mixed with a solid powder. Here, a liquid addition would lead to lump formation.

  16. Antimicrobial peptides of multicellular organisms

    Science.gov (United States)

    Zasloff, Michael

    2002-01-01

    Multicellular organisms live, by and large, harmoniously with microbes. The cornea of the eye of an animal is almost always free of signs of infection. The insect flourishes without lymphocytes or antibodies. A plant seed germinates successfully in the midst of soil microbes. How is this accomplished? Both animals and plants possess potent, broad-spectrum antimicrobial peptides, which they use to fend off a wide range of microbes, including bacteria, fungi, viruses and protozoa. What sorts of molecules are they? How are they employed by animals in their defence? As our need for new antibiotics becomes more pressing, could we design anti-infective drugs based on the design principles these molecules teach us?

  17. Antimicrobial peptides in the brain.

    Science.gov (United States)

    Su, Yanhua; Zhang, Kai; Schluesener, Hermann J

    2010-10-01

    Antimicrobial peptides (AMPs) are an evolutionarily conserved component of the innate immune system of many species. The brain is an immunologically privileged organ but can produce a robust immune response against pathogens and cell debris, promoting rapid and efficient clearance. AMPs may be critically involved in the innate immune system of the brain. Though the mechanisms of AMPs' action in the brain still need further elucidation, many studies have shown that AMPs are multifunctional molecules in the brain. In addition to antimicrobial action, they take part in congenital and adaptive immune reactions (immunoregulation), function as signaling molecules in tissue repair, inflammation and other important processes through different mechanisms, and they might, in addition, become diagnostic markers of brain disease.

  18. Linear Scleroderma and Neurological Complications

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-01-01

    Full Text Available Three patients with linear scleroderma en coup de sabre who presented with neurologic abnormalities before or concurrent with the dermatologic diagnosis are reported from the Medical College of Wisconsin, Milwaukee, WI.

  19. 1988 linear accelerator conference proceedings

    International Nuclear Information System (INIS)

    This report contains papers presented at the 1988 Linear Accelerator Conference. A few topics covered are beam dynamics; beam transport; superconducting components; free electron lasers; ion sources; and klystron research

  20. Linearity Testing of Photovoltaic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pinegar, S.; Nalley, D.; Emery, K.

    2006-01-01

    Photovoltaic devices are rated in terms of their power output or efficiency with respect to a specific spectrum, total irradiance, and temperature. In order to rate photovoltaic devices, a reference detector whose response is linear with total irradiance is needed. This procedure documents a procedure to determine if a detector is linear over the irradiance range of interest. Testing the short circuit current versus the total irradiance is done by illuminating a reference cell candidate with two lamps that are fitted with programmable filter wheels. The purpose is to reject nonlinear samples as determined by national and international standards from being used as primary reference cells. A calibrated linear reference cell tested by the two lamp method yields a linear result.

  1. CERN balances linear collider studies

    CERN Multimedia

    ILC Newsline

    2011-01-01

    The forces behind the two most mature proposals for a next-generation collider, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC) study, have been steadily coming together, with scientists from both communities sharing ideas and information across the technology divide. In a support of cooperation between the two, CERN in Switzerland, where most CLIC research takes place, recently converted the project-specific position of CLIC Study Leader to the concept-based Linear Collider Study Leader.   The scientist who now holds this position, Steinar Stapnes, is charged with making the linear collider a viable option for CERN’s future, one that could include either CLIC or the ILC. The transition to more involve the ILC must be gradual, he said, and the redefinition of his post is a good start. Though not very much involved with superconducting radiofrequency (SRF) technology, where ILC researchers have made significant advances, CERN participates in many aspect...

  2. Linear And Whorled Nevoid Hypermelanosis

    Directory of Open Access Journals (Sweden)

    Uppal Monica

    2003-01-01

    Full Text Available A case of linear and whorled nevoid hypermelanosis in a 7 month old infant is reported. In addition to the cutaneous findings he also had dextrocardia, mental retardation, high arched palate, simian crease, undescended testis and craniostenosis.

  3. Overdetermined Systems of Linear Equations.

    Science.gov (United States)

    Williams, Gareth

    1990-01-01

    Explored is an overdetermined system of linear equations to find an appropriate least squares solution. A geometrical interpretation of this solution is given. Included is a least squares point discussion. (KR)

  4. Ada Linear-Algebra Program

    Science.gov (United States)

    Klumpp, A. R.; Lawson, C. L.

    1988-01-01

    Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.

  5. Gyrokinetic linearized Landau collision operator

    DEFF Research Database (Denmark)

    Madsen, Jens

    2013-01-01

    The full gyrokinetic electrostatic linearized Landau collision operator is calculated including the equilibrium operator, which represents the effect of collisions between gyrokinetic Maxwellian particles. First, the equilibrium operator describes energy exchange between different plasma species...

  6. Non-linear Ultrasound Imaging

    DEFF Research Database (Denmark)

    Du, Yigang

    without iteration steps. The ASA is implemented in combination with Field II and extended to simulate the pulsed ultrasound fields. The simulated results from a linear array transducer are made by the ASA based on Field II, and by a released non-linear simulation program- Abersim, respectively....... The calculation speed of the ASA is increased approximately by a factor of 140. For the second harmonic point spread function the error of the full width is 1.5% at -6 dB and 6.4% at -12 dB compared to Abersim. To further investigate the linear and non-linear ultrasound fields, hydrophone measurements.......3% relative to the measurement from a 1 inch diameter transducer. A preliminary study for harmonic imaging using synthetic aperture sequential beamforming (SASB) has been demonstrated. A wire phantom underwater measurement is made by an experimental synthetic aperture real-time ultrasound scanner (SARUS...

  7. [New technology for linear colliders

    International Nuclear Information System (INIS)

    This report discusses the following topics on research of microwave amplifiers for linear colliders: Context in current microwave technology development; gated field emission for microwave cathodes; cathode fabrication and tests; microwave cathode design using field emitters; and microwave localization

  8. Linear isometries of Hardy spaces

    Institute of Scientific and Technical Information of China (English)

    Edoardo VESENTINI

    2008-01-01

    According to results established by DeLeeuw-Rudin-Wermer and by Forelli,all linear isometries of any Hardy space Hp (p ≥ 1,p ≠ 2) on the open unit disc △ of C are represented by weighted composition operators defined by inner functions on △.After reviewing (and completing when p = ∞) some of those results,the present report deals with a characterization of periodic and almost periodic semigroups of linear isometries of Hp.

  9. BILINEAR FORMS AND LINEAR CODES

    Institute of Scientific and Technical Information of China (English)

    高莹

    2004-01-01

    Abraham Lempel et al[1] made a connection between linear codes and systems of bilinear forms over finite fields. In this correspondence, a new simple proof of a theorem in [1] is presented; in addition, the encoding process and the decoding procedure of RS codes are simplified via circulant matrices. Finally, the results show that the correspondence between bilinear forms and linear codes is not unique.

  10. Functional linear regression with derivatives

    OpenAIRE

    Mas, André; Pumo, Besnik

    2006-01-01

    International audience We introduce a new model of linear regression for random functional inputs taking into account the first order derivative of the data. We propose an estimation method which comes down to solving a special linear inverse problem. Our procedure tackles the problem through a double and synchronized penalization. An asymptotic expansion of the mean square prevision error is given. The model and the method are applied to a benchmark dataset of spectrometric curves and com...

  11. LINEAR AND NONLINEAR SEMIDEFINITE PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Walter Gómez Bofill

    2014-12-01

    Full Text Available This paper provides a short introduction to optimization problems with semidefinite constraints. Basic duality and optimality conditions are presented. For linear semidefinite programming some advances by dealing with degeneracy and the semidefinite facial reduction are discussed. Two relatively recent areas of application are presented. Finally a short overview of relevant literature on algorithmic approaches for efficiently solving linear and nonlinear semidefinite programming is provided.

  12. Chaotic synchronization via linear controller

    Institute of Scientific and Technical Information of China (English)

    Chen Feng-Xiang; Zhang Wei-Dong

    2007-01-01

    A technical framework of constructing a linear controller for chaotic synchronization by utilizing the stability theory of cascade-connected system is presented. Based on the method developed in the paper, two simple and linear feedback controllers, as examples, are derived for the synchronization of Liu chaotic system and Duffing oscillator, respectively.This method is quite flexible in constructing a control law. Its effectiveness is also illustrated by the simulation results.

  13. Polarized Electrons for Linear Colliders

    CERN Document Server

    Clendenin, J E; Garwin, E L; Kirby, R E; Luh, D A; Maruyama, T; Prescott, C Y; Sheppard, J C; Turner, J; Prepost, R

    2005-01-01

    Future electron-positron linear colliders require a highly polarized electron beam with a pulse structure that depends primarily on whether the acceleration utilizes warm or superconducting rf structures. The International Linear Collider (ILC) will use cold structures for the main linac. It is shown that a dc-biased polarized photoelectron source such as successfully used for the SLC can meet the charge requirements for the ILC micropulse with a polarization approaching 90%.

  14. Explorative methods in linear models

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    2004-01-01

    The author has developed the H-method of mathematical modeling that builds up the model by parts, where each part is optimized with respect to prediction. Besides providing with better predictions than traditional methods, these methods provide with graphic procedures for analyzing different feat...... features in data. These graphic methods extend the well-known methods and results of Principal Component Analysis to any linear model. Here the graphic procedures are applied to linear regression and Ridge Regression....

  15. The linear-quadratic model

    International Nuclear Information System (INIS)

    Several letters discuss the short-comings of the use of the linear quadratic model in fractionated radiotherapy and the validity of the prediction of hyperfractionation as the operational strategy for most human tumours. Particular points discussed are the absence of a time factor in the linear quadratic model, corrections in regard to OER and the clinical implications of isoeffect relationships for normal tissue damage. (U.K.)

  16. Antimicrobial activity of human α-defensin 5 and its linear analogs: N-terminal fatty acylation results in enhanced antimicrobial activity of the linear analogs.

    Science.gov (United States)

    Mathew, Basil; Nagaraj, Ramakrishnan

    2015-09-01

    Human α-defensin 5 (HD5) exhibits broad spectrum antimicrobial activity and plays an important role in mucosal immunity of the small intestine. Although there have been several studies, the structural requirements for activity and mechanism of bacterial killing is yet to be established unequivocally. In this study, we have investigated the antimicrobial activity of HD5 and linear analogs. Cysteine deletions attenuated the antibacterial activity considerably. Candidacidal activity was affected to a lesser extent. Fatty acid conjugated linear analogs showed antimicrobial activity comparable activity to HD5. Effective surface charge neutralization of bacteria was observed for HD5 as compared to the non-fatty acylated linear analogs. Our results show that HD5 and non-fatty acylated linear analogs enter the bacterial cytoplasm without causing damage to the bacterial inner membrane. Although fatty acylated peptides exhibited antimicrobial activity comparable to HD5, their mechanism of action involved permeabilization of the Escherichia coli inner membrane. HD5 and analogs had the ability to bind plasmid DNA. HD5 had greater binding affinity to plasmid DNA as compared to the analogs. The three dimensional structure of HD5 favors greater interaction with the bacterial cell surface and also with DNA. Antibacterial activity of HD5 involves entry into bacterial cytoplasm and binding to DNA which would result in shut down of the bacterial metabolism leading to cell death. We show how a moderately active linear peptide derived from the α-defensin HD5 can be engineered to enhance antimicrobial activity almost comparable to the native peptide. PMID:26206286

  17. The novel amyloid-beta peptide aptamer inhibits intracellular amyloid-beta peptide toxicity

    Institute of Scientific and Technical Information of China (English)

    Xu Wang; Yi Yang; Mingyue Jia; Chi Ma; Mingyu Wang; Lihe Che; Yu Yang; Jiang Wu

    2013-01-01

    Amyloid β peptide binding alcohol dehydrogenase (ABAD) decoy peptide (DP) can competitively antagonize binding of amyloid β peptide to ABAD and inhibit the cytotoxic effects of amyloid β peptide. Based on peptide aptamers, the present study inserted ABAD-DP into the disulfide bond of human thioredoxin (TRX) using molecular cloning technique to construct a fusion gene that can express the TRX1-ABAD-DP-TRX2 aptamer. Moreover, adeno-associated virus was used to allow its stable expression. Immunofluorescent staining revealed the co-expression of the transduced fusion gene TRX1-ABAD-DP-TRX2 and amyloid β peptide in NIH-3T3 cells, indicating that the TRX1-ABAD-DP-TRX2 aptamer can bind amyloid β peptide within cells. In addition, cell morphology and MTT results suggested that TRX1-ABAD-DP-TRX2 attenuated amyloid β peptide-induced SH-SY5Y cell injury and improved cell viability. These findings confirmed the possibility of constructing TRX-based peptide aptamer using ABAD-DP. Moreover, TRX1-ABAD-DP-TRX2 inhibited the cytotoxic effect of amyloid β peptide.

  18. Interactions of Bio-Inspired Membranes with Peptides and Peptide-Mimetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael Sebastiano

    2015-08-01

    Full Text Available Via Dissipative Particle Dynamics (DPD and implicit solvent coarse-grained (CG Molecular Dynamics (MD we examine the interaction of an amphiphilic cell-penetrating peptide PMLKE and its synthetic counterpart with a bio-inspired membrane. We use the DPD technique to investigate the interaction of peptide-mimetic nanoparticles, or nanopins, with a three-component membrane. The CG MD approach is used to investigate the interaction of a cell-penetrating peptide PMLKE with single-component membrane. We observe the spontaneous binding and subsequent insertion of peptide and nanopin in the membrane by using CG MD and DPD approaches, respectively. In addition, we find that the insertion of peptide and nanopins is mainly driven by the favorable enthalpic interactions between the hydrophobic components of the peptide, or nanopin, and the membrane. Our study provides insights into the mechanism underlying the interactions of amphiphilic peptide and peptide-mimetic nanoparticles with a membrane. The result of this study can be used to guide the functional integration of peptide and peptide-mimetic nanoparticles with a cell membrane.

  19. Albumin-derived peptides efficiently reduce renal uptake of radiolabelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Vegt, Erik; Eek, Annemarie; Oyen, Wim J.G.; Gotthardt, Martin; Boerman, Otto C. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine (444), PO Box 9101, Nijmegen (Netherlands); Jong, Marion de [Erasmus Medical Centre, Department of Nuclear Medicine, Rotterdam (Netherlands)

    2010-02-15

    In peptide-receptor radionuclide therapy (PRRT), the maximum activity dose that can safely be administered is limited by high renal uptake and retention of radiolabelled peptides. The kidney radiation dose can be reduced by coinfusion of agents that competitively inhibit the reabsorption of radiolabelled peptides, such as positively charged amino acids, Gelofusine, or trypsinised albumin. The aim of this study was to identify more specific and potent inhibitors of the kidney reabsorption of radiolabelled peptides, based on albumin. Albumin was fragmented using cyanogen bromide and six albumin-derived peptides with different numbers of electric charges were selected and synthesised. The effect of albumin fragments (FRALB-C) and selected albumin-derived peptides on the internalisation of {sup 111}In-albumin, {sup 111}In-minigastrin, {sup 111}In-exendin and {sup 111}In-octreotide by megalin-expressing cells was assessed. In rats, the effect of Gelofusine and albumin-derived peptides on the renal uptake and biodistribution of {sup 111}In-minigastrin, {sup 111}In-exendin and {sup 111}In-octreotide was determined. FRALB-C significantly reduced the uptake of all radiolabelled peptides in vitro. The albumin-derived peptides showed different potencies in reducing the uptake of {sup 111}In-albumin, {sup 111}In-exendin and {sup 111}In-minigastrin in vitro. The most efficient albumin-derived peptide (peptide 6), was selected for in vivo testing. In rats, 5 mg of peptide 6 very efficiently inhibited the renal uptake of {sup 111}In-minigastrin, by 88%. Uptake of {sup 111}In-exendin and {sup 111}In-octreotide was reduced by 26 and 33%, respectively. The albumin-derived peptide 6 efficiently inhibited the renal reabsorption of {sup 111}In-minigastrin, {sup 111}In-exendin and {sup 111}In-octreotide and is a promising candidate for kidney protection in PRRT. (orig.)

  20. rapmad: Robust analysis of peptide microarray data

    Directory of Open Access Journals (Sweden)

    Rothermel Andrée

    2011-08-01

    Full Text Available Abstract Background Peptide microarrays offer an enormous potential as a screening tool for peptidomics experiments and have recently seen an increased field of application ranging from immunological studies to systems biology. By allowing the parallel analysis of thousands of peptides in a single run they are suitable for high-throughput settings. Since data characteristics of peptide microarrays differ from DNA oligonucleotide microarrays, computational methods need to be tailored to these specifications to allow a robust and automated data analysis. While follow-up experiments can ensure the specificity of results, sensitivity cannot be recovered in later steps. Providing sensitivity is thus a primary goal of data analysis procedures. To this end we created rapmad (Robust Alignment of Peptide MicroArray Data, a novel computational tool implemented in R. Results We evaluated rapmad in antibody reactivity experiments for several thousand peptide spots and compared it to two existing algorithms for the analysis of peptide microarrays. rapmad displays competitive and superior behavior to existing software solutions. Particularly, it shows substantially improved sensitivity for low intensity settings without sacrificing specificity. It thereby contributes to increasing the effectiveness of high throughput screening experiments. Conclusions rapmad allows the robust and sensitive, automated analysis of high-throughput peptide array data. The rapmad R-package as well as the data sets are available from http://www.tron-mz.de/compmed.

  1. Conus Peptides A Rich Pharmaceutical Treasure

    Institute of Scientific and Technical Information of China (English)

    Cheng-Zhong WANG; Cheng-Wu CHI

    2004-01-01

    Marine predatory cone snails (genus Conus) with over 500 species represent what is arguably the largest single genus of marine animals alive today. All Conus are venomous and utilize a complex mixture of Conus peptides to capture their preys and for other biological purposes. Each component of Conus peptides selectively targets a specific subtype of ion channels, neurotransmitter receptors or transporters.Owing to their diversity, more than 50,000 distinct active peptides are theoretically estimated in Conus venoms. These diversified toxins are generally categorized into several superfamilies and/or families based on their characteristic arrangements of cysteine residues and pharmacological actions. Some mechanisms underlying the remarkable diversity of Conus peptides have been postulated: the distinctive gene structure, gene duplication and/or allelic selection, genus speciation, and sophisticated expression pattern and posttranslational modification of these peptides. Due to their highly pharmacological potency and target selectivity, Conus peptides have attracted extensive attention with their potentials to be developed as new research tools in neuroscience field and as novel medications in clinic for pain, epilepsy and other neuropathic disorders. Several instructive lessons for our drug development could be also learnt from these neuropharmacological "expertises". Conus peptides comprise a rich resource for neuropharmacologists, and most of them await to be explored.

  2. C-Peptide and its intracellular signaling.

    Science.gov (United States)

    Hills, Claire E; Brunskill, Nigel J

    2009-01-01

    Although long believed to be inert, C-peptide has now been shown to have definite biological effects both in vitro and in vivo in diabetic animals and in patients with type 1 diabetes. These effects point to a protective action of C-peptide against the development of diabetic microvascular complications. Underpinning these observations is undisputed evidence of C-peptide binding to a variety of cell types at physiologically relevant concentrations, and the downstream stimulation of multiple cell signaling pathways and gene transcription via the activation of numerous transcription factors. These pathways affect such fundamental cellular processes as re-absorptive and/or secretory phenotype, migration, growth, and survival. Whilst the receptor remains to be identified, experimental data points strongly to the existence of a specific G-protein-coupled receptor for C-peptide. Of the cell types studied so far, kidney tubular cells express the highest number of C-peptide binding sites. Accordingly, C-peptide exerts major effects on the function of these cells, and in the context of diabetic nephropathy appears to antagonise the pathophysiological effects of major disease mediators such as TGFbeta1 and TNFalpha. Therefore, based on its cellular activity profile C-peptide appears well positioned for development as a therapeutic tool to treat microvascular complications in type 1 diabetes. PMID:20039003

  3. Novel pH-Sensitive Cyclic Peptides.

    Science.gov (United States)

    Weerakkody, Dhammika; Moshnikova, Anna; El-Sayed, Naglaa Salem; Adochite, Ramona-Cosmina; Slaybaugh, Gregory; Golijanin, Jovana; Tiwari, Rakesh K; Andreev, Oleg A; Parang, Keykavous; Reshetnyak, Yana K

    2016-01-01

    A series of cyclic peptides containing a number of tryptophan (W) and glutamic acid (E) residues were synthesized and evaluated as pH-sensitive agents for targeting of acidic tissue and pH-dependent cytoplasmic delivery of molecules. Biophysical studies revealed the molecular mechanism of peptides action and localization within the lipid bilayer of the membrane at high and low pHs. The symmetric, c[(WE)4WC], and asymmetric, c[E4W5C], cyclic peptides translocated amanitin, a polar cargo molecule of similar size, across the lipid bilayer and induced cell death in a pH- and concentration-dependent manner. Fluorescently-labelled peptides were evaluated for targeting of acidic 4T1 mammary tumors in mice. The highest tumor to muscle ratio (5.6) was established for asymmetric cyclic peptide, c[E4W5C], at 24 hours after intravenous administration. pH-insensitive cyclic peptide c[R4W5C], where glutamic acid residues (E) were replaced by positively charged arginine residues (R), did not exhibit tumor targeting. We have introduced a novel class of cyclic peptides, which can be utilized as a new pH-sensitive tool in investigation or targeting of acidic tissue. PMID:27515582

  4. Creating functional peptide architectures at interfaces

    Science.gov (United States)

    Tirrell, Matthew

    2001-03-01

    Short peptide sequences, derived from whole proteins, can be useful synthetic agents for conferring a specific biological function to a material surface. Their ability to do this depends on delivering them to the surface in a biologically recognizable form, that is in a spatial configuration that is not too different from that adopted by the peptide in the whole protein. Most functional proteins have secondary and tertiary levels of structure that are essential to their activities; peptides have simpler but no less important structures. In our work, we have focussed on peptides derived from extracellular matrix proteins. We have found that attaching synthetic lipid tails to peptides fragments gives them two very useful properties for surface modification. The hydrophobic tails give rise to a self-assembly capacity enabling these molecules to organize into membrane, monolayer and bilayer structures. Less expected is that this level of self-assembly induces a second level in the peptide headgroup. Peptides from alpha-helical and triple-helical regions of protein are induced by the lipid tails to form protein-like secondary structures and therefore to have more effective biological activity.

  5. Peptide design for antimicrobial and immunomodulatory applications.

    Science.gov (United States)

    Haney, Evan F; Hancock, Robert E W

    2013-11-01

    The increasing threat of antibiotic resistance in pathogenic bacteria and the dwindling supply of antibiotics available to combat these infections poses a significant threat to human health throughout the world. Antimicrobial peptides (AMPs) have long been touted as the next generation of antibiotics capable of filling the anti-infective void. Unfortunately, peptide-based antibiotics have yet to realize their potential as novel pharmaceuticals, in spite of the immense number of known AMP sequences and our improved understanding of their antibacterial mechanism of action. Recently, the immunomodulatory properties of certain AMPs have become appreciated. The ability of small synthetic peptides to protect against infection in vivo has demonstrated that modulation of the innate immune response is an effective strategy to further develop peptides as novel anti-infectives. This review focuses on the screening methods that have been used to assess novel peptide sequences for their antibacterial and immunomodulatory properties. It will also examine how we have progressed in our ability to identify and optimize peptides with desired biological characteristics and enhanced therapeutic potential. In addition, the current challenges to the development of peptides as anti-infectives are examined and the strategies being used to overcome these issues are discussed.

  6. Oxyopinins, large amphipathic peptides isolated from the venom of the wolf spider Oxyopes kitabensis with cytolytic properties and positive insecticidal cooperativity with spider neurotoxins.

    Science.gov (United States)

    Corzo, Gerardo; Villegas, Elba; Gómez-Lagunas, Froylan; Possani, Lourival D; Belokoneva, Olga S; Nakajima, Terumi

    2002-06-28

    Five amphipathic peptides with antimicrobial, hemolytic, and insecticidal activity were isolated from the crude venom of the wolf spider Oxyopes kitabensis. The peptides, named oxyopinins, are the largest linear cationic amphipathic peptides from the venom of a spider that have been chemically characterized at present. According to their primary structure Oxyopinin 1 is composed of 48 amino acid residues showing extended sequence similarity to the ant insecticidal peptide ponericinL2 and to the frog antimicrobial peptide dermaseptin. Oxyopinins 2a, 2b, 2c, and 2d have highly similar sequences. At least 27 out of 37 amino acid residues are conserved. They also show a segment of sequence similar to ponericinL2. Circular dichroism analyses showed that the secondary structure of the five peptides is essentially alpha-helical. Oxyopinins showed disrupting activities toward both biological membranes and artificial vesicles, particularly to those rich in phosphatidylcholine. Electrophysiological recordings performed on insect cells (Sf9) showed that the oxyopinins produce a drastic reduction of cell membrane resistance by opening non-selective ion channels. Additionally, a new paralytic neurotoxin named Oxytoxin 1 was purified from the same spider venom. It contains 69 amino acid residue cross-linked by five disulfide bridges. Application of mixtures containing oxyopinins and Oxytoxin 1 to insect larvae showed a potentiation phenomenon, by which an increase lethality effect is observed. These results suggest that the linear amphipathic peptides in spider venoms and neuropeptides cooperate to capture insects efficiently.

  7. Rational design and synthesis of altered peptide ligands based on human myelin oligodendrocyte glycoprotein 35-55 epitope: inhibition of chronic experimental autoimmune encephalomyelitis in mice.

    Science.gov (United States)

    Tselios, Theodore; Aggelidakis, Mihalis; Tapeinou, Anthi; Tseveleki, Vivian; Kanistras, Ioannis; Gatos, Dimitrios; Matsoukas, John

    2014-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease of the central nervous system and is an animal model of multiple sclerosis (MS). Although the etiology of MS remains unclear, there is evidence T-cell recognition of immunodominant epitopes of myelin proteins, such as the 35-55 epitope of myelin oligodendrocyte glycoprotein (MOG), plays a pathogenic role in the induction of chronic EAE. Cyclization of peptides is of great interest since the limited stability of linear peptides restricts their potential use as therapeutic agents. Herein, we have designed and synthesized a number of linear and cyclic peptides by mutating crucial T cell receptor (TCR) contact residues of the human MOG35-55 epitope. In particular, we have designed and synthesized cyclic altered peptide ligands (APLs) by mutating Arg41 with Ala or Arg41 and Arg46 with Ala. The peptides were synthesized in solid phase on 2-chlorotrityl chloride resin (CLTR-Cl) using the Fmoc/t-Bu methodology. The purity of final products was verified by RP-HPLC and their identification was achieved by ESI-MS. It was found that the substitutions of Arg at positions 41 and 46 with Ala results in peptide analogues that reduce the severity of MOG-induced EAE clinical symptoms in C57BL/6 mice when co-administered with mouse MOG35-55 peptide at the time of immunization. PMID:25375337

  8. Rational Design and Synthesis of Altered Peptide Ligands based on Human Myelin Oligodendrocyte Glycoprotein 35–55 Epitope: Inhibition of Chronic Experimental Autoimmune Encephalomyelitis in Mice

    Directory of Open Access Journals (Sweden)

    Theodore Tselios

    2014-11-01

    Full Text Available Experimental autoimmune encephalomyelitis (EAE is a demyelinating disease of the central nervous system and is an animal model of multiple sclerosis (MS. Although the etiology of MS remains unclear, there is evidence T-cell recognition of immunodominant epitopes of myelin proteins, such as the 35–55 epitope of myelin oligodendrocyte glycoprotein (MOG, plays a pathogenic role in the induction of chronic EAE. Cyclization of peptides is of great interest since the limited stability of linear peptides restricts their potential use as therapeutic agents. Herein, we have designed and synthesized a number of linear and cyclic peptides by mutating crucial T cell receptor (TCR contact residues of the human MOG35–55 epitope. In particular, we have designed and synthesized cyclic altered peptide ligands (APLs by mutating Arg41 with Ala or Arg41 and Arg46 with Ala. The peptides were synthesized in solid phase on 2-chlorotrityl chloride resin (CLTR-Cl using the Fmoc/t-Bu methodology. The purity of final products was verified by RP-HPLC and their identification was achieved by ESI-MS. It was found that the substitutions of Arg at positions 41 and 46 with Ala results in peptide analogues that reduce the severity of MOG-induced EAE clinical symptoms in C57BL/6 mice when co-administered with mouse MOG35–55 peptide at the time of immunization.

  9. Immunocytochemical and Immunohistochemical Staining with Peptide Antibodies.

    Science.gov (United States)

    Friis, Tina; Pedersen, Klaus Boberg; Hougaard, David; Houen, Gunnar

    2015-01-01

    Peptide antibodies are particularly useful for immunocytochemistry (ICC) and immunohistochemistry (IHC), where antigens may denature due to fixation of tissues and cells. Peptide antibodies can be made to any defined sequence, including unknown putative proteins and posttranslationally modified sequences. Moreover, the availability of large amounts of the antigen (peptide) allows inhibition/adsorption controls, which are important in ICC/IHC, due to the many possibilities for false-positive reactions caused by immunoglobulin Fc receptors, nonspecific reactions, and cross-reactivity of primary and secondary antibodies with other antigens and endogenous immunoglobulins, respectively. Here, simple protocols for ICC and IHC are described together with recommendations for appropriate controls.

  10. Cysteine-containing peptides having antioxidant properties

    Science.gov (United States)

    Bielicki, John K.

    2008-10-21

    Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.

  11. Asymmetric catalysis with short-chain peptides.

    Science.gov (United States)

    Lewandowski, Bartosz; Wennemers, Helma

    2014-10-01

    Within this review article we describe recent developments in asymmetric catalysis with peptides. Numerous peptides have been established in the past two decades that catalyze a wide variety of transformations with high stereoselectivities and yields, as well as broad substrate scope. We highlight here catalytically active peptides, which have addressed challenges that had thus far remained elusive in asymmetric catalysis: enantioselective synthesis of atropoisomers and quaternary stereogenic centers, regioselective transformations of polyfunctional substrates, chemoselective transformations, catalysis in-flow and reactions in aqueous environments.

  12. Linear and non-linear bias: predictions vs. measurements

    CERN Document Server

    Hoffmann, Kai; Gaztanaga, Enrique

    2016-01-01

    We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Accociating galaxies with dark matter haloes in the MICE Grand Challenge N-body simulation we directly measure the bias parameters by comparing the smoothed density fluctuations of halos and matter in the same region at different positions as a function of smoothing scale. Alternatively we measure the bias parameters by matching the probablility distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous articles using the same data. We find an overall variation of the linear bias measurements and predictions of $\\sim 5 \\%$ with respect to results from two-point corr...

  13. Transformation matrices between non-linear and linear differential equations

    Science.gov (United States)

    Sartain, R. L.

    1983-01-01

    In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.

  14. Peptides from milk proteins and their properties.

    Science.gov (United States)

    Kilara, Arun; Panyam, Dinakar

    2003-01-01

    This review has attempted to study the literature pertaining to peptides derived from milk proteins. Hydrolysis of milk proteins to generate peptides has been practiced for a long time and it was recognized early on in this process that the taste of hydrolyzates might hinder use of these products in food formulations. Modification of protein is necessary to form a more acceptable or utilizable product, to form a product that is less susceptible to deteriorative reactions and to form a product that is of higher nutritionall quality. Modifications may be achieved by a number of chemical and enzymatic means. This review has considered only enzymatic modification of dairy proteins. Modified proteins contain peptides and some of these peptides have been purified and their functionalities have been compared with unmodified proteins. This paper has examined the literature pertaining to improvement in functionality of enzyme-modified proteins. Improvements in solubility, emulsification, foaming and gelation were examined. There is limited information available on the sequence of the peptides necessary to improve the functional characteristics of proteins. Knowing the sequences of desirable functional peptides can lead to genetic alteration of proteins to improve functionality. Addition of synthetic peptides to intact proteins may be another way in which the functionality of proteins can be augmented. Some of the peptides in milk proteins are capable of affecting biological functions of an organism. These effects can be antimicrobial and probiotic, i.e., prevent the growth and proliferation of undesirable and pathogenic organisms, or they may promote the growth of desirable bacteria in the digestive tract of humans and animals. Peptides derived from milk protein have been shown to exert digestive and metabolic effects as well. They may also influence the immune system. These biological effects may play an important role in the development of medical foods that treat or

  15. Boundedness and closedness of linear relations

    OpenAIRE

    Shi, Yuming; Xu, Guixin; Ren, Guojing

    2016-01-01

    This paper studies boundedness and closedness of linear relations, which include both single-valued and multi-valued linear operators. A new (single-valued) linear operator induced by a linear relation is introduced, and its relationships with other two important induced linear operators are established. Several characterizations for closedness, closability, bundedness, relative boundedness, and boundedness from below (above) of linear relations are given in terms of their induced linear oper...

  16. Linear Programming建模研讨%Modeling of Linear Programming

    Institute of Scientific and Technical Information of China (English)

    宋占奎; 於全收; 范光; 燕嬿; 胡杰军

    2007-01-01

    研究用图解法、simplexmethod和匈牙利法建立Linear Programming的数学模型并求得了最优解.结果表明:对仅有两个变量的Linear Programming,既可通过图解法求得最优解;也可用单纯形表简便地求得最优解;而对任务和人数不等的assignment problem,则用匈牙利法求最优解.

  17. From Linear to Non-linear Supersymmetry via Functional Integration

    CERN Document Server

    Kallosh, Renata; Murli, Divyanshu

    2016-01-01

    We derive a complete pure de Sitter supergravity action with non-linearly realized supersymmetry and its rigid limit, the Volkov-Akulov action, from the corresponding models with linear supersymmetry, by computing the path integral in the limit of infinite sgoldstino mass. In this, we use a non-Gaussian functional integration formula that was recently discovered in a derivation of de Sitter supergravity from the superconformal theory. We also present explicit examples of pure dS supergravity and the case with one matter multiplet. These two simple examples serve as a test and a demo of the universal action formula valid for de Sitter supergravities with general matter coupling.

  18. A nanoscale linear-to-linear motion converter of graphene.

    Science.gov (United States)

    Dai, Chunchun; Guo, Zhengrong; Zhang, Hongwei; Chang, Tienchong

    2016-08-14

    Motion conversion plays an irreplaceable role in a variety of machinery. Although many macroscopic motion converters have been widely used, it remains a challenge to convert motion at the nanoscale. Here we propose a nanoscale linear-to-linear motion converter, made of a flake-substrate system of graphene, which can convert the out-of-plane motion of the substrate into the in-plane motion of the flake. The curvature gradient induced van der Waals potential gradient between the flake and the substrate provides the driving force to achieve motion conversion. The proposed motion converter may have general implications for the design of nanomachinery and nanosensors.

  19. Synthesis and Cell Adhesive Properties of Linear and Cyclic RGD Functionalized Polynorbornene Thin Films

    OpenAIRE

    Patel, Paresma R.; Kiser, Rosemary Conrad; Lu, Ying Y.; Fong, Eileen; Ho, Wilson C.; Tirrell, David A.; Grubbs, Robert H.

    2012-01-01

    Described herein is the efficient synthesis and evaluation of bioactive arginine-glycine-aspartic acid (RGD) functionalized polynorbornene-based materials for cell adhesion and spreading. Polynorbornenes containing either linear or cyclic RGD peptides were synthesized by ring-opening metathesis polymerization (ROMP) using the well-defined ruthenium initiator [(H_(2)IMes)(pyr)_(2)(Cl)_(2)Ru═CHPh]. The random copolymerization of three separate norbornene monomers allowed for the incorporation o...

  20. Determination of bovine lactoferrin in dairy products by ultra-high performance liquid chromatography–tandem mass spectrometry based on tryptic signature peptides employing an isotope-labeled winged peptide as internal standard

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingshun [Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051 (China); Lai, Shiyun [Beingmate Research Institute, Beingmate Baby and Child Food Co., Ltd., Hangzhou 310007 (China); Cai, Zengxuan [Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051 (China); Chen, Qi [Beingmate Research Institute, Beingmate Baby and Child Food Co., Ltd., Hangzhou 310007 (China); Huang, Baifen [Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051 (China); Ren, Yiping, E-mail: renyiping@263.net [Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051 (China)

    2014-06-01

    Highlights: • A UHPLC–MS/MS method for quantification of bovine lactoferrin was developed. • Tryptic fragment LRPVAAEIYGTK was chosen as signature peptide of bovine lactoferrin. • A winged peptide containing isotopically-labeled signature peptide was designed as internal standard. • The method for determining lactoferrin does not discriminate between the different forms of lactoferrin. • Meet the growing demand to quantify bovine lactoferrin in different dairy products. Abstract: A new and sensitive determination method was developed for bovine lactoferrin in dairy products including infant formulas based on the signature peptide by ultra high-performance liquid chromatography and triple-quadrupole tandem mass spectrometry under the multiple reaction monitoring mode. The simple pretreatment procedures included the addition of a winged peptide containing the isotope-labeled signature peptide as internal standard, followed by an enzymatic digestion with trypsin. The signature peptide was chosen and identified from the tryptic hydrolyzates of bovine lactoferrin by ultra high-performance liquid chromatography and quadrupole-time-of-flight tandem mass spectrometry based on sequence database search. Analytes were separated on an ACQUITY UPLC BEH 300 C18 column and monitored by MS/MS in seven minutes. Quantitative result bias due to matrix effect and tryptic efficiency was corrected through the use of synthetic isotope-labeled standards. The limit of detection and limit of quantification were 0.3 mg/100 g and 1.0 mg/100 g, respectively. Bovine lactoferrin within the concentration range of 10–1000 nmol L⁻¹ showed a strong linear relationship with a linear correlation coefficient (r) of >0.998. The intra- and inter-day precision of the method were RSD < 6.5% and RSD < 7.1%, respectively. Excellent repeatability (RSD < 6.4%) substantially supported the application of this method for the determination of bovine lactoferrin in dairy samples. The present method

  1. Screening of a specific peptide binding to VPAC1 receptor from a phage display peptide library.

    Directory of Open Access Journals (Sweden)

    Bo Tang

    Full Text Available BACKGROUND/PURPOSE: The VPAC1 receptor, a member of the vasoactive intestinal peptide receptors (VIPRs, is overexpressed in the most frequently occurring malignant tumors and plays a major role in the progression and angiogenesis of a number of malignancies. Recently, phage display has become widely used for many applications, including ligand generation for targeted imaging, drug delivery and therapy. In this work, we developed a panning procedure using a phage display peptide library to select a peptide that specifically binds to the VPAC1 receptor to develop a novel targeted probe for molecular imaging and therapy. METHODS: CHO-K1 cells stably expressing VPAC1 receptors (CHO-K1/VPAC1 cells were used to select a VPAC1-binding peptide from a 12-mer phage peptide library. DNA sequencing and homologous analysis of the randomly selected phage clones were performed. A cellular ELISA was used to determine the most selectively binding peptide for further investigation. Binding specificity to the VPAC1 receptor was analyzed by competitive inhibition ELISA and flow cytometry. The binding ability of the selected peptide to CHO-K1/VPAC1 cells and colorectal cancer (CRC cell lines was confirmed using fluorescence microscopy and flow cytometry. RESULTS: A significant enrichment of phages that specifically bound to CHO-K1/VPAC1 cells was obtained after four rounds of panning. Of the selected phage clones, 16 out of 60 shared the same peptide sequence, GFRFGALHEYNS, which we termed the VP2 peptide. VP2 and vasoactive intestinal peptide (VIP competitively bound to the VPAC1 receptor. More importantly, we confirmed that VP2 specifically bound to CHO-K1/VPAC1 cells and several CRC cell lines. CONCLUSION: Our results demonstrate that the VP2 peptide could specifically bind to VPAC1 receptor and several CRC cell lines. And VP2 peptide may be a potential candidate to be developed as a useful diagnostic molecular imaging probe for early detection of CRC.

  2. A Peptide & Peptide Nucleic Acid Synthesis Technology for Transporter Molecules and Theranostics - The SPPS

    OpenAIRE

    Pipkorn, Ruediger; Braun, Klaus; Wiessler, Manfred; Waldeck, Waldemar; Schrenk, Hans-Hermann; Koch, Mario; Semmler, Wolfhard; Komljenovic, Dorde

    2014-01-01

    Advances in imaging diagnostics using magnetic resonance tomography (MRT), positron emission tomography (PET) and fluorescence imaging including near infrared (NIR) imaging methods are facilitated by constant improvement of the concepts of peptide synthesis. Feasible patient-specific theranostic platforms in the personalized medicine are particularly dependent on efficient and clinically applicable peptide constructs. The role of peptides in the interrelations between the structure and functi...

  3. Collagen-like peptides and peptide-polymer conjugates in the design of assembled materials

    OpenAIRE

    Luo, Tianzhi; Kiick, Kristi L.

    2013-01-01

    Collagen is the most abundant protein in mammals, and there has been long-standing interest in understanding and controlling collagen assembly in the design of new materials. Collagen-like peptides (CLP), also known as collagen-mimetic peptides (CMP) or collagen-related peptides (CRP), have thus been widely used to elucidate collagen triple helix structure as well as to produce higher-order structures that mimic natural collagen fibers. This mini-review provides an overview of recent progress...

  4. A statistical approach to determining responses to individual peptides from pooled-peptide ELISpot data.

    Science.gov (United States)

    Ström, Peter; Støer, Nathalie; Borthwick, Nicola; Dong, Tao; Hanke, Tomáš; Reilly, Marie

    2016-08-01

    To investigate in detail the effect of infection or vaccination on the human immune system, ELISpot assays are used to simultaneously test the immune response to a large number of peptides of interest. Scientists commonly use "peptide pools", where, instead of an individual peptide, a test well contains a group of peptides. Since the response from a well may be due to any or many of the peptides in the pool, pooled assays usually need to be followed by confirmatory assays of a number of individual peptides. We present a statistical method that enables estimation of individual peptide responses from pool responses using the Expectation Maximization (EM) algorithm for "incomplete data". We demonstrate the accuracy and precision of these estimates in simulation studies of ELISpot plates with 90 pools of 6 or 7 peptides arranged in three dimensions and three Mock wells for the estimation of background. In analysis of real pooled data from 6 subjects in a HIV-1 vaccine trial, where 199 peptides were arranged in 80 pools if size 9 or 10, our estimates were in very good agreement with the results from individual-peptide confirmatory assays. Compared to the classical approach, we could identify almost all the same peptides with high or moderate response, with less than half the number of confirmatory tests. Our method facilitates efficient use of the information available in pooled ELISpot data to avoid or reduce the need for confirmatory testing. We provide an easy-to-use free online application for implementing the method, where on uploading two spreadsheets with the pool design and pool responses, the user obtains the estimates of the individual peptide responses. PMID:27196788

  5. Peptide Internalization Enabled by Folding: Triple Helical Cell-Penetrating Peptides

    OpenAIRE

    Shinde, Aparna; Feher, Katie M.; Hu, Chloe; Slowinska, Katarzyna

    2014-01-01

    Cell-Penetrating Peptides (CPPs) are known as efficient transporters of molecular cargo across cellular membranes. Their properties make them ideal candidates for in vivo applications. However, challenges in development of effective CPPs still exist: CPPs are often fast degraded by proteases and large concentration of CPPs required for cargo transporting can cause cytotoxicity. It was previously shown that restricting peptide flexibility can improve peptide stability against enzymatic degrada...

  6. Linear Minimum variance estimation fusion

    Institute of Scientific and Technical Information of China (English)

    ZHU Yunmin; LI Xianrong; ZHAO Juan

    2004-01-01

    This paper shows that a general mulitisensor unbiased linearly weighted estimation fusion essentially is the linear minimum variance (LMV) estimation with linear equality constraint, and the general estimation fusion formula is developed by extending the Gauss-Markov estimation to the random paramem of distributed estimation fusion in the LMV setting.In this setting ,the fused estimator is a weighted sum of local estimatess with a matrix quadratic optimization problem subject to a convex linear equality constraint. Second, we present a unique solution to the above optimization problem, which depends only on the covariance matrixCK. Third, if a priori information, the expectation and covariance, of the estimated quantity is unknown, a necessary and sufficient condition for the above LMV fusion becoming the best unbiased LMV estimation with dnown prior information as the above is presented. We also discuss the generality and usefulness of the LMV fusion formulas developed. Finally, we provied and off-line recursion of Ck for a class of multisensor linear systems with coupled measurement noises.

  7. Non-linear image processing

    International Nuclear Information System (INIS)

    Processing of nuclear medicine images is generally performed by essentially linear methods with the non-negativity condition being applied as the only non-linear process. The various methods used: matrix methods in signal space and Fourier or Hadamard transforms in frequency or sequency space are essentially equivalent. Further improvement in images can be obtained by the use of inherently non-linear methods. The recent development of an approximation to a least-difference method (as opposed to a least-square method) has led to an appreciation of the effects of data bounding and to the development of a more powerful process. Data bounding (modification of statistically improbable data values) is an inherently non-linear method with considerable promise. Strong bounding depending on two-dimensional least-squares fitting yields a reduction of mottling (buttermilk effect) not attainable with linear processes. A pre-bounding process removing very bad points is used to protect the strong bounding process from incorrectly modifying data points due to the weight of an extreme but yet unbounded point as the fitting area approaches it

  8. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis

    Science.gov (United States)

    Osberger, Thomas J.; Rogness, Donald C.; Kohrt, Jeffrey T.; Stepan, Antonia F.; White, M. Christina

    2016-09-01

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four ‘chiral pool’ amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  9. Determination of peptide content and purity of DOTA-peptides by metal ion titration and UPLC. An alternative method to monitor quality of DOTA-peptides

    International Nuclear Information System (INIS)

    PRRT requires high specific activities, thus at low molar ratio between DOTA-peptide and radioactivity. Therefore, the ingredients of the reaction, including (radio)metals and DOTA-peptide must be pure and the content known. Our aim was to quantify content and purity of DOTA-peptide by a base-to-base separation of DOTA-peptide and metal-DOTA-peptide by UPLC and UV-detection. Quantification of these peaks reveals an accurate and sensitive method to quantify purity and content of DOTA-peptides. Moreover, this technique enables monitoring of the (radio)labeling process and co-introduction of impurities, including metal ions. (author)

  10. Charge Transport Phenomena in Peptide Molecular Junctions

    Directory of Open Access Journals (Sweden)

    Alessandra Luchini

    2008-01-01

    Full Text Available Inelastic electron tunneling spectroscopy (IETS is a valuable in situ spectroscopic analysis technique that provides a direct portrait of the electron transport properties of a molecular species. In the past, IETS has been applied to small molecules. Using self-assembled nanoelectronic junctions, IETS was performed for the first time on a large polypeptide protein peptide in the phosphorylated and native form, yielding interpretable spectra. A reproducible 10-fold shift of the I/V characteristics of the peptide was observed upon phosphorylation. Phosphorylation can be utilized as a site-specific modification to alter peptide structure and thereby influence electron transport in peptide molecular junctions. It is envisioned that kinases and phosphatases may be used to create tunable systems for molecular electronics applications, such as biosensors and memory devices.

  11. Peptide binding specificity of the chaperone calreticulin

    DEFF Research Database (Denmark)

    Sandhu, N.; Duus, K.; Jorgensen, C.S.;

    2007-01-01

    Calreticulin is a molecular chaperone with specificity for polypeptides and N-linked monoglucosylated glycans. In order to determine the specificity of polypeptide binding, the interaction of calreticulin with polypeptides was investigated using synthetic peptides of different length and composit...

  12. Ribosomally synthesized peptides from natural sources.

    Science.gov (United States)

    Singh, Nidhi; Abraham, Jayanthi

    2014-04-01

    There are many antibiotic-resistant microbial pathogens that have emerged in recent years causing normal infections to become harder and sometimes impossible to treat. The major mechanisms of acquired resistance are the ability of the microorganisms to destroy or modify the drug, alter the drug target, reduce uptake or increase efflux of the drug and replace the metabolic step targeted by the drug. However, in recent years, resistant strains have been reported from almost every environment. New antimicrobial compounds are of major importance because of the growing problem of bacterial resistance, and antimicrobial peptides have been gaining a lot of interest. Their mechanism of action, however, is often obscure. Antimicrobial peptides are widespread and have a major role in innate immunity. An increasing number of peptides capable of inhibiting microbial growth are being reviewed here. In this article, we consider the possible use of antimicrobial peptides against pathogens.

  13. Evolution of Antimicrobial Peptides to Self-Assembled Peptides for Biomaterial Applications

    Directory of Open Access Journals (Sweden)

    Alice P. McCloskey

    2014-10-01

    Full Text Available Biomaterial-related infections are a persistent burden on patient health, recovery, mortality and healthcare budgets. Self-assembled antimicrobial peptides have evolved from the area of antimicrobial peptides. Peptides serve as important weapons in nature, and increasingly medicine, for combating microbial infection and biofilms. Self-assembled peptides harness a “bottom-up” approach, whereby the primary peptide sequence may be modified with natural and unnatural amino acids to produce an inherently antimicrobial hydrogel. Gelation may be tailored to occur in the presence of physiological and infective indicators (e.g. pH, enzymes and therefore allow local, targeted antimicrobial therapy at the site of infection. Peptides demonstrate inherent biocompatibility, antimicrobial activity, biodegradability and numerous functional groups. They are therefore prime candidates for the production of polymeric molecules that have the potential to be conjugated to biomaterials with precision. Non-native chemistries and functional groups are easily incorporated into the peptide backbone allowing peptide hydrogels to be tailored to specific functional requirements. This article reviews an area of increasing interest, namely self-assembled peptides and their potential therapeutic applications as innovative hydrogels and biomaterials in the prevention of biofilm-related infection.

  14. From a pro-apoptotic peptide to a lytic peptide: One single residue mutation.

    Science.gov (United States)

    Zhou, Xi-Rui; Zhang, Qiang; Tian, Xi-Bo; Cao, Yi-Meng; Liu, Zhu-Qing; Fan, Ruru; Ding, Xiu-Fang; Zhu, Zhentai; Chen, Long; Luo, Shi-Zhong

    2016-08-01

    Further discovery and design of new anticancer peptides are important for the development of anticancer therapeutics, and study on the detailed acting mechanism and structure-function relationship of peptides is critical for anticancer peptide design and application. In this study, a novel anticancer peptide ZXR-1 (FKIGGFIKKLWRSKLA) derived from a known anticancer peptide mauriporin was developed, and a mutant ZXR-2 (FKIGGFIKKLWRSLLA) with only one residue difference at the 14th position (Lys→Leu) was also engineered. Replacement of the lysine with leucine made ZXR-2 more potent than ZXR-1 in general. Even with only one residue mutation, the two peptides displayed distinct anticancer modes of action. ZXR-1 could translocate into cells, target on the mitochondria and induce cell apoptosis, while ZXR-2 directly targeted on the cell membranes and caused membrane lysis. The variance in their acting mechanisms might be due to the different amphipathicity and positive charge distribution. In addition, the two Ile-Leu pairs (3-10 and 7-14) in ZXR-2 might also play a role in improving its cytotoxicity. Further study on the structure-function relationship of the two peptides may be beneficial for the design of novel anticancer peptides and peptide based therapeutics. PMID:27207743

  15. Development of a capillary high performance liquid chromatography-ion trap-mass spectrometry method for the determination of VLIVP antihypertensive peptide in soybean crops.

    Science.gov (United States)

    Puchalska, Patrycja; García, M Concepción; Marina, M Luisa

    2014-04-18

    Soybean peptide VLIVP presents a very high antihypertensive activity (IC50 value 1.69μM), even higher than extensively studied IPP and VPP peptides from milk. Nevertheless, no much attention has been paid to this peptide and there is no method enabling its determination in soybeans. The aim of this work was the development of an analytical methodology for this purpose. A methodology consisting of the extraction of soybean proteins, their digestion with Protease P enzyme, their chromatographic separation using capillary-HPLC, and IT-MS detection was optimized. Protein extraction was performed by the use of high intensity focused ultrasounds to obtain a reduced extraction time. Optimization of chromatographic and mass spectrometry parameters enabled the separation of VLIVP peptide within just 7min and its sensitive detection. The analytical characteristics of the capillary-HPLC-IT-MS method were evaluated through the study of linearity, LOD, LOQ, study of the presence of matrix interferences, precision, and recovery. The method enabled to detect as low as 3.6ng of peptide and to determine as low as 12ng of peptide in 1g of soybean (as dry basis). Finally, the developed method was applied to the determination of the antihypertensive peptide VLIVP in different soybean varieties. The results showed the highest yield of VLIVP peptide in variety Mazowiecka II from Poland. PMID:24630980

  16. Characterization of a linear epitope on Chlamydia trachomatis serovar L2 DnaK-like protein

    DEFF Research Database (Denmark)

    Ozkokmen, D; Birkelund, Svend; Christiansen, Gunna

    1994-01-01

    A cytoplasmic 75-kDa immunogen from Chlamydia trachomatis serovar L2 has previously been characterized as being similar to the Escherichia coli heat shock protein DnaK. We have localized a linear epitope for one monoclonal antibody specific for C. trachomatis DnaK. By use of a recombinant DNA...... technique, the epitope was limited to 14 amino acids. With synthetic peptides, the epitope was further limited to eight amino acids. Six of these amino acids are conserved in bovine HSP70, which has a known three-dimensional structure. The amino acid sequence homologous to the epitope is located in a linear...

  17. Quantization via Linear homotopy types

    CERN Document Server

    Schreiber, Urs

    2014-01-01

    In the foundational logical framework of homotopy-type theory we discuss a natural formalization of secondary integral transforms in stable geometric homotopy theory. We observe that this yields a process of non-perturbative cohomological quantization of local pre-quantum field theory; and show that quantum anomaly cancellation amounts to realizing this as the boundary of a field theory that is given by genuine (primary) integral transforms, hence by linear polynomial functors. Recalling that traditional linear logic has semantics in symmetric monoidal categories and serves to formalize quantum mechanics, what we consider is its refinement to linear homotopy-type theory with semantics in stable infinity-categories of bundles of stable homotopy types (generalized cohomology theories) formalizing Lagrangian quantum field theory, following Nuiten and closely related to recent work by Haugseng and Hopkins-Lurie. For the reader interested in technical problems of quantization we provide non-perturbative quantizati...

  18. Topics in quaternion linear algebra

    CERN Document Server

    Rodman, Leiba

    2014-01-01

    Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses...

  19. Window observers for linear systems

    Directory of Open Access Journals (Sweden)

    Utkin Vadim

    2000-01-01

    Full Text Available Given a linear system x ˙ = A x + B u with output y = C x and a window function ω ( t , i.e., ∀ t , ω ( t ∈ {0,1 }, and assuming that the window function is Lebesgue measurable, we refer to the following observer, x ˆ = A x + B u + ω ( t L C ( x − x ˆ as a window observer. The stability issue is treated in this paper. It is proven that for linear time-invariant systems, the window observer can be stabilized by an appropriate design under a very mild condition on the window functions, albeit for linear time-varying system, some regularity of the window functions is required to achieve observer designs with the asymptotic stability. The corresponding design methods are developed. An example is included to illustrate the possible applications

  20. Uniqueness theorems in linear elasticity

    CERN Document Server

    Knops, Robin John

    1971-01-01

    The classical result for uniqueness in elasticity theory is due to Kirchhoff. It states that the standard mixed boundary value problem for a homogeneous isotropic linear elastic material in equilibrium and occupying a bounded three-dimensional region of space possesses at most one solution in the classical sense, provided the Lame and shear moduli, A and J1 respectively, obey the inequalities (3 A + 2 J1) > 0 and J1>O. In linear elastodynamics the analogous result, due to Neumann, is that the initial-mixed boundary value problem possesses at most one solution provided the elastic moduli satisfy the same set of inequalities as in Kirchhoffs theorem. Most standard textbooks on the linear theory of elasticity mention only these two classical criteria for uniqueness and neglect altogether the abundant literature which has appeared since the original publications of Kirchhoff. To remedy this deficiency it seems appropriate to attempt a coherent description ofthe various contributions made to the study of uniquenes...

  1. Scalar-tensor linear inflation

    CERN Document Server

    Artymowski, Michal

    2016-01-01

    We investigate two approaches to non minimally coupled gravity theories which present linear inflation as attractor solution: a) the scalar-tensor theory approach, where we look for a scalar-tensor theory that would restore results of linear inflation in the strong coupling limit for any form of the non-minimal coupling to gravity of the form of $f(\\varphi)R/2$; b) the particle physics approach, where we motivate the form of the Jordan frame potential by the loop corrections to the inflaton field. In both cases the Jordan frame potentials are modifications of the induced inflation, but instead of the Starobinsky attractor they lead to the linear inflation in the strong coupling limit.

  2. The linear multiplet and ectoplasm

    CERN Document Server

    Butter, Daniel; Novak, Joseph

    2012-01-01

    In the framework of the superconformal tensor calculus for 4D N=2 supergravity, locally supersymmetric actions are often constructed using the linear multiplet. We provide a superform formulation for the linear multiplet and derive the corresponding action functional using the ectoplasm method (also known as the superform approach to the construction of supersymmetric invariants). We propose a new locally supersymmetric action which makes use of a deformed linear multiplet. The novel feature of this multiplet is that it corresponds to the case of a gauged central charge using a one-form potential not annihilated by the central charge (unlike the standard N=2 vector multiplet). Such a gauge one-form can be chosen to describe a variant nonlinear vector-tensor multiplet. As a byproduct of our construction, we also find a variant realization of the tensor multiplet in supergravity where one of the auxiliaries is replaced by the field strength of a gauge three-form.

  3. Linearization: Geometric, Complex, and Conditional

    Directory of Open Access Journals (Sweden)

    Asghar Qadir

    2012-01-01

    Full Text Available Lie symmetry analysis provides a systematic method of obtaining exact solutions of nonlinear (systems of differential equations, whether partial or ordinary. Of special interest is the procedure that Lie developed to transform scalar nonlinear second-order ordinary differential equations to linear form. Not much work was done in this direction to start with, but recently there have been various developments. Here, first the original work of Lie (and the early developments on it, and then more recent developments based on geometry and complex analysis, apart from Lie’s own method of algebra (namely, Lie group theory, are reviewed. It is relevant to mention that much of the work is not linearization but uses the base of linearization.

  4. Linear programming foundations and extensions

    CERN Document Server

    Vanderbei, Robert J

    2001-01-01

    Linear Programming: Foundations and Extensions is an introduction to the field of optimization. The book emphasizes constrained optimization, beginning with a substantial treatment of linear programming, and proceeding to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. The book is carefully written. Specific examples and concrete algorithms precede more abstract topics. Topics are clearly developed with a large number of numerical examples worked out in detail. Moreover, Linear Programming: Foundations and Extensions underscores the purpose of optimization: to solve practical problems on a computer. Accordingly, the book is coordinated with free efficient C programs that implement the major algorithms studied: -The two-phase simplex method; -The primal-dual simplex method; -The path-following interior-point method; -The homogeneous self-dual methods. In addition, there are online JAVA applets that illustrate various pivot rules and variants of the simplex m...

  5. Bayes linear statistics, theory & methods

    CERN Document Server

    Goldstein, Michael

    2007-01-01

    Bayesian methods combine information available from data with any prior information available from expert knowledge. The Bayes linear approach follows this path, offering a quantitative structure for expressing beliefs, and systematic methods for adjusting these beliefs, given observational data. The methodology differs from the full Bayesian methodology in that it establishes simpler approaches to belief specification and analysis based around expectation judgements. Bayes Linear Statistics presents an authoritative account of this approach, explaining the foundations, theory, methodology, and practicalities of this important field. The text provides a thorough coverage of Bayes linear analysis, from the development of the basic language to the collection of algebraic results needed for efficient implementation, with detailed practical examples. The book covers:The importance of partial prior specifications for complex problems where it is difficult to supply a meaningful full prior probability specification...

  6. The linear multiplet and ectoplasm

    Science.gov (United States)

    Butter, Daniel; Kuzenko, Sergei M.; Novak, Joseph

    2012-09-01

    In the framework of the superconformal tensor calculus for 4D {N} = {2} super-gravity, locally supersymmetric actions are often constructed using the linear multiplet. We provide a superform formulation for the linear multiplet and derive the corresponding action functional using the ectoplasm method (also known as the superform approach to the construction of supersymmetric invariants). We propose a new locally supersymmetric action which makes use of a deformed linear multiplet. The novel feature of this multiplet is that it corresponds to the case of a gauged central charge using a one-form potential not annihilated by the central charge (unlike the standard {N} = {2} vector multiplet). Such a gauge one-form can be chosen to describe a variant nonlinear vector-tensor multiplet. As a byproduct of our construction, we also find a variant realization of the tensor multiplet in supergravity where one of the auxiliaries is replaced by the field strength of a gauge three-form.

  7. Gene Transfer with Poly-Melittin Peptides

    OpenAIRE

    Chen, Chang-Po; Kim, Ji-Seon; Steenblock, Erin; Liu, Dijie; Rice, Kevin G.

    2006-01-01

    The 26 amino acid hemolytic melittin peptide was converted into a gene transfer peptide that binds to DNA and polymerized through disulfide bond formation. Melittin analogues were synthesized by addition of one to four Lys repeats at either the C or N-subterminal end along with terminal Cys residues. Melittin analogues were able to bind and polymerize on plasmids resulting in the formation of DNA condensates. In the absence of DNA, melittin analogues retained their red blood cell hemolytic po...

  8. Bioactive peptides and proteins in disease

    OpenAIRE

    Refai, Essam

    2004-01-01

    Regulatory peptides and marker proteins are important to study in order to understand disease mechanisms. This applies of course also to our common diseases where all relationships are not yet known. Cancer and diabetes are two such complex diseases that affect hundreds of millions of people worldwide. This thesis addresses particular aspects of these two diseases, regarding one regulatory peptide (VIP, vasoactive intestinal polypeptide) that may be useful for tumor tracing ...

  9. Natriuretic peptides, obesity and cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Yaniel Castro-Torres

    2015-02-01

    Full Text Available Obesity, hypertension and heart failure are conditions commonly associated with each other. Recent investigations have demonstrated that low plasmatic levels of natriuretic peptides are linked with obesity. Thus, knowing the actions of these hormones in water and salt homeostasis, it is possible to establish that low levels of natriuretic peptides may be the common denominator among obesity, hypertension and heart failure. Knowledge on this topic is crucial to develop further investigation for definitive conclusions.

  10. Dietary fiber, gut peptides, and adipocytokines

    OpenAIRE

    Sánchez, David; Miguel, Marta; Aleixandre, Amaya

    2012-01-01

    The consumption of dietary fiber (DF) has increased since it was related to the prevention of a range of illnesses and pathological conditions. DF can modify some gut hormones that regulate satiety and energy intake, thus also affecting lipid metabolism and energy expenditure. Among these gut hormones are ghrelin, glucagon-like peptide 1, peptide YY, and cholecystokinin. Adipose tissue is known to express and secrete a variety of products known as >adipocytokines,> which are also affected by ...

  11. Peptide oligomers for holographic data storage

    DEFF Research Database (Denmark)

    Berg, Rolf Henrik; Hvilsted, Søren; Ramanujam, P.S.

    1996-01-01

    SEVERAL classes of organic materials (such as photoanisotropic liquid-crystalline polymers(1-4) and photorefractive polymers(5-7)) are being investigated for the development of media for optical data storage. Here we describe a new family of organic materials-peptide oligomers containing azobenze....... Straightforward extension of this peptide-based strategy to other molecular structures should allow the rational design of a wide range of organic materials with potentially useful optical properties....

  12. From antimicrobial to anticancer peptides. A review.

    OpenAIRE

    Diana eGaspar; A. Salomé eVeiga; Miguel A.R.B. eCastanho

    2013-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms. Although AMPs have been essentially studied and developed as potential alternatives for fighting infectious diseases, their use as anticancer peptides (ACPs) in cancer therapy either alone or in combination with other conventional drugs has been regarded as a therapeutic strategy to explore. As human cancer remains a cause of high morbidity and mortality worldwide, an urgent need of new, selective...

  13. Penyajian Integral dari Operator Non Linear

    OpenAIRE

    Budiman, Herdi; Sunusi, Nurtiti

    2004-01-01

    Fungsional linear kontinu pada suatu ruang fungsi dapat disajikan dengan suatu integral dan biasanya linear. Pada papaer ini akan diberikan penyajian integral dari suatu operator non linear, dengan cara mengkonstruksi integral non linear Henstock Kurzweil, fungsi f:[0,1] ---------> X, dengan X merupakan ruang Banach, dilanjutkan dengan penyajian integral dari operator non linear pada ruang C=C([0,1],X).

  14. Why quantum dynamics is linear

    International Nuclear Information System (INIS)

    A seed George planted 45 years ago is still producing fruit now. In 1961, George set out the fundamental proposition that quantum dynamics is described most generally by linear maps of density matrices. Since the first sprout from George's seed appeared in 1962, we have known that George's fundamental proposition can be used to derive the linear Schrodinger equation in cases where it can be expected to apply. Now we have a proof of George's proposition that density matrices are mapped linearly to density matrices, that there can be no nonlinear generalization of this. That completes the derivation of the linear Schrodinger equation. The proof of George's proposition replaces Wigner's theorem that a symmetry transformation is represented by a linear or antilinear operator. The assumption needed to prove George's proposition is just that the dynamics does not depend on anything outside the system but must allow the system to be described as part of a larger system. This replaces the physically less compelling assumption of Wigner's theorem that absolute values of inner products are preserved. The history of this question is reviewed. Nonlinear generalizations of quantum mechanics have been proposed. They predict small but clear nonlinear effects, which very accurate experiments have not seen. This begs the question. Is there a reason in principle why nonlinearity is not found? Is it impossible? Does quantum dynamics have to be linear? Attempts to prove this have not been decisive, because either their assumptions are not compelling or their arguments are not conclusive. The question has been left unsettled. The simple answer, based on a simple assumption, was found in two steps separated by 44 years.

  15. Physiologically-Relevant Modes of Membrane Interactions by the Human Antimicrobial Peptide, LL-37, Revealed by SFG Experiments

    Science.gov (United States)

    Ding, Bei; Soblosky, Lauren; Nguyen, Khoi; Geng, Junqing; Yu, Xinglong; Ramamoorthy, Ayyalusamy; Chen, Zhan

    2013-05-01

    Antimicrobial peptides (AMPs) could become the next generation antibiotic compounds which can overcome bacterial resistance by disrupting cell membranes and it is essential to determine the factors underlying its mechanism of action. Although high-resolution NMR and other biological studies have provided valuable insights, it has been a major challenge to follow the AMP-membrane interactions at physiologically-relevant low peptide concentrations. In this study, we demonstrate a novel approach to overcome this major limitation by performing Sum Frequency Generation (SFG) vibrational spectroscopic experiments on lipid bilayers containing an AMP, LL-37. Our results demonstrate the power of SFG to study non-linear helical peptides and also infer that lipid-peptide interaction and the peptide orientation depend on the lipid membrane composition. The observed SFG signal changes capture the aggregating process of LL-37 on membrane. In addition, our SFG results on cholesterol-containing lipid bilayers indicate the inhibition effect of cholesterol on peptide-induced membrane permeation process.

  16. Liquid-phase synthesis of bridged peptides using olefin metathesis of a protected peptide with a long aliphatic chain anchor.

    Science.gov (United States)

    Aihara, Keisuke; Komiya, Chiaki; Shigenaga, Akira; Inokuma, Tsubasa; Takahashi, Daisuke; Otaka, Akira

    2015-02-01

    Bridged peptides including stapled peptides are attractive tools for regulating protein-protein interactions (PPIs). An effective synthetic methodology in a heterogeneous system for the preparation of these peptides using olefin metathesis and hydrogenation of protected peptides with a long aliphatic chain anchor is reported.

  17. Affinity-based release of polymer-binding peptides from hydrogels with the target segments of peptides.

    Science.gov (United States)

    Serizawa, Takeshi; Fukuta, Hiroki; Date, Takaaki; Sawada, Toshiki

    2016-02-01

    Peptides with affinities for the target segments of polymer hydrogels were identified by biological screening using phage-displayed peptide libraries, and these peptides exhibited an affinity-based release capability from hydrogels. The results from cell culture assays demonstrated the sustained anticancer effects of the drug-conjugated peptides that were released from the hydrogels.

  18. Membrane manufacture for peptide separations

    KAUST Repository

    Kim, DooLi

    2016-06-07

    Nanostructured polymeric membranes are key tools in biomedical applications such as hemodialysis, protein separations, in the food industry, and drinking water supply from seawater. Despite of the success in different separation processes, membrane manufacture itself is at risk, since the most used solvents are about to be banned in many countries due to environmental and health issues. We propose for the first time the preparation of polyethersulfone membranes based on dissolution in the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM]DEP). We obtained a series of membranes tailored for separation of solutes with molecular weight of 30, 5, 1.3, and 1.25 kg mol-1 with respective water permeances of 140, 65, 30 and 20 Lm-2h-1bar-1. We demonstrate their superior efficiency in the separation of complex mixtures of peptides with molecular weights in the range of 800 to 3500 gmol-1. Furthermore, the thermodynamics and kinetics of phase separation leading to the pore formation in the membranes were investigated. The rheology of the solutions and the morphology of the prepared membranes were examed and compared to those of polyethersulfone in organic solvents currently used for membrane manufacture.

  19. Vanilla technicolor at linear colliders

    Science.gov (United States)

    Frandsen, Mads T.; Järvinen, Matti; Sannino, Francesco

    2011-08-01

    We analyze the reach of linear colliders for models of dynamical electroweak symmetry breaking. We show that linear colliders can efficiently test the compositeness scale, identified with the mass of the new spin-one resonances, until the maximum energy in the center of mass of the colliding leptons. In particular we analyze the Drell-Yan processes involving spin-one intermediate heavy bosons decaying either leptonically or into two standard model gauge bosons. We also analyze the light Higgs production in association with a standard model gauge boson stemming also from an intermediate spin-one heavy vector.

  20. Correct Linearization of Einstein's Equations

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2006-06-01

    Full Text Available Regularly Einstein's equations can be reduced to a wave form (linearly dependent from the second derivatives of the space metric in the absence of gravitation, the space rotation and Christoffel's symbols. As shown here, the origin of the problem is that one uses the general covariant theory of measurement. Here the wave form of Einstein's equations is obtained in the terms of Zelmanov's chronometric invariants (physically observable projections on the observer's time line and spatial section. The obtained equations depend on solely the second derivatives even if gravitation, the space rotation and Christoffel's symbols. The correct linearization proves: the Einstein equations are completely compatible with weak waves of the metric.