WorldWideScience

Sample records for 5x5 pwr rod

  1. Reflood Phenomena in a 5 x 5 Ballooned Rod Bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Jae; Kim, Jong Rok; Kim, Kihwan; Moon, S. K. [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Various experimental programs were carried out for the coolability of an assembly containing a partial blockage in a group of ballooned fuel rods under LOCA conditions. A review on these experimental programs is well documented in. One key distinguished feature of KAERI research activities is the consideration of local power increase owing to fuel relocation, whereas the past experimental program did not consider the effect of fuel relocation. The purpose of this study is to investigate the reflood phenomena in the partial blocked 5 x 5 rod bundle. A series of the forced reflood tests were performed with/without consideration of local power increase by fuel relocation. The experimental data were evaluated with numerical predictions using MARS code. The flow blockage alone has little effect on the peak wall temperature. However, the local power increase by fuel relocation affects considerably the peak wall temperature and the time period during which high wall temperatures continue.

  2. Reflood Phenomena in a 5 x 5 Ballooned Rod Bundle

    International Nuclear Information System (INIS)

    Various experimental programs were carried out for the coolability of an assembly containing a partial blockage in a group of ballooned fuel rods under LOCA conditions. A review on these experimental programs is well documented in. One key distinguished feature of KAERI research activities is the consideration of local power increase owing to fuel relocation, whereas the past experimental program did not consider the effect of fuel relocation. The purpose of this study is to investigate the reflood phenomena in the partial blocked 5 x 5 rod bundle. A series of the forced reflood tests were performed with/without consideration of local power increase by fuel relocation. The experimental data were evaluated with numerical predictions using MARS code. The flow blockage alone has little effect on the peak wall temperature. However, the local power increase by fuel relocation affects considerably the peak wall temperature and the time period during which high wall temperatures continue

  3. CFD Verification of 5x5 Rod Bundle with Mixing Vane Spacer Grids

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sungkew; Jang, Hyungwook; Lim, Jongseon; Park, Eungjun; Nahm, Keeyil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Results of the CHF test are used for determining the CHF correlation, which is used to evaluate the thermal margin in the reactor core. Computational fluid dynamics (CFD) has been used to save the time and cost for experimental tests, components design and complicated phenomena in all industries including the reactor coolant system. L. D. Smith et al. applied the CFD methodology in a 5x5 rod bundle with the mixing vane spacer grid using the renormalization group (RNG) k-epsilon model. This CFD model agreed reasonably well with the test data. M. E. Conner et al. conducted experiments to validate the CFD methodology for the single-phase flow conditions in PWR fuel assemblies. In this validation case, the CFD code predicted very similar flow field structures as the test data. In this study, a CFD simulation under single-phase flow condition was conducted for one specific condition in a thermal mixing flow test of 5x5 rod bundle with some mixing vane spacer grids. In this study, a CFD simulation under a single-phase flow condition was conducted for one specific condition in a thermal mixing flow test of 5x5 rod bundle with the mixing vane spacer grids to verify the applicability of the CFD model for predicting the outlet temperature distribution. FLUENT 14.5 Version was used in this CFD analysis. For the successful prediction of the wall bounded turbulent flows, the y+ with 3 prism layers was determined within 5. At this time, k-epsilon standard turbulence model was used. The temperature distribution of CFD for each sub-channel at the outlet region of test bundle showed the difference approximately within 1.1% and 0.2% while comparing to that of test and sub-channel analysis code, respectively.

  4. CFD Verification of 5x5 Rod Bundle with Mixing Vane Spacer Grids

    International Nuclear Information System (INIS)

    Results of the CHF test are used for determining the CHF correlation, which is used to evaluate the thermal margin in the reactor core. Computational fluid dynamics (CFD) has been used to save the time and cost for experimental tests, components design and complicated phenomena in all industries including the reactor coolant system. L. D. Smith et al. applied the CFD methodology in a 5x5 rod bundle with the mixing vane spacer grid using the renormalization group (RNG) k-epsilon model. This CFD model agreed reasonably well with the test data. M. E. Conner et al. conducted experiments to validate the CFD methodology for the single-phase flow conditions in PWR fuel assemblies. In this validation case, the CFD code predicted very similar flow field structures as the test data. In this study, a CFD simulation under single-phase flow condition was conducted for one specific condition in a thermal mixing flow test of 5x5 rod bundle with some mixing vane spacer grids. In this study, a CFD simulation under a single-phase flow condition was conducted for one specific condition in a thermal mixing flow test of 5x5 rod bundle with the mixing vane spacer grids to verify the applicability of the CFD model for predicting the outlet temperature distribution. FLUENT 14.5 Version was used in this CFD analysis. For the successful prediction of the wall bounded turbulent flows, the y+ with 3 prism layers was determined within 5. At this time, k-epsilon standard turbulence model was used. The temperature distribution of CFD for each sub-channel at the outlet region of test bundle showed the difference approximately within 1.1% and 0.2% while comparing to that of test and sub-channel analysis code, respectively

  5. Minimization of PWR reactor control rods wear

    International Nuclear Information System (INIS)

    The Rod Cluster Control Assemblies (RCCA's) of Pressurized Water Reactors (PWR's) have experienced a continuously wall cladding wear when Reactor Coolant Pumps (RCP's) are running. Fretting wear is a result of vibrational contact between RCCA rodlets and the guide cards which provide lateral support for the rodlets when RCCA's are withdrawn from the core. A procedure is developed to minimize the rodlets wear, by the shuffling and axial reposition of RCCA's every operating cycle. These shuffling and repositions are based on measurement of the rodlet cladding thickness of all RCCA's. (author). 3 refs, 2 figs, 2 tabs

  6. Minor actinide transmutation on PWR burnable poison rods

    International Nuclear Information System (INIS)

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing keff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR keff markedly. The PWR keff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  7. Fuel rod behavior of a PWR during load following

    International Nuclear Information System (INIS)

    The behavior of a PWR fuel rod when operating in normal power cycles, excluding in case of accidents, is analysed. A computer code, that makes the mechanical analysis of the cladding using the finite element method was developed. The ramps and power cycles were simulated suposing the existence of cracks in pellets when the cladding-pellet interaction are done. As a result, an operation procedure of the fuel rod in power cycle is recommended. (E.G.)

  8. Control rod for PWR type reactor

    International Nuclear Information System (INIS)

    Since a silver-indium-cadmium alloy has been used as the absorber for control rods, swelling due to neutron absorption has been caused. On the other hand, a stainless steel cladding tube for the absorber gradually reduces its outer diameter by the pressure of reactor coolants and neutron irradiation and causes contact during working life to often bring about cracking in the cladding tube. Then, the control rod is divided into two independent portions and joined by an intermediate end plug into a single rod, in which the upper portion is made free from pressure and the lower portion is pressurized. Further, a large gap is formed between the lower absorber and the lower cladding tube. Further, chromium or chromium carbide is coated to the outer surface of the upper cladding tube for improving the abrasion resistance. Thus, the cladding tube is made abrasion resistant and it is possible to prevent cracking in the cladding tube due to interaction between the tube and the absorber, inner presurization at the lower portion, reduced diameter for the absorber and the gap of the tube. (N.H.)

  9. Estimating PWR fuel rod failures throughout a cycle

    International Nuclear Information System (INIS)

    A fuel performance engineer requires good prediction models for fuel conditions to help assure that any fuel repair operation he may recommend for the next refueling outage will have a minimal impact on nuclear plant operation. For nearly two decades, simple equilibrium equations have been used to provide estimates of the number of failed fuel rods in a pressurized water reactor (PWR) core. The unknown parameter is the isotopic escape rate (upsilon), which is often assumed to be --1 X 10/sup -8//s for the release of /sup 131/I from a 3- to 4-m-long PWR rod. The use of this escape rate value will generally produce end-of-cycle (EOC) predictions that are accurate within a factor of --3. When applied at the time when fuel rods initially fail, such as early in a reactor cycle, however, the prediction obtained may overestimate the number of failed rods present by a factor of 10 or more. While a goal of Combustion Engineering's (C-E's) efforts on failed fuel prediction (FFP) models over the past decade has been to increase the accuracy of the EOC estimate, recent efforts have emphasized improving prediction capability for failed rods present early in a reactor cycle. The C-E approach to modeling iodine release from failed fuel rods is based on dynamic escape rate theory that is incorporated in the C-E IODYNE (for iodine dynamic evaluation) code. This theory has been empirically modified to account for specific observed time dependencies of the release rates for /sup 131/I and /sup 133/I from a failed rod. In a current version of IODYNE, four such factors have been included in the FFP model, as described in this paper

  10. SIVAR - Computer code for simulation of fuel rod behavior in PWR during fast transients

    International Nuclear Information System (INIS)

    Fuel rod behavior during a stationary and a transitory operation, is studied. A computer code aiming at simulating PWR type rods, was developed; however, it can be adapted for simulating other type of rods. A finite difference method was used. (E.G.)

  11. Delineamento (1/5 (5 x 5 x 5 em blocos Designs (1/5 (5 x 5 x 5 in blocks

    Directory of Open Access Journals (Sweden)

    Armando Conagin

    1982-01-01

    Full Text Available No presente trabalho, os tratamentos do delineamento fatorial fracionado (1/5 (5x5x5, obtido pela superposição de três quadrados latinos ortogonais, são colocados em cinco blocos, com a utilização de um quarto quadrado latino ortogonal. Um modelo quadrático em X foi usado para estudo da superfície de resposta, sendo considerados polinômios ortogonais linear e quadrático para cada um dos fatores e para blocos, uma vez que, em ensaios de campo, a maior parte do gradiente de fertilidade ou de outras causas sistemáticas pode ser eliminada com a estimação desses dois efeitos; foram ainda colocadas no modelo as interações lineares de dois fatores. Somente os efeitos lineares são estimados independentemente, e foram dadas, para cada fator e para blocos, as matrizes para cálculo dos efeitos quadráticos ajustados. Quando é eliminada do modelo uma das interações de dois fatores, o efeito quadrático do fator restante passa a ser estimado independentemente. Se o quarto índice for utilizado como outro fator, tem-se o delineamento (1/25 (5 x 5 x 5 x 5, completamente casualizado; este permite o estudo simultâneo de quatro fatores em cinco níveis, com apenas vinte e cinco pontos experimentais; o modelo contém efeitos lineares e quadráticos dos quatro fatores e as interações lineares desses fatores dois a dois. Se nos delineamentos (1/51 (5 x 5 x 5, divididos em cinco blocos, e (1/25 (5x5x5x5 completamente casualizado, todas as interações de dois fatores forem não-significativas, o modelo ficará só com os termos lineares e quadráticos puros, e estes poderão ser estimados independentemente, à semelhança do que ocorre com o (1/5 (5x5x5 completamente casualizado.Statistical solutions for quadratic and square root polynomials of second order for a group of (1/5 (5x5x5 fractional factorials when the design is completely randomized is briefly considered in this text. The extension of the fractional factorial (1/5 (5x5x5 to a type

  12. The effects of fission gas release on PWR fuel rod design and performance

    International Nuclear Information System (INIS)

    The purpose of this investigation was to determine the effects of fission gas release on PWR fuel rod design and performance. Empirical models were developed from fission gas release data. Fission gas release during normal operation is a function of burnup. There is little additional fission gas release during anticipated transients. The empirical models were used to evaluate Westinghouse fuel rod designs. It was determined that fission gas release is not a limiting parameter for obtaining rod average burnups in the range of 50 000 to 60 000 MWD/MTU. Fission gas release during anticipated transients has a negligible effect on the margins to rod design limits. (author)

  13. The effects of fission gas release on PWR fuel rod design and performance

    International Nuclear Information System (INIS)

    The purpose of this investigation was to determine the effects of fission gas release on PWR fuel rod design and performance. Empirical models were developed from fission gas release data. Fission gas release during normal operation is a function of burnup. There is little additional fission gas release during anticipated transients. The empirical models were used to evaluate Westinghouse fuel rod designs. It was determined that fission gas release is not a limiting parameter for obtaining rod average burnups in the range of 50,000 to 60,000 MWD/MTU. Fission gas release during anticipated transients has a negligible effect on the margins to rod design limits. (author)

  14. Pressure equalization system in PWR-fuel rods

    International Nuclear Information System (INIS)

    The pressure equalization system, developed on the basis of activated charcoal, is capable of reducing the internal pressure rise in fuel rods by adsorption of the fission gases. He-prepressure does not affect the system and Helium will not be adsorbed. Irradiation does not reduce the adsorption capacity of activated charcoal down to an unacceptable limit. Shaped activated charcoal is a suitable material which can be well defined and characterized. Feasible techniques of activating and assembling methods can be proposed. (orig.)

  15. INTERCOMPARISON OF RESULTS FOR A PWR ROD EJECTION ACCIDENT

    Energy Technology Data Exchange (ETDEWEB)

    DIAMOND,D.J.; ARONSON,A.; JO,J.; AVVAKUMOV,A.; MALOFEEV,V.; SIDOROV,V.; FERRARESI,P.; GOUIN,C.; ANIEL,S.; ROYER,M.E.

    1999-10-01

    This study is part of an overall program to understand the uncertainty in best-estimate calculations of the local fuel enthalpy during the rod ejection accident. Local fuel enthalpy is used as the acceptance criterion for this design-basis event and can also be used to estimate fuel damage for the purpose of determining radiological consequences. The study used results from neutron kinetics models in PARCS, BARS, and CRONOS2, codes developed in the US, the Russian Federation, and France, respectively. Since BARS uses a heterogeneous representation of the fuel assembly as opposed to the homogeneous representations in PARCS and CRONOS, the effect of the intercomparison was primarily to compare different intra-assembly models. Quantitative comparisons for core power, reactivity, assembly fuel enthalpy and pin power were carried out. In general the agreement between methods was very good providing additional confidence in the codes and providing a starting point for a quantitative assessment of the uncertainty in calculated fuel enthalpy using best-estimate methods.

  16. Water-side oxide layer thickness measurement of the irradiated PWR fuel rod by NDT method

    International Nuclear Information System (INIS)

    It has been known that water-side corrosion of fuel rods in nuclear reactor is accompanied with the loss of metallic wall thickness and pickup of hydrogen. This corrosion is one of the important limiting factors in the operating life of fuel rods. In connection with the fuel cladding corrosion, a device to measure the water-side oxide layer thickness by means of the eddy-current method without destructing the fuel rod was developed by KAERI. The device was installed on the multi-function testing bench in the nondestructive test hot-cell and its calibration was carried out successfully for the standard rod attached with plastic thin films whose thicknesses are predetermined. It shows good precision within about 10% error. And a PWR fuel rod, one of the J-44 assembly discharged from Kori nuclear power plant Unit-2, has been selected for oxide layer thickness measurements. With the result of data analysis, it appeared that the oxide layer thicknesses of Zircaloy cladding vary with the length of the fuel rod, and their thicknesses were compared with those of the destructive test results to confirm the real thicknesses

  17. The three-dimensional PWR transient code ANTI; rod ejection test calculation

    International Nuclear Information System (INIS)

    ANTI is a computer program being developed for three-dimensional coupled neutronics and thermal-hydraulics description of a PWR core under transient conditions. In this report a test example calculated by the program is described. The test example is a simulation of a control rod ejection from a very small reactor core (to save somputing time). In order to show the influence of cross flow between adjacent fuel elements the same calculation was performed both with the cross flow option and with closed hydraulic channels. (author)

  18. Research on Power Ramp Testing Method for PWR Fuel Rod at Research Reactor

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to develop high performance fuel assembly for domestic nuclear power plant, it is necessary to master some fundamental test technology. So the research on the power ramp testing methods is proposed. A tentative power ramp test for short PWR fuel rod has been conducted at the heavy water research reactor (HWRR) in China Institute of Atomic Energy (CIAE) in May of 2001. The in-pile test rig was placed into the central channel of the reactor . The test rig consists of pressure pipe assembly, thimble, solid neutron absorbing screen and its driving parts, etc.. The test

  19. Post-irradiation examination of a bowed PWR fuel rod with contact

    International Nuclear Information System (INIS)

    During reactor operation in the Ringhals 2 PWR a fuel rod bowed and as a result came in contact with an adjacent rod. The rod contact in one of the lower grid spans was observed during visual inspection at the end of life. The visual appearance suggested that there was possibly increased cladding corrosion on both the contacting rods at and close to the position of contact. One of the contacting rods was sent to Studsvik’s Hot Cell Laboratory for investigation where fission gas analysis, gamma scanning, EC oxide thickness, metallography (optical microscopy) and cladding microhardness measurements were performed in order to verify the impact of the bow and the contact on the fuel rod performance, with particular focus on the local cladding corrosion. The influence of the reduction of moderator in the region of the contact point was seen in the Cs-137 axial gamma scanning and in the Ce-144 rotational gamma scanning, which show a local reduction of both the pellet-average power, in the contact region, and specifically on the side with the contact. Visual inspection revealed increased corrosion in the rod-rod contact position. Metallographic examination of a cross-section at the elevation with the contact showed that increased corrosion and loss of material had occurred at the contact position. Outside of the immediate vicinity of the contact region the corrosion was not affected. The cladding microhardness was measured at different radial positions both at the contact position and at other positions around the cladding circumference. Based on the relationship between the microhardness and local temperature during operation on fully wetted cladding, it was possible to estimate the cladding surface temperature at the contact point to approximately 360°C. This local overheating and conditions arising from the local overheating can explain the higher local oxidation of the cladding observed in the visual inspection and metallography. (author)

  20. Composition and Distribution of Tramp Uranium Contamination on BWR and PWR Fuel Rods

    International Nuclear Information System (INIS)

    In a joint research project of VGB and AREVA NP GmbH the behaviour of alpha nuclides in nuclear power plants with light water reactors has been investigated. Understanding the source and the behaviour of alpha nuclides is of big importance for planning radiation protection measures for outages and upcoming dismantling projects. Previous publications have shown the correlation between plant specific alpha contamination of the core and the so called 'tramp fuel' or 'tramp uranium' level which is linked to the defect history of fuel assemblies and accordingly the amount of previously washed out fuel from defective fuel rods. The methodology of tramp fuel estimation is based on fission product concentrations in reactor coolant but also needs a good knowledge of tramp fuel composition and in-core distribution on the outer surface of fuel rods itself. Sampling campaigns of CRUD deposits of irradiated fuel assemblies in different NPPs were performed. CRUD analyses including nuclide specific alpha analysis have shown systematic differences between BWR and PWR plants. Those data combined with literature results of fuel pellet investigations led to model improvements showing that a main part of fission products is caused by fission of Pu-239 an activation product of U-238. CRUD investigations also gave a better picture of the in-core composition and distribution of the tramp uranium contamination. It was shown that the tramp uranium distribution in PWR plants is time dependent. Even new fuel assemblies will be notably contaminated after only one cycle of operation. For PWR applies the following logic: the higher the local power the higher the contamination. With increasing burnup the local rod power usually decreases leading to decreasing tramp uranium contamination on the fuel rod surface. This is not applicable for tramp uranium contamination in BWR. CRUD contamination (including the tramp fuel deposits) is much more fixed and is constantly increasing

  1. CFD Turbulence Study of PWR Spacer-Grids in a Rod Bundle

    Directory of Open Access Journals (Sweden)

    C. Peña-Monferrer

    2014-01-01

    the flow dynamics and heat transfer phenomena along the fuel rods. This work presents the analysis of the turbulence effects of a split-type and swirl-type spacer-grid geometries on single phase in a PWR (pressurized water reactor rod bundle. Various computational fluid dynamics (CFD calculations have been performed and the results validated with the experiments of the OECD/NEA-KAERI rod bundle CFD blind benchmark exercise on turbulent mixing in a rod bundle with spacers at the MATiS-H facility. Simulation of turbulent phenomena downstream of the spacer-grid presents high complexity issues; a wide range of length scales are present in the domain increasing the difficulty of defining in detail the transient nature of turbulent flow with ordinary turbulence models. This paper contains a complete description of the procedure to obtain a validated CFD model for the simulation of the spacer-grids. Calculations were performed with the commercial code ANSYS CFX using large eddy simulation (LES turbulence model and the CFD modeling procedure validated by comparison with measurements to determine their suitability in the prediction of the turbulence phenomena.

  2. Rod consolidation of RG and E's [Rochester Gas and Electric Corporation] spent PWR [pressurized water reactor] fuel

    International Nuclear Information System (INIS)

    The rod consolidation demonstration involved pulling the fuel rods from five fuel assemblies from Unit 1 of RG and E's R.E. Ginna Nuclear Power Plant. Slow and careful rod pulling efforts were used for the first and second fuel assemblies. Rod pulling then proceeded smoothly and rapidly after some minor modifications were made to the UST and D consolidation equipment. The compaction ratios attained ranged from 1.85 to 2.00 (rods with collapsed cladding were replaced by dummy rods in one fuel assembly to demonstrate the 2:1 compaction ratio capability). This demonstration involved 895 PWR fuel rods, among which there were some known defective rods (over 50 had collapsed cladding); no rods were broken or dropped during the demonstration. However, one of the rods with collapsed cladding unexplainably broke during handling operations (i.e., reconfiguration in the failed fuel canister), subsequent to the rod consolidation demonstration. The broken rod created no facility problems; the pieces were encapsulated for subsequent storage. Another broken rod was found during postdemonstration cutting operations on the nonfuel-bearing structural components from the five assemblies; evidence indicates it was broken prior to any rod consolidation operations. During the demonstration, burnish-type lines or scratches were visible on the rods that were pulled; however, experience indicates that such lines are generally produced when rods are pulled (or pushed) through the spacer grids. Rods with collapsed cladding would not enter the funnel (the transition device between the fuel assembly and the canister that aids in obtaining high compaction ratios). Reforming of the flattened areas of the cladding on those rods was attempted to make the rod cross sections more nearly circular; some of the reformed rods passed through the funnel and into the canister

  3. Nondestructive testing of PWR type fuel rods by eddy currents and metrology in the OSIRIS reactor pool

    International Nuclear Information System (INIS)

    The Saclay Reactor Department has developed a nondestructive test bench, now installed above channel 1 of the OSIRIS reactor. As part of investigations into the dynamics of PWR fuel degradation, a number of fuel rods underwent metrological and eddy current inspection, after irradiation

  4. Parametric Study of Control Rod Exposure for PWR Burnup Credit Criticality Safety Analyses

    International Nuclear Information System (INIS)

    The Interim Staff Guidance on burnup credit (ISG-8) for pressurized water reactor (PWR) spent nuclear fuel (SNF), issued by the Nuclear Regulatory Commission's (NRC) Spent Fuel Project Office, recommends the use of analyses that provide an ''adequate representation of the physics'' and notes particular concern with the ''need to consider the more reactive actinide compositions of fuels burned with fixed absorbers or with control rods fully or partly inserted.'' In the absence of readily available information on the extent of control rod (CR) usage in U.S. PWRs and the subsequent reactivity effect of CR exposure on discharged SNF, NRC staff have indicated a need for greater understanding in these areas. In response, this paper presents results of a parametric study of the effect of CR exposure on the reactivity of discharged SNF for various CR designs (including Axial Power Shaping Rods), fuel enrichments, and exposure conditions (i.e., burnup and axial insertion). The study is performed in two parts. In the first part, two-dimensional calculations are performed, effectively assuming full axial CR insertion. These calculations are intended to bound the effect of CR exposure and facilitate comparisons of the various CR designs. In the second part, three-dimensional calculations are performed to determine the effect of various axial insertion conditions and gain a better understanding of reality. The results from the study demonstrate that the reactivity effect increases with increasing CR exposure (e.g., burnup) and decreasing initial fuel enrichment (for a fixed burnup). Additionally, the results show that even for significant burnup exposures, minor axial CR insertions (e.g., eff of a spent fuel cask

  5. Temperature escalation in PWR fuel rod simulators due to the zircaloy/steam reaction: Tests ESSI-1,2,3

    International Nuclear Information System (INIS)

    This report discusses the test conduct, results, and posttest appearance of three scoping tests (ESSI-1,2,3) investigating temperature escalation in zircaloy clad fuel rods. The experiments are part of an out-of-pile program using electrically heated fuel rod simulators to investigate PWR fuel element behavior up to temperatures of 20000C. These experiments are part of the PNS Severe Fuel Damage Program. The temperature escalation is caused by the exothermal zircaloy/steam reaction, whose reaction rate increases exponentially with the temperature. The tests were performed using different initial oxide layers as a major parameter, obtained by varying the heatup rates and steam exposure times. (orig./RW)

  6. Reproducibility of heat transfer tests in a 5X5 bundle geometry

    International Nuclear Information System (INIS)

    This paper describes the repeatability and reliability of bundle heat transfer data obtained in a 5X5 PWR-type bundle subassembly operating at PWR conditions of interest. The 5X5 fuel bundle simulator, installed in the OMEGA-2 loop, is equipped with simple support grids, designed to have a low impact on the flow and heat transfer. The nine central heaters were equipped with the novel sliding thermocouple technique, capable of measuring the detailed axial and circumferential temperature distributions during single-phase and boiling heat transfer tests. In order to obtain highly accurate bundle heat transfer measurements, appropriate experimental procedures and in-situ calibrations of all essential instrumentation were employed. This includes (i) the employment of calibrated reference fluid temperature measurement devices, (ii) in-situ calibrations of fluid and heater-sheath thermocouples, (iii) calibration of heater wall thickness based on in-situ measurements, and (iv) selection of data that satisfy strict acceptance criteria. After applying these corrections and data screening criteria, the measurement accuracy and repeatability was assessed. This was done by means of three different tests: Single Phase Heat Transfer: The repeatability of heat transfer were assessed by comparing the measurements of two separate 5X5 bundles against the predictions from a Dittus-Boelter-type heat transfer correlation which provided very similar results. Also the single-phase heat transfer repeatability was assessed by performing several repeat runs and comparing results obtained on heaters in symmetric locations. Excellent repeatability was noted and the results for symmetric angular locations are almost identical; Boiling Tests: During the boiling heat transfer tests excellent repeatability and symmetry was observed. The saturation temperature (corresponding to the measured outlet temperature) was found to be in very good agreement with (i) the outlet temperature measured by the

  7. The Verification of Coupled Neutronics Thermal-Hydraulics Code NODAL3 in the PWR Rod Ejection Benchmark

    Directory of Open Access Journals (Sweden)

    Surian Pinem

    2014-01-01

    Full Text Available A coupled neutronics thermal-hydraulics code NODAL3 has been developed based on the few-group neutron diffusion equation in 3-dimensional geometry for typical PWR static and transient analyses. The spatial variables are treated by using a polynomial nodal method while for the neutron dynamic solver the adiabatic and improved quasistatic methods are adopted. In this paper we report the benchmark calculation results of the code against the OECD/NEA CRP PWR rod ejection cases. The objective of this work is to determine the accuracy of NODAL3 code in analysing the reactivity initiated accident due to the control rod ejection. The NEACRP PWR rod ejection cases are chosen since many organizations participated in the NEA project using various methods as well as approximations, so that, in addition to the reference solutions, the calculation results of NODAL3 code can also be compared to other codes’ results. The transient parameters to be verified are time of power peak, power peak, final power, final average Doppler temperature, maximum fuel temperature, and final coolant temperature. The results of NODAL3 code agree well with the PHANTHER reference solutions in 1993 and 1997 (revised. Comparison with other validated codes, DYN3D/R and ANCK, shows also a satisfactory agreement.

  8. Development of the ACP safeguards neutron counter for PWR spent fuel rods

    Science.gov (United States)

    Lee, Tae-Hoon; Menlove, Howard O.; Lee, Sang-Yoon; Kim, Ho-Dong

    2008-04-01

    An advanced neutron multiplicity counter has been developed for measuring spent fuel in the Advanced spent fuel Conditioning Process (ACP) at the Korea Atomic Energy Research Institute (KAERI). The counter uses passive neutron multiplicity counting to measure the 244Cm content in spent fuel. The input to the ACP process is spent fuel from pressurized water reactors (PWRs), and the high intensity of the gamma-ray exposure from spent fuel requires a careful design of the counter to measure the neutrons without gamma-ray interference. The nuclear safeguards for the ACP facility requires the measurement of the spent fuel input to the process and the Cm/Pu ratio for the plutonium mass accounting. This paper describes the first neutron counter that has been used to measure the neutron multiplicity distribution from spent fuel rods. Using multiple samples of PWR spent fuel rod-cuts, the singles (S), doubles (D), and triples (T) rates of the neutron distribution for the 244Cm nuclide were measured and calibration curves were produced. MCNPX code simulations were also performed to obtain the three counting rates and to compare them with the measurement results. The neutron source term was evaluated by using the ORIGEN-ARP code. The results showed systematic difference of 21-24% in the calibration graphs between the measured and simulation results. A possible source of the difference is that the burnup codes have a 244Cm uncertainty greater than ±15% and it would be systematic for all of the calibration samples. The S/D and D/T ratios are almost constant with an increment of the 244Cm mass, and this indicates that the bias is in the 244Cm neutron source calculation using the ORIGEN-ARP source code. The graphs of S/D and D/T ratios show excellent agreement between measurement and MCNPX simulation results.

  9. Nuclear Data Library Effects on Fast to Thermal Flux Shapes Around PWR Control Rod Tips

    Science.gov (United States)

    Vasiliev, A.; Ferroukhi, H.; Zhu, T.; Pautz, A.

    2014-04-01

    The development of a high-fidelity computational scheme to estimate the accumulated fluence at the tips of PWR control rods (CR) has been initiated at the Paul Scherrer Institut (PSI). Both the fluence from high-energy (E>1 MeV) neutrons as well as for the thermal range (Erod surfaces, especially for fully withdrawn CRs. In that case, the tip is located a short distance above the core/reflector interface and since this situation corresponds to a large part of reactor operation, the accumulated fluence will highly depend on the achieved calculation accuracy and precision in this non-fueled zone. The objective of the work presented in this paper is to quantify the influence of nuclear data on the calculated fluxes at the CR tips by (1) conducting a systematic comparison of modern neutron cross-section libraries, including JENDL-4.0, JEFF-3.1.1 and ENDF/B-VII.0, and (2) by quantifying the uncertainties in the neutron flux calculations with the help of available neutron cross-section variances/covariances data. For completeness, the magnitude of these nuclear data-based uncertainties is also assessed in relation to the influence from other typical sources of modeling uncertainties/biases.

  10. Modeling of the PWR fuel mechanical behaviour and particularly study of the pellet-cladding interaction in a fuel rod

    International Nuclear Information System (INIS)

    In Pressurized Water Reactor (PWR) power plants, fuel cladding constitutes the first containment barrier against radioactive contamination. Computer codes, developed with the help of a large experimental knowledge, try to predict cladding failures which must be limited in order to maintain a maximal safety level. Until now, fuel rod design calculus with unidimensional codes were adequate to prevent cladding failures in standard PWR's operating conditions. But now, the need of nuclear power plant availability increases. That leads to more constraining operating condition in which cladding failures are strongly influenced by the fuel rod mechanical behaviour, mainly at high power level. Then, the pellet-cladding interaction (PCI) becomes important, and is characterized by local effects which description expects a multidimensional modelization. This is the aim of the TOUTATIS 2D-3D code, that this thesis contributes to develop. This code allows to predict non-axisymmetric behaviour too, as rod buckling which has been observed in some irradiation experiments and identified with the help of TOUTATIS. By another way, PCI is influenced by under irradiation experiments and identified with the help of TOUTATIS which includes a densification model and a swelling model. The latter can only be used in standard operating conditions. However, the processing structure of this modulus provides the possibility to include any type of model corresponding with other operating conditions. In last, we show the result of these fuel volume variations on the cladding mechanical conditions. (author). 25 refs., 89 figs., 2 tabs., 12 photos., 5 appends

  11. A Calculation of the radioactivity induced in PWR cluster control rods with the origin and casmo codes

    International Nuclear Information System (INIS)

    The radioactivity induced in PWR cluster control rods during reactor operation has been calculated using the computer programme ORIGEN. Neutron fluxes and spectrum conditions as well as the strongly shielded cross sections for the absorber materials Ag, In and Cd have been obtained by running the cell and assembly code CASMO for a couple of typical cases. The results show that Ag-110m, Fe-55 and Co-60 give the largest activity contributions in the interval 1-10 years after the end of irradiation, and Ni-63 and Cd-113m in a longer time perspective. (author)

  12. Post test investigation of the single rod tests ESSI 1-11 on temperature escalation in PWR fuel rod simulators due to the Zircaloy/steam reaction

    International Nuclear Information System (INIS)

    This KfK-report describes the posttest investigation of the single rod tests ESSI-1 to ESSI-11. The objective of these tests was to investigate the temperature escalation behaviour of Zircaloy clad PWR-fuel rods in steam. The investigation of the temperature escalation is part of the program of out-of-pile experiments (CORA) performed within the frame work of the PNS Severe Fuel Damage Program. The experimental arrangement consisted of fuel rod simulator (central tungsten heater, UO2 ring pellets and Zircaloy cladding), Zircaloy shroud and fiber ceramic insulation. The introductory test ESSI-1 to ESSI-3 were scoping tests designed to obtain information on the temperature escalation of zircaloy in steam. ESSI-4 to ESSI-8 were run with increasing heating rates to investigate the influence of the oxide layer thickness at the start of the escalation. ESSI-9 to ESSI-11 were performed to investigate the influence of the insulation thickness on the escalation behaviour. In these tests we also learned that the gap between removed shroud and insulation has a remarkable influence due to heat removal by convection in the gap. After the test the fuel rod simulator was embedded into epoxy and cut by a diamond saw. The cross sections were photographed and investigated by metalograph microscope, SEM and EMP examinations. (orig./GL)

  13. Study of transient heat transfer in a fuel rod 3D, in a situation of unplanned shutdown of a PWR

    Energy Technology Data Exchange (ETDEWEB)

    Affonso, Renato Raoni Werneck; Martins, Rodolfo Ienny; Sampaio, Paulo Augusto Berquo de; Moreira, Maria de Lourdes, E-mail: raoniwa@yahoo.com.br, E-mail: rodolfoienny@gmail.com, E-mail: sampaio@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The study, in situations involving accidents, of heat transfer in fuel rods is of known importance, since it can be used to predict the temperature limits in designing a nuclear reactor, to assist in making more efficient fuel rods, and to increase the knowledge about the behavior of the reactor's components, a crucial aspect for safety analysis. This study was conducted using as parameter the fuel rod that has the highest average power in a typical PWR reactor. For this, we developed a program (Fuel{sub R}od{sub 3}D) in Fortran language using the Finite Elements Method (FEM) for the discretization of a fuel rod and coolant channel, in order to study the temperature distribution in both the fuel rod and the coolant channel. Transient parameters were coupled to the heat transfer equations in order to obtain details of the behavior of the rod and the channel, which allows the analysis of the temperature distribution and its change over time. This work aims to present a study case of an accident where there is a lack of energy in the reactor's coolant pumps and in the diesel engines, resulting in an unplanned shutdown of the reactor. In order to achieve the intended goal, the present work was divided as follows: a short introduction about heat transfer, including the equations concerning the fuel rod and the energy equation in the channel, an explanation about how the verification of the Fuel{sub R}od{sub 3}D program was made, and the analysis of the results. (author)

  14. PWR FLECHT SEASET 163-Rod Bundle Flow Blockage Task data report. NRC/EPRI/Westinghouse report No. 13, August-October 1982

    Energy Technology Data Exchange (ETDEWEB)

    Loftus, M J; Hochreiter, L E; McGuire, M F; Valkovic, M M

    1983-10-01

    This report presents data from the 163-Rod Bundle Blow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Systems Effects and Separate Effects Test Program (FLECHT SEASET). The task consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. These tests were designed to determine effects of flow blockage and flow bypass on reflooding behavior and to aid in the assessment of computational models in predicting the reflooding behavior of flow blockage in rod bundle arrays.

  15. PWR FLECHT SEASET 163-Rod Bundle Flow Blockage Task data report. NRC/EPRI/Westinghouse report No. 13, August-October 1982

    International Nuclear Information System (INIS)

    This report presents data from the 163-Rod Bundle Blow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Systems Effects and Separate Effects Test Program (FLECHT SEASET). The task consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. These tests were designed to determine effects of flow blockage and flow bypass on reflooding behavior and to aid in the assessment of computational models in predicting the reflooding behavior of flow blockage in rod bundle arrays

  16. Process development and fabrication for sphere-pac fuel rods. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Welty, R.K.; Campbell, M.H.

    1981-06-01

    Uranium fuel rods containing sphere-pac fuel have been fabricated for in-reactor tests and demonstrations. A process for the development, qualification, and fabrication of acceptable sphere-pac fuel rods is described. Special equipment to control fuel contamination with moisture or air and the equipment layout needed for rod fabrication is described and tests for assuring the uniformity of the fuel column are discussed. Fuel retainers required for sphere-pac fuel column stability and instrumentation to measure fuel column smear density are described. Results of sphere-pac fuel rod fabrication campaigns are reviewed and recommended improvements for high throughput production are noted.

  17. Porous Media Approach of a CFD Code to Analyze a PWR Component with Tube or Rod Bundles

    International Nuclear Information System (INIS)

    This paper presents a strategy to innovate CFD code into a PWR component analysis code. A porous media approach is adapted to two-fluid model and conductor model, and a pack of constitutive relations to close the numerical model into component analysis code. The separate verification calculations on open media, conductor model and porous media approach are introduced. Based on the CUPID code, the component analysis code has been developed. For porous media model, constitutive correlations of a two-phase flow regime map, interfacial area, interfacial heat and mass transfer, interfacial drag, wall friction, wall heat transfer and heat partitioning in flows through tube or rod bundles are added. Separate calculations were also conducted to verify the developed code

  18. Study for on-line system to identify inadvertent control rod drops in PWR reactors using ex-core detector and thermocouple measures

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Thiago J.; Medeiros, Jose A.C.C.; Goncalves, Alessandro C., E-mail: tsouza@nuclear.ufrj.br, E-mail: canedo@lmp.ufrj.br, E-mail: alessandro@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    Accidental control rod drops event in PWR reactors leads to an unsafe operating condition. It is important to quickly identify the rod to minimize undesirable effects in such a scenario. In this event, there is a distortion in the power distribution and temperature in the reactor core. The goal of this study is to develop an on-line model to identify the inadvertent control rod dropped in PWR reactor. The proposed model is based on physical correlations and pattern recognition of ex-core detector responses and thermocouples measures. The results of the study demonstrated the feasibility of an on-line system, contributing to safer operation conditions and preventing undesirable effects, as its shutdown. (author)

  19. Development of dynamic control rod reactivity measurement methodology and computer code system for PWR

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Quun; Lee, Chung Chan; Song, Jae Seung [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-09-01

    In order to apply dynamic control rod reactivity measurement (DCRM) method to domestic nuclear power reactor, the methodology of EPRC, 'Dynamic Reactivity Measurement of Rod Worth', was reviewed. It was also reviewed that items should be improve in three-dimensional kinetics code MASTER, which was developed by Korea Atomic Energy Research Institute, for use in DCRM. The validity of DORT two-dimensional synthesis method to calculate excore detector weighting factor were benchmarked via Yonggwang Unit 3 three-dimensional TORT calculation. The consistency of MASTER static core calculation results using neutron cross sections generated by commercial design tools PHENIX/ANC and DIT/ROCS were also verified via rodded and unrodded radial power distributions and control rod worth comparisons. 14 refs., 28 figs., 3 tabs. (Author)

  20. Water-side oxide layer thickness measurement of the irradiated PWR fuel rod by ECT method

    International Nuclear Information System (INIS)

    It has been known that water-side corrosion of fuel rods in nuclear reactor is accompanied with the metallic loss of wall thickness and hydrogen pickup in the fuel cladding tube. The fuel clad corrosion is one of the major factors to be controlled to maintain the fuel integrity during reactor operation. An oxide layer thickness measuring device equipped with ECT probe system was developed by KAERI, and whose performance test was carried out in NDT(Non-Destructive Test) hot-cell of PIE(Post Irradiation Examination) Facility. At first, the calibration/performance test was executed for the unirradiated standard specimen rod fabricated with several kinds of plastic thin films whose thickness were predetermined, and the result of which showed a good precision within 10% of discrepancy. And then, hot test was performed for the irradiated fuel rod selectively extracted from J44 fuel assembly discharged from Kori Unit-2. The data obtained with this device were compared with the metallographic results obtained from destructive examination in PIEF hot-cell on the same fuel rod to verify the validity of the measurement data. (author)

  1. New dynamic method to measure rod worths in zero power physics test at PWR startup

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E.K. [Korea Electric Power Research Institute, 103-16 Munji Yusung, Daejeon 305 380 (Korea, Republic of)]. E-mail: lek@kepri.re.kr; Shin, H.C. [Korea Electric Power Research Institute, 103-16 Munji Yusung, Daejeon 305 380 (Korea, Republic of); Bae, S.M. [Korea Electric Power Research Institute, 103-16 Munji Yusung, Daejeon 305 380 (Korea, Republic of); Lee, Y.K. [Korea Electric Power Research Institute, 103-16 Munji Yusung, Daejeon 305 380 (Korea, Republic of)

    2005-09-15

    To measure and validate the worth of control (or shutdown) bank in zero power physics test at PWRs, a dynamic control rod reactivity measurement (DCRM) technique has been developed and applied to six startups of Westinghouse plants as well as Korea Standard Nuclear power Plants based on the Combustion Engineering System 80 NSSS. With this technique, just one test bank is inserted into the bottom of the core at maximum stepping rate and withdrawn immediately to the all rod-out position. Specially designed inverse point kinetics equations are used to determine the test bank worth from the measured ex-core detector signals, which are controlled by the neutron-to-response conversion factor and the dynamic-to-static conversion factor. These two parameters are predetermined by the three-dimensional neutron adjoint flux distribution for both the top and bottom ex-core detector and the three-dimensional steady and transient core power distribution for test bank movement. To eliminate the gamma-ray effect on ex-core detector signals, a simple method, using reactivity curve characteristics, was also developed. To verify the DCRM method, a total of 28 bank worths of six different PWRs was measured by the DCRM and compared with those of conventional method. Results show that the DCRM method has a similar accuracy as the conventional technique. However, with the DCRM method, it only takes {approx}15 min per bank from the beginning of rod insertion to the determination of measured static worth. From its performance, one can conclude that the DCRM method is an effective replacement for the conventional rod worth measurement method.

  2. Analysis of a control rod ejection accident in a 900 MWe PWR recycling plutonium with a gray control mode

    International Nuclear Information System (INIS)

    This research thesis addresses the study of the control rod cluster ejection accident in a 900 MWe PWR recycling plutonium and operating in grey mode, a class-IV accident in the safety report, which results from the failure of the cluster mechanism pressure enclosure, and results in a quick introduction of a reactivity within the core, and then in a violent power transient during which fuel strength can be put into question again. Two aspects are thus notably addressed: plutonium recycling, and grey mode operation. The objective is to qualitatively and quantitatively assess the evolution of physical parameters during the accident in order to determine the most severe scenarios and to be able to assess the severity of consequences. The author first studies all possible scenarios by means of a 2D+1D+0D calculation scheme in order to determine the most penalizing ones. Then, he develops a precise calculation based on 3D steady calculations, neutron kinetics calculations and thermal kinetics calculations in order to study the previously retained scenarios

  3. A High Fidelity Multiphysics Framework for Modeling CRUD Deposition on PWR Fuel Rods

    Science.gov (United States)

    Walter, Daniel John

    Corrosion products on the fuel cladding surfaces within pressurized water reactor fuel assemblies have had a significant impact on reactor operation. These types of deposits are referred to as CRUD and can lead to power shifts, as a consequence of the accumulation of solid boron phases on the fuel rod surfaces. Corrosion deposits can also lead to fuel failure resulting from localized corrosion, where the increased thermal resistance of the deposit leads to higher cladding temperatures. The prediction of these occurrences requires a comprehensive model of local thermal hydraulic and chemical processes occurring in close proximity to the cladding surface, as well as their driving factors. Such factors include the rod power distribution, coolant corrosion product concentration, as well as the feedbacks between heat transfer, fluid dynamics, chemistry, and neutronics. To correctly capture the coupled physics and corresponding feedbacks, a high fidelity framework is developed that predicts three-dimensional CRUD deposition on a rod-by-rod basis. Multiphysics boundary conditions resulting from the coupling of heat transfer, fluid dynamics, coolant chemistry, CRUD deposition, neutron transport, and nuclide transmutation inform the CRUD deposition solver. Through systematic parametric sensitivity studies of the CRUD property inputs, coupled boundary conditions, and multiphysics feedback mechanisms, the most important variables of multiphysics CRUD modeling are identified. Moreover, the modeling framework is challenged with a blind comparison of plant data to predictions by a simulation of a sub-assembly within the Seabrook nuclear plant that experienced CRUD induced fuel failures. The physics within the computational framework are loosely coupled via an operator-splitting technique. A control theory approach is adopted to determine the temporal discretization at which to execute a data transfer from one physics to another. The coupled stepsize selection is viewed as a

  4. The development of flow test technology for PWR fuel assembly

    International Nuclear Information System (INIS)

    KAERI has an extensive program to develope PWR fuel assembly. In relation to the program, development of flow test technology is needed to evaluate the thermal hydraulic compactibility and mechanical integrity of domestically fabricated nuclear fuels. A high-pressure and high-temperature flow test facility was designed to test domestically fabricated fuel assembly. The test section of the facility has capacity of a 6x6 full length PWR fuel assembly. A flow test rig was designed and installed at Cold Test Loop to carry out model experiments with 5x5 rod assembly under atmosphere pressure to get information about the characteristics of pressure loss of spacer grids and velocity distribution in the subchannels. LDV measuring technology was established using TSI's Laser Dopper Velocimeter 9100-3 System

  5. Total evaluation of in bundle void fraction measurement test of PWR fuel assembly

    International Nuclear Information System (INIS)

    Nuclear Power Engineering Corporation is performing the various proof or verification tests on safety and reliability of nuclear power plants under the sponsorship of the Ministry of International Trade and Industry. As one program of these Japanese national projects, an in bundle void fraction measurement test of a pressurized water reactor (PWR) fuel assembly was started in 1987 and finished at the end of 1994. The experiments were performed using the 5 x 5 square array rod bundle test sections. The rod bundle test section simulates the partial section and full length of a 17 x 17 type Japanese PWR fuel assembly. A distribution of subchannel averaged void fraction in a rod bundle test section was measured by the gamma-ray attenuation method using the stationary multi beam systems. The additional single channel test was performed to obtain the required information for the calibration of the rod bundle test data and the assessment of the void prediction method. Three test rod bundles were prepared to analyze an axial power distribution effect, an unheated rod effect, and a grid spacer effect. And, the obtained data were used for the assessment of the void prediction method relevant to the subchannel averaged void fraction of PWR fuel assemblies. This paper describes the outline of the experiments, the evaluation of the experimental data and the assessment of void prediction method

  6. PWR rod ejection accident: uncertainty analysis on a high burn-up core configuration

    Energy Technology Data Exchange (ETDEWEB)

    Le Pallec, J.C.; Studer, E.; Royer, E. [CEA Saclay, Direction de l' Energie Nucleaire, Service d' Etudes de Reacteurs et de Modelisation Avancee (DEN/SERMA), 91 - Gif sur Yvette (France)

    2003-07-01

    With the increasing of the discharge burn-up assembly, the rod ejection accident (REA) methodology based on the analyse of the hot spot from a decoupling methods of calculation does not allow to ensure the respect of safety criteria. The main reason is that the irradiated fuel certainly less solicited thermally is in the other hand more sensitive to a transient due to a rod ejection. Thus, the hot spot is not necessarily the sensitive point of the core. In the framework of high burn-up configurations, a new methodology tends to replace the former. It characterizes by the use of a best-estimate 3-dimensional modelling: coupling of the thermal hydraulics and neutronics, taking in account fuel properties depending on irradiation. To ensure the conservatism of the modelling response, this new approach has to be followed by an uncertainties analysis. Inputs from the benchmark RIA TMI-1 conducted by IRSN (France), NRC (United State of America) and KI (Russian) are used to perform a first analysis. The response of the modelling is the enthalpy deposited in an assembly. The analysis is based on the Design of Experiments (DoE) that permits to measure the weight of the main parameters and their interactions on the response. These last cannot be disregarded because they represent up to 20% of the penalizing uncertainty. This study shows that the main fuel modifications due to irradiation (radial power distribution, thermal properties degradation) have to be taken into account in a realistic thermal modelling during a strong transient.

  7. Benchmark analysis of the NUREC code with OECD/NEA and U.S.NRC PWR MOX/UO{sub 2} control rod ejection problem

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Chul; Yoo, Jae Woon; Noh, Jae Man; Joo, Hyung Kook [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    The NUREC code has been developed based on the refined AFEN method for the analysis of LWR cores with mixed-oxide (MOX) fuel. The code was verified against the NEACRP-L336 MOX benchmark problem and the experimental data of YeongKwang Unit 3 and 4. The transient calculation capability of the code was also tested against the NEACRP-L335 rod ejection problem proposed by Finnemann. However, the core in the rod ejection problem was composed of only UO{sub 2} fuels. In this paper, the NUREC code was verified against the OECD/NEA and U.S.NRC PWR MOX/UO{sub 2} control rod ejection problem which was proposed recently by comparing its results with those of the U.S.NRC PARC code. This benchmark problem employed many characteristics of the NEACRP-L335 rod ejection problem but some complexities were added to model a rod ejection accident in a core fueled partially with weapons grade MOX. Some subroutines of the NUREC code were modified to model the transient initiated by a rod ejection in a core loaded with MOX fuels. They include subroutines for reading the cross sections, interpolating the cross sections, treating the delayed neutron fractions, and treating the thermal conductivity of the fuel.

  8. Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.

    2001-09-28

    The Interim Staff Guidance on burnup credit (ISG-8) issued by the United States Nuclear Regulatory Commission's (U.S. NRC) Spent Fuel Project Office recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommended restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. In the absence of readily available information on burnable poison rod (BPR) design specifications and usage in U.S. pressurized-water-reactors (PWRs), and the subsequent reactivity effect of BPR exposure on discharged spent nuclear fuel (SNF), NRC staff has indicated a need for additional information in these areas. In response, this report presents a parametric study of the effect of BPR exposure on the reactivity of SNF for various BPR designs, fuel enrichments, and exposure conditions, and documents BPR design specifications. Trends in the reactivity effects of BPRs are established with infinite pin-cell and assembly array calculations with the SCALE and HELIOS code packages, respectively. Subsequently, the reactivity effects of BPRs for typical initial enrichment and burnup combinations are quantified based on three-dimensional (3-D) KENO V.a Monte Carlo calculations with a realistic rail-type cask designed for burnup credit. The calculations demonstrate that the positive reactivity effect due to BPR exposure increases nearly linearly with burnup and is dependent on the number, poison loading, and design of the BPRs and the initial fuel enrichment. Expected typical reactivity increases, based on one-cycle BPR exposure, were found to be less than 1% {Delta}k. Based on the presented analysis, guidance is offered on an appropriate approach for calculating bounding SNF isotopic data for assemblies exposed to BPRs. Although the analyses do not address the issue of validation of depletion methods for assembly designs with BPRs

  9. Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit

    International Nuclear Information System (INIS)

    The Interim Staff Guidance on burnup credit (ISG-8) issued by the United States (U.S.) Nuclear Regulatory Commission's (NRC) Spent Fuel Project Office recommends restricting the use of burnup credit to assemblies that have not used burnable absorbers. This recommended restriction eliminates a large portion of the currently discharged spent fuel assemblies from cask loading, and thus severely limits the practical usefulness of burnup credit. In the absence of readily available information on burnable poison rod (BPR) design specifications and usage in U.S. pressurized water reactors (PWRs), and the subsequent reactivity effect of BPR exposure on discharged spent nuclear fuel (SNF), NRC staff has indicated a need for additional information in these areas. In response, this report presents a parametric study of the effect of BPR exposure on the reactivity of SNF for various BPR designs, fuel enrichments, and exposure conditions, and documents BPR design specifications. Trends in the reactivity effects of BPRs are established with infinite pin-cell and assembly array calculations with the SCALE and HELIOS code packages, respectively. Subsequently, the reactivity effects of BPRs for typical initial enrichment and burnup combinations are quantified based on three-dimensional (3-D) KENO V.a Monte Carlo calculations with a realistic rail-type cask designed for burnup credit. The calculations demonstrate that the positive reactivity effect due to BPR exposure increases nearly linearly with burnup and is dependent on the number, poison loading, and design of the BPRs and the initial fuel enrichment. Expected typical reactivity increases, based on one-cycle BPR exposure, were found to be less than 1% Δk. Based on the presented analysis, guidance is offered on an appropriate approach for calculating bounding SNF isotopic data for assemblies exposed to BPRs. Although the analyses do not address the issue of validation of depletion methods for assembly designs with BPRs, they

  10. Evaluation of the fuel rod integrity in PWR reactors from the spectrometric analysis of the primary coolant; Avaliacao da integridade de varetas combustiveis em reatores PWR a partir da analise espectrometrica da agua do primario

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Iara Arraes

    1999-02-15

    The main objective of this thesis is to provide a better comprehension of the phenomena involved in the transport of fission products, from the fuel rod to the coolant of a PWR reactor. To achieve this purpose, several steps were followed. Firstly, it was presented a description of the fuel elements and the main mechanisms of fuel rod failure, indicating the most important nuclides and their transport mechanisms. Secondly, taking both the kinetic and diffusion models for the transport of fission products as a basis, a simple analytical and semi-empirical model was developed. This model was also based on theoretical considerations and measurements of coolant's activity, according to internationally adopted methodologies. Several factors are considered in the modelling procedures: intrinsic factors to the reactor itself, factors which depend on the reactor's operational mode, isotope characteristic factors, and factors which depend on the type of rod failure. The model was applied for different reactor's operational parameters in the presence of failed rods. The main conclusions drawn from the analysis of the model's output are relative to the variation on the coolant's water activity with the fuel burnup, the linear operation power and the primary purification rate and to the different behaviour of iodine and noble gases. The model was saturated from a certain failure size and showed to be unable to distinguish between a single big fail and many small ones. (author)

  11. Calibration of the Naval Postgraduate School 3.5 x 5.0 academic wind tunnel

    OpenAIRE

    Nestor, Duane E.

    1990-01-01

    Approved for public release; distribution unlimited. The purpose of this thesis was to revitalize the Naval Postgraduate School's 3.5' x 5.0' academic wind tunnel. The wind tunnel had sustained previous damage to one of two sets of counter-rotating blades. Because of this change in configuration, a wind tunnel calibration was deemed necessary. Along with the calibration a digital data acquisition system was designed and implemented to aid in the data collection, storage and analysis for th...

  12. Experimental investigation of the enthalpy- and mass flow-distribution in 16-rod clusters with BWR-PWR-geometries and conditions

    International Nuclear Information System (INIS)

    The enthalpy- and mass-flow-distribution at the outlet of two different 16-rod cluster test sections with uniform heating in axial and radial direction under steady state conditions has been measured for the first time by simultaneous sampling of 5 from 6 present characteristic subchannels in the bundle using the isokinetic technique and analysing the outlet quantities by a calorimetic method. The test-sections are provided with typical geometrical configurations for BWR s (70 bars; test section PELCO-S) and PWR s (160 bars; test-section EUROP). The latter has also been tested under BWR conditions (70 bars) to study the influence of geometry and pressure. The results showed the abnormal behaviour of the corner subchannel under BWR typical conditions (70 bars) which could not be found for PWR conditions (160 bars) and which is only an effect of pressure and not of geometry. The analysis of the experimental data confirms the usefullness of the subchannel sampling technique for the better understanding of the complex thermohydraulic phenomena under two-phase flow conditions in multirod bundles. Calculations of subchannel resistance coefficients for both types of spacers under one-phase flow conditions have been made with a special sub-structure method which showed a rather high local value of the corner subchannel. With the local drag coefficents the total resistance of the spacer has been evaluated and agreed well with measured values under adiabatic conditions. The measured subchannel data permit a direct valuation and examination of respective computer codes in a fundamental manner which are, however, not subject of this report

  13. PWR FLECHT SEASET 21-rod-bundle flow-blockage task: data and analysis report. NRC/EPRI/Westinghouse report No. 11, main report and appendices A-J

    International Nuclear Information System (INIS)

    This report presents data and limited analysis from the 21-Rod Bundle Flow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Separate Effects and Systems Effects Test Program (FLECHT SEASET). The tests consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. Steam cooling and hydraulic characteristics tests were also conducted. These tests were utilized to determine effects of various flow blockage configurations (shapes and distributions) on reflooding behavior, to aid in development/assessment of computational models in predicting reflooding behavior of flow blockage configurations, and to screen flow blockage configurations for future 163-rod flow blockage bundle tests

  14. Effect of applied current on the formation of defect in PWR nuclear fuel rods in resistance pressure welding process

    International Nuclear Information System (INIS)

    The welding of zirconium alloy components is one of the most critical processes in the fabrication of nuclear fuel rods used in pressurized water reactors. For this, various welding processes, such as gas tungsten arc welding, electron beam welding, laser beam welding, and resistance pressure welding (RPW), are used around the world. In Korea, the RPW process is being used to fabricate nuclear fuel assembly fuel rods. This study investigated changes in the weldment shape owing to welding conditions such as welding current, welding force, and overlapping. The welding soundness of the weldment was evaluated by hydraulic burst test. The welding temperature of the weld zone was measured using a thermal infrared method. Discontinuous black spots in the weld line, regarded as a non-bonding defect, were confirmed as spots caused by the carbide precipitation of zirconium during welding. (author)

  15. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. On such package would store tightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97 degrees C and whether the cladding of the stored spent fuel ever exceeds 350 degrees C. Limiting the borehole to temperatures of 97 degrees C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350 degrees C cladding limit minimizes the possibility of creep- related failure in the spent fuel rod cladding. For a series of packages stored in a 8 x 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97 degrees C for the full 10000-yr analysis period. For the 4.74-kW load, the peak cladding temperature rises to just below the 350 degrees C limit about 4 years after emplacement. If the packages are stored using the spacing specified in the Site Characterization Plan (15 ft x 126 ft), a maximum of 4.1 kW per container may be stored. If the 0.05-m-thick void between the container and the borehole wall is filled with loosely packed bentonite, the peak cladding temperature rises more than 40 degrees C above the allowed cladding limit. In all cases the dominant heat transfer mode between container components is thermal radiation

  16. Uncertainty and Sensitivity of Neutron Kinetic Parameters in the Dynamic Response of a PWR Rod Ejection Accident Coupled Simulation

    Directory of Open Access Journals (Sweden)

    C. Mesado

    2012-01-01

    Full Text Available In nuclear safety analysis, it is very important to be able to simulate the different transients that can occur in a nuclear power plant with a very high accuracy. Although the best estimate codes can simulate the transients and provide realistic system responses, the use of nonexact models, together with assumptions and estimations, is a source of uncertainties which must be properly evaluated. This paper describes a Rod Ejection Accident (REA simulated using the coupled code RELAP5/PARCSv2.7 with a perturbation on the cross-sectional sets in order to determine the uncertainties in the macroscopic neutronic information. The procedure to perform the uncertainty and sensitivity (U&S analysis is a sampling-based method which is easy to implement and allows different procedures for the sensitivity analyses despite its high computational time. DAKOTA-Jaguar software package is the selected toolkit for the U&S analysis presented in this paper. The size of the sampling is determined by applying the Wilks’ formula for double tolerance limits with a 95% of uncertainty and with 95% of statistical confidence for the output variables. Each sample has a corresponding set of perturbations that will modify the cross-sectional sets used by PARCS. Finally, the intervals of tolerance of the output variables will be obtained by the use of nonparametric statistical methods.

  17. Study of heat transfer in a eccentric fuel rods in a non stop planned shutdown of a PWR type reactor; Estudo da transferencia de calor em uma vareta combustivel excentrica, num desligamento nao planejado de um reator do tipo PWR

    Energy Technology Data Exchange (ETDEWEB)

    Affonso, Renato Raoni Werneck; Lava, Deise Diana; Borges, Diogo da Silva; Sampaio, Paulo Augusto Berquo de; Moreira, Maria de Lourdes, E-mail: raoniwa@yahoo.com.br, E-mail: deisedy@gmail.com, E-mail: diogosb@outlook.com, E-mail: sampaio@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    This paper aims to conduct a case study in which the fuel pellets are displaced related to the center coating. Therefore, it will be addressed, first, the verification of computer code, comparing the results obtained with analytical solutions. This check is important so that, at a time later, you can use the program to know the fuel rod behavior and coolant channel.

  18. Automatic classification of unexploded ordnance applied to Spencer Range live site for 5x5 TEMTADS sensor

    Science.gov (United States)

    Sigman, John B.; Barrowes, Benjamin E.; O'Neill, Kevin; Shubitidze, Fridon

    2013-06-01

    This paper details methods for automatic classification of Unexploded Ordnance (UXO) as applied to sensor data from the Spencer Range live site. The Spencer Range is a former military weapons range in Spencer, Tennessee. Electromagnetic Induction (EMI) sensing is carried out using the 5x5 Time-domain Electromagnetic Multi-sensor Towed Array Detection System (5x5 TEMTADS), which has 25 receivers and 25 co-located transmitters. Every transmitter is activated sequentially, each followed by measuring the magnetic field in all 25 receivers, from 100 microseconds to 25 milliseconds. From these data target extrinsic and intrinsic parameters are extracted using the Differential Evolution (DE) algorithm and the Ortho-Normalized Volume Magnetic Source (ONVMS) algorithms, respectively. Namely, the inversion provides x, y, and z locations and a time series of the total ONVMS principal eigenvalues, which are intrinsic properties of the objects. The eigenvalues are fit to a power-decay empirical model, the Pasion-Oldenburg model, providing 3 coefficients (k, b, and g) for each object. The objects are grouped geometrically into variably-sized clusters, in the k-b-g space, using clustering algorithms. Clusters matching a priori characteristics are identified as Targets of Interest (TOI), and larger clusters are automatically subclustered. Ground Truths (GT) at the center of each class are requested, and probability density functions are created for clusters that have centroid TOI using a Gaussian Mixture Model (GMM). The probability functions are applied to all remaining anomalies. All objects of UXO probability higher than a chosen threshold are placed in a ranked dig list. This prioritized list is scored and the results are demonstrated and analyzed.

  19. GeoTIFF of 5x5 m Relative Reflectivity for Salt River Bay, St. Croix, 2011, UTM 20N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection & Ranging) 5x5 meter resolution bathymetric surface for an area surrounding the mouth of Salt River Bay (SARI)St....

  20. GeoTIFF of 5x5 m Relative Reflectivity for Salt River Bay, St. Croix, 2011, UTM 20N NAD83

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection & Ranging) 5x5 meter resolution relative seafloor reflectivity surface for an area surrounding the mouth of Salt...

  1. GeoTIFF of 5x5 m Relative Reflectivity for Salt River Bay, St. Croix, 2011, UTM 20N NAD83 (NCEI Accession 0131858)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection & Ranging) 5x5 meter resolution bathymetric surface for an area surrounding the mouth of Salt River Bay (SARI)St....

  2. GeoTIFF of 5x5 m Relative Reflectivity for Salt River Bay, St. Croix, 2011, UTM 20N NAD83 (NCEI Accession 0131858)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This image represents a LiDAR (Light Detection & Ranging) 5x5 meter resolution relative seafloor reflectivity surface for an area surrounding the mouth of Salt...

  3. Hydraulic benchmark data for PWR mixing vane grid

    International Nuclear Information System (INIS)

    The purpose of the present study is to present new hydraulic benchmark data obtained for PWR rod bundles for the purpose of benchmarking Computational Fluid Dynamics (CFD) models of the rod bundle. The flow field in a PWR fuel assembly downstream of structural grids which have mixing vane grids attached is very complex due to the geometry of the subchannel and the high axial component of the velocity field relative to the secondary flows which are used to enhance the heat transfer performance of the rod bundle. Westinghouse has a CFD methodology to model PWR rod bundles that was developed with prior benchmark test data. As improvements in testing techniques have become available, further PWR rod bundle testing is being performed to obtain advanced data which has high spatial and temporal resolution. This paper presents the advanced testing and benchmark data that has been obtained by Westinghouse through collaboration with Texas A&M University. (author)

  4. F.E.M. of PWR`s control rod cluster. Parametrical study of vibrating behavior by an Experiment Design method

    Energy Technology Data Exchange (ETDEWEB)

    Bosselut, D. [Electricite de France (EDF), 92 - Clamart (France). Direction des Etudes et Recherches; Regnier, G. [Ecole Nationale Superieure des Arts et Metiers, 75 - Paris (France); Soulier, B. [DER Mecanique Pole Universitaire Leonard de Vinci, 92 - Paris (France)

    1997-03-01

    Some finite element models have been performed at EDF to simulate the vibrations of rod cluster and to analyse the wear phenomenon of rods using parametrical studies. In the first part, one of the finite element models is presented. The location of excitation sources is described. The calculated values are: rod displacement in the guiding cards, shock forces on the guiding cards and wear power produced. In the second part, a parametrical study is presented for a given computer experiment domain with an Experimental Design method. The building of the computer experiment design is described. The used polynomial model has all linear, quadratic and interactive terms for each of the 6 parameters (26 coefficients), 34 polynomials have been built to approach the effective shock forces and the mean wear power at each of the 17 guiding points. In the last part, the influence of parameters on calculated mean wear power is shown along rods and some responses surfaces are visualized. Systematism and closeness of experiment design technique is underlined. Easy simulation of all the response domain by polynomial approach, allows comparison with experiment feedback. (author) 9 refs.

  5. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods; Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.L.

    1991-11-01

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. One such package would store tightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97{degrees}C and whether the cladding of the stored spent fuel ever exceeds 350{degrees}C. Limiting the borehole to temperatures of 97{degrees}C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350{degrees}C cladding limit minimizes the possibility of creep- related failure in the spent fuel rod cladding. For a series of packages stored in a 8 {times} 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97{degrees}C for the full 10000-yr analysis period. For the 4.74-kW load, the peak cladding temperature rises to just below the 350{degrees}C limit about 4 years after emplacement. If the packages are stored using the spacing specified in the Site Characterization Plan (15 ft {times} 126 ft), a maximum of 4.1 kW per container may be stored. If the 0.05-m-thick void between the container and the borehole wall is filled with loosely packed bentonite, the peak cladding temperature rises more than 40{degrees}C above the allowed cladding limit. In all cases the dominant heat transfer mode between container components is thermal radiation.

  6. Modelling of pellet-cladding interaction in PWR's

    International Nuclear Information System (INIS)

    The pellet-cladding interaction that can occur in a PWR fuel rod design is modelled with the computer codes FRAPCON-1 and ANSYS. The fuel performance code FRAPCON-1 analyses the fuel rod irradiation behavior and generates the initial conditions for the localized fuel rod thermal and mechanical modelling in two and three-dimensional finite elements with ANSYS. In the mechanical modelling, a pellet fragment is placed in the fuel rod gap. Two types of fuel rod cladding materials are considered: Zircaloy and austenitic stainless steel. (author)

  7. Conceptual design report of the SMART fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Lee, Chan Bock; Bang, Je Gun; Jung, Yeon Ho [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    The SMART fuel rod is based on 17 x 17 KOFA(Korea Fuel Assembly) fuel rod of the 950MWe pressurize water reactor. The fuel stack length of the KOFA is 3658mm, otherwise SMART fuel rod stack length is 2000mm. The fuel rod contains UO{sub 2} pellets with the enrichment of 4.95%. All the fuel in core will be replaced every 35 months. The average LHGR of the fuel rod is 120 W/cm, commercial PWR is 178 W/cm, SMART LHGR is lower about 31% than commercial PWR. The core inlet and outlet temperature of coolant are respectively 270 deg C and 310 deg C, commercial PWR are respectively 291.6 deg C and 326.8 deg C, SMART inlet and outlet temperature is lower averaged 19.2 deg C than commercial PWR. The coolant use mixed soluble ammonia in high purity water and boron is not in. The general performance of the fuel rod UO{sub 2} pellet has been already verified through the sufficient burnup (60,000 MWd/MTU-rod avg.) experience as the rods of same design in commercial PWR's. But cladding corrosion is required the further verification. (author). 13 refs., 3 figs., 8 tabs.

  8. Preliminary study of the economics of enriching PWR fuel with a fusion hybrid reactor

    International Nuclear Information System (INIS)

    This study is a comparison of the economics of enriching uranium oxide for pressurized water reactor (PWR) power plant fuel using a fusion hybrid reactor versus the present isotopic enrichment process. The conclusion is that privately owned hybrid fusion reactors, which simultaneously produce electrical power and enrich fuel, are competitive with the gaseous diffusion enrichment process if spent PWR fuel rods are reenriched without refabrication. Analysis of irradiation damage effects should be performed to determine if the fuel rod cladding can withstand the additional irradiation in the hybrid and second PWR power cycle. The cost competitiveness shown by this initial study clearly justifies further investigations

  9. Experience and reliability of Framatome ANP's PWR and BWR fuel

    International Nuclear Information System (INIS)

    Based on three decades of fuel supply to 169 PWR and BWR plants on four continents, Framatome ANP has a very large database from operating experience feedback. The performance of Framatome PWR and BWR fuel is discussed for the period 1992-2001 with special emphasis on fuel failures, countermeasures and their effectiveness. While PWR fuel performance in most reactors has been good, the performance in some years did suffer from special circumstances that caused grid-to-rod fretting failures in few PWRs. After solving this problem, fuel of all types showed high reliability again. Especially the current PWR fuel products AFA 3G, HTP, Mark B and Mark BW showed a very good operating performance. Fuel reliability of Framatome ANP BWR fuel has been excellent over the last decade with average annual fuel rod failure rates under 1x10-5 since 1991. More than 40% of all BWR fuel failures in the 1992-2001 decade were caused by debris fretting. The debris problem has been remedied with the FUELGUARDTM lower tie plate, and by reactor operators' efforts to control the sources of debris. PCI, the main failure mechanism in former periods, affected only 10 rods. All of these rods had non-liner cladding. (author)

  10. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    International Nuclear Information System (INIS)

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10−6 on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure

  11. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyu-Tae, E-mail: ktkim@dongguk.ac.kr

    2013-10-15

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10{sup −6} on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure.

  12. 压水堆核电站棒位探测器样机设计及试验研究%Prototype Design and Experimental Study of Rod Position Detector of PWR Nuclear Power Station

    Institute of Scientific and Technical Information of China (English)

    白冰; 周建明; 吕永红

    2013-01-01

    Start and stop , power regulation of nuclear reactors depends on the control rod drive mechanism driv -ing control rod up and down movements .Accurate and reliable measurement of control rod position is an impor-tant guarantee for the safe operation of the reactor .In this paper , in the process of designing and constructing the rod position detector prototype of nuclear power station , the measuring principle , coding , coil number of choices , coil frame are described , the system is tested and the test results show that , the prototype design is reasonable and it has reliable performance .%核电站反应堆的启停、功率调节依靠控制棒驱动机构驱动控制棒上下运动来实现,控制棒位置的准确可靠测量是反应堆安全运行的重要保证。论文借助二代加核电站棒位探测器工程样机的研制,详细介绍了在棒位探测器设计过程中测量原理、编码方式、线圈数量的选择以及线圈骨架结构等内容,并通过各项性能测试与试验结果的分析,得出样机设计合理与性能可靠的结论。

  13. Sucker rods

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, J.; Preis, L.

    1987-12-08

    The sucker rod system in a deep well sucker rod pump consists of a plurality of unidirectionally reinforced composite fiber rods extending substantially parallel but not in contact with each other, the cross-sectional area of which rods is less than 1 cm/sup 2/. This enables the advantageous material properties to be utilized to a high degree. The sucker rod system can be assembled on site. The individual composite fiber rods can be monitored when they are in the working position.

  14. Radiological characterization of spent control rod assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Lepel, E.A.; Robertson, D.E.; Thomas, C.W.; Pratt, S.L.; Haggard, D.L. [Pacific Northwest Lab., Richland, WA (United States)

    1995-10-01

    This document represents the final report of an ongoing study to provide radiological characterizations, classifications, and assessments in support of the decommissioning of nuclear power stations. This report describes the results of non-destructive and laboratory radionuclide measurements, as well as waste classification assessments, of BWR and PWR spent control rod assemblies. The radionuclide inventories of these spent control rods were determined by three separate methodologies, including (1) direct assay techniques, (2) calculational techniques, and (3) by sampling and laboratory radiochemical analyses. For the BWR control rod blade (CRB) and PWR burnable poison rod assembly (BPRA), {sup 60}Co and {sup 63}Ni, present in the stainless steel cladding, were the most abundant neutron activation products. The most abundant radionuclide in the PWR rod cluster control assembly (RCCA) was {sup 108m}Ag (130 yr halflife) produced in the Ag-In-Cd alloy used as the neutron poison. This radionuclide will be the dominant contributor to the gamma dose rate for many hundreds of years. The results of the direct assay methods agree very well ({+-}10%) with the sampling/radiochemical measurements. The results of the calculational methods agreed fairly well with the empirical measurements for the BPRA, but often varied by a factor of 5 to 10 for the CRB and the RCCA assemblies. If concentration averaging and encapsulation, as allowed by 10CFR61.55, is performed, then each of the entire control assemblies would be classified as Class C low-level radioactive waste.

  15. Rodding Surgery

    Science.gov (United States)

    ... a rod or nail into the internal cavity (medullary canal) of a long bone. Purpose of Rodding ... Osteogenesis Imperfecta: A Translational Approach to Brittle Bone Disease 1 st edition. New York, NY: Elsevier Academic ...

  16. Vibrational characteristics and wear of fuel rods

    International Nuclear Information System (INIS)

    Fuel rod wear, due to vibration, is a continuing concern in the design of liquid-cooled reactors. In my report, the methodology and models that are used to predict fuel rod vibrational response and vibratory wear, in a light water reactor environment, are discussed. This methodology is being followed at present in the design of Westinghouse Nuclear Fuel. Fuel rod vibrations are expressed as the normal bending modes, and sources of rod vibration are examined with special emphasis on flow-induced mechanisms in the stable flow region. In a typical Westinghouse PWR fuel assembly design, each fuel rod is supported at multiple locations along the rod axis by a square-shaped 'grid cell'. For a fuel rod /grid support system, the development of small oscillatory motions, due to fluid flow at the rod/grid interface, results in material wear. A theoretical wear mode is developed using the Archard Theory of Adhesive Wear as the basis. Without question certainty, fretting wear becomes a serious problem if it progresses to the stage where the fuel cladding is penetrated and fuel is exposed to the coolant. Westinghouse fuel is designed to minimize fretting wear by limiting the relative motion between the fuel rod and its supports. The wear producing motion between the fuel rod and its supports occurs when the vibration amplitude exceeds the slippage threshold amplitude

  17. In-pile test of Qinshan PWR fuel bundle

    International Nuclear Information System (INIS)

    In-pile test of Qinshan Nuclear Power Plant PWR fuel bundle has been conducted in HWRR HTHP Test loop at CIAE. The test fuel bundle was irradiated to an average burnup of 25000 Mwd/tU. The authors describe the structure of (3 x 3-2) test fuel bundle, structure of irradiation rig, fuel fabrication, irradiation conditions, power and fuel burnup. Some comments on the in-pile performance for fuel bundle, fuel rod and irradiation rig were made

  18. RANS modeling for flow in nuclear fuel bundle in pressurized water reactors (PWR)

    International Nuclear Information System (INIS)

    This paper presents use of Reynolds-Averaged Navier-Stokes (RANS) based turbulence model for single-phase CFD analysis of flow in Pressurized Water Reactor (PWR) Assemblies. An open source code called OpenFoam was used for computational fluid dynamics (CFD) study using computational meshes generated using Shari Harpoon. The PWR assembly design used in this analysis represents a 5 x 5 pin design including structural grid equipped with mixing vanes. The design specifications used in this study were obtained from the experimental setup at Texas A&M University and the results obtained are used to validate the CFD software, algorithm, and the turbulence model used in this analysis. (author)

  19. Rod worth measurement innovation at Westinghouse

    International Nuclear Information System (INIS)

    Bank worth measurement of control rods and shut-down rods is required for every cycle startup of a nuclear power plant for design validation. For Pressurized Water Reactors (PWR), the bank worth measurement is part of the Low Power Physics Tests (LPPT) program. In almost all instances, this program is on critical path during ascension to power. There is a strong incentive for the utility industry to have a fast and reliable method of measuring the bank worth. Over the past decade, Westinghouse has been developing new advanced rod worth measurement methods to provide faster, safer, more accurate and easier to use products. The advancement of 3D core simulation codes has made it possible to make revolutionary developments for a new generation of rod worth measurement methods

  20. PWR decontamination feasibility study

    International Nuclear Information System (INIS)

    The decontamination work which has been accomplished is reviewed and it is concluded that it is worthwhile to investigate further four methods for decontamination for future demonstration. These are: dilute chemical; single stage strong chemical; redox processes; and redox/chemical in combination. Laboratory work is recommended to define the agents and processes for demonstration and to determine the effect of the solvents on PWR materials. The feasibility of Indian Point 1 for decontamination demonstrations is discussed, and it is shown that the system components of Indian Point 1 are well suited for use in demonstrations

  1. PWR type reactor

    International Nuclear Information System (INIS)

    From a PWR with a primary circuit, consisting of a reactor pressure vessel, a steam generator and a reactor coolant pump, hot coolant is removed by means of an auxiliary system containing h.p. pumps for feeding water into the primary circuit and being connected with a pipe, originating at the upper part, which has got at least one isolating value. This is done by opening an outlet in a part of the auxiliary system that has got a lower pressure than the reactor vessel. Preferably a water jet pump is used for mixing with the water of the auxiliary system. (orig.)

  2. SEFLEX fuel rod simulator effects in flooding experiments. Pt. 1

    International Nuclear Information System (INIS)

    The aim of the SEFLEX program has been to quantify the influence of the design and the physical properties of different fuel rod simulators on heat transfer and quench front progression in unblocked and blocked rod bundles during the reflood phase of a LOCA in a PWR. Fuel rod simulators with Zy claddings and a gas-filled gap between claddings and pellets exhibit lower peak cladding temperatures and shorter quench times than gapless heater rods with stainless steel claddings. Grid spacers cause significant cooling enhancement downstream during the time span at which maximum cladding temperatures occur. Ballooned Zy claddings, forming e.g. a 90 percent blockage, are quenched substantially earlier than thickwall stainless steel blockage sleeves attached to the rods, and even earlier than undeformed rod claddings. A comparison of test data with results of the 'Best Estimate' computer program COBRA-TF shows a good agreement with unblocked bundle data including grid spacer effects. (orig./HP)

  3. Investigation, experiment and analysis on PWR sump screen clogging issue

    International Nuclear Information System (INIS)

    JNES has been conducting experimental and analytical study to develop an evaluation method concerning the downstream effect of the sump screen clogging issue during LOCA in PWR plants. Flow clogging characteristics were investigated based on data for the relation of pressure loss and flow velocity during flow clogging due to debris accumulation. Deposition of chemical precipitates on the fuel cladding using an electrically heated rod was investigated. A test shows chemical precipitates deposited on the cladding and the deposit was mainly analyzed to be calcium compounds. The analysis with a thermal-hydraulic code on the downstream effect has shown that the core could be cooled because the core inlet flow compensates a evaporation of coolant due to the decay-heat even if core inlet was 99% clogged just after the ECCS recirculation operation started during the cold-leg break LOCA in PWR plants. (author)

  4. Investigation, experiment and analysis on PWR sump screen clogging issue

    International Nuclear Information System (INIS)

    JNES has been conducting experimental and analytical study to develop an evaluation method concerning the chemical effect and the downstream effect of the sump screen clogging issue during LOCA in PWR plants. Chemical effect tests show that corrosion of carbon steel and galvanized steal may come to be important in domestic plants, in addition to corrosion of aluminum and insulator which has been considered dominant in the chemical effect. With respect to the downstream effect, deposition of chemical precipitates on the fuel cladding using an electrically heated rod is investigated. A test shows chemical precipitates deposited on the cladding and the deposit was mainly analyzed to be calcium compounds. The analysis on the downstream effect has shown that even if core inlet was completely clogged just after the recirculation operation started during LOCA in PWR plants, although upper part of core may be uncovered temporary and cladding temperature increased, core could be cooled by coolant injection through the hot-leg. (author)

  5. Enhancing heat transfer and crud mitigation in PWR fuel

    International Nuclear Information System (INIS)

    This paper discusses three methods for increasing single phase heat transfer in PWR fuel. The primary effect of increasing heat transfer is a reduction in the steaming rate from the fuel rods, which in turn reduces the likelihood of crud formation on the fuel rods and the potential for adsorption of boron into the crud. The advantage of lowering boron mass on the fuel is reduced risk of Axial Offset Anomaly (AOA). Another benefit of reduced crud formation is a lower risk of localized corrosion, a known contributor to rod cladding failures. Thinner crud leads to locally lower rod operating temperatures (lower corrosion rate) since crud acts as a thermal insulator between the rod and the coolant. The first method of increasing heat transfer involves addition of more than one Intermediate Flow Mixing vane grid (IFM) in the span between two neighboring structural spacing grids. The second method includes optimization of the mixing vane according to axial position. The third method involves variation of the IFMs axial position to optimize axial distribution of rod heat transfer. (authors)

  6. Non-destructive Testing Dummy Nuclear Fuel Rods by Neutron Radiography

    Institute of Scientific and Technical Information of China (English)

    WEI; Guo-hai; HAN; Song-bai; HE; Lin-feng; WANG; Yu; WANG; Hong-li; LIU; Yun-tao; CHEN; Dong-feng

    2013-01-01

    As a unique non-destructive testing technique,neutron radiography can be used to measure nuclear fuel rods with radioactivity.The images of the dummy nuclear fuel rods were obtained at the CARR.Through imaging analysis methods,the structure defections,the hydrogen accumulation in the cladding and the 235U enrichment of the pellet were studied and analyzed.Experiences for non-destructive testing real PWR nuclear fuel rods by NR

  7. PWR degraded core analysis

    International Nuclear Information System (INIS)

    A review is presented of the various phenomena involved in degraded core accidents and the ensuing transport of fission products from the fuel to the primary circuit and the containment. The dominant accident sequences found in the PWR risk studies published to date are briefly described. Then chapters deal with the following topics: the condition and behaviour of water reactor fuel during normal operation and at the commencement of degraded core accidents; the generation of hydrogen from the Zircaloy-steam and the steel-steam reactions; the way in which the core deforms and finally melts following loss of coolant; debris relocation analysis; containment integrity; fission product behaviour during a degraded core accident. (U.K.)

  8. Conceptual study of advanced PWR core design. Development of advanced PWR core neutronics analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyo; Kim, Seung Cho; Kim, Taek Kyum; Cho, Jin Young; Lee, Hyun Cheol; Lee, Jung Hun; Jung, Gu Young [Seoul National University, Seoul (Korea, Republic of)

    1995-08-01

    The neutronics design system of the advanced PWR consists of (i) hexagonal cell and fuel assembly code for generation of homogenized few-group cross sections and (ii) global core neutronics analysis code for computations of steady-state pin-wise or assembly-wise core power distribution, core reactivity with fuel burnup, control rod worth and reactivity coefficients, transient core power, etc.. The major research target of the first year is to establish the numerical method and solution of multi-group diffusion equations for neutronics code development. Specifically, the following studies are planned; (i) Formulation of various numerical methods such as finite element method(FEM), analytical nodal method(ANM), analytic function expansion nodal(AFEN) method, polynomial expansion nodal(PEN) method that can be applicable for the hexagonal core geometry. (ii) Comparative evaluation of the numerical effectiveness of these methods based on numerical solutions to various hexagonal core neutronics benchmark problems. Results are follows: (i) Formulation of numerical solutions to multi-group diffusion equations based on numerical methods. (ii) Numerical computations by above methods for the hexagonal neutronics benchmark problems such as -VVER-1000 Problem Without Reflector -VVER-440 Problem I With Reflector -Modified IAEA PWR Problem Without Reflector -Modified IAEA PWR Problem With Reflector -ANL Large Heavy Water Reactor Problem -Small HTGR Problem -VVER-440 Problem II With Reactor (iii) Comparative evaluation on the numerical effectiveness of various numerical methods. (iv) Development of HEXFEM code, a multi-dimensional hexagonal core neutronics analysis code based on FEM. In the target year of this research, the spatial neutronics analysis code for hexagonal core geometry(called NEMSNAP-H temporarily) will be completed. Combination of NEMSNAP-H with hexagonal cell and assembly code will then equip us with hexagonal core neutronics design system. (Abstract Truncated)

  9. Power-cooling mismatch test series. Test PCM-2A; test results report. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Cawood, G.W.; Holman, G.W.; Martinson, Z.R.; Legrand, B.L.

    1976-09-01

    The report describes the results of an in-pile experimental investigation of pre- and postcritical heat flux (CHF) behavior of a single 36-inch-long, pressurized water reactor (PWR) type, UO/sub 2/-fueled, zircaloy-clad fuel rod. The nominal coolant conditions for pressure and temperature were representative of those found in a commercial PWR. Nine separate departures from nucleate boiling (DNB) cycles were performed by either of two different methods: (a) decreasing the coolant flow rate while the fuel rod power was held constant, or (b) increasing the fuel rod power while the coolant flow rate was held constant. DNB was obtained during eight of the nine cycles performed. For the final flow reduction, the mass flux was decreased to 6.1 x 10/sup 5/ lb/hr-ft/sup 2/ at a constant peak linear heat generation rate of 17.8 kW/ft. The fuel rod was allowed to remain in film boiling for about 210 seconds during this final flow reduction. The fuel rod remained intact during the test. Results of on-line measurements of the fuel rod behavior are presented together with discussion of instrument performance. A comparison of the data with Fuel Rod Analysis Program-Transient 2 (FRAP-T2) computer code calculations is included.

  10. Axial simulation of PWR core and study of actuators

    International Nuclear Information System (INIS)

    Development of an operation code allowing to simulate the behaviour of a PWR type reactor core. Load following is controled by bore and control rods, taking into account the temperature counter-reactions. The fine behaviour of the fuel element during transients is not simulated, on the other hand the central part of the reactor is completely simulated. The regulation equation are easily modifiable and thus it is possible to test in open loop any modification brought about to this regulation. Description of simulation tests on CAS-2B reactor: core control, static tests, dynamic tests

  11. A study on thimble plug removal for PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong Soo; Lee, Chang Sup; Lee, Jae Yong; Jun, Hwang Yong [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    The thermal-hydraulic effects of removing the RCC guide thimble plugs are evaluated for 8 Westinghouse type PWR plants in Korea as a part of feasibility study: core outlet loss coefficient, thimble bypass flow, and best estimate flow. It is resulted that the best estimate thimble bypass flow increases about by 2% and the best estimate flow increases approximately by 1.2%. The resulting DNBR penalties can be covered with the current DNBR margin. Accident analyses are also investigated that the dropped rod transient is shown to be limiting and relatively sensitive to bypass flow variation. 8 refs., 5 tabs. (Author)

  12. CONTROL ROD

    Science.gov (United States)

    Zinn, W.H.; Ross, H.V.

    1958-11-18

    A control rod is described for a nuclear reactor. In certaln reactor designs it becomes desirable to use a control rod having great width but relatively llttle thickness. This patent is addressed to such a need. The neutron absorbing material is inserted in a triangular tube, leaving volds between the circular insert and the corners of the triangular tube. The material is positioned within the tube by the use of dummy spacers to achleve the desired absorption pattern, then the ends of the tubes are sealed with suitable plugs. The tubes may be welded or soldered together to form two flat surfaces of any desired width, and covered with sheetmetal to protect the tubes from damage. This design provides a control member that will not distort under the action of outside forces or be ruptured by gases generated within the jacketed control member.

  13. Recalculation of simulated post-scram core power decay curve for use in ROSA-IV/LSTF experiments on PWR small-break LOCAs and transients

    International Nuclear Information System (INIS)

    Simulated post-scram core power decay curve for use in Large Scale Test Facility (LSTF) tests has been calculated on a best-estimate basis, particularly in two points, i.e. estimation of the delayed neutron fission power and consideration of the stored heat in a pressurized water reactor (PWR) fuel rod. The New Power Curve provides a LSTF heater rod with the heat transfer rate from a PWR fuel rod that was estimated for a typical pressure transient during a PWR small-break loss of coolant accident. This approach neglects conservatively the effect of stored heat release from the LSTF heater rod considering that there is large uncertainty in the thermal conductivity of outer insulator in the LSTF heater rod. When the New Power Curve is used as the LSTF core power curve, the heat transfer rate from a LSTF heater rod gives a little conservative values as compared with the heat transfer rate from a PWR fuel rod. (author)

  14. Whole-rod testing of intact and defective LWR rods under expected dry-storage conditions

    International Nuclear Information System (INIS)

    The objective of this project is to provide the Nuclear Regulatory Commission with information to confirm or establish spent fuel dry storage licensing positions relative to: (1) the long-term, low-temperature (less than 2500C) behavior of spent fuel rods in dry storage; and (2) the radioactive contamination potential of crud from cladding in dry storage. The basic need for this data is to: confirm long-term, low temperature (less than 2500C) spent fuel dry storage performance predictions based on theoretical analyses and on results from high-temperature, short-term laboratory tests; determine the nature and behavior of crud layers as a function of dry storage time; and determine the potential radioactive crud contamination (e.g., spalling characteristics) for dry storage. An eight-rod test matrix of PWR and BWR rods was chosen which consisted of all combinations of intact or breached cladding in an oxidizing or inert atmosphere. The PWR rods (30.5 GWD/MTU) were discharged from H.B. Robinson in May 1974, and the BWR rods (12.9 GWD/MTU) were discharged from Peach Bottom in March 1976. The eight test rods were visually inspected for crud and defects with the results recorded on video tape. Cladding penetration was confirmed. All the rods were put in test capsules with the appropriate atmosphere and leak checked. The test capsules were loaded into a test train and the train was placed in the furnace cavity. The test was started on September 15, 1982 and is presently at 2300C. After the first 10-month run is completed, an interim examination, consisting of visual inspection, gamma scanning, and crud sampling, will be conducted

  15. Development of the Combination Method of PWR Spent Fuel for DUPIC Fuel Preparation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ju Ho; Kim, S. K.; Jung, T. C.; June, T. H.; Lee, J. M.; Kim, I. S.; Park, C. S.; Kim, M. J.; An, J. I.; Park, S. H. [Kyung Hee University, Seoul (Korea, Republic of)

    1997-07-15

    Optimum finding method of PWR spent fuel was developed in application of DUPIC fuel composition to nuclear fuel production. In order to make the database of the PWR spent fuel for the optimum composition, composition data of the PWR spent fuels from Youngkwang unit 1 and 2, Kori unit 3 and 4 and Uljin unit 1 and 2 were collected, analyzed and stored. Artificial intelligent access was attempted in optimizing the composition, and the combination algorithm for PWR spent fuel was developed. In this work database of the composition data of the PWR spent fuels from Youngkwang unit 1 and 2, Kori unit 3 and 4 and Uljin unit 1 and 2 as well as their combination algorithm for PWR spent fuel were developed. The combination algorithm is to find the combination of the spent fuel assembly which is quite close to the requirement per unit mass of DUPIC fuel. The required data are total weight of the fuel, tolerance of the errors, importance of the elements and the discharge data. This combination algorithm enables to find the optimum PWR spent fuel assembly for DUPIC fuel with the database of the spent fuels according to the DUPIC fuel standards. The combination algorithm developed in this work can afford the technical support to fuel supply in preparing the DUPIC fuel, and make contribution in DUPIC fuel cycle technology. It can be directly used in DUPIC fuel cycle technology, and can be also used in the management of the spent fuels with respect to their compositions and ingredients as well as the nuclear safeguards. Composition of the PWR spent fuel in each assembly depends on the initial concentration, degree of combustion, specific power, and its location in the reactor core. They may be affected by the kind of fuel rod and its axial length. Therefore, analysis procedures in these regards should be established for the effective application of the results of this work. 6 refs., 12 tabs., 46 figs. (author)

  16. Fuel rod

    International Nuclear Information System (INIS)

    The present invention provide a fuel rod used in a BWR type reactor, preventing the occurrence of defects of weld portions and improving the operationability of test and assembling operation to improve the quality of weld portions. Namely, the fuel rod is formed by loading a plurality of fuel pellets in a cladding tube. The outer diameter of a groove portion of a tightly sealing end plug to be inserted and welded to the open end of the cladding tube is made substantially identical with the inner diameter of the cladding tube. A neck portion having a diameter smaller than the outer diameter of the groove portion is disposed between an end plug main body and the groove portion. As a result, since the outer diameter of the groove portion is substantially identical with the inner diameter of the cladding tube, the positioning is facilitated. Since the neck portion having a smaller diameter than the outer diameter of the groove portion is disposed in the groove portion, a gap is formed in the welded portion thereby enabling to facilitate the confirmation of weld sag for confirming integrity of the weld by a non-destructive test. (I.S.)

  17. Sizewell 'B' PWR reference design

    International Nuclear Information System (INIS)

    The reference design for a PWR power station to be constructed as Sizewell 'B' is presented in 3 volumes containing 14 chapters and in a volume of drawings. The report describes the proposed design and provides the basis upon which the safety case and the Pre-Construction Safety Report have been prepared. The station is based on a 3425MWt Westinghouse PWR providing steam to two turbine generators each of 600 MW. The layout and many of the systems are based on the SNUPPS design for Callaway which has been chosen as the US reference plant for the project. (U.K.)

  18. Dynamic modelling of PWR fuel assembly for seismic behaviour

    International Nuclear Information System (INIS)

    Vibration and snap back tests have shown that the behaviour of PWR fuel assemblies was non linear : the fuel assembly eigenfrequencies decrease with the excitation level or with the motion amplitude, which was supposed to be due to the slippage of the fuel rods through the grids. Up to now the fuel assembly models were linear and composed by one beam alone representing both the guide thimbles and the fuel rods or by two beams (one for the guide thimbles and one for the fuel rods). The stiffness of such models' were adjusted to fit with the measured eigenfrequency corresponding to a given amplitude. The aim of this paper is to identify the influence of the slippage between grids and fuel rods on the dynamic behaviour of the fuel assembly. For that purpose a non linear fuel assembly model is proposed representing explicitly the slippage phenomenon and is applied to the reduced scale fuel assemblies which have been tested in the framework of a collaboration between FRAMATOME and CEA-DMT. Comparisons between calculations and experiments will be presented and the limitation of this model will be also discussed

  19. Control rod

    International Nuclear Information System (INIS)

    Purpose: To enable semi-permanent and safety use of a control rod in a water cooled type reactor operated under high temperature and high pressure conditions by using a blade in which hafnium materials at a nuclear reactor quality are covered with stainless steels or zirconium alloys. Constitution: A plate-like hafnium material is surrounded with a thin plate of stainless steels or zirconium alloys under vacuum and the joint portions of the thin plate is subjected to seam welding. Then a blade is prepared by welding the remaining joining portions at both ends in a conventional manner. The welding method usable herein includes electron beam welding, laser welding and the like. If it is required to increase the close bondability between the halfnium plate and the thin plate, the blade thus obtained is subjected as it is to extrusion fabrication thereby obtain a desired increased bondability. (Kawakami, Y.)

  20. Conceptual study of advanced PWR core design

    International Nuclear Information System (INIS)

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs

  1. Conceptual study of advanced PWR core design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs.

  2. Conceptual study on advanced PWR system

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yoon Young; Chang, M. H.; Yu, K. J.; Lee, D. J.; Cho, B. H.; Kim, H. Y.; Yoon, J. H.; Lee, Y. J.; Kim, J. P.; Park, C. T.; Seo, J. K.; Kang, H. S.; Kim, J. I.; Kim, Y. W.; Kim, Y. H.

    1997-07-01

    In this study, the adoptable essential technologies and reference design concept of the advanced reactor were developed and related basic experiments were performed. (1) Once-through Helical Steam Generator: a performance analysis computer code for heli-coiled steam generator was developed for thermal sizing of steam generator and determination of thermal-hydraulic parameters. (2) Self-pressurizing pressurizer : a performance analysis computer code for cold pressurizer was developed. (3) Control rod drive mechanism for fine control : type and function were surveyed. (4) CHF in passive PWR condition : development of the prediction model bundle CHF by introducing the correction factor from the data base. (5) Passive cooling concepts for concrete containment systems: development of the PCCS heat transfer coefficient. (6) Steam injector concepts: analysis and experiment were conducted. (7) Fluidic diode concepts : analysis and experiment were conducted. (8) Wet thermal insulator : tests for thin steel layers and assessment of materials. (9) Passive residual heat removal system : a performance analysis computer code for PRHRS was developed and the conformance to EPRI requirement was checked. (author). 18 refs., 55 tabs., 137 figs.

  3. Analysis of Subchannel and Rod Bundle PSBT Experiments with CATHARE 3

    Directory of Open Access Journals (Sweden)

    M. Valette

    2012-01-01

    Full Text Available This paper presents the assessment of CATHARE 3 against PWR subchannel and rod bundle tests of the PSBT benchmark. Noticeable measurements were the following: void fraction in single subchannel and rod bundle, multiple liquid temperatures at subchannel exit in rod bundle, and DNB power and location in rod bundle. All these results were obtained both in steady and transient conditions. Void fraction values are satisfactory predicted by CATHARE 3 in single subchannels with the pipe module. More dispersed predictions of void values are obtained in rod bundles with the CATHARE 3 3D module at subchannel scale. Single-phase liquid mixing tests and DNB tests in rod bundle are also analyzed. After calibrating the mixing in liquid single phase with specific tests, DNB tests using void mixing give mitigated results, perhaps linked to inappropriate use of CHF lookup tables in such rod bundles with many spacers.

  4. A Novel Burnable Absorber Concept for PWR: BigT (Burnable Absorber-Integrated Guide Thimble)

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Mohdsyukri; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chung, Chang Kyu [KEPCO Engineering and Construction Company, Daejeon (Korea, Republic of)

    2014-05-15

    This paper presents the essential BigT design concepts and its lattice neutronic characteristics. Neutronic performance of a newly-proposed BA concept for PWR named BigT is investigated in this study. Preliminary lattice analyses of the BigT absorber-loaded WH 17x17 fuel assembly show a high potential of the concept as it performs relatively well in comparison with commercial burnable absorber technologies, especially in managing reactivity depletion and peaking factor. A sufficiently high control rod worth can still be obtained with the BigT absorbers in place. It is expected that with such performance and design flexibilities, any loading pattern and core management objective, including a soluble boron-free PWR, can potentially be fulfilled with the BigT absorbers. Future study involving full 3D reactor core simulations with the BigT absorbers shall hopefully verify this hypothesis. A new burnable absorber design for Pressurized Water Reactor (PWR) named 'Burnable absorber-Integrated control rod Guide Thimble' (BigT) was recently proposed. Unlike conventional burnable absorber (BA) technologies, the BigT integrates BA materials directly into the guide thimble but still allows insertion of control rod (CR). In addition, the BigT offers a variety of design flexibilities such that any loading pattern and core management objective can potentially be fulfilled.

  5. Design of Testing Set-up for Nuclear Fuel Rod by Neutron Radiography at CARR

    Institute of Scientific and Technical Information of China (English)

    WEI; Guo-hai; HAN; Song-bai; WANG; Hong-li; HAO; Li-jie; WU; Mei-mei; HE; Lin-feng; WANG; Yu; LIU; Yun-tao; SUN; Kai; CHEN; Dong-feng

    2012-01-01

    <正>An experimental set-up dedicated to non-destructively test a 15 cm long pressurized water reactor (PWR) nuclear fuel rod by neutron radiography (NR) is designed and fabricated. It consists of three parts: Transport container, imaging block and steel support. The design of the transport container was optimized with Monte-Carlo simulation by the MCNP code.

  6. PWR secondary water chemistry guidelines: Revision 3

    International Nuclear Information System (INIS)

    An effective, state-of-the art secondary water chemistry control program is essential to maximize the availability and operating life of major PWR components. Furthermore, the costs related to maintaining secondary water chemistry will likely be less than the repair or replacement of steam generators or large turbine rotors, with resulting outages taken into account. The revised PWR secondary water chemistry guidelines in this report represent the latest field and laboratory data on steam generator corrosion phenomena. This document supersedes Interim PWR Secondary Water Chemistry Recommendations for IGA/SCC Control (EPRI report TR-101230) as well as PWR Secondary Water Chemistry Guidelines--Revision 2 (NP-6239)

  7. Physics of hydride fueled PWR

    Science.gov (United States)

    Ganda, Francesco

    The first part of the work presents the neutronic results of a detailed and comprehensive study of the feasibility of using hydride fuel in pressurized water reactors (PWR). The primary hydride fuel examined is U-ZrH1.6 having 45w/o uranium: two acceptable design approaches were identified: (1) use of erbium as a burnable poison; (2) replacement of a fraction of the ZrH1.6 by thorium hydride along with addition of some IFBA. The replacement of 25 v/o of ZrH 1.6 by ThH2 along with use of IFBA was identified as the preferred design approach as it gives a slight cycle length gain whereas use of erbium burnable poison results in a cycle length penalty. The feasibility of a single recycling plutonium in PWR in the form of U-PuH2-ZrH1.6 has also been assessed. This fuel was found superior to MOX in terms of the TRU fractional transmutation---53% for U-PuH2-ZrH1.6 versus 29% for MOX---and proliferation resistance. A thorough investigation of physics characteristics of hydride fuels has been performed to understand the reasons of the trends in the reactivity coefficients. The second part of this work assessed the feasibility of multi-recycling plutonium in PWR using hydride fuel. It was found that the fertile-free hydride fuel PuH2-ZrH1.6, enables multi-recycling of Pu in PWR an unlimited number of times. This unique feature of hydride fuels is due to the incorporation of a significant fraction of the hydrogen moderator in the fuel, thereby mitigating the effect of spectrum hardening due to coolant voiding accidents. An equivalent oxide fuel PuO2-ZrO2 was investigated as well and found to enable up to 10 recycles. The feasibility of recycling Pu and all the TRU using hydride fuels were investigated as well. It was found that hydride fuels allow recycling of Pu+Np at least 6 times. If it was desired to recycle all the TRU in PWR using hydrides, the number of possible recycles is limited to 3; the limit is imposed by positive large void reactivity feedback.

  8. An analytical model for the prediction of fluid-elastic forces in a rod bundle subjected to axial flow: theory, experimental validation and application to PWR fuel assemblies; Calcul des forces fluidelastiques dans les faisceaux de tubes sous ecoulement axial: theorie, validation, application aux assemblages combustibles des REP

    Energy Technology Data Exchange (ETDEWEB)

    Beaud, F. [Electricite de France (EDF), 78 - Chatou (France)

    1997-12-31

    A model predicting the fluid-elastic forces in a bundle of circular cylinders subjected to axial flow is presented in this paper. Whereas previously published models were limited to circular flow channel, the present one allows to take a rectangular flow external boundary into account. For that purpose, an original approach is derived from the standard method of images. This model will eventually be used to predict the fluid-structure coupling between the flow of primary coolant and a fuel assemblies in PWR nuclear reactors. It is indeed of major importance since the flow is shown to induce quite high damping and could therefore mitigate the incidence of an external load like a seismic excitation on the dynamics of the assemblies. The proposed model is validated on two cases from the literature but still needs further comparisons with the experiments being currently carried out on the EDF set-up. The flow has been shown to induce an approximate 12% damping on a PWR fuel assembly, at nominal reactor conditions. The possible grid effect on the fluid-structure coupling has been neglected so far but will soon be investigated at EDF. (author). 16 refs.

  9. Optimal burnable poison-loading in a PWR with carbon coated particle fuel

    International Nuclear Information System (INIS)

    An innovative PWR concept that uses carbon-coated particle fuels moderated by graphite as that of HTGR but cooled by pressurized light water has been studied. The aim of this concept is to take both the best advantages of fuel integrity against fission products release and the reliability PWR technology based on the long operational experience. The purpose of the study is to optimize loading pattern of burnable poison in the proposed core in order to suppress excess reactivity during a cycle. Although there are many parameters to be determined for optimization of the usage of burnable poison, the emphasis is put here on loading patterns of Gadolinia in an assembly and in the core. We investigated the burnup characteristics of the core varying the concentration of burnable poison in a fuel rod, the number of burnable poison-rods in an assembly, and the number of burnable poison-assemblies in the core. The result suggested that Gadolinia was more suitable for this reactor than boron as burnable poison, and it was possible to make the reactivity swing negligible by combining at least three kinds of burnable poison-assemblies in which the amount of Gadolinia was different. Therefore the requirement for the number of control rods was reduced and it meant that Control Rod Programming would become easier. (author)

  10. Modeling of the thermo-mechanical behaviour of the PWR fuel

    International Nuclear Information System (INIS)

    This article reviews the various physical phenomena that take place in an irradiated fuel rod and presents the development of the thermo-mechanical codes able to simulate them. Though technically simple the fuel rod is the place where appear 4 types of process: thermal, gas behaviour, mechanical and corrosion that combine involving 5 elements: the fuel pellet, the fuel clad, the fuel-clad gap, the inside volume and the coolant. For instance the pellet is the place where the following mechanical processes took place: thermal dilatation, elastic deformation, creep deformation, densification, solid swelling, gaseous swelling and cracking. The first industrial code simulating the behaviour of the fuel rod was COCCINEL, it was developed by AREVA teams from the American PAD code that was included in the Westinghouse license. Today the GALILEO code has replaced the COPERNIC code that was developed in the beginning of the 2000 years. GALILEO is a synthesis of the state of the art of the different models used in the codes validated for PWR and BWR. GALILEO has been validated on more than 1500 fuel rods concerning PWR, BWR and specific reactors like Siloe, Osiris, HFR, Halden, Studsvik, BR2/3,...) and also for extended burn-ups. (A.C.)

  11. SCOR 1000: an economic and innovative conceptual design PWR

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, G.M.; Chenaud, M.S. [CEA Cadarache (DEN/DER/SESI), 13 - Saint Paul lez Durance (France). Dept. d' Etudes des Reacteurs; Tourniaire, B. [CEA Grenoble (DEN/DTN/SE2T/LPTM), 38 (France)

    2007-07-01

    Within the framework of innovative reactors studies, the Cea proposes the SCOR design (Simple COmpact Reactor) based on most of the advantages of innovative reactors. All main components are integrated in the vessel: the pressurizer, the canned pumps, the control rod mechanics of the driving system (CMD), and the dedicated heat exchangers of the passive heat removal system. The only steam generator is located above the vessel instead of the upper head. This design is featured by its compactness and by a large suppression or simplification of auxiliary systems. The first design with a 600 MWe shows its competitiveness with regard to the large loop-type PWR. To reduce the cost investment by the law sized effect, we examine the possibility of increasing the power of the reactor, while keeping the safety advantages of the medium sized SCOR. The electrical power of the new design is 1000 MWe. SCOR-1000 operates at much lower primary circuit pressure than standard PWRs (93 bars instead of the usual 155 bars), and the power density is lower (80 MW/m3 instead of 100 for the present PWRs). The reactivity is controlled by the CMD and by the burnable poison, without soluble boron. With the same safety advantages of the medium-sized SCOR, the cost reduction of the investment and of cost production could reach 18% with regard to the loop-type PWR. (authors)

  12. Reflood experiments in rod bundles with flow blockages due to clad ballooning

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.K.; Kim, J.; Kim, K.; Kim, B.J.; Park, J.K.; Youn, Y.J.; Choi, H.S.; Song, C.H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-07-15

    Clad ballooning and the resulting partial flow blockage are one of the major thermal-hydraulic concerns associated with the coolability of partially blocked cores during a loss-of-coolant accident (LOCA). Several in-pile tests have shown that fuel relocation causes a local power accumulation and a high thermal coupling between the clad and fuel debris in the ballooned regions. However, previous experiments in the 1980s did not take into account the fuel relocation phenomena and resulting local power increase in the ballooned regions. The present paper presents the results of systematic investigations on the coolability of rod bundles with flow blockages. The experiments were mainly performed in 5 x 5 rod bundles, 2 x 2 rod bundles and other test facilities. The experiments include a reflood heat transfer, single-phase convective heat transfer, flow redistributions phenomena, and droplet break-up behavior. The effects of the fuel relocation and resulting local power increase were investigated using a 5 x 5 rod bundle. The fuel relocation phenomena increase the peak cladding temperature.

  13. PWR-blowdown heat transfer separate effects program

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D.G.

    1976-01-01

    The ORNL Pressurized-Water Reactor Blowdown Heat Transfer (PWR-BDHT) Program is an experimental separate-effects study of the relations among the principal variables that can alter the rate of blowdown, the presence of flow reversal and rereversal, time delay to critical heat flux, the rate at which dryout progresses, and similar time-related functions that are important to LOCA analysis. Primary test results are obtained from the Thermal-Hydraulic Test Facility (THTF). Supporting experiments are carried out in several additional test loops - the Forced Convection Test Facility (FCTF), an air-water loop, a transient steam-water loop, and a low-temperature water mockup of the THTF heater rod bundle. The studies to date are described.

  14. Neutronic Analysis of Advanced SFR Burner Cores using Deep-Burn PWR Spent Fuel TRU Feed

    International Nuclear Information System (INIS)

    In this work, an advanced sodium-cooled fast TRU (Transuranics) burner core using deep-burn TRU feed composition discharged from small LWR cores was neutronically analyzed to show the effects of deeply burned TRU feed composition on the performances of sodium-cooled fast burner core. We consider a nuclear park that is comprised of the commercial PWRs, small PWRs of 100MWe for TRU deep burning using FCM (Fully Ceramic Micro-encapsulated) fuels and advanced sodium-cooled fast burners for their synergistic combination for effective TRU burning. In the small PWR core having long cycle length of 4.0 EFPYs, deep burning of TRU up to 35% is achieved with FCM fuel pins whose TRISO particle fuels contain TRUs in their central kernel. In this paper, we analyzed the performances of the advanced SFR burner cores using TRU feeds discharged from the small long cycle PWR deep-burn cores. Also, we analyzed the effect of cooling time for the TRU feeds on the SFR burner core. The results showed that the TRU feed composition from FCM fuel pins of the small long cycle PWR core can be effectively used into the advanced SFR burner core by significantly reducing the burnup reactivity swing which reduces smaller number of control rod assemblies to satisfy all the conditions for the self controllability than the TRU feed composition discharged from the typical PWR cores

  15. Application of the ballooning analysis code MATARE on a generic PWR fuel assembly

    International Nuclear Information System (INIS)

    The MATARE (MAbel-TAlink-RElap) code is a new multi-pin deformation analysis code created through the dynamic coupling between the thermal-hydraulic code RELAP5 and multiple instances of the single-pin thermal-mechanics code MABEL. A multi-pin representation of different zones of a typical PWR fuel assembly under post-LOCA reflooding conditions was analysed including some of the most relevant features that characterise a typical nuclear reactor fuel assembly and evaluate their effect on the behaviour of the fuel rods under conditions leading to clad ballooning. The code was able to simulate the deformation of wide regions of a fuel assembly under reflood conditions and has shown how differences in pin pressure and the presence of rod with burnable poisons and control rod guide thimbles also contribute to a substantial incoherent ballooning in agreement with the experimental data. (author)

  16. Piston rod seal

    Energy Technology Data Exchange (ETDEWEB)

    Lindskoug, S.

    1984-06-05

    In a piston rod seal of the type comprising a gland through which the piston rod is passed the piston is provided with a sleeve surrounding the piston rod and extending axially so as to axially partly overlap the gland when the piston is in its bottom dead center position. 4 figs.

  17. Piston rod seal

    Energy Technology Data Exchange (ETDEWEB)

    Lindskoug, Stefan (Malmo, SE)

    1984-01-01

    In a piston rod seal of the type comprising a gland through which the piston rod is passed the piston is provided with a sleeve surrounding the piston rod and extending axially so as to axially partly overlap the gland when the piston is in its bottom dead center position.

  18. Tie rod insertion test

    CERN Multimedia

    B. LEVESY

    2002-01-01

    The superconducting coil is inserted in the outer vaccum tank and supported by a set of tie rods. These tie rods are made of titanium alloy. This test reproduce the final insertion of the tie rods inside the outer vacuum tank.

  19. 1987 Sucker rod tables

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    This reference identifies manufacturers qualified to produce API sucker rods and related equipment, lists chemical and mechanical properties of the various types of rods and provides dimensional characteristics. In addition, similar information is given for non-API products such as fiberglass and hollow rods.

  20. Conceptual design of simplified PWR

    International Nuclear Information System (INIS)

    The authors believe the next generation nuclear power plant should be characterized by: (1) simplicity of design; (2) ease of operation and maintenance; (3) economic conformance with safety requirements; and (4) technologies easy to understand by the public. In a joint effort to develop a new generation nuclear power plant which is more friendly to operator and maintenance personnel and is economically competitive with alternative sources of power generation, the Japan Atomic Power Company (JAPC) supported by the other Japanese PWR Utilities, Electricite de France (EdF), Westinghouse (WH) and Mitsubishi Heavy Industry (MHI) have studied application of passive technologies at a power rating of about 1,000 MWe. The limited availability for location of nuclear power plant in Japan makes plants with higher power ratings more desirable. Using the AP-600 reference design as a basis, the authors enlarged the plant size to 3 -loops and added engineering features to conform with Japanese practice and Utilities' preference. The Simplified PWR (SPWR) program definitively confirmed the feasibility of a passive plant with an NSSS rating about 1,000 MWe and 3 loops

  1. Modeling of fuel-rod behavior during reactor power cycling and ramping experiments with computer code FRAPCON-2

    International Nuclear Information System (INIS)

    Modelling of fuel-rod behavior during reactor power cycling and ramping (including power-cooling mismatch experiments) with the computer code FRAPCON-2 is discussed. FRAPCON-2 computer calculations, using different mechanical models (Rigid Pellet, Deformable Pellet and Finite Element Mechanical Models) are compared with experimental results. The range of conditions over which FRAPCON-2 may be applied for PWR fuel rod behavior modelling during reactor power cycling and ramping are illustrated

  2. An Empirical Approach to Bounding the Axial Reactivity Effects of PWR Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    P. M. O' Leary; J. M. Scaglione

    2001-04-04

    One of the significant issues yet to be resolved for using burnup credit (BUC) for spent nuclear fuel (SNF) is establishing a set of depletion parameters that produce an adequately conservative representation of the fuel's isotopic inventory. Depletion parameters (such as local power, fuel temperature, moderator temperature, burnable poison rod history, and soluble boron concentration) affect the isotopic inventory of fuel that is depleted in a pressurized water reactor (PWR). However, obtaining the detailed operating histories needed to model all PWR fuel assemblies to which BUC would be applied is an onerous and costly task. Simplifications therefore have been suggested that could lead to using ''bounding'' depletion parameters that could be broadly applied to different fuel assemblies. This paper presents a method for determining a set of bounding depletion parameters for use in criticality analyses for SNF.

  3. Crud formation on low duty PWR fuel in the Halden reactor

    International Nuclear Information System (INIS)

    A previous paper summarised observations on the effects of water chemistry and thermal-hydraulic conditions on crud formation on PWR fuel in the Halden reactor. These observations led to the conclusion that a critical degree of fuel duty (which can be expressed as degree of coolant sub-cooled boiling, void fraction or mass evaporation rate) was required for the formation of tenacious crud deposits. Recent measurements of the oxide layers on low duty PWR fuel have revealed the formation of tenacious crud deposits. This paper describes the operating history of the fuel rods, including water chemistry and thermal-hydraulic conditions, and suggests reasons for the sudden appearance of the crud deposits. (author)

  4. Ballooning analysis for the Sizewell B PWR using symmetric MABEL calculations

    International Nuclear Information System (INIS)

    An analysis of the fuel clad ballooning potential associated with the Sizewell B PWR following a design basis large break cold leg LOCA is described. Calculations employ MABEL-2C code. No allowance has been made for asymmetries in power or geometry, thus precluding any amelioration offered by early clad rupture. Thermal hydraulic data were derived from a TRAC-PD2 best estimate analysis of the LOCA and the work includes a detailed sensitivity study which leads to a correlation between peak clad temperature and clad strain. For the best estimate start of cycle 1 peak rod rating, no loss of coolability is expected within 95 percent confidence limits on peak clad temperature. No loss of coolability is expected either for rods at the design basis peak rod rating. The temperature does not have to be much higher than the 95 percent confidence limit on the best estimate rating or much beyond that of the design basis rating for rod contact and severe blockage to follow. This indicates that to establish a complete safety case the added complexity of pellet eccentricity and rod to rod power variations must be considered. (U.K.)

  5. Sucker rod construction

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.A.; Goodman, J.L.; Tickle, J.D.; Liskey, A.K.

    1987-03-31

    A sucker rod construction is described comprising: a connector member being formed to define a rod receptacle having a closed axially inner end and an open axially outer end, the rod receptacle having axially spaced, tapered annular surfaces, a cylindrical fiberglass rod having an end having an outer surface being received within the rod receptacle through the outer end and cooperating therewith to define an annular chamber between the outer surface of the end of the rod and the tapered annular surfaces, and a bonding means positioned in the annular chamber for bonding to the outer surface of the end of the rod to confront the tapered annular surfaces, each annular surface having an angle of taper with respect to the outer surface of the fiberglass rod, and each angle of taper being progressively and uniformly less toward the open end by an amount between one and one-half degrees and two degrees, inclusive, and a collet connected to the connector member adjacent the open axially outer end of the rod receptacle and having an axial bore therethrough retaining the end of the rod in coaxial position within the rod receptacle.

  6. Evaluation of the presence of a burnable absorber in an assembly 3x3 type PWR; Evaluacion de la presencia de un absorbedor quemable en un ensamble 3x3 tipo PWR

    Energy Technology Data Exchange (ETDEWEB)

    Martinez F, M. A.; Del Valle G, E.; Alonso V, G. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. Lindavista, Mexico D. F. 07738 (Mexico)]. e-mail: mike_ipn_esfm@hotmail.com

    2008-07-01

    In the present work the effect is evaluated that causes the presence of a burnable absorber in an adjustment of rods of 3x3 of a fuel assembly type PWR using CASMO-4 code, when comparing the infinite multiplication factor and some average cross sections by means of codes MCNP-4A, CASMO-3 and HELIOS. For this evaluation two cases are evaluated: first consists of an adjustment of rods of 3x3 full completely of fuel and the second consists of a central rod full with a burnable absorber type wet annular burnable absorber (WABA) and the remaining full fuel rods. In both cases the enrichment of the fissile isotopes is varied, for two types of fuel, MOX degree armament and UO{sub 2}. (Author)

  7. Sucker rod guide

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.J.; Starks, J.A.

    1989-08-22

    This patent describes a sucker rod guide for mounting on a sucker rod and spacing the sucker rod from the tubing in an oil well. The guide comprising a generally cylindrically-shaped, extruded, ultra-high density polyethylene body having a substantially smooth outside surface; a longitudinal bore provided centrally of the body. The bore having a smaller diameter than the diameter of the sucker rod; a plurality of grooves provided in circumferential relationship in the bore; and a tapered slot extending longitudinally through the body from the outside surface to the bore. The tapered slot further comprising a slot mouth located at the outside surface and a slot throat spaced from the slot mouth. The slot throat lying adjacent to the sucker rod bore and wherein the slot throat is wider than the slot mouth for mounting the sucker rod guide on the sucker rod.

  8. Drilling Experiments of Dummy Fuel Rods Using a Mock-up Drilling Device and Detail Design of Device for Drilling of Irradiated Nuclear Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Yong; Lee, H. K.; Chun, Y. B.; Park, S. J.; Kim, B. G

    2007-07-15

    KAERI are developing the safety evaluation method and the analysis technology for high burn-up nuclear fuel rod that is the project, re-irradiation for re-instrumented fuel rod. That project includes insertion of a thermocouple in the center hole of PWR nuclear fuel rod with standard burn-up, 3,500{approx}4,000MWD/tU and then inspection of the nuclear fuel rod's heat performance during re-irradiation. To re-fabricate fuel rod, two devices are needed such as a drilling machine and a welding machine. The drilling machine performs grinding a center hole, 2.5 mm in diameter and 50 mm in depth, for inserting a thermocouple. And the welding machine is used to fasten a end plug on a fuel rod. Because these two equipment handle irradiated fuel rods, they are operated in hot cell blocked radioactive rays. Before inserting any device into hot cell, many tests with that machine have to be conducted. This report shows preliminary experiments for drilling a center hole on dummy of fuel rods and optimized drilling parameters to lessen operation time and damage of diamond dills. And the design method of a drilling machine for irradiated nuclear fuel rods and detail design drawings are attached.

  9. Reactor control rod

    International Nuclear Information System (INIS)

    Object: To enable quick descent of a control rod body even when some relative phase deviation between upper drive means and wrapper tube is produced, while permitting a coolant to effectively flow into a protective tube irrespective of the position of the control rod body. Structure: In a control rod used for a nuclear reactor such as a fast breeder, an orifice which dispenses with a cylindrical guide tube and has a greater inner diameter than the outer diameter of the protective tube of the control rod body is provided on the inner side of a wrapper tube, thus permitting smooth operation of the control rod body and also permitting the coolant to effectively flow into the protective tube irrespective of the control rod body. (Horiuchi, T.)

  10. Fuel rod bowing

    International Nuclear Information System (INIS)

    The purpose of this investigation was to quantify the extent of fuel rod bowing in Westinghouse pressurized water reactors and to assess the effects of fuel rod bowing on plant safety and reliability. An empirical bow correlation was developed based on data from irradiated assemblies. Analyses conducted with these conservative empirical predictions show that: (1) generically identified DNBR margins are adequate to offset DNBR reductions due to rod bow, (2) the present design practice of increasing the highest calculated core peaking factor is sufficient to account for all deviations, including the effects of rod bow, and (3) fretting and corrosion of bowed rods are negligible. These conclusions indicate that fuel rod bowing results in no impact on plant safety or reliability

  11. Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Burtseva, T. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-30

    The purpose of this research effort is to determine the effects of canister and/or cask drying and storage on radial hydride precipitation in, and potential embrittlement of, high-burnup (HBU) pressurized water reactor (PWR) cladding alloys during cooling for a range of peak drying-storage temperatures (PCT) and hoop stresses. Extensive precipitation of radial hydrides could lower the failure hoop stresses and strains, relative to limits established for as-irradiated cladding from discharged fuel rods stored in pools, at temperatures below the ductile-to-brittle transition temperature (DBTT).

  12. Utility implementation of EPRI rod ejection accident methodology

    International Nuclear Information System (INIS)

    This report describes the application of ARROTTA, a three dimensional space time kinetics code, to a licensing analysis of the PWR rod ejection accident. Three approaches for the use of ARROTTA are described: (1) a benchmark for point kinetics, (2) direct application as a biased licensing model, and (3) as a best estimate model used in conjunction with statistical combination of uncertainties. The use of ARROTTA as a biased licensing model was fully developed in conjunction with Duke Power Company; the results have been submitted to NRC as part of their reload licensing methodology

  13. PWR and BWR spent fuel assembly gamma spectra measurements

    Science.gov (United States)

    Vaccaro, S.; Tobin, S. J.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Hu, J.; Schwalbach, P.; Sjöland, A.; Trellue, H.; Vo, D.

    2016-10-01

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative-Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  14. Frictional Behavior of Fe-based Cladding Candidates for PWR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ho; Kim, Hyung-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Byun, Thak Sang [Oak Ridge National Lab., Oak Ridge (United States)

    2014-10-15

    After the recent nuclear disaster at Fukushima Daiichi reactors, there is a growing consensus on the development of new fuel systems (i.e., accident-tolerant fuel, ATF) that have high safety margins under design-basis accident (DBA) and beyond design-basis accident (BDBA). A common objective of various developing candidates is to archive the outstanding corrosion-resistance under severe accidents such as DBA and DBDA conditions for decreasing hydrogen production and increasing coping time to respond to severe accidents. ATF could be defined as new fuel/cladding system with enhanced accident tolerant to loss of active cooling in the core for a considerably longer time period under severe accidents while maintaining or improving the fuel performance during normal operations. This means that, in normal operating conditions, new fuel systems should be applicable to current operating PWRs for suppressing various degradation mechanisms of current fuel assembly without excessive design changes. When considering that one of the major degradation mechanisms of PWR fuel assemblies is a grid-to-rod fretting (GTRF), it is necessary to examine the tribological behavior of various ATF candidates at initial development stage. In this study, friction and reciprocating wear behavior of two kinds of Fe-based ATF candidates were examined with a reciprocating wear tests at room temperature (RT) air and water. The objective is to examine the compatibilities of these Fe-based alloys against current Zr-based alloy properties, which is used as major structural materials of PWR fuel assemblies. The reciprocating wear behaviors of Fe-based accident-tolerant fuel cladding candidates against current Zr-based alloy has been studied using a reciprocating sliding wear tester in room temperature air and water. Frictional behavior and wear depth were used for evaluating the applicability and compatibilities of Fe-based candidates without significant design changes of PWR fuel assemblies

  15. Shielding and Containment Evaluations of the NAC-LWT Cask with Tritium Burnable Poison Rods

    International Nuclear Information System (INIS)

    In 1989, the NAC legal weight truck cask (NAC-LWT) was approved by the U.S. Nuclear Regulatory Commission to transport either one pressurized water reactor (PWR) fuel assembly or two boiling water reactor (BWR) fuel assemblies. Since that time, license amendments have allowed the shipment of high-burnup PWR and BWR fuel rods, MTR-type research reactor fuel elements, and TRIGA-type fuel elements. In 1999, DOE approved an NAC-LWT submittal for a shipment of lead test assemblies (LTAs) containing tritium-producing burnable poison rods (TPBARs). This paper presents the 10 CFR Part 71 shielding and containment evaluations of the NAC-LWT with the LTA payload

  16. A 2D-3D FEM approach of fuel rod thermomechanical behaviour during a RIA

    International Nuclear Information System (INIS)

    For better understanding of the fuel rod behaviour during a RIA and to extrapolate the CABRI tests results to PWR conditions, a pellet and its corresponding cladding part have been modelled by means of a 2D axisymmetric meshing, with EDF's finite element code ASTER. The pellet rim region, which is modelled with a 3D meshing, is represented in the global 2D-model with an equivalent homogenized material. The stress distribution is calculated by applying a thermal radial profile computed with the CEA/IPSN SCANAIR code. Then, the local stresses are determined in the rim region, in the neighbourhood of a gas bubble. This 2D-3D FEM approach has been applied successively to REP Na1 rod, at the time and location of the first failure, and to the postulated RCCA ejection accident in a PWR. (R.P.)

  17. Results of the first nuclear blowdown test on single fuel rods (LOC-11 Series in PBF)

    Energy Technology Data Exchange (ETDEWEB)

    Larson, J.R.; Evans, D.R.; McCardell, R.K.

    1978-01-01

    This paper presents results of the first nuclear blowdown tests (LOC-11A, LOC-11B, LOC-11C) ever conducted. The Loss-of-Coolant Accident (LOCA) Test Series is being conducted in the Power Burst Facility (PBF) reactor at the Idaho National Engineering Laboratory, near Idaho Falls, Idaho, for the Nuclear Regulatory Commission. The objective of the LOC-11 tests was to obtain data on the behavior of pressurized and unpressurized rods when exposed to a blowdown similar to that expected in a pressurized water reactor (PWR) during a hypothesized double-ended cold-leg break. The data are being used for the development and verification of analytical models that are used to predict coolant and fuel rod pressure during a LOCA in a PWR.

  18. PWR refill-reflood analysis with experimental loop and calculation model. Pt. 2

    International Nuclear Information System (INIS)

    Equations for control volumes varying in the time have been applied. The bottom and length of the bubble and film boiling region in the core are specified by a correlation and time constant based on our measurements. The boiling volume is divided into two parts, saturated water and steam volume. The hydraulic processes are calculated to the average fuel rod, but for the temperatures also the hot rod is calculated. Some parameters have been determined by comparison of measured and calculated results. Sensitivity analyses were made for a PWR, and the hydraulic resistance of the pump (and water stopper evtl. in the loop) was found as the most important factor to ensure a sufficient reflood. (orig.)

  19. Verification of ASTRA Code with PWR MOX/UO2 Transient Benchmark Problem

    Energy Technology Data Exchange (ETDEWEB)

    Han, Tae Young; Yoon, Joo Il; Kim, Jae Hee; Lee, Chang Kyu; Cho, Beom Jin [KEPCO Nuclear Fuel, Daejeon (Korea, Republic of)

    2010-10-15

    In recent, ASTRA (Advanced Static and Transient Reactor Analyzer) has been successfully developed by KNF (KEPCO Nuclear Fuel) as a nuclear design code for commercial reactor core. This code has the capability of the multi-group analysis because of the requirement of a neutron flux solver to simulate a core not only for UO2-fueled but also MOX-UO2 fueled. In addition, ASTRA has been designed to analyze the core characteristics under transient condition as control rod ejection accident. In this paper, we have performed the benchmark analysis with the PWR MOX/UO2 control rod ejection problem provided by OECD/NEA and U.S. NRC for the purpose of verifying these capabilities of ASTRA

  20. Calculation and analysis of heat source of PWR assemblies based on Monte Carlo method

    International Nuclear Information System (INIS)

    When fission occurs in nuclear fuel in reactor core, it releases numerous neutron and γ radiation, which takes energy deposition in fuel components and yields many factors such as thermal stressing and radiation damage influencing the safe operation of a reactor. Using the three-dimensional Monte Carlo transport calculation program MCNP and continuous cross-section database based on ENDF/B series to calculate the heat rate of the heat source on reference assemblies of a PWR when loading with 18-month short refueling cycle mode, and get the precise values of the control rod, thimble plug and new burnable poison rod within Gd, so as to provide basis for reactor design and safety verification. (authors)

  1. Simulation of Spent PWR Fuel Assembly Behavior Under Normal Conditions of Transport

    International Nuclear Information System (INIS)

    The behavior of a PWR high-burnup spent fuel assembly under normal conditions of transport is simulated in a dynamic analysis of a 0.3-m free drop of a transportation cask unprotected by impact limiters striking a flat rigid surface in the horizontal orientation. The structural analysis employs a finite element numerical model consisting of the cask, the fuel assemblies, the fuel rods, the guide tubes and the cask’s internal structures that hold the fuel assemblies in position. Appropriate mechanical properties for the cask’s structural components, as well as the elastic-plastic properties typical of high-burnup Zircaloy-4 cladding, are utilized. Emphasis is placed on fuel rods responses at locations where maximum forces would be expected, which include end-plate positions and spacer-grid positions at assembly mid-span. Temporal and spatial variations of the forces acting on the fuel rods are calculated and post-processed to obtain frequency distributions, which statistically represent the total fuel rod population in the cask. The results show that the largest pinch force, (ror-to-rod contact force), is 1700 lb, the maximum axial force is 600 lb, and the largest bending moment is 175 in-lb. Failure analysis of fuel rods using these force quantities, and considering the effects of potential hydrides reorientation on cladding failure resistance, indicates, under conservative assumptions, a factor of safety of least 2 against longitudinal tearing, and no failure is predicted for transverse tearing or rod breakage. Fuel reconfiguration is predicted not to occur, and although partial tearing of guide tubes is possible, it is not enough to impair post-accident assembly retrieval. (author)

  2. Development of burnup dependent fuel rod model in COBRA-TF

    Science.gov (United States)

    Yilmaz, Mine Ozdemir

    The purpose of this research was to develop a burnup dependent fuel thermal conductivity model within Pennsylvania State University, Reactor Dynamics and Fuel Management Group (RDFMG) version of the subchannel thermal-hydraulics code COBRA-TF (CTF). The model takes into account first, the degradation of fuel thermal conductivity with high burnup; and second, the fuel thermal conductivity dependence on the Gadolinium content for both UO2 and MOX fuel rods. The modified Nuclear Fuel Industries (NFI) model for UO2 fuel rods and Duriez/Modified NFI Model for MOX fuel rods were incorporated into CTF and fuel centerline predictions were compared against Halden experimental test data and FRAPCON-3.4 predictions to validate the burnup dependent fuel thermal conductivity model in CTF. Experimental test cases from Halden reactor fuel rods for UO2 fuel rods at Beginning of Life (BOL), through lifetime without Gd2O3 and through lifetime with Gd 2O3 and a MOX fuel rod were simulated with CTF. Since test fuel rod and FRAPCON-3.4 results were based on single rod measurements, CTF was run for a single fuel rod surrounded with a single channel configuration. Input decks for CTF were developed for one fuel rod located at the center of a subchannel (rod-centered subchannel approach). Fuel centerline temperatures predicted by CTF were compared against the measurements from Halden experimental test data and the predictions from FRAPCON-3.4. After implementing the new fuel thermal conductivity model in CTF and validating the model with experimental data, CTF model was applied to steady state and transient calculations. 4x4 PWR fuel bundle configuration from Purdue MOX benchmark was used to apply the new model for steady state and transient calculations. First, one of each high burnup UO2 and MOX fuel rods from 4x4 matrix were selected to carry out single fuel rod calculations and fuel centerline temperatures predicted by CTF/TORT-TD were compared against CTF /TORT-TD /FRAPTRAN

  3. Application of STAV5 code for the analysis of fission gas release in power reactor rods

    International Nuclear Information System (INIS)

    STAV5 is a design code for calculation of temperatures, fission gas release and rod pressure in BWR and PWR fuel rods. It includes the treatment of pellet cracks affecting conductivity and thermal expansion, gap closure by eccentric or relocated pellet fragments and oxide and crud build-up on the clad outer surface. The fission gas release model consists of two parts: High temperature release based on grain boundary saturation and low temperature release varying with fission rate of different isotopes. STAV5 has been benchmarked with a number of inpile thermal measurement experiments to as high burnup as 25 MWd/kg U. The main application of STAV5 is as a routine design tool for power reactor rods. It is also used to compare with PIE data. Examples are given from the analyses of fission gas release data from BWR rods from Oskarshamn 1 and Barsebeck 1 as well as PWR rods from Maine Yankee initial cores. The STAV5 evaluation show the importance of power histories, densification and the position in the assembly. (author)

  4. AP1000® PWR reactor physics analysis with VERA-CS and KENO-VI. Part 2. Power distribution

    International Nuclear Information System (INIS)

    Westinghouse has applied the Core Simulator of the Virtual Environment for Reactor Applications, VERA-CS, under development by the Consortium for Advanced Simulation of LWRs (CASL) to the core physics analysis of the AP1000® PWR. The AP1000 PWR features an advanced first core with radial and axial heterogeneities, including enrichment zoning, multiple burnable absorbers, and a combination of light and heavy control banks to enable the MSHIMTM advanced operational strategy. These advanced features make application of VERA-CS to the AP1000 PWR first core especially relevant to qualify VERA performance. A companion paper at this conference describes the results obtained with VERA-CS and the KENO Monte-Carlo code for startup physics tests simulations of the AP1000 PWR first core (critical boron, rod worth and reactivity coefficients). This paper describes the results of detailed power distribution comparisons between VERA-CS and KENO, and confirms the excellent numerical agreement reported in the companion paper for the startup physics tests simulations. (author)

  5. Activity transport models for PWR primary circuits

    International Nuclear Information System (INIS)

    The corrosion products activated in the primary circuit form a major source of occupational radiation dose in the PWR reactors. Transport of corrosion activity is a complex process including chemistry, reactor physics, thermodynamics and hydrodynamics. All the mechanisms involved are not known and there is no comprehensive theory for the process, so experimental test loops and plant data are very important in research efforts. Several activity transport modelling attempts have been made to improve the water chemistry control and to minimise corrosion in PWR's. In this research report some of these models are reviewed with special emphasis on models designed for Soviet VVER type reactors. (51 refs., 16 figs., 4 tabs.)

  6. Program of monitoring PWR fuel in Spain

    International Nuclear Information System (INIS)

    In the year 2000 the PWR utilities: Centrales Nucleares Almaraz-Trillo (CNAT) and Asociacion Nuclear Asco-Vandellos (ANAV), and ENUSA Industrias Avanzadas developed and executed a coordinated strategy named PIC (standing for Coordinated Research Program), for achieving the highest level of fuel reliability. The paper will present the scope and results of this program along the years and will summarize the way the changes are managed to ensure fuel integrity. The excellent performance of the ENUSA manufactured fuel in the PWR Spanish NPPs is the best indicator that the expectations on this program are being met. (Author)

  7. Nuclear criticality safety analysis for the traveller PWR fuel shipping package

    Energy Technology Data Exchange (ETDEWEB)

    Vescovi, P.J.; Kent, N.A.; Casado, C.A. [Westinghouse Electric Co., LLC, Columbia, SC (United States)]|[ENUSA Industrias Avanzadas SA, Madrid (Spain)

    2004-07-01

    The Traveller PWR fresh fuel shipping package represents a radical departure from conventional PWR fuel package designs. Two immediately noticeable features of the Traveller are that it carries a single fuel assembly instead of two as do other package designs, and that it has built-in moderator, which forms part of the flux-trap system. The criticality safety case shows that the Traveller satisfies both U.S. and IAEA licensing requirements, and demonstrates that the package remains acceptably subcritical under normal conditions and hypothetical accident conditions of transport. This paper looks at the modeling techniques that were used to analyze the several accident scenarios that were considered, including: Lattice pitch expansion; Lattice pitch expansion along the fuel assembly length; Preferential flooding (selective flooding of different cavities); Differential flooding (varying water levels inside different cavities); Partial flooding (varying water density); Axial rod displacement; o Sensitivity studies of variable foam densities and boron content in packaging; Analysis for carrying loose rods in a rodbox; The criticality safety case for the Traveller proved to be a successful cooperative effort between ENUSA and Westinghouse.

  8. Nuclear criticality safety analysis for the traveller PWR fuel shipping package

    International Nuclear Information System (INIS)

    The Traveller PWR fresh fuel shipping package represents a radical departure from conventional PWR fuel package designs. Two immediately noticeable features of the Traveller are that it carries a single fuel assembly instead of two as do other package designs, and that it has built-in moderator, which forms part of the flux-trap system. The criticality safety case shows that the Traveller satisfies both U.S. and IAEA licensing requirements, and demonstrates that the package remains acceptably subcritical under normal conditions and hypothetical accident conditions of transport. This paper looks at the modeling techniques that were used to analyze the several accident scenarios that were considered, including: Lattice pitch expansion; Lattice pitch expansion along the fuel assembly length; Preferential flooding (selective flooding of different cavities); Differential flooding (varying water levels inside different cavities); Partial flooding (varying water density); Axial rod displacement; o Sensitivity studies of variable foam densities and boron content in packaging; Analysis for carrying loose rods in a rodbox; The criticality safety case for the Traveller proved to be a successful cooperative effort between ENUSA and Westinghouse

  9. Three dimensional considerations in thermal-hydraulics of helical cruciform fuel rods for LWR power uprates

    Energy Technology Data Exchange (ETDEWEB)

    Shirvan, Koroush, E-mail: kshirvan@mit.edu; Kazimi, Mujid S.

    2014-04-01

    Highlights: • We benchmarked the 4 × 4 helical cruciform fuel (HCF) bundle pressure drop experimental data with CFD. • We also benchmarked the 4 × 4 HCF mixing experimental data with CFD. • We derived new friction factors for PWR and BWR designs at PWR and BWR operating conditions from CFD. • We showed the importance of modeling the 3D conduction in HCF in steady state and transient conditions. - Abstract: In order to increase the power density of current and new light water reactor designs, the helical cruciform fuel (HCF) rods have been proposed. The HCF rod is equivalent to a thin cylindrical rod, with 4 fuel containing vanes, wrapped around it. The HCF rods increase the surface area to volume ratio of the fuel and enhance the inter-subchannel mixing due to their helical shape. The rods do not need supporting grids, as they are packed to periodically contact their neighbors along the flow direction, enabling a higher power density in the core. The HCF rods were reported to have the potential to uprate existing PWRs by 45% and BWRs by 20%. In order to quantify the mixing behavior of the HCF rods based on their twist pitch, experiments were previously performed at atmospheric pressures with single phase water in a 4 by 4 HCF and cylindrical rod bundles. In this paper, the experimental results on pressure drop and mixing are benchmarked with computational fluid dynamic (CFD) using steady state the Reynolds average Navier–Stokes (RANS) turbulence model. The sensitivity of the CFD approach to computational domain, mesh size, mesh shape and RANS turbulence models are examined against the experimental conditions. Due to the refined radial velocity profile from the HCF rods twist, the turbulence models showed little sensitivity to the domain. Based on the CFD simulations, the total pressure drops under the PWR and BWR conditions are expected to be about 10% higher than the values previously reported solely from an empirical correlation based on the

  10. Advanced PWR fuel design concepts

    International Nuclear Information System (INIS)

    For nearly 15 years, Combustion Engineering has provided pressurized water reactor fuel with the features most suppliers are now introducing in their advanced fuel designs. Zircaloy grids, removable upper end fittings, large fission gas plenum, high burnup, integral burnable poisons and sophisticated analytical methods are all features of C-E standard fuel which have been well proven by reactor performance. C-E's next generation fuel for pressurized water reactors features 24-month operating cycles, optimal lattice burnable poisons, increased resistance to common industry fuel rod failure mechanisms, and hardware and methodology for operating margin improvements. Application of these various improvements offer continued improvement in fuel cycle economics, plant operation and maintenance. (author)

  11. Control rod drives

    International Nuclear Information System (INIS)

    Purpose: To rapidly detect the position to which a control rod has been rapidly inserted into the reactor core upon scram in the control rod drives for use in LMFBR type reactors. Constitution: In control rod drives comprising an acceleration spring disposed to the outside of an extension pipe and an acceleration pipe for conducting the spring force to a control rod for rapidly dropping the rod into the reactor core, a magnet having a repulsive force is disposed to each acceleration pipe and guide pipe as decelerating and buffering means for the acceleration pipe. The position of the control rod is detected by the interaction between the magnet and the coils attached to the inside of the guide pipe or reactor lead switch. According to this invention, 85 % scram signal which has hitherto been difficult to be processed electrically can be obtained with a sufficient intensity and with no delay to thereby improve the entire safety of the reactor system. Then, the inserted position and the insertion time can accurately and rapidly be detected. (Horiuchi, T.)

  12. Flexible sucker rod unit

    Energy Technology Data Exchange (ETDEWEB)

    Allen, L.F.

    1987-02-03

    This patent describes a deep well having: a. an education tube with an inside diameter extending from the surface of the earth to far below the surface, b. a reciprocating pump housing attached to the bottom of the education tube, c. pump jack means at the surface for reciprocating the pump, d. a light sucker rod connected to the pump jack means and extending into the education tube, and e. a series of heavy sinker bars having a large cross sectional area in the education tube connecting the light sucker rod to the pump; f. an improved integral metal flexible rod unit interconnecting the sinker bars comprising in combination with the above: g. a coupling on each end of the integral metal flexible rod unit connecting the flexible rod unit to the contiguous sinker bar, h. a segment which is flexible as compared to the sinker bars connecting one of the couplings to i. an integral metal bearing adjacent to the other of the couplings, the bearing having j. a cylindrical surface with k. a diameter i. only slightly smaller than the inside diameter of the education tube thereby forming a sliding fit therewith, and ii. greater than the diameter of any other portion of the flexible rod unit and the sinker bar, and l. grooves in the cylindrical surface for the passage of fluid between in the education tube around the bearing.

  13. Effects of generation and optimization of libraries of effective sections in the analysis of transient in PWR reactors; Efectos de generacion y optimizacion de librerias de secciones eficaces en el analisis de transitorios en reactores PWR

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Cervera, S.; Garcia Herranz, N.; Cuervo, D.; Ahnert, C.

    2014-07-01

    In this paper evaluates the impact that has a certain mesh on a transient in a PWR reactor in the expulsion of a control bar. Have been used for this purpose the coupled codes neutronic and Thermo-hydraulic COBAYA3/COBRA-TF. This objective has been chosen the OECD/NEA PWR MOX/UO{sub 2} rod ejection transient benchmark provides isotopic compositions and defined geometric configurations that allow the use of codes lattice to generate own bookstores. The code used for this transport has been the code APOLLO2.8. The results show large discrepancies when using the benchmark library or libraries own by comparing them to the other participants solutions. The source of these discrepancies is the nodal effective sections provided in the benchmark. (Author)

  14. The BG18, a B(U)F type package used for the transport of irradiated fuel rods - return of experience

    Energy Technology Data Exchange (ETDEWEB)

    Juergen, S.; Herman, S. [Transnubel, Dessel (Belgium)

    2004-07-01

    The purpose of this presentation is to share the return of experience of Transnubel after a period of nearly 3 years operation of the BG18 package in several nuclear power plants and hot cell facilities. This package has been used mainly for the shipment of full scale as well as samples of irradiated fuel rods - UOX or MOX, PWR or BWR.

  15. Simulation model of a PWR power plant

    International Nuclear Information System (INIS)

    A simulation model of a hypothetical PWR power plant is described. A large number of disturbances and failures in plant function can be simulated. The model is written as seven modules to the modular simulation system for continuous processes DYSIM and serves also as a user example of this system. The model runs in Fortran 77 on the IBM-PC-AT. (author)

  16. An evaluation of tight - pitch PWR cores

    International Nuclear Information System (INIS)

    The subtask of a project carried out at MIT (Massachusetts Institute of Technology) for DOE (Department of Energy) as part of their NASAP/INFCE - related effects involving the optimization of PWR lattices in the recycle model is summarized. (E.G.)

  17. AP1000® PWR reactor physics analysis with VERA-CS and KENO-VI. Part 1. Zero power physics tests

    International Nuclear Information System (INIS)

    Westinghouse has applied the Core Simulator of the Virtual Environment for Reactor Applications, VERA-CS, under development by the Consortium for Advanced Simulation of LWRs (CASL) to the core physics analysis of the AP1000® PWR. The AP1000 PWR features and advanced first core with radial and axial heterogeneities, including enrichment zoning, multiple burnable absorbers, and a combination of light and heavy control banks to enable the MSHIMTM advanced operational strategy. These advanced features make application of VERA-CS to the AP1000 PWR first core especially relevant to qualify VERA performance. A companion paper at this conference describes the power distribution analysis of the AP1000 PWR with VERA-CS and the KENO Monte-Carlo code. This paper describes the results obtained for the startup physics tests simulations of the AP1000 PWR first core (critical boron, rod worth and reactivity coefficients), supporting the excellent numerical agreement reported in the companion paper for the power distribution. (author)

  18. Development of CHF correlation “MG-NV” for low pressure and low velocity conditions applied to PWR safety analysis

    International Nuclear Information System (INIS)

    The Critical Heat Flux (CHF) is one of the important parameters in the safety analysis of Pressurized Water Reactor (PWR). If the CHF is reached, an abrupt drop occurs in the heat transfer between the fuel rod cladding and the reactor coolant, which may induce a large temperature excursion of fuel cladding and a subsequent fuel failure. Therefore, accurate prediction of CHF is required in order to assure a sufficient safety margin in the PWR core. Mitsubishi Heavy Industries, ltd (MHI) is developing a new series of CHF correlations which covers various fuel designs and wide range of fluid conditions with sufficient reliability. In this paper, a new CHF correlation, MG-NV (Mitsubishi Generalized correlation for Non-Vane grid spacers) is presented. This correlation is one of the basic components of the new correlation series and was developed to cover low pressure and low velocity conditions where the rod bundle CHF data are limited. The CHF correlation was developed based on open CHF database and provides conservative but more reliable rod bundle CHF predictions compared with the conventional CHF correlations used in safety analyses at low pressure condition, such as Main Steam Line Break event. (author)

  19. Development of CHF correlation “MG-NV” for low pressure and low velocity conditions applied to PWR safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yumura, T.; Yodo, T.; Makino, Y.; Suemura, T. [Mitsubishi Heavy Industries, LTD., Kobe, Hyogo (Japan)

    2011-07-01

    The Critical Heat Flux (CHF) is one of the important parameters in the safety analysis of Pressurized Water Reactor (PWR). If the CHF is reached, an abrupt drop occurs in the heat transfer between the fuel rod cladding and the reactor coolant, which may induce a large temperature excursion of fuel cladding and a subsequent fuel failure. Therefore, accurate prediction of CHF is required in order to assure a sufficient safety margin in the PWR core. Mitsubishi Heavy Industries, ltd (MHI) is developing a new series of CHF correlations which covers various fuel designs and wide range of fluid conditions with sufficient reliability. In this paper, a new CHF correlation, MG-NV (Mitsubishi Generalized correlation for Non-Vane grid spacers) is presented. This correlation is one of the basic components of the new correlation series and was developed to cover low pressure and low velocity conditions where the rod bundle CHF data are limited. The CHF correlation was developed based on open CHF database and provides conservative but more reliable rod bundle CHF predictions compared with the conventional CHF correlations used in safety analyses at low pressure condition, such as Main Steam Line Break event. (author)

  20. Study of power peak migration due to insertion of control bars in a PWR reactor

    International Nuclear Information System (INIS)

    This paper aims to present a study on the power distribution behavior in a PWR reactor, considering the intensity and the migration of power peaks as is the insertion of control rods in the core banks. For this, the study of the diffusion of neutrons in the reactor was adopted by computer simulation that uses the finite difference method for numerically solving the neutron diffusion equation to two energy groups in steady state and in symmetry of a fourth quarter core. We decided to add the EPRI-9R 3D benchmark thermal-hydraulic parameters of a typical power PWR. With a new configuration for the reactor, the positions of the control rods banks were also modified. Due to the new positioning of these banks in the reactor, there was intense power gradients, favoring the occurrence of critical situations and logically unconventional for operation of a nuclear reactor. However, these facts have led interesting times for the study on the power distribution behavior in the reactor, showing axial migration of power peaks and mainly the effect of the geometry of the core on the latter. Based on the distribution of power was evident the increase of the power in elements located in the central region of the reactor core and, concomitantly, the reduction in elements of its periphery. Of course, the behavior exhibited by the simulated reactor is not in agreement with that expected in an actual reactor, where the insertion of control rods banks should lead to reduced power throughout the core as evenly as possible, avoiding sharp power peaks, standardizing the burning fuel, controlling reactivity deviations and acting in reactor shutdown

  1. Fluid structure interaction between rods and a cross flow - Numerical approach

    Energy Technology Data Exchange (ETDEWEB)

    Simoneau, Jan-patrice, E-mail: jan-patrice.simoneau@areva.com [Areva, 10, Rue J. Recamier, F 69456 Cedex 06, Lyon (France); Sageaux, Thomas, E-mail: thomas.sageaux@areva.com [Areva, 10, Rue J. Recamier, F 69456 Cedex 06, Lyon (France); Moussallam, Nadim, E-mail: nadim.moussallam@areva.com [Areva, 10, Rue J. Recamier, F 69456 Cedex 06, Lyon (France); Bernard, Olivier, E-mail: olivier.bernard1@areva.com [Areva, 1, Place J. Millet, F 92084 Paris la Defense (France)

    2011-11-15

    This paper presents a full coupled approach between fluid dynamics and structure analysis. It is conducted in order to further improve the assessment of fluid structure interaction problems, occurring in the nuclear field such as the behavior of PWR fuel rods, steam generators and other heat exchangers tubes, fast breeder fuel assemblies. The coupling is obtained by implementing a beam mechanical model in user routines of the CFD code Star-CD, and thanks to a moving grid procedure. The configurations considered are rods in a cross flow. The model is first validated on a single rod case. The lock-in effect is pointed out and both amplitude and frequency responses of the single rod are positively compared to experimental data. Secondly, the mutual influence of two rods, either in-line or parallely set, is investigated. Different behaviors, bounded by critical distances between the rods are highlighted. Finally, the stability of a 3 Multiplication-Sign 3 bundle is calculated for different impinging velocities. Stable and unstable areas are found when varying the impinging velocity. Above a limit, the vibrations amplify up to a contact between rods, this bound is found slightly greater than literature values for close configurations. It is therefore expected that further calculations, with model refinements, will bring valuable informations about bundle stability.

  2. A systematic approach for development of a PWR cladding corrosion model

    International Nuclear Information System (INIS)

    A new model for the in-reactor corrosion of Improved (low-tin) Zircaloy-4 cladding irradiated in commercial pressurized water reactors (PWRs) is described. The model is based on an extensive database of PWR fuel cladding corrosion data from fuel irradiated in commercial reactors, with a range of fuel duty and coolant chemistry control strategies which bracket current PWR fuel management practices. The fuel thermal duty with these current fuel management practices is characterized by a significant amount of sub-cooled nucleate boiling (SNB) during the fuel's residence in-core, and the cladding corrosion model is very sensitive to the coolant heat transfer models used to calculate the coolant temperature at the oxide surface. The systematic approach to developing the new corrosion model therefore began with a review and evaluation of several alternative models for the forced convection and SNB coolant heat transfer. The heat transfer literature is not sufficient to determine which of these heat transfer models is most appropriate for PWR fuel rod operating conditions, and the selection of the coolant heat transfer model used in the new cladding corrosion model has been coupled with a statistical analysis of the in-reactor corrosion enhancement factors and their impact on obtaining the best fit to the cladding corrosion data. The in-reactor corrosion enhancement factors considered in this statistical analysis are based on a review of the current literature for PWR cladding corrosion phenomenology and models. Fuel operating condition factors which this literature review indicated could have a significant effect on the cladding corrosion performance were also evaluated in detail in developing the corrosion model. An iterative least squares fitting procedure was used to obtain the model coefficients and select the coolant heat transfer models and in-reactor corrosion enhancement factors. This statistical procedure was completed with an exhaustive analysis of the model

  3. Utilization of spent PWR fuel-advanced nuclear fuel cycle of PWR/CANDU synergism

    Institute of Scientific and Technical Information of China (English)

    HUO Xiao-Dong; XIE Zhong-Sheng

    2004-01-01

    High neutron economy, on line refueling and channel design result in the unsurpassed fuel cycle flexibility and variety for CANDU reactors. According to the Chinese national conditions that China has both PWR and CANDU reactors and the closed cycle policy of reprocessing the spent PWR fuel is adopted, one of the advanced nuclear fuel cycles of PWR/CANDU synergism using the reprocessed uranium of spent PWR fuel in CANDU reactor is proposed, which will save the uranium resource (~22.5%), increase the energy output (~41%), decrease the quantity of spent fuels to be disposed (~2/3) and lower the cost of nuclear power. Because of the inherent flexibility of nuclear fuel cycle in CANDU reactor, and the low radiation level of recycled uranium(RU), which is acceptable for CANDU reactor fuel fabrication, the transition from the natural uranium to the RU can be completed without major modification of the reactor core structure and operation mode. It can be implemented in Qinshan Phase Ⅲ CANDU reactors with little or no requirement of big investment in new design. It can be expected that the reuse of recycled uranium of spent PWR fuel in CANDU reactor is a feasible and desirable strategy in China.

  4. Thorium fuel cycle study for PWR applications

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jae Yong; Kim, Myung Hyun [Kyung Hee Univ., Seoul (Korea, Republic of)

    1997-12-31

    A nuclear design feasibility of thorium fueled high converting PWR was investigated. Two kinds of fuel design option were tested for the comparison with conventional UO{sub 2} fuel. The first one was an application of MHTGR pyro-carbon coated particle fuels. The other design was an application of MOX fuels as a ThO{sub 2}-PuO{sub 2} ceramic pellet. In the case of carbon-coated particle fuels, there was no benefit in nuclear design aspect because enrichment of U-235 was required over 5 w/o in order to match with the K-infinite of Ulchin-3/4 fuels. However, the use of thorium based plutonium fuels in PWR gave favorable aspects in nuclear design such as flatter K-infinite curve, lower M. T. C. and lower F. T. C. than that of UO{sub 2} fuel. (author). 6 refs., 3 tabs., 6 figs.

  5. Piston for rod pumping

    Energy Technology Data Exchange (ETDEWEB)

    Pastushenko, G.I.

    1965-06-22

    A piston, or plunger, for rod pumping, is made up of a cylindrical housing with labryinthal seals, a nose piece, and a scraper. In order to remove paraffin from the inside surface of the production pipe, the housing is made in telescopic form. The scraper consists of an arrangement of springs installed on the outer surface of the housing.

  6. Sucker rod centralizer

    Energy Technology Data Exchange (ETDEWEB)

    Rezewski, J.

    1988-01-26

    This patent describes an oil well sucker rod guide consisting of an elongated body having a number of radial slots. Each slot is disposed at equiangular spaced positions, and contains a roller rotatably supported upon an axle transverse to the slot, such that the roller projects outside the periphery of the body from only one end of the slot

  7. PWR fuel behavior: lessons learned from LOFT

    International Nuclear Information System (INIS)

    A summary of the experience with the Loss-of-Fluid Test (LOFT) fuel during loss-of-coolant experiments (LOCEs), operational and overpower transient tests and steady-state operation is presented. LOFT provides unique capabilities for obtaining pressurized water reactor (PWR) fuel behavior information because it features the representative thermal-hydraulic conditions which control fuel behavior during transient conditions and an elaborate measurement system to record the history of the fuel behavior

  8. The integrated PWR; Les REP integres

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, G.M. [CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Reacteurs

    2002-07-01

    This document presents the integrated reactors concepts by a presentation of four reactors: PIUS, SIR, IRIS and CAREM. The core conception, the operating, the safety, the economical aspects and the possible users are detailed. From the performance of the classical integrated PWR, the necessity of new innovative fuels utilization, the research of a simplified design to make easier the safety and the KWh cost decrease, a new integrated reactor is presented: SCAR 600. (A.L.B.)

  9. Shielding design for PWR in France

    Energy Technology Data Exchange (ETDEWEB)

    Champion, G.; Charransol; Le Dieu de Ville, A.; Nimal, J.C.; Vergnaud, T.

    1983-05-01

    Shielding calculation scheme used in France for PWR is presented here for 900 MWe and 1300 MWe plants built by EDF the French utility giving electricity. Neutron dose rate at areas accessible by personnel during the reactor operation is calculated and compared with the measurements which were carried out in 900 MWe units up to now. Measurements on the first French 1300 MWe reactor are foreseen at the end of 1983.

  10. Modelling activity transport behavior in PWR plant

    International Nuclear Information System (INIS)

    The activation and transport of corrosion products around a PWR circuit is a major concern to PWR plant operators as these may give rise to high personnel doses. The understanding of what controls dose rates on ex-core surfaces and shutdown releases has improved over the years but still several questions remain unanswered. For example the relative importance of particle and soluble deposition in the core to activity levels in the plant is not clear. Wide plant to plant and cycle to cycle variations are noted with no apparent explanations why such variations are observed. Over the past few years this group have been developing models to simulate corrosion product transport around a PWR circuit. These models form the basis for the latest version of the BOA code and simulate the movement of Fe and Ni around the primary circuit. Part of this development is to include the activation and subsequent transport of radioactive species around the circuit and this paper describes some initial modelling work in this area. A simple model of activation, release and deposition is described and then applied to explain the plant behaviour at Sizewell B and Vandellos II. This model accounts for activation in the core, soluble and particulate activity movement around the circuit and for activity capture ex-core on both the inner and outer oxides. The model gives a reasonable comparison with plant observations and highlights what controls activity transport in these plants and importantly what factors can be ignored. (authors)

  11. Development and design of control rod drive mechanisms for pressurized water reactors

    International Nuclear Information System (INIS)

    The Control Rod Drive Mechanisms (CRDM) for a Pressurized Water Reactor (PWR) are equipment, integrated to the reactor pressure vessel, incorporating mechanical and electrical components designed to move and position the control rods to guarantee the control of power and shutdown of the nuclear reactor, during normal operation, either in emergency or accidental situations. The type of CRDM used in PWR reactors, whose detailed individual description will be presented in this monograph are the Roller-Nut and Magnetic-Jack. The environment, where the CRDM performs its above presented operational functions, includes direct contact with the fluid used as coolant peculiar to the interior of the reactor, and its associated chemical characteristics, the radiation field next to the reactor core, and also the temperature and pressure in the reactor pressure vessel. So the importance of the CRDM design requirements related to its safety functions are emphasized. Finally, some aspects related to the mechanical and structural design of CRDM of a case study, considering the CRDM for a PWR from the experimental nuclear plant to be applied by CTMSP (Centro Tecnologico da Marinha em Sao Paulo), are pointed out. The design and development of these equipment (author)

  12. EB welding and quality control of nuclear reactor fuel rods at ASEA-ATOM

    International Nuclear Information System (INIS)

    Fourteen years ago ASEA-ATOM chose EB welding for fuel rod plug/tube welds. This choice was made on the basis of 7 years of experience of EB-welding of fuel rods in a pilot plant. The specific reasons were the high quality and the high process yield, which are made possible by the great degree of controlability and reproducibility of this process and because the welds are suitable for QC inspection by an inline ultrasonic method which we developed at the same time. To date ASEA-ATOM has manufactured approximately 600,000 fuel rods with 1,200,000 EB-welds. The results have met expections as regards quality, process yield and service in BWR and PWR reactors. Descriptions are given of the automatic Sciaky EB welding machines, of the ultrasonic inspection equipment and of their process qualification. Some comments are made on quality and process yield

  13. Research on Operation and Control Strategy of 600MW PWR in Load Follow

    International Nuclear Information System (INIS)

    600MW Pressurized Water Reactor (PWR) is designed to operate in Constant Axial Offset Control (CAOC) strategy with base load originally. By calculations over a typical load follow scenario '12-3-6-3 (100-50-100%FP) via the CASMO-4E and SIMULATE-3 package, values of core operating parameter have been examined. With the progress of the nuclear power industry, advanced reactors are considered to have a good performance in load follow, economy and flexibility. Under the premise of fuel loading and structural dimensions unchanged, two independent control rod groups M and AO are used in 600MW pressurized water reactor to provide fine control of both the core reactivity and axial power distribution, which is named ' Improved G strategy .' The influences of different control rod distributions, composition materials, and overlap steps had in power changes have been examined in a comparative study to choose the optimal one.Then we simulate a range of load follow scenarios of the redesigned 600MW core without adjusting soluble boron concentration in the begin, middle and end of first cycle. This paper additionally demonstrated the moderator temperature coefficient and shutdown margin values of the reactor in Improved G strategy to compare with the thermal safety design criteria. It's demonstrated that adequate adjustment of control rod groups enable the core to perform load follow through Improved G strategy in 80% of cycle and save a large volume of liquid effluent particularly toward the end of cycle

  14. Morphoelastic rods. Part I: A single growing elastic rod

    KAUST Repository

    Moulton, D.E.

    2013-02-01

    A theory for the dynamics and statics of growing elastic rods is presented. First, a single growing rod is considered and the formalism of three-dimensional multiplicative decomposition of morphoelasticity is used to describe the bulk growth of Kirchhoff elastic rods. Possible constitutive laws for growth are discussed and analysed. Second, a rod constrained or glued to a rigid substrate is considered, with the mismatch between the attachment site and the growing rod inducing stress. This stress can eventually lead to instability, bifurcation, and buckling. © 2012 Elsevier Ltd. All rights reserved.

  15. Method for making sucker rods

    Energy Technology Data Exchange (ETDEWEB)

    Rasi-Zade, A.T.O.; Kurbanov, N.G.O.; Sutovsky, P.M.; Shikhlinsky, T.M.O.; Kakhramanov, K.T.; Rabinovich, A.M.; Karaev, I.K.O.; Timofeev, V.I.; Ibragimov, O.I.O.

    1991-07-20

    A method for making sucker rods used in oil well pumping is provided, which has the objectives of cutting down the cost of producing sucker rods and of improving their reliability in arduous operating conditions found in wells containing corrosive fluids. The method is characterized in that a rod-body blank is first welded together with rod-end blanks which are made from different materials than the rod-body blank. A welded sucker-rod blank is thus obtained, on which end heads are upset from the blank. The length of the rod-end blank is selected so that weld joints are established, after the upsetting procedure, across the maximum cross-section of the end heads. The method of the invention provides for a weld joint having as much as 3.5 to 4 times the area compared to the rod body, within the zone of the minimum effective stresses acting upon the rod, hence possessing a safety margin of many times the maximum stress applied. This assures high operational reliability and durability of the rods produced according to the invention. The method of the invention does not require precision accuracy in welding the sucker-rod blanks, and minimizes the consumption of expensive alloyed steel, which is used only for making the part of the rod that is subjected to the greatest loads. 7 figs.

  16. CRC DEPLETION CALCULATIONS FOR THE RODDED ASSEMBLIES IN BATCHES 1, 2, 3, AND 1X OF CRYSTAL RIVER UNIT 3

    International Nuclear Information System (INIS)

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain rodded fuel assemblies from batches 1, 2, 3, and 1X of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for Commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A rodded assembly is one that contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) for some period of time during its irradiation history. The objective of this analysis is to provide SAS2H calculated isotopic compositions of depleted fuel and depleted burnable poison for each fuel assembly to be used in subsequent CRC reactivity calculations containing the fuel assemblies

  17. CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 1, 2, AND 3 OF CRYSTAL RIVER UNIT 3

    International Nuclear Information System (INIS)

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 1, 2, and 3 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for Commercial Reactor Critical (CRC) evaluations to support development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies

  18. CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 1, 2, AND 3 OF CRYSTAL RIVER UNIT 3

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth D. Wright

    1997-07-29

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 1, 2, and 3 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for Commercial Reactor Critical (CRC) evaluations to support development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies.

  19. CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 4 AND 5 OF CRYSTAL RIVER UNIT 3

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth D. Wright

    1997-07-30

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 4 and 5 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies.

  20. CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 4 AND 5 OF CRYSTAL RIVER UNIT 3

    International Nuclear Information System (INIS)

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 4 and 5 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies

  1. Turbulent flows in complex rod bundle geometries numerically predicted by the use of FEM and a basic turbulence model

    International Nuclear Information System (INIS)

    Newer projects in nuclear reactor design tend to higher conversion ratios. An up-to-date PWR has a conversion ratio of approximately 0.53. Whereas APWRs are planned to have up to 0.95 and the breeder reactor is supposed to have a ratio better than 1.0. High conversion ratios necessitate tightly packed fuel rod lattices. Together with high burnup, necessary for economic efficiency, the slender fuel rods show a tendency to bend. The result of bent fuel rods is a distorted lattice. A further item which leads to irregular lattices are the tolerances in fuel rod assembly. The absolute values of tolerance which can be seen as fixed become relatively more important in tightly packed lattices. (orig./GL)

  2. CRC DEPLETION CALCULATIONS FOR THE RODDED ASSEMBLIES IN BATCHES 1, 2, 3, AND 1X OF CRYSTAL RIVER UNIT 3

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth D. Wright

    1997-09-03

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain rodded fuel assemblies from batches 1, 2, 3, and 1X of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for Commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A rodded assembly is one that contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) for some period of time during its irradiation history. The objective of this analysis is to provide SAS2H calculated isotopic compositions of depleted fuel and depleted burnable poison for each fuel assembly to be used in subsequent CRC reactivity calculations containing the fuel assemblies.

  3. Project description: ORNL PWR blowdown heat transfer separate-effects program, Thermal-Hydraulic Test Facility (THTF)

    Energy Technology Data Exchange (ETDEWEB)

    1976-02-01

    The ORNL Pressurized-Water Reactor Blowdown Heat Transfer (PWR-BDHT) Program is an experimental separate-effects study of the relations among the principal variables that can alter the rate of blowdown, the presence of flow reversal and rereversal, time delay to critical heat flux, the rate at which dryout progresses, and similar time-related functions that are important to LOCA analysis. Primary test results will be obtained from the Thermal-Hydraulic Test Facility (THTF), a large nonnuclear pressurized-water loop that incorporates a 49-rod electrically heated bundle. Supporting experiments will be carried out in two additional test loops - the Forced Convection Test Facility (FCTF), a small high-pressure facility in which single heater rods can be tested in annular geometry; and an air-water loop which is used to evaluate two-phase flow-measuring instrumentation.

  4. A new formulation of the pseudocontinuous synthesis algorithm applied to the calculation of neutronic flux in PWR reactors

    International Nuclear Information System (INIS)

    A new formulation of the pseudocontinuous synthesis algorithm is applied to solve the static three dimensional two-group diffusion equations. The new method avoids ambiguities regarding interface conditions, which are inherent to the differential formulation, by resorting to the finite difference version of the differential equations involved. A considerable number of input/output options, possible core configurations and control rod positioning are implemented resulting in a very flexible as well as economical code to compute 3D fluxes, power density and reactivities of PWR reactors with partial inserted control rods. The performance of this new code is checked against the IAEA 3D Benchmark problem and results show that SINT3D yields comparable accuracy with much less computing time and memory required than in conventional 3D finite differerence codes. (Author)

  5. Modeling the activity of 129I and 137Cs in the primary coolant and CVCS resin of an operating PWR

    International Nuclear Information System (INIS)

    Mathematical models have been developed to describe the activities of 129I and 137Cs in the primary coolant and resin of the chemical and volume control system (CVCS) during constant power operation in a pressurized water reactor (PWR). The models, which account for the source releases from defective fuel rod(s) and tramp uranium, rely on the contribution of CVCS resin and boron recovery system as a removal process, and differences in behavior for each nuclide. The current models were validated through measured coolant activities of 137Cs. The resultant scaling factors agree reasonably well with the results of the test resin of the coolant and the actual resins from the PWRs of other countries

  6. Alternative water chemistry for the primary loop of PWR plants

    International Nuclear Information System (INIS)

    Advanced fuel element concepts (longer cycles, higher burnup, increased rod power) call for more reactivity binding capacity and, moreover, might produce higher void fractions, particularly in the hot channel. Thus, on the one hand, more alcalizing agent is needed to maintain a high coolant pH according to the approved ''modified boron-lithium mode of operation'' in the presence of more boric acid (chemical shim); on the other hand, increasing enrichment of coolant constituents due to local boiling (higher void fraction), which must not result in accelerated corrosion of fuel cladding and structural materials, imposes enhanced requirements on both, materials technology and water chemistry. At present, the use of boric acid enriched in B10 (the isotope effective in terms of reactivity control) appears to advantageously compromise in capturing more neutrons with less total boron while maintaining or even slightly reducing lithium concentrations at the same time. There is no feasible alternative for boric acid used as the chemical shim and for hydrogen gas as the reducing agent used to suppress oxygen formation by water radiolysis. Systematic screening as performed in phase 1 of a recent project proved potassium hydroxide to be the only potential candidate to favourably replace lithium 7 hydroxide as an alcalizing agent. Unfortunately, the results of pertinent comparative corrosion tests are not unambiguous, and available operational experience with potassium hydroxide in WWER plants is not readily applicable to western world-type PWR plants. Therefore, a switch-over from lithium to potassium can be envisaged only subsequent to a comprehensive qualification program which is planned to be the objective of phase 2 of the project. This program should also comprise zinc addition tests in order to confirm the alleged positive impact of this element on corrosion rates and activity buildup. Supplementary, it is recommended to consider amendments to existing water chemistry

  7. Sucker rod centralizer

    Energy Technology Data Exchange (ETDEWEB)

    Rivas, O.; Newski, A.

    1989-10-03

    This patent describes a device for centralizing at least one sucker rod within a production pipe downhole in a well and for reducing frictional forces between the pipe and at least one sucker rod. It comprises an elongate, substantially cylindrical body member having a longitudinal axis, a plurality of slots within the member and a rotatable member mounted within each slot, each of the plurality of slots has its major dimension along a first axis parallel to the longitudinal axis of the body member and is oriented with respect to the other seats so as to form a helicoidal array for maximizing the total surface contact area between the rotatable members and the pipe and for decreasing the forces acting on each rotatable member.

  8. Sucker rod guide

    Energy Technology Data Exchange (ETDEWEB)

    White, R.C.

    1988-10-25

    This patent describes an improved guide for use in a string of sucker rods for reciprocation in a tubing string in a borehole, the sucker rods having threaded male ends, the guide comprising: an elongated upright cylindrical member of external diameter less than the internal diameter of tubing in which it is to be used, the member having sucker rod receiving female threaded openings at the upper and lower ends, the threaded openings being coaxial of the member cylindrical axis whereby the member may be positioned in a string of sucker rods, and including a plurality of spaced-apart parallel sided slots within the member, each slot being of semi-circular configuration and of depth greater than the radius and less than the diameter of the cylindrical member, the sidewalls of each slot being parallel to and equally spaced from a plane of the member cylindrical axis; the member having an axle bore therein for each of the slots, the axle bores being parallel and spaced apart from each other, a plane of the axis of each bore being perpendicular the member cylindrical axis and the axis of each bore being displaced away from the member cylindrical axis; an axle received in each axle bore; and a wheel received on each axle the diameter of each wheel being approximately the diameter of the cylindrical member, the periphery of each wheel extending beyond the member cylindrical wall whereby the wheels are positioned to engage and roll on the internal cylindrical surface of tubing, the planes of adjacent slots in the member being rotationally displaced from each other, a portion of each wheel extending beyond the cylindrical surface of the member, the opposed portion of each wheel being within the confines of the member cylindrical surface whereby each wheel can contact a tubing wall at only one point on its cylindrical surface.

  9. Experimental investigation of reflux condensation heat transfer in PWR steam generator tubes in the presence of noncondensible gases

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, Karen; Wu, Tiejun [Purdue Univ., West Lafayette (United States); Nagae, Takashi [Institute of Nuclear Safety System, Tokyo (Japan)

    2003-07-01

    Under certain circumstances in a Pressurized Water Reactor (PWR), the coolant system may be in a partially drained state and reflux condensation in the steam generator U-tubes can be the major heat removal mechanism. Noncondensable gases may be present and would degrade the heat transfer rate. If heat removal rates are insufficient, this situation could lead to core boil-off, fuel rod heatup, and eventually core damage. The Institute of Nuclear Safety System, Inc. (INSS) and the Nuclear Heat Transfer Systems Laboratory at Purdue University have begun a cooperative research program to investigate the effectiveness of reflux condensation in PWR steam generator U-tubes in the presence of noncondensable gases. The final objectives are to provide local heat transfer data for development of methods to analyze reflux condensation in PWR steam generator U-tubes and to investigate the potential for flooding. Key features of the experimental data reported herein are that they are local data under laminar steam/gas mixture and condensate film flow and they are taken from a test section with dimensions similar to an actual steam generator tube. Steady state data were obtained under various steam and air inlet flow rates and pressures. The data show the significant degrading effect of noncondensable gas on heat transfer coefficients. From the data, correlations for the reflux condensation local heat transfer coefficient and the local Nusselt number under laminar conditions were derived. These experiments are providing essential and unique fundamental data for development of methods to analyze reflux condensation.

  10. Effect of Flow Blockage on the Coolability during Reflood in a 2 × 2 Rod Bundle

    Directory of Open Access Journals (Sweden)

    Kihwan Kim

    2014-01-01

    Full Text Available During the reflood phase of a large-break loss-of-coolant accident (LBLOCA in a pressurized-water reactor (PWR, the fuel rods can be ballooned or rearranged owing to an increase in the temperature and internal pressure of the fuel rods. In this study, an experimental study was performed to understand the thermal behavior and effect of the ballooned region on the coolability using a 2 × 2 rod bundle test facility. The electrically heated rod bundle was used and the ballooning shape of the rods was simulated by superimposing hollow sleeves, which have a 90% blockage ratio. Forced reflood tests were performed to examine the transient two-phase heat transfer behavior for different reflood rates and rod powers. The droplet behaviors were also investigated by measuring the velocity and size of droplets near the blockage region. The results showed that the heat transfer was enhanced in the downstream of the blockage region, owing to the reduced flow area of the subchannel, intensification of turbulence, and deposition of the droplet.

  11. Method for making sucker rods

    Energy Technology Data Exchange (ETDEWEB)

    Karaev, I.K.O.; Shikhlinsky, T.M.O.; Polikhronov, K.P.; Sutovsky, P.M.; Avakian, E.V.; Semkin, N.V.; Rabinovich, A.M.; Dzhabarov, R.D.

    1991-01-15

    A method for making sucker rods composed of a rod body and end heads is provided. The rod body end portions are subjected to an upsetting procedure which is carried out at a temperature that precludes softening of the rod body metal. A thickening is formed on each of the end portions, whose width in a direction square with the rod body axis is equal to or exceeds the head maximum diameter in the place of the weld joint, and whose length exceeds the width of the heat-affected zone involved in the welding process. A transition portion is shaped as a solid of revolution whose cross-section smoothly and continuously decreases from the thickening towards the rod body. The upsetting procedure is followed by pressure welding of each of the end heads together with the thickening on the rod body end portion and by turning the weld joint zone.

  12. Nuclear fuel rods

    International Nuclear Information System (INIS)

    Purpose: To enable a tight seal in fuel rods while keeping the sealing gas pressure at an exact predetermined pressure in fuel rods. Constitution: A vent aperture and a valve are provided to the upper end plug of a cladding tube. At first, the valve is opened to fill gas at a predetermined pressure in the fuel can. Then, a conical valve body is closely fitted to a valve seat by the rotation of a needle valve to eliminate the gap in the engaging thread portion and close the vent aperture. After conducting the reduced pressure test for the fuel rod in a water tank, welding joints are formed between the valve and the end plug through welding to completely seal the cladding tube. Since the welding is conducted after the can has been closed by the valve, the predetermined gas pressure can be maintained at an exact level with no efforts from welding heat and with effective gas leak prevention by the double sealing. (Kawakami, Y.)

  13. Sucker rod coupling

    Energy Technology Data Exchange (ETDEWEB)

    Klyne, A.A.

    1986-11-11

    An anti-friction sucker rod coupling is described for connecting a pair of sucker rods and centralizing them in a tubing string, comprising: an elongate, rigid, substantially cylindrical body member, each end of the body member forming means for threadably connecting the body member with a sucker rod. The body member further forms a transversely extending, substantially diametric, generally vertical slot extending therethrough. The body member further forms a pin bore, such pin bore extending transversely through the body member so as to intersect the slot substantially perpendicularly; a wheel member positioned within the slot to rotate in a generally vertical plane. The wheel member has a portion thereof extending beyond the periphery of the body member to engage the inner surface of the tubing string and centralize the coupling; and a pin mounted in the pin bore and supporting member thereon, whereby the wheel member is rotatable within the slot; the wheel member having sufficient clearance between its side surfaces and the wall surfaces of the slot, when the wheel member is centered in the slot on the pin, whereby the wheel member may shift along the pin to assist in ejecting sand and oil from the slot.

  14. Sensitivity analysis of a PWR fuel element using zircaloy and silicon carbide claddings

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Rochkhudson B. de; Cardoso, Fabiano; Salome, Jean A.D.; Pereira, Claubia; Fortini, Angela, E-mail: rochkhudson@ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Departamento de Engenharia Nuclear

    2015-07-01

    The alloy composed of zirconium has been used effectively for over 50 years in claddings of nuclear fuel, especially for PWR type reactors. However, to increase fuel enrichment with the aim of raising the burning and maintaining the safety of nuclear plants is of great relevance the study of new materials that can replace safely and efficiently zircaloy cladding. Among several proposed material, silicon carbide (SiC) has a potential to replace zircaloy as fuel cladding material due to its high-temperature tolerance, chemical stability and low neutron affinity. In this paper, the goal is to expand the study with silicon carbide cladding, checking its behavior when submitted to an environment with boron, burnable poison rods, and temperature variations. Sensitivity calculation and the impact in multiplication factor to both claddings, zircaloy and silicon carbide, were performed during the burnup. The neutronic analysis was made using the SCALE 6.0 (Standardized Computer Analysis for Licensing Evaluation) code. (author)

  15. Representing Operational Knowledge of PWR Plant by Using Multilevel Flow Modelling

    DEFF Research Database (Denmark)

    Zhang, Xinxin; Lind, Morten; Jørgensen, Sten Bay;

    2014-01-01

    The aim of this paper is to explore the capability of representing operational knowledge by using Multilevel Flow Modelling ( MFM ) methodology. The paper demonstrate s how the operational knowledge can be inserted into the MFM models and be used to evaluate the plant state, identify the current...... systems. And the sub - systems’ functions will be decomposed into sub - models according to different operational situations. An operational model will be developed based on the operating procedure by using MFM symbols and this model can be used to implement coordination rules for organize the utilizati...... situation and support operational decisions. This paper will provide a general MFM model of the primary side in a standard Westinghouse Pressurized Water Reactor ( PWR ) system including sub - systems of Reactor Coolant System, Rod Control System, Chemical and Volume Control System, emergency heat removal...

  16. Parametric study on parallel flow induced damping of PWR fuel assembly

    International Nuclear Information System (INIS)

    This paper reports on a mechanism of parallel flow-induced changes in vibrational characteristics of PWR fuel assemblies that has been studied through a series of hydraulic tests using reduced-and full-scale prototype mockups. Measured data and analytical evaluations showed the phenomenon stands on essentially the same basis as the dynamics and stability of flexible cylinders subjected to a parallel flow. In the mathematical model, the effects of rod bundle geometries and boundaries formed by walls or adjacent bundles can be exactly incorporated in the form of added mass coefficients, velocity coupling coefficients and other fluid forces. From a full scale test, it has been shown that coolant temperature has little effect up to reactor operating conditions. The updated FEM model has been verified to be applicable in describing the vibrational characteristics of from an isolated cylinder to a full scale fuel assembly in terms of the consistent properties

  17. Sizewell: proposed site for Britain's first PWR power station

    International Nuclear Information System (INIS)

    The pamphlet covers the following points, very briefly: nuclear power - a success story; the Government's nuclear programme; why Sizewell; the PWR (with diagram); the PWR at Sizewell (with aerial view) (location; size; cooling water; road access; fuel transport; construction; employment; environment; screening; the next steps (licensing procedures, etc.); safety; further information). (U.K.)

  18. Evaluation of Physical Characteristics of PWR Cores with Accident Tolerant Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Hee; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of); In, Wang Kee [KAERI, Daejeon (Korea, Republic of)

    2015-10-15

    The accident tolerant fuels (ATF) considered in this work includes metallic microcell UO{sub 2} pellets and outer Cr-based alloy coating on cladding, which is being developed in KAERI (Korea Atomic Energy Research Institute). Chromium metals have been used in many fields because of its hardness and corrosion-resistance. The use of the chromium metal in nuclear fuel rod can enhance the conductivity of pellets and corrosion-resistance of cladding. The objective of this work is to study the neutronic performances and characteristics of the commercial PWR core loaded the ATF-bearing assemblies. In this work, we studied the PWR cores which are loaded with ATF assemblies to improve the safety of reactor core. The ATF rod consists of the metallic microcell UO2 pellet which includes chromium of 3.34 wt% and the outer 0.05mm thick coating of Cr-based alloy with atomic number ratio of 85:15. We performed the cycle-by-cycle reload core analysis from the cycle 8 at which the ATF fuel assemblies start to be loaded into the core. The target nuclear power plant is the Hanbit-3 nuclear power plant. From the analysis, it was found that 1) the uranium enrichment is required to be increased up to 5.20/4.70 wt% in order to satisfy a required cycle length of 480 EFPDs, 2) the cycle length for the core using ATF fuel assemblies with the same uranium enrichments as those in the reference UO{sub 2} fueled core is decreased from 480 EFPDs to 430 EFPDs.

  19. Industrywide survey of PWR organics. Final report

    International Nuclear Information System (INIS)

    Thirteen Pressurized Water reactor (PWR) secondary cycles were sampled for organic acids, total organic carbon, and inorganic anions. The distribution and removal of organics in a makeup water treatment system were investigted at an additional plant. TOC analyses were used for the analysis of makeup water systems; anion ion chromatography and ion exclusion chromatography were used for the analysis of secondary water systems. Additional information on plant operation and water chemistry was collected in a survey. The analytical and survey data were compared and correlations made

  20. Transient study of a PWR pressurizer

    International Nuclear Information System (INIS)

    An appropriate method for the calculation and transient performance of the pressurizer of a pressurized water reactor is presented. The study shows a digital program of simulation of pressurizer dynamics based on the First Law of Thermodynamic and Laws of Heat and Mass Transfer. The importance of the digital program that was written for a pressurizer of PWR, lies in the fact that, this can be of practical use in the safety analysis of a reactor of Angra dos Reis type with a power of about 500 M We. (author)

  1. Microstructural characterization and properties of dissimilar joints used in coupling of PWR control rod driving

    International Nuclear Information System (INIS)

    The chemical, mechanical and microstructural characterizations of a dissimilar joint between SA336F347 austenitic and SA479Tp414 martensitic stainless steels were done, welded by TIG process, defining as a result of this characterization that the ER Ni Cr-3 Ni consumable seems to be the best applicable consumable compared to the ER309L consumable; The main variables of the process control were also evaluated, its weldability and properties for a future qualification of a welding procedure, besides to simulate possible situations to be found in this type of joint, such as, its weldability by the LASER process, welded joint without filler metal and without shielding gas, obtaining in this way enough data for the production of products that contains this type of joint. (author)

  2. Fiber optic laser rod

    Science.gov (United States)

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  3. Cone rod dystrophies.

    Science.gov (United States)

    Hamel, Christian P

    2007-01-01

    Cone rod dystrophies (CRDs) (prevalence 1/40,000) are inherited retinal dystrophies that belong to the group of pigmentary retinopathies. CRDs are characterized by retinal pigment deposits visible on fundus examination, predominantly localized to the macular region. In contrast to typical retinitis pigmentosa (RP), also called the rod cone dystrophies (RCDs) resulting from the primary loss in rod photoreceptors and later followed by the secondary loss in cone photoreceptors, CRDs reflect the opposite sequence of events. CRD is characterized by primary cone involvement, or, sometimes, by concomitant loss of both cones and rods that explains the predominant symptoms of CRDs: decreased visual acuity, color vision defects, photoaversion and decreased sensitivity in the central visual field, later followed by progressive loss in peripheral vision and night blindness. The clinical course of CRDs is generally more severe and rapid than that of RCDs, leading to earlier legal blindness and disability. At end stage, however, CRDs do not differ from RCDs. CRDs are most frequently non syndromic, but they may also be part of several syndromes, such as Bardet Biedl syndrome and Spinocerebellar Ataxia Type 7 (SCA7). Non syndromic CRDs are genetically heterogeneous (ten cloned genes and three loci have been identified so far). The four major causative genes involved in the pathogenesis of CRDs are ABCA4 (which causes Stargardt disease and also 30 to 60% of autosomal recessive CRDs), CRX and GUCY2D (which are responsible for many reported cases of autosomal dominant CRDs), and RPGR (which causes about 2/3 of X-linked RP and also an undetermined percentage of X-linked CRDs). It is likely that highly deleterious mutations in genes that otherwise cause RP or macular dystrophy may also lead to CRDs. The diagnosis of CRDs is based on clinical history, fundus examination and electroretinogram. Molecular diagnosis can be made for some genes, genetic counseling is always advised. Currently

  4. Piston and connecting rod assembly

    Science.gov (United States)

    Brogdon, James William (Inventor); Gill, David Keith (Inventor); Chatten, John K. (Inventor)

    2001-01-01

    A piston and connecting rod assembly includes a piston crown, a piston skirt, a connecting rod, and a bearing insert. The piston skirt is a component separate from the piston crown and is connected to the piston crown to provide a piston body. The bearing insert is a component separate from the piston crown and the piston skirt and is fixedly disposed within the piston body. A bearing surface of a connecting rod contacts the bearing insert to thereby movably associate the connecting rod and the piston body.

  5. Fuel rod plugs

    International Nuclear Information System (INIS)

    Purpose: To prevent the formation of voids to the inside of welded portion in fuel rod plugs. Constitution: A fuel rod is tightly sealed by welding end plugs at both ends of a fuel can charged with nuclear fuel material. For the welding of the end plug, laser welding has now been employed with the reason of increasing the welding efficiency and reducing the welding heat distortion. However, if the end plug is laser-welded to the end of the fuel can in the conventional form, there is a problem that voids are liable to be formed near the deepest penetration in the welding portion. That is, gases evolved near the deepest penetration remains in a key-hole like welded metal portion to result in voids there. Accordingly, grooves capable of passing the laser beam key hole therethrough are disposed along the circumferential direction of the pipe at the end plug welded portion in the fuel can. In this way, since gases generating near the deepest penetration are discharged into the grooves, the key hole-like welded metal is completely filled and voids are not formed. (Kamimura, M.)

  6. Control rod drive system

    International Nuclear Information System (INIS)

    The present invention concerns an electromotive driving-type control rod driving system of a BWR type reactor, for which sliding resistance (friction) test can be performed of a movable portion of the control rod driving mechanisms. Namely, a hydraulic pressure control unit has following constitutions in addition to a conventional constitution as a sliding resistance test performing function. (1) A restricting valve is disposed downstream of the scram valve of scram pipelines to control flow rate and pressure of pressurized water flown in the pipelines. (2) A pressure gauge detects a pressure between the scram valve and the restricting valve. (3) A flow meter detects the flow rate of pipelines controlled by the restricting valve. (4) A recording pressure detector detects the pressure at the downstream of the restricting valve. (5) The recording device is attached when the sliding resistant test is performed for tracing the pressure measured by the pressure detection device. Further, the scram valve sends electric signals to a central operation chamber when it is fully closed. The central operation chamber has a function of fully opening the restricting valve by way of the electric signals. (I.S.)

  7. Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors

    CERN Document Server

    Bakosi, J; Lowrie, R B; Pritchett-Sheats, L A; Nourgaliev, R R

    2013-01-01

    The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3x3 and 5x5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carried out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the single-phase incompressible Navier-Stokes equations. The simulations explicitly resolve the la...

  8. Basic information about development and construction of a PWR

    International Nuclear Information System (INIS)

    1.0) Plant layout of a PWR; 2.0) principle design of a PWR and the reactor coolant system; 3.0) reactor auxiliary and ancillary systems; 3.1) volume control system; 3.2) boric acid control and chemical feeding system; 3.3) coolant purification and degassing system; 3.4) coolant storage and treatment system; 3.5) nuclear component cooling system; 3.6) liquid waste processing system; 3.7) gaseous waste processing system; 4.0) residual heat removal system; 5.0) emergency feedwater system; 6.0) containment design; 7.0) fuel handling, storage and transport system in a PWR. (orig.)

  9. Study of safety relief valve operation under ATWS conditions. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Hutmacher, E.S.; Nesmith, B.J.; Brukiewa, J.B.

    1979-06-25

    A literature survey and analysis project has been performed to determine if recent (since mid-1975) data has been reported which could influence the current approach to predicting PWR relief valve capacity under ATWS conditions. This study was conducted by the Energy Technology Engineering Center for NRC. Results indicate that the current relief valve capacity model tends to predict less capacity than actually obtains; however, no experimental verification at PWR ATWS conditions was found. Other project objectives were to establish the availability of methods for evaluating reaction forces and back pressure effects on relief valve capacity, and to determine if facilities exist which are capable of testing PWR relief valves at ATWS conditions.

  10. Physics Analysis of a Prismatic VHTR with Asymmetric Control Rods by Using the HELIOS/MASTER Code Package

    International Nuclear Information System (INIS)

    A new physics analysis procedure is under development for prismatic VHTRs based on a conventional two-step procedure for a PWR physics analysis. The HELIOS and MASTER codes were employed to generate the coarse group cross sections through a transport lattice calculation, and to perform the 3-dimensional core physics analysis by a nodal diffusion calculation, respectively. Since prismatic VHTRs such as a GT-MHR include asymmetrically located large control rods, a control rod treatment is a challenging issue in a physics analysis. Previously, we performed a physics analysis for a prismatic VHTR in which symmetric control rods were assumed. Large spectrum shifts due to a control rod insertion on the surrounding blocks could be covered by optimizing the coarse energy group structure. However, it was noted that some improvements should be made in the prediction of the reaction rates and the control rod worths. In this study a new analysis procedure has been developed to deal with asymmetric control rods more accurately. Surface dependent discontinuity factors obtained from multi-block models were applied to the core calculations for a better prediction of the reaction rates and control rod worths. Benchmark calculations were performed for the GT-MHR cores, where the reference solutions were obtained from the MCNP calculations

  11. A Multi-Stage Wear Model for Grid-to-Rod Fretting of Nuclear Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2014-01-01

    The wear of fuel rod cladding against the supporting structures in the cores of pressurized water nuclear reactors (PWRs) is an important and potentially costly tribological issue. Grid-to-rod fretting (GTRF), as it is known, involves not only time-varying contact conditions, but also elevated temperatures, flowing hot water, aqueous tribo-corrosion, and the embrittling effects of neutron fluences. The multi-stage, closed-form analytical model described in this paper relies on published out-of-reactor wear and corrosion data and a set of simplifying assumptions to portray the conversion of frictional work into wear depth. The cladding material of interest is a zirconium-based alloy called Zircaloy-4, and the grid support is made of a harder and more wear-resistant material. Focus is on the wear of the cladding. The model involves an incubation stage, a surface oxide wear stage, and a base alloy wear stage. The wear coefficient, which is a measure of the efficiency of conversion of frictional work into wear damage, can change to reflect the evolving metallurgical condition of the alloy. Wear coefficients for Zircaloy-4 and for a polyphase zirconia layer were back-calculated for a range of times required to wear to a critical depth. Inputs for the model, like the friction coefficient, are taken from the tribology literature in lieu of in-reactor tribological data. Concepts of classical fretting were used as a basis, but are modified to enable the model to accommodate the complexities of the PWR environment. Factors like grid spring relaxation, pre-oxidation of the cladding, multiple oxide phases, gap formation, impact, and hydrogen embrittlement are part of the problem definition but uncertainties in their relative roles limits the ability to validate the model. Sample calculations of wear depth versus time in the cladding illustrate how GTRF wear might occur in a discontinuous fashion during months-long reactor operating cycles. A means to account for grid/rod gaps

  12. Control rod drives

    International Nuclear Information System (INIS)

    Purpose: To improve the reliability of a device for driving an LMFBR type reactor control rod by providing a buffer unit having a stationary electromagnetic coil and a movable electromagnetic coil in the device to thereby avord impact stress at scram time and to simplify the structure of the buffer unit. Constitution: A non-contact type buffer unit is constructed with a stationary electromagnetic coil, a cable for the stationary coil, a movable electromagnetic coil, a spring cable for the movable coil, and a backup coil spring or the like. Force produced at scram time is delivered without impact by the attracting or repelling force between the stationary coil and the movable coil of the buffer unit. Accordingly, since the buffer unit is of a non-contact type, there is no mechanical impact and thus no large impact stress, and as it has simple configuration, the reliability is improved and the maintenance can be conducted more easily. (Yoshihara, H.)

  13. Sucker rod pump

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, J.R.

    1992-04-14

    This patent describes a subsurface well pump, it comprises: a working barrel; a plunger which reciprocates along the vertical axis within the working barrel between an upper and lower position; a rod connected to the plunger and extending to a means for providing reciprocating force; a well string extending from the top of the working barrel to the surface; an outlet check valve which permits flow to exit the working barrel into the well string and does not permit flow to exit the well string into the working barrel; and an inlet check valve which permits flow into the working barrel from outside of the subsurface pump, the inlet check valve being above the top position of the plunger, the inlet check valve having a cross sectional flow area about equal to or greater than the horizontal cross sectional area of the working barrel, and the inlet check valve being a hinged flapper valve.

  14. Decontamination of control rod housing from Palisades Nuclear Power Station.

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, M.D.; Nunez, L.; Purohit, A.

    1999-05-03

    Argonne National Laboratory has developed a novel decontamination solvent for removing oxide scales formed on ferrous metals typical of nuclear reactor piping. The decontamination process is based on the properties of the diphosphonic acids (specifically 1-hydroxyethane-1,1-diphosphonic acid or HEDPA) coupled with strong reducing-agents (e.g., sodium formaldehyde sulfoxylate, SFS, and hydroxylamine nitrate, HAN). To study this solvent further, ANL has solicited actual stainless steel piping material that has been recently removed from an operating nuclear reactor. On March 3, 1999 ANL received segments of control rod housing from Consumers Energy's Palisades Nuclear Plant (Covert, MI) containing radioactive contamination from both neutron activation and surface scale deposits. Palisades Power plant is a PWR type nuclear generating plant. A total of eight segments were received. These segments were from control rod housing that was in service for about 6.5 years. Of the eight pieces that were received two were chosen for our experimentation--small pieces labeled Piece A and Piece B. The wetted surfaces (with the reactor's pressurized water coolant/moderator) of the pieces were covered with as a scale that is best characterized visually as a smooth, shiny, adherent, and black/brown in color type oxide covering. This tenacious oxide could not be scratched or removed except by aggressive mechanical means (e.g., filing, cutting).

  15. Zebra: An advanced PWR lattice code

    Energy Technology Data Exchange (ETDEWEB)

    Cao, L.; Wu, H.; Zheng, Y. [School of Nuclear Science and Technology, Xi' an Jiaotong Univ., No. 28, Xianning West Road, Xi' an, ShannXi, 710049 (China)

    2012-07-01

    This paper presents an overview of an advanced PWR lattice code ZEBRA developed at NECP laboratory in Xi'an Jiaotong Univ.. The multi-group cross-section library is generated from the ENDF/B-VII library by NJOY and the 361-group SHEM structure is employed. The resonance calculation module is developed based on sub-group method. The transport solver is Auto-MOC code, which is a self-developed code based on the Method of Characteristic and the customization of AutoCAD software. The whole code is well organized in a modular software structure. Some numerical results during the validation of the code demonstrate that this code has a good precision and a high efficiency. (authors)

  16. Zebra: An advanced PWR lattice code

    International Nuclear Information System (INIS)

    This paper presents an overview of an advanced PWR lattice code ZEBRA developed at NECP laboratory in Xi'an Jiaotong Univ.. The multi-group cross-section library is generated from the ENDF/B-VII library by NJOY and the 361-group SHEM structure is employed. The resonance calculation module is developed based on sub-group method. The transport solver is Auto-MOC code, which is a self-developed code based on the Method of Characteristic and the customization of AutoCAD software. The whole code is well organized in a modular software structure. Some numerical results during the validation of the code demonstrate that this code has a good precision and a high efficiency. (authors)

  17. A pressure drop model for PWR grids

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dong Seok; In, Wang Ki; Bang, Je Geon; Jung, Youn Ho; Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A pressure drop model for the PWR grids with and without mixing device is proposed at single phase based on the fluid mechanistic approach. Total pressure loss is expressed in additive way for form and frictional losses. The general friction factor correlations and form drag coefficients available in the open literatures are used to the model. As the results, the model shows better predictions than the existing ones for the non-mixing grids, and reasonable agreements with the available experimental data for mixing grids. Therefore it is concluded that the proposed model for pressure drop can provide sufficiently good approximation for grid optimization and design calculation in advanced grid development. 7 refs., 3 figs., 3 tabs. (Author)

  18. Crevice chemistry control in PWR steam generators

    International Nuclear Information System (INIS)

    To establish a basis for predicting and eventually controlling crevice solution chemistry in PWR steam generators, hideout tests were performed at several units. Results indicated that impurity hideout rates varied with the species and with bulk water concentration. Field evaluations of crevice impurity inventory models based on the hideout rate data indicated that further model refinements were necessary, e.g., more frequent quantification of the relation of hideout rates and bulk water concentration. An alternate crevice inventory model based on a real-time mass balance approach also began to be pursued. Modeling results currently are being used at several PWRs to establish a chloride injection rate consistent with development of a near neutral crevice solution to minimize IGA/SCC. Hideout return data are being used to independently establish predictions of crevice chemistry and to substantiate the hideout rate and mass balance model predictions

  19. The underclad cracking in PWR reactor vessels

    International Nuclear Information System (INIS)

    The article describes the kind of cracking which can occur under the stainless steel cladding during the manufacturing process of PWR vessels: - cold cracking recently found in France on vessel nozzles-reheat cracking discovered some ten years ago in particular in Germany and in USA. Methods of examination for underclad cracking are put forward, together with results obtained on vessel nozzles of units currently being built in Belgium. Some nozzles are affected by the phenomenon of reheat cracking, whilst the hypothesis of cold cracking, which had been proposed because of the similar situation found in France should probably be abandoned. On the basis of the investigations and studies made, it is established that the cracking involved does not jeopardize the integrity of the vessels during their life time. (author)

  20. The material analysis for PWR primary equipment

    International Nuclear Information System (INIS)

    The primary equipment in pressurized water reactor includes reactor pressure vessel, reactor coolant piping, steam generator, pressurizer, and reactor coolant pump casing, etc., which form the pressure boundary of the primary loop. These primary equipment are all pressure vessels of QA Class 1, Safety-related Class 1, and Aseismatic Category 1. Under high temperature, high pressure and neutron irradiation, the requirements for the base material and welding properties of these pressure vessels are very high, so as to ensure the long-term stable operation of nuclear power plant. The base material and welding properties of these pressure vessels are analyzed and discussed according to ASME B and P Code, which can be as a reference for base material selection of PWR pressure vessels. (authors)

  1. Characterization of Factors affecting IASCC of PWR Core Internals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Woo; Hwang, Seong Sik; Kim, Won Sam [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-09-15

    A lot works have been performed on IASCC in BWR. Recent efforts have been devoted to investigate IASCC in PWR, but the mechanism in PWR is not fully understood yet as compared with that in BWR due to a lack of data from laboratories and fields. Therefore it is strongly needed to review and analyse recent researches of IASCC in both BWR and PWR for establishing a proactive management technology for IASCC of core internals in Korean PWRs. This work is aimed to review mainly recent technical reports on IASCC of stainless steels for core internals in PWR. For comparison, the works on IASCC in BWR were also reviewed and briefly introduced in this report.

  2. The PWR cores management; La gestion des coeurs REP

    Energy Technology Data Exchange (ETDEWEB)

    Barral, J.C. [Electricite de France (EDF), 75 - Paris (France); Rippert, D. [CEA Cadarache, Departement d' Etudes des Reacteurs, DER, 13 - Saint-Paul-lez-Durance (France); Johner, J. [CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee, DRFC, 13 - Saint-Paul-lez-Durance (France)] [and others

    2000-01-25

    During the meeting of the 25 january 2000, organized by the SFEN, scientists and plant operators in the domain of the PWR debated on the PWR cores management. The five first papers propose general and economic information on the PWR and also the fast neutron reactors chains in the electric power market: statistics on the electric power industry, nuclear plant unit management, the ITER project and the future of the thermonuclear fusion, the treasurer's and chairman's reports. A second part offers more technical papers concerning the PWR cores management: performance and optimization, in service load planning, the cores management in the other countries, impacts on the research and development programs. (A.L.B.)

  3. Design of the Testing Set-up for a Nuclear Fuel Rod by Neutron Radiography at CARR

    Science.gov (United States)

    Wei, Guohai; Han, Songbai; Wang, Hongli; Hao, Lijie; Wu, Meimei; He, Linfeng; Wang, Yu; Liu, Yuntao; Sun, Kai; Chen, Dongfeng

    In this paper, an experimental set-up dedicated to non-destructively test a 15cm-long Pressurized Water Reactor (PWR) nuclear fuel rod by neutron radiography (NR) is described. It consists of three parts: transport container, imaging block and steel support. The design of the transport container was optimized with Monte-Carlo Simulation by the MCNP code. The material for the shell of the transport container was chosen to be lead with the thickness of 13 cm. Also, the mechanical devices were designed to control fuel rod movement inside the container. The imaging block was designed as the exposure platform, with three openings for the neutron beam, neutron converter foil, and specimen. Development and application of this experimental set-up will help gain much experience for investigating the actual irradiated fuel rod by neutron radiography at CARR in the future.

  4. A finite element method with contact for tensile analysis in fuel rods

    International Nuclear Information System (INIS)

    Elements for mechanical analysis of fuel rod of a PWR type reactor, are presented. The rod, consists basically in a cylindrical coating of zircalloy which contains pilling of UO2 pellets, is submitted to strong internal and external pressures, intense temperature gradients and neutron flux. These conditions lead several phenomena in the pellet (swelling, fracture, densification, creep) and in the cladding (embrittlement, corrosion, creep) which undergo deformations leading them to contact the restriction for the interpenetration is included in the problem without restriction by Lagrange multipliers. Considering a non-linear problem, due to the surface of contact to be not known a priori, the numerical solutions were obtained using the finite element method. (M.C.K.)

  5. Supplemental description of ROSA-IV/LSTF with No.1 simulated fuel-rod assembly

    International Nuclear Information System (INIS)

    Forty-two integral simulation tests of PWR small break LOCA (loss-of-coolant accident) and transient were conducted at the ROSA-IV Large-Scale Test Facility (LSTF) with the No.1 simulated fuel-rod assembly between March 1985 and August 1988. Described in the report are supplemental information on modifications of the system hardware and measuring systems, results of system characteristics tests including the initial fluid mass inventory and heat loss distribution for the primary system, and thermal properties for the heater rod materials. These are necessary to establish the correct boundary conditions of each LSTF experiment with the No.1 core assembly in addition to the system data given in the system description report (JAERI-M 84-237). (author)

  6. Hot Operation of FTL for PWR Fuels Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sung Ho; Joung, Chang Yong; Lee, Jong Min; Park, Su Ki; Sim, Bong Sik; Ahn, Guk Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Fuel Test Loop (FTL) in HANARO is the test facility which can conduct a fuel irradiation test with commercial NPPs' operating conditions such as their pressure, temperature, flow and water chemistry. The FTL is used for the irradiation test of PWR type or CNNDU type fuels. In this paper, the hot operation of FTL for irradiation test of PWR fuels is introduced. The experimental results show the excellence of operation performance

  7. Isotopic Details of the Spent Catawba-1 MOX Fuel Rods at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Ronald James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-01

    The United States Department of Energy funded Shaw/AREVA MOX Services LLC to fabricate four MOX Lead Test Assemblies (LTA) from weapons-grade plutonium. A total of four MOX LTAs (including MX03) were irradiated in the Catawba Nuclear Station (Unit 1) Catawba-1 PWR which operated at a total thermal power of 3411 MWt and had a core with 193 total fuel assemblies. The MOX LTAs were irradiated along with Duke Energy s irradiation of eight Westinghouse Next Generation Fuel (NGF) LEU LTAs (ref.1) and the remaining 181 LEU fuel assemblies. The MX03 LTA was irradiated in the Catawba-1 PWR core (refs.2,3) during cycles C-16 and C-17. C-16 began on June 5, 2005, and ended on November 11, 2006, after 499 effective full power days (EFPDs). C-17 started on December 29, 2006, (after a shutdown of 48 days) and continued for 485 EFPDs. The MX03 and three other MOX LTAs (and other fuel assemblies) were discharged at the end of C-17 on May 3, 2008. The design of the MOX LTAs was based on the (Framatome ANP, Inc.) Mark-BW/MOX1 17 17 fuel assembly design (refs. 4,5,6) for use in Westinghouse PWRs, but with MOX fuel rods with three Pu loading ranges: the nominal Pu loadings are 4.94 wt%, 3.30 wt%, and 2.40 wt%, respectively, for high, medium, and low Pu content. The Mark-BW/MOX1 (MOX LTA) fuel assembly design is the same as the Advanced Mark-BW fuel assembly design but with the LEU fuel rods replaced by MOX fuel rods (ref. 5). The fabrication of the fuel pellets and fuel rods for the MOX LTAs was performed at the Cadarache facility in France, with the fabrication of the LTAs performed at the MELOX facility, also in France.

  8. Eulerian formulation of elastic rods

    Science.gov (United States)

    Huynen, Alexandre; Detournay, Emmanuel; Denoël, Vincent

    2016-06-01

    In numerous biological, medical and engineering applications, elastic rods are constrained to deform inside or around tube-like surfaces. To solve efficiently this class of problems, the equations governing the deflection of elastic rods are reformulated within the Eulerian framework of this generic tubular constraint defined as a perfectly stiff normal ringed surface. This reformulation hinges on describing the rod-deformed configuration by means of its relative position with respect to a reference curve, defined as the axis or spine curve of the constraint, and on restating the rod local equilibrium in terms of the curvilinear coordinate parametrizing this curve. Associated with a segmentation strategy, which partitions the global problem into a sequence of rod segments either in continuous contact with the constraint or free of contact (except for their extremities), this re-parametrization not only trivializes the detection of new contacts but also transforms these free boundary problems into classic two-points boundary-value problems and suppresses the isoperimetric constraints resulting from the imposition of the rod position at the extremities of each rod segment.

  9. Status of rod consolidation, 1988

    International Nuclear Information System (INIS)

    It is estimated that the spent fuel storage pools at some domestic light-water reactors will run out of space before 2003, the year that the US Department of Energy currently predicts it will have a repository available. Of the methods being studied to alleviate the problem, rod consolidation is one of the leading candidates for achieving more efficient use of existing space in spent fuel storage pools. Rod consolidation involves mechanically removing all the fuel rods from the fuel assembly hardware (i.e., the structural components) and placing the fuel rods in a close-packed array in a canister without space grids. A typical goal of rod consolidation systems is to insert the fuel rods from two fuel assemblies into a canister that has the same exterior dimensions as one standard fuel assembly (i.e., to achieve a consolidation or compaction ratio of 2:1) and to compact the nonfuel-bearing structural components from those two fuel assemblies by a factor of 10 to 20. This report provides an overview of the current status of rod consolidation in the United States and a small amount of information on related activities in other countries. 85 refs., 36 figs., 5 tabs

  10. Control rod drive

    International Nuclear Information System (INIS)

    Object: To provide a simple and compact construction of an apparatus for driving a drive shaft inside with a magnetic force from the outside of the primary system water side. Structure: The weight of a plunger provided with an attraction plate is supported by a plunger lift spring means so as to provide a buffer action at the time of momentary movement while also permitting the load on lift coil to be constituted solely by the load on the drive shaft. In addition, by arranging the attraction plate and lift coil so that they face each other with a small gap there-between, it is made possible to reduce the size and permit efficient utilization of the attracting force. Because of the small size, cooling can be simply carried out. Further, since there is no mechanical penetration portion, there is no possibility of leakage of the primary system water. Furthermore, concentration of load on a latch pin is prevented by arranging so that with a structure the load of the control rod to be directly beared through the scrum latch. (Kamimura, M.)

  11. AREVA's fuel assemblies addressing high performance requirements of the worldwide PWR fleet

    International Nuclear Information System (INIS)

    Taking advantage of its presence in the fuel activities since the start of commercial nuclear worldwide operation, AREVA is continuing to support the customers with the priority on reliability, to: >participate in plant operational performance for the in core fuel reliability, the Zero Tolerance for Failure ZTF as a continuous improvement target and the minimisation of manufacturing/quality troubles, >guarantee the supply chain a proven product stability and continuous availability, >support performance improvements with proven design and technology for fuel management updating and cycle cost optimization, >support licensing assessments for fuel assembly and reloads, data/methodologies/services, >meet regulatory challenges regarding new phenomena, addressing emergent performance issues and emerging industry challenges for changing operating regimes. This capacity is based on supplies by AREVA accumulating very large experience both in manufacturing and in plant operation, which is demonstrated by: >manufacturing location in 4 countries including 9 fuel factories in USA, Germany, Belgium and France. Up to now about 120,000 fuel assemblies and 8,000 RCCA have been released to PWR nuclear countries, from AREVA European factories, >irradiation performed or in progress in about half of PWR world wide nuclear plants. Our optimum performances cover rod burn ups of to 82GWD/tU and fuel assemblies successfully operated under various world wide fuel management types. AREVA's experience, which is the largest in the world, has the extensive support of the well known fuel components such as the M5'TM'cladding, the MONOBLOC'TM'guide tube, the HTP'TM' and HMP'TM' structure components and the comprehensive services brought in engineering, irradiation and post irradiation fields. All of AREVA's fuel knowledge is devoted to extend the definition of fuel reliability to cover the whole scope of fuel vendor support. Our Top Reliability and Quality provide customers with continuous

  12. Single PWR spent fuel assembly heat transfer data for computer code evaluations

    International Nuclear Information System (INIS)

    The descriptions and results of two separate heat transfer tests designed to investigate the dry storage of commercial PWR spent fuel assemblies are presented. Presented first are descriptions and selected results from the Fuel Temperature Test performed at the Engine Maintenance and Disassembly facility on the Nevada Test Site. An actual spent fuel assembly from the Turkey Point Unit Number 3 Reactor with a decay heat level of 1.17 KW, was installed vertically in a test stand mounted canister/liner assembly. The boundary temperatures were controlled and the canister backfill gases were alternated between air, helium and vacuum to investigate the primary heat transfer mechanisms of convection, conduction and radiation. The assembly temperature profiles were experimentally measured using installed thermocouple instrumentation. Also presented are the results from the Single Assembly Heat Transfer Test designed and fabricated by Allied General Nuclear Services, under contract to the Department of Energy, and ultimately conducted by the Pacific Northwest Laboratory. For this test, an electrically heated 15 x 15 rod assembly was used to model a single PWR spent fuel assembly. The electrically heated model fuel assembly permitted various ''decay heat'', levels to be tested; 1.0 KW and 0.5 KW were used for these tests. The model fuel assembly was positioned within a prototypic fuel tube and in turn placed within a double-walled sealed cask. The complete test assembly could be positioned at any desired orientation (horizontal, vertical, and 250 from horizontal for the present work) and backfilled as desired (air, helium, or vacuum). Tests were run for all combinations of ''decay heat,'' backfill, and orientation. Boundary conditions were imposed by temperature controlled guard heaters installed on the cask exterior surface

  13. LOFT nuclear fuel rod behavior

    International Nuclear Information System (INIS)

    An overview of the calculational models used to predict fuel rod response for Loss-of-Fluid Test (LOFT) data from the first LOFT nuclear test is presented and discussed and a comparison of predictions with experimental data is made

  14. Seawater desalination using reusable type small PWR

    Energy Technology Data Exchange (ETDEWEB)

    Uchiyama, Y. [Institute of Engineering Mechanics and Systems, University of Tsukuba, Tsukuba, Ibaraki (Japan); Minato, A. [Planning Division, Central Research Institute of the Electric Power Industry, Komae-shi, Tokyo (Japan); Shimamura, K. [Nuclear Systems Engineering Department, Nuclear Energy Systems Engineering Center, Mitsubishi Heavy Industries, Ltd., Kanagawa (Japan)]. E-mail: shimamura@atom.hq.mhi.co.jp

    2003-07-01

    Demand for seawater desalination is increasing, especially in regions such as the Middle East and North Africa, where populations are growing at a high annual rate. If such demand is met by fossil fuel energy, the influence on the environment, such as global warming, cannot be disregarded. Since these regions are behind in their preparedness of social capital infrastructure, such as power transfer grids, small reactors are considered to be more suitable for introduction than the large reactors found commonly in developed countries. Therefore, a small reusable PWR with mid-range pressure and temperature services, which does not require on-site refuelling, was devised for seawater desalination. In a small reusable PWR, spent fuel is taken out together with the reactor vessel and refuelled on the exterior fuel exchange base prepared independently. Thus, the safeguards against nuclear proliferation increase at a plant site because the lid of the reactor vessel is never opened at the site, in principle. The reactor vessel will be transported from the plant site to a fuel exchange base under stipulated conditions within a transportation cask after a long (about six years) operation. Since fuel handling facilities at the site become unnecessary through centralisation at a fuel exchange base, initial plant construction costs are reduced. In addition, the reactor vessel is reused until its service life has expired. This examination was based on the marine reactor of the experimental nuclear ship, Mutsu, after it had been applied for land use: at a lowered, midrange pressure and temperature service, in theory. It is possible to produce fresh water through reverse osmosis (RO) membrane pressure-rising seawater by a steam turbine driven pump. Using the method of driving a desalination unit high-pressure pump directly by low-pressure steam generated from the heating reactor, fresh water can be produced efficiently. Furthermore, operating at reduced pressure makes it possible

  15. The Study of Nuclear Fuel Cycle Options Based On PWR and CANDU Reactors

    International Nuclear Information System (INIS)

    The study of nuclear fuel cycle options based on PWR and CANDU type reactors have been carried out. There are 5 cycle options based on PWR and CANDU reactors, i.e.: PWR-OT, PWR-OT, PWR-MOX, CANDU-OT, DUPIC, and PWR-CANDU-OT options. While parameters which assessed in this study are fuel requirement, generating waste and plutonium from each cycle options. From the study found that the amount of fuel in the DUPIC option needs relatively small compared the other options. From the view of total radioactive waste generated from the cycles, PWR-MOX generate the smallest amount of waste, but produce twice of high level waste than DUPIC option. For total plutonium generated from the cycle, PWR-MOX option generates smallest quantity, but for fissile plutonium, DUPIC options produce the smallest one. It means that the DUPIC option has some benefits in plutonium consumption aspects. (author)

  16. Improvement of input parameters for the estimation of fuel rod temperature in dry transport cask

    International Nuclear Information System (INIS)

    A typical PWR spent fuel bundle has a 17 x 17 rod array, and an analysis requires a very long computation time and a vast amount of memory. Therefore, we applied the lumped fuel bundle analysis approach with the homogenized method to estimate the fuel cladding temperature efficiency. Thermal analysis results for lumped fuel bundles showed an excessive radiative heat transfer, and we applied an emissivity modification factor to compensate for this radiation effect. The value of the factor decreased as the number of the rods in the homogenized array decreased.. For the lumped 8 x 8 array, the best emissivity modification factor was shown to be 0.40. The rod emissivity of 0.8 is generally recommended to be used in COBRA-SFS[D. R. Rector et al.] calculations. Therefore, we can use the modified rod emissivity of 0.32 for lumped 8 x 8 array. There are good agreements between the results from lumped 8 x 8 array bundle and the results from real 17 x 17 array bundle. By homogenization, we can increase the computational speed substantially, as well as reduce the requirements on computer memory and space. (authors)

  17. A PWR Thorium Pin Cell Burnup Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Kevan Dean; Zhao, X.; Pilat, E. E; Hejzlar, P.

    2000-05-01

    As part of work to evaluate the potential benefits of using thorium in LWR fuel, a thorium fueled benchmark comparison was made in this study between state-of-the-art codes, MOCUP (MCNP4B + ORIGEN2), and CASMO-4 for burnup calculations. The MOCUP runs were done individually at MIT and INEEL, using the same model but with some differences in techniques and cross section libraries. Eigenvalue and isotope concentrations were compared on a PWR pin cell model up to high burnup. The eigenvalue comparison as a function of burnup is good: the maximum difference is within 2% and the average absolute difference less than 1%. The isotope concentration comparisons are better than a set of MOX fuel benchmarks and comparable to a set of uranium fuel benchmarks reported in the literature. The actinide and fission product data sources used in the MOCUP burnup calculations for a typical thorium fuel are documented. Reasons for code vs code differences are analyzed and discussed.

  18. Maintenance technologies for SCC of PWR

    International Nuclear Information System (INIS)

    The recent technologies of test, relaxation of deterioration, repairing and change of materials are explained for safe and stable operation of pressurized water reactor (PWR). Stress corrosion cracking (SCC) is originated by three factors such as materials, stress and environment. The eddy current test (ECT) method for the stream generator pipe and the ultrasonic test method for welding part of pipe were developed as the test technologies. Primary water stress corrosion cracking (PWSCC) of Inconel 600 in the welding part is explained. The shot peening of instrument in the gas, the water jet peening of it in water, and laser irradiation on the surface are illustrated as some examples of improvement technology of stress. The cladding of Inconel 690 on Inconel 600 is carried out under the condition of environmental cut. Total or some parts of the upper part of reactor, stream generator and structure in the reactor are changed by the improvement technologies. Changing Inconel 600 joint in the exit pipe of reactor with Inconel 690 is illustrated. (S.Y.)

  19. Assessment and management of ageing of major nuclear power plant components important to safety: PWR pressure vessels. 2007 update

    International Nuclear Information System (INIS)

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that effective control of the ageing degradation of the major NPP components (e.g. caused by unanticipated phenomena and by operating, maintenance or manufacturing errors) is one of the most important issues for plant safety and also plant life. Ageing in these NPPs must be therefore effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wear-out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. IAEA-TECDOC-1120 documented ageing assessment and management practices for pressurized water reactor (PWR) reactor pressure vessels (RPVs) that were current at the time of its finalization in 1997-1998. Safety significant operating events have occurred since the finalization of the TECDOC, e.g. primary water stress corrosion cracking (PWSCC) of Alloy 600 control rod drive mechanism (CRDM) penetrations and boric acid corrosion/wastage of RPV heads, which threatened the integrity of the RPV heads. These events led to new ageing management actions by both NPP operators and regulators. Therefore it was recognized that IAEA-TECDOC-1120 should be updated by incorporating those new events and their countermeasures. The objective of this report is to update IAEA-TECDOC-1120 in order to provide current ageing management guidance for PWR RPVs to all involved in the operation and regulation of PWRs and thus to help ensure PWR RPV integrity in IAEA Member States throughout their entire service life

  20. Assessment and management of ageing of major nuclear power plant components important to safety: PWR vessel internals: 2007 update

    International Nuclear Information System (INIS)

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that effective control of the ageing degradation of the major NPP components (e.g. caused by unanticipated phenomena and by operating, maintenance or manufacturing errors) is one of the most important issues for plant safety and also plant life. Ageing in these NPPs must be therefore effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wearout of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. IAEA-TECDOC-1119 documents ageing assessment and management practices for PWR Reactor Vessel Internals (RVIs) that were current at the time of its finalization in 1997-1998. Safety significant operating events have occurred since the finalization of the TECDOC, e.g. irradiation assisted stress corrosion cracking (IASCC) of baffle-former bolts, which threatened the integrity of the vessel internals. In addition, concern of fretting wear of control rod guide tubes has been raised in Japan. These events led to new ageing management actions by both NPP operators and regulators. Therefore it was recognized that IAEA-TECDOC-1119 should be updated by incorporating those new events and their countermeasures. The objective of this report is to update relevant sections of the existing IAEA-TECDOC- 1119 in order to provide current ageing management guidance for PWR RVIs to all involved in the operation and regulation of PWRs and thus to help ensure PWR safety in IAEA Member States throughout their entire service life

  1. Analysis of the performance of fuel cells PWR with a single enrichment and radial distribution of enrichments; Analisis del desempeno de celdas combustibles PWR con un solo enriquecimiento y con distribucion radial de enriquecimientos

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, S.; Gonzalez, J. A.; Alonso, G.; Del Valle, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. Lindavista, Mexico D.F. 07738 (Mexico); Xolocostli M, J. V. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: nolosesamuel@prodigy.net.mx

    2008-07-01

    One of the main challenges in the design of fuel assemblies is the efficient use of uranium achieving burnt homogeneous of the fuel rods as well as the burnt maximum possible of the same ones to the unload. In the case of the assemblies type PWR has been decided actually for fuel assemblies with a single radial enrichment. The present work has like effect to show the because of this decision, reason why a comparison of the neutronic performance of two fuel cells takes place with the same enrichment average but one of them with radial distribution of enrichment and the other with a single enrichment equal to the average. The results shown in the present study of the behavior of the neutron flow as well as the power distribution through of assembly sustain the because of a single radial enrichment. (Author)

  2. Seismic qualification of PWR plant auxiliary feedwater systems

    International Nuclear Information System (INIS)

    The NRC Standard Review Plan specifies that the auxiliary feedwater (AFW) system of a pressurized water reactor (PWR) is a safeguard system that functions in the event of a Safe Shutdown Earthquake (SSE) to remove the decay heat via the steam generator. Only recently licensed PWR plants have an AFW system designed to the current Standard Review Plan specifications. The NRC devised the Multiplant Action Plan C-14 in order to make a survey of the seismic capability of the AFW systems of operating PWR plants. The purpose of this survey is to enable the NRC to make decisions regarding the need of requiring the licensees to upgrade the AFW systems to an SSE level of seismic capability. To implement the first phase of the C-14 plan, the NRC issued a Generic Letter (GL) 81-14 to all operating PWR licensees requesting information on the seismic capability of their AFW systems. This report summarizes Lawrence Livermore National Laboratory's efforts to assist the NRC in evaluating the status of seismic qualification of the AFW systems in 40 PWR plants, by reviewing the licensees' responses to GL 81-14

  3. CFD study of isothermal water flow in rod bundle with split-type spacer grid

    Science.gov (United States)

    Batta, A.; Class, A. G.

    2014-06-01

    The design of rod bundles in nuclear application nowadays is assessed by CFD (computational fluid dynamics). The accuracy of CFD models need validation. Within the OECD/NEA benchmark MATiS-H (Measurement and Analysis of Turbulent Mixing in Sub-channels - Horizontal) a single-phase water flow in a 5x5 rod bundle is studied. In the benchmark, two types of spacer grids are tested, the swirl type and the split type, where the current study focuses on the split type spacer grid. Comparison of CFD results obtained at Karlsruhe Institut of Technology (KIT) with experimental results of KAERI (Korea Atomic Energy Research Institute) are presented. In the benchmark velocities components along selected lines downstream of the spacer grid are measured and compared to CFD results. The CFD code STAR CCM+ with the Realized k-ɛ model is used. Comparisons with experimental results show quantitative and qualitative agreement for the averaged values of velocity components. Comparisons of results to other benchmark partners using different modeling show that the selected mesh size and models for the analysis of the current case gives relatively accurate results. However, the used turbulent model (Realized k-ɛ does not capture the turbulent intensity correctly. Computation shows that the flow has very high mixing due to the spacer grid, which does not decay within the measurements domain (z/ DH =0-10 downstream of spacer grid). The same conclusion can be drawn from experimental data.

  4. Simulation of leaking fuel rods

    International Nuclear Information System (INIS)

    The behaviour of failed fuel rods includes several complex phenomena. The cladding failure initiates the release of fission product from the fuel and in case of large defect even urania grains can be released into the coolant. In steady state conditions an equilibrium - diffusion type - release is expected. During transients the release is driven by a convective type leaching mechanism. There are very few experimental data on leaking WWER fuel rods. For this reason the activity measurements at the nuclear power plants provide very important information. The evaluation of measured data can help in the estimation of failed fuel rod characteristics and the prediction of transient release dynamics in power plant transients. The paper deals with the simulation of leaking fuel rods under steady state and transient conditions and describes the following new results: 1) A new algorithm has been developed for the simulation of leaking fuel rods under steady state conditions and the specific parameters of the model for the Paks NPP has been determined; 2) The steady state model has been applied to calculation of leaking fuel characteristics using iodine and noble gas activity measurement data; 3) A new computational method has been developed for the simulation of leaking fuel rods under transient conditions and the specific parameters for the Paks NPP has been determined; 4) The transient model has been applied to the simulation of shutdown process at the Paks NPP and for the prediction of the time and magnitude of 123I activity peak; 5) Using Paks NPP data a conservative value has been determined for the upper limit of the 123I release from failed fuel rods during transients

  5. Signal processing methods for PWR reactor noise diagnostic system

    International Nuclear Information System (INIS)

    A framework for a PWR reactor noise diagnostic system using various signal processing methods has been investigated. Supposing to treat not only reactor noise data in a stationary linear system but also those in a nonstationary or nonlinear system, the study covers a third-order-correlation of bispectrum, cepstrum analysis, Group Method of Data Handling (GMDH), chaotic quantity, neural network, and wavelet, in addition to Multivariate AutoRegressive analysis and Signal Transmission Path Diagram analysis (MAR/STPD). This paper describes consideration about the methods from viewpoints of theories and applications to PWR reactor noise diagnostic system. The point at the issue in the application system is how to extract many characteristics from the signals whatever states (linear or nonlinear, stationary or nonstationary) may happen in order to get more information and more exact diagnose to support human judgment. From this viewpoint, the paper discusses several signal processing techniques for the PWR diagnostic system. (J.P.N.)

  6. Industry-wide survey of organics in PWR's

    International Nuclear Information System (INIS)

    Interest in organic impurities found in Pressurized Water Reactors (PWR's) has stemmed from several sources. The most serious concern is that organic acids will increase cation conductivity, a parameter that is used to control power plant chemistry. This effect can complicate secondary water monitoring and control. Organics may foul or exhaust makeup demineralizers and condensate polishers, and thus result in increased operating costs or the in leakage of potentially corrosive agents into the steam generators. Some organics, however, such as mopholine and cyclohexylamine may reduce corrosion through oxygen scavenging or surface filming reactions, and may have a positive influence on the pH in areas of local corrosion. At the time this survey began, little information was available on the types or levels of organic impurities that are typically found in PWR's. this survey is intended to provide baseline data for future corrosion testing and to provide fundamental information that will be helpful in refining PWR chemistry guidelines and operating practices

  7. The Third ATLAS ROD Workshop

    CERN Multimedia

    Poggioli, L.

    A new-style Workshop After two successful ATLAS ROD Workshops dedicated to the ROD hardware and held at the Geneva University in 1998 and in 2000, a new style Workshop took place at LAPP in Annecy on November 14-15, 2002. This time the Workshop was fully dedicated to the ROD-TDAQ integration and software in view of the near future integration activities of the final RODs for the detector assembly and commissioning. More precisely, the aim of this workshop was to get from the sub-detectors the parameters needed for T-DAQ, as well as status and plans from ROD builders. On the other hand, what was decided and assumed had to be stated (like EB decisions and URDs), and also support plans. The Workshop gathered about 70 participants from all ATLAS sub-detectors and the T-DAQ community. The quite dense agenda allowed nevertheless for many lively discussions, and for a dinner in the old town of Annecy. The Sessions The Workshop was organized in five main sessions: Assumptions and recommendations Sub-de...

  8. Modelling of sucker rod string

    Energy Technology Data Exchange (ETDEWEB)

    Hojjati, M.H. [Mazandaran Univ., (Iran, Islamic Republic of). Dept. of Mechanical Engineering; Lukasiewicz, S.A. [Calgary Univ., AB (Canada). Dept. of Mechanical and Manufacturing Engineering

    2005-12-01

    Rod pumping is used extensively in the oil well industry as a method of artificial lift. In order to analyze the performance of oil wells, the force and displacement at the polished rod are measured using a dynamometer. The data is applied to the boundary conditions when calculating the forces and displacement at the bottom of the rod string that defines the conditions of the pump, pumping effectiveness and production rate. This study proposed a transfer matrix method to model the dynamic behavior of the sucker string rod. The main reason for developing the method was to simplify the currently used mathematical method with a simple matrix operation in which the bottom-hole force-displacement values are obtained as a product of data vectors at the polished rod end by a transfer matrix. The problem was solved using D'Alembert's systems solution equation and the adaptive filter matrix method. The proposed method reduces calculation time because a more efficient matrix operation is used without losing accuracy. This study showed that it is possible to use the transfer matrix to calculate load-displacement relations a hundred or more times in one stroke, which is beneficial when developing tools to control oil wells, such as wellhead controllers. 9 refs., 3 tabs., 8 figs.

  9. Load-following operation of PWR plants

    International Nuclear Information System (INIS)

    The load-following operation of nuclear power plants will become inevitable due to the increased nuclear share in the total electricity generation. As a groundwork for the load-following capability of the Korean next generation PWRs, the state-of-the-art has been reviewed. The core control principles and methods are the main subject in this review as well as the impact of load-following operations on the fuel performance and on the mechanical integrity of components. To begin with, it was described what the load-following operation is and in what view point the technology should be reviewed. Afterwards the load-following method, performance and problems in domestic 900 MWe class PWRs were discussed, and domestic R and D works were summarized. Foreign technologies were also reviewed. They include Mode G and Mode X of Foratom, D and L bank method of KWU, the method using PSCEA of ABB-CE, and MSHIM of Westinghouse. The load-following related special features of Foratom's N4 plant, KWU's plants, ABB-CE's Systems 80+, and Westinghouse's AP600 were described in each technology review. The review concluded that the capability of N4 plant with Mode X is the best and the methods in System, 80+ and AP600 would require verifications for the continued and usual load-following operation. It was recommended that the load-following operation experiences in domestic PWRs under operation be required to settle down the capability for the future. In addition, a more enhanced technology is required for the Korean next generation PWR regardless what the reference plant concept is. 30 figs., 19 tabs., 75 refs. (Author)

  10. Borssele PWR noise: measurements, analysis and interpretation

    International Nuclear Information System (INIS)

    In the Borssele reactor - a 450 MWe PWR - reactor noise measurements have been performed during four fuel cycles. Measurements were made with a set of ex-core neutron detectors, on one occasion an in-core displacement transducer, and with primary coolant pressure sensors. Digital analysis was applied, where the most powerful tool was the computer programme FAST, which computes auto and cross power spectra for all combinations from a set of many simultaneously recorded signals. Analyses of neutronic signals show a reactivity noise peak at 9.2 Hz, core barrel motion peaks at about 12 and 15 Hz, a damped oscillation at about 2 Hz. Results are given for begin and end of each fuel cycle. The r.m.s. value of the low frequency noise appears to depend linearly on the boron concentration over a wide range. Also some results of primary coolant pressure noise are presented, with coherent peaks below 15 Hz and incoherent peaks above. The second part of the paper describes an alternative way of analyzing and interpreting noise spectra, namely attempts to decompose the neutronic power spectra into physical components, using the information present in the CPSD's of all detector combinations. The components are characterised by their detector position dependency. Effects considered are: uncorrelated noise, global reactivity noise, core motion attenuation noise, and a possible coupling between reactivity and core motion. Results show excellent separation into reactivity and core motion components with possibilities to separate overlapping peaks. Weak peaks become more easily detectable. At low frequencies the decomposition of the spectra is not yet complete, however. (author)

  11. Leak before break application in French PWR plants under operation

    Energy Technology Data Exchange (ETDEWEB)

    Faidy, C. [EDF SEPTEN, Villeurbanne (France)

    1997-04-01

    Practical applications of the leak-before break concept are presently limited in French Pressurized Water Reactors (PWR) compared to Fast Breeder Reactors. Neithertheless, different fracture mechanic demonstrations have been done on different primary, auxiliary and secondary PWR piping systems based on similar requirements that the American NUREG 1061 specifications. The consequences of the success in different demonstrations are still in discussion to be included in the global safety assessment of the plants, such as the consequences on in-service inspections, leak detection systems, support optimization,.... A large research and development program, realized in different co-operative agreements, completes the general approach.

  12. The traveller: a new look for PWR fresh fuel packages

    Energy Technology Data Exchange (ETDEWEB)

    Bayley, B.; Stilwell, W.E.; Kent, N.A. [Westinghouse Electric Co., Columbia, SC (United States)

    2004-07-01

    The Traveller PWR fresh fuel shipping package represents a radical departure from conventional PWR fuel package designs. This paper follows the development effort from the establishment of goals and objectives, to intermediate testing and analysis, to final testing and licensing. The discussion starts with concept origination and covers the myriad iterations that followed until arriving at a design that would meet the demanding licensing requirements, last for 30 years, and would be easy to load and unload fuel, easy to handle, inexpensive to manufacture and transport, and simple and inexpensive to maintain.

  13. The traveller: a new look for PWR fresh fuel packages

    International Nuclear Information System (INIS)

    The Traveller PWR fresh fuel shipping package represents a radical departure from conventional PWR fuel package designs. This paper follows the development effort from the establishment of goals and objectives, to intermediate testing and analysis, to final testing and licensing. The discussion starts with concept origination and covers the myriad iterations that followed until arriving at a design that would meet the demanding licensing requirements, last for 30 years, and would be easy to load and unload fuel, easy to handle, inexpensive to manufacture and transport, and simple and inexpensive to maintain

  14. BEACON TSM application system to the operation of PWR reactors

    International Nuclear Information System (INIS)

    BEACON-TSM is an advanced core monitoring system for PWR reactor cores, and also offers the possibility to perform a wide range of predictive calculation in support of reactor operation. BEACON-TSM is presently installed and licensed in the 5 Spanish PWR reactors of standard Westinghouse design. the purpose of this paper is to describe the features of this software system and to show the advantages obtainable by a nuclear power plant from its use. To illustrate the capabilities and benefits of BEACON-TSM two real case reactor operating situations are presented. (Author)

  15. Evaluation of PWR and BWR pin cell benchmark results

    International Nuclear Information System (INIS)

    In order to carry out reliable reactor core calculations for a boiled water reactor (BWR) or a pressurized water reactor (PWR) first reactivity calculations have to be carried out for which several calculation programs are available. The purpose of the title project is to exchange experiences to improve the knowledge of this reactivity calculations. In a large number of institutes reactivity calculations of PWR and BWR pin cells were executed by means of available computer codes. Results are compared. It is concluded that the variations in the calculated results are problem dependent. Part of the results is satisfactory. However, further research is necessary

  16. Advanced gray rod control assembly

    Science.gov (United States)

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  17. Refabricated and instrumented fuel rods

    International Nuclear Information System (INIS)

    Nuclear Fuel for power reactors capabilities evaluation is strongly based on the intimate knowledge of its behaviour under irradiation. This knowledge can be acquired from refabricated and instrumented fuel rods irradiated at different levels in commercial reactors. This paper presents the development and qualification of a new technique called RECTO related to a double-instrumented rod re-fabrication process developed by CEA/LECA hot laboratory facility at CADARACHE. The technique development includes manufacturing of the properly dimensioned cavity in the fuel pellet stack to house the thermocouple and the use of a newly designed pressure transducer. An analytic irradiation of such a double-instrumented fuel rod will be performed in OSIRIS test reactor starting October 2004. (Author)

  18. Research on PWR Core Performance With MOX Fuel Loading%MOX燃料对压水堆堆芯性能影响研究

    Institute of Scientific and Technical Information of China (English)

    李小生; 靳忠敏

    2013-01-01

    Use of MOX fuel in nuclear reactors is an effective way to dispose of plutonium .A large PWR reactor core with full core loading UO 2 fuel was referenced , the reactor core physics parameters of PWR with whole and part core loading MOX fuel were calculated by using DRAGON and DONJON codes ,and the reactivity worth of control rods and boron acid solution were researched under loading MOX fuel . The results show that PWR core with MOX fuel can achieve the desired cycle length and power distribution ,but loading MOX fuel will significantly decrease the reactivity worth of control rod and boron acid solution ,moreover ,the proportion of loading MOX fuel is positive to the decrease degree of reactivity worth .%在核反应堆中使用MOX燃料是处置钚的有效方式。以大型全UO2燃料压水堆堆芯设计作为参考,使用DRAGON、DONJON程序,计算在大型压水堆中全堆芯及部分堆芯装载MOX燃料后反应堆部分物理性能指标,研究加入MOX燃料后对控制棒与硼酸溶液的反应性价值的影响。结果表明,压水堆堆芯装载各比例MOX燃料均可达到与全UO2燃料堆芯相当的循环长度,功率分布也能满足相应的安全限值要求,但采用MOX燃料会造成控制棒与硼溶液的反应性价值降低,且降低程度与MOX燃料装载比例成正相关。

  19. Analysis of reciprocating compressor piston rod failures

    Energy Technology Data Exchange (ETDEWEB)

    Tripp, H.A.; Drosjack, M.J.

    1984-02-01

    This report presents the analysis of five piston rod failures which occurred on reciprocating compressors. Calculations are shown for rod stress which includes nominal rod loading sources as well as additional loads due to unusual pressure losses in the compressor valves, flexure of the rods due to misalignment, and manufacturing errors. The additional loads were incorporated on the basis of field measurements. The stress values are used with Baquin's equation to produce fatigue life curves for the rods. Based on the calculations, recommendations for modified rods were made. The calculation procedures are described in a manner which will permit their application to other reciprocating compressors.

  20. Fuel performance computer code simulation of steady-state and transient regimes of the stainless steel fuel rods

    International Nuclear Information System (INIS)

    The immediate cause of the accident at the Fukushima Daiichi nuclear plant in March 2011 was the meltdown of the reactor core. During this process, the zirconium cladding of the fuel reacts with water, producing a large amount of hydrogen. This hydrogen, combined with volatile radioactive materials leaked from the containment vessel and entered the building of the reactor, resulting in explosions. In the past, stainless steel was used as the coating in many pressurized water reactors (PWR) under irradiation and their performance was excellent, however, the stainless steel was replaced by a zirconium-based alloy as a coating material mainly due to its lower section shock-absorbing neutrons. Today, the stainless steel finish appears again as a possible solution for security issues related to the explosion and hydrogen production. The objective of this thesis is to discuss the performance under irradiation of fuel rods using stainless steel as a coating material. The results showed that stainless steel rods exhibit lower temperatures and higher fuel pellet width of the gap - coating the coated rods Zircaloy and this gap does not close during the irradiation. The thermal performance of the two fuel rods is very similar, and the penalty of increased absorption of neutrons due to the use of stainless steel can be offset by the combination of a small increase in the enrichment of U- 235 and changes in the size of the spacing between the fuel rods. (author)

  1. Zircaloy PWR fuel cladding deformation tests under mainly convective cooling conditions

    International Nuclear Information System (INIS)

    In a loss-of-coolant accident the temperature of the cladding of the fuel rods may rise to levels (650-8100C) where the ductility of Zircaloy is high (approximately 80%). The net outward pressure which will obtain if the coolant pressure falls to a small fraction of its normal working value produces stresses in the cladding which can result in large strain through secondary creep. An earlier study of the deformation of specimens of PWR Zircaloy cladding tubing 450 mm long under internal pressure had shown that strains of over 50% could be produced over considerable lengths (greater than twenty tube diameters). Extended deformation of this sort might be unacceptable if it occurred in a fuel element. The previous tests had been carried out under conditions of uniform radiative heat loss, and the work reported here extends the study to conditions of mainly convective heat loss believed to be more representative of a fuel element following a loss of coolant. Zircaloy-4 cladding specimens 450 mm long were filled with alumina pellets and tested at temperatures between 630 and 8450C in flowing steam at atmospheric pressure. Internal test pressures were in the range 2.9-11.0 MPa (400-1600 1b/in2). Maximum strains were observed of the same magnitude as those seen in the previous tests, but the shape of the deformation differed; in these tests the deformation progressively increased in the direction of the steam flow. These results are compared with those from multi-rod tests elsewhere, and it is suggested that heat transfer has a dominant effect in determining deformation. The implications for the behaviour of fuel elements in a loss-of-coolant accident are outlined. (author)

  2. Method and result of experiment for support of technical solutions in the field of perfection of a nuclear fuel cycle for future PWR reactors

    International Nuclear Information System (INIS)

    This paper represents conceptual approaches of statement and carrying out of experiments to validate functional safety of PWR reactors of the future, at acceptance of technical solutions on use of fuel rods with the increased length of a fuel column in fuel assemblies. The paper represents main principles and criteria, which we use for quality check of technical solutions and developments in the field of perfection of a nuclear fuel cycle of PWR reactors of the future, first of all, from the point of view of a substantiation of safety of the future operation at change of fuel rod design. We explore the safety issues of operation of PWR reactors with fuel assemblies, including fuel rods with various length of a fuel column. The paper discusses the ways of solving of the important problems of carrying out of critical facility experiments for verification of new technical solutions in the field of PWR nuclear fuel cycle improvement on the base of international standards ISO 2000:9000 and functional safety recommendations on functional safety of IEC (International Electromechanical Commission). The package of new Federal Laws of the Russian Federation in the field of safety and licensing of activity of dangerous manufactures defines a major principle for requirements to the supplier of nuclear techniques and NPP as a whole. This principle is - for any moment of operation of NPP quantity indicators of risk should not exceed comprehensible social size of the established indicators of safety. On the other hand the second principle should be applied from operation of the equipment, systems or NPP as a whole to extraction of the greatest benefit: As much as possible long operation and full commercial use of resource and service properties of the equipment, systems and NPP as a whole. Realization of this principle assumes development and introduction of new technical solutions for a validation of guarantees of safety of the future operation of NPP or it separate components

  3. Out-of-pile performances of new zirconium alloys for PWR fuel cladding

    International Nuclear Information System (INIS)

    Two new zirconium alloys, N18 and N36, containing Sn, Nb, Fe and Cr have been developed to use as superior PWR fuel rod cladding materials. The results are obtained from the out-of-pile performance tests on these advanced alloy claddings or materials. Analytical electron microscopy demonstrated that the best out-of-pile corrosion resistance was obtained for microstructure containing a fine and uniform distribution of β-Nb and/or Zr(Fe, Cr)2 particles. Autoclave testing indicated that N18 and N36 alloys possessed superior corrosion resistance including uniform and nodular corrosion. It has been demonstrated that the hydrogen absorption data for all of alloys from corrosion reactions under various corrosion conditions showed a linear increase with the exposure time or oxide thickness, and hydrogen absorption rate of both alloys is quite low compared to that of Zircaloy-4. These alloys have demonstrated superior out-of-pile tensile strength, burst and creep properties relative to Zircaloy-4. In addition, the thermal physical properties, texture, Stress Corrosion Cracking (SCC) for two new zirconium alloys have been examined, which also showed a good results compared to Zircaloy-4. (author)

  4. ERP-IV-A program for transient thermal-hydraulic analysis of PWR plant

    International Nuclear Information System (INIS)

    The author deal with the descriptions of physical model of transient process in PWR plant and the function of ERP-IV (ERR-IV Transient Thermo-Hydraulic Analysis Code). The code has been developed for safety analysis and design transient. The code is characterized by the multi-loop long-term, short term, wide-range plant simulation with the capability to analyze natural circulation condition. The description of ERP-IV includes following parts: reactor, primary coolant loops, pressurizer, steam generators, main steam system, turbine, feedwater system, steam dump, relive valves, and safety valves in secondary side, etc.. The code can use for accident analysis, such as loss of all A.C. power to power plant auxiliaries (a station blackout), loss of normal feedwater, loss of load, loss of condenser vacuum and other events causing a turbine trip, complete loss of forced reactor coolant flow, uncontrolled rod cluster control assembly bank withdrawal. It can also be used for accident analysis of the emergency and limiting conditions, such as feedwater line break and main steam line rupture. It can also be utilized as a tool for system design studies, component design, setpoint studies and design transition studies, etc

  5. Methodology for the LABIHS PWR simulator modernization

    Energy Technology Data Exchange (ETDEWEB)

    Jaime, Guilherme D.G.; Oliveira, Mauro V., E-mail: gdjaime@ien.gov.b, E-mail: mvitor@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The Human-System Interface Laboratory (LABIHS) simulator is composed by a set of advanced hardware and software components whose goal is to simulate the main characteristics of a Pressured Water Reactor (PWR). This simulator serves for a set of purposes, such as: control room modernization projects; designing of operator aiding systems; providing technological expertise for graphical user interfaces (GUIs) designing; control rooms and interfaces evaluations considering both ergonomics and human factors aspects; interaction analysis between operators and the various systems operated by them; and human reliability analysis in scenarios considering simulated accidents and normal operation. The simulator runs in a PA-RISC architecture server (HPC3700), developed nearby 2000's, using the HP-UX operating system. All mathematical modeling components were written using the HP Fortran-77 programming language with a shared memory to exchange data from/to all simulator modules. Although this hardware/software framework has been discontinued in 2008, with costumer support ceasing in 2013, it is still used to run and operate the simulator. Due to the fact that the simulator is based on an obsolete and proprietary appliance, the laboratory is subject to efficiency and availability issues, such as: downtime caused by hardware failures; inability to run experiments on modern and well known architectures; and lack of choice of running multiple simulation instances simultaneously. This way, there is a need for a proposal and implementation of solutions so that: the simulator can be ported to the Linux operating system, running on the x86 instruction set architecture (i.e. personal computers); we can simultaneously run multiple instances of the simulator; and the operator terminals run remotely. This paper deals with the design stage of the simulator modernization, in which it is performed a thorough inspection of the hardware and software currently in operation. Our goal is to

  6. Turbodrill rod angular velocity indicator

    Energy Technology Data Exchange (ETDEWEB)

    Rogachev, O.K.; Belozerova, L.P.; Konenkov, A.K.

    1984-01-01

    This paper outlines shortcomings of existing types of telemetry systems which resulted in production of the IChT-1 unit. Unit is intended for control of angular velocity of serially produced turbodrill rods, during drilling of wells up to 5000 m deep, and bottomhole temperatures to 100C. The paper provides a detailed description and diagrams for installing this unit.

  7. Application of fiberglass sucker rods

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, S.G. (Nabla Corporation (US))

    1991-05-01

    Fiberglass sucker rods are assuming a place in artificial-lift technology. This paper briefly describes the manufacturing process and gives some design and operational hints for practical applications. It also describes some mathematical modeling modifications needed for fiberglass wave-equation design programs.

  8. Application of fiberglass sucker rods

    International Nuclear Information System (INIS)

    Fiberglass sucker rods are assuming a place in artificial-lift technology. This paper briefly describes the manufacturing process and gives some design and operational hints for practical applications. It also describes some mathematical modeling modifications needed for fiberglass wave-equation design programs

  9. Studies of a small PWR for onsite industrial power

    International Nuclear Information System (INIS)

    Information on the use of a 300 to 400 MW(t) PWR type reactor for industrial applications is presented concerning the potential market, reliability considerations, reactor plant description, construction techniques, comparison between nuclear and fossil-fired process steam costs, alternative fossil-fired steam supplies, and industrial application

  10. Studies of a small PWR for onsite industrial power

    Energy Technology Data Exchange (ETDEWEB)

    Klepper, O.H.; Smith, W.R.

    1977-04-19

    Information on the use of a 300 to 400 MW(t) PWR type reactor for industrial applications is presented concerning the potential market, reliability considerations, reactor plant description, construction techniques, comparison between nuclear and fossil-fired process steam costs, alternative fossil-fired steam supplies, and industrial application.

  11. Design of a PWR emergency core cooling simulator loop

    International Nuclear Information System (INIS)

    The preliminary design of a PWR Emergency Core Cooling Simulator Loop for investigations of the phenomena involved in a postulated Loss-of-Coolant Accident, during the Reflooding Phase, is presented. The functions of each component of the loop, the design methods and calculations, the specification of the instrumentation, the system operation sequence, the materials list and a cost assessment are included. (Author)

  12. A neutronic study of the cycle PWR-CANDU

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alberto da; Pereira, Claubia; Veloso, Maria Auxiliadora Fortini; Fortini, Angela; Pinheiro, Ricardo Brant [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear]. E-mail: albertomoc@terra.com.br; claubia@nuclear.ufmg.br; dora@nuclear.ufmg.br; fortini@nuclear.ufmg.br; rbp@nuclear.ufmg.br

    2007-07-01

    The cycle PWR-CANDU was simulated using the WIMSD-5B and ORIGEN2.1 codes. It was simulated a fuel burnup of 33,000 MWd/t for UO{sub 2} with enrichment of 3.2% and a fuel extended burnup of 45,000 MWd/t for UO{sub 2} with enrichments of 3.5%, 4.0% and 5.0% in a PWR reactor. The PWR discharged fuel was submitted to the simulation of deposition for five years. After that, it was submitted to AYROX reprocessing and used to produce a fuel to CANDU reactor. Then, it was simulated the burnup in the CANDU. Parameters such as infinite medium multiplication factor, k{sub inf}, fuel temperature coefficient of reactivity, {alpha}{sub TF}, moderator temperature coefficient of reactivity, {alpha}{sub TM}, the ratio rapid flux/total flux and the isotopic composition in the begin and the end of life were evaluated. The results showed that the fuels analyzed could be used on PWR and CANDU reactors without the need of change on the design of these reactors. (author)

  13. Make use of EDF orientations in PWR fuel management

    International Nuclear Information System (INIS)

    The EDF experience acquired permits to allow the PWR fuel performances and to make use of better management. In this domain low progress can be given considerable financial profits. The industrial and commercial structures, the time constant of the fuel cycle, has for consequence that the electric utilities can take advantage only progressively of the expected profits

  14. PACTEL and PWR PACTEL Test Facilities for Versatile LWR Applications

    Directory of Open Access Journals (Sweden)

    Virpi Kouhia

    2012-01-01

    Full Text Available This paper describes construction and experimental research activities with two test facilities, PACTEL and PWR PACTEL. The PACTEL facility, comprising of reactor pressure vessel parts, three loops with horizontal steam generators, a pressurizer, and emergency core cooling systems, was designed to model the thermal-hydraulic behaviour of VVER-440-type reactors. The facility has been utilized in miscellaneous applications and experiments, for example, in the OECD International Standard Problem ISP-33. PACTEL has been upgraded and modified on a case-by-case basis. The latest facility configuration, the PWR PACTEL facility, was constructed for research activities associated with the EPR-type reactor. A significant design basis is to utilize certain parts of PACTEL, and at the same time, to focus on a proper construction of two new loops and vertical steam generators with an extensive instrumentation. The PWR PACTEL benchmark exercise was launched in 2010 with a small break loss-of-coolant accident test as the chosen transient. Both facilities, PACTEL and PWR PACTEL, are maintained fully operational side by side.

  15. Long term Integrity of PWR Spent Fuel in Dry Storage

    International Nuclear Information System (INIS)

    The newly established organization KRMC (Korea radioactive waste management corporation) which is responsible for all kinds of radioactive waste generated in the Republic of Korea launched the PWR spent fuel dry storage research project in June 2009. This project has objectives to develop a storage system and evaluate the integrity of PWR fuel in dry storage. The project consists of three steps. At first step, it would develop own degradation models by referring to pre-exist good models and develop the hot test scenarios. Second step, test facilities would be constructed and used for testing the degradation behaviour in each mechanisms and in total. As a final step, total evaluation code would be developed by integrating each degradation model produced in the first step and the test data produced in the second step. All the activities would be summarized into a report and applied to licensing work. The Republic of Korea PWR spent fuels have unique characteristics of various fuel types (array type, clad material) and high capacity factor (maximum usage of fuel which is bad for integrity). These facts could impact on the research ranges of experimental data needed for degradation evaluation. In this research, spent fuel performance data concerning long term dry storage will be analysed and the major degradation mechanisms like creep and hydride behaviour will be studied and proposed for Korean PWR spent fuels

  16. A comparative study of fuel management in PWR reactors

    International Nuclear Information System (INIS)

    A study about fuel management in PWR reactors, where not only the conventional uranium cycle is considered, but also the thorium cycle as an alternative is presented. The final results are presented in terms of U3O8 demand and SWU and the approximate costs of the principal stages of the fuel cycle, comparing with the stardand cycle without recycling. (E.G.)

  17. Wavelet filter based de-noising of weak neutron flux signal for dynamic control rod reactivity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Park, Moon Ghu; Bae Sung Man; Lee, Chang Sup [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    2002-10-01

    The measurement and validation of control rod bank (group) worths are typically required by the start-up physics test standard programs for Pressurized Water Reactors (PWR). Recently, the method of DCRM{sup TM} (Dynamic Control rod Reactivity Measurement) technique is developed by KEPRI and will be implemented in near future. The method is based on the fast and complete bank insertion within the short period of time which makes the range of the reactivity variation very large from the below of the background gamma level to the vicinity of nuclear heating point. The weak flux signal below background gamma level is highly noise contaminated, which invokes the large reactivity fluctuation. This paper describes the efficient noise filtering method with wavelet filters. The performance of developed method is demonstrated with the measurement data at YGN-3 cycle 7.

  18. Control Rod Drive Mechanism Installed in the Internal of Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, M. H.; Choi, S.; Park, J. S.; Lee, J. S.; Kim, D. O.; Hur, N. S.; Hur, H.; Yu, J. Y

    2008-09-15

    This report describes the review results and important technologies related to the in-vessel type control rod drive mechanism. Generally, most of the CRDMs used in the PWR are attached outside of the reactor pressure vessel, and the pernetration of the vessel head can not avoid. However, in-vessel type CRDMs, which are installed inside the reactor vessel, can eliminate the possibility of rod ejection accidents and the penetration of the vessel head, and provide a compact design of the reactor vessel and containment. There are two kinds of in-vessel type CRDM concerning the driving force-driven by a driving motor and by a hydraulic force. Motor driven CRDMs have been mainly investigated in Japan(MRX, IMR, DRX, next generation BWR etc.), and developed the key components such as a canned motor, an integrated rod position indicator, a separating ball-nut and a ball bearing that can operate under the water conditions of a high temperature and pressure. The concept of hydraulically driven CRDMs have been first reported by KWU and Siemens for KWU 200 reactor, and Argentina(CAREM) and China(NHR-5, NHR-200) have been developed the internal CRDM with the piston and cylinder of slightly different geometries. These systems are driven by the hydraulic force which is produced by pumps outside of the reactor vessel and transmitted through a pipe penetrating the reactor vessel, and needs complicated control and piping systems including pumps, valves and pipes etc.. IRIS has been recently decided the internal CRDMs as the reference design, and an analytical and experimental investigations of the hydraulic drive concept are performed by POLIMI in Italy. Also, a small French company, MP98 has been developed a new type of control rods, called 'liquid control rods', where reactivity is controlled by the movement of a liquid absorber in a manometer type device.

  19. Control Rod Drive Mechanism Installed in the Internal of Reactor Pressure Vessel

    International Nuclear Information System (INIS)

    This report describes the review results and important technologies related to the in-vessel type control rod drive mechanism. Generally, most of the CRDMs used in the PWR are attached outside of the reactor pressure vessel, and the pernetration of the vessel head can not avoid. However, in-vessel type CRDMs, which are installed inside the reactor vessel, can eliminate the possibility of rod ejection accidents and the penetration of the vessel head, and provide a compact design of the reactor vessel and containment. There are two kinds of in-vessel type CRDM concerning the driving force-driven by a driving motor and by a hydraulic force. Motor driven CRDMs have been mainly investigated in Japan(MRX, IMR, DRX, next generation BWR etc.), and developed the key components such as a canned motor, an integrated rod position indicator, a separating ball-nut and a ball bearing that can operate under the water conditions of a high temperature and pressure. The concept of hydraulically driven CRDMs have been first reported by KWU and Siemens for KWU 200 reactor, and Argentina(CAREM) and China(NHR-5, NHR-200) have been developed the internal CRDM with the piston and cylinder of slightly different geometries. These systems are driven by the hydraulic force which is produced by pumps outside of the reactor vessel and transmitted through a pipe penetrating the reactor vessel, and needs complicated control and piping systems including pumps, valves and pipes etc.. IRIS has been recently decided the internal CRDMs as the reference design, and an analytical and experimental investigations of the hydraulic drive concept are performed by POLIMI in Italy. Also, a small French company, MP98 has been developed a new type of control rods, called 'liquid control rods', where reactivity is controlled by the movement of a liquid absorber in a manometer type device

  20. PIE of the second fuel rod from the LOCA experiment (IFA-650.2)

    Energy Technology Data Exchange (ETDEWEB)

    Oberlaender, B.C.; Jenssen, H.K.; Espeland, M.; Solum, N.O.

    2005-07-01

    The LOCA experiment on the second rod (IFA-650.2) a fresh, low-tin Zr-4, pressurised PWR rod was carried out in May 2004. The main objective was to produce ballooning, to determine the time to burst and to assess the material oxidation and hydriding kinetics. The rod pressure at hot conditions and peak PCT were 70 bar and 1050 C, respectively. To document the effect of the LOCA testing on the cladding, rod 2 was subjected in PIE to visual inspection, profilometry and metallography. On visual inspection the clad shows a typical balloon. In the region of max ballooning the clad shows a 35 mm long, < 20 mm burst opening. In the balloon region the outer clad diameter increased by <35% and locally the wall thickness reduction is >55%. The entire rod is covered with a black oxide layer. Below and above the split opening the continuous oxide layer was 40 to 50mum both on water and fuel side of the clad. At the locations of the upper and lower cladding thermocouples the oxide thickness was in the range 24-27 mum. Widmanstaetten structure is seen in the bulk of the clad and confirms the high temperature experienced. A some 40mum wide, hard and brittle zone with oxygen rich globular alpha-grains is found both at the outer and the inner edge of the clad in the balloon region. The zone is widest near the axial split (crack). In the clad few, arbitrary oriented hydride platelets are observed in the balloon area. (Author)

  1. Steady-state and transient core feasibility analysis for a thorium-fuelled reduced-moderation PWR performing full transuranic recycle

    International Nuclear Information System (INIS)

    Highlights: • We present a core analysis for a thorium-transuranic fuelled reduced-moderation PWR. • There is the possibility of positive reactivity in severe large break LOCAs. • Mechanical shim is used to control reactivity within power peaking constraints. • Adequate shutdown margin can be achieved with B4C control rods are required. • The response to a rod ejection accident is within likely licensing limits. - Abstract: It is difficult to perform multiple recycle of transuranic (TRU) isotopes in PWRs as the moderator temperature coefficient (MTC) tends to become positive after a few recycles and the core may have positive reactivity when fully voided. Due to the favourable impact on the MTC fostered by use of thorium (Th), the possibility of performing Th–TRU multiple-recycle in reduced-moderation PWRs (RMPWRs) is under consideration. Heterogeneous fuel design with spatial separation of Th–U and Th–TRU is necessary to improve neutronic performance. This can take the form of a heterogeneous fuel assembly (TPUC), or whole assembly heterogeneity (WATU). Satisfactory discharge burn-up can be maintained while ensuring negative MTC, with the pin diameter of a standard PWR increased from 9.5 to 11 mm. However, the reactivity becomes positive when the coolant density in the core becomes extremely low. This could lead to positive reactivity in some loss of coolant accident (LOCA) scenarios, for example a surge line break, if the reactor does not trip. To protect against this beyond design basis accident, a second redundant set of shutdown rods is added to the reactor, so that either the usual or secondary rods can trip the reactor when there is zero coolant in the core. Even so, this condition is likely to be concerning from a regulatory standpoint. Reactivity control is a key challenge due to the reduced worth of neutron absorbers and their detrimental effect on the void coefficients, especially when diluted, as is the case for soluble boron. Mechanical

  2. Solitary waves on nonlinear elastic rods. II

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.;

    1987-01-01

    In continuation of an earlier study of propagation of solitary waves on nonlinear elastic rods, numerical investigations of blowup, reflection, and fission at continuous and discontinuous variation of the cross section for the rod and reflection at the end of the rod are presented. The results...

  3. Rod and lamellar growth of eutectic

    Directory of Open Access Journals (Sweden)

    M. Trepczyńska-Łent

    2010-04-01

    Full Text Available The paper presents adaptation problem of lamellar growth of eutectic. The formation of rod eutectic microstructure was investigated systematically. A new rod eutectic configuration was observed in which the rods form with elliptical cylindrical shape. A new interpretation of the eutectic growth theory was proposed.

  4. Process and apparatus for controlling control rods

    International Nuclear Information System (INIS)

    This process and apparatus is characterized by 2 methods, for examination of cluster of nuclear control rods. Foucault current analyzer which examines fraction by fraction all the control rods. This examination is made by rotation of the cluster. Doubtful rods are then analysed by ultrasonic probe

  5. Leaf spring puller for nuclear fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Fogg, J.L.

    1981-11-03

    A fuel rod puller in the form of a collet for pulling fuel rods from a storage area into grids of a nuclear reactor fuel assembly. The rod puller moves longitudinally through the grids to a storage area where projections on the end of leaf springs grasp onto an end plug in a fuel rod. Drive apparatus then pulls the rod puller and connected fuel rod from the storage area into the fuel assembly grids. The rod puller includes an outer tube having leaf springs on one end thereof in one modification, mounted within the outer tube is a movable plunger which acts to urge the leaf springs outwardly to a position to permit passing or with the end of a end plug. Upon withdrawal of the plunger, the leaf springs move into a groove formed in the end of a fuel rod end plug, and the fuel rod subsequently is pulled into the fuel assembly grids. In another modification, the leaf springs on the outer rod are biased in an outward direction and a longitudinally movable tube on the outer rod is moved in a direction to contract the leaf springs into a position where the projections thereof engage the groove formed in a fuel rod end plug.

  6. Rod and lamellar growth of eutectic

    OpenAIRE

    M. Trepczyńska - Łent

    2010-01-01

    The paper presents adaptation problem of lamellar growth of eutectic. The formation of rod eutectic microstructure was investigated systematically. A new rod eutectic configuration was observed in which the rods form with elliptical cylindrical shape. A new interpretation of the eutectic growth theory was proposed.

  7. CFD analyses of flow structures in air-ingress and rod bundle problems

    Science.gov (United States)

    Wei, Hong-Chan

    Two topics from nuclear engineering field are included in this dissertation. One study is the air-ingress phenomenon during a loss of coolant accident (LOCA) scenario, and the other is a 5-by-5 bundle assembly with a PWR design. The objectives were to investigate the Kelvin-Helmholtz instability of the gravity-driven stratified flows inside a coaxial pipe and the effects caused by two types of spacers at the downstream of the rod bundle. Richardson extrapolation was used for the grid independent study. The simulation results show good agreements with the experiments. Wavelet analysis and Proper Orthogonal Decomposition (POD) were used to study the flow behaviors and flow patterns. For the air-ingress phenomenon, Brunt-Vaisala frequency, or buoyancy frequency, predicts a frequency of 2.34 Hz; this is confirmed by the dominant frequency of 2.4 Hz obtained from the wavelet analysis between times 1.2 s and 1.85 s. For the rod bundle study, the dominant frequency at the center of the subchannel was determined to be 2.4 Hz with a secondary dominant frequency of 4 Hz and a much minor frequency of 6 Hz. Generally, wavelet analysis has much better performance than POD, in the air-ingress phenomenon, for a strongly transient scenario; they are both appropriate for the rod bundle study. Based on this study, when the fluid pair in a real condition is used, the time which air intrudes into the reactor is predictable.

  8. Development of eddy current testing technique of the rod cluster control assembly of pressurized water reactor

    International Nuclear Information System (INIS)

    Rod Control Cluster Assembly(RCCA) of pressurized water reactor(PWR) can be damaged by neutron irradiation and continuous vibration caused by pressurized water flowing with a high speed within the reactor. Typically, there are three different types of RCCA damage: (1) Fretting wear caused by interactions of the control rod with upper internal guide cards, (2) Sliding wear caused by the up-and-down sliding movement of the control rod during the operation, and (3) Intergranular cracking caused by the material embrittlement stemming from neutron irradiation. In the past, either ultrasonics or Eddy current testing(ECT) methods were used to inspect RCCAs. However, due to inconvenient and tedious operation of ultrasonic method, Eddy current testing method is being used more frequently. Nondestructive Evaluation(NDE) group of the Materials and Corrosion Research Laboratory at KEPRI has recently developed ECT method and the associated testing equipment, and applied successfully to Ulchin Unit 1 and Kori Unit 2 nuclear power plants(NPPs) during the overhaul period. This paper summarizes the results of the ECT of RCCAs.

  9. Design and manufacturing of non-instrumented capsule for advanced PWR fuel pellet irradiation test in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Lee, C. B.; Song, K. W. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    This project is preparing to irradiation test of the developed large grain UO{sub 2} fuel pellet in HANARO for pursuit fuel safety and high burn-up in 'Advanced LWR Fuel Technology Development Project' as a part Nuclear Mid and Long-term R and D Program. On the basis test rod is performed the nuclei property and preliminary fuel performance analysis, test rod and non-instrumented capsule are designed and manufactured for irradiation test in HANARO. This non-instrumented irradiation capsule of Advanced PWR Fuel pellet was referred the non-instrumented capsule for an irradiation test of simulated DUPIC fuel in HANARO(DUPIC Rig-001) and 18-element HANARO fuel, was designed to ensure the integrity and the endurance of non-instrumented capsule during the long term(2.5 years) irradiation. To irradiate the UO{sub 2} pellets up to the burn-up 70 MWD/kgU, need the time about 60 months and ensure the integrity of non-instrumented capsule for 30 months until replace the new capsule. This non-instrumented irradiation capsule will be based to develope the non-instrumented capsule for the more long term irradiation in HANARO. 22 refs., 13 figs., 5 tabs. (Author)

  10. PWR cladding optimization for enhanced performance margins

    International Nuclear Information System (INIS)

    As the nuclear power generating industry has matured there is an increasing trend in core operating fuel duties. This drives a continuing evolution of cladding materials, to provide performance margin and support even higher fuel duty designs. Westinghouse has developed an optimized version of ZIRLOTM, with a thin level reduced from the nominal standard ZIRLO level of 1% to a range of 0.6% to 0.8%. The lower tin level has been shown to reduce the clad corrosion of fuel rods during reactor core operation by 30% or more while still providing the mechanical and off-normal corrosion protection benefits associated with tin alloy additions. Peak oxide levels of only 20-30 μm are observed at burnups up to 63 MWd/kgU. Using relatively small changes in the final annealing temperature, the clad creep can be adjusted to meet target ranges. In-reactor measurements of creep and growth of Optimized ZIRLOTM verify mechanical characteristics equivalent to standard ZIRLO. (author)

  11. Models for fuel rod behaviour at high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Jernkvist, Lars O.; Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park, Uppsala (Sweden)

    2004-12-01

    This report deals with release of fission product gases and irradiation-induced restructuring in uranium dioxide nuclear fuel. Waterside corrosion of zirconium alloy clad tubes to light water reactor fuel rods is also discussed. Computational models, suitable for implementation in the FRAPCON-3.2 computer code, are proposed for these potentially life-limiting phenomena. Hence, an integrated model for the calculation or thermal fission gas release by intragranular diffusion, gas trapping in grain boundaries, irradiation-induced re-solution, grain boundary saturation, and grain boundary sweeping in UO{sub 2} fuel, under time varying temperature loads, is formulated. After a brief review of the status of thermal fission gas release modelling, we delineate the governing equations for the aforementioned processes. Grain growth kinetic modelling is briefly reviewed and pertinent data on grain growth of high burnup fuel obtained during power ramps in the Third Risoe Fission Gas Release Project are evaluated. Sample computations are performed, which clearly show the connection between fission gas release and gram growth as a function of time at different isotherms. Models are also proposed for the restructuring of uranium dioxide fuel at high burnup, the so-called rim formation, and its effect on fuel porosity build-up, fuel thermal conductivity and fission gas release. These models are assessed by use of recent experimental data from the High Burnup Rim Project, as well as from post irradiation examinations of high-burnup fuel, irradiated in power reactors. Moreover, models for clad oxide growth and hydrogen pickup in PWRs, applicable to Zircaloy-4, ZIRLO or M5 cladding, are formulated, based on recent in-reactor corrosion data for high-burnup fuel rods. Our evaluation of these data indicates that the oxidation rate of ZIRLO-type materials is about 20% lower than for standard Zircaloy-4 cladding under typical PWR conditions. Likewise, the oxidation rate of M5 seems to be

  12. Method and Result of Experiment for Support of Technical Solutions in the Field of Perfection of a Nuclear Fuel Cycle for Future PWR Reactors

    International Nuclear Information System (INIS)

    The paper presents the basics of approach of planning and carrying out of experiments to validate safety PWR reactors of the future when accepting technical solutions concerning using of improved fuel rods in fuel assembly. Basic principles and criteria used for the validation of technical solutions and developments in improving of nuclear fuel cycle of PWR reactors of the future are presented from the point of safety of future operation of modified fuel rods. We explore the questions of safety operation of PWR reactors with fuel assemblies, containing fuel rods with different length of fuel. The paper discusses the ways of solving of important tasks of critical facility experiments conducting for verification of new technical solutions in the sphere of PWR nuclear fuel cycle improvement on the base of international standards ISO 2000:9000 and functional safety recommendations of IEC (International Electromechanical Commission). New Federal laws of Russian Federation define the main principle for demands to NPP and any supplier of nuclear techniques. The principle is 'quantity indicators of risk should not exceed comprehensible social size of the established indicators of safety for any moment of operation of NPP'. On the other hand the second principle should be applied to extraction of the greatest benefit from operation of the equipment, systems or the NPP as whole: 'The long operation and full commercial use of resource and service properties of the equipment, systems and the NPP as a whole'. Realization of this principle assumes development and introduction of new technical solutions for a validation of guarantees of safety of the future operation of NPP or it separate components. Solving the practical problems of a validation of safety use of fuel rods with the increased length of a fuel column in fuel assembly in nuclear reactors of the future, we should choose new strategies and programs of verification experiments on the base of the analysis of guarantees

  13. Delay stroke piston and rod for engine

    Energy Technology Data Exchange (ETDEWEB)

    Booher, B.V.

    1995-03-09

    A reciprocating piston internal combustion engine comprises a cylinder having opposed ends, a piston reciprocably mounted in the cylinder, a connecting rod having a crank journal end and a piston journal end, the connecting rod connected to the piston at the piston journal end by means for first and second wrist pins spaced longitudinally along the rod, the first wrist pin journaled in a bore in the piston and in a slot in the piston rod, and the second wrist pin journaled in a bore in the piston rod and a longitudinal slot in the piston. (author)

  14. Analysis of Fly Fishing Rod Casting Dynamics

    OpenAIRE

    Gang Wang; Norman Wereley

    2011-01-01

    An analysis of fly fishing rod casting dynamics was developed comprising of a nonlinear finite element representation of the composite fly rod and a lumped parameter model for the fly line. A nonlinear finite element model was used to analyze the transient response of the fly rod, in which fly rod responses were simulated for a forward casting stroke. The lumped parameter method was used to discretize the fly line system. Fly line motions were simulated during a cast based on fly rod tip resp...

  15. ELECTROMAGNETIC APPARATUS FOR MOVING A ROD

    Science.gov (United States)

    Young, J.N.

    1958-04-22

    An electromagnetic apparatus for moving a rod-like member in small steps in either direction is described. The invention has particular application in the reactor field where the reactor control rods must be moved only a small distance and where the use of mechanical couplings is impractical due to the high- pressure seals required. A neutron-absorbing rod is mounted in a housing with gripping uaits that engage the rod, and coils for magnetizing the gripping units to make them grip, shift, and release the rod are located outside the housing.

  16. Behavior of AgInCd absorber material in Zry/UO{sub 2} fuel rod simulator bundles tested at high temperatures in the CORA facility

    Energy Technology Data Exchange (ETDEWEB)

    Sepold, L.; Hagen, S.; Hofmann, P.; Schanz, G.

    2009-01-15

    The CORA experiments carried out in an out-of-pile facility at the Kernforschungszentrum Karlsruhe (KfK), Federal Republic of Germany, are part of the ''Severe Fuel Damage'' (SFD) program. The experimental program is to provide information on the failure mechanisms of Light Water Reactor (LWR) fuel elements in a temperature range from 1200 C to 2000 C and in a few cases up to 2400 C. In the CORA experiments two different bundle configurations are tested: PWR (Pressurized Water Reactor) and BWR (Boiling Water Reactor) bundles. The PWR-type assemblies usually consist of 25 rods with 16 electrically heated fuel rod simulators and nine unheated rods (full-pellet and absorber rods). Bundle CORA-5 contained one Ag/In/Cd - steel absorber rod whereas two absorber rods were used in CORA-12, CORA-15, and CORA-9. The larger bundle CORA-7 contained 5 absorber rods. CORA-12 was terminated by quenching with water from the bottom. In CORA-15 the heated and unheated rods were pressurized to achieve pronounced clad ballooning. Bundle CORA-9 was tested with a system pressure of 1.0 MPa instead of 0.22 MPa. The test bundles were subjected to temperature transients of a slow heatup rate in a steam environment. Thus, an accident sequence is simulated, which may develop from a small-break loss-of-coolant accident of a LWR. The transient phases of the tests were initiated with a temperature ramp rate of 1 K/s. The temperature escalation due to the exothermal zircaloy (Zry)-steam reaction started at about 1100 C, leading the bundles to maximum temperatures of approximately 2000 C. Rod destruction started with the failure of the absorber rod cladding at about 1200 C, i.e. about 250 K below the melting regime of steel. Penetration of the steel cladding was presumably caused by a eutectic interaction between steel and the zircaloy guide tube. The test bundles resulted in severe oxidation and partial melting of the cladding, fuel dissolution by Zry/UO{sub 2} interaction

  17. Guide for rotating sucker rods

    Energy Technology Data Exchange (ETDEWEB)

    Harrel, R.D.

    1986-11-04

    This patent describes an improved guide for use in a string of sucker rods rotated in a tubing string in a borehole, the sucker rods having threaded male ends, the guide comprising: an elongated upright solid cylindrical coupling body of external diameter less than the internal diameter of tubing in which it is to be used; a pair of spaced apart axle holders positioned in three recess; an axle received in each recess in the coupling body, the axis of each axle being parallel and spaced from the body longitudinal axis; a roller rotatably received on each axle, the periphery of each roller extending exteriorly of the external cylindrical surface of the coupling body; and means to retain each of the holders in the coupling body recess.

  18. KINIK, Absorber Rod Calibration Kinetics

    International Nuclear Information System (INIS)

    1 - Description of program or function: KINIK is an inverse kinetic code that solves the inverse form of the point kinetic equations using the Runge-Kutta method. An optimization procedure is involved to control the time step and to reduce the running time. Up to 24 delayed neutron groups of different types (in case of heavy water as moderator or beryllium as reflector) are considered. KINIK is commonly applied to determine reactivity worths and to calibrate absorber rods. Following a rod drop, neutron flux or power is recorded as a function of time and used as input. 2 - Method of solution: The inverse point kinetic equations are numerically solved for each time step using the Runge-Kutta method. The input data resulting from measurements are first approximated by polynomials of maximum degree 10 using a least-squares approach

  19. CFD simulation of turbulent flow in a rod bundle with spacer grids (MATIS-H) using STAR-CCM+

    Energy Technology Data Exchange (ETDEWEB)

    Cinosi, N., E-mail: n.cinosi@imperial.ac.uk; Walker, S.P.; Bluck, M.J.; Issa, R.

    2014-11-15

    Highlights: • CDF simulation of turbulent flow generated by a typical PWR spacer grid. • Benchmarking against the MATIS-H experiments run at KAERI in Daejeon, Korea. • Deployment of various steady RANS models to compute the turbulence. • Sensitivity analysis of hardware components. - Abstract: This paper presents the CFD simulation of the turbulent flow generated by a model PWR spacer grid within a rod bundle. The investigation was part of the MATIS-H benchmark exercise, organized by the OECD-NEA, with measurements performed at the KAERI facilities in Daejeon, Korea. The study employed the CD-Adapco code Star-CCM+. An initial sensitivity study was conducted to attempt to assess the importance to the overall flow of components such as the outlet plenum and the end support grid; these were shown to be able to be safely neglected, but the tapered end portion of the rods was found to be significant, and this was incorporated in the model analyzed. A RANS model using any of K-epsilon, K-omega and Reynolds-stress turbulence models was found to be adequate for the prediction of mean velocity profiles, but they all three underestimate the time-averaged turbulent velocity components. Vorticity seems to be better predicted, although the measured values of vorticity are only presented via colored contour plots, making quantitative comparison rather difficult. Circulation, calculated via an integral for each channel, seems to be well predicted by all three models.

  20. Research on Designing Profiled Rod Warhead

    Institute of Scientific and Technical Information of China (English)

    Huijun Ning; Hao Wang; Cheng Zhang; Dongyang Chen; Wenjun Ruan

    2015-01-01

    A new Kinetic Energy Rod ( KER) warhead named profiled rod warhead is proposed in this paper. Based on the design of profiled rod warhead, a model of profiled rod driven by detonation is established. The detonation process is simulated by ANSYS/LS⁃DYNA, and the deployment velocity and initial flight attitude of rod are achieved. In addition, static rod deployment testing are performed to investigate the damage effect, the spatial flight attitude and deployment velocity. A satisfactory agreement is obtained by the comparison between numerical results and testing results. Meanwhile, the profiled rod studies are conducted to determine a higher penetrability compared with traditional cylindrical rods. Rigid body dynamics equations of profiled rod, which accounts for the influence of air resistance, are set up to predict the flight trajectory of long⁃distance. The results show that the profiled rod may provide a better penetration angle which still maintains a significant penetrability against projectiles when the rods move off long⁃distance range.

  1. Tests pinpoint sucker-rod failures

    Energy Technology Data Exchange (ETDEWEB)

    Elshawesh, F.; Elhoud, A.; Elagdel, E. [Petroleum Research Center, Tripoli (Libyan Arab Jamahiriya)

    1997-05-26

    A detailed metallurgical examination of a 7/8-inch and a 1-inch sucker rod revealed corrosion fatigue had caused their failure. The 7 to 8-inch rod had failed after a few months of service while the 1-inch rod failed after 1 year. Both rods had been used in a sweet-oil environment. Both rods failed by corrosion fatigue because of repeated loads during operations. Pitting because of the presence of chloride ions and carbon dioxide was initiated on the rod surface, which in turn acted as a crack origin from which the fatigue crack initiated and propagated during operations. The pitting was on the external surface. These pits were large and penetrated through the rod cross-section. Fatigue cracking is initiated at the bottom of the pit where high stress concentration is expected and propagated because the rods were subjected to the alternating stresses during operation. The extent of the fatigue crack varied in the two examined rods because of the difference in the rod heat treatment and microstructure. The paper discusses fatigue failure, the visual examination, macroscopic and microscopic examinations, rod properties, and future operations.

  2. A particle assembly/constrained expansion (PACE) model for the formation and structure of porous metal oxide deposits on nuclear fuel rods in pressurized light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, Donald W., E-mail: brenner@ncsu.edu; Lu, Shijing; O’Brien, Christopher J.; Bucholz, Eric W.; Rak, Zsolt

    2015-02-15

    A new model is proposed for the structure and properties of porous metal oxide scales (aka Chalk River Unidentified Deposits (CRUD)) observed on the nuclear fuel rod cladding in Pressurized Water Reactors (PWR). The model is based on the thermodynamically-driven expansion of agglomerated octahedral nickel ferrite particles in response to pH and temperature changes in the CRUD. The model predicts that porous nickel ferrite with internal {1 1 1} surfaces is a thermodynamically stable structure under PWR conditions even when the free energy of formation of bulk nickel ferrite is positive. This explains the pervasive presence of nickel ferrite in CRUD, observed CRUD microstructures, why CRUD maintains its porosity, and variations in porosity within the CRUD observed experimentally. This model is a stark departure from decades of conventional wisdom and detailed theoretical analysis of CRUD chemistry, and defines new research directions for model validation, and for understanding and ultimately controlling CRUD formation.

  3. A particle assembly/constrained expansion (PACE) model for the formation and structure of porous metal oxide deposits on nuclear fuel rods in pressurized light water reactors

    Science.gov (United States)

    Brenner, Donald W.; Lu, Shijing; O'Brien, Christopher J.; Bucholz, Eric W.; Rak, Zsolt

    2015-02-01

    A new model is proposed for the structure and properties of porous metal oxide scales (aka Chalk River Unidentified Deposits (CRUD)) observed on the nuclear fuel rod cladding in Pressurized Water Reactors (PWR). The model is based on the thermodynamically-driven expansion of agglomerated octahedral nickel ferrite particles in response to pH and temperature changes in the CRUD. The model predicts that porous nickel ferrite with internal {1 1 1} surfaces is a thermodynamically stable structure under PWR conditions even when the free energy of formation of bulk nickel ferrite is positive. This explains the pervasive presence of nickel ferrite in CRUD, observed CRUD microstructures, why CRUD maintains its porosity, and variations in porosity within the CRUD observed experimentally. This model is a stark departure from decades of conventional wisdom and detailed theoretical analysis of CRUD chemistry, and defines new research directions for model validation, and for understanding and ultimately controlling CRUD formation.

  4. Using of neural networks for critical heat flux analysis in rod bundles

    International Nuclear Information System (INIS)

    Neural computation represents one of the fastest growing areas in artificial intelligence. Considering that the major limit of the thermalhydraulic design of a PWR type nuclear reactors consists in the occurrence of critical heat flux (C HF), it is developed in this work an artificial neural net for predicting the occurrence of C HF, utilizing experimental data obtained in rod bundle water flows for the net training. Application is performed for the range of reactor with low coolant flow rate operational parameters. It was observed that the standard deviation of the final results, given by the net for the ratio between experimental and theoretical results for the C HF, is lower than those given by the EPRI and EPRIMOD correlations, coupled to the COBRA-IV code, and that the average presents a very small deviation from the expected unit value. 13 refs., 4 figs., 4 tabs

  5. Report on the PWR-radiation protection/ALARA Committee

    International Nuclear Information System (INIS)

    In 1992, representatives from several utilities with operational Pressurized Water Reactors (PWR) formed the PWR-Radiation Protection/ALARA Committee. The mission of the Committee is to facilitate open communications between member utilities relative to radiation protection and ALARA issues such that cost effective dose reduction and radiation protection measures may be instituted. While industry deregulation appears inevitable and inter-utility competition is on the rise, Committee members are fully committed to sharing both positive and negative experiences for the benefit of the health and safety of the radiation worker. Committee meetings provide current operational experiences through members providing Plant status reports, and information relative to programmatic improvements through member presentations and topic specific workshops. The most recent Committee workshop was facilitated to provide members with defined experiences that provide cost effective ALARA performance

  6. Industrial assessment of nonbackfittable PWR design modifications. Final report

    International Nuclear Information System (INIS)

    As part of the US Department of Energy's Advanced Reactor Design Study, various nonbackfittable PWR design modifications were evaluated to determine their potential for improved uranium utilization and commercial viability. Combustion Engineering, Inc. contributed to this effort through participation in the Battelle Pacific Northwest Laboratory industrial assessment of such design modifications. Seven modifications, including the use of higher primary system temperatures and pressures, rapid-frequent refueling, end-of-cycle stretchout, core periphery modifications, radial blankets, low power density cores, and small PWR assemblies, were evaluated with respect to uranium utilization, economics, technical and operational complexity, and several other subjective considerations. Rapid-frequent refueling was judged to have the highest potential although it would probably not be economical for the majority of reactors with the design assumptions used in this assessment

  7. A concept of PWR using plate and shell heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Luciano Ondir; Andrade, Delvonei Alves de, E-mail: luciano.ondir@gmail.com, E-mail: delvonei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    In previous work it was verified the physical possibility of using plate and shell heat exchangers for steam generation in a PWR for merchant ships. This work studies the possibility of using GESMEX commercial of the shelf plate and shell heat exchanger of series XPS. It was found it is feasible for this type of heat exchanger to meet operational and accidental requirements for steam generation in PWR. Additionally, it is proposed an arrangement of such heat exchangers inside the reactor pressure vessel. Such arrangement may avoid ANSI/ANS51.1 nuclear class I requirements on those heat exchangers because they are contained in the reactor coolant pressure barrier and play no role in accidental scenarios. Additionally, those plates work under compression, preventing the risk of rupture. Being considered non-nuclear safety, having a modular architecture and working under compression may turn such architectural choice a must to meet safety objectives with improved economics. (author)

  8. A concept of PWR using plate and shell heat exchangers

    International Nuclear Information System (INIS)

    In previous work it was verified the physical possibility of using plate and shell heat exchangers for steam generation in a PWR for merchant ships. This work studies the possibility of using GESMEX commercial of the shelf plate and shell heat exchanger of series XPS. It was found it is feasible for this type of heat exchanger to meet operational and accidental requirements for steam generation in PWR. Additionally, it is proposed an arrangement of such heat exchangers inside the reactor pressure vessel. Such arrangement may avoid ANSI/ANS51.1 nuclear class I requirements on those heat exchangers because they are contained in the reactor coolant pressure barrier and play no role in accidental scenarios. Additionally, those plates work under compression, preventing the risk of rupture. Being considered non-nuclear safety, having a modular architecture and working under compression may turn such architectural choice a must to meet safety objectives with improved economics. (author)

  9. On catholyte application for hydrogen water chemistry in PWR

    International Nuclear Information System (INIS)

    Considering liquid water as a chemical compound with a wide band gap shows that its Redox potential as Fermi level in the band gap is the measurable characteristic of a non-stoichiometric aqueous coolant in recirculation system of PWR. The hypo-stoichiometric state with the negative Redox potential is realized when Fermi level is shifted to the bottom of conduction band. This state can be fixed by the electro-reduced water (catholyte) of the alkaline solution. Then, the hydride anions (H3O-) as proton acceptors and the hydrox-onium radicals (H3O) as electron donors are emerged in the alkaline catholyte and form hydrated clusters (AH)n(H2O)m of alkaline hydride. These particles as very strong reducers have a molar portion more than the gaseous hydrogen in the aqueous coolant and are the effective remedy for holding the negative Redox potential as an effect of hydrogen water chemistry in PWR. (authors)

  10. A burnup credit calculation methodology for PWR spent fuel transportation

    International Nuclear Information System (INIS)

    A burnup credit calculation methodology for PWR spent fuel transportation has been developed and validated in CEA/Saclay. To perform the calculation, the spent fuel composition are first determined by the PEPIN-2 depletion analysis. Secondly the most important actinides and fission product poisons are automatically selected in PEPIN-2 according to the reactivity worth and the burnup for critically consideration. Then the 3D Monte Carlo critically code TRIMARAN-2 is used to examine the subcriticality. All the resonance self-shielded cross sections used in this calculation system are prepared with the APOLLO-2 lattice cell code. The burnup credit calculation methodology and related PWR spent fuel transportation benchmark results are reported and discussed. (authors)

  11. Three basic options for the management of PWR waste

    International Nuclear Information System (INIS)

    Relying on the national practices of France, Germany and Belgium, three reference management routes for PWR wastes were drawn up and subsequently evaluated in terms of costs and radiological impact. It was thus demonstrated that safety regulations and technical redundancies, especially for off-gas treatment, liquid waste processing and dry solid waste treatment, play an important part in the cost associated with each route. The analysis of the different treatment options for mixed solid low level waste highlighted the low cost effectiveness of incineration as compared to compaction. Whatever the scenario investigated, the disposal costs of PWR wastes proved to be quite marginal in the overall cost. The radiological impact associated with each route was assessed through individual doses resulting from liquid and gaseous effluents. This theoretical exercise included some sensitivity studies performed on a selection of important parameters

  12. PWR plant transient analyses using TRAC-PF1

    International Nuclear Information System (INIS)

    This paper describes some of the pressurized water reactor (PWR) transient analyses performed at Los Alamos for the US Nuclear Regulatory Commission using the Transient Reactor Analysis Code (TRAC-PF1). Many of the transient analyses performed directly address current PWR safety issues. Included in this paper are examples of two safety issues addressed by TRAC-PF1. These examples are pressurized thermal shock (PTS) and feed-and-bleed cooling for Oconee-1. The calculations performed were plant specific in that details of both the primary and secondary sides were modeled in addition to models of the plant integrated control systems. The results of these analyses show that for these two transients, the reactor cores remained covered and cooled at all times posing no real threat to the reactor system nor to the public

  13. Study on thermal-hydraulics during a PWR reflood phase

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    In-core thermal-hydraulics during a PWR reflood phase following a large-break LOCA are quite unique in comparison with two-phase flow which has been studied widely in previous researches, because the geometry of the flow path is complicated (bundle geometry) and water is at extremely low superficial velocity and almost under stagnant condition. Hence, some phenomena realized during a PWR reflood phase are not understood enough and appropriate analytical models have not been developed, although they are important in a viewpoint of reactor safety evaluation. Therefore, author investigated some phenomena specified as important issues for quantitative prediction, i.e. (1) void fraction in a bundle during a PWR reflood phase, (2) effect of radial core power profile on reflood behavior, (3) effect of combined emergency core coolant injection on reflood behavior, and (4) the core separation into two thermal-hydraulically different regions and the in-core flow circulation behavior observed during a combined injection PWR reflood phase. Further, author made analytical models for these specified issues, and succeeded to predict reflood behaviors at representative types of PWRs, i.e.cold leg injection PWRs and Combined injection PWRs, in good accuracy. Above results were incorporated into REFLA code which is developed at JAERI, and they improved accuracy in prediction and enlarged applicability of the code. In the present study, models were intended to be utilized in a practical use, and hence these models are simplified ones. However, physical understanding on the specified issues in the present study is basic and principal for reflood behavior, and then it is considered to be used in a future advanced code development and improvement. (author). 110 refs.

  14. ORNL-PWR BDHT analysis procedure: an overview

    International Nuclear Information System (INIS)

    The key computer programs currently used by the analysis procedure of the ORNL-PWR Blowdown Heat Transfer Separate Effects Program are overviewed with particular emphasis placed on their interrelationships. The major modeling and calculational programs, COBRA, ORINC, ORTCAL, PINSIM, and various versions of RELAP4, are summarized and placed into the perspective of the procedure. The supportive programs, REDPLT, ORCPLT, BDHTPLOT, OXREPT, and OTOCI, and their uses are described

  15. Improvement on main control room for Japanese PWR plants

    International Nuclear Information System (INIS)

    The main control room which is the information center of nuclear power plant has been continuously improved utilizing the state of the art ergonomics, a high performance computer, computer graphic technologies, etc. For the latest Japanese Pressurized Water Reactor (PWR) plant, the CRT monitoring system is applied as the major information source for facilitating operators' plant monitoring tasks. For an operating plant, enhancement of monitoring and logging functions has been made adopting a high performance computer

  16. Propagation of nuclear data Uncertainties for PWR core analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cabellos, O.; Castro, E.; Ahnert, C.; Holgado, C. [Dept. of Nuclear Engineering, Universidad Politecnica de Madrid, Madrid (Spain)

    2014-06-15

    An uncertainty propagation methodology based on the Monte Carlo method is applied to PWR nuclear design analysis to assess the impact of nuclear data uncertainties. The importance of the nuclear data uncertainties for {sup 235,238}U, {sup 239}Pu, and the thermal scattering library for hydrogen in water is analyzed. This uncertainty analysis is compared with the design and acceptance criteria to assure the adequacy of bounding estimates in safety margins.

  17. Safety Analysis Report for the PWR Spent Fuel Canister

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Choi, Jong Won; Cho, Dong Keun; Chun, Kwan Sik; Lee, Jong Youl; Kim, Seong Ki; Kim, Seong Soo; Lee, Yang

    2005-11-15

    This report outlined the results of the safety assessment of the canisters for the PWR spent fuels which will be used in the KRS. All safety analyses including criticality and radiation shielding analyses, mechanical analyses, thermal analyses, and containment analyses were performed. The reference PWR spent fuels were in the 17x17 and determined to have 45,000 MWD/MTU burnup. The canister consists of copper outer shell and nodular cast iron inner structure with diameter of 102 cm and height of 483 cm. Criticality safety was checked for normal and abnormal conditions. It was assumed that the integrity of engineered barriers is preserved and saturated with water of 1.0g/cc for normal condition. For the abnormal condition container and bentonite was assumed to disappear, which allows the spent fuel to be surrounded by water with the most reactive condition. In radiation shielding analysis it was investigated that the absorbed dose at the surface of the canister met the safety limit. The structural analysis was conducted considering three load conditions, normal, extreme, and rock movement condition. Thermal analysis was carried out for the case that the canister with four PWR assemblies was deposited in the repository 500 meter below the surface with 40 m tunnel spacing and 6 m deposition hole spacing. The results of the safety assessment showed that the proposed KDC-1 canister met all the safety limits.

  18. Validation of gadolinium burnout using PWR benchmark specification

    Energy Technology Data Exchange (ETDEWEB)

    Oettingen, Mikołaj, E-mail: moettin@agh.edu.pl; Cetnar, Jerzy, E-mail: cetnar@mail.ftj.agh.edu.pl

    2014-07-01

    Graphical abstract: - Highlights: • We present methodology for validation of gadolinium burnout in PWR. • We model 17 × 17 PWR fuel assembly using MCB code. • We demonstrate C/E ratios of measured and calculated concentrations of Gd isotopes. • The C/E for Gd154, Gd156, Gd157, Gd158 and Gd160 shows good agreement of ±10%. • The C/E for Gd152 and Gd155 shows poor agreement below ±10%. - Abstract: The paper presents comparative analysis of measured and calculated concentrations of gadolinium isotopes in spent nuclear fuel from the Japanese Ohi-2 PWR. The irradiation of the 17 × 17 fuel assembly containing pure uranium and gadolinia bearing fuel pins was numerically reconstructed using the Monte Carlo Continuous Energy Burnup Code – MCB. The reference concentrations of gadolinium isotopes were measured in early 1990s at Japan Atomic Energy Research Institute. It seems that the measured concentrations were never used for validation of gadolinium burnout. In our study we fill this gap and assess quality of both: applied numerical methodology and experimental data. Additionally we show time evolutions of infinite neutron multiplication factor K{sub inf}, FIMA burnup, U235 and Gd155–Gd158. Gadolinium-based materials are commonly used in thermal reactors as burnable absorbers due to large neutron absorption cross-section of Gd155 and Gd157.

  19. Validation of gadolinium burnout using PWR benchmark specification

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • We present methodology for validation of gadolinium burnout in PWR. • We model 17 × 17 PWR fuel assembly using MCB code. • We demonstrate C/E ratios of measured and calculated concentrations of Gd isotopes. • The C/E for Gd154, Gd156, Gd157, Gd158 and Gd160 shows good agreement of ±10%. • The C/E for Gd152 and Gd155 shows poor agreement below ±10%. - Abstract: The paper presents comparative analysis of measured and calculated concentrations of gadolinium isotopes in spent nuclear fuel from the Japanese Ohi-2 PWR. The irradiation of the 17 × 17 fuel assembly containing pure uranium and gadolinia bearing fuel pins was numerically reconstructed using the Monte Carlo Continuous Energy Burnup Code – MCB. The reference concentrations of gadolinium isotopes were measured in early 1990s at Japan Atomic Energy Research Institute. It seems that the measured concentrations were never used for validation of gadolinium burnout. In our study we fill this gap and assess quality of both: applied numerical methodology and experimental data. Additionally we show time evolutions of infinite neutron multiplication factor Kinf, FIMA burnup, U235 and Gd155–Gd158. Gadolinium-based materials are commonly used in thermal reactors as burnable absorbers due to large neutron absorption cross-section of Gd155 and Gd157

  20. FLUOLE-2: An Experiment for PWR Pressure Vessel Surveillance

    Directory of Open Access Journals (Sweden)

    Thiollay Nicolas

    2016-01-01

    Full Text Available FLUOLE-2 is a benchmark-type experiment dedicated to 900 and 1450 MWe PWR vessels surveillance dosimetry. This two-year program started in 2014 and will end in 2015. It will provide precise experimental data for the validation of the neutron spectrum propagation calculation from core to vessel. It is composed of a square core surrounded by a stainless steel baffe and internals: PWR barrel is simulated by steel structures leading to different steel-water slides; two steel components stand for a surveillance capsule holder and for a part of the pressure vessel. Measurement locations are available on the whole experimental structure. The experimental knowledge of core sources will be obtained by integral gamma scanning measurements directly on fuel pins. Reaction rates measured by calibrated fission chambers and a large set of dosimeters will give information on the neutron energy and spatial distributions. Due to the low level neutron flux of EOLE ZPR a special, high efficiency, calibrated gamma spectrometry device will be used for some dosimeters, allowing to measure an activity as low as 7. 10−2 Bq per sample. 103mRh activities will be measured on an absolute calibrated X spectrometry device. FLUOLE-2 experiment goal is to usefully complete the current experimental benchmarks database used for the validation of neutron calculation codes. This two-year program completes the initial FLUOLE program held in 2006–2007 in a geometry representative of 1300 MWe PWR.

  1. Actinides transmutation - a comparison of results for PWR benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Claro, Luiz H. [Instituto de Estudos Avancados (IEAv/CTA), Sao Jose dos Campos, SP (Brazil)], e-mail: luizhenu@ieav.cta.br

    2009-07-01

    The physical aspects involved in the Partitioning and Transmutation (P and T) of minor actinides (MA) and fission products (FP) generated by reactors PWR are of great interest in the nuclear industry. Besides these the reduction in the storage of radioactive wastes are related with the acceptability of the nuclear electric power. From the several concepts for partitioning and transmutation suggested in literature, one of them involves PWR reactors to burn the fuel containing plutonium and minor actinides reprocessed of UO{sub 2} used in previous stages. In this work are presented the results of the calculations of a benchmark in P and T carried with WIMSD5B program using its new cross sections library generated from the ENDF-B-VII and the comparison with the results published in literature by other calculations. For comparison, was used the benchmark transmutation concept based in a typical PWR cell and the analyzed results were the k{infinity} and the atomic density of the isotopes Np-239, Pu-241, Pu-242 and Am-242m, as function of burnup considering discharge of 50 GWd/tHM. (author)

  2. QFLOOD-GT: a program for predicting PWR reflood

    International Nuclear Information System (INIS)

    A description is given of the present version of the QFLOOD-GT program for predicting the reflood stage of a large-break PWR loss-of-coolant accident. QFLOOD-GT has been developed from an earlier forced-reflood program which, using a conduction-controlled model for rewetting speed, gave good agreement with the FLECHT SEASET experiments. This earlier program has been incorporated into QFLOOD-GT as a subroutine called QFLOOD; in addition a downcomer model has been included in order to allow calculation of gravity reflood, and a computational scheme has been devised to simulate the chimney effect (the unequal distribution of inlet flow between hot and cool regions of the core). No quantitative comparisons between QFLOOD-GT predictions and integral-test data have yet been carried out, so the modelling decisions implemented in the program are at this stage unvalidated. Preliminary testing of the program has produced results which are for the most part qualitatively satisfactory. Calculations for indicative PWR conditions suggest that the chimney effect has a significant beneficial effect during PWR reflood, a conclusion in accordance with the findings of the Japanese 2D/3D experiments. (author)

  3. PWR experimental benchmark analysis using WIMSD and PRIDE codes

    International Nuclear Information System (INIS)

    Highlights: • PWR experimental benchmark calculations were performed using WIMSD and PRIDE codes. • Various models for lattice cell homogenization were used. • Multiplication factors, power distribution and reaction rates were studied. • The effect of cross section libraries on these parameters was analyzed. • The results were compared with experimental and reported results. - Abstract: The PWR experimental benchmark problem defined by ANS was analyzed using WIMSD and PRIDE codes. Different modeling methodologies were used to calculate the infinite and effective multiplication factors. Relative pin power distributions were calculated for infinite lattice and critical core configurations, while reaction ratios were calculated for infinite lattice only. The discrete ordinate method (DSN) and collision probability method (PERSEUS) were used in each calculation. Different WIMSD cross-section libraries based on ENDF/B-VI.8, ENDF/B-VII.0, IAEA, JEF-2.2, JEFF-3.1 and JENDL-3.2 nuclear data files were also employed in the analyses. Comparison was made with experimental data and other reported results in order to find a suitable strategy for PWR analysis

  4. Effects of axial power shapes on CHF locations in a single tube and in rod bundle assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.; Yang, B.W.; Zhang, H.; Zha, Y.; Zhang, Y. [Xi' an Jiaotong Univ. (China). School of Nuclear Science and Technology

    2016-07-15

    Currently, the prediction of rod bundle CHF is dependent on CHF correlations derived from CHF data. A simple correction factor, such as F-factor, is often used to account for the axial power shape differences based on a simple accumulated energy concept, which has totally no consideration on the impact of true local condition on CHF mechanism. Subsequently, as expected, large uncertainty is often associated with the CHF value and CHF location predictions. For the purpose of obtaining different power shapes effects on CHF, CFD calculated parameter values were used to predict the possible CHF occurrence location. The possible CHF location prediction method proposed in this paper is calculated void fraction, heat transfer coefficient (HTC), liquid temperature distribution and detailed local parameters. And the uniform and non-uniform CHF were analyzed. The prediction of possible CHF locations in a 5 x 5 rod bundle may provide useful information for the design of a full-length CHF test, enhance the accuracy of CHF and CHF location prediction, and reduce the costs of the experimentation.

  5. Analysis of experimental measurements of PWR fresh and spent fuel assemblies using Self-Interrogation Neutron Resonance Densitometry

    International Nuclear Information System (INIS)

    Self-Interrogation Neutron Resonance Densitometry (SINRD) is a new NDA technique that was developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for LWR fuel assemblies. The SINRD detector consists of four fission chambers (FCs) wrapped with different absorber filters to isolate different parts of the neutron energy spectrum and one ion chamber (IC) to measure the gross gamma rate. As a result, two different techniques can be utilized using the same SINRD detector unit and hardware. These techniques are the Passive Neutron Multiplication Counter (PNMC) method and the SINRD method. The focus of the work described in this paper is the analysis of experimental measurements of fresh and spent PWR fuel assemblies that were performed at LANL and the Korea Atomic Energy Research Institute (KAERI), respectively, using the SINRD detector. The purpose of these experiments was to assess the following capabilities of the SINRD detector: 1) reproducibility of measurements to quantify systematic errors, 2) sensitivity to water gap between detector and fuel assembly, 3) sensitivity and penetrability to the removal of fuel rods from the assembly, and 4) use of PNMC/SINRD ratios to quantify neutron multiplication and/or fissile content. The results from these simulations and measurements provide valuable experimental data that directly supports safeguards research and development (R&D) efforts on the viability of passive neutron NDA techniques and detector designs for partial defect verification of spent fuel assemblies. - Highlights: • Experimental measurements of PWR fresh and spent FAs were performed with SINRD. • Good agreement of MCNPX and measured results confirmed accuracy of SINRD model. • For fresh fuel, SINRD and PNMC ratios were not sensitive to water gaps of ≤5-mm. • Practical use of SINRD would be in Fork detector to reduce systematic uncertainties

  6. Verification of NUREC Code Transient Calculation Capability Using OECD NEA/US NRC PWR MOX/UO2 Core Transient Benchmark Problem

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Kook; Noh, Jae Man; Lee, Hyung Chul; Yoo, Jae Woon

    2006-01-15

    In this report, we verified the NUREC code transient calculation capability using OECD NEA/US NRC PWR MOX/UO2 Core Transient Benchmark Problem. The benchmark problem consists of Part 1, a 2-D problem with given T/H conditions, Part 2, a 3-D problem at HFP condition, Part 3, a 3-D problem at HZP condition, and Part 4, a transient state initiated by a control rod ejection at HZP condition in Part 3. In Part 1, the results of NUREC code agreed well with the reference solution obtained from DeCART calculation except for the pin power distributions at the rodded assemblies. In Part 2, the results of NUREC code agreed well with the reference DeCART solutions. In Part 3, some results of NUREC code such as critical boron concentration and core averaged delayed neutron fraction agreed well with the reference PARCS 2G solutions. But the error of the assembly power at the core center was quite large. The pin power errors of NUREC code at the rodded assemblies was much smaller the those of PARCS code. The axial power distribution also agreed well with the reference solution. In Part 4, the results of NUREC code agreed well with those of PARCS 2G code which was taken as the reference solution. From the above results we can conclude that the results of NUREC code for steady states and transient states of the MOX loaded LWR core agree well with those of the other codes.

  7. Reactor control rod timing system. [LMFBR

    Science.gov (United States)

    Wu, P.T.K.

    1980-03-18

    A fluid driven jet-edge whistle timing system is described for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  8. PWR primary coolant sample lines - problems with measurement of corrosion products and experimental proposals for Ringhals PWR

    International Nuclear Information System (INIS)

    Coolant samples are drawn from PWR primary circuits through long narrow tubes. Concern that interaction with the sample line walls (by deposition and release) can result in inaccurate measurement of corrosion product concentrations has recently intensified after several observations of a dependence on sample line flow rate. Particularly significant instances of this have been observed at Ringhals PWR. A further problem is that measured concentrations show spurious transient increases after valving in the sample line. Sampling behaviour is complex since it involves particulate as well as soluble material, and deposition and release as well as localised phenomena associated with crud traps within the sample line. The present report has threefold function, firstly to review instances of anomalous sample line behaviour and secondly to present a basic theoretical background to aid interpretation of such behaviour. The third and most important function is to suggest plant measurements which might be made at Ringhals PWR to understand better the response of the sampling system by quantifying the effects due to corrosion product deposition on, and release from, sample line walls. (author)

  9. Automatic safety rod for reactors. [LMFBR

    Science.gov (United States)

    Germer, J.H.

    1982-03-23

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  10. Hybrid composite rods for concrete reinforcement

    OpenAIRE

    Fangueiro, Raúl; Pereira, Cristiana Gonilho; Jalali, Said; Araújo, Mário Duarte de; Marques, P.

    2010-01-01

    The current work is concerned with the development of braided composite rods for civil engineering applications, namely for concrete internal reinforcement, as a steel substitute. The research study aims at understanding the tensile behaviour of composite rods reinforced by a textile structure – braided structure with core reinforcement.Seven types of braided composite rods were produced, varying the type of fibres used as a core reinforcement of a polyester braided structure. ...

  11. Growth and Morphology of Rod Eutectics

    Energy Technology Data Exchange (ETDEWEB)

    Jing Teng; Shan Liu; R. Trivedi

    2008-03-17

    The formation of rod eutectic microstructure is investigated systematically in a succinonitrile-camphor alloy of eutectic composition by using the directional solidification technique. A new rod eutectic configuration is observed in which the rods form with elliptical cylindrical shape. Two different orientations of the ellipse are observed that differ by a 90{sup o} rotation such that the major and the minor axes are interchanged. Critical experiments in thin samples, where a single layer of rods forms, show that the spacing and orientation of the elliptic rods are governed by the growth rate and the sample thickness. In thicker samples, multi layers of rods form with circular cross-section and the scaling law between the spacing and velocity predicted by the Jackson and Hunt model is validated. A theoretical model is developed for a two-dimensional array of elliptical rods that are arranged in a hexagonal or a square array, and the results are shown to be consistent with the experimental observations. The model of elliptic rods is also shown to reduce to that for the circular rod eutectic when the lengths of the two axes are equal, and to the lamellar eutectic model when one of the axes is much larger than the other one.

  12. High-yield production of hydrophobins RodA and RodB from Aspergillus fumigatus in Pichia pastoris

    DEFF Research Database (Denmark)

    Pedersen, Mona Højgaard; Borodina, Irina; Moresco, Jacob Lange;

    2011-01-01

    -PAGE. Recombinant RodA as well as rRodB were able to convert a glass surface from hydrophilic to hydrophobic similar to native RodA, but only rRodB was able to decrease the hydrophobicity of a Teflon-like surface to the same extent as native RodA, while rRodA showed this ability to a lesser extent. Recombinant Rod...

  13. Development of CFD methodology for investigating thermal-hydraulic characteristics in a PWR dome

    International Nuclear Information System (INIS)

    Highlights: • This study develops a detailed CFD model for the dome of Maanshan NPP. • Flow and heat transfer features in the upper plenum and dome are captured. • Leakage flow to the dome cannot be neglected in the nuclear safety analysis. • Higher EDY and RIY are obtained using the calculated temperature on the RPV head. • It is conservative to take the cold-leg temperature to estimate the EDY and RIY. - Abstract: This study aims to develop a detailed computational fluid dynamics (CFD) model to investigate the flow and heat transfer characteristics in the dome of a pressurized water reactor (PWR). The upper plenum is also considered in order to simulate the possible coolant leak to the dome via the gaps of upper support plate. The essential solid components within the solution domain, including the upper core plate, the guide tube assemblies, the support columns, and the rod cluster control, are realistically modeled, instead of the porous-medium approximation. Through the detailed-geometry CFD simulation, the thermal-hydraulic features in the upper plenum, individual guide tube assembly, and the dome can be obtained. And, the temperature distribution on the reactor pressure vessel (RPV) head can be used to estimate the values of total effective degradation years (EDY) and reinspection years (RIY) for monitoring the crack initiation and growth on the head. Present calculated results also reveal that the original values of EDY and RIY using the cold-leg temperature as the head temperature by the Maanshan staff is conservative

  14. Connexin 36 and rod bipolar cell independent rod pathways drive retinal ganglion cells and optokinetic reflexes.

    Science.gov (United States)

    Cowan, Cameron S; Abd-El-Barr, Muhammad; van der Heijden, Meike; Lo, Eric M; Paul, David; Bramblett, Debra E; Lem, Janis; Simons, David L; Wu, Samuel M

    2016-02-01

    Rod pathways are a parallel set of synaptic connections which enable night vision by relaying and processing rod photoreceptor light responses. We use dim light stimuli to isolate rod pathway contributions to downstream light responses then characterize these contributions in knockout mice lacking rod transducin-α (Trα), or certain pathway components associated with subsets of rod pathways. These comparisons reveal that rod pathway driven light sensitivity in retinal ganglion cells (RGCs) is entirely dependent on Trα, but partially independent of connexin 36 (Cx36) and rod bipolar cells. Pharmacological experiments show that rod pathway-driven and Cx36-independent RGC ON responses are also metabotropic glutamate receptor 6-dependent. To validate the RGC findings in awake, behaving animals we measured optokinetic reflexes (OKRs), which are sensitive to changes in ON pathways. Scotopic OKR contrast sensitivity was lost in Trα(-/-) mice, but indistinguishable from controls in Cx36(-/-) and rod bipolar cell knockout mice. Mesopic OKRs were also altered in mutant mice: Trα(-/-) mice had decreased spatial acuity, rod BC knockouts had decreased sensitivity, and Cx36(-/-) mice had increased sensitivity. These results provide compelling evidence against the complete Cx36 or rod BC dependence of night vision's ON component. Further, the findings suggest the parallel nature of rod pathways provides considerable redundancy to scotopic light sensitivity but distinct contributions to mesopic responses through complicated interactions with cone pathways. PMID:26718442

  15. System analysis with improved thermo-mechanical fuel rod models for modeling current and advanced LWR materials in accident scenarios

    Science.gov (United States)

    Porter, Ian Edward

    A nuclear reactor systems code has the ability to model the system response in an accident scenario based on known initial conditions at the onset of the transient. However, there has been a tendency for these codes to lack the detailed thermo-mechanical fuel rod response models needed for accurate prediction of fuel rod failure. This proposed work will couple today's most widely used steady-state (FRAPCON) and transient (FRAPTRAN) fuel rod models with a systems code TRACE for best-estimate modeling of system response in accident scenarios such as a loss of coolant accident (LOCA). In doing so, code modifications will be made to model gamma heating in LWRs during steady-state and accident conditions and to improve fuel rod thermal/mechanical analysis by allowing axial nodalization of burnup-dependent phenomena such as swelling, cladding creep and oxidation. With the ability to model both burnup-dependent parameters and transient fuel rod response, a fuel dispersal study will be conducted using a hypothetical accident scenario under both PWR and BWR conditions to determine the amount of fuel dispersed under varying conditions. Due to the fuel fragmentation size and internal rod pressure both being dependent on burnup, this analysis will be conducted at beginning, middle and end of cycle to examine the effects that cycle time can play on fuel rod failure and dispersal. Current fuel rod and system codes used by the Nuclear Regulatory Commission (NRC) are compilations of legacy codes with only commonly used light water reactor materials, Uranium Dioxide (UO2), Mixed Oxide (U/PuO 2) and zirconium alloys. However, the events at Fukushima Daiichi and Three Mile Island accident have shown the need for exploration into advanced materials possessing improved accident tolerance. This work looks to further modify the NRC codes to include silicon carbide (SiC), an advanced cladding material proposed by current DOE funded research on accident tolerant fuels (ATF). Several

  16. High-temperature compatibility between liquid metal as PWR fuel gap filler and stainless steel and high-density concrete

    Science.gov (United States)

    Wongsawaeng, Doonyapong; Jumpee, Chayanit; Jitpukdee, Manit

    2014-08-01

    In conventional nuclear fuel rods for light-water reactors, a helium-filled as-fabricated gap between the fuel and the cladding inner surface accommodates fuel swelling and cladding creep down. Because helium exhibits a very low thermal conductivity, it results in a large temperature rise in the gap. Liquid metal (LM; 1/3 weight portion each of lead, tin, and bismuth) has been proposed to be a gap filler because of its high thermal conductivity (∼100 times that of He), low melting point (∼100 °C), and lack of chemical reactivity with UO2 and water. With the presence of LM, the temperature drop across the gap is virtually eliminated and the fuel is operated at a lower temperature at the same power output, resulting in safer fuel, delayed fission gas release and prevention of massive secondary hydriding. During normal reactor operation, should an LM-bonded fuel rod failure occurs resulting in a discharge of liquid metal into the bottom of the reactor pressure vessel, it should not corrode stainless steel. An experiment was conducted to confirm that at 315 °C, LM in contact with 304 stainless steel in the PWR water chemistry environment for up to 30 days resulted in no observable corrosion. Moreover, during a hypothetical core-melt accident assuming that the liquid metal with elevated temperature between 1000 and 1600 °C is spread on a high-density concrete basement of the power plant, a small-scale experiment was performed to demonstrate that the LM-concrete interaction at 1000 °C for as long as 12 h resulted in no penetration. At 1200 °C for 5 h, the LM penetrated a distance of ∼1.3 cm, but the penetration appeared to stop. At 1400 °C the penetration rate was ∼0.7 cm/h. At 1600 °C, the penetration rate was ∼17 cm/h. No corrosion based on chemical reactions with high-density concrete occurred, and, hence, the only physical interaction between high-temperature LM and high-density concrete was from tiny cracks generated from thermal stress. Moreover

  17. CFD simulation of critical heat flux in a rod bundle

    International Nuclear Information System (INIS)

    The critical heat flux (CHF) condition is characterized by a sharp reduction of the local heat transfer coefficient which results from the replacement of liquid by vapour adjacent to the heat transfer surface. If the surface heat flux is the independent variable, the condition manifests itself as a sharp increase in surface temperature as the critical heat flux value is reached. The critical heat flux forms an important boundary for the performance of the heat exchange equipment. Determination of the critical heat flux is one of the key issues in nuclear reactor safety. This paper presents numerical simulations of boiling flow in a rod bundle with Departure from Nucleate Boiling (DNB) condition at the end of the middle rod. Large Water Loop CHF tests were used as a data set for our simulations. The Large Water Loop (LWL) is non-active pressurised-water equipment with technological and thermal parameters corresponding to those of PWR. The CHF experimental facility (a part of the Large Water Loop) has been designed for research into CHF in water flow through a bundle of electrically heated vertical rods. The critical conditions were determined under constant pressure, inlet water temperature and mass flux and for quasi steady-state - by gradually increasing the heat input. The rods are modelled by hollow tubes with direct heating of the wall. NEPTUNE-CFD code was used for numerical simulations. The computational domain covered a 30 deg. quasi-symmetric section of the actual channel. Simplified grid spacers were included in the domain. Calculations were performed with two-fluid approach with models for drag, lift, added mass and turbulent dispersion forces as well as for interfacial heat and mass transfer. Turbulent dispersion coefficient was based on void fraction gradient and on drag and mass forces. K-epsilon model was used for the prediction of the liquid turbulence, the flow of vapour was assumed to be laminar. Generalized wall heat-flux-splitting model was used

  18. EPRI PWR Safety and Relief Valve Test Program: test condition justification report

    Energy Technology Data Exchange (ETDEWEB)

    Hosler, J.

    1982-12-01

    In response to NUREG 0737, Item II.D.1.A requirements, several safety and relief valve designs were tested by EPRI under PWR utility sponsorship. Justification that the inlet fluid conditions under which these valve designs were tested are representative of those expected in participating domestic PWR units during FSAR, Extended High Pressure Injection, and Cold Overpressurization events is presented.

  19. PWR safety and relief valve test program. Valve selection/juftification report. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-12-01

    NUREG 0578 required that full-scale testing be performed on pressurizer safety valves and relief valves representative of those in use or planned for use in PWR plants. To obtain valve performance data for the entire population of PWR plant valves, nine safety valves and ten relief valves were selected as a fully representative set of test valves. Justification that the selected valves represent all PWR plant valves was provided by each safety and relief valve manufacturer. Both the valve selection and justification work was performed as part of the PWR Safety and Relief Valve Test Program conducted by EPRI on behalf of the PWR utilities in response to the recommendations of NUREG 0578 and the requirements of the NRC. Results of the Safety and Relief Valve Selection and Justification effort is documented in this report.

  20. Hollow sucker rod for PCP systems

    Energy Technology Data Exchange (ETDEWEB)

    Villasante, J.A.; Ernst, H.A. [Tenaris Research and Development, Campana (Argentina)

    2008-07-01

    This paper described a new hollow sucker rod technology designed for use with progressive cavity pumps (PCPs). The technology provided a high torque load to yielding ratio, as well as high backspin resistance and pumping rates. The technology was also designed to allow for the injection of other fluids such as corrosion inhibitors or diluents via its hollow sucker rod. Torsion, axial, and bending load stress analyses were conducted to determine critical zones in a top hollow rod connection at the well head and a bottom hollow rod connection at the well bottom. The study showed that the ratio between the equivalent stress and ultimate tensile stress was a function of torsional load. Backspin analyses were conducted to determine the release of energy accumulated in the hollow rod and traditional pumping system. The evaluation showed that the elastic torsional deformation was lower in the hollow rod system, while backspin resistance was higher. Multiple make and break operations were conducted to determine torsional load values. Results from the study were used to optimize the hollow rod technology. It was concluded that the hollow sucker rod system is now being used in various configurations at sites around the world. 8 tabs., 14 figs.

  1. Thermal behavior simulation of a nuclear fuel rod through an eletrically heated rod

    International Nuclear Information System (INIS)

    In thermalhydraulic loops the nuclear industry often uses electrically heated rods to simulate power transients, which occur in nuclear fuel rods. The development and design of a electrically heated rod, by supplying the dimensions and materials which should be used in order to yeld the same temperature and heat flux at the surfaces of the nuclear rod and the electrically heated rod are presented. To a given nuclear transient this equality was obtained by fitting the linear power through the lumped parameters technique. (Author)

  2. Study of the distribution of hydrogen in a PWR containment with CFD codes; Estudio de la distribucion de hidrogeno en una contencion PWR con codigos CFD

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, G.; Matias, R.; Fernandez, K.; Justo, D.; Bocanegra, R.; Mena, L.; Queral, C.

    2015-07-01

    During a severe accident in a PWR, the hydrogen generated may be distributed in the containment atmosphere and reach the combustion conditions that can cause the containment failure. In this research project, a preliminary study has been done about the capacities of ANSYS Fluent 15.0 and GOTHIC 8.0 to tri dimensional distribution of the hydrogen in a PWR containment during a severe accident. (Author)

  3. MOX and UOX PWR fuel performances EDF operating experience

    International Nuclear Information System (INIS)

    Based on a large program of experimentations implemented during the 90s, the industrial achievement of new FAs designs with increased performances opens up new prospects. The currently UOX fuels used on the 58 EDF PWR units are now authorized up to a maximum FA burn-up of 52 GWd/t with a large experience from 45 to 50 GWd/t. Today, the new products, along with the progress made in the field of calculation methods, still enable to increase further the fuel performances with respect to the safety margins. Thus, the conditions are met to implement in the next years new fuel managements on each NPPs series of the EDF fleet with increased enrichment (up to 4.5%) and irradiation limits (up to 62 GWd/t). The recycling of plutonium is part of EDF's reprocessing/recycling strategy. Up to now, 20 PWR 900 MW reactors are managed in MOX hybrid management. The feedback experience of 18 years of PWR operation with MOX is satisfactory, without any specific problem regarding manoeuvrability or plant availability. EDF is now looking to introduce MOX fuels with a higher plutonium content (up to 8.6%) equivalent to natural uranium enriched to 3.7%. It is the goal of the MOX Parity core management which achieve balance of MOX and UOX fuel performance with a significant increase of the MOX average discharge burn-up (BU max: 52 GWd/t for MOX and UOX). The industrial maturity of new FAs designs, with increased performances, allows the implementation in the next years of new fuel managements on each NPPs series of the EDF fleet. The scheduling of the implementation of the new fuel managements on the PWRs fleet is a great challenge for EDF, with important stakes: the nuclear KWh cost decrease with the improvement of the plant operation performance. (author)

  4. BWR and PWR chemistry operating experience and perspectives

    International Nuclear Information System (INIS)

    It is well recognized that proper control of water chemistry plays a critical role in ensuring the safe and reliable operation of Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). State-of-the-art water chemistry programs reduce general and localized corrosion of reactor coolant system, steam cycle equipment, and fuel cladding materials; ensure continued integrity of cycle components; and reduce radiation fields. Once a particular nuclear plant component has been installed or plant system constructed, proper water chemistry provides a global tool to mitigate materials degradation problems, thereby reducing the need for costly repairs or replacements. Recognizing the importance of proper chemistry control and the value in understanding the relationship between chemistry guidance and actual operating experience, EPRI continues to collect, monitor, and evaluate operating data from BWRs and PWRs around the world. More than 900 cycles of valuable BWR and PWR operating chemistry data has been collected, including online, startup and shutdown chemistry data over more than 10 years (> 20 years for BWRs). This paper will provide an overview of current trends in BWR and PWR chemistry, focusing on plants in the U.S.. Important chemistry parameters will be highlighted and discussed in the context of the EPRI Water Chemistry Guidelines requirements (i.e., those parameters considered to be of key importance as related to the major goals identified in the EPRI Guidelines: materials integrity; fuel integrity; and minimizing plant radiation fields). Perspectives will be provided in light of recent industry initiatives and changes in the EPRI BWR and PWR Water Chemistry Guidelines. (author)

  5. Film cooling of vertical fuel rods

    International Nuclear Information System (INIS)

    Spray cooling of vertical rods has been studied at low heat fluxes appropriate to the removal of fission product heating following a reactor shut down. A series of tests have been made at atmospheric pressure using electrically heated rods, both singly and in a seven rod cluster, cooled by a falling film of water. Four modes of film breakdown were observed; progressive evaporation of the film; dry-patch formation due to surface tension effects at high inlet subcooling; stripping of the film by the flooding action of counterflow steam; and the disruption of the film on a hot rod caused by sputtering. Each of these phenomena is described in relation to the application of film cooling to long vertical fuel rod clusters. (author)

  6. Attachment for sucker rod depth adjustment

    Energy Technology Data Exchange (ETDEWEB)

    Collins, N.D.

    1992-04-07

    This patent describes a surface unit of an oil well pumping system, having a walking beam, a suspended carrier bar and an interconnected sucker rod assembly for stroking a reciprocating down-hole pump. It comprises a cross bar having a centrally located passage therein for the sucker rod assembly and adapted to be transversely supported by the carrier bar; a depth adjusting bar, having a centrally located passage therein for the sucker rod assembly, positioned at a selected fixed dimension above and parallel to the cross bar and adapted to operatively support the sucker rod assembly; clamping means for fixing the sucker rod relative to the depth adjusting bar; and hydraulically extendable means supportively connecting the depth adjusting bar to the cross bar on at least each side of the carrier bar for adjusting the selected fixed dimension and maintaining the adjustment during operation.

  7. Development of laser weld monitoring system for PWR space grid

    International Nuclear Information System (INIS)

    The laser welding monitoring system was developed to inspect PWR space grid welding for KNFC. The demands for this optical monitoring system were applied to Q.C. and process control in space grid welding. The thermal radiation signal from weld pool can be get the variation of weld pool size. The weld pool size and depth are verified by analyzed wavelength signals from weld pool. Applied this monitoring system in space grid weld, improved the weld productivity. (author). 4 refs., 5 tabs., 31 figs

  8. Thermal-hydraulic analysis of PWR cores in transient condition

    International Nuclear Information System (INIS)

    A calculational methodology for thermal - hydraulic analysis of PWR cores under steady-state and transient condition was selected and made available to users. An evaluation of the COBRA-IIIP/MIT code, used for subchannel analysis, was done through comparison of the code results with experimental data on steady state and transient conditions. As a result, a comparison study allowing spatial and temporal localization of critical heat flux was obtained. A sensitivity study of the simulation model to variations in some empirically determined parameter is also presented. Two transient cases from Angra I FSAR were analysed, showing the evolution of minimum DNBR with time. (Author)

  9. Estimating probable flaw distributions in PWR steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, J.A.; Turner, A.P.L. [Dominion Engineering, Inc., McLean, VA (United States)

    1997-02-01

    This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regarding uncertainties and assumptions in the data and analyses.

  10. Sizewell B - analysis of British application of US PWR technology

    International Nuclear Information System (INIS)

    This report provides information on the staff's evaluation of major design differences and issues developed by the British in their application (Sizewell B) of US PWR technology. One design change, the addition of steam-driven charging pumps, was assessed to have a relatively high value compared to the other changes. However, the assessment is based on a number of assumptions for which inadequate data exist to make an unqualified judgment. Other changes to the US design (as typified by the SNUPPS design) were found to have relatively low or moderate safety benefits for US application

  11. Conversion ratio in epithermal PWR, in thorium and uranium cycle

    International Nuclear Information System (INIS)

    Results obtained for the conversion ratio in PWR reactors with close lattices, operating in thorium and uranium cycles, are presented. The study of those reactors is done in an unitary fuel cell of the lattices with several ratios V sub(M)/V sub(F), considering only the equilibrium cycles and adopting a non-spatial depletion calculation model, aiming to simulate mass flux of reactor heavy elements in the reactor. The neutronic analysis and the cross sections generation are done with Hammer computer code, with one critical apreciation about the application of this code in epithermal systems and with modifications introduced in the library of basic data. (E.G.)

  12. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    International Nuclear Information System (INIS)

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd2O3) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available 241AmLi (α,n) interrogation source strength of 5.7×104 s−1. Furthermore, the calibration range of the new collar has been extended to verify 235U content in variable PWR fuel designs in the presence of up to 32

  13. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    Science.gov (United States)

    Evans, Louise G.; Swinhoe, Martyn T.; Menlove, Howard O.; Schwalbach, Peter; Baere, Paul De; Browne, Michael C.

    2013-11-01

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd2O3) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available 241AmLi (α,n) interrogation source strength of 5.7×104 s-1. Furthermore, the calibration range of the new collar has been extended to verify 235U content in variable PWR fuel designs in the presence of up to 32

  14. Insertion anomaly of control rod assemblies in nuclear reactors; Anomalies d'insertion des grappes de commande des reacteurs electronucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-06

    Some malfunction have been noticed in the insertion of the control rod assemblies in some PWR reactors of Electricite de France (EdF). These anomalies (insufficient speed, incomplete insertion) are due to a deformation of the most irradiated fuel assemblies. A prevention and monitoring program has been implemented by EdF, first in 1997 on its 1300 MW plants, and extended in 1999 to its 900 MW plants. The progress of this program is controlled by the French authority of nuclear safety (ASN) and the preventive and surveillance measures (falling time, rebound, and insertion stress measurements of control rods) are described in the appendixes of this document for the 900 MWe, 1300 MWe and 1450 MWe reactors, respectively. (J.S.)

  15. Life management plants at nuclear power plants PWR; Planes de gestion de vida en centrales nucleares PWR

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, G.

    2014-10-01

    Since in 2009 the CSN published the Safety Instruction IS-22 (1) which established the regulatory framework the Spanish nuclear power plants must meet in regard to Life Management, most of Spanish nuclear plants began a process of convergence of their Life Management Plants to practice 10 CFR 54 (2), which is the current standard of Spanish nuclear industry for Ageing Management, either during the design lifetime of the plant, as well as for Long-Term Operation. This article describe how Life Management Plans are being implemented in Spanish PWR NPP. (Author)

  16. Control Rod Malfunction at the NRAD Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thomas L. Maddock

    2010-05-01

    The neutron Radiography Reactor (NRAD) is a training, research, and isotope (TRIGA) reactor located at the INL. The reactor is normally shut down by the insertion of three control rods that drop into the core when power is removed from electromagnets. During a routine shutdown, indicator lights on the console showed that one of the control rods was not inserted. It was initially thought that the indicator lights were in error because of a limit switch that was out of adjustment. Through further testing, it was determined that the control rod did not drop when the scram switch was initially pressed. The control rod anomaly led to a six month shutdown of the reactor and an in depth investigation of the reactor protective system. The investigation looked into: scram switch operation, console modifications, and control rod drive mechanisms. A number of latent issues were discovered and corrected during the investigation. The cause of the control rod malfunction was found to be a buildup of corrosion in the control rod drive mechanism. The investigation resulted in modifications to equipment, changes to both operation and maintenance procedures, and additional training. No reoccurrences of the problem have been observed since corrective actions were implemented.

  17. Degradation of fastener in reactor internal of PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. W.; Ryu, W. S.; Jang, J. S.; Kim, S. H.; Kim, W. G.; Chung, M. K.; Han, C. H

    2000-03-01

    Main component degraded in reactor internal structure of PWR is fastener such as bolts, stud, cap screw, and pins. The failure of these components may damage nuclear fuel and limits the operation of nuclear reactor. In foreign reactors operated more than 10 years, an increasing number of incidents of degraded thread fasteners have been reported. The degradation of these components impair the integrity of reactor internal structure and limit the life extension of nuclear power plant. To solve the problem of fastener failure, the incidents of failure and main mechanisms should be investigated. the purpose of this state-of-the -art report is to investigate the failure incidents and mechanisms of fastener in foreign and domestic PWR and make a guide to select a proper materials. There is no intent to describe each event in detail in this report. This report covers the failures of fastener and damage mechanisms reported by the licensees of operating nuclear power plants and the applications of plants constructed after 1964. This information is derived from pertinent licensee event report, reportable occurrence reports, operating reactor event memoranda, failure analysis reports, and other relevant documents. (author)

  18. Transient analysis of blowdown thrust force under PWR LOCA

    International Nuclear Information System (INIS)

    The analytical results of blowdown characteristics and thrust forces were compared with the experiments, which were performed as pipe whip and jet discharge tests under the PWR LOCA conditions. The blowdown thrust forces obtained by Navier-Stokes momentum equation about a single-phase, homogeneous and separated two-phase flow, assuming critical pressure at the exit if a critical flow condition was satisfied. The following results are obtained. (1) The node-junction method is useful for both the analyses of the blowdown thrust force and of the water hammer phenomena. (2) The Henry-Fauske model for subcooled critical flow is effective for the analysis of the maximum thrust force under the PWR LOCA conditions. The jet thrust parameter of the analysis and experiment is equal to 1.08. (3) The thrust parameter of saturated blowdown has the same one with the value under pressurized condition when the stagnant pressure is chosen as the saturated one. (4) The dominant terms of the blowdown thrust force in the momentum equation are the pressure and momentum terms except that the acceleration term has large contribution only just after the break. (5) The blowdown thrust force in the analysis greatly depends on the selection of the exit pressure. (author)

  19. Degradation of fastener in reactor internal of PWR

    International Nuclear Information System (INIS)

    Main component degraded in reactor internal structure of PWR is fastener such as bolts, stud, cap screw, and pins. The failure of these components may damage nuclear fuel and limits the operation of nuclear reactor. In foreign reactors operated more than 10 years, an increasing number of incidents of degraded thread fasteners have been reported. The degradation of these components impair the integrity of reactor internal structure and limit the life extension of nuclear power plant. To solve the problem of fastener failure, the incidents of failure and main mechanisms should be investigated. the purpose of this state-of-the -art report is to investigate the failure incidents and mechanisms of fastener in foreign and domestic PWR and make a guide to select a proper materials. There is no intent to describe each event in detail in this report. This report covers the failures of fastener and damage mechanisms reported by the licensees of operating nuclear power plants and the applications of plants constructed after 1964. This information is derived from pertinent licensee event report, reportable occurrence reports, operating reactor event memoranda, failure analysis reports, and other relevant documents. (author)

  20. VERA Core Simulator Methodology for PWR Cycle Depletion

    Energy Technology Data Exchange (ETDEWEB)

    Kochunas, Brendan [University of Michigan; Collins, Benjamin S [ORNL; Jabaay, Daniel [University of Michigan; Kim, Kang Seog [ORNL; Graham, Aaron [University of Michigan; Stimpson, Shane [University of Michigan; Wieselquist, William A [ORNL; Clarno, Kevin T [ORNL; Palmtag, Scott [Core Physics, Inc.; Downar, Thomas [University of Michigan; Gehin, Jess C [ORNL

    2015-01-01

    This paper describes the methodology developed and implemented in MPACT for performing high-fidelity pressurized water reactor (PWR) multi-cycle core physics calculations. MPACT is being developed primarily for application within the Consortium for the Advanced Simulation of Light Water Reactors (CASL) as one of the main components of the VERA Core Simulator, the others being COBRA-TF and ORIGEN. The methods summarized in this paper include a methodology for performing resonance self-shielding and computing macroscopic cross sections, 2-D/1-D transport, nuclide depletion, thermal-hydraulic feedback, and other supporting methods. These methods represent a minimal set needed to simulate high-fidelity models of a realistic nuclear reactor. Results demonstrating this are presented from the simulation of a realistic model of the first cycle of Watts Bar Unit 1. The simulation, which approximates the cycle operation, is observed to be within 50 ppm boron (ppmB) reactivity for all simulated points in the cycle and approximately 15 ppmB for a consistent statepoint. The verification and validation of the PWR cycle depletion capability in MPACT is the focus of two companion papers.

  1. The difference between 5 x 5 doubly nonnegative and completely positive matrices

    NARCIS (Netherlands)

    Burer, Samuel; Anstreicher, Kurt M.; Duer, Mirjam

    2009-01-01

    The convex cone of n x n completely positive (CP) matrices and its dual cone of copositive matrices arise in several areas of applied mathematics, including optimization. Every CP matrix is doubly nonnegative (DNN), i.e., positive semidefinite and component-wise nonnegative, and it is known that, fo

  2. A statistical approach to pellet stack movement during fuel rod ballooning

    International Nuclear Information System (INIS)

    The principal factor which determines the burst strain of a ballooning PWR fuel rod during a postulated loss-of-coolant accident is the magnitude of the circumferential temperature variation around the Zircaloy cladding. It is currently accepted that heat flux asymmetries associated with pellet eccentricity within the ballooning clad are the main source of such temperature variations. This paper presents an analysis of fuel pellet stack configurational changes which may accompany clad ballooning and consequently influence the development of clad azimuthal temperature gradients. The basis of the model rests on the premise that a stack of fuel pellets whose end-faces are not orthogonal to the cylinder axis but which are constrained within the cladding will develop inter-pellet gaps. During ballooning, closure of the gaps results in a lateral movement of the stack and provides a mechanism by which the central pellets are able to maintain unit eccentricity until the clad has ballooned to a diametral strain at which the inter-pellet gaps are closed. To describe the effect on clad deformation of the pellet-clad configuration changes, a statistical approach to stack movement has been coupled to the TAPSWEL code. It is shown that the distribution of burst strains in the MT-3 rods from the in-pile LOCA simulation test can be predicted using geometric parameters measured on archive pellets. The observed variation of the burst strains exhibited by the MT-3 rods is shown to be reasonably consistent with the model prediction based on the pellet stack displacement concept. (author)

  3. Control rod housing alignment and repair method

    International Nuclear Information System (INIS)

    This patent describes a method for underwater welding of a control rod drive housing inserted through a stub tube to maintain requisite alignment and elevation of the top of the control rod drive housing to an overlying and corresponding aperture in a core plate as measured by an alignment device which determines the relative elevation and angularity with respect to the aperture. It comprises providing a welding cylinder dependent from the alignment device such that the elevation of the top of the welding cylinder is in a fixed relationship to the alignment device and is gas-proof; pressurizing the welding cylinder with inert welding gas sufficient to maintain the interior of the welding cylinder dry; lowering the welding cylinder through the aperture in the core plate by depending the cylinder with respect to the alignment device, the lowering including lowering through and adjusting the elevation relationship of the welding cylinder to the alignment device such that when the alignment device is in position to measure the elevation and angularity of the new control rod drive housing, the lower distal end of the welding cylinder extends below the upper periphery of the stub where welding is to occur; inserting a new control rod drive housing through the stub tube and positioning the control rod drive housing to a predetermined relationship to the anticipated final position of the control rod drive housing; providing welding implements transversely rotatably mounted interior of the welding cylinder relative to the alignment device such that the welding implements may be accurately positioned for dispensing weldment around the periphery of the top of the stub tube and at the side of the control rod drive housing; measuring the elevation and angularity of the control rod drive housing; and dispensing weldment along the top of the stub tube and at the side of the control rod drive housing

  4. PWR reactor vessel in-service-inspection according to RSEM

    Energy Technology Data Exchange (ETDEWEB)

    Algarotti, Marc; Dubois, Philippe; Hernandez, Luc; Landez, Jean Paul [Intercontrole, 13, rue du Capricorne - SILIC 433, 94583 Rungis - Cedex (France)

    2006-07-01

    Nuclear services experience Framatome ANP (an AREVA and Siemens company) has designed and constructed 86 Pressurized Water Reactors (PWR) around the world including the three units lately commissioned at Ling Ao in the People's Republic of China and ANGRA 2 in Brazil; the company provided general and specialized outage services supporting numerous outages. Along with the American and German subsidiaries, Framatome ANP Inc. and Framatome ANP GmbH, Framatome ANP is among the world leading nuclear services providers, having experience of over 500 PWR outages on 4 continents, with current involvement in more than 50 PWR outages per year. Framatome ANP's experience in the examinations of reactor components began in the 1970's. Since then, each unit (American, French and German companies) developed automated NDT inspection systems and carried out pre-service and ISI (In-Service Inspections) using a large range of NDT techniques to comply with each utility expectations. These techniques have been validated by the utilities and the safety authorities of the countries where they were implemented. Notably Framatome ANP is fully qualified to provide full scope ISI services to satisfy ASME Section XI requirements, through automated NDE tasks including nozzle inspections, reactor vessel head inspections, steam generator inspections, pressurizer inspections and RPV (Reactor Pressure Vessel) inspections. Intercontrole (Framatome ANP subsidiary dedicated in supporting ISI) is one of the leading NDT companies in the world. Its main activity is devoted to the inspection of the reactor primary circuit in French and foreign PWR Nuclear Power Plants: the reactor vessel, the steam generators, the pressurizer, the reactor internals and reactor coolant system piping. NDT methods mastered by Intercontrole range from ultrasonic testing to eddy current and gamma ray examinations, as well as dye penetrant testing, acoustic monitoring and leak testing. To comply with the high

  5. The Mechanical Effect of Rod Contouring on Rod-Screw System Strength in Spine Fixation

    Science.gov (United States)

    Karakasli, Ahmet; Karaarslan, Ahmet A.; Ozcanhan, Mehmet Hilal; Ertem, Fatih; Erduran, Mehmet

    2016-01-01

    Objective Rod-screw fixation systems are widely used for spinal instrumentation. Although many biomechanical studies on rod-screw systems have been carried out, but the effects of rod contouring on the construct strength is still not very well defined in the literature. This work examines the mechanical impact of straight, 20° kyphotic, and 20° lordotic rod contouring on rod-screw fixation systems, by forming a corpectomy model. Methods The corpectomy groups were prepared using ultra-high molecular weight polyethylene samples. Non-destructive loads were applied during flexion/extension and torsion testing. Spine-loading conditions were simulated by load subjections of 100 N with a velocity of 5 mm min-1, to ensure 8.4-Nm moment. For torsional loading, the corpectomy models were subjected to rotational displacement of 0.5° s-1 to an end point of 5.0°, in a torsion testing machine. Results Under both flexion and extension loading conditions the stiffness values for the lordotic rod-screw system were the highest. Under torsional loading conditions, the lordotic rod-screw system exhibited the highest torsional rigidity. Conclusion We concluded that the lordotic rod-screw system was the most rigid among the systems tested and the risk of rod and screw failure is much higher in the kyphotic rod-screw systems. Further biomechanical studies should be attempted to compare between different rod kyphotic angles to minimize the kyphotic rod failure rate and to offer a more stable and rigid rod-screw construct models for surgical application in the kyphotic vertebrae. PMID:27651858

  6. Criticality evaluation of control component credited mixed zone spent and fresh fuel storage in high density PWR racks

    International Nuclear Information System (INIS)

    To expand the set of assemblies that qualify for storage in high-density racks, a mixed zone analysis may be performed where repeating pattern configurations within the rack are prescribed. In a mixed zone analysis, assemblies that are more reactive (low burnup) are stored adjacent to less reactive (highly burned) assemblies, thereby meeting the same overall criticality requirements as with the uniform burnup/enrichment analysis. The Arkansas Nuclear One (ANO) Plant has faced several challenges with respect to their spent fuel storage that reach beyond simply the number of spent fuel assemblies and available storage cells. These issues have resulted in the need for ANO to use an advanced storage strategy. In addition to using the mixed zone burnup approach in the high-density racks, ANO also proposed a new solution involving credit for control components in the spent fuel pool. ANO submitted an amendment of their spent fuel pool technical specifications to the Nuclear Regulatory Commission (NRC) based on the evaluation performed by Holtec International that was subsequently approved. This paper presents a description of the overall methodology used for supporting the submittal, and provides further discussion regarding the reactivity effect of control rods in a PWR spent fuel pool. (authors)

  7. Analysis of experimental measurements of PWR fresh and spent fuel assemblies using Self-Interrogation Neutron Resonance Densitometry

    Science.gov (United States)

    LaFleur, Adrienne M.; Menlove, Howard O.

    2015-05-01

    Self-Interrogation Neutron Resonance Densitometry (SINRD) is a new NDA technique that was developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for LWR fuel assemblies. The SINRD detector consists of four fission chambers (FCs) wrapped with different absorber filters to isolate different parts of the neutron energy spectrum and one ion chamber (IC) to measure the gross gamma rate. As a result, two different techniques can be utilized using the same SINRD detector unit and hardware. These techniques are the Passive Neutron Multiplication Counter (PNMC) method and the SINRD method. The focus of the work described in this paper is the analysis of experimental measurements of fresh and spent PWR fuel assemblies that were performed at LANL and the Korea Atomic Energy Research Institute (KAERI), respectively, using the SINRD detector. The purpose of these experiments was to assess the following capabilities of the SINRD detector: 1) reproducibility of measurements to quantify systematic errors, 2) sensitivity to water gap between detector and fuel assembly, 3) sensitivity and penetrability to the removal of fuel rods from the assembly, and 4) use of PNMC/SINRD ratios to quantify neutron multiplication and/or fissile content. The results from these simulations and measurements provide valuable experimental data that directly supports safeguards research and development (R&D) efforts on the viability of passive neutron NDA techniques and detector designs for partial defect verification of spent fuel assemblies.

  8. Development of modified MDA (M-MDA), PWR fuel cladding tube for high duty operation in future

    International Nuclear Information System (INIS)

    A new cladding material of M-MDA has been developed in order to prepare for a strong growing demand for advanced fuel which can maintain its integrity even under high duties due to more efficient operation such as higher burnup, higher LHR, and longer operation cycle which will contribute the suppression of environmental burdens like CO2 emission. The main aim of M-MDA is to have excellent corrosion resistance while the other properties are inherited from MDA, which has been adopted to the step 2 fuel, instead of Zry-4, of Japanese PWR plant whose upper limit of assembly discharged burnup is 55 MWd/kgU. And we could confirm that the main aim of M-MDA was achieved by means of out-of-pile tests. In order to confirm improvement of corrosion resistance of M-MDA in the actual operation, irradiation test of M-MDA in the commercial reactor of Vandellos II is ongoing. The latest results of on-site examination after every end of cycle showed that oxide thickness of M-MDA-SR was much smaller than that of MDA at rod discharged burnup of approximately 60 MWd/kgU. The final irradiation cycle was completed on April 2007 and then we will obtain corrosion data of M-MDA over 70 MWd/kgU. M-MDA is a candidate alloy for advanced fuel under higher duty usage. (authors)

  9. Apparatus for handling control rod drives

    International Nuclear Information System (INIS)

    An apparatus for handling control rod drives (CRD's) attached by detachable fixing means to housings mounted in a reactor pressure vessel and each coupled to one of control rods inserted in the reactor pressure vessel is described. The apparatus for handling the CRD's comprise cylindrical housing means, uncoupling means mounted in the housing means for uncoupling each of the control rods from the respective CRD, means mounted on the housing means for effecting attaching and detaching of the fixing means, means for supporting the housing means, and means for moving the support means longitudinally of the CRD

  10. Fuel rod welding (LWBR development program)

    International Nuclear Information System (INIS)

    Procedures were developed to weld both ends of approximately 25,000 fuel rods for the Light Water Breeder Reactor (LWBR) core. The rods were welded using the gas tungsten arc (GTA) method in high-purity helium at 1 atmosphere. Welding parameters, including weld current, arc gap, and speed of rotation, were established to control the size of the weld. Electrode and chill positioning with respect to the endclosure/tube joint controlled the location of the weld. Weld quality of the fuel rods was ensured by 100-percent nondestructive testing by ultrasonic and radiographic inspection and the destructive evaluation of process control samples in each weld lot

  11. Tipping time of a quantum rod

    Energy Technology Data Exchange (ETDEWEB)

    Parrikar, Onkar [Birla Institute of Technology and Science-Pilani, Goa campus, Zuarinagar, Goa 4032726 (India)], E-mail: onkarsp@gmail.com

    2010-03-15

    The behaviour of a quantum rod, pivoted at its lower end on an impenetrable floor and restricted to moving in the vertical plane under the gravitational potential, is studied analytically under the approximation that the rod is initially localized to a 'small-enough' neighbourhood around the point of classical unstable equilibrium. It is shown that the rod evolves out of this neighbourhood. The time required for this to happen, i.e. the tipping time, is calculated using the semi-classical path integral. It is shown that equilibrium is recovered in the classical limit, and that our calculations are consistent with the uncertainty principle.

  12. Computer simulation of rod-sphere mixtures

    CERN Document Server

    Antypov, D

    2003-01-01

    Results are presented from a series of simulations undertaken to investigate the effect of adding small spherical particles to a fluid of rods which would otherwise represent a liquid crystalline (LC) substance. Firstly, a bulk mixture of Hard Gaussian Overlap particles with an aspect ratio of 3:1 and hard spheres with diameters equal to the breadth of the rods is simulated at various sphere concentrations. Both mixing-demixing and isotropic-nematic transition are studied using Monte Carlo techniques. Secondly, the effect of adding Lennard-Jones particles to an LC system modelled using the well established Gay-Berne potential is investigated. These rod-sphere mixtures are simulated using both the original set of interaction parameters and a modified version of the rod-sphere potential proposed in this work. The subject of interest is the internal structure of the binary mixture and its dependence on density, temperature, concentration and various parameters characterising the intermolecular interactions. Both...

  13. Probabilistic assessment for nuclear fuel rods behavior

    International Nuclear Information System (INIS)

    BACO is a code for the simulation of the thermo-mechanical and fission gas behavior of a cylindrical fuel rod under operation conditions. Input parameters and, therefore, output ones may include statistical dispersion. In this paper, experimental CANDU fuel rods irradiated at the NRX reactor together with experimental MOX fuel rods and the IAEA'CRP FUMEX cases are used in order to determine the sensitivity of BACO code predictions. We analyze the CARA and CAREM fuel rods relation between predicted performance and statistical dispersion in order of enhanced their original designs. These exercises show the sensitivity of the predictions concerning such parameters and the extended features of the BACO code for a probability study. (author)

  14. Control rod for a nuclear reactor

    International Nuclear Information System (INIS)

    A control rod assembly for a nuclear reactor is disclosed having a remotely disengageable coupling between the control rod and the control rod drive shaft. The coupling is actuated by first lowering then raising the drive shaft. The described motion causes axial repositioning of a pin in a grooved rotatable cylinder, each being attached to different parts of the drive shaft which are axially movable relative to each other. In one embodiment, the relative axial motion of the parts of the drive shaft is used either to couple or to uncouple the connection by forcing resilient members attached to the drive shaft into or out of shouldered engagement, respectively, with an indentation formed in the control rod

  15. Rod bundle burnout data and correlation comparisons

    International Nuclear Information System (INIS)

    Rod bundle burnout data from 30 steady-state and 3 transient tests were obtained from experiments performed in the Thermal Hydraulic Test Facility at the Oak Ridge National Laboratory. The tests covered a parameter range relevant to intact core reactor accidents ranging from large break to small break loss-ofcoolant conditions. Instrumentation within the 64-rod test section indicated that burnout occurred over an axial range within the bundle. The distance from the point where the first dry rod was detected to the point where all rods were dry was up to 60 cm in some of the tests. The burnout data should prove useful in developing new correlations for use in reactor thermalhydraulic codes. Evaluation of several existing critical heat flux correlations using the data show that three correlations, the Barnett, Bowring, and Katto correlations, perform similarly and correlate the data better than the Biasi correlation

  16. High Power Performance of Rod Fiber Amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Michieletto, Mattia; Kristensen, Torben;

    2015-01-01

    An improved version of the DMF rod fiber is tested in a high power setup delivering 360W of stable signal power. Multiple testing degrades the fiber and transverse modal instability threshold from >360W to ~290W.......An improved version of the DMF rod fiber is tested in a high power setup delivering 360W of stable signal power. Multiple testing degrades the fiber and transverse modal instability threshold from >360W to ~290W....

  17. Self-diagnosing braided composite rod

    OpenAIRE

    Fangueiro, Raúl; Zdraveva, E.; Pereira, Cristiana Gonilho; Ferreira, A.; Lanceros-Méndez, S.

    2010-01-01

    This paper presents the development of a braided reinforced composite rod (BCR) able to both reinforce and monitor the stress state of concrete structures. Carbon fibers have been used as sensing and reinforcing materials along with glass fiber. Various composites rods have been produced using an author patented technique based on a modified conventional braiding machine. The materials investigated were prepared with different carbon fiber content as follows: BCR2 (77% glass/23...

  18. Thermal and stress analysis of control rod

    International Nuclear Information System (INIS)

    In order to survey the mechanical integrity of a control rod in the high temperature core of the VHTR, thermal analysis and thermal stress analysis were carried out by means of calculus of finite differentials and finite element methods for the plant under the normal operating condition as well as under several abnormal conditions. The results of the analyses have been applied to refine the mechanical design of the control rod

  19. Benchmark exercise on SBLOCA experiment of PWR PACTEL facility

    International Nuclear Information System (INIS)

    Highlights: • PWR PACTEL, the facility with EPR type steam generators, is introduced. • The focus of the benchmark was on the analyses of the SBLOCA test with PWR PACTEL. • System codes with several modeling approaches were utilized to analyze the test. • Proper consideration of heat and pressure losses improves simulation remarkably. - Abstract: The PWR PACTEL benchmark exercise was organized in Lappeenranta, Finland by Lappeenranta University of Technology. The benchmark consisted of two phases, i.e. a blind and an open calculation task. Seven organizations from the Czech Republic, Germany, Italy, Sweden and Finland participated in the benchmark exercise, and four system codes were utilized in the benchmark simulation tasks. Two workshops were organized for launching and concluding the benchmark, the latter of which involved presentations of the calculation results as well as discussions on the related modeling issues. The chosen experiment for the benchmark was a small break loss of coolant accident experiment which was performed to study the natural circulation behavior over a continuous range of primary side coolant inventories. For the blind calculation task, the detailed facility descriptions, the measured pressure and heat losses as well as the results of a short characterizing transient were provided. For the open calculation task part, the experiment results were released. According to the simulation results, the benchmark experiment was quite challenging to model. Several improvements were found and utilized especially for the open calculation case. The issues concerned model construction, heat and pressure losses impact, interpreting measured and calculated data, non-condensable gas effect, testing several condensation and CCFL correlations, sensitivity studies, as well as break modeling. There is a clear need for user guidelines or for a collection of best practices in modeling for every code. The benchmark offered a unique opportunity to test

  20. Close packing of rods on spherical surfaces

    Science.gov (United States)

    Smallenburg, Frank; Löwen, Hartmut

    2016-04-01

    We study the optimal packing of short, hard spherocylinders confined to lie tangential to a spherical surface, using simulated annealing and molecular dynamics simulations. For clusters of up to twelve particles, we map out the changes in the geometry of the closest-packed configuration as a function of the aspect ratio L/D, where L is the cylinder length and D the diameter of the rods. We find a rich variety of cluster structures. For larger clusters, we find that the best-packed configurations up to around 100 particles are highly dependent on the exact number of particles and aspect ratio. For even larger clusters, we find largely disordered clusters for very short rods (L/D = 0.25), while slightly longer rods (L/D = 0.5 or 1) prefer a global baseball-like geometry of smectic-like domains, similar to the behavior of large-scale nematic shells. Intriguingly, we observe that when compared to their optimal flat-plane packing, short rods adapt to the spherical geometry more efficiently than both spheres and longer rods. Our results provide predictions for experimentally realizable systems of colloidal rods trapped at the interface of emulsion droplets.

  1. Close packing of rods on spherical surfaces.

    Science.gov (United States)

    Smallenburg, Frank; Löwen, Hartmut

    2016-04-28

    We study the optimal packing of short, hard spherocylinders confined to lie tangential to a spherical surface, using simulated annealing and molecular dynamics simulations. For clusters of up to twelve particles, we map out the changes in the geometry of the closest-packed configuration as a function of the aspect ratio L/D, where L is the cylinder length and D the diameter of the rods. We find a rich variety of cluster structures. For larger clusters, we find that the best-packed configurations up to around 100 particles are highly dependent on the exact number of particles and aspect ratio. For even larger clusters, we find largely disordered clusters for very short rods (L/D = 0.25), while slightly longer rods (L/D = 0.5 or 1) prefer a global baseball-like geometry of smectic-like domains, similar to the behavior of large-scale nematic shells. Intriguingly, we observe that when compared to their optimal flat-plane packing, short rods adapt to the spherical geometry more efficiently than both spheres and longer rods. Our results provide predictions for experimentally realizable systems of colloidal rods trapped at the interface of emulsion droplets. PMID:27131565

  2. Annular burnout data from rod bundle experiments

    International Nuclear Information System (INIS)

    Burnout data for annular flow in a rod bundle are presented for both transient and steady-state conditions. Tests were performed at the Oak Ridge National Laboratory in the Thermal Hydraulic Test Facility (THTF), a pressurized-water loop containing an electrically heated 64-rod bundle. The bundle configuration is typical of later generation pressurized-water reactors with 17 x 17 fuel arrays. Both axial and radial power profiles are flat. All experiments were carried out in upflow with subcooled inlet conditions, insuring accurate flow measurement. Conditions within the bundle were typical of those which could be encountered during a nuclear reactor loss-of-coolant accident. Level average fluid conditions within the test section were calculated using steady-state mass and energy conservation considerations for the steady-state tests and a transient, homogeneous, equilibrium computer code for the transient tests. Unlike tube dryout, burnout within a rod bundle does not necessarily occur at one distinct axial level. The location of individual rod dryout was determined by scanning rods axially and locating the position where rod superheat increased from approx. =0 to 30 K or greater. Thermocouple instrumentation within the bundle allows the location of dryout to be determined to within approximately +.5 cm for many of the tests

  3. 49 CFR 230.93 - Pistons and piston rods.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Pistons and piston rods. 230.93 Section 230.93... Tenders Driving Gear § 230.93 Pistons and piston rods. (a) Maintenance and testing. Pistons and piston rods shall be maintained in safe and suitable condition for service. Piston rods shall be inspected...

  4. International symposium on fuel rod simulators: development and application

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, R.W. (comp.)

    1981-05-01

    Separate abstracts are included for each of the papers presented concerning fuel rod simulator operation and performance; simulator design and evaluation; clad heated fuel rod simulators and fuel rod simulators for cladding investigations; fuel rod simulator components and inspection; and simulator analytical modeling. Ten papers have previously been input to the Energy Data Base.

  5. Mechanical performance of fiberglass sucker-rod strings

    Energy Technology Data Exchange (ETDEWEB)

    Tripp, H.A.

    1988-08-01

    The natural frequencies of fiberglass sucker-rod strings can be calculated by treating the rod strings as modified spring/mass vibration systems. The ratio of the pumping-unit operating speed to the rod-string natural frequency can then be used as a basis for understanding fiberglass-rod performance and for predicting downhole pump stroke lengths.

  6. Study of power peak migration due to insertion of control bars in a PWR reactor; Estudo da migracao do pico de potencia em funcao da insercao das barras de controle em um reator refrigerado a agua

    Energy Technology Data Exchange (ETDEWEB)

    Affonso, Renato Raoni Werneck; Costa, Danilo Leite; Borges, Diogo da Silva; Lava, Deise Diana; Lima, Zelmo Rodrigues de; Moreira, Maria de Lourdes, E-mail: raoniwa@yahoo.com.br, E-mail: danilolc26@gmail.com, E-mail: diogosb@outlook.com, E-mail: deisedy@gmail.com, E-mail: zrlima@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    This paper aims to present a study on the power distribution behavior in a PWR reactor, considering the intensity and the migration of power peaks as is the insertion of control rods in the core banks. For this, the study of the diffusion of neutrons in the reactor was adopted by computer simulation that uses the finite difference method for numerically solving the neutron diffusion equation to two energy groups in steady state and in symmetry of a fourth quarter core. We decided to add the EPRI-9R 3D benchmark thermal-hydraulic parameters of a typical power PWR. With a new configuration for the reactor, the positions of the control rods banks were also modified. Due to the new positioning of these banks in the reactor, there was intense power gradients, favoring the occurrence of critical situations and logically unconventional for operation of a nuclear reactor. However, these facts have led interesting times for the study on the power distribution behavior in the reactor, showing axial migration of power peaks and mainly the effect of the geometry of the core on the latter. Based on the distribution of power was evident the increase of the power in elements located in the central region of the reactor core and, concomitantly, the reduction in elements of its periphery. Of course, the behavior exhibited by the simulated reactor is not in agreement with that expected in an actual reactor, where the insertion of control rods banks should lead to reduced power throughout the core as evenly as possible, avoiding sharp power peaks, standardizing the burning fuel, controlling reactivity deviations and acting in reactor shutdown.

  7. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. [Kansai Electric Power Company, Osaka (Japan); Shimizu, S.; Ogata, Y. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan)

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  8. Knowledge-based diagnosis of PWR secondary water chemistry

    International Nuclear Information System (INIS)

    A prototype knowledge-based diagnostic system has been developed for more effective processing of the in-line chemistry sensor data from the PWR secondary water-steam circuit with the SUN 3/80 workstation and the Nexpert Object shell program. The system consists of the data interface, the data interpreter, the CHEMISTRY-expert, the ACTION-expert, and the user interface. The knowledge base defines physical and conceptual models of the target domain in a class/object hierarchy, giving rise to a reduced number of rules with pattern matching. The rule base is broken down into separate rule groups for task control, classification, prioritization, and diagnosis to minimize the inference time. The system is scheduled for the Verification and Validation test to collect operational information feedback in one of the Korea nuclear power plants in the near future. (author)

  9. Modeling local chemistry in PWR steam generator crevices

    Energy Technology Data Exchange (ETDEWEB)

    Millett, P.J. [EPRI, Palo Alto, CA (United States)

    1997-02-01

    Over the past two decades steam generator corrosion damage has been a major cost impact to PWR owners. Crevices and occluded regions create thermal-hydraulic conditions where aggressive impurities can become highly concentrated, promoting localized corrosion of the tubing and support structure materials. The type of corrosion varies depending on the local conditions, with stress corrosion cracking being the phenomenon of most current concern. A major goal of the EPRI research in this area has been to develop models of the concentration process and resulting crevice chemistry conditions. These models may then be used to predict crevice chemistry based on knowledge of bulk chemistry, thereby allowing the operator to control corrosion damage. Rigorous deterministic models have not yet been developed; however, empirical approaches have shown promise and are reflected in current versions of the industry-developed secondary water chemistry guidelines.

  10. PWR steam generator chemical cleaning, Phase I. Final report

    International Nuclear Information System (INIS)

    United Nuclear Industries (UNI) entered into a subcontract with Consolidated Edison Company of New York (Con Ed) on August 8, 1977, for the purpose of developing methods to chemically clean the secondary side tube to tube support crevices of the steam generators of Indian Point Nos. 1 and 2 PWR plants. This document represents the first reporting on activities performed for Phase I of this effort. Specifically, this report contains the results of a literature search performed by UNI for the purpose of determining state-of-the-art chemical solvents and methods for decontaminating nuclear reactor steam generators. The results of the search sought to accomplish two objectives: (1) identify solvents beyond those proposed at present by UNI and Con Ed for the test program, and (2) confirm the appropriateness of solvents and methods of decontamination currently in use by UNI

  11. Failure probability of PWR reactor coolant loop piping

    International Nuclear Information System (INIS)

    This paper describes the results of assessments performed on the PWR coolant loop piping of Westinghouse and Combustion Engineering plants. For direct double-ended guillotine break (DEGB), consideration was given to crack existence probability, initial crack size distribution, hydrostatic proof test, preservice inspection, leak detection probability, crack growth characteristics, and failure criteria based on the net section stress failure and tearing modulus stability concept. For indirect DEGB, fragilities of major component supports were estimated. The system level fragility was then calculated based on the Boolean expression involving these fragilities. Indirect DEGB due to seismic effects was calculated by convolving the system level fragility and the seismic hazard curve. The results indicate that the probability of occurrence of both direct and indirect DEGB is extremely small, thus, postulation of DEGB in design should be eliminated and replaced by more realistic criteria

  12. Design of an FPGA-based PWR ATWS mitigation system

    International Nuclear Information System (INIS)

    The present research is to explore the feasibility and conceptual design by using triple-redundant FPGA-based system for Anticipated-Transient-Without-Scram (ATWS) Mitigation System and Actuation Circuit (AMSAC) of a pressurized water reactor (PWR) type nuclear power plant (NPP). The Taipower's (Taiwan Power Company) Maanshan NPP was chosen for demonstration. An engineering simulated interface between AMSAC system and reactor/plant systems of Maanshan NPP was developed to provide an environment to validate the triple-redundant FPGA-based system. The software-free FPGA-based nuclear instrumentation and control (I and C) systems can easily be used for the modernization of the Taipower's nuclear power plant analog systems, thus may reduce the safety risk of undetectable software faults and common cause failures, and also minimize the regulatory licensing efforts and cost. (author)

  13. Development of high temperature adsorbent in PWR primary system

    International Nuclear Information System (INIS)

    Radiation exposure reduction in PWR is one of the most important problems to be solved. We have developed a high temperature Co adsorbent (HTA), which could be directly applied under primary reactor coolant conditions. This adsorbent was Fe-Ti-O system ceramics, and was fabricated to a suitable form for using in a packed column. Through those experiments of adsorption tests, compatibility tests, leaching tests and hot loop tests, it was found that HTA had superior adsorption capability to not only Co and Ni-ion but also many other transition metal ions. And it was also found that HTA was compatible with high temperature water, as well as advantageous for its waste solidification. Based on the experimental results, dose reduction effect was evaluated by a computer code. From this evaluation, it was found that more than 50 % dose reduction could be expected, when an advanced reactor coolant clean-up (RCC) system with HTA would be realized. (author)

  14. Sizewell 'B' PWR pre-construction safety report

    International Nuclear Information System (INIS)

    The Pre-Construction Safety Report (PCSR) for a PWR power station to be constructed as Sizewell 'B' is presented in 13 volumes containing 16 chapters. The PCSR has been submitted to the Nuclear Installations Inspectorate in support of the Central Electricity Generating Board's application for consent to the extension at Sizewell. It describes the design and provides the safety case for the proposed station, which comprises a 4-loop pressurized water reactor with associated generating plant and supporting auxiliary equipment. A general description of the station and its site is given. The strategy for ensuring nuclear safety is set out and the general design aspects of systems and plant outlined. The plant and systems, including their safety design bases and the fault analyses carried out for the design are described. Finally the way in which the plant will be decommissioned at the end of its useful life is outlined. (U.K.)

  15. Specification of water quality for the FRAMATOME PWR secondary circuit

    International Nuclear Information System (INIS)

    This paper describes the purpose, theory and scope of secondary system chemical specifications for FRAMATOME PWR nuclear power plants. All volatile treatment was chosen: controlling the feedwater pH by means of a volatile amine (ammonia, morpholine), and excluding oxygen by the addition of hydrazine. The pollutants are monitored at the steam generator drains by completely automatic measurements using simple and reliable techniques: pH measurement and a diagram of the cation conductivity versus sodium. An explanation is given of the monitoring techniques and to the effect of the various kinds of possible pollutant. A new concept is described, the annual quota expressed in day.microsiements.cm-1 which enables the amount of absorbed pollutants in the steam generator to be evaluated. The methods used for maintaining the desired chemical quality are dealt with

  16. Non linear identification applied to PWR steam generators

    International Nuclear Information System (INIS)

    For the precise industrial purpose of PWR nuclear power plant steam generator water level control, a natural method is developed where classical techniques seem not to be efficient enough. From this essentially non-linear practical problem, an input-output identification of dynamic systems is proposed. Through Homodynamic Systems, characterized by a regularity property which can be found in most industrial processes with balance set, state form realizations are built, which resolve the exact joining of local dynamic behaviors, in both discrete and continuous time cases, avoiding any load parameter. Specifically non-linear modelling analytical means, which have no influence on local joined behaviors, are also pointed out. Non-linear autoregressive realizations allow us to perform indirect adaptive control under constraint of an admissible given dynamic family

  17. PWR steam generator chemical cleaning, Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rothstein, S.

    1978-07-01

    United Nuclear Industries (UNI) entered into a subcontract with Consolidated Edison Company of New York (Con Ed) on August 8, 1977, for the purpose of developing methods to chemically clean the secondary side tube to tube support crevices of the steam generators of Indian Point Nos. 1 and 2 PWR plants. This document represents the first reporting on activities performed for Phase I of this effort. Specifically, this report contains the results of a literature search performed by UNI for the purpose of determining state-of-the-art chemical solvents and methods for decontaminating nuclear reactor steam generators. The results of the search sought to accomplish two objectives: (1) identify solvents beyond those proposed at present by UNI and Con Ed for the test program, and (2) confirm the appropriateness of solvents and methods of decontamination currently in use by UNI.

  18. Design of large steam turbines for PWR power stations

    International Nuclear Information System (INIS)

    The authors review the thermodynamic cycle requirements for use with pressurized-water reactors, outline the way thermal efficiency is maximized, and discuss the special nature of the wet-steam cycle associated with turbines for this type of reactor. Machine and cycle parameters are optimized to achieve high thermal efficiency, particular attention being given to arrangements for water separation and steam reheating and to provisions for feedwater heating. Principles and details of mechanical design are considered for a range both of full-speed turbines running at 3000 rev/min on 50 Hz systems and of half-speed turbines running at 1800 rev/min on 60 Hz systems. The importance of service experience with nuclear wet-stream turbines, and its relevance to the design of modern turbines for PWR applications, is discussed. (author)

  19. PWR pressurizer discharge piping system on-site testing

    International Nuclear Information System (INIS)

    Framatome PWR systems includes the installation of safety valves and relief valves wich permit the discharge of steam from the pressurizer to the pressurizer relief tank through discharge piping system. Water seal expulsion pluration then depends on valve stem lift dynamics which can vary according to water-stem interaction. In order to approaches the different phenomenons, it was decided to perform a test on a 900 MWe French plant, test wich objectives are: characterize the mechanical response of the discharge piping to validate a mechanical model; open one, two or several valves among the following: one safety valve and three pilot operated relief valves, at a time or sequentially and measure the discharge piping transient response, the support loads, the

  20. CFD application to PWR subchannel void distribution benchmark

    International Nuclear Information System (INIS)

    A CFD study is performed to simulate the steady-state void distribution benchmark based on the NUPEC PWR Subchannel and Bundle Tests (PSBT). The CFD calculation predicted the void distributions in central typical and thimble subchannels, side subchannel and corner subchannel. The CFD prediction shows a higher void fraction near the heated wall and a migration of void in the subchannel gap region. A measured image of void distribution indicated a locally higher void fraction near the heated wall. The CFD predictions of void fraction and fluid density agree well with the measured ones for the low void test condition. However, the CFD calculations tend to underpredict the void fraction and overpredict the fluid density as the void fraction increases. (author)

  1. A system for trip analysis of PWR reactors using neural networks

    International Nuclear Information System (INIS)

    This work presents the basic concepts and the general description of a computational system developed for trip analysis in PWR nuclear power plants which is based on neural networks and artificial intelligence concepts. (author)

  2. N4 PWR makes full use of distributed processing and local networks

    Energy Technology Data Exchange (ETDEWEB)

    Aschenbrenner, J.F.; Tetreau, F.; Colling, J.M.

    1988-01-01

    The new instrumentation and control systems for the French N4 PWR power plant make extensive use of programmable controllers based on advanced microprocessor technology and distributed processing. Local networking techniques are widely used which simplify architecture and equipment design.

  3. Shielding and Criticality Safety Analysis of KSC-1 Cask for the High Burnup PWR Spent Fuels

    International Nuclear Information System (INIS)

    KSC-1 (KAERI Shipping Cask-1) was designed and manufactured with a pure domestic technology in 1985 in order to transport a PWR spent fuel assembly from nuclear power plant to PIEF (Post-Irradiation Examination Facility) of KAERI. Since the first transportation of the fuel assembly from Kori-1 NPP was carried out by the cask in 1987, 19 shipments for the PWR spent fuels have been done successfully by now. Maximum discharge burnup of PWR in Korea has been extended from the late 1990s in order to reduce the cost of power generation. From this cause, allowable design values of the initial enrichment and the cooling time for the cask have been changed three times: year 2003, 2007 and 2010. Radiation shielding and criticality of KSC-1 were analyzed for all the PWR fuel type irradiated in Korea NPP to renew the design approval

  4. Shielding and Criticality Safety Analysis of KSC-1 Cask for the High Burnup PWR Spent Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyoung Mun; Jang, Jung Nam; Hwang, Yong Hwa; Kwon, In Chan; Min, Duck Kee; Chun, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    KSC-1 (KAERI Shipping Cask-1) was designed and manufactured with a pure domestic technology in 1985 in order to transport a PWR spent fuel assembly from nuclear power plant to PIEF (Post-Irradiation Examination Facility) of KAERI. Since the first transportation of the fuel assembly from Kori-1 NPP was carried out by the cask in 1987, 19 shipments for the PWR spent fuels have been done successfully by now. Maximum discharge burnup of PWR in Korea has been extended from the late 1990s in order to reduce the cost of power generation. From this cause, allowable design values of the initial enrichment and the cooling time for the cask have been changed three times: year 2003, 2007 and 2010. Radiation shielding and criticality of KSC-1 were analyzed for all the PWR fuel type irradiated in Korea NPP to renew the design approval

  5. Maintenance of Ni-based alloy at PWR plant

    International Nuclear Information System (INIS)

    Kansai Electric owns 11 PWR plants. At our PWR plants, we are taking various preventive maintenance measures on Ni-based alloy according to the prediction of possible trouble while past trouble occurred at overseas plants due to Primary Water Stress Corrosion Cracking (PWSCC) being considered. In addition, we are making an effort to put new maintenance techniques into practical use by conducting demonstration tests to confirm their applicability to actual plants. We have replaced reactor vessel heads at 7 plants with new ones. At the other 4 plants, we took, measures to reduce the temperature of reactor vessel head top to delay the timing of PWSCC occurrence. We are carrying out the constant load tests to predict the timing of PWSCC occurrence at these 4 plants. It is planned to conduct non-destructive inspections at an appropriate timing based on the result of the prediction. Based on the prediction of the timing of PWSCC occurrence at bottom-mounted instrumentation (BMI), we have developed water jet peening (WJP) technique to reduce residual stress and applied the technique to our plants successively. Meanwhile, a technique to cut and eliminate cracking has been developed. In addition, capping technique, which covers overall the concerned nozzle on the outer surface of the reactor vessel, has been also established. For alloy 132/82 weld metal for the connection, we are conducting ultrasonic inspection at our plants successively. In order to prepare against PWSCC occurrence, we have also established a technique to replace the entire section of concerned short piping with new one. (author)

  6. Westinghouse Passive Plants - AP600 and S PWR

    International Nuclear Information System (INIS)

    The original thought behind the AP600 passive design was that if the U. S. nuclear industry was to be revitalized, it would require a new, advanced technology with clearly proven benefits in safety. Response from the international arena indicates that, regardless of local domestic consideration, a revitalization of the U. S. industry is seen as very important, even essential, worldwide. And the potential for scale up of these passive safety features has been clearly established, allowing the benefits of the passive technology to be realized in countries that, for whatever reason, are interested in larger plant sizes only. Government projections indicate that U. S. energy demands in the 1990s will grow steadily, creating the need for approximately 117,000 to 322,000 MW of new generating capacity by the year 2010. Although this growth in electricity demand continues to be strong, orders for new nuclear power plants have not kept pace, in part due to licensing delays, prohibitive construction costs, and public uncertainty about safety. However, with the increased concerns about the environmental and economic security risks involved with an excessive dependence on fossil fuels, there is a growing realization that nuclear power must play a major role in our energy future. Looking to the future, Westinghouse is developing the AP600, a simplified two-loop PWR featuring passive safety systems. Drawing on the results of the AP600 development and testing programs, Westinghouse is also developing the larger S PWR, a passive, three-loop power plant with an output in the 900 to 1000 MW range

  7. First application of hollow fiber filter for PWR condensate polishing

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, S. [ORGANO Corp., Tokyo (Japan); Otoha, K.; Takiguchi, H. [Japan Atomic Power Co., Tokyo (Japan)

    2002-07-01

    In Tsuruga Unit-2 (PWR 1160 MWe commenced commercial operation in 1987), current procedure for secondary system clean-up before start-up had prolonged outage time and had consumed a huge amount of de-ionized (DI) water. In addition, iron oxide in condensate had accelerated the degradation of condensate demineralizer (CD) resin. The corrosion product of iron could also influence the secondary side corrosion of steam generator (SG) tubing if it intruded into SG through CD. To solve these problems, Japan Atomic Power Company (JAPC) decided to introduce hollow fiber filter (HFF) type condensate filter into Tsuruga-2, as the first application to PWR in the world. Because of retro-fitted HFF in Tsuruga Unit-2, limitations for installation space and flow resistance in condensate system and cost reduction required new design for compact and low differential pressure system and for long life filter module. JAPC and ORGANO assessed methodologies to achieve these goals. An advanced HFF system, including a newly developed compact HFF module design, was installed at Tsuruga Unit-2 in 1997 based on the assessment. During the 5 years since the installation, the HFF system has provided excellent crud removal that enables to shorten the outage period and to reduce DI water consumption drastically. Stable differential pressure (dP) trend of the HFF system indicates an expected module life of more than 7 years, with backwash cleaning required only 2 or 3 times per year. In addition to providing the expected operating cost reduction and improved SG tube integrity, numerous additional benefits have resulted from the retrofit. (authors)

  8. Identifying thermal cycling mechanisms in PWR branch line piping

    Energy Technology Data Exchange (ETDEWEB)

    Rosinski, S.T. [EPRI, Charlotte, NC (United States); Keller, J.D.; Bilanin, A.J. [Continuum Dynamics, Inc., Ewing, NJ (United States)

    2002-07-01

    Predicting the onset and the characteristics of thermal cycling in pressurized water reactor (PWR) branch line piping systems is critical to formulation of thermal fatigue screening tools. The complex nature of the underlying thermal-hydraulic phenomena, however, significantly complicates prediction using analytical models or direct numerical simulations. Instead, it is necessary to perform scaled experiments to identify the physical mechanisms and to gather data for formulation of semi-empirical models for the thermal cycling phenomena. Through the EPRI Materials Reliability Program a test program is underway to identify and develop semi-empirical correlations for the physical thermalhydraulic mechanisms that cause thermal cycling in dead-ended PWR branch line piping systems. Three series of tests are being performed in this test program: configuration tests on a representative up-horizontal (UH) branch line piping geometry, configuration tests on a representative down-horizontal (DH) branch line piping geometry, and high Reynolds number tests to assess penetration of secondary flow structures into a dead-ended branch line. Results from UH and DH configuration tests indicate that random turbulence penetration is not sufficient for thermal cycling to occur. Rather a swirling flow structure, representative of a large, 'corkscrew' vortical structure, is required for thermal cycling. Scale tests on the UH configuration have simulated cycling phenomena observed in full-scale plant data and have been used to determine parametric sensitivities in formulating a predictive model for the thermal cycling. Data indicate that the mechanism for thermal cycling in UH configurations is stochastic but scales with the leak rate from the valve. The critical dependent variables are reduced to several non-dimensional scaling curves, resulting in a semiempirical predictive model. This paper discusses the test program and the results obtained to date. Application of these

  9. An Experience on RCS CRUD Sampling in European PWR Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Jae; Kim, Jong Bin [Sung Woo E and T Co., Seoul (Korea, Republic of); Kang, Duk Won [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    In most PWRs the normal method of corrosion product sampling is to collect a 'grab' sample from either the RCS hot or cold leg. This method is not ideal and the results are often dominated by soluble and particulate transients that can bias them high by factors of between ten and one hundred times. Nevertheless 'grab' samples can still give relatively satisfactory results from which qualitative trends of total soluble plus particulate corrosion product concentrations can be determined and, although 'grab' sampling may not be ideal, it is useful in detecting and following abnormal particulate releases from the core. It is possible to eliminate the worst of the transient effects by collecting a sample from continuously flowing RCS sample line, but the changes necessary to operate in this way are major, will be costly and may not be practicable for many existing plants. The evaluation of changes in corrosion product concentrations, particularly when the changes increase the particulate concentrations, can indicate that there is a risk that an Axial Offset Anomaly (AOA) may develop, or a risk of increased corrosion product releases when the plant shuts down for refueling. Recently, Diablo Canyon and Callaway in United States America, Ringhals in Sweden, Sizewell B in Great Britain, Vandellos in Spain and Doel in Belgium, these PWR plants have applied capillary sampling method to CRUD Analysis in parallel with grab sampling method under the recommendation of EPRI. In this thesis, it will show the practice based on actually tested method in European PWR plants.

  10. Local Fuel Rod Crud Prediction Tool Applications

    Energy Technology Data Exchange (ETDEWEB)

    Krammen, Michael A.; Karoutas, Zeses E.; Wang, Guoqiang; Young, Michael Y

    2009-06-15

    A code system with attendant methods has been developed for modeling local fuel rod crud. This tool is used to perform the Crud Induced Localized Corrosion (CILC) risk assessment recommended by the EPRI crud and corrosion guidelines, which were developed in response to the INPO zero fuel failures by 2010 initiatives. The methodology is in production use. This paper will describe the range of problems the methodology has already been applied to and the especial pertinence to low duty fuel applications. The methodology begins with Computational Fluid Dynamics (CFD) computations over a fuel assembly grid span. The CFD results provide detailed relative variations in local heat transfer coefficient over the grid span. These very local relative variations are used to determine very local thermal hydraulic conditions over the entire axial length of every fuel rod in a reactor core over the life of the rod in reactor. The expansion using the local relative variations is currently accomplished with the HIDUTYDRV code. The very local thermal hydraulic conditions are combined with reactor coolant crud concentrations derived from EPRI BOA analysis as input to models for predicting very local fuel rod crud deposition. The reactor coolant crud concentrations are determined over each reactor cycle by reactor system wide crud mass balance calculations. The reactor coolant crud concentrations are used to calculate local crud thickness using mass transfer models which are a function of the local thermal conditions. The advanced crud deposition models also include models for calculating local crud dryout. Local crud deposition and crud dryout are strongly dependent on very local boiling or steaming, which are predicted through the translation of the CFD results. The local crud thickness and degree of local crud dryout are key factors in determining the margin or risk for local fuel rod cladding crud induced fuel failure. The development and first application of these methods was in

  11. Bias identification in PWR pressurizer instrumentation using the generalized liklihood-ratio technique

    International Nuclear Information System (INIS)

    A method for detecting and identifying biases in the pressure and level sensors of a pressurized water reactor (PWR) pressurizer is described. The generalized likelihood ratio (GLR) technique performs statistical tests on the innovations sequence of a Kalman filter state estimator and is capable of determining when a bias appears, in what sensor the bias exists, and estimating the bias magnitude. Simulation results using a second-order linear, discrete PWR pressurizer model demonstrate the capabilities of the GLR method

  12. Characterization of Decommissioned PWR Vessel Internals Material Samples: Tensile and SSRT Testing (Nonproprietary Version)

    Energy Technology Data Exchange (ETDEWEB)

    M.Krug, R.Shogan

    2004-09-01

    Pressurized water reactor (PWR) cores operate under extreme environmental conditions due to coolant chemistry, operating temperature, and neutron exposure. Extending the life of PWRs requires detailed knowledge of the changes in mechanical and corrosion properties of the structural austenitic stainless steel components adjacent to the fuel (internals) subjected to such conditions. This project studied the effects of reactor service on the mechanical and corrosion properties of samples of baffle plate, former plate, and core barrel from a decommissioned PWR.

  13. Identification and evaluation of PWR in-vessel severe accident management strategies

    International Nuclear Information System (INIS)

    This reports documents work performed the NRC/RES Accident Management Guidance Program to evaluate possible strategies for mitigating the consequences of PWR severe accidents. The selection and evaluation of strategies was limited to the in-vessel phase of the severe accident, i.e., after the initiation of core degradation and prior to RPV failure. A parallel project at BNL has been considering strategies applicable to the ex-vessel phase of PWR severe accidents

  14. Regulatory perspective on incomplete control rod insertions

    Energy Technology Data Exchange (ETDEWEB)

    Chatterton, M.

    1997-01-01

    The incomplete control rod insertions experienced at South Texas Unit 1 and Wolf Creek are of safety concern to the NRC staff because they represent potential precursors to loss of shutdown margin. Even before it was determined if these events were caused by the control rods or by the fuel there was an apparent correlation of the problem with high burnup fuel. It was determined that there was also a correlation between high burnup and high drag forces as well as with rod drop time histories and lack of rod recoil. The NRC staff initial actions were aimed at getting a perspective on the magnitude of the problem as far as the number of plants and the amount of fuel that could be involved, as well as the safety significance in terms of shutdown margin. As tests have been performed and data has been analyzed the focus has shifted more toward understanding the problem and the ways to eliminate it. At this time the staff`s understanding of the phenomena is that it was a combination of factors including burnup, power history and temperature. The problem appears to be very sensitive to these factors, the interaction of which is not clearly understood. The model developed by Westinghouse provides a possible explanation but there is not sufficient data to establish confidence levels and sensitivity studies involving the key parameters have not been done. While several fixes to the problem have been discussed, no definitive fixes have been proposed. Without complete understanding of the phenomena, or fixes that clearly eliminate the problem the safety concern remains. The safety significance depends on the amount of shutdown margin lost due to incomplete insertion of the control rods. Were the control rods to stick high in the core, the reactor could not be shutdown by the control rods and other means such as emergency boration would be required.

  15. LOLA-SYSTEM, JEN-UPM PWR Fuel Management System Burnup Code System

    International Nuclear Information System (INIS)

    1 - Description of program or function: The LOLA-SYSTEM is a part of the JEN-UPM code package for PWR fuel management, scope or design calculations. It is a code package for core burnup calculations using nodal theory based on a FLARE type code. The LOLA-SYSTEM includes four modules: the first one (MELON-3) generates the constants of the K-inf and M2 correlations to be input into SIMULA-3. It needs the K-inf and M2 fuel assembly values at different conditions of moderator temperature, Boron concentration, burnup, etc., which are provided by MARIA fuel assembly calculations. The main module (SIMULA-3) is the core burnup calculation code in three dimensions and one group of energy. It normally uses a geometrical representation of one node per fuel assembly or per quarter of fuel assembly. It has included a thermal hydraulic feedback on flow and voids and criticality searches on boron concentration and control rods insertion. The CONCON code makes the calculation of the albedo, transport factors, K-inf and M2 correction factors to be input into SIMULA-3. The calculation is made in the XY transversal plane. The CONAXI code is similar to CONCON, but in the axial direction. 2 - Method of solution: MELON-3 makes a mean squares fit of K-inf and M2 values at different conditions in order to determine the constants of the feedback correlations. SIMULA-3 uses a modified one-group nodal theory, with a new transport kernel that provides the same node interface leakages as a fine mesh diffusion calculation. CONCON and CONAXI determine the transport and correction factors, as well as the albedo, to be input into SIMULA-3. They are determined by a method of leakages equivalent to the detailed diffusion calculation of CARMEN or VENTURE; these factors also include the heterogeneity effects inside the node. 3 - Restrictions on the complexity of the problem: Number of axial nodes less than or equal 34. Number of material types less than or equal 30. Number of fuel assembly types less

  16. Single Rod Vibration in Axial Flow

    Science.gov (United States)

    Weichselbaum, Noah; Wang, Shengfu; Bardet, Philippe

    2013-11-01

    Fluid structure interaction of a single rod in axial flow is a coupled dynamical system present in many application including nuclear reactors, steam generators, and towed antenna arrays. Fluid-structure response can be quantified thanks to detailed experimental data where both structure and fluid responses are recorded. Such datum deepen understanding of the physics inherent to the system and provide high-dimensionality quantitative measurements to validate coupled structural and CFD codes with various level of complexity. In this work, single rods fixed on both ends in a concentric pipe, are subjected to an axial flow with Reynolds number based on hydraulic diameter of Re =4000. Rods of varying material stiffness and diameter are utilized in the experiment resulting in a range of dimensionless U between 0.5 and 1, where U = (ρA/EI)1/2uL. Experimental measurements of the velocity field around the rod are taken with PIV from time-resolved Nd:YLF laser and a high speed CMOS camera. Three-dimensional and temporal vibration and deflection of the rod is recorded with shadowgraphy utilizing two sets of pulsed high power LED and dedicated CMOS camera. Through integration of these two diagnostics, it is possible to reconstruct the full FSI domain providing unique validation data.

  17. Dynamic power behavior of a PWR type nuclear reactor

    International Nuclear Information System (INIS)

    A methodology for the power level evaluation (dynamic behavior) in a Pressurized Water Reactor, during a transient is developed, by solving the point kinetic equation related to the control rod insertion effects and fuel or moderator temperature 'feed-back'. A new version of the thermal-hydraulic code COBRA III P/MIT, is used. In this new version was included, as an option, the methodology developed. (E.G.)

  18. Rod consolidation at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    A rod consolidation demonstration with irradiated pressurized water reactor fuel was recently conducted by personnel from Nuclear Assurance Corporation and West Valley Nuclear Services Company at the West Valley Demonstration Project in West Valley, New York. The rod consolidation demonstration involved pulling all of the fuel rods from six fuel Assemblies. In general, the rod pulling proceeded smoothly. The highest compaction ratio attained was 1:8:1. Among the total of 1074 fuel rods were some known degraded rods (they had collapsed cladding, a result of in-reactor fuel densification), but no rods were broken or dropped during the demonstration. One aim was to gather information on the effect of rod consolidation operations on the integrity of the fuel rods during subsequent handling and storage. Another goal was to collect information on the condition and handling of intact, damaged, and failed fuel that has been in storage for an extended period. 9 refs., 8 figs., 1 tab

  19. Magnetic switch for reactor control rod. [LMFBR

    Science.gov (United States)

    Germer, J.H.

    1982-09-30

    A magnetic reed switch assembly is described for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electro-magnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  20. Upper end plug of fuel rod

    International Nuclear Information System (INIS)

    The present invention concerns a seal-welding of an upper end plug of a fuel rod for nuclear fuels conducted in a final stage of molding fabrication of the fuel rod in a pressurized helium gas. A welding protrusion is formed at the periphery of a vent hole on the upper surface of the upper end plug, and the welding protrusion is melted by irradiation of laser beams. The melted protrusion intrudes into the end portion of the bent hole by capillary to close the vent hole. The upper end plug can be closed by an extremely simple operation of irradiating the laser beams to the protrusion. Control for electrode gap on every fuel rods and exchange for the electrodes as in TIG welding can be saved, thereby enabling to speed up and simplify the sealing operation for the upper end plug. (N.H.)

  1. Fragmentation of an axially impacted slender rod

    Science.gov (United States)

    Ji, W.; Waas, A. M.

    2010-02-01

    Motivated by experimental results on the dynamic buckling and fragmentation of a vertical column impacted by a falling mass, results from an analytical model for dynamic buckling which considers the dynamic interaction between the axial column deformation and the out-of-plane buckling displacements are used to interpret the fragmentation process and the resulting fragment lengths. It is shown that a critical time exists for the rod to undergo fragmentation. At this critical time, the rod deforms in a modulated pattern of waves, setting up the stage for the ensuing fragmentation as a result of induced large curvatures that exceed the critical bending strain of the rod material. The resulting fragment length distributions, which show two characteristics peaks at \\frac{\\lambda}{2} and \\frac{\\lambda}{4} , where λ is a characteristic half-wavelength, are found to compare favorably with the experimental results.

  2. System analysis for sucker-rod pumping

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Z.; Doty, D.R.

    1989-05-01

    Pumping free gas in an oil well can significantly decrease the efficiency of a sucker-rod-pumping installation. Pump placement depth and use of a downhole gas/liquid separator (gas anchor) were found to be significant variables in improving the overall efficiency. A procedure is presented that shows when and to what degree the use of a gas anchor improves the efficiency of a sucker-rod pumping system. It was found that at lower pump intake pressures, the gas anchor usually improves efficiency, but at higher pump intake pressures, use of a gas anchor produces no positive effect. Also, elevating the pump to the highest position that still allows proper pump loading was found to reduce the operating costs of a sucker-rod-pumping installation significantly. Finally, a procedure is presented to calculate directly the pump volumetric efficiency and required volumetric pump displacement rate.

  3. Interpretation of calculated forces on sucker rods

    Energy Technology Data Exchange (ETDEWEB)

    Lea, J.F.; Pattillo, P.D. (Amoco Production Research co., Tulsa, OK (United States)); Studenmund, W.R. (Stanford Univ., CA (United States))

    1995-02-01

    The analysis of working loads in a sucker rod string during a pumping cycle has received substantial coverage in the petroleum literature. These load predictions have tended to focus on mechanical design considerations such as excess load and fatigue prediction. In contrast, the current study addresses the issues of buckling associated with working axial/pressure loads in an attempt to clarify the means of both predicting buckling and minimizing its effects. The study begins with a review of the static loads acting near the pump, and proceeds to a discussion of how these loads relate to the tendency of a rod string to buckle on the downstroke. Critical to this discussion is the concept of effective tension. Definition of the effective tension leads to the application of this concept to sinker bar design as a means of mitigating the buckling tendency of a rod string. Key points are reinforced by illustrative examples.

  4. Self-Propelled Rods near Surfaces

    CERN Document Server

    Elgeti, Jens

    2009-01-01

    We study the behavior of self-propelled nano- and micro-rods in three dimensions, confined between two parallel walls, by simulations and scaling arguments. Our simulations include thermal fluctuations and hydrodynamic interactions, which are both relevant for the dynamical behavior at nano- to micrometer length scales. In order to investigate the importance hydrodynamic interactions, we also perform Brownian-dynamics-like simulations. In both cases, we find that self-propelled rods display a strong surface excess in confined geometries. An analogy with semi-flexible polymers is employed to derive scaling laws for the dependence on the wall distance, the rod length, and the propulsive force. The simulation data confirm the scaling predictions.

  5. The development of emergency core cooling systems in the PWR, BWR, and HWR Candu type of nuclear power plants

    International Nuclear Information System (INIS)

    Emergency core cooling systems in the PWR, BWR, and HWR-Candu type of nuclear power plant are reviewed. In PWR and BWR the emergency cooling can be catagorized as active high pressure, active low pressure, and a passive one. The PWR uses components of the shutdown cooling system: whereas the BWR uses components of pressure suppression contaiment. HWR Candu also uses the shutdown cooling system similar to the PWR except some details coming out from moderator coolant separation and expensive cost of heavy water. (author)

  6. Failure Analysis of A Fractured Connecting Rod

    OpenAIRE

    Mohammed, M. N.; Omar, M. Z.; Zainuddin Sajuri; A. Salah; M.A. Abdelgnei; Salleh, M. S.

    2012-01-01

    In many cases, the major reason behind or causing catastrophic engine failure is the occurrence of the connecting-rod failure and sometimes, such a failure can be attributed to the broken connecting rod’s shank especially when there is a probability of being pushed through the side of the crank-case, thereby making the engine irreparable. Thus, the major aim of the current work is to analyze the connecting rod failure. The study applied a finite element analysis and metallographic examination...

  7. Study of Fluidized-Bed Control Rods

    International Nuclear Information System (INIS)

    Control of nuclear reactors with fluidized-bed control rods (FBCR) has been previously proposed; but, despite some apparent advantages over electromechanical systems, such rods have not received widespread attention. With the FBCR concept, the reactor control system becomes a flow-regulating system using either variable-speed pumps or motor-driven control valves in the main coolant. Alternatively, in-core by-pass piping similar to control systems now being developed for fluidized-bed reactors may be utilized. Some of the possible advantages of the FBCR concept are as follows: (1) Most pressure-vessel head penetrations are eliminated, and refueling is simplified; (2) Automatic scram results from a loss-of-flow accident; (3) Axial power can be shaped by the use of contoured channels or variable-sized particles; (4). Water-gap flux peaking can be reduced for the partially withdrawn control rod; (5) The temperature reactivity allowance may be reduced if the fluidized control rods have a negative temperature coefficient; and (6) Fabrication costs are much lower than for electromechanical systems. An evaluation of the FBCR concept, including construction of prototype models and testing of the hydraulic and nuclear characteristics, has been performed. Two types of rods were studied: transmission rods (thickness ≦ 2 mean-free-paths) and reflection rods (thickness ≦ 4 mean-free-paths). Acceptable hydraulic and nuclear characteristics are possible with both types. The feasibility of controlling low-power reactors by either transmission- or reflection-type fluidized.-bed control rods has been established. Furthermore, it was shown that the FBCR concept has good control properties which may be calculated by standard theoretical methods. For high-power, high-temperature applications, additional information on particle material characteristics is needed. A great advantage offered by the FBCR is the possibility of shaping the axial flux either by the use of particles of

  8. The chemical decontamination of the Callisto PWR loop

    International Nuclear Information System (INIS)

    The CALLISTO (Capability for Light water Irradiation in Steady state and Transient Operation) is a PWR experimental facility for scientific in-pile studies installed into the BR2 Material Test Reactor. Three experimental rigs, called In-Pile Sections (IPS), are installed in three reactor channels. They are connected to a common pressurized loop, which operates with representative PWR water chemistry (typically 400 ppm boron, 3,5 ppm lithium and 30 ccSTP/kg dissolved hydrogen). The IPSs can be provided with adequate instrumentation and be modified to perform valid irradiation studies in a high neutron flux and in a relevant thermos-hydraulic environment. During more than 15 years of operation, activation products have accumulated into the loop leading to a continuous increase of the dose rates at the work area. Consequently periodic maintenance and inspection operations have become more and more expensive in terms of collective dose uptake. In consultation with the internal and external safety authorities the decision has been made to proceed to the chemical closed-loop decontamination of the most important components of CALLISTO (heater, pressurizer, main and bleed flow coolers). The objective of reducing the dose rates without compromising the integrity of the operational loop has led to the combined use of known soft chemical decontamination products as KMnO4 and H2C2O4. About 10 GBq of Co-60 activity and 250 g of corrosion products were removed from the stainless steel CALLISTO loop. The systems involved had a total volume of 0,5 m3 and a surface area of 18 m2. All released activity and corrosion products were removed by ion exchange resins, leading to the generation of 2x150 liters of radioactive waste. The dose rate reduction factors in contact with the treated components varied between 2 and 12. The collective dose uptake of the entire operation (preparation - decontamination - clean-up) was about 5,5 man.mSv, and thereby in line with the ALARA estimations

  9. Issues and remedies for secondary system of PWR/VVER

    International Nuclear Information System (INIS)

    Secondary side degradation of steam generators (SG) and Flow Accelerated Corrosion (FAC) in the secondary system have been for a long time important issues in PWR and VVER types of Nuclear Power Plants. With the evolution of the design, the most important issues are progressively moving from secondary side corrosion of Alloy 600 SG tubing, which is being replaced, to a larger variety of risks associated with potential inadequate chemistries. As far as FAC of carbon steel is concerned, the evolution of treatment selection for minimizing corrosion products transport toward the SG, as well as progressive replacement of components in the feedwater train, decreases the risk of dramatic failures which have occurred in the past. After having briefly explained the reason for the past problems encountered in the secondary system of PWR and VVER, this paper evaluates the risk associated with various impurities or contaminants that may be present in the secondary system and how to mitigate them in the most appropriate, efficient, economical and environmental friendly way. The covered species are sodium, calcium, magnesium, chloride, sulfate and sulfur compounds, fluorides, organic compounds, silica, oxygen, lead, ion exchange resins. This paper also proposes the best remedies for mitigating the new issues that may be encountered in operating plants or units under construction. These are mainly: - Selecting a steam water treatment able to minimize the quantity of corrosion products transported toward the SG; - Mitigating the risk of Flow Induced Vibration by a proper control of deposits in sensitive areas; - Minimizing the risk of concentration of impurities in local areas where they may induce corrosion; - Avoiding the presence of abnormal quantities of some species in SG, such as the detrimental presence of lead and ion exchange resin debris or the controversial presence of organic compounds; - Optimizing costs of maintenance activities (SG mechanical, chemical cleaning

  10. Scoping Study Investigating PWR Instrumentation during a Severe Accident Scenario

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J. L. [Rempe and Associates, LLC, Idaho Falls, ID (United States); Knudson, D. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lutz, R. J. [Lutz Nuclear Safety Consultant, LLC, Asheville, NC (United States)

    2015-09-01

    The accidents at the Three Mile Island Unit 2 (TMI-2) and Fukushima Daiichi Units 1, 2, and 3 nuclear power plants demonstrate the critical importance of accurate, relevant, and timely information on the status of reactor systems during a severe accident. These events also highlight the critical importance of understanding and focusing on the key elements of system status information in an environment where operators may be overwhelmed with superfluous and sometimes conflicting data. While progress in these areas has been made since TMI-2, the events at Fukushima suggests that there may still be a potential need to ensure that critical plant information is available to plant operators. Recognizing the significant technical and economic challenges associated with plant modifications, it is important to focus on instrumentation that can address these information critical needs. As part of a program initiated by the Department of Energy, Office of Nuclear Energy (DOE-NE), a scoping effort was initiated to assess critical information needs identified for severe accident management and mitigation in commercial Light Water Reactors (LWRs), to quantify the environment instruments monitoring this data would have to survive, and to identify gaps where predicted environments exceed instrumentation qualification envelop (QE) limits. Results from the Pressurized Water Reactor (PWR) scoping evaluations are documented in this report. The PWR evaluations were limited in this scoping evaluation to quantifying the environmental conditions for an unmitigated Short-Term Station BlackOut (STSBO) sequence in one unit at the Surry nuclear power station. Results were obtained using the MELCOR models developed for the US Nuclear Regulatory Commission (NRC)-sponsored State of the Art Consequence Assessment (SOARCA) program project. Results from this scoping evaluation indicate that some instrumentation identified to provide critical information would be exposed to conditions that

  11. Nuclear fuel rod straightness measuring system and method

    International Nuclear Information System (INIS)

    A method is described for measuring the straightness of a rod, comprising the following steps: (a) supporting the rod so that if the rod were straight, the rod would remain straight without transverse translational movement while supported and if rotated about its longitudinal axis, and so that if the rod were cambered, the rod would remain so cambered while supported and if rotated; (b) rotating the supported the rod so that if the rod were straight, the rod would be rotated about its longitudinal axis; (c) measuring the distances during the rotation between the supported and rotating the rod and rigidly-mounted, spaced-apart range finders, the range finders disposed apart from and directed towards the supported and rotating the rod and disposed so that if the rod were straight, the range finders would each be directed transverse to the longitudinal axis; and (d) calculating for each of the range finders the difference between the maximum and minimum of the distance measurements, the differences indicating the degree of straightness of the rod

  12. Modeling and simulation performance of sucker rod beam pump

    Energy Technology Data Exchange (ETDEWEB)

    Aditsania, Annisa, E-mail: annisaaditsania@gmail.com [Department of Computational Sciences, Institut Teknologi Bandung (Indonesia); Rahmawati, Silvy Dewi, E-mail: silvyarahmawati@gmail.com; Sukarno, Pudjo, E-mail: psukarno@gmail.com [Department of Petroleum Engineering, Institut Teknologi Bandung (Indonesia); Soewono, Edy, E-mail: esoewono@math.itb.ac.id [Department of Mathematics, Institut Teknologi Bandung (Indonesia)

    2015-09-30

    Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption proved non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research.

  13. Modeling and simulation performance of sucker rod beam pump

    International Nuclear Information System (INIS)

    Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption proved non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research

  14. Modeling and simulation performance of sucker rod beam pump

    Science.gov (United States)

    Aditsania, Annisa; Rahmawati, Silvy Dewi; Sukarno, Pudjo; Soewono, Edy

    2015-09-01

    Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption proved non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research.

  15. Design and manufacture of an ultrasonic inspection device for the friction welds in reactor vessel control rod drive mechanism housings

    International Nuclear Information System (INIS)

    The control rod drive mechanism housings of a PWR reactor vessel consist of a stainless steel flange and a Ni-Cr-Fe alloy tube, assembled by friction welding. The properties of the interface and the nature of the adjacent materials require the development of a specific ultrasonic inspection technique which could be easily automated, considering the number of parts involved (77 parts per 1300 MWe reactor vessel). The part has the general shape of a tube (inside diameter: 70 mm, outside diameter: 103 mm). The transition between both forged parent materials (stainless steel/Ni-Cr-Fe alloy) is obtained by a very thin interface, whose general orientation is normal to the tube centerline. The heat affected zone has generally a coarser and more irregular structure than that observed in the parent materials. The design and development were carried out using a prototype machine on test-pieces representative of a control rod drive mechanism housing, and containing the following artificial reflectors: notches obtained by electro-discharge machining on the inside and outside surfaces, on each side of the interface; planar artificial defects, parallel to the interface. These defects, obtained from 2 flat bottomed holes, drilled into the mock-up constituent parts, were conveyed to the interface during friction welding

  16. RodPilot{sup R} - The Innovative and Cost-Effective Digital Control Rod Drive Control System for PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Baron, Clemens [AREVA NP GmbH, NLEE-G, Postfach 1199, 91001 Erlangen (Germany)

    2008-07-01

    With RodPilot, AREVA NP offers an innovative and cost-effective system for controlling control rods in Pressurized Water Reactors. RodPilot controls the three operating coils of the control rod drive mechanism (lift, moveable gripper and stationary gripper coil). The rods are inserted into or withdrawn from the core as required by the Reactor Control System. The system combines modern components, state-of-the-art logic and a proven electronic control rod drive control principle to provide enhanced reliability and lower maintenance costs. (author)

  17. Piston rod seal for a Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, W.

    1984-01-31

    In a piston rod seal for a Stirling engine, a hydrostatic bearing and differential pressure regulating valve are utilized to provide for a low pressure differential across a rubbing seal between the hydrogen and oil so as to reduce wear on the seal. 3 figs.

  18. Piston rod seal for a Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Wilbur (Schenectady, NY)

    1984-01-01

    In a piston rod seal for a Stirling engine, a hydrostatic bearing and differential pressure regulating valve are utilized to provide for a low pressure differential across a rubbing seal between the hydrogen and oil so as to reduce wear on the seal.

  19. Technological improvements in wire rod mills

    Energy Technology Data Exchange (ETDEWEB)

    Lestani, M.

    1996-07-01

    The paper deals with the latest rolling technologies and hi-tech equipment developed by Danieli-mogardshammar to ensure top performance of modern wire rod mills. In particular, a high reduction sizing mill, a twin module fast finishing block and a high speed cropping shear are presented. (authors)

  20. Analysis of sucker rod and sinkerbar failures

    Energy Technology Data Exchange (ETDEWEB)

    Waggoner, J.R.; Buchheit, R.G.

    1993-03-01

    This report presents results of a study of performance and failures of the sucker rod/sinkerbar string used in beam-pumping operations through metallography, finite element analysis, and failure data collection. Metallography showed that the microstructure of the steel bar stock needs to be considered to improve the fatigue resistance of the sucker rod strings. The current specification based on tensile strength, or yield strength, may not be appropriate since failure occurs because of fatigue and not yielding, and tensile strength is not always a good measure of fatigue resistance. Finite element analysis of the threaded connection quantitatively assesses the coupling designs under various loading conditions. Subcritical fractures in metallography are also suggested by calculated stress distribution in threaded coupling. Failure data illustrates both magnitude and frequency of failures, as well as categorizing the suspected cause of failure. Application of the results in each of these project areas is expected to yield improved choice of metal bar stock, thread design, and make-up practices which can significantly reduce the frequency of sucker rod failures. Sucker rod failures today are not inherent in the process, but can be minimized through the application of new technology and observation of common-sense practices.

  1. Program optimizes sucker-rod pumping mode

    International Nuclear Information System (INIS)

    Direct energy costs for sucker-rod pumping can be optimized by selecting the right pump size, stroke length, and pumping speed for the required liquid production rate. Calculation procedures for a computer program are developed for optimizing the design of conventional pumping units

  2. Wear simulation of sucker rod couplings

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, W.J. (Armco, Inc., Middletown, OH (United States))

    1991-09-01

    This paper reports that sucker rod strings are devices used to actuate pumps located at the bottom of oil wells. The individual rods are connected together by threaded couplings. Since the couplings have a larger diameter than the rods, they sometimes contact the inside diameter of the tubing during the up and down pumping cycle. Usually, this is not problem unless buckling occurs in the downstroke; however, this can lead to accelerated wear of the coupling and tubing. In nonvertical wells (offset, deviated, or slanted), the contact is more severe and rapid wear takes place. Couplings are more easily replaced during shutdowns; it is very important to minimize wear to tubing since it is virtually impossible to replace. TRIBONIC 20, an iron-based alloy containing approximately 13% Mn, 5% Si, 5.5% Cr, and 5% Ni, was laboratory evaluated to determine whether or not it could solve the sucker rod coupling-production tubing wear problem. The alloy demonstrated outstanding wear resistance both to itself and in protecting type 1019 steel.

  3. Program optimizes sucker-rod pumping mode

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, G. (Technical Univ. of Miskolc, Miskolc (HU))

    1990-10-01

    Direct energy costs for sucker-rod pumping can be optimized by selecting the right pump size, stroke length, and pumping speed for the required liquid production rate. Calculation procedures for a computer program are developed for optimizing the design of conventional pumping units.

  4. Sucker rod scraper method and device

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, A.E.

    1988-05-03

    A plurality of sucker rod scrapers are securely attached in space apart relationship to a length of sucker rod for scraping paraffin deposits from the interior of a tubing string. This is done to vitiate obstruction to the flow of oil by maintaining a satisfactory effective flow area within the tubing string. The scrapers each have a spiraled scraping surface wound helically about the sucker rod and attached at each opposed end by the provision of a clamping member which includes a U-band and a heat shield. The U-band has confronting marginal edge portions which overlap the edge portions of the heat shield. The heat shield has a slot formed centrally therein for receiving a tab located at either of the opposed ends of the spiraled scraper. The confronting edges of the U-band are welded to one of the marginal opposed ends of the scraper, while the heat shield prevents the metal of the sucker rod being elevated to a temperature which changes its characteristics.

  5. Reassessment of PWR pressure-vessel integrity during overcooling accidents

    International Nuclear Information System (INIS)

    A continuing analysis of the PTS problem associated with PWR postuated OCA's indicates that the previously accepted degree of conservatism in the fracture-mechanics model needs to be more closely evaluated, and if excessive, reducted. One feature that was believed to be conservative was the use of two-dimensional as opposed to finite-length (three-dimensional) flaws. A flaw of particular interest is one that is located in an axial weld of a plate-type vessel. For those vessels that suffer relatively high radiation damage in the welds, the length of the flaw will be no greater than the length of the weld, and recent calculations indicate that a deep flaw of that length (approx. 2 m) is not effectively infinitely long, contrary to previous thinking. The benefit to be derived from consideration of the 2-m flaw and also a semielliptical flaw with a length-to-depth ratio of 6/1 was investigated by analyzing several postulated transients. In doing so the sensitivity of the benefit to a specified maximum crack arrest toughness and to the duration of the transient was investigated. Results of the analysis indicate that for some conditions the benefit in using the 2-m flaw is substantial, but it decreases with increasing pressure, and above a certain pressure there may be no benefit, depending on the duration of the transient and the limit on crack arrest toughness

  6. Applicability of oxygenated water chemistry for PWR secondary systems

    Energy Technology Data Exchange (ETDEWEB)

    Hermansson, H.P. [Studsvik Nuclear AB, Nykoeping (Sweden); Takiguchi, H.; Otoha, K. [Japan Atomic Power Co., Tokyo (Japan)

    2002-07-01

    Introduction of oxygenated water chemistry (OWC) in PWR secondary side is considered as a means to reduce the transportation of corrosion products into the steam generator and thus also minimizing crevice deposits and subsequent materials problems. One main concern, however, is the risk of inter-granular attack (IGA) in crevices. In order to study effects on crevice tube IGA by OWC, a series of experiments were performed in a steam generator (SG) simulating loop. This comprised a SG tube and a tube support plate (TSP) together forming the crevice. The over-all objective of the work accounted here was to demonstrate that it is possible to operate the steam generator secondary side with OWC without causing intolerable IGA or other types of attack on the tube in the crevice area. Tubes of sensitized Alloy 600 were exposed during a total of nine experiments in an autoclave using a TSP/tube arrangement with an asymmetric crevice design. Experiments were performed at high and low pH and potential under open and packed crevice conditions. The aggressiveness of the crevice environment was also further increased by addition of carbonate and chloride. Furthermore the tube was pressurized. Experimental parameters were monitored on the primary side as well as in the secondary bulk phase and in the crevice. (authors)

  7. Boron mixing transient in a PWR vessel. Physical studies

    International Nuclear Information System (INIS)

    EDF has conducted a R and D action, aiming at gaining more knowledge on vessel thermal-hydraulics; it consists of two complementary approaches based on mock-up experiments and numerical simulations. Maintenance scenarios studies began in 1995. They have been performed solely with the FEM CFD code N3S. The FEM model take into account the U pipe, the primary pump and the cold leg. This mesh can be connected to the vessel mesh used in the study of previous configurations. The first case in progress concerns the influence of the start-up of a boron unsaturated demineralizer. The study concerns the plug formation in the U pipe involved by the clear and cold seal injection water entering the primary circuit. At the end of the diluted water injection the primary pump is started up and the U pipe fluid is sent in the reactor vessel. This paper presents first the CPY 900 MW PWR vessel taken into account in these physical studies, with a special focus on the geometric peculiarities. Then the 1/5. scale BORA-BORA mock-up and the 3D FEM Thermal Hydraulic code N3S are described. The results obtained until now are presented. The degree of achievement of the studies on the three priority cases (start-up, hot shut-down normal operation, cold shut-down normal operation)

  8. PWR loading pattern optimization using Harmony Search algorithm

    International Nuclear Information System (INIS)

    Highlights: ► Numerical results reveal that the HS method is reliable. ► The great advantage of HS is significant gain in computational cost. ► On the average, the final band width of search fitness values is narrow. ► Our experiments show that the search approaches the optimal value fast. - Abstract: In this paper a core reloading technique using Harmony Search, HS, is presented in the context of finding an optimal configuration of fuel assemblies, FA, in pressurized water reactors. To implement and evaluate the proposed technique a Harmony Search along Nodal Expansion Code for 2-D geometry, HSNEC2D, is developed to obtain nearly optimal arrangement of fuel assemblies in PWR cores. This code consists of two sections including Harmony Search algorithm and Nodal Expansion modules using fourth degree flux expansion which solves two dimensional-multi group diffusion equations with one node per fuel assembly. Two optimization test problems are investigated to demonstrate the HS algorithm capability in converging to near optimal loading pattern in the fuel management field and other subjects. Results, convergence rate and reliability of the method are quite promising and show the HS algorithm performs very well and is comparable to other competitive algorithms such as Genetic Algorithm and Particle Swarm Intelligence. Furthermore, implementation of nodal expansion technique along HS causes considerable reduction of computational time to process and analysis optimization in the core fuel management problems

  9. Robots in P.W.R. nuclear powerplants

    International Nuclear Information System (INIS)

    The satisfactory operation of 37 900-MWe PWR powerplants in France, Belgium and South-Africa and the start-up of 1300 MWe powerplants allowed the development of a wide range of automatic units and robots for the periodic maintenance of nuclear plants, reducing the risk of ionizing radiation for the personnel. A large number of automated tools have been built. Among them: - inspection and maintenance systems for the tube bundle of steam generators, - robotized arms ROTETA and ROMEO for the heavy maintenance and delicate operations such as tube extraction or shot peening of tubes to improve their resistance to corrosion; - the versatile manipulator T.A.M. with electrically controlled articulations. The development of functionally versatile tools and robots and the integration of new technologies such as 3-D vision allowed the construction of the self-guided vehicle FRASTAR capable of moving within a nuclear building and in a cluttered environment. This vehicle includes means for avoiding isolated obstacles and can move on stairs

  10. Integral Test Facility PKL: Experimental PWR Accident Investigation

    Directory of Open Access Journals (Sweden)

    Klaus Umminger

    2012-01-01

    Full Text Available Investigations of the thermal-hydraulic behavior of pressurized water reactors under accident conditions have been carried out in the PKL test facility at AREVA NP in Erlangen, Germany for many years. The PKL facility models the entire primary side and significant parts of the secondary side of a pressurized water reactor (PWR at a height scale of 1 : 1. Volumes, power ratings and mass flows are scaled with a ratio of 1 : 145. The experimental facility consists of 4 primary loops with circulation pumps and steam generators (SGs arranged symmetrically around the reactor pressure vessel (RPV. The investigations carried out encompass a very broad spectrum from accident scenario simulations with large, medium, and small breaks, over the investigation of shutdown procedures after a wide variety of accidents, to the systematic investigation of complex thermal-hydraulic phenomena. This paper presents a survey of test objectives and programs carried out to date. It also describes the test facility in its present state. Some important results obtained over the years with focus on investigations carried out since the beginning of the international cooperation are exemplarily discussed.

  11. Integrated training support system for PWR operator training simulator

    International Nuclear Information System (INIS)

    The importance of operator training using operator training simulator has been recognized intensively. Since 1986, we have been developing and providing many PWR simulators in Japan. We also have developed some training support systems connected with the simulator and the integrated training support system to improve training effect and to reduce instructor's workload. This paper describes the concept and the effect of the integrated training support system and of the following sub-systems. We have PES (Performance Enhancement System) that evaluates training performance automatically by analyzing many plant parameters and operation data. It can reduce the deviation of training performance evaluation between instructors. PEL (Parameter and Event data Logging system), that is the subset of PES, has some data-logging functions. And we also have TPES (Team Performance Enhancement System) that is used aiming to improve trainees' ability for communication between operators. Trainee can have conversation with virtual trainees that TPES plays automatically. After that, TPES automatically display some advice to be improved. RVD (Reactor coolant system Visual Display) displays the distributed hydraulic-thermal condition of the reactor coolant system in real-time graphically. It can make trainees understand the inside plant condition in more detail. These sub-systems have been used in a training center and have contributed the improvement of operator training and have gained in popularity. (author)

  12. Break location effects on PWR small break LOCA phenomena

    International Nuclear Information System (INIS)

    The report presents experimental results of a small lower plenum break test of SB-PV-01 conducted at the large-Scale Test Facility (LSTF) of the Rig-of-Safety Assessment (ROSA)-IV program. This test simulates a loss-of-coolant accident (LOCA) caused by instrument tubes break (break area corresponds to 0.5% of the cold leg flow area) in a Westinghouse-type pressurized water reactor (PWR) assuming both manual actuation for all of the high pressure injection (HPI) systems and failure of the auxiliary feedwater systems. The report clarifies long-term system responses, especially the core cooling conditions related to the primary mass inventory. Also it clarifies break location effects on small break LOCA phenomena by comparing other five similar LOCA tests with break locations at cold leg, hot leg, upper head, pressurizer top (TMI-type) and SG U-tubes. It is coucluded that the lower plenum break is the severest on core heatup due to the highest break flow rate and the least primary mass recovery after the ECCS among the six tests. (author)

  13. Automatic defect identification on PWR nuclear power station fuel pellets

    International Nuclear Information System (INIS)

    This article presents a new automatic identification technique of structural failures in nuclear green fuel pellet. This technique was developed to identify failures occurred during the fabrication process. It is based on a smart image analysis technique for automatic identification of the failures on uranium oxide pellets used as fuel in PWR nuclear power stations. In order to achieve this goal, an artificial neural network (ANN) has been trained and validated from image histograms of pellets containing examples not only from normal pellets (flawless), but from defective pellets as well (with the main flaws normally found during the manufacturing process). Based on this technique, a new automatic identification system of flaws on nuclear fuel element pellets, composed by the association of image pre-processing and intelligent, will be developed and implemented on the Brazilian nuclear fuel production industry. Based on the theoretical performance of the technology proposed and presented in this article, it is believed that this new system, NuFAS (Nuclear Fuel Pellets Failures Automatic Identification Neural System) will be able to identify structural failures in nuclear fuel pellets with virtually zero error margins. After implemented, the NuFAS will add value to control quality process of the national production of the nuclear fuel.

  14. Manufacture of nuclear fuel elements for commercial PWR in China

    International Nuclear Information System (INIS)

    Yibin Nuclear Fuel Element Plant (YFP) under the leadership of China National Nuclear Corporation is sole manufacturer in China to specialize in the production of fuel assemblies and associated core components for commercial PWR nuclear power plant. At the early of 1980's, it began to manufacture fuel assemblies and associated core components for the first core of QINSHAN 300 MW nuclear power plant designed and built by China itself. With the development of nuclear power industry in China and the demand for localization of nuclear fuel elements in the early 1990's, YFP cooperated with FRAMATOME France in technology transfer for design and manufacturing of AFA 2G fuel assembly and successfully supplied the qualified fuel assemblies for the reloads of two units of GUANGDONG Da Ya Bay 900 MW nuclear power plant (Da Ya Bay NPP), and has achieved the localization of fuel assemblies and nuclear power plants. Meanwhile, it supplied fuel assemblies and associated core components for the first core and further reloads of Pakistan CHASHMA 300 MW nuclear power plant which was designed and built by China, and now it is manufacturing AFA 2G fuel assemblies and associated core components for the first core of two units of NPQJVC 600 MW nuclear power plant. From 2001 on, YFP will be able to supply Da Ya Bay NPP with the third generation of fuel assembly-AFA 3G which is to realize a strategy to develop the fuel assembly being of long cycle reload and high burn-up

  15. Effect of coolant chemistry on PWR radiation transport processes

    International Nuclear Information System (INIS)

    The effect of various PWR-type coolant chemistry regimes on the behavior of corrosion products has been studied in the DIDO Water Loop at Harwell. While the extent of in-core spinel deposition is influenced by pH in a manner to be expected from the temperature coefficient of solubility of nickel-iron spinel, there is evidence that boric acid plays a role apart from its influence on pH. Out-of-core deposition of active cobalt on stainless steel takes place largely in the chromium-rich inner oxide layer, and there is also significant uptake of corrosion products into the film on Zircaloy. Deposition depends on flow characteristics in different ways for different elements. The evidence suggests that in DWL soluble species are dominant in out-of-core deposition processes for corrosion products. The adsorption of cobalt in zirconium oxide provides a route for deposition on fuel elements which may in some circumstances be more significant than spinel deposition. A most important factor governing deposition behavior is surface condition; the influence of weld regions and the effect of varying pretreatment conditions have both been demonstrated. Some alternative chemistry regimes have been explored, but do not appear to offer any advantages with respect to activity transport control over the more conventional regime based on lithium hydroxide and hydrogen dosing. 8 refs., 26 figs., 28 tabs

  16. PWR-440 water chemistry optimization to reduce AOA effect

    International Nuclear Information System (INIS)

    The pressure drop increase in PWR-440 is mainly caused by the fact that the coolant contains numerous corrosion products, which are generated after decontamination and deposited in the top part of the fuel assembly as well as by coolant nucleate boiling that under standard water chemistry conditions leads to acceleration of corrosion products deposition and coolant radioactivity growth respectively. The modeling of the pressure drop changes were based on standard data of water chemistry, reactor operating characteristics and fundamental thermodynamic parameters to predict the pressure drop growth. The results of the performed research and modeling of the corrosion products mass transfer processes allowed to qualify relative contribution of thermohydraulic and chemical parameters in the processes and to fulfill the activities as follows: To perform power units operation at water chemistry with maximum permissible alkali metals content. To increase the coolant flow rate through the core; to do so, throttling orifices were replaced and canister-shields were removed. To reduce the number of steam generators to be decontaminated to 2 per year in a single power unit. As a result deposits accumulation in fuel assemblies has been minimized and there is no leakage in the fuel element; reactor thermal output limitation has been eliminated. (author)

  17. Development of a dry storage cask for PWR spent fuel

    International Nuclear Information System (INIS)

    Korea Hydro and Nuclear Power Co., Ltd.(KHNP), which operates all the nuclear power plants in Korea, is developing a new dry storage cask to store twenty four spent fuel assemblies generated from pressurized water reactors for at-reactor or away-from-reactor interim storage facility in Korea. The dry storage cask is designed and evaluated according to the requirements of the IAEA, the US NRC and the Korean regulations for the dry spent fuel storage system. It provides confinement, radiation shielding, structural integrity, subcritical control and passive heat removal for normal and accident conditions. The dry storage cask consists of a dual purpose canister providing a confinement boundary for the PWR spent fuel, and a storage overpack providing a structural and radiological boundary for long-term storage of the canister placed inside it. The overpack is constructed by a combination of steel and concrete, and is equipped with penetrating ducts near its lower and upper extremities to permit natural circulation of air to provide for the passive cooling of the canister and the contained spent fuel assemblies. This paper describes development status, description, design criteria, evaluation and demonstration tests of the dry storage cask. (authors)

  18. Barium silicate glass/Inconel X-750 interaction. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, Jr., P. V.; Siegel, W. T.; Miley, D. V.

    1980-01-01

    Water reactor safety programs at the Idaho National Engineering Laboratory have required the development of specialized instrumentation. An example is the electrical conductivity-sensitive liquid level transducer developed for use in pressurized-water reactors (PWRs) in which the operation of the sensing probe relies upon the passage of current through the water between the center pin of the electrode and its shell such that when water is present the resulting voltage is low, and conversely, when water is absent the voltage is high. The transducer's ceramic seal is a hot-pressed glass ceramic; its metal housing is Inconel X-750. The ceramic material provides an essential dielectric barrier between the center pin and the outer housing. The operation of the probe as well as the integrity of the PWR environment requires a hermetically-bonded seal between the ceramic and the metal. However, during testing, an increasing number of probe assemblies failed owing to poor glass-to-metal seals as well as void formation within the ceramic. Therefore, a program was initiated to characterize the metallic surface with respect to pre-oxidation treatment and determine optimum conditions for wetting and bonding of the metal by the glass to obtain baseline data relevant to production of acceptable transducer seals.

  19. PWR safety/relief valve blowdown analysis experience

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.Z.; Chou, L.Y.; Yang, S.H. (Gilbert/Commonwealth Engineers and Consultants, Reading, PA (USA). Speciality Engineering Dept.)

    1982-10-01

    The paper describes the difficulties encountered in analyzing a PWR primary loop pressurizer safety relief valve and power operated relief valve discharge system, as well as their resolution. The experience is based on the use of RELAP5/MOD1 and TPIPE computer programs as the tools for fluid transient analysis and piping dynamic analysis, respectively. General approaches for generating forcing functions from thermal fluid analysis solution to be used in the dynamic analysis of piping are reviewed. The paper demonstrates that the 'acceleration or wave force' method may have numerical difficulties leading to unrealistic, large amplitude, highly oscillatory forcing functions in the vicinity of severe flow area discontinuities or choking junctions when low temperature loop seal water is discharged. To avoid this problem, an alternate computational method based on the direct force method may be used. The simplicity and superiority in numerical stability of the forcing function computation method as well as its drawbacks are discussed. Additionally, RELAP modeling for piping, valve, reducer, and sparger is discussed. The effects of loop seal temperature on SRV and PORV discharge line blowdown forces, pressure and temperature distributions are examined. Finally, the effects of including support stiffness and support eccentricity in piping analysis models, method and modeling relief tank connections, minimization of tank nozzle loads, use of damping factors, and selection of solution time steps are discussed.

  20. Advanced methods for the study of PWR cores

    International Nuclear Information System (INIS)

    This document gathers the transparencies presented at the 6. technical session of the French nuclear energy society (SFEN) in October 2003. The transparencies of the annual meeting are presented in the introductive part: 1 - status of the French nuclear park: nuclear energy results, management of an exceptional climatic situation: the heat wave of summer 2003 and the power generation (J.C. Barral); 2 - status of the research on controlled thermonuclear fusion (J. Johner). Then follows the technical session about the advanced methods for the study of PWR reactor cores: 1 - the evolution approach of study methodologies (M. Lambert, J. Pelet); 2 - the point of view of the nuclear safety authority (D. Brenot); 3 - the improved decoupled methodology for the steam pipe rupture (S. Salvatores, J.Y. Pouliquen); 4 - the MIR method for the pellet-clad interaction (renovated IPG methodology) (E. Baud, C. Royere); 5 - the improved fuel management (IFM) studies for Koeberg (C. Cohen); 6 - principle of the methods of accident study implemented for the European pressurized reactor (EPR) (F. Foret, A. Ferrier); 7 - accident studies with the EPR, steam pipe rupture (N. Nicaise, S. Salvatores); 8 - the co-development platform, a new generation of software tools for the new methodologies (C. Chauliac). (J.S.)

  1. Validation Test of CARR Safety Rod Driving Mechanism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>CARR safety Rods are driven by hydraulic force. The safety rod driving mechanism is designed by Tsinghua University and manufactured by Shenyang LIMING factory. Two sets of the mechanism are used for the validation test.

  2. Analysis of buffering process of control rod hydraulic absorber

    International Nuclear Information System (INIS)

    Control Rod Hydraulic Drive Mechanism(CRHDM) is a newly invented build-in control rod drive mechanism. Hydraulic absorber is the key part of this mechanism, and is used to cushion the control rod when the rod scrams. Thus, it prevents the control rod from being deformed and damaged. In this paper dynamics program ANSYS CFX is used to calculate all kinds of flow conditions in hydraulic absorber to obtain its hydraulic characteristics. Based on the flow resistance coefficients obtained from the simulation results, fluid mass and momentum equations were developed to get the trend of pressure change in the hydraulic cylinder and the displacement of the piston rod during the buffering process of the control rod. The results obtained in this paper indicate that the hydraulic absorber meets the design requirement. The work in this paper will be helpful for the design and optimization of the control rod hydraulic absorber. (author)

  3. Improved designs reduce sucker-rod pumping costs

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, G. [Univ. of Miskolc (Hungary)

    1996-10-07

    Pumping mode selection, optimum counterbalance determination, and rod string design are factors that can reduce operational costs and improve sucker-rod pumping operations. To maximize profits from sucker-rod pumped wells, designs must aim at technically and economically optimum conditions. Assessment of surface and downhole energy losses are basic considerations for improving system efficiency. It is important to properly select the pumping mode, such as the combination of plunger size, pumping speed, stroke length, and rod taper design. The best pumping mode maximizes lifting efficiency and, at the same time, reduces prime-mover power requirements and electrical costs. Surface equipment operational efficiency can be improved with optimum counterbalancing of the pumping unit, and top achieve an ideal sucker-rod pumping system, a tapered rod string must have a proper mechanical design. The paper discusses rod pumping, downhole energy losses, surface losses, optimum efficiency, mode selection, counterbalancing, minimizing the cyclic load factor, and rod string design.

  4. Longitudinal Vibrations of Rheological Rod With Variable Cross Section

    Institute of Scientific and Technical Information of China (English)

    Katica(Stevanovic)HEDRIH; AleksandarFILIPOVSKI

    1999-01-01

    Longitudinal vibrations of rheological rod with variable cross section are examined.Particular solutions and eigenfunction are accomplished for natural vibrations of the rod with hereditary material of standard hereditary body.Some examples are given.

  5. Experimentation, modelling and simulation of water droplets impact on ballooned sheath of PWR core fuel assemblies in a LOCA situation

    International Nuclear Information System (INIS)

    In a pressurized water reactor (PWR), during a Loss Of Coolant Accident (LOCA), liquid water evaporates and the fuel assemblies are not cooled anymore; as a consequence, the temperature rises to such an extent that some parts of the fuel assemblies can be deformed resulting in 'ballooned regions'. When reflooding occurs, the cooling of these partially blocked parts of the fuel assemblies will depend on the coolant flow that is a mixture of overheated vapour and under-saturated droplets. The aim of this thesis is to study the heat transfer between droplets and hot walls of the fuel rods. In this purpose, an experimental device has been designed in accordance with droplets and wall features (droplet velocity and diameter, wall temperature) representative of LOCA conditions. The cooling of a hot Nickel disk, previously heated by induction, is cooled down by a stream of monodispersed droplet. The rear face temperature profiles are measured by infrared thermography. Then, the estimation of wall heat flux is performed by an inverse conduction technique from these infrared images. The effect of droplet dynamical properties (diameter, velocity) on the heat flux is studied. These experimental data allow us to validate an analytical model of heat exchange between droplet and hot slab. This model is based on combined dynamical and thermal considerations. On the one hand, the droplet dynamics is considered through a spring analogy in order to evaluate the evolution of droplet features such as the spreading diameter when the droplet is squeezed over the hot surface. On the other hand, thermal parameters, such as the thickness of the vapour cushion beneath the droplet, are determined from an energy balance. In the short term, this model will be integrated in a CFD code (named NEPTUNE-CFD) to simulate the cooling of a reactor core during a LOCA, taking into account the droplet/wall heat exchange. (author)

  6. Effect of ethanolamine injection on wall thinning rate of PWR carbon steel components

    International Nuclear Information System (INIS)

    For pH control of PWR secondary system water chemistry, some plants have changed to ethanolamine injection. The purpose of this work was to understand the effect of changing water chemistry on wall thinning rate of the PWR secondary system due to flow accelerated corrosion. For that purpose, evaluations of water chemistry were carried out by a mass balance calculation, wall thinning rate measurement by a rotary disk test and wall thinning rate evaluation based on calculated magnetite solubility. As a result, it was found to be effective to inhibit the wall thinning rate of the PWR secondary system due to flow accelerated corrosion by ethanolamine injection, but it was not sufficiently effect to neglect wall thinning rate due to flow accelerated corrosion. The effect of the wall thinning rate inhibition also varied greatly for each component of the PWR secondary system. It was found that maintenance of the carbon steel used for the PWR secondary system was still required under ethanolamine injection condition. (author)

  7. Shielding analysis of the transfer container and the borehole lock for spent fuel rod final storage in BSK 3; Abschirmanalysen von Transferbehaelter und Bohrlochschleuse zur Endlagerung abgebrannter Brennstaebe in BSK 3

    Energy Technology Data Exchange (ETDEWEB)

    Tittelbach, S. [WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, Juelich (Germany); Fopp, S.; Graf, R. [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany); Filbert, W. [DBETEC DBE Technology GmbH, Peine (Germany)

    2008-07-01

    In the frame of ESDRED (engineering studies and demonstration of repository designs) DBE Technology and GNS enhance the concept of final storage of spent fuel rods in un-shielded canisters (BSK 3) in boreholes of salt formations. The transfer container (TSB) is envisaged as radiological shielding for the transport of BSK 3 within the facility. The contribution covers the radiological shielding calculations for the transfer container and the borehole lock for normal operation and accident condition. The inventory of BSK 3 includes fuel rods from 3 PWR or 9 BWR reactor cores, the calculations are performed using the program MCNP. The TFB is supposed to shield the BSK 3 during transport from aboveground to the borehole in the underground facility. The distribution of dose outputs along the container and at the cover ends are demonstrated to within the limits. 90% of the dose output is neutron radiation.

  8. ORNL rod-bundle heat-transfer test data. Volume 7. Thermal-Hydraulic Test Facility experimental data report for test series 3.07.9 - steady-state film boiling in upflow

    International Nuclear Information System (INIS)

    Thermal-Hydraulic Test Facility (THTF) test series 3.07.9 was conducted by members of the Oak Ridge National Laboratory Pressurized-Water Reactor (ORNL-PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on September 11, September 18, and October 1, 1980. The objective of the program is to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small- and large-break loss-of-coolant accidents. Test series 3.07.9 was designed to provide steady-state film boiling data in rod bundle geometry under reactor accident-type conditions. This report presents the reduced instrument responses for THTF test series 3.07.9. Also included are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers

  9. CFD - neutronic coupled calculation of a quarter of a simplified PWR fuel assembly including spacer pressure drop and turbulence enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Pena, C.; Pellacani, F.; Macian Juan, R., E-mail: carlos.pena@ntech.mw.tum.de, E-mail: pellacani@ntech.mw.tum.de, E-mail: macian@ntech.mw.tum.de [Technische Universitaet Muenchen, Garching (Germany). Ntech Lehrstuhl fuer Nukleartechnik; Chiva, S., E-mail: schiva@emc.uji.es [Universitat Jaume I, Castellon de la Plana (Spain). Dept. de Ingenieria Mecanica y Construccion; Barrachina, T.; Miro, R., E-mail: rmiro@iqn.upv.es, E-mail: tbarrachina@iqn.upv.es [Universitat Politecnica de Valencia (ISIRYM/UPV) (Spain). Institute for Industrial, Radiophysical and Environmental Safety

    2011-07-01

    A computational code system based on coupling the 3D neutron diffusion code PARCS v2.7 and the Ansys CFX 13.0 Computational Fluid Dynamics (CFD) code has been developed as a tool for nuclear reactor systems simulations. This paper presents the coupling methodology between the CFD and the neutronic code. The methodology to simulate a 3D-neutronic problem coupled with 1D thermal hydraulics is already a mature technology, being part of the regular calculations performed to analyze different kinds of Reactivity Insertion Accidents (RIA) and asymmetric transients in Nuclear Power Plants, with state-of-the-art coupled codes like TRAC-B/NEM, RELAP5/PARCS, TRACE/PARCS, RELAP3D, RETRAN3D, etc. This work represents one of the first attempts to couple the multiphysics of a nuclear reactor core with a 3D spatial resolution in a computer code. This will open new possibilities regarding the analysis of fuel elements, contributing to a better understanding and design of the heat transfer process and specific fluid dynamics phenomena such as cross flow among fuel elements. The transient simulation of control rod insertion, boron dilution and cold water injection will be made possible with a degree of accuracy not achievable with current methodologies based on the use of system and/or subchannel codes. The transport of neutrons depends on several parameters, like fuel temperature, moderator temperature and density, boron concentration and fuel rod insertion. These data are calculated by the CFD code with high local resolution and used as input to the neutronic code to calculate a 3D nodal power distribution that will be returned and remapped to the CFD code control volumes (cells). Since two different nodalizations are used to discretized the same system, an averaging and interpolating procedure is needed to realize an effective data exchange. These procedures have been developed by means of the Ansys CFX 'User Fortran' interface; a library with several subroutines has

  10. Development of a new spacer grid form to enhance the integrity of fuel rod support and the crush strength of a spacer grid assembly

    International Nuclear Information System (INIS)

    A spacer grid is one of the most important structural components in a PWR fuel assembly. The spacer grid, which supports nuclear fuel rods laterally and vertically with a friction grip, is an interconnected array of slotted grid straps welded at the intersections to form an egg crate structure. Dimples and springs are stamped into each grid strap to support the fuel rods. The form of grid straps and spring form is known to be closely related with the crush strength of spacer grid assembly and the integrity of fuel rod support, respectively. Zircaloy is prevailing as the material of the spacer grid because of its low neutron absorption characteristic and its successful extensive in reactor use. The primary considerations are to provide a Zircaloy spacer grid with crush strength sufficient to resist design basis loads, without significantly increasing pressure drop across the reactor core. Generally, the thickness and height of the Zircaloy grid strap have been the main design variables in order to meet the above considerations. Recently, it was reported that a dimple location is also a design variable that affects the crush strength of a spacer grid. In this study, a new spacer grid form was developed in order to enhance the integrity of the fuel rod support and the crush strength of the spacer grid assembly by using a systematic optimization technique. The enhancement of fuel rod support was confirmed by comparisons of contact area, peak stresses, plastic deformation and etc. while the enhancement of crush strength was investigated for a 3x3 and 7x7 sub size support grid as a preliminary parameter study for a 16x16 full size support grid. The 3x3 model is chosen to facilitate quick computation for optimization and the 7x7 model is chosen to verify the enhancement

  11. Composite models for combined rod and fluid dynamics in sucker-rod pumping well systems

    Energy Technology Data Exchange (ETDEWEB)

    Lekia, S.D.L.

    1989-01-01

    This study presents the derivation and the numerical solution of composite models in which both the rod string and the fluid dynamics are coupled so as to accurately account for the effects of viscous friction in sucker-rod pumped wells. A viscous damped hyperbolic first order partial differential equation is coupled to the time derivative of Hooke's law to model the rod string motion and Navier Stokes equations are used to model the fluid dynamics in the rod-tubing annulus. A set of four equations comprise the composite model from which four sub-models for different flow scenarios are considered. The equations are solved numerically by a shock capturing algorithm known as the MacCormack Explicit Scheme which is a two-step predictor-corrector scheme and is second order accuracy in time and space. Five example problems covering various pump setting depths, fluid properties and surface pumping unit kinematics are presented to study the effects of certain important variables. From the analyses of the results of these example problems it is concluded that (1) while the effects of fluid dynamics may appear masked in shallow to medium depth sucker-rod pumped wells, they can not be ignored in deeper wells where large discrepancies occur in the prediction of system parameters, (2) the load range decreases moderately as viscosity increases and the predicted polished rod horsepower does not change significantly over the range of viscosities studied in shallow to medium depth sucker-rod pumped wells, (3) the presence of small quantities of the gas phase in the fluid column reduces system peak torque and precipitate the need for smaller counterbalance weights and (4) the influence of two-phase gas-liquid flow in the rod-tubing annulus on system design parameters declines with increasing pump setting depth. The results are compared against other design models appearing in the literature.

  12. Fluorescent colloidal silica rods - synthesis and phase behavior

    OpenAIRE

    Kuijk, A.

    2012-01-01

    Although the experimental study of spherical colloids has been extensive, similar studies on rod-like particles are rare because suitable model systems are scarce. To fulfill this need, we present the synthesis of monodisperse rod-like silica colloids with tunable dimensions. Rods were produced with diameters of 200 nm and larger and lengths up to 10 µm, which resulted in aspect ratios ranging from 1 to 25. The growth mechanism of these rods involves emulsion droplets of water in pentanol, in...

  13. Distributed Mode Filtering Rod Fiber Amplifier With Improved Mode Stability

    DEFF Research Database (Denmark)

    Laurila, Marko; Alkeskjold, Thomas Tanggaard; Broeng, Jes;

    2012-01-01

    We report 216W of average output power from a photonic crystal rod fiber amplifier. We demonstrate 44% power improvement before onset of the mode instability by operating the rod fiber in a leaky guiding regime.......We report 216W of average output power from a photonic crystal rod fiber amplifier. We demonstrate 44% power improvement before onset of the mode instability by operating the rod fiber in a leaky guiding regime....

  14. Sucker rod string design of the pumping systems

    Directory of Open Access Journals (Sweden)

    Chun Hua Liu

    2015-08-01

    Full Text Available The existing design of sucker rod string mainly focuses on the simplifying assumptions that rod string was exposed to simple tension loading. And its goal was to have equal modified stress at the top of each taper. The improved rod design was to have the same degree of safety at each section, and it used a dynamic force distribution that was proportional along the whole string. However, the available procedures did not provide the desired accuracy of its pertinent analysis, and the operators could not identify the specific phenomena that occur in CBM wells. In this paper, the mathematical models of rod loads and string length were developed based on the cyclic nature of rod string loading; the fatigue endurance method is used to design the single rod string; and the tapered rod string is designed to have an equal equivalent stress at the top of each section. Its application characteristics are demonstrated by the example of CBM wells in Ordos Basin. The interpretations of results show that the previous design gave the single rods a larger diameter and the top rods in the string a greater percent than the proposed method. The calculation should concern about inertial, vibration and friction forces to illustrate the elastic force waves travelling in the rod material with the speed of sound. The single string should be designed using fatigue endurance ratings due to asymmetric pulsating tension of rod loading; and the tapered string should involve a balanced design by setting the fatigue endurance at each section equal. A shorter stroke length gives a greater rod taper percentage and an increased load capacity results to an enhanced rod diameter. The rod diameter increases with the pump size and load capacity for the single string, and the rod taper percentage of the top rod strings increases with plunger diameter for the tapered string. The proposed research improves efficiency of the pumping system, assures good operating conditions, and reduces

  15. Dependence of control rod worth on fuel burnup

    Energy Technology Data Exchange (ETDEWEB)

    Savva, P., E-mail: savvapan@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PoB 60228, 15310 Aghia Paraskevi (Greece); Varvayanni, M., E-mail: melina@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PoB 60228, 15310 Aghia Paraskevi (Greece); Catsaros, N., E-mail: nicos@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PoB 60228, 15310 Aghia Paraskevi (Greece)

    2011-02-15

    Research highlights: Diffusion and MC calculations for rod worth dependence on burnup and Xe in reactors. One-step rod withdrawal/insertion are used for rod worth estimation. The study showed that when Xe is present the rods worth is significantly reduced. Rod worth variation with burnup depends on rod position in core. Rod worth obtained with MC code is higher than that obtained from deterministic. - Abstract: One important parameter in the design and the analysis of a nuclear reactor core is the reactivity worth of the control rods, i.e. their efficiency to absorb excess reactivity. The control rod worth is affected by parameters such as the fuel burnup in the rod vicinity, the Xe concentration in the core, the operational time of the rod and its position in the core. In the present work, two different computational approaches, a deterministic and a stochastic one, were used for the determination of the rods worth dependence on the fuel burnup level and the Xe concentration level in a conceptual, symmetric reactor core, based on the MTR fuel assemblies used in the Greek Research Reactor (GRR-1). For the deterministic approach the neutronics code system composed by the SCALE modules NITAWL and XSDRN and the diffusion code CITATION was used, while for the stochastic one the Monte Carlo code TRIPOLI was applied. The study showed that when Xe is present in the core, the rods worth is significantly reduced, while the rod worth variation with increasing burnup depends on the rods position in the core grid. The rod worth obtained with the use of the Monte Carlo code is higher than the one obtained from the deterministic code.

  16. Investigation of control rod worth and nuclear end of life of BWR control rods

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Per

    2008-01-15

    This work has investigated the Control Rod Worth (CRW) and Nuclear End of Life (NEOL) values for BWR control rods. A study of how different parameters affect NEOL was performed with the transport code PHOENIX4. It was found that NEOL, expressed in terms of {sup 10}B depletion, can be generalized beyond the conditions for which the rod is depleted, such as different power densities and void fractions, the corresponding variation in the NEOL will be about 0.2-0.4% {sup 10}B. It was also found that NEOL results for different fuel types and different fuel enrichments have a variation of about 2-3% in {sup 10}B depletion. A comparative study on NHOL and CRW was made between PHOENIX4 and the stochastic Monte Carlo code MCNP. It was found that there is a significant difference, both due to differences in the codes and to limitations in the geometrical modeling in PHOENIX4. Since MCNP is considered more physically correct, a methodology was developed to calculate the nuclear end of life of BWR control rods with MCNP. The advantages of the methodology are that it does not require other codes to perform the depletion of the absorber material, it can describe control rods of any design and it can deplete the control rod absorber material without burning the fuel. The disadvantage of the method is that is it time-consuming.

  17. Survey of experiments and code development for the passive residual heat removal system of PWR in China

    Institute of Scientific and Technical Information of China (English)

    HUANG Yan-Ping; ZHUO Wen-Bing; YANG Zu-Mao; XIAO Ze-Jun; CHEN Bing-De; JIA Dou-Nan

    2004-01-01

    Three different kinds of experiments and their typical results are surveyed for the passive residual heat removal system (PRHRS) of PWR performed in Nuclear Power Institute of China (NPIC) recent ten years. The typical results of MISAP. a special code for PWR passive residual heat removal system developed and assessed by NPIC,are also described briefly in this paper.

  18. Shield mining frame piston rod. Schildausbaugestell-Kolbenstange

    Energy Technology Data Exchange (ETDEWEB)

    Schuett, F.

    1981-05-02

    A piston rod for a shield mining frame for coal mining is described. This has radial outward connecting openings at the free end for hydraulic pipes. The plug-in connections are pushed in here and held with clamps. The piston rod part, in which these openings are situated, is made as a bar. The piston rod and bar form one part.

  19. Measurement of the Speed of Sound in a Metal Rod.

    Science.gov (United States)

    Mak, Se-yuen; Ng, Yee-kong; Wu, Kam-wah

    2000-01-01

    Suggests two improved methods to measure the speed of sound in a metal rod. One employs a fast timer to measure the time required for a compression pulse to travel along the rod from end to end, and a second uses a microphone to measure the frequency of the fundamental mode of a freely suspending singing rod. (Author/ASK)

  20. ROD INTERNAL PRESSURE QUANTIFICATION AND DISTRIBUTION ANALYSIS USING FRAPCON

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Kostadin [Pennsylvania State University, University Park; Jessee, Matthew Anderson [ORNL

    2016-01-01

    The discharge rod internal pressure (RIP) and cladding hoop stress (CHS) distributions are quantified forWatts BarNuclearUnit 1 (WBN1) fuel rods by modeling core cycle design data, intercycle assembly movements, operation data (including modeling significant trips and downpowers), and as-built fuel enrichments and densities of each fuel rod in FRAPCON-3.5. An alternate model for the amount of helium released from zirconium diboride (ZrB2) integral fuel burnable absorber (IFBA) layers is derived and applied to FRAPCON output data to quantify the RIP and CHS for these fuel rods. SCALE/Polaris is used to quantify fuel rod-specific spectral quantities and the amount of gaseous fission products produced in the fuel for use in FRAPCON inputs. Fuel rods with ZrB2 IFBA layers (i.e., IFBA rods) are determined to have RIP predictions that are elevated when compared to fuel rod without IFBA layers (i.e., standard rods) despite the fact that IFBA rods often have reduced fill pressures and annular fuel blankets. Cumulative distribution functions (CDFs) are prepared from the distribution of RIP predictions for all standard and IFBA rods. The provided CDFs allow for the determination of the portion of WBN1 fuel rods that exceed a specified RIP limit. Lastly, improvements to the computational methodology of FRAPCON are proposed.

  1. Carbon Inverse Opal Rods for Nonenzymatic Cholesterol Detection.

    Science.gov (United States)

    Zhong, Qifeng; Xie, Zhuoying; Ding, Haibo; Zhu, Cun; Yang, Zixue; Gu, Zhongze

    2015-11-18

    Carbon inverse opal rods made from silica photonic crystal rods are used for nonenzymatic cholesterol sensing. The characteristic reflection peak originating from the physical periodic structure works as sensing signals for quantitatively estimating cholesterol concentrations. Carbon inverse opal rods work both in cholesterol standard solutions and human serum. They are suitable for practical use in clinical diagnose.

  2. Fluorescent colloidal silica rods - synthesis and phase behavior

    NARCIS (Netherlands)

    Kuijk, A.

    2012-01-01

    Although the experimental study of spherical colloids has been extensive, similar studies on rod-like particles are rare because suitable model systems are scarce. To fulfill this need, we present the synthesis of monodisperse rod-like silica colloids with tunable dimensions. Rods were produced with

  3. Low fluid level in pulse rod shock absorber

    International Nuclear Information System (INIS)

    On various occasions during pulse mode operation the shim and regulating control rods would drop when the pulse rod was withdrawn. Subsequent investigation traced the problem to the pulse rod shock absorber which was found to be low in hydraulic fluid. The results of the investigation, the corrective action taken, and a method for measuring the shock absorber fluid level are presented. (author)

  4. Assessment of PWR Steam Generator modelling in RELAP5/MOD2. International Agreement Report

    Energy Technology Data Exchange (ETDEWEB)

    Putney, J.M.; Preece, R.J. [National Power, Leatherhead (GB). Technology and Environment Centre

    1993-06-01

    An assessment of Steam Generator (SG) modelling in the PWR thermal-hydraulic code RELAP5/MOD2 is presented. The assessment is based on a review of code assessment calculations performed in the UK and elsewhere, detailed calculations against a series of commissioning tests carried out on the Wolf Creek PWR and analytical investigations of the phenomena involved in normal and abnormal SG operation. A number of modelling deficiencies are identified and their implications for PWR safety analysis are discussed -- including methods for compensating for the deficiencies through changes to the input deck. Consideration is also given as to whether the deficiencies will still be present in the successor code RELAP5/MOD3.

  5. Development of a lead extrusion damper for PWR reactor coolant loop system

    International Nuclear Information System (INIS)

    Conventional seismic design for PWR reactor coolant loop system is conducted under a philosophy of rigid design and large site of rigid supports and many snubbers are used as seismic supports. But recently various type of alternative supports to snubbers have been proposed. A lead extrusion damper (LED) is one of the devices being considered. This paper is devoted to experimental and analytical work on the development of the LED for PWR reactor coolant loop system. In the study, the fundamental mechanism of the damper and the damping effect on the response of a steam generator supported by the LED were studied. From experimental and analytical approaches, the feasibility of application of the LED to PWR reactor coolant loop system was confirmed

  6. Analyses of PWR boron dilution consequences with the Arrotta code

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, E.; Cheng, H.W.; Sehgal, B.R. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety

    1998-03-01

    During the past few years, major attention has been paid to analyzing the issue of reactivity initiated accidents (RIAs), of which the boron dilution event is of very special interest to the countries having pressurized water reactors (PWRs) in their nuclear power delivery systems. The scenario considered is that if an inadvertent accumulation of boron free water in one loop during reactor startup operations of a PWR and the inadvertent startup of the reactor coolant pump (RCP) in the loop. This could then lead to a rapid boron dilution in the core, which can in turn give rise to a power excursion. This report is devoted to studying the potential physical and thermal hydraulic consequences of a slug of diluted coolant entering the core after one RCP start under a couple of postulated cases. The severity of the consequences of such a scenario is primarily determined by the amount of positive reactivity insertion, and they are also related to the reactivity insertion rate. Therefore, in the report, detailed calculations and analyses have been carried out from case to case by using the well-known space-time kinetics code, ARROTTA. As a result, the spatial distribution for nodal power, fuel enthalpy, fuel temperature and clad outside temperature as well as the change in core reactivity, total core power and peak fuel temperature can be provided. In general, the maximum fuel enthalpy, peak fuel temperature, and clad outside temperature, for all the cases considered in the report, do not exceed their respective routine safety limitations because of the strong Doppler effect and moderator temperature feedback, except if the safety limitations on fuel enthalpy addition for high burnup fuel are drastically reduced.

  7. Effect of water chemistry on deposition for PWR plant operation

    International Nuclear Information System (INIS)

    For Pressurized Water Reactor (PWR) operation, water chemistry guidelines, specifications and associated surveillance programs are key to avoid deposition of oxides. Deposition of oxides can be detrimental by disrupting results of flow measurements, decreasing the thermal exchange capacity, or even by impairing safety. This paper describes the most important cases of deposition, their consequences for operation, and the implemented improvements to avoid their reoccurrence. Deposition that led to a Crud Induced Power Shift (CIPS) is also described. In the primary and in the secondary sides, orifice plates are typically used for measuring feedwater flow rate in nuclear power plants. Feedwater flow rates are used for control purposes and are important safety parameters as they are used to determine the plant's operating power level. Fouling of orifice plates in the primary side has been found during surveillance testing. For reactor coolant pumps, the formation of deposits on the seal No.1 can cause abnormally high or low leak rates through the seal. The leak rate through this seal must be carefully maintained within a prescribed range during plant operation. In the secondary side, orifice plate fouling has been the cause of feedwater flow/reference thermal power drift. For the steam generators (SG), magnetite deposition has led to fouling of the tube bundle, clogging of the quadri-foiled support plate holes and hard sludge formation on the base plate. For the generators, copper hollow conductors are widely used. Buildup of copper oxides on the interior walls of copper conductors has caused insufficient heat transfer. All these deposition cases have received adequate attention, understanding and response via improvement of our surveillance programs. (authors)

  8. Sealing system for piston rod of hot gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Lundholm, S.G.; Ringqvist, S.A.

    1980-11-25

    An improvement to a sealing system for restricting fluid flow around a piston rod between a piston cylinder and crankshaft space in a hot gas engine where a seal element is secured around the piston rod in an intermediate chamber, the improvement including a link in the crankshaft space connecting, and permitting relative radial motion between, the piston rod and the crosshead and an o-ring having a diameter substantially greater than that of the piston rod and being secured between a lower ring securing the seal element in place around the piston rod and a wall of the intermediate chamber for frictionally restricting radial movement of the lower ring.

  9. STUDY ON A HYDROPHOBIC-HYDROPHILIC GRADIENT ROD

    Institute of Scientific and Technical Information of China (English)

    Jun Ma; Bai-yu Li; Hai-yun Liu; Zhi-min Zheng; Jian Xu

    2004-01-01

    A hydrophobic-hydrophilic gradient rod with a length of 40 mm and a diameter of 3 mm was prepared by heating a polymethylsilsesquioxane rod in a cylindrical stove with temperature gradient. The rod was thus pyrolyzed under a temperature gradient condition. The organic end of the gradient rod appears hydrophobic with a contact angle of 109.9° while the other end is hydrophilic with a contact angle of 62.4°. The gradient chemical structure and the gradient microstructure along the rod were characterized by FTIR and SEM, respectively.

  10. Test Research on Special Sucker Rod for Screw Pump

    Institute of Scientific and Technical Information of China (English)

    Zhang Mingyi; Chen Mingzhan; Li Zhi

    2006-01-01

    @@ According to the statistics of straight thread sucker rods' application in screw pump in Daqing Oilfield before2000, the proportion of sucker rods' yearly breakaway reached to 41.6%, taking up 70% of the total wells that were checked. Thus it can be seen that the rods breakaway problem was becoming the main barrier restricting screw pump large-scale population and application. Since then,the development work on the special sucker rods for screw pump had been carried on. Through the analysis on the failure position and failure form of the sucker rods',the following conclusions arepresented:

  11. Evaluation of PWR steam generator water hammer. Final technical report, June 1, 1976--December 31, 1976

    International Nuclear Information System (INIS)

    An investigation of waterhammer in the main feedwater piping of PWR steam generators due to water slugs formed in the steam generator feedring is reported. The relevant evidence from PWR operation and testing is compiled and summarized. The state-of-the-art of analysis of related phenomena is reviewed. Original exploratory modeling experiments at 1/10 and 1/4 scale are reported. Bounding analyses of the behavior are performed and several key phenomena have been identified for the first time. Recommendations to the Nuclear Regulatory Commission are made

  12. Application of diffusion theory methods to PWR [pressurized water reactors] analysis

    International Nuclear Information System (INIS)

    In-core physics analysis of pressurized light water reactors (PWRs) requires accurate predictions of three-dimensional pin-by-pin power distributions. The PWR analyses must rely on diffusion theory approximation because no practical methods exist for performing routine three-dimensional pin-by-pin transport calculations. Pin-by-pin diffusion calculations are also prohibitively expensive in three-dimensional geometry, and PWR analyses utilize either two-dimensional pin-by-pin models or three-dimensional advanced nodal models. The purpose of this paper is to detail and contrast approximations required by pin-by-pin and nodal diffusion methods

  13. Contribution to the study of the conversion PWR type reactors to the thorium cycle

    International Nuclear Information System (INIS)

    The use of the thorium cycle in PWR reactors is discussed. The fuel has been calculated in the equilibrium condition for a economic comparison with the uranium cycle (in the same condition). First of all, a code named EQUILIBRIO has been developed for the fuel equilibrium calculation. The results gotten by this code, were introduced in the LEOPARD code for the fuel depletion calculation (in the equilibrium cycle). Same important physics details of fuel depletion are studied, for instance: the neutron balance, power sharing, fuel burnup, etc. The calculations have been done taking as reference the Angra-1 PWR reactor. (Author)

  14. Assessment of options for the treatment of Sizewell PWR liquid effluent

    International Nuclear Information System (INIS)

    This report describes the origins of PWR liquid waste streams, their composition and rates of arising. Data has been collected from operational PWRs and estimates obtained for Sizewell B PWR liquid waste streams. Current liquid waste treatment practices are reviewed and assessments made of established and novel treatment techniques which could be applicable to Sizewell B. A short list of treatment options is given and recommendations are made relating to established treatment technologies suitable for Sizewell B and also to development work on more novel treatments which could lead to a reduction in waste disposal volumes. (author)

  15. AREVA solutions to licensing challenges in PWR and BWR reload and safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Curca-Tivig, Florin [AREVA GmbH, Erlangen (Germany)

    2016-05-15

    Regulatory requirements for reload and safety analyses are evolving: new safety criteria, request for enlarged qualification databases, statistical applications, uncertainty propagation.. In order to address these challenges and access more predictable licensing processes, AVERA is implementing consistent code and methodology suites for PWR and BWR core design and safety analysis, based on first principles modeling and extremely broad verification and validation data base. Thanks to the high computational power increase in the last decades methods' development and application now include new capabilities. An overview of the main AREVA codes and methods developments is given covering PWR and BWR applications in different licensing environments.

  16. Behavior of a PWR-containment under rising internal pressure load

    International Nuclear Information System (INIS)

    Reactor safety containments are dimensioned so that in a postulated design accident (fracture of the primary duct), the coolant flowing out can be reliably accommodated. The internal pressure in German PWR's is about 5 bar. Radioactive contamination of the environment is largely avoided in this way. The experiments were done for the safety containment of the PWR at Philippsburg. It is a freestanding spherical shell 56 metres in diameter and 38 mm thick. The tensioning of the concrete foundations is 400 below the equator. The spherical shell is welded from about 500 curved sheets made of 15 MnNi 63 material. (orig./GL)

  17. Nonlinear Fuzzy Model Predictive Control for a PWR Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Xiangjie Liu

    2014-01-01

    Full Text Available Reliable power and temperature control in pressurized water reactor (PWR nuclear power plant is necessary to guarantee high efficiency and plant safety. Since the nuclear plants are quite nonlinear, the paper presents nonlinear fuzzy model predictive control (MPC, by incorporating the realistic constraints, to realize the plant optimization. T-S fuzzy modeling on nuclear power plant is utilized to approximate the nonlinear plant, based on which the nonlinear MPC controller is devised via parallel distributed compensation (PDC scheme in order to solve the nonlinear constraint optimization problem. Improved performance compared to the traditional PID controller for a TMI-type PWR is obtained in the simulation.

  18. Method for load follow-up operation of PWR type reactor

    International Nuclear Information System (INIS)

    Purpose: To perform load follow-up operation for instant recovery of full power. Method: First, the power of the reactor is lowered by inserting control rods into the reactor core. A subsequent decrease in reactivity by a xenon gas is compensated for by drawing out the control rods, after the control rods have been inserted about 20 to 25 % deep and the axial deviation has reached about 5 to 10 % more on the minus side than the constant value of the full power, the weak absorption control rod banks are drawn out to control while the control rods are held as inserted. Thereafter to raise the power, the control rods and the weak control rod banks are successively drawn out step by step, thereby increasing to the full power. The total reactivity during the load follow-up operation can be changed by the control rod banks and the weak absorption control rod banks, consequently, the change of the critical boron concentration is hadly required to change the total reactivity during load follow-up operation by the control rod banks and the weak absorption control rod banks. (Seki, T.)

  19. Photonic mesophases from cut rod rotators

    Energy Technology Data Exchange (ETDEWEB)

    Stelson, Angela C.; Liddell Watson, Chekesha M., E-mail: cml66@cornell.edu [Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States); Avendano, Carlos [Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2016-01-14

    The photonic band properties of random rotator mesophases are calculated using supercell methods applied to cut rods on a hexagonal lattice. Inspired by the thermodynamic mesophase for anisotropic building blocks, we vary the shape factor of cut fraction for the randomly oriented basis. We find large, stable bandgaps with high gap isotropy in the inverted and direct structures as a function of cut fraction, dielectric contrast, and filling fraction. Bandgap sizes up to 34.5% are maximized at high dielectric contrast for rods separated in a matrix. The bandgaps open at dielectric contrasts as low as 2.0 for the transverse magnetic polarization and 2.25 for the transverse electric polarization. Additionally, the type of scattering that promotes the bandgap is correlated with the effect of disorder on bandgap size. Slow light properties are investigated in waveguide geometry and slowdown factors up to 5 × 10{sup 4} are found.

  20. Oligo(naphthylene–ethynylene) Molecular Rods

    DEFF Research Database (Denmark)

    Cramer, Jacob Roland; Ning, Yanxiao; Shen, Cai;

    2013-01-01

    Molecular rods designed for surface chirality studies have been synthesized in high yields. The molecules are composed of oligo(naphthylene–ethynylene) skeletons and functionalized at their two termini with carboxylic acids and hydrophobic groups. The molecular skeletons were constructed by means...... of palladium-catalyzed Sonogashira reactions between naphthyl halides and acetylenes. The triazene functionality was used as a protected iodine precursor to allow linear extension of the molecular rods during the synthe-ses. The carboxylic acid groups in the target molecules were protected as esters during...... the synthesis to keep the large aromatic molecules soluble during their syntheses. These rigid oligomers were designed to form lamella-like structures when adsorbed on a surface, through which multiple distinguishable surface conformations should be obtainable. Preliminary scanning tunneling microscopy imaging...