Sample records for 5t4 oncofetal glycoprotein

  1. Glycosylation and epitope mapping of the 5T4 glycoprotein oncofoetal antigen. (United States)

    Shaw, David M; Woods, Andrew M; Myers, Kevin A; Westwater, Caroline; Rahi-Saund, Veena; Davies, Michael J; Renouf, David V; Hounsell, Elizabeth F; Stern, Peter L


    The human 5T4 oncofoetal antigen is a focus for development of several antibody-directed therapies on the basis of the murine monoclonal antibody against 5T4 (mAb5T4), which recognizes a conformational epitope. 5T4 molecules are highly N-glycosylated transmembrane glycoproteins whose extracellular domain contains two regions of leucine-rich repeats (LRRs) and associated flanking regions, separated by an intervening hydrophilic sequence. Using a series of deletion and mutated cDNA constructs as well as chimaeras with the murine homologue, we have mapped the mAb5T4 epitope to the more membrane-proximal LRR2 or its flanking region. Analysis of the glycosylation of the seven consensus Asp-Xaa-Ser/Thr sites was consistent with all of the sites being glycosylated. A combination of two high-mannose chains (predominantly octasaccharide) and five mostly sialylated bi-, tri- and tetra-antennary complex chains with minor quantities of core fucose were detected. The two glycosylation sites, which are the most likely to have predominantly high-mannose chains, are in the only two regions that show significant differences between the human and the 81% identical mouse sequence. A site-directed mutation, which abolished glycosylation at one of these sites (position 192), did not alter antigenicity. The other, which is nearest to the N-terminus in the human, has an Asn-Leu-Thr to Asn-Leu-Leu conversion in the mouse, so cannot be glycosylated in the latter species. The large complex glycosylation at the other sites is likely to influence the antigenicity and tertiary structure generating the 5T4 epitope. PMID:11903056

  2. 5T4 Oncotrophoblast Glycoprotein: Janus Molecule in Life and a Novel Potential Target against Tumors

    Institute of Scientific and Technical Information of China (English)

    Yu Zhao; Yuxia Wang


    5T4 oncotrophoblast glycoprotein is a transmembrane protein expressed on the embryonic tissue and various malignant tumor cell surfaces. It plays a vital role in the multiple biological and pathological processes including massive cellular migration during the embryogenesis, cell invasion associated with implantation, and neoplastic metastasis in the progression of tumorigenesis. Its restricted profile of expression stratifies criteria of tumorassociated antigen and makes it a new promising candidate for immunotherapy for cancer. Hence, illustrating this molecular function is necessary for discovering the principle of the tumor diffusion and aggravation and is helpful for developing novel and effective strategies of cancer therapy.

  3. Oncofetal fibronectins in oral carcinomas

    DEFF Research Database (Denmark)

    Mandel, U; Gaggero, B; Reibel, J


    Different isoforms of fibronectin are derived from a single gene by alternative processing of the primary RNA transcript or by posttranslational modifications. We have previously demonstrated that an oncofetal fibronectin (FN) isoform derived by O-glycosylation is highly associated with malignancy...... at present. Diagnostic implications especially of borderline lesions as well as evaluation of tumor aggressiveness may, however, be important....

  4. Identification of pre- and post-treatment markers, clinical, and laboratory parameters associated with outcome in renal cancer patients treated with MVA-5T4

    Directory of Open Access Journals (Sweden)

    Robert eAmato


    Full Text Available The recent approvals of immunotherapeutic agents (Sipuleucel-T and Ipilimumab for the treatment of different solid tumors gave a boost to the growing cancer immunotherapy field, even though few immunotherapy studies have demonstrated convincingly that there is a direct link between the predicted mode of action of an immunological compound and therapeutic benefit. MVA-5T4 (Trovax® is a novel vaccine combining the tumor-associated antigen 5T4 to an engineered vector-modified vaccinia Ankara (MVA. MVA helps to express the oncofetal 5T4 antigen and subsequently trigger a tumor-directed immune reaction. The safety and clinical benefit reported in multiple phase I and II clinical trials using MVA-5T4 were encouraging; immune responses were induced in almost all treated patients, and associations between 5T4-specific cellular or humoral responses and clinical benefit were reported in most of the nine phase II trials. In particular, clinical studies conducted in renal cell carcinoma (RCC patients have demonstrated an association between 5T4-specific (but not MVA antibody responses and enhanced survival. This review describes the clinical studies using MVA-5T4 conducted in RCC that convincingly demonstrated that an antigen-specific immune response induced by vaccination is associated with enhanced patient survival and is not simply a function of the general health of patients. We will also provide our expert opinions on possible future better-designed clinical trials based on relevant biomarkers. In addition, various combinations of MVA-5T4 and different and newer immunomodulator agents with promising clinical benefit will be discussed.

  5. Identification of let-7-regulated oncofetal genes

    DEFF Research Database (Denmark)

    Boyerinas, Benjamin; Park, Sun-Mi; Shomron, Noam;


    -regulated at the end of embryonic development. Let-7 is often down-regulated early during cancer development, suggesting that let-7-regulated oncofetal genes (LOG) may become reexpressed in cancer cells. Using comparative bioinformatics, we have identified 12 conserved LOGs that include HMGA2 and IMP-1/CRD-BP. IMP-1...

  6. UniProt search blastx result: AK288692 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK288692 J090060K04 Q13641|TPBG_HUMAN Trophoblast glycoprotein precursor (5T4 oncofetal... trophoblast glycoprotein) (5T4 oncotrophoblast glycoprotein) (5T4 oncofetal antigen) (M6P1) - Homo sapiens (Human) 0 ...

  7. The Effects of the Recombinant CCR5 T4 Lysozyme Fusion Protein on HIV-1 Infection.

    Directory of Open Access Journals (Sweden)

    Qingwen Jin

    Full Text Available Insertion of T4 lysozyme (T4L into the GPCR successfully enhanced GPCR protein stability and solubilization. However, the biological functions of the recombinant GPCR protein have not been analyzed.We engineered the CCR5-T4L mutant and expressed and purified the soluble recombinant protein using an E.coli expression system. The antiviral effects of this recombinant protein in THP-1 cell lines, primary human macrophages, and PBMCs from different donors were investigated. We also explored the possible mechanisms underlying the observed antiviral effects.Our data showed the biphasic inhibitory and promotion effects of different concentrations of soluble recombinant CCR5-T4L protein on R5 tropic human immunodeficiency virus-1 (HIV-1 infection in THP-1 cell lines, human macrophages, and PBMCs from clinical isolates. We demonstrated that soluble recombinant CCR5-T4L acts as a HIV-1 co-receptor, interacts with wild type CCR5, down-regulates the surface CCR5 expression in human macrophages, and interacts with CCL5 to inhibit macrophage migration. Using binding assays, we further determined that recombinant CCR5-T4L and [125I]-CCL5 compete for the same binding site on wild type CCR5.Our results suggest that recombinant CCR5-T4L protein marginally promotes HIV-1 infection at low concentrations and markedly inhibits infection at higher concentrations. This recombinant protein may be helpful in the future development of anti-HIV-1 therapeutic agents.

  8. Oncofetal chondroitin sulfate glycosaminoglycans are key players in integrin signaling and tumor cell motility

    DEFF Research Database (Denmark)

    Clausen, Thomas Mandel; Bento Ayres Pereira, Marina Maria; Al Nakouzi, Nader


    Many tumors express proteoglycans modified with oncofetal chondroitin sulfate glycosaminoglycan chains (ofCS), which are normally restricted to the placenta. However, the role of ofCS in cancer is largely unknown. The function of ofCS in cancer was analyzed using the recombinant ofCS-binding VAR2...

  9. Vaccination of prostate cancer patients with modified vaccinia ankara delivering the tumor antigen 5T4 (TroVax): a phase 2 trial. (United States)

    Amato, Robert J; Drury, Noel; Naylor, Stuart; Jac, Jaroslaw; Saxena, Somya; Cao, Amy; Hernandez-McClain, Joan; Harrop, Richard


    The attenuated vaccinia virus, modified vaccinia Ankara, has been engineered to deliver the tumor antigen 5T4 (TroVax). TroVax has been evaluated in an open-label phase 2 trial in hormone refractory prostate cancer patients in which the vaccine was administered either alone or in combination with granulocyte macrophage-colony stimulating factor (GM-CSF). The comparative safety and immunologic and clinical efficacy of TroVax alone or in combination with GM-CSF was determined. Twenty-seven patients with metastatic hormone refractory prostate cancer were treated with TroVax alone (n=14) or TroVax+GM-CSF (n=13). 5T4-specific cellular and humoral responses were monitored throughout the study. Clinical responses were assessed by quantifying prostate-specific antigen concentrations and measuring changes in tumor burden by computer-assisted tomography scan. TroVax was well tolerated in all patients with no serious adverse events attributed to vaccination. Of 24 immunologically evaluable patients, all mounted 5T4-specific antibody responses. Periods of disease stabilization from 2 to >10 months were observed. Time to progression was significantly greater in patients who mounted 5T4-specific cellular responses compared with those who did not (5.6 vs. 2.3 mo, respectively). There were no objective clinical responses seen in this study. In this study, the combination of GM-CSF with TroVax showed similar clinical and immunologic responses to TroVax alone. The high frequency of 5T4-specific immune responses and relationship with enhanced time to progression is encouraging and warrants further investigation.

  10. Vaccination of renal cell cancer patients with modified vaccinia Ankara delivering the tumor antigen 5T4 (TroVax) alone or administered in combination with interferon-alpha (IFN-alpha): a phase 2 trial. (United States)

    Amato, Robert J; Shingler, William; Goonewardena, Madusha; de Belin, Jackie; Naylor, Stuart; Jac, Jaroslaw; Willis, James; Saxena, Somyata; Hernandez-McClain, Joan; Harrop, Richard


    Attenuated vaccinia virus, modified vaccinia Ankara (MVA) has been engineered to deliver the tumor antigen 5T4 (TroVax). MVA-5T4 has been evaluated in an open-label phase 2 trial in metastatic renal cell cancer patients in which the vaccine was administered alone or in combination with interferon-alpha-2b (IFN-alpha). The safety, immunologic, and clinical efficacy of MVA-5T4 with or without IFN-alpha was determined. Twenty-eight patients with metastatic renal cell cancer were treated with MVA-5T4 alone (13) or plus IFN-alpha (15). The 5T4-specific cellular and humoral responses were monitored throughout the study. Clinical responses were assessed by measuring changes in tumor burden by computed tomography or magnetic resonance imaging scan. MVA-5T4 was well tolerated with no serious adverse event attributed to vaccination. Of 23 intent-to-treat patients tested for immune responses postvaccination, 22 (96%) mounted 5T4-specific antibody and/or cellular responses. One patient treated with MVA-5T4 plus IFN-alpha showed a partial response for >7 months, whereas an additional 14 patients (7 receiving MVA-5T4 plus IFN and 7 receiving MVA-5T4 alone) showed periods of disease stabilization ranging from 1.73 to 9.60 months. Median progression free survival and overall survival for all intent-to-treat patients was 3.8 months (range: 1 to 11.47 mo) and 12.1 months (range: 1 to 27 mo), respectively. MVA-5T4 administered alone or in combination with IFN-alpha was well tolerated in all patients. Despite the high frequency of 5T4-specific immune responses, it is not possible to conclude that patients are receiving clinical benefit. The results are encouraging and warrant further investigation.

  11. First-in-human trial of an anti-5T4 antibody-monomethylauristatin conjugate, PF-06263507, in patients with advanced solid tumors. (United States)

    Shapiro, Geoffrey I; Vaishampayan, Ulka N; LoRusso, Patricia; Barton, Jeremy; Hua, Steven; Reich, Steven D; Shazer, Ronald; Taylor, Carrie T; Xuan, Dawei; Borghaei, Hossein


    Background The antibody-drug conjugate PF-06263507 targets the cell-surface, tumor-associated antigen 5T4 and consists of a humanized IgG1 conjugated to the microtubule-disrupting agent monomethylauristatin-F by a non-cleavable maleimidocaproyl linker. In this first-in-human, dose-finding trial (NCT01891669), we evaluated safety, pharmacokinetics, and preliminary antitumor activity of PF-06263507 in pretreated patients with advanced solid tumors, unselected for 5T4 expression. starting at 0.05 mg/kg, with 25, 56, and 95% dose increments, depending on observed dose-limiting toxicities (DLTs), applying a modified continual reassessment method. Results Twenty-six patients received PF-06263507 at 0.05 to 6.5 mg/kg. The first DLT, grade 3 photophobia, occurred at 4.34 mg/kg and two additional DLTs, grade 2 keratitis and grade 1 limbal stem cell deficiency (> 2-week dosing delay), at 6.5 mg/kg. The most common adverse events (AEs) were fatigue (38.5%), photophobia (26.9%), and decreased appetite, dry eye, nausea, and thrombocytopenia (23.1% each). No treatment-related grade 4-5 AEs were reported. Systemic exposure of PF-06263507 increased in a dose-related manner. At the maximum tolerated dose (MTD, 4.34 mg/kg), mean terminal half-life for PF-06263507 and unconjugated payload were ~6 and 3 days, respectively. Payload serum concentrations were substantially lower compared with PF-06263507. No objective responses were observed. Conclusions The MTD and recommended phase II dose were determined to be 4.34 mg/kg. Ocular toxicities accounted for the DLTs observed, as previously reported with monomethylauristatin-F payloads. Further studies are warranted to investigate clinical activity of this agent in patients with 5T4-expressing tumors.Trial registration ID: NCT01891669.

  12. A novel unbalanced de novo translocation der(5t(4;5(q26;q21.1 in adult T-cell precursor lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Kjeldsen Eigil


    Full Text Available Abstract We here describe a novel unbalanced de novo translocation der(5t(4;5(q26;q21.1 in a 39-year-old male diagnosed with acute T-cell lymphoblastic leukemia. Bone marrow (BM was massively infiltrated with 85 % highly proliferative polymorphic T-cell precursors. Immunologically, the malignant cells stained positive for CD7, CD34, intracytoplasmic CD3+, TdT + and negative for CD3 and CD5. G-banded chromosome analysis of BM cells showed the normal karyotype 46,XY[25] whereas BAC-based aCGH analysis revealed partial gain of 4q and partial loss of 5q. Multicolor karyotyping confirmed the presence of an unbalanced der(5t(4;5 as the sole structural abnormality. Subsequent high-resolution oligonucleotide-based aCGH analysis showed that the der(5t(4;5(q26;q21.1 resulted in partial trisomy of 4q26qter (117,719,015-190,613,014 and partial monosomy of 5q21.1qter (100,425,442-180,857,866 and that there was no indication of any gene disruptions resulting from the breakages. Interphase FISH analysis using BAC-based specific probes for 4q26 and 5q21.1 confirmed the breakpoints and revealed approximately 80 % abnormal cells accordingly. At 4q26 the MIR1973 gene is located centromeric to the breakpoint in the copy number neutral region and the TRAM1L1 gene is located within the gained region. At 5q21.1 the genes ST8SIA4 and MIR548p are located centromeric to the breakpoint and no known genes up to approximately 1 Mb telomeric to the breakpoint in the copy number loss region. Interestingly, only the gene ST8SIA4 at 5q21.1 have been implicated in T-cell regulation as it encodes one of the key enzymes for polysialysation of surface proteins on dendritic cells which are important regulators for T-cell proliferation. The der(5t(4;5 is thought to play a crucial role in the pathogenesis of acute T-ALL due to either gain of 4q, the loss of 5q, or deregulation of genes in proximity to the breakpoints.

  13. Preclinical Development of an anti-5T4 Antibody-Drug Conjugate: Pharmacokinetics in Mice, Rats, and NHP and Tumor/Tissue Distribution in Mice. (United States)

    Leal, Mauricio; Wentland, JoAnn; Han, Xiaogang; Zhang, Yanhua; Rago, Brian; Duriga, Nicole; Spriggs, Franklin; Kadar, Eugene; Song, Wei; McNally, James; Shakey, Quazi; Lorello, Leslie; Lucas, Judy; Sapra, Puja


    The pharmacokinetics of an antibody (huA1)-drug (auristatin microtubule disrupting MMAF) conjugate, targeting 5T4-expressing cells, were characterized during the discovery and development phases in female nu/nu mice and cynomolgus monkeys after a single dose and in S-D rats and cynomolgus monkeys from multidose toxicity studies. Plasma/serum samples were analyzed using an ELISA-based method for antibody and conjugate (ADC) as well as for the released payload using an LC-MS/MS method. In addition, the distribution of the Ab, ADC, and released payload (cys-mcMMAF) was determined in a number of tissues (tumor, lung, liver, kidney, and heart) in two tumor mouse models (H1975 and MDA-MB-361-DYT2 models) using similar LBA and LC-MS/MS methods. Tissue distribution studies revealed preferential tumor distribution of cys-mcMMAF and its relative specificity to the 5T4 target containing tissue (tumor). Single dose studies suggests lower CL values at the higher doses in mice, although a linear relationship was seen in cynomolgus monkeys at doses from 0.3 to 10 mg/kg with no evidence of TMDD. Evaluation of DAR (drug-antibody ratio) in cynomolgus monkeys (at 3 mg/kg) indicated that at least half of the payload was still on the ADC 1 to 2 weeks after IV dosing. After multiple doses, the huA1 and conjugate data in rats and monkeys indicate that exposure (AUC) increases with increasing dose in a linear fashion. Systemic exposure (as assessed by Cmax and AUC) of the released payload increased with increasing dose, although exposure was very low and its pharmacokinetics appeared to be formation rate limited. The incidence of ADA was generally low in rats and monkeys. We will discuss cross species comparison, relationships between the Ab, ADC, and released payload exposure after multiple dosing, and insights into the distribution of this ADC with a focus on experimental design as a way to address or bypass apparent obstacles and its integration into predictive models.

  14. Glycoprotein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter G. (La Jolla, CA); Wang, Lei (San Diego, CA); Zhang, Zhiwen (San Diego, CA)


    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  15. Glycoprotein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter G. (La Jolla, CA); Wang, Lei (San Diego, CA); Zhang, Zhiwen (San Diego, CA)


    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  16. Glycoprotein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.


    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  17. Use of the uteroglobin platform for the expression of a bivalent antibody against oncofetal fibronectin in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Elisa Ventura

    Full Text Available Escherichia coli is a robust, economic and rapid expression system for the production of recombinant therapeutic proteins. However, the expression in bacterial systems of complex molecules such as antibodies and fusion proteins is still affected by several drawbacks. We have previously described a procedure based on uteroglobin (UG for the engineering of very soluble and stable polyvalent and polyspecific fusion proteins in mammalian cells (Ventura et al. 2009. J. Biol. Chem. 284∶26646-26654. Here, we applied the UG platform to achieve the expression in E. coli of a bivalent human recombinant antibody (L19 toward the oncofetal fibronectin (B-FN, a pan-tumor target. Purified bacterial L19-UG was highly soluble, stable, and, in all molecules, the L19 moiety maintained its immunoreactivity. About 50-70% of the molecules were covalent homodimer, however after refolding with the redox couple reduced-glutathione/oxidized-glutathione (GSH/GSSG, 100% of molecules were covalent dimers. Mass spectrometry studies showed that the proteins produced by E. coli and mammalian cells have an identical molecular mass and that both proteins are not glycosylated. L19-UG from bacteria can be freeze-dried without any loss of protein and immunoreactivity. In vivo, in tumor-bearing mice, radio-iodinated L19-UG selectively accumulated in neoplastic tissues showing the same performance of L19-UG from mammalian cells. The UG-platform may represent a general procedure for production of various biological therapeutics in E. coli.

  18. Glycoproteins: Occurrence and Significance (United States)

    Wittmann, Valentin

    Protein glycosylation is regarded as the most complex form of post-translational modification leading to a heterogeneous expression of glycoproteins as mixtures of glycoforms. This chapter describes the structure and occurrence of glycoproteins with respect to their glycan chains. Discussed are different carbohydrate-peptide linkages including GPI anchors, common structures of N- and O-glycans, and the structure of glycosaminoglycans contained in proteoglycans. Also covered are the bacterial cell wall polymer peptidoglycan and the glycopeptide antibiotics of the vancomycin group. Properties and functions of the glycans contained in glycoproteins are dealt with in the next chapter of this book.

  19. Glycoprotein biosynthesis in calf kidney. Glycoprotein sialyltransferase activities towards serum glycoproteins and calf Tamm-Horsfall glycoprotein. (United States)

    van Dijk, W; Lasthuis, A M; van den Eijnden, D H


    CMP-AcNeu:glycoprotein sialyltransltransltransltransltransferase of calf kidney cortex was characterized using serum glycoproteins and Tamm-Horsfall glycoprotein, obtained from calf urine, as acceptors. Native calf Tamm-Horsfall glycoprotein showed the best acceptor properties, followed by desialylated calf fetuin and desialylated human alpha 1-acid glycoprotein exhibiting V values of, respectively, 114, 63 and 41 nmol/h per g wet wt. of kidney cortex and Km values of 0.12, 0.16 and 0.26 mM glycoprotein acceptor. Desialylated ovine submaxillary mucine appeared to be a very poor acceptor. Tamm-Horsfall glycoprotein sialyltransferase could be distinguished from serum glycoprotein sialyltransferase by competition studies. In addition the two glycoprotein sialyltransferase activities showed different distributions over the three regions of the calf kidney: the ratios of the Tamm-Horsfall to serum glycoprotein sialyltransferase activities decreased from 3.3 in the cortex to 0.8 and 0.4 in the medulla and the papilla, respectively. It was concluded that in calf kidney at least two different sialyltransferases exist. The high cortical Tamm-Horsfall glycoprotein sialyltransferases activity corresponds markedly to the origin of the urinary Tamm-Horsfall glycoprotein, namely the distal part of the kidney tubule. Inactivation of glycoprotein sialyltransferase activity by preincubation at various temperatures and during storage at 0 degree C, could be reduced by the addition of CMP-AcNeu. The possible relevance towards the in vivo sialylation of this finding is discussed.

  20. Envelope glycoprotein of arenaviruses. (United States)

    Burri, Dominique J; da Palma, Joel Ramos; Kunz, Stefan; Pasquato, Antonella


    Arenaviruses include lethal human pathogens which pose serious public health threats. So far, no FDA approved vaccines are available against arenavirus infections, and therapeutic options are limited, making the identification of novel drug targets for the development of efficacious therapeutics an urgent need. Arenaviruses are comprised of two RNA genome segments and four proteins, the polymerase L, the envelope glycoprotein GP, the matrix protein Z, and the nucleoprotein NP. A crucial step in the arenavirus life-cycle is the biosynthesis and maturation of the GP precursor (GPC) by cellular signal peptidases and the cellular enzyme Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P) yielding a tripartite mature GP complex formed by GP1/GP2 and a stable signal peptide (SSP). GPC cleavage by SKI-1/S1P is crucial for fusion competence and incorporation of mature GP into nascent budding virion particles. In a first part of our review, we cover basic aspects and newer developments in the biosynthesis of arenavirus GP and its molecular interaction with SKI-1/S1P. A second part will then highlight the potential of SKI-1/S1P-mediated processing of arenavirus GPC as a novel target for therapeutic intervention to combat human pathogenic arenaviruses.

  1. Envelope Glycoprotein of Arenaviruses

    Directory of Open Access Journals (Sweden)

    Antonella Pasquato


    Full Text Available Arenaviruses include lethal human pathogens which pose serious public health threats. So far, no FDA approved vaccines are available against arenavirus infections, and therapeutic options are limited, making the identification of novel drug targets for the development of efficacious therapeutics an urgent need. Arenaviruses are comprised of two RNA genome segments and four proteins, the polymerase L, the envelope glycoprotein GP, the matrix protein Z, and the nucleoprotein NP. A crucial step in the arenavirus life-cycle is the biosynthesis and maturation of the GP precursor (GPC by cellular signal peptidases and the cellular enzyme Subtilisin Kexin Isozyme-1 (SKI-1/Site-1 Protease (S1P yielding a tripartite mature GP complex formed by GP1/GP2 and a stable signal peptide (SSP. GPC cleavage by SKI-1/S1P is crucial for fusion competence and incorporation of mature GP into nascent budding virion particles. In a first part of our review, we cover basic aspects and newer developments in the biosynthesis of arenavirus GP and its molecular interaction with SKI-1/S1P. A second part will then highlight the potential of SKI-1/S1P-mediated processing of arenavirus GPC as a novel target for therapeutic intervention to combat human pathogenic arenaviruses.

  2. TA1 oncofetal rat liver cDNA and putative amino acid permease: temporal correlation with c-myc during acute CCl4 liver injury and variation of RNA levels in response to amino acids in hepatocyte cultures. (United States)

    Shultz, V D; Campbell, W; Karr, S; Hixson, D C; Thompson, N L


    TA1 is a rat liver oncofetal cDNA and a member of an emerging family of evolutionarily conserved molecules with homology to amino acid transporters and permeases. The aim of these studies was to characterize the regulation and role of TA1 in acute rat liver injury by examining its relation to regeneration and metabolic stress. Following a single dose of CCl4, TA1 message was expressed 3-48 h. The major 3.3-kb TA1 transcript correlated temporally with c-myc expression. A novel 2.9-kb TA1 transcript was expressed more variably 24-48 h. TA1 protein was restricted to hepatocytes in G0 and G1 phases of the cell cycle. Relative to CCl4, a much smaller increase in TA1 was noted after partial hepatectomy and TA1 preceded the peak of c-myc expression. In vitro TA1 was not induced in hepatocytes by EGF or the acute-phase cytokines IL-6 and TNF-alpha, but was found to be modulated in response to amino acid availability. TA1 expression increased in media without arginine and glutamine and was repressed by total amino acid levels 5-fold over basal MEM. Together, these results contrast with the constitutive expression observed in transformed cells and suggest an adaptive role for TA1 during liver injury.

  3. Recent Progress in Electrochemical Biosensors for Glycoproteins

    Directory of Open Access Journals (Sweden)

    Uichi Akiba


    Full Text Available This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.

  4. Recent Progress in Electrochemical Biosensors for Glycoproteins. (United States)

    Akiba, Uichi; Anzai, Jun-Ichi


    This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.

  5. Salivary agglutinin/glycoprotein-340/DMBT1

    DEFF Research Database (Denmark)

    Ligtenberg, Antoon J M; Veerman, Enno C I; Nieuw Amerongen, Arie V;


    Salivary agglutinin (SAG), lung glycoprotein-340 (gp-340) and Deleted in Malignant Brain Tumours 1 (DMBT1) are three names for identical proteins encoded by the dmbt1 gene. DMBT1/SAG/gp-340 belongs to the scavenger receptor cysteine-rich (SRCR) superfamily of proteins, a superfamily of secreted o...

  6. Isolation of glycoproteins from brown algae

    DEFF Research Database (Denmark)


    The present invention relates to a novel process for the isolation of unique anti-oxidative glycoproteins from the pH precipitated fractions of enzymatic extracts of brown algae. Two brown seaweeds viz, Fucus serratus and Fucus vesiculosus were hydrolysed by using 3 enzymes viz, Alcalase, Viscozyme...

  7. Interaction of mouse hepatitis virus (MHV) spike glycoprotein with receptor glycoprotein MHVR is required for infection with an MHV strain that expresses the hemagglutinin-esterase glycoprotein

    NARCIS (Netherlands)

    Gagneten, S; Gout, O; Dubois-Dalcq, M; Rottier, P; Rossen, J; Holmes, K V


    In addition to the spike (S) glycoprotein that binds to carcinoembryonic antigen-related receptors on the host cell membrane, some strains of mouse coronavirus (mouse hepatitis virus [MHV]) express a hemagglutinin esterase (HE) glycoprotein with hemagglutinating and acetylesterase activity. Virions

  8. Isolation and partial characterization of rat gastric mucous glycoprotein

    NARCIS (Netherlands)

    Spee-Brand, R.; Strous, G.J.A.M.; Kramer, M.F.


    Mucus glycoproteins from the rat stomach were characterized after their isolation from homogenates of the superficial gastric mucosa by equilibrium centrifugation in CsCl density gradients. Water-soluble as well as water-insoluble glycoproteins were studied. The latter were solubilized by 2-mercapto

  9. Solubilization of glycoproteins of envelope viruses by detergents

    Energy Technology Data Exchange (ETDEWEB)

    Berezin, V.E.; Zaides, V.M.; Artamsnov, A.F.; Isaeva, E.S.; Zhdanov, V.M.


    The action of a number of known ionic and nonionic detergents, as well as the new nonionic detergent MESK, on envelope viruses was investigated. It was shown that the nonionic detergents MESK, Triton X-100, and octyl-..beta..-D-glucopyranoside selectively solubilize the outer glycoproteins of the virus particles. The nonionic detergent MESK has the mildest action. Using MESK, purified glycoproteins of influenza, parainfluenza, Venezuelan equine encephalomyelitis, vesicular stomatitis, rabies, and herpes viruses were obtained. The procedure for obtaining glycoproteins includes incubation of the virus suspension with the detergent MESK, removal of subvirus structures by centrifuging, and purification of glycoproteins from detergents by dialysis. Isolated glycoproteins retain a native structure and biological activity and possess high immunogenicity. The detergent MESK is promising for laboratory tests and with respect to the production of subunit vaccines.

  10. Pumping of drugs by P-glycoprotein

    DEFF Research Database (Denmark)

    Litman, Thomas; Skovsgaard, Torben; Stein, Wilfred D


    The apparent inhibition constant, Kapp, for the blockade of P-glycoprotein (P-gp) by four drugs, verapamil, cyclosporin A, XR9576 (tariquidar), and vinblastine, was measured by studying their ability to inhibit daunorubicin and calcein-AM efflux from four strains of Ehrlich cells with different...... levels of drug resistance and P-gp content. For daunorubicin as a transport substrate, Kapp was independent of [P-gp] for verapamil but increased strictly linearly with [P-gp] for vinblastine, cyclosporin A, and XR9576. A theoretical analysis of the kinetics of drug pumping and its reversal shows...... that Kapp for inhibition should increase linearly with the amount of pumps present in the membrane for a reverser that inhibits pumping from the cytoplasmic face. In contrast, if the reverser acts by blocking transport from the outer face, i.e., preemptively, Kapp should be independent of the number...

  11. Immunological aspects of pregnancy-associated glycoproteins. (United States)

    Dosogne, H; Massart-Leën, A M; Burvenich, C


    The incidence of severe cases of acute E. coli mastitis in dairy cows is highest during early lactation. This phenomenon has been associated with a decreased function and decreased numbers of circulating polymorphonuclear neutrophil leukocytes (PMN). The cause of this impaired function and decreased number is poorly understood. Stress, hormonal and metabolic alterations around parturition and the onset of lactation may play a role in this phenomenon. Several molecules, such as cortisol and beta-hydroxybutyrate have been found to alter the oxidative burst activity of circulating PMN around parturition. Pregnancy-Associated Glycoprotein (bPAG) could also be involved. The theory of immunosuppression by bPAG was investigated because analogous glycoproteins produced by the placenta of other species exert local immunosuppression in order to maintain the histoincompatible feto-maternal unit. The production and subsequent release into the maternal circulation of bPAG is ensured by the binucleate cells from the trophoblast and starts already at implantation. However, peak levels are only reached 1 week before parturition. Due to the long half-life time of this molecule, high levels are found in plasma until 2 weeks after calving. The co-occurrence of the impairment of PMN oxidative burst activity in the early postpartum period and a peak in plasma bPAG concentrations might support the hypothesis of an immunosuppressive effect of PAG. Moreover, an inhibitory effect of bPAG on the proliferation of bovine bone marrow progenitor cells has been found recently in our laboratory. bPAG occurs in colostrum, but its effect on milk cells has not been clarified. It is concluded that interaction between the physiology of reproduction and lactation on the one side and immune function on the other side in dairy cattle requires further research.

  12. [Glycoprotein hexoses in feces of infants with lactose intolerance]. (United States)

    Filippvskiĭ, G K; Klimov, L Ia


    A modified method for estimation of total glycoprotein hexoses in feces, based on their measurements in the blood serum, is presented. Sixty-six nursing children with lactose intolerance, breastfed or formula fed, were examined; formula fed babies were kept on mixtures with high and low lactose content. Glycoprotein hexose parameters were as follows (X +/- m): 13.51 +/- 1.93, 12.05 +/- 2.20, and 3.69 +/- 0.47 g/l feces. In control children without lactose intolerance (n = 33) this value was 3.6 +/- 0.79 g/l. Increased glycoprotein excretion is connected with glycocalix and small intestinal enterocyte alteration.

  13. Detection of glycoproteins in the Acanthamoeba plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Paatero, G.I.L. (Abo Akademi (Finland)); Gahmberg, C.G. (Univ. of Helsinki (Finland))


    In the present study the authors have shown that glycoproteins are present in the plasma membrane of Acanthamoeba castellanii by utilizing different radioactive labeling techniques. Plasma membrane proteins in the amoeba were iodinated by {sup 125}I-lactoperoxidase labeling and the solubilized radiolabeled glycoproteins were separated by lectin-Sepharose affinity chromatography followed by polyacrylamide gel electrophoresis. The periodate/NaB{sup 3}H{sub 4} and galactose oxidase/NaB{sup 3}H{sub 4} labeling techniques were used for labeling of surface carbohydrates in the amoeba. Several surface-labeled glycoproteins were observed in addition to a diffusely labeled region with M{sub r} of 55,000-75,000 seen on electrophoresis, which could represent glycolipids. The presence of glycoproteins in the plasma membrane of Acanthamoeba castellanii was confirmed by metabolic labeling with ({sup 35}S)methionine followed by lectin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis.

  14. Herpesvirus glycoproteins undergo multiple antigenic changes before membrane fusion.

    Directory of Open Access Journals (Sweden)

    Daniel L Glauser

    Full Text Available Herpesvirus entry is a complicated process involving multiple virion glycoproteins and culminating in membrane fusion. Glycoprotein conformation changes are likely to play key roles. Studies of recombinant glycoproteins have revealed some structural features of the virion fusion machinery. However, how the virion glycoproteins change during infection remains unclear. Here using conformation-specific monoclonal antibodies we show in situ that each component of the Murid Herpesvirus-4 (MuHV-4 entry machinery--gB, gH/gL and gp150--changes in antigenicity before tegument protein release begins. Further changes then occurred upon actual membrane fusion. Thus virions revealed their final fusogenic form only in late endosomes. The substantial antigenic differences between this form and that of extracellular virions suggested that antibodies have only a limited opportunity to block virion membrane fusion.

  15. KDN-containing glycoprotein from loach skin mucus. (United States)

    Nakagawa, H; Hama, Y; Sumi, T; Li, S C; Li, Y T


    It has been widely recognized that the mucus coat of fish plays a variety of important physical, chemical, and physiological functions. One of the major constituents of the mucus coat is mucus glycoprotein. We found that sialic acids in the skin mucus of the loach, Misgurnus anguillicaudatus, consisted predominantly of KDN. Subsequently, we isolated KDN-containing glycoprotein from loach skin mucus and characterized its chemical nature and structure. Loach mucus glycoprotein was purified from the Tris-HCl buffer extract of loach skin mucus by DEAE-cellulose chromatography, Nuclease P1 treatment, and Sepharose CL-6B gel filtration. The purified mucus glycoprotein was found to contain 38.5 KDN, 0.5% NeuAc, 25.0% GalNAc, 3.5% Gal, 0.5% GlcNAc and 28% amino acids. Exhaustive Actinase digestion of the glycoprotein yielded a glycopeptide with a higher sugar content and higher Thr and Ser contents. The molecular size of this glycopeptide was approximately 1/12 of the intact glycoprotein. These results suggest that approximately 11 highly glycosylated polypeptide units are linked in tandem through nonglycosylated peptides to form the glycoporotein molecule. The oligosaccharide alditols liberated from the loach mucus glycoprotein by alkaline borohydride treatment were separated by Sephadex G-25 gel filtration and HPLC. The purified sugar chains were analyzed b --> 6GalNAc-ol, KDNalpha2 --> 3(GalNAcbeta1 --> 14)GalNAc-ol, KDNalpha2 --> 6(GalNAcalpha1 --> 3)GalNAc-ol, KDNalpha2 --> 6(Gal3alpha1--> 3)GalNAc-ol, and NeuAcalpha2 --> 6Gal NAc-ol. It is estimated that one loach mucus glycoprotein molecule contains more than 500 KDN-containing sugar chains that are linked to Thr and Ser residues of the protein core through GalNAc.

  16. Nucleic acid-binding glycoproteins which solubilize nucleic acids in dilute acid: re-examination of the Ustilago maydis glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.; Champ, D.R.; Young, J.L.; Grant, C.E.


    Holloman reported the isolation from Ustilago maydis of a glycoprotein which prevented the precipitation of nucleic acids in cold 5% trichloroacetic acid. Two glycoprotein fractions from U. maydis with this nucleic acid-solubilizing activity were isolated in our laboratory using improved purification procedures. The activity was not due to nuclease contamination. The glycoproteins are distinguished by: their ability to bind to concanavalin A-Sepharose; their differential binding to double- and single-stranded deoxyribonucleic acid, and to ribonucleic acid; their molecular weights (46,000 and 69,000); and the relative amounts present in growing versus nongrowing cells. Both fractions required sulfhydryl-reducing conditions for optimal yields, specific activity, and stability. Nucleic acid binding was cooperative, the minimum number of glycoproteins required to make a native T7 DNA molecule soluble in dilute acid being estimated at 2 and 15, respectively.

  17. P-glycoprotein targeted nanoscale drug carriers

    KAUST Repository

    Li, Wengang


    Multi-drug resistance (MDR) is a trend whereby tumor cells exposed to one cytotoxic agent develop cross-resistance to a range of structurally and functionally unrelated compounds. P -glycoprotein (P -gp) efflux pump is one of the mostly studied drug carrying processes that shuttle the drugs out of tumor cells. Thus, P -gp inhibitors have attracted a lot of attention as they can stop cancer drugs from being pumped out of target cells with the consumption of ATP. Using quantitive structure activity relationship (QSAR), we have successfully synthesized a series of novel P -gp inhibitors. The obtained dihydropyrroloquinoxalines series were fully characterized and then tested against bacterial and tumor assays with over-expressed P -gps. All compounds were bioactive especially compound 1c that had enhanced antibacterial activity. Furthermore, these compounds were utilized as targeting vectors to direct drug delivery vehicles such as silica nanoparticles (SNPs) to cancerous Hela cells with over expressed P -gps. Cell uptake studies showed a successful accumulation of these decorated SNPs in tumor cells compared to undecorated SNPs. The results obtained show that dihydropyrroloquinoxalines constitute a promising drug candidate for targeting cancers with MDR. Copyright © 2013 American Scientific Publishers All rights reserved.

  18. N-glycoprotein analysis discovers new up-regulated glycoproteins in colorectal cancer tissue. (United States)

    Nicastri, Annalisa; Gaspari, Marco; Sacco, Rosario; Elia, Laura; Gabriele, Caterina; Romano, Roberto; Rizzuto, Antonia; Cuda, Giovanni


    Colorectal cancer is one of the leading causes of death due to cancer worldwide. Therefore, the identification of high-specificity and -sensitivity biomarkers for the early detection of colorectal cancer is urgently needed. Post-translational modifications, such as glycosylation, are known to play an important role in cancer progression. In the present work, we used a quantitative proteomic technique based on (18)O stable isotope labeling to identify differentially expressed N-linked glycoproteins in colorectal cancer tissue samples compared with healthy colorectal tissue from 19 patients undergoing colorectal cancer surgery. We identified 54 up-regulated glycoproteins in colorectal cancer samples, therefore potentially involved in the biological processes of tumorigenesis. In particular, nine of these (PLOD2, DPEP1, SE1L1, CD82, PAR1, PLOD3, S12A2, LAMP3, OLFM4) were found to be up-regulated in the great majority of the cohort, and, interestingly, the association with colorectal cancer of four (PLOD2, S12A2, PLOD3, CD82) has not been hitherto described.

  19. Role of zona pellucida glycoproteins during fertilization in humans. (United States)

    Gupta, Satish Kumar


    In the last decade, scientific investigations pertaining to the role of zona pellucida (ZP) glycoproteins during fertilization in humans have led to new insights. This has been achieved using purified native/recombinant human zona proteins and transgenic mice expressing human ZP glycoproteins. The proposed model in mice of ZP glycoprotein-3 (ZP3) acting as primary sperm receptor and ZP glycoprotein-2 (ZP2) as secondary sperm receptor has been modified for sperm-egg binding in humans. ZP glycoprotein-1 (ZP1), ZP3, and ZP glycoprotein-4 (ZP4) have been shown to bind to the capacitated human sperm. ZP2 binds to the acrosome-reacted human spermatozoa. Further, the eggs obtained from transgenic mice expressing human ZP2 alone or in conjunction with other human instead of mouse zona proteins showed binding of human sperm, suggesting that ZP2 might also play a role in sperm-egg binding. This function has been mapped to a domain corresponding to amino acid residues 51-144 of ZP2. In contrast to mice, where ZP3 is the primary agonist for inducing the acrosome reaction, in humans, the acrosome reaction can be mediated by ZP1, ZP3, and ZP4. The effect of mutations in the genes encoding zona proteins on the ZP morphology and infertility has not been established. Further, the role of autoantibodies against ZP in women with 'unexplained infertility' leading to poor outcome of in vitro fertilization is currently controversial and needs further investigations. Understanding the role of ZP glycoproteins during human fertilization facilitates the development of new contraceptives and strategies to overcome the problem of infertility.

  20. Acrosome reaction: relevance of zona pellucida glycoproteins

    Institute of Scientific and Technical Information of China (English)

    Satish K Gupta; Beena Bhandari


    During mammalian fertilisation,the zona pellucida(ZP)matrix surrounding the oocyte is responsible for the binding of the spermatozoa to the oocyte and induction of the acrosome reaction(AR)in the ZP-bound spermatozoon.The AR is crucial for the penetration of the ZP matrix by spermatozoa.The ZP matrix in mice is composed of three glycoproteins designated ZP1,ZP2 and ZP3,whereas in humans,it is composed of four(ZP1,ZP2,ZP3 and ZP4).ZP3 acts as the putative primary sperm receptor and is responsible for AR induction in mice,whereas in humans(in addition to ZP3),ZP1 and ZP4 also induce the AR.The ability of ZP3 to induce the AR resides in its C-terminal fragment.O-linked glycans are critical for the murine ZP3-mediated AR.However,N-linked glycans of human ZP1,ZP3 and ZP4 have important roles in the induction of the AR.Studies with pharmacological inhibitors showed that the ZP3-induced AR involves the activation of the G1-coupled receptor pathway,whereas ZP1-and ZP4-mediated ARs are independent of this pathway.The ZP3-induced AR involves the activation of T-type voltage-operated calcium channels(VOCCs),whereas ZP1-and ZP4-induced ARs involve both T-and L-type VOCCs.To conclude,in mice,ZP3 is primarily responsible for the binding of capacitated spermatozoa to the ZP matrix and induction of the AR,whereas in humans(in addition to ZP3),ZP1 and ZP4 also participate in these stages of fertilisation.

  1. Expression and Characterization of HIV-1 Envelope Glycoprotein in Pichia Pastoris

    Institute of Scientific and Technical Information of China (English)

    ZHAO Li-hui; YU Xiang-hui; JIANG Chun-lai; WU Yong-ge; SHEN Jia-cong; KONG Wei


    To obtain a sufficient amount of glycoprotein for further studying the structure and function of HIV-1 envelope glycoprotein, amplified and modified HIV-1 envelope glycoprotein gene which recombined subtypes(850amino acids) from Guangxi in China was inserted into Pichiapastoris expression vector pPICZaB; then the recombinant plasmid was transported into the yeast cells to induce the expression of Env protein with methanol. The results of SDS-PAGE and Western blot indicate that the envelope glycoprotein could be expressed in Pichia pastoris with productions of a 120000 glycoprotein and a 41000 glycoprotein, which showed satisfactory immunogenicity by indirect ELISA.

  2. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters

    Directory of Open Access Journals (Sweden)

    Fun-In Wang


    Full Text Available Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  3. Glycoprotein labeling with click chemistry (GLCC) and carbohydrate detection. (United States)

    Wu, Zhengliang L; Huang, Xinyi; Burton, Andrew J; Swift, Karl A D


    Molecular labeling and detection techniques are essential to research in life science. Here, a method for glycoprotein labeling/carbohydrate detection through glycan replacement, termed glycoprotein labeling with click chemistry (GLCC), is described. In this method, a glycoprotein is first treated with specific glycosidases to remove certain sugar residues, a procedure that creates acceptor sites for a specific glycosyltransferase. A 'clickable' monosaccharide is then installed onto these sites by the glycosyltransferase. This modified glycoprotein is then conjugated to a reporter molecule using a click chemistry reaction. For glycoproteins that already contain vacant glycosylation sites, deglycosylation is not needed before the labeling step. As a demonstration, labeling on fetal bovine fetuin, mouse immunoglobulin IgG and bacterial expressed human TNFα and TNFβ are shown. Compared to traditional ways of protein labeling, labeling at glycosylation sites with GLCC is considerably more specific and less likely to have adverse effects, and, when utilized as a method for carbohydrate detection, this method is also highly specific and sensitive.

  4. Proteolysis of specific porcine zona pellucida glycoproteins by boar acrosin. (United States)

    Dunbar, B S; Dudkiewicz, A B; Bundman, D S


    The morphologic and biochemical effects on the structure and constituent glycoproteins of the zona pellucida (ZP) by a specific sperm enzyme, acrosin, and a nonsperm enzyme, trypsin, have been evaluated. Intact porcine ZP matricies, exposed to either acrosin or trypsin, were analyzed microscopically. Changes in specific glycoproteins were monitored by high-resolution two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and the silver-based color stain, GELCODE. Although these enzymes did not alter the macroscopic properties of the ZP matrix, the 2D-PAGE ZP protein patterns were markedly altered. The high molecular weight glycoprotein families (II and III) were sensitive to proteolytic digestion, whereas the major glycoprotein family (I) of the porcine zona was only partially proteolyzed by acrosin and trypsin. Furthermore, it was demonstrated that acrosin had unique substrate specificity compared to that of trypsin, since the ZP peptide patterns were found to be different. These studies are the first to demonstrate which integral glycoproteins of the native porcine ZP matrix are specifically proteolyzed by acrosin from the homologous species and that this proteolysis occurs without the dissolution of the native porcine matrix.

  5. Processing of virus-specific glycoproteins of varicella zoster virus

    Energy Technology Data Exchange (ETDEWEB)

    Namazue, J.; Campo-Vera, H.; Kitamura, K.; Okuno, T.; Yamanishi, K.


    Monoclonal antibodies to varicella zoster virus (VZV) glycoproteins were used to study the processing of three glycoproteins with molecular weights of 83K-94K (gp 2), 64K (gp 3), and 55K (gp 5). Immunoprecipitation experiments performed with VZV-infected cells, pulse labeled with (/sup 3/H)glucosamine in the presence of tunicamycin, suggest that O-linked oligosaccharide is present on the glycoprotein of gp 2. Use of the enzyme endo-beta-N-acetylglucosaminidase H revealed that the fully processed form of gp 3 had high-mannose type and that of gp 5 had only complex type of N-linked oligosaccharides. Experiments with monensin suggest that the precursor form (116K) of gp 3 is cleaved during the processing from Golgi apparatus to cell surface membrane. The extension of O-linked oligosaccharide chain and the complex type of N-linked oligosaccharide chains also occurs during this processing.

  6. Retroviral Env Glycoprotein Trafficking and Incorporation into Virions

    Directory of Open Access Journals (Sweden)

    Tsutomu Murakami


    Full Text Available Together with the Gag protein, the Env glycoprotein is a major retroviral structural protein and is essential for forming infectious virus particles. Env is synthesized, processed, and transported to certain microdomains at the plasma membrane and takes advantage of the same host machinery for its trafficking as that used by cellular glycoproteins. Incorporation of Env into progeny virions is probably mediated by the interaction between Env and Gag, in some cases with the additional involvement of certain host factors. Although several general models have been proposed to explain the incorporation of retroviral Env glycoproteins into virions, the actual mechanism for this process is still unclear, partly because structural data on the Env protein cytoplasmic tail is lacking. This paper presents the current understanding of the synthesis, trafficking, and virion incorporation of retroviral Env proteins.

  7. Square-wave voltammetry assays for glycoproteins on nanoporous gold (United States)

    Pandey, Binod; Bhattarai, Jay K.; Pornsuriyasak, Papapida; Fujikawa, Kohki; Catania, Rosa; Demchenko, Alexei V.; Stine, Keith J.


    Electrochemical enzyme-linked lectinsorbent assays (ELLA) were developed using nanoporous gold (NPG) as a solid support for protein immobilization and as an electrode for the electrochemical determination of the product of the reaction between alkaline phosphatase (ALP) and p-aminophenyl phosphate (p-APP), which is p-aminophenol (p-AP). Glycoproteins or concanavalin A (Con A) and ALP conjugates were covalently immobilized onto lipoic acid self-assembled monolayers on NPG. The binding of Con A – ALP (or soybean agglutinin – ALP) conjugate to glycoproteins covalently immobilized on NPG and subsequent incubation with p-APP substrate was found to result in square-wave voltammograms whose peak difference current varied with the identity of the glycoprotein. NPG presenting covalently bound glycoproteins was used as the basis for a competitive electrochemical assay for glycoproteins in solution (transferrin and IgG). A kinetic ELLA based on steric hindrance of the enzyme-substrate reaction and hence reduced enzymatic reaction rate after glycoprotein binding is demonstrated using immobilized Con A–ALP conjugates. Using the immobilized Con A-ALP conjugate, the binding affinity of immunoglobulin G (IgG) was found to be 105 nM, and that for transferrin was found to be 650 nM. Minimal interference was observed in the presence of 5 mg mL−1 BSA as a model serum protein in both the kinetic and competitive ELLA. Inhibition studies were performed with methyl D-mannoside for the binding of TSF and IgG to Con A-ALP; IC50 values were found to be 90 μM and 286 μM, respectively. Surface coverages of proteins were estimated using solution depletion and the BCA protein concentration assay. PMID:24611035

  8. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Powell, F; Edman, J C;


    this antigen is a good candidate for development as a vaccine to prevent or control P. carinii infection. We have cloned and sequenced seven related but unique genes encoding the major surface glycoprotein of rat P. carinii. Partial amino acid sequencing confirmed the identity of these genes. Based on Southern...... hydrophobic region at the carboxyl terminus. The presence of multiple related msg genes encoding the major surface glycoprotein of P. carinii suggests that antigenic variation is a possible mechanism for evading host defenses. Further characterization of this family of genes should allow the development...

  9. A Functional Henipavirus Envelope Glycoprotein Pseudotyped Lentivirus Assay System

    Directory of Open Access Journals (Sweden)

    Broder Christopher C


    Full Text Available Abstract Background Hendra virus (HeV and Nipah virus (NiV are newly emerged zoonotic paramyxoviruses discovered during outbreaks in Queensland, Australia in 1994 and peninsular Malaysia in 1998/9 respectively and classified within the new Henipavirus genus. Both viruses can infect a broad range of mammalian species causing severe and often-lethal disease in humans and animals, and repeated outbreaks continue to occur. Extensive laboratory studies on the host cell infection stage of HeV and NiV and the roles of their envelope glycoproteins have been hampered by their highly pathogenic nature and restriction to biosafety level-4 (BSL-4 containment. To circumvent this problem, we have developed a henipavirus envelope glycoprotein pseudotyped lentivirus assay system using either a luciferase gene or green fluorescent protein (GFP gene encoding human immunodeficiency virus type-1 (HIV-1 genome in conjunction with the HeV and NiV fusion (F and attachment (G glycoproteins. Results Functional retrovirus particles pseudotyped with henipavirus F and G glycoproteins displayed proper target cell tropism and entry and infection was dependent on the presence of the HeV and NiV receptors ephrinB2 or B3 on target cells. The functional specificity of the assay was confirmed by the lack of reporter-gene signals when particles bearing either only the F or only G glycoprotein were prepared and assayed. Virus entry could be specifically blocked when infection was carried out in the presence of a fusion inhibiting C-terminal heptad (HR-2 peptide, a well-characterized, cross-reactive, neutralizing human mAb specific for the henipavirus G glycoprotein, and soluble ephrinB2 and B3 receptors. In addition, the utility of the assay was also demonstrated by an examination of the influence of the cytoplasmic tail of F in its fusion activity and incorporation into pseudotyped virus particles by generating and testing a panel of truncation mutants of NiV and HeV F

  10. Structure of a trimeric variant of the Epstein–Barr virus glycoprotein B



    Epstein–Barr virus (EBV) is a herpesvirus that is associated with development of malignancies of lymphoid tissue. EBV infections are life-long and occur in >90% of the population. Herpesviruses enter host cells in a process that involves fusion of viral and cellular membranes. The fusion apparatus is comprised of envelope glycoprotein B (gB) and a heterodimeric complex made of glycoproteins H and L. Glycoprotein B is the most conserved envelope glycoprotein in human herpesviruses, and the str...

  11. Structural and quantitative comparison of cerebrospinal fluid glycoproteins in Alzheimer's disease patients and healthy individuals.

    NARCIS (Netherlands)

    Sihlbom, C.; Davidsson, P.; Sjogren, M.; Wahlund, L.O.; Nilsson, C.L.


    Glycoproteins in cerebrospinal fluid (CSF) are altered in Alzheimer's Disease (AD) patients compared to control individuals. We have utilized albumin depletion prior to 2D gel electrophoresis to enhance glycoprotein concentration for image analysis as well as structural glycoprotein determination wi

  12. Magnetic enzyme reactors for isolation and study of heterogeneous glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Korecka, Lucie [Department of Analytical Chemistry, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic)]. E-mail:; Jezova, Jana [Department of Analytical Chemistry, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Bilkova, Zuzana [Department of Biological and Biochemical Sciences, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Benes, Milan [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho Namesti 2, 162 06 Prague (Czech Republic); Horak, Daniel [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho Namesti 2, 162 06 Prague (Czech Republic); Hradcova, Olga [Department of Biological and Biochemical Sciences, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Slovakova, Marcela [Department of Biological and Biochemical Sciences, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Laboratoire Physicochimie Curie, UMR 168 CNRS/Institute Curie, Paris Cedex 05 (France); Viovy, Jean-Louis [Laboratoire Physicochimie Curie, UMR 168 CNRS/Institute Curie, Paris Cedex 05 (France)


    The newly developed magnetic micro- and nanoparticles with defined hydrophobicity and porosity were used for the preparation of magnetic enzyme reactors. Magnetic particles with immobilized proteolytic enzymes trypsin, chymotrypsin and papain and with enzyme neuraminidase were used to study the structure of heterogeneous glycoproteins. Factors such as the type of carrier, immobilization procedure, operational and storage stability, and experimental conditions were optimized.

  13. Determination of site-specific glycan heterogeneity on glycoproteins

    DEFF Research Database (Denmark)

    Kolarich, Daniel; Jensen, Pia Hønnerup; Altmann, Friedrich;


    and their site-specific heterogeneity, showing examples of the analysis of recombinant human erythropoietin (rHuEPO), α1-proteinase inhibitor (A1PI) and immunoglobulin (IgG). Glycoproteins of interest can be proteolytically digested either in solution or in-gel after electrophoretic separation, and the (glyco...

  14. Glycoprotein Ibalpha signalling in platelet apoptosis and clearance

    NARCIS (Netherlands)

    van der Wal, E.


    Storage of platelets at low temperature reduces bacterial growth and might better preserve the haemostatic function of platelets than current procedures. Incubation at 0C is known to expose ?-N-acetyl-D-glucosamine-residues on glycoprotein (GP)Ibalpha inducing receptor-clustering and platelet destru

  15. Engineered CHO cells for production of diverse, homogeneous glycoproteins

    DEFF Research Database (Denmark)

    Yang, Zhang; Wang, Shengjun; Halim, Adnan;


    genes controlling N-glycosylation in CHO cells and constructed a design matrix that facilitates the generation of desired glycosylation, such as human-like alpha 2,6-linked sialic acid capping. This engineering approach will aid the production of glycoproteins with improved properties and therapeutic...

  16. Glycoprotein Ibα clustering in platelet storage and function

    NARCIS (Netherlands)

    Gitz, E.


    Platelets are anucleated, discoid-shaped cells that play an essential role in the formation of a hemostatic plug to prevent blood loss from injured vessels. Initial platelet arrest at the damaged arterial vessel wall is mediated through the interaction between the platelet receptor glycoprotein (GP)

  17. Glycoprotein expression by adenomatous polyps of the colon (United States)

    Roney, Celeste A.; Xie, Jianwu; Xu, Biying; Jabour, Paul; Griffiths, Gary; Summers, Ronald M.


    Colon cancer is the second leading cause of cancer related deaths in the United States. Specificity in diagnostic imaging for detecting colorectal adenomas, which have a propensity towards malignancy, is desired. Adenomatous polyp specimens of the colon were obtained from the mouse model of colorectal cancer called adenomatous polyposis coli-multiple intestinal neoplasia (APC Min). Histological evaluation, by the legume protein Ulex europaeus agglutinin I (UEA-1), determined expression of the glycoprotein α-L-fucose. FITC-labelled UEA-1 confirmed overexpression of the glycoprotein by the polyps on fluorescence microscopy in 17/17 cases, of which 13/17 included paraffin-fixed mouse polyp specimens. In addition, FITC-UEA-1 ex vivo multispectral optical imaging of 4/17 colonic specimens displayed over-expression of the glycoprotein by the polyps, as compared to non-neoplastic mucosa. Here, we report the surface expression of α-L-fucosyl terminal residues by neoplastic mucosal cells of APC specimens of the mouse. Glycoprotein expression was validated by the carbohydrate binding protein UEA-1. Future applications of this method are the development of agents used to diagnose cancers by biomedical imaging modalities, including computed tomographic colonography (CTC). UEA-1 targeting to colonic adenomas may provide a new avenue for the diagnosis of colorectal carcinoma by CT imaging.

  18. Folding of viral envelope glycoproteins in the endoplasmic reticulum

    NARCIS (Netherlands)

    Braakman, L.J.; Anken, E. van


    Viral glycoproteins fold and oligomerize in the endoplasmic reticulum of the host cell. They employ the cellular machinery and receive assistance from cellular folding factors. During the folding process, they are retained in the compartment and their structural quality is checked by the quality con

  19. Spinosad is a potent inhibitor of canine P-glycoprotein

    NARCIS (Netherlands)

    Schrickx, Johannes A


    Inhibition of the drug transporter P-glycoprotein (P-gp) by the oral flea preventative spinosad has been suggested as the underlying cause of the drug-drug interaction with ivermectin. In this study, an in vitro model consisting of canine cells was validated to describe the inhibitory effect of drug

  20. beta(2)-Glycoprotein I : evolution, structure and function

    NARCIS (Netherlands)

    de Groot, P. G.; Meijers, J. C. M.


    beta(2)-Glycoprotein I (beta(2)-GPI) is a protein that circulates in blood at high concentrations. The function of beta(2)-GPI has long been an enigma. More than 20 years ago, it was discovered that beta(2)-GPI is the major antigen for the circulating antibodies in the antiphospholipid syndrome. How

  1. Platelet receptor expression and shedding: glycoprotein Ib-IX-V and glycoprotein VI. (United States)

    Gardiner, Elizabeth E; Andrews, Robert K


    Quantity, quality, and lifespan are 3 important factors in the physiology, pathology, and transfusion of human blood platelets. The aim of this review is to discuss the proteolytic regulation of key platelet-specific receptors, glycoprotein(GP)Ib and GPVI, involved in the function of platelets in hemostasis and thrombosis, and nonimmune or immune thrombocytopenia. The scope of the review encompasses the basic science of platelet receptor shedding, practical aspects related to laboratory analysis of platelet receptor expression/shedding, and clinical implications of using the proteolytic fragments as platelet-specific biomarkers in vivo in terms of platelet function and clearance. These topics can be relevant to platelet transfusion regarding both changes in platelet receptor expression occurring ex vivo during platelet storage and/or clinical use of platelets for transfusion. In this regard, quantitative analysis of platelet receptor profiles on blood samples from individuals could ultimately enable stratification of bleeding risk, discrimination between causes of thrombocytopenia due to impaired production vs enhanced clearance, and monitoring of response to treatment prior to change in platelet count.

  2. UG311, An Oncofetal Marker Lost with Prostate Cancer Progression (United States)


    are focusing on the cloning of the UC311 paralog by RACE and phage library screening A lambda ZAP library has been constructed from C4-2 cells to screen for paralogous clones. RACE assays are underway.

  3. Comparison of glycoprotein expression between ovarian and colon adenocarcinomas

    DEFF Research Database (Denmark)

    Multhaupt, H A; Arenas-Elliott, C P; Warhol, M J


    OBJECTIVE: Tumor-associated antigens may be expressed as surface glycoproteins. These molecules undergo qualitative and quantitative modifications during cell differentiation and malignant transformation. During malignant transformation, incomplete glycosylation is common, and certain glycosylation...... pathways are preferred. These antigens might help distinguish between ovarian and colonic adenocarcinomas in the primary and metastatic lesions. Different cytokeratins have been proposed as relatively organ-specific antigens. DESIGN: We used monoclonal antibodies against T1, Tn, sialosyl-Tn, B72.3, CA125......, carcinoembryonic antigen, and cytokeratins 7 and 20 to detect tumor-associated glycoproteins and keratin proteins in ovarian and colonic carcinomas. RESULTS: CA125, carcinoembryonic antigen, and cytokeratins 7 and 20 can distinguish between colonic and serous or endometrioid adenocarcinomas of the ovary in both...


    Directory of Open Access Journals (Sweden)

    R. N. Bogdanovich


    Full Text Available Abstract. The level of trophoblastic β1 – glycoprotein (SP–1 was determined in the blood sera of 200 healthy pregnant women and 184 women with threatened abortions in term till 20 weeks of pregnancy. In group of women experiencing recurrent abortions in 38 % cases antibodies to chorionic gonadotropin, in 39,5 % cases antibodies to phospholipids, in 25,5 % – antibodies to tireoglobulin were revealed in significant amounts. In 20,65 % lupus anticoagulant was found. The majority of women in this group had changes in homeostasis. The presence of autoantibodies during pregnancy is the unfavourable factor in the development of placental insufficiency. This is proved by the decreased secretion of trophoblastic β1 – glycoprotein – a marker of the fetal part of placenta. (Med. Immunol., 2005, vol.7, № 1, pp. 85588

  5. Incorporation of Spike and Membrane Glycoproteins into Coronavirus Virions

    Directory of Open Access Journals (Sweden)

    Makoto Ujike


    Full Text Available The envelopes of coronaviruses (CoVs contain primarily three proteins; the two major glycoproteins spike (S and membrane (M, and envelope (E, a non-glycosylated protein. Unlike other enveloped viruses, CoVs bud and assemble at the endoplasmic reticulum (ER-Golgi intermediate compartment (ERGIC. For efficient virion assembly, these proteins must be targeted to the budding site and to interact with each other or the ribonucleoprotein. Thus, the efficient incorporation of viral envelope proteins into CoV virions depends on protein trafficking and protein–protein interactions near the ERGIC. The goal of this review is to summarize recent findings on the mechanism of incorporation of the M and S glycoproteins into the CoV virion, focusing on protein trafficking and protein–protein interactions.

  6. Rheologic studies on middle ear effusions and their mucus glycoproteins. (United States)

    FitzGerald, J E; Green, G G; Birchall, J P; Pearson, J P


    The properties of pooled thick and thin middle ear effusions, from children with otitis media with effusion, were studied by viscometry. Mucus glycoproteins were responsible for effusion viscosity. Their percentage by weight in thick and thin effusions was 25% and 8.2%, respectively. N-acetylcysteine and 0.2 mol/L of mercaptoethanol caused a 39% viscosity drop in a 5-mg/mL glycoprotein solution, whereas S-carboxymethylcysteine had no effect. Treatment of thick effusions with 0.2 mol/L of mercaptoethanol initially caused a viscosity decrease followed by a gradual increase. Higher reducing agent concentrations (0.5 mol/L) caused a more rapid decrease followed by a rapid increase, presumably by causing nonspecific aggregation of reduced protein molecules. These results suggest that the concentration of and the time that a mucolytic is in the middle ear would be of prime importance in achieving the desired decrease in viscosity.

  7. An analysis of amino acid sequences surrounding archaeal glycoprotein sequons


    Mehtap Abu-Qarn; Jerry Eichler


    Despite having provided the first example of a prokaryal glycoprotein, little is known of the rules governing the N-glycosylation process in Archaea. As in Eukarya and Bacteria, archaeal N-glycosylation takes place at the Asn residues of Asn-X-Ser/Thr sequons. Since not all sequons are utilized, it is clear that other factors, including the context in which a sequon exists, affect glycosylation efficiency. As yet, t...

  8. Method for analysing glycoprotein isoforms by capillary electrophoresis


    Frutos, Mercedes de; Díez-Masa, José Carlos; Morales-Cid, Gabriel


    [EN] The present invention relates to a new method for the purification, concentration, separation and determination of the isoforms of alpha-1-acid glycoprotein (AGP) in human blood serum samples using capillary electrophoresis. The new method is based on the immunocapture and preconcentration of the sample within the separation capillary by using an immunoadsorbent phase magnetically immobilized within the electrophoresis capillary and the subsequent desorption and separation of the glycopr...

  9. A double responsive smart upconversion fluorescence sensing material for glycoprotein. (United States)

    Guo, Ting; Deng, Qiliang; Fang, Guozhen; Yun, Yaguang; Hu, Yongjin; Wang, Shuo


    A novel strategy was developed to prepare double responsive smart upconversion fluorescence material for highly specific enrichment and sensing of glycoprotein. The novel double responsive smart sensing material was synthesized by choosing Horse radish peroxidase (HRP) as modal protein, the grapheme oxide (GO) as support material, upconversion nanoparticles (UCNPs) as fluorescence signal reporter, N-isopropyl acrylamide (NIPAAM) and 4-vinylphenylboronic acid (VPBA) as functional monomers. The structure and component of smart sensing material was investigated by transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared (FTIR), respectively. These results illustrated the smart sensing material was prepared successfully. The recognition characterizations of smart sensing material were evaluated, and results showed that the fluorescence intensity of smart sensing material was reduced gradually, as the concentration of protein increased, and the smart sensing material showed selective recognition for HRP among other proteins. Furthermore, the recognition ability of the smart sensing material for glycoprotein was regulated by controlling the pH value and temperature. Therefore, this strategy opens up new way to construct smart material for detection of glycoprotein.

  10. Glycoprotein fucosylation is increased in seminal plasma of subfertile men

    Directory of Open Access Journals (Sweden)

    Beata Olejnik


    Full Text Available Fucose, the monosaccharide frequent in N- and O-glycans, is a part of Lewis-type antigens that are known to mediate direct sperm binding to the zona pellucida. Such interaction was found to be inhibited in vitroby fucose-containing oligo- and polysaccharides, as well as neoglycoproteins. The objective of this study was to screen seminal plasma proteins of infertile/subfertile men for the content and density of fucosylated glycoepitopes, and compare them to samples of fertile normozoospermic subjects. Seminal proteins were separated in polyacrylamide gel electrophoresis and blotted onto nitrocellulose membrane and probed with fucose-specific Aleuria aurantia lectin (AAL. Twelve electrophoretic bands were selected for quantitative densitometric analysis. It was found that the content, and especially the density of fucosylated glycans, were higher in glycoproteins present in seminal plasma of subfertile men. No profound differences in fucosylation density were found among the groups of normozoospermic, oligozoospermic, asthenozoospermic, and oligoasthenozoospermic subfertile men. According to the antibody probing, AAL-reactive bands can be attributed to male reproductive tract glycoproteins, including prostate-specific antigen, prostatic acid phosphatase, glycodelin and chorionic gonadotropin. Fibronectin, α1 -acid glycoprotein, α1 -antitrypsin, immunoglobulin G and antithrombin III may also contribute to this high fucosylation. It is suggested that the abundant fucosylated glycans in the sperm environment could interfere with the sperm surface and disturb the normal course of the fertilization cascade.

  11. Platelet membrane glycoproteins and their function: an overview. (United States)

    Kunicki, T J


    The membrane glycoproteins (GP) of human platelets act as receptors that mediate two important functions, adhesion to the subendothelial matrix and platelet-platelet cohesion, or aggregation. Many of these glycoprotein receptors exist as noncovalently linked heterodimers, including those that belong to the supergene family of adhesion receptors called the integrins. Human platelets contain at least five members of this integrin family, including a collagen receptor (GP Ia-IIa; alpha 2, beta 1), a fibronectin receptor (GP Ic-IIa; alpha 5, beta 1), a laminin receptor (GP Ic'-IIa; alpha 6, beta 1), a vitronectin receptor (VnR; alpha v, beta 3), and a promiscuous, activation-dependent receptor that is thought to be the receptor most responsible for fibrinogen-dependent, platelet-platelet cohesion (GP IIb-IIIa; alpha IIb, beta 3). Some, but not all, of the integrins bind to a tripeptide sequence, arginine-glycine-aspartic acid (RGD), on the adhesive proteins. In addition to the integrins, platelets contain other membrane glyco-proteins: GP Ib-IX, a receptor for von Willebrand factor, which is thought to be the receptor most responsible for platelet adhesion to the subendothelial matrix in a flowing system; GP V, which may be associated with GP Ib-IX and whose function remains unknown; and GP IV (GP IIIb), which functions as a receptor for thrombospondin and collagen.

  12. Australine, a pyrrolizidine alkaloid that inhibits amyloglucosidase and glycoprotein processing

    Energy Technology Data Exchange (ETDEWEB)

    Tropea, J.E.; Molyneux, R.J.; Kaushal, G.P.; Pan, Y.T.; Mitchell, M.; Elbein, A.D. (Univ. of Texas Health Science Center, San Antonio (USA))


    Australine is a polyhydroxylated pyrrolizidine alkaloid that was isolated from the seeds of the Australian tree Castanospermum australe and characterized by NMR and X-ray diffraction analysis. Since swainsonine and catanospermine are polyhydroxylated indolizidine alkaloids that inhibit specific glycosidases, the authors tested australine against a variety of exoglycosidases to determine whether it would inhibit any of these enzymes. This alkaloid proved to be a good inhibitor of the {alpha}-glucosidase amyloglucosidase (50% inhibition at 5.8 {mu}M), but it did not inhibit {beta}-glucosidase, {alpha}- or {beta}-mannosidase, or {alpha}- or {beta}-galactosidase. The inhibition of amyloglucosidase was of a competitive nature. Australine also inhibited the glycoprotein processing enzyme glucosidase I, but had only slight activity toward glucosidase II. When incubated with cultured cells, this alkaloid inhibited glycoprotein processing at the glucosidase I step and caused the accumulation of glycoproteins with Glc{sub 3}Man{sub 7-9}(GlcNAc){sub 2}-oligosaccharides.

  13. Characterization of an estrogen-induced oviduct membrane glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Poola, I.; Lucas, J.J.


    During estrogen-induced chick oviduct differentiation a number of N-linked membrane glycoproteins are induced as judged by GDP-(/sup 14/C)Man labeling of endogenous acceptors, /sup 125/I-con A labeling as well as coomassie blue and PAS staining of SDS polyacrylamide gels. The authors have begun to characterize one of these glycoproteins having an M/sub r/ of 91 KDa. The protein has been purified via preparative SDS-PAGE and electroelution. The purified protein migrates as a single band on analytical SDS-PAGE and comigrates with an endogenous membrane glycoprotein labeled with GDP-(/sup 14/C)Man. Amino acid analysis indicates a high proportion of GLU and ASP residues (110 and 66 moles respectively). N-terminal sequence analysis by gas phase instrumentation yielded the following: X-X-VAL-ASP-VAL-ASP-ALA-THR-VAL-GLU-GLU-ASP-GLU. The protein contains about 2% neutral sugar including 6 mol Man, 2 mol Gal, 1 mol Fuc, 4 mol GlcNAc, 1 mol GalNAc and 1 mol sialic acid per mole of protein. The presence of the GalNAc residue suggests the protein contains an O-linked oligosaccharide moiety in addition to the N-linked chain(s). The detailed structure of the carbohydrate moieties is currently under investigation.

  14. Role of sialidase in glycoprotein utilization by Tannerella forsythia. (United States)

    Roy, Sumita; Honma, Kiyonobu; Douglas, C W Ian; Sharma, Ashu; Stafford, Graham P


    The major bacterial pathogens associated with periodontitis include Tannerella forsythia. We previously discovered that sialic acid stimulates biofilm growth of T. forsythia, and that sialidase activity is key to utilization of sialoconjugate sugars and is involved in host-pathogen interactions in vitro. The aim of this work was to assess the influence of the NanH sialidase on initial biofilm adhesion and growth in experiments where the only source of sialic acid was sialoglycoproteins or human oral secretions. After showing that T. forsythia can utilize sialoglycoproteins for biofilm growth, we showed that growth and initial adhesion with sialylated mucin and fetuin were inhibited two- to threefold by the sialidase inhibitor oseltamivir. A similar reduction (three- to fourfold) was observed with a nanH mutant compared with the wild-type. Importantly, these data were replicated using clinically relevant serum and saliva samples as substrates. In addition, the ability of the nanH mutant to form biofilms on glycoprotein-coated surfaces could be restored by the addition of purified NanH, which we show is able to cleave sialic acid from the model glycoprotein fetuin and, much less efficiently, 9-O-acetylated bovine submaxillary mucin. These data show for the first time that glycoprotein-associated sialic acid is likely to be a key in vivo nutrient source for T. forsythia when growing in a biofilm, and suggest that sialidase inhibitors might be useful adjuncts in periodontal therapy.

  15. Expression of the glycoprotein gene from a fish rhabdovirus by using baculovirus vectors

    Energy Technology Data Exchange (ETDEWEB)

    Koener, J.F.; Leong, J.A.C. (Oregon State Univ., Corvallis (United States))


    A cDNA fragment containing the gene encoding the glycoprotein of infectious hematopoietic necrosis virus was inserted into Autographa californica baculovirus vectors under the control of the polyhedrin promoter. A 66-kilodalton protein, identical in size to the glycosylated glycoprotein of infectious hematopoietic necrosis virus, was expressed at high levels in Spodoptera frugiperda cells infected with the recombinant viruses. The expressed protein reacted with antiserum to the glycoprotein on Western blots.

  16. Monensin and FCCP inhibit the intracellular transport of alphavirus membrane glycoproteins


    Kaariainen, L; Hashimoto, K.; Saraste, J; Virtanen, I; Penttinen, K


    Temperature-sensitive mutants of semliki forest virus (SFV) and sindbis virus (SIN) were used to study the intracellular transport of virus membrane glycoproteins in infected chicken embryo fibroblasts. When antisera against purified glycoproteins and (125)I- labeled protein A from staphylococcus aureus were used only small amounts of virus glycoproteins were detected at the surface of SFV ts-1 and SIN Ts-10 infected cells incubated at the restrictive temperature (39 degrees C). When the muta...

  17. Identification and antigenicity of the major envelope glycoprotein of lymphadenopathy-associated virus

    Energy Technology Data Exchange (ETDEWEB)

    Montagnier, L.; Clavel, F.; Krust, B.; Chamaret, S.; Rey, F.; Barre-Sinoussi, F.; Chermann, J.C.


    The major envelope glycoprotein of the causative agent of Acquired Immune Deficiency Syndrome (AIDS) lymphadenopathy-associated virus (LAV) has been identified and characterized. The glycoprotein has an apparent molecular weight of 110,000-120,000 under denaturing conditions in polyacrylamide gel electrophoresis. Upon deglycosylation by a specific endoglycosydase, its size is reduced to 80,000. Cellular precursors of this glycoprotein have been detected with apparent molecular weight of 150,000 and 135,000. Nearly all AIDS and pre-AIDS patients have detectable antibodies against this viral glycoprotein.

  18. Monensin and FCCP inhibit the intracellular transport of alphavirus membrane glycoproteins. (United States)

    Kääriäinen, L; Hashimoto, K; Saraste, J; Virtanen, I; Penttinen, K


    Temperature-sensitive mutants of semliki forest virus (SFV) and sindbis virus (SIN) were used to study the intracellular transport of virus membrane glycoproteins in infected chicken embryo fibroblasts. When antisera against purified glycoproteins and (125)I- labeled protein A from staphylococcus aureus were used only small amounts of virus glycoproteins were detected at the surface of SFV ts-1 and SIN Ts-10 infected cells incubated at the restrictive temperature (39 degrees C). When the mutant-infected cells were shifted to the permissive temperature (28 degrees C), in the presence of cycloheximide, increasing amounts of virus glycoproteins appeared at the cell surface from 20 to 80 min after the shift. Both monensin (10muM) and carbonylcyanide-p- trifluoromethoxyphenylhydrazone (FCCP; 10-20 muM) inhibited the appearance of virus membrane glycoproteins at the cell surface. Vinblastine sulfate (10 mug/ml) inhibited the transport by approximately 50 percent, whereas cytochalasin B (1 mug/ml) had only a marginal effect. Intracellular distribution of virus glycoproteins in the mutant-infected cells was visualized in double-fluorescence studies using lectins as markers for endoplasmic reticulum and Golgi apparatus. At 39 degrees C, the virus membrane glycoproteins were located at the endoplasmic reticulum, whereas after shift to 28 degrees C, a bright juxtanuclear reticular fluorescence was seen in the location of the Golgi apparatus. In the presence of monensin, the virus glycoproteins could migrate to the Golgi apparatus, although transport to the cell surface did not take place. When the shift was carried out in the presence of FCCP, negligible fluorescence was seen in the Golgi apparatus and the glycoproteins apparently remained in the rough endoplasmic reticulum. A rapid inhibition in the accumulation of virus glycoproteins at the cell surface was obtained when FCCP was added during the active transport period, whereas with monensin there was a delay of

  19. Characterization of monomeric intermediates during VSV glycoprotein structural transition.

    Directory of Open Access Journals (Sweden)

    Aurélie A Albertini


    Full Text Available Entry of enveloped viruses requires fusion of viral and cellular membranes, driven by conformational changes of viral glycoproteins. Crystal structures provide static pictures of pre- and post-fusion conformations of these proteins but the transition pathway remains elusive. Here, using several biophysical techniques, including analytical ultracentrifugation, circular dichroïsm, electron microscopy and small angle X-ray scattering, we have characterized the low-pH-induced fusogenic structural transition of a soluble form of vesicular stomatitis virus (VSV glycoprotein G ectodomain (G(th, aa residues 1-422, the fragment that was previously crystallized. While the post-fusion trimer is the major species detected at low pH, the pre-fusion trimer is not detected in solution. Rather, at high pH, G(th is a flexible monomer that explores a large conformational space. The monomeric population exhibits a marked pH-dependence and adopts more elongated conformations when pH decreases. Furthermore, large relative movements of domains are detected in absence of significant secondary structure modification. Solution studies are complemented by electron micrographs of negatively stained viral particles in which monomeric ectodomains of G are observed at the viral surface at both pH 7.5 and pH 6.7. We propose that the monomers are intermediates during the conformational change and thus that VSV G trimers dissociate at the viral surface during the structural transition.

  20. Interaction of native and asialo rat sublingual glycoproteins with lectins. (United States)

    Wu, A M; Herp, A; Song, S C; Wu, J H; Chang, K S


    The binding properties of the rat sublingual glycoprotein (RSL) and its asialo product with lectins were characterized by quantitative precipitin(QPA) and precipitin inhibition(QPIA) assays. Among twenty lectins tested for QPA, native RSL reacted well only with Artocarpus integrifolia (jacalin), but weakly or not at all with the other lectins. However, its asialo product (asialo-RSL) reacted strongly with many Gal and GalNAc specific lectins-it bound best to three of the GalNAc alpha 1-->Ser/Thr (Tn) and/or Gal beta 1-->4GlcNAc (II) active lectins [jacalin, Wistaria floribunda and Ricinus communis agglutinins] and completely precipitated each of these three lectins. Asialo-RSL also reacted well with Abrus precatorius, Glycine max, Bauhinia purpurea alba, and Maclura pomifera agglutinins, and abrin-a, but not with Arachis hypogeae and Dolichos biflorus agglutinins. The interaction between asialo-RSL and lectins were inhibited by either Gal beta 1-->4GlcNAc, p-NO2-phenyl alpha-GalNAc or both. The mapping of the precipitation and inhibition profiles leads to the conclusion that the asialo rat sublingual glycoprotein provides important ligands for II (Gal beta 1-->4GlcNAc beta 1-->) and Tn (GalNAc alpha 1-->Ser/Thr) active lectins.

  1. Surface Glycoproteins of Exosomes Shed by Myeloid-Derived Suppressor Cells Contribute to Function. (United States)

    Chauhan, Sitara; Danielson, Steven; Clements, Virginia; Edwards, Nathan; Ostrand-Rosenberg, Suzanne; Fenselau, Catherine


    In this report, we use a proteomic strategy to identify glycoproteins on the surface of exosomes derived from myeloid-derived suppressor cells (MDSCs), and then test if selected glycoproteins contribute to exosome-mediated chemotaxis and migration of MDSCs. We report successful modification of a surface chemistry method for use with exosomes and identify 21 surface N-glycoproteins on exosomes released by mouse mammary carcinoma-induced MDSCs. These glycoprotein identities and functionalities are compared with 93 N-linked glycoproteins identified on the surface of the parental cells. As with the lysate proteomes examined previously, the exosome surface N-glycoproteins are primarily a subset of the glycoproteins on the surface of the suppressor cells that released them, with related functions and related potential as therapeutic targets. The "don't eat me" molecule CD47 and its binding partners thrombospondin-1 (TSP1) and signal regulatory protein α (SIRPα) were among the surface N-glycoproteins detected. Functional bioassays using antibodies to these three molecules demonstrated that CD47, TSP1, and to a lesser extent SIRPα facilitate exosome-mediated MDSC chemotaxis and migration.

  2. Structural analysis of N- and O-glycans released from glycoproteins

    DEFF Research Database (Denmark)

    Jensen, Pia Hønnerup; Karlsson, Niclas G; Kolarich, Daniel;


    This protocol shows how to obtain a detailed glycan compositional and structural profile from purified glycoproteins or protein mixtures, and it can be used to distinguish different isobaric glycan isomers. Glycoproteins are immobilized on PVDF membranes before the N-glycans are enzymatically...

  3. Investigating the biomarker potential of glycoproteins using comparative glycoprofiling - application to tissue inhibitor of metalloproteinases-1

    DEFF Research Database (Denmark)

    Thøgersen, Ida; Lademann, Ulrik Axel; Offenberg, Hanne Kjær;


    Cancer-induced alterations of protein glycosylations are well-known phenomena. Hence, the glycoprofile of certain glycoproteins can potentially be used as biomarkers for early diagnosis. However, there are a substantial number of candidates and the techniques for measuring their biomarker potential...... tool for biomarker investigation of low-abundant glycoproteins....

  4. Histochemical and structural analysis of mucous glycoprotein secreted by the gill of Mytilus edulis

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hae-Young.


    Studies were carried out to characterized various mucous cells in the gill filament, to ascertain structural characteristics of the secreted mucous glycoproteins, and to determine the ability of the gill epithelium to incorporate ({sup 14}C)glucosamine as a precursor in the biosynthesis and secretion of mucous glycoproteins. Using histochemical staining techniques, mucous cells containing neutral and acidic mucins were found in the lateral region, whereas mucous cells containing primarily neutral or sulfated mucins were found in the postlateral region. Serotonin, but not dopamine, stimulated the mucous secretion. In tissues pretreated with ({sup 14}C)glucosamine, the secreted glycoproteins contain incorporated radiolabel. Analysis by column chromatography using Bio-Gel P-2 and P-6 shows that the secretion contains two glycoprotein populations. Glycoprotein II has a molecular weight of 2.3 {times} 10{sup 4} daltons. Upon alkaline reductive borohydride cleavage of the O-glycosidic linkages of glycoprotein I, about 70% of the radiolabel was removed from the protein. Gas chromatographic analysis of the carbohydrate composition shows that the glycoproteins contains N-acetylglucosamine (GluNAc), N-acetylgalactosamine (GalNAc), and galactose, fucose and mannose. Amino acid analysis shows that the glycoproteins are rich in serine, threonine and proline.

  5. Characterization of Lassa virus glycoprotein oligomerization and influence of cholesterol on virus replication. (United States)

    Schlie, Katrin; Maisa, Anna; Lennartz, Frank; Ströher, Ute; Garten, Wolfgang; Strecker, Thomas


    Mature glycoprotein spikes are inserted in the Lassa virus envelope and consist of the distal subunit GP-1, the transmembrane-spanning subunit GP-2, and the signal peptide, which originate from the precursor glycoprotein pre-GP-C by proteolytic processing. In this study, we analyzed the oligomeric structure of the viral surface glycoprotein. Chemical cross-linking studies of mature glycoprotein spikes from purified virus revealed the formation of trimers. Interestingly, sucrose density gradient analysis of cellularly expressed glycoprotein showed that in contrast to trimeric mature glycoprotein complexes, the noncleaved glycoprotein forms monomers and oligomers spanning a wide size range, indicating that maturation cleavage of GP by the cellular subtilase SKI-1/S1P is critical for formation of the correct oligomeric state. To shed light on a potential relation between cholesterol and GP trimer stability, we performed cholesterol depletion experiments. Although depletion of cholesterol had no effect on trimerization of the glycoprotein spike complex, our studies revealed that the cholesterol content of the viral envelope is important for the infectivity of Lassa virus. Analyses of the distribution of viral proteins in cholesterol-rich detergent-resistant membrane areas showed that Lassa virus buds from membrane areas other than those responsible for impaired infectivity due to cholesterol depletion of lipid rafts. Thus, derivation of the viral envelope from cholesterol-rich membrane areas is not a prerequisite for the impact of cholesterol on virus infectivity.

  6. Glycoproteins from sugarcane plants regulate cell polarity of Ustilago scitaminea teliospores. (United States)

    Millanes, Ana-María; Fontaniella, Blanca; Legaz, María-Estrella; Vicente, Carlos


    Saccharum officinarum, cv. Mayarí, is a variety of sugarcane resistant to smut disease caused by Ustilago scitaminea. Sugarcane naturally produces glycoproteins that accumulate in the parenchymatous cells of stalks. These glycoproteins contain a heterofructan as polysaccharide moiety. The concentration of these glycoproteins clearly increases after inoculation of sugarcane plants with smut teliospores, although major symptoms of disease are not observed. These glycoproteins induce homotypic adhesion and inhibit teliospore germination. When glycoproteins from healthy, non-inoculated plants are fractionated, they inhibit actin capping, which occurs before teliospore germination. However, inoculation of smut teliospores induce glycoprotein fractions that promote teliospore polarity and are different from those obtained from healthy plants. These fractions exhibit arginase activity, which is strongly enhanced in inoculated plants. Arginase from healthy plants binds to cell wall teliospores and it is completely desorpted by sucrose, but only 50% of arginase activity from inoculated plants is desorpted by the disaccharide. The data presented herein are consistent with a model of excess arginase entry into teliospores. Arginase synthesized by sugarcane plants as a response to the experimental infection would increase the synthesis of putrescine, which impedes polarization at concentration values higher than 0.05 mM. However, smut teliospores seem to be able to change the pattern of glycoprotein production by sugarcane, thereby promoting the synthesis of different glycoproteins that activate polarization after binding to their cell wall ligand.

  7. Developmental and mutational changes of glycoproteins in the mouse neuronal retina: studies with bovine galactosyltransferase. (United States)

    Wallenfels, B


    Bovine galactosyltransferase (lactose synthase; EC which catalyzes the transfer of galactose from UDPgalactose to glycoproteins with N-acetylglucosamine as the terminal residue of their oligosaccharide side chains was used to label glycoproteins of mouse retina with [14C]galactose. The glycoproteins were separated by isoelectric focusing in the first dimension and by sodium dodecyl sulfate gel electrophoresis in the second dimension. Their position on the gel was determined by autofluorography. With this method, quantitative as well as qualitative changes in the glycoprotein composition of the neuronal mouse retina during postnatal development were observed. Furthermore, it was found that the photoreceptor loss in mice with retinal degeneration was paralleled by the disappearance of certain glycoprotein bands.

  8. Demethoxycurcumin modulates human P-glycoprotein function via uncompetitive inhibition of ATPase hydrolysis activity. (United States)

    Teng, Yu-Ning; Hsieh, Yow-Wen; Hung, Chin-Chuan; Lin, Hui-Yi


    Curcuminoids are major components of Curcuma longa L., which is widely used as spice in food. This study aimed at identifying whether curcumin, demethoxycurcumin, and bisdemethoxycurcumin could modulate efflux function of human P-glycoprotein and be used as chemosensitizers in cancer treatments. Without altering P-glycoprotein expression levels and conformation, the purified curcuminoids significantly inhibited P-glycoprotein efflux function. In rhodamine 123 efflux and calcein-AM accumulation assays, demethoxycurcumin demonstrated the highest inhibition potency (inhibitory IC50 = 1.56 ± 0.13 μM) among the purified curcuminoids, as well as in the fold of reversal assays. Demethoxycurcumin inhibited P-glycoprotein-mediated ATP hydrolysis under concentrations of P-glycoprotein. These results suggested that demethoxycurcumin may be a potential additive natural product in combination with chemotherapeutic agents in drug-resistant cancers.

  9. Glycoproteins of mouse vaginal epithelium: differential expression related to estrous cyclicity

    DEFF Research Database (Denmark)

    Horvat, B; Multhaupt, H A; Damjanov, I


    We used lectin overlay blotting and SDS-PAGE to analyze the estrous cycle-specific expression of mouse vaginal epithelial glycoproteins. Seven lectins chosen for their differential carbohydrate-binding specificity revealed 15 glycoproteins that showed cycle-related expression. Each lectin had...... a unique binding pattern different from the patterns revealed by other lectins. However, several estrous cycle phase-specific glycoproteins reacted with more than one lectin. The most prominent of these glycoproteins (M(r) 92-95 KD) was weakly expressed in late diestrus and fully expressed only...... in proestrus, coincident with the transformation of two superficial layers of vaginal squamous epithelium into mucinous cuboidal cells. Electron microscopic lectin histochemistry revealed the glycoproteins in the mucinous granules of surface cuboidal cells and in the lumen of the vagina. Our results illustrate...

  10. Loop-acting diuretics do not bind to Tamm-Horsfall urinary glycoprotein. (United States)

    Brunisholz, M C; Lynn, K L; Hunt, J S


    1. Binding between the radiolabelled loop-acting diuretics ([14C]frusemide, [14C]ethacrynic acid and [3H]bumetanide) and human Tamm-Horsfall glycoprotein or human serum albumin in vitro was evaluated by equilibrium dialysis. 2. The diuretic action and binding to urinary Tamm-Horsfall glycoprotein of the radiolabelled diuretics in vivo, after intravenous administration, were examined in rabbits. 3. In vitro, all three radiolabelled diuretics bound strongly to human serum albumin, but not to Tamm-Horsfall glycoprotein. 4. Radiolabelled frusemide and bumetanide, but not ethacrynic acid, caused a diuresis in rabbits, but no binding between the drugs and Tamm-Horsfall glycoprotein was seen in vivo. 5. Binding to Tamm-Horsfall glycoprotein does not appear to be an important mechanism in the action of loop diuretics.

  11. Protective effect of Cardiospermum halicacabum leaf extract on glycoprotein components on STZ-induced hyperglycemic rats

    Institute of Scientific and Technical Information of China (English)

    Chinnadurai Veeramani; Khalid S Al-Numair; Mohammed A Alsaif; Govindasamy Chandramohan; Nouf S Al-Numair; Kodukkur Viswanathan Pugalendi


    Objective: To investigate the protective role of Cardiospermum halicacabum (C. halicacabum) leaf extract on glycoprotein metabolism in streptozotocin (STZ)-induced diabetic rats. Methods:Diabetes was induced in male albino Wistar rats by intraperitonial administration of STZ. TheC. halicacabum leaf extract (CHE) was administered orally to normal and STZ-diabetic rats for 45 days. The effects of C. halicacabum leaf extract (CHE) on plasma and tissue glycoproteins (hexose, hexosamine, fucose and sialic acid) were determined. Results: The levels of plasma and tissues glycoproteins containing hexose, hexosamine and fucose were significantly increased in STZ-induced diabetic rats. In addition, the level of sialic acid significantly increased in plasma and liver while decreased in kidney of STZ-induced diabetic rats. After administration of CHE to diabetic rats, the metabolic alteration of glycoprotein reverted towards normal levels.Conclusions:The present study indicates that the CHE possesses a protective effect on abnormal glycoprotein metabolism in addition to its antihyperglycemic activity.

  12. Novel thermo-responsive fucose binding ligands for glycoprotein purification by affinity precipitation. (United States)

    Arnold, Lindsay; Chen, Rachel


    Novel thermo-responsive affinity sugar binders were developed by fusing a bacterial fucose lectin with a thermo-responsive polypeptide. These designer affinity ligand fusions were produced using an Escherichia coli system capable of extracellular secretion of recombinant proteins and were isolated with a high recovery yield (95%) directly from growth medium by Inverse Temperature Cycling (ITC). With horse radish peroxidase (HRP) as a model protein, we demonstrate here that the designer thermo-responsive ligands are capable of interacting with glycans on a glycoprotein, a property that was used to develop a novel affinity precipitation method for glycoprotein purification. The method, requiring only simple process steps, affords full recovery of a target glycoprotein, and is effective at a target glycoprotein concentration as low as 1.4 pM in the presence of large amounts of contaminants. By developing other sugar binders in the similar fashion, the method should be highly useful for glycoprotein purification and detection.

  13. Production of Highly Sialylated Recombinant Glycoproteins Using Ricinus communis Agglutinin-I-Resistant CHO Glycosylation Mutants. (United States)

    Goh, John S Y; Chan, Kah Fai; Song, Zhiwei


    The degree of sialylation of therapeutic glycoproteins affects its circulatory half-life and efficacy because incompletely sialylated glycoproteins are cleared from circulation by asialoglycoprotein receptors present in the liver cells. Mammalian expression systems, often employed in the production of these glycoprotein drugs, produce heterogeneously sialylated products. Here, we describe how to produce highly sialylated glycoproteins using a Chinese hamster ovary (CHO) cell glycosylation mutant called CHO-gmt4 with human erythropoietin (EPO) as a model glycoprotein. The protocol describes how to isolate and characterize the CHO glycosylation mutants and how to assess the sialylation of the recombinant protein using isoelectric focusing (IEF). It further describes how to inactivate the dihydrofolate reductase (DHFR) gene in these cells using zinc finger nuclease (ZFN) technology to enable gene amplification and the generation of stable cell lines producing highly sialylated EPO.

  14. Binding of soluble glycoproteins from sugarcane juice to cells of Acetobacter diazotrophicus. (United States)

    Legaz, M E; de Armas, R; Barriguete, E; Vicente, C


    Sugarcane produces two different pools of glycoproteins containing a heterofructan as glycidic moiety, tentatively defined as high-molecular mass (HMMG) and mid-molecular mass (MMMG) glycoproteins. Both kinds of glycoproteins can be recovered in sugarcane juice. Fluorescein-labelled glycoproteins are able to bind to Acetobacter diazotrophicus cells, a natural endophyte of sugarcane. This property implies the aggregation of bacterial cells in liquid culture after addition of HMMG or MMMG. Anionic glycoproteins seem to be responsible for the binding activity whereas cationic fraction is not retained on the surface ofA. diazotrophicus. Bound HMMG is competitively desorbed by sucrose whereas MMMG is desorbed by glucosamine or fructose. On this basis, a hypothesis about the discriminatory ability of sugarcane to choose the compatible endophyte from several possible ones is proposed.

  15. The Mechanism of Henipavirus Fusion: Examining the Relationships between the Attachment and Fusion Glycoproteins

    Institute of Scientific and Technical Information of China (English)

    Andrew C. Hickey; Christopher C. Broder


    The henipaviruses, represented by Nipah virus and Hendra virus, are emerging zoonotic viral pathogens responsible for repeated outbreaks associated with high morbidity and mortality in Australia, Southeast Asia, India and Bangladesh. These viruses enter host cells via a class I viral fusion mechanism mediated by their attachment and fusion envelope glycoproteins; efficient membrane fusion requires both these glycoproteins in conjunction with specific virus receptors present on susceptible host cells. The henipavirus attachment glycoprotein interacts with a cellular B class ephrin protein receptor triggering conformational alterations leading to the activation of the viral fusion (F) glycoprotein. The analysis of monoclonal antibody (mAb) reactivity with G has revealed measurable alterations in the antigenic structure of the glycoprotein following its binding interaction with receptor. These observations only appear to occur with full-length native G glycoprotein, which is a tetrameric oligomer, and not with soluble forms of G (sG), which are disulfide-linked dimers. Single amino acid mutations in a heptad repeat-like structure within the stalk domain of G can disrupt its association with F and subsequent membrane fusion promotion activity. Notably, these mutants of G also appear to confer a postreceptor bound conformation implicating the stalk domain as an important element in the G glycoprotein's structure and functional relationship with F. Together, these observations suggest fusion is dependent on a specific interaction between the F and G glycoproteins of the henipaviruses. Further, receptor binding induces measurable changes in the G glycoprotein that appear to be greatest in respect to the interactions between the pairs of dimers comprising its native tetrameric structure. These receptor-induced conformational changes may be associated with the G glycoprotein's promotion of the fusion activity of F.

  16. Effect of reduced renal mass on renal ammonia transporter family, Rh C glycoprotein and Rh B glycoprotein, expression. (United States)

    Kim, Hye-Young; Baylis, Chris; Verlander, Jill W; Han, Ki-Hwan; Reungjui, Sirirat; Handlogten, Mary E; Weiner, I David


    Kidneys can maintain acid-base homeostasis, despite reduced renal mass, through adaptive changes in net acid excretion, of which ammonia excretion is the predominant component. The present study examines whether these adaptations are associated with changes in the ammonia transporter family members, Rh B glycoprotein (Rhbg) and Rh C glycoprotein (Rhcg). We used normal Sprague-Dawley rats and a 5/6 ablation-infarction model of reduced renal mass; control rats underwent sham operation. After 1 wk, glomerular filtration rate, assessed as creatinine clearance, was decreased, serum bicarbonate was slightly increased, and Na(+) and K(+) were unchanged. Total urinary ammonia excretion was unchanged, but urinary ammonia adjusted for creatinine clearance, an index of per nephron ammonia metabolism, increased significantly. Although reduced renal mass did not alter total Rhcg protein expression, both light microscopy and immunohistochemistry with quantitative morphometric analysis demonstrated hypertrophy of both intercalated cells and principal cells in the cortical and outer medullary collecting duct that was associated with increased apical and basolateral Rhcg polarization. Rhbg expression, analyzed using immunoblot analysis, immunohistochemistry, and measurement of cell-specific expression, was unchanged. We conclude that altered subcellular localization of Rhcg contributes to adaptive changes in single-nephron ammonia metabolism and maintenance of acid-base homeostasis in response to reduced renal mass.

  17. Hepatitis C Virus E2 Envelope Glycoprotein Core Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Leopold; Giang, Erick; Nieusma, Travis; Kadam, Rameshwar U.; Cogburn, Kristin E.; Hua, Yuanzi; Dai, Xiaoping; Stanfield, Robyn L.; Burton, Dennis R.; Ward, Andrew B.; Wilson, Ian A.; Law, Mansun


    Hepatitis C virus (HCV), a Hepacivirus, is a major cause of viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV envelope glycoproteins E1 and E2 mediate fusion and entry into host cells and are the primary targets of the humoral immune response. The crystal structure of the E2 core bound to broadly neutralizing antibody AR3C at 2.65 angstroms reveals a compact architecture composed of a central immunoglobulin-fold β sandwich flanked by two additional protein layers. The CD81 receptor binding site was identified by electron microscopy and site-directed mutagenesis and overlaps with the AR3C epitope. The x-ray and electron microscopy E2 structures differ markedly from predictions of an extended, three-domain, class II fusion protein fold and therefore provide valuable information for HCV drug and vaccine design.

  18. Structure of the Epstein-Barr virus major envelope glycoprotein. (United States)

    Szakonyi, Gerda; Klein, Michael G; Hannan, Jonathan P; Young, Kendra A; Ma, Runlin Z; Asokan, Rengasamy; Holers, V Michael; Chen, Xiaojiang S


    Epstein-Barr virus (EBV) infection of B cells is associated with lymphoma and other human cancers. EBV infection is initiated by the binding of the viral envelope glycoprotein (gp350) to the cell surface receptor CR2. We determined the X-ray structure of the highly glycosylated gp350 and defined the CR2 binding site on gp350. Polyglycans shield all but one surface of the gp350 polypeptide, and we demonstrate that this glycan-free surface is the receptor-binding site. Deglycosylated gp350 bound CR2 similarly to the glycosylated form, suggesting that glycosylation is not important for receptor binding. Structure-guided mutagenesis of the glycan-free surface disrupted receptor binding as well as binding by a gp350 monoclonal antibody, a known inhibitor of virus-receptor interactions. These results provide structural information for developing drugs and vaccines to prevent infection by EBV and related viruses.

  19. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase (United States)

    Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.


    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  20. Stereoselective Modulation of P-Glycoprotein by Chiral Small Molecules. (United States)

    Carocci, Alessia; Catalano, Alessia; Turi, Francesco; Lovece, Angelo; Cavalluzzi, Maria M; Bruno, Claudio; Colabufo, Nicola A; Contino, Marialessandra; Perrone, Maria G; Franchini, Carlo; Lentini, Giovanni


    Inhibition of drug efflux pumps such as P-glycoprotein (P-gp) is an approach toward combating multidrug resistance, which is a significant hurdle in current cancer treatments. To address this, N-substituted aryloxymethyl pyrrolidines were designed and synthesized in their homochiral forms in order to investigate the stereochemical requirements for the binding site of P-gp. Our study provides evidence that the chiral property of molecules could be a strategy for improving the capacity for interacting with P-gp, as the most active compounds of the series stereoselectively modulated this efflux pump. The naphthalene-1-yl analogue (R)-2-[(2,3-dichlorophenoxy)methyl]-1-(naphthalen-1-ylmethyl)pyrrolidine) [(R)-7 a] emerged foremost for its potency and stereoselectivity toward P-gp, with the S enantiomer being nearly inactive. The modulation of P-gp by (R)-7 a involved consumption of ATP, thus demonstrating that the compound behaves as a P-gp substrate.

  1. An analysis of amino acid sequences surrounding archaeal glycoprotein sequons. (United States)

    Abu-Qarn, Mehtap; Eichler, Jerry


    Despite having provided the first example of a prokaryal glycoprotein, little is known of the rules governing the N-glycosylation process in Archaea. As in Eukarya and Bacteria, archaeal N-glycosylation takes place at the Asn residues of Asn-X-Ser/Thr sequons. Since not all sequons are utilized, it is clear that other factors, including the context in which a sequon exists, affect glycosylation efficiency. As yet, the contribution to N-glycosylation made by sequon-bordering residues and other related factors in Archaea remains unaddressed. In the following, the surroundings of Asn residues confirmed by experiment as modified were analyzed in an attempt to define sequence rules and requirements for archaeal N-glycosylation.

  2. An analysis of amino acid sequences surrounding archaeal glycoprotein sequons

    Directory of Open Access Journals (Sweden)

    Mehtap Abu-Qarn


    Full Text Available Despite having provided the first example of a prokaryal glycoprotein, little is known of the rules governing the N-glycosylation process in Archaea. As in Eukarya and Bacteria, archaeal N-glycosylation takes place at the Asn residues of Asn-X-Ser/Thr sequons. Since not all sequons are utilized, it is clear that other factors, including the context in which a sequon exists, affect glycosylation efficiency. As yet, the contribution to N-glycosylation made by sequon-bordering residues and other related factors in Archaea remains unaddressed. In the following, the surroundings of Asn residues confirmed by experiment as modified were analyzed in an attempt to define sequence rules and requirements for archaeal N-glycosylation.


    Directory of Open Access Journals (Sweden)

    Davis F. Ferreira


    Full Text Available We have previously observed that interferon (recIFNa2b blocks the process of morphogenesis of Mayaro virus in TC7 cells (monkey kidney. In this work we show that IFNa inhibits preferentially virus glycoproteins and their precursors, and this effect is probably correlated to the alterations in the morphogenesis process previously observed.Observamos anteriormente que o Interferon (IFN recombinante a2b bloqueia o processo de morfogênese do vírus Mayaro em células TC7 (rim de macaco. Neste trabalho demonstramos que o IFNa inibe preferencialmente as glicoproteínas virais e seus precursores e que este efeito está, provavelmente, correlacionado com as alterações no processo de morfogênese previamente observadas.

  4. Myelin-associated glycoprotein and its axonal receptors. (United States)

    Schnaar, Ronald L; Lopez, Pablo H H


    Myelin-associated glycoprotein (MAG) is expressed on the innermost myelin membrane wrap, directly apposed to the axon surface. Although it is not required for myelination, MAG enhances long-term axon-myelin stability, helps to structure nodes of Ranvier, and regulates the axon cytoskeleton. In addition to its role in axon-myelin stabilization, MAG inhibits axon regeneration after injury; MAG and a discrete set of other molecules on residual myelin membranes at injury sites actively signal axons to halt elongation. Both the stabilizing and the axon outgrowth inhibitory effects of MAG are mediated by complementary MAG receptors on the axon surface. Two MAG receptor families have been described, sialoglycans (specifically gangliosides GD1a and GT1b) and Nogo receptors (NgRs). Controversies remain about which receptor(s) mediates which of MAG's biological effects. Here we review the findings and challenges in associating MAG's biological effects with specific receptors.

  5. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A. E., E-mail:; Shvetsov, A. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation); Kuklin, A. I. [Joint Institute for Nuclear Research (Russian Federation); Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation)


    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  6. Immunoglobulin-E reactivity to wine glycoproteins in heavy drinkers

    DEFF Research Database (Denmark)

    Gonzalez-Quintela, Arturo; Gomez-Rial, Jose; Valcarcel, Catalina;


    and biological significance of IgE antibodies to N-glycans from wine glycoproteins in heavy drinkers. A structured questionnaire, skin prick tests, serum IgE levels, IgE-immunoblotting to wine extracts, and basophil activation tests were used to characterize 20 heavy drinkers and 10 control subjects. Eleven...... heavy drinkers (55%) showed IgE binding to proteins in wine extracts. The proteins were identified by mass spectrometry as grape-derived vacuolar invertase and thaumatin-like protein. Immunoblot reactivity was closely associated with the presence of IgE to CCDs and was inhibited by preincubation...... with a glycoconjugate containing bromelain-type N-glycans. The same conjugate, CCD-bearing allergens, and wine extracts activated basophils in patients with high-titer CCD-specific IgE but not in healthy controls. There was no relationship between immunoblot reactivity and consumption of any specific type of wine...

  7. Bioskin as an affinity matrix for the separation of glycoproteins. (United States)

    Vicente, C; Sebastián, B; Fontaniella, B; Márquez, A; Xavier Filho, L; Legaz, M E


    Bioskin is a natural product produced by a mixed culture of Acetobacter xylinum, Saccharomyces cerevisiae and S. pombe cultured on media containing sucrose. It is of fibrillar nature able to retain some proteins, such as cytochrome c, by adsorption, and mainly composed of glucosamine and N-acetyl-D-glucosamine. This makes it possible that, at an adequate pH value, proteins charged as polyanionic molecules, such as catalase, can be retained by ionic adsorption using the positively charged amino groups of the matrix. In addition, bioskin can also be used as an affinity matrix to retain glycoproteins able to perform specific affinity reactions with the amino sugars of the matrix, such as invertase, fetuin or ovalbumin. Its possible use as a chromatographic support is discussed.

  8. Crystal Structure of the Human Cytomegalovirus Glycoprotein B.

    Directory of Open Access Journals (Sweden)

    Heidi G Burke


    Full Text Available Human cytomegalovirus (HCMV, a dsDNA, enveloped virus, is a ubiquitous pathogen that establishes lifelong latent infections and caused disease in persons with compromised immune systems, e.g., organ transplant recipients or AIDS patients. HCMV is also a leading cause of congenital viral infections in newborns. Entry of HCMV into cells requires the conserved glycoprotein B (gB, thought to function as a fusogen and reported to bind signaling receptors. gB also elicits a strong immune response in humans and induces the production of neutralizing antibodies although most anti-gB Abs are non-neutralizing. Here, we report the crystal structure of the HCMV gB ectodomain determined to 3.6-Å resolution, which is the first atomic-level structure of any betaherpesvirus glycoprotein. The structure of HCMV gB resembles the postfusion structures of HSV-1 and EBV homologs, establishing it as a new member of the class III viral fusogens. Despite structural similarities, each gB has a unique domain arrangement, demonstrating structural plasticity of gB that may accommodate virus-specific functional requirements. The structure illustrates how extensive glycosylation of the gB ectodomain influences antibody recognition. Antigenic sites that elicit neutralizing antibodies are more heavily glycosylated than those that elicit non-neutralizing antibodies, which suggest that HCMV gB uses glycans to shield neutralizing epitopes while exposing non-neutralizing epitopes. This glycosylation pattern may have evolved to direct the immune response towards generation of non-neutralizing antibodies thus helping HCMV to avoid clearance. HCMV gB structure provides a starting point for elucidation of its antigenic and immunogenic properties and aid in the design of recombinant vaccines and monoclonal antibody therapies.

  9. In silico-based vaccine design against Ebola virus glycoprotein

    Directory of Open Access Journals (Sweden)

    Dash R


    Full Text Available Raju Dash,1 Rasel Das,2 Md Junaid,3 Md Forhad Chowdhury Akash,4 Ashekul Islam,5 SM Zahid Hosen1 1Molecular Modeling and Drug Design Laboratory (MMDDL, Pharmacology Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR, Chittagong, Bangladesh; 2Nanotechnology and Catalysis Research Center, University of Malaya, Kuala Lumpur, Malaysia; 3Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh; 4Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh; 5Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh Abstract: Ebola virus (EBOV is one of the lethal viruses, causing more than 24 epidemic outbreaks to date. Despite having available molecular knowledge of this virus, no definite vaccine or other remedial agents have been developed yet for the management and avoidance of EBOV infections in humans. Disclosing this, the present study described an epitope-based peptide vaccine against EBOV, using a combination of B-cell and T-cell epitope predictions, followed by molecular docking and molecular dynamics simulation approach. Here, protein sequences of all glycoproteins of EBOV were collected and examined via in silico methods to determine the most immunogenic protein. From the identified antigenic protein, the peptide region ranging from 186 to 220 and the sequence HKEGAFFLY from the positions of 154–162 were considered the most potential B-cell and T-cell epitopes, correspondingly. Moreover, this peptide (HKEGAFFLY interacted with HLA-A*32:15 with the highest binding energy and stability, and also a good conservancy of 83.85% with maximum population coverage. The results imply that the designed epitopes could manifest vigorous enduring defensive immunity against EBOV. Keywords: Ebola virus, epitope, glycoprotein, vaccine design

  10. Enrichment and identification of glycoproteins in human saliva using lectin magnetic bead arrays. (United States)

    Caragata, Michael; Shah, Alok K; Schulz, Benjamin L; Hill, Michelle M; Punyadeera, Chamindie


    Aberrant glycosylation of proteins is a hallmark of tumorigenesis and could provide diagnostic value in cancer detection. Human saliva is an ideal source of glycoproteins due to the relatively high proportion of glycosylated proteins in the salivary proteome. Moreover, saliva collection is noninvasive and technically straightforward, and the sample collection and storage is relatively easy. Although differential glycosylation of proteins can be indicative of disease states, identification of differential glycosylation from clinical samples is not trivial. To facilitate salivary glycoprotein biomarker discovery, we optimized a method for differential glycoprotein enrichment from human saliva based on lectin magnetic bead arrays (saLeMBA). Selected lectins from distinct reactivity groups were used in the saLeMBA platform to enrich salivary glycoproteins from healthy volunteer saliva. The technical reproducibility of saLeMBA was analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the glycosylated proteins enriched by each lectin. Our saLeMBA platform enabled robust glycoprotein enrichment in a glycoprotein- and lectin-specific manner consistent with known protein-specific glycan profiles. We demonstrated that saLeMBA is a reliable method to enrich and detect glycoproteins present in human saliva.

  11. Preparation of Concanavalin A-Chelating Magnetic Nanoparticles for Selective Enrichment of Glycoproteins. (United States)

    Dong, Liping; Feng, Shun; Li, Shanshan; Song, Peipei; Wang, Jide


    In this work, a soft and nondestructive approach was developed to prepare concanavalin A-chelating magnetic nanoparticles (Con A-MNPs) for selective enrichment of glycoproteins. Ethylenediamine tetraacetic acid-modified-MNPs (EDTA-MNPs) were prepared by a one-pot chemical coprecipitation method first, and then, Cu(II) cations were used as bridge groups to immobilize Con A on EDTA-MNPs. The as-prepared absorbents with a mean diameter of 15 nm showed a strong magnetic response to an externally applied magnetic field. The results of thermogravimetric analysis showed the content of immobilized Con A was up to 28 wt %. For glycoprotein ovalbumin, the maximum capacity and equilibrium constant were 72.41 mg/g and 0.6035 L/mg, respectively. The as-prepared nanocomposites exhibited a remarkable selectivity for glycoproteins and can enrich glycoproteins specifically from a mixture of glycoprotein and nonglycoprotein even at a molar ratio of 1:600. It was also successfully applied for the enrichment of glycoproteins from real egg white samples. We expect that our finding will serve as a helpful template for others to design new adsorbents for enriching glycoproteins.

  12. Protective Role of α2HS-Glycoprotein in HBV-Associated Liver Failure

    Directory of Open Access Journals (Sweden)

    Xue-Gong Fan


    Full Text Available n this study, levels of plasma α2-Heremans-Schmid glycoprotein, serum tumor necrosis factor-α, serum liver function parameters and short-term mortality were measured in 100 hepatitis B patients. Release of interleukin-6 and tumor necrosis factor-α from the lipopolysaccharide-stimulated peripheral blood mononuclear cells in the presence/absence of spermine and α2-Heremans-Schmid glycoprotein were analyzed by enzyme-linked immunosorbent assay to determine the significance and potential mechanism of α2-Heremans-Schmid glycoprotein in hepatitis B virus-associated liver damage. Results showed that serum α2-Heremans-Schmid glycoprotein levels in acute-on-chronic liver failure patients were significantly lower than that in chronic hepatitis B patients or healthy controls (p < 0.05. A negative dependence between serum human α2-Heremans-Schmid glycoprotein and tumor necrosis factor-α levels was observed. Interleukin-6 and tumor necrosis factor-α levels in the lipopolysaccharide-induced peripheral blood mononuclear cell supernates were significantly reduced by spermine and/or α2-Heremans-Schmid glycoprotein. The latter two proteins jointly inhibited cytokine release. These observations suggest that plasma α2-Heremans-Schmid glycoprotein is an independent marker of liver damage and a prognostic indicator of hepatitis B virus chronicity. It may reduce liver inflammation by partially inhibiting release of inflammatory factors from activated peripheral blood mononuclear cells.

  13. Effects of pronase and neuraminidase treatment on a myelin-associated glycoprotein in developing brain. (United States)

    Quarles, R H


    Rats (14 days old) were injected with [14c]fucose and young adult rats with [3H]fucose in order to label the myelin-associated glycoproteins. As previously reported, the major [14C]fucose-labelled glycoprotein in the immature myelin had a higher apparent molecular weight on sodium dodecyl sulphate/polyacrylamide gels that the [3H]fucose-labelled glycoprotein in mature myelin. This predominant doubly labelled glycoprotein component was partially purified by preparative gel electrophoresis and converted to glycopeptides by extensive Pronase digestion. Gel filtration on Sephadex G-50 separated the glycopeptides into several clases, which were designted A,B, C AND D, from high to low molecular weight. The 14C-labelled glycopeptides from immature myeline were enriched in the highest-molecular-weight class A relative to the 3H-labelled glycopeptides from mature myelin. Neuraminidase treatment of the glycoprotein before Pronase digestion greatly decreased the proportion of glycopeptides fractionating in the higher-molecular-weight classes and largely eliminated the developmental differences that were apparent by gel filtration. However, neuraminidase treatment did not decrease the magnitude of the developmental difference revealed by electrophoresing the intact glycoprotein on sodium dodecyl sulphate gels, although it did decrease the apparent molecular weight of the glycoprotein from both the 15-day-old and adult rats by an amount comparable in magnitude to that developmental difference. The results from gel filtration of glycopeptides indicate that there is a higher content of large molecular weight, sialic acid-rich oligosaccharide units in the glycoprotein of immature myelin. However, the higher apparent molecular weight for the glycoprotein from 15-day-old rats on sodium dodcyl sulphate gels is not due primarily to its higher sialic acid content.

  14. Bioactivity of proteins isolated from Lactobacillus plantarum L67 treated with Zanthoxylum piperitum DC glycoprotein. (United States)

    Song, S; Oh, S; Lim, K-T


    Lactobacilli in the human gastrointestinal tract have beneficial effects on the health of their host. To enhance these effects, the bioactivity of lactobacilli can be fortified through exogenous dietary or pharmacological agents, such as glycoproteins. To elucidate the inductive effect of Zanthoxylum piperitum DC (ZPDC) glycoprotein on Lactobacillus plantarum L67, we evaluated the radical-scavenging activity, anti-oxidative enzymes (SOD, GPx and CAT), growth rate, ATPase activity and β-galactosidase activity of this strain. When Lact. plantarum L67 was treated with ZPDC glycoprotein at different concentrations, the intensities of a few SDS-PAGE bands were slightly changed. The amount of a 23 kDa protein was increased upon treatment with increasing concentrations of ZPDC glycoprotein. The results of this study indicate that the radical-scavenging activity for O2(-) and OH¯, but not for the DPPH radical, increased in a concentration-dependent manner after treatment with ZPDC glycoprotein. The activation of anti-oxidative enzymes (SOD, GPx and CAT), growth rate and β-galactosidase activity also increased in a concentration-dependent manner in response to ZPDC glycoprotein treatment, whereas ATPase activity was decreased. In summary, ZPDC glycoprotein stimulated an increase in the bioactivity of Lact. plantarum L67. Significance and impact of the study: This study demonstrated that Lactobacillus plantarum L67 possesses anti-oxidative activity. This strain of lactic bacteria has been known to have various probiotic uses, such as yogurt starters and dietary additional supplements. We found, through this experiment, that the protein has a strong anti-oxidative character, and the activity can be enhanced by treatment with Zanthoxylum piperitum DC (ZPDC) glycoprotein. This study may be application of Lact. plantarum L67 treated by ZPDC glycoprotein in yogurt fermentation. It could be one of the avenues of minimizing yogurt postacidification during storage. In addition


    Directory of Open Access Journals (Sweden)

    A. V. Shulkin


    Full Text Available On the basis of the analysis of published data the role of P-glycoprotein, carrier protein, in rational pharmacotherapy in cardiology was shown on the example of its substrates – digoxin, antiplatelet agents and anticoagulants. Determination of C3435T polymorphism of multidrug resistance gene (MDR1, encoding P-glycoprotein, in pharmacotherapy with digoxin, antiplatelet drugs (clopidogrel tikagrelol, prasugrel and anticoagulants (dabigatran etexilate, rivaroxaban, edoxaban is not feasible in routine practice. Drug in- teractions have clinical implications for the efficacy and safety of pharmacotherapy in coadministration of these drugs with P-glycoprotein substrates, inducers and inhibitors.


    Directory of Open Access Journals (Sweden)

    A. V. Shulkin


    Full Text Available On the basis of the analysis of published data the role of P-glycoprotein, carrier protein, in rational pharmacotherapy in cardiology was shown on the example of its substrates – digoxin, antiplatelet agents and anticoagulants. Determination of C3435T polymorphism of multidrug resistance gene (MDR1, encoding P-glycoprotein, in pharmacotherapy with digoxin, antiplatelet drugs (clopidogrel tikagrelol, prasugrel and anticoagulants (dabigatran etexilate, rivaroxaban, edoxaban is not feasible in routine practice. Drug in- teractions have clinical implications for the efficacy and safety of pharmacotherapy in coadministration of these drugs with P-glycoprotein substrates, inducers and inhibitors.

  17. Varicella-zoster virus glycoprotein I is essential for growth of virus in Vero cells.


    Cohen, J I; Nguyen, H.


    Varicella-zoster virus (VZV) encodes at least six glycoproteins. Glycoprotein I (gI), the product of open reading frame 67, is a 58- to 62-kDa glycoprotein found in VZV-infected cells. We constructed two VZV gI deletion mutants. Immunoprecipitation of VZV gE from infected cells indicated that cells infected with VZV deleted for gI expressed a gE that was larger (100 kDa) than that expressed in cells infected with the parental virus (98 kDa). Cell-associated or cell-free VZV deleted for gI gre...

  18. Appearance and cellular distribution of lectin-like receptors for alpha 1-acid glycoprotein in the developing rat testis

    DEFF Research Database (Denmark)

    Andersen, U O; Bøg-Hansen, T C; Kirkeby, S


    glycoprotein glycoforms to their receptors is inhibited by steroids. Testosterone, oestradiol and progesterone inhibited the binding of alpha 1-acid glycoprotein glycoform A to its receptor. Cortisone, aldosterone, oestradiol and progesterone inhibited the binding of alpha 1-acid glycoprotein glycoforms B......A histochemical avidin-biotin technique with three different alpha 1-acid glycoprotein glycoforms showed pronounced alterations in the cellular localization of two alpha 1-acid glycoprotein lectin-like receptors during cell differentiation in the developing rat testis. The binding of alpha 1-acid...... and C to their receptor. A difference in the cellular content of alpha 1-acid glycoprotein glycoforms and alpha 1-acid glycoprotein receptors separates the spermatocytes and the early spermatids from the late spermatids. The difference in receptor composition implies a difference in the effect...

  19. Zonal variation in the distribution of an alpha 1-acid glycoprotein glycoform receptor in human adrenal cortex

    DEFF Research Database (Denmark)

    Andersen, U O; Bøg-Hansen, T C; Kirkeby, S


    Using a histochemical technique with three different alpha 1-acid glycoprotein glycoform one glycoform specific receptor has been identified in human adrenal cortex. The receptor is associated to alpha 1-acid glycoprotein glycoform B and alpha 1-acid glycoprotein glycoform C. The glycoform specific...... specific receptor. The binding of alpha 1-acid glycoprotein glycoform B and alpha 1-acid glycoprotein glycoform C to the glycoform specific receptor is inhibited by the steroid hormones cortisone, aldosterone, estradiol and progesterone but not by testosterone. The pronounced changes in the distribution....... The binding activity was dependent on the presence of calcium ions and not on thiol reagents. Thus the lectin-like receptor may belong to the C-type lectin family. Using an antibody to alpha 1-acid glycoprotein the presence of alpha 1-acid glycoprotein was observed in the same location as the glycoform...

  20. Ovine Herpesvirus 2 Glycoproteins B, H, and L Are Sufficient for, and Viral Glycoprotein Ov8 Can Enhance, Cell-Cell Membrane Fusion. (United States)

    AlHajri, Salim M; Cunha, Cristina W; Nicola, Anthony V; Aguilar, Hector C; Li, Hong; Taus, Naomi S


    Ovine herpesvirus 2 (OvHV-2) is a gammaherpesvirus in the genus Macavirus that is carried asymptomatically by sheep. Infection of poorly adapted animals with OvHV-2 results in sheep-associated malignant catarrhal fever, a fatal disease characterized by lymphoproliferation and vasculitis. There is no treatment or vaccine for the disease and no cell culture system to propagate the virus. The lack of cell culture has hindered studies of OvHV-2 biology, including its entry mechanism. As an alternative method to study OvHV-2 glycoproteins responsible for membrane fusion as a part of the entry mechanism, we developed a virus-free cell-to-cell membrane fusion assay to identify the minimum required OvHV-2 glycoproteins to induce membrane fusion. OvHV-2 glycoproteins B, H, and L (gB, gH, and gL) were able to induce membrane fusion together but not when expressed individually. Additionally, open reading frame Ov8, unique to OvHV-2, was found to encode a transmembrane glycoprotein that can significantly enhance membrane fusion. Thus, OvHV-2 gB, gH, and gL are sufficient to induce membrane fusion, while glycoprotein Ov8 plays an enhancing role by an unknown mechanism.IMPORTANCE Herpesviruses enter cells via attachment of the virion to the cellular surface and fusion of the viral envelope with cellular membranes. Virus-cell membrane fusion is an important step for a successful viral infection. Elucidating the roles of viral glycoproteins responsible for membrane fusion is critical toward understanding viral entry. Entry of ovine herpesvirus 2 (OvHV-2), the causative agent of sheep associated-malignant catarrhal fever, which is one of the leading causes of death in bison and other ungulates, has not been well studied due to the lack of a cell culture system to propagate the virus. The identification of OvHV-2 glycoproteins that mediate membrane fusion may help identify viral and/or cellular factors involved in OvHV-2 cell tropism and will advance investigation of cellular

  1. Crystal structure of the Epstein-Barr virus (EBV) glycoprotein H/glycoprotein L (gH/gL) complex. (United States)

    Matsuura, Hisae; Kirschner, Austin N; Longnecker, Richard; Jardetzky, Theodore S


    The Epstein-Barr virus (EBV) is a γ-herpesvirus that infects B cells and epithelial cells and that has been linked to malignancies in both cell types in vivo. EBV, like other herpesviruses, has three glycoproteins, glycoprotein B (gB), gH, and gL, that form the core membrane fusion machinery mediating viral penetration into the cell. The gH and gL proteins associate to form a heterodimeric complex, which is necessary for efficient membrane fusion and also implicated in direct binding to epithelial cell receptors required for viral entry. To gain insight into the mechanistic role of gH/gL, we determined the crystal structure of the EBV gH/gL complex. The structure is comprised of four domains organized along the longest axis of the molecule. Comparisons with homologous HSV-2 gH/gL and partial pseudorabies virus gH structures support the domain boundaries determined for the EBV gH/gL structure and illustrate significant differences in interdomain packing angles. The gL subunit and N-terminal residues of gH form a globular domain at one end of the structure, implicated in interactions with gB and activation of membrane fusion. The C-terminal domain of gH, proximal to the viral membrane, is also implicated in membrane fusion. The gH/gL structure locates an integrin binding motif, implicated in epithelial cell entry, on a prominent loop in the central region of the structure. Multiple regions of gH/gL, including its two extreme ends, are functionally important, consistent with the multiple roles of gH/gL in EBV entry.

  2. A Method for Determining the Content of Glycoproteins in Biological Samples

    Directory of Open Access Journals (Sweden)

    Yang Gao


    Full Text Available The glycoprotein purified from the mycelium extract of Tremella fuciformis was marked with iodine through the iodine substitution reaction. The content of iodine, which is indicative of the amount of the marked tremella glycoprotein (ITG, was detected with Inductively coupled plasma mass spectrometry (ICP-MS. The method was found to be stable, sensitive, and accurate at detecting the content of iodine-substituted glycoprotein, and was used in the quantitative analysis of biological samples, including blood and organs. Different biological samples were collected from rats after oral administration of ITG, and were tested for iodine content by ICP-MS to calculate the amount of ITG in the samples. The results suggested that ICP-MS is a sensitive, stable, and accurate method for detection of iodinated glycoproteins in blood and organs.

  3. Generation and Characterization of an scFv Directed against Site II of Rabies Glycoprotein

    Directory of Open Access Journals (Sweden)

    Shukra M. Aavula


    Full Text Available Recombinant antibody phage display technology is a vital tool that facilitates identification of specific binding molecules to a target enabling the rapid generation and selection of high affinity, fully human, or mouse antibody product candidates essentially directed towards disease target appropriate for antibody therapy. In this study, a recombinant single-chain Fv antibody fragment (scFv A11 was isolated from immune spleen cells obtained from mice immunized with inactivated rabies virus (Pasteur strain using standard methodology and was characterized for its specificity towards the rabies virus glycoprotein. Epitope mapping using peptide libraries and truncated glycoprotein polypeptides suggested that A11 bound to the antigenic site II of rabies glycoprotein against which a majority of rabies virus neutralizing antibodies are directed. The use of the above technology could, therefore, allow development of scFvs with different specificities against the rabies glycoprotein as an alternative to the more cumbersome protocols used for the development of monoclonal antibodies.

  4. Prostate Cancer Progression and Serum Sibling (Small Integrin Binding N-Linked Glycoprotein) Levels (United States)


    integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer Akeila Bellahcène*, Vincent Castronovo*, Kalu U. E...hypertension, angina , myocardial infarction, percutaneous transluminal coronary angioplasty, coronary artery bypass surgery, congestive heart failure, and

  5. Purification of the envelope glycoproteins of western equine encephalitis virus by glass wool column chromatography.


    Yamamoto, K.; Simizu, B


    Glass wool column chromatography was used for separation of the two glycoproteins of western equine encephalitis virus. Cross-contamination of each protein separated was confirmed to be negligible by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

  6. Evaluation of the expression of P-glycoprotein in propoxur-resistant Caco-2 cells.

    Directory of Open Access Journals (Sweden)

    Shabnam Yazdian


    Full Text Available There is a great concern about the effect of propoxur, as one of the more common N-methyl carbamate pesticides, on human health due to its extensive use in agricultural and non-agricultural applications. Caco-2 cells became resistant to propoxur, and the resistance was confirmed through MTT assay. Then the cell membrane integrity and P-glycoprotein expression were measured by LDH assay and western blot analysis, respectively and compared to the parent cells.  Contrary to what was expected, the expression of P-glycoprotein in propoxur resistant cells was lower than parent cells.This study indicates that the resistance to propoxur may not be related to P-glycoprotein expression directly, since P-glycoprotein expression has decreased in these cells.

  7. Serum sialic acid and glycoprotein levels in some Libyan cancer patients. (United States)

    Balo, N N; Ishaq, M


    Sialic acid is a common conjugate of some serum glycoproteins and glycolipids. Elevated levels of serum sialic acid and alterations in serum glycoproteins have been observed in certain types of cancer. In this study sialic acid concentration in the sera of patients with various types of cancer was determined. In addition to this, serum glycoproteins were also analysed by electrophoretic method. Our results indicate that serum sialic acid levels are generally raised in all types of cancer studied. This increase was more pronounced in case of lung, bronchogenic, intestinal and breast cancer. Some alterations in the serum glycoprotein profiles were also observed, particularly in bronchogenic and gall bladder cancer where an additional band in the low molecular weight region was present and in lung, breast and lymphoma where a band in the middle molecular weight region was found missing when compared with normals.

  8. Baculovirus expression of the glycoprotein gene of Lassa virus and characterization of the recombinant protein. (United States)

    Hummel, K B; Martin, M L; Auperin, D D


    A recombinant baculovirus was constructed that expresses the glycoprotein gene of Lassa virus (Josiah strain) under the transcriptional control of the polyhedrin promoter. The expressed protein (B-LSGPC) comigrated with the authentic viral glycoprotein as observed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), was reactive with monoclonal antibodies (MAbs) in Western blots, and was glycosylated. Although the recombinant protein was not processed into the mature glycoproteins, G1 and G2, it demonstrated reactivity with all known epitopes as measured by indirect immunofluorescence (IFA), and it was immunogenic, eliciting antisera in rabbits that recognized whole virus in IFAs. Regarding future applications to diagnostic assays, the recombinant glycoprotein proved to be an effective substitute for Lassa virus-infected mammalian cells in IFAs and it was able to distinguish sera from several human cases of Lassa fever, against a panel of known negative sera of African origin, in an enzyme immunoassay (EIA).

  9. Distribution of surface glycoproteins on influenza A virus determined by electron cryotomography. (United States)

    Wasilewski, Sebastian; Calder, Lesley J; Grant, Tim; Rosenthal, Peter B


    We use electron cryotomography to reconstruct virions of two influenza A H3N2 virus strains. The maps reveal the structure of the viral envelope containing hemagglutinin (HA) and neuraminidase (NA) glycoproteins and the virus interior containing a matrix layer and an assembly of ribonucleoprotein particles (RNPs) that package the genome. We build a structural model for the viral surface by locating copies of the X-ray structure of the HA ectodomain into density peaks on the virus surface. We calculate inter-glycoprotein distances and the fractional volume occupied by glycoproteins. The models suggest that for typical HA densities on virus, Fabs can bind to epitopes on the HA stem domain. The models also show how membrane curvature may influence the number of glycoproteins that can simultaneously interact with a target surface of receptors.

  10. Comparative Studies of Vertebrate Platelet Glycoprotein 4 (CD36

    Directory of Open Access Journals (Sweden)

    Roger S. Holmes


    Full Text Available Platelet glycoprotein 4 (CD36 (or fatty acyl translocase [FAT], or scavenger receptor class B, member 3 [SCARB3] is an essential cell surface and skeletal muscle outer mitochondrial membrane glycoprotein involved in multiple functions in the body. CD36 serves as a ligand receptor of thrombospondin, long chain fatty acids, oxidized low density lipoproteins (LDLs and malaria-infected erythrocytes. CD36 also influences various diseases, including angiogenesis, thrombosis, atherosclerosis, malaria, diabetes, steatosis, dementia and obesity. Genetic deficiency of this protein results in significant changes in fatty acid and oxidized lipid uptake. Comparative CD36 amino acid sequences and structures and CD36 gene locations were examined using data from several vertebrate genome projects. Vertebrate CD36 sequences shared 53–100% identity as compared with 29–32% sequence identities with other CD36-like superfamily members, SCARB1 and SCARB2. At least eight vertebrate CD36 N-glycosylation sites were conserved which are required for membrane integration. Sequence alignments, key amino acid residues and predicted secondary structures were also studied. Three CD36 domains were identified including cytoplasmic, transmembrane and exoplasmic sequences. Conserved sequences included N- and C-terminal transmembrane glycines; and exoplasmic cysteine disulphide residues; TSP-1 and PE binding sites, Thr92 and His242, respectively; 17 conserved proline and 14 glycine residues, which may participate in forming CD36 ‘short loops’; and basic amino acid residues, and may contribute to fatty acid and thrombospondin binding. Vertebrate CD36 genes usually contained 12 coding exons. The human CD36 gene contained transcription factor binding sites (including PPARG and PPARA contributing to a high gene expression level (6.6 times average. Phylogenetic analyses examined the relationships and potential evolutionary origins of the vertebrate CD36 gene with vertebrate

  11. Optimization of irinotecan chronotherapy with P-glycoprotein inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Filipski, Elisabeth; Berland, Elodie [INSERM, U776 “Rythmes biologiques et cancers”, CAMPUS CNRS, 7 rue Guy Môquet, F-94801 Villejuif (France); Univ Paris-Sud, UMR-S0776, Orsay F-91405 (France); Ozturk, Narin [INSERM, U776 “Rythmes biologiques et cancers”, CAMPUS CNRS, 7 rue Guy Môquet, F-94801 Villejuif (France); Univ Paris-Sud, UMR-S0776, Orsay F-91405 (France); Istanbul University Faculty of Pharmacy, Department of Pharmacology, Beyazit TR-34116, Istanbul (Turkey); Guettier, Catherine [Assistance Publique-Hôpitaux de Paris, Unité de Chronothérapie, Département de Cancérologie, Hôpital Paul Brousse, Villejuif F-94807 (France); Horst, Gijsbertus T.J. van der [Department of Genetics, Erasmus University Medical Center, 3000 CA Rotterdam (Netherlands); Lévi, Francis [INSERM, U776 “Rythmes biologiques et cancers”, CAMPUS CNRS, 7 rue Guy Môquet, F-94801 Villejuif (France); Univ Paris-Sud, UMR-S0776, Orsay F-91405 (France); Assistance Publique-Hôpitaux de Paris, Unité de Chronothérapie, Département de Cancérologie, Hôpital Paul Brousse, Villejuif F-94807 (France); and others


    The relevance of P-glycoprotein (P-gp) for irinotecan chronopharmacology was investigated in female B6D2F{sub 1} mice. A three-fold 24 h change in the mRNA expression of Abcb1b was demonstrated in ileum mucosa, with a maximum at Zeitgeber Time (ZT) 15 (p < 0.001). No rhythm was found for abcb1a in ileum mucosa, or for Abcb1a/b in Glasgow osteosarcoma (GOS), a mouse tumor cell line moderately sensitive to irinotecan. Non-tumor-bearing mice received irinotecan (50 mg/kg/day i.v. × 4 days) as a single agent or combined with P-gp inhibitor PSC833 (6.25 mg/kg/day i.p. × 4 days) at ZT3 or ZT15, respectively corresponding to the worst or the best irinotecan tolerability. Endpoints involved survival, body weight change and hematologic toxicity. Antitumor efficacy was studied in GOS-bearing mice receiving irinotecan (25, 30 or 40 mg/kg/day × 4 days) and +/− PSC833 at ZT3 or ZT15, with survival, body weight change, and tumor growth inhibition as endpoints. Non-tumor bearing mice lost an average of 17% or 9% of their body weight according to irinotecan administration at ZT3 or ZT15 respectively (p < 0.001). Dosing at ZT15 rather than ZT3 reduced mean leucopenia (9% vs 53%; p < 0.001). PSC833 aggravated irinotecan lethal toxicity from 4 to ∼ 60%. In tumor-bearing mice, body weight loss was ∼ halved in the mice on irinotecan or irinotecan–PSC833 combination at ZT15 as compared to ZT3 (p < 0.001). PSC833–irinotecan at ZT15 increased tumor inhibition by ∼ 40% as compared to irinotecan only at ZT15. In conclusion, P-gp was an important determinant of the circadian balance between toxicity and efficacy of irinotecan. - Highlights: • Irinotecan chronotolerance and chronoefficacy change as drug was applied with PSC833. • P-glycoprotein is an important player of the toxicity and efficacy of irinotecan. • Timing should be considered if chemotherapy is performed with a MDR1 inhibitor.

  12. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid.


    Sturman, L S; Holmes, K V; Behnke, J.


    The two envelope glycoproteins and the viral nucleocapsid of the coronavirus A59 were isolated by solubilization of the viral membrane with Nonidet P-40 at 4 degrees C followed by sucrose density gradient sedimentation. Isolated E2 consisted of rosettes of peplomers, whereas E1, the membrane glycoprotein, was irregular and amorphous. Under certain conditions significant interactions occurred between components of Nonidet P-40-disrupted virions. Incubation of the Nonidet P-40-disrupted virus a...

  13. Spatial distribution of Reissner's fiber glycoproteins in the filum terminale of the rat and rabbit. (United States)

    Molina, B; Rodríguez, E M; Peruzzo, B; Caprile, T; Nualart, F


    The subcommissural organ secretes into the third ventricle glycoproteins that condense to form the Reissner's fiber (RF). At the distal end of the central canal of the spinal cord, the RF-glycoproteins accumulate in the form of an irregular mass known as massa caudalis. Antibodies against RF-glycoproteins and a set of lectins were used at the light and electron microscopic level to investigate the spatial distribution of the massa caudalis material in the rat and rabbit filum terminale. In the sacral region of the rat, the central canal presents gaps between the ependymal cells through which RF-glycoproteins spread out. The bulk of massa caudalis material, however, escapes through openings in the dorsal wall of the terminal ventricle. In the rabbit, the massa caudalis is formed within the ependymal canal, at the level of the second coccygeal vertebra, it accumulates within preterminal and terminal dilatations of the central canal, and it escapes out through gaps in the dorsal ependymal wall of the terminal ventricle. The existence of wide intercellular spaces and a large orifice (neuroporous) in the dorsal ependymal wall of the terminal ventricle, and the passage of RF-material through them, appear to be conserved evolutionary features. After leaving the terminal ventricle of the rat and rabbit, RF-glycoproteins establish a close spatial association with the numerous blood vessels irrigating the filum terminale, suggesting that in these species the blood vessels are the site of destination of the RF-glycoproteins escaping from the central canal, thus resembling the situation found in lower vertebrates. When passing from the RF stage to the massa caudalis stage, the rabbit RF-glycoproteins lose their sialic acid residues, exposing galactose as the terminal residue. Since this sialic acid-galactose modification of RF-glycoproteins had also been described in lamprey larvae, it may be regarded as a conserved evolutionary feature associated with the formation of the

  14. The quality control of glycoprotein folding in the endoplasmic reticulum, a trip from trypanosomes to mammals

    Directory of Open Access Journals (Sweden)

    A.J. Parodi


    Full Text Available The present review deals with the stages of synthesis and processing of asparagine-linked oligosaccharides occurring in the lumen of the endoplasmic reticulum and their relationship to the acquisition by glycoproteins of their proper tertiary structures. Special emphasis is placed on reactions taking place in trypanosomatid protozoa since their study has allowed the detection of the transient glucosylation of glycoproteins catalyzed by UDP-Glc:glycoprotein glucosyltransferase and glucosidase II. The former enzyme has the unique property of covalently tagging improperly folded conformations by catalyzing the formation of protein-linked Glc1Man7GlcNAc2, Glc1Man8GlcNac2 and Glc1Man9GlcNAc2 from the unglucosylated proteins. Glucosyltransferase is a soluble protein of the endoplasmic reticulum that recognizes protein domains exposed in denatured but not in native conformations (probably hydrophobic amino acids and the innermost N-acetylglucosamine unit that is hidden from macromolecular probes in most native glycoproteins. In vivo, the glucose units are removed by glucosidase II. The influence of oligosaccharides in glycoprotein folding is reviewed as well as the participation of endoplasmic reticulum chaperones (calnexin and calreticulin that recognize monoglucosylated species in the same process. A model for the quality control of glycoprotein folding in the endoplasmic reticulum, i.e., the mechanism by which cells recognize the tertiary structure of glycoproteins and only allow transit to the Golgi apparatus of properly folded species, is discussed. The main elements of this control are calnexin and calreticulin as retaining components, the UDP-Glc:glycoprotein glucosyltransferase as a sensor of tertiary structures and glucosidase II as the releasing agent.

  15. Machupo Virus Glycoprotein Determinants for Human Transferrin Receptor 1 Binding and Cell Entry (United States)


    and form enveloped virions [1]. Seven arenaviruses cause viral hemorrhagic fever in humans: the Old World arenaviruses Lassa and ‘Lujo,’ and the New...hemorrhagic fever in humans. MACV, as well as other pathogenic New World arenaviruses, enter cells after their GP1 attachment glycoprotein binds to... fever in humans. MACV, as well as other pathogenic New World arenaviruses, enter cells after their GP1 attachment glycoprotein binds to their cellular

  16. Surface plasmon resonance for real-time study of lectin-carbohydrate interactions for the differentiation and identification of glycoproteins. (United States)

    Safina, Gulnara; Duran, Iu Benet; Alasel, Mohammed; Danielsson, Bengt


    A study of specific interactions between lectins and glycoproteins has been carried out using surface plasmon resonance (SPR) in a flow-injection mode. Lectins were covalently immobilised on the surfaces of the microfluidic sensor chip via amine coupling and serum glycoproteins were injected into the flow channels. Specific lectin-glycoprotein interactions caused the shift of refractive index proportional to the mass concentration accumulated on the channel surface. Lectins showed different affinity to the tested glycoproteins and each glycoprotein displayed its own lectin-binding pattern. It is possible to distinguish and identify even glycoproteins with similar sugar structures by simple and quick screening. The working conditions of the assay were optimised. The lectin-based SPR made it possible to carry out the label-free detection of glycoproteins within a broad concentration range with a good linearity. Regeneration conditions for the surface of the sensor chip were found and optimised. Combination of 10mM HCl and 10mM glycine-HCl (pH 2.5) removes the bound glycoproteins from the lectin surface without damaging it. The kinetic and affinity parameters of lectin-glycoprotein binding were evaluated. The proposed method was tested on human glycosylated serum. Combination of the lectin panel with SPR is suitable both for specific screening and for sensitive assay of serum glycoproteins.

  17. Bypassing P-Glycoprotein Drug Efflux Mechanisms: Possible Applications in Pharmacoresistant Schizophrenia Therapy

    Directory of Open Access Journals (Sweden)

    Famida G. Hoosain


    Full Text Available The efficient noninvasive treatment of neurodegenerative disorders is often constrained by reduced permeation of therapeutic agents into the central nervous system (CNS. A vast majority of bioactive agents do not readily permeate into the brain tissue due to the existence of the blood-brain barrier (BBB and the associated P-glycoprotein efflux transporter. The overexpression of the MDR1 P-glycoprotein has been related to the occurrence of multidrug resistance in CNS diseases. Various research outputs have focused on overcoming the P-glycoprotein drug efflux transporter, which mainly involve its inhibition or bypassing mechanisms. Studies into neurodegenerative disorders have shown that the P-glycoprotein efflux transporter plays a vital role in the progression of schizophrenia, with a noted increase in P-glycoprotein function among schizophrenic patients, thereby reducing therapeutic outcomes. In this review, we address the hypothesis that methods employed in overcoming P-glycoprotein in cancer and other disease states at the level of the BBB and intestine may be applied to schizophrenia drug delivery system design to improve clinical efficiency of drug therapies. In addition, the current review explores polymers and drug delivery systems capable of P-gp inhibition and modulation.

  18. Lipid modification gives rise to two distinct Haloferax volcanii S-layer glycoprotein populations. (United States)

    Kandiba, Lina; Guan, Ziqiang; Eichler, Jerry


    The S-layer glycoprotein is the sole component of the protein shell surrounding Haloferax volcanii cells. The deduced amino acid sequence of the S-layer glycoprotein predicts the presence of a C-terminal membrane-spanning domain. However, several earlier observations, including the ability of EDTA to selectively solubilize the protein, are inconsistent with the presence of a trans-membrane sequence. In the present report, sequential solubilization of the S-layer glycoprotein by EDTA and then with detergent revealed the existence of two distinct populations of the S-layer glycoprotein. Whereas both S-layer glycoprotein populations underwent signal peptide cleavage and N-glycosylation, base hydrolysis followed by mass spectrometry revealed that a lipid, likely archaetidic acid, modified only the EDTA-solubilized version of the protein. These observations are consistent with the S-layer glycoprotein being initially synthesized as an integral membrane protein and subsequently undergoing a processing event in which the extracellular portion of the protein is separated from the membrane-spanning domain and transferred to a waiting lipid moiety.

  19. The importance of drug-transporting P-glycoproteins in toxicology. (United States)

    van Tellingen, O


    The importance of specific transport in toxicology is becoming increasingly clear and the work on P-glycoprotein has certainly been a major contribution to these growing insights. P-Glycoproteins were discovered by their ability to confer multidrug resistance in mammalian tumour cells. They are localised in the cell membrane where they actively extrude a wide range of compounds including many anti-cancer drugs from the cell. Besides in tumour cells, drug-transporting P-glycoproteins are also expressed in a polarised fashion in normal tissues that perform an excretory or barrier function, such as the liver, kidneys, intestines, brain endothelial cells. Based on this expression profile, it has been proposed that P-glycoproteins are important in protecting the host by reducing exposure to xenobiotics. Further studies with P-glycoprotein knockout mice have clearly established this protective function. In general, the clearance of substrate drugs is lower in knockout mice due to a diminished hepatobiliary excretion, direct intestinal excretion and/or increased enterohepatic cycling. Moreover, their uptake in sanctuary sites, such as the brain or the foetus, was profoundly higher in P-glycoprotein knockout mice, as was the uptake of drugs from the gastro-intestinal tract into the systemic circulation following oral ingestion. These results clearly highlight the impact that transport proteins can play in toxicology.

  20. Bile canalicular cationic dye secretion as a model for P-glycoprotein mediated transport. (United States)

    Thalhammer, T; Stapf, V; Gajdzik, L; Graf, J


    This study explores properties of P-glycoprotein dependent membrane transport in rat liver with the use of acridine orange as the substrate. We studied the biliary secretion of the dye, its binding to canalicular membrane P-glycoprotein, and effects of the inhibitor cyclosporin A: acridine orange is excreted into bile together with less hydrophobic and glucuronidated metabolites. Cyclosporin A inhibited both the secretion of acridine orange and of its metabolites. In TR- animals, a rat strain that is deficient of the canalicular multi-specific organic anion transport system, non-metabolized acridine orange is the predominant species in bile and its secretion is also inhibited by cyclosporin A. Binding of acridine orange to liver P-glycoprotein was analyzed by photoaffinity labeling with azidopine, a substrate of P-glycoprotein dependent transport in multi-drug resistant tumor cells. Labeling of the immunoprecipitated P-glycoprotein was inhibited by acridine orange, verapamil, and by cyclosporin A. The results show that biliary secretion of acridine orange is highly analogous to P-glycoprotein mediated membrane drug transport in tumor cells that exhibit multi-drug resistance.

  1. Molecular docking studies with rabies virus glycoprotein to design viral therapeutics

    Directory of Open Access Journals (Sweden)

    Tomar N


    Full Text Available The genome of rabies virus encodes five proteins; the nucleoprotein, the phosphoprotein, the matrix protein, the glycoprotein, and the RNA-dependent RNA polymerase. Among these, the glycoprotein is the most important as it is the major contributor to pathogenicity and virus neutralizing antibody response. Keeping in mind that glycoprotein is the only protein exposed on the surface of virus and is thought to be responsible for the interaction with the cell membrane, it was attempted to target glycoprotein by a ligand polyethylene glycol 4000, which blocks its active site, as seen by molecular operating environment software, so that it may be possible to prevent the spread of virus into the host. The ligand polyethylene glycol 4000 was retrieved from Research Collaboratory for Structural Bioinformatics protein data bank by providing the glycoprotein sequence to the databank. In this study it was observed that the ligand was successfully docked on a major portion of antigenic site II of glycoprotein by mimicking the virus neutralizing antibodies. This knowledge may be important for the development of novel therapies for the treatment of rabies and other viral diseases in the future.

  2. The platelet glycoprotein thrombospondin binds specifically to sulfated glycolipids. (United States)

    Roberts, D D; Haverstick, D M; Dixit, V M; Frazier, W A; Santoro, S A; Ginsburg, V


    The human platelet glycoprotein thrombospondin (TSP) binds specifically and with high affinity to sulfatides (galactosylceramide-I3-sulfate). Binding of 125I-TSP to lipids from sheep and human erythrocytes and human platelets resolved on thin layer chromatograms indicates that sulfatides are the only lipids in the membrane which bind TSP. Binding to less than 2 ng of sulfatide could be detected. TSP failed to bind to other purified lipids including cholesterol 3-sulfate, phospholipids, neutral glycolipids, and gangliosides. Binding of 125I-TSP was inhibited by unlabeled TSP, by low pH, and by reduction of intersubunit disulfide bonds with dithiothreitol. A monoclonal antibody against TSP (A2.5), which inhibits hemagglutination and agglutination of fixed activated platelets by TSP, strongly inhibited TSP binding to sulfatides. A second monoclonal antibody (C6.7), which inhibits hemagglutination and aggregation of thrombin-activated live platelets, weakly inhibited sulfatide binding. Binding was inhibited by high ionic strength and by some monosaccharide sulfates including methyl-alpha-D-GlcNAc-3-sulfate. Neutral sugars did not inhibit. Fucoidan, a sulfated fucan, strongly inhibited binding with 50% inhibition at 0.3 micrograms/ml fucoidan. Other sulfated polysaccharides including heparin and dextran sulfates were good inhibitors, whereas hyaluronic acid and keratan sulfate were very weak.

  3. Antibody Derived Peptides for Detection of Ebola Virus Glycoprotein.

    Directory of Open Access Journals (Sweden)

    Luis Mario Rodríguez-Martínez

    Full Text Available Current Ebola virus (EBOV detection methods are costly and impractical for epidemic scenarios. Different immune-based assays have been reported for the detection and quantification of Ebola virus (EBOV proteins. In particular, several monoclonal antibodies (mAbs have been described that bind the capsid glycoprotein (GP of EBOV GP. However, the currently available platforms for the design and production of full-length mAbs are cumbersome and costly. The use of antibody fragments, rather than full-length antibodies, might represent a cost-effective alternative for the development of diagnostic and possibly even therapeutic alternatives for EBOV.We report the design and expression of three recombinant anti-GP mAb fragments in Escherichia coli cultures. These fragments contained the heavy and light variable portions of the three well-studied anti-GP full-length mAbs 13C6, 13F6, and KZ52, and are consequently named scFv-13C6, scFv-13F6, and Fab-KZ52, respectively. All three fragments exhibited specific anti-GP binding activity in ELISA experiments comparable to that of full-length anti-GP antibodies (i.e., the same order of magnitude and they are easily and economically produced in bacterial cultures.Antibody fragments might represent a useful, effective, and low cost alternative to full-length antibodies in Ebola related capture and diagnostics applications.

  4. P-Glycoprotein and Drug Resistance in Systemic Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Andrea Picchianti-Diamanti


    Full Text Available Autoimmune diseases such as systemic lupus erythematosus (SLE, rheumatoid arthritis (RA and psoriatic arthritis (PsA are chronic inflammatory disorders of unknown etiology characterized by a wide range of abnormalities of the immune system that may compromise the function of several organs, such as kidney, heart, joints, brain and skin. Corticosteroids (CCS, synthetic and biologic immunosuppressive agents have demonstrated the capacity to improve the course of autoimmune diseases. However, a significant number of patients do not respond or develop resistance to these therapies over time. P-glycoprotein (P-gp is a transmembrane protein that pumps several drugs out of the cell, including CCS and immunosuppressants; thus, its over-expression or hyper-function has been proposed as a possible mechanism of drug resistance in patients with autoimmune disorders. Recently, different authors have demonstrated that P-gp inhibitors, such as cyclosporine A (CsA and its analogue Tacrolimus, are able to reduce P-gp expression and or function in SLE, RA and PsA patients. These observations suggest that P-gp antagonists could be adopted to revert drug resistance and improve disease outcome. The complex inter-relationship among drug resistance, P-gp expression and autoimmunity still remains elusive.

  5. [Classification models of structure - P-glycoprotein activity of drugs]. (United States)

    Grigorev, V Yu; Solodova, S L; Polianczyk, D E; Raevsky, O A


    Thirty three classification models of substrate specificity of 177 drugs to P-glycoprotein have been created using of the linear discriminant analysis, random forest and support vector machine methods. QSAR modeling was carried out using 2 strategies. The first strategy consisted in search of all possible combinations from 1÷5 descriptors on the basis of 7 most significant molecular descriptors with clear physico-chemical interpretation. In the second case forward selection procedure up to 5 descriptors, starting from the best single descriptor was used. This strategy was applied to a set of 387 DRAGON descriptors. It was found that only one of 33 models has necessary statistical parameters. This model was designed by means of the linear discriminant analysis on the basis of a single descriptor of H-bond (ΣC(ad)). The model has good statistical characteristics as evidenced by results to both internal cross-validation, and external validation with application of 44 new chemicals. This confirms an important role of hydrogen bond in the processes connected with penetration of chemical compounds through a blood-brain barrier.

  6. Effect of Urea on Activity and Conformation of a Glycoprotein

    Institute of Scientific and Technical Information of China (English)

    WEI Xiang; WANG Xiaoyun; ZHOU Bo; ZHOU Haimeng


    The changes of the activity and conformation of Aspergillus niger phytase in urea were detected by farultraviolet circular dichroism (CD) spectra, fluorescence spectra, and enzyme activity assays. The results show that no enzyme activity can be detected after phytase is incubated for 10 h in 3.0 mol/L urea, even though at this urea concentration, less than 20% of the tertiary and secondary structures in the native enzyme changed. The inactivation reaction kinetics is found to be a monophasic first-order reaction, but the unfolding is a biphasic process consisting of two first-order reactions. The inactivation rates of the free enzyme and the substrate-enzyme complex are much faster than the conformational changes during urea denaturation. All of the results indicate that, as a glycoprotein, phytase's activity is strongly dependent on its conformational integrity. The phytase active sites seem to be located in a limited region in the molecule and display more conformational fragility and flexibility to denaturants than enzyme molecular structure as a whole.

  7. An extensive endoplasmic reticulum-localised glycoprotein family in trypanosomatids

    Directory of Open Access Journals (Sweden)

    Harriet Allison


    Full Text Available African trypanosomes are evolutionarily highly divergent parasitic protozoa, and as a consequence the vast majority of trypanosome membrane proteins remain uncharacterised in terms of location, trafficking or function. Here we describe a novel family of type I membrane proteins which we designate ‘invariant glycoproteins’ (IGPs. IGPs are trypanosome-restricted, with extensive, lineage-specific paralogous expansions in related taxa. In T. brucei three IGP subfamilies, IGP34, IGP40 and IGP48 are recognised; all possess a putative C-type lectin ectodomain and are ER-localised, despite lacking a classical ER-retention motif. IGPs exhibit highest expression in stumpy stage cells, suggesting roles in developmental progression, but gene silencing in mammalian infective forms suggests that each IGP subfamily is also required for normal proliferation. Detailed analysis of the IGP48 subfamily indicates a role in maintaining ER morphology, while the ER lumenal domain is necessary and sufficient for formation of both oligomeric complexes and ER retention. IGP48 is detected by antibodies from T. b. rhodesiense infected humans. We propose that the IGPs represent a trypanosomatid-specific family of ER-localised glycoproteins, with potential contributions to life cycle progression and immunity, and utilise oligomerisation as an ER retention mechanism.

  8. HIV-1 envelope glycoprotein immunogens to induce broadly neutralizing antibodies. (United States)

    Sliepen, Kwinten; Sanders, Rogier W


    The long pursuit for a vaccine against human immunodeficiency virus 1 (HIV-1) has recently been boosted by a number of exciting developments. An HIV-1 subunit vaccine ideally should elicit potent broadly neutralizing antibodies (bNAbs), but raising bNAbs by vaccination has proved extremely difficult because of the characteristics of the HIV-1 envelope glycoprotein complex (Env). However, the isolation of bNAbs from HIV-1-infected patients demonstrates that the human humoral immune system is capable of making such antibodies. Therefore, a focus of HIV-1 vaccinology is the elicitation of bNAbs by engineered immunogens and by using vaccination strategies aimed at mimicking the bNAb maturation pathways in HIV-infected patients. Important clues can also be taken from the successful subunit vaccines against hepatitis B virus and human papillomavirus. Here, we review the different types of HIV-1 immunogens and vaccination strategies that are being explored in the search for an HIV-1 vaccine that induces bNAbs.

  9. Analysis of Determinants in Filovirus Glycoproteins Required for Tetherin Antagonism

    Directory of Open Access Journals (Sweden)

    Kerstin Gnirß


    Full Text Available The host cell protein tetherin can restrict the release of enveloped viruses from infected cells. The HIV-1 protein Vpu counteracts tetherin by removing it from the site of viral budding, the plasma membrane, and this process depends on specific interactions between the transmembrane domains of Vpu and tetherin. In contrast, the glycoproteins (GPs of two filoviruses, Ebola and Marburg virus, antagonize tetherin without reducing surface expression, and the domains in GP required for tetherin counteraction are unknown. Here, we show that filovirus GPs depend on the presence of their authentic transmembrane domains for virus-cell fusion and tetherin antagonism. However, conserved residues within the transmembrane domain were dispensable for membrane fusion and tetherin counteraction. Moreover, the insertion of the transmembrane domain into a heterologous viral GP, Lassa virus GPC, was not sufficient to confer tetherin antagonism to the recipient. Finally, mutation of conserved residues within the fusion peptide of Ebola virus GP inhibited virus-cell fusion but did not ablate tetherin counteraction, indicating that the fusion peptide and the ability of GP to drive host cell entry are not required for tetherin counteraction. These results suggest that the transmembrane domains of filoviral GPs contribute to tetherin antagonism but are not the sole determinants.

  10. Histidine-rich glycoprotein protects from systemic Candida infection.

    Directory of Open Access Journals (Sweden)

    Victoria Rydengård


    Full Text Available Fungi, such as Candida spp., are commonly found on the skin and at mucosal surfaces. Yet, they rarely cause invasive infections in immunocompetent individuals, an observation reflecting the ability of our innate immune system to control potentially invasive microbes found at biological boundaries. Antimicrobial proteins and peptides are becoming increasingly recognized as important effectors of innate immunity. This is illustrated further by the present investigation, demonstrating a novel antifungal role of histidine-rich glycoprotein (HRG, an abundant and multimodular plasma protein. HRG bound to Candida cells, and induced breaks in the cell walls of the organisms. Correspondingly, HRG preferentially lysed ergosterol-containing liposomes but not cholesterol-containing ones, indicating a specificity for fungal versus other types of eukaryotic membranes. Both antifungal and membrane-rupturing activities of HRG were enhanced at low pH, and mapped to the histidine-rich region of the protein. Ex vivo, HRG-containing plasma as well as fibrin clots exerted antifungal effects. In vivo, Hrg(-/- mice were susceptible to infection by C. albicans, in contrast to wild-type mice, which were highly resistant to infection. The results demonstrate a key and previously unknown antifungal role of HRG in innate immunity.

  11. Pathogenesis of mucosal injury in the blind loop syndrome. Brush border enzyme activity and glycoprotein degradation. (United States)

    Jonas, A; Flanagan, P R; Forstner, G G


    The effect of intestinal bacterial over-growth on brush border hydrolases and brush border glycoproteins was studied in nonoperated control rats, control rats with surgically introduced jejunal self-emptying blind loops, and rats with surgically introduced jejunal self-filling blind loops. Data were analyzed from blind loop segments, segments above and below the blind loops, and three corresponding segments in the nonoperated controls. Rats with self-filling blind loops had significantly greater fat excretion than controls and exhibited significantly lower conjugated:free bile salt ratios in all three segments. Maltase, sucrase, and lactase activities were significantly reduced in homogenates and isolated brush borders from the self-filling blind loop, but alkaline phosphatase was not affected. The relative degradation rate of homogenate and brush border glycoproteins was assessed by a double-isotope technique involving the injection of d-[6-(3)H]glucosamine 3 h and d-[U-(14)C]glucosamine 19 h before sacrifice, and recorded as a (3)H:(14)C ratio. The relative degradation rate in both homogenate and brush border fractions was significantly greater in most segments from rats with self-filling blind loops. In the upper and blind loop segments from rats with self-filling blind loops, the (3)H:(14)C ratios were higher in the brush border membrane than in the corresponding homogenates, indicating that the increased rates of degradation primarily involve membrane glycoproteins. Incorporation of d-[6-(3)H]glucosamine by brush border glycoproteins was not reduced in rats with self-filling blind loops, suggesting that glycoprotein synthesis was not affected. Polyacrylamide gel electrophoresis of brush border glycoproteins from the contaminated segments indicated that the large molecular weight glycoproteins, which include many of the surface hydrolases, were degraded most rapidly. Brush border maltase, isolated by immunoprecipitation, had (3)H:(14)C ratios characteristic of

  12. Stable isotope utilization for the study of the metabolism nutritional control for glycoproteins neutral oses; Utilisation des isotopes stables pour l`etude de la regulation nutritionnelle du metabolisme des oses neutres des glycoproteines

    Energy Technology Data Exchange (ETDEWEB)

    Rambal, C.; Pachiaudi, C.; Normand, S.; Riou, J.P.; Louisot, P.; Martin, A. [Centre de Recherche en Nutrition Humaine, 69 - Lyon (France)


    The aim of this work is to assess the role of minor oses, constituents of the glycoproteins and present in small quantities, in food, on glycosylation and its control. Stable isotopes are necessary for metabolic studies on man. These studies have never been used for glycoprotein oses, so, application of gaseous phase chromatography coupled to isotopic mass spectrometry is validated here on animal for ose study; exploratory tests on man seric glycoproteins have been also carried out. 6 figs., 7 refs.

  13. Comparison of three distinct ELLA protocols for determination of apparent affinity constants between Con A and glycoproteins. (United States)

    Mislovičová, D; Katrlík, J; Paulovičová, E; Gemeiner, P; Tkac, J


    A procedure for determination of apparent affinity constants K(D)(app) between Concanavalin A (Con A) and naturally d-mannose containing glycoproteins using enzyme-linked lectin assay (ELLA) is reported. Three distinct ELLA protocols are compared to each other with 3 different fitting models used (Liliom, Hill with and without a cooperativity factor). The glycoproteins were physisorbed on a highly charged polystyrene solid surface of immunoassay plates and the amount of lectin bound to the glycoproteins was determined by photometry. The interactions of Con A with five mannose-containing glycoproteins, invertase (INV), glucoamylase (GA), glucose oxidase (GOx), ovalbumin (OVA), and transferrin (TRF) were quantified with apparent affinity constant being in the range 2×10(-7) to 9×10(-6)M. The strength of interaction between Con A and glycoproteins is discussed on the basis of glycan structure/exposure on the protein backbone for each glycoprotein.

  14. Inhibition of rhodamine 123 secretion by cyclosporin A as a model of P-glycoprotein mediated transport in liver. (United States)

    Stapf, V; Thalhammer, T; Huber-Huber, R; Felberbauer, F; Gajdzik, L; Graf, J


    The interaction between P-glycoprotein modulators and P-glycoprotein mediated transport was investigated using rhodamine 123 in the isolated perfused rat liver of a mutant (TR-) rat strain. TR- rats, deficient in the canalicular multispecific anion transport system, are unable to extrude organic anions (glucuronides) and therefore excrete solely unconjugated rhodamine 123 via P-glycoprotein. Cyclosporin A, a modulator of multidrug resistance in tumor cells, inhibited the biliary secretion of rhodamine 123 dose dependently in a non-competitive manner. Both cyclosporin A and rhodamine inhibited photoaffinity labeling of immunoprecipitated P-glycoprotein with azidopine, indicating binding to hepatic P-glycoprotein. Our results indicate that monitoring the biliary rhodamine 123 secretion in the isolated perfused liver of TR- rats offers a new system for testing modulators of P-glycoprotein like cyclosporin A.

  15. Age-related changes of the multidrug resistance P-glycoprotein function in normal human peripheral blood T lymphocytes

    Directory of Open Access Journals (Sweden)

    C.G. Machado


    Full Text Available The multidrug resistance P-glycoprotein is a transmembrane efflux pump expressed by lymphocytes and is involved in their cytolytic activity. In the present study, we investigated the age-related changes of P-glycoprotein function in normal peripheral blood lymphocytes. Blood samples from 90 normal volunteers (age range, 0 to 86 years were analyzed. P-glycoprotein function was assessed by the flow cytometric rhodamine 123 assay. P-glycoprotein function was highest in cord blood and progressively declined with age in peripheral blood T CD4+ and CD8+ cells. In contrast, P-glycoprotein function did not vary with age in CD19+ B or CD16+CD56+ natural killer cells. These data suggest that the decline in P-glycoprotein function in T CD4+ and CD8+ lymphocytes as a function of age may contribute to the decrease in T cell cytolytic activity with aging.

  16. 3,3′,4,4′,5-Pentachlorobiphenyl Inhibits Drug Efflux Through P-Glycoprotein in KB-3 Cells Expressing Mutant Human P-Glycoprotein

    Directory of Open Access Journals (Sweden)

    Hiroshi Fujise


    Full Text Available The effects on the drug efflux of 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126, the most toxic of all coplanar polychlorinated biphenyls (Co-PCBs, were examined in KB-3 cells expressing human wild-type and mutant P-glycoprotein in which the 61st amino acid was substituted for serine or phenylalanine (KB3-Phe61. In the cells expressing P-glycoproteins, accumulations of vinblastine and colchicine decreased form 85% to 92% and from 62% to 91%, respectively, and the drug tolerances for these chemicals were increased. In KB3-Phe61, the decreases in drug accumulation were inhibited by adding PCB-126 in a way similar to that with cyclosporine A: by adding 1 μM PCB-126, the accumulations of vinblastine and colchicine increased up to 3.3- and 2.3-fold, respectively. It is suggested that PCB-126 decreased the drug efflux by inhibiting the P-glycoprotein in KB3-Phe61. Since there were various P-glycoproteins and many congeners of Co-PCBs, this inhibition has to be considered a new cause of the toxic effects of Co-PCBs.

  17. Discovery & development of small molecule allosteric modulators of glycoprotein hormone receptors

    Directory of Open Access Journals (Sweden)

    Selvaraj G Nataraja


    Full Text Available Glycoprotein hormones, follicle-stimulating hormone (FSH, luteinizing hormone (LH, and thyroid stimulating hormone (TSH are heterodimeric proteins with a common subunit and hormone-specific subunit. These hormones are dominant regulators of reproduction and metabolic processes. Receptors for the glycoprotein hormones belong to the family of G-protein coupled receptors (GPCR. FSH receptor (FSHR and LH receptor (LHR are primarily expressed in somatic cells in ovary and testis to promote egg and sperm production in women & men respectively. TSH receptor (TSHR is expressed in thyroid cells and regulates the secretion of T3 & T4. Glycoprotein hormones bind to the large extracellular domain of the receptor and cause a conformational change in the receptor that leads to activation of more than one intracellular signaling pathway. Several small molecules have been described to activate/inhibit glycoprotein hormone receptors through allosteric sites of the receptor. Small molecule allosteric modulators have the potential to be administered orally to patients thus improving the convenience of treatment. It has been a challenge to develop a small molecule allosteric agonist for glycoprotein hormones that can mimic the agonistic effects of the large natural ligand to activate similar signaling pathways. However, in the past few years, there have been several promising reports describing distinct chemical series with improved potency in preclinical models. In parallel, proposal of new structural model for FSH receptor and in silico docking studies of small molecule ligands to glycoprotein hormone receptors provide a giant leap on the understanding of the mechanism of action of the natural ligands and new chemical entities on the receptors. This review will focus on the current status of small molecule allosteric modulators of glycoprotein hormone receptors, their effects on common signaling pathways in cells, their utility for clinical

  18. Thyroid Hormone and P-Glycoprotein in Tumor Cells

    Directory of Open Access Journals (Sweden)

    Paul J. Davis


    Full Text Available P-glycoprotein (P-gp; multidrug resistance pump 1, MDR1; ABCB1 is a plasma membrane efflux pump that when activated in cancer cells exports chemotherapeutic agents. Transcription of the P-gp gene (MDR1 and activity of the P-gp protein are known to be affected by thyroid hormone. A cell surface receptor for thyroid hormone on integrin αvβ3 also binds tetraiodothyroacetic acid (tetrac, a derivative of L-thyroxine (T4 that blocks nongenomic actions of T4 and of 3,5,3′-triiodo-L-thyronine (T3 at αvβ3. Covalently bound to a nanoparticle, tetrac as nanotetrac acts at the integrin to increase intracellular residence time of chemotherapeutic agents such as doxorubicin and etoposide that are substrates of P-gp. This action chemosensitizes cancer cells. In this review, we examine possible molecular mechanisms for the inhibitory effect of nanotetrac on P-gp activity. Mechanisms for consideration include cancer cell acidification via action of tetrac/nanotetrac on the Na+/H+ exchanger (NHE1 and hormone analogue effects on calmodulin-dependent processes and on interactions of P-gp with epidermal growth factor (EGF and osteopontin (OPN, apparently via αvβ3. Intracellular acidification and decreased H+ efflux induced by tetrac/nanotetrac via NHE1 is the most attractive explanation for the actions on P-gp and consequent increase in cancer cell retention of chemotherapeutic agent-ligands of MDR1 protein.

  19. Full-length Ebola glycoprotein accumulates in the endoplasmic reticulum

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Suchita


    Full Text Available Abstract The Filoviridae family comprises of Ebola and Marburg viruses, which are known to cause lethal hemorrhagic fever. However, there is no effective anti-viral therapy or licensed vaccines currently available for these human pathogens. The envelope glycoprotein (GP of Ebola virus, which mediates entry into target cells, is cytotoxic and this effect maps to a highly glycosylated mucin-like region in the surface subunit of GP (GP1. However, the mechanism underlying this cytotoxic property of GP is unknown. To gain insight into the basis of this GP-induced cytotoxicity, HEK293T cells were transiently transfected with full-length and mucin-deleted (Δmucin Ebola GP plasmids and GP localization was examined relative to the nucleus, endoplasmic reticulum (ER, Golgi, early and late endosomes using deconvolution fluorescent microscopy. Full-length Ebola GP was observed to accumulate in the ER. In contrast, GPΔmucin was uniformly expressed throughout the cell and did not localize in the ER. The Ebola major matrix protein VP40 was also co-expressed with GP to investigate its influence on GP localization. GP and VP40 co-expression did not alter GP localization to the ER. Also, when VP40 was co-expressed with the nucleoprotein (NP, it localized to the plasma membrane while NP accumulated in distinct cytoplasmic structures lined with vimentin. These latter structures are consistent with aggresomes and may serve as assembly sites for filoviral nucleocapsids. Collectively, these data suggest that full-length GP, but not GPΔmucin, accumulates in the ER in close proximity to the nuclear membrane, which may underscore its cytotoxic property.

  20. Structural mechanism of trimeric HIV-1 envelope glycoprotein activation.

    Directory of Open Access Journals (Sweden)

    Erin E H Tran

    Full Text Available HIV-1 infection begins with the binding of trimeric viral envelope glycoproteins (Env to CD4 and a co-receptor on target T-cells. Understanding how these ligands influence the structure of Env is of fundamental interest for HIV vaccine development. Using cryo-electron microscopy, we describe the contrasting structural outcomes of trimeric Env binding to soluble CD4, to the broadly neutralizing, CD4-binding site antibodies VRC01, VRC03 and b12, or to the monoclonal antibody 17b, a co-receptor mimic. Binding of trimeric HIV-1 BaL Env to either soluble CD4 or 17b alone, is sufficient to trigger formation of the open quaternary conformation of Env. In contrast, VRC01 locks Env in the closed state, while b12 binding requires a partial opening in the quaternary structure of trimeric Env. Our results show that, despite general similarities in regions of the HIV-1 gp120 polypeptide that contact CD4, VRC01, VRC03 and b12, there are important differences in quaternary structures of the complexes these ligands form on native trimeric Env, and potentially explain differences in the neutralizing breadth and potency of antibodies with similar specificities. From cryo-electron microscopic analysis at ∼9 Å resolution of a cleaved, soluble version of trimeric Env, we show that a structural signature of the open Env conformation is a three-helix motif composed of α-helical segments derived from highly conserved, non-glycosylated N-terminal regions of the gp41 trimer. The three N-terminal gp41 helices in this novel, activated Env conformation are held apart by their interactions with the rest of Env, and are less compactly packed than in the post-fusion, six-helix bundle state. These findings suggest a new structural template for designing immunogens that can elicit antibodies targeting HIV at a vulnerable, pre-entry stage.

  1. Alternative promoter usage of the membrane glycoprotein CD36

    Directory of Open Access Journals (Sweden)

    Whatling Carl


    Full Text Available Abstract Background CD36 is a membrane glycoprotein involved in a variety of cellular processes such as lipid transport, immune regulation, hemostasis, adhesion, angiogenesis and atherosclerosis. It is expressed in many tissues and cell types, with a tissue specific expression pattern that is a result of a complex regulation for which the molecular mechanisms are not yet fully understood. There are several alternative mRNA isoforms described for the gene. We have investigated the expression patterns of five alternative first exons of the CD36 gene in several human tissues and cell types, to better understand the molecular details behind its regulation. Results We have identified one novel alternative first exon of the CD36 gene, and confirmed the expression of four previously known alternative first exons of the gene. The alternative transcripts are all expressed in more than one human tissue and their expression patterns vary highly in skeletal muscle, heart, liver, adipose tissue, placenta, spinal cord, cerebrum and monocytes. All alternative first exons are upregulated in THP-1 macrophages in response to oxidized low density lipoproteins. The alternative promoters lack TATA-boxes and CpG islands. The upstream region of exon 1b contains several features common for house keeping gene and monocyte specific gene promoters. Conclusion Tissue-specific expression patterns of the alternative first exons of CD36 suggest that the alternative first exons of the gene are regulated individually and tissue specifically. At the same time, the fact that all first exons are upregulated in THP-1 macrophages in response to oxidized low density lipoproteins may suggest that the alternative first exons are coregulated in this cell type and environmental condition. The molecular mechanisms regulating CD36 thus appear to be unusually complex, which might reflect the multifunctional role of the gene in different tissues and cellular conditions.

  2. Molecular insight into conformational transmission of human P-glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shan-Yan [Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Liu, Fu-Feng, E-mail:, E-mail:; Dong, Xiao-Yan; Sun, Yan, E-mail:, E-mail: [Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)


    P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through α-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp.

  3. Molecular insight into conformational transmission of human P-glycoprotein (United States)

    Chang, Shan-Yan; Liu, Fu-Feng; Dong, Xiao-Yan; Sun, Yan


    P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through α-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp.

  4. Multiple Drug Transport Pathways through Human P-Glycoprotein. (United States)

    McCormick, James W; Vogel, Pia D; Wise, John G


    P-Glycoprotein (P-gp) is a plasma membrane efflux pump that is commonly associated with therapy resistances in cancers and infectious diseases. P-gp can lower the intracellular concentrations of many drugs to subtherapeutic levels by translocating them out of the cell. Because of the broad range of substrates transported by P-gp, overexpression of P-gp causes multidrug resistance. We reported previously on dynamic transitions of P-gp as it moved through conformations based on crystal structures of homologous ABCB1 proteins using in silico targeted molecular dynamics techniques. We expanded these studies here by docking transport substrates to drug binding sites of P-gp in conformations open to the cytoplasm, followed by cycling the pump through conformations that opened to the extracellular space. We observed reproducible transport of two substrates, daunorubicin and verapamil, by an average of 11-12 Å through the plane of the membrane as P-gp progressed through a catalytic cycle. Methylpyrophosphate, a ligand that should not be transported by P-gp, did not show this movement through P-gp. Drug binding to either of two subsites on P-gp appeared to determine the initial pathway used for drug movement through the membrane. The specific side-chain interactions with drugs within each pathway seemed to be, at least in part, stochastic. The docking and transport properties of a P-gp inhibitor, tariquidar, were also studied. A mechanism of inhibition by tariquidar that involves stabilization of an outward open conformation with tariquidar bound in intracellular loops or at the drug binding domain of P-gp is presented.

  5. P-glycoprotein acts as an immunomodulator during neuroinflammation.

    Directory of Open Access Journals (Sweden)

    Gijs Kooij

    Full Text Available BACKGROUND: Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system in which autoreactive myelin-specific T cells cause extensive tissue damage, resulting in neurological deficits. In the disease process, T cells are primed in the periphery by antigen presenting dendritic cells (DCs. DCs are considered to be crucial regulators of specific immune responses and molecules or proteins that regulate DC function are therefore under extensive investigation. We here investigated the potential immunomodulatory capacity of the ATP binding cassette transporter P-glycoprotein (P-gp. P-gp generally drives cellular efflux of a variety of compounds and is thought to be involved in excretion of inflammatory agents from immune cells, like DCs. So far, the immunomodulatory role of these ABC transporters is unknown. METHODS AND FINDINGS: Here we demonstrate that P-gp acts as a key modulator of adaptive immunity during an in vivo model for neuroinflammation. The function of the DC is severely impaired in P-gp knockout mice (Mdr1a/1b-/-, since both DC maturation and T cell stimulatory capacity is significantly decreased. Consequently, Mdr1a/1b -/- mice develop decreased clinical signs of experimental autoimmune encephalomyelitis (EAE, an animal model for multiple sclerosis. Reduced clinical signs coincided with impaired T cell responses and T cell-specific brain inflammation. We here describe the underlying molecular mechanism and demonstrate that P-gp is crucial for the secretion of pro-inflammatory cytokines such as TNF-alpha and IFN-gamma. Importantly, the defect in DC function can be restored by exogenous addition of these cytokines. CONCLUSIONS: Our data demonstrate that P-gp downmodulates DC function through the regulation of pro-inflammatory cytokine secretion, resulting in an impaired immune response. Taken together, our work highlights a new physiological role for P-gp as an immunomodulatory molecule and reveals a possible

  6. Pituitary glycoprotein hormone a-subunit secretion by cirrhotic patients

    Directory of Open Access Journals (Sweden)

    Oliveira M.C.


    Full Text Available Secretion of the a-subunit of pituitary glycoprotein hormones usually follows the secretion of intact gonadotropins and is increased in gonadal failure and decreased in isolated gonadotropin deficiency. The aim of the present study was to determine the levels of the a-subunit in the serum of patients with cirrhosis of the liver and to compare the results obtained for eugonadal cirrhotic patients with those obtained for cirrhotic patients with hypogonadotropic hypogonadism. Forty-seven of 63 patients with cirrhosis (74.6% presented hypogonadism (which was central in 45 cases and primary in 2, 7 were eugonadal, and 9 women were in normal menopause. The serum a-subunit was measured by the fluorimetric method using monoclonal antibodies. Cross-reactivity with LH, TSH, FSH and hCG was 6.5, 1.2, 4.3 and 1.1%, respectively, with an intra-assay coefficient of variation (CV of less than 5% and an interassay CV of 5%, and sensitivity limit of 4 ng/l. The serum a-subunit concentration ranged from 36 to 6253 ng/l, with a median of 273 ng/l. The median was 251 ng/l for patients with central hypogonadism and 198 ng/l for eugonadal patients. The correlation between the a-subunit and basal LH levels was significant both in the total sample (r = 0.48, P<0.01 and in the cirrhotic patients with central hypogonadism (r = 0.33, P = 0.02. Among men with central hypogonadism there was a negative correlation between a-subunit levels and total testosterone levels (r = 0.54, P<0.01 as well as free testosterone levels (r = -0.53, P<0.01. In conclusion, although the a-subunit levels are correlated with LH levels, at present they cannot be used as markers for hypogonadism in patients with cirrhosis of the liver.

  7. Membrane topology analysis of HIV-1 envelope glycoprotein gp41

    Directory of Open Access Journals (Sweden)

    Xiao Dan


    Full Text Available Abstract Background The gp41 subunit of the HIV-1 envelope glycoprotein (Env has been widely regarded as a type I transmembrane protein with a single membrane-spanning domain (MSD. An alternative topology model suggested multiple MSDs. The major discrepancy between the two models is that the cytoplasmic Kennedy sequence in the single MSD model is assigned as the extracellular loop accessible to neutralizing antibodies in the other model. We examined the membrane topology of the gp41 subunit in both prokaryotic and mammalian systems. We attached topological markers to the C-termini of serially truncated gp41. In the prokaryotic system, we utilized a green fluorescent protein (GFP that is only active in the cytoplasm. The tag protein (HaloTag and a membrane-impermeable ligand specific to HaloTag was used in the mammalian system. Results In the absence of membrane fusion, both the prokaryotic and mammalian systems (293FT cells supported the single MSD model. In the presence of membrane fusion in mammalian cells (293CD4 cells, the data obtained seem to support the multiple MSD model. However, the region predicted to be a potential MSD is the highly hydrophilic Kennedy sequence and is least likely to become a MSD based on several algorithms. Further analysis revealed the induction of membrane permeability during membrane fusion, allowing the membrane-impermeable ligand and antibodies to cross the membrane. Therefore, we cannot completely rule out the possible artifacts. Addition of membrane fusion inhibitors or alterations of the MSD sequence decreased the induction of membrane permeability. Conclusions It is likely that a single MSD model for HIV-1 gp41 holds true even in the presence of membrane fusion. The degree of the augmentation of membrane permeability we observed was dependent on the membrane fusion and sequence of the MSD.

  8. Interaction of the P-Glycoprotein Multidrug Transporter with Sterols. (United States)

    Clay, Adam T; Lu, Peihua; Sharom, Frances J


    The ABC transporter P-glycoprotein (Pgp, ABCB1) actively exports structurally diverse substrates from within the lipid bilayer, leading to multidrug resistance. Many aspects of Pgp function are altered by the phospholipid environment, but its interactions with sterols remain enigmatic. In this work, the functional interaction between purified Pgp and various sterols was investigated in detergent solution and proteoliposomes. Fluorescence studies showed that dehydroergosterol, cholestatrienol, and NBD-cholesterol interact intimately with Pgp, resulting in both quenching of protein Trp fluorescence and enhancement of sterol fluorescence. Kd values indicated binding affinities in the range of 3-9 μM. Collisional quenching experiments showed that Pgp-bound NBD-cholesterol was protected from the external milieu, resonance energy transfer was observed between Pgp Trp residues and the sterol, and the fluorescence emission of bound sterol was enhanced. These observations suggested an intimate interaction of bound sterols with the transporter at a protected nonpolar site. Cholesterol hemisuccinate altered the thermal unfolding of Pgp and greatly stabilized its basal ATPase activity in both a detergent solution and reconstituted proteoliposomes of certain phospholipids. Other sterols, including dehydroergosterol, did not stabilize the basal ATPase activity of detergent-solubilized Pgp, which suggests that this is not a generalized sterol effect. The phospholipid composition and cholesterol hemisuccinate content of Pgp proteoliposomes altered the basal ATPase and drug transport cycles differently. Sterols may interact with Pgp and modulate its structure and function by occupying part of the drug-binding pocket or by binding to putative consensus cholesterol-binding (CRAC/CARC) motifs located within the transmembrane domains.

  9. Effect of expression of P-glycoprotein on technetium-99m methoxyisobutylisonitrile single photon emission computed tomography of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Yasushi; Matsumura, Akira; Nose, Tadao [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine


    The expression of P-glycoprotein was investigated imunohistochemically in 26 brain tumor tissues and compared with the findings of technetium-99m methoxyisobutylisonitrile single photon emission computed tomography ({sup 99m}Tc-MIBI SPECT) to clarify the effect of P-glycoprotein on the diagnostic accuracy. P-glycoprotein labeling index of both tumor cells and vascular endothelial cells showed no clear relationship with the findings of {sup 99m}Tc-MIBI SPECT imaging. Expression of P-glycoprotein has no effect on the diagnostic accuracy of {sup 99m}Tc-MIBI SPECT. (author)

  10. Envelope glycoproteins of HIV-1, HIV-2, and SIV purified with Galanthus nivalis agglutinin induce strong immune responses. (United States)

    Gilljam, G


    Lectin affinity chromatography was used to purify in a single step the envelope glycoproteins of HIV-1, HIV-2, and SIV. Envelope glycoproteins carry the major determinants essential for protection by the humoral immune response. The purification of these proteins has previously been a laborious procedure. The glycoproteins were purified by a one-step procedure to a high level of purity by using Galanthus nivalis agglutinin (GNA). The purified glycoprotein had CD4-binding and antigenic reactivities. Strong immune responses to envelope proteins and peptides were seen in mice and primates after immunization with these preparations.

  11. Isolation from Gluconacetobacter diazotrophicus cell walls of specific receptors for sugarcane glycoproteins, which act as recognition factors. (United States)

    Blanco, Y; Arroyo, M; Legaz, M E; Vicente, C


    Glycoproteins from sugarcane stalks have been isolated from plants field-grown by size-exclusion chromatography. Some of these glycoproteins, previously labelled with fluorescein isothiocyanate, are able to bind to the cell wall of the sugarcane endophyte, N2-fixing Gluconacetobacter diazotrophicus, and largely removed after washing the bacterial cells with sucrose. This implies that sugarcane glycoproteins use beta-(1-->2)-fructofuranosyl fructose domains in their glycosidic moiety to bind to specific receptors in the bacterial cell walls. These receptors have been isolated by affinity chromatography on a sugarcane glycoprotein-agarose matrix, desorbed with sucrose and characterized by sodium dodecyl sulfate polyacrylamide gel electrophresisand capillary electrophoresis (CE).

  12. HSV-1 Glycoproteins Are Delivered to Virus Assembly Sites Through Dynamin-Dependent Endocytosis. (United States)

    Albecka, Anna; Laine, Romain F; Janssen, Anne F J; Kaminski, Clemens F; Crump, Colin M


    Herpes simplex virus-1 (HSV-1) is a large enveloped DNA virus that belongs to the family of Herpesviridae. It has been recently shown that the cytoplasmic membranes that wrap the newly assembled capsids are endocytic compartments derived from the plasma membrane. Here, we show that dynamin-dependent endocytosis plays a major role in this process. Dominant-negative dynamin and clathrin adaptor AP180 significantly decrease virus production. Moreover, inhibitors targeting dynamin and clathrin lead to a decreased transport of glycoproteins to cytoplasmic capsids, confirming that glycoproteins are delivered to assembly sites via endocytosis. We also show that certain combinations of glycoproteins colocalize with each other and with the components of clathrin-dependent and -independent endocytosis pathways. Importantly, we demonstrate that the uptake of neutralizing antibodies that bind to glycoproteins when they become exposed on the cell surface during virus particle assembly leads to the production of non-infectious HSV-1. Our results demonstrate that transport of viral glycoproteins to the plasma membrane prior to endocytosis is the major route by which these proteins are localized to the cytoplasmic virus assembly compartments. This highlights the importance of endocytosis as a major protein-sorting event during HSV-1 envelopment.

  13. Glycoprotein processing in mutants of HSV-1 that induce cell fusion

    Energy Technology Data Exchange (ETDEWEB)

    Person, S.; Kousoulas, K.G.; Knowles, R.W.; Read, G.S.; Holland, T.C.; Keller, P.M.; Warner, S.C.


    The synthesis of viral-specified glycoproteins, and their appearance on cell surfaces, were compared for cells infected either with syncytial mutants of HSV-1 or with the parental strains from which the mutants were derived. The mutants MP and tsB5, representatives of two different viral genes that affect fusion, were employed in these studies. Cells infected with either mutant gave rise to reduce surface labeling of major viral-specified glycoproteins throughout infection relative to the parental strains. Putative glycoprotein precursors were synthesized in similar amounts throughout infection in mutant and wild-type infected cells. However, during a chase period after a pulse of labeling, fully glycosylated species of glycoproteins accumulated more slowly in mutant than in parent infected cells. The effect was clearly visible early in MP-infected cells and by 9 hr after infection for tsB5-infected cells, and increased thereafter. Apparently the decrease in appearance of glycoproteins on the cell surface of mutant-infected cells is due to a decrease in their rate of processing. 26 references, 7 figures.

  14. Recognition of glycoprotein peroxidase via Con A-carrying self-assembly layer on gold. (United States)

    Liu, Songqin; Wang, Kewei; Du, Dan; Sun, Yueming; He, Lin


    We have successfully fabricated a self-assembled layer of concanavalin A (Con A) on a gold surface for recognition of glycoproteins. The type IV Con A is covalently bound to 11-mercaptoundecanoic acid (MUA) on gold with a 2-(5-norbornene-2,3-dicarboximido)-1,1,3,3-tetramethyluronium tetrafluoroborate (TNTU) linkage. The binding interaction between glycoproteins and self-assembled Con A is studied using horseradish peroxidase (HRP) as a model glycoprotein. Voltammetric, electrochemical impedance studies, and photometric activity measurements show the presence of both specific and nonspecific bindings of HRP to the Con A interface. The specific binding is attributed to the Con A-sugar interaction where Con A selectively recognizes the glycosylation sites of HRP. The catalytic current of the HRP-loaded electrode, because of catalytic oxidation of thionine in the presence of hydrogen peroxide (H2O2), is found to be proportional to the HRP concentrations in the incubation solution. A linear correlation coefficient of 0.993 was obtained over a wide HRP concentration range of 12.5 microg/mL to 1 mg/mL. The approach described in this study provides a simple yet selective means to immobilize glycoproteins on a solid support. The specific binding achieved is desirable in biosensor fabrication, glycoprotein separation, recognition, and purification as well as in drug-releasing systems.

  15. Haemonchus contortus P-glycoprotein-2: in situ localisation and characterisation of macrocyclic lactone transport. (United States)

    Godoy, Pablo; Lian, Jing; Beech, Robin N; Prichard, Roger K


    Haemonchus contortus is a veterinary nematode that infects small ruminants, causing serious decreases in animal production worldwide. Effective control through anthelmintic treatment has been compromised by the development of resistance to these drugs, including the macrocyclic lactones. The mechanisms of resistance in H. contortus have yet to be established but may involve efflux of the macrocyclic lactones by nematode ATP-binding-cassette transporters such as P-glycoproteins. Here we report the expression and functional activity of H. contortus P-glycoprotein 2 expressed in mammalian cells and characterise its interaction with the macrocyclic lactones, ivermectin, abamectin and moxidectin. The ability of H. contortus P-glycoprotein 2 to transport different fluorophore substrates was markedly inhibited by ivermectin and abamectin in a dose-dependent and saturable way. The profile of transport inhibition by moxidectin was markedly different. H. contortus P-glycoprotein 2 was expressed in the pharynx, the first portion of the worm's intestine and perhaps in adjacent nervous tissue, suggesting a role for this gene in regulating the uptake of avermectins and in protecting nematode tissues from the effects of macrocyclic lactone anthelmintic drugs. H. contortus P-glycoprotein 2 may thus contribute to resistance to these drugs in H. contortus.

  16. Archaeal S-layer glycoproteins: Post-translational modification in the face of extremes

    Directory of Open Access Journals (Sweden)

    Jerry eEichler


    Full Text Available Corresponding to the sole or basic component of the surface (S-layer surrounding the archaeal cell in most known cases, S-layer glycoproteins are in direct contact with the harsh environments that characterize niches where Archaea can thrive. Accordingly, early work examining archaeal S-layer glycoproteins focused on identifying those properties that allow members of this group of proteins to maintain their structural integrity in the face of extremes of temperature, pH and salinity, as well as other physical challenges. However, with expansion of the list of archaeal strains serving as model systems, as well as growth in the number of molecular tools available for the manipulation of these strains, studies on archaeal S-layer glycoproteins are currently more likely to consider the various post-translational modifications these polypeptides undergo. For instance, archaeal S-layer glycoproteins can undergo proteolytic cleavage, both N- and O-glycosylation, lipid-modification and oligomerization. In this mini-review, recent findings related to the post-translational modification of archaeal S-layer glycoproteins are considered.

  17. Ammonia secretion from fish gill depends on a set of Rh glycoproteins. (United States)

    Nakada, Tsutomu; Westhoff, Connie M; Kato, Akira; Hirose, Shigehisa


    Ammonia excretion from the gill in teleost fish is essential for nitrogen elimination. Although numerous physiological studies have measured ammonia excretion, the mechanism of ammonia movement through the membranes of gill epithelial cells is still unknown. Mammalian Rh glycoproteins are members of a family of proteins that mediate ammonia transport in bacteria, yeast, and plants. We identified the Rh glycoprotein homologs, fRhag, fRhbg, fRhcg1, and fRhcg2, of the pufferfish, Takifugu rubripes. Northern blot, in situ hybridization, and immunohistochemistry revealed that the pufferfish erythroid Rh glycoprotein homologue fRhag was present in red blood cells and the hematological organs (spleen and kidney) in fish. All four pufferfish Rh glycoproteins are specifically localized in the gill and line the pillar cells, pavement cells, and the mitochondrion-rich cells. Heterologous expression in Xenopus oocytes showed that they mediate methylammonium (an analog of ammonium) transport. These results suggest that pufferfish Rh glycoproteins are involved in ammonia excretion from the gill. These findings challenge the classic view that ammonia excretion in the fish gill occurs by passive diffusion.

  18. Co-treatment by docetaxel and vinblastine breaks down P-glycoprotein mediated chemo-resistance

    Directory of Open Access Journals (Sweden)

    Mahsa Mohseni


    Results: Combination treatment of the cells with docetaxel and vinblastine decreased the IC50 values for docetaxel from (30±3.1 to (15±2.6 nM and for vinblastine from (30±5.9 to (5±5.6 nM (P≤0.05.               P-glycoprotein mRNA expression level showed a significant up-regulation in the cells incubated with each drug alone (P≤0.001. Incubation of the cells with combined concentrations of both agents neutralized P-glycoprotein overexpression (P≤0.05. Adding verapamil, a P-glycoprotein inhibitor caused a further increase in the percentage of apoptotic cells when the cells were treated with both agents.  Conclusion:Our results suggest that combination therapy along with P-glycoprotein inhibition can be considered as a novel approach to improve the efficacy of chemotherapeutics in cancer patients with high P-glycoprotein expression.

  19. Crystallization and preliminary X-ray analysis of Chandipura virus glycoprotein G. (United States)

    Baquero, Eduard; Buonocore, Linda; Rose, John K; Bressanelli, Stéphane; Gaudin, Yves; Albertini, Aurélie A


    Fusion in members of the Rhabdoviridae virus family is mediated by the G glycoprotein. At low pH, the G glycoprotein catalyzes fusion between viral and endosomal membranes by undergoing a major conformational change from a pre-fusion trimer to a post-fusion trimer. The structure of the G glycoprotein from vesicular stomatitis virus (VSV G), the prototype of Vesiculovirus, has recently been solved in its trimeric pre-fusion and post-fusion conformations; however, little is known about the structural details of the transition. In this work, a soluble form of the ectodomain of Chandipura virus G glycoprotein (CHAV G(th)) was purified using limited proteolysis of purified virus; this soluble ectodomain was also crystallized. This protein shares 41% amino-acid identity with VSV G and thus its structure could provide further clues about the structural transition of rhabdoviral glycoproteins induced by low pH. Crystals of CHAV G(th) obtained at pH 7.5 diffracted X-rays to 3.1 Å resolution. These crystals belonged to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 150.3, b = 228.2, c = 78.8 Å. Preliminary analysis of the data based on the space group and the self-rotation function indicated that there was no trimeric association of the protomers. This unusual oligomeric status could result from the presence of fusion intermediates in the crystal.

  20. Biochemical reconstitution of hemorrhagic-fever arenavirus envelope glycoprotein-mediated membrane fusion.

    Directory of Open Access Journals (Sweden)

    Celestine J Thomas

    Full Text Available The membrane-anchored proteins of enveloped viruses form labile spikes on the virion surface, primed to undergo large-scale conformational changes culminating in virus-cell membrane fusion and viral entry. The prefusion form of these envelope glycoproteins thus represents an important molecular target for antiviral intervention. A critical roadblock to this endeavor has been our inability to produce the prefusion envelope glycoprotein trimer for biochemical and structural analysis. Through our studies of the GPC envelope glycoprotein of the hemorrhagic fever arenaviruses, we have shown that GPC is unique among class I viral fusion proteins in that the mature complex retains a stable signal peptide (SSP in addition to the conventional receptor-binding and transmembrane fusion subunits. In this report we show that the recombinant GPC precursor can be produced as a discrete native-like trimer and that its proteolytic cleavage generates the mature glycoprotein. Proteoliposomes containing the cleaved GPC mediate pH-dependent membrane fusion, a characteristic feature of arenavirus entry. This reaction is inhibited by arenavirus-specific monoclonal antibodies and small-molecule fusion inhibitors. The in vitro reconstitution of GPC-mediated membrane-fusion activity offers unprecedented opportunities for biochemical and structural studies of arenavirus entry and its inhibition. To our knowledge, this report is the first to demonstrate functional reconstitution of membrane fusion by a viral envelope glycoprotein.

  1. Immunological responses to envelope glycoprotein 120 from subtypes of human immunodeficiency virus type 1. (United States)

    Gilljam, G; Svensson, A; Ekström, A; Wahren, B


    The outer envelope glycoprotein (gp120) from subtypes A-E of HIV-1 was purified using a specific high mannose-binding lectin, Galanthus nivalis agglutinin. All isolates were grown in peripheral blood lymphocyte cells in order to avoid selection in cell lines. A comparison of the reactivities of the envelope proteins was made using sera from patients infected with the different subtypes. In this study, the B and C subtype envelope glycoproteins showed the strongest immunological reactivity, when reacted with sera from patients infected with the same subtype of virus. On the other hand, sera of patients infected with subtype A or C virus had the strongest and broadest reactivities, to envelope glycoproteins of many subtypes. The purified gp120 proteins from all five subtypes stimulated mononuclear cells from HIV-1 (subtype B)-infected patients, indicating conserved T cell-activating epitopes. The immunological reactivities indicate that strong antigenicity does not always predict the broadest immunogenicity of an envelope glycoprotein. Glycoprotein 120 from foreign subtypes may serve to induce strong cross-reactive immune responses.

  2. Producing recombinant therapeutic glycoproteins with enhanced sialylation using CHO-gmt4 glycosylation mutant cells (United States)

    Goh, John SY; Liu, Yingwei; Chan, Kah Fai; Wan, Corrine; Teo, Gavin; Zhang, Peiqing; Zhang, Yuanxing; Song, Zhiwei


    Recombinant glycoprotein drugs require proper glycosylation for optimal therapeutic efficacy. Glycoprotein therapeutics are rapidly removed from circulation and have reduced efficacy if they are poorly sialylated. Ricinus communis agglutinin-I (RCA-I) was found highly toxic to wild-type CHO-K1 cells and all the mutants that survived RCA-I treatment contained a dysfunctional N-acetylglucosaminyltransferase I (GnT I) gene. These mutants are named CHO-gmt4 cells. Interestingly, upon restoration of GnT I, the sialylation of a model glycoprotein, erythropoietin, produced in CHO-gmt4 cells was shown to be superior to that produced in wild-type CHO-K1 cells. This addendum summarizes the applicability of this cell line, from transient to stable expression of the recombinant protein, and from a lab scale to an industrial scale perfusion bioreactor. In addition, CHO-gmt4 cells can be used to produce glycoproteins with mannose-terminated N-glycans. Recombinant glucocerebrosidase produced by CHO-gmt4 cells will not require glycan remodeling and may be directly used to treat patients with Gaucher disease. CHO-gmt4 cells can also be used to produce other glycoprotein therapeutics which target cells expressing mannose receptors. PMID:24911584

  3. Defence sugarcane glycoproteins disorganize microtubules and prevent nuclear polarization and germination of Sporisorium scitamineum teliospores. (United States)

    Sánchez-Elordi, Elena; Baluška, František; Echevarría, Clara; Vicente, Carlos; Legaz, M Estrella


    Microtubules (MTs) are involved in the germination of Sporisorium scitamineum teliospores. Resistant varieties of sugar cane plants produce defence glycoproteins that prevent the infection of the plants by the filamentous fungi Sporisorium scitamineum. Here, we show that a fraction of these glycoproteins prevents the correct arrangement of MTs and causes nuclear fragmentation defects. As a result, nuclei cannot correctly migrate through the growing hyphae, causing germinative failure. Arginase activity contained in defence glycoproteins is already described for preventing fungal germination. Now, its enzymatically active form is presented as a link between the defensive capacity of glycoproteins and the MT disorganization in fungal cells. Active arginase is produced in healthy and resistant plants; conversely, it is not detected in the juice from susceptible varieties, which explains why MT depolarization, nuclear disorganization as well as germination of teliospores are not significantly affected by glycoproteins from non-resistant plants. Our results also suggest that susceptible plants try to increase their levels of arginase after detecting the presence of the pathogen. However, this signal comes "too late" and such defensive mechanism fails.

  4. Efficient transduction of neurons using Ross River glycoprotein-pseudotyped lentiviral vectors

    DEFF Research Database (Denmark)

    Jakobsson, J; Nielsen, T Tolstrup; Staflin, K;


    Lentiviral vectors are promising tools for CNS gene transfer since they efficiently transduce the cells of the nervous system in vivo. In this study, we have investigated the transduction efficiency of lentiviral vectors pseudotyped with Ross River virus glycoprotein (RRV-G) (RRV-G-pseudotyped le......Lentiviral vectors are promising tools for CNS gene transfer since they efficiently transduce the cells of the nervous system in vivo. In this study, we have investigated the transduction efficiency of lentiviral vectors pseudotyped with Ross River virus glycoprotein (RRV-G) (RRV...... and human glial fibrillary acidic protein, we demonstrated cell-specific transgene expression in the desired cell type. Ross River virus glycoprotein-pseudotyped lentiviral vectors also transduced human neural progenitor cells in vitro, showing that receptors for the RRV-G are present on human neural cells....

  5. Complement inhibition enables tumor delivery of LCMV glycoprotein pseudotyped viruses in the presence of antiviral antibodies (United States)

    Evgin, Laura; Ilkow, Carolina S; Bourgeois-Daigneault, Marie-Claude; de Souza, Christiano Tanese; Stubbert, Lawton; Huh, Michael S; Jennings, Victoria A; Marguerie, Monique; Acuna, Sergio A; Keller, Brian A; Lefebvre, Charles; Falls, Theresa; Le Boeuf, Fabrice; Auer, Rebecca A; Lambris, John D; McCart, J Andrea; Stojdl, David F; Bell, John C


    The systemic delivery of therapeutic viruses, such as oncolytic viruses or vaccines, is limited by the generation of neutralizing antibodies. While pseudotyping of rhabdoviruses with the lymphocytic choriomeningitis virus glycoprotein has previously allowed for multiple rounds of delivery in mice, this strategy has not translated to other animal models. For the first time, we provide experimental evidence that antibodies generated against the lymphocytic choriomeningitis virus glycoprotein mediate robust complement-dependent viral neutralization via activation of the classical pathway. We show that this phenotype can be capitalized upon to deliver maraba virus pseudotyped with the lymphocytic choriomeningitis virus glycoprotein in a Fischer rat model in the face of neutralizing antibody through the use of complement modulators. This finding changes the understanding of the humoral immune response to arenaviruses, and also describes methodology to deliver viral vectors to their therapeutic sites of action without the interference of neutralizing antibody. PMID:27909702

  6. Proteomic dataset for altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells. (United States)

    Sheta, Razan; Roux-Dalvai, Florence; Woo, Christina M; Fournier, Frédéric; Bourassa, Sylvie; Bertozzi, Carolyn R; Droit, Arnaud; Bachvarov, Dimcho


    This article contains raw and processed data related to research published in "Role of the polypeptide N-acetylgalactosaminyltransferase 3 in ovarian cancer progression: possible implications in abnormal mucin O-glycosylation" [1]. The data presented here was obtained with the application of a bioorthogonal chemical reporter strategy analyzing differential glycoprotein expression following the knock-down (KD) of the GALNT3 gene in the epithelial ovarian cancer (EOC) cell line A2780s. LC-MS/MS mass spectrometry analysis was then performed and the processed data related to the identified glycoproteins show that several hundred proteins are differentially expressed between control and GALNT3 KD A2780s cells. The obtained data also uncover numerous novel glycoproteins; some of which could represent new potential EOC biomarkers and/or therapeutic targets.

  7. Secretion of hepatitis C virus envelope glycoproteins depends on assembly of apolipoprotein B positive lipoproteins.

    Directory of Open Access Journals (Sweden)

    Vinca Icard

    Full Text Available The density of circulating hepatitis C virus (HCV particles in the blood of chronically infected patients is very heterogeneous. The very low density of some particles has been attributed to an association of the virus with apolipoprotein B (apoB positive and triglyceride rich lipoproteins (TRL likely resulting in hybrid lipoproteins known as lipo-viro-particles (LVP containing the viral envelope glycoproteins E1 and E2, capsid and viral RNA. The specific infectivity of these particles has been shown to be higher than the infectivity of particles of higher density. The nature of the association of HCV particles with lipoproteins remains elusive and the role of apolipoproteins in the synthesis and assembly of the viral particles is unknown. The human intestinal Caco-2 cell line differentiates in vitro into polarized and apoB secreting cells during asymmetric culture on porous filters. By using this cell culture system, cells stably expressing E1 and E2 secreted the glycoproteins into the basal culture medium after one week of differentiation concomitantly with TRL secretion. Secreted glycoproteins were only detected in apoB containing density fractions. The E1-E2 and apoB containing particles were unique complexes bearing the envelope glycoproteins at their surface since apoB could be co-immunoprecipitated with E2-specific antibodies. Envelope protein secretion was reduced by inhibiting the lipidation of apoB with an inhibitor of the microsomal triglyceride transfer protein. HCV glycoproteins were similarly secreted in association with TRL from the human liver cell line HepG2 but not by Huh-7 and Huh-7.5 hepatoma cells that proved deficient for lipoprotein assembly. These data indicate that HCV envelope glycoproteins have the intrinsic capacity to utilize apoB synthesis and lipoprotein assembly machinery even in the absence of the other HCV proteins. A model for LVP assembly is proposed.

  8. Regulation of HSV glycoprotein induced cascade of events governing cell-cell fusion. (United States)

    Atanasiu, Doina; Saw, Wan Ting; Eisenberg, Roselyn J; Cohen, Gary H


    Receptor dependent HSV-induced fusion requires glycoproteins gD, gH/gL, and gB. Our current model posits that during fusion receptor-activated conformational changes in gD activate gH/gL, which subsequently triggers transformation of the pre-fusion form of gB into a fusogenic state. To examine the role of each glycoprotein in receptor dependent cell-cell fusion we took advantage of our discovery that fusion by wild type HSV-2 glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we established that fusion speed was governed by gH/gL, with gH being the main contributor. While the mutant forms of gB fuse at distinct rates that are dictated by their molecular structure, these restrictions can be overcome by gH2/gL2, thereby enhancing their activity. We also found that deregulated forms of gD1 and gH2/gL2 can alter the fusogenic potential of gB, promoting cell fusion in the absence of a cellular receptor and that deregulated forms of gB can drive the fusion machinery to even higher levels. Low pH enhanced fusion by affecting the structure of both gB and gH/gL mutants. Together, our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process and the critical role of gH/gL in regulating HSV induced fusion.

  9. Development of oligoclonal nanobodies for targeting the tumor-associated glycoprotein 72 antigen

    DEFF Research Database (Denmark)

    Sharifzadeh, Zahra; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad Ali;


    The tumor-associated glycoprotein 72 (TAG-72) is a membrane mucin whose over-expression is correlated with advanced tumor stage and increased invasion and metastasis. In this study, we identified a panel of four nanobodies, single variable domains of dromedary heavy-chain antibodies that specific......The tumor-associated glycoprotein 72 (TAG-72) is a membrane mucin whose over-expression is correlated with advanced tumor stage and increased invasion and metastasis. In this study, we identified a panel of four nanobodies, single variable domains of dromedary heavy-chain antibodies...

  10. Identification of active pocket and protein druggability within envelope glycoprotein GP2 from Ebola virus

    Institute of Scientific and Technical Information of China (English)

    Beuy Joob; Viroj Wiwanitkit


    The drug searching for combating the present outbreak of Ebola virus infection is the urgent activity at present. Finding the new effective drug at present must base on the molecular analysis of the pathogenic virus. The in-depth analysis of the viral protein to find the binding site, active pocket is needed. Here, the authors analyzed the envelope glycoprotein GP2 from Ebola virus. Identification of active pocket and protein druggability within envelope glycoprotein GP2 from Ebola virus was done. According to this assessment, 7 active pockets with varied druggability could be identified.

  11. Identification of active pocket and protein druggability within envelope glycoprotein GP2 from Ebola virus

    Institute of Scientific and Technical Information of China (English)

    Beuy; Joob; Viroj; Wiwanitkit


    The drug searching for combating the present outbreak of Ebola virus infection is the urgent activity at present.Finding the new effective drug at present must base on the molecular analysis of the pathogenic virus.The in-depth analysis of the viral protein to find the binding site,active pocket is needed.Here,the authors analyzed the envelope glycoprotein GP2 from Ebola virus.Identification of active pocket and protein draggability within envelope glycoprotein GP2 from Ebola virus was done.According to this assessment,7 active pockets with varied draggability could be identified.

  12. Electrophoretic demonstration of glycoproteins, lipoproteins, and phosphoproteins in human and bovine enamel

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Bøg-Hansen, T C;


    Enamel proteins from fully mineralized human molars and from bovine tooth germs were separated by electrophoresis. The gels were stained for detection of glycoproteins, lipoproteins, and phosphoproteins. Glycoproteins were shown by periodic acid-Schiff staining and lectin blotting. In mature human...... enamel a number of high molecular weight proteins could be demonstrated after ethylenediaminetetra-acetic acid demineralization and subsequent Triton X-100 extraction. These proteins are suggested to be lipoproteins. Phosphoproteins could only be visualized in enamel matrix from the tooth germs....

  13. A Novel Method for Detection of Glycoproteins on Sodium Dodecyl Sulphate Polyacrylamide Gel Using Radio-Iodinated Tyrosine

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Draz, Hossam M.; Dole, Anita;


    The aim of this study is to develop a novel method for detection of glycoproteins on polyacrylamide gel. In this method, radio-iodinated-tyrosine (125I-tyrosine) was conjugated to glycoprotein by schiff's base mechanism on the sodium dodecyl sulfate- polyacrylamide gel. Ovalbumin and Concanavalin...

  14. Regulation of P-glycoprotein efflux activity by Z-guggulsterone of Commiphora mukul at the blood-brain barrier. (United States)

    Xu, Hong-Bin; Yu, Jing; Xu, Lu-Zhong; Fu, Jun


    The present study was to investigate whether Z-guggulsterone had the regulatory effect on the activity and expression of P-glycoprotein in rat brain microvessel endothelial cells (rBMECs) and in rat brain. Inorganic phosphate liberation assay, high performance liquid chromatography, and western blot analysis were performed to assess the P-glycoprotein ATPase activity, the accumulation of NaF and rhodamine 123, and P-glycoprotein and MRP1 expression. The results showed that Z-guggulsterone (0-100 μM) significantly enhanced basal P-glycoprotein ATPase activity in a concentration-dependent manner. Tetrandrine (0.1, 0.3, 1 μM) or cyclosporine A (0.1, 0.3, 1 μM) had non-competitively inhibitory manner on Z-guggulsterone-stimulated P-glycoprotein ATPase activity, suggesting that Z-guggulsterone might have unique binding site or regulating site on P-glycoprotein. However, Z-guggulsterone (30, 100 μM) had almost no influence on MRP1 expression in rBMECs. Further results revealed that Z-guggulsterone (50mg/kg) significantly increased the accumulation of rhodamine 123 by down-regulating P-glycoprotein expression in rat brain, as compared with control (PZ-guggulsterone potentially inhibited the activity and expression of P-glycoprotein in rBMECs and in rat brain.

  15. Requirements for ER-Arrest and Sequential Exit to the Golgi of Tomato Spotted Wilt Virus Glycoproteins

    NARCIS (Netherlands)

    Ribeiro, D.M.O.G.; Goldbach, R.W.; Kormelink, R.J.M.


    The envelope glycoproteins Gn and Gc are major determinants in the assembly of Tomato spotted wilt virus (TSWV) particles at the Golgi complex. In this article, the ER-arrest of singly expressed Gc and the transport of both glycoproteins to the Golgi upon co-expression have been analyzed. While prel

  16. Targeting prostaglandin E2 EP1 receptors prevents seizure-associated P-glycoprotein up-regulation

    NARCIS (Netherlands)

    Pekcec, A.; Unkrüer, B.; Schlichtiger, J.; Soerensen, J.; Hartz, A.M.S.; Bauer, B.; van Vliet, E.A.; Gorter, J.A.; Potschka, H.


    Up-regulation of the blood-brain barrier efflux transporter P-glycoprotein in central nervous system disorders results in restricted brain access and limited efficacy of therapeutic drugs. In epilepsies, seizure activity strongly triggers expression of P-glycoprotein. Here, we identified the prostag

  17. The B-cell lymphoma 2 (BCL2)-inhibitors, ABT-737 and ABT-263, are substrates for P-glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Vogler, Meike, E-mail: [MRC Toxicology Unit, University of Leicester, LE1 9HN Leicester (United Kingdom); Dickens, David, E-mail: [Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, L69 3GL Liverpool (United Kingdom); Dyer, Martin J.S., E-mail: [MRC Toxicology Unit, University of Leicester, LE1 9HN Leicester (United Kingdom); Owen, Andrew, E-mail: [Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, L69 3GL Liverpool (United Kingdom); Pirmohamed, Munir, E-mail: [Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, L69 3GL Liverpool (United Kingdom); Cohen, Gerald M., E-mail: [MRC Toxicology Unit, University of Leicester, LE1 9HN Leicester (United Kingdom)


    Highlights: {yields} The BCL2-inhibitor ABT-263 is a substrate for P-glycoprotein. {yields} Apoptosis is inhibited by P-glycoprotein expression. {yields} Overexpression of P-glycoprotein may contribute to resistance to ABT-263 or ABT-737. -- Abstract: Inhibition of BCL2 proteins is one of the most promising new approaches to targeted cancer therapy resulting in the induction of apoptosis. Amongst the most specific BCL2-inhibitors identified are ABT-737 and ABT-263. However, targeted therapy is often only effective for a limited amount of time because of the occurrence of drug resistance. In this study, the interaction of BCL2-inhibitors with the drug efflux transporter P-glycoprotein was investigated. Using {sup 3}H labelled ABT-263, we found that cells with high P-glycoprotein activity accumulated less drug. In addition, cells with increased P-glycoprotein expression were more resistant to apoptosis induced by either ABT-737 or ABT-263. Addition of tariquidar or verapamil sensitized the cells to BCL2-inhibitor treatment, resulting in higher apoptosis. Our data suggest that the BCL2-inhibitors ABT-737 and ABT-263 are substrates for P-glycoprotein. Over-expression of P-glycoprotein may be, at least partly, responsible for resistance to these BCL2-inhibitors.

  18. P-glycoprotein interaction with risperidone and 9-OH-risperidone studied in vitro, in knock-out mice and in drug-drug interaction experiments

    DEFF Research Database (Denmark)

    Ejsing, Thomas B.; Pedersen, Anne D.; Linnet, Kristian


    P-glycoprotein, risperidone, nortriptyline, cyclosporine A, drug-drug interaction, blood-brain barrier, knock-out mice......P-glycoprotein, risperidone, nortriptyline, cyclosporine A, drug-drug interaction, blood-brain barrier, knock-out mice...

  19. The DNA sequence of the equine herpesvirus 4 gene encoding glycoprotein gp17/18, the homologue of herpes simplex virus glycoprotein gD. (United States)

    Cullinane, A A; Neilan, J; Wilson, L; Davison, A J; Allen, G


    The nucleotide sequence of the gene to the left of the gI gene of equine herpesvirus 4 (EHV-4) was determined. The gene encodes a peptide of 402 amino acids with an unprocessed M(r) of 45,323. The predicted polypeptide has several features of a glycoprotein including a hydrophobic signal sequence, a membrane spanning domain and four potential N-linked glycosylation sites within the proposed external domain. The predicted amino acid sequence of EHV-4 gD shows 83% identity with that of equine herpesvirus 1 gD. Conservation of the tertiary structure is suggested by the alignment of six cysteine residues with those of the gD of six other alphaherpesviruses. Screening a lambda gt11/EHV-4 expression library with monoclonal antibodies against several of the most abundant EHV-4 glycoproteins unequivocally identified the protein encoded by the EHV-4 gD gene as gp17/18.

  20. Chemical synthesis of glycoproteins with the specific installation of gradient enriched 15N-labeled amino acids for getting insight into glycoprotein behavior. (United States)

    Kajihara, Yasuhiro; Nguyen, Minh Hien; Izumi, Masayuki; Sato, Hajime; Okamoto, Ryo


    We propose a novel partially 15N-labelling method for the amide backbone of a synthetic glycoprotein. By use of a chemical approach utilizing SPPS and NCL, we inserted thirteen 15N-labeled amino acids at specific positions of the protein backbone, while intentionally varying the enrichment of 15N atoms. This idea enables us to discriminate even the same type of amino acid based on the intensities of 1H-15N HSQC signals, thus allowing us to understand the dynamics of the local conformation of a synthetic homogeneous glycoprotein. Results suggested that the attachment of an oligosaccharide of either a bi-antennary complex-type or a high-mannose-type did not disturb protein conformation. However, T1 values suggested that the oligosaccharide influenced dynamics at the local conformation. Temperature-varied CD spectra and T1 values clearly indicated that oligosaccharides appeared to inhibit protein fluctuation or, in other words, stabilize protein structure.

  1. Use of lambdagt11 to isolate genes for two pseudorabies virus glycoproteins with homology to herpes simplex virus and varicella-zoster virus glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Petrovskis, E.A.; Timmins, J.G.; Post, L.E.


    A library of pseudorabies virus (PRV) DNA fragments was constructed in the expression cloning vector lambdagt11. The library was screened with antisera which reacted with mixtures of PRV proteins to isolate recombinant bacteriophages expressing PRV proteins. By the nature of the lambdagt11 vector, the cloned proteins were expressed in Escherichia coli as ..beta..-galactosidase fusion proteins. The fusion proteins from 35 of these phages were purified and injected into mice to raise antisera. The antisera were screened by several different assays, including immunoprecipitation of (/sup 14/C)glucosamine-labeled PRV proteins. This method identified phages expressing three different PRV glycoproteins: the secreted glycoprotein, gX; gI; and a glycoprotein that had not been previously identified, which we designate gp63. The gp63 and gI genes map adjacent to each other in the small unique region of the PRV genome. The DNA sequence was determined for the region of the genome encoding gp63 and gI. It was found that gp63 has a region of homology with a herpes simplex virus type 1 (HSV-1) protein, encoded by US7, and also with varicella-zoster virus (VZV) gpIV. The gI protein sequence has a region of homology with HSV-1 gE and VZV gpI. It is concluded that PRV, HSV, and VZV all have a cluster of homologous glycoprotein genes in the small unique components of their genomes and that the organization of these genes is conserved.

  2. Increased Expression of P-Glycoprotein Is Associated With Chlorpyrifos Resistance in the German Cockroach (Blattodea: Blattellidae). (United States)

    Hou, Weiyuan; Jiang, Chu; Zhou, Xiaojie; Qian, Kun; Wang, Lei; Shen, Yanhui; Zhao, Yan


    A principal method for control of the German cockroach, Blattella germanica (L.), is the broad-spectrum organophosphorus insecticide, chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate); however, extensive and repeated application has resulted in the development of resistance to chlorpyrifos in this insect. Evidence suggests that ATP-binding cassette protein transporters, including P-glycoprotein, are involved in insecticide resistance. However, little is known of the role of P-glycoprotein in insecticide resistance in the German cockroach. Here, we developed a chlorpyrifos-resistant strain of German cockroach and investigated the relationship between P-glycoprotein and chlorpyrifos resistance using toxicity assays; inhibition studies with two P-glycoprotein inhibitors, verapamil and quinine; P-glycoprotein-ATPase activity assays; and western blotting analysis. After 23 generations of selection from susceptible strain cockroaches, we obtained animals with high resistance to chlorpyrifos. When P-glycoprotein-ATPase activity was inhibited by verapamil and quinine, we observed enhanced susceptibility to chlorpyrifos in both control and chlorpyrifos-resistant cockroaches. No significant alterations of P-glycoprotein expression or ATPase activity were observed in cockroaches acutely exposed to LD50 doses of chlorpyrifos for 24 h, while P-glycoprotein expression and ATPase activity were clearly elevated in the chlorpyrifos-resistant cockroach strain. Thus, we conclude that P-glycoprotein is associated with chlorpyrifos resistance in the German cockroach and that elevated levels of P-glycoprotein expression and ATPase activity may be an important mechanism of chlorpyrifos resistance in the German cockroach.

  3. Characterization of an equine herpesvirus type 1 gene encoding a glycoprotein (gp13) with homology to herpes simplex virus glycoprotein C. (United States)

    Allen, G P; Coogle, L D


    The molecular structure of the equine herpesvirus type 1 (EHV-1) gene encoding glycoprotein 13 (gp13) was analyzed. The gene is contained within a 1.8-kilobase AccI-EcoRI restriction fragment mapping at map coordinates 0.136 to 0.148 in the UL region of the EHV-1 genome and is transcribed from right to left. Determination of the nucleotide sequence of the DNA fragment revealed a complete transcriptional unit composed of typical regulatory promoter elements upstream to a long open reading frame (1,404 base pairs) that encoded a 468-amino-acid primary translation product of 51 kilodaltons. The predicted protein has the characteristic features of a membrane-spanning protein: an N-terminal signal sequence, a hydrophobic membrane anchor region, a charged C-terminal cytoplasmic tail, and an exterior domain with nine potential N-glycosylation sites. The EHV-1 DNA sequences expressed in lambda gt11 as gp13 epitopes were present in the open reading frame. Amino acid sequences composing a major antigenic site, recognized by 35% of a panel of 42 anti-gp13 monoclonal antibodies, were identified in the N-terminal surface domain of the deduced gp13 molecule. Comparison of the EHV-1 gp13 DNA sequence with that encoding glycoproteins of other alphaherpesviruses revealed no detectable homology. However, a search for homology at the amino acid level showed regions of significant sequence similarity between the amino acids of the carboxy half of EHV-1 gp13 and those of the same region of gC-like glycoproteins of herpes simplex virus (gC-1 and gC-2), pseudorabies herpesvirus (gIII), and varicella-zoster virus (gp66). The sequences of the N-terminal portion of gp13, by contrast, were much less conserved. The results of these studies indicate that EHV-1 gp13 is the structural homolog of herpes simplex virus glycoprotein C and further suggest that the epitope-containing N-terminal amino acid sequences of the herpesvirus gC-like glycoproteins have undergone more extensive evolutionary

  4. Virulence determinants within the E2 glycoprotein of Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Johnston, Camille Melissa; Fahnøe, Ulrik; Lohse, Louise

    Classical Swine Fever is a highly contagious disease of pigs caused by Classical Swine Fever Virus (CSFV), a member of the pestivirus genus within the family Flaviviridae. The E2 glycoprotein of CSFV has been shown to be an important factor for the virulence of the virus. In a recent study, we ha...

  5. Correction of defective protein kinesis of human P-glycoprotein mutants by substrates and modulators. (United States)

    Loo, T W; Clarke, D M


    There is growing evidence that abnormal protein folding or trafficking (protein kinesis) leads to diseases. We have used P-glycoprotein as a model protein to develop strategies to overcome defects in protein kinesis. Misprocessed mutants of the human P-glycoprotein are retained in the endoplasmic reticulum as core-glycosylated biosynthetic intermediates and rapidly degraded. Synthesis of the mutant proteins in the presence of drug substrates or modulators such as capsaicin, cyclosporin, vinblastine, or verapamil, however, resulted in the appearance of a fully glycosylated and functional protein at the cell surface. These effects were dose-dependent and occurred within a few hours after the addition of substrate. The ability to facilitate processing of the misfolded mutants appeared to be independent of the cell lines used and location of the mutation. P-glycoproteins with mutations in transmembrane segments, extracellular or cytoplasmic loops, the nucleotide-binding domains, or the linker region were processed to the fully mature form in the presence of these substrates. These drug substrates or modulators acted as specific chemical chaperones for P-glycoprotein because they were ineffective on the deltaF508 mutant of cystic fibrosis transmembrane conductance regulator. Therefore, one possible strategy to prevent protein misfolding is to carry out synthesis in the presence of specific substrates or modulators of the protein.

  6. Characterization of a novel brain barrier ex vivo insect-based P-glycoprotein screening model

    DEFF Research Database (Denmark)

    Andersson, O.; Badisco, L.; Hansen, A. H.;


    In earlier studies insects were proposed as suitable models for vertebrate blood–brain barrier (BBB) permeability prediction and useful in early drug discovery. Here we provide transcriptome and functional data demonstrating the presence of a P-glycoprotein (Pgp) efflux transporter in the brain b...

  7. Structure of a Pestivirus Envelope Glycoprotein E2 Clarifies Its Role in Cell Entry

    Directory of Open Access Journals (Sweden)

    Kamel El Omari


    Full Text Available Enveloped viruses have developed various adroit mechanisms to invade their host cells. This process requires one or more viral envelope glycoprotein to achieve cell attachment and membrane fusion. Members of the Flaviviridae such as flaviviruses possess only one envelope glycoprotein, E, whereas pestiviruses and hepacivirus encode two glycoproteins, E1 and E2. Although E2 is involved in cell attachment, it has been unclear which protein is responsible for membrane fusion. We report the crystal structures of the homodimeric glycoprotein E2 from the pestivirus bovine viral diarrhea virus 1 (BVDV1 at both neutral and low pH. Unexpectedly, BVDV1 E2 does not have a class II fusion protein fold, and at low pH the N-terminal domain is disordered, similarly to the intermediate postfusion state of E2 from sindbis virus, an alphavirus. Our results suggest that the pestivirus and possibly the hepacivirus fusion machinery are unlike any previously observed.

  8. Structure of Acidic pH Dengue Virus Showing the Fusogenic Glycoprotein Trimers

    NARCIS (Netherlands)

    Zhang, Xinzheng; Sheng, Ju; Austin, S. Kyle; Hoornweg, Tabitha E.; Smit, Jolanda M.; Kuhn, Richard J.; Diamond, Michael S.; Rossmann, Michael G.


    Flaviviruses undergo large conformational changes during their life cycle. Under acidic pH conditions, the mature virus forms transient fusogenic trimers of E glycoproteins that engage the lipid membrane in host cells to initiate viral fusion and nucleocapsid penetration into the cytoplasm. However,

  9. Bacterial multidrug resistance mediated by a homologue of the human multidrug transporter P-glycoprotein

    NARCIS (Netherlands)

    Konings, WN; Poelarends, GJ


    Most ATP-binding cassette (ABC) multidrug transporters known to date are of eukaryotic origin, such as the P-glycoproteins (Pgps) and multidrug resistance-associated proteins (MRPs). Only one well-characterized ABC multidrug transporter, LmrA, is of bacterial origin. On the basis of its structural a

  10. Monoclonal Antibodies for Dengue Virus prM Glycoprotein Protect Mice against Lethal Dengue Infection (United States)


    Nile virus and a prelysozomal endosome prM glycoprotein of dengue virus can also be required for viral replication . PrM Mabs 2H2 protective bodies can prevent lethal alphavirus encepha- niques to preserve immunogenicity, to deter- litis. Nature 297: 70-72. UI:82173237 mine whether

  11. Alpha 1-acid glycoprotein has immunomodulatory effects in neonatal swine adipose tissue (United States)

    Alpha 1-acid glycoprotein (AGP) is the most abundant protein in serum of neonatal swine. This protein functions as an immunomodulator in the pig. Recent work has demonstrated that adipose tissue can express AGP mRNA, as well as numerous cytokine mRNA. The present study was designed to determine i...

  12. Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B. (United States)

    Backovic, Marija; Longnecker, Richard; Jardetzky, Theodore S


    Epstein-Barr virus (EBV) is a herpesvirus that is associated with development of malignancies of lymphoid tissue. EBV infections are life-long and occur in >90% of the population. Herpesviruses enter host cells in a process that involves fusion of viral and cellular membranes. The fusion apparatus is comprised of envelope glycoprotein B (gB) and a heterodimeric complex made of glycoproteins H and L. Glycoprotein B is the most conserved envelope glycoprotein in human herpesviruses, and the structure of gB from Herpes simplex virus 1 (HSV-1) is available. Here, we report the crystal structure of the secreted EBV gB ectodomain, which forms 16-nm long spike-like trimers, structurally homologous to the postfusion trimers of the fusion protein G of vesicular stomatitis virus (VSV). Comparative structural analyses of EBV gB and VSV G, which has been solved in its pre and postfusion states, shed light on gB residues that may be involved in conformational changes and membrane fusion. Also, the EBV gB structure reveals that, despite the high sequence conservation of gB in herpesviruses, the relative orientations of individual domains, the surface charge distributions, and the structural details of EBV gB differ from the HSV-1 protein, indicating regions and residues that may have important roles in virus-specific entry.

  13. Structure of three acidic O-linked carbohydrate chains of porcine zona pellucida glycoproteins

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Hokke, C.H.; Damm, J.B.L.; Kamerling, J.P.


    Structural analysis by ID and 2D 1H NMR spectroscopy of three acidic O-linked oligosaccharide alditols, released from porcine zona pellucida glycoproteins by alkaline borohydride treatment, afforded the following structures: Gal beta l-4(6SO4-)GlcNAc beta l-3Gal beta l-4GlcNAc beta 1-3Gal beta 1-3Ga

  14. Identification of key structural characteristics of Schisandra chinensis lignans involved in P-glycoprotein inhibition. (United States)

    Slanina, Jiří; Páchniková, Gabriela; Carnecká, Martina; Porubová Koubíková, Ludmila; Adámková, Lenka; Humpa, Otakar; Smejkal, Karel; Slaninová, Iva


    The aim of the present study was to determine the structural requirements for dibenzocyclooctadiene lignans essential for P-glycoprotein inhibition. Altogether 15 structurally related lignans isolated from Schisandra chinensis or prepared by modification of their backbone were investigated, including three pairs of enantiomers. P-Glycoprotein inhibition was quantified using a doxorubicin accumulation assay in human promyelotic leukemia HL60/MDR cells overexpressing P-glycoprotein. A preliminary quantitative structure-activity relationship analysis revealed three main structural features involved in P-glycoprotein inhibition: a 1,2,3-trimethoxy moiety, a 6-acyloxy group, and the absence of a 7-hydroxy group. The most effective inhibitors, (-)-gomisin N (1) and (+)-deoxyschizandrin [(+)-2], were selected for further evaluation of their effects. Both these lignans restored the cytotoxic effect of doxorubicin in HL60/MDR cells and when combined with a subtoxic concentration of this compound increased the proportion of G2/M cells significantly, which is a usual response to treatment with this anticancer drug.

  15. Human CRISP-3 binds serum alpha(1)B-glycoprotein across species

    DEFF Research Database (Denmark)

    Udby, Lene; Johnsen, Anders H; Borregaard, Niels


    CRISP-3 was previously shown to be bound to alpha(1)B-glycoprotein (A1BG) in human serum/plasma. All mammalian sera are supposed to contain A1BG, although its presence in rodent sera is not well-documented. Since animal sera are often used to supplement buffers in experiments, in particular...

  16. Irradiation of rat brain reduces P-glycoprotein expression and function

    NARCIS (Netherlands)

    Bart, J.; Nagengast, W.B.; Coppes, R.P.; Wegman, T.D.; Graaf, W.T.A. van der; Groen, H.J.; Vaalburg, W.; Vries, E.G.F. de; Hendrikse, N.H.


    The blood-brain barrier (BBB) hampers delivery of several drugs including chemotherapeutics to the brain. The drug efflux pump P-glycoprotein (P-gp), expressed on brain capillary endothelial cells, is part of the BBB. P-gp expression on capillary endothelium decreases 5 days after brain irradiation,

  17. Irradiation of rat brain reduces P-glycoprotein expression and function

    NARCIS (Netherlands)

    Bart, J.; Nagengast, W. B.; Coppes, R. P.; Wegman, T. D.; van der Graaf, W. T. A.; Groen, H. J. M.; Vaalburg, W.; de Vries, E. G. E.; Hendrikse, N. H.


    The blood - brain barrier ( BBB) hampers delivery of several drugs including chemotherapeutics to the brain. The drug efflux pump P- glycoprotein ( P- gp), expressed on brain capillary endothelial cells, is part of the BBB. P- gp expression on capillary endothelium decreases 5 days after brain irrad

  18. Elevation of glycoprotein nonmetastatic melanoma protein B in type 1 Gaucher disease patients and mouse models

    NARCIS (Netherlands)

    Kramer, Gertjan; Wegdam, Wouter; Donker-Koopman, Wilma; Ottenhoff, Roelof; Gaspar, Paulo; Verhoek, Marri; Nelson, Jessica; Gabriel, Tanit; Kallemeijn, Wouter; Boot, Rolf G.; Laman, Jon D.; Vissers, Johannes P. C.; Cox, Timothy; Pavlova, Elena; Moran, Mary Teresa; Aerts, Johannes M.; van Eijk, Marco


    Gaucher disease is caused by inherited deficiency of lysosomal glucocere-brosidase. Proteome analysis of laser-dissected splenic Gaucher cells revealed increased amounts of glycoprotein nonmetastatic melanoma protein B (gpNMB). Plasma gpNMB was also elevated, correlating with chitotriosidase and CCL

  19. Elevation of glycoprotein nonmetastatic melanoma protein B in type 1 Gaucher disease patients and mouse models

    NARCIS (Netherlands)

    Kramer, G.; Wegdam, W.; Donker-Koopman, W.; Ottenhoff, R.; Gaspar, P.; Verhoek, M.; Nelson, J.; Gabriel, T.; Kallemeijn, W.W.; Boot, R.G.; Laman, J.D.; Vissers, J.P.; Cox, T.; Pavlova, E.; Moran, M.T.; Aerts, J.M.F.G.; Eijk, van M.C.


    Gaucher disease is caused by inherited deficiency of lysosomal glucocerebrosidase. Proteome analysis of laser-dissected splenic Gaucher cells revealed increased amounts of glycoprotein nonmetastatic melanoma protein B (gpNMB). Plasma gpNMB was also elevated, correlating with chitotriosidase and CCL1

  20. Interactions between P-glycoprotein substrates and other cationic drugs at the hepatic excretory level

    NARCIS (Netherlands)

    Smit, JW; Duin, E; Steen, H; Roggeveld, J; Meijer, DKF


    1 In the present study it was tested whether known P-glycoprotein (P-gp) substrates/MDR reversal agents interact with small (type 1) and bulky (type 2) cationic drugs at the level of biliary excretion in the rat isolated perfused liver model (IPRL). The studies were performed with model compounds tr

  1. Expression and structural-functional alterations of α-1-acid glycoprotein at the pathological state

    Directory of Open Access Journals (Sweden)

    Kulinich A. O.


    Full Text Available The review analyzes up-to-date knowledge on structure and biological functions of α-acid glycoprotein. The special attention is given to alterations of fucosylation, sialylation and branching of orosomucoid at the acute, chronic inflammation and oncotransformations.

  2. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits (United States)

    Robinson, James E.; Hastie, Kathryn M.; Cross, Robert W.; Yenni, Rachael E.; Elliott, Deborah H.; Rouelle, Julie A.; Kannadka, Chandrika B.; Smira, Ashley A.; Garry, Courtney E.; Bradley, Benjamin T.; Yu, Haini; Shaffer, Jeffrey G.; Boisen, Matt L.; Hartnett, Jessica N.; Zandonatti, Michelle A.; Rowland, Megan M.; Heinrich, Megan L.; Martínez-Sobrido, Luis; Cheng, Benson; de la Torre, Juan C.; Andersen, Kristian G.; Goba, Augustine; Momoh, Mambu; Fullah, Mohamed; Gbakie, Michael; Kanneh, Lansana; Koroma, Veronica J.; Fonnie, Richard; Jalloh, Simbirie C.; Kargbo, Brima; Vandi, Mohamed A.; Gbetuwa, Momoh; Ikponmwosa, Odia; Asogun, Danny A.; Okokhere, Peter O.; Follarin, Onikepe A.; Schieffelin, John S.; Pitts, Kelly R.; Geisbert, Joan B.; Kulakoski, Peter C.; Wilson, Russell B.; Happi, Christian T.; Sabeti, Pardis C.; Gevao, Sahr M.; Khan, S. Humarr; Grant, Donald S.; Geisbert, Thomas W.; Saphire, Erica Ollmann; Branco, Luis M.; Garry, Robert F.


    Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa. One-half bind the GP2 fusion subunit, one-fourth recognize the GP1 receptor-binding subunit and the remaining fourth are specific for the assembled glycoprotein complex, requiring both GP1 and GP2 subunits for recognition. Notably, of the 16 mAbs that neutralize LASV, 13 require the assembled glycoprotein complex for binding, while the remaining 3 require GP1 only. Compared with non-neutralizing mAbs, neutralizing mAbs have higher binding affinities and greater divergence from germline progenitors. Some mAbs potently neutralize all four LASV lineages. These insights from LASV human mAb characterization will guide strategies for immunotherapeutic development and vaccine design. PMID:27161536

  3. Effect of luteolin on glycoproteins metabolism in 1, 2-dimethylhydrazine induced experimental colon carcinogenesis

    Directory of Open Access Journals (Sweden)

    Manju Vaiyapuri


    carcinogenesis. Thus, the present study indicates that luteolin has protected the cell surface and maintained the structural integrity of the cell membranes during DMH induced colon carcinogenesis. Keywords: Colon cancer, 1, 2-dimethylhydrazine, luteolin, glycoproteins Received: 23 January 2009 / Received in revised form: 17 February 2009, Accepted: 28 February 2009, Published online: 3 March 2009

  4. Reverse lectin ELISA for detecting fucosylated forms of α1-acid glycoprotein associated with hepatocellular carcinoma (United States)

    Stål, Per; Zenlander, Robin; Edenvik, Pia; Alexandersson, Catharina; Haglund, Mats; Rydén, Ingvar; Påhlsson, Peter


    Altered fucosylation of glycoproteins is associated with development of hepatocellular carcinoma (HCC). Lectins have been commonly used to assay changes in fucosylation of plasma glycoproteins. In the present study a recombinantly engineered form of the fucose binding lectin Aleuria aurantia (AAL) consisting of a single binding site for fucose (S2), was used to construct a reverse lectin ELISA method. Microtiter plates coated with the S2 lectin were used to capture glycoproteins from plasma samples followed by antibody detection of S2-bound fucosylated α1-acid glycoprotein (S2-bound AGP). The method was used to compare the level of S2-bound AGP in serum samples from a small cohort of patients with hepatitis, cirrhosis or HCC. Using the reverse S2 lectin ELISA it was shown that the levels of S2-bound AGP was significantly higher in HCC patients compared to non-cancer patients and that there was also a significant elevation of S2-bound AGP in HCC patients compared to cirrhosis patients. There was no correlation between the level of S2-bound AGP and total AGP concentration. The performance of S2-bound AGP in differentiating HCC from cirrhosis samples or hepatitis samples were compared to other markers. A combination of S2-bound AGP, α-fetoprotein and AGP concentration showed performances giving area under receiver operating curves of 0.87 and 0.95 respectively. PMID:28296934

  5. Entactin: ultrastructural localization of an ubiquitous basement membrane glycoprotein in mouse skin

    DEFF Research Database (Denmark)

    Horiguchi, Y; Fine, J D; Ljubimov, A V;


    Entactin is a recently described sulfated glycoprotein component of mouse endodermal cell-derived extracellular matrix and is present in a number of basement membranes. It has been ultrastructurally localized to both lamina densa and adjacent epithelial cell membranes in rodent kidney. In the pre...

  6. Platelets enhance neutrophil transendothelial migration via P-selectin glycoprotein ligand-1 (United States)

    Platelets are increasingly recognized as important for inflammation in addition to thrombosis. Platelets promote the adhesion of neutrophils [polymorphonuclear neutrophils (PMNs)] to the endothelium; P-selectin and P-selectin glycoprotein ligand (PSGL)-1 have been suggested to participate in these i...

  7. A pro-inflammatory glycoprotein biomarker is associated with lower bilirubin in metabolic syndrome

    NARCIS (Netherlands)

    Dullaart, Robin P. F.; Gruppen, Eke G.; Connelly, Margery A.; Lefrandt, Joop D.


    Objectives: Bilirubin exerts anti-oxidative and anti-inflammatory properties which may beneficially influence the development of cardio-metabolic disorders. A nuclear magnetic resonance (NMR) spectroscopy-based glycoprotein biomarker, designated GlycA, whose signal originates from several glycosylat

  8. A vesicular stomatitis pseudovirus expressing the surface glycoproteins of influenza A virus. (United States)

    Cheresiz, S V; Kononova, A A; Razumova, Yu V; Dubich, T S; Chepurnov, A A; Kushch, A A; Davey, R; Pokrovsky, A G


    Pseudotyped viruses bearing the glycoprotein(s) of a donor virus over the nucleocapsid core of a surrogate virus are widely used as safe substitutes for infectious virus in virology studies. Retroviral particles pseudotyped with influenza A virus glycoproteins have been used recently for the study of influenza hemagglutinin and neuraminidase-dependent processes. Here, we report the development of vesicular-stomatitis-virus-based pseudotypes bearing the glycoproteins of influenza A virus. We show that pseudotypes bearing the hemagglutinin and neuraminidase of H5N1 influenza A virus mimic the wild-type virus in neutralization assays and sensitivity to entry inhibitors. We demonstrate the requirement of NA for the infectivity of pseudotypes and show that viruses obtained with different NA proteins are significantly different in their transduction activities. Inhibition studies with oseltamivir carboxylate show that neuraminidase activity is required for pseudovirus production, but not for the infection of target cells with H5N1-VSV pseudovirus. The HA-NA-VSV pseudoviruses have high transduction titers and better stability than the previously reported retroviral pseudotypes and can replace live influenza virus in the development of neutralization assays, screening of potential antivirals, and the study of different HA/NA reassortants.

  9. Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B

    Energy Technology Data Exchange (ETDEWEB)

    Backovic, Marija [Northwestern Univ., Evanston, IL (United States); Longnecker, Richard [Northwestern Univ., Chicago, IL (United States); Jardetzky, Theodore S [Northwestern Univ., Evanston, IL (United States)


    Epstein-Barr virus (EBV) is a herpesvirus that is associated with development of malignancies of lymphoid tissue. EBV infections are life-long and occur in >90% of the population. Herpesviruses enter host cells in a process that involves fusion of viral and cellular membranes. The fusion apparatus is comprised of envelope glycoprotein B (gB) and a heterodimeric complex made of glycoproteins H and L. Glycoprotein B is the most conserved envelope glycoprotein in human herpesviruses, and the structure of gB from Herpes simplex virus 1 (HSV-1) is available. Here, we report the crystal structure of the secreted EBV gB ectodomain, which forms 16-nm long spike-like trimers, structurally homologous to the postfusion trimers of the fusion protein G of vesicular stomatitis virus (VSV). Comparative structural analyses of EBV gB and VSV G, which has been solved in its pre and postfusion states, shed light on gB residues that may be involved in conformational changes and membrane fusion. Also, the EBV gB structure reveals that, despite the high sequence conservation of gB in herpesviruses, the relative orientations of individual domains, the surface charge distributions, and the structural details of EBV gB differ from the HSV-1 protein, indicating regions and residues that may have important roles in virus-specific entry.

  10. Human intestinal P-glycoprotein activity estimated by the model substrate digoxin

    DEFF Research Database (Denmark)

    Larsen, U L; Hyldahl Olesen, L; Nyvold, Charlotte Guldborg;


    P-glycoprotein (Pgp) plays a part in the intestinal uptake of xenobiotics and has been associated with susceptibility to ulcerative colitis. The aim of this study was to examine Pgp activity in relation to age, gender, medical treatment (rifampicin or ketoconazole) and the multidrug resistance (M...

  11. Glycoprotein enrichment method using a selective magnetic nano-probe platform (MNP) functionalized with lectins. (United States)

    Cova, Marta; Oliveira-Silva, Rui; Ferreira, José Alexandre; Ferreira, Rita; Amado, Francisco; Daniel-da-Silva, Ana Luísa; Vitorino, Rui


    Protein post-translational modifications (PTMs) have increasingly become a research field of incredible importance to fully understand the regulation of biological processes in health and disease. Among PTMs, glycosylation is one of the most studied for which contributed the development and improvement of enrichment techniques. Nowadays, glycoprotein enrichment methods are based on lectin affinity, covalent interactions, and hydrophilic interaction liquid chromatography (HILIC). Nonetheless, the nanotechnology era has fetched new methods to enrich glycoproteins from complex samples as human biological fluids. For instance, magnetic nanoparticles (MNPs) are being used as an interesting enrichment approach allowing a better characterization of glycoproteins and glycopeptides.In this chapter, we describe an enrichment method based on MNPs functionalized with lectins (Concavalin A, wheat germ agglutinin, and Maackia amurensis lectin) to enrich specific sets of glycoproteins from biological fluids. Moreover, it is proposed a bioinformatic strategy to deal with data retrieved from mass spectrometry analysis of enriched samples aiming the identification of relevant biological processes modulated by a given stimuli and, ultimately, of new biomarkers for disease screening/management.

  12. Stabilization of HIV-1 envelope glycoprotein trimers to induce neutralizing antibodies

    NARCIS (Netherlands)

    de Taeye, S.W.


    HIV-1 has evolved various tricks to prevent the development of a potent humoral immune response. The only target for neutralizing antibodies (NAbs) is the HIV-1 envelope glycoprotein (Env), which is the sole viral protein embedded in the viral membrane. It consists of three gp41 subunits and three g

  13. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer

    NARCIS (Netherlands)

    Walls, Alexandra C; Tortorici, M Alejandra; Bosch, Berend-Jan; Frenz, Brandon; Rottier, Peter J M; DiMaio, Frank; Rey, Félix A; Veesler, David


    The tremendous pandemic potential of coronaviruses was demonstrated twice in the past few decades by two global outbreaks of deadly pneumonia. Entry of coronaviruses into cells is mediated by the transmembrane spike glycoprotein S, which forms a trimer carrying receptor-binding and membrane fusion f

  14. St. John's Wort constituents modulate P-glycoprotein transport activity at the blood-brain barrier.

    NARCIS (Netherlands)

    Ott, M.; Huls, M.; Cornelius, M.G.; Fricker, G.


    PURPOSE: The purpose of this study was to investigate the short-term signaling effects of St. John's Wort (SJW) extract and selected SJW constituents on the blood-brain barrier transporter P-glycoprotein and to describe the role of PKC in the signaling. METHODS: Cultured porcine brain capillary endo

  15. Modification-specific proteomic analysis of glycoproteins in human body fluids by mass spectrometry

    DEFF Research Database (Denmark)

    Bunkenborg, Jakob; Hägglund, Per; Jensen, Ole Nørregaard


    -glycosylated proteins in body fluids and other complex samples. An approach for identification of N-glycosylated proteins and mapping of their glycosylation sites is described. In this approach, glycoproteins are initially selectively purified by lectin chromatography. Following tryptic digestion, glycopeptides...

  16. Virulence determinants within the E2 glycoprotein of Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Johnston, Camille Melissa; Fahnøe, Ulrik; Lohse, Louise

    Classical Swine Fever is a highly contagious disease of pigs caused by Classical Swine Fever Virus (CSFV), a member of the pestivirus genus within the family Flaviviridae. The E2 glycoprotein of CSFV has been shown to be an important factor for the virulence of the virus. In a recent study, we have...

  17. Dynamic Viral Glycoprotein Machines: Approaches for Probing Transient States That Drive Membrane Fusion

    Directory of Open Access Journals (Sweden)

    Natalie K. Garcia


    Full Text Available The fusion glycoproteins that decorate the surface of enveloped viruses undergo dramatic conformational changes in the course of engaging with target cells through receptor interactions and during cell entry. These refolding events ultimately drive the fusion of viral and cellular membranes leading to delivery of the genetic cargo. While well-established methods for structure determination such as X-ray crystallography have provided detailed structures of fusion proteins in the pre- and post-fusion fusion states, to understand mechanistically how these fusion glycoproteins perform their structural calisthenics and drive membrane fusion requires new analytical approaches that enable dynamic intermediate states to be probed. Methods including structural mass spectrometry, small-angle X-ray scattering, and electron microscopy have begun to provide new insight into pathways of conformational change and fusion protein function. In combination, the approaches provide a significantly richer portrait of viral fusion glycoprotein structural variation and fusion activation as well as inhibition by neutralizing agents. Here recent studies that highlight the utility of these complementary approaches will be reviewed with a focus on the well-characterized influenza virus hemagglutinin fusion glycoprotein system.

  18. A simple method to discriminate between beta(2)-glycoprotein I- and prothrombin-dependent lupus anticoagulants

    NARCIS (Netherlands)

    Simmelink, MJA; Derksen, RHWM; Arnout, J; De Groot, PG


    Lupus anticoagulants (LAC) are a heterogeneous group of autoantibodies that prolong phospholipid-dependent clotting assays. The autoantibodies that cause LAC activity are predominantly directed against beta(2)-glycoprotein I (beta(2)GPI) or prothrombin. In the present study, we describe a method to

  19. Selective inhibition of herpes simplex virus glycoprotein synthesis by a benz-amidinohydrazone derivative

    Energy Technology Data Exchange (ETDEWEB)

    Campadelli-Fiume, G.; Sinibaldi-Vallebona, P.; Mannini-Palenzona, A. (Bologna Univ. (Italy). Ist. di Microbiologia e Virologia); Cavrini, V. (Bologna Univ. (Italy). Ist. di Chimica Farmaceutica e Tossicologica)


    1 H-benz(f)indene-1.3(2H)dione-bis-amidinohydrazone (benzhydrazone) inhibited incorporation of /sup 14/C-glucosamine, /sup 14/C-fucose and /sup 14/C-mannose into glycoproteins of HEp-2 cells infected with various strains of herpes simplex virus 1 (HSV-1) and impaired RNA and protein synthesis to a low extent. These biochemical effects are very similar to those induced by glycosylation inhibitors such as tunicamycin, D-glucosamine and 2-deoxy-D-glucose. In contrast to these inhibitors, benzhydrazone reduced HSV glycoprotein synthesis selectively since it did not significantly modify i) the saccharide uptake into glycoproteins of uninfected and of Sindbis virus-infected cells, ii) viral growth and cell fusion in paramyxovirus-infected cells, two activities which depend on viral glycoprotein synthesis. Benzhydrazone had only minor effects on the overall metabolism of uninfected cells, since it did not alter cell growth rate, and amino acid, uridine, and hexose incorporations were about 80 per cent those of untreated cells.

  20. Generating Isoform-Specific Antibodies : Lessons from Nucleocytoplasmic Glycoprotein Skp1

    NARCIS (Netherlands)

    West, Christopher M.; Van Der Wel, Hanke; Chinoy, Zoiesha; Boons, Geert Jan; Gauthier, Ted J.; Taylor, Carol M.; Xu, Yuechi


    Antibodies that discriminate protein isoforms differing by modifications at specific amino acids have revolutionized studies of their functions. Skp1 is a novel nucleocytoplasmic glycoprotein that is hydroxylated at proline-143 and then O-glycosylated by a pentasaccharide attached via a GlcNAcα1, 4(

  1. Sulfated di-, tri- and tetraantennary N-glycans in human Tamm-Horsfall glycoprotein

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Rooijen, J.J.M. van; Kamerling, J.P.


    The primary structures of 32 sulfated di-, tri- and tetraantennary N-glycans of human Tamm-Horsfall glycoprotein (THP) have been determined. THP was isolated from the urine of one healthy male donor. The intact carbohydrate chains were released by PNGase-F and fractionated via FPLC on Resource Q, HP

  2. Blood-brain barrier P-glycoprotein function is not impaired in early Parkinson's disease

    NARCIS (Netherlands)

    Bartels, A. L.; van Berckel, B. N. M.; Lubberink, M.; Luurtsema, G.; Lammertsma, A. A.; Leenders, K. L.


    The cause of Parkinson's disease (PD) is unknown. Genetic susceptibility and exposure to environmental toxins contribute to specific neuronal loss in PD. Decreased blood-brain barrier (BBB) P-glycoprotein (P-gp) efflux function has been proposed as a possible causative link between toxin exposure an

  3. The role of p-glycoprotein in psychiatric disorders : a reliable guard of the brain?

    NARCIS (Netherlands)

    De Klerk, Onno L; Bosker, Fokko J; Luurtsema, Gert; Nolte, Ilja M; Dierckx, Rudi; Den Boer, Johan A; Potschka, Heidrun


    A major component in the protection of the brain against blood-borne toxic influences is the multispecific efflux pump P-glycoprotein. This pump, a 170 kD protein, located at the luminal side of the capillary endothelial cells, has a large capacity and is capable of extruding a wide array of structu

  4. Blood-Brain Barrier P-Glycoprotein Function in Neurodegenerative Disease

    NARCIS (Netherlands)

    Bartels, A. L.


    Protection of the brain is strengthened by active transport and ABC transporters. P-glycoprotein (P-gp) at the blood-brain barrier (BBB) functions as an active efflux pump by extruding a substrate from the brain, which is important for maintaining loco-regional homeostasis in the brain and protectio

  5. Quantitative assessment of p-glycoprotein expression and function using confocal image analysis. (United States)

    Hamrang, Zahra; Arthanari, Yamini; Clarke, David; Pluen, Alain


    P-glycoprotein is implicated in clinical drug resistance; thus, rapid quantitative analysis of its expression and activity is of paramout importance to the design and success of novel therapeutics. The scope for the application of quantitative imaging and image analysis tools in this field is reported here at "proof of concept" level. P-glycoprotein expression was utilized as a model for quantitative immunofluorescence and subsequent spatial intensity distribution analysis (SpIDA). Following expression studies, p-glycoprotein inhibition as a function of verapamil concentration was assessed in two cell lines using live cell imaging of intracellular Calcein retention and a routine monolayer fluorescence assay. Intercellular and sub-cellular distributions in the expression of the p-glycoprotein transporter between parent and MDR1-transfected Madin-Derby Canine Kidney cell lines were examined. We have demonstrated that quantitative imaging can provide dose-response parameters while permitting direct microscopic analysis of intracellular fluorophore distributions in live and fixed samples. Analysis with SpIDA offers the ability to detect heterogeniety in the distribution of labeled species, and in conjunction with live cell imaging and immunofluorescence staining may be applied to the determination of pharmacological parameters or analysis of biopsies providing a rapid prognostic tool.

  6. Collagen promotes sustained glycoprotein VI signaling in platelets and cell lines

    NARCIS (Netherlands)

    Tomlinson, M. G.; Calaminus, S. D.; Berlanga, O.; Bori-Sanz, T.; Meyaard, L.; Watson, S. P.; Auger, J.M.


    Background: Glycoprotein (GP)VI is the major signaling receptor for collagen on platelets and signals via the associated FcR-gamma-chain, which has an immunoreceptor tyrosine-containing activation motif (ITAM). Objective: To determine why GPVI-FcR gamma signals poorly, or not at all, in response to

  7. P-glycoprotein regulating biphasic insulin secretion in rat pancreatic beta cells

    Institute of Scientific and Technical Information of China (English)

    TANG Yun-zhao; LI Dai-qing; SUN Fu-jun; LI Li; YU De-min


    Background A 65-kD mdr1(multi-drug resistance protein 1,P-glycoprotein)-like protein has been suggested to be the regulatory protein to the chloride channel protein 3(CIC-3)mediating insulin granules acidification and release in mouse pancreatic beta cells.But the protein has not been deeply investigated.In this study,we identified existence of the 65-kda protein in rat islets and preliminarily explored its biological functions.Methods Total RNAs of rat kidneys served as positive controls,and pancreas,islets and INS-1 cells were extracted for reverse-transcript PCR(RT-PCR),respectively.The cDNAs were run with specific primers selected from the mRNA of abcblb encoding P-glycoprotein.All PCR products were visualized in agarose gel electrophoresis and sequenced.Homogenates of rat islets and INS-1 cells were applied to SDS-PAGE.P-glycoprotein was detected by a specific monoclonal antibody,C219.Biphasic insulin release was measured in static incubations of rat islets with radioimmunology assay.Results Compared with positive control,expression of the P-glycoprotein mRNA segments were detected in the islets,INS-1 cells and pancreas.Sequence analysis confirmed that the PCR products were matched with mRNA of P-glycoprotein.A 65-kda protein was recognized by the antibody in the islets homogenate but not in that of INS-1 cells in Western-blotting.Instead,the homogenate of INS-1 cells contained a 160-kda protein recognized by the antibody.Insulin secretion of rat islets were stimulated by high glucose(16.7mmol/L),and showed biphasic curve during 60-minute incubation.After co-incubation with cyclosporine A(CsA),specific inhibitor to P-glycoprotein,the second phase of insulin secretion was reduced significantly while the first phase was not influenced.Conclusions The 65-kda protein expressed in rat islets is most likely a mini-P-glycoprotein.It may play a key role regulating biphasic insulin release.

  8. Blood-brain barrier P-glycoprotein function in Alzheimer's disease. (United States)

    van Assema, Daniëlle M E; Lubberink, Mark; Bauer, Martin; van der Flier, Wiesje M; Schuit, Robert C; Windhorst, Albert D; Comans, Emile F I; Hoetjes, Nikie J; Tolboom, Nelleke; Langer, Oliver; Müller, Markus; Scheltens, Philip; Lammertsma, Adriaan A; van Berckel, Bart N M


    A major pathological hallmark of Alzheimer's disease is accumulation of amyloid-β in senile plaques in the brain. Evidence is accumulating that decreased clearance of amyloid-β from the brain may lead to these elevated amyloid-β levels. One of the clearance pathways of amyloid-β is transport across the blood-brain barrier via efflux transporters. P-glycoprotein, an efflux pump highly expressed at the endothelial cells of the blood-brain barrier, has been shown to transport amyloid-β. P-glycoprotein function can be assessed in vivo using (R)-[(11)C]verapamil and positron emission tomography. The aim of this study was to assess blood-brain barrier P-glycoprotein function in patients with Alzheimer's disease compared with age-matched healthy controls using (R)-[(11)C]verapamil and positron emission tomography. In 13 patients with Alzheimer's disease (age 65 ± 7 years, Mini-Mental State Examination 23 ± 3), global (R)-[(11)C]verapamil binding potential values were increased significantly (P = 0.001) compared with 14 healthy controls (aged 62 ± 4 years, Mini-Mental State Examination 30 ± 1). Global (R)-[(11)C]verapamil binding potential values were 2.18 ± 0.25 for patients with Alzheimer's disease and 1.77 ± 0.41 for healthy controls. In patients with Alzheimer's disease, higher (R)-[(11)C]verapamil binding potential values were found for frontal, parietal, temporal and occipital cortices, and posterior and anterior cingulate. No significant differences between groups were found for medial temporal lobe and cerebellum. These data show altered kinetics of (R)-[(11)C]verapamil in Alzheimer's disease, similar to alterations seen in studies where P-glycoprotein is blocked by a pharmacological agent. As such, these data indicate that P-glycoprotein function is decreased in patients with Alzheimer's disease. This is the first direct evidence that the P-glycoprotein transporter at the blood-brain barrier is compromised in sporadic

  9. Techniques and tactics used in determining the structure of the trimeric ebolavirus glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeffrey E.; Fusco, Marnie L.; Abelson, Dafna M.; Hessell, Ann J.; Burton, Dennis R. [Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States); Saphire, Erica Ollmann, E-mail: [Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States); The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States)


    Here, the techniques, tactics and strategies used to overcome a series of technical roadblocks in crystallization and phasing of the trimeric ebolavirus glycoprotein are described. The trimeric membrane-anchored ebolavirus envelope glycoprotein (GP) is responsible for viral attachment, fusion and entry. Knowledge of its structure is important both for understanding ebolavirus entry and for the development of medical interventions. Crystal structures of viral glycoproteins, especially those in their metastable prefusion oligomeric states, can be difficult to achieve given the challenges in production, purification, crystallization and diffraction that are inherent in the heavily glycosylated flexible nature of these types of proteins. The crystal structure of ebolavirus GP in its trimeric prefusion conformation in complex with a human antibody derived from a survivor of the 1995 Kikwit outbreak has now been determined [Lee et al. (2008 ▶), Nature (London), 454, 177–182]. Here, the techniques, tactics and strategies used to overcome a series of technical roadblocks in crystallization and phasing are described. Glycoproteins were produced in human embryonic kidney 293T cells, which allowed rapid screening of constructs and expression of protein in milligram quantities. Complexes of GP with an antibody fragment (Fab) promoted crystallization and a series of deglycosylation strategies, including sugar mutants, enzymatic deglycosylation, insect-cell expression and glycan anabolic pathway inhibitors, were attempted to improve the weakly diffracting glycoprotein crystals. The signal-to-noise ratio of the search model for molecular replacement was improved by determining the structure of the uncomplexed Fab. Phase combination with Fab model phases and a selenium anomalous signal, followed by NCS-averaged density modification, resulted in a clear interpretable electron-density map. Model building was assisted by the use of B-value-sharpened electron-density maps and the

  10. Baculovirus Coinfection Strategy for Improved Galactosylation of Recombinant Glycoprotein Produced by Insect Cell Culture (United States)

    Ney, Yap Wei; Rahman, Badarulhisam Abdul; Aziz, Azila Abdul

    Baculovirus Expression Vector System (BEVS) is widely used for the production of recombinant glycoproteins, but it is not ideal for pharmaceutical glycoprotein production due to incomplete glycosylation. The factors that ensure successful glycosylation are the presence of sufficient amount of glycosyltransferases, sugar nucleotides as the substrate donor and the recombinant protein as the substrate acceptor. In this study, we analyzed the galactosylation process by the introduction of ß-1,4galactosyltransferase (ß-1,4GalT) as the glycosyltransferase of interest and uridine-5`-diphosphogalactose (UDP-Gal) as the substrate donor. Recombinant human transferrin (rhTf) as a model protein was used as the substrate acceptor. Insect cell lines have been reported to produce a small amount of ß-1,4GalT and thus insufficient for effective galactosylation. In this study, we developed a method to produce galactosylated rhTf and optimized the expression of rhTf with better N-glycan quality. Recombinant ß-1,4GalT was introduced during protein expression by the coinfection of the BEVS with baculovirus carrying bovine ß-1,4GalT. To evaluate the extent of galactosylation by the coinfection strategy, a binding assay was established. In this binding assay, glycoprotein acceptor was absorbed onto ELISA plate surface. A lectin known as Ricinus communis agglutinin-I (RCA-I) labeled with peroxidase, was added and allowed to recognize Gal ß1>4GlcNAc group on the N-glycan of the glycoprotein, followed by appropriate color reaction measurements. Coexpression between rhTf and ß-1,4GalT did not show encouraging results due to the reduction of UDP-Gal upon baculovirus infection. This interesting finding suggested that the introduction of ß-1,4GalT alone was not sufficient for successful galactosylation. Alternatively, post harvest glycosylation method strategy seems to be a promising technique in the improvement of glycoprotein quality.

  11. Hamster zona pellucida is formed by four glycoproteins: ZP1, ZP2, ZP3, and ZP4. (United States)

    Izquierdo-Rico, M J; Jimenez-Movilla, M; Llop, E; Perez-Oliva, A B; Ballesta, J; Gutierrez-Gallego, R; Jimenez-Cervantes, C; Aviles, M


    The zona pellucida (ZP) is an extracellular glycoprotein matrix that surrounds all mammalian oocytes. Recent data have shown the presence of four glycoproteins (ZP1, ZP2, ZP3, and ZP4) in the ZP of human and rat rather than the three glycoproteins proposed in the mouse model. In the hamster (Mesocricetus auratus), it was previously described that ZP was composed of three different glycoproteins, called ZP1, ZP2, and ZP3, even though only ZP2 and ZP3 have been cloned thus far. The aim of the study was to determine whether hamster might also express four, rather than three, ZP proteins. The full-length cDNAs encoding hamster ZP glycoproteins 1 and 4 were isolated using rapid amplification cDNA ends (RACE). The cDNA of ZP1 contains an open reading frame of 1851 nucleotides encoding a polypeptide of 616 amino acid residues. The amino acid sequence of ZP1 revealed a high homology with other mammalian species like human (66%), rat (80%), and mouse (80%). The cDNA of ZP4 contains an open reading frame of 1632 nucleotides encoding a polypeptide of 543 amino acid residues. The deduced amino acid sequence of ZP4 revealed high overall homology with rat (82%) and human (78%). Subsequent mass spectrometric analysis of the hamster ZP allowed identification of peptides from all four glycoproteins. The data presented in this study provide evidence, for the first time, that the hamster ZP matrix is composed of four glycoproteins.

  12. Total synthesis of the α-subunit of human glycoprotein hormones: toward fully synthetic homogeneous human follicle-stimulating hormone. (United States)

    Aussedat, Baptiste; Fasching, Bernhard; Johnston, Eric; Sane, Neeraj; Nagorny, Pavel; Danishefsky, Samuel J


    Described herein is the first total chemical synthesis of the unique α-subunit of the human glycoprotein hormone (α-hGPH). Unlike the biologically derived glycoprotein hormones, which are isolated as highly complex mixtures of glycoforms, α-hGPH obtained by chemical synthesis contains discrete homogeneous glycoforms. Two such systems have been prepared. One contains the disaccharide chitobiose at the natural N-glycosylation sites. The other contains dodecamer oligosaccharides at these same sites. The dodecamer sugar is a consensus sequence incorporating the key features associated with human glycoproteins.

  13. Progesterone-adenine hybrids as bivalent inhibitors of P-glycoprotein-mediated multidrug efflux: design, synthesis, characterization and biological evaluation. (United States)

    Zeinyeh, Waël; Mahiout, Zahia; Radix, Sylvie; Lomberget, Thierry; Dumoulin, Axel; Barret, Roland; Grenot, Catherine; Rocheblave, Luc; Matera, Eva-Laure; Dumontet, Charles; Walchshofer, Nadia


    Bivalent ligands were designed on the basis of the described close proximity of the ATP-site and the putative steroid-binding site of P-glycoprotein (ABCB1). The syntheses of 19 progesterone-adenine hybrids are described. Their abilities to inhibit P-glycoprotein-mediated daunorubicin efflux in K562/R7 human leukemic cells overexpressing P-glycoprotein were evaluated versus progesterone. The hybrid with a hexamethylene linker chain showed the best inhibitory potency. The efficiency of these progesterone-adenine hybrids depends on two main factors: (i) the nature of the linker and (ii) its attachment point on the steroid skeleton.

  14. Effect of ammonium chloride and tunicamycin on the glycoprotein content and infectivity of herpes simplex virus type 1

    Energy Technology Data Exchange (ETDEWEB)

    Kousoulas, K.G.; Bzik, D.J.; DeLuca, N.; Person, S.


    Infectious virions of MP, a syncytial strain of herpes simplex virus type 1, are formed in the presence of 50 mM NH/sub 4/Cl. Underglycosylated virion glycoproteins are synthesized in infected cells and are incorporated into virions in the presence of the same concentration of NH/sub 4/Cl. We conclude that fully glycosylated glycoproteins are not required for viral infectivity. Virus particles, deficient in glycosylated glycoproteins, are assembled in the presence of tunicamycin but they are not infectious. The decrease in infectivity could be due to the decreased amount of the gB or possibly other peptides and/or to the lack of the high-mannose saccharides of precursor glycoproteins. 32 references, 4 figures.

  15. Brain Barriers and a Subpopulation of Astroglial Progenitors of Developing Human Forebrain Are Immunostained for the Glycoprotein YKL-40

    DEFF Research Database (Denmark)

    Bjørnbak, Camilla; Brøchner, Christian B; Larsen, Lars A


    YKL-40, a glycoprotein involved in cell differentiation, has been associated with neurodevelopmental disorders, angiogenesis, neuroinflammation and glioblastomas. We evaluated YKL-40 protein distribution in the early human forebrain using double-labeling immunofluorescence and immunohistochemistry...

  16. Use of P-glycoprotein gene probes to investigate anthelmintic resistance in Haemonchus contortus and comparison with Onchocerca volvulus

    NARCIS (Netherlands)

    Kwa, M.S.G.; Okoli, M.N.; Schulz-Key, H.; Okongkwo, P.O.; Roos, M.H.


    A P-glycoprotein gene probe from the sheep parasitic nematode Haemonchus contortus was developed and used to analyse restriction fragment length polymorphisms between susceptible isolates and isolates resistant to either benzimidazole; levamisole and benzimidazole; or benzimidazole, ivermectin and c

  17. Localization of the glycoprotein Cb42 in larvae of the screwworm fly Chrysomya bezziana (Diptera: Calliphoridae

    Directory of Open Access Journals (Sweden)

    Creig Eisemanni


    Full Text Available The glycoprotein Cb-peritrophin-42 was localized in third instar larvae of Chrysomya bezziana using primary antibodies raised against a non-glycosylated bacterial recombinant form of this protein. Both immunofluorescent antibody techniques on unfixed whole mounts of gut tissues and immunogold electron microscopy techniques on ultra-thin sections of fixed and embedded tissues were employed. The protein was shown to be exposed over the whole of both surfaces of the peritrophic membrane and to occur throughout its thickness. Immunogold labelling indicated that Cb-peritrophin-42 was expressed in the peritrophic membrane-secreting cells of the cardia, a specialized peritrophic membrane-forming organ situated at the junction of the foregut and midgut. The accessibility of Cb-peritrophin-42 present in intact peritrophic membrane to the primary antibodies used in the immunofluorescent antibody localization indicates that this glycoprotein is a potential molecular target for vaccination of host animals against larvae of Chrysomya bezziana.

  18. Partial Characterization of a Vicilin-Like Glycoprotein from Seeds of Flowering Tobacco (Nicotiana sylvestris

    Directory of Open Access Journals (Sweden)

    Jared Q. Gerlach


    Full Text Available A vicilin-like glycoprotein from the seeds of Nicotiana sylvestris, flowering tobacco, has been identified using nanoLC/ESI-MS/MS. Sequences from a fragment of protein demonstrated homology with vicilins from other members of the Solanaceae family, notably potato (Solanum demissum. Reducing and nonreducing SDS-PAGE analyses of the identified protein indicated that fragments resulting from in situ proteolytic processing are joined by intrachain disulphide bonds. Staining with Con A lectin was specifically inhibited by mannose suggested the presence of -linked glycosylation which was confirmed by carbohydrate compositional analysis of PVDF-bound protein subunits. HPAEC-PAD analysis of the monosaccharides released from the glycoprotein by acid hydrolysis revealed glucosamine and mannose. -acetylglucosamine termination of attached oligosaccharides was further verified by inhibitable WGA lectin staining. Immunostaining of PVDF-bound N. sylvestris proteins with antibodies against G. max total protein demonstrated cross-staining at masses corresponding to fragments from the proteolytically processed protein subunits.

  19. Synthesis and localization of two sulphated glycoproteins associated with basement membranes and the extracellular matrix

    DEFF Research Database (Denmark)

    Hogan, B L; Taylor, A; Kurkinen, M;


    Two sulphated glycoproteins (sgps) of apparent molecular weight (Mr) 180,000 and 150,000, are synthesized by murine PYS and PF HR9 parietal endoderm and Swiss 3T3 cells. The Mr 150,000 sgp has a similar chemical structure to the sulphated glycoprotein, C, synthesized and laid down in Reichert......'s membrane by mouse embryo parietal endoderm cells (Hogan, B. L.M., A. Taylor, and A.R. Cooper, 1982, Dev. Biol., 90:210-214). Both the Mr 180,000 and 150,000 sgps are deposited in the detergent-insoluble matrix of cultured cells, but they do not apparently undergo any disulphide-dependent intermolecular...

  20. Understanding the Process of Envelope Glycoprotein Incorporation into Virions in Simian and Feline Immunodeficiency Viruses

    Directory of Open Access Journals (Sweden)

    José L. Affranchino


    Full Text Available The lentiviral envelope glycoproteins (Env mediate virus entry by interacting with specific receptors present at the cell surface, thereby determining viral tropism and pathogenesis. Therefore, Env incorporation into the virions formed by assembly of the viral Gag polyprotein at the plasma membrane of the infected cells is a key step in the replication cycle of lentiviruses. Besides being useful models of human immunodeficiency virus (HIV infections in humans and valuable tools for developing AIDS therapies and vaccines, simian and feline immunodeficiency viruses (SIV and FIV, respectively are relevant animal retroviruses; the study of which provides important information on how lentiviral replication strategies have evolved. In this review, we discuss the molecular mechanisms underlying the incorporation of the SIV and FIV Env glycoproteins into viral particles.

  1. Recent advances in the study of active endogenous retrovirus envelope glycoproteins in the mammalian placenta

    Institute of Scientific and Technical Information of China (English)

    Yufei; Zhang; Jing; Shi; Shuying; Liu


    Endogenous retroviruses(ERVs) are a component of the vertebrate genome and originate from exogenous infections of retroviruses in the germline of the host. ERVs have coevolved with their hosts over millions of years. Envelope glycoproteins of endogenous retroviruses are often expressed in the mammalian placenta, and their potential function has aroused considerable research interest, including the manipulation of maternal physiology to benefit the fetus. In most mammalian species, trophoblast fusion in the placenta is an important event, involving the formation of a multinucleated syncytiotrophoblast layer to fulfill essential fetomaternal exchange functions. The key function in this process derives from the envelope genes of endogenous retroviruses, namely syncytins, which show fusogenic properties and placenta-specific expression. This review discusses the important role of the recognized endogenous retrovirus envelope glycoproteins in the mammalian placenta.

  2. Expression and Purification of E2 Glycoprotein from Insect Cells (Sf9) for Use in Serology. (United States)

    Chua, Chong Long; Sam, I-Ching; Chan, Yoke Fun


    Chikungunya virus (CHIKV) is a mosquito-borne arbovirus which poses a major threat to global public health. Definitive CHIKV diagnosis is crucial, especially in distinguishing the disease from dengue virus, which co-circulates in endemic areas and shares the same mosquito vectors. Laboratory diagnosis is mainly based on serological or molecular approaches. The E2 glycoprotein is a good candidate for serological diagnosis since it is the immunodominant antigen during the course of infection, and reacts with seropositive CHIKV sera. In this chapter, we describe the generation of stable clone Sf9 (Spodoptera frugiperda) cells expressing secreted, soluble, and native recombinant CHIKV E2 glycoprotein. We use direct plasmid expression in insect cells, rather than the traditional technique of generating recombinant baculovirus. This recombinant protein is useful for serological diagnosis of CHIKV infection.

  3. Calpain-controlled detachment of major glycoproteins from the cytoskeleton regulates adhesive properties of activated phosphatidylserine-positive platelets. (United States)

    Artemenko, Elena O; Yakimenko, Alena O; Pichugin, Alexey V; Ataullakhanov, Fazly I; Panteleev, Mikhail A


    In resting platelets, adhesive membrane glycoproteins are attached to the cytoskeleton. On strong activation, phosphatidylserine(PS)-positive and -negative platelet subpopulations are formed. Platelet activation is accompanied by cytoskeletal rearrangement, although the glycoprotein attachment status in these two subpopulations is not clear. We developed a new, flow cytometry-based, single-cell approach to investigate attachment of membrane glycoproteins to the cytoskeleton in cell subpopulations. In PS-negative platelets, adhesive glycoproteins integrin αIIbβ3, glycoprotein Ib and, as shown for the first time, P-selectin were associated with the cytoskeleton. In contrast, this attachment was disrupted in PS-positive platelets; it was retained to some extent only in the small convex regions or 'caps'. It correlated with the degradation of talin and filamin observed only in PS-positive platelets. Calpain inhibitors essentially prevented the disruption of membrane glycoprotein attachment in PS-positive platelets, as well as talin and filamin degradation. With the suggestion that detachment of glycoproteins from the cytoskeleton may affect platelet adhesive properties, we investigated the ability of PS-positive platelets to resist shear-induced breakaway from the immobilized fibrinogen. Shear rates of 500/s caused PS-positive platelet breakaway, but their adhesion stability increased more than 10-fold after pretreatment of the platelets with calpain inhibitor. In contrast, the ability of PS-positive platelets to adhere to immobilized von Willebrand's factor at 100/s was low, but this was not affected by the preincubation of platelets with a calpain inhibitor. Our data suggest that calpain-controlled detachment of membrane glycoproteins is a new mechanism that is responsible for the loss of ability of the procoagulant platelets to resist detachment from thrombi by high shear stress.

  4. Chinese hamster ovary cell mutants with multiple glycosylation defects for production of glycoproteins with minimal carbohydrate heterogeneity.


    Stanley, P.


    The production of glycoproteins with carbohydrates of defined structure and minimal heterogeneity is important for functional studies of mammalian carbohydrates. To facilitate such studies, several Chinese hamster ovary mutants that carry between two and four glycosylation mutations were developed. All of the lines grew readily in culture despite the drastic simplification of their surface carbohydrates. Therefore, both endogenous glycoproteins and those introduced by transfection can be obta...

  5. P-glycoprotein alters blood–brain barrier penetration of antiepileptic drugs in rats with medically intractable epilepsy

    Directory of Open Access Journals (Sweden)

    Ma A


    Full Text Available Aimei Ma,1,* Cuicui Wang,2,3,* Yinghui Chen,2,3 Weien Yuan4 1Department of Neurology, The People's Hospital of Shanxi Province, Taiyuan, 2Department of Neurology, Jinshan Hospital, Fudan University, 3Department of Neurology, Shanghai Medical College, Shanghai, 4School of Pharmacy, Shanghai JiaoTong University, Shanghai, People's Republic of China *These authors contributed equally to this work Abstract: P-glycoprotein is one of the earliest known multidrug transporters and plays an important role in resistance to chemotherapeutic drugs. In this study, we detected levels of P-glycoprotein and its mRNA expression in a rat brain model of medically intractable epilepsy established by amygdala kindling and drug selection. We investigated whether inhibition of P-glycoprotein affects the concentration of antiepileptic drugs in cortical extracellular fluid. We found that levels of P-glycoprotein and its mRNA expression were upregulated in epileptic cerebral tissue compared with cerebral tissue from normal rats. The concentrations of two antiepileptic drugs, carbamazepine and phenytoin, were very low in the cortical extracellular fluid of rats with medically intractable epilepsy, and were restored after blockade of P-glycoprotein by verapamil. These results show that increased P-glycoprotein levels alter the ability of carbamazepine and phenytoin to penetrate the blood–brain barrier and reduce the concentrations of these agents in extracellular cortical fluid. High P-glycoprotein levels may be involved in resistance to antiepileptic drugs in medically intractable epilepsy. Keywords: P-glycoprotein, medically intractable epilepsy, antiepileptic drugs, amygdala kindling, verapamil

  6. [Influence of low-intensity laser radiation on the formation of liquid crystalline structures in a solution of glycoproteins]. (United States)

    Skopinov, S A; Iakovleva, S V; Denisova, E A; Vazina, A A; Zheleznaia, L A


    Liquid-crystalline structure formation in glycoprotein solutions irradiated by helium-neon laser in the presence of hydrogen peroxide was observed by both polarizing microscopy and spectrophotometry. High molecular weight (2.10(6) Da) and heavily glycosylated (about 80%) glycoprotein was isolated from the mucus layer of pig small intestine. Remarkable changes of both optic parameters of the solutions and the morphology of liquid-crystalline structures were detected in irradiated samples compared to the non-irradiated ones.

  7. Immunization with Cytomegalovirus Envelope Glycoprotein M and Glycoprotein N DNA Vaccines can Provide Mice with Complete Protection against a Lethal Murine Cytomegalovirus Challenge

    Institute of Scientific and Technical Information of China (English)

    Huadong Wang; Yanfeng Yao; Chaoyang Huang; Quanjiao Chen; Jianjun Chen; Ze Chen


    Human cytomegalovirus virions contain three major glycoprotein complexes (gC Ⅰ,Ⅱ,Ⅲ),all of which are required for CMV infectivity.These complexes also represent major antigenic targets for anti-viral immune responses.The gC Ⅱ complex consists of two glycoproteins,gM and gN.In the current study,DNA vaccines expressing the murine cytomegalovirus (MCMV) homologs of the gM and gN proteins were evaluated for protection against lethal MCMV infection in a mouse model.Humoral and cellular immune responses,spleen viral titers,and mice survival and body-weight changes were examined.The results showed that immunization with gM or gN DNA vaccine alone was not able to offer good protection,whereas co-immunization with both gM and gN induced an effective neutralizing antibody response and cellular immune response,and provided mice with complete protection against a lethal MCMV challenge.This study provides the first in vivo evidence that the gC Ⅱ (gM-gN) complex may be able to serve as a protective subunit antigen for future HCMV vaccine development.

  8. Genotyping of Korean isolates of infectious hematopoietic necrosis virus (IHNV) based on the glycoprotein gene


    Kim, W. -S.; Oh, M. -J.; Nishizawa, T; Park, J. -W.; Kurath, G; Yoshimizu, M


    Glycoprotein (G) gene nucleotide sequences of four Korean isolates of infectious hematopoietic necrosis virus (IHNV) were analyzed to evaluate their genetic relatedness to worldwide isolates. All Korean isolates were closely related to Japanese isolates of genogroup JRt rather than to those of North American and European genogroups. It is believed that Korean IHNV has been most likely introduced from Japan to Korea by the movement of contaminated fish eggs. Among the Korean isolates, phylogen...

  9. Hantavirus Gn and Gc glycoproteins self-assemble into virus-like particles. (United States)

    Acuña, Rodrigo; Cifuentes-Muñoz, Nicolás; Márquez, Chantal L; Bulling, Manuela; Klingström, Jonas; Mancini, Roberta; Lozach, Pierre-Yves; Tischler, Nicole D


    How hantaviruses assemble and exit infected cells remains largely unknown. Here, we show that the expression of Andes (ANDV) and Puumala (PUUV) hantavirus Gn and Gc envelope glycoproteins lead to their self-assembly into virus-like particles (VLPs) which were released to cell supernatants. The viral nucleoprotein was not required for particle formation. Further, a Gc endodomain deletion mutant did not abrogate VLP formation. The VLPs were pleomorphic, exposed protrusions and reacted with patient sera.

  10. Topology and Function of Human p-Glycoprotein in Multidrug Resistant Breast Cancer Cells (United States)


    analysis and both drug transport and regulation of swelling-activated chloride currents were examined. To date our results are incomplete to draw...P-glycoprotein, topology, 15. NUMBER.OF PAGES Breast Cancer 32 swelling-activated chloride currents 16. PRICE CODE 17. SECURITY CLASSIFICATION 18...important proteins such as the cystic fibrosis transmembrane conductance regulator ( CFTR ) (1;2). This superfamily is generally characterized by a

  11. Molecular cloning and mammalian expression of human beta 2-glycoprotein I cDNA

    DEFF Research Database (Denmark)

    Kristensen, Torsten; Schousboe, Inger; Boel, Espen;


    Human β2-glycoprotein (β2gpI) cDNA was isolated from a liver cDNA library and sequenced. The cDNA encoded a 19-residue hydrophobic signal peptide followed by the mature β2gpI of 326 amino acid residues. In liver and in the hepatoma cell line HepG2 there are two mRNA species of about 1.4 and 4.3 k...

  12. The Dystrophin-Glycoprotein Complex in the Prevention of Muscle Damage



    Muscular dystrophies are genetically diverse but share common phenotypic features of muscle weakness, degeneration, and progressive decline in muscle function. Previous work has focused on understanding how disruptions in the dystrophin-glycoprotein complex result in muscular dystrophy, supporting a hypothesis that the muscle sarcolemma is fragile and susceptible to contraction-induced injury in multiple forms of dystrophy. Although benign in healthy muscle, contractions in dystrophic muscle ...

  13. Expression of dystrophin-glycoprotein complex at the skeletal muscle sarcolemma in Duchenne muscular dystrophy


    Zhao, Lei; Chao-ping HU; Wang, Yi; Shui-zhen ZHOU; Shi, Yi-Yun; Xi-hua LI


    Background  Eccentric exercise or high tension exercise could cause damage to skeletal muscle structure, resulting in deficiency of dystrophin and secondary loss of dystrophin-glycoprotein complex (DGC) from the sarcolemma, which indicated that down-regulation of dystrophin was one of the key points of skeletal muscle injury from eccentric exercise. Duchenne muscular dystrophy (DMD) is caused by mutations of DMD gene, resulting in the absence of dystrophin, which means that skeletal muscles o...

  14. The "lecithotrophic" sea urchin Heliocidaris erythrogramma lacks typical yolk platelets and yolk glycoproteins. (United States)

    Scott, L B; Lennarz, W J; Raff, R A; Wray, G A


    The sea urchin Heliocidaris tuberculata undergoes typical development, forming an echinoid pluteus larva, whereas H. erythrogramma undergoes direct development via a highly modified, nonfeeding larva. Using a polyclonal antibody prepared against yolk glycoproteins from the typical developer Stronglyocentrotus purpuratus, we found that H. tuberculata contains cross-reactive proteins in abundance, but H. erythrogramma does not. In addition, we used immunoelectron microscopy to demonstrate that unfertilized eggs of H. tuberculata contain yolk platelets, but those of H. erythrogramma do not.

  15. Hereditary increase of plasma histidine-rich glycoprotein associated with abnormal heparin binding (HRG Eindhoven). (United States)

    Hoffmann, J J; Hennis, B C; Kluft, C; Vijgen, M


    Plasma histidine-rich glycoprotein (HRG) was found to be persistently increased in a patient with a history of recurrent arterial thromboembolic events. The mean concentration was 270% of normal pooled plasma. Increased HRG was found in eight of the 17 relatives studied, but none of them has experienced thrombo-embolism yet. Apparently, increased HRG was hereditary with autosomal dominant inheritance. A significant correlation was found between the increased plasma concentration of the protein and the age of the subjects (P Eindhoven.

  16. The simple detection of neuraminic acid-containing urinary oligosaccharides in patients with glycoprotein storage diseases. (United States)

    Sewell, A C


    Urine samples from patients with different types of glycoprotein storage disease were chromatographed by gel filtration and the fractions analysed for sialic acid. Patients with mucolipidoses I and II excreted the largest amounts of bound sialic acid. One patient with GM1 gangliosidosis showed an abnormal level of sialyloligosaccharide excretion. Other patients showed normal results. With the present method mucolipidoses I and II, together with GM1 gangliosidosis, are readily distinguished from other possible oligosaccharidurias.

  17. Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles.


    Schnell, M J; Buonocore, L; Kretzschmar, E; Johnson, E.; Rose, J K


    In a previous study we demonstrated that vesicular stomatitis virus (VSV) can be used as a vector to express a soluble protein in mammalian cells. Here we have generated VSV recombinants that express four different membrane proteins: the cellular CD4 protein, a CD4-G hybrid protein containing the ectodomain of CD4 and the transmembrane and cytoplasmic tail of the VSV glycoprotein (G), the measles virus hemagglutinin, or the measles virus fusion protein. The proteins were expressed at levels r...

  18. Development and Evidence for Efficacy of CMV Glycoprotein B Vaccine with MF59 Adjuvant


    Pass, Robert F.


    A vaccine comprised of recombinant cytomegalovirus (CMV) envelope glycoprotein B (gB) with MF59 adjuvant developed in the 1990s recently was recently found to have efficacy for prevention of CMV infection in a phase 2 clinical trial in young mothers. This review briefly considers the rationale for gB as a vaccine antigen, the history of this CMV gB vaccine and the data supporting vaccine efficacy.

  19. Mosquito cell line glycoproteins: an unsuitable model system for the Plasmodium ookinete-mosquito midgut interaction?

    Directory of Open Access Journals (Sweden)

    Wilkins Simon


    Full Text Available Abstract Background Mosquito midgut glycoproteins may act as key recognition sites for the invading malarial ookinete. Effective transmission blocking strategies require the identification of novel target molecules. We have partially characterised the surface glycoproteins of two cell lines from two mosquito species; Anopheles stephensi and Anopheles gambiae, and investigated the binding of Plasmodium berghei ookinetes to carbohydrate ligands on the cells. Cell line extracts were run on SDS-PAGE gels and carbohydrate moieties determined by blotting against a range of biotinylated lectins. In addition, specific glycosidases were used to cleave the oligosaccharides. Results An. stephensi 43 and An. gambiae 55 cell line glycoproteins expressed oligosaccharides containing oligomannose and hybrid oligosaccharides, with and without α1-6 core fucosylation; N-linked oligosaccharides with terminal Galβ1-3GalNAc or GalNAcβ1-3Gal; O-linked α/βGalNAc. An. stephensi 43 cell line glycoproteins also expressed N-linked Galβ1-4R and O-linked Galβ1-3GalNAc. Although P. berghei ookinetes bound to both mosquito cell lines, binding could not be inhibited by GlcNAc, GalNAc or Galactose. Conclusions Anopheline cell lines displayed a limited range of oligosaccharides. Differences between the glycosylation patterns of the cell lines and mosquito midgut epithelial cells could be a factor why ookinetes did not bind in a carbohydrate inhibitable manner. Anopheline cell lines are not suitable as a potential model system for carbohydrate-mediated adhesion of Plasmodium ookinetes.

  20. Global marine pollutants inhibit P-glycoprotein: Environmental levels, inhibitory effects, and cocrystal structure


    Nicklisch, Sascha C.T.; Rees, Steven D.; McGrath, Aaron P.; Gökirmak, Tufan; Bonito, Lindsay T.; Vermeer, Lydia M.; Cregger, Cristina; Loewen, Greg; Sandin, Stuart; Chang, Geoffrey; Hamdoun, Amro


    The world’s oceans are a global reservoir of persistent organic pollutants to which humans and other animals are exposed. Although it is well known that these pollutants are potentially hazardous to human and environmental health, their impacts remain incompletely understood. We examined how persistent organic pollutants interact with the drug efflux transporter P-glycoprotein (P-gp), an evolutionarily conserved defense protein that is essential for protection against environmental toxicants....

  1. Protective effect of the whole plant extract ofEvolvulus alsinoides on glycoprotein alterations in streptozotocin induced diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Duraisamy Gomathi; Ganesan Ravikumar; Manokaran Kalaiselvi; Kanakasabapathi Devaki; Chandrasekar Uma


    Objectives:To assess the effect ofEvolvulus alsinoides(E. alsinoides) on glycoprotein levels in liver, kidney and pancreas of control and diabetes induced rats.Methods:Wistar albino rats were used for the present study.The diabetes was induced by a single intraperitoneal injection of streptozotocin at45 mg/kg body weight.After the induction of diabetes the rats were treated with glibenclamiede andE. alsinoides for45 d.At the end of the experimental period the glycoprotein levels were estimated by using standard protocols.Results:Significantly higher levels of glycoproteins were observed in the tissues of diabetic rats when compared with the control rats. After treated with ethanolic extract ofE. alsinoides and standard drug resulted in the reduction of glycoproteins when compared with the diabetic control rats.Conclusion:The present study proved that that ethanolic extract ofE. alsinoides owned a beneficial effect on glycoprotein components.Hence, it can be used in the prevention of glycoprotein medicated complications in diabetes mellitus.

  2. Role of P-glycoprotein in refractoriness of seizures to antiepileptic drugs in Lennox-Gastaut syndrome. (United States)

    Kumar, Achal; Tripathi, Deepak; Paliwal, Vimal Kumar; Neyaz, Zafar; Agarwal, Vikas


    Mechanism of seizure refractoriness to antiepileptic drugs in children with Lennox-Gastaut syndrome is not known. Efflux of antiepileptic drugs due to increased expression/function of P-glycoprotein, a multidrug efflux transporter protein on the cell surface is a proposed mechanism. The authors studied the expression/function of P-glycoprotein on peripheral blood mononuclear cells of 29 children with Lennox-Gastaut syndrome, 23 children with other epilepsies, and 19 healthy children. The authors found a higher P-glycoprotein expression/function in Lennox-Gastaut syndrome, a higher percent positive cells as compared to children with other epilepsy (P P = 0.012), higher P-glycoprotein expression as compared to healthy controls (P = 0.003), a higher total P-glycoprotein expression (relative florescence intensity × percent positive cells) as compared to children with other epilepsies (P P P-glycoprotein function as compared to children with other epilepsies (P = 0.001) and healthy controls (P = 0.002). These findings may explain seizure refractoriness to anti-epileptic drugs in Lennox-Gastaut syndome.

  3. Structure of a Major Antigenic Site on the Respiratory Syncytial Virus Fusion Glycoprotein in Complex with Neutralizing Antibody 101F

    Energy Technology Data Exchange (ETDEWEB)

    McLellan, Jason S.; Chen, Man; Chang, Jung-San; Yang, Yongping; Kim, Albert; Graham, Barney S.; Kwong, Peter D. (NIH)


    Respiratory syncytial virus (RSV) is a major cause of pneumonia and bronchiolitis in infants and elderly people. Currently there is no effective vaccine against RSV, but passive prophylaxis with neutralizing antibodies reduces hospitalizations. To investigate the mechanism of antibody-mediated RSV neutralization, we undertook structure-function studies of monoclonal antibody 101F, which binds a linear epitope in the RSV fusion glycoprotein. Crystal structures of the 101F antigen-binding fragment in complex with peptides from the fusion glycoprotein defined both the extent of the linear epitope and the interactions of residues that are mutated in antibody escape variants. The structure allowed for modeling of 101F in complex with trimers of the fusion glycoprotein, and the resulting models suggested that 101F may contact additional surfaces located outside the linear epitope. This hypothesis was supported by surface plasmon resonance experiments that demonstrated 101F bound the peptide epitope {approx}16,000-fold more weakly than the fusion glycoprotein. The modeling also showed no substantial clashes between 101F and the fusion glycoprotein in either the pre- or postfusion state, and cell-based assays indicated that 101F neutralization was not associated with blocking virus attachment. Collectively, these results provide a structural basis for RSV neutralization by antibodies that target a major antigenic site on the fusion glycoprotein.

  4. Tertiary structure of human alpha1-acid glycoprotein (orosomucoid). Straightforward fluorescence experiments revealing the presence of a binding pocket. (United States)

    Albani, Jihad R


    Binding of hemin to alpha1-acid glycoprotein has been investigated. Hemin binds to the hydrophobic pocket of hemoproteins. The fluorescent probe 2-(p-toluidino)-6-naphthalenesulfonate (TNS) binds to a hydrophobic domain in alpha1-acid glycoprotein with a dissociation constant equal to 60 microM. Addition of hemin to an alpha1-acid glycoprotein-TNS complex induces the displacement of TNS from its binding site. At saturation (1 hemin for 1 protein) all the TNS has been displaced from its binding site. The dissociation constant of hemin-alpha1-acid glycoprotein was found equal to 2 microM. Thus, TNS and hemin bind to the same hydrophobic site: the pocket of alpha1-acid glycoprotein. Energy-transfer studies performed between the Trp residues of alpha1-acid glycoprotein and hemin indicated that efficiency (E) of Trp fluorescence quenching was equal to 80% and the Förster distance, R0 at which the efficiency of energy transfer is 50% was calculated to be 26 A, revealing a very high energy transfer.

  5. eEF-2 Phosphorylation Down-Regulates P-Glycoprotein Over-Expression in Rat Brain Microvessel Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Xing Hua Tang

    Full Text Available We investigated whether glutamate, NMDA receptors, and eukaryote elongation factor-2 kinase (eEF-2K/eEF-2 regulate P-glycoprotein expression, and the effects of the eEF-2K inhibitor NH125 on the expression of P-glycoprotein in rat brain microvessel endothelial cells (RBMECs.Cortex was obtained from newborn Wistar rat brains. After surface vessels and meninges were removed, the pellet containing microvessels was resuspended and incubated at 37°C in culture medium. Cell viability was assessed by the MTT assay. RBMECs were identified by immunohistochemistry with anti-vWF. P-glycoprotein, phospho-eEF-2, and eEF-2 expression were determined by western blot analysis. Mdr1a gene expression was analyzed by RT-PCR.Mdr1a mRNA, P-glycoprotein and phospho-eEF-2 expression increased in L-glutamate stimulated RBMECs. P-glycoprotein and phospho-eEF-2 expression were down-regulated after NH125 treatment in L-glutamate stimulated RBMECs.eEF-2K/eEF-2 should have played an important role in the regulation of P-glycoprotein expression in RBMECs. eEF-2K inhibitor NH125 could serve as an efficacious anti-multidrug resistant agent.

  6. Quantitative proteomic analysis for high-throughput screening of differential glycoproteins in hepatocellular carcinoma serum (United States)

    Gao, Hua-Jun; Chen, Ya-Jing; Zuo, Duo; Xiao, Ming-Ming; Li, Ying; Guo, Hua; Zhang, Ning; Chen, Rui-Bing


    Objective Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths. Novel serum biomarkers are required to increase the sensitivity and specificity of serum screening for early HCC diagnosis. This study employed a quantitative proteomic strategy to analyze the differential expression of serum glycoproteins between HCC and normal control serum samples. Methods Lectin affinity chromatography (LAC) was used to enrich glycoproteins from the serum samples. Quantitative mass spectrometric analysis combined with stable isotope dimethyl labeling and 2D liquid chromatography (LC) separations were performed to examine the differential levels of the detected proteins between HCC and control serum samples. Western blot was used to analyze the differential expression levels of the three serum proteins. Results A total of 2,280 protein groups were identified in the serum samples from HCC patients by using the 2D LC-MS/MS method. Up to 36 proteins were up-regulated in the HCC serum, whereas 19 proteins were down-regulated. Three differential glycoproteins, namely, fibrinogen gamma chain (FGG), FOS-like antigen 2 (FOSL2), and α-1,6-mannosylglycoprotein 6-β-N-acetylglucosaminyltransferase B (MGAT5B) were validated by Western blot. All these three proteins were up-regulated in the HCC serum samples. Conclusion A quantitative glycoproteomic method was established and proven useful to determine potential novel biomarkers for HCC. PMID:26487969

  7. The impact of UVB radiation on the glycoprotein glue of orb-weaving spider capture thread. (United States)

    Stellwagen, Sarah D; Opell, Brent D; Clouse, Mary E


    Many spider orb-webs are exposed to sunlight and the potentially damaging effects of ultraviolet B (UVB) radiation. We examined the effect of UVB on the viscoelastic glycoprotein core of glue droplets deposited on the prey capture threads of these webs, hypothesizing that webs built by species that occupy sunny habitats are less susceptible to UVB damage than are webs built by species that prefer shaded forest habitats or by nocturnal species. Threads were tested shortly after being collected in the early morning and after being exposed to UVB energy equivalent to a day of summer sun and three times this amount. Droplets kept in a dark chamber allowed us to evaluate post-production changes. Droplet volume was unaffected by treatments, indicating that UVB did not damage the hygroscopic compounds in the aqueous layer that covers droplets. UVB exposure did not affect energies of droplet extension for species from exposed and partially to mostly shaded habitats (Argiope aurantia, Leucauge venusta and Verrucosa arenata). However, UVB exposure reduced the energy of droplet extension in Micrathena gracilis from shaded forests and Neoscona crucifera, which forages at night. Only in L. venusta did the energy of droplet extension increase after the dark treatment, suggesting endogenous molecular alignment. This study adds UVB irradiation to the list of factors (humidity, temperature and strain rate) known to affect the performance of spider glycoprotein glue, factors that must be more fully understood if adhesives that mimic spider glycoprotein glue are to be produced.

  8. Crystal Structure of Glycoprotein C from a Hantavirus in the Post-fusion Conformation (United States)

    Willensky, Shmuel; Bignon, Eduardo A.; Tischler, Nicole D.; Dessau, Moshe


    Hantaviruses are important emerging human pathogens and are the causative agents of serious diseases in humans with high mortality rates. Like other members in the Bunyaviridae family their M segment encodes two glycoproteins, GN and GC, which are responsible for the early events of infection. Hantaviruses deliver their tripartite genome into the cytoplasm by fusion of the viral and endosomal membranes in response to the reduced pH of the endosome. Unlike phleboviruses (e.g. Rift valley fever virus), that have an icosahedral glycoprotein envelope, hantaviruses display a pleomorphic virion morphology as GN and GC assemble into spikes with apparent four-fold symmetry organized in a grid-like pattern on the viral membrane. Here we present the crystal structure of glycoprotein C (GC) from Puumala virus (PUUV), a representative member of the Hantavirus genus. The crystal structure shows GC as the membrane fusion effector of PUUV and it presents a class II membrane fusion protein fold. Furthermore, GC was crystallized in its post-fusion trimeric conformation that until now had been observed only in Flavi- and Togaviridae family members. The PUUV GC structure together with our functional data provides intriguing evolutionary and mechanistic insights into class II membrane fusion proteins and reveals new targets for membrane fusion inhibitors against these important pathogens. PMID:27783673

  9. Quantitative proteomic analysis for high-throughput screening of differential glycoproteins in hepatocellular carcinoma serum

    Institute of Scientific and Technical Information of China (English)

    Hua-Jun Gao; Ya-Jing Chen; Duo Zuo; Ming-Ming Xiao; Ying Li; Hua Guo; Ning Zhang; Rui-Bing Chen


    Objective:Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths. Novel serum biomarkers are required to increase the sensitivity and specificity of serum screening for early HCC diagnosis. This study employed a quantitative proteomic strategy to analyze the differential expression of serum glycoproteins between HCC and normal control serum samples. Methods:Lectin affnity chromatography (LAC) was used to enrich glycoproteins from the serum samples. Quantitative mass spectrometric analysis combined with stable isotope dimethyl labeling and 2D liquid chromatography (LC) separations were performed to examine the differential levels of the detected proteins between HCC and control serum samples. Western blot was used to analyze the differential expression levels of the three serum proteins. Results:A total of 2,280 protein groups were identiifed in the serum samples from HCC patients by using the 2D LC-MS/MS method. Up to 36 proteins were up-regulated in the HCC serum, whereas 19 proteins were down-regulated. Three differential glycoproteins, namely, fibrinogen gamma chain (FGG), FOS-like antigen 2 (FOSL2), and α-1, 6-mannosylglycoprotein 6-β-N-acetylglucosaminyltransferase B (MGAT5B) were validated by Western blot. All these three proteins were up-regulated in the HCC serum samples. Conclusion:A quantitative glycoproteomic method was established and proven useful to determine potential novel biomarkers for HCC.

  10. Mannosidase IA is in Quality Control Vesicles and Participates in Glycoprotein Targeting to ERAD. (United States)

    Ogen-Shtern, Navit; Avezov, Edward; Shenkman, Marina; Benyair, Ron; Lederkremer, Gerardo Z


    Endoplasmic reticulum-associated degradation (ERAD) of a misfolded glycoprotein in mammalian cells requires the removal of 3-4 alpha 1,2 linked mannose residues from its N-glycans. The trimming and recognition processes are ascribed to ER Mannosidase I, the ER-degradation enhancing mannosidase-like proteins (EDEMs), and the lectins OS-9 and XTP3-B, all residing in the ER, the ER-derived quality control compartment (ERQC), or quality control vesicles (QCVs). Folded glycoproteins with untrimmed glycans are transported from the ER to the Golgi complex, where they are substrates of other alpha 1,2 mannosidases, IA, IB, and IC. The apparent redundancy of these enzymes has been puzzling for many years. We have now determined that, surprisingly, mannosidase IA is not located in the Golgi but resides in QCVs. We had recently described this type of vesicles, which carry ER α1,2 mannosidase I (ERManI). We show that the overexpression of alpha class I α1,2 mannosidase IA (ManIA) significantly enhances the degradation of ERAD substrates and its knockdown stabilizes it. Our results indicate that ManIA trims mannose residues from Man9GlcNAc2 down to Man5GlcNAc2, acting in parallel with ERManI and the EDEMs, and targeting misfolded glycoproteins to ERAD.

  11. Lactobacillus plantarum L67 glycoprotein protects against cadmium chloride toxicity in RAW 264.7 cells. (United States)

    Song, Sooyeon; Oh, Sejong; Lim, Kye-Taek


    The food and water we consume may be contaminated with a range of chemicals and heavy metals, such as lead, cadmium, arsenic, chromium, and mercury by accumulation through the food chain. Cadmium is known to be one of the major components in cigarette smoke and can cause lesions in many organs. Some lactobacilli can bind and remove heavy metals such as cadmium, lead, and copper. However, the mechanisms of cadmium toxicity and inhibition by probiotics are not clear. In this study, we demonstrated that glycoprotein (18 kDa) isolated from Lactobacillus plantarum L67 protected RAW 264.7 cells from expression of inflammation-related factors stimulated by cadmium chloride (100 µM). Furthermore, we evaluated the cytotoxicity of cadmium using the MTT assay and intracellular Ca(2+) using fluorescence, and assessed activities of activator protein kinase C (PKC-α), inducible nitric oxide synthase, activator protein (AP)-1, and mitogen-activated protein kinases using immunoblot. Our results indicated that glycoprotein isolated from L. plantarum L67 inhibited intracellular Ca(2+) mobilization. It also significantly suppressed inflammatory factors such as AP-1 (c-Jun and c-Fos), mitogen-activated protein kinases (ERK, JNK, and p38), and inducible nitric oxide synthase. Our findings suggest that the 24-kDa glycoprotein isolated from L. plantarum L67 might be used as a food component for protection of inflammation caused by cadmium ion.

  12. Cytoplasmic tail domain of glycoprotein B is essential for HHV-6 infection

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Nora F. [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Faculty of Pharmacy, Suez Canal University, Ismailia (Egypt); Jasirwan, Chyntia [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Division of Hepatobiliary, Department of Internal Medicine, Faculty of Medicine, University of Indonesia (Indonesia); Kanemoto, Satoshi; Wakata, Aika; Wang, Bochao; Hata, Yuuki [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Nagamata, Satoshi [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, Kobe (Japan); Kawabata, Akiko [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Tang, Huamin [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Department of Immunology, Nanjing Medical University, Nanjing (China); Mori, Yasuko, E-mail: [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan)


    Human herpesvirus 6 (HHV-6) glycoprotein B (gB) is an abundantly expressed viral glycoprotein required for viral entry and cell fusion, and is highly conserved among herpesviruses. The present study examined the function of HHV-6 gB cytoplasmic tail domain (CTD). A gB CTD deletion mutant was constructed which, in contrast to its revertant, could not be reconstituted. Moreover, deletion of gB cytoplasmic tail impaired the intracellular transport of gB protein to the trans-Golgi network (TGN). Taken together, these results suggest that gB CTD is critical for HHV-6 propagation and important for intracellular transportation. - Highlights: • Glycoprotein B (gB) is highly conserved among herpesviruses. • HHV-6 gB is also abundantly expressed in virions. • In the present study, we showed the function of HHV-6 gB cytoplasmic tail domain (CTD). • We found that deletion of gB CTD impairs the intracellular transport of gB protein to the trans-Golgi network (TGN), and CTD of gB is critical for HHV-6 propagation.

  13. Serum concentrations of anthraquinones after intake of Folium Sennae and potential modulation on P-glycoprotein. (United States)

    Peng, Yu-Hsuan; Lin, Shiuan-Pey; Yu, Chung-Ping; Tsai, Shang-Yuan; Chen, Min-Yu; Hou, Yu-Chi; Chao, Pei-Dawn Lee


    Folium Sennae (leaves of Cassia angustifolia or senna) is a laxative and a component in diets for weight control. It contains a variety of anthranoids such as sennosides, aloe-emodin, and rhein. In order to measure the serum concentrations of senna anthranoids, Sprague-Dawley rats were orally administered with single dose and multiple doses of Folium Sennae. The concentrations of anthranoids in serum were determined by HPLC method before and after hydrolysis with sulfatase and β-glucuronidase. The results showed that in the serum, aloe-emodin glucuronides and rhein glucuronides were the major metabolites. Traces of rhein free form were present transiently during the early phase, whereas the free form of aloe-emodin was not detected. We also evaluated the modulation effect of Folium Sennae on P-glycoprotein by using the LS 180 cell model which showed that it significantly inhibited P-glycoprotein by 16-46 %. In conclusion, senna anthranoids were rapidly and extensively metabolized to rhein glucuronides and aloe-emodin glucuronides in rats. Folium Sennae ingestion inhibited the efflux function of P-glycoprotein in the intestine.

  14. Signal peptide replacements enhance expression and secretion of hepatitis C virus envelope glycoproteins

    Institute of Scientific and Technical Information of China (English)

    Bo Wen; Yao Deng; Jie Guan; Weizheng Yan; Yue Wang; Wenjie Tan; Jimin Gao


    A large number of researches focused on glycoproteins E1 and E2 of hepatitis C virus (HCV) aimed at the develop-ment of anti-HCV vaccines and inhibitors. Enhancement of E1/E2 expression and secretion is critical for the charac-terization of these glycoproteins and thus for subunit vaccine development. In this study, we designed and syn-thesized three signal peptide sequences based on onlineprograms SignalP, TargetP, and PSORT, then removed and replaced the signal peptide preceding E1/E2 by over-lapping the polymerase chain reaction method. We assessed the effect of this alteration on E1/E2 expression and secretion in mammalian cells, using western blot analysis, dot blot, and Galanthus nivalis agglutinin iectin capture enzyme immunoassay. Replacing the peptides pre-ceding E1 and E2 with the signal peptides of the tissue plasminogen activator and Gaussia luciferase resulted in maximum enhancement of E1/E2 expression and secretion of E1 in mammalian cells, without altering glycosylation.Such an advance would help to facilitate both the research of E1/E2 biology and the development of an effective HCV subunit vaccine. The strategy used in this study could be applied to the expression and production of other glyco-proteins in mammalian ceil line-based systems.

  15. Terminal Mannose Residues in Seminal Plasma Glycoproteins of Infertile Men Compared to Fertile Donors

    Directory of Open Access Journals (Sweden)

    Beata Olejnik


    Full Text Available The impact of seminal plasma components on the fertilization outcomes in humans is still under question. The increasing number of couples facing problems with conception raises the need for predictive biomarkers. Detailed understanding of the molecular mechanisms accompanying fertilization remains another challenge. Carbohydrate–protein recognition may be of key importance in this complex field. In this study, we analyzed the unique glycosylation pattern of seminal plasma proteins, the display of high-mannose and hybrid-type oligosaccharides, by means of their reactivity with mannose-specific Galanthus nivalis lectin. Normozoospermic infertile subjects presented decreased amounts of lectin-reactive glycoepitopes compared to fertile donors and infertile patients with abnormal semen parameters. Glycoproteins containing unveiled mannose were isolated in affinity chromatography, and 17 glycoproteins were identified in liquid chromatography-tandem mass spectrometry with electrospray ionization. The N-glycome of the isolated glycoproteins was examined in matrix-assisted laser desorption ionization mass spectrometry. Eleven out of 27 identified oligosaccharides expressed terminal mannose residues, responsible for lectin binding. We suggest that lowered content of high-mannose and hybrid type glycans in normozoospermic infertile patients may be associated with impaired sperm protection from preterm capacitation and should be considered in the search for new infertility markers.

  16. Terminal Mannose Residues in Seminal Plasma Glycoproteins of Infertile Men Compared to Fertile Donors (United States)

    Olejnik, Beata; Jarząb, Anna; Kratz, Ewa M.; Zimmer, Mariusz; Gamian, Andrzej; Ferens-Sieczkowska, Mirosława


    The impact of seminal plasma components on the fertilization outcomes in humans is still under question. The increasing number of couples facing problems with conception raises the need for predictive biomarkers. Detailed understanding of the molecular mechanisms accompanying fertilization remains another challenge. Carbohydrate–protein recognition may be of key importance in this complex field. In this study, we analyzed the unique glycosylation pattern of seminal plasma proteins, the display of high-mannose and hybrid-type oligosaccharides, by means of their reactivity with mannose-specific Galanthus nivalis lectin. Normozoospermic infertile subjects presented decreased amounts of lectin-reactive glycoepitopes compared to fertile donors and infertile patients with abnormal semen parameters. Glycoproteins containing unveiled mannose were isolated in affinity chromatography, and 17 glycoproteins were identified in liquid chromatography-tandem mass spectrometry with electrospray ionization. The N-glycome of the isolated glycoproteins was examined in matrix-assisted laser desorption ionization mass spectrometry. Eleven out of 27 identified oligosaccharides expressed terminal mannose residues, responsible for lectin binding. We suggest that lowered content of high-mannose and hybrid type glycans in normozoospermic infertile patients may be associated with impaired sperm protection from preterm capacitation and should be considered in the search for new infertility markers. PMID:26147424

  17. P‑glycoprotein inhibition increases the transport of dauricine across the blood‑brain barrier. (United States)

    Dong, Pei-Liang; Han, Hua; Zhang, Tian-Yu; Yang, Bingyou; Wang, Qiu-Hong; Eerdun, Gao-Wa


    Dauricine is the major bioactive component isolated from the roots of Menispermum dauricum D.C. The aim of the present study was to investigate the role of P‑glycoprotein in the transport of dauricine across the blood‑brain barrier by pre‑treatment with the P‑glycoprotein inhibitor verapamil. Sprague Dawley rats were divided into a verapamil group (pretreated with verapamil at a dose of 20 mg/kg) and a control group (pretreated with the same volume of normal saline). After 90 min, the animals were injected intravenously with dauricine (10 mg/kg). At 15, 30 and 60 min after dauricine administration, the levels of dauricine in the blood and brain were detected by high‑performance liquid chromatography. Compared with the control group, the dauricine concentration in the brains of the rats in the verapamil group was significantly increased. Furthermore, the brain‑plasma ratio of dauricine in the rats pretreated with verapamil was significantly higher than that of the animals in the control group. However, there was no difference identified between dauricine levels in the plasma of the verapamil and the control groups. The results indicated that dauricine is able to pass the blood‑brain barrier, and that P‑glycoprotein has an important role in the transportation of dauricine across the blood‑brain barrier.

  18. Stable isotope labeling of glycoprotein expressed in silkworms using immunoglobulin G as a test molecule

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Hirokazu [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan); Nakamura, Masatoshi [National Institute of Agrobiological Sciences, Genetic Resources Conservation Research Unit, Genetic Resources Center (Japan); Yokoyama, Jun [Taiyo Nippon Sanso Corporation, Tsukuba Laboratories (Japan); Zhang, Ying; Yamaguchi, Takumi [National Institutes of Natural Sciences, Institute for Molecular Science and Okazaki Institute for Integrative Bioscience (Japan); Kondo, Sachiko [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan); Kobayashi, Jun [Yamaguchi University, Department of Biological and Environmental Sciences, Faculty of Agriculture (Japan); Kato, Tatsuya; Park, Enoch Y. [Shizuoka University, Laboratory of Biotechnology, Research Institute of Green Science and Technology (Japan); Nakazawa, Shiori [Nagoya University, Sugashima Marine Biological Laboratory, Graduate School of Science (Japan); Hashii, Noritaka; Kawasaki, Nana [National Institute of Health Sciences, Division of Biological Chemistry and Biologicals (Japan); Kato, Koichi, E-mail: [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan)


    Silkworms serve as promising bioreactors for the production of recombinant proteins, including glycoproteins and membrane proteins, for structural and functional protein analyses. However, lack of methodology for stable isotope labeling has been a major deterrent to using this expression system for nuclear magnetic resonance (NMR) structural biology. Here we developed a metabolic isotope labeling technique using commercially available silkworm larvae. The fifth instar larvae were infected with baculoviruses for co-expression of recombinant human immunoglobulin G (IgG) as a test molecule, with calnexin as a chaperone. They were subsequently reared on an artificial diet containing {sup 15}N-labeled yeast crude protein extract. We harvested 0.1 mg of IgG from larva with a {sup 15}N-enrichment ratio of approximately 80 %. This allowed us to compare NMR spectral data of the Fc fragment cleaved from the silkworm-produced IgG with those of an authentic Fc glycoprotein derived from mammalian cells. Therefore, we successfully demonstrated that our method enables production of isotopically labeled glycoproteins for NMR studies.

  19. Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy. (United States)

    Idris, Fakhriedzwan; Muharram, Siti Hanna; Diah, Suwarni


    Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host's cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1-5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host's carbohydrate receptors through the viral proteins' N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus' exploitation of the host's glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection.

  20. Beta-hexosaminidase activity of the oral pathogen Tannerella forsythia influences biofilm formation on glycoprotein substrates. (United States)

    Roy, Sumita; Phansopa, Chatchawal; Stafford, Prachi; Honma, Kiyonobu; Douglas, C W Ian; Sharma, Ashu; Stafford, Graham P


    Tannerella forsythia is an important pathogen in periodontal disease. Previously, we showed that its sialidase activity is key to utilization of sialic acid from a range of human glycoproteins for biofilm growth and initial adhesion. Removal of terminal sialic acid residues often exposes β-linked glucosamine or galactosamine, which may also be important adhesive molecules. In turn, these residues are often removed by a group of enzymes known as β-hexosaminidases. We show here that T. forsythia has the ability to cleave glucosamine and galactosamine from model substrates and that this activity can be inhibited by the hexosaminidase inhibitor PugNAc (O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino N-phenyl carbamate). We now demonstrate for the first time that β-hexosaminidase activity plays a role in biofilm growth on glycoprotein-coated surfaces because biofilm growth and initial cell adhesion are inhibited by PugNAc. In contrast, adhesion to siallo-glycoprotein-coated surfaces is unaltered by PugNAc in the absence of sialidase activity (using a sialidase-deficient mutant) or surprisingly on the clinically relevant substrates saliva or serum. These data indicate that β-hexosaminidase activity has a significant role in biofilm formation in combination with sialidase activity in the biofilm lifestyle of T. forsythia.

  1. Dissection of the Antibody Response against Herpes Simplex Virus Glycoproteins in Naturally Infected Humans (United States)

    Huang, Zhen-Yu; Whitbeck, J. Charles; Ponce de Leon, Manuel; Lou, Huan; Wald, Anna; Krummenacher, Claude; Eisenberg, Roselyn J.; Cohen, Gary H.


    ABSTRACT Relatively little is known about the extent of the polyclonal antibody (PAb) repertoire elicited by herpes simplex virus (HSV) glycoproteins during natural infection and how these antibodies affect virus neutralization. Here, we examined IgGs from 10 HSV-seropositive individuals originally classified as high or low virus shedders. All PAbs neutralized virus to various extents. We determined which HSV entry glycoproteins these PAbs were directed against: glycoproteins gB, gD, and gC were recognized by all sera, but fewer sera reacted against gH/gL. We previously characterized multiple mouse monoclonal antibodies (MAbs) and mapped those with high neutralizing activity to the crystal structures of gD, gB, and gH/gL. We used a biosensor competition assay to determine whether there were corresponding human antibodies to those epitopes. All 10 samples had neutralizing IgGs to gD epitopes, but there were variations in which epitopes were seen in individual samples. Surprisingly, only three samples contained neutralizing IgGs to gB epitopes. To further dissect the nature of these IgGs, we developed a method to select out gD- and gB-specific IgGs from four representative sera via affinity chromatography, allowing us to determine the contribution of antibodies against each glycoprotein to the overall neutralization capacity of the serum. In two cases, gD and gB accounted for all of the neutralizing activity against HSV-2, with a modest amount of HSV-1 neutralization directed against gC. In the other two samples, the dominant response was to gD. IMPORTANCE Antibodies targeting functional epitopes on HSV entry glycoproteins mediate HSV neutralization. Virus-neutralizing epitopes have been defined and characterized using murine monoclonal antibodies. However, it is largely unknown whether these same epitopes are targeted by the humoral response to HSV infection in humans. We have shown that during natural infection, virus-neutralizing antibodies are principally

  2. Developmental localization and the role of hydroxyproline rich glycoproteins during somatic embryogenesis of banana (Musa spp. AAA

    Directory of Open Access Journals (Sweden)

    Menzel Diedrik


    Full Text Available Abstract Background Hydroxyproline rich glycoproteins (HRGPs are implicated to have a role in many aspects of plant growth and development but there is limited knowledge about their localization and function during somatic embryogenesis of higher plants. In this study, the localization and function of hydroxyproline rich glycoproteins in embryogenic cells (ECs and somatic embryos of banana were investigated by using immunobloting and immunocytochemistry with monoclonal JIM11 and JIM20 antibodies as well as by treatment with 3,4-dehydro-L-proline (3,4-DHP, an inhibitor of extensin biosynthesis, and by immunomodulation with the JIM11 antibody. Results Immunofluorescence labelling of JIM11 and JIM20 hydroxyproline rich glycoprotein epitopes was relatively weak in non-embryogenic cells (NECs, mainly on the edge of small cell aggregates. On the other hand, hydroxyproline rich glycoprotein epitopes were found to be enriched in early embryogenic cells as well as in various developmental stages of somatic embryos. Embryogenic cells (ECs, proembryos and globular embryos showed strong labelling of hydroxyproline rich glycoprotein epitopes, especially in their cell walls and outer surface layer, so-called extracellular matrix (ECM. This hydroxyproline rich glycoprotein signal at embryo surfaces decreased and/or fully disappeared during later developmental stages (e.g. pear-shaped and cotyledonary stages of embryos. In these later developmental embryogenic stages, however, new prominent hydroxyproline rich glycoprotein labelling appeared in tri-cellular junctions among parenchymatic cells inside these embryos. Overall immunofluorescence labelling of late stage embryos with JIM20 antibody was weaker than that of JIM11. Western blot analysis supported the above immunolocalization data. The treatment with 3,4-DHP inhibited the development of embryogenic cells and decreased the rate of embryo germination. Embryo-like structures, which developed after 3,4-DHP

  3. Kit K641E oncogene up-regulates Sprouty homolog 4 and Trophoblast glycoprotein in interstitial cells of Cajal in a murine model of gastrointestinal stromal tumours (United States)

    Gromova, Petra; Ralea, Sebastian; Lefort, Anne; Libert, Frédérick; Rubin, Brian P; Erneux, Christophe; Vanderwinden, Jean-Marie


    Gastrointestinal stromal tumours (GIST) are thought to derive from the interstitial cells of Cajal (ICC) or an ICC precursor. Oncogenic mutations of the receptor tyrosine kinase KIT are present in most GIST. KIT K642E was originally identified in sporadic GIST and later found in the germ line of a familial GIST cohort. A mouse model harbouring a germline Kit K641E mutant was created to model familial GIST. The expression profile was investigated in the gastric antrum of the KitK641E murine GIST model by microarray, quantitative PCR and immunofluorescence. Gja1/Cx43, Gpc6, Gpr133, Pacrg, Pde3a, Prkar2b, Prkcq/Pkce, Rasd2, Spry4 and Tpbg/5T4 were found to be up-regulated. The proteins encoded by Gja1/Cx43, Pde3a, Prkcq/Pkce were localized in Kit-ir ICC in wild-type and KitK641E animals while Spry4 and Tpbg/5T4 were detected in Kit-ir cells only in KitK641E, but not in KitWT/WT animals. Most up-regulated genes in this mouse model belong to the gene expression profile of human GIST but also to the profile of normal Kit+ ICC in the mouse small intestine. Spry4 and Tpbg/5T4 may represent candidates for targeted therapeutic approaches in GIST with oncogenic KIT mutations. PMID:19453770

  4. A review on the relation between the brain-serum concentration ratio of drugs and the influence of P-glycoprotein

    DEFF Research Database (Denmark)

    Ejsing, Thomas Broeng; Morling, Niels; Linnet, Kristian


    This overview on the brain-serum relationship for drugs illustrates the importance of the drug transporter P-glycoprotein at the blood-brain barrier. Generally, an inverse relationship exists between the magnitude of the brain-serum ratio and the influence of P-glycoprotein. Concerning...... the pharmacogenomics of P-glycoprotein, no clear effect of single nucleotide polymorphisms (SNPs) has been demonstrated in humans....

  5. Use of a fragment of glycoprotein G-2 produced in the baculovirus expression system for detecting herpes simplex virus type 2-specific antibodies

    NARCIS (Netherlands)

    Ikoma, M; Liljeqvist, JA; Glazenburg, KL; The, TH; Welling-Wester, S; Groen, J.


    Fragments of glycoprotein G (gG-2(281-594His)), comprising residues 281 to 594 of herpes simplex virus type 2 (HSV-2), glycoprotein G of HSV-1 (gG-1(t26-189His)), and glycoprotein D of HSV-1 (gD-1(1-313)), were expressed in the baculovirus expression system to develop an assay for the detection of H

  6. Ceramide 1-Phosphate Increases P-Glycoprotein Transport Activity at the Blood-Brain Barrier via Prostaglandin E2 Signaling. (United States)

    Mesev, Emily V; Miller, David S; Cannon, Ronald E


    P-glycoprotein, an ATP-driven efflux pump, regulates permeability of the blood-brain barrier (BBB). Sphingolipids, endogenous to brain tissue, influence inflammatory responses and cell survival in vitro. Our laboratory has previously shown that sphingolipid signaling by sphingosine 1-phosphate decreases basal P-glycoprotein transport activity. Here, we investigated the potential for another sphingolipid, ceramide 1-phosphate (C1P), to modulate efflux pumps at the BBB. Using confocal microscopy and measuring luminal accumulation of fluorescent substrates, we assessed the transport activity of several efflux pumps in isolated rat brain capillaries. C1P treatment induced P-glycoprotein transport activity in brain capillaries rapidly and reversibly. In contrast, C1P did not affect transport activity of two other major efflux transporters, multidrug resistance protein 2 and breast cancer resistance protein. C1P induced P-glycoprotein transport activity without changing transporter protein expression. Inhibition of the key signaling components in the cyclooxygenase-2 (COX-2)/prostaglandin E2 signaling cascade (phospholipase A2, COX-2, multidrug resistance protein 4, and G-protein-coupled prostaglandin E2 receptors 1 and 2), abolished P-glycoprotein induction by C1P. We show that COX-2 and prostaglandin E2 are required for C1P-mediated increases in P-glycoprotein activity independent of transporter protein expression. This work describes how C1P activates a signaling cascade to dynamically regulate P-glycoprotein transport at the BBB and offers potential clinical targets to modulate neuroprotection and drug delivery to the CNS.

  7. Ivermectin induces P-glycoprotein expression and function through mRNA stabilization in murine hepatocyte cell line. (United States)

    Ménez, Cécile; Mselli-Lakhal, Laïla; Foucaud-Vignault, Magali; Balaguer, Patrick; Alvinerie, Michel; Lespine, Anne


    Ivermectin is widely used in human and veterinary medicine for the control of helminth infections. Ivermectin is known to interact with P-glycoprotein (P-gp/MDR1), being a good substrate and a potent inhibitor, however, the influence of ivermectin on the expression of the transporter has not been investigated. Expression of P-glycoprotein was investigated in cultured mouse hepatocytes acutely exposed to ivermectin. The two P-glycoprotein murine isoforms, Mdr1a and Mdr1b, mRNA levels were assessed by real-time RT-PCR. Ivermectin induced a clear time- and concentration-dependent up-regulation of Mdr1a and Mdr1b mRNA levels (as early as a 12-h exposure and up to 2.5-fold at 10μM). Moreover, ivermectin-treated cells displayed enhanced cellular efflux of the P-glycoprotein substrate calcein that was inhibited by the P-glycoprotein blocker valspodar, providing evidence that the ivermectin-induced P-glycoprotein was functional. The mechanisms underlying these effects were investigated. Ivermectin-mediated Mdr1 mRNA induction was independent of the two nuclear receptors CAR and PXR, which are known to be involved in drug transporters regulation. Moreover, by using reporter cell lines that detects specific ligand-activated transcription factors, we showed that ivermectin did not displayed CAR, PXR or AhR ligand activities. However, studies with actinomycin D revealed that the half-life of Mdr1a and Mdr1b mRNA were significantly prolonged by two-fold in ivermectin-treated cells suggesting a post-transcriptional mode of ivermectin regulation. This study demonstrates for the first time that ivermectin induces P-glycoprotein overexpression through post-transcriptional mRNA stabilization, thus offering insight into the mechanism of reduced therapeutic efficacy and development of ivermectin-resistant parasites.

  8. Rhodocytin (aggretin) activates platelets lacking alpha(2)beta(1) integrin, glycoprotein VI, and the ligand-binding domain of glycoprotein Ibalpha

    DEFF Research Database (Denmark)

    Bergmeier, W; Bouvard, D; Eble, J A


    Although alpha(2)beta(1) integrin (glycoprotein Ia/IIa) has been established as a platelet collagen receptor, its role in collagen-induced platelet activation has been controversial. Recently, it has been demonstrated that rhodocytin (also termed aggretin), a snake venom toxin purified from...... that collagen may activate platelets by a similar mechanism. In contrast to these findings, we provided evidence that rhodocytin does not bind to alpha(2)beta(1) integrin. Here we show that the Cre/loxP-mediated loss of beta(1) integrin on mouse platelets has no effect on rhodocytin-induced platelet activation...... lacking both alpha(2)beta(1) integrin and the activating collagen receptor GPVI responded normally to rhodocytin. Finally, even after additional proteolytic removal of the 45-kDa N-terminal domain of GPIbalpha rhodocytin induced aggregation of these platelets. These results demonstrate that rhodocytin...

  9. Effect of collecting duct-specific deletion of both Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg) on renal response to metabolic acidosis. (United States)

    Lee, Hyun-Wook; Verlander, Jill W; Handlogten, Mary E; Han, Ki-Hwan; Weiner, I David


    The Rhesus (Rh) glycoproteins, Rh B and Rh C Glycoprotein (Rhbg and Rhcg, respectively), are ammonia-specific transporters expressed in renal distal nephron and collecting duct sites that are necessary for normal rates of ammonia excretion. The purpose of the current studies was to determine the effect of their combined deletion from the renal collecting duct (CD-Rhbg/Rhcg-KO) on basal and acidosis-stimulated acid-base homeostasis. Under basal conditions, urine pH and ammonia excretion and serum HCO3(-) were similar in control (C) and CD-Rhbg/Rhcg-KO mice. After acid-loading for 7 days, CD-Rhbg/Rhcg-KO mice developed significantly more severe metabolic acidosis than did C mice. Acid loading increased ammonia excretion, but ammonia excretion increased more slowly in CD-Rhbg/Rhcg-KO and it was significantly less than in C mice on days 1-5. Urine pH was significantly more acidic in CD-Rhbg/Rhcg-KO mice on days 1, 3, and 5 of acid loading. Metabolic acidosis increased phosphenolpyruvate carboxykinase (PEPCK) and Na(+)/H(+) exchanger NHE-3 and decreased glutamine synthetase (GS) expression in both genotypes, and these changes were significantly greater in CD-Rhbg/Rhcg-KO than in C mice. We conclude that 1) Rhbg and Rhcg are critically important in the renal response to metabolic acidosis; 2) the significantly greater changes in PEPCK, NHE-3, and GS expression in acid-loaded CD-Rhbg/Rhcg-KO compared with acid-loaded C mice cause the role of Rhbg and Rhcg to be underestimated quantitatively; and 3) in mice with intact Rhbg and Rhcg expression, metabolic acidosis does not induce maximal changes in PEPCK, NHE-3, and GS expression despite the presence of persistent metabolic acidosis.

  10. Effect of the carbohydrate moiety on the secondary structure of beta 2-glycoprotein. I. Implications for the biosynthesis and folding of glycoproteins. (United States)

    Walsh, M T; Watzlawick, H; Putnam, F W; Schmid, K; Brossmer, R


    By use of six highly purified exoglycosidases with well-defined specificity, the oligosaccharide units of human plasma beta 2-glycoprotein I (beta 2I) were modified by sequential enzymatic degradation. The released monosaccharides (NeuAc, Gal, GlcNAc, and Man) were quantified, and the carbohydrate compositions of the resulting glycoprotein (gp) derivatives were determined. The gp was found to be both partially sialylated and galactosylated. These findings which are in agreement with earlier reports suggest that the carbohydrate moiety of beta 2I possesses more bi- than tri-antennas, probably three of the former and two of the latter carbohydrate units. Circular dichroic (CD) spectra of native beta 2I and its derivatives were measured in aqueous buffer and 2-chloroethanol (2-CE). Analysis of these spectra for elements of secondary structure showed beta 2I and most of the derivatives to contain predominantly beta-sheet and beta-turn structures. The lack of alpha-helical structures in aqueous buffer was noted. Removal of a large portion of the carbohydrate moiety did not alter the CD spectra or secondary structure of beta 2I in either aqueous buffer or in 2-CE. However, after enzymatic removal of approximately 96% of the carbohydrate moiety, large significant changes in the spectra and secondary structures were observed. In aqueous buffer a shift in the wavelength minimum occurred, accompanied by an increase in the magnitude of the molar ellipticity and the amount of beta-turn, with a reduction in random coil. One-third of the amino acids which were originally in random coil conformation assumed beta-turns after removal of 96% of the carbohydrate moiety.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Increasing BMI is associated with reduced expression of P-glycoprotein (ABCB1 gene) in the human brain with a stronger association in African Americans than Caucasians

    DEFF Research Database (Denmark)


    effects to antipsychotics include obesity and metabolic disease. Polymorphisms in the ABCB1 gene coding for p-glycoprotein are associated with more severe side effects to neuro-pharmaceuticals as well as weight gain, indicating a potential link between p-glycoprotein function and metabolic regulation......The efflux pump, p-glycoprotein, controls bioavailability and excretion of pharmaceutical compounds. In the blood-brain barrier, p-glycoprotein regulates the delivery of pharmaceutical substances to the brain, influencing efficacy and side effects for some drugs notably antipsychotics. Common side...

  12. Shedding of soluble glycoprotein 1 detected during acute Lassa virus infection in human subjects

    Directory of Open Access Journals (Sweden)

    Momoh Mambu


    Full Text Available Abstract Background Lassa hemorrhagic fever (LHF is a neglected tropical disease with significant impact on the health care system, society, and economy of Western and Central African nations where it is endemic. With a high rate of infection that may lead to morbidity and mortality, understanding how the virus interacts with the host's immune system is of great importance for generating vaccines and therapeutics. Previous work by our group identified a soluble isoform of the Lassa virus (LASV GP1 (sGP1 in vitro resulting from the expression of the glycoprotein complex (GPC gene 12. Though no work has directly been done to demonstrate the function of this soluble isoform in arenaviral infections, evidence points to immunomodulatory effects against the host's immune system mediated by a secreted glycoprotein component in filoviruses, another class of hemorrhagic fever-causing viruses. A significant fraction of shed glycoprotein isoforms during viral infection and biogenesis may attenuate the host's inflammatory response, thereby enhancing viral replication and tissue damage. Such shed glycoprotein mediated effects were previously reported for Ebola virus (EBOV, a filovirus that also causes hemorrhagic fever with nearly 90% fatality rates 345. The identification of an analogous phenomenon in vivo could establish a new correlate of LHF infection leading to the development of sensitive diagnostics targeting the earliest molecular events of the disease. Additionally, the reversal of potentially untoward immunomodulatory functions mediated by sGP1 could potentiate the development of novel therapeutic intervention. To this end, we investigated the presence of sGP1 in the serum of suspected LASV patients admitted to the Kenema Government Hospital (KGH Lassa Fever Ward (LFW, in Kenema, Sierra Leone that tested positive for viral antigen or displayed classical signs of Lassa fever. Results It is reasonable to expect that a narrow window exists for

  13. HCC-DETECT: a combination of nuclear, cytoplasmic, and oncofetal proteins as biomarkers for hepatocellular carcinoma. (United States)

    Attallah, Abdelfattah M; El-Far, Mohamed; Malak, Camelia A Abdel; Omran, Mohamed M; Shiha, Gamal E; Farid, Khaled; Barakat, Lamiaa A; Albannan, Mohamed S; Attallah, Ahmed A; Abdelrazek, Mohamed A; Elbendary, Mohamed S; Sabry, Refaat; Hamoda, Gehan A; Elshemy, Mohamed M; Ragab, Abdallah A; Foda, Basma M; Abdallah, Sanaa O


    Currently, the search for suitable hepatocellular carcinoma (HCC) biomarkers is very intensive. Besides, efficacy and cost/effectiveness of screening and surveillance of cirrhotics for the diagnosis of HCC is still debated. So, the present study is concerned with the evaluation of cytokeratin-1 (CK-1) and nuclear matrix protein-52 (NMP-52) for identifying HCC. Two-hundred and eighty individuals categorized into three groups [liver fibrosis (F1-F3), cirrhosis (F4), and HCC] constituted this study. Western blot was used for identifying CK-1 and NMP-52 in serum samples. As a result, a single immunoreactive band was shown at 67 and 52 kDa corresponding to CK-1 and NMP-52, respectively. Both CK-1 and NMP-52 bands were cut and electroeluted separately. These markers were quantified in sera using ELISA. Patients with HCC were associated with higher concentrations of CK-1 and NMP-52 than those without HCC with a significant difference (P < 0.0001). CK-1 showed an area under receiver-operating characteristic curve (AUC) of 0.83 with 75 % sensitivity and 82 % specificity while NMP-52 yielded 0.72 AUC with 62 % sensitivity and 70 % specificity for identifying HCC. HCC-DETECT comprising CK-1 and NMP-52 together with AFP was then constructed yielding 0.90 AUC for identifying HCC with 80 % sensitivity and 92 % specificity. HCC-DETECT was then tested for separating HCC from F1-F3 showing 0.94 AUC with 80 % sensitivity and 93 % specificity. In conclusion, CK-1 in conjunction with NMP-52 and AFP could have a potential role for improving the detection of HCC with a high degree of accuracy.

  14. The Increasing Complexity of the Oncofetal H19 Gene Locus: Functional Dissection and Therapeutic Intervention

    Directory of Open Access Journals (Sweden)

    Abraham Hochberg


    Full Text Available The field of the long non-coding RNA (lncRNA is advancing rapidly. Currently, it is one of the most popular fields in the biological and medical sciences. It is becoming increasingly obvious that the majority of the human transcriptome has little or no-protein coding capacity. Historically, H19 was the first imprinted non-coding RNA (ncRNA transcript identified, and the H19/IGF2 locus has served as a paradigm for the study of genomic imprinting since its discovery. In recent years, we have extensively investigated the expression of the H19 gene in a number of human cancers and explored the role of H19 RNA in tumor development. Here, we discuss recently published data from our group and others that provide further support for a central role of H19 RNA in the process of tumorigenesis. Furthermore, we focus on major transcriptional modulators of the H19 gene and discuss them in the context of the tumor-promoting activity of the H19 RNA. Based on the pivotal role of the H19 gene in human cancers, we have developed a DNA-based therapeutic approach for the treatment of cancers that have upregulated levels of H19 expression. This approach uses a diphtheria toxin A (DTA protein expressed under the regulation of the H19 promoter to treat tumors with significant expression of H19 RNA. In this review, we discuss the treatment of four cancer indications in human subjects using this approach, which is currently under development. This represents perhaps one of the very few examples of an existing DNA-based therapy centered on an lncRNA system. Apart from cancer, H19 expression has been reported also in other conditions, syndromes and diseases, where deregulated imprinting at the H19 locus was obvious in some cases and will be summarized below. Moreover, the H19 locus proved to be much more complicated than initially thought. It houses a genomic sequence that can transcribe, yielding various transcriptional outputs, both in sense and antisense directions. The major transcriptional outputs of the H19 locus are presented here.

  15. Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process

    DEFF Research Database (Denmark)

    Freire-de-Lima, Leonardo; Gelfenbeyn, Kirill; Ding, Yao


    The process termed "epithelial-mesenchymal transition" (EMT) was originally discovered in ontogenic development, and has been shown to be one of the key steps in tumor cell progression and metastasis. Recently, we showed that the expression of some glycosphingolipids (GSLs) is down-regulated duri...

  16. Common glycoproteins expressing polylactosamine-type glycans on matched patient primary and metastatic melanoma cells show different glycan profiles. (United States)

    Kinoshita, Mitsuhiro; Mitsui, Yosuke; Kakoi, Naotaka; Yamada, Keita; Hayakawa, Takao; Kakehi, Kazuaki


    Recently, we reported comparative analysis of glycoproteins which express cancer-specific N-glycans on various cancer cells and identified 24 glycoproteins having polylactosamine (polyLacNAc)-type N-glycans that are abundantly present in malignant cells [ Mitsui et al., J. Pharm. Biomed. Anal. 2012 , 70 , 718 - 726 ]. In the present study, we applied the technique to comparative studies on common glycoproteins present in the matched patient primary and metastatic melanoma cell lines. Metastatic melanoma cells (WM266-4) contained a large amount of polyLacNAc-type N-glycans in comparison with primary melanoma cells (WM115). To identify the glycoproteins expressing these N-glycans, glycopeptides having polyLacNAc-type N-glycans were captured by a Datura stramonium agglutinin (DSA)-immobilized agarose column. The captured glycopeptides were analyzed by LC/MS after removing N-glycans, and some glycoproteins such as basigin, lysosome-associated membrane protein-1 (LAMP-1), and chondroitin sulfate proteoglycan 4 (CSPG4) were identified in both WM115 and WM266-4 cells. The expression level of polyLacNAc of CSPG4 in WM266-4 cells was significantly higher than that in WM115 cells. In addition, sulfation patterns of chondroitin sulfate (CS) chains in CSPG4 showed dramatic changes between these cell lines. These data show that characteristic glycans attached to common proteins observed in different stages of cancer cells will be useful markers for determining degree of malignancies of tumor cells.

  17. Effects of natural nuclear factor-kappa B inhibitors on anticancer drug efflux transporter human P-glycoprotein. (United States)

    Nabekura, Tomohiro; Hiroi, Takashi; Kawasaki, Tatsuya; Uwai, Yuichi


    Drug efflux transporter P-glycoprotein plays an important role in cancer chemotherapy. The nuclear factor-κB (NF-κB) transcription factors play critical roles in development and progression of cancer. In this study, the effects of natural compounds that can inhibit NF-κB activation on the function of P-glycoprotein were investigated using human MDR1 gene-transfected KB/MDR1 cells. The accumulation of daunorubicin or rhodamine 123, fluorescent substrates of P-glycoprotein, in KB/MDR1 cells increased in the presence of caffeic acid phenetyl ester (CAPE), licochalcone A, anacardic acid, celastrol, xanthohumol, magnolol, and honokiol in a concentration-dependent manner. In contrast, lupeol, zerumbone, thymoquinone, emodin, and anethol had no effects. The ATPase activities of P-glycoprotein were stimulated by CAPE, licochalcone A, anacardic acid, celastrol, xanthohumol, magnolol, and honokiol. Tumor necrosis factor (TNF)-α stimulated NF-κB activation was inhibited by CAPE, licochalcone A, anacardic acid, and xanthohumol. KB/MDR1 cells were sensitized to vinblastine cytotoxicity by CAPE, licochalcone A, anacardic acid, xanthohumol, magnolol, and honokiol, showing that these natural NF-κB inhibitors reverse multidrug resistance. These results suggest that natural compounds, such as CAPE, licochalcone A, and anacardic acid, have dual inhibitory effects on the anticancer drug efflux transporter P-glycoprotein and NF-κB activation, and may become useful to enhance the efficacy of cancer chemotherapy.

  18. Profiling of Concanavalin A-Binding Glycoproteins in Human Hepatic Stellate Cells Activated with Transforming Growth Factor-β1

    Directory of Open Access Journals (Sweden)

    Yannan Qin


    Full Text Available Glycoproteins play important roles in maintaining normal cell functions depending on their glycosylations. Our previous study indicated that the abundance of glycoproteins recognized by concanavalin A (ConA was increased in human hepatic stellate cells (HSCs following activation by transforming growth factor-β1 (TGF-β1; however, little is known about the ConA-binding glycoproteins (CBGs of HSCs. In this study, we employed a targeted glycoproteomics approach using lectin-magnetic particle conjugate-based liquid chromatography-tandem mass spectrometry to compare CBG profiles between LX-2 HSCs with and without activation by TGF-β1, with the aim of discovering novel CBGs and determining their possible roles in activated HSCs. A total of 54 and 77 proteins were identified in the quiescent and activated LX-2 cells, respectively. Of the proteins identified, 14.3% were glycoproteins and 73.3% were novel potential glycoproteins. Molecules involved in protein processing in the endoplasmic reticulum (e.g., calreticulin and calcium signaling (e.g., 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase β-2 [PLCB2] were specifically identified in activated LX-2 cells. Additionally, PLCB2 expression was upregulated in the cytoplasm of the activated LX-2 cells, as well as in the hepatocytes and sinusoidal cells of liver cirrhosis tissues. In conclusion, the results of this study may aid future investigations to find new molecular mechanisms involved in HSC activation and antifibrotic therapeutic targets.

  19. Comparative Profiling of Triple-Negative Breast Carcinomas Tissue Glycoproteome by Sequential Purification of Glycoproteins and Stable Isotope Labeling

    Directory of Open Access Journals (Sweden)

    Xiang Chen


    Full Text Available Background: Women with triple negative breast cancers (TNBCs have a poor prognosis due to lack of suitable targeted therapies. Changes in the protein glycosylation are increasingly being recognized as an important modification associated with cancer etiology. Methods: In an attempt to identify TNBC biomarkers with greater diagnostic and prognostic capabilities, hydrazide- based chemistry method combined with LC-MS/MS were used to purify and identify N-linked glycopeptides or glycoproteins of tissues from TNBC patients. Results: A total of 550 unique N-linked glycoproteins were identified, among these proteins, 72 unique N-linked glycoproteins were significantly regulated in tumor tissues, of which 56 proteins were upregulated and 16 proteins were downregulated. To assess the validity of the results, three selected proteins including Vascular endothelial growth factor receptor 1, Insulin receptor, Tissue factor pathway inhibitor were selected for western blot analysis, and these proteins were found as potential biomarkers of TNBC. The top three pathways of differentially expressed glycoproteins participated in were caveolar-mediated endocytosis signaling, agrin interactions at neuromuscular junction and LXR/RXR activation. Conclusion: This work provides potential glycoprotein markers to function as a novel tissue-based biomarker for TNBC.

  20. On-plate glycoproteins/glycopeptides selective enrichment and purification based on surface pattern for direct MALDI MS analysis. (United States)

    Zeng, Zhoufang; Wang, Yandong; Guo, Xinhua; Wang, Ling; Lu, Nan


    In this paper, a novel method has been proposed to achieve selective enrichment and purification of glycoproteins/glycopeptides on a surface patterned sample support, which consists of a hydrophobic outer layer (F-SAM) and an internal boronic acid-modified gold microspot (900 μm). Upon deposition, the sample solution is firstly concentrated in a small area by repulsion of the hydrophobic outer layer, and then the glycoproteins/glycopeptides are selectively captured through boronic acid covalently binding in the inner layer. However, the non-glycosylated proteins/peptides or high concentration salts are removed after rinsing with alkaline solution. As a result, the detection sensitivity is improved by an order of magnitude greater than when using a stainless steel MALDI plate. With surface patterned sample support, the glycoproteins/glycopeptides can be detected even under interference from the excessive existing non-glycosylated proteins/peptides (10 times more than glycoproteins/glycopeptides). Simultaneously, high-quality mass spectra can be obtained even in the presence of urea (1 M), NaCl (1 M), or NH4HCO3 (200 mM). Therefore, this novel technique may be applied to high-throughput analysis of low-abundance glycoproteins/glycopeptides in complicated proteome research.

  1. Tick-borne encephalitis virus NS1 glycoprotein during acute and persistent infection of cells. (United States)

    Bugrysheva, J V; Matveeva, V A; Dobrikova, E Y; Bykovskaya, N V; Korobova, S A; Bakhvalova, V N; Morozova, O V


    Tick-borne encephalitis virus (TBEV) was propagated in porcine embryo kidney (PS) cells until 48 h whereas human kidney (RH) cells maintained the virus persistence during at least 2 months. One of possible reasons of flavivirus chronic infection might be abnormal NS1 gene expression. Immunoblotting with monoclonal antibodies (MAbs) revealed the similarity of the intracellular and secreted NS1 nonstructural glycoprotein size and linear antigenic determinants in both the infected cell lines. However, according to the competitive binding of MAbs with the TBEV NS1 extracellular glycoprotein, its contiguous epitopes differed for acute or persistent infection. To map the TBEV NS1 glycoprotein antigenic determinants its recombinant analogues were used. All the studied MAbs could bind with the full-length NS1 recombinant protein. Deletion of the TBEV NS1 gene internal region resulted in defective NS1d1 protein without the region between 269 and 333 a.a. Lack of NS1d1 binding with 20B4 MAb and diminished binding with 22H8 and 17C3 MAbs permitted to map their antigenic determinants within or nearby deleted region, respectively. Interaction of other MAbs with the NS1 and NS1d1 recombinant proteins did not differ, suggesting that their epitopes were located in the region of N-terminal 268 a.a. or C-terminal 19 a.a. of the TBEV NS1 protein. The second NS1d2 truncated protein contained the first N-terminal 33 a.a. of the TBEV NS1 protein and was able to bind with 29G9 MAb. Taken together the data stand for the differences in the N-terminal structure of the TBEV NS1 multimers secreted from the acute and persistent infected cells whereas the intracellular and secreted monomer processing was the same. The modified NS1 protein oligomers in the RH cellular line might slow virus replication and could result in the TBEV persistence.

  2. Structural characterization of the N-linked pentasaccharide decorating glycoproteins of the halophilic archaeon Haloferax volcanii. (United States)

    Kandiba, Lina; Lin, Chia-Wei; Aebi, Markus; Eichler, Jerry; Guerardel, Yann


    N-Glycosylation is a post-translational modification performed in all three domains of life. In the halophilic archaea Haloferax volcanii, glycoproteins such as the S-layer glycoprotein are modified by an N-linked pentasaccharide assembled by a series of Agl (archaeal glycosylation) proteins. In the present study, mass spectrometry (MS) and nuclear magnetic resonance spectroscopy were used to define the structure of this glycan attached to at least four of the seven putative S-layer glycoprotein N-glycosylation sites, namely Asn-13, Asn-83, Asn-274 and Asn-279. Such approaches detected a trisaccharide corresponding to glucuronic acid (GlcA)-β1,4-GlcA-β1,4-glucose-β1-Asn, a tetrasaccharide corresponding to methyl-O-4-GlcA-β-1,4-galacturonic acid-α1,4-GlcA-β1,4-glucose-β1-Asn, and a pentasaccharide corresponding to hexose-1,2-[methyl-O-4-]GlcA-β-1,4-galacturonic acid-α1,4-GlcA-β1,4-glucose-β1-Asn, with previous MS and radiolabeling experiments showing the hexose at the non-reducing end of the pentasaccharide to be mannose. The present analysis thus corrects the earlier assignment of the penultimate sugar as a methyl ester of a hexuronic acid, instead revealing this sugar to be a methylated GlcA. The assignments made here are in good agreement with what was already known of the Hfx. volcanii N-glycosylation pathway from previous genetic and biochemical efforts while providing new insight into the process.

  3. Cryo-electron Microscopy Structure of the Native Prototype Foamy Virus Glycoprotein and Virus Architecture.

    Directory of Open Access Journals (Sweden)

    Grégory Effantin


    Full Text Available Foamy viruses (FV belong to the genus Spumavirus, which forms a distinct lineage in the Retroviridae family. Although the infection in natural hosts and zoonotic transmission to humans is asymptomatic, FVs can replicate well in human cells making it an attractive gene therapy vector candidate. Here we present cryo-electron microscopy and (cryo-electron tomography ultrastructural data on purified prototype FV (PFV and PFV infected cells. Mature PFV particles have a distinct morphology with a capsid of constant dimension as well as a less ordered shell of density between the capsid and the membrane likely formed by the Gag N-terminal domain and the cytoplasmic part of the Env leader peptide gp18LP. The viral membrane contains trimeric Env glycoproteins partly arranged in interlocked hexagonal assemblies. In situ 3D reconstruction by subtomogram averaging of wild type Env and of a Env gp48TM- gp80SU cleavage site mutant showed a similar spike architecture as well as stabilization of the hexagonal lattice by clear connections between lower densities of neighboring trimers. Cryo-EM was employed to obtain a 9 Å resolution map of the glycoprotein in its pre-fusion state, which revealed extensive trimer interactions by the receptor binding subunit gp80SU at the top of the spike and three central helices derived from the fusion protein subunit gp48TM. The lower part of Env, presumably composed of interlaced parts of gp48TM, gp80SU and gp18LP anchors the spike at the membrane. We propose that the gp48TM density continues into three central transmembrane helices, which interact with three outer transmembrane helices derived from gp18LP. Our ultrastructural data and 9 Å resolution glycoprotein structure provide important new insights into the molecular architecture of PFV and its distinct evolutionary relationship with other members of the Retroviridae.

  4. Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. (United States)

    Roehrig, J T; Bolin, R A; Kelly, R G


    Although dengue (DEN) virus is the etiologic agent of dengue fever, the most prevalent vector-borne viral disease in the world, precise information on the antigenic structure of the dengue virion is limited. We have prepared a set of murine monoclonal antibodies (MAbs) specific for the envelope (E) glycoprotein of DEN 2 virus and used these antibodies in a comprehensive biological and biochemical analysis to identify 16 epitopes. Following domain nomenclature developed for the related flavivirus, tick-borne encephalitis, three functional domains were identified. Five epitopes associated with domain A were arranged in three spatially independent regions. These A-domain epitopes were destroyed by reduction, and antibodies reactive with these epitopes were able to block virus hemagglutination, neutralize virus infectivity, and block virus-mediated cell membrane fusion. Domain-A epitopes were present on the full-length E glycoprotein, a 45-kDa tryptic peptide representing its first 400 amino acids (aa) and a 22-kDa tryptic peptide representing at least aa 1-120. Four epitopes mapped into domain B, as determined by their partial resistance to reduction and the localization of these epitopes on a 9-kDa tryptic or chymotryptic peptide fragment (aa 300-400). One domain-B-reactive MAb was also capable of binding to a DEN 2 synthetic peptide corresponding to aa 333-351 of the E glycoprotein, confirming the location of this domain. Domain-B epitopes elicited MAbs that were potent neutralizers of virus infectivity and blocked hemagglutination, but they did not block virus-mediated cell-membrane fusion. Domains A and B were spatially associated. As with tick-borne encephalitis virus, determination of domain C was more problematic; however, at least four epitopes had biochemical characteristics consistent with C-domain epitopes.

  5. Beta2-glycoprotein I dependent anticardiolipin antibodies and lupus anticoagulant in patients with recurrent pregnancy loss.

    Directory of Open Access Journals (Sweden)

    Kumar K


    Full Text Available AIM: The present study was aimed to define the incidence of antiphospholipid antibodies of different types lupus anticoagulant (LAC, venereal disease research laboratory test (VDRL and Beta2-glycoprotein I dependent anticardiolipin antibodies Beta2 I aCL in our cohort of population experiencing recurrent pregnancy loss (RPL from Andhra Pradesh, South India. SETTING AND DESIGN: A referral case-control study at a tertiary centre over a period of 5 years. PARTICIPANTS: 150 couples experiencing 3 or more recurrent pregnancy losses with similar number of matched controls. MATERIAL AND METHODS: LAC activity was measured by the activated partial thromboplastin time (aPTT according to the method of Proctor and Rapaport with relevant modifications. VDRL analysis was performed by the kit method supplied by Ranbaxy Diagnostics Limited and Beta2 Glycoprotein I dependent anticardiolipin antibodies were estimated by ELISA kit (ORGen Tech, GmbH, Germany with human Beta2 Glycoprotein I as co-factor. STATISTICAL ANALYSIS: Statistical analysis was performed using Student′s t test. RESULTS: LAC activity was found positive in 11 women (10.28%. The mean +/- SE Beta2 I aCL concentration in the study group was 14.53 (micro/ml +/- 1.79 (range 0 to 90.4 micro/ml which was higher than the control group with a mean +/- SE of 7.26 (micro/ml +/- 0.40 (range 0 to 18 u/ml. The binding of the antibodies to the antigen was observed in 40.24% (n=33 of the cases compared to 6.09% (n=5 in controls. VDRL test was positive in 7(2.34% individuals (3 couples and 1 male partner and none among controls. CONCLUSIONS: The present study indicates the importance of antiphospholipid antibodies in women experiencing RPL and suggests the usefulness of screening for these antibodies as a mandatory routine for instituting efficient therapeutic regimens for a successful outcome of pregnancy.

  6. Fasciola hepatica Surface Tegument: Glycoproteins at the Interface of Parasite and Host* (United States)

    Ravidà, Alessandra; Cwiklinski, Krystyna; Aldridge, Allison M.; Clarke, Paul; Thompson, Roisin; Gerlach, Jared Q.; Kilcoyne, Michelle; Hokke, Cornelis H.; Dalton, John P.; O'Neill, Sandra M.


    Fasciola hepatica, commonly known as liver fluke, is a trematode that causes Fasciolosis in ruminants and humans. The outer tegumental coat of F. hepatica (FhTeg) is a complex metabolically active biological matrix that is continually exposed to the host immune system and therefore makes a good vaccine target. F. hepatica tegumental coat is highly glycosylated and helminth-derived immunogenic oligosaccharide motifs and glycoproteins are currently being investigated as novel vaccine candidates. This report presents the first systematic characterization of FhTeg glycosylation using lectin microarrays to characterize carbohydrates motifs present, and lectin histochemistry to localize these on the F. hepatica tegument. We discovered that FhTeg glycoproteins are predominantly oligomannose oligosaccharides that are expressed on the spines, suckers and tegumental coat of F. hepatica and lectin blot analysis confirmed the abundance of N- glycosylated proteins. Although some oligosaccharides are widely distributed on the fluke surface other subsets are restricted to distinct anatomical regions. We selectively enriched for FhTeg mannosylated glycoprotein subsets using lectin affinity chromatography and identified 369 proteins by mass spectrometric analysis. Among these proteins are a number of potential vaccine candidates with known immune modulatory properties including proteases, protease inhibitors, paramyosin, Venom Allergen-like II, Enolase and two proteins, nardilysin and TRIL, that have not been previously associated with F. hepatica. Furthermore, we provide a comprehensive insight regarding the putative glycosylation of FhTeg components that could highlight the importance of further studies examining glycoconjugates in host-parasite interactions in the context of F. hepatica infection and the development of an effective vaccine. PMID:27466253

  7. Core Structure of S2 from the Human Coronavirus NL63 Spike Glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Zheng,Q.; Deng, Y.; Liu, J.; van der Hoek, L.; Berkhout, B.; Lu, M.


    Human coronavirus NL63 (HCoV-NL63) has recently been identified as a causative agent of acute respiratory tract illnesses in infants and young children. The HCoV-NL63 spike (S) protein mediates virion attachment to cells and subsequent fusion of the viral and cellular membranes. This viral entry process is a primary target for vaccine and drug development. HCoV-NL63 S is expressed as a single-chain glycoprotein and consists of an N-terminal receptor-binding domain (S1) and a C-terminal transmembrane fusion domain (S2). The latter contains two highly conserved heptad-repeat (HR) sequences that are each extended by 14 amino acids relative to those of the SARS coronavirus or the prototypic murine coronavirus, mouse hepatitis virus. Limited proteolysis studies of the HCoV-NL63 S2 fusion core identify an {alpha}-helical domain composed of a trimer of the HR segments N57 and C42. The crystal structure of this complex reveals three C42 helices entwined in an oblique and antiparallel manner around a central triple-stranded coiled coil formed by three N57 helices. The overall geometry comprises distinctive high-affinity conformations of interacting cross-sectional layers of the six helices. As a result, this structure is unusually stable, with an apparent melting temperature of 78 {sup o}C in the presence of the denaturant guanidine hydrochloride at 5 M concentration. The extended HR regions may therefore be required to prime the group 1 S glycoproteins for their fusion-activating conformational changes during viral entry. Our results provide an initial basis for understanding an intriguing interplay between the presence or absence of proteolytic maturation among the coronavirus groups and the membrane fusion activity of their S glycoproteins. This study also suggests a potential strategy for the development of improved HCoV-NL63 fusion inhibitors.

  8. Genetic characterization of complete open reading frame of glycoprotein C gene of bovine herpesvirus 1

    Directory of Open Access Journals (Sweden)

    Saurabh Majumder


    Full Text Available Aim: To characterize one of the major glycoprotein genes viz., glycoprotein C (gC; UL44, unique long region 44 of bovineherpesvirus 1(BoHV1 of Indian origin at genetic and phylogenetic level.Materials and Methods: A bovine herpesvirus 1 isolate viz., (BoHV1/IBR 216 II/ 1976/ India maintained at Division ofVirology, IVRI, Mukteswar was used for the current study. The DNA was extracted using commercial kit and the completeORF of gC gene was amplified, cloned, and sequenced by conventional Sanger sequencing method. The sequence wasgenetically and phylogenetically analysed using various bioinformatic tools. The sequence was submitted in the Genbankwith accession number Kc756965.Results: The complete ORF of gC gene was amplified and sequenced. It showed 100% sequence homology with referencecooper strain of BoHV1 and divergence varied from 0% to 2.7% with other isolates of BoHV1. The isolate under study haddivergence of 9.2%, 13%, 26.6%, and 9.2% with BoHV5 (Bovine herpesvirus 5, CvHV1 (Cervid herpesvirus 1, CpHV1(Caprine herpesvirus 1, and BuHV1 (Bubaline herpesvirus 1, respectively.Conclusion: This is the first genetic characterization of complete open reading frame (ORF of glycoprotein C gene (UL44 ofIndian isolate of BoHV1. The gC gene of BoHV1 is highly conserved among all BoHV1 isolates and it can be used as a targetfor designing diagnostic primers for the specific detection of BoHV1.

  9. Glycoprotein degradation in the blind loop syndrome: identification of glycosidases in jejunal contents. (United States)

    Prizont, R


    Contents obtained from jejunum of normal controls, self-emptying and self-filling blind loop rats were analyzed for the presence of glycoprotein-degrading glycosidases. The blind loop syndrome was documented by the increased fat excretion and slower growth rate of self-filling blind loop rats 6 wk after surgery. With p-nitrophenylglycosides as substrate, the specific activity of alpha-N-acetylgalactosaminidase, a potential blood group A destroying glycosidase, was 0.90+/-0.40 mU/mg of protein. This level was 23-fold higher than the specific activity of normal controls. In partially purified self-filling blind loop contents, the activity of alpha-N-acetylgalactosaminidase was 9- to 70-fold higher than activities of self-emptying and normal controls. Antibiotic treatment with chloromycetin and polymyxin decreased 24-fold the glycosidase levels in self-filling blind loops. In experiments with natural substrate, the blood group A titer of a20,000g supernate from normal jejunal homogenates decreased 128-fold after 24-h incubation with blind loop contents. Normal contents failed to diminish the blood group reactivity of the natural substrate. Furthermore, blind loop contents markedly decreased the blood group A titer of isolated brush borders. Incubation between blind loop bacteria and mucosal homogenates or isolated brush borders labeled with d-[U-(14)C]glucosamine revealed increased production of labeled ether extractable organic acids. Likewise, intraperitoneal injection of d-[U-(14)C]glucosamine into self-filling blind loop rats resulted in incorporation of the label into luminal short chain fatty acids. These results suggest that glycosidases may provide a mechanism by which blind loop bacteria obtain sugars from intestinal glycoproteins. The released sugars are used and converted by bacteria into energy and organic acids. This use of the host's glycoproteins would allow blind loop bacteria to grow and survive within the lumen independent of exogenous sources.

  10. Genotyping of Korean isolates of infectious hematopoietic necrosis virus (IHNV) based on the glycoprotein gene. (United States)

    Kim, W-S; Oh, M-J; Nishizawa, T; Park, J-W; Kurath, G; Yoshimizu, M


    Glycoprotein (G) gene nucleotide sequences of four Korean isolates of infectious hematopoietic necrosis virus (IHNV) were analyzed to evaluate their genetic relatedness to worldwide isolates. All Korean isolates were closely related to Japanese isolates of genogroup JRt rather than to those of North American and European genogroups. It is believed that Korean IHNV has been most likely introduced from Japan to Korea by the movement of contaminated fish eggs. Among the Korean isolates, phylogenetically distinct virus types were obtained from sites north and south of a large mountain range, suggesting the possibility of more than one introduction of virus from Japan.

  11. Zinc-alpha2-glycoprotein expression as a marker of differentiation in human oral tumors. (United States)

    Brysk, M M; Lei, G; Adler-Storthz, K; Chen, Z; Brysk, H; Tyring, S K; Arany, I


    Zinc-alpha2-glycoprotein (Znalpha2gp) is a soluble major histocompatibility complex homolog widespread in body fluids and in glandular epithelia; the authors recently demonstrated its presence in stratified epithelia. Znalpha2gp has been associated with tumor differentiation in breast cancers and other carcinomas. We compare here its gene expression in histopathologically graded oral squamous cell carcinomas and in their perilesional normals. Znalpha2gp levels are higher in the controls than in the tumors, and higher in well-differentiated tumors than in poorly differentiated ones. Markers of oral epithelial maturation (keratin K13 and involucrin) are less simply related to tumor histology.

  12. Assessment of lectin and HILIC based enrichment protocols for characterization of serum glycoproteins by mass spectrometry

    DEFF Research Database (Denmark)

    Calvano, Cosima D; Zambonin, Carlo G; Jensen, Ole Nørregaard


    glycosylation profiles are associated with certain human ailments. Glycoprotein analysis by mass spectrometry of biological samples, such as blood serum, is hampered by sample complexity and the low concentration of the potentially informative glycopeptides and -proteins. We assessed the utility of lectin...... of 63 glycosylation sites in 38 proteins were identified by both methods, demonstrating distinct differences and complementarity. Serial application of custom-made microcolumns of mixed, immobilized lectins proved efficient for recovery and analysis of glycopeptides from serum samples of breast cancer...

  13. Pediatric cerebellar stroke associated with elevated titer of antibodies to β2-glycoprotein. (United States)

    Spalice, Alberto; Del Balzo, Francesca; Perla, Francesco Massimo; Papetti, Laura; Nicita, Francesco; Ursitti, Fabiana; Properzi, Enrico


    Antibodies to 2-glycoprotein I (anti-2GPI) have been associated with recurrent thrombosis and pregnancy morbidity. However, the prevalence of anti-2GPI in children suffering from cerebral and cerebellar infarction is unknown. We report on a 10-month-old boy who had an ischemic cerebellar stroke, secondary to antiphospholipid syndrome with high titers of immunoglobulin G anti-2GPI (first titer: 132U) anticardiolipin antibodies and lupus anticoagulant tests were negative. All other causes of infarction were excluded. To our knowledge, this is the first reported case of childhood cerebellar ischemic stroke with only anti-2GPI but no antibodies detectable in standard antiphospholipid assays.

  14. Irradiation of rat brain reduces P-glycoprotein expression and function


    Bart, J.; Nagengast, W B; Coppes, R P; Wegman, T D; van der Graaf, W T A; Groen, H J M; Vaalburg, W; de Vries, E G E; Hendrikse, N.H.


    The blood–brain barrier (BBB) hampers delivery of several drugs including chemotherapeutics to the brain. The drug efflux pump P-glycoprotein (P-gp), expressed on brain capillary endothelial cells, is part of the BBB. P-gp expression on capillary endothelium decreases 5 days after brain irradiation, which may reduce P-gp function and increase brain levels of P-gp substrates. To elucidate whether radiation therapy reduces P-gp expression and function in the brain, right hemispheres of rats wer...

  15. Anti-beta2 glycoprotein 1 and the anti-phospholipid syndrome.

    LENUS (Irish Health Repository)

    Keane, Pearse A


    PURPOSE: To describe a patient who presented with bilateral retinal vascular occlusion and the use of anti-beta2 glycoprotein 1 (GPI) antibody testing in the diagnosis of antiphospholipid syndrome. DESIGN: Observational case report. METHODS: Hematological investigations were performed on a 49-year-old man who presented with rapid onset of bilateral severe central retinal vein occlusion. RESULTS: Lupus anticoagulant and anticardiolipin antibody testing was negative. Markedly raised titers of anti-beta2 GPI antibodies were detected on two separate occasions. CONCLUSIONS: The raised titers of anti-beta2 GPI antibodies were considered to strongly suggest an underlying diagnosis of the antiphospholipid syndrome.

  16. The glycoprotein isolated from vesicular stomatitis virus is mitogenic for mouse B lymphocytes



    The glycoprotein (G protein) of VSV was purified from the intact virion by Triton X-100 extraction. The isolated G protein has been shown to be a T cell-independent, B lymphocyte mitogen and polyclonal activator. Neither G protein nor the intact virion are stimulatory for murine T lymphocytes. The greater the density of G protein in lipid vesicles or the degree of aggregation of isolated G protein, the more highly stimulatory it is for murine splenocytes. As G protein is spread out in artific...

  17. Platelet glycoproteins and fibrinogen in recovery from idiopathic sudden hearing loss.

    Directory of Open Access Journals (Sweden)

    Daniel Weiss

    Full Text Available BACKGROUND: The pathomechanism and location of idiopathic sudden sensorineural hearing loss (ISSHL is unclear. In a previous case-control study, we found elevated fibrinogen concentrations and a higher prevalence of T allele carriers of the glycoprotein (Gp Ia C807T polymorphism in ISSHL patients. METHODOLOGY: 127 patients with ISSHL (mean age 53.3 years, 48.8% females, who underwent a standard therapy with high dose steroids, pentoxifyllin and sterofundine over 8 days were included. We examined the influence of GpIa genotype and fibrinogen (BclI-, A312-, HaeIII- genotype and fibrinogen plasma levels on hearing recovery after 8 weeks (change from baseline: 0 dB  =  no recovery, >0 to 10 dB = moderate recovery, >10 dB = good recovery. In a subsample of 59 patients with ISSHL, we further studied the association of platelet glycoprotein GpIa, Ib and IIIa densities on hearing recovery as well as the possible effect-modification of platelet glycoproteins on hearing recovery by plasma fibrinogen. RESULTS: In univariate analysis, neither the GpIa genotype nor fibrinogen genotype (all p>0.1 but lower fibrinogen levels (p = 0.029, less vertigo (p = 0.002 and lower GpIIIa receptor density (p = 0.037, n = 59 were associated with hearing recovery. In multivariate analysis, fibrinogen significantly modified the effect of GPIa receptor density on good hearing recovery (effect-modification on multiplicative scale OR = 0.45 (95% confidence interval (0.21-0.94, p = 0.03. GPIb receptor density below the mean was associated with a 2-fold increase in good hearing recovery both in patients with fibrinogen levels above (p = 0.04 as well as in patients with fibrinogen levels below the mean (p = 0.06. There was no indication for an effect-modification (p = 0.97. CONCLUSIONS: The findings suggest a vascular/rheological origin of ISSHL with unique features of thrombosis in the inner ear artery that may include complex

  18. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin



    Neutrophils roll on P-selectin expressed by activated platelets or endothelial cells under the shear stresses in the microcirculation. P- selectin glycoprotein ligand-1 (PSGL-1) is a high affinity ligand for P- selectin on myeloid cells. However, it has not been demonstrated that PSGL-1 contributes to the rolling of neutrophils on P-selectin. We developed two IgG mAbs, PL1 and PL2, that appear to recognize protein- dependent epitopes on human PSGL-1. The mAbs bound to PSGL-1 on all leukocytes...

  19. Role of pseudorabies virus glycoprotein II in protection from lethal infection. (United States)

    Nakamura, T; Ihara, T; Nunoya, T; Kuwahara, H; Ishihama, A; Ueda, S


    A monoclonal antibody (mAb), named 1.21, with complement-dependent neutralizing activity was produced against glycoprotein II (gII) of pseudorabies virus (PRV). By immunoaffinity chromatography using a mAB 1.21 column, gII was purified from Nonidet P40-lysates of PRV infected BHK21/13 cells. When mice and pigs were immunized with purified gII, complement-dependent virus-neutralizing antibodies were produced. The immunized animals survived potentially lethal challenge with PRV. These results indicate that an immunological response against gII plays an important role in the protection from PRV infection.

  20. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites


    Zahid, Henna; Miah, Layeque; Lau, Andy; Brochard, Lea; Hati, Debolina; Bui, T. T.; Drake, A. F.; Gor, Jayesh; Perkins, Stephen J.; McDermott, Lindsay C.


    Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigate...

  1. Humoral immune response to the entire human immunodeficiency virus envelope glycoprotein made in insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Rusche, J.R.; Lynn, D.L.; Robert-Guroff, M.; Langlois, A.J.; Lyerly, H.K.; Carson, H.; Krohn, K.; Ranki, A.; Gallo, R.C.; Bolognesi, D.P.; Putney, S.D.


    The human immunodeficiency virus envelope gene was expressed in insect cells by using a Baculovirus expression vector. The protein has an apparent molecular mass of 160 kDa, appears on the surface of infected insect cells, and does not appear to be cleaved to glycoproteins gp120 and gp41. Goats immunized with the 160-kDa protein have high titers of antibody that neutralizes virus infection as measured by viral gene expression or cell cytolysis. In addition, immune sera can block fusion of human immunodeficiency virus-infected cells in culture. Both neutralization and fusion-blocking activities are bound to and eluted from immobilized gp120.

  2. Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus

    DEFF Research Database (Denmark)

    Giang, Erick; Dorner, Marcus; Prentoe, Jannick C


    Abs recognizing five distinct antigenic regions on the virus envelope glycoprotein complex E1E2 from an HCV-immune phage-display antibody library by using an exhaustive-panning strategy. Many of these mAbs were broadly neutralizing. In particular, the mAb AR4A, recognizing a discontinuous epitope outside the on the E1E2 complex, has an exceptionally broad neutralizing activity toward diverse HCV genotypes and protects against heterologous HCV challenge in a small animal model. The mAb panel will be useful for the design and development of vaccine candidates to elicit broadly neutralizing antibodies...

  3. Glycoprotein C Gene Based Molecular Subtyping of a Bovine Herpesvirus -1 Isolate from Uttar Pradesh, India



    Bovine herpesvirus -1 (BHV-1) is the etiological agent of many clinical syndromes in cattle which causes huge economic losses to the animal husbandry sector annually. Since the first report of its presence in India in 1976, the disease is considered to be endemic in the country. In the present study, a case of keratoconjunctivitis in a cow was investigated to find out the underlying cause of the condition. The clinical material (ocular swab) was tested by BHV-1 glycoprotein D gene specific PC...

  4. Metabolism of proteins and glycoproteins in tumour bearing mice treated with Aeromonas L-asparaginase. (United States)

    Benny, P J; Muraleedhara, K G; Sreejith, K; Jayashree, G


    L-asparaginase, isolated in our laboratory, from Aeromonas had been found to be antileukaemic. In the present study, changes in the levels of proteins and glycoproteins in leukaemic mice and under treatment with Aeromonas L-asparaginase have been compared. Levels of protein bound hexose, fucose and sialic acid which were increased during leukaemia attained normal levels when treated with L-asparaginase. The increased blood urea level declined significantly during enzyme therapy. Effects of L-asparaginase are compared with 'Leunase', a commercially available drug used in the treatment of leukaemia.

  5. Cellular and biophysical evidence for interactions between adenosine triphosphate and P-glycoprotein substrates

    DEFF Research Database (Denmark)

    Abraham, E H; Shrivastav, B; Salikhova, A Y;


    P-glycoprotein is involved with the removal of drugs, most of them cations, from the plasma membrane and cytoplasm. Pgp is also associated with movement of ATP, an anion, from the cytoplasm to the extracellular space. The central question of this study is whether drug and ATP transport associated...... with the expression of Pgp are in any way coupled. We have measured the stoichiometry of transport coupling between drug and ATP release. The drug and ATP transport that is inhibitable by the sulfonylurea compound, glyburide (P. E. Golstein, A. Boom, J. van Geffel, P. Jacobs, B. Masereel, and R. Beauwens, Pfluger...

  6. Distinct Mechanisms of Entry by Envelope Glycoproteins of Marburg and Ebola (Zaire) Viruses (United States)

    Chan, Stephen Y.; Speck, Roberto F.; Ma, Melissa C.; Goldsmith, Mark A.


    Since the Marburg (MBG) and Ebola (EBO) viruses have sequence homology and cause similar diseases, we hypothesized that they associate with target cells by similar mechanisms. Pseudotype viruses prepared with a luciferase-containing human immunodeficiency virus type 1 backbone and packaged by the MBG virus or the Zaire subtype EBO virus glycoproteins (GP) mediated infection of a comparable wide range of mammalian cell types, and both were inhibited by ammonium chloride. In contrast, they exhibited differential sensitivities to treatment of target cells with tunicamycin, endoglycosidase H, or protease (pronase). Therefore, while they exhibit certain functional similarities, the MBG and EBO virus GP interact with target cells by distinct processes. PMID:10775638

  7. Mucin-like glycoprotein secretion is mediated by cyclic-AMP and protein kinase C signal transduction pathways in rat corneal epithelium. (United States)

    Nakamura, M; Endo, K; Nakata, K


    Ocular surface mucin is secreted from both goblet cells in the conjunctival epithelium and corneal epithelial cells. To clarify its mechanism of secretion in corneal epithelial cells, a rat cornea organ culture system was used to evaluate the second messenger roles of cyclic-AMP (cAMP), cyclic-GMP (cGMP) and protein kinase C (PKC) in modulating mucin-like glycoprotein secretion. Rat cornea sections (3 mm diameter) were cultured in TC-199 medium, and radiolabeled with sodium sulfate for 18 hr. After washing, the corneas were treated with various second messenger modulating agents for 30 min. The culture media were reacted with Dolichos biflorus (DBA)-lectin, and mucin-like glycoprotein was isolated. Then the radioactivity of DBA-binding mucin-like glycoprotein was isolated. Then the radioactivity of DBA-binding mucin-like glycoprotein was measured. There was a time-dependent increase in mucin-like glycoprotein was measured. There was a time-dependent increase in mucin-like glycoprotein secretion, whereas after corneal epithelial debridement the secretion was markedly inhibited by 81%. Mucin-like glycoprotein secretion was stimulated in a dose-dependent manner following elevation of cAMP levels by exposure to either forskolin, dibutyryl cAMP or 3-isobutyl-1-methylxanthine. Concomitant exposure to the cAMP dependent protein kinase inhibitor, KT5720 completely inhibited their stimulatory effects. Neither exposure to dibutyryl cGMP nor nitroprusside affected mucin-like glycoprotein secretion. Stimulation by PKC, phorbol 12, 13-dibutyrate (PDBu) also increased mucin-like glycoprotein secretion in a dose-dependent fashion. The PKC inhibitor, calphostin C completely inhibited the stimulation by PDBu of mucine-like glycoprotein secretion. These results demonstrate that corneal epithelial cells secrete mucin-like glycoprotein, which is mediated by cAMP and PKC signal transduction pathways.

  8. Characterization of phosphine complexes of technetium(III) as transport substrates of the multidrug resistance P-glycoprotein and functional markers of P-glycoprotein at the blood-brain barrier. (United States)

    Luker, G D; Rao, V V; Crankshaw, C L; Dahlheimer, J; Piwnica-Worms, D


    The multidrug resistance (MDR1) P-glycoprotein functions as a broad specificity efflux transporter of structurally diverse natural product and xenobiotic compounds. P-glycoprotein also is an important component of the functional blood-brain barrier. To enable further studies of function and modulation of MDR1 P-glycoprotein in vitro and in vivo, two novel phosphine technetium(III) complexes were designed and characterized: trans-[2,2'-(1, 2-ethanediyldiimino)bis(1, 5-methoxy-5-methyl-4-oxo-hexenyl)]bis[methylbis(3-methoxy-1- propyl)ph osphine]Tc(III) (Tc-Q58) and trans-[5,5'-(1,2-ethanediyl diimino)bis(2-ethoxy-2-methyl-3-oxo-4-pentenyl)]bis[dimethyl(3- methox y-1-propyl)phosphine)]Tc(III) (Tc-Q63). In human drug-sensitive KB 3-1 cells and multidrug-resistant KB 8-5 and 8-5-11 derivative cell lines, expressing nonimmunodetectable, low, and high levels of MDR1 P-glycoprotein, respectively, accumulation of Tc-Q58 and Tc-Q63 was inverse to expression of the transporter. Differences between drug-sensitive and multidrug-resistant cells, while detectable at picomolar concentrations of each radiopharmaceutical, were independent of tracer concentration. Ratios of tracer accumulation in KB 3-1 and 8-5 cells were 62.3 and 48.1 for Tc-Q58 and Tc-Q63, respectively. Cell contents of Tc-Q58 and Tc-Q63 were enhanced up to 60-fold in MDR cells by known modulators of MDR1 P-glycoprotein, while drugs not in the multidrug-resistant phenotype had no effect on their accumulation. In KB 8-5 cells, potency of modulators was GF120918 > cyclosporin A > verapamil. Accumulation of Tc-Q58 and Tc-Q63 in Sf9 insect cells infected with a recombinant baculovirus containing human MDR1 P-glycoprotein was reduced in a GF120918-reversible manner (EC50 phosphine-containing metal complexes. As shown with Tc-Q58, these Q complexes can be used to detect transport activity and modulation of MDR1 P-glycoprotein in vitro and to directly monitor the functional status of P-glycoprotein at the blood

  9. The Mass Spectrometric Strategy for the Analysis of Glycoprotein%糖蛋白的质谱分析策略

    Institute of Scientific and Technical Information of China (English)

    蔡耘; 代景泉; 张养军; 卢庄; 王京兰; 应万涛; 钱小红


    Glycoprotein is a kind of proteins widely distributed in the bodies of animals and plants. The identification of its characteristic is very difficult due to the complexity of its structure. In this paper, a serious of methods for glycoprotein analysis was established by mass spectrum. The molecular weight, quantity of N-glycans and sialic acids were determined by matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOFMS) directly. The glycosylation sites of glycoprotein were confirmed by its PMF,which produced by the combination digestion of PNGase F and Endoproteinase. The sequence of glycopeptide was detected by liquid chromatography-mass spectrometry (LCMS). The recombined biotechnologic productions including rhEPO,proUK and Spike protein of SARS coronavirus were well characterized by using these methods.

  10. An unusual dependence of human herpesvirus-8 glycoproteins-induced cell-to-cell fusion on heparan sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Vaibhav [Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific and College of Optometry, Western University of Health Sciences, Pomona, CA 91766 (United States); Darmani, Nissar A.; Thrush, Gerald R. [Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific and College of Optometry, Western University of Health Sciences, Pomona, CA 91766 (United States); Shukla, Deepak, E-mail: [Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612 (United States)


    Human herpesvirus-8 (HHV-8) is known to interact with cell surface heparan sulfate (HS) for entry into a target cell. Here we investigated the role of HS during HHV-8 glycoproteins-induced cell fusion. Interestingly, the observed fusion demonstrated an unusual dependence on HS as evident from following lines of evidence: (1) a significant reduction in cell-to-cell fusion occurred when target cells were treated with heparinase; (2) in a competition assay, when the effector cells expressing HHV-8 glycoproteins were challenged with soluble HS, cell-to-cell fusion was reduced; and, (3) co-expression of HHV-8 glycoproteins gH-gL on target cells resulted in inhibition of cell surface HS expression. Taken together, our results indicate that cell surface HS can play an additional role during HHV-8 pathogenesis.

  11. Isolation and characterization of broadly neutralizing human monoclonal antibodies to the e1 glycoprotein of hepatitis C virus

    DEFF Research Database (Denmark)

    Meunier, Jean-Christophe; Russell, Rodney S.; Goossens, Vera


    The relative importance of humoral and cellular immunity in the prevention or clearance of hepatitis C virus (HCV) infection is poorly understood. However, there is considerable evidence that neutralizing antibodies are involved in disease control. Here we describe the detailed analysis of human...... monoclonal antibodies (MAbs) directed against HCV glycoprotein E1, which may have the potential to control HCV infection. We have identified two MAbs that can strongly neutralize HCV-pseudotyped particles (HCVpp) bearing the envelope glycoproteins of genotypes 1a, 1b, 4a, 5a, and 6a and less strongly...... neutralize HCVpp bearing the envelope glycoproteins of genotype 2a. Genotype 3a was not neutralized. The epitopes for both MAbs were mapped to the region encompassing amino acids 313 to 327. In addition, robust neutralization was also observed against cell culture-adapted viruses of genotypes 1a and 2a...

  12. P-glycoprotein activity in the blood-brain barrier is affected by virus-induced neuroinflammation and antipsychotic treatment. (United States)

    Doorduin, Janine; de Vries, Erik F J; Dierckx, Rudi A; Klein, Hans C


    A large percentage of schizophrenic patients respond poorly to antipsychotic treatment. This could be explained by inefficient drug transport across the blood-brain barrier due to P-glycoprotein mediated efflux. P-glycoprotein activity and expression in the blood-brain barrier can be affected by inflammation and pharmacotherapy. We therefore investigated the effect of herpes simplex virus type-1 (HSV-1) induced neuroinflammation and antipsychotic treatment on P-glycoprotein activity. Rats were inoculated with HSV-1 or PBS (control) on day 0 and treated with saline, clozapine or risperidone from day 0 up until day 4 post-inoculation. Positron emission tomography with the P-glycoprotein substrate [11C]verapamil was used to assess P-glycoprotein activity at day 6 post-inoculation. Disease symptoms in HSV-1 inoculated rats increased over time and were not significantly affected by treatment. The volume of distribution (VT) of [11C]verapamil was significantly lower (10-22%) in HSV-1 inoculated rats than in control rats. In addition, antipsychotic treatment significantly affected the VT of [11C]verapamil in all brain regions, although this effect was drug dependent. In fact, VT of [11C]verapamil was significantly increased (22-39%) in risperidone treated rats in most brain regions when compared to clozapine treated rats and in midbrain when compared to saline treated rats. No interaction between HSV-1 inoculation and antipsychotic treatment on VT of [11C]verapamil was found. In this study we demonstrated that HSV-1 induced neuroinflammation increased and risperidone treatment decreased P-glycoprotein activity. This finding is of importance for the understanding of treatment resistance in schizophrenia, and warrants further investigation of the underlying mechanism and the importance in clinical practice.

  13. Metabolic labeling of Caenorhabditis elegans primary embryonic cells with azido-sugars as a tool for glycoprotein discovery.

    Directory of Open Access Journals (Sweden)

    Amanda R Burnham-Marusich

    Full Text Available Glycobiology research with Caenorhabditis elegans (C. elegans has benefitted from the numerous genetic and cell biology tools available in this system. However, the lack of a cell line and the relative inaccessibility of C. elegans somatic cells in vivo have limited the biochemical approaches available in this model. Here we report that C. elegans primary embryonic cells in culture incorporate azido-sugar analogs of N-acetylgalactosamine (GalNAc and N-acetylglucosamine (GlcNAc, and that the labeled glycoproteins can be analyzed by mass spectrometry. By using this metabolic labeling approach, we have identified a set of novel C. elegans glycoprotein candidates, which include several mitochondrially-annotated proteins. This observation was unexpected given that mitochondrial glycoproteins have only rarely been reported, and it suggests that glycosylation of mitochondrially-annotated proteins might occur more frequently than previously thought. Using independent experimental strategies, we validated a subset of our glycoprotein candidates. These include a mitochondrial, atypical glycoprotein (ATP synthase α-subunit, a predicted glycoprotein (aspartyl protease, ASP-4, and a protein family with established glycosylation in other species (actin. Additionally, we observed a glycosylated isoform of ATP synthase α-subunit in bovine heart tissue and a primate cell line (COS-7. Overall, our finding that C. elegans primary embryonic cells are amenable to metabolic labeling demonstrates that biochemical studies in C. elegans are feasible, which opens the door to labeling C. elegans cells with other radioactive or azido-substrates and should enable the identification of additional post-translationally modified targets and analysis of the genes required for their modification using C. elegans mutant libraries.

  14. Double Recognition and Selective Extraction of Glycoprotein Based on the Molecular Imprinted Graphene Oxide and Boronate Affinity. (United States)

    Luo, Jing; Huang, Jing; Cong, Jiaojiao; Wei, Wei; Liu, Xiaoya


    Specific recognition and separation of glycoproteins from complex biological solutions is very important in clinical diagnostics considering the close relationship between glycoproteins with the occurrence of diverse diseases, but the lack of materials with high selectivity and superior capture capacity still makes it a challenge. In this work, graphene oxide (GO) based molecularly imprinted polymers (MIPs) possessing double recognition abilities have been synthesized and applied as highly efficient adsorbents for glycoprotein recognition and separation. Boronic acid functionalized graphene oxide (GO-APBA) was first prepared and a template glycoprotein (ovalbumin, OVA) was then immobilized onto the surface of GO-APBA through boronate affinity. An imprinting layer was subsequently deposited onto GO-APBA surface by a sol-gel polymerization of organic silanes in aqueous solution. After the removal of the template glycoprotein, 3D cavities with double recognition abilities toward OVA were obtained in the as-prepared imprinted materials (GO-APBA/MIPs) because of the combination of boronate affinity and molecularly imprinted spatial matched cavities. The obtained GO-APBA/MIPs exhibited superior specific recognition toward OVA with imprinted factor (α) as high as 9.5, significantly higher than the corresponding value (4.0) of GO/MIPs without the introduction of boronic acid groups. Meanwhile, because of the synergetic effect of large surface area of graphene and surface imprinting, high binding capacity and fast adsorption/elution rate of GO-APBA/MIPs toward OVA were demonstrated and the saturation binding capacity of GO-APBA/MIPs could reach 278 mg/g within 40 min. The outstanding recognizing behavior (high adsorption capacity, highly specific recognition, and rapid binding rate) coupled to the facile and environmentally friendly preparation procedure makes GO-APBA/MIPs promising in the recognition, separation, and analysis of glycoproteins in clinics in the future.

  15. The Role of P-Glycoprotein in Transport of Danshensu across the Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    Peng-Fei Yu


    Full Text Available Danshensu (3-(3, 4-dihydroxyphenyl lactic acid, a water-soluble active component isolated from the root of Salvia miltiorrhiza Bunge, is widely used for the treatment of cerebrovascular diseases. The present study aims to investigate the role of P-glycoprotein in transport of Danshensu across the blood-brain barrier. Sprague-Dawley rats were pretreated with verapamil at a dose of 20 mg kg−1 (verapamil group or the same volume of normal saline (control group. Ninety minutes later, the animals were administrated with Danshensu (15 mg kg−1 by intravenous injection. At 15 min, 30 min, and 60 min after Danshensu administration, the levels of Danshensu in the blood and brain were detected by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS. The results showed that Danshensu concentrations in the brain of the rats pretreated with verapamil were significantly increased. In addition, the brain-plasma ratios of the group pretreated with verapamil were much higher than that of the control group. There was no difference in Danshensu level in plasma between the verapamil group and control group. The findings indicated that Danshensu can pass the blood-brain barrier, and P-glycoprotein plays an important role in Danshensu transportation in brain.

  16. Lectin-based glycoproteomics to explore and analyze hepatocellular carcinoma-related glycoprotein markers. (United States)

    Dai, Zhi; Zhou, Jian; Qiu, Shuang-Jian; Liu, Yin-Kun; Fan, Jia


    More and more new diagnostic biomarkers of hepatocellular carcinoma (HCC) have been found in association with advances in the standardization of 2-DE coupled with MS analysis. However, the diagnosis of HCC is still detected in the late stages of the disease, when treatment options are limited and prognosis is poor. The glycosylation of proteins is known to change in tumor cells during the development of HCC as the result of alterations in the levels of glycosyltransferases, such as increased fucosylation of Golgi Protein 73 and alpha-fetoprotein. These structural changes can influence the function or physiochemical properties of a protein, resulting in abnormal cancer cell behavior. Therefore, identification of HCC-related glycoprotein markers and analysis of glycan structural alterations might assist in the early detection of HCC. Here, we summarize lectin-based glycoproteomic strategies for the discovery of relevant biomarkers of HCC. The carbohydrate-binding specificities of different lectins offer a biological affinity approach that complements existing MS capabilities. These strategies involve the enrichment of glycoproteins or glycopeptides by lectins, followed by releasing carbohydrates with peptide-N-glycosidase F or reductive beta-elimination. The obtained glycopeptides are then identified by automated MS/MS and structural analysis of glycans is performed through modern methods such as quadrupole IT-TOF, MALDI-TOF/TOF and lectin microarray. These strategies will lead to faster and more clinically adaptable tests with greater sensitivity and specificity.

  17. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Jennifer Pasquier


    Full Text Available The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp. The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading, we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.

  18. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate. (United States)

    Bi, Xiaodong; Liu, Zhen


    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  19. Clinical Significance of an Alloantibody against the Kell Blood Group Glycoprotein (United States)

    Mattaloni, Stella Maris; Arnoni, Carine; Céspedes, Rosario; Nonaka, Claudia; Trucco Boggione, Carolina; Luján Brajovich, Melina Eliana; Trejo, Andrea; Zani, Néstor; Biondi, Claudia Silvia; Castilho, Lilian; Cotorruelo, Carlos Miquel


    Background Kell null (K0) individuals can produce anti-Ku, an antibody against many epitopes in the Kell glycoprotein, after transfusion and/or pregnancy. Since sensitized K0 patients are rare, little is known about anti-Ku clinical relevance and in particular about its association to hemolytic disease of the fetus and newborn. Case Report This work describes a case of neonatal hyperbilirubinemia due to immune-mediated erythrocyte destruction by an alloantibody directed against the Kell glycoprotein. Serologic and molecular approaches identified an anti-Ku alloantibody in maternal serum. A homozygous IVS3 + 1g>a point mutation (KEL*02N.06 allele) was found to be responsible for the lack of Kell antigen expression in the mother's red blood cell and subsequent alloimmunization after a previous pregnancy. Even though in most cases Kell antibodies are clinically severe and may cause suppression of erythropoiesis, in our case the newborn had a moderate anemia and hyperbilirubinemia that was successfully treated with phototherapy without requiring exchange transfusion. Serological and molecular studies performed in the proband's family members allowed us to provide them with proper counseling regarding alloimmunization after transfusion and/or pregnancy. Conclusions This case enlarges the understanding of the clinical significance of alloantibodies against Kell blood group antigens.

  20. Inactivated Recombinant Rabies Viruses Displaying the Canine Distemper Virus Glycoproteins Induce Protective Immunity Against Both Pathogens. (United States)

    Budaszewski, Renata da Fontoura; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Xiangping, Yin; Schnell, Matthias J; von Messling, Veronika


    The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Canine distemper (CDV) and rabies (RABV) viruses both cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wild life species. In the current study, we have developed recombinant bivalent vaccine candidates based on recombinant vaccine strain rabies virus particles, which concurrently display the protective CDV and RABV glycoprotein antigens. The recombinant viruses replicated to near wild type titers and the heterologous glycoproteins were efficiently expressed and incorporated in the viral particles. Immunization of ferrets with beta-propiolactone inactivated recombinant virus particles elicited protective RABV antibody titers, and animals immunized with a combination of CDV attachment and fusion protein-expressing recombinant viruses were protected from lethal CDV challenge. However, animals that were only immunized with a RABV expressing the attachment protein of the CDV vaccine strain Onderstepoort succumbed to the infection with a more recent wild type strain, indicating that immune responses to the more conserved fusion protein contribute to protection against heterologous CDV strains.

  1. A glycoprotein with anti-inflammatory properties secreted by an Aspergillus nidulans modified strain

    Directory of Open Access Journals (Sweden)

    J. C. F. Queiroz


    Full Text Available Total RNA from lipopolysaccharide (LPS-stimulated rat macrophages used to treat protoplasts from an Aspergillus nidulans strain originated the RT2 regenerated strain, whose culture supernatant showed anti-inflammatory activity in Wistar rats. The protein fraction presenting such anti-inflammatory activity was purified and biochemically identified. The screening of the fraction responsible for such anti-inflammatory property was performed by evaluating the inhibition of carrageenan-induced paw edema in male Swiss mice. Biochemical analyses of the anti-inflammatory protein used chromatography, carbohydrates quantification of the protein sample, amino acids content analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. Total sugar quantification revealed 32% glycosylation of the protein fraction. Amino acid analysis of such fraction showed a peculiar pattern presenting 29% valine. SDS-PAGE revealed that the protein sample is pure and its molecular weight is about 40kDa. Intravenous injection of the isolated substance into mice significantly inhibited carrageenan-induced paw edema. The isolated glycoprotein decreased carrageenan-induced paw edema in a prostaglandin-dependent phase, suggesting an inhibitory effect of the isolated glycoprotein on prostaglandin synthesis.

  2. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry. (United States)

    Pasquier, Jennifer; Rioult, Damien; Abu-Kaoud, Nadine; Hoarau-Véchot, Jessica; Marin, Matthieu; Le Foll, Frank


    The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD) where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp). The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading), we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.

  3. Providing a molecular mechanism for P-glycoprotein; why would I bother? (United States)

    Callaghan, Richard


    It is almost 40 years since the drug efflux pump P-glycoprotein (permeability glycoprotein or P-gp) was shown to confer multi-drug resistance in cancer cells. This protein has been one of the most extensively investigated transport proteins due to its intriguing mechanism and its affect in oncology. P-gp is known to interact with over 300 compounds and the ability to achieve this has not yet been revealed. Following the binding of substrate and nucleotide, a complex series of conformational changes in the membrane and cytosolic domains translocates substrate across the membrane. Despite over 30 years of biochemical investigation, the availability of structural data and a plethora of chemical tools to modulate its function, the molecular mechanism remains a mystery. In addition, overcoming its activity in resistant cancer cells has not been achieved in the clinic, thereby garnering some degree of pessimism in the field. This review highlights the progress that has been achieved in understanding this complex protein and the value of undertaking molecular studies.

  4. Silencing of P-glycoprotein increases mortality in temephos-treated Aedes aegypti larvae. (United States)

    Figueira-Mansur, J; Ferreira-Pereira, A; Mansur, J F; Franco, T A; Alvarenga, E S L; Sorgine, M H F; Neves, B C; Melo, A C A; Leal, W S; Masuda, H; Moreira, M F


    Re-emergence of vector-borne diseases such as dengue and yellow fever, which are both transmitted by the Aedes aegypti mosquito, has been correlated with insecticide resistance. P-glycoproteins (P-gps) are ATP-dependent efflux pumps that are involved in the transport of substrates across membranes. Some of these proteins have been implicated in multidrug resistance (MDR). In this study, we identified a putative P-glycoprotein in the Ae. aegypti database based on its significantly high identity with Anopheles gambiae, Culex quinquefasciatus, Drosophila melanogaster and human P-gps. The basal ATPase activity of ATP-binding cassette transporters in larvae was significantly increased in the presence of MDR modulators (verapamil and quinidine). An eightfold increase in Ae. aegypti P-gp (AaegP-gp) gene expression was detected in temephos-treated larvae as determined by quantitative PCR. To analyse the potential role of AaegP-gp in insecticide efflux, a temephos larvicide assay was performed in the presence of verapamil. The results showed an increase of 24% in temephos toxicity, which is in agreement with the efflux reversing effect. RNA interference (RNAi)-mediated silencing of the AaegP-gp gene caused a significant increase in temephos toxicity (57%). In conclusion, we have demonstrated for the first time in insects that insecticide-induced P-gp expression can be involved in the modulation of insecticide efflux.

  5. Surface (glyco-)proteins: primary structure and crystallization under microgravity conditions (United States)

    Claus, H.; Akca, E.; Schultz, N.; Karbach, G.; Schlott, B.; Debaerdemaeker, T.; De Clercq, J.-P.; König, H.


    The Archaea comprise microorganisms that live under environmental extremes, like high temperature, low pH value or high salt concentration. Their cells are often covered by a single layer of (glyco)protein subunits (S-layer) in hexagonal arrangement. In order to get further hints about the molecular mechanisms of protein stabilization we compared the primary and secondary structures of archaeal S-layer (glyco)proteins. We found an increase of charged amino acids in the S-layer proteins of the extreme thermophilic species compared to their mesophilic counterparts. Our data and those of other authors suggest that ionic interactions, e.g., salt bridges seem to be played a major role in protein stabilization at high temperatures. Despite the differences in the growth optima and the predominance of some amino acids the primary structures of S-layers revealed also a significant degree of identity between phylogenetically related archaea. These obervations indicate that protein sequences of S-layers have been conserved during the evolution from extremely thermophilic to mesophilic life. To support these findings the three-dimensional structure of the S-layer proteins has to be elucidated. Recently, we described the first successful crystallization of an extreme thermophilic surface(glyco)protein under microgravity conditions.

  6. Recombinant vesicular stomatitis virus vaccine vectors expressing filovirus glycoproteins lack neurovirulence in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Chad E Mire

    Full Text Available The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with high mortality in humans and nonhuman primates. Among the most promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV that expresses an individual filovirus glycoprotein (GP in place of the VSV glycoprotein (G. The main concern with all replication-competent vaccines, including the rVSV filovirus GP vectors, is their safety. To address this concern, we performed a neurovirulence study using 21 cynomolgus macaques where the vaccines were administered intrathalamically. Seven animals received a rVSV vector expressing the Zaire ebolavirus (ZEBOV GP; seven animals received a rVSV vector expressing the Lake Victoria marburgvirus (MARV GP; three animals received rVSV-wild type (wt vector, and four animals received vehicle control. Two of three animals given rVSV-wt showed severe neurological symptoms whereas animals receiving vehicle control, rVSV-ZEBOV-GP, or rVSV-MARV-GP did not develop these symptoms. Histological analysis revealed major lesions in neural tissues of all three rVSV-wt animals; however, no significant lesions were observed in any animals from the filovirus vaccine or vehicle control groups. These data strongly suggest that rVSV filovirus GP vaccine vectors lack the neurovirulence properties associated with the rVSV-wt parent vector and support their further development as a vaccine platform for human use.

  7. Vesicular stomatitis virus with the rabies virus glycoprotein directs retrograde transsynaptic transport among neurons in vivo

    Directory of Open Access Journals (Sweden)

    Kevin T Beier


    Full Text Available Defining the connections among neurons is critical to our understanding of the structure and function of the nervous system. Recombinant viruses engineered to transmit across synapses provide a powerful approach for the dissection of neuronal circuitry in vivo. We recently demonstrated that recombinant vesicular stomatitis virus (VSV can be endowed with anterograde or retrograde synaptic tracing ability by providing the virus with different glycoproteins. Here we extend the characterization of the transmission and gene expression of VSV with the rabies virus glycoprotein (RABV-G, and provide examples of its activity relative to the anterograde tracer form of rVSV. rVSV with RABV-G was found to drive strong expression of transgenes and to spread rapidly from neuron to neuron in only a retrograde manner. Depending upon how the RABV-G was delivered, VSV served as a polysynaptic or monosynaptic tracer, or was able to define projections through axonal uptake and retrograde transport. In animals co-infected with rVSV in its anterograde form, rVSV with RABV-G could be used to begin to characterize the similarities and differences in connections to a given area. rVSV with RABV-G provides a flexible, rapid, and versatile tracing tool that complements the previously described VSV-based anterograde transsynaptic tracer.

  8. Curcumin as a Modulator of P-Glycoprotein in Cancer: Challenges and Perspectives

    Directory of Open Access Journals (Sweden)

    Vanessa Lopes-Rodrigues


    Full Text Available Multidrug resistance (MDR presents a serious challenge to the efficiency of cancer treatment, and may be associated with the overexpression of drug efflux pumps. P-glycoprotein (P-gp is a drug efflux pump often found overexpressed in cases of acquired MDR. Nevertheless, there are no P-gp inhibitors being used in the current clinical practice, due to toxicity problems, drug interactions, or pharmacokinetic issues. Therefore, it is important to identify novel inhibitors of P-gp activity or expression. Curcumin is a secondary metabolite isolated from the turmeric of Curcuma longa L. which has been associated with several biological activities, particularly P-gp modulatory activity (by inhibiting both P-gp function and expression. However, curcumin shows extensive metabolism and instability, which has justified the recent and intensive search for analogs of curcumin that maintain the P-gp modulatory activity but have enhanced stability. This review summarizes and compares the effects of curcumin and several curcumin analogs on P-glycoprotein function and expression, emphasizing the potential of these molecules for the possible development of safe and effective inhibitors of P-gp to overcome MDR in human cancer.

  9. Curcumin as a Modulator of P-Glycoprotein in Cancer: Challenges and Perspectives (United States)

    Lopes-Rodrigues, Vanessa; Sousa, Emília; Vasconcelos, M. Helena


    Multidrug resistance (MDR) presents a serious challenge to the efficiency of cancer treatment, and may be associated with the overexpression of drug efflux pumps. P-glycoprotein (P-gp) is a drug efflux pump often found overexpressed in cases of acquired MDR. Nevertheless, there are no P-gp inhibitors being used in the current clinical practice, due to toxicity problems, drug interactions, or pharmacokinetic issues. Therefore, it is important to identify novel inhibitors of P-gp activity or expression. Curcumin is a secondary metabolite isolated from the turmeric of Curcuma longa L. which has been associated with several biological activities, particularly P-gp modulatory activity (by inhibiting both P-gp function and expression). However, curcumin shows extensive metabolism and instability, which has justified the recent and intensive search for analogs of curcumin that maintain the P-gp modulatory activity but have enhanced stability. This review summarizes and compares the effects of curcumin and several curcumin analogs on P-glycoprotein function and expression, emphasizing the potential of these molecules for the possible development of safe and effective inhibitors of P-gp to overcome MDR in human cancer. PMID:27834897

  10. Murine and human b locus pigmentation genes encode a glycoprotein (gp75) with catalase activity

    Energy Technology Data Exchange (ETDEWEB)

    Halaban, R.; Moellmann, G. (Yale Univ. School of Medicine, New Haven, CT (USA))


    Melanogenesis is regulated in large part by tyrosinase, and defective tyrosinase leads to albinism. The mechanisms for other pigmentation determinants (e.g., those operative in tyrosinase-positive albinism and in murine coat-color mutants) are not yet known. One murine pigmentation gene, the brown (b) locus, when mutated leads to a brown (b/b) or hypopigmentated (B{sup lt}/B{sup lt}) coat versus the wild-type black (B/B). The authors show that the b locus codes for a glycoprotein with the activity of a catalase (catalase B). Only the c locus protein is a tyrosinase. Because peroxides may be by-products of melanogenic activity and hydrogen peroxide in particular is known to destroy melanin precursors and melanin, they conclude that pigmentation is controlled not only by tyrosinase but also by a hydroperoxidase. The studies indicate that catalase B is identical with gp75, a known human melanosomal glycoprotein; that the b mutation is in a heme-associated domain; and that the B{sup lt} mutation renders the protein susceptible to rapid proteolytic degradation.

  11. Glycan Reader: automated sugar identification and simulation preparation for carbohydrates and glycoproteins. (United States)

    Jo, Sunhwan; Song, Kevin C; Desaire, Heather; MacKerell, Alexander D; Im, Wonpil


    Understanding how glycosylation affects protein structure, dynamics, and function is an emerging and challenging problem in biology. As a first step toward glycan modeling in the context of structural glycobiology, we have developed Glycan Reader and integrated it into the CHARMM-GUI, Glycan Reader greatly simplifies the reading of PDB structure files containing glycans through (i) detection of carbohydrate molecules, (ii) automatic annotation of carbohydrates based on their three-dimensional structures, (iii) recognition of glycosidic linkages between carbohydrates as well as N-/O-glycosidic linkages to proteins, and (iv) generation of inputs for the biomolecular simulation program CHARMM with the proper glycosidic linkage setup. In addition, Glycan Reader is linked to other functional modules in CHARMM-GUI, allowing users to easily generate carbohydrate or glycoprotein molecular simulation systems in solution or membrane environments and visualize the electrostatic potential on glycoprotein surfaces. These tools are useful for studying the impact of glycosylation on protein structure and dynamics.

  12. Steric shielding of surface epitopes and impaired immune recognition induced by the ebola virus glycoprotein.

    Directory of Open Access Journals (Sweden)

    Joseph R Francica

    Full Text Available Many viruses alter expression of proteins on the surface of infected cells including molecules important for immune recognition, such as the major histocompatibility complex (MHC class I and II molecules. Virus-induced downregulation of surface proteins has been observed to occur by a variety of mechanisms including impaired transcription, blocks to synthesis, and increased turnover. Viral infection or transient expression of the Ebola virus (EBOV glycoprotein (GP was previously shown to result in loss of staining of various host cell surface proteins including MHC1 and β1 integrin; however, the mechanism responsible for this effect has not been delineated. In the present study we demonstrate that EBOV GP does not decrease surface levels of β1 integrin or MHC1, but rather impedes recognition by steric occlusion of these proteins on the cell surface. Furthermore, steric occlusion also occurs for epitopes on the EBOV glycoprotein itself. The occluded epitopes in host proteins and EBOV GP can be revealed by removal of the surface subunit of GP or by removal of surface N- and O- linked glycans, resulting in increased surface staining by flow cytometry. Importantly, expression of EBOV GP impairs CD8 T-cell recognition of MHC1 on antigen presenting cells. Glycan-mediated steric shielding of host cell surface proteins by EBOV GP represents a novel mechanism for a virus to affect host cell function, thereby escaping immune detection.

  13. Antioxidant activity of glycoprotein purified from Undaria pinnatifida measured by an in vitro digestion model. (United States)

    Rafiquzzaman, S M; Kim, Eun-Young; Kim, Yu-Ri; Nam, Taek-Jeong; Kong, In-Soo


    The present study was performed to investigate the chemical composition and antioxidant activity of glycoprotein purified from Undaria pinnatifida Harvey (UPGP). On SDS-PAGE, UPGP migrated as a single band with a molecular weight of approximately 10 kDa and confirmed by staining with Schiff's reagent as glycoprotein. It consists of a carbohydrate component (42.53%) and protein component (57.47%). Amino acid profile, FT-IR spectrum and enzymatic glycosylation analysis suggested that protein is linked with carbohydrate by O-glycosylation. UPGP showed dose-dependent antioxidant activities as detected by different assays before and after in vitro digestion. The IC50 values of undigested UPGP were 0.25 ± 0.03, 0.08 ± 0.005, 0.69 ± 0.12, and 0.25 ± 0.08 mg/mL for DPPH, ABTS, FRAP, and NO, respectively. Following in vitro digestion, the antioxidant activities of UPGP were decreased during the gastric phase compared to those of undigested UPGP, with an increase occurring during the duodenal phase in all assays. However, the reducing power was unchanged after in vitro digestion. Furthermore, UPGP showed protective activity against oxidative DNA damage both undigested, after saliva and duodenal phase of digestion. These results indicate that the antioxidant and DNA protection activities of UPGP may be pH-dependent and assay specific.

  14. Prediction and identification of mouse cytotoxic T lymphocyte epitopes in Ebola virus glycoproteins

    Directory of Open Access Journals (Sweden)

    Wu Shipo


    Full Text Available Abstract Background Ebola viruses (EBOVs cause severe hemorrhagic fever with a high mortality rate. At present, there are no licensed vaccines or efficient therapies to combat EBOV infection. Previous studies have shown that both humoral and cellular immune responses are crucial for controlling Ebola infection. CD8+ T cells play an important role in mediating vaccine-induced protective immunity. The objective of this study was to identify H-2d-specific T cell epitopes in EBOV glycoproteins (GPs. Results Computer-assisted algorithms were used to predict H-2d-specific T cell epitopes in two species of EBOV (Sudan and Zaire GP. The predicted peptides were synthesized and identified in BALB/c mice immunized with replication-deficient adenovirus vectors expressing the EBOV GP. Enzyme-linked immunospot assays and intracellular cytokine staining showed that the peptides RPHTPQFLF (Sudan EBOV, GPCAGDFAF and LYDRLASTV (Zaire EBOV could stimulate splenoctyes in immunized mice to produce large amounts of interferon-gamma. Conclusion Three peptides within the GPs of two EBOV strains were identified as T cell epitopes. The identification of these epitopes should facilitate the evaluation of vaccines based on the Ebola virus glycoprotein in a BALB/c mouse model.

  15. Determining the Structure of an Unliganded and Fully Glycosylated SIV gp120 Envelope Glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bing; Vogan, Erik M.; Gong, Haiyun; Skehel, John J.; Wiley, Don C.; Harrison, Stephen C. (Harvard-Med); (NIMR)


    HIV/SIV envelope glycoproteins mediate the first steps in viral infection. They are trimers of a membrane-anchored polypeptide chain, cleaved into two fragments known as gp120 and gp41. The structure of HIV gp120 bound with receptor (CD4) has been known for some time. We have now determined the structure of a fully glycosylated SIV gp120 envelope glycoprotein in an unliganded conformation by X-ray crystallography at 4.0 {angstrom} resolution. We describe here our experimental and computational approaches, which may be relevant to other resolution-limited crystallographic problems. Key issues were attention to details of beam geometry mandated by small, weakly diffracting crystals, and choice of strategies for phase improvement, starting with two isomorphous derivatives and including multicrystal averaging. We validated the structure by analyzing composite omit maps, averaged among three distinct crystal lattices, and by calculating model-based, SeMet anomalous difference maps. There are at least four ordered sugars on many of the thirteen oligosaccharides.

  16. Structural and Antigenic Definition of Hepatitis C Virus E2 Glycoprotein Epitopes Targeted by Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Giuseppe Sautto


    Full Text Available Hepatitis C virus (HCV is the major cause of chronic liver disease as well as the major indication for liver transplantation worldwide. Current standard of care is not completely effective, not administrable in grafted patients, and burdened by several side effects. This incomplete effectiveness is mainly due to the high propensity of the virus to continually mutate under the selective pressure exerted by the host immune response as well as currently administered antiviral drugs. The E2 envelope surface glycoprotein of HCV (HCV/E2 is the main target of the host humoral immune response and for this reason one of the major variable viral proteins. However, broadly cross-neutralizing monoclonal antibodies (mAbs directed against HCV/E2 represent a promising tool for the study of virus-host interplay as well as for the development of effective prophylactic and therapeutic approaches. In the last few years many anti-HCV/E2 mAbs have been evaluated in preclinical and clinical trials as possible candidate antivirals, particularly for administration in pre- and post-transplant settings. In this review we summarize the antigenic and structural characteristics of HCV/E2 determined through the use of anti-HCV/E2 mAbs, which, given the absence of a crystal structure of this glycoprotein, represent currently the best tool available.

  17. Synthesis of mucin-type glycoprotein; Muchingata to tanbakushitsu no gosei

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, M. [Tokyo Inst. of Tech., Tokyo (Japan)


    A mucin-type glycoprotein has a configuration in which serine or threonine is bonded at 1-position of N-acetyl galactosamine (GalNAc) with a sugar chain of galactose or sialic acid bonded thereto. The mucin-type glycoprotein is paid attention in researches in respect to the progress and dislocation of carcinoma. A method used in conventional synthesis of such a kind of compounds is to introduce an amino acid residue after the whole sugar chain portion is constructed. However, there is risk in this synthesis that great loss in yield may occur in the final stage. Danishefsky et al. noticed that, for a mucin-type protein, the first sugar bonded to the amino acid is GalNAc, and therefore suggested a new synthesizing method named mucin-type cassette approach. Specifically, this method is characterized in introducing serine or threonine to 1-position of a GalNAc derivative to obtain GalNAc{alpha}l-Ser/Thr derivative, and then extending a sugar chain thereto. As a consequence, cassette approach shows effectiveness in syntheses of mucin-type proteins. (NEDO)

  18. Interaction of a human blood group Sd(a-) Tamm-Horsfall glycoprotein with applied lectins. (United States)

    Wu, J H; Watkins, W M; Chen, C P; Song, S C; Wu, A M


    Unlike the human blood group Sd(a+) Tamm-Horsfall glycoprotein (THGP), the Sd(a-) one lacks terminal GalNAcbeta1--> residues at the nonreducing ends. The binding properties of this glycoprotein and its asialo product with lectins were characterized by quantitative precipitin (QPA) and precipitin inhibition assays. Among 20 lectins tested by QPA, both native and asialo Sd(a-) THGP reacted best with Abrus precatorius and Ricinus communis and completely precipitated the lectin added. They also precipitated well Wistaria floribunda (WFA), Glycine max (SBA), Bauhinia purpurea alba, abrin-a and ricin, all of which recognize the Galbeta1--> 4GlcNAcbeta1--> sequence, although at different strength. The lectin-glycan interactions were inhibited by Galbeta1--> 4GlcNAc and Galbeta1--> 4Glc. When the precipitability of Sd(a-) THGP was compared with that of the Sd(a+) phenotype, the native Sd(a-) THGP exhibited a 40% lesser affinity for WFA, SBA, WGA and mistletoe lectin-I (ML-I). Mapping the precipitation and inhibition profiles of the present study and the results of THGP Sd(a+), it is concluded that Sd(a-) THGP showed a strongly diminished affinity for GalNAcbeta1--> active lectins (SBA and WFA) than the Sd(a+) phenotype.

  19. Glycoprotein C gene based molecular subtyping of a bovine herpesvirus -1 isolate from uttar pradesh, India. (United States)

    Ravishankar, Chintu; Nandi, S; Chander, V; Mohapatra, T K


    Bovine herpesvirus -1 (BHV-1) is the etiological agent of many clinical syndromes in cattle which causes huge economic losses to the animal husbandry sector annually. Since the first report of its presence in India in 1976, the disease is considered to be endemic in the country. In the present study, a case of keratoconjunctivitis in a cow was investigated to find out the underlying cause of the condition. The clinical material (ocular swab) was tested by BHV-1 glycoprotein D gene specific PCR using in house designed primers and found to be positive by the presence of a 212 bp DNA product in agarose gel electrophoresis. The virus was isolated in MDBK cell line in the third passage and the serum from the animal, was positive for antibodies against BHV-1 by ELISA. A 575 bp segment of the glycoprotein C gene of the isolate was amplified by PCR, cloned and sequenced. On phylogenetic analysis, it was seen that the sequence matched with published BHV-1.1 sequences from USA and Uruguay whereas it was divergent from Brazilian BHV-1.1 isolates. This study highlights the isolation, rapid and sensitive detection of BHV-1 virus from clinical cases and its subtyping by nucleotide sequencing and subsequent phylogenetic analysis which gives invaluable information about the molecular epidemiology of BHV-1 subtypes prevalent in the country.

  20. Viral glycoprotein-mediated cell fusion assays using vaccinia virus vectors. (United States)

    Bossart, Katharine N; Broder, Christopher C


    The vaccinia virus-based expression of viral envelope glycoprotein genes-derived from enveloped viruses that infect their respective host cells through a pH-independent mechanism of membrane fusion-has been a powerful tool in helping to characterize these important attachment and fusion proteins. The cellular expression of these viral envelope glycoproteins has allowed for the measurement of membrane fusion events using cell-cell fusion or syncytia formation. This method has been enhanced by the addition of a reporter-gene system to the vaccinia virus-based cell-cell fusion assay. This improvement has provided a high-throughput and quantitative aspect to this assay, which can serve as a surrogate for virus entry and is therefore ideally suited in the characterization of numerous enveloped viruses, including biological safety level-4 (BSL-4) agents. This chapter will detail the methods of the vaccinia virus-based reporter-gene fusion assay and how it may be used to characterize the fusion mediated by the BSL-4-classified Hendra and Nipah viruses.

  1. Prokaryotic Expression of Glycoprotein Gene of Infectious Hnematopoietic Necrosis Virus and Polyclonal Antibody Preparation

    Institute of Scientific and Technical Information of China (English)

    Liu; Xueguang; Zheng; Huaidong; Guo; Xinshuo; Luo; Jin; Lin; Cuicui; Wang; Qiuyu


    [Objective]The aim is to perform prokaryotic expression of the glycoprotein gene of infectious hnematopoietic necrosis virus and polyclonal antibody preparation. [Methods]Glycoprotein gene( G) of infectious hematopoietic tissue( IHNV) was synthesized,cloned to prokaryotic expression system pET-30a vector,yielding the recombinant plasmid pET-30a-IHNV-G. The yielded pET-30a-IHNV-G was transformed into E. coli strain BL21( DE3) plySs. [Results] SDSPAGE and Western blot results showed that protein G successfully expressed in E. coli at 37 ℃,1 mmol /L IPTG induction for 4 h. The molecular weight of fusion G protein was 57 KD. The polyclonal antibody was prepared by immunizing mice with the product of gel purification. ELISA analysis showed that the serum titer reached 1∶10 000. [Conclusion]The expressed G protein and the serum with polyclonal antibody obtained in this study provided the theoretical basis for the development of IHNV vaccine and detection of colloidal gold test strip.

  2. Acidic pH-Induced Conformations and LAMP1 Binding of the Lassa Virus Glycoprotein Spike.

    Directory of Open Access Journals (Sweden)

    Sai Li


    Full Text Available Lassa virus is an enveloped, bi-segmented RNA virus and the most prevalent and fatal of all Old World arenaviruses. Virus entry into the host cell is mediated by a tripartite surface spike complex, which is composed of two viral glycoprotein subunits, GP1 and GP2, and the stable signal peptide. Of these, GP1 binds to cellular receptors and GP2 catalyzes fusion between the viral envelope and the host cell membrane during endocytosis. The molecular structure of the spike and conformational rearrangements induced by low pH, prior to fusion, remain poorly understood. Here, we analyzed the three-dimensional ultrastructure of Lassa virus using electron cryotomography. Sub-tomogram averaging yielded a structure of the glycoprotein spike at 14-Å resolution. The spikes are trimeric, cover the virion envelope, and connect to the underlying matrix. Structural changes to the spike, following acidification, support a viral entry mechanism dependent on binding to the lysosome-resident receptor LAMP1 and further dissociation of the membrane-distal GP1 subunits.

  3. Acidic pH-Induced Conformations and LAMP1 Binding of the Lassa Virus Glycoprotein Spike. (United States)

    Li, Sai; Sun, Zhaoyang; Pryce, Rhys; Parsy, Marie-Laure; Fehling, Sarah K; Schlie, Katrin; Siebert, C Alistair; Garten, Wolfgang; Bowden, Thomas A; Strecker, Thomas; Huiskonen, Juha T


    Lassa virus is an enveloped, bi-segmented RNA virus and the most prevalent and fatal of all Old World arenaviruses. Virus entry into the host cell is mediated by a tripartite surface spike complex, which is composed of two viral glycoprotein subunits, GP1 and GP2, and the stable signal peptide. Of these, GP1 binds to cellular receptors and GP2 catalyzes fusion between the viral envelope and the host cell membrane during endocytosis. The molecular structure of the spike and conformational rearrangements induced by low pH, prior to fusion, remain poorly understood. Here, we analyzed the three-dimensional ultrastructure of Lassa virus using electron cryotomography. Sub-tomogram averaging yielded a structure of the glycoprotein spike at 14-Å resolution. The spikes are trimeric, cover the virion envelope, and connect to the underlying matrix. Structural changes to the spike, following acidification, support a viral entry mechanism dependent on binding to the lysosome-resident receptor LAMP1 and further dissociation of the membrane-distal GP1 subunits.

  4. Trophoblast glycoprotein promotes pancreatic ductal adenocarcinoma cell metastasis through Wnt/planar cell polarity signaling. (United States)

    He, Ping; Jiang, Shuheng; Ma, Mingze; Wang, Yang; Li, Rongkun; Fang, Fang; Tian, Guangang; Zhang, Zhigang


    Trophoblast glycoprotein (TPBG), a 72 kDa glycoprotein was identified using a monoclonal antibody, which specifically binds human trophoblast. The expression of TPBG in normal tissues is limited; however, it is upregulated in numerous types of cancer. When TPBG is expressed at a high level, this usually indicates a poor clinical outcome. In the present study, it was demonstrated that TPBG was more commonly observed in human pancreatic ductal adenocarcinoma (PDAC) compared with normal pancreatic tissue. Immunohistochemical analysis of PDAC tissue microarrays indicated that the expression of TPBG in PDAC tissues was closely correlated with the tumor-node-metastasis stage of the tumor. Silencing of TPBG in PDAC cell lines resulted in a decreased ability of cancer cell migration and invasion. Further investigation demonstrated that the Wnt/planar cell polarity signaling pathway was suppressed, as the expression of Wnt5a and the activation of c-Jun N-terminal kinase was inhibited following TPBG knockdown. In conclusion, the present study provided evidence that TPBG is involved in PDAC metastasis, and that TPBG and its associated signaling pathways may be a suitable target for PDAC therapy.

  5. Low temperature-dependent salmonid alphavirus glycoprotein processing and recombinant virus-like particle formation.

    Directory of Open Access Journals (Sweden)

    Stefan W Metz

    Full Text Available Pancreas disease (PD and sleeping disease (SD are important viral scourges in aquaculture of Atlantic salmon and rainbow trout. The etiological agent of PD and SD is salmonid alphavirus (SAV, an unusual member of the Togaviridae (genus Alphavirus. SAV replicates at lower temperatures in fish. Outbreaks of SAV are associated with large economic losses of ~17 to 50 million $/year. Current control strategies rely on vaccination with inactivated virus formulations that are cumbersome to obtain and have intrinsic safety risks. In this research we were able to obtain non-infectious virus-like particles (VLPs of SAV via expression of recombinant baculoviruses encoding SAV capsid protein and two major immunodominant viral glycoproteins, E1 and E2 in Spodoptera frugiperda Sf9 insect cells. However, this was only achieved when a temperature shift from 27°C to lower temperatures was applied. At 27°C, precursor E2 (PE2 was misfolded and not processed by host furin into mature E2. Hence, E2 was detected neither on the surface of infected cells nor as VLPs in the culture fluid. However, when temperatures during protein expression were lowered, PE2 was processed into mature E2 in a temperature-dependent manner and VLPs were abundantly produced. So, temperature shift-down during synthesis is a prerequisite for correct SAV glycoprotein processing and recombinant VLP production.

  6. An economic approach to isotopic enrichment of glycoproteins expressed from Sf9 insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Walton, Wendy J. [Florida State University, Institute of Molecular Biophysics (United States); Kasprzak, Agnieszka J. [Florida State University, Department of Chemistry and Biochemistry (United States); Hare, Joan T.; Logan, Timothy M. [Florida State University, Institute of Molecular Biophysics (United States)], E-mail:


    It is estimated that over half of all proteins are glycosylated, yet only a small number of the structures in the protein data bank are of intact glycoproteins. One of the reasons for the lack of structural information on glycoproteins is the high cost of isotopically labeling proteins expressed from eukaryotic cells such as in insect and mammalian cells. In this paper we describe modifications to commercial insect cell growth medium that reduce the cost for isotopically labeling recombinant proteins expressed from Sf9 cells. A key aspect of this work was to reduce the amount of glutamine in the cell culture medium while maintaining sufficient energy yielding metabolites for vigorous growth by supplementing with glucose and algae-derived amino acids. We present an analysis of cell growth and protein production in Sf9 insect cells expressing secreted Thy1-GFP fusion construct. We also demonstrate isotopic enrichment of the Thy-1 protein backbone with {sup 15}N and carbohydrates with {sup 13}C by NMR spectroscopy.

  7. A directed molecular evolution approach to improved immunogenicity of the HIV-1 envelope glycoprotein.

    Directory of Open Access Journals (Sweden)

    Sean X Du

    Full Text Available A prophylactic vaccine is needed to slow the spread of HIV-1 infection. Optimization of the wild-type envelope glycoproteins to create immunogens that can elicit effective neutralizing antibodies is a high priority. Starting with ten genes encoding subtype B HIV-1 gp120 envelope glycoproteins and using in vitro homologous DNA recombination, we created chimeric gp120 variants that were screened for their ability to bind neutralizing monoclonal antibodies. Hundreds of variants were identified with novel antigenic phenotypes that exhibit considerable sequence diversity. Immunization of rabbits with these gp120 variants demonstrated that the majority can induce neutralizing antibodies to HIV-1. One novel variant, called ST-008, induced significantly improved neutralizing antibody responses when assayed against a large panel of primary HIV-1 isolates. Further study of various deletion constructs of ST-008 showed that the enhanced immunogenicity results from a combination of effective DNA priming, an enhanced V3-based response, and an improved response to the constant backbone sequences.

  8. An effect of glycoprotein IIb/IIIa inhibitors on the kinetics of red blood cells aggregation. (United States)

    Sokolova, Irina A; Muravyov, Alexei V; Khokhlova, Maria D; Rikova, Sofya Yu; Lyubin, Evgeny V; Gafarova, Marina A; Skryabina, Maria N; Fedyanin, Angrey A; Kryukova, Darya V; Shahnazarov, Alexander A


    The reversible aggregation of red blood cells (RBCs) continues to be of the basic science and clinical interest. Recently it has been reported about a specific binding between fibrinogen and unknown erythrocyte glycoprotein receptors. The aim of this study was to investigate whether the red blood cell aggregation (RBCA) include the cell-cell interaction using the membrane receptors that bind such ligands as fibrinogen or fibronectin. To test this hypothesis the RBCs were incubated with monafram - the drug of the monoclonal antibodies against glycoprotein (GP) IIb/IIIa, with the GPIIb-IIIa receptor antagonist tirofiban, epifibatide and with the fibrinogen inhibiting peptide. It has been found that the RBC incubation with monafram resulted in a marked RBCA decrease mainly in persons with high level of aggregation. Another research session has shown that RBC incubation with fibronectin was accompanied by a significant RBCA rise. The monafram addition to red cell incubation medium resulted in a significant RBCA lowering. The cell incubation with tirofiban and epifibatide issued in RBCA decrease. The similar results were obtained when RBCs were incubated with the fibrinogen inhibiting peptide. Although monafram, tirofiban, eptifibatide and the fibrinogen inhibiting peptide were related to fibrinogen function they didn't inhibit RBCA completely. Therefore, under moderate and low red blood cell aggregation the cell binding is probably related to nonspecific mode. It seems evident that the specific and nonspecific modes of red blood cell aggregate formation could co-exist. Additional theoretical and experimental investigations in this area are needed.

  9. Cloning and Sequence of Glycoprotein H Gene of Duck Plague Virus

    Institute of Scientific and Technical Information of China (English)

    HAN Xian-jie; WANG Jun-wei; MA Bo


    The glycoprotein H (gH) gene homologue of duck plague virus (DPV) was cloned by degenerate polymerase chain reaction (PCR) and sequenced. It was located immediately downstream from the thymidine kinase gene (TK). In addition,the 3'-end of the gene homologue to herpesvirus UL21 was located downstream from the gH gene. DPV gH gene open reading frame (ORF) was 2 505 bp in length and its primary translation product was a polypeptide of 834 amino acids long.It possessed several characteristics of membrane glycoproteins, including an N-terminal hydrophobic signal sequence,an external domain containing eight putative N-linked glycosylation sites, a C-terminal transmembrane domain, and a charged cytoplasmic tail. Comparison with other herpesvirus revealed identities of 20.2, 25.1, 23.0, 23.0, 26.5 and 26.0% with the gH counterparts of the human herpesvirus virus 1 (HSV1), equine herpesvirus 4 (EHV4), bovine herpesvirus 1 (BHV1), pseudorabies virus (PRV), gallid herpesvirus 2 (GHV2) and gallid herpesvirus 3 (GHV3), respectively.

  10. Protection against Marek's disease by a fowlpox virus recombinant expressing the glycoprotein B of Marek's disease virus. (United States)

    Nazerian, K; Lee, L F; Yanagida, N; Ogawa, R


    Fowlpox virus (FPV) recombinants expressing the glycoprotein B and the phosphorylated protein (pp38) of the GA strain of Marek's disease virus (MDV) were assayed for their ability to protect chickens against challenge with virulent MDV. The recombinant FPV expressing the glycoprotein B gene elicited neutralizing antibodies against MDV, significantly reduced the level of cell-associated viremia, and, similar to the conventional herpesvirus of turkeys, protected chickens against challenge with the GA strain and the highly virulent RB1B and Md5 strains of MDV. The recombinant FPV expressing the pp38 gene failed to either elicit neutralizing antibodies against MDV or protect the vaccinated chickens against challenge with MDV.

  11. Contribution of intrinsic reactivity of the HIV-1 envelope glycoproteins to CD4-independent infection and global inhibitor sensitivity.

    Directory of Open Access Journals (Sweden)

    Hillel Haim


    Full Text Available Human immunodeficiency virus (HIV-1 enters cells following sequential activation of the high-potential-energy viral envelope glycoprotein trimer by target cell CD4 and coreceptor. HIV-1 variants differ in their requirements for CD4; viruses that can infect coreceptor-expressing cells that lack CD4 have been generated in the laboratory. These CD4-independent HIV-1 variants are sensitive to neutralization by multiple antibodies that recognize different envelope glycoprotein epitopes. The mechanisms underlying CD4 independence, global sensitivity to neutralization and the association between them are still unclear. By studying HIV-1 variants that differ in requirements for CD4, we investigated the contribution of CD4 binding to virus entry. CD4 engagement exposes the coreceptor-binding site and increases the "intrinsic reactivity" of the envelope glycoproteins; intrinsic reactivity describes the propensity of the envelope glycoproteins to negotiate transitions to lower-energy states upon stimulation. Coreceptor-binding site exposure and increased intrinsic reactivity promote formation/exposure of the HR1 coiled coil on the gp41 transmembrane glycoprotein and allow virus entry upon coreceptor binding. Intrinsic reactivity also dictates the global sensitivity of HIV-1 to perturbations such as exposure to cold and the binding of antibodies and small molecules. Accordingly, CD4 independence of HIV-1 was accompanied by increased susceptibility to inactivation by these factors. We investigated the role of intrinsic reactivity in determining the sensitivity of primary HIV-1 isolates to inhibition. Relative to the more common neutralization-resistant ("Tier 2-like" viruses, globally sensitive ("Tier 1" viruses exhibited increased intrinsic reactivity, i.e., were inactivated more efficiently by cold exposure or by a given level of antibody binding to the envelope glycoprotein trimer. Virus sensitivity to neutralization was dictated both by the efficiency of

  12. Lectin-like receptor for alpha 1-acid glycoprotein in the epithelium of the rat prostate gland and seminal vesicles

    DEFF Research Database (Denmark)

    Andersen, U O; Bøg-Hansen, T C; Kirkeby, S


    BACKGROUND: A receptor for alpha 1-acid glycoprotein glycoforms AGP-B and AGP-C in the epithelium of the rat prostate gland and seminal vesicles is described. METHODS: The interaction between AGP-glycoforms and their receptor is a lectin-like interaction confirmed by inhibition of the binding...... in rat prostate and seminal vesicles. The localization of the AGP lectin receptor is compared to the localization of glycoprotein AGP, and small differences are found. CONCLUSIONS: It is proposed the AGP receptors in the prostate and seminal vesicles belong to a group of lectins in the control...

  13. Identification of N-linked glycoproteins in human milk by hydrophilic interaction liquid chromatography and mass spectrometry

    DEFF Research Database (Denmark)

    Picariello, Gianluca; Ferranti, Pasquale; Mamone, Gianfranco;


    by Hydrophilic Interaction LC (HILIC) and MS analysis. Glycopeptides were selectively enriched from the protein tryptic digest of human milk samples. Oligosaccharide-free peptides obtained by peptide N-glycosidase F (PNGase F) treatment were characterized by a shotgun MS-based approach, allowing...... the identification of N-glycosylated sites localized on proteins. Using this strategy, 32 different glycoproteins were identified and 63 N-glycosylated sites encrypted in them were located. The glycoproteins include immunocompetent factors, membrane fat globule-associated proteins, enzymes involved in lipid...

  14. Characterisation of non-P-glycoprotein multidrug-resistant Ehrlich ascites tumour cells selected for resistance to mitoxantrone

    DEFF Research Database (Denmark)

    Nielsen, D; Eriksen, J; Maare, C;


    . The efflux of daunorubicin from preloaded EHR2/MITOX cells was significantly increased. EHR2/MITOX microsomes had a significant basal unstimulated ATPase activity. The apparent K(i) value for vanadate inhibition of the ATPase activity in EHR2/MITOX microsomes was not significantly different from the K......(i) value for P-glycoprotein-positive cells. However, whereas verapamil (50 microM) inhibited the ATPase activity of EHR2/MITOX microsomes, it stimulated the ATPase activity of microsomes derived from P-glycoprotein-positive cells. In conclusion, the resistance in EHR2/MITOX was multifactorial and appeared...

  15. A sheep hydatid cyst glycoprotein as receptors for three toxic lectins, as well as Abrus precatorius and Ricinus communis agglutinins. (United States)

    Wu, A M; Song, S C; Wu, J H; Pfüller, U; Chow, L P; Lin, J Y


    The binding properties of a glycoprotein with blood group P1 specificity isolated from sheep hydatid cyst fluid with Gal and GalNAc specific lectins was investigated by quantitative precipitin and precipitin inhibition assays. The glycoprotein completely precipitated Ricinus communis agglutinin (RCA1), Abrus precatorius agglutinin (APA) and Mistletoe toxic lectin-I (ML-I). Only 1.0 microgram of P1 glycoprotein was required to precipitate 50% of 5.1 micrograms ML-I nitrogen. It also reacted well with abrin-a and ricin, precipitating over 73% of the lectin nitrogen added, but poorly or weakly with Dolichos biflorus (DBL), Vicia villosa (VVL, a mixture of A4, A2B2 and B4), VVL-B4, Arachis hypogaea (PNA), Maclura pomifera (MPL), Bauchinia purpurea alba (BPL) and Wistaria floribunda (WFL) lectins. When an inhibition assay in the range of 5.1 micrograms N to 5.9 micrograms N of lectins (ML-I, abrin-a; ricin, RCA1, and APA, and 10 micrograms P1 active glycoprotein interaction was performed; from 76 to 100% of the precipitations were inhibited by 0.44 and 0.52 mumol of Gal alpha 1-->4Gal and Gal beta 1-->4GlcNAc, respectively, but not or insignificantly with 1.72 mumol of GlcNAc. The Gal alpha 1-->4Gal disaccharide found in this P1 active glycoprotein is a frequently occurring sequence of many glycosphingolipids located at the surface of mammalian cell membranes, especially human erythrocytes and intestinal cells for ligand binding and microbial toxin attachment. The present finding suggests that the Gal alpha 1-->4Gal beta 1-->4GlcNAc sequence in this P1 active glycoprotein is one of the best glycoprotein receptors for three toxic lectins (ricin, abrin-a, and ML-I) as well as for APA, and RCA1, and the result of inhibition assay implies that these lectins are recognizing part or all of the Gal alpha 1-->4Gal beta 1-->4GlcNAc sequence in the P1 active glycoprotein.

  16. Epitope diversity of N-glycans from bovine peripheral myelin glycoprotein P0 revealed by mass spectrometry and nano probe magic angle spinning 1H NMR spectroscopy

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Gutiérrez Gallego, R.; Jiménez Blanco, J.L.; Thijssen-van Zuylen, C.W.E.M.; Gotfredsen, C.H.; Voshol, H.; Duus, J.Ø.; Schachner, M.


    The carbohydrate structures present on the glycoproteins in the central and peripheral nerve systems are essential in many cell adhesion processes. The P0 glycoprotein, expressed by myelinating Schwann cells, plays an important role during the formation and maintenance of myelin, and it is the most

  17. Regulation of P-glycoprotein expression in brain capillaries in Huntington's disease and its impact on brain availability of antipsychotic agents risperidone and paliperidone. (United States)

    Kao, Yu-Han; Chern, Yijuang; Yang, Hui-Ting; Chen, Hui-Mei; Lin, Chun-Jung


    Huntington's disease (HD) is a neurodegenerative disease marked by an expanded polyglutamine (polyQ) tract on the huntingtin (HTT) protein that may cause transcriptional dysfunction. This study aimed to investigate the regulation and function of P-glycoprotein, an important efflux transporter, in brain capillaries in HD. The results showed that, compared with the littermate controls, R6/2 HD transgenic mice with the human mutant HTT gene had higher levels of P-glycoprotein mRNA and protein and enhanced NF-κB activity in their brain capillaries. Higher P-glycoprotein expression was also observed in the brain capillaries of human HD patients. Consistent with this enhanced P-glycoprotein expression, brain extracellular levels and brain-to-plasma ratios of the antipsychotic agents risperidone and paliperidone were significantly lower in R6/2 mice than in their littermate controls. Exogenous expression of human mutant HTT protein with expanded polyQ (mHTT-109Q) in HEK293T cells enhanced the levels of P-glycoprotein transcripts and NF-κB activity compared with cells expressing normal HTT-25Q. Treatment with the IKK inhibitor, BMS-345541, decreased P-glycoprotein mRNA level in cells transfected with mHTT-109Q or normal HTT-25Q In conclusion, mutant HTT altered the expression of P-glycoprotein through the NF-κB pathway in brain capillaries in HD and markedly affected the availability of P-glycoprotein substrates in the brain.

  18. Impact of Glycoprotein IIb/IIIa Inhibitors Use on Outcomes After Lower Extremity Endovascular Interventions From Nationwide Inpatient Sample (2006-2011). (United States)

    Echeverria, Angela; Krajcer, Zvonimir


    Anticoagulant and antiplatelet medications are necessary in peripheral endovascular intervention, but a standardized approach has not yet been established. Glycoprotein IIb/IIIa inhibitor use in endovascular lower extremity interventions decreased overall amputation rates. Glycoprotein IIb/IIIa inhibitor use in endovascular lower extremity interventions increased postprocedural bleeding and complications requiring intervention.

  19. MDR3 P-glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drags as judged by interference with nucleotide trapping

    NARCIS (Netherlands)

    Smith, A.J.; van Helvoort, A.; van Meer, G.; Szabó, K.; Welker, E.; Szakács, G.; Váradi, A.; Sarkadi, B.; Borst, P.


    The human MDR3 gene is a member of the multidrug resistance (MDR) gene family. The MDR3 P-glycoprotein is a transmembrane protein that translocates phosphatidylcholine. The MDR1 P-glycoprotein related transports cytotoxic drugs. Its overexpression can make cells resistant to a variety of drugs. Atte

  20. Pharmacodynamics and safety of lefradafiban, an oral platelet glycoprotein IIb/IIIa receptor antagonist, in patients with stable coronary artery disease undergoing elective angioplasty

    NARCIS (Netherlands)

    Akkerhuis, KM; van den Brand, MJBM; van der Zwaan, C; Suryapranata, H; van der Wieken, LR; Stibbe, J; Hoffmann, J; Baardman, T; Deckers, JW


    Objective-Lefradafiban is the orally active prodrug of fradafiban, a glycoprotein IIb/IIIa receptor antagonist. The present phase II study aimed to determine the dose of lefradafiban that provides 80% blockade of the glycoprotein IIb/IIIa receptors by fradafiban, and to study the pharmacodynamics an

  1. Pharmacodynamics and safety of lefradafiban, an oral platelet glycoprotein IIb/IIIa receptor antagonist, in patients with stable coronary artery disease undergoing elective angioplasty

    NARCIS (Netherlands)

    K.M. Akkerhuis (Martijn); M.L. Simoons (Maarten); C. van der Zwaan (Coen); H. Suryapranata (Harry); J. Stibbe (Jeanne); J. Hoffmann; T. Baardman (Taco); M.J.B.M. van den Brand (Marcel); J.W. Deckers (Jaap); L.R. van der Wieken (Ron); H.O.J. Peels


    textabstractOBJECTIVE: Lefradafiban is the orally active prodrug of fradafiban, a glycoprotein IIb/IIIa receptor antagonist. The present phase II study aimed to determine the dose of lefradafiban that provides 80% blockade of the glycoprotein IIb/IIIa receptors by fradafiban, and to study the pharma

  2. Blood-brain barrier P-glycoprotein function in healthy subjects and Alzheimer's disease patients : Effect of polymorphisms in the ABCB1 gene

    NARCIS (Netherlands)

    D.M.E. van Assema (Daniëlle); M. Lubberink (Mark); P. Rizzu (Patrizia); J.C. van Swieten (John); R.C. Schuit (Robert); J. Eriksson (Joel); P. Scheltens (Philip); M. Koepp (Matthias); A.A. Lammertsma (Adriaan); B.N.M. van Berckel (Bart )


    textabstractBackground: P-glycoprotein is a blood-brain barrier efflux transporter involved in the clearance of amyloid-beta from the brain and, as such, might be involved in the pathogenesis of Alzheimer's disease. P-glycoprotein is encoded by the highly polymorphic ABCB1 gene. Single-nucleotide po

  3. The inhibitory and combinative mechanism of HZ08 with P-glycoprotein expressed on the membrane of Caco-2 cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanyan; Hu, Yahui; Feng, Yidong; Kodithuwakku, Nandani Darshika; Fang, Weirong [State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009 (China); Li, Yunman, E-mail: [State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009 (China); Huang, Wenlong [Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009 (China)


    Recently, the research and development of agents to reverse the phenomenon of multidrug resistance has been an attractive goal as well as a key approach to elevating the clinical survival of cancer patients. Although three generations of P-glycoprotein modulators have been identified, poor clearance and metabolism render these agents too toxic to be used in clinical application. HZ08, which has been under investigation for several years, shows a dramatic reversal effect with low cytotoxicity. For the first time, we aimed to describe the interaction between HZ08 and P-glycoprotein in Caco-2 cell line in which P-glycoprotein is overexpressed naturally. Cytotoxicity and multidrug resistance reversal assays, together with flow cytometry, fluorescence microscopy and siRNA interference as well as Caco-2 monolayer transport model were employed in this study to evaluate the interaction between HZ08 and P-glycoprotein. This study revealed that HZ08 was capable of reversing adriamycin resistance mediated by P-glycoprotein as a result of intracellular enhancement of adriamycin accumulation, which was found to be superior to verapamil. In addition, we confirmed that HZ08 suppressed the transport of Rhodamine123 in the Caco-2 monolayer model but had little effect on P-glycoprotein expression. The transport of HZ08 was diminished by P-glycoprotein inhibitors (verapamil and LY335979) and its accumulation was increased via siRNA targeting MDR1 in Caco-2 cells. Furthermore, considering the binding site of P-glycoprotein, verapamil performed as a competitive inhibitor with HZ08. In conclusion, as a P-glycoprotein substrate, HZ08 inhibited P-glycoprotein activity and may share the same binding site of verapamil to P-glycoprotein. - Highlights: • The cytotoxicity and reversing effect of HZ08 was measured in Caco-2 cell line. • HZ08 inhibited the transport of Rhodamine123 across Caco-2 cell monolayer. • The efflux ratio of HZ08 was dropped when combined with P-glycoprotein

  4. Structure-Based Design of Head-Only Fusion Glycoprotein Immunogens for Respiratory Syncytial Virus.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Boyington

    Full Text Available Respiratory syncytial virus (RSV is a significant cause of severe respiratory illness worldwide, particularly in infants, young children, and the elderly. Although no licensed vaccine is currently available, an engineered version of the metastable RSV fusion (F surface glycoprotein-stabilized in the pre-fusion (pre-F conformation by "DS-Cav1" mutations-elicits high titer RSV-neutralizing responses. Moreover, pre-F-specific antibodies, often against the neutralization-sensitive antigenic site Ø in the membrane-distal head region of trimeric F glycoprotein, comprise a substantial portion of the human response to natural RSV infection. To focus the vaccine-elicited response to antigenic site Ø, we designed a series of RSV F immunogens that comprised the membrane-distal head of the F glycoprotein in its pre-F conformation. These "head-only" immunogens formed monomers, dimers, and trimers. Antigenic analysis revealed that a majority of the 70 engineered head-only immunogens displayed reactivity to site Ø-targeting antibodies, which was similar to that of the parent RSV F DS-Cav1 trimers, often with increased thermostability. We evaluated four of these head-only immunogens in detail, probing their recognition by antibodies, their physical stability, structure, and immunogenicity. When tested in naïve mice, a head-only trimer, half the size of the parent RSV F trimer, induced RSV titers, which were statistically comparable to those induced by DS-Cav1. When used to boost DS-Cav1-primed mice, two head-only RSV F immunogens, a dimer and a trimer, boosted RSV-neutralizing titers to levels that were comparable to those boosted by DS-Cav1, although with higher site Ø-directed responses. Our results provide proof-of-concept for the ability of the smaller head-only RSV F immunogens to focus the vaccine-elicited response to antigenic site Ø. Decent primary immunogenicity, enhanced physical stability, potential ease of manufacture, and potent

  5. In-vitro evaluation of the P-glycoprotein interactions of a series of potentially CNS-active Amaryllidaceae alkaloids

    DEFF Research Database (Denmark)

    Eriksson, André Huss; Rønsted, Nina; Jäger, Anna Katharina


    Drug compounds interacting with the blood-brain barrier efflux transporter P-glycoprotein (P-gp) might have limited access to brain tissue. The aim of the present study was to evaluate whether nine potentially CNS-active Amaryllidaceae alkaloids of the crinine, lycorine and galanthamine types...

  6. Effects of rapid antigen degradation and VEE glycoprotein specificity on immune responses induced by a VEE replicon vaccine. (United States)

    Fluet, M E; Whitmore, A C; Moshkoff, D A; Fu, K; Tang, Y; Collier, M L; West, A; Moore, D T; Swanstrom, R; Johnston, R E; Davis, N L


    Genetic vaccines are engineered to produce immunogens de novo in the cells of the host for stimulation of a protective immune response. In some of these systems, antigens engineered for rapid degradation have produced an enhanced cellular immune response by more efficient entry into pathways for processing and presentation of MHC class I peptides. VEE replicon particles (VRP), single cycle vaccine vectors derived from Venezuelan equine encephalitis virus (VEE), are examined here for the effect of an increased rate of immunogen degradation on VRP vaccine efficacy. VRP expressing the matrix capsid (MA/CA) portion of SIV Gag were altered to promote rapid degradation of MA/CA by various linkages to co-translated ubiquitin or by destabilizing mutations and were used to immunize BALB/c mice for quantitation of anti-MA/CA cellular and humoral immune responses. Rapid degradation by the N-end rule correlated with a dampened immune response relative to unmodified MA/CA when the VRP carried a glycoprotein spike from an attenuated strain of VEE. In contrast, statistically equivalent numbers of IFNgamma(+)T-cells resulted when VRP expressing unstable MA/CA were packaged with the wild-type VEE glycoproteins. These results suggest that the cell types targeted in vivo by VRP carrying mutant or wild type glycoprotein spikes are functionally different, and are consistent with previous findings suggesting that wild-type VEE glycoproteins preferentially target professional antigen presenting cells that use peptides generated from the degraded antigen for direct presentation on MHC.

  7. Glycopeptide profiling of beta-2-glycoprotein I by mass spectrometry reveals attenuated sialylation in patients with antiphospholipid syndrome

    DEFF Research Database (Denmark)

    Kondo, Akira; Miyamoto, Toshiaki; Yonekawa, Osamu;


    beta2-glycoprotein I (beta2GPI) is a five-domain protein associated with the antiphospholipid syndrome (APS), however, its normal biological function is yet to be defined. beta2GPI is N-glycosylated at several asparagine residues and the glycan moiety conjugated to residue 143 has been proposed...... and the pathology of antiphospholipid syndrome....

  8. Detection of bovine herpesvirus 4 glycoprotein B and thymidine kinase DNA by PCR assays in bovine milk

    NARCIS (Netherlands)

    Wellenberg, G.J.; Verstraten, E.; Belak, S.; Verschuren, S.B.E.; Rijsewijk, F.A.M.; Peshev, R.; Oirschot, van J.T.


    A polymerase chain reaction (PCR) assay was developed to detect bovine herpesvirus 4 (BHV4) glycoprotein B (gB) DNA, and a nested-PCR assay was modified for the detection of BHV4 thymidine kinase (TK) DNA in bovine milk samples. To identify false-negative PCR results, internal control templates were

  9. HLA-A*0201-restricted CD8+ cytotoxic T lymphocyte epitopes identified from herpes simplex virus glycoprotein D

    DEFF Research Database (Denmark)

    Chentoufi, Aziz Alami; Zhang, Xiuli; Lamberth, Kasper


    Evidence obtained from both animal models and humans suggests that T cells specific for HSV-1 and HSV-2 glycoprotein D (gD) contribute to protective immunity against herpes infection. However, knowledge of gD-specific human T cell responses is limited to CD4+ T cell epitopes, with no CD8+ T cell ...

  10. nES GEMMA Analysis of Lectins and Their Interactions with Glycoproteins - Separation, Detection, and Sampling of Noncovalent Biospecific Complexes (United States)

    Engel, Nicole Y.; Weiss, Victor U.; Marchetti-Deschmann, Martina; Allmaier, Günter


    In order to better understand biological events, lectin-glycoprotein interactions are of interest. The possibility to gather more information than the mere positive or negative response for interactions brought mass spectrometry into the center of many research fields. The presented work shows the potential of a nano-electrospray gas-phase electrophoretic mobility molecular analyzer (nES GEMMA) to detect weak, noncovalent, biospecific interactions besides still unbound glycoproteins and unreacted lectins without prior liquid phase separation. First results for Sambucus nigra agglutinin, concanavalin A, and wheat germ agglutinin and their retained noncovalent interactions with glycoproteins in the gas phase are presented. Electrophoretic mobility diameters (EMDs) were obtained by nES GEMMA for all interaction partners correlating very well with molecular masses determined by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of the individual molecules. Moreover, EMDs measured for the lectin-glycoprotein complexes were in good accordance with theoretically calculated mass values. Special focus was laid on complex formation for different lectin concentrations and binding specificities to evaluate the method with respect to results obtained in the liquid phase. The latter was addressed by capillary electrophoresis on-a-chip (CE-on-a-chip). Of exceptional interest was the fact that the formed complexes could be sampled according to their size onto nitrocellulose membranes after gas-phase separation. Subsequent immunological investigation further proved that the collected complex actually retained its native structure throughout nES GEMMA analysis and sampling.

  11. Simple and Specific Dual-Wavelength Excitable Dye Staining for Glycoprotein Detection in Polyacrylamide Gels and Its Application in Glycoproteomics

    Directory of Open Access Journals (Sweden)

    Yu-Hsuan Chiang


    Full Text Available In this study, a commercially available fluorescent dye, Lissamine rhodamine B sulfonyl hydrazine (LRSH, was designed to specifically stain the glycoproteins in polyacrylamide gels. Through the periodate/Schiff base mechanism, the fluorescent dye readily attaches to glycoproteins and the fluorescence can be simultaneously observed under either 305 nm or 532 nm excitation therefore, the dye-stained glycoproteins can be detected under a regular UV transilluminator or a more elegant laser-based gel scanner. The specificity and detection limit were examined using a standard protein mixture in polyacrylamide gels in this study. The application of this glycoprotein stain dye was further demonstrated using pregnancy urine samples. The fluorescent spots were further digested in gel and their identities confirmed through LC-MS/MS analysis and database searching. In addition, the N-glycosylation sites of LRSH-labeled uromodulin were readily mapped via in-gel PNGaseF deglycosylation and LC-MS/MS analysis, which indicated that this fluorescent dye labeling does not interfere with enzymatic deglycosylation. Hence, the application of this simple and specific dual-wavelength excitable dye staining in current glycoproteome research is promising.

  12. P-glycoprotein Inhibition by the Agricultural Pesticide Propiconazole and Its Hydroxylated Metabolites: Implications for Pesticide-Drug Interactions. (United States)

    The human efflux transporter P-glycoprotein (P-gp; MDR1) functions an important cellular defense system against a variety of xenobiotics; however, little information exists on whether environmental chemicals interact with P-gp. Conazoles provide a unique challenge to exposure ass...

  13. Laurus nobilis L. Seed Extract Reveals Collateral Sensitivity in Multidrug-Resistant P-Glycoprotein-Expressing Tumor Cells. (United States)

    Saab, Antoine M; Guerrini, Alessandra; Zeino, Maen; Wiench, Benjamin; Rossi, Damiano; Gambari, Roberto; Sacchetti, Gianni; Greten, Henry Johannes; Efferth, Thomas


    The frequent failure of standard cancer chemotherapy requires the development of novel drugs capable of killing otherwise drug-resistant tumors. Here, we have investigated a chloroform extract of Laurus nobilis seeds. Fatty acids and 23 constituents of the volatile fraction were identified by gas chromotography/flame ionization detection (GC/FID) and gas chromatography/mass spectrometry (GC/MS), in good agreement with (1)H NMR (nuclear magnetic resonance) spectrum. Multidrug-resistant P-glycoprotein-expressing CEM/ADR5000 leukemia cells were hypersensitive (collaterally sensitive) toward this extract compared to drug-sensitive CCRF-CEM cells, whereas CEM/ADR5000 cells were 2586-fold resistant to doxorubicin as control drug. Collateral sensitivity was verified by measurement of apoptotic cells by flow cytometry. The log10IC50 values of 3 compounds in the extract (limonene, eucalyptol, oleic acid) did not correlate with mRNA expression of the P-glycoprotein-coding ABCB1/MDR1 gene and accumulation of the P-glycoprotein substrate rhodamine in the NCI panel of tumor cell lines. A microarray-based profile of 20 genes predicted resistance to doxorubicin and 7 other anticancer drugs involved in the multidrug resistance phenotype but not to limonene, eucalyptol and oleic acid. In conclusion, our results show that Laurus nobilis seed extract is suitable to kill multidrug-resistant P-glycoprotein expressing tumor cells.

  14. Liposomes Coloaded with Elacridar and Tariquidar To Modulate the P-Glycoprotein at the Blood-Brain Barrier. (United States)

    Nieto Montesinos, Rita; Béduneau, Arnaud; Lamprecht, Alf; Pellequer, Yann


    This study prepared three liposomal formulations coloaded with elacridar and tariquidar to overcome the P-glycoprotein-mediated efflux at the blood-brain barrier. Their pharmacokinetics, brain distribution, and impact on the model P-glycoprotein substrate, loperamide, were compared to those for the coadministration of free elacridar plus free tariquidar. After intravenous administration in rats, elacridar and tariquidar in conventional liposomes were rapidly cleared from the bloodstream. Their low levels in the brain did not improve the loperamide brain distribution. Although elacridar and tariquidar in PEGylated liposomes exhibited 2.6 and 1.9 longer half-lives than free elacridar and free tariquidar, respectively, neither their Kp for the brain nor the loperamide brain distribution was improved. However, the conjugation of OX26 F(ab')2 fragments to PEGylated liposomes increased the Kps for the brain of elacridar and tariquidar by 1.4- and 2.1-fold, respectively, in comparison to both free P-gp modulators. Consequently, the Kp for the brain of loperamide increased by 2.7-fold. Moreover, the plasma pharmacokinetic parameters and liver distribution of loperamide were not modified by the PEGylated OX26 F(ab')2 immunoliposomes. Thus, this formulation represents a promising tool for modulating the P-glycoprotein-mediated efflux at the blood-brain barrier and could improve the brain uptake of any P-glycoprotein substrate that is intended to treat central nervous system diseases.

  15. Physical proximity and functional association of glycoprotein 1balpha and protein-disulfide isomerase on the platelet plasma membrane

    NARCIS (Netherlands)

    Burgess, J K; Hotchkiss, K A; Suter, C; Dudman, N P; Szöllösi, J; Chesterman, C N; Chong, B H; Hogg, P J


    Platelet function is influenced by the platelet thiol-disulfide balance. Platelet activation resulted in 440% increase in surface protein thiol groups. Two proteins that presented free thiol(s) on the activated platelet surface were protein-disulfide isomerase (PDI) and glycoprotein 1balpha (GP1balp

  16. Identification of the S-layer glycoproteins and their covalently linked glycans in the halophilic archaeon Haloarcula hispanica. (United States)

    Lu, Hua; Lü, Yang; Ren, Jinwei; Wang, Zhongfu; Wang, Qian; Luo, Yuanming; Han, Jing; Xiang, Hua; Du, Yuguo; Jin, Cheng


    Haloarcula hispanica is one of members of the Halobacteriaceae, which displays particularly low restriction activity and is therefore important as one of the most tractable haloarchaea for archaeal genetic research. Although the Har. hispanica S-layer protein has been reported glycosylated, the S-layer glycoprotein and its glycosylation have not been investigated yet. In this study, the S-layer proteins of Har. hispanica were extracted and characterized. The S-layer was found containing two different glycoproteins which shared highly similar amino acid sequences. The genes coding for these two S-layer glycoproteins were found next to each other in the genome. Moreover, the N- and O-linked glycans were released from these two S-layer glycoproteins for structural determination. Based on the mass spectrometry and nuclear magnetic resonance, the N-glycan was determined as a branched trisaccharide containing a 225 Da residue corresponded to a 2-amino-6-sulfo-2, 6-dideoxy-quinovose, which was the first time that a naturally occurring form of sulfoquinovosamine was identified. Besides, the O-glycan was characterized as a Glcα-1,4-Gal disaccharide by mass spectrometry combined with monosaccharide composition analysis and glycosidase treatment. The determination of the N- and O-glycan structure will be helpful for studying the diverse protein glycosylation pathways in archaea utilizing H. hispanica as a new model.

  17. Differential expression of sphingolipids in P-glycoprotein or multidrug resistance-related protein 1 expressing human neuroblastoma cell lines

    NARCIS (Netherlands)

    Dijkhuis, AJ; Douwes, J; Kamps, W; Sietsma, H; Kok, JW


    The sphingolipid composition and multidrug resistance status of three human neuroblastoma cell lines were established. SK-N-FI cells displayed high expression and functional (efflux) activity of P-glycoprotein, while multidrug resistance-related protein 1 was relatively abundant and most active in S

  18. Syringic acid, a novel natural phenolic acid, normalizes hyperglycemia with special reference to glycoprotein components in experimental diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Jayachandran Muthukumaran; Subramani Srinivasan; Vinayagam Ramachandran; Udaiyar Muruganathan


    Objective:To evaluate the antidiabetic effect of syringic acid, a natural phenolic compound on the levels of glycoprotein components in plasma and tissues of alloxan induced diabetic rats. Methods:Diabetes was induced in maleWistar rats by a single intraperitoneal injection of alloxan(150 mg/kg b.w).Syringic acid(50 mg/kg b.w) was administered orally for30 d.The effects of syringic acid on plasma glucose, insulin,C-peptide, plasma and tissue glycoproteins were studied.Results:Oral administration of syringic acid(50 mg/kg b.w) for30 d positively modulates the glycemic status in alloxan induced diabetic rats.The levels of plasma glucose were decreased with significant increase of plasma insulin andC-peptide level.The altered levels of plasma and tissue glycoprotein components were restored to near normal.No significant changes were noticed in normal rats treated with syringic acid.Conclusions:The present findings suggest that syringic acid can potentially ameliorate glycoprotein components abnormalities in addition to its antidiabetic effect in experimental diabetes, further clinical studies are required to evaluate the use of syringic acid as an effective therapeutic agent for the treatment of diabetes mellitus.

  19. Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson's disease, PSP and MSA

    NARCIS (Netherlands)

    Bartels, A. L.; Willemsen, A. T. M.; Kortekaas, R.; de Jong, B. M.; de Vries, R.; de Klerk, O.; van Oostrom, J. C. H.; Portman, A.; Leenders, K. L.


    Decreased blood-brain barrier (BBB) efflux function of the P-glycoprotein (P-gp) transport system could facilitate the accumulation of toxic compounds in the brain, increasing the risk of neurodegenerative pathology such as Parkinson's disease (PD). This study investigated in vivo BBB P-gp function

  20. Exogenous alpha-1-acid glycoprotein protects against renal ischemia-reperfusion injury by inhibition of inflammation and apoptosis

    NARCIS (Netherlands)

    de Vries, B; Walter, SJ; Wolfs, TGAM; Hochepied, T; Rabina, J; Heeringa, P; Parkkinen, J; Libert, C; Buurman, WA


    Background. Although ischemia-reperfusion (I/R) injury represents a major problem in posttransplant organ failure, effective treatment is not available. The acute phase protein a-l-acid glycoprotein (AGP) has been shown to be protective against experimental I/R injury. The effects of AGP are thought

  1. Bead-based suspension array for simultaneous detection of antibodies against the Rift Valley fever virus nucleocapsid and Gn glycoprotein

    NARCIS (Netherlands)

    Wal, van der F.J.; Achterberg, R.P.; Boer, de S.M.; Boshra, H.; Brun, A.; Maassen, C.B.M.; Kortekaas, J.A.


    A multiplex bead-based suspension array was developed that can be used for the simultaneous detection of antibodies against the surface glycoprotein Gn and the nucleocapsid protein N of Rift Valley fever virus (RVFV) in various animal species. The N protein and the purified ectodomain of the Gn prot

  2. The human glycoprotein salivary agglutinin inhibits the interaction of dc-sign and langerin with oral micro-organisms

    NARCIS (Netherlands)

    Boks, M.A.; Gunput, S.T.G.; Kosten, I.; Gibbs, S.; van Vliet, S.J.; Ligtenberg, A.J.M.; van Kooyk, Y.


    Salivary agglutinin (SAG), also known as gp340 or SALSA, is a glycoprotein encoded by the Deleted in Malignant Brain Tumours 1 gene and is abundantly present in human saliva. SAG aggregates bacteria and viruses, thereby promoting their clearance from the oral cavity. The mucosa lining the oral cavit

  3. Optimization of human immunodeficiency virus type 1 envelope glycoproteins with V1/V2 deleted, using virus evolution

    NARCIS (Netherlands)

    Bontjer, I.; Land, A.; Eggink, D.; Verkade, E.; Tuin, K.; Baldwin, C.; Pollakis, G.; Paxton, W.A.; Braakman, L.J.; Berkhout, B.; Sanders, R.W.


    The human immunodeficiency virus type 1 envelope glycoprotein (Env) complex is the principal focus of neutralizing antibody-based vaccines. The functional Env complex is a trimer consisting of six individual subunits: three gp120 molecules and three gp41 molecules. The individual subunits have prove

  4. A single mutation in the E2 glycoprotein important for neurovirulence influences binding of Sindbis virus to neuroblastoma cells

    NARCIS (Netherlands)

    Lee, PY; Knight, R; Smit, JM; Wilschut, J; Griffin, DE


    The amino acid at position 55 of the E2 glycoprotein (E2(55)) of Sindbis virus (SV) is a critical determinant of SV neurovirulence in mice. Recombinant virus strain TE (E2(55) = histidine) differs only at this position from virus strain 633 (E2(55) = glutamine), yet TE is considerably more neuroviru

  5. Retinal glycoprotein enrichment by concanavalin a enabled identification of novel membrane autoantigen synaptotagmin-1 in equine recurrent uveitis. (United States)

    Swadzba, Margarete E; Hauck, Stefanie M; Naim, Hassan Y; Amann, Barbara; Deeg, Cornelia A


    Complete knowledge of autoantigen spectra is crucial for understanding pathomechanisms of autoimmune diseases like equine recurrent uveitis (ERU), a spontaneous model for human autoimmune uveitis. While several ERU autoantigens were identified previously, no membrane protein was found so far. As there is a great overlap between glycoproteins and membrane proteins, the aim of this study was to test whether pre-enrichment of retinal glycoproteins by ConA affinity is an effective tool to detect autoantigen candidates among membrane proteins. In 1D Western blots, the glycoprotein preparation allowed detection of IgG reactions to low abundant proteins in sera of ERU patients. Synaptotagmin-1, a Ca2+-sensing protein in synaptic vesicles, was identified as autoantigen candidate from the pre-enriched glycoprotein fraction by mass spectrometry and was validated as a highly prevalent autoantigen by enzyme-linked immunosorbent assay. Analysis of Syt1 expression in retinas of ERU cases showed a downregulation in the majority of ERU affected retinas to 24%. Results pointed to a dysregulation of retinal neurotransmitter release in ERU. Identification of synaptotagmin-1, the first cell membrane associated autoantigen in this spontaneous autoimmune disease, demonstrated that examination of tissue fractions can lead to the discovery of previously undetected novel autoantigens. Further experiments will address its role in ERU pathology.

  6. Rifampicin-dependent antibodies bind a similar or identical epitope to glycoprotein IX-specific quinine-dependent antibodies

    NARCIS (Netherlands)

    Burgess, J K; Lopez, J A; Gaudry, L E; Chong, B H


    The drug-dependent antibody of a patient with rifampicin-induced thrombocytopenia was characterized using the antigen-capture enzyme-linked immunosorbent assay (MAIPA assay), flow cytometry, and immunoprecipitation. The antibody was found to bind glycoprotein (GP) Ib-IX but not GPIIb-IIIa because (1

  7. GlycA, a marker of acute phase glycoproteins, and the risk of incident type 2 diabetes mellitus : PREVEND study

    NARCIS (Netherlands)

    Connelly, Margery A.; Gruppen, Eke G.; Wolak-Dinsmore, Justyna; Matyus, Steven P.; Riphagen, Ineke J.; Shalaurova, Irina; Bakker, Stephan J. L.; Otvos, James D.; Dullaart, Robin P. F.


    Background: GlycA is a recently developed glycoprotein biomarker of systemic inflammation that may be predictive of incident type 2 diabetes mellitus (T2DM). Methods: Analytical performance of the GlycA test, measured on the Vantera (R) Clinical Analyzer, was evaluated. To test its prospective assoc

  8. Inhibition of Lassa virus glycoprotein cleavage and multicycle replication by site 1 protease-adapted alpha(1-antitrypsin variants.

    Directory of Open Access Journals (Sweden)

    Anna Maisa

    Full Text Available BACKGROUND: Proteolytic processing of the Lassa virus envelope glycoprotein precursor GP-C by the host proprotein convertase site 1 protease (S1P is a prerequisite for the incorporation of the subunits GP-1 and GP-2 into viral particles and, hence, essential for infectivity and virus spread. Therefore, we tested in this study the concept of using S1P as a target to block efficient virus replication. METHODOLOGY/PRINCIPAL FINDING: We demonstrate that stable cell lines inducibly expressing S1P-adapted alpha(1-antitrypsin variants inhibit the proteolytic maturation of GP-C. Introduction of the S1P recognition motifs RRIL and RRLL into the reactive center loop of alpha(1-antitrypsin resulted in abrogation of GP-C processing by endogenous S1P to a similar level observed in S1P-deficient cells. Moreover, S1P-specific alpha(1-antitrypsins significantly inhibited replication and spread of a replication-competent recombinant vesicular stomatitis virus expressing the Lassa virus glycoprotein GP as well as authentic Lassa virus. Inhibition of viral replication correlated with the ability of the different alpha(1-antitrypsin variants to inhibit the processing of the Lassa virus glycoprotein precursor. CONCLUSIONS/SIGNIFICANCE: Our data suggest that glycoprotein cleavage by S1P is a promising target for the development of novel anti-arenaviral strategies.

  9. Induction of anti-beta(2)-glycoprotein I autoantibodies in mice by protein H of Streptococcus pyogenes

    NARCIS (Netherlands)

    Van Os, G. M. A.; Meijers, J. C. M.; Agar, C.; Seron, M. V.; Marquart, J. A.; Akesson, P.; Urbanus, R. T.; Derksen, R. H. W. M.; Herwald, H.; Morgelin, M.; De Groot, P. G.


    Background: The antiphospholipid syndrome (APS) is characterized by the persistent presence of anti-beta 2-glycoprotein I (beta 2-GPI) autoantibodies. beta 2-GPI can exist in two conformations. In plasma it is a circular protein, whereas it adopts a fish-hook conformation after binding to phospholip

  10. New monoclonal antibodies to the Ebola virus glycoprotein: Identification and analysis of the amino acid sequence of the variable domains. (United States)

    Panina, A A; Aliev, T K; Shemchukova, O B; Dement'yeva, I G; Varlamov, N E; Pozdnyakova, L P; Bokov, M N; Dolgikh, D A; Sveshnikov, P G; Kirpichnikov, M P


    We determined the nucleotide and amino acid sequences of variable domains of three new monoclonal antibodies to the glycoprotein of Ebola virus capsid. The framework and hypervariable regions of immunoglobulin heavy and light chains were identified. The primary structures were confirmed using massspectrometry analysis. Immunoglobulin database search showed the uniqueness of the sequences obtained.

  11. Comparison of mucus flow rate, radiolabelled glycoprotein output and smooth muscle contraction in the ferret trachea in vitro

    NARCIS (Netherlands)

    Kyle, H.; Widdicombe, J.G.; Wilffert, B.


    1. The concentration-response curves for rate of mucus output, labelled-glycoprotein output and smooth muscle contraction in response to methacholine, phenylephrine and salbutamol were determined in the ferret trachea in vitro. 2. The potencies of methacholine and phenylephrine are both in order: sm

  12. Uncoupling GP1 and GP2 expression in the Lassa virus glycoprotein complex: implications for GP1 ectodomain shedding

    Directory of Open Access Journals (Sweden)

    Illick Kerry A


    Full Text Available Abstract Background Sera from convalescent Lassa fever patients often contains antibodies to Lassa virus (LASV glycoprotein 1 (GP1, and glycoprotein 2 (GP2; Immunization of non-human primates with viral vectors expressing the arenaviral glycoprotein complex (GPC confers full protective immunity against a lethal challenge with LASV. Thus, the development of native or quasi native recombinant LASV GP1 and GP2 as soluble, uncoupled proteins will improve current diagnostics, treatment, and prevention of Lassa fever. To this end, mammalian expression systems were engineered for production and purification of secreted forms of soluble LASV GP1 and GP2 proteins. Results Determinants for mammalian cell expression of secreted uncoupled Lassa virus (LASV glycoprotein 1 (GP1 and glycoprotein 2 (GP2 were established. Soluble GP1 was generated using either the native glycoprotein precursor (GPC signal peptide (SP or human IgG signal sequences (s.s.. GP2 was secreted from cells only when (1 the transmembrane (TM domain was deleted, the intracellular domain (IC was fused to the ectodomain, and the gene was co-expressed with a complete GP1 gene in cis; (2 the TM and IC domains were deleted and GP1 was co-expressed in cis; (3 expression of GP1 was driven by the native GPC SP. These data implicate GP1 as a chaperone for processing and shuttling GP2 to the cell surface. The soluble forms of GP1 and GP2 generated through these studies were secreted as homogeneously glycosylated proteins that contained high mannose glycans. Furthermore, observation of GP1 ectodomain shedding from cells expressing wild type LASV GPC represents a novel aspect of arenaviral glycoprotein expression. Conclusion These results implicate GP1 as a chaperone for the correct processing and shuttling of GP2 to the cell surface, and suggest that native GPC SP plays a role in this process. In the absence of GP1 and GPC SP the GP2 protein may be processed by an alternate pathway that produces

  13. Discovery of novel P-glycoprotein-mediated multidrug resistance inhibitors bearing triazole core via click chemistry. (United States)

    Liu, Baomin; Qiu, Qianqian; Zhao, Tianxiao; Jiao, Lei; Hou, Jianyu; Li, Yunman; Qian, Hai; Huang, Wenlong


    A novel series of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) inhibitors bearing a triazol-phenethyl-tetrahydroisoquinoline scaffold were designed and synthesized via click chemistry. Most of the synthesized compounds showed higher reversal activity than verapamil (VRP). Among them, the most potent compound 5 showed a comparable activity with the known potent P-gp inhibitor WK-X-34 with lower cytotoxicity (IC50s > 100 μm). Compared with VRP, compound 5 exhibited more potency in increasing drug accumulation in K562/A02 MDR cells. Moreover, compound 5 persisted longer chemo-sensitizing effect (>24 h) than VRP (<6 h) with reversibility. Given the low intrinsic cytotoxicity and the potent reversal activity, compound 5 may represent a promising candidate for developing P-gp-mediated MDR inhibitor.

  14. The Significance of Anti-Beta-2-Glycoprotein I Antibodies in Antiphospholipid Syndrome

    Directory of Open Access Journals (Sweden)

    Anna Brusch


    Full Text Available Antiphospholipid syndrome (APS is a thrombophilic disorder that classically presents with vascular thrombosis and/or obstetric complications. APS is associated with antiphospholipid antibodies: a heterogeneous group of autoantibodies that are directed against membrane phospholipids in complex with phospholipid-binding proteins. Beta-2-glycoprotein I (B2GPI binds anionic phospholipids and is considered to be the predominant antigen in APS and antibodies against B2GPI (anti-B2GPI are recognised in the laboratory criteria for APS diagnosis. This review focuses on the part played by anti-B2GPI in the pathogenesis of APS, their associations with different clinical phenotypes of the disorder and new avenues for refining the diagnostic potential of anti-B2GPI testing.

  15. Ligand and structure-based classification models for Prediction of P-glycoprotein inhibitors

    DEFF Research Database (Denmark)

    Klepsch, Freya; Poongavanam, Vasanthanathan; Ecker, Gerhard Franz


    The ABC transporter P-glycoprotein (P-gp) actively transports a wide range of drugs and toxins out of cells, and is therefore related to multidrug resistance and the ADME profile of therapeutics. Thus, development of predictive in silico models for the identification of P-gp inhibitors is of great...... interest in the field of drug discovery and development. So far in-silico P-gp inhibitor prediction was dominated by ligand-based approaches, due to the lack of high-quality structural information about P-gp. The present study aims at comparing the P-gp inhibitor/non-inhibitor classification performance...... an algorithm based on Euclidean distance. Results show that random forest and SVM performed best for classification of P-gp inhibitors and non-inhibitors, correctly predicting 73/75 % of the external test set compounds. Classification based on the docking experiments using the scoring function Chem...

  16. Flow cytometry protocol to evaluate ionizing radiation effects on P-glycoprotein activity

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Neyliane Goncalves dos; Amaral, Ademir; Cavalcanti, Mariana Brayner [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear]. E-mail;; Neves, Maria Amelia Batista; Machado, Cintia Gonsalves de Faria [Fundacao de Hematologia e Hemoterapia de Pernambuco, Recife, PE (Brazil). Unidade de Laboratorios Especializados. Lab. de Imunofenotipagem


    The aim of this work was to establish a protocol to evaluate ionizing radiation effects on P-glycoprotein (P-gp) activity. For this, human peripheral blood samples were irradiated in vitro with different doses and P-gp activity was analyzed for CD4 and CD8 T lymphocytes through rhodamine123-efflux assay by flow cytometry. By simultaneous employment of percentage and mean fluorescence index parameters, subject-by-subject analysis pointed out changes in P-gp activity for some individuals and irradiated samples. Based on this work, the proposed protocol was considered adequate for evaluating P-gp activity on cells after radioactive stress. Besides, this research suggests that P-gp activity could be an important factor to define patient-specific protocols in combined chemo- and radiotherapy, particularly when radiation exposure precedes chemical treatment. (author)

  17. IgG platelet antibodies in EDTA-dependent pseudothrombocytopenia bind to platelet membrane glycoprotein IIb. (United States)

    Fiorin, F; Steffan, A; Pradella, P; Bizzaro, N; Potenza, R; De Angelis, V


    EDTA-dependent pseudothrombocytopenia (PTCP) consists of an inappropriate low platelet count caused by autoantibodies present in the serum samples reacting with platelets only in EDTA-anticoagulated blood. By using immunoprecipitation and Western blot techniques, we studied the immunochemical specificity of platelet agglutinating autoantibodies in the serum samples of 10 patients with PTCP. Furthermore, to evaluate a possible role of PTCP-associated IgG autoantibodies in increased platelet turnover, we assayed the plasma glycocalicin (GC) level and calculated the GC index for every patient. Our results provide direct evidence that an epitope located on platelet membrane glycoprotein IIb is recognized by PTCP-associated IgG antibodies; moreover GC levels in patients with EDTA-dependent PTCP were similar to control levels, thus excluding an increased platelet turnover. We conclude that antiplatelet antibodies directed against platelet cryptantigens are unlikely to have a major role in the increased removal of cells from circulation.

  18. Raman spectroscopy of antifreeze glycoproteins and their interaction with various substrates (United States)

    Cui, Y.; Turner, G.; Alexander, V.; Smith, I.; Sease, A.; Guo, M.; Burger, A.; Morgan, S.; Yeh, Yin


    Micro-Raman spectra of a mixture of antifreeze glycoproteins (AFGP) 6, 7 and 8 have been measured in the range of 100 - 4500 cm-1 with He-Ne laser excitation. The spectra were obtained for both bulk AFGP and films of AFGP deposited on various substrates. New vibrational peaks have been observed for films which are not present in the spectra of the bulk samples. The results will be presented and mechanisms of interaction between the AFGP molecule and substrates will be proposed. The assignment of new peaks and the effects of the water presence will also be discussed. Research supported by the NSF Center for Biophotonics, managed by U.C. Davis, CA No. PHY 0120999, NSF Research Experiences for Undergraduates DMR-0139180 and by the MBRS program through NIH/NIGMS grant 1S06-GM62813-01.

  19. Alpha1-acid glycoprotein post-translational modifications: a comparative two dimensional electrophoresis based analysis

    Directory of Open Access Journals (Sweden)

    P. Roncada


    Full Text Available Alpha1-acid glycoprotein (AGP is an immunomodulatory protein expressed by hepatocytes in response to the systemic reaction that follows tissue damage caused by inflammation, infection or trauma. A proteomic approach based on two dimensional electrophoresis, immunoblotting and staining of 2DE gels with dyes specific for post-translational modifications (PTMs such as glycosylation and phosphorylation has been used to evaluate the differential interspecific protein expression of AGP purified from human, bovine and ovine sera. By means of these techniques, several isoforms have been identified in the investigated species: they have been found to change both with regard to the number of isoforms expressed under physiological condition and with regard to the quality of PTMs (i.e. different oligosaccharidic chains, presence/absence of phosphorilations. In particular, it is suggested that bovine serum AGP may have one of the most complex pattern of PTMs among serum proteins of mammals studied so far.

  20. Structure and characterisation of a duplicated human alpha 1 acid glycoprotein gene. (United States)

    Merritt, C M; Board, P G


    Human alpha 1-acid glycoprotein (AGP), also known as orosomucoid, is a major acute-phase plasma protein. The amino acid sequence of AGP, which was determined by sequencing from protein isolated from pooled plasma, contained amino acid substitutions in 21 different positions. Genomic and cDNA clones which correspond to one of the possible amino acid sequences have been previously reported. In this paper we present the complete nucleotide sequence of a second gene, AGP2 which is located approx. 3.3 kb downstream from AGP1. The derived amino acid sequence of AGP2 contains 19 of the possible alternative amino acid substitutions as well as two additional differences. It is clear from the results presented here that the AGP in human plasma is the product of two separate gene loci.

  1. Evolution of human alpha 1-acid glycoprotein genes and surrounding Alu repeats. (United States)

    Merritt, C M; Easteal, S; Board, P G


    There is a mosaic pattern of variation between the two tandemly arranged human alpha 1-acid glycoprotein genes. Both the synonymous and the nonsynonymous sites of exons 3 and 4 are more divergent than the rest of the gene, suggesting that they have had a different evolutionary history. Comparisons of the two gene sequences with rat AGP indicate that exons 3 and 4 of AGP2 have been evolving without functional constraint since their divergence from AGP1. It is proposed that the conserved region of the gene has been homogenized recently by gene conversion with the homologous regions of AGP1. The Alu sequences surrounding the genes appear to have been involved in both the gene duplication and the gene conversion events.

  2. Effect of Rare Earths on Composition and Activities of Rare Earth Elements Binding Glycoprotein in Tea

    Institute of Scientific and Technical Information of China (English)

    汪东风; 李俊; 赵贵文; 王常红; 魏正贵; 尹明


    The effects of spraying rare earths(RE) on composition and activities of tea polysaccharide were measured by inductively coupled plasma mass spectrometry (ICP-MS), gas chromatography(GC), amino acid analyzer and animal models. The results show that there are rare earth elements binding glycoprotein in tea (REE-TGP). The effects of RE on composition and content of saccharides in REE-TGP are not obvious. The contents of Hypro and Ser in REE-TGP are evidently enhanced in comparison with that in control (not treated with rare earth), but the content of Glu is smaller than that from control. The content of La in REE-TGP from the tea garden sprayed rare earth is 193% higher than that in control. REE-TGP declines content of blood sugar in mice and enhances immunization of rat, which are very evident when the animals are treated by REE-TGP from the tea garden sprayed RE.

  3. Simple graph-theoretical model for flavonoid binding to P-glycoprotein. (United States)

    Miličević, Ante; Raos, Nenad


    Three sets of flavonoid derivatives (N=32, 40, and 74) and logarithms of their dissociation constants (log Kd) that describe flavonoid affinity toward P-glycoprotein were modelled using six connectivity indices. The best results were obtained with the zero-order valence molecular connectivity index (0χv) for all three sets. Standard errors of the calibration models were around 0.3, and of the constants from the test sets even a little lower, 0.22 and 0.24. Despite using only one descriptor, our model proved better in internal (cross-validation) and especially in external (test set) statistics than much more demanding methods used in previous 3D QSAR modelling.

  4. [Glycoproteins, inherited diseases of platelets, and the role of platelets in wound healing]. (United States)

    Nurden, Alan T; Nurden, Paquita


    Recognition that platelets have a glycocalyx rich in membrane glycoproteins prompted the discovery in France that inherited bleeding syndromes due to defects of platelet adhesion and aggregation were caused by deficiencies in major receptors at the platelet surface. Identification of the alpha IIb beta3 integrin prompted the development of powerful anti-thrombotic drugs that have gained worldwide use. Since these discoveries, the genetic causes of many other defects of platelet function and production have been elucidated, with the identification of an ADP receptor, P2 Y12, another widespread target for anti-thrombotic drugs. Discovery of the molecular basis of a rare disease of storage of biologically active proteins in platelet alpha-granules has been accompanied by the recognition of the roles of platelets in inflammation, the innate immune system and tissue repair, opening new avenues for therapeutic advances.

  5. Two lectin-like receptors for alpha 1-acid glycoprotein in mouse testis

    DEFF Research Database (Denmark)

    Andersen, U O; Kirkeby, S; Bøg-Hansen, T C


    Three glycoforms of alpha 1-acid glycoprotein (AGP) were biotinylated to examine their binding in mouse testis by light microscopy. The transition from one stage to another in the spermatogenic cycle is marked with an appearance of a receptor for the Concanavalin A (Con A) non-reactive glycoform...... AGP-A in the cytoplasm of spermatocytes, young spermatids and Sertoli cells. This receptor disappears in the late stages of the spermatids. The Con-A intermediately reactive and the Con-A reactive glycoforms, AGP-B and AGP-C, showed weak reaction in the cytoplasm of spermatocytes, spermatids....... AGP-A was inhibited by testosterone, oestradiol and progesterone, while AGP-B and AGP-C were inhibited by mannose, GlcNAc, cortisone, aldosterone, oestradiol and progesterone. The receptors and the corresponding AGP glycoforms may be adhesion molecules between Sertoli cells and the spermatogenic cells...

  6. Elevation of glycoprotein nonmetastatic melanoma protein B in type 1 Gaucher disease patients and mouse models. (United States)

    Kramer, Gertjan; Wegdam, Wouter; Donker-Koopman, Wilma; Ottenhoff, Roelof; Gaspar, Paulo; Verhoek, Marri; Nelson, Jessica; Gabriel, Tanit; Kallemeijn, Wouter; Boot, Rolf G; Laman, Jon D; Vissers, Johannes P C; Cox, Timothy; Pavlova, Elena; Moran, Mary Teresa; Aerts, Johannes M; van Eijk, Marco


    Gaucher disease is caused by inherited deficiency of lysosomal glucocerebrosidase. Proteome analysis of laser-dissected splenic Gaucher cells revealed increased amounts of glycoprotein nonmetastatic melanoma protein B (gpNMB). Plasma gpNMB was also elevated, correlating with chitotriosidase and CCL18, which are established markers for human Gaucher cells. In Gaucher mice, gpNMB is also produced by Gaucher cells. Correction of glucocerebrosidase deficiency in mice by gene transfer or pharmacological substrate reduction reverses gpNMB abnormalities. In conclusion, gpNMB acts as a marker for glucosylceramide-laden macrophages in man and mouse and gpNMB should be considered as candidate biomarker for Gaucher disease in treatment monitoring.

  7. Glycoprotein VI but not alpha2beta1 integrin is essential for platelet interaction with collagen

    DEFF Research Database (Denmark)

    Nieswandt, B; Brakebusch, C; Bergmeier, W


    Platelet adhesion on and activation by components of the extracellular matrix are crucial to arrest post-traumatic bleeding, but can also harm tissue by occluding diseased vessels. Integrin alpha2beta1 is thought to be essential for platelet adhesion to subendothelial collagens, facilitating...... subsequent interactions with the activating platelet collagen receptor, glycoprotein VI (GPVI). Here we show that Cre/loxP-mediated loss of beta1 integrin on platelets has no significant effect on the bleeding time in mice. Aggregation of beta1-null platelets to native fibrillar collagen is delayed......, but not reduced, whereas aggregation to enzymatically digested soluble collagen is abolished. Furthermore, beta1-null platelets adhere to fibrillar, but not soluble collagen under static as well as low (150 s(-1)) and high (1000 s(-1)) shear flow conditions, probably through binding of alphaIIbbeta3 to von...

  8. Learning disability and oligodendrocyte myelin glycoprotein (OMGP) gene in neurofibromatosis type 1. (United States)

    Terzi, Yunus Kasim; Oğuzkan-Balci, Sibel; Anlar, Banu; Erdoğan-Bakar, Emel; Ayter, Sükriye


    Neurofibromatosis type 1 (NF1) is an autosomal dominant disease where phenotypic heterogeneity is explained by the effect of modifier genes. Thirty to 65% of patients have learning disability. The oligodendrocyte myelin glycoprotein (OMGP) gene located within the neurofibromatosis type 1 (NF1) gene might affect the phenotype of learning disability because it is expressed in the brain, and OMGP gene mutations have been associated with cognitive disturbances. We analyzed the OMGP gene in NF1 patients with and without learning disability (n = 50 each) and healthy controls (n = 100). The allele distribution of OMGP62 polymorphism was not significantly different between the groups (p = 0.447). These results do not support a relationship between the OMGP gene and the learning disability phenotype observed in NF1. Other modifying genes, post-translational modifications or receptor interactions might be involved in the phenotypic variability of NF1.

  9. Immunoglobulin genes influence the magnitude of humoral immunity to cytomegalovirus glycoprotein B. (United States)

    Pandey, Janardan P; Kistner-Griffin, Emily; Radwan, Faisal F; Kaur, Navtej; Namboodiri, Aryan M; Black, Laurel; Butler, Mary Ann; Carreón, Tania; Ruder, Avima M


    Human cytomegalovirus (HCMV) is a risk factor for many human diseases, but among exposed individuals, not everyone is equally likely to develop HCMV-spurred diseases, implying the presence of host genetic factors that might modulate immunity to this virus. Here, we show that antibody responsiveness to HCMV glycoprotein B (gB) is significantly associated with particular immunoglobulin GM (γ marker) genotypes. Anti-HCMV gB antibody levels were highest in GM 17/17 homozygotes, intermediate in GM 3/17 heterozygotes, and lowest in GM 3/3 homozygotes (28.2, 19.0, and 8.1 µg/mL, respectively; P=.014). These findings provide mechanistic insights in the etiopathogenesis of HCMV-spurred diseases.

  10. Involvement of Leishmania donovani major surface glycoprotein gp63 in promastigote multiplication

    Indian Academy of Sciences (India)

    Sanjeev Pandey; Phuljhuri Chakraborti; Rakhi Sharma; Santu Bandyopadhyay; Dwijen Sarkar; Samit Adhya


    The major surface glycoprotein gp63 of the kinetoplastid protozoal parasite Leishmania is implicated as a ligand mediating uptake of the parasite into, and survival within, the host macrophage. By expressing gp63 antisense RNA from an episomal vector in L. donovani promastigotes, gp63-deficient transfectants were obtained. Reduction of the gp63 level resulted in increased generation times, altered cell morphology, accumulation of cells in the G2/M phase of the cell cycle, and increased numbers of binucleate cells with one or two kinetoplasts. Growth was stimulated, and the number of binucleate cells reduced, by addition to the culture of a bacterially expressed fusion protein containing the fibronectin-like SRYD motif and the zinc-binding (metalloprotease) domain of gp63. These observations support an additional role of gp63 in promastigote multiplication; the fibronectin-like properties of gp63 may be important in this process.

  11. Blood-brain barrier P-glycoprotein function in neurodegenerative disease. (United States)

    Bartels, A L


    Protection of the brain is strengthened by active transport and ABC transporters. P-glycoprotein (P-gp) at the blood-brain barrier (BBB) functions as an active efflux pump by extruding a substrate from the brain, which is important for maintaining loco-regional homeostasis in the brain and protection against toxic compounds. Importantly, dysfunctional BBB P-gp transport is postulated as an important factor contributing to accumulation of aggregated protein in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). Furthermore, P-gp is a major factor in mediating resistance to brain entry of numerous exogenous compounds, including toxins that can be involved in PD pathogenesis. This review highlights the role of altered P-gp function in the pathogenesis and progression of neurodegenerative disease. Also the implications of alterations in P-gp function for the treatment of these diseases are discussed.

  12. Characterization of virulence-associated determinants in the envelope glycoprotein of Pichinde virus. (United States)

    Kumar, Naveen; Wang, Jialong; Lan, Shuiyun; Danzy, Shamika; McLay Schelde, Lisa; Seladi-Schulman, Jill; Ly, Hinh; Liang, Yuying


    We use a small animal model, based on guinea pigs infected with a non-pathogenic Pichinde virus (PICV), to understand the virulence mechanisms of arenavirus infections in the hosts. PICV P2 strain causes a mild febrile reaction in guinea pigs, while P18 causes severe disease with clinical and pathological features reminiscent of Lassa hemorrhagic fever in humans. The envelope glycoproteins (GPC) of P2 and P18 viruses differ at positions 119, 140, and 164, all localized to the receptor-binding G1 subunit. We found that lentiviral pseudotyped virions (VLPs) bearing P18 GPC show more efficient cell entry than those with P2 GPC, and that the E140 residue plays a critical role in this process. Infection of guinea pigs with the recombinant viruses containing the E140K change demonstrated that E140 of GPC is a necessary virulence determinant of P18 infections, possibly by enhancing the ability of virus to enter target cells.

  13. Cytomegalovirus-based vaccine expressing Ebola virus glycoprotein protects nonhuman primates from Ebola virus infection. (United States)

    Marzi, Andrea; Murphy, Aisling A; Feldmann, Friederike; Parkins, Christopher J; Haddock, Elaine; Hanley, Patrick W; Emery, Matthew J; Engelmann, Flora; Messaoudi, Ilhem; Feldmann, Heinz; Jarvis, Michael A


    Ebolaviruses pose significant public health problems due to their high lethality, unpredictable emergence, and localization to the poorest areas of the world. In addition to implementation of standard public health control procedures, a number of experimental human vaccines are being explored as a further means for outbreak control. Recombinant cytomegalovirus (CMV)-based vectors are a novel vaccine platform that have been shown to induce substantial levels of durable, but primarily T-cell-biased responses against the encoded heterologous target antigen. Herein, we demonstrate the ability of rhesus CMV (RhCMV) expressing Ebola virus (EBOV) glycoprotein (GP) to provide protective immunity to rhesus macaques against lethal EBOV challenge. Surprisingly, vaccination was associated with high levels of GP-specific antibodies, but with no detectable GP-directed cellular immunity.

  14. Mapping of linear antibody epitopes of the glycoprotein of VHSV, a salmonid rhabdovirus

    DEFF Research Database (Denmark)

    Fernandez-Alonso, M.; Lorenzo, G.; Perez, L.


    Antibody Linear epitopes of the glycoprotein G (gpG) of the viral haemorrhagic septicaemia virus (VHSV), a rhabdovirus of salmonids, were mapped by pepscan using overlapping 15-mer peptides covering the entire gpG sequence and ELISA with polyclonal and monoclonal murine and polyclonal trout...... antibodies. Among the regions recognized in the pepscan by the polyclonal antibodies (PAbs) were the previously identified phosphatidylserine binding heptad-repeats (Estepa & Coll 1996; Virology 216:60-70) and leucocyte stimulating peptides (Lorenzo et al. 1995; Virology 212:348-355). Among 17 monoclonal...... antibodies (MAbs), only 2 non-neutralizing MAbs, I10 (aa 139-153) and IP1H3 (aa 399-413), could be mapped to specific peptides in the pepscan of the gpG. Mapping of these MAbs was confirmed by immunoblotting with recombinant proteins and/or other synthetic peptides covering those sequences. None...

  15. A recombinant Yellow Fever 17D vaccine expressing Lassa virus glycoproteins. (United States)

    Bredenbeek, Peter J; Molenkamp, Richard; Spaan, Willy J M; Deubel, Vincent; Marianneau, Phillippe; Salvato, Maria S; Moshkoff, Dmitry; Zapata, Juan; Tikhonov, Ilia; Patterson, Jean; Carrion, Ricardo; Ticer, Anysha; Brasky, Kathleen; Lukashevich, Igor S


    The Yellow Fever Vaccine 17D (YFV17D) has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) resulting in construction of YFV17D/LASV-GPC recombinant virus. The virus was replication-competent and processed the LASV-GPC in cell cultures. The recombinant replicated poorly in guinea pigs but still elicited specific antibodies against LASV and YFV17D antigens. A single subcutaneous injection of the recombinant vaccine protected strain 13 guinea pigs against fatal Lassa Fever. This study demonstrates the potential to develop an YFV17D-based bivalent vaccine against two viruses that are endemic in the same area of Africa.

  16. Development of live-attenuated arenavirus vaccines based on codon deoptimization of the viral glycoprotein. (United States)

    Cheng, Benson Y H; Nogales, Aitor; de la Torre, Juan Carlos; Martínez-Sobrido, Luis


    Several arenaviruses, chiefly Lassa (LASV) in West Africa, cause hemorrhagic fever (HF) disease in humans and pose important public health problems in their endemic regions. To date, there are no FDA-approved arenavirus vaccines and current anti-arenaviral therapy is limited to the use of ribavirin that has very limited efficacy. In this work we document that a recombinant prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) with a codon deoptimized (CD) surface glycoprotein (GP), rLCMV/CD, exhibited wild type (WT)-like growth properties in cultured cells despite barely detectable GP expression levels in rLCMV/CD-infected cells. Importantly, rLCMV/CD was highly attenuated in vivo but able to induce complete protection against a subsequent lethal challenge with rLCMV/WT. Our findings support the feasibility of implementing an arenavirus GP CD-based approach for the development of safe and effective live-attenuated vaccines (LAVs) to combat diseases caused by human pathogenic arenaviruses.

  17. The macrophage CD163 surface glycoprotein is an erythroblast adhesion receptor

    DEFF Research Database (Denmark)

    Fabriek, Babs O; Polfliet, Machteld M J; Vloet, Rianka P M;


    on the surface of macrophages in erythroblastic islands, in erythroblast binding. In particular, the monoclonal antibody ED2 was found to inhibit erythroblast binding to bone marrow macrophages. Here, we identify the ED2 antigen as the rat CD163 surface glycoprotein, a member of the group B scavenger receptor...... cysteine-rich (SRCR) family that has previously been shown to function as a receptor for hemoglobin-haptoglobin (Hb-Hp) complexes and is believed to contribute to the clearance of free hemoglobin. CD163 transfectants and recombinant protein containing the extracellular domain of CD163 supported...... the adhesion of erythroblastic cells. Furthermore, we identified a 13-amino acid motif (CD163p2) corresponding to a putative interaction site within the second scavenger receptor domain of CD163 that could mediate erythroblast binding. Finally, CD163p2 promoted erythroid expansion in vitro, suggesting...

  18. Variable Lymphocyte Receptor Recognition of the Immunodominant Glycoprotein of Bacillus anthracis Spores

    Energy Technology Data Exchange (ETDEWEB)

    Kirchdoerfer, Robert N.; Herrin, Brantley R.; Han, Byung Woo; Turnbough, Jr., Charles L.; Cooper, Max D.; Wilson, Ian A. (SNU); (Scripps); (Emory); (UAB); (Emory Vaccine)


    Variable lymphocyte receptors (VLRs) are the adaptive immune receptors of jawless fish, which evolved adaptive immunity independent of other vertebrates. In lieu of the immunoglobulin fold-based T and B cell receptors, lymphocyte-like cells of jawless fish express VLRs (VLRA, VLRB, or VLRC) composed of leucine-rich repeats and are similar to toll-like receptors (TLRs) in structure, but antibodies (VLRB) and T cell receptors (VLRA and VLRC) in function. Here, we present the structural and biochemical characterization of VLR4, a VLRB, in complex with BclA, the immunodominant glycoprotein of Bacillus anthracis spores. Using a combination of crystallography, mutagenesis, and binding studies, we delineate the mode of antigen recognition and binding between VLR4 and BclA, examine commonalities in VLRB recognition of antigens, and demonstrate the potential of VLR4 as a diagnostic tool for the identification of B. anthracis spores.

  19. The Dystrophin-Glycoprotein Complex in the Prevention of Muscle Damage

    Directory of Open Access Journals (Sweden)

    Jessica D. Gumerson


    Full Text Available Muscular dystrophies are genetically diverse but share common phenotypic features of muscle weakness, degeneration, and progressive decline in muscle function. Previous work has focused on understanding how disruptions in the dystrophin-glycoprotein complex result in muscular dystrophy, supporting a hypothesis that the muscle sarcolemma is fragile and susceptible to contraction-induced injury in multiple forms of dystrophy. Although benign in healthy muscle, contractions in dystrophic muscle may contribute to a higher degree of muscle damage which eventually overwhelms muscle regeneration capacity. While increased susceptibility of muscle to mechanical injury is thought to be an important contributor to disease pathology, it is becoming clear that not all DGC-associated diseases share this supposed hallmark feature. This paper outlines experimental support for a function of the DGC in preventing muscle damage and examines the evidence that supports novel functions for this complex in muscle that when impaired, may contribute to the pathogenesis of muscular dystrophy.

  20. Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Lok, Shee-Mei; Kostyuchenko, Victor; Nybakken, Grant E.; Holdaway, Heather A.; Battisti, Anthony J.; Sukupolvi-Petty, Soila; Sedlak, Dagmar; Fremont, Daved H.; Chipman, Paul R.; Roehrig, John T.; Diamond, Michael S.; Kuhn, Richard J.; Rossmann, Michael G. (Purdue); (WU-MED); (CDC)


    The monoclonal antibody 1A1D-2 has been shown to strongly neutralize dengue virus serotypes 1, 2 and 3, primarily by inhibiting attachment to host cells. A crystal structure of its antigen binding fragment (Fab) complexed with domain III of the viral envelope glycoprotein, E, showed that the epitope would be partially occluded in the known structure of the mature dengue virus. Nevertheless, antibody could bind to the virus at 37 degrees C, suggesting that the virus is in dynamic motion making hidden epitopes briefly available. A cryo-electron microscope image reconstruction of the virus:Fab complex showed large changes in the organization of the E protein that exposed the epitopes on two of the three E molecules in each of the 60 icosahedral asymmetric units of the virus. The changes in the structure of the viral surface are presumably responsible for inhibiting attachment to cells.

  1. DUSP1 induces paclitaxel resistance through the regulation of p-glycoprotein expression in human ovarian cancer cells. (United States)

    Kang, Yu-Seon; Seok, Hyun-Jeong; Jeong, Eun-Jeong; Kim, Yuna; Yun, Seok-Joong; Min, Jeong-Ki; Kim, Sun Jin; Kim, Jang-Seong


    The heterogeneity and genetic instability of ovarian cancer cells often lead to the development of drug resistance, closely related with the increased cancer-related mortality. In this study, we investigated the role of dual-specificity phosphatase 1 (DUSP1) in the development of the resistance in human ovarian cancer cells against paclitaxel. Overexpression of DUSP1 in HeyA8 human ovarian cancer cells (HeyA8-DUSP1) up-regulated the expression of the drug efflux pump, p-glycoprotein. Consequently, HeyA8-DUSP1 cells are highly resistant to paclitaxel, with the resistance comparable to that of a multi-drug resistance cell line (HeyA8-MDR). Moreover, over expression of DUSP1 significantly increased the activation of p38 MAPK, leaving the activation of ERK1/2 and JNK1/2 unaffected. Pharmacological suppression of p38 MAPK activity prevents the up-regulation of p-glycoprotein expression and the consequent resistance against paclitaxel in HeyA8-DUSP1 cells. By contrast, HeyA8-MDR cells expressed a significantly higher level of DUSP1, but treatment with small interference RNA against DUSP1 significantly suppressed the expression of p-glycoprotein and the resistance against paclitaxel in HeyA8-MDR cells. Ectopic expression of MKK3, an upstream activator of p38 MAPK, significantly up-regulated the expression of p-glycoprotein and increased the consequent resistance against paclitaxel in HeyA8 cells. Collectively, these data indicated that DUSP1 may induce the resistance against paclitaxel through the p38 MAPK-mediated overexpression of p-glycoprotein in human ovarian cancer cells.

  2. Evaluating the Effects of Cytomegalovirus Glycoprotein B on the Maturation and Function of Monocyte-derived dendritic cells

    Directory of Open Access Journals (Sweden)

    Afsson shariat


    Full Text Available Background & Objectives: Interaction of cytomegalovirus glycoprotein B with toll-like receptors of dendritic cells leads to early signaling and innate immune responses. The aim of this study is to evaluate the effects of cytomegalovirus glycoprotein B on the maturation and function of monocyte-derived dendritic cells in treated groups in comparison with control groups. Materials & Methods: Blood samples were taken from 5 healthy volunteers. Following the generation of monocyte-derived dendritic cells on the fifth day of cell culture, half of the immature dendritic cells were treated with cytomegalovirus glycoprotein B, and the rest of them were induced to mature dendritic untreated cells and were used as the control group. The maturation and function of dendritic cells were evaluated in these two groups. Results: The gene expression level of toll-like receptor-4 significantly increased in the group treated with glycoprotein B (p < 0.05, whereas there were no significant differences in the expression rates of CD83, CD86, CD1a, and HLA-DR and the secretion of IL-23 from monocyte-derived dendritic cells between the treated groups and the controls. Conclusion: The increase in the gene expression of toll-like receptor-4 in monocyte-derived dendritic cells treated with cytomegalovirus glycoprotein B showed that cell contact is required to elicit cellular antiviral response and toll-like receptor activation. Thus, it is critical to recognize the viral and cellular determinants of the immune system in order to develop new therapeutic strategies against cytomegalovirus.

  3. Relation between the secondary structure of carbohydrate residues of alpha1-acid glycoprotein (orosomucoid) and the fluorescence of the protein. (United States)

    Albani, Jihad R


    We studied in this work the relation that exists between the secondary structure of the glycans of alpha(1)-acid glycoprotein and the fluorescence of the Trp residues of the protein. We calculated for that the efficiency of quenching and the radiative and non-radiative constants. Our results indicate that the glycans display a spatial structure that is modified upon asialylation. The asialylated conformation is closer to the protein matrix than the sialylated form, inducing by that a decrease in the fluorescence parameters of the Trp residues. In fact, the mean quantum yield of Trp residues in sialylated and asialylated alpha(1)-acid glycoprotein are 0.0645 and 0.0385, respectively. Analysis of the fluorescence emission of alpha(1)-acid glycoprotein as the result of two contributions (surface and hydrophobic domains) indicates that quantum yields of both classes of Trp residues are lower when the protein is in the asialylated form. Also, the mean fluorescence lifetime of Trp residues decreases from 2.285 ns in the sialylated protein to 1.948 ns in the asialylated one. The radiative rate constant k(r) of the Trp residues in the sialylated alpha(1)-acid glycoprotein is higher than that in the asialylated protein. Thus, the carbohydrate residues are closer to the Trp residues in the absence of sialic acid. The modification of the spatial conformation of the glycans upon asialylation is confirmed by the decrease of the fluorescence lifetimes of Calcofluor, a fluorophore that binds to the carbohydrate residues. Finally, thermal intensity quenching of Calcofluor bound to alpha(1)-acid glycoprotein shows that the carbohydrate residues have slower residual motions in the absence of sialic acid residues.

  4. Essential features of the P-glycoprotein pharmacophore as defined by a series of reserpine analogs that modulate multidrug resistance. (United States)

    Pearce, H L; Safa, A R; Bach, N J; Winter, M A; Cirtain, M C; Beck, W T


    We have shown previously that reserpine is an effective "modulator" of P-glycoprotein-associated multidrug resistance (MDR). In addition to enhancing drug cytotoxicity in our multidrug-resistant human leukemia cell line, CEM/VLB100, reserpine strongly competes with a photoactivatible analog of vinblastine, N-(p-azido-3-[125I]iodosalicyl)-N'-(beta-aminoethyl)vindesine, for binding to P-glycoprotein. We also demonstrated previously that there are three substructural domains present in many compounds that modulate P-glycoprotein-associated MDR: a basic nitrogen atom and two planar aromatic rings. In the present study, we wished to test more rigorously the hypothesis that not only are these domains necessary for modulators of MDR but also they must exist in an appropriate conformation. Reserpine is a modulator of MDR in which these domains are present in a well-defined conformation. Accordingly, we prepared eight compounds that vary the spatial orientation of these domains, using either naturally occurring reserpine or yohimbine as chemical templates. When tested for their ability to enhance the cytotoxic activity of natural product antitumor drugs in CEM/VLB100 cells, five compounds that retained the pendant benzoyl function in an appropriate spatial orientation all modulated MDR. By contrast, compounds lacking this moiety failed to do so. These active modulators competed strongly with the 125I-labeled vinblastine analog for binding to P-glycoprotein in plasma membrane vesicles prepared from these cells. Conformational analysis using molecular mechanics revealed the structural similarities of the active modulators. Our results support the hypothesis that the relative disposition of aromatic rings and basic nitrogen atom is important for modulators of P-glycoprotein-associated MDR, and they suggest a ligand-receptor relationship for these agents. These results also provide direction for the definition of an MDR "pharmacophore."

  5. Aggregate structure of hydroxyproline-rich glycoprotein (HRGP and HRGP assisted dispersion of carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Wegenhart Ben


    Full Text Available AbstractHydroxyproline-rich glycoproteins (HRGP comprise a super-family of extracellular structural glycoproteins whose precise roles in plant cell wall assembly and functioning remain to be elucidated. However, their extended structure and repetitive block co-polymer character of HRGPs may mediate their self-assembly as wall scaffolds by like-with-like alignment of their hydrophobic peptide and hydrophilic glycopeptide modules. Intermolecular crosslinking further stabilizes the scaffold. Thus the design of HRGP-based scaffolds may have practical applications in bionanotechnology and medicine. As a first step, we have used single-molecule or single-aggregate atomic force microscopy (AFM to visualize the structure of YK20, an amphiphilic HRGP comprised entirely of 20 tandem repeats of: Ser-Hyp4-Ser-Hyp-Ser-Hyp4-Tyr-Tyr-Tyr-Lys. YK20 formed tightly aggregated coils at low ionic strength, but networks of entangled chains with a porosity of ~0.5–3 μm at higher ionic strength. As a second step we have begun to design HRGP-carbon nanotube composites. Single-walled carbon nanotubes (SWNTs can be considered as seamless cylinders rolled up from graphene sheets. These unique all-carbon structures have extraordinary aromatic and hydrophobic properties and form aggregated bundles due to strong inter-tube van der Waals interactions. Sonicating aggregated SWNT bundles with aqueous YK20 solubilized them presumably by interaction with the repetitive, hydrophobic, Tyr-rich peptide modules of YK20 with retention of the extended polyproline-II character. This may allow YK20 to form extended structures that could potentially be used as scaffolds for site-directed assembly of nanomaterials.

  6. Structural characterization of two metastable ATP-bound states of P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Megan L O'Mara

    Full Text Available ATP Binding Cassette (ABC transporters couple the binding and hydrolysis of ATP to the transport of substrate molecules across the membrane. The mechanism by which ATP binding and/or hydrolysis drives the conformational changes associated with substrate transport has not yet been characterized fully. Here, changes in the conformation of the ABC export protein P-glycoprotein on ATP binding are examined in a series of molecular dynamics simulations. When one molecule of ATP is placed at the ATP binding site associated with each of the two nucleotide binding domains (NBDs, the membrane-embedded P-glycoprotein crystal structure adopts two distinct metastable conformations. In one, each ATP molecule interacts primarily with the Walker A motif of the corresponding NBD. In the other, the ATP molecules interacts with both Walker A motif of one NBD and the Signature motif of the opposite NBD inducing the partial dimerization of the NBDs. This interaction is more extensive in one of the two ATP binding site, leading to an asymmetric structure. The overall conformation of the transmembrane domains is not altered in either of these metastable states, indicating that the conformational changes associated with ATP binding observed in the simulations in the absence of substrate do not lead to the outward-facing conformation and thus would be insufficient in themselves to drive transport. Nevertheless, the metastable intermediate ATP-bound conformations observed are compatible with a wide range of experimental cross-linking data demonstrating the simulations do capture physiologically important conformations. Analysis of the interaction between ATP and its cofactor Mg(2+ with each NBD indicates that the coordination of ATP and Mg(2+ differs between the two NBDs. The role structural asymmetry may play in ATP binding and hydrolysis is discussed. Furthermore, we demonstrate that our results are not heavily influenced by the crystal structure chosen for initiation

  7. Characterization of a surface glycoprotein from Echinococcus multilocularis and its mucosal vaccine potential in dogs.

    Directory of Open Access Journals (Sweden)

    Hirokazu Kouguchi

    Full Text Available Alveolar echinococcosis is a refractory disease caused by the metacestode stage of Echinococcus multilocularis. The life cycle of this parasite is maintained primarily between foxes and many species of rodents; thus, dogs are thought to be a minor definitive host except in some endemic areas. However, dogs are highly susceptible to E. multilocularis infection. Because of the close contact between dogs and humans, infection of dogs with this parasite can be an important risk to human health. Therefore, new measures and tools to control and prevent parasite transmission required. Using 2-dimensional electrophoresis followed by western blot (2D-WB analysis, a large glycoprotein component of protoscoleces was identified based on reactivity to intestinal IgA in dogs experimentally infected with E. multilocularis. This component, designated SRf1, was purified by gel filtration using a Superose 6 column. Glycosylation analysis and immunostaining revealed that SRf1 could be distinguished from Em2, a major mucin-type antigen of E. multilocularis. Dogs (n=6 were immunized intranasally with 500 µg of SRf1 with cholera toxin subunit B by using a spray syringe, and a booster was given orally using an enteric capsule containing 15 mg of the same antigen. As a result, dogs immunized with this antigen showed an 87.6% reduction in worm numbers compared to control dogs (n=5 who received only PBS administration. A weak serum antibody response was observed in SRf1-immunized dogs, but there was no correlation between antibody response and worm number. We demonstrated for the first time that mucosal immunization using SRf1, a glycoprotein component newly isolated from E. multilocularis protoscoleces, induced a protection response to E. multilocularis infection in dogs. Thus, our data indicated that mucosal immunization using surface antigens will be an important tool to facilitate the development of practical vaccines for definitive hosts.

  8. The glycoprotein-hormones activin A and inhibin A interfere with dendritic cell maturation

    Directory of Open Access Journals (Sweden)

    Reichardt Holger M


    Full Text Available Abstract Background Pregnancy represents an exclusive situation in which the immune and the endocrine system cooperate to prevent rejection of the embryo by the maternal immune system. While immature dendritic cells (iDC in the early pregnancy decidua presumably contribute to the establishment of peripheral tolerance, glycoprotein-hormones of the transforming growth factor beta (TGF-beta family including activin A (ActA and inhibin A (InA are candidates that could direct the differentiation of DCs into a tolerance-inducing phenotype. Methods To test this hypothesis we generated iDCs from peripheral-blood-monocytes and exposed them to TGF-beta1, ActA, as well as InA and Dexamethasone (Dex as controls. Results Both glycoprotein-hormones prevented up-regulation of HLA-DR during cytokine-induced DC maturation similar to Dex but did not influence the expression of CD 40, CD 83 and CD 86. Visualization of the F-actin cytoskeleton confirmed that the DCs retained a partially immature phenotype under these conditions. The T-cell stimulatory capacity of DCs was reduced after ActA and InA exposure while the secretion of cytokines and chemokines was unaffected. Conclusion These findings suggest that ActA and InA interfere with selected aspects of DC maturation and may thereby help preventing activation of allogenic T-cells by the embryo. Thus, we have identified two novel members of the TGF-beta superfamily that could promote the generation of tolerance-inducing DCs.

  9. Structure of the buffalo secretory signalling glycoprotein at 2.8 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Ethayathulla, Abdul S.; Srivastava, Devendra B.; Kumar, Janesh; Saravanan, Kolandaivelu; Bilgrami, Sameeta; Sharma, Sujata; Kaur, Punit; Srinivasan, Alagiri; Singh, Tej P., E-mail: [Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029 (India)


    The crystal structure of a signalling glycoprotein isolated from buffalo dry secretions (SPB-40) has been determined at 2.8 Å resolution. Two unique residues, Tyr120 and Glu269, found in SPB-40 distort the shape of the sugar-binding groove considerably. The water structure in the groove is also different. The conformations of three flexible loops, His188–His197, Phe202–Arg212 and Tyr244–Pro260, also differ from those found in other structurally similar proteins. The crystal structure of a 40 kDa signalling glycoprotein from buffalo (SPB-40) has been determined at 2.8 Å resolution. SPB-40 acts as a protective signalling factor by binding to viable cells during the early phase of involution, during which extensive tissue remodelling occurs. It was isolated from the dry secretions of Murrah buffalo. It was purified and crystallized using the hanging-drop vapour-diffusion method with 19% ethanol as the precipitant. The protein was also cloned and its complete nucleotide and amino-acid sequences were determined. When compared with the sequences of other members of the family, the sequence of SPB-40 revealed two very important mutations in the sugar-binding region, in which Tyr120 changed to Trp120 and Glu269 changed to Trp269. The structure showed a significant distortion in the shape of the sugar-binding groove. The water structure in the groove is also drastically altered. The folding of the protein chain in the flexible region comprising segments His188–His197, Phe202–Arg212 and Tyr244–Pro260 shows large variations when compared with other proteins of the family.

  10. P-glycoprotein and its inducible expression in three bivalve species after exposure to Prorocentrum lima. (United States)

    Huang, Lu; Liu, Su-Li; Zheng, Jian-Wei; Li, Hong-Ye; Liu, Jie-Sheng; Yang, Wei-Dong


    P-glycoprotein (P-gp or ABCB1) belongs to the family of ATP-binding cassette (ABC) transporters responsible for multixenobiotic resistance (MXR) in aquatic organisms. To provide more information of P-gp in shellfish, in this study, complete cDNA of P-gp in three bivalve species including Ruditapes philippinarum, Scapharca subcrenata and Tegillarca granosa were cloned and its expressions in gill, digestive gland, adductor muscle and mantle of the three bivalves were detected after exposure to Prorocentrum lima, a toxogenic dinoflagellate. The complete sequences of R. philippinarum, S. subcrenata and T. granosa P-gp showed high homology with MDR/P-gp/ABCB proteins from other species, having a typical sequence organization as full transporters from the ABCB family. Phylogenetic analyses revealed that the amino acid sequences of P-gp from S. subcrenata and T. granosa had a closest relationship, forming an independent branch, then grouping into the other branch with Mytilus californianus, Mytilus galloprovincialis and Crassostrea gigas. However, P-gp sequences from R. philippinarum were more similar to the homologs from the more distantly related Aplysia californica than to homologs from S. subcrenata and T. granosa, suggesting that bivalves P-gp might have different paralogs. P-glycoprotein expressed in all detected tissues but there were large differences between them. After exposure to P. lima, the expression of P-gp changed in the four tissues in varying degrees within the same species and between different species, but the changes in mRNA and protein level were not always synchronous.

  11. IRES-mediated translation of membrane proteins and glycoproteins in eukaryotic cell-free systems.

    Directory of Open Access Journals (Sweden)

    Andreas K Brödel

    Full Text Available Internal ribosome entry site (IRES elements found in the 5' untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR of the Cricket paralysis virus (CrPV genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established

  12. C-terminus glycans with critical functional role in the maturation of secretory glycoproteins.

    Directory of Open Access Journals (Sweden)

    Daniela Cioaca

    Full Text Available The N-glycans of membrane glycoproteins are mainly exposed to the extracellular space. Human tyrosinase is a transmembrane glycoprotein with six or seven bulky N-glycans exposed towards the lumen of subcellular organelles. The central active site region of human tyrosinase is modeled here within less than 2.5 Å accuracy starting from Streptomyces castaneoglobisporus tyrosinase. The model accounts for the last five C-terminus glycosylation sites of which four are occupied and indicates that these cluster in two pairs--one in close vicinity to the active site and the other on the opposite side. We have analyzed and compared the roles of all tyrosinase N-glycans during tyrosinase processing with a special focus on the proximal to the active site N-glycans, s6:N337 and s7:N371, versus s3:N161 and s4:N230 which decorate the opposite side of the domain. To this end, we have constructed mutants of human tyrosinase in which its seven N-glycosylation sites were deleted. Ablation of the s6:N337 and s7:N371 sites arrests the post-translational productive folding process resulting in terminally misfolded mutants subjected to degradation through the mannosidase driven ERAD pathway. In contrast, single mutants of the other five N-glycans located either opposite to the active site or into the N-terminus Cys1 extension of tyrosinase are temperature-sensitive mutants and recover enzymatic activity at the permissive temperature of 31°C. Sites s3 and s4 display selective calreticulin binding properties. The C-terminus sites s7 and s6 are critical for the endoplasmic reticulum retention and intracellular disposal. Results herein suggest that individual N-glycan location is critical for the stability, regional folding control and secretion of human tyrosinase and explains some tyrosinase gene missense mutations associated with oculocutaneous albinism type I.

  13. Kinetic studies of HIV-1 and HIV-2 envelope glycoprotein-mediated fusion

    Directory of Open Access Journals (Sweden)

    Doms Robert W


    Full Text Available Abstract Background HIV envelope glycoprotein (Env-mediated fusion is driven by the concerted coalescence of the HIV gp41 N-helical and C-helical regions, which results in the formation of 6 helix bundles. Kinetics of HIV Env-mediated fusion is an important determinant of sensitivity to entry inhibitors and antibodies. However, the parameters that govern the HIV Env fusion cascade have yet to be fully elucidated. We address this issue by comparing the kinetics HIV-1IIIB Env with those mediated by HIV-2 from two strains with different affinities for CD4 and CXCR4. Results HIV-1 and HIV-2 Env-mediated cell fusion occurred with half times of about 60 and 30 min, respectively. Binding experiments of soluble HIV gp120 proteins to CD4 and co-receptor did not correlate with the differences in kinetics of fusion mediated by the three different HIV Envs. However, escape from inhibition by reagents that block gp120-CD4 binding, CD4-induced CXCR4 binding and 6-helix bundle formation, respectively, indicated large difference between HIV-1 and HIV-2 envelope glycoproteins in their CD4-induced rates of engagement with CXCR4. Conclusion The HIV-2 Env proteins studied here exhibited a significantly reduced window of time between the engagement of gp120 with CD4 and exposure of the CXCR4 binding site on gp120 as compared with HIV-1IIIB Env. The efficiency with which HIV-2 Env undergoes this CD4-induced conformational change is the major cause of the relatively rapid rate of HIV-2 Env mediated-fusion.

  14. A bacterial engineered glycoprotein as a novel antigen for diagnosis of bovine brucellosis. (United States)

    Ciocchini, Andrés E; Serantes, Diego A Rey; Melli, Luciano J; Guidolin, Leticia S; Iwashkiw, Jeremy A; Elena, Sebastián; Franco, Cristina; Nicola, Ana M; Feldman, Mario F; Comerci, Diego J; Ugalde, Juan E


    Brucellosis is a highly contagious zoonosis that affects livestock and human beings. Laboratory diagnosis of bovine brucellosis mainly relies on serological diagnosis using serum and/or milk samples. Although there are several serological tests with different diagnostic performance and capacity to differentiate vaccinated from infected animals, there is still no standardized reference antigen for the disease. Here we validate the first recombinant glycoprotein antigen, an N-formylperosamine O-polysaccharide-protein conjugate (OAg-AcrA), for diagnosis of bovine brucellosis. This antigen can be produced in homogeneous batches without the need of culturing pathogenic brucellae; all characteristics that make it appropriate for standardization. An indirect immunoassay based on the detection of anti O-polysaccharide IgG antibodies in bovine samples was developed coupling OAg-AcrA to magnetic beads or ELISA plates. As a proof of concept and to validate the antigen, we analyzed serum, whole blood and milk samples obtained from non-infected, experimentally infected and vaccinated animals included in a vaccination/infection trial performed in our laboratory as well as more than 1000 serum and milk samples obtained from naturally infected and S19-vaccinated animals from Argentina. Our results demonstrate that OAg-AcrA-based assays are highly accurate for diagnosis of bovine brucellosis, even in vaccinated herds, using different types of samples and in different platforms. We propose this novel recombinant glycoprotein as an antigen suitable for the development of new standard immunological tests for screening and confirmatory diagnosis of bovine brucellosis in regions or countries with brucellosis-control programs.

  15. Pregnancy associated glycoproteins (PAG) in postpartum cows, ewes, goats and their offspring. (United States)

    Haugejorden, G; Waage, S; Dahl, E; Karlberg, K; Beckers, J F; Ropstad, E


    Determination of plasma concentrations of pregnancy associated glycoproteins (PAG) has been used for early pregnancy diagnosis in cows. However, this is complicated by the presence of PAG in plasma for an extended period postpartum. The main objective of the present study was to investigate the postpartum elimination rates of pregnancy associated glycoproteins (PAG) in sheep, goats and cows in order to gain background information applicable to the use of PAG for pregnancy diagnosis in domestic ruminants. A second objective was to investigate whether PAG are transferred to the foetus and newborn, by measuring plasma PAG concentrations in calves, lambs and goat kids before and after colostrum feeding. PAG in the blood at parturition were eliminated by a first order process in the cows and ewes, while a two-step log-linear decline occurred in the goats. Estimated postpartum half-life of plasma PAG in the cows and ewes was 9 and 4.5 days, respectively. In the goats, half-lives were 3.6 and 7.5 days in the initial fast and terminal slow phase. Basal levels were reached 80-90 days postpartum in cows. Plasma PAG concentration can be used for pregnancy diagnosis from day 28 after AI, provided that the time interval from calving to AI is >60 days. Using a heterologous antibody RIA, we found 4 ng/mL to be the appropriate cut-off. Due to the presence of PAG residues from the previous gestation, the interval from AI to pregnancy diagnosis should increase by approximately 0.5 days beyond 28 days for each day of AI closer to calving than 60. Measurements in newborn ruminants suggested that PAG enter the foetal blood in utero and that colostral PAG are transferred to the newborn. Following the peak plasma concentration observed 1 day after birth in most of the animals, PAG were rapidly eliminated in a log-linear fashion.

  16. Glycoprotein is enough for sindbis virus-derived DNA vector to express heterogenous genes. (United States)

    Zhu, Wuyang; Li, Jiangjiao; Tang, Li; Wang, Huanqin; Li, Jia; Fu, Juanjuan; Liang, Guodong


    To investigate the necessity and potential application of structural genes for expressing heterogenous genes from Sindbis virus-derived vector, the DNA-based expression vector pVaXJ was constructed by placing the recombinant genome of sindbis-like virus XJ-160 under the control of the human cytomegalovirus (CMV) promoter of the plasmid pVAX1, in which viral structural genes were replaced by a polylinker cassette to allow for insertion of heterologous genes. The defect helper plasmids pVaE or pVaC were developed by cloning the gene of glycoprotein E3E26KE1 or capsid protein of XJ-160 virus into pVAX1, respectively. The report gene cassette pVaXJ-EGFP or pV-Gluc expressing enhanced green fluorescence protein (EGFP) or Gaussia luciferase (G.luc) were constructed by cloning EGFP or G.luc gene into pVaXJ. EGFP or G.luc was expressed in the BHK-21 cells co-transfected with report gene cassettes and pVaE at levels that were comparable to those produced by report gene cassettes, pVaC and pVaE and were much higher than the levels produced by report gene cassette and pVaC, suggesting that glycoprotein is enough for Sindbis virus-derived DNA vector to express heterogenous genes in host cells. The method of gene expression from Sindbis virus-based DNA vector only co-transfected with envelop E gene increase the conveniency and the utility of alphavirus-based vector systems in general.

  17. Glycoprotein is enough for sindbis virus-derived DNA vector to express heterogenous genes

    Directory of Open Access Journals (Sweden)

    Fu Juanjuan


    Full Text Available Abstract To investigate the necessity and potential application of structural genes for expressing heterogenous genes from Sindbis virus-derived vector, the DNA-based expression vector pVaXJ was constructed by placing the recombinant genome of sindbis-like virus XJ-160 under the control of the human cytomegalovirus (CMV promoter of the plasmid pVAX1, in which viral structural genes were replaced by a polylinker cassette to allow for insertion of heterologous genes. The defect helper plasmids pVaE or pVaC were developed by cloning the gene of glycoprotein E3E26KE1 or capsid protein of XJ-160 virus into pVAX1, respectively. The report gene cassette pVaXJ-EGFP or pV-Gluc expressing enhanced green fluorescence protein (EGFP or Gaussia luciferase (G.luc were constructed by cloning EGFP or G.luc gene into pVaXJ. EGFP or G.luc was expressed in the BHK-21 cells co-transfected with report gene cassettes and pVaE at levels that were comparable to those produced by report gene cassettes, pVaC and pVaE and were much higher than the levels produced by report gene cassette and pVaC, suggesting that glycoprotein is enough for Sindbis virus-derived DNA vector to express heterogenous genes in host cells. The method of gene expression from Sindbis virus-based DNA vector only co-transfected with envelop E gene increase the conveniency and the utility of alphavirus-based vector systems in general.

  18. Circadian rhythm of glycoprotein secretion in the vas deferens of the moth, Spodoptera littoralis

    Directory of Open Access Journals (Sweden)

    Gvakharia B


    Full Text Available Abstract Background Reproductive systems of male moths contain circadian clocks, which time the release of sperm bundles from the testis to the upper vas deferens (UVD and their subsequent transfer from the UVD to the seminal vesicles. Sperm bundles are released from the testis in the evening and are retained in the vas deferens lumen overnight before being transferred to the seminal vesicles. The biological significance of periodic sperm retention in the UVD lumen is not understood. In this study we asked whether there are circadian rhythms in the UVD that are correlated with sperm retention. Results We investigated the carbohydrate-rich material present in the UVD wall and lumen during the daily cycle of sperm release using the periodic acid-Shiff reaction (PAS. Males raised in 16:8 light-dark cycles (LD showed a clear rhythm in the levels of PAS-positive granules in the apical portion of the UVD epithelium. The peak of granule accumulation occurred in the middle of the night and coincided with the maximum presence of sperm bundles in the UVD lumen. These rhythms persisted in constant darkness (DD, indicating that they have circadian nature. They were abolished, however, in constant light (LL resulting in random patterns of PAS-positive material in the UVD wall. Gel-separation of the UVD homogenates from LD moths followed by detection of carbohydrates on blots revealed daily rhythms in the abundance of specific glycoproteins in the wall and lumen of the UVD. Conclusion Secretory activity of the vas deferens epithelium is regulated by the circadian clock. Daily rhythms in accumulation and secretion of several glycoproteins are co-ordinated with periodic retention of sperm in the vas deferens lumen.

  19. Methoxypolyethylene glycol-block-polycaprolactone diblock copolymers reduce P-glycoprotein efflux in the absence of a membrane fluidization effect while stimulating P-glycoprotein ATPase activity. (United States)

    Zastre, Jason; Jackson, John K; Wong, Wesley; Burt, Helen M


    We have previously shown that amphiphilic diblock copolymers composed of methoxypolyethylene glycol-b-polycaprolactone (MePEG-b-PCL) increased the cellular accumulation and reduced the basolateral to apical flux of the P-glycoprotein substrate, rhodamine 123 (R-123) in caco-2 cells. The purpose of this study was to investigate membrane perturbation effects of MePEG-b-PCL diblock copolymers with erythrocyte membranes and caco-2 cells and the effect on P-gp ATPase activity. The diblock copolymer MePEG(17)-b-PCL(5) induced increasing erythrocyte hemolysis at concentrations which correlated with increasing accumulation of R-123 into caco-2 cells. However, no increase in cellular accumulation of R-123 by non-P-gp expressing cells was observed, suggesting that diblock did not enhance the transmembrane passive diffusion of R-123, but that the accumulation enhancement effect of the diblock in caco-2 cells was likely mediated primarily via P-gp inhibition. Fluorescence anisotropy measurements of membrane fluidity and P-gp ATPase activity demonstrated that MePEG(17)-b-PCL(5) decreased caco-2 membrane fluidity while stimulating ATPase activity approximately threefold at concentrations that maximally enhanced R-123 caco-2 accumulation. These results suggest that inhibition of P-gp efflux by MePEG(17)-b-PCL(5) does not appear to be related to increases in membrane fluidity or through inhibition in P-gp ATPase activities, which are two commonly reported cellular effects for P-gp inhibition mediated by surfactants.

  20. Increased concentrations of interleukin-6 and interleukin-1 receptor antagonist and decreased concentrations of beta-2-glycoprotein I in Gambian children with cerebral malaria

    DEFF Research Database (Denmark)

    Jakobsen, P H; McKay, V; Morris-Jones, S D;


    concentrations of anti-PI antibodies and the PI-binding serum protein beta-2-glycoprotein I. We found increased concentrations of IL-6, sIL-6R, IL-1ra, and some immunoglobulin M antibodies against PI in children with cerebral malaria, but those who died had decreased concentrations of beta-2-glycoprotein I. We...... conclude that increased concentrations of cytokines and soluble cytokine receptors represent a normal host response to P. falciparum infections but that excessive secretion of cytokines like IL-6 may predispose to cerebral malaria and a fatal outcome while beta-2-glycoprotein I may protect against a fatal...

  1. Development of patatin knockdown potato tubers using RNA interference (RNAi technology, for the production of human-therapeutic glycoproteins

    Directory of Open Access Journals (Sweden)

    Ko Jeong-Heon


    Full Text Available Abstract Background Patatins encoded by a multi-gene family are one of the major storage glycoproteins in potato tubers. Potato tubers have recently emerged as bioreactors for the production of human therapeutic glycoproteins (vaccines. Increasing the yield of recombinant proteins, targeting the produced proteins to specific cellular compartments, and diminishing expensive protein purification steps are important research goals in plant biotechnology. In the present study, potato patatins were eliminated almost completely via RNA interference (RNAi technology to develop potato tubers as a more efficient protein expression system. The gene silencing effect of patatins in the transgenic potato plants was examined at individual isoform levels. Results Based upon the sequence similarity within the multi-gene family of patatins, a highly conserved target sequence (635 nts of patatin gene pat3-k1 [GenBank accession no. DQ114421] in potato plants (Solanum tuberosum L. was amplified for the construction of a patatin-specific hairpin RNAi (hpRNAi vector. The CaMV 35S promoter-driven patatin hpRNAi vector was transformed into the potato cultivar Desiree by Agrobacterium-mediated transformation. Ten transgenic potato lines bearing patatin hpRNA were generated. The effects of RNA interference were characterized at both the protein and mRNA levels using 1D and 2D SDS/PAGE and quantitative real-time RT-PCR analysis. Dependent upon the patatin hpRNAi line, patatins decreased by approximately 99% at both the protein and mRNA levels. However, the phenotype (e.g. the number and size of potato tuber, average tuber weight, growth pattern, etc. of hpRNAi lines was not distinguishable from wild-type potato plants under both in vitro and ex vitro growth conditions. During glycoprotein purification, patatin-knockdown potato tubers allowed rapid purification of other potato glycoproteins with less contamination of patatins. Conclusion Patatin-specific hpRNAi effectively

  2. Inhibition mechanism of P-glycoprotein mediated efflux by mPEG-PLA and influence of PLA chain length on P-glycoprotein inhibition activity. (United States)

    Li, Wenjing; Li, Xinru; Gao, Yajie; Zhou, Yanxia; Ma, Shujin; Zhao, Yong; Li, Jinwen; Liu, Yan; Wang, Xinglin; Yin, Dongdong


    The present study aimed to investigate the effect of monomethoxy poly(ethylene glycol)-block-poly(D,L-lactic acid) (mPEG-PLA) on the activity of P-glycoprotein (P-gp) in Caco-2 cells and further unravel the relationship between PLA chain length in mPEG-PLA and influence on P-gp efflux and the action mechanism. The transport results of rhodamine 123 (R123) across Caco-2 cell monolayers suggested that mPEG-PLA unimers were responsible for its P-gp inhibitory effect. Furthermore, transport studies of R123 revealed that the inhibitory potential of P-gp efflux by mPEG-PLA analogues was strongly correlated with their structural features and showed that the hydrophilic mPEG-PLA copolymers with an intermediate PLA chain length and 10.20 of hydrophilic-lipophilic balance were more effective at inhibiting P-gp efflux in Caco-2 cells. The fluorescence polarization measurement results ruled out the plasma membrane fluidization as a contributor for inhibition of P-gp by mPEG-PLA. Concurrently, mPEG-PLA inhibited neither basal P-gp ATPase (ATP is adenosine triphosphate) activity nor substrate stimulated P-gp ATPase activity, suggesting that mPEG-PLA seemed not to be a substrate of P-gp and a competitive inhibitor. No evident alteration in P-gp surface level was detected by flow cytometry upon exposure of the cells to mPEG-PLA. The depletion of intracellular ATP, which was likely to be a result of partial inhibition of cellular metabolism, was directly correlated with inhibitory potential for P-gp mediated efflux by mPEG-PLA analogues. Hence, intracellular ATP-depletion appeared to be possible explanation to the inhibition mechanism of P-gp by mPEG-PLA. Taken together, the establishment of a relationship between PLA chain length and impact on P-gp efflux activity and interpretation of action mechanism of mPEG-PLA on P-gp are of fundamental importance and will facilitate future development of mPEG-PLA in the drug delivery area.

  3. Serum Glycoprotein Biomarker Discovery and Qualification Pipeline Reveals Novel Diagnostic Biomarker Candidates for Esophageal Adenocarcinoma. (United States)

    Shah, Alok K; Cao, Kim-Anh Lê; Choi, Eunju; Chen, David; Gautier, Benoît; Nancarrow, Derek; Whiteman, David C; Saunders, Nicholas A; Barbour, Andrew P; Joshi, Virendra; Hill, Michelle M


    We report an integrated pipeline for efficient serum glycoprotein biomarker candidate discovery and qualification that may be used to facilitate cancer diagnosis and management. The discovery phase used semi-automated lectin magnetic bead array (LeMBA)-coupled tandem mass spectrometry with a dedicated data-housing and analysis pipeline; GlycoSelector ( The qualification phase used lectin magnetic bead array-multiple reaction monitoring-mass spectrometry incorporating an interactive web-interface, Shiny mixOmics (, for univariate and multivariate statistical analysis. Relative quantitation was performed by referencing to a spiked-in glycoprotein, chicken ovalbumin. We applied this workflow to identify diagnostic biomarkers for esophageal adenocarcinoma (EAC), a life threatening malignancy with poor prognosis in the advanced setting. EAC develops from metaplastic condition Barrett's esophagus (BE). Currently diagnosis and monitoring of at-risk patients is through endoscopy and biopsy, which is expensive and requires hospital admission. Hence there is a clinical need for a noninvasive diagnostic biomarker of EAC. In total 89 patient samples from healthy controls, and patients with BE or EAC were screened in discovery and qualification stages. Of the 246 glycoforms measured in the qualification stage, 40 glycoforms (as measured by lectin affinity) qualified as candidate serum markers. The top candidate for distinguishing healthy from BE patients' group was Narcissus pseudonarcissus lectin (NPL)-reactive Apolipoprotein B-100 (p value = 0.0231; AUROC = 0.71); BE versus EAC, Aleuria aurantia lectin (AAL)-reactive complement component C9 (p value = 0.0001; AUROC = 0.85); healthy versus EAC, Erythroagglutinin Phaseolus vulgaris (EPHA)-reactive gelsolin (p value = 0.0014; AUROC = 0.80). A panel of 8 glycoforms showed an improved AUROC of 0.94 to discriminate EAC from BE. Two biomarker candidates

  4. Oral and inhaled corticosteroids: Differences in P-glycoprotein (ABCB1) mediated efflux

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, Andrew, E-mail:; Tan, Ai May


    There is concern that P-glycoprotein mediated efflux contributes to steroid resistance. Therefore, this study examined bidirectional corticosteroid transport and induction capabilities for P-glycoprotein (P-gp) to understand which of the systemic and inhaled corticosteroids interacted with P-gp to the greatest extent. Hydrocortisone, prednisolone, prednisone, methylprednisolone, and dexamethasone represented systemically active drugs, while fluticasone propionate, beclomethasone dipropionate, ciclesonide and budesonide represented inhaled corticosteroids. Aldosterone and fludrocortisone represented mineralocorticoids. All drugs were detected using individually optimised HPLC protocols. Transport studies were conducted through Caco-2 monolayers. Hydrocortisone and aldosterone had efflux ratios below 1.5, while prednisone showed a P-gp mediated efflux ratio of only 1.8 compared to its active drug, prednisolone, with an efflux ratio of 4.5. Dexamethasone and beclomethasone had efflux ratios of 2.1 and 3.3 respectively, while this increased to 5.1 for methylprednisolone. Fluticasone showed an efflux ratio of 2.3. Protein expression studies suggested that all of the inhaled corticosteroids were able to induce P-gp expression, from 1.6 to 2 times control levels. Most of the systemic corticosteroids had higher passive permeability (> 20 × 10{sup −6} cm/s) compared to the inhaled corticosteroids (> 5 × 10{sup −6} cm/s), except for budesonide, with permeability similar to the systemic corticosteroids. Inhaled corticosteroids are not transported by P-gp to the same extent as systemic corticosteroids. However, they are able to induce P-gp production. Thus, inhaled corticosteroids may have greater interactions with other P-gp substrates, but P-gp itself is less likely to influence resistance to the drugs. -- Highlights: ► Inhaled corticosteroids are only weak substrates for P-gp, including budesonide. ► Inhaled corticosteroid potent P-gp inducers especially

  5. The Plasmin-Sensitive Protein Pls in Methicillin-Resistant Staphylococcus aureus (MRSA) Is a Glycoprotein (United States)

    Pohlentz, Gottfried; Xia, Guoqing; Hussain, Muzaffar; Foster, Simon; Peters, Georg


    Most bacterial glycoproteins identified to date are virulence factors of pathogenic bacteria, i.e. adhesins and invasins. However, the impact of protein glycosylation on the major human pathogen Staphylococcus aureus remains incompletely understood. To study protein glycosylation in staphylococci, we analyzed lysostaphin lysates of methicillin-resistant Staphylococcus aureus (MRSA) strains by SDS-PAGE and subsequent periodic acid-Schiff’s staining. We detected four (>300, ∼250, ∼165, and ∼120 kDa) and two (>300 and ∼175 kDa) glycosylated surface proteins with strain COL and strain 1061, respectively. The ∼250, ∼165, and ∼175 kDa proteins were identified as plasmin-sensitive protein (Pls) by mass spectrometry. Previously, Pls has been demonstrated to be a virulence factor in a mouse septic arthritis model. The pls gene is encoded by the staphylococcal cassette chromosome (SCC)mec type I in MRSA that also encodes the methicillin resistance-conferring mecA and further genes. In a search for glycosyltransferases, we identified two open reading frames encoded downstream of pls on the SCCmec element, which we termed gtfC and gtfD. Expression and deletion analysis revealed that both gtfC and gtfD mediate glycosylation of Pls. Additionally, the recently reported glycosyltransferases SdgA and SdgB are involved in Pls glycosylation. Glycosylation occurs at serine residues in the Pls SD-repeat region and modifying carbohydrates are N-acetylhexosaminyl residues. Functional characterization revealed that Pls can confer increased biofilm formation, which seems to involve two distinct mechanisms. The first mechanism depends on glycosylation of the SD-repeat region by GtfC/GtfD and probably also involves eDNA, while the second seems to be independent of glycosylation as well as eDNA and may involve the centrally located G5 domains. Other previously known Pls properties are not related to the sugar modifications. In conclusion, Pls is a glycoprotein and Pls glycosyl

  6. Dual regulation of P-glycoprotein expression by Trichostatin A in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Balaguer Trinidad


    Full Text Available Abstract Background It has been reported that the histone deacetylase inhibitor (iHDAc trichostatin A (TSA induces an increase in MDR1 gene transcription (ABCB1. This result would compromise the use of iHDACs in combination with other cytotoxic agents that are substrates of P-glycoprotein (Pgp. It has also been reported the use of alternative promoters by the ABCB1 gene and the existence of a translational control of Pgp protein. Finally, the ABCB1 gene is located in a genetic locus with the nested gene RUNDC3B in the complementary DNA strand, raising the possibility that RUNDC3B expression could interfere with ABCB1 alternative promoter regulation. Methods A combination of RT-PCR, real time RT-PCR, Western blot and drug accumulation assays by flow cytometry has been used in this study. Results The iHDACs-induced increase in MDR1 mRNA levels is not followed by a subsequent increase in Pgp protein levels or activity in several pancreatic and colon carcinoma cell lines, suggesting a translational control of Pgp in these cell lines. In addition, the MDR1 mRNA produced in these cell lines is shorter in its 5′ end that the Pgp mRNA produced in cell lines expressing Pgp protein. The different size of the Pgp mRNA is due to the use of alternative promoters. We also demonstrate that these promoters are differentially regulated by TSA. The translational blockade of Pgp mRNA in the pancreatic carcinoma cell lines could be related to alterations in the 5′ end of the MDR1 mRNA in the Pgp protein expressing cell lines. In addition, we demonstrate that the ABCB1 nested gene RUNDC3B expression although upregulated by TSA is independent of the ABCB1 alternative promoter used. Conclusions The results show that the increase in MDR1 mRNA expression after iHDACs treatment is clinically irrelevant since this mRNA does not render an active Pgp protein, at least in colon and pancreatic cancer cell lines. Furthermore, we demonstrate that TSA in fact, regulates

  7. Transcriptional analyses of the region of the equine herpesvirus type 4 genome encoding glycoproteins I and E. (United States)

    Damiani, A M; Jang, H K; Matsumura, T; Yokoyama, N; Miyazawa, T; Mikami, T


    To map the transcripts encoding the equine herpesvirus type 4 (EHV-4) glycoproteins I (gI) and E (gE), transcriptional analyses were performed at the right part of the unique short segment of EHV-4 genome. The results revealed that the gI gene is encoded by a 1.6-kb transcript which is 3' coterminal with a 3.0-kb gD mRNA while the gE gene is encoded by two transcripts of 3.5- and 2.4-kb in size. The transcriptional patterns described in this study for the EHV-4 gI and gE are similar to those found in the equivalent region of herpes simplex virus type 1 and feline herpesvirus type 1. Characterization of EHV-4 gI and gE glycoprotein genes may facilitate future studies to define their roles in the EHV-4 infection.

  8. Chemical synthesis of a glycoprotein having an intact human complex-type sialyloligosaccharide under the Boc and Fmoc synthetic strategies. (United States)

    Yamamoto, Naoki; Tanabe, Yasutaka; Okamoto, Ryo; Dawson, Philip E; Kajihara, Yasuhiro


    The chemical synthesis of complex glycoproteins is an ongoing challenge in protein chemistry. We have examined the synthesis of a single glycoform of monocyte chemotactic protein-3 (MCP-3), a CC-chemokine that consists of 76 amino acids and one N-glycosylation site. A three-segment native chemical ligation strategy was employed using unprotected peptides and glycopeptide. Importantly, the synthesis required the development of methods for the generation of sialylglycopeptide-alphathioesters. For the sialylglycopeptide-alphathioester segment, we examined and successfully implemented approaches using Fmoc-SPPS and Boc-SPPS. To avoid use of hydrogen fluoride, the Boc approach utilized minimal side chain protection and direct thiolysis of the resin bound peptide. Using these strategies, we successfully synthesized a glycoprotein having an intact and homogeneous complex-type sialyloligosaccharide.

  9. Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Højrup, Peter; Roepstorff, Peter


    Protein glycosylation can be vital for changing the function or physiochemical properties of a protein. Abnormal glycosylation can lead to protein malfunction, resulting in severe diseases. Therefore, it is important to develop techniques for characterization of such modifications in proteins...... at a sensitivity level comparable with state-of-the-art proteomics. Whereas techniques exist for characterization of high abundance glycoproteins, no single method is presently capable of providing information on both site occupancy and glycan structure on a single band excised from an electrophoretic gel. We...... present a new technique that allows characterization of low amounts of glycoproteins separated by gel electrophoresis. The method takes advantage of sequential specific and nonspecific enzymatic treatment followed by selective purification and characterization of the glycopeptides using graphite powder...

  10. Analysis on effect of separation and purification of glycoprotein extracted from Camellia seeds and its functional activity as basis for the economic development of Camellia oleifera industry

    Directory of Open Access Journals (Sweden)

    Feng Aiguo


    Full Text Available Taking Camellia oleifera seeds as raw materials, this study explored extraction and purification of glycoprotein separated from Camellia seeds as well as its antitumor activity, aiming to provide a theoretical basis for the economic development of Camellia oleifera industry. Key impact factors of Camellia seed glycoprotein were extracted using buffer solution method and water extraction method and a regression model was set up. Methyl thiazolyl tetrazolium was used to evaluate the in vitro antitumor activity of glycoprotein extracted from Camellia seeds and Differential Scanning Calorimetry (DSC was used to measure its denaturation enthalpy value. Results indicated that protein and sugar yields were 8.96% and 17.05% respectively under optimal conditions when water extraction method was used. Crude glycoprotein extracted from Camellia oleifera had a certain inhibitory effect on human hepatoma cell HepG2, gastric cancer cell MGC-803 and breast cancer cell MCF-7 and crude glycoprotein extracted from Camellia oleifera by water-extraction and alcohol-precipitation method had a strong antitumor effect. Crude glycoprotein obtained in the two different ways was capable of scavenging DPPH, •OH and O2g- free radicals and also showed good reducing capacity. DSC measurement results revealed that specific rotation of COGP2a[α]n20${\\rm{COGP}}2{\\rm{a}}\\left[ \\alpha \\right]_n^{20} $ was - 32.5. Antitumor experiment in vitro showed that glycoprotein extracted from Camellia seeds in the two different ways had a certain inhibitory effect on HepG2, MGC-803 and MCF-7, which has important theoretical and realistic significances to promoting utilization value of camellia resources, strengthening Camellia oleifera’s comprehensive development and utilization of high added value as well as enriching types and functions of active glycoprotein.

  11. Biodiversity of multiple Pregnancy-Associated Glycoprotein (PAG) family: gene cloning and chorionic protein purification in domestic and wild eutherians (Placentalia) - a review


    Szafranska, Bozena; Panasiewicz, Grzegorz; Majewska, Marta


    International audience; This review presents a broad overview of chorionic glycoproteins encoded by the Pregnancy-Associated Glycoprotein (PAG) gene family and also serves to illustrate how the recent discovery of the PAG family has contributed to our general knowledge of genome evolution, placental transcription and placental protein expression. The complex and large PAG family is restricted to the Artiodactyla order, although single PAG-like genes have also been identified in species outsid...

  12. Altered brain concentrations of citalopram and escitalopram in P-glycoprotein deficient mice after acute and chronic treatment



    Background: According to both in vitro and in vivo data P-glycoprotein (P-gp) may restrict the uptake of several antidepressants into the brain, thus contributing to the poor success rate of current antidepressant therapies. The therapeutic activity of citalopram resides in the Senantiomer, whereas the R-enantiomer is practically devoid of serotonin reuptake potency. To date, no in vivo data are available that address whether the enantiomers of citalopram and its metabolites are substrates of...

  13. Interlaboratory Study on Differential Analysis of Protein Glycosylation by Mass Spectrometry: The ABRF Glycoprotein Research Multi-Institutional Study 2012* (United States)

    Leymarie, Nancy; Griffin, Paula J.; Jonscher, Karen; Kolarich, Daniel; Orlando, Ron; McComb, Mark; Zaia, Joseph; Aguilan, Jennifer; Alley, William R.; Altmann, Friederich; Ball, Lauren E.; Basumallick, Lipika; Bazemore-Walker, Carthene R.; Behnken, Henning; Blank, Michael A.; Brown, Kristy J.; Bunz, Svenja-Catharina; Cairo, Christopher W.; Cipollo, John F.; Daneshfar, Rambod; Desaire, Heather; Drake, Richard R.; Go, Eden P.; Goldman, Radoslav; Gruber, Clemens; Halim, Adnan; Hathout, Yetrib; Hensbergen, Paul J.; Horn, David M.; Hurum, Deanna; Jabs, Wolfgang; Larson, Göran; Ly, Mellisa; Mann, Benjamin F.; Marx, Kristina; Mechref, Yehia; Meyer, Bernd; Möginger, Uwe; Neusüβ, Christian; Nilsson, Jonas; Novotny, Milos V.; Nyalwidhe, Julius O.; Packer, Nicolle H.; Pompach, Petr; Reiz, Bela; Resemann, Anja; Rohrer, Jeffrey S.; Ruthenbeck, Alexandra; Sanda, Miloslav; Schulz, Jan Mirco; Schweiger-Hufnagel, Ulrike; Sihlbom, Carina; Song, Ehwang; Staples, Gregory O.; Suckau, Detlev; Tang, Haixu; Thaysen-Andersen, Morten; Viner, Rosa I.; An, Yanming; Valmu, Leena; Wada, Yoshinao; Watson, Megan; Windwarder, Markus; Whittal, Randy; Wuhrer, Manfred; Zhu, Yiying; Zou, Chunxia


    One of the principal goals of glycoprotein research is to correlate glycan structure and function. Such correlation is necessary in order for one to understand the mechanisms whereby glycoprotein structure elaborates the functions of myriad proteins. The accurate comparison of glycoforms and quantification of glycosites are essential steps in this direction. Mass spectrometry has emerged as a powerful analytical technique in the field of glycoprotein characterization. Its sensitivity, high dynamic range, and mass accuracy provide both quantitative and sequence/structural information. As part of the 2012 ABRF Glycoprotein Research Group study, we explored the use of mass spectrometry and ancillary methodologies to characterize the glycoforms of two sources of human prostate specific antigen (PSA). PSA is used as a tumor marker for prostate cancer, with increasing blood levels used to distinguish between normal and cancer states. The glycans on PSA are believed to be biantennary N-linked, and it has been observed that prostate cancer tissues and cell lines contain more antennae than their benign counterparts. Thus, the ability to quantify differences in glycosylation associated with cancer has the potential to positively impact the use of PSA as a biomarker. We studied standard peptide-based proteomics/glycomics methodologies, including LC-MS/MS for peptide/glycopeptide sequencing and label-free approaches for differential quantification. We performed an interlaboratory study to determine the ability of different laboratories to correctly characterize the differences between glycoforms from two different sources using mass spectrometry methods. We used clustering analysis and ancillary statistical data treatment on the data sets submitted by participating laboratories to obtain a consensus of the glycoforms and abundances. The results demonstrate the relative strengths and weaknesses of top-down glycoproteomics, bottom-up glycoproteomics, and glycomics methods. PMID

  14. Sertraline and Its Metabolite Desmethylsertraline, but not Bupropion or Its Three Major Metabolites, Have High Affinity for P-Glycoprotein


    Wang, Jun-Sheng; Zhu, Hao-Jie; Gibson, Bryan Bradford; Markowitz, John Seth; Donovan, Jennifer Lyn; DeVane, Carl Lindsay


    The ATP-binding cassette (ABC) transporter protein subfamily Bl line (ABCBl) transporter P-glycoprotein (P-gp) plays an important role in the blood–brain barrier limiting a broad spectrum of substrates from entering the central nervous system. In the present study, the transport activity of P-gp for sertraline, desmethylsertralin, bupropion, and the major metabolites of bupropion, threo-amino alcohol (TB), erythro-amino alchhol (EB), and hydroxy metabolite (HB) was studied using an ATPase ass...

  15. MDRl/P-Glycoprotein Function. II. Effect of Hypotonicity and Inhibitors on Cl- Efflux and Volume Regulation (United States)


    ability of MDR1-expressing vs. parental cells multidrug resistance; P-glycoprotein; chloride channel. chlo- to carry out a regulatory volume decrease...NIH/ fibrosis transmembrane conductance regulator ( CFTR ), 3T3MDR murine fibroblasts, FEM-X and FEM-XvMDR which is a Cl- channel (20). The MDR1...the fact chloride channels in volume regulation by T lymphocytes. In: that valinomycin is also an inhibitor of MDR1 trans- Cell Physiology of Blood

  16. Selective identification and differentiation of N- and O-linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry.


    Carr, S. A.; Huddleston, M. J.; Bean, M. F.


    A mass spectrometry method has been developed for selective detection of glycopeptides at the low (< or = 25) picomole level during chromatography of glycoprotein digests and for differentiation of O-linked from N-linked oligosaccharides. The technique involves observation of diagnostic sugar oxonium-ion fragments, particularly the HexNAc+ fragment at m/z 204, from collisionally excited glycopeptides. Collision-induced fragmentation can be accomplished in either of two regions of a triple qua...

  17. Expression of glycoprotein gp43 in stage-specific forms and during dimorphic differentiation of Paracoccidioides brasiliensis. (United States)

    Mattar-Filho, R; Azevedo, M O; Pereira, M; Jesuino, R S; Salem-Izacc, S M; Brito, W A; Gesztesi, J L; Soares, R B; Felipe, M S; Soares, C M


    Expression of the 43 kDa glycoprotein (gp43) was analysed in several Paracoccidioides brasiliensis isolates. Using one- and two-dimensional analysis of crude cellular extracts, it was shown that protein expression in yeast and mycelium was dependent on the isolate analysed. In two strains, in both yeast and mycelium cells. gp43 was present, whereas expression was restricted to the yeast phase of two other strains. The clinical implications of this phase-specific gp43 expression are uncertain.

  18. Brain penetration of ivermectin and selamectin in mdr1a,b P-glycoprotein- and bcrp- deficient knockout mice. (United States)

    Geyer, J; Gavrilova, O; Petzinger, E


    P-glycoprotein, which is encoded by the multi-drug resistance gene (MDR1), highly restricts the entry of ivermectin into the brain by an ATP-driven efflux mechanism at the blood-brain barrier. In dogs with a homozygous MDR1 mutation though, ivermectin accumulates in the brain and provokes severe signs of neurotoxicosis and even death. In contrast to ivermectin, selamectin is safer in the treatment of MDR1 mutant dogs, suggesting that selamectin is transported differently by P-glycoprotein across the blood-brain barrier. To test this, we applied selamectin to mdr1-deficient mdr1a,b(-/-) knockout mice and wild-type mice. Brain penetration, organ distribution, and plasma kinetics were analyzed after intravenous, oral, and dermal spot-on application in comparison with ivermectin. We found that in vivo both macrocyclic lactone compounds are substrates of P-glycoprotein and that these strongly accumulate in the brain of mdr1a,b(-/-) knockout mice compared with wild-type mice at therapeutic doses of 12 mg/kg selamectin and 0.2 mg/kg ivermectin. However, selamectin accumulates to a much lesser degree (5-10 times) than ivermectin (36-60 times) in the absence of P-glycoprotein. This could explain the broader margin of safety of selamectin in MDR1 mutant dogs. In liver, kidney, and testes, ivermectin and selamectin accumulated less than four times as much in mdr1a,b mutant mice as in wild-type mice. Breast cancer resistance protein (Bcrp)-deficient bcrp(-/-) knockout mice were also included in the application studies, but showed no differences in brain concentrations or organ distribution of either ivermectin or selamectin compared with wild-type mice. This indicates that Bcrp is not a relevant efflux carrier for these macrocyclic lactone compounds in vivo at the blood-brain barrier.

  19. Resistance to paclitaxel in a cisplatin-resistant ovarian cancer cell line is mediated by P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Britta Stordal

    Full Text Available The IGROVCDDP cisplatin-resistant ovarian cancer cell line is also resistant to paclitaxel and models the resistance phenotype of relapsed ovarian cancer patients after first-line platinum/taxane chemotherapy. A TaqMan low-density array (TLDA was used to characterise the expression of 380 genes associated with chemotherapy resistance in IGROVCDDP cells. Paclitaxel resistance in IGROVCDDP is mediated by gene and protein overexpression of P-glycoprotein and the protein is functionally active. Cisplatin resistance was not reversed by elacridar, confirming that cisplatin is not a P-glycoprotein substrate. Cisplatin resistance in IGROVCDDP is multifactorial and is mediated in part by the glutathione pathway and decreased accumulation of drug. Total cellular glutathione was not increased. However, the enzyme activity of GSR and GGT1 were up-regulated. The cellular localisation of copper transporter CTR1 changed from membrane associated in IGROV-1 to cytoplasmic in IGROVCDDP. This may mediate the previously reported accumulation defect. There was decreased expression of the sodium potassium pump (ATP1A, MRP1 and FBP which all have been previously associated with platinum accumulation defects in platinum-resistant cell lines. Cellular localisation of MRP1 was also altered in IGROVCDDP shifting basolaterally, compared to IGROV-1. BRCA1 was also up-regulated at the gene and protein level. The overexpression of P-glycoprotein in a resistant model developed with cisplatin is unusual. This demonstrates that P-glycoprotein can be up-regulated as a generalised stress response rather than as a specific response to a substrate. Mechanisms characterised in IGROVCDDP cells may be applicable to relapsed ovarian cancer patients treated with frontline platinum/taxane chemotherapy.

  20. Two Distinct N-Glycosylation Pathways Process the Haloferax volcanii S-Layer Glycoprotein upon Changes in Environmental Salinity


    Kaminski, Lina; Guan, Ziqiang; Yurist-Doutsch, Sophie; Eichler, Jerry


    ABSTRACT N-glycosylation in Archaea presents aspects of this posttranslational modification not seen in either Eukarya or Bacteria. In the haloarchaeon Haloferax volcanii, the surface (S)-layer glycoprotein can be simultaneously modified by two different N-glycans. Asn-13 and Asn-83 are modified by a pentasaccharide, whereas Asn-498 is modified by a tetrasaccharide of distinct composition, with N-glycosylation at this position being related to environmental conditions. Specifically, N-glycosy...