WorldWideScience

Sample records for 5b affects lysosomal

  1. Depletion of kinesin 5B affects lysosomal distribution and stability and induces peri-nuclear accumulation of autophagosomes in cancer cells

    DEFF Research Database (Denmark)

    Cardoso, Carla M P; Groth-Pedersen, Line; Høyer-Hansen, Maria

    2009-01-01

    cells. In KIF5B-depleted cells the autophagosomes formed and accumulated in the close proximity to the Golgi apparatus, whereas in the control cells they appeared uniformly distributed in the cytoplasm. CONCLUSIONS/SIGNIFICANCE: Our data identify KIF5B as a cancer relevant lysosomal motor protein...

  2. Lysosome

    Directory of Open Access Journals (Sweden)

    Ursula Matte BSc, PhD

    2016-12-01

    Full Text Available Since Christian de Duve first described the lysosome in the 1950s, it has been generally presented as a membrane-bound compartment containing acid hydrolases that enables the cell to degrade molecules without being digested by autolysis. For those working on the field of lysosomal storage disorders, the lack of one such hydrolase would lead to undegraded or partially degraded substrate storage inside engorged organelles disturbing cellular function by yet poorly explored mechanisms. However, in recent years, a much more complex scenario of lysosomal function has emerged, beyond and above the cellular “digestive” system. Knowledge on how the impairment of this organelle affects cell functioning may shed light on signs and symptoms of lysosomal disorders and open new roads for therapy.

  3. Lysosome

    National Research Council Canada - National Science Library

    Ursula Matte BSc, PhD; Gabriela Pasqualim BSc, MSc

    2016-01-01

    Since Christian de Duve first described the lysosome in the 1950s, it has been generally presented as a membrane-bound compartment containing acid hydrolases that enables the cell to degrade molecules...

  4. High Uric Acid (UA Negatively Affects Serum Tartrate-Resistant Acid Phosphatase 5b (TRACP 5b Immunoassay.

    Directory of Open Access Journals (Sweden)

    Zhi-Qi Wu

    Full Text Available Bone metastases often occur in the majority of patients with advanced cancer, such as prostate cancer, lung cancer and breast cancer. Serum tartrate-resistant acid phosphatase 5b (TRACP 5b, a novel bone resorption marker, has been used gradually in the clinics as a specific and sensitive marker of bone resorption for the early diagnosis of cancer patients with bone metastasis. Here, we reported that high concentrations of uric acid (UA lead to decrease of TRACP 5b levels and determined whether TRACP 5b level was associated with UA in interference experiment.A total of 77 patients with high concentrations of UA and 77 healthy subjects were tested to evaluate the differences in their TRACP 5b levels. Serial dilutions of UA were respectively spiked with a known concentration of TRACP 5b standard sample, then Serum TRACP 5b was detected by using bone TRAP® Assay. A correction equation was set to eliminate UA-derived TRACP 5b false-decrease. The effect of this correction was evaluated in high-UA individuals.The average TRACP level of the high-UA individuals (1.47 ± 0.62 U/L was significantly lower than that of the healthy subjects (2.62 ± 0.63 U/L (t-test, p < 0.0001. The UA correction equation derived: ΔTRACP 5b = -1.9751lgΔUA + 3.7365 with an R2 = 0.98899. Application of the UA correction equation resulted in a statistically non-significant difference in TRACP 5b values between the healthy subjects and high-UA individuals (p = 0.24.High UA concentrations can falsely decrease TRACP 5b levels due to a method-related systematic error. To avoid misdiagnoses or inappropriate therapeutic decisions, increased attention should be paid to UA interference, when TRACP 5b is used for early diagnosis of cancer patients with bone metastasis, evaluation of the aggressiveness of osteosarcoma or prediction of survival in prostate cancer and breast cancer with bone metastases.

  5. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    Directory of Open Access Journals (Sweden)

    G.B. Peres

    2014-06-01

    Full Text Available It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old, while 26 age-matched controls received only vehicle. The livers were removed on either the 10th or the 30th day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA of cathepsins B and L was also decreased on the 10th, but not on the 30th day. Sulfatase decreased 30% on the 30th day, while glycosidases did not vary (or presented a transitory and slight decrease. There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver.

  6. Streptozotocin-induced diabetes mellitus affects lysosomal enzymes in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Peres, G.B. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Bioquímica, São Paulo, SP, Brasil, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Juliano, M.A. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Biofísica, São Paulo, SP, Brasil, Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Aguiar, J.A.K.; Michelacci, Y.M. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Bioquímica, São Paulo, SP, Brasil, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-05-09

    It has been previously shown that dextran sulfate administered to diabetic rats accumulates in the liver and kidney, and this could be due to a malfunction of the lysosomal digestive pathway. The aim of the present study was to evaluate the expression and activities of lysosomal enzymes that act upon proteins and sulfated polysaccharides in the livers of diabetic rats. Diabetes mellitus was induced by streptozotocin in 26 male Wistar rats (12 weeks old), while 26 age-matched controls received only vehicle. The livers were removed on either the 10{sup th} or the 30{sup th} day of the disease, weighed, and used to evaluate the activity, expression, and localization of lysosomal enzymes. A 50-60% decrease in the specific activities of cysteine proteases, especially cathepsin B, was observed in streptozotocin-induced diabetes mellitus. Expression (mRNA) of cathepsins B and L was also decreased on the 10{sup th}, but not on the 30{sup th} day. Sulfatase decreased 30% on the 30{sup th} day, while glycosidases did not vary (or presented a transitory and slight decrease). There were no apparent changes in liver morphology, and immunohistochemistry revealed the presence of cathepsin B in hepatocyte granules. The decrease in sulfatase could be responsible for the dextran sulfate build-up in the diabetic liver, since the action of sulfatase precedes glycosidases in the digestive pathway of sulfated polysaccharides. Our findings suggest that the decreased activities of cathepsins resulted from decreased expression of their genes, and not from general lysosomal failure, because the levels of glycosidases were normal in the diabetic liver.

  7. Effect of Readthrough Treatment in Fibroblasts of Patients Affected by Lysosomal Diseases Caused by Premature Termination Codons.

    Science.gov (United States)

    Matalonga, Leslie; Arias, Ángela; Tort, Frederic; Ferrer-Cortés, Xènia; Garcia-Villoria, Judit; Coll, Maria Josep; Gort, Laura; Ribes, Antonia

    2015-10-01

    Aminoglycoside antibiotics, such as gentamicin, may induce premature termination codon (PTC) readthrough and elude the nonsense-mediated mRNA decay mechanism. Because PTCs are frequently involved in lysosomal diseases, readthrough compounds may be useful as potential therapeutic agents. The aim of our study was to identify patients responsive to gentamicin treatment in order to be used as positive controls to further screen for other PTC readthrough compounds. With this aim, fibroblasts from 11 patients affected by 6 different lysosomal diseases carrying PTCs were treated with gentamicin. Treatment response was evaluated by measuring enzymatic activity, abnormal metabolite accumulation, mRNA expression, protein localization, and cell viability. The potential effect of readthrough was also analyzed by in silico predictions. Results showed that fibroblasts from 5/11 patients exhibited an up to 3-fold increase of enzymatic activity after gentamicin treatment. Accordingly, cell lines tested showed enhanced well-localized protein and/or increased mRNA expression levels and/or reduced metabolite accumulation. Interestingly, these cell lines also showed increased enzymatic activity after PTC124 treatment, which is a PTC readthrough-promoting compound. In conclusion, our results provide a proof-of-concept that PTCs can be effectively suppressed by readthrough drugs, with different efficiencies depending on the genetic context. The screening of new compounds with readthrough activity is a strategy that can be used to develop efficient therapies for diseases caused by PTC mutations.

  8. Loss of β-glucocerebrosidase activity does not affect alpha-synuclein levels or lysosomal function in neuronal cells.

    Science.gov (United States)

    Dermentzaki, Georgia; Dimitriou, Evangelia; Xilouri, Maria; Michelakakis, Helen; Stefanis, Leonidas

    2013-01-01

    To date, a plethora of studies have provided evidence favoring an association between Gaucher disease (GD) and Parkinson's disease (PD). GD, the most common lysosomal storage disorder, results from the diminished activity of the lysosomal enzyme β-glucocerebrosidase (GCase), caused by mutations in the β-glucocerebrosidase gene (GBA). Alpha-synuclein (ASYN), a presynaptic protein, has been strongly implicated in PD pathogenesis. ASYN may in part be degraded by the lysosomes and may itself aberrantly impact lysosomal function. Therefore, a putative link between deficient GCase and ASYN, involving lysosomal dysfunction, has been proposed to be responsible for the risk for PD conferred by GBA mutations. In this current work, we aimed to investigate the effects of pharmacological inhibition of GCase on ASYN accumulation/aggregation, as well as on lysosomal function, in differentiated SH-SY5Y cells and in primary neuronal cultures. Following profound inhibition of the enzyme activity, we did not find significant alterations in ASYN levels, or any changes in the clearance or formation of its oligomeric species. We further observed no significant impairment of the lysosomal degradation machinery. These findings suggest that additional interaction pathways together with aberrant GCase and ASYN must govern this complex relation between GD and PD.

  9. LYSOSOMAL DISRUPTION BY BACTERIAL TOXINS

    Science.gov (United States)

    Bernheimer, Alan W.; Schwartz, Lois L.

    1964-01-01

    Bernheimer, Alan W. (New York University School of Medicine, New York), and Lois L. Schwartz. Lysosomal disruption by bacterial toxins. J. Bacteriol. 87:1100–1104. 1964.—Seventeen bacterial toxins were examined for capacity (i) to disrupt rabbit leukocyte lysosomes as indicated by decrease in turbidity of lysosomal suspensions, and (ii) to alter rabbit liver lysosomes as measured by release of β-glucuronidase and acid phosphatase. Staphylococcal α-toxin, Clostridium perfringens α-toxin, and streptolysins O and S affected lysosomes in both systems. Staphylococcal β-toxin, leucocidin and enterotoxin, Shiga neurotoxin, Serratia endotoxin, diphtheria toxin, tetanus neurotoxin, C. botulinum type A toxin, and C. perfringens ε-toxin were not active in either system. Staphylococcal δ-toxin, C. histolyticum collagenase, crude C. perfringens β-toxin, and crude anthrax toxin caused lysosomal damage in only one of the test systems. There is a substantial correlation between the hemolytic property of a toxin and its capacity to disrupt lysosomes, lending support to the concept that erythrocytes and lysosomes are bounded by similar membranes. PMID:5874534

  10. Brief exposure to copper activates lysosomal exocytosis.

    Science.gov (United States)

    Peña, Karina; Coblenz, Jessica; Kiselyov, Kirill

    2015-04-01

    Copper (Cu) is essential mineral, but its toxicity necessitates existence of powerful machinery responsible for the extraction of excess Cu from the cell. Cu exposure was recently shown to induce the translocation of Cu pump ATP7B to the lysosomes followed by lysosomal exocytosis. Here we sought to investigate the mechanisms underlying the effect of Cu on lysosomal exocytosis. We found that brief exposure to Cu activates lysosomal exocytosis, which was measured as a release of the lysosomal digestive enzyme β-hexosaminidase (β-hex) into the extracellular medium and by the presence lysosomal protein LAMP1 at the plasma membrane. Such release depends on calcium (Ca) and on the lysosomal SNARE VAMP7. ATP7B knockdown using RNAi suppressed the basal lysosomal exocytosis, but did not affect the ability of Cu to activate it. ATP7B knockdown was associated with sustained oxidative stress. The removal of Ca from the extracellular medium suppressed the Cu-dependent component of the lysosomal exocytosis. We propose that Cu promotes lysosomal exocytosis by facilitating a Ca-dependent step of the lysosomal exocytosis.

  11. Lysosomal stress: a new player in perturbed lipid metabolism

    NARCIS (Netherlands)

    Gabriel, T.L.

    2017-01-01

    Lysosomes are involved in many different essential cellular processes, among others organelle and molecule degradation, exocytosis, cell energy metabolism, cholesterol and sphingolipid level regulation. Lysosomal stress has a strong impact on the immune system, affecting specially macrophages as the

  12. Lysosomal stress: a new player in perturbed lipid metabolism

    NARCIS (Netherlands)

    Gabriel, T.L.

    2017-01-01

    Lysosomes are involved in many different essential cellular processes, among others organelle and molecule degradation, exocytosis, cell energy metabolism, cholesterol and sphingolipid level regulation. Lysosomal stress has a strong impact on the immune system, affecting specially macrophages as the

  13. Pervasive supply of therapeutic lysosomal enzymes in the CNS of normal and Krabbe-affected non-human primates by intracerebral lentiviral gene therapy.

    Science.gov (United States)

    Meneghini, Vasco; Lattanzi, Annalisa; Tiradani, Luigi; Bravo, Gabriele; Morena, Francesco; Sanvito, Francesca; Calabria, Andrea; Bringas, John; Fisher-Perkins, Jeanne M; Dufour, Jason P; Baker, Kate C; Doglioni, Claudio; Montini, Eugenio; Bunnell, Bruce A; Bankiewicz, Krystof; Martino, Sabata; Naldini, Luigi; Gritti, Angela

    2016-05-02

    Metachromatic leukodystrophy (MLD) and globoid cell leukodystrophy (GLD or Krabbe disease) are severe neurodegenerative lysosomal storage diseases (LSD) caused by arylsulfatase A (ARSA) and galactosylceramidase (GALC) deficiency, respectively. Our previous studies established lentiviral gene therapy (GT) as a rapid and effective intervention to provide pervasive supply of therapeutic lysosomal enzymes in CNS tissues of MLD and GLD mice. Here, we investigated whether this strategy is similarly effective in juvenile non-human primates (NHP). To provide proof of principle for tolerability and biological efficacy of the strategy, we established a comprehensive study in normal NHP delivering a clinically relevant lentiviral vector encoding for the human ARSA transgene. Then, we injected a lentiviral vector coding for the human GALC transgene in Krabbe-affected rhesus macaques, evaluating for the first time the therapeutic potential of lentiviral GT in this unique LSD model. We showed favorable safety profile and consistent pattern of LV transduction and enzyme biodistribution in the two models, supporting the robustness of the proposed GT platform. We documented moderate inflammation at the injection sites, mild immune response to vector particles in few treated animals, no indication of immune response against transgenic products, and no molecular evidence of insertional genotoxicity. Efficient gene transfer in neurons, astrocytes, and oligodendrocytes close to the injection sites resulted in robust production and extensive spreading of transgenic enzymes in the whole CNS and in CSF, leading to supraphysiological ARSA activity in normal NHP and close to physiological GALC activity in the Krabbe NHP, in which biological efficacy was associated with preliminary indication of therapeutic benefit. These results support the rationale for the clinical translation of intracerebral lentiviral GT to address CNS pathology in MLD, GLD, and other neurodegenerative LSD.

  14. 75 FR 23574 - Airworthiness Directives; CFM International, S.A. CFM56-5B1/P, -5B2/P, -5B3/P, -5B3/P1, -5B4/P...

    Science.gov (United States)

    2010-05-04

    ..., S.A. CFM56-5B1/P, - 5B2/P, -5B3/P, -5B3/P1, -5B4/P, -5B5/P, -5B6/P, -5B7/P, -5B8/P, -5B9/P, -5B1/2P... Docket Operations office between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. The... CFM International, S.A. CFM56-5B1/P, - 5B2/P, -5B3/P, -5B3/P1, -5B4/P, -5B5/P,......

  15. TRPML: transporters of metals in lysosomes essential for cell survival?

    Science.gov (United States)

    Kiselyov, Kirill; Colletti, Grace A; Terwilliger, Austen; Ketchum, Kathleen; Lyons, Christopher W P; Quinn, James; Muallem, Shmuel

    2011-09-01

    Key aspects of lysosomal function are affected by the ionic content of the lysosomal lumen and, therefore, by the ion permeability in the lysosomal membrane. Such functions include regulation of lysosomal acidification, a critical process in delivery and activation of the lysosomal enzymes, release of metals from lysosomes into the cytoplasm and the Ca(2+)-dependent component of membrane fusion events in the endocytic pathway. While the basic mechanisms of lysosomal acidification have been largely defined, the lysosomal metal transport system is not well understood. TRPML1 is a lysosomal ion channel whose malfunction is implicated in the lysosomal storage disease Mucolipidosis Type IV. Recent evidence suggests that TRPML1 is involved in Fe(2+), Ca(2+) and Zn(2+) transport across the lysosomal membrane, ascribing novel physiological roles to this ion channel, and perhaps to its relatives TRPML2 and TRPML3 and illuminating poorly understood aspects of lysosomal function. Further, alterations in metal transport by the TRPMLs due to mutations or environmental factors may contribute to their role in the disease phenotype and cell death.

  16. TRPML and lysosomal function.

    Science.gov (United States)

    Zeevi, David A; Frumkin, Ayala; Bach, Gideon

    2007-08-01

    Mucolipin 1 (MLN1), also known as TRPML1, is a member of the mucolipin family. The mucolipins are the only lysosomal proteins within the TRP superfamily. Mutations in the gene coding for TRPML1 result in a lysosomal storage disorder (LSD). This review summarizes the current knowledge related to this protein and the rest of the mucolipin family.

  17. The proteome of lysosomes.

    Science.gov (United States)

    Schröder, Bernd A; Wrocklage, Christian; Hasilik, Andrej; Saftig, Paul

    2010-11-01

    Lysosomes are organelles of eukaryotic cells that are critically involved in the degradation of macromolecules mainly delivered by endocytosis and autophagocytosis. Degradation is achieved by more than 60 hydrolases sequestered by a single phospholipid bilayer. The lysosomal membrane facilitates interaction and fusion with other compartments and harbours transport proteins catalysing the export of catabolites, thereby allowing their recycling. Lysosomal proteins have been addressed in various proteomic studies that are compared in this review regarding the source of material, the organelle/protein purification scheme, the proteomic methodology applied and the proteins identified. Distinguishing true constituents of an organelle from co-purifying contaminants is a central issue in subcellular proteomics, with additional implications for lysosomes as being the site of degradation of many cellular and extracellular proteins. Although many of the lysosomal hydrolases were identified by classical biochemical approaches, the knowledge about the protein composition of the lysosomal membrane has remained fragmentary for a long time. Using proteomics many novel lysosomal candidate proteins have been discovered and it can be expected that their functional characterisation will help to understand functions of lysosomes at a molecular level that have been characterised only phenomenologically so far and to generally deepen our understanding of this indispensable organelle.

  18. Epidermal Growth Factor Cytoplasmic Domain Affects ErbB Protein Degradation by the Lysosomal and Ubiquitin-Proteasome Pathway in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Aleksandra Glogowska

    2012-05-01

    Full Text Available The cytoplasmic domains of EGF-like ligands, including EGF cytoplasmic domain (EGFcyt, have important biological functions. Using specific constructs and peptides of human EGF cytoplasmic domain, we demonstrate that EGFcyt facilitates lysosomal and proteasomal protein degradation, and this coincided with growth inhibition of human thyroid and glioma carcinoma cells. EGFcyt and exon 22–23-encoded peptide (EGF22.23 enhanced procathepsin B (procathB expression and procathB-mediated lysosomal degradation of EGFR/ErbB1 as determined by inhibitors for procathB and the lysosomal ATPase inhibitor BafA1. Presence of mbEGFctF, EGFcyt, EGF22.23, and exon 23-encoded peptides suppressed the expression of the deubiqitinating enzyme ubiquitin C-terminal hydrolase-L1 (UCH-L1. This coincided with hyperubiquitination of total cellular proteins and ErbB1/2 and reduced proteasome activity. Upon small interfering RNA-mediated silencing of endogenously expressed UCH-L1, a similar hyperubiquitinylation phenotype, reduced ErbB1/2 content, and attenuated growth was observed. The exon 23-encoded peptide region of EGFcyt was important for these biologic actions. Structural homology modeling of human EGFcyt showed that this molecular region formed an exposed surface loop. Peptides derived from this EGFcyt loop structure may aid in the design of novel peptide therapeutics aimed at inhibiting growth of cancer cells.

  19. Lysosome Biogenesis and Autophagy

    NARCIS (Netherlands)

    Reggiori, Fulvio; Klumperman, Judith|info:eu-repo/dai/nl/075097273

    2016-01-01

    Lysosomes degrade biological components acquired by endocytosis, the major cellular pathway for internalization of extracellular material, and macroautophagy. This chapter presents an overview of these two major degradative intracellular pathways, and highlights the emerging cross talks between

  20. Endo-lysosomal dysfunction in human proximal tubular epithelial cells deficient for lysosomal cystine transporter cystinosin.

    Directory of Open Access Journals (Sweden)

    Ekaterina A Ivanova

    Full Text Available Nephropathic cystinosis is a lysosomal storage disorder caused by mutations in the CTNS gene encoding cystine transporter cystinosin that results in accumulation of amino acid cystine in the lysosomes throughout the body and especially affects kidneys. Early manifestations of the disease include renal Fanconi syndrome, a generalized proximal tubular dysfunction. Current therapy of cystinosis is based on cystine-lowering drug cysteamine that postpones the disease progression but offers no cure for the Fanconi syndrome. We studied the mechanisms of impaired reabsorption in human proximal tubular epithelial cells (PTEC deficient for cystinosin and investigated the endo-lysosomal compartments of cystinosin-deficient PTEC by means of light and electron microscopy. We demonstrate that cystinosin-deficient cells had abnormal shape and distribution of the endo-lysosomal compartments and impaired endocytosis, with decreased surface expression of multiligand receptors and delayed lysosomal cargo processing. Treatment with cysteamine improved surface expression and lysosomal cargo processing but did not lead to a complete restoration and had no effect on the abnormal morphology of endo-lysosomal compartments. The obtained results improve our understanding of the mechanism of proximal tubular dysfunction in cystinosis and indicate that impaired protein reabsorption can, at least partially, be explained by abnormal trafficking of endosomal vesicles.

  1. A potentially dynamic lysosomal role for the endogenous TRPML proteins.

    Science.gov (United States)

    Zeevi, David A; Frumkin, Ayala; Offen-Glasner, Vered; Kogot-Levin, Aviram; Bach, Gideon

    2009-10-01

    Lysosomal storage disorders (LSDs) constitute a diverse group of inherited diseases that result from lysosomal storage of compounds occurring in direct consequence to deficiencies of proteins implicated in proper lysosomal function. Pathology in the LSD mucolipidosis type IV (MLIV), is characterized by lysosomal storage of lipids together with water-soluble materials in cells from every tissue and organ of affected patients. Mutations in the mucolipin 1 (TRPML1) protein cause MLIV and TRPML1 has also been shown to interact with two of its paralogous proteins, mucolipin 2 (TRPML2) and mucolipin 3 (TRPML3), in heterologous expression systems. Heterogeneous lysosomal storage is readily identified in electron micrographs of MLIV patient cells, suggesting that proper TRPML1 function is essential for the maintenance of lysosomal integrity. In order to investigate whether TRPML2 and TRPML3 also play a role in the maintenance of lysosomal integrity, we conducted gene-specific knockdown assays against these protein targets. Ultrastructural analysis revealed lysosomal inclusions in both TRPML2 and TRPML3 knockdown cells, suggestive of a common mechanism for these proteins, in parallel with TRPML1, in the regulation of lysosomal integrity. However, co-immunoprecipitation assays revealed that physical interactions between each of the endogenous TRPML proteins are quite limited. In addition, we found that all three endogenous proteins only partially co-localize with each other in lysosomal as well as extra-lysosomal compartments. This suggests that native TRPML2 and TRPML3 might participate with native TRPML1 in a dynamic form of lysosomal regulation. Given that depletion of TRPML2/3 led to lysosomal storage typical to an LSD, we propose that depletion of these proteins might also underlie novel LSD pathologies not described hitherto.

  2. 34 CFR 5b.1 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... maintained by the Department, including but not limited to the individual's education, financial transactions... 34 Education 1 2010-07-01 2010-07-01 false Definitions. 5b.1 Section 5b.1 Education Office of the Secretary, Department of Education PRIVACY ACT REGULATIONS § 5b.1 Definitions. As used in this part:...

  3. 45 CFR 5b.11 - Exempt systems.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Exempt systems. 5b.11 Section 5b.11 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PRIVACY ACT REGULATIONS § 5b.11 Exempt systems. (a) General policy. The Act permits certain types of specific systems of records to be exempt from...

  4. Mitochondrial Dysfunction in Lysosomal Storage Disorders

    Directory of Open Access Journals (Sweden)

    Mario de la Mata

    2016-10-01

    Full Text Available Lysosomal storage diseases (LSDs describe a heterogeneous group of rare inherited metabolic disorders that result from the absence or loss of function of lysosomal hydrolases or transporters, resulting in the progressive accumulation of undigested material in lysosomes. The accumulation of substances affects the function of lysosomes and other organelles, resulting in secondary alterations such as impairment of autophagy, mitochondrial dysfunction, inflammation and apoptosis. LSDs frequently involve the central nervous system (CNS, where neuronal dysfunction or loss results in progressive neurodegeneration and premature death. Many LSDs exhibit signs of mitochondrial dysfunction, which include mitochondrial morphological changes, decreased mitochondrial membrane potential (ΔΨm, diminished ATP production and increased generation of reactive oxygen species (ROS. Furthermore, reduced autophagic flux may lead to the persistence of dysfunctional mitochondria. Gaucher disease (GD, the LSD with the highest prevalence, is caused by mutations in the GBA1 gene that results in defective and insufficient activity of the enzyme β-glucocerebrosidase (GCase. Decreased catalytic activity and/or instability of GCase leads to accumulation of glucosylceramide (GlcCer and glucosylsphingosine (GlcSph in the lysosomes of macrophage cells and visceral organs. Mitochondrial dysfunction has been reported to occur in numerous cellular and mouse models of GD. The aim of this manuscript is to review the current knowledge and implications of mitochondrial dysfunction in LSDs.

  5. A Complex Network of Interactions between S282 and G283 of Hepatitis C Virus Nonstructural Protein 5B and the Template Strand Affects Susceptibility to Sofosbuvir and Ribavirin.

    Science.gov (United States)

    Kulkarni, Anupriya S; Damha, Masad J; Schinazi, Raymond F; Mo, Hongmei; Doehle, Brian; Sagan, Selena M; Götte, Matthias

    2016-04-01

    The hepatitis C virus (HCV) RNA-dependent RNA-polymerase NS5B is essentially required for viral replication and serves as a prominent drug target. Sofosbuvir is a prodrug of a nucleotide analog that interacts selectively with NS5B and has been approved for HCV treatment in combination with ribavirin. Although the emergence of resistance to sofosbuvir is rarely seen in the clinic, the S282T mutation was shown to decrease susceptibility to this drug. S282T was also shown to confer hypersusceptibility to ribavirin, which is of potential clinical benefit. Here we devised a biochemical approach to elucidate the underlying mechanisms. Recent crystallographic data revealed a hydrogen bond between S282 and the 2'-hydroxyl of the bound nucleotide, while the adjacent G283 forms a hydrogen bond with the 2'-hydroxyl of the residue of the template that base pairs with the nucleotide substrate. We show that DNA-like modifications of the template that disrupt hydrogen bonding with G283 cause enzyme pausing with natural nucleotides. However, the specifically introduced DNA residue of the template reestablishes binding and incorporation of sofosbuvir in the context of S282T. Moreover, the DNA-like modifications of the template prevent the incorporation of ribavirin in the context of the wild-type enzyme, whereas the S282T mutant enables the binding and incorporation of ribavirin under the same conditions. Together, these findings provide strong evidence to show that susceptibility to sofosbuvir and ribavirin depends crucially on a network of interdependent hydrogen bonds that involve the adjacent residues S282 and G283 and their interactions with the incoming nucleotide and complementary template residue, respectively.

  6. Deletion of the highly conserved N-glycan at Asn260 of HIV-1 gp120 affects folding and lysosomal degradation of gp120, and results in loss of viral infectivity.

    Directory of Open Access Journals (Sweden)

    Leen Mathys

    Full Text Available N-linked glycans covering the surface of the HIV-1 glycoprotein gp120 are of major importance for the correct folding of this glycoprotein. Of the, on average, 24 N-linked glycans present on gp120, the glycan at Asn260 was reported to be essential for the correct expression of gp120 and gp41 in the virus particle and deletion of the N260 glycan in gp120 heavily compromised virus infectivity. We show here that gp160 containing the N260Q mutation reaches the Golgi apparatus during biosynthesis. Using pulse-chase experiments with [35S] methionine/cysteine, we show that oxidative folding was slightly delayed in case of mutant N260Q gp160 and that CD4 binding was markedly compromised compared to wild-type gp160. In the search of compensatory mutations, we found a mutation in the V1/V2 loop of gp120 (S128N that could partially restore the infectivity of mutant N260Q gp120 virus. However, the mutation S128N did not enhance any of the above-mentioned processes so its underlying compensatory mechanism must be a conformational effect that does not affect CD4 binding per se. Finally, we show that mutant N260Q gp160 was cleaved to gp120 and gp41 to a much lower extent than wild-type gp160, and that it was subject of lysosomal degradation to a higher extent than wild-type gp160 showing a prominent role of this process in the breakdown of N260-glycan-deleted gp160, which could not be counteracted by the S128N mutation. Moreover, at least part of the wild-type or mutant gp160 that is normally targeted for lysosomal degradation reached a conformation that enabled CD4 binding.

  7. The lysosome and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Lisha Zhang; Rui Sheng; Zhenghong Qin

    2009-01-01

    It has long been believed that the lysosome is an important digestive organelle. There is increasing evidence that the lysosome is also involved in pathogenesis of a variety of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Abnormal protein degradation and deposition induced by lysosoreal dysfunction may be the primary contributor to age-related neurodegeneration. In this review, the possible relationship between lysosome and various neurodegenerative diseases is described.

  8. Neuroinflammatory paradigms in lysosomal storage diseases

    Directory of Open Access Journals (Sweden)

    Megan Elizabeth Bosch

    2015-10-01

    Full Text Available Lysosomal storage diseases (LSDs include approximately 70 distinct disorders that collectively account for 14% of all inherited metabolic diseases. LSDs are caused by mutations in various enzymes/proteins that disrupt lysosomal function, which impairs macromolecule degradation following endosome-lysosome and phagosome-lysosome fusion and autophagy, ultimately disrupting cellular homeostasis. LSDs are pathologically typified by lysosomal inclusions composed of a heterogeneous mixture of various proteins and lipids that can be found throughout the body. However, in many cases the CNS is dramatically affected, which may result from heightened neuronal vulnerability based on their post-mitotic state. Besides intrinsic neuronal defects, another emerging factor common to many LSDs is neuroinflammation, which may negatively impact neuronal survival and contribute to neurodegeneration. Microglial and astrocyte activation is a hallmark of many LSDs that affect the CNS, which often precedes and predicts regions where eventual neuron loss will occur. However, the timing, intensity, and duration of neuroinflammation may ultimately dictate the impact on CNS homeostasis. For example, a transient inflammatory response following CNS insult/injury can be neuroprotective, as glial cells attempt to remove the insult and provide trophic support to neurons. However, chronic inflammation, as seen in several LSDs, can promote neurodegeneration by creating a neurotoxic environment due to elevated levels of cytokines, chemokines, and pro-apoptotic molecules. Although neuroinflammation has been reported in several LSDs, the cellular basis and mechanisms responsible for eliciting neuroinflammatory pathways are just beginning to be defined. This review highlights the role of neuroinflammation in select LSDs and its potential contribution to neuron loss.

  9. Cancer-associated lysosomal changes

    DEFF Research Database (Denmark)

    Kallunki, T; Olsen, O D; Jaattela, Marja

    2013-01-01

    Rapidly dividing and invasive cancer cells are strongly dependent on effective lysosomal function. Accordingly, transformation and cancer progression are characterized by dramatic changes in lysosomal volume, composition and cellular distribution. Depending on one's point of view, the cancer-asso......:10.1038/onc.2012.292....

  10. Syntaxin 7 and VAMP-7 are soluble N-ethylmaleimide-sensitive factor attachment protein receptors required for late endosome-lysosome and homotypic lysosome fusion in alveolar macrophages.

    Science.gov (United States)

    Ward, D M; Pevsner, J; Scullion, M A; Vaughn, M; Kaplan, J

    2000-07-01

    Endocytosis in alveolar macrophages can be reversibly inhibited, permitting the isolation of endocytic vesicles at defined stages of maturation. Using an in vitro fusion assay, we determined that each isolated endosome population was capable of homotypic fusion. All vesicle populations were also capable of heterotypic fusion in a temporally specific manner; early endosomes, isolated 4 min after internalization, could fuse with endosomes isolated 8 min after internalization but not with 12-min endosomes or lysosomes. Lysosomes fuse with 12-min endosomes but not with earlier endosomes. Using homogenous populations of endosomes, we have identified Syntaxin 7 as a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) required for late endosome-lysosome and homotypic lysosome fusion in vitro. A bacterially expressed human Syntaxin 7 lacking the transmembrane domain inhibited homotypic late endosome and lysosome fusion as well as heterotypic late endosome-lysosome fusion. Affinity-purified antibodies directed against Syntaxin 7 also inhibited lysosome fusion in vitro but had no affect on homotypic early endosome fusion. Previous work suggested that human VAMP-7 (vesicle-associated membrane protein-7) was a SNARE required for late endosome-lysosome fusion. A bacterially expressed human VAMP-7 lacking the transmembrane domain inhibited both late endosome-lysosome fusion and homotypic lysosome fusion in vitro. These studies indicate that: 1) fusion along the endocytic pathway is a highly regulated process, and 2) two SNARE molecules, Syntaxin 7 and human VAMP-7, are involved in fusion of vesicles in the late endocytic pathway in alveolar macrophages.

  11. Signal transducer and activator of transcription 5B (STAT5B) modulates adipocyte differentiation via MOF.

    Science.gov (United States)

    Gao, Peng; Zhang, Yuchao; Liu, Yuantao; Chen, Jicui; Zong, Chen; Yu, Cong; Cui, Shang; Gao, Weina; Qin, Dandan; Sun, Wenchuan; Li, Xia; Wang, Xiangdong

    2015-12-01

    The role and mechanism of signal transducer and activator of transcription 5B (STAT5B) in adipogenesis remain unclear. In this study, our data showed that Males absent on the first (MOF) protein expression was increased during 3 T3-L1 preadipocytes differentiation accompanied with STAT5B expression increasing. Over-expression STAT5B enhanced MOF promoter trans-activation in HeLa cells. Mutagenesis assay and ChIP analysis exhibited that STAT5B was able to bind MOF promoter. Knocking-down STAT5B in 3 T3-L1 preadipocytes led to decreased expression of MOF, but resulted in increased expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα) and fatty acid-binding protein 4 (Fabp4), which were important factors or enzymes for adipogenesis. We also found that knocking-down MOF in 3 T3-L1 preadipocytes resulted in increased expression of PPARγ, C/EBPα and Fabp4, which was in the same trend as STAT5B knocking-down. Over-expression MOF resulted in reduced promoter trans-activation activity of C/EBPα. These results suggest that STAT5B and MOF work as negative regulators in adipogenesis, and STAT5B modulates preadipocytes differentiation partially by regulating MOF expression.

  12. Cancer-associated lysosomal changes

    DEFF Research Database (Denmark)

    Kallunki, T; Olsen, O D; Jaattela, Marja

    2013-01-01

    Rapidly dividing and invasive cancer cells are strongly dependent on effective lysosomal function. Accordingly, transformation and cancer progression are characterized by dramatic changes in lysosomal volume, composition and cellular distribution. Depending on one's point of view, the cancer-associated......-targeting anti-cancer drugs. In this review we compile our current knowledge on cancer-associated changes in lysosomal composition and discuss the consequences of these alterations to cancer progression and the possibilities they can bring to cancer therapy.Oncogene advance online publication, 9 July 2012; doi...

  13. Lysosomal cell death at a glance

    DEFF Research Database (Denmark)

    Aits, Sonja; Jaattela, Marja

    2013-01-01

    Lysosomes serve as the cellular recycling centre and are filled with numerous hydrolases that can degrade most cellular macromolecules. Lysosomal membrane permeabilization and the consequent leakage of the lysosomal content into the cytosol leads to so-called "lysosomal cell death". This form...... of cell death is mainly carried out by the lysosomal cathepsin proteases and can have necrotic, apoptotic or apoptosis-like features depending on the extent of the leakage and the cellular context. This article summarizes our current knowledge on lysosomal cell death with an emphasis on the upstream...... mechanisms that lead to lysosomal membrane permeabilization....

  14. The Link Between Lysosomal Storage Disorders and More Common Diseases

    Directory of Open Access Journals (Sweden)

    Michael Beck MD

    2016-12-01

    Full Text Available In the last decades, it has become more and more evident that lysosomal storage disorders and common neurodegenerative diseases such as Alzheimer and Parkinson diseases have clinical, neuropathological, and genetic features in common, including lysosomal dysfunction and impaired autophagy. Patients with Gaucher and even carriers of Gaucher disease have an increased risk to develop Parkinson disease. Likewise, individuals who are heterozygous for a mutation of a gene that causes an adult form of neuronal ceroid lipofuscinosis are more likely to be affected by a form of frontotemporal dementia in their later life. A further example is the gene NAGLU encoding the enzyme α- N -acetylglucosaminidase, which is deficient in patients with mucopolysaccharidosis type IIIB. Mutations of the NAGLU gene have been observed in patients affected by an axonal neuropathy. An interesting unexpected finding was the link between stuttering and genes that are essential for the function of all lysosomal enzymes. This review will present some example of the association of lysosomal storage disorders and neurodegenerative disease and discuss possible pathogenic mechanisms that are common to both conditions. The understanding of the pathophysiology of the endosomal–lysosomal–autophagic system may help to develop drugs, which might provide benefit not only for patients with rare lysosomal storage disorders but also for individuals affected by more common diseases.

  15. The Link Between Lysosomal Storage Disorders and More Common Diseases

    Directory of Open Access Journals (Sweden)

    Michael Beck MD

    2016-12-01

    Full Text Available In the last decades, it has become more and more evident that lysosomal storage disorders and common neurodegenerative diseases such as Alzheimer and Parkinson diseases have clinical, neuropathological, and genetic features in common, including lysosomal dysfunction and impaired autophagy. Patients with Gaucher and even carriers of Gaucher disease have an increased risk to develop Parkinson disease. Likewise, individuals who are heterozygous for a mutation of a gene that causes an adult form of neuronal ceroid lipofuscinosis are more likely to be affected by a form of frontotemporal dementia in their later life. A further example is the gene NAGLU encoding the enzyme α-N-acetylglucosaminidase, which is deficient in patients with mucopolysaccharidosis type IIIB. Mutations of the NAGLU gene have been observed in patients affected by an axonal neuropathy. An interesting unexpected finding was the link between stuttering and genes that are essential for the function of all lysosomal enzymes. This review will present some example of the association of lysosomal storage disorders and neurodegenerative disease and discuss possible pathogenic mechanisms that are common to both conditions. The understanding of the pathophysiology of the endosomal–lysosomal–autophagic system may help to develop drugs, which might provide benefit not only for patients with rare lysosomal storage disorders but also for individuals affected by more common diseases.

  16. Conventional kinesin KIF5B mediates adiponectin secretion in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ju, E-mail: juzi.cui@gmail.com [The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Beijing (China); Pang, Jing; Lin, Ya-Jun; Jiang, Ping; Gong, Huan [The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Beijing (China); Wang, Zai [Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing (China); Li, Jian; Cai, Jian-Ping [The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Beijing (China); Huang, Jian-Dong, E-mail: jdhuang@hku.hk [School of Biomedical Sciences and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Pokfulam (Hong Kong); The Centre for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Shenzhen (China); Zhang, Tie-Mei, E-mail: tmzhang126@126.com [The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Beijing (China)

    2016-08-05

    Insulin stimulates adiponectin secretion and glucose transporter type 4 (GLUT4) translocation in adipocyte to regulate metabolism homeostasis. Similar to GLUT4 translocation, intracellular trafficking and release of adiponectin in adipocytes relies on the trans-Golgi network and endosomal system. Recent studies show that the heavy chain of conventional kinesin (KIF5B) mediates GLUT4 translocation in murine 3T3-L1 adipocytes, however, the motor machinery involved in mediating intracellular trafficking and release of adiponectin is unknown. Here, we examined the role of KIF5B in the regulation of adiponectin secretion. The KIF5B level was up-regulated during 3T3-L1 adipogenesis. This increase in cytosolic KIF5B was synchronized with the induction of adiponectin. Endogenous KIF5B and adiponectin were partially colocalized at the peri-nuclear and cytosolic regions. In addition, adiponectin-containing vesicles were co-immunoprecipitated with KIF5B. Knockdown of KIF5B resulted in a marked inhibition of adiponectin secretion and overexpression of KIF5B enhanced adiponectin release, whereas leptin secretion was not affected by changes in KIF5B expression. These data suggest that the secretion of adiponectin, but not leptin, is dependent on functional KIF5B. - Highlights: • The KIF5B level was up regulated during 3T3-L1 adipogenesis. • Endogenous KIF5B and adiponectin were partially colicalized. • Adiponectin-containing vesicles were co-immunoprecipitated with KIF5B. • The secretion of adiponectin, but not leptin, is dependent on functional KIF5B.

  17. Lysosomal Storage Disorders and Malignancy

    Directory of Open Access Journals (Sweden)

    Gregory M. Pastores

    2017-02-01

    Full Text Available Lysosomal storage disorders (LSDs are infrequent to rare conditions caused by mutations that lead to a disruption in the usual sequential degradation of macromolecules or their transit within the cell. Gaucher disease (GD, a lipidosis, is among the most common LSD, with an estimated incidence of 1 in 40,000 among the Caucasian, non-Jewish population. Studies have indicated an increased frequency of polyclonal and monoclonal gammopathy among patients with GD. It has been shown that two major sphingolipids that accumulate in GD, namely, β-glucosylceramide 22:0 (βGL1-22 and glucosylsphingosine (LGL1, can be recognized by a distinct subset of CD1d-restricted human and murine type II natural killer T (NKT cells. Investigations undertaken in an affected mouse model revealed βGL1-22- and LGL1-specific NKT cells were present and constitutively promoted the expression of a T-follicular helper (TFH phenotype; injection of these lipids led to downstream induction of germinal center B cells, hypergammaglobulinemia, and the production of antilipid antibodies. Subsequent studies have found clonal immunoglobulin in 33% of sporadic human monoclonal gammopathies is also specific for the lysolipids LGL1 and lysophosphatidylcholine (LPC. Furthermore, substrate reduction ameliorated GD-associated gammopathy in mice. It had been hypothesized that chronic antigenic stimulation by the abnormal lipid storage and associated immune dysregulation may be the underlying mechanism for the increased incidence of monoclonal and polyclonal gammopathies, as well as an increased incidence of multiple myeloma in patients with GD. Current observations support this proposition and illustrate the value of investigations into rare diseases, which as ‘experiments of nature’ may provide insights into conditions found in the general population that continue to remain incompletely understood.

  18. Lysosomal cell death mechanisms in aging.

    Science.gov (United States)

    Gómez-Sintes, Raquel; Ledesma, María Dolores; Boya, Patricia

    2016-12-01

    Lysosomes are degradative organelles essential for cell homeostasis that regulate a variety of processes, from calcium signaling and nutrient responses to autophagic degradation of intracellular components. Lysosomal cell death is mediated by the lethal effects of cathepsins, which are released into the cytoplasm following lysosomal damage. This process of lysosomal membrane permeabilization and cathepsin release is observed in several physiopathological conditions and plays a role in tissue remodeling, the immune response to intracellular pathogens and neurodegenerative diseases. Many evidences indicate that aging strongly influences lysosomal activity by altering the physical and chemical properties of these organelles, rendering them more sensitive to stress. In this review we focus on how aging alters lysosomal function and increases cell sensitivity to lysosomal membrane permeabilization and lysosomal cell death, both in physiological conditions and age-related pathologies. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Biomarkers in Lysosomal Storage Diseases

    Directory of Open Access Journals (Sweden)

    Joaquin Bobillo Lobato

    2016-12-01

    Full Text Available A biomarker is generally an analyte that indicates the presence and/or extent of a biological process, which is in itself usually directly linked to the clinical manifestations and outcome of a particular disease. The biomarkers in the field of lysosomal storage diseases (LSDs have particular relevance where spectacular therapeutic initiatives have been achieved, most notably with the introduction of enzyme replacement therapy (ERT. There are two main types of biomarkers. The first group is comprised of those molecules whose accumulation is directly enhanced as a result of defective lysosomal function. These molecules represent the storage of the principal macro-molecular substrate(s of a specific enzyme or protein, whose function is deficient in the given disease. In the second group of biomarkers, the relationship between the lysosomal defect and the biomarker is indirect. In this group, the biomarker reflects the effects of the primary lysosomal defect on cell, tissue, or organ functions. There is no “gold standard” among biomarkers used to diagnosis and/or monitor LSDs, but there are a number that exist that can be used to reasonably assess and monitor the state of certain organs or functions. A number of biomarkers have been proposed for the analysis of the most important LSDs. In this review, we will summarize the most promising biomarkers in major LSDs and discuss why these are the most promising candidates for screening systems.

  20. Neuronopathic Lysosomal Storage Diseases: Clinical and Pathologic Findings

    Science.gov (United States)

    Prada, Carlos E.; Grabowski, Gregory A.

    2013-01-01

    Background: The lysosomal--autophagocytic system diseases (LASDs) affect multiple body systems including the central nervous system (CNS). The progressive CNS pathology has its onset at different ages, leading to neurodegeneration and early death. Methods: Literature review provided insight into the current clinical neurological findings,…

  1. Mucolipidosis type IV: the effect of increased lysosomal pH on the abnormal lysosomal storage.

    Science.gov (United States)

    Kogot-Levin, Aviram; Zeigler, Marsha; Ornoy, Asher; Bach, Gideon

    2009-06-01

    Mucolipidosis type IV (MLIV) is a neurodegenerative channelopathy that is caused by the deficiency of TRPML1 activity, a nonselective cation channel. TRPML1 is a lysosomal membrane protein, and thus, MLIV is a lysosomal storage disorder. The basic, specific function of TRPML1 has not been yet clarified. A recent report (Soyombo AA, Tjon-Kon-Sang S, Rbaibi Y, Bashllari E, Bisceglia J, Muallem S, Kiselyov K: J Biol Chem 281:7294-7301, 2006) indicated that TRPML1 functions as an outwardly proton channel whose function is the prevention of overacidification of these organelles. Thus, in MLIV the lysosomal pH is lower than normal. Furthermore, attempts by these investigators to increase slightly the lysososmal pH with either Nigericin or Chloroquine suggested corrective effect of the abnormal storage in MLIV cells. We investigated this approach using these agents with cultured fibroblasts from severely affected and milder patients. Our data indicated that there was no reduction in the total number of storage vesicles by either agent, although Nigericin resulted in a change in the nature of the storage materials, reducing the presence of lamellated substances (lipids) so that the storage vesicles contained predominantly granulated substances. On the other hand, transfection with the normal MCOLN1 cDNA (the gene coding for TRPML1) resulted in the removal of almost all the storage materials.

  2. Parkinson's Disease Shares the Lysosome with Gaucher's Disease

    Science.gov (United States)

    Dawson, Ted M.; Dawson, Valina L.

    2015-01-01

    Summary The second most common neurodegenerative disorder, Parkinson's disease (PD) is an age dependent progressive neurodegenerative disorder that affects movement. While many of the causes of PD remain unclear, a consistent finding in PD is the abnormal accumulation of α-synuclein that has lead to the widely held notion that PD is a synucleinopathy. In a recent Cell manuscript Mazzuli et al., provide a potential mechanistic link between Gaucher's disease, a glycolipid lysosomal storage disorder due to Glucocerebrocidase (GBA) deficiency and PD. The authors reveal a reciprocal connection between the loss of GBA activity and accumulation of α-synuclein in the lysosome establishing a bidirectional positive feed back loop with pathologic consequences. These findings should stimulate further work on role of the lysosome in PD pathogenesis and the identification of new treatment strategies for PD. PMID:21753118

  3. Syntaxin 7 and VAMP-7 are Soluble N-Ethylmaleimide–sensitive Factor Attachment Protein Receptors Required for Late Endosome–Lysosome and Homotypic Lysosome Fusion in Alveolar Macrophages

    Science.gov (United States)

    Ward, Diane McVey; Pevsner, Jonathan; Scullion, Matthew A.; Vaughn, Michael; Kaplan, Jerry

    2000-01-01

    Endocytosis in alveolar macrophages can be reversibly inhibited, permitting the isolation of endocytic vesicles at defined stages of maturation. Using an in vitro fusion assay, we determined that each isolated endosome population was capable of homotypic fusion. All vesicle populations were also capable of heterotypic fusion in a temporally specific manner; early endosomes, isolated 4 min after internalization, could fuse with endosomes isolated 8 min after internalization but not with 12-min endosomes or lysosomes. Lysosomes fuse with 12-min endosomes but not with earlier endosomes. Using homogenous populations of endosomes, we have identified Syntaxin 7 as a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) required for late endosome–lysosome and homotypic lysosome fusion in vitro. A bacterially expressed human Syntaxin 7 lacking the transmembrane domain inhibited homotypic late endosome and lysosome fusion as well as heterotypic late endosome–lysosome fusion. Affinity-purified antibodies directed against Syntaxin 7 also inhibited lysosome fusion in vitro but had no affect on homotypic early endosome fusion. Previous work suggested that human VAMP-7 (vesicle-associated membrane protein-7) was a SNARE required for late endosome–lysosome fusion. A bacterially expressed human VAMP-7 lacking the transmembrane domain inhibited both late endosome–lysosome fusion and homotypic lysosome fusion in vitro. These studies indicate that: 1) fusion along the endocytic pathway is a highly regulated process, and 2) two SNARE molecules, Syntaxin 7 and human VAMP-7, are involved in fusion of vesicles in the late endocytic pathway in alveolar macrophages. PMID:10888671

  4. Gaucher disease: a lysosomal neurodegenerative disorder.

    Science.gov (United States)

    Huang, W J; Zhang, X; Chen, W W

    2015-04-01

    Gaucher disease is a multisystemic disorder that affects men and woman in equal numbers and occurs in all ethnic groups at any age with racial variations and an estimated worldwide incidence of 1/75,000. It is caused by a genetic deficient activity of the lysosomal enzyme glucocerebrosidase due to mutations in the β-glucocerebrosidase gene, and resulting in lack of glucocerebroside degradation. The subsequent accumulation of glucocerebroside in lysosomes of tissue macrophages primarily in the liver, bone marrow and spleen, causes damage in haematological, skeletal and nervous systems. The clinical manifestations show a high degree of variability with symptoms that varies according to organs involved. In many cases, these disorders do not correlate with mutations in the β-glucocerebrosidase gene. Although several mutations have been identified as responsible for the deficient activity of glucocerebrosidase, mechanisms by which this enzymatic defect leads to Gaucher disease remain poorly understood. Recent reports indicate the implication of complex mechanisms, including enzyme deficiency, substrate accumulation, unfolded protein response, and macrophage activation. Further elucidating these mechanisms will advance understanding of Gaucher disease and related disorders.

  5. Inhibitors of lysosomal cysteine proteases

    Directory of Open Access Journals (Sweden)

    Lyanna O. L.

    2011-04-01

    Full Text Available The review is devoted to the inhibitors of cysteine proteinases which are believed to be very important in many biochemical processes of living organisms. They participate in the development and progression of numerous diseases that involve abnormal protein turnover. One of the main regulators of these proteinases is their specific inhibitors: cystatins. The aim of this review was to present current knowledge about endogenous inhibitors of lysosomal cysteine proteases and their synthetic analogs.

  6. 45 CFR 5b.4 - Maintenance of records.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Maintenance of records. 5b.4 Section 5b.4 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PRIVACY ACT REGULATIONS § 5b.4 Maintenance of records. (a) No record will be maintained by the Department unless: (1) It is relevant and necessary to accomplish a...

  7. GNeosomes: Highly Lysosomotropic Nanoassemblies for Lysosomal Delivery.

    Science.gov (United States)

    Wexselblatt, Ezequiel; Esko, Jeffrey D; Tor, Yitzhak

    2015-01-01

    GNeosomes, lysosomotropic lipid vesicles decorated with guanidinoneomycin, can encapsulate and facilitate the cellular internalization and lysosomal delivery of cargo ranging from small molecules to high molecular weight proteins, in a process that is exclusively dependent on cell surface glycosaminoglycans. Their cellular uptake mechanism and co-localization with lysosomes, as well as the delivery, release, and activity of internalized cargo, are quantified. GNeosomes are proposed as a universal platform for lysosomal delivery with potential as a basic research tool and a therapeutic vehicle.

  8. Identification and characterization of coumestans as novel HCV NS5B polymerase inhibitors

    Science.gov (United States)

    Kaushik-Basu, Neerja; Bopda-Waffo, Alain; Talele, Tanaji T.; Basu, Amartya; Costa, Paulo R. R.; da Silva, Alcides J. M.; Sarafianos, Stefan G.; Noël, François

    2008-01-01

    The hepatitis C virus (HCV) NS5B is essential for viral RNA replication and is therefore a prime target for development of HCV replication inhibitors. Here, we report the identification of a new class of HCV NS5B inhibitors belonging to the coumestan family of phytoestrogens. Based on the in vitro NS5B RNA-dependent RNA polymerase (RdRp) inhibition in the low micromolar range by wedelolactone, a naturally occurring coumestan, we evaluated the anti-NS5B activity of four synthetic coumestan analogues bearing different patterns of substitutions in their A and D rings, and observed a good structure-activity correlation. Kinetic characterization of coumestans revealed a noncompetitive mode of inhibition with respect to nucleoside triphosphate (rNTP) substrate and a mixed mode of inhibition towards the nucleic acid template, with a major competitive component. The modified order of addition experiments with coumestans and nucleic acid substrates affected the potencies of the coumestan inhibitors. Coumestan interference at the step of NS5B–RNA binary complex formation was confirmed by cross-linking experiments. Molecular docking of coumestans within the allosteric site of NS5B yielded significant correlation between their calculated binding energies and IC50 values. Coumestans thus add to the diversifying pool of anti-NS5B agents and provide a novel scaffold for structural refinement and development of potent NS5B inhibitors. PMID:18203743

  9. Hepatitis C virus nonstructural protein 5B is involved in virus morphogenesis.

    Science.gov (United States)

    Gouklani, Hamed; Bull, Rowena A; Beyer, Claudia; Coulibaly, Fasséli; Gowans, Eric J; Drummer, Heidi E; Netter, Hans J; White, Peter A; Haqshenas, Gholamreza

    2012-05-01

    The p7 protein of hepatitis C virus (HCV) is a viroporin that is dispensable for viral genome replication but plays a critical role in virus morphogenesis. In this study, we generated a JFH1-based intergenotypic chimeric genome that encoded a heterologous genotype 1b (GT1b) p7. The parental intergenotypic chimeric genome was nonviable in human hepatoma cells, and infectious chimeric virions were produced only when cells transfected with the chimeric genomes were passaged several times. Sequence analysis of the entire polyprotein-coding region of the recovered chimeric virus revealed one predominant amino acid substitution in nonstructural protein 2 (NS2), T23N, and one in NS5B, K151R. Forward genetic analysis demonstrated that each of these mutations per se restored the infectivity of the parental chimeric genome, suggesting that interactions between p7, NS2, and NS5B were required for virion assembly/maturation. p7 and NS5B colocalized in cellular compartments, and the NS5B mutation did not affect the colocalization pattern. The NS5B K151R mutation neither increased viral RNA replication in human hepatoma cells nor altered the polymerase activity of NS5B in an in vitro assay. In conclusion, this study suggests that HCV NS5B is involved in virus morphogenesis.

  10. Analysis list: Stat5b [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Stat5b Blood,Breast + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Sta...t5b.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Stat5b.5.tsv http://dbarchive.biosciencedbc....jp/kyushu-u/mm9/target/Stat5b.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Stat5b.Blood.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Stat5b.Breast.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Blood.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Breast.gml ...

  11. A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation.

    Science.gov (United States)

    Li, Xinran; Rydzewski, Nicholas; Hider, Ahmad; Zhang, Xiaoli; Yang, Junsheng; Wang, Wuyang; Gao, Qiong; Cheng, Xiping; Xu, Haoxing

    2016-04-01

    To mediate the degradation of biomacromolecules, lysosomes must traffic towards cargo-carrying vesicles for subsequent membrane fusion or fission. Mutations of the lysosomal Ca(2+) channel TRPML1 cause lysosomal storage disease (LSD) characterized by disordered lysosomal membrane trafficking in cells. Here we show that TRPML1 activity is required to promote Ca(2+)-dependent centripetal movement of lysosomes towards the perinuclear region (where autophagosomes accumulate) following autophagy induction. ALG-2, an EF-hand-containing protein, serves as a lysosomal Ca(2+) sensor that associates physically with the minus-end-directed dynactin-dynein motor, while PtdIns(3,5)P(2), a lysosome-localized phosphoinositide, acts upstream of TRPML1. Furthermore, the PtdIns(3,5)P(2)-TRPML1-ALG-2-dynein signalling is necessary for lysosome tubulation and reformation. In contrast, the TRPML1 pathway is not required for the perinuclear accumulation of lysosomes observed in many LSDs, which is instead likely to be caused by secondary cholesterol accumulation that constitutively activates Rab7-RILP-dependent retrograde transport. Ca(2+) release from lysosomes thus provides an on-demand mechanism regulating lysosome motility, positioning and tubulation.

  12. Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation.

    Science.gov (United States)

    Wang, Wuyang; Gao, Qiong; Yang, Meimei; Zhang, Xiaoli; Yu, Lu; Lawas, Maria; Li, Xinran; Bryant-Genevier, Marthe; Southall, Noel T; Marugan, Juan; Ferrer, Marc; Xu, Haoxing

    2015-03-17

    Upon nutrient starvation, autophagy digests unwanted cellular components to generate catabolites that are required for housekeeping biosynthesis processes. A complete execution of autophagy demands an enhancement in lysosome function and biogenesis to match the increase in autophagosome formation. Here, we report that mucolipin-1 (also known as TRPML1 or ML1), a Ca(2+) channel in the lysosome that regulates many aspects of lysosomal trafficking, plays a central role in this quality-control process. By using Ca(2+) imaging and whole-lysosome patch clamping, lysosomal Ca(2+) release and ML1 currents were detected within hours of nutrient starvation and were potently up-regulated. In contrast, lysosomal Na(+)-selective currents were not up-regulated. Inhibition of mammalian target of rapamycin (mTOR) or activation of transcription factor EB (TFEB) mimicked a starvation effect in fed cells. The starvation effect also included an increase in lysosomal proteostasis and enhanced clearance of lysosomal storage, including cholesterol accumulation in Niemann-Pick disease type C (NPC) cells. However, this effect was not observed when ML1 was pharmacologically inhibited or genetically deleted. Furthermore, overexpression of ML1 mimicked the starvation effect. Hence, lysosomal adaptation to environmental cues such as nutrient levels requires mTOR/TFEB-dependent, lysosome-to-nucleus regulation of lysosomal ML1 channels and Ca(2+) signaling.

  13. BK Channels Alleviate Lysosomal Storage Diseases by Providing Positive Feedback Regulation of Lysosomal Ca2+ Release.

    Science.gov (United States)

    Cao, Qi; Zhong, Xi Zoë; Zou, Yuanjie; Zhang, Zhu; Toro, Ligia; Dong, Xian-Ping

    2015-05-26

    Promoting lysosomal trafficking represents a promising therapeutic approach for lysosome storage diseases. Efficient Ca(2+) mobilization from lysosomes is important for lysosomal trafficking. Ca(2+) release from lysosomes could generate a negative potential in the lumen to disturb subsequent Ca(2+) release in the absence of counter ion flux. Here we report that lysosomes express big-conductance Ca(2+)-activated potassium (BK) channels that form physical and functional coupling with the lysosomal Ca(2+) release channel, TRPML1. Ca(2+) release via TRPML1 causes BK activation, which in turn facilitates further lysosomal Ca(2+) release and membrane trafficking. Importantly, BK overexpression rescues the impaired TRPML1-mediated Ca(2+) release and abnormal lysosomal storage in cells from Niemann-Pick C1 patients. Therefore, we have identified a lysosomal K(+) channel that provides a positive feedback mechanism to facilitate TRPML1-mediated Ca(2+) release and membrane trafficking. Our findings suggest that upregulating BK may be a potential therapeutic strategy for certain lysosomal storage diseases and common neurodegenerative disorders.

  14. Sensitivity to lysosome-dependent cell death is directly regulated by lysosomal cholesterol content.

    Directory of Open Access Journals (Sweden)

    Hanna Appelqvist

    Full Text Available Alterations in lipid homeostasis are implicated in several neurodegenerative diseases, although the mechanisms responsible are poorly understood. We evaluated the impact of cholesterol accumulation, induced by U18666A, quinacrine or mutations in the cholesterol transporting Niemann-Pick disease type C1 (NPC1 protein, on lysosomal stability and sensitivity to lysosome-mediated cell death. We found that neurons with lysosomal cholesterol accumulation were protected from oxidative stress-induced apoptosis. In addition, human fibroblasts with cholesterol-loaded lysosomes showed higher lysosomal membrane stability than controls. Previous studies have shown that cholesterol accumulation is accompanied by the storage of lipids such as sphingomyelin, glycosphingolipids and sphingosine and an up regulation of lysosomal associated membrane protein-2 (LAMP-2, which may also influence lysosomal stability. However, in this study the use of myriocin and LAMP deficient fibroblasts excluded these factors as responsible for the rescuing effect and instead suggested that primarily lysosomal cholesterol content determineD the cellular sensitivity to toxic insults. Further strengthening this concept, depletion of cholesterol using methyl-β-cyclodextrin or 25-hydroxycholesterol decreased the stability of lysosomes and cells became more prone to undergo apoptosis. In conclusion, cholesterol content regulated lysosomal membrane permeabilization and thereby influenced cell death sensitivity. Our data suggests that lysosomal cholesterol modulation might be used as a therapeutic strategy for conditions associated with accelerated or repressed apoptosis.

  15. TRPML cation channels regulate the specialized lysosomal compartment of vertebrate B-lymphocytes.

    Science.gov (United States)

    Song, Yumei; Dayalu, Rashmi; Matthews, Sharon A; Scharenberg, Andrew M

    2006-12-01

    B-lymphocytes possess a specialized lysosomal compartment, the regulated transformation of which has been implicated in B-cell antigen presentation. Members of the mucolipin (TRPML) family of cation channels have been implicated in regulated vesicular transport in several tissues, but a role for TRPML function in lymphocyte vesicular transport physiology has not been previously described. To address the role of TRPML proteins in lymphocyte vesicular transport, we analyzed the lysosomal compartment in cultured B-lymphocytes engineered to lack TRPML1 or after expression of N- or C-terminal GFP fusion proteins of TRPML1 or TRPML2. Consistent with previous analyses of lymphocytes derived from human patients with mutations in TRPML1, we were not able to detect abnormalities in the lysosomes of TRPML1-deficient DT40 B-lymphocytes. However, while N-terminal GFP fusions of TRPML2 localized to normal appearing lysosomes, C-terminal GFP fusions of either TRPML1 or TRPML2 acted to antagonize endogenous TRPML function, localizing to large vesicular structures, the histological properties of which were indistinguishable from the enlarged lysosomes observed in affected tissues of TRPML1-deficient humans. Endocytosed B-cell receptors were delivered to these enlarged lysosomes, demonstrating that a TRPML-dependent process is required for normal regulation of the specialized lysosome compartment of vertebrate B-lymphocytes.

  16. Structure Dependence of Lysosomal Transit of Chitosan-Based Polyplexes for Gene Delivery.

    Science.gov (United States)

    Thibault, Marc; Lavertu, Marc; Astolfi, Mélina; Buschmann, Michael D

    2016-10-01

    Chitosan-based polyplexes are known to traffic through lysosomes for a relatively long time, independent of the degree of deacetylation (DDA) and the number average molecular weight (Mn) of the polymer, even though both of these parameters have profound effects on polyplex stability and transfection efficiency. A better understanding of the lysosomal barrier is paramount to the rational design of vectors capable of overcoming obstacles to transgene expression. The aim of the present study was to investigate if lysosomal transit affects chitosan-based polyplex transfection efficiency in a structure-dependent (DDA, Mn) manner. Toward this end, we analyzed the effects of intracellular trafficking modifying agents on transfection efficiency and intracellular vesicular trafficking of polyplexes with different structural properties and stabilities or nucleic acid binding affinity. The use of agents that modify endosome/lysosome acidification and transit processes by distinct mechanisms and their effect on cell viability, polyplex uptake, vesicular trafficking, and transfection efficiency revealed novel and strong chitosan structure-dependent consequences of lysosomal transit. Inhibiting lysosomal transit using chloroquine significantly increased the efficiency of unstable polyplexes, while having minimal effects for polyplexes with intermediate or high stability. In parallel, specifically inhibiting the acidification of vesicles abrogated transfection for all formulations, suggesting that vesicular acidification is essential to promote transfection, most probably by facilitating lysosomal escape. These results provide novel insights into the structure-performance relationship of chitosan-based gene delivery systems.

  17. Endosome-lysosomes and neurodegeneration.

    Science.gov (United States)

    Mayer, R J; Tipler, C; Laszlo, L; Arnold, J; Lowe, J; Landon, M

    1994-01-01

    A number of the major human and animal neurodegenerative diseases, such as Alzheimer's disease and sheep scrapie, are characterised by deposits of amyloid, arising through incomplete breakdown of membrane proteins. Although our knowledge concerning these diseases is increasing, they remain largely untreatable. Recently, attention has focussed on the mechanisms of production of different types of amyloid and the likely involvement within cells of acid compartments called endosome-lysosomes. These organelles may be 'bioreactor' sites for the unfolding and partial degradation of membrane proteins to generate the amyloid materials. These subsequently become expelled from the cell, or are released from dead cells, and accumulate as pathological entities. Common features of the disease processes give new direction to therapeutic intervention.

  18. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner.

    Directory of Open Access Journals (Sweden)

    Christine Burkard

    2014-11-01

    Full Text Available Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion. In the present study we investigated the entry of coronaviruses (CoVs. Using siRNA gene silencing, we found that proteins known to be important for late endosomal maturation and endosome-lysosome fusion profoundly promote infection of cells with mouse hepatitis coronavirus (MHV. Using recombinant MHVs expressing reporter genes as well as a novel, replication-independent fusion assay we confirmed the importance of clathrin-mediated endocytosis and demonstrated that trafficking of MHV to lysosomes is required for fusion and productive entry to occur. Nevertheless, MHV was shown to be less sensitive to perturbation of endosomal pH than vesicular stomatitis virus and influenza A virus, which fuse in early and late endosomes, respectively. Our results indicate that entry of MHV depends on proteolytic processing of its fusion protein S by lysosomal proteases. Fusion of MHV was severely inhibited by a pan-lysosomal protease inhibitor, while trafficking of MHV to lysosomes and processing by lysosomal proteases was no longer required when a furin cleavage site was introduced in the S protein immediately upstream of the fusion peptide. Also entry of feline CoV was shown to depend on trafficking to lysosomes and processing by lysosomal proteases. In contrast, MERS-CoV, which contains a minimal furin cleavage site just upstream of the fusion peptide, was negatively affected by inhibition of furin, but not of lysosomal proteases. We conclude that a proteolytic cleavage site in the CoV S protein directly upstream of the fusion peptide is an essential determinant of the intracellular site of fusion.

  19. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner.

    Science.gov (United States)

    Burkard, Christine; Verheije, Monique H; Wicht, Oliver; van Kasteren, Sander I; van Kuppeveld, Frank J; Haagmans, Bart L; Pelkmans, Lucas; Rottier, Peter J M; Bosch, Berend Jan; de Haan, Cornelis A M

    2014-11-01

    Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion. In the present study we investigated the entry of coronaviruses (CoVs). Using siRNA gene silencing, we found that proteins known to be important for late endosomal maturation and endosome-lysosome fusion profoundly promote infection of cells with mouse hepatitis coronavirus (MHV). Using recombinant MHVs expressing reporter genes as well as a novel, replication-independent fusion assay we confirmed the importance of clathrin-mediated endocytosis and demonstrated that trafficking of MHV to lysosomes is required for fusion and productive entry to occur. Nevertheless, MHV was shown to be less sensitive to perturbation of endosomal pH than vesicular stomatitis virus and influenza A virus, which fuse in early and late endosomes, respectively. Our results indicate that entry of MHV depends on proteolytic processing of its fusion protein S by lysosomal proteases. Fusion of MHV was severely inhibited by a pan-lysosomal protease inhibitor, while trafficking of MHV to lysosomes and processing by lysosomal proteases was no longer required when a furin cleavage site was introduced in the S protein immediately upstream of the fusion peptide. Also entry of feline CoV was shown to depend on trafficking to lysosomes and processing by lysosomal proteases. In contrast, MERS-CoV, which contains a minimal furin cleavage site just upstream of the fusion peptide, was negatively affected by inhibition of furin, but not of lysosomal proteases. We conclude that a proteolytic cleavage site in the CoV S protein directly upstream of the fusion peptide is an essential determinant of the intracellular site of fusion.

  20. Kinesin 5B (KIF5B is required for progression through female meiosis and proper chromosomal segregation in mitotic cells.

    Directory of Open Access Journals (Sweden)

    Dawit Kidane

    Full Text Available The fidelity of chromosomal segregation during cell division is important to maintain chromosomal stability in order to prevent cancer and birth defects. Although several spindle-associated molecular motors have been shown to be essential for cell division, only a few chromosome arm-associated motors have been described. Here, we investigated the role of Kinesin 5b (Kif5b during female mouse meiotic cell development and mitotic cell division. RNA interference (RNAi-mediated silencing of Kif5b in mouse oocytes induced significant delay in germinal vesicle breakdown (GVBD and failure in extrusion of the first polar body (PBE. In mitotic cells, knockdown of Kif5b leads to centrosome amplification and a chromosomal segregation defect. These data suggest that KIF5B is critical in suppressing chromosomal instability at the early stages of female meiotic cell development and mitotic cell division.

  1. Kinesin 5B (KIF5B) is required for progression through female meiosis and proper chromosomal segregation in mitotic cells.

    Science.gov (United States)

    Kidane, Dawit; Sakkas, Denny; Nottoli, Timothy; McGrath, James; Sweasy, Joann B

    2013-01-01

    The fidelity of chromosomal segregation during cell division is important to maintain chromosomal stability in order to prevent cancer and birth defects. Although several spindle-associated molecular motors have been shown to be essential for cell division, only a few chromosome arm-associated motors have been described. Here, we investigated the role of Kinesin 5b (Kif5b) during female mouse meiotic cell development and mitotic cell division. RNA interference (RNAi)-mediated silencing of Kif5b in mouse oocytes induced significant delay in germinal vesicle breakdown (GVBD) and failure in extrusion of the first polar body (PBE). In mitotic cells, knockdown of Kif5b leads to centrosome amplification and a chromosomal segregation defect. These data suggest that KIF5B is critical in suppressing chromosomal instability at the early stages of female meiotic cell development and mitotic cell division.

  2. Muc5b is required for airway defence

    Science.gov (United States)

    Roy, Michelle G.; Livraghi-Butrico, Alessandra; Fletcher, Ashley A.; McElwee, Melissa M.; Evans, Scott E.; Boerner, Ryan M.; Alexander, Samantha N.; Bellinghausen, Lindsey K.; Song, Alfred S.; Petrova, Youlia M.; Tuvim, Michael J.; Adachi, Roberto; Romo, Irlanda; Bordt, Andrea S.; Bowden, M. Gabriela; Sisson, Joseph H.; Woodruff, Prescott G.; Thornton, David J.; Rousseau, Karine; de La Garza, Maria M.; Moghaddam, Seyed J.; Karmouty-Quintana, Harry; Blackburn, Michael R.; Drouin, Scott M.; Davis, C. William; Terrell, Kristy A.; Grubb, Barbara R.; O'Neal, Wanda K.; Flores, Sonia C.; Cota-Gomez, Adela; Lozupone, Catherine A.; Donnelly, Jody M.; Watson, Alan M.; Hennessy, Corinne E.; Keith, Rebecca C.; Yang, Ivana V.; Barthel, Lea; Henson, Peter M.; Janssen, William J.; Schwartz, David A.; Boucher, Richard C.; Dickey, Burton F.; Evans, Christopher M.

    2014-01-01

    Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them through mucociliary clearance (MCC). However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus. Genetic variants are linked to diverse lung diseases, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that mouse Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in mouse lungs, whereas Muc5ac is dispensable. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally. Apoptotic macrophages accumulated, phagocytosis was impaired, and interleukin-23 (IL-23) production was reduced in Muc5b-/- mice. By contrast, in mice that transgenically overexpress Muc5b, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC.

  3. Muc5b is required for airway defence.

    Science.gov (United States)

    Roy, Michelle G; Livraghi-Butrico, Alessandra; Fletcher, Ashley A; McElwee, Melissa M; Evans, Scott E; Boerner, Ryan M; Alexander, Samantha N; Bellinghausen, Lindsey K; Song, Alfred S; Petrova, Youlia M; Tuvim, Michael J; Adachi, Roberto; Romo, Irlanda; Bordt, Andrea S; Bowden, M Gabriela; Sisson, Joseph H; Woodruff, Prescott G; Thornton, David J; Rousseau, Karine; De la Garza, Maria M; Moghaddam, Seyed J; Karmouty-Quintana, Harry; Blackburn, Michael R; Drouin, Scott M; Davis, C William; Terrell, Kristy A; Grubb, Barbara R; O'Neal, Wanda K; Flores, Sonia C; Cota-Gomez, Adela; Lozupone, Catherine A; Donnelly, Jody M; Watson, Alan M; Hennessy, Corinne E; Keith, Rebecca C; Yang, Ivana V; Barthel, Lea; Henson, Peter M; Janssen, William J; Schwartz, David A; Boucher, Richard C; Dickey, Burton F; Evans, Christopher M

    2014-01-16

    Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them through mucociliary clearance (MCC). However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus. Genetic variants are linked to diverse lung diseases, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that mouse Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in mouse lungs, whereas Muc5ac is dispensable. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally. Apoptotic macrophages accumulated, phagocytosis was impaired, and interleukin-23 (IL-23) production was reduced in Muc5b(-/-) mice. By contrast, in mice that transgenically overexpress Muc5b, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC.

  4. Anti-inflammatory and Anti-arthritic Effects of a Novel Leflunomide Analogue, UTL-5b (GBL-5b).

    Science.gov (United States)

    Shaw, Jiajiu; Chen, Ben; Wooley, Paul; Huang, Wen-Hsin; Lee, An-Rong; Zeng, Dustin

    2011-01-01

    Rheumatoid arthritis (RA) is a common disease characterized by chronic inflammation and irreversible destruction of articular cartilage and bone. In this report, we examined the anti-inflammatory and anti-arthritic effects of a novel leflunomide analogue, UTL-5b (also known as GBL-5b), for potential RA treatment. Using a carrageenan-induced edema study in rats, UTL-5b exhibited a better anti-inflammatory effect as compared with leflunomide and its metabolite. The chronic efficacy of UTL-5b was examined using type II collagen-induced arthritis (CIA) mouse model. UTL-5b exerted an anti-arthritic effect in a dose-dependant manner with mice given 30 mg/kg exhibiting amelioration of disease early in the trial, but losing statistical significance over time. In contrast, mice treated with 60 mg/kg showed reduced clinical disease parameters early in the trial and these effects were sustained over the ten week trial period. Mechanistic studies indicate that UTL-5b is an inhibitor of TNF-α production in vivo. Oral administration of UTL-5b prior to i.p. injection with lethal dose of lipopolysaccharide (LPS)/D-galactosamine markedly reduced the levels of serum TNF-α and increased survival rates of animals from septic shock-induced death. Acute toxicity study using mice receiving increasing doses of UTL-5b showed that no animals were killed by UTL-5b at 2,000 mg/kg (LD(50) >2,000 mg/kg). Our studies show that UTL-5b represents a novel anti-inflammatory and anti-arthritic agent with potential therapeutic application for RA treatment.

  5. Lysosomal enlargement and lysosomal membrane destabilisation in mussel digestive cells measured by an integrative index

    Energy Technology Data Exchange (ETDEWEB)

    Izagirre, Urtzi [Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Cell Biology, School of Sciences and Technology, University of the Basque Country, P.O. box 644, E-48080 Bilbo (Spain); Marigomez, Ionan, E-mail: ionan.marigomez@ehu.e [Cell Biology in Environmental Toxicology Research Group, Department of Zoology and Cell Biology, School of Sciences and Technology, University of the Basque Country, P.O. box 644, E-48080 Bilbo (Spain)

    2009-05-15

    Lysosomal responses (enlargement and membrane destabilisation) in mussel digestive cells are well-known environmental stress biomarkers in pollution effects monitoring in marine ecosystems. Presently, in laboratory and field studies, both responses were measured separately (in terms of lysosomal volume density - Vv - and labilisation period -LP) and combined (lysosomal response index - LRI) in order to contribute to their understanding and to develop an index useful for decisions makers. LRI integrates Vv and LP, which are not necessarily dependent lysosomal responses. It is unbiased and more sensitive than Vv and LP alone and diminishes background due to confounding factors. LRI provides a simple numerical index (consensus reference = 0; critical threshold = 1) directly related to the pollution impact degree. Moreover, LRI can be represented in a way that allows the interpretation of lysosomal responses, which is useful for environmental scientists. - Lysosomal responses to pollutants measured by an integrative index.

  6. A change of osteocalcin (OC) and tartrate resistant acid phosphatase 5b (TRACP-5b) with the menstrual cycle.

    Science.gov (United States)

    Lee, S; Kumagai, T; Hashimoto, J; Satoh, A; Suzuki, T; Yamai, K; Ohta, S

    2012-09-01

    Bone metabolism markers associated with 4 menstrual cycle phases were evaluated in 14 healthy young females without menstrual disorder. Menstrual cycle phases were confirmed with basal body temperature for 3 months, luteinizing hormone kits, and sexual hormone concentrations of serum. The bone metabolism markers used were osteocalcin (OC), which was measured by immunoradiometric assay (IRMA), and tartrate resistant acid phosphatase 5b (TRACP-5b), which was measured by enzyme immunometric assay (EIA). The highest values of OC and TRACP-5b were observed in the ovulation phase, and TRACP-5b increased significantly when compared with levels in the menstrual phase (pchanges in sex-hormone secretion involved in OC and TRACP-5b showed specific patterns during the menstrual cycle. In other words, TRACP-5b levels are influenced by sex hormones produced during the menstrual period and are based on the bone-formation status. Therefore, it is presumed that the TRACP-5b levels during ovulation play a central role in bone formation and bone metabolism. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Tetrahydrobenzothiophene inhibitors of hepatitis C virus NS5B polymerase.

    Science.gov (United States)

    Laporte, M G; Lessen, T A; Leister, L; Cebzanov, D; Amparo, E; Faust, C; Ortlip, D; Bailey, T R; Nitz, T J; Chunduru, S K; Young, D C; Burns, C J

    2006-01-01

    A novel series of selective HCV NS5B RNA dependent RNA polymerase inhibitors has been disclosed. These compounds contain an appropriately substituted tetrahydrobenzothiophene scaffold. This communication will detail the SAR and activities of this series.

  8. Lysosomal exoglycosidases in nasal polyps.

    Science.gov (United States)

    Chojnowska, Sylwia; Minarowska, Alina; Knaś, Małgorzata; Niemcunowicz-Janica, Anna; Kołodziejczyk, Paweł; Zalewska-Szajda, Beata; Kępka, Alina; Minarowski, Łukasz; Waszkiewicz, Napoleon; Zwierz, Krzysztof; Szajda, Sławomir Dariusz

    2013-01-01

    Nasal polyps are smooth outgrowths assuming a shape of grapes, formed from the nasal mucosa, limiting air flow by projecting into a lumen of a nasal cavity. Up to now the surgical resection is the best method of their treatment, but etiology and pathogenesis of the nasal polyps is not yet fully established. The aim of the study was the assessment of the selected lysosomal exoglycosidases activity in the nasal polyps. In this study the activity of β-galactosidase, α-mannosidase and α-fucosidase was determined in the tissue of the nasal polyps obtained from 40 patients (10F, 30M) and control tissues derived from mucosa of lower nasal conchas obtained during mucotomy from 20 patients (10F, 10M). We observed significant lower values of GAL, FUC and tendency to decrease of MAN and GLU concentration in nasal polyps (P) in comparison to control healthy nasal mucosa (C). In nasal polyp tissue (P) no differences of GAL, MAN and FUC specific activity in comparison to control mucosa (C) were found. Our research supports bioelectrical theory of the nasal polyps pathogenesis and directs attention at research on glycoconjugates and glycosidases of the nasal mucosa extracellular matrix. Copyright © 2013 Polish Otorhinolaryngology - Head and Neck Surgery Society. Published by Elsevier Urban & Partner Sp. z.o.o. All rights reserved.

  9. Presenilin 1 maintains lysosomal Ca2+ homeostasis by regulating vATPase-mediated lysosome acidification

    Science.gov (United States)

    Lee, Ju-Hyun; McBrayer, Mary Kate; Wolfe, Devin M.; Haslett, Luke J.; Kumar, Asok; Sato, Yutaka; Lie, Pearl P. Y.; Mohan, Panaiyur; Coffey, Erin E.; Kompella, Uday; Mitchell, Claire H.; Lloyd-Evans, Emyr; Nixon, Ralph A.

    2015-01-01

    Summary Presenilin-1 (PS1) deletion or Alzheimer’s Disease (AD)-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in PS1KO cells induces abnormal Ca2+ efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca2+. In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca2+ homeostasis, but correcting lysosomal Ca2+ deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss of function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca2+ homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism. PMID:26299959

  10. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release.

    Science.gov (United States)

    Shen, Dongbiao; Wang, Xiang; Li, Xinran; Zhang, Xiaoli; Yao, Zepeng; Dibble, Shannon; Dong, Xian-ping; Yu, Ting; Lieberman, Andrew P; Showalter, Hollis D; Xu, Haoxing

    2012-03-13

    Lysosomal lipid accumulation, defects in membrane trafficking and altered Ca(2+) homoeostasis are common features in many lysosomal storage diseases. Mucolipin transient receptor potential channel 1 (TRPML1) is the principle Ca(2+) channel in the lysosome. Here we show that TRPML1-mediated lysosomal Ca(2+) release, measured using a genetically encoded Ca(2+) indicator (GCaMP3) attached directly to TRPML1 and elicited by a potent membrane-permeable synthetic agonist, is dramatically reduced in Niemann-Pick (NP) disease cells. Sphingomyelins (SMs) are plasma membrane lipids that undergo sphingomyelinase (SMase)-mediated hydrolysis in the lysosomes of normal cells, but accumulate distinctively in lysosomes of NP cells. Patch-clamp analyses revealed that TRPML1 channel activity is inhibited by SMs, but potentiated by SMases. In NP-type C cells, increasing TRPML1's expression or activity was sufficient to correct the trafficking defects and reduce lysosome storage and cholesterol accumulation. We propose that abnormal accumulation of luminal lipids causes secondary lysosome storage by blocking TRPML1- and Ca(2+)-dependent lysosomal trafficking.

  11. Role of STAT5b in Breast Cancer Progression and Metastasis

    Science.gov (United States)

    2009-09-01

    Watanabe and Higashida , 2004). As a whole, our data showing that loss of STAT5b affects cell polarity, membrane protrusion, and contractility... Higashida , C. (2004) Formins: processive cappers of growing actin filaments. Exp Cell Res, 301: 16-22. 136 Weaver, A.M. and Silva, C.M. (2006

  12. Disruption of STAT5b-Regulated Sexual Dimorphism of the Liver Transcriptome by Diverse Factors Is a Common Event.

    Directory of Open Access Journals (Sweden)

    Keiyu Oshida

    Full Text Available Signal transducer and activator of transcription 5b (STAT5b is a growth hormone (GH-activated transcription factor and a master regulator of sexually dimorphic gene expression in the liver. Disruption of the GH hypothalamo-pituitary-liver axis controlling STAT5b activation can lead to metabolic dysregulation, steatosis, and liver cancer. Computational approaches were developed to identify factors that disrupt STAT5b function in a mouse liver gene expression compendium. A biomarker comprised of 144 STAT5b-dependent genes was derived using comparisons between wild-type male and wild-type female mice and between STAT5b-null and wild-type mice. Correlations between the STAT5b biomarker gene set and a test set comprised of expression datasets (biosets with known effects on STAT5b function were evaluated using a rank-based test (the Running Fisher algorithm. Using a similarity p-value ≤ 10(-4, the test achieved a balanced accuracy of 99% and 97% for detection of STAT5b activation or STAT5b suppression, respectively. The STAT5b biomarker gene set was then used to identify factors that activate (masculinize or suppress (feminize STAT5b function in an annotated mouse liver and primary hepatocyte gene expression compendium of ~1,850 datasets. Disruption of GH-regulated STAT5b is a common phenomenon in liver in vivo, with 5% and 29% of the male datasets, and 11% and 13% of the female datasets, associated with masculinization or feminization, respectively. As expected, liver STAT5b activation/masculinization occurred at puberty and suppression/feminization occurred during aging and in mutant mice with defects in GH signaling. A total of 70 genes were identified that have effects on STAT5b activation in genetic models in which the gene was inactivated or overexpressed. Other factors that affected liver STAT5b function were shown to include fasting, caloric restriction and infections. Together, these findings identify diverse factors that perturb the

  13. [Application of lysosomal detection in marine pollution monitoring: research progress].

    Science.gov (United States)

    Weng, You-Zhu; Fang, Yong-Qiang; Zhang, Yu-Sheng

    2013-11-01

    Lysosome is an important organelle existing in eukaryotic cells. With the development of the study on the structure and function of lysosome in recent years, lysosome is considered as a target of toxic substances on subcellular level, and has been widely applied abroad in marine pollution monitoring. This paper summarized the biological characteristics of lysosomal marker enzyme, lysosome-autophagy system, and lysosomal membrane, and introduced the principles and methods of applying lysosomal detection in marine pollution monitoring. Bivalve shellfish digestive gland and fish liver are the most sensitive organs for lysosomal detection. By adopting the lysosomal detection techniques such as lysosomal membrane stability (LMS) test, neutral red retention time (NRRT) assay, morphological measurement (MM) of lysosome, immunohistochemical (Ih) assay of lysosomal marker enzyme, and electron microscopy (EM), the status of marine pollution can be evaluated. It was suggested that the lysosome could be used as a biomarker for monitoring marine environmental pollution. The advantages and disadvantages of lysosomal detection and some problems worthy of attention were analyzed, and the application prospects of lysosomal detection were discussed.

  14. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro.

    Science.gov (United States)

    Canfrán-Duque, Alberto; Barrio, Luis C; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A; Busto, Rebeca

    2016-03-18

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes' internal milieu induced by haloperidol affects lysosomal functionality.

  15. Impact of high cholesterol in a Parkinson's disease model: Prevention of lysosomal leakage versus stimulation of α-synuclein aggregation.

    Science.gov (United States)

    Eriksson, Ida; Nath, Sangeeta; Bornefall, Per; Giraldo, Ana Maria Villamil; Öllinger, Karin

    2017-03-01

    Parkinson's disease is characterized by accumulation of intraneuronal cytoplasmic inclusions, Lewy bodies, which mainly consist of aggregated α-synuclein. Controversies exist as to whether high blood cholesterol is a risk factor for the development of the disease and whether statin treatment could have a protective effect. Using a model system of BE(2)-M17 neuroblastoma cells treated with the neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)), we found that MPP(+)-induced cell death was accompanied by cholesterol accumulation in a lysosomal-like pattern in pre-apoptotic cells. To study the effects of lysosomal cholesterol accumulation, we increased lysosomal cholesterol through pre-treatment with U18666A and found delayed leakage of lysosomal contents into the cytosol, which reduced cell death. This suggests that increased lysosomal cholesterol is a stress response mechanism to protect lysosomal membrane integrity in response to early apoptotic stress. However, high cholesterol also stimulated the accumulation of α-synuclein. Treatment with the cholesterol-lowering drug lovastatin reduced MPP(+)-induced cell death by inhibiting the production of reactive oxygen species, but did not prevent lysosomal cholesterol increase nor affect α-synuclein accumulation. Our study indicates a dual role of high cholesterol in Parkinson's disease, in which it acts both as a protector against lysosomal membrane permeabilization and as a stimulator of α-synuclein accumulation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. On the structure of Lattice code WIMSD-5B

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Young; Min, Byung Joo

    2004-03-15

    The WIMS-D code is a freely available thermal reactor physics lattice code used widely for thermal research and power reactor calculation. Now the code WIMS-AECL, developed on the basis of WIMS-D, has been used as one of lattice codes for the cell calculation in Canada and also, in 1998, the latest version WIMSD-5B is released for OECD/NEA Data Bank. While WIMS-KAERI was developed and has been used, originated from WIMS-D, in Korea, it was adjusted for the cell calculation of research reactor HANARO and so it has no confirmaty to CANDU reactor. Therefore, the code development applicable to cell calculation of CANDU reactor is necessary not only for technological independence and but also for the establishment of CANDU safety analysis system. A lattice code WIMSD-5B was analyzed in order to set the system of reactor physics computer codes, to be used in the assessment of void reactivity effect. In order to improve and validate WIMSD-5B code, the analysis of the structure of WIMSD-5B lattice code was made and so its structure, algorithm and the subroutines of WIMSD-5B were presented for the cluster type and the pij method modelling the CANDU-6 fuel

  17. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology

    DEFF Research Database (Denmark)

    Kirkegaard, Thomas; Roth, Anke G; Petersen, Nikolaj H T

    2010-01-01

    inhibition of ASM, effectively revert the Hsp70-mediated stabilization of lysosomes. Notably, the reduced ASM activity in cells from patients with Niemann-Pick disease (NPD) A and B-severe lysosomal storage disorders caused by mutations in the sphingomyelin phosphodiesterase 1 gene (SMPD1) encoding for ASM...

  18. ErbB2-associated changes in the lysosomal proteome

    DEFF Research Database (Denmark)

    Nylandsted, Jesper; Becker, Andrea C; Bunkenborg, Jakob

    2011-01-01

    Late endosomes and lysosomes (hereafter referred to as lysosomes) play an essential role in the turnover of cellular macromolecules and organelles. Their biochemical characterization has so far depended on purification methods based on either density gradient centrifugations or magnetic...... purification of iron-loaded organelles. Owing to dramatic changes in lysosomal density and stability associated with lysosomal diseases and cancer, these methods are not optimal for the comparison of normal and pathological lysosomes. Here, we introduce an efficient method for the purification of intact...... lysosomes by magnetic immunoprecipitation with antibodies against the vacuolar-type H(+) -ATPase. Quantitative MS-based proteomics analysis of the obtained lysosomal membranes identified 60 proteins, most of which have previously been associated with the lysosomal compartment. Interestingly, the lysosomal...

  19. 45 CFR Appendix C to Part 5b... - [Reserved

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false C Appendix C to Part 5b-Delegations of Authority Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PRIVACY ACT REGULATIONS Appendix C to Part 5b—Delegations of Authority...

  20. Lysosomal Ca(2+) homeostasis: role in pathogenesis of lysosomal storage diseases.

    Science.gov (United States)

    Lloyd-Evans, Emyr; Platt, Frances M

    2011-08-01

    Disrupted cellular Ca(2+) signaling is believed to play a role in a number of human diseases including lysosomal storage diseases (LSD). LSDs are a group of ∼50 diseases caused predominantly by mutations in lysosomal proteins that result in accumulation of macromolecules within the lysosome. We recently reported that Niemann-Pick type C (NPC) is the first human disease to be associated with defective lysosomal Ca(2+) uptake and defective NAADP-mediated lysosomal Ca(2+) release. These defects in NPC cells leads to the disruption in endocytosis and subsequent lipid storage that is a feature of this disease. In contrast, Chediak-Higashi Syndrome cells have been reported to have enhanced lysosomal Ca(2+) uptake whilst the TRPML1 protein defective in mucolipidosis type IV is believed to function as a Ca(2+) channel. In this review we provide a summary of the current knowledge on the role of lysosomal Ca(2+) signaling in the pathogenesis of this group of diseases.

  1. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion

    Institute of Scientific and Technical Information of China (English)

    Jing Zhou; Shi-Hao Tan; Valérie Nicolas; Chantal Bauvy; Nai-Di Yang; Jianbin Zhang; Yuan Xue

    2013-01-01

    Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy.In this study,we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torinl),but not by an allosteric inhibitor (rapamycin),leads to activation of lysosomal function.Second,we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1),but not mTORC2,and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function.Third,we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation.Finally,Atg5 or Atg7deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation,suggesting that lysosomal activation occurring in the course of autophagy is dependent on antophagosome-lysosome fusion.Taken together,this study demonstrates that in the course of autophagy,lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.

  2. Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion.

    Science.gov (United States)

    Zhou, Jing; Tan, Shi-Hao; Nicolas, Valérie; Bauvy, Chantal; Yang, Nai-Di; Zhang, Jianbin; Xue, Yuan; Codogno, Patrice; Shen, Han-Ming

    2013-04-01

    Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy. In this study, we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torin1), but not by an allosteric inhibitor (rapamycin), leads to activation of lysosomal function. Second, we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1), but not mTORC2, and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function. Third, we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation. Finally, Atg5 or Atg7 deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation, suggesting that lysosomal activation occurring in the course of autophagy is dependent on autophagosome-lysosome fusion. Taken together, this study demonstrates that in the course of autophagy, lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.

  3. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    Directory of Open Access Journals (Sweden)

    Alberto Canfrán-Duque

    2016-03-01

    Full Text Available First- and second-generation antipsychotics (FGAs and SGAs, respectively, have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanineperchlorate (DiI-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2 and LBPA (lysobisphosphatidic acid, which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1 and coatomer subunit β (β-COP were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes’ internal milieu induced by haloperidol affects lysosomal functionality.

  4. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    Science.gov (United States)

    Canfrán-Duque, Alberto; Barrio, Luis C.; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A.; Busto, Rebeca

    2016-01-01

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes’ internal milieu induced by haloperidol affects lysosomal functionality. PMID:26999125

  5. Mucolipidosis type IV protein TRPML1-dependent lysosome formation.

    Science.gov (United States)

    Miller, Austin; Schafer, Jessica; Upchurch, Cameron; Spooner, Ellen; Huynh, Julie; Hernandez, Sebastian; McLaughlin, Brooke; Oden, Liam; Fares, Hanna

    2015-03-01

    Lysosomes are dynamic organelles that undergo cycles of fusion and fission with themselves and with other organelles. Following fusion with late endosomes to form hybrid organelles, lysosomes are reformed as discrete organelles. This lysosome reformation or formation is a poorly understood process that has not been systematically analyzed and that lacks known regulators. In this study, we quantitatively define the multiple steps of lysosome formation and identify the first regulator of this process.

  6. Effects of ethanol, acetaldehyde and cholesteryl esters on pancreatic lysosomes.

    OpenAIRE

    Wilson, J S; Apte, M V; Thomas, M. C.; Haber, P S; Pirola, R C

    1992-01-01

    Recent studies indicate that altered lysosomal function may be involved in the early stages of pancreatic injury. Chronic consumption of ethanol increases rat pancreatic lysosomal fragility. The aim of this study is to determine whether the lysosomal fragility observed after chronic ethanol consumption is mediated by ethanol per se, its oxidative metabolite acetaldehyde or cholesteryl esters (substances which accumulate in the pancreas after ethanol consumption). Pancreatic lysosomes from cho...

  7. Lysosomal storage disease 2 - Pompe's disease

    NARCIS (Netherlands)

    van der Ploeg, Ans T.; Reuser, Arnold J. J.

    2008-01-01

    Pompe's disease, glycogen-storage disease type II, and acid maltase deficiency are alternative names for the same metabolic disorder. It is a pan-ethnic autosomal recessive trait characterised by acid alpha-glucosidase deficiency leading to lysosomal glycogen storage. Pompe's disease is also

  8. Transport of Lysosome-Related Organelles

    NARCIS (Netherlands)

    Jordens, Ingrid

    2005-01-01

    Many intracellular compartments, including (MHC class II-containing) lysosomes, melanosomes and phagosomes, move along microtubules in a bi-directional manner due to the alternating activities of the plus-end directed kinesin motor and the minus-end directed dynein-dynactin motor. However, it is lar

  9. Transport of Lysosome-Related Organelles

    NARCIS (Netherlands)

    Jordens, Ingrid

    2005-01-01

    Many intracellular compartments, including (MHC class II-containing) lysosomes, melanosomes and phagosomes, move along microtubules in a bi-directional manner due to the alternating activities of the plus-end directed kinesin motor and the minus-end directed dynein-dynactin motor. However, it is

  10. Lysosomal proteolysis: effects of aging and insulin.

    Science.gov (United States)

    Gromakova, I A; Konovalenko, O A

    2003-07-01

    Age-related characteristics of the effect of insulin on the activity of lysosomal proteolytic enzymes were studied. The relationship between the insulin effect on protein degradation and insulin degradation was analyzed. The effect of insulin on the activities of lysosomal enzymes was opposite in young and old rats (inhibitory in 3-month-old and stimulatory in 24-month-old animals). The activities of proteolytic enzymes were regulated by insulin in a glucose-independent manner: similar hypoglycemic effects of insulin in animals of different ages were accompanied by opposite changes in the activities of lysosomal enzymes. The inhibition of lysosomal enzymes by insulin in 3-month-old rats is consistent with a notion on the inhibitory effect of insulin on protein degradation. An opposite insulin effect in 24-month-old rats (i.e., stimulation of proteolytic activity by insulin) may be partly associated with attenuation of the degradation of insulin, resulting in disturbances in signaling that mediates the regulatory effects of insulin on protein degradation.

  11. Discovery of an irreversible HCV NS5B polymerase inhibitor.

    Science.gov (United States)

    Zeng, Qingbei; Nair, Anilkumar G; Rosenblum, Stuart B; Huang, Hsueh-Cheng; Lesburg, Charles A; Jiang, Yueheng; Selyutin, Oleg; Chan, Tin-Yau; Bennett, Frank; Chen, Kevin X; Venkatraman, Srikanth; Sannigrahi, Mousumi; Velazquez, Francisco; Duca, Jose S; Gavalas, Stephen; Huang, Yuhua; Pu, Haiyan; Wang, Li; Pinto, Patrick; Vibulbhan, Bancha; Agrawal, Sony; Ferrari, Eric; Jiang, Chuan-kui; Li, Cheng; Hesk, David; Gesell, Jennifer; Sorota, Steve; Shih, Neng-Yang; Njoroge, F George; Kozlowski, Joseph A

    2013-12-15

    The discovery of lead compound 2e was described. Its covalent binding to HCV NS5B polymerase enzyme was investigated by X-ray analysis. The results of distribution, metabolism and pharmacokinetics were reported. Compound 2e was demonstrated to be potent (replicon GT-1b EC50 = 0.003 μM), highly selective, and safe in in vitro and in vivo assays.

  12. An Assessment of Resonance Treatment in WIMSD-5B

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Young; You, Guk Jong; Min, Byung Joo; Park, Joo Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    WIMSD-5B is a lattice code with a depletion capability for the analysis of reactor physics problems related to a design and safety. It is released from the OECD/NEA Data Bank in 1998 and is now being used widely for thermal research and power reactor calculations. The purpose of this study is to assess and improve the resonance treatment method in WIMSD- 5B, through the introduction of a new method with a high accuracy in treating the resonance, as one of the development works for WIMS/CANDU, which is being developed for replacing WIMS-AECL, for the physics analysis of CANDU reactors. In this article, we specifically describe the recent improvements in the resonance integral method using the Carlvik's approximation. As a result, a comparison for the resonance calculation on the CANDU-6 fuel lattice was performed between the WIMSD-5B code and the WIMS/CANDU code with the 69-energy groups of the ENDF/B-VI nuclear data library and the WIMS-AECL code with the 89-energy group of the ENDF/B-VI nuclear data library.

  13. A non-conserved miRNA regulates lysosomal function and impacts on a human lysosomal storage disorder

    DEFF Research Database (Denmark)

    Frankel, Lisa B; Di Malta, Chiara; Wen, Jiayu

    2014-01-01

    Sulfatases are key enzymatic regulators of sulfate homeostasis with several biological functions including degradation of glycosaminoglycans (GAGs) and other macromolecules in lysosomes. In a severe lysosomal storage disorder, multiple sulfatase deficiency (MSD), global sulfatase activity...

  14. Influences of ammonia-nitrogen and dissolved oxygen on lysosomal integrity in green-lipped mussel Perna viridis: laboratory evaluation and field validation in Victoria Harbour, Hong Kong.

    Science.gov (United States)

    Fang, J K H; Wu, R S S; Chan, A K Y; Yip, C K M; Shin, P K S

    2008-12-01

    Lysosomal integrity in mussels has been applied as a biomarker to detect the pollution of trace organics and metals in the natural environments. However, few studies have examined the effects of water quality on the response of lysosomal integrity, in particular total ammonia-nitrogen (TAN) and dissolved oxygen (DO). This study demonstrated that high level of TAN (2.0mg/l) and low DO (2.5mg O(2)/l) could significantly reduce the lysosomal integrity in green-lipped mussel Perna viridis, respectively by 33% and 38%, whereas the mussel lysosomal integrity decreased by 70% in the combined treatment of TAN and low DO under laboratory conditions after one week. The mussel lysosomal integrity of all treatment groups could return to the control level after a three week recovery period. In the field validation in Victoria Harbour, Hong Kong during an one-year study period, lysosomal integrity in P. viridis identified the cleanest site east to the harbour, where the lowest TAN and highest DO concentrations were found. While lysosomal integrity in mussels seemed not affected by seasonal changes, approximately 40% of the variation of this biomarker could be attributable to the changes in TAN and DO in seawater. In conclusion, the response of the mussel lysosomal integrity can be confounded by both TAN and DO prevailing in the natural environments and thus caution must be exercised in relating the observed changes in lysosomal integrity to any specific pollutant in coastal water quality monitoring studies.

  15. Reactivation of Lysosomal Ca2+ Efflux Rescues Abnormal Lysosomal Storage in FIG4-Deficient Cells.

    Science.gov (United States)

    Zou, Jianlong; Hu, Bo; Arpag, Sezgi; Yan, Qing; Hamilton, Audra; Zeng, Yuan-Shan; Vanoye, Carlos G; Li, Jun

    2015-04-29

    Loss of function of FIG4 leads to Charcot-Marie-Tooth disease Type 4J, Yunis-Varon syndrome, or an epilepsy syndrome. FIG4 is a phosphatase with its catalytic specificity toward 5'-phosphate of phosphatidylinositol-3,5-diphosphate (PI3,5P2). However, the loss of FIG4 decreases PI3,5P2 levels likely due to FIG4's dominant effect in scaffolding a PI3,5P2 synthetic protein complex. At the cellular level, all these diseases share similar pathology with abnormal lysosomal storage and neuronal degeneration. Mice with no FIG4 expression (Fig4(-/-)) recapitulate the pathology in humans with FIG4 deficiency. Using a flow cytometry technique that rapidly quantifies lysosome sizes, we detected an impaired lysosomal fission, but normal fusion, in Fig4(-/-) cells. The fission defect was associated with a robust increase of intralysosomal Ca(2+) in Fig4(-/-) cells, including FIG4-deficient neurons. This finding was consistent with a suppressed Ca(2+) efflux of lysosomes because the endogenous ligand of lysosomal Ca(2+) channel TRPML1 is PI3,5P2 that is deficient in Fig4(-/-) cells. We reactivated the TRPML1 channels by application of TRPML1 synthetic ligand, ML-SA1. This treatment reduced the intralysosomal Ca(2+) level and rescued abnormal lysosomal storage in Fig4(-/-) culture cells and ex vivo DRGs. Furthermore, we found that the suppressed Ca(2+) efflux in Fig4(-/-) culture cells and Fig4(-/-) mouse brains profoundly downregulated the expression/activity of dynamin-1, a GTPase known to scissor organelle membranes during fission. This downregulation made dynamin-1 unavailable for lysosomal fission. Together, our study revealed a novel mechanism explaining abnormal lysosomal storage in FIG4 deficiency. Synthetic ligands of the TRPML1 may become a potential therapy against diseases with FIG4 deficiency.

  16. Lysosomal Acid Lipase Activity Is Reduced Both in Cryptogenic Cirrhosis and in Cirrhosis of Known Etiology.

    Directory of Open Access Journals (Sweden)

    Umberto Vespasiani-Gentilucci

    Full Text Available Liver cirrhosis is characterized by a severe acquired reduction of LAL-activity, the precise causes and consequences of which need to be further addressed. DBS-determined lysosomal enzyme activities seem to be affected by white blood cell and platelet counts, and the specificity of these tests can be reduced when applied to determined populations, such as cirrhotics.

  17. The role of VAMP7/TI-VAMP in cell polarity and lysosomal exocytosis in vivo.

    Science.gov (United States)

    Sato, Mahito; Yoshimura, Shinichiro; Hirai, Rika; Goto, Ayako; Kunii, Masataka; Atik, Nur; Sato, Takashi; Sato, Ken; Harada, Reiko; Shimada, Junko; Hatabu, Toshimitsu; Yorifuji, Hiroshi; Harada, Akihiro

    2011-10-01

    VAMP7 or tetanus neurotoxin-insensitive vesicle- associated membrane protein (TI-VAMP) has been proposed to regulate apical transport in polarized epithelial cells, axonal transport in neurons and lysosomal exocytosis. To investigate the function of VAMP7 in vivo, we generated VAMP7 knockout mice. Here, we show that VAMP7 knockout mice are indistinguishable from control mice and display a similar localization of apical proteins in the kidney and small intestine and a similar localization of axonal proteins in the nervous system. Neurite outgrowth of cultured mutant hippocampal neurons was reduced in mutant neurons. However, lysosomal exocytosis was not affected in mutant fibroblasts. Our results show that VAMP7 is required in neurons to extend axons to the full extent. However, VAMP7 does not seem to be required for epithelial cell polarity and lysosomal exocytosis.

  18. Pharmacoinformatics approach for investigation of alternative potential hepatitis C virus nonstructural protein 5B inhibitors

    Directory of Open Access Journals (Sweden)

    Mirza MU

    2015-03-01

    Full Text Available Muhammad Usman Mirza,1 Noor-Ul-Huda Ghori,2 Nazia Ikram,3 Abdur Rehman Adil,4 Sadia Manzoor3 1Centre for Research in Molecular Medicine (CRiMM, The University of Lahore, Lahore, 2Atta-ur-Rehman School of Applied Biosciences (ASAB, National University of Science and Technology, Islamabad, 3Institute of Molecular Biology and Biotechnology (IMBB, The University of Lahore, Lahore, Pakistan; 4Centre for Excellence in Molecular Biology (CEMB, The University of Punjab, Lahore, Pakistan Abstract: Hepatitis C virus (HCV is one of the major viruses affecting the world today. It is a highly variable virus, having a rapid reproduction and evolution rate. The variability of genomes is due to hasty replication catalyzed by nonstructural protein 5B (NS5B which is also a potential target site for the development of anti-HCV agents. Recently, the US Food and Drug Administration approved sofosbuvir as a novel oral NS5B inhibitor for the treatment of HCV. Unfortunately, it is much highlighted for its pricing issues. Hence, there is an urgent need to scrutinize alternate therapies against HCV that are available at affordable price and do not have associated side effects. Such a need is crucial especially in underdeveloped countries. The search for various new bioactive compounds from plants is a key part of pharmaceutical research. In the current study, we applied a pharmacoinformatics-based approach for the identification of active plant-derived compounds against NS5B. The results were compared to docking results of sofosbuvir. The lead compounds with high-binding ligands were further analyzed for pharmacokinetic and pharmacodynamic parameters based on in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET profile. The results showed the potential alternative lead compounds that can be developed into commercial drugs having high binding energy and promising ADMET properties. Keywords: hepatitis C, NS5B inhibitors, molecular docking, Auto

  19. Reversible optic neuropathy with OPA1 exon 5b mutation

    DEFF Research Database (Denmark)

    Cornille, K.; Milea, D.; Amati-Bonneau, P.

    2008-01-01

    A new c.740G>A (R247H) mutation in OPA1 alternate spliced exon 5b was found in a patient presenting with bilateral optic neuropathy followed by partial, spontaneous visual recovery. R247H fibroblasts from the patient and his unaffected father presented unusual highly tubular mitochondrial network......, significant increased susceptibility to apoptosis, oxidative phosphorylation uncoupling, and altered OPA1 protein profile, supporting the pathogenicity of this mutation. These results suggest that the clinical spectrum of the OPA1-associated optic neuropathies may be larger than previously described...

  20. Diagnosing lysosomal storage diseases in a Brazilian non-newborn population by tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Guilherme Dotto Brand

    2013-11-01

    Full Text Available OBJECTIVES: High-throughput mass spectrometry methods have been developed to screen newborns for lysosomal storage disorders, allowing the implementation of newborn screening pilot studies in North America and Europe. It is currently feasible to diagnose Pompe, Fabry, Gaucher, Krabbe, and Niemann-Pick A/B diseases, as well as mucopolysaccharidosis I, by tandem mass spectrometry in dried blood spots, which offers considerable technical advantages compared with standard methodologies. We aimed to investigate whether the mass spectrometry methodology for lysosomal storage disease screening, originally developed for newborns, can also discriminate between affected patients and controls of various ages. METHODS: A total of 205 control individuals were grouped according to age and subjected to mass spectrometry quantification of lysosomal α-glucosidase, β-glucocerebrosidase, α-galactosidase, acid sphingomyelinase, galactocerebrosidase, and α−L-iduronidase activities. Additionally, 13 affected patients were analyzed. RESULTS: The median activities for each enzyme and each age group were determined. Enzyme activities were significantly lower in individuals aged older than 18 years compared with those in newborns. Affected patients presented enzymatic activities corresponding to less than 20% of the age-matched controls. CONCLUSIONS: Our data indicate that the mass spectrometry methodology can be used for the screening of lysosomal storage diseases in non-newborn patients. However, for some diseases, such as Fabry and mucopolysaccharidosis I, a combination of biochemical and clinical data may be necessary to achieve accurate diagnoses.

  1. Activity of lysosomal exoglycosidases in human gliomas.

    Science.gov (United States)

    Wielgat, P; Walczuk, U; Szajda, S; Bień, M; Zimnoch, L; Mariak, Z; Zwierz, K

    2006-12-01

    There is a lot of data suggesting that modifications of cell glycoconjugates may be important in progression of cancer. In the present work we studied activities of lysosomal exoglycosidases: beta-hexosaminidase and its isoenzymes A and B, beta-galactosidase and alpha-mannosidase, in human gliomas. Enzyme activity was determined spectrophotometrically based on the release of p-nitrophenol from p-nitrophenyl-derivative of appropriate sugars. The activities of the exoglycosidases tested were significantly higher in malignant glial tumors than in control tissue (normal brain tissue) and non-glial tumors. The highest activities of exoglycosidases were observed in high-grade gliomas, and a positive correlation of enzyme activities and degree of malignancy was noted. Our results suggest that lysosomal exoglycosidases may participate in the progression and dynamical development of glial tumors.

  2. Rapid recycling of Ca2+ between IP3-sensitive stores and lysosomes.

    Directory of Open Access Journals (Sweden)

    Cristina I López Sanjurjo

    Full Text Available Inositol 1,4,5-trisphosphate (IP3 evokes release of Ca2+ from the endoplasmic reticulum (ER, but the resulting Ca2+ signals are shaped by interactions with additional intracellular organelles. Bafilomycin A1, which prevents lysosomal Ca2+ uptake by inhibiting H+ pumping into lysosomes, increased the amplitude of the initial Ca2+ signals evoked by carbachol in human embryonic kidney (HEK cells. Carbachol alone and carbachol in combination with parathyroid hormone (PTH evoke Ca2+ release from distinct IP3-sensitive Ca2+ stores in HEK cells stably expressing human type 1 PTH receptors. Bafilomycin A1 similarly exaggerated the Ca2+ signals evoked by carbachol or carbachol with PTH, indicating that Ca2+ released from distinct IP3-sensitive Ca2+ stores is sequestered by lysosomes. The Ca2+ signals resulting from store-operated Ca2+ entry, whether evoked by thapsigargin or carbachol, were unaffected by bafilomycin A1. Using Gd3+ (1 mM to inhibit both Ca2+ entry and Ca2+ extrusion, HEK cells were repetitively stimulated with carbachol to assess the effectiveness of Ca2+ recycling to the ER after IP3-evoked Ca2+ release. Blocking lysosomal Ca2+ uptake with bafilomycin A1 increased the amplitude of each carbachol-evoked Ca2+ signal without affecting the rate of Ca2+ recycling to the ER. This suggests that Ca2+ accumulated by lysosomes is rapidly returned to the ER. We conclude that lysosomes rapidly, reversibly and selectively accumulate the Ca2+ released by IP3 receptors residing within distinct Ca2+ stores, but not the Ca2+ entering cells via receptor-regulated, store-operated Ca2+ entry pathways.

  3. Regulation of lysosomal ion homeostasis by channels and transporters.

    Science.gov (United States)

    Xiong, Jian; Zhu, Michael X

    2016-08-01

    Lysosomes are the major organelles that carry out degradation functions. They integrate and digest materials compartmentalized by endocytosis, phagocytosis or autophagy. In addition to more than 60 hydrolases residing in the lysosomes, there are also ion channels and transporters that mediate the flux or transport of H(+), Ca(2+), Na(+), K(+), and Cl(-) across the lysosomal membranes. Defects in ionic exchange can lead to abnormal lysosome morphology, defective vesicle trafficking, impaired autophagy, and diseases such as neurodegeneration and lysosomal storage disorders. The latter are characterized by incomplete lysosomal digestion and accumulation of toxic materials inside enlarged intracellular vacuoles. In addition to degradation, recent studies have revealed the roles of lysosomes in metabolic pathways through kinases such as mechanistic target of rapamycin (mTOR) and transcriptional regulation through calcium signaling molecules such as transcription factor EB (TFEB) and calcineurin. Owing to the development of new approaches including genetically encoded fluorescence probes and whole endolysosomal patch clamp recording techniques, studies on lysosomal ion channels have made remarkable progress in recent years. In this review, we will focus on the current knowledge of lysosome-resident ion channels and transporters, discuss their roles in maintaining lysosomal function, and evaluate how their dysfunction can result in disease.

  4. Biphasic regulation of lysosomal exocytosis by oxidative stress.

    Science.gov (United States)

    Ravi, Sreeram; Peña, Karina A; Chu, Charleen T; Kiselyov, Kirill

    2016-11-01

    Oxidative stress drives cell death in a number of diseases including ischemic stroke and neurodegenerative diseases. A better understanding of how cells recover from oxidative stress is likely to lead to better treatments for stroke and other diseases. The recent evidence obtained in several models ties the process of lysosomal exocytosis to the clearance of protein aggregates and toxic metals. The mechanisms that regulate lysosomal exocytosis, under normal or pathological conditions, are only beginning to emerge. Here we provide evidence for the biphasic effect of oxidative stress on lysosomal exocytosis. Lysosomal exocytosis was measured using the extracellular levels of the lysosomal enzyme beta-hexosaminidase (ß-hex). Low levels or oxidative stress stimulated lysosomal exocytosis, but inhibited it at high levels. Deletion of the lysosomal ion channel TRPML1 eliminated the stimulatory effect of low levels of oxidative stress. The inhibitory effects of oxidative stress appear to target the component of lysosomal exocytosis that is driven by extracellular Ca(2+). We propose that while moderate oxidative stress promotes cellular repair by stimulating lysosomal exocytosis, at high levels oxidative stress has a dual pathological effect: it directly causes cell damage and impairs damage repair by inhibiting lysosomal exocytosis. Harnessing these adaptive mechanisms may point to pharmacological interventions for diseases involving oxidative proteotoxicity or metal toxicity.

  5. BAX channel activity mediates lysosomal disruption linked to Parkinson disease.

    Science.gov (United States)

    Bové, Jordi; Martínez-Vicente, Marta; Dehay, Benjamin; Perier, Celine; Recasens, Ariadna; Bombrun, Agnes; Antonsson, Bruno; Vila, Miquel

    2014-05-01

    Lysosomal disruption is increasingly regarded as a major pathogenic event in Parkinson disease (PD). A reduced number of intraneuronal lysosomes, decreased levels of lysosomal-associated proteins and accumulation of undegraded autophagosomes (AP) are observed in PD-derived samples, including fibroblasts, induced pluripotent stem cell-derived dopaminergic neurons, and post-mortem brain tissue. Mechanistic studies in toxic and genetic rodent PD models attribute PD-related lysosomal breakdown to abnormal lysosomal membrane permeabilization (LMP). However, the molecular mechanisms underlying PD-linked LMP and subsequent lysosomal defects remain virtually unknown, thereby precluding their potential therapeutic targeting. Here we show that the pro-apoptotic protein BAX (BCL2-associated X protein), which permeabilizes mitochondrial membranes in PD models and is activated in PD patients, translocates and internalizes into lysosomal membranes early following treatment with the parkinsonian neurotoxin MPTP, both in vitro and in vivo, within a time-frame correlating with LMP, lysosomal disruption, and autophagosome accumulation and preceding mitochondrial permeabilization and dopaminergic neurodegeneration. Supporting a direct permeabilizing effect of BAX on lysosomal membranes, recombinant BAX is able to induce LMP in purified mouse brain lysosomes and the latter can be prevented by pharmacological blockade of BAX channel activity. Furthermore, pharmacological BAX channel inhibition is able to prevent LMP, restore lysosomal levels, reverse AP accumulation, and attenuate mitochondrial permeabilization and overall nigrostriatal degeneration caused by MPTP, both in vitro and in vivo. Overall, our results reveal that PD-linked lysosomal impairment relies on BAX-induced LMP, and point to small molecules able to block BAX channel activity as potentially beneficial to attenuate both lysosomal defects and neurodegeneration occurring in PD.

  6. 46 CFR Appendix A to Subpart A of... - Example of Escrow Agreement for Use Under 46 CFR 540.5(b)

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Example of Escrow Agreement for Use Under 46 CFR 540.5(b) A Appendix A to Subpart A of Part 540 Shipping FEDERAL MARITIME COMMISSION REGULATIONS AFFECTING... Agreement for Use Under 46 CFR 540.5(b) Escrow Agreement 1. Legal name(s), state(s) of...

  7. The late endosome/lysosome-anchored p18-mTORC1 pathway controls terminal maturation of lysosomes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yusuke; Nada, Shigeyuki; Mori, Shunsuke; Soma-Nagae, Taeko; Oneyama, Chitose [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Okada, Masato, E-mail: okadam@biken.osaka-u.ac.jp [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer p18 is a membrane adaptor that anchors mTORC1 to late endosomes/lysosomes. Black-Right-Pointing-Pointer We examine the role of the p18-mTORC1 pathway in lysosome biogenesis. Black-Right-Pointing-Pointer The loss of p18 causes accumulation of intact late endosomes by arresting lysosome maturation. Black-Right-Pointing-Pointer Inhibition of mTORC1 activity with rapamycin phenocopies the defects of p18 loss. Black-Right-Pointing-Pointer The p18-mTORC1 pathway plays crucial roles in the terminal maturation of lysosomes. -- Abstract: The late endosome/lysosome membrane adaptor p18 (or LAMTOR1) serves as an anchor for the mammalian target of rapamycin complex 1 (mTORC1) and is required for its activation on lysosomes. The loss of p18 causes severe defects in cell growth as well as endosome dynamics, including membrane protein transport and lysosome biogenesis. However, the mechanisms underlying these effects on lysosome biogenesis remain unknown. Here, we show that the p18-mTORC1 pathway is crucial for terminal maturation of lysosomes. The loss of p18 causes aberrant intracellular distribution and abnormal sizes of late endosomes/lysosomes and an accumulation of late endosome specific components, including Rab7, RagC, and LAMP1; this suggests that intact late endosomes accumulate in the absence of p18. These defects are phenocopied by inhibiting mTORC1 activity with rapamycin. Loss of p18 also suppresses the integration of late endosomes and lysosomes, resulting in the defective degradation of tracer proteins. These results suggest that the p18-mTORC1 pathway plays crucial roles in the late stages of lysosomal maturation, potentially in late endosome-lysosome fusion, which is required for processing of various macromolecules.

  8. Wnt5b-associated exosomes promote cancer cell migration and proliferation.

    Science.gov (United States)

    Harada, Takeshi; Yamamoto, Hideki; Kishida, Shosei; Kishida, Michiko; Awada, Chihiro; Takao, Toshifumi; Kikuchi, Akira

    2017-01-01

    Wnt5b is a member of the same family of proteins as Wnt5a, the overexpression of which is associated with cancer aggressiveness. Wnt5b is also suggested to be involved in cancer progression, however, details remain unclarified. We analyzed the biochemical properties of purified Wnt5b and the mode of secretion of Wnt5b by cancer cells. Wnt5b was glycosylated at three asparagine residues and lipidated at one serine residue, and these post-translational modifications of Wnt5b were essential for secretion. Purified Wnt5b showed Dvl2 phosphorylation and Rac activation abilities to a similar extent as Wnt5a. In cultured-cell conditioned medium, Wnt5b was detected in supernatant or precipitation fractions that were separated by centrifugation at 100 000 g. In PANC-1 pancreatic cancer cells, 55% of secreted endogenous Wnt5b was associated with exosomes. Exosomes from wild-type PANC-1 cells, but not those from Wnt5b-knockout PANC-1 cells, activated Wnt5b signaling in CHO cells and stimulated migration and proliferation of A549 lung adenocarcinoma cells, suggesting that endogenous, Wnt5b-associated exosomes are active. The exosomes were taken up by CHO cells and immunoelectron microscopy revealed that Wnt5b is indeed associated with exosomes. In Caco-2 colon cancer cells, most Wnt5b was recovered in precipitation fractions when Wnt5b was ectopically expressed (Caco-2/Wnt5b cells). Knockdown of TSG101, an exosome marker, decreased the secretion of Wnt5b-associated exosomes from Caco-2/Wnt5b cells and inhibited Wnt5b-dependent cell proliferation. Exosomes secreted from Caco-2/Wnt5b cells stimulated migration and proliferation of A549 cells. These results suggest that Wnt5b-associated exosomes promote cancer cell migration and proliferation in a paracrine manner.

  9. Data of evolutionary structure change: 1AKMC-3GD5B [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1AKMC-3GD5B 1AKM 3GD5 C B SGFYHKHFLKLLDFTPAELNSLLQLAAKLKADKKSGKEE...AKLTGKNIALIFEKDSTRTRCSFEVAAYDQGARVTYLGPSGSQIGHKESIKDTARVLGRMYDGIQYRGYGQEIVETLAEYASVPVWNGLTNEFHPTQLLADLLTMQEHLPGKAFNEMTLVYAGD...FAQTELEEYAHYAGIPVINALTDHEHPCQVVADLLTIRENFG--RLAGLKLAYVGDG-NNVAHSLLLGCAKVGMSIAVATPEGFTPDPAVSARASEIAGRTGAEVQIL...hain> 3GD5 B 3GD5B...ndel> 1 3GD5 B 3GD

  10. Quantitative modeling of selective lysosomal targeting for drug design

    DEFF Research Database (Denmark)

    Trapp, Stefan; Rosania, G.; Horobin, R.W.;

    2008-01-01

    Lysosomes are acidic organelles and are involved in various diseases, the most prominent is malaria. Accumulation of molecules in the cell by diffusion from the external solution into cytosol, lysosome and mitochondrium was calculated with the Fick–Nernst–Planck equation. The cell model considers....... This demonstrates that the cell model can be a useful tool for the design of effective lysosome-targeting drugs with minimal off-target interactions....

  11. Release and uptake of lysosomal enzymes : studied in cultured cells

    OpenAIRE

    1980-01-01

    textabstractThe purpose of the experimental work described in this thesiswas to investigate some aspects of the release and uptake of lysosomal enzymes. The experiments involved the use of normal human and animal fibroblasts and some other cell types such as hepatocytes and hepatoma cells as sources of hydrolytic enzymes, and fibroblasts from patients with lysosomal storage diseases associated with a single lysosomal enzyme deficiency and with "1-cell" disease as recipient cells. In a number ...

  12. Factors and processes modulating phenotypes in neuronopathic lysosomal storage diseases

    OpenAIRE

    Jakóbkiewicz-Banecka, Joanna; Gabig-Cimińska, Magdalena; Banecka-Majkutewicz, Zyta; Banecki, Bogdan; Węgrzyn, Alicja; Węgrzyn, Grzegorz

    2013-01-01

    Lysosomal storage diseases are inherited metabolic disorders caused by genetic defects causing deficiency of various lysosomal proteins, and resultant accumulation of non-degraded compounds. They are multisystemic diseases, and in most of them (>70 %) severe brain dysfunctions are evident. However, expression of various phenotypes in particular diseases is extremely variable, from non-neuronopathic to severely neurodegenerative in the deficiency of the same enzyme. Although all lysosomal stor...

  13. Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors

    Science.gov (United States)

    Sukhai, Mahadeo A.; Prabha, Swayam; Hurren, Rose; Rutledge, Angela C.; Lee, Anna Y.; Sriskanthadevan, Shrivani; Sun, Hong; Wang, Xiaoming; Skrtic, Marko; Seneviratne, Ayesh; Cusimano, Maria; Jhas, Bozhena; Gronda, Marcela; MacLean, Neil; Cho, Eunice E.; Spagnuolo, Paul A.; Sharmeen, Sumaiya; Gebbia, Marinella; Urbanus, Malene; Eppert, Kolja; Dissanayake, Dilan; Jonet, Alexia; Dassonville-Klimpt, Alexandra; Li, Xiaoming; Datti, Alessandro; Ohashi, Pamela S.; Wrana, Jeff; Rogers, Ian; Sonnet, Pascal; Ellis, William Y.; Corey, Seth J.; Eaves, Connie; Minden, Mark D.; Wang, Jean C.Y.; Dick, John E.; Nislow, Corey; Giaever, Guri; Schimmer, Aaron D.

    2012-01-01

    Despite efforts to understand and treat acute myeloid leukemia (AML), there remains a need for more comprehensive therapies to prevent AML-associated relapses. To identify new therapeutic strategies for AML, we screened a library of on- and off-patent drugs and identified the antimalarial agent mefloquine as a compound that selectively kills AML cells and AML stem cells in a panel of leukemia cell lines and in mice. Using a yeast genome-wide functional screen for mefloquine sensitizers, we identified genes associated with the yeast vacuole, the homolog of the mammalian lysosome. Consistent with this, we determined that mefloquine disrupts lysosomes, directly permeabilizes the lysosome membrane, and releases cathepsins into the cytosol. Knockdown of the lysosomal membrane proteins LAMP1 and LAMP2 resulted in decreased cell viability, as did treatment of AML cells with known lysosome disrupters. Highlighting a potential therapeutic rationale for this strategy, leukemic cells had significantly larger lysosomes compared with normal cells, and leukemia-initiating cells overexpressed lysosomal biogenesis genes. These results demonstrate that lysosomal disruption preferentially targets AML cells and AML progenitor cells, providing a rationale for testing lysosomal disruption as a novel therapeutic strategy for AML. PMID:23202731

  14. A lysosome-centered view of nutrient homeostasis.

    Science.gov (United States)

    Mony, Vinod K; Benjamin, Shawna; O'Rourke, Eyleen J

    2016-01-01

    Lysosomes are highly acidic cellular organelles traditionally viewed as sacs of enzymes involved in digesting extracellular or intracellular macromolecules for the regeneration of basic building blocks, cellular housekeeping, or pathogen degradation. Bound by a single lipid bilayer, lysosomes receive their substrates by fusing with endosomes or autophagosomes, or through specialized translocation mechanisms such as chaperone-mediated autophagy or microautophagy. Lysosomes degrade their substrates using up to 60 different soluble hydrolases and release their products either to the cytosol through poorly defined exporting and efflux mechanisms or to the extracellular space by fusing with the plasma membrane. However, it is becoming evident that the role of the lysosome in nutrient homeostasis goes beyond the disposal of waste or the recycling of building blocks. The lysosome is emerging as a signaling hub that can integrate and relay external and internal nutritional information to promote cellular and organismal homeostasis, as well as a major contributor to the processing of energy-dense molecules like glycogen and triglycerides. Here we describe the current knowledge of the nutrient signaling pathways governing lysosomal function, the role of the lysosome in nutrient mobilization, and how lysosomes signal other organelles, distant tissues, and even themselves to ensure energy homeostasis in spite of fluctuations in energy intake. At the same time, we highlight the value of genomics approaches to the past and future discoveries of how the lysosome simultaneously executes and controls cellular homeostasis.

  15. Cell biology in China: Focusing on the lysosome.

    Science.gov (United States)

    Yang, Chonglin; Wang, Xiaochen

    2017-06-01

    The view that lysosomes are merely the recycling bins of the cell has changed greatly during recent years. Lysosomes are now known to play a central role in signal transduction, cellular adaptation, plasma membrane repair, immune responses and many other fundamental cellular processes. In conjunction with the seminal discoveries made by international colleagues, many important questions regarding lysosomes are being addressed by Chinese scientists. In this review, we briefly summarize recent exciting findings in China on lysosomal signaling, biogenesis, integrity and physiological functions. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Measurements of Transit Timing Variations for WASP-5b

    CERN Document Server

    Fukui, Akihiko; Tristram, Paul J; Sumi, Takahiro; Abe, Fumio; Itow, Yoshitaka; Sullivan, Denis J; Bond, Ian A; Hirano, Teruyuki; Tamura, Motohide; Bennett, David P; Furusawa, Kei; Hayashi, Fumiya; Hearnshaw, John B; Hosaka, Shun; Kamiya, Koki; Kobara, Shuhei; Korpela, Aarno; Kilmartin, Pam M; Lin, Wei; Ling, Cho Hong; Makita, Shota; Masuda, Kimiaki; Matsubara, Yutaka; Miyake, Noriyuki; Muraki, Yasushi; Nagaya, Maiko; Nishimoto, Kenta; Ohnishi, Kouji; Omori, Kengo; Perrott, Yvette; Rattenbury, Nicholas; Saito, Toshiharu; Skuljan, Ljiljana; Suzuki, Daisuke; Sweatman, Winston L; Wada, Kohei

    2010-01-01

    We have observed 7 new transits of the 'hot Jupiter' WASP-5b using a 61 cm telescope located in New Zealand, in order to search for transit timing variations (TTVs) which can be induced by additional bodies existing in the system. When combined with other available photometric and radial velocity (RV) data, we find that its transit timings do not match a linear ephemeris; the best fit \\chi^2 values of 32.2 with 9 degrees of freedom indicates that a marginal TTV signal has been observed at a confidence level of 99.982 %, or 3.7 \\sigma. The standard deviation of the TTVs is as large as 70 s, and if this is real, it cannot be explained by other effects than that due to an additional body or bodies. We put the upper limit on the RV amplitude due to the possible secondary body as 21 m s^{-1}, which corresponds to its mass of 22-70 M_{Earth} over the period ratio from 0.2 to 5.0. From the TTVs data, using the numerical simulations, we place more stringent limits down to 2 M_{Earth} near 1:2 and 2:1 MMRs at the 3 \\s...

  17. Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease

    Science.gov (United States)

    Gan-Or, Ziv; Dion, Patrick A; Rouleau, Guy A

    2015-01-01

    Parkinson disease (PD), once considered as a prototype of a sporadic disease, is now known to be considerably affected by various genetic factors, which interact with environmental factors and the normal process of aging, leading to PD. Large studies determined that the hereditary component of PD is at least 27%, and in some populations, single genetic factors are responsible for more than 33% of PD patients. Interestingly, many of these genetic factors, such as LRRK2, GBA, SMPD1, SNCA, PARK2, PINK1, PARK7, SCARB2, and others, are involved in the autophagy-lysosome pathway (ALP). Some of these genes encode lysosomal enzymes, whereas others correspond to proteins that are involved in transport to the lysosome, mitophagy, or other autophagic-related functions. Is it possible that all these factors converge into a single pathway that causes PD? In this review, we will discuss these genetic findings and the role of the ALP in the pathogenesis of PD and will try to answer this question. We will suggest a novel hypothesis for the pathogenic mechanism of PD that involves the lysosome and the different autophagy pathways. PMID:26207393

  18. Presenilin 1 Maintains Lysosomal Ca2+ Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Lee

    2015-09-01

    Full Text Available Presenilin 1 (PS1 deletion or Alzheimer’s disease (AD-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (PS1KO cells induces abnormal Ca2+ efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca2+. In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca2+ homeostasis, but correcting lysosomal Ca2+ deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss-of-function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca2+ homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism.

  19. Presenilin 1 Maintains Lysosomal Ca(2+) Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification.

    Science.gov (United States)

    Lee, Ju-Hyun; McBrayer, Mary Kate; Wolfe, Devin M; Haslett, Luke J; Kumar, Asok; Sato, Yutaka; Lie, Pearl P Y; Mohan, Panaiyur; Coffey, Erin E; Kompella, Uday; Mitchell, Claire H; Lloyd-Evans, Emyr; Nixon, Ralph A

    2015-09-01

    Presenilin 1 (PS1) deletion or Alzheimer's disease (AD)-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (PS1KO) cells induces abnormal Ca(2+) efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca(2+). In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca(2+) homeostasis, but correcting lysosomal Ca(2+) deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss-of-function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca(2+) homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism.

  20. Arl5b is a Golgi-localised small G protein involved in the regulation of retrograde transport.

    Science.gov (United States)

    Houghton, Fiona J; Bellingham, Shayne A; Hill, Andrew F; Bourges, Dorothée; Ang, Desmond K Y; Gemetzis, Timothy; Gasnereau, Isabelle; Gleeson, Paul A

    2012-03-10

    Regulation of membrane transport is controlled by small G proteins, which include members of the Rab and Arf families. Whereas the role of the classic Arf family members are well characterized, many of the Arf-like proteins (Arls) remain poorly defined. Here we show that Arl5a and Arl5b are localised to the trans-Golgi in mammalian cells, and furthermore have identified a role for Arl5b in the regulation of retrograde membrane transport from endosomes to the trans-Golgi network (TGN). The constitutively active Arl5b (Q70L)-GFP mutant was localised efficiently to the Golgi in HeLa cells whereas the dominant-negative Arl5b (T30N)-GFP mutant was dispersed throughout the cytoplasm and resulted in perturbation of the Golgi apparatus. Stable HeLa cells expressing GFP-tagged Arl5b (Q70L) showed an increased rate of endosome-to-Golgi transport of the membrane cargo TGN38 compared with control HeLa cells. Depletion of Arl5b by RNAi resulted in an alteration in the intracellular distribution of mannose-6-phosphate receptor, and significantly reduced the endosome-to-TGN transport of the membrane cargo TGN38 and of Shiga toxin, but had no affect on the anterograde transport of the cargo E-cadherin. Collectively these results suggest that Arl5b is a TGN-localised small G protein that plays a key role in regulating transport along the endosome-TGN pathway.

  1. Enhanced lysosomal activity by overexpressed aminopeptidase Y in Saccharomyces cerevisiae.

    Science.gov (United States)

    Yoon, Jihee; Sekhon, Simranjeet Singh; Kim, Yang-Hoon; Min, Jiho

    2016-06-01

    Saccharomyces cerevisiae contains vacuoles corresponding to lysosomes in higher eukaryotes. Lysosomes are dynamic (not silent) organelles in which enzymes can be easily integrated or released when exposed to stressful conditions. Changes in lysosomal enzymes have been observed due to oxidative stress, resulting in an increased function of lysosomes. The protein profiles from H2O2- and NH4Cl-treated lysosomes showed different expression patterns, observed with two-dimensional gel electrophoresis. The aminopeptidase Y protein (APE3) that conspicuously enhanced antimicrobial activity than other proteins was selected for further studies. The S. cerevisiae APE3 gene was isolated and inserted into pYES2.0 expression vector. The GFP gene was inserted downstream to the APE3 gene for confirmation of APE3 targeting to lysosomes, and S. cerevisiae was transformed to pYES2::APE3::GFP. The APE3 did not enter in lysosomes and formed an inclusion body at 30 °C, but it inserted to lysosomes as shown by the merger of GFP with lysosomes at 28 °C. Antimicrobial activity of the cloned S. cerevisiae increased about 5 to 10 % against eight strains, compared to normal cells, and galactose induction is increased more two folds than that of normal cells. Therefore, S. cerevisiae was transformed to pYES2::APE3::GFP, accumulating a large amount of APE3, resulting in increased lysosomal activity. Increase in endogenous levels of lysosomes and their activity following genetic modification can lead to its use in applications such as antimicrobial agents and apoptosis-inducing materials for cancer cells, and consequently, it may also be possible to use the organelles for improving in vitro functions.

  2. Enhanced T cell lymphoma in NOD.Stat5b transgenic mice is caused by hyperactivation of Stat5b in CD8+ thymocytes.

    Directory of Open Access Journals (Sweden)

    Bo Chen

    Full Text Available Activation of signal transducers and activators of transcription (STAT proteins may be critical to their oncogenic functions as demonstrated by the development of B-cell lymphoma/leukemia in transgenic (TG mice overexpressing a constitutively activated form of Stat5b. However, low incidence of CD8(+ T cell lymphoma was observed in B6 transgenic mice overexpressing a wild-type Stat5b (B6.Stat5b(Tg despite of undetectable Stat5b phosphorylation and the rate of lymphomagenesis was markedly enhanced by immunization or the introduction of TCR transgenes [1]. Here, we report that the wild-type Stat5b transgene leads to the acceleration and high incidence (74% of CD8(+ T cell lymphoblastic lymphomas in the non-obese-diabetic (NOD background. In contrast to the B6.Stat5b(Tg mice, Stat5b in transgenic NOD (NOD.Stat5b(Tg mice is selectively and progressively phosphorylated in CD8(+ thymocytes. Stat5 phosphorylation also leads to up-regulation of many genes putatively relevant to tumorigenesis. Treatment of NOD.Stat5b(Tg mice with cancer chemopreventive agents Apigenin and Xanthohumol efficiently blocked lymphomagenesis through reduction of Stat5 phosphorylation and genes up-regulated in the NOD.Stat5b(Tg mice. These results suggest that NOD genetic background is critical to the Stat5b-mediated lymphomagenesis through regulation of Stat5 hyperactivation. NOD.Stat5b(Tg mouse is an excellent model for studying the molecular mechanisms underlying lymphomagenesis and testing novel chemoprevention strategies.

  3. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution.

    Science.gov (United States)

    Lu, Guangwen; Coneva, Viktoriya; Casaretto, José A; Ying, Shan; Mahmood, Kashif; Liu, Fang; Nambara, Eiji; Bi, Yong-Mei; Rothstein, Steven J

    2015-09-01

    Plant architecture attributes such as tillering, plant height and panicle size are important agronomic traits that determine rice (Oryza sativa) productivity. Here, we report that altered auxin content, transport and distribution affect these traits, and hence rice yield. Overexpression of the auxin efflux carrier-like gene OsPIN5b causes pleiotropic effects, mainly reducing plant height, leaf and tiller number, shoot and root biomass, seed-setting rate, panicle length and yield parameters. Conversely, reduced expression of OsPIN5b results in higher tiller number, more vigorous root system, longer panicles and increased yield. We show that OsPIN5b is an endoplasmic reticulum (ER) -localized protein that participates in auxin homeostasis, transport and distribution in vivo. This work describes an example of an auxin-related gene where modulating its expression can simultaneously improve plant architecture and yield potential in rice, and reveals an important effect of hormonal signaling on these traits.

  4. Lysosome/lipid droplet interplay in metabolic diseases.

    Science.gov (United States)

    Dugail, Isabelle

    2014-01-01

    Lysosomes and lipid droplets are generally considered as intracellular compartments with divergent roles in cell metabolism, lipid droplets serving as lipid reservoirs in anabolic pathways, whereas lysosomes are specialized in the catabolism of intracellular components. During the last few years, new insights in the biology of lysosomes has challenged this view by providing evidence for the importance of lysosome recycling as a sparing mechanism to maintain cellular fitness. On the other hand the understanding of lipid droplets has evolved from an inert intracellular deposit toward the status of an intracellular organelle with dynamic roles in cellular homeostasis beyond storage. These unrelated aspects have also recently converged in the finding of unexpected lipid droplet/lysosome communication through autophagy, and the discovery of lysosome-mediated lipid droplet degradation called lipopagy. Furthermore, adipocytes which are professional cells for lipid droplet formation were also shown to be active in peptide antigen presentation a pathway requiring lysosomal activity. The potential importance of lipid droplet/lysosome interplay is discussed in the context of metabolic diseases and the setting of chronic inflammation.

  5. [The blood-brain barrier and neurodegenerative lysosomal storage diseases].

    Science.gov (United States)

    Urayama, Akihiko

    2013-02-01

    Enzyme replacement therapy has been a very effective treatment for several lysosomal storage diseases. However, correcting central nervous system (CNS) storage has been challenging due to the presence of the blood-brain barrier (BBB), which hampers the entry of circulating lysosomal enzymes into the brain. In our previous studies, we discovered that luminally expressed cation-independent mannose 6-phosphate (M6P) receptor is a universal transporter for lysosomal enzymes that contain M6P moieties on the enzyme molecule. This receptor-mediated transport of lysosomal enzymes showed developmental down-regulation that resulted in a failure of delivery of lysosomal enzymes across the BBB in the adult brain. Conceptually, if one can re-induce M6P receptor-mediated transport of lysosomal enzymes in adult BBB, this could provide a novel brain targeting approach for treating abnormal storage in the CNS, regardless of the age of subjects. We found that systemic adrenergic stimuli restored functional transport of β-glucuronidase across the adult BBB. The concept of manipulating BBB transport activity by endogenous characteristics has also been demonstrated by another group who showed effective treatment in a Pompe disease model animal in vivo. It is intriguing that lysosomal enzymes utilize multiple mechanisms for their transport across the BBB. This review explores pharmacological manipulations for the delivery of lysosomal enzymes into the CNS, and the mechanisms of their transport across the BBB, based on existing evidence from studies of β-glucuronidase, sulfamidase, acid α-glucosidase, and arylsulfatase A.

  6. Photoaffinity labeling of the lysosomal neuraminidase from bovine testis

    NARCIS (Netherlands)

    G.T.J. van der Horst (Gijsbertus); U. Rose (Ursula); R. Brossmer (Reinhard); F.W. Verheijen (Frans)

    1990-01-01

    markdownabstractAbstract ASA-NeuAc2en, a photoreactive arylazide derivative of sialic acid, is shown to be a powerful competitive inhibitor of lysosomal neuraminidase from bovine testis (Ki ≈ 21 μM). Photoaffinity labeling and partial purification of preparations containing this lysosomal neuramin

  7. Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin.

    Science.gov (United States)

    Yang, Nai-Di; Tan, Shi-Hao; Ng, Shukie; Shi, Yin; Zhou, Jing; Tan, Kevin Shyong Wei; Wong, Wai-Shiu Fred; Shen, Han-Ming

    2014-11-28

    Artesunate (ART) is an anti-malaria drug that has been shown to exhibit anti-tumor activity, and functional lysosomes are reported to be required for ART-induced cancer cell death, whereas the underlying molecular mechanisms remain largely elusive. In this study, we aimed to elucidate the molecular mechanisms underlying ART-induced cell death. We first confirmed that ART induces apoptotic cell death in cancer cells. Interestingly, we found that ART preferably accumulates in the lysosomes and is able to activate lysosomal function via promotion of lysosomal V-ATPase assembly. Furthermore, we found that lysosomes function upstream of mitochondria in reactive oxygen species production. Importantly, we provided evidence showing that lysosomal iron is required for the lysosomal activation and mitochondrial reactive oxygen species production induced by ART. Finally, we showed that ART-induced cell death is mediated by the release of iron in the lysosomes, which results from the lysosomal degradation of ferritin, an iron storage protein. Meanwhile, overexpression of ferritin heavy chain significantly protected cells from ART-induced cell death. In addition, knockdown of nuclear receptor coactivator 4, the adaptor protein for ferritin degradation, was able to block ART-mediated ferritin degradation and rescue the ART-induced cell death. In summary, our study demonstrates that ART treatment activates lysosomal function and then promotes ferritin degradation, subsequently leading to the increase of lysosomal iron that is utilized by ART for its cytotoxic effect on cancer cells. Thus, our data reveal a new mechanistic action underlying ART-induced cell death in cancer cells.

  8. A Comparative Study on the Alterations of Endocytic Pathways in Multiple Lysosomal Storage Disorders.

    Science.gov (United States)

    Rappaport, Jeff; Manthe, Rachel L; Solomon, Melani; Garnacho, Carmen; Muro, Silvia

    2016-02-01

    Many cellular activities and pharmaceutical interventions involve endocytosis and delivery to lysosomes for processing. Hence, lysosomal processing defects can cause cell and tissue damage, as in lysosomal storage diseases (LSDs) characterized by lysosomal accumulation of undegraded materials. This storage causes endocytic and trafficking alterations, which exacerbate disease and hinder treatment. However, there have been no systematic studies comparing different endocytic routes in LSDs. Here, we used genetic and pharmacological models of four LSDs (type A Niemann-Pick, type C Niemann-Pick, Fabry, and Gaucher diseases) and evaluated the pinocytic and receptor-mediated activity of the clathrin-, caveolae-, and macropinocytic routes. Bulk pinocytosis was diminished in all diseases, suggesting a generic endocytic alteration linked to lysosomal storage. Fluid-phase (dextran) and ligand (transferrin) uptake via the clathrin route were lower for all LSDs. Fluid-phase and ligand (cholera toxin B) uptake via the caveolar route were both affected but less acutely in Fabry or Gaucher diseases. Epidermal growth factor-induced macropinocytosis was altered in Niemann-Pick cells but not other LSDs. Intracellular trafficking of ligands was also distorted in LSD versus wild-type cells. The extent of these endocytic alterations paralleled the level of cholesterol storage in disease cell lines. Confirming this, pharmacological induction of cholesterol storage in wild-type cells disrupted endocytosis, and model therapeutics restored uptake in proportion to their efficacy in attenuating storage. This suggests a proportional and reversible relationship between endocytosis and lipid (cholesterol) storage. By analogy, the accumulation of biological material in other diseases, or foreign material from drugs or their carriers, may cause similar deficits, warranting further investigation.

  9. Diabetes alters KIF1A and KIF5B motor proteins in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Filipa I Baptista

    Full Text Available Diabetes mellitus is the most common metabolic disorder in humans. Diabetic encephalopathy is characterized by cognitive and memory impairments, which have been associated with changes in the hippocampus, but the mechanisms underlying those impairments triggered by diabetes, are far from being elucidated. The disruption of axonal transport is associated with several neurodegenerative diseases and might also play a role in diabetes-associated disorders affecting nervous system. We investigated the effect of diabetes (2 and 8 weeks duration on KIF1A, KIF5B and dynein motor proteins, which are important for axonal transport, in the hippocampus. The mRNA expression of motor proteins was assessed by qRT-PCR, and also their protein levels by immunohistochemistry in hippocampal slices and immunoblotting in total extracts of hippocampus from streptozotocin-induced diabetic and age-matched control animals. Diabetes increased the expression and immunoreactivity of KIF1A and KIF5B in the hippocampus, but no alterations in dynein were detected. Since hyperglycemia is considered a major player in diabetic complications, the effect of a prolonged exposure to high glucose on motor proteins, mitochondria and synaptic proteins in hippocampal neurons was also studied, giving particular attention to changes in axons. Hippocampal cell cultures were exposed to high glucose (50 mM or mannitol (osmotic control; 25 mM plus 25 mM glucose for 7 days. In hippocampal cultures incubated with high glucose no changes were detected in the fluorescence intensity or number of accumulations related with mitochondria in the axons of hippocampal neurons. Nevertheless, high glucose increased the number of fluorescent accumulations of KIF1A and synaptotagmin-1 and decreased KIF5B, SNAP-25 and synaptophysin immunoreactivity specifically in axons of hippocampal neurons. These changes suggest that anterograde axonal transport mediated by these kinesins may be impaired in hippocampal

  10. Protective Role of Endogenous Gangliosides for Lysosomal Pathology in a Cellular Model of Synucleinopathies

    OpenAIRE

    Wei, Jianshe; Fujita, Masayo; Nakai, Masaaki; Waragai, Masaaki; Sekigawa, Akio; Sugama, Shuei; Takenouchi, Takato; Masliah, Eliezer; Hashimoto,Makoto

    2009-01-01

    Gangliosides may be involved in the pathogenesis of Parkinson’s disease and related disorders, although the precise mechanisms governing this involvement remain unknown. In this study, we determined whether changes in endogenous ganglioside levels affect lysosomal pathology in a cellular model of synucleinopathy. For this purpose, dementia with Lewy body-linked P123H β-synuclein (β-syn) neuroblastoma cells transfected with α-synuclein were used as a model system because these cells were chara...

  11. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    Science.gov (United States)

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  12. C5b-9 deposits on endomysial capillaries in non-dermatomyositis cases.

    Science.gov (United States)

    Braczynski, Anne K; Harter, Patrick N; Zeiner, Pia S; Drott, Ulrich; Tews, Dominique-Suzanne; Preusse, Corinna; Penski, Cornelia; Dunst, Maika; Weis, Joachim; Stenzel, Werner; Mittelbronn, Michel

    2016-01-01

    Deposits of the terminal-membrane-attack-complex (MAC) C5b-9 on perfascicular endomysial capillaries are generally regarded as diagnostic hallmark of dermatomyositis (DM). Although the pathophysiology is not clear, C5b-9 deposits on capillaries seem to be associated with microinfarctions and vascular damage. Here, we report on a series of 19 patients presenting with C5b-9 accumulation on endomysial capillaries in the absence of features for DM. To decipher differences in the capillary C5b-9 accumulation pattern between DM and non-DM cases, we assessed the extent of endomysial capillary C5b-9 deposits related to capillary density and extent of myofiber necrosis by immunohistochemistry in 12 DM and 8 control patients. We found similar numbers of C5b-9-positive myofibers in both DM and non-DM C5b-9(+) cases. The distribution pattern differed as DM cases showed significantly more perifascicular capillary C5b-9 deposits as compared to non-DM cases, which presented stronger endomysial capillary C5b-9 deposits in a diffuse pattern. While total capillary density was not differing, DM patients displayed significantly more C5b-9(+) necrotic fibers as compared to non-DM C5b-9(+). In summary, endomysial capillary C5b-9 deposits are present in a variety of non-DM cases, however with differing distribution pattern. In conclusion, capillary C5b-9(+) deposits should be assessed critically, taking into consideration the distribution pattern.

  13. Hormonal and cholinergic influences on pancreatic lysosomal and digestive enzymes in rats.

    Science.gov (United States)

    Evander, A; Ihse, I; Lundquist, I

    1983-01-01

    Hormonal and cholinergic influences on lysosomal and digestive enzyme activities in pancreatic tissue were studied in normal adult rats. Hormonal stimulation by the cholecystokinin analogue, caerulein, induced a marked enhancement of the activities of cathepsin D and N-acetyl-beta-D-glucosaminidase in pancreatic tissue, whereas the activities of amylase and lipase tended to decrease. Acid phosphatase activity was not affected. Further, caerulein was found to induce a significant increase of cathepsin D output in bile-pancreatic juice. This output largely parallelled that of amylase. Cholinergic stimulation by the muscarinic agonist carbachol, at a dose level giving the same output of amylase as caerulein, did not affect pancreatic activities of cathepsin D and N-acetyl-beta-D-glucosaminidase. Further, cholinergic stimulation induced an increase of amylase activity and a slight decrease of acid phosphatase activity in pancreatic tissue. Lipase activity was not affected. No apparent effect on cathepsin D output in bile-pancreatic juice was encountered after cholinergic stimulation. The activities of neither the digestive nor the lysosomal enzymes were influenced by the administration of secretin. The results suggest a possible lysosomal involvement in caerulein-induced secretion and/or inactivation of pancreatic digestive enzymes, whereas cholinergic stimulation seems to act through different mechanisms.

  14. Activation of peroxisome proliferator-activated receptor α induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders.

    Science.gov (United States)

    Ghosh, Arunava; Jana, Malabendu; Modi, Khushbu; Gonzalez, Frank J; Sims, Katherine B; Berry-Kravis, Elizabeth; Pahan, Kalipada

    2015-04-17

    Lysosomes are ubiquitous membrane-enclosed organelles filled with an acidic interior and are central to the autophagic, endocytic, or phagocytic pathway. In contrast to its classical function as the waste management machinery, lysosomes are now considered to be an integral part of various cellular signaling processes. The diverse functionality of this single organelle requires a very complex and coordinated regulation of its activity with transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, at its core. However, mechanisms by which TFEB is regulated are poorly understood. This study demonstrates that gemfibrozil, an agonist of peroxisome proliferator-activated receptor (PPAR) α, alone and in conjunction with all-trans-retinoic acid is capable of enhancing TFEB in brain cells. We also observed that PPARα, but not PPARβ and PPARγ, is involved in gemfibrozil-mediated up-regulation of TFEB. Reporter assay and chromatin immunoprecipitation studies confirmed the recruitment of retinoid X receptor α, PPARα, and PGC1α on the PPAR-binding site on the Tfeb promoter as well. Subsequently, the drug-mediated induction of TFEB caused an increase in lysosomal protein and the lysosomal abundance in cell. Collectively, this study reinforces the link between lysosomal biogenesis and lipid metabolism with TFEB at the crossroads. Furthermore, gemfibrozil may be of therapeutic value in the treatment of lysosomal storage disorders in which autophagy-lysosome pathway plays an important role.

  15. 46 CFR 30.10-5b - Cargo control station-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Cargo control station-TB/ALL. 30.10-5b Section 30.10-5b Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-5b Cargo control station—TB/ALL. The term cargo control station means a location that is manned...

  16. Effects of contaminant exposure and food restriction on hepatic autophagic lysosomal parameters in Herring Gull (Larus argentatus) chicks.

    Science.gov (United States)

    Hegseth, Marit Nøst; Gorbi, Stephania; Bocchetti, Raffaella; Camus, Lionel; Gabrielsen, Geir Wing; Regoli, Francesco

    2014-08-01

    Lysosomal autophagic responses, such as lysosomal membrane stability, neutral lipids (NL), lipofuscin (LF), and malondialdehyde (MDA) levels, are valuable measures of cellular early-onset effects induced by environmental stress factors, such as contaminant exposure and fasting. In this study, these parameters were analysed and related to levels of halogenated organic contaminants (HOCs) in 40 Herring Gull (Larus argentatus) chicks. Chicks were experimentally exposed to HOCs through diet and went through a period of nutrient deprivation at the end of the experiment. HOC exposure and fasting were conducted separately and in combination. NL storages were depleted, and lysosomal membranes were destabilised after HOC exposure and nutrient deprivation. These responses were not related specifically to one type of stress or the extent of the treatment. No synergistic or additive effects from the combination of HOC exposure and fasting were observed. LF accumulated, and MDA levels increased as a result of fasting, but were unaffected by HOC exposure. LF accumulation was strongly associated with the percent weight change in the chicks. Large weight loss was associated with high LF levels, and slight weight gain was associated with low LF levels. Hence, food deprivation affected all the measured parameters, and HOC exposure decreased NL levels and lysosomal membrane stability in HG chick liver. Furthermore, autophagic lysosomal parameters have frequently been applied as biomarkers of cellular health status in previous studies of marine and terrestrial invertebrates, and this study suggests that these parameters may be good candidates for biomarkers of cellular health status in seabirds as well.

  17. Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-β precursor protein.

    Science.gov (United States)

    Parr, Callum; Carzaniga, Raffaela; Gentleman, Steve M; Van Leuven, Fred; Walter, Jochen; Sastre, Magdalena

    2012-11-01

    Alzheimer's disease (AD) has been associated with altered activity of glycogen synthase kinase 3 (GSK3) isozymes, which are proposed to contribute to both neurofibrillary tangles and amyloid plaque formation. However, the molecular basis by which GSK3 affects the formation of Aβ remains unknown. Our aim was to identify the underlying mechanisms of GSK3-dependent effects on the processing of amyloid precursor protein (APP). For this purpose, N2a cells stably expressing APP carrying the Swedish mutation were treated with specific GSK3 inhibitors or transfected with GSK3α/β short interfering RNA. We show that inhibition of GSK3 leads to decreased expression of APP by enhancing its degradation via an increase in the number of lysosomes. This induction of the lysosomal/autophagy pathway was associated with nuclear translocation of transcription factor EB (TFEB), a master regulator of lysosomal biogenesis. Our data indicate that GSK3 inhibition reduces Aβ through an increase of the degradation of APP and its carboxy-terminal fragment (CTF) by activation of the lysosomal/autophagy pathway. These results suggest that an increased propensity toward autophagic/lysosomal alterations in AD patients could have consequences for neuronal function.

  18. Obesity-resistant S5B rats showed great cocaine conditioned place preference than the obesity-prone OM rats

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.; Wang, G.; Thanos, P.K..; Kim, R.; Cho, J.; Michaelides, M.; Anderson, B.J.; Primeaux, S.D.; Bray, G.A.; Wang, G.-J.; Robinson, J.K.; Volkow, N.D.

    2010-12-01

    Dopamine (DA) and the DA D2 receptor (D2R) are involved in the rewarding and conditioned responses to food and drug rewards. Osborne-Mendel (OM) rats are genetically prone and S5B/P rats are genetically resistant to obesity when fed a high-fat diet. We hypothesized that the differential sensitivity of these two rat strains to natural rewards may also be reflected in sensitivity to drugs of abuse. Therefore, we tested whether OM and S5B/P rats showed a differential preference to cocaine using conditioned place preference (CPP). To also evaluate whether there is specific involvement of the D2R in this differential conditioning sensitivity, we then tested whether the D2R agonist bromocriptine (BC) would differentially affect the effects of cocaine in the two strains. OM and S5B/P rats were conditioned with cocaine (5 or 10 mg/kg) in one chamber and saline in another for 8 days. Rats were then tested for cocaine preference. The effects of BC (0.5, 1, 5, 10, 20 mg/kg) on cocaine preference were then assessed in subsequent test sessions. OM rats did not show a significant preference for the cocaine-paired chamber on test day. Only the S5B/P rats showed cocaine CPP. Later treatment with only the highest dose of BC resulted in reduced cocaine CPP in S5B/P rats when treated with 5 mg/kg cocaine and in OM rats treated with 10 mg/kg cocaine. Our results indicated that obesity-resistant S5B rats showed greater cocaine CPP than the obesity-prone OM rats. These findings do not support a theory of common vulnerability for reinforcer preferences (food and cocaine). However, they show that BC reduced cocaine conditioning effects supporting at least a partial regulatory role of D2R in conditioned responses to drugs.

  19. Analysis of mucolipidosis II/III GNPTAB missense mutations identifies domains of UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase involved in catalytic function and lysosomal enzyme recognition.

    Science.gov (United States)

    Qian, Yi; van Meel, Eline; Flanagan-Steet, Heather; Yox, Alex; Steet, Richard; Kornfeld, Stuart

    2015-01-30

    UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase tags newly synthesized lysosomal enzymes with mannose 6-phosphate recognition markers, which are required for their targeting to the endolysosomal system. GNPTAB encodes the α and β subunits of GlcNAc-1-phosphotransferase, and mutations in this gene cause the lysosomal storage disorders mucolipidosis II and III αβ. Prior investigation of missense mutations in GNPTAB uncovered amino acids in the N-terminal region and within the DMAP domain involved in Golgi retention of GlcNAc-1-phosphotransferase and its ability to specifically recognize lysosomal hydrolases, respectively. Here, we undertook a comprehensive analysis of the remaining missense mutations in GNPTAB reported in mucolipidosis II and III αβ patients using cell- and zebrafish-based approaches. We show that the Stealth domain harbors the catalytic site, as some mutations in these regions greatly impaired the activity of the enzyme without affecting its Golgi localization and proteolytic processing. We also demonstrate a role for the Notch repeat 1 in lysosomal hydrolase recognition, as missense mutations in conserved cysteine residues in this domain do not affect the catalytic activity but impair mannose phosphorylation of certain lysosomal hydrolases. Rescue experiments using mRNA bearing Notch repeat 1 mutations in GNPTAB-deficient zebrafish revealed selective effects on hydrolase recognition that differ from the DMAP mutation. Finally, the mutant R587P, located in the spacer between Notch 2 and DMAP, was partially rescued by overexpression of the γ subunit, suggesting a role for this region in γ subunit binding. These studies provide new insight into the functions of the different domains of the α and β subunits.

  20. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity

    Directory of Open Access Journals (Sweden)

    Stern Stephan T

    2012-06-01

    Full Text Available Abstract The study of the potential risks associated with the manufacture, use, and disposal of nanoscale materials, and their mechanisms of toxicity, is important for the continued advancement of nanotechnology. Currently, the most widely accepted paradigms of nanomaterial toxicity are oxidative stress and inflammation, but the underlying mechanisms are poorly defined. This review will highlight the significance of autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Most endocytic routes of nanomaterial cell uptake converge upon the lysosome, making the lysosomal compartment the most common intracellular site of nanoparticle sequestration and degradation. In addition to the endo-lysosomal pathway, recent evidence suggests that some nanomaterials can also induce autophagy. Among the many physiological functions, the lysosome, by way of the autophagy (macroautophagy pathway, degrades intracellular pathogens, and damaged organelles and proteins. Thus, autophagy induction by nanoparticles may be an attempt to degrade what is perceived by the cell as foreign or aberrant. While the autophagy and endo-lysosomal pathways have the potential to influence the disposition of nanomaterials, there is also a growing body of literature suggesting that biopersistent nanomaterials can, in turn, negatively impact these pathways. Indeed, there is ample evidence that biopersistent nanomaterials can cause autophagy and lysosomal dysfunctions resulting in toxicological consequences.

  1. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity.

    Science.gov (United States)

    Stern, Stephan T; Adiseshaiah, Pavan P; Crist, Rachael M

    2012-06-14

    The study of the potential risks associated with the manufacture, use, and disposal of nanoscale materials, and their mechanisms of toxicity, is important for the continued advancement of nanotechnology. Currently, the most widely accepted paradigms of nanomaterial toxicity are oxidative stress and inflammation, but the underlying mechanisms are poorly defined. This review will highlight the significance of autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Most endocytic routes of nanomaterial cell uptake converge upon the lysosome, making the lysosomal compartment the most common intracellular site of nanoparticle sequestration and degradation. In addition to the endo-lysosomal pathway, recent evidence suggests that some nanomaterials can also induce autophagy. Among the many physiological functions, the lysosome, by way of the autophagy (macroautophagy) pathway, degrades intracellular pathogens, and damaged organelles and proteins. Thus, autophagy induction by nanoparticles may be an attempt to degrade what is perceived by the cell as foreign or aberrant. While the autophagy and endo-lysosomal pathways have the potential to influence the disposition of nanomaterials, there is also a growing body of literature suggesting that biopersistent nanomaterials can, in turn, negatively impact these pathways. Indeed, there is ample evidence that biopersistent nanomaterials can cause autophagy and lysosomal dysfunctions resulting in toxicological consequences.

  2. Experimental vaccination of pigs with an Actinobacillus pleuropneumoniae serotype 5b capsular polysaccharide tetanus toxoid conjugate

    DEFF Research Database (Denmark)

    Andresen, Lars Ole; Jacobsen, M.J.; Nielsen, J.P.

    1997-01-01

    The protective efficacy of an Actinobacillus pleuropneumoniae serotype 5b capsular polysaccharide-tetanus toroid conjugate (Ap5bCP-TT) against homologous challenge of pigs was investigated. Four pigs were non-vaccinated controls (group A), 4 pigs were injected with adjuvant without antigen (group B......) and 8 pigs were vaccinated with Ap5bCP-TT and adjuvant (group 0). Pigs vaccinated with Ap5bCP-TT developed antibody responses to the capsular polysaccharide from A. pleuropneumoniae serotype 5b (Ap5bCP). After challenge, all pigs in groups A and B had severe clinical signs of disease and were euthanized...... and pulmonary lesions caused by experimental infection with A. pleuropneumoniae serotype 5b....

  3. Two pore channel 2 (TPC2) inhibits autophagosomal-lysosomal fusion by alkalinizing lysosomal pH.

    Science.gov (United States)

    Lu, Yingying; Hao, Bai-Xia; Graeff, Richard; Wong, Connie W M; Wu, Wu-Tian; Yue, Jianbo

    2013-08-16

    Autophagy is an evolutionarily conserved lysosomal degradation pathway, yet the underlying mechanisms remain poorly understood. Nicotinic acid adenine dinucleotide phosphate (NAADP), one of the most potent Ca(2+) mobilizing messengers, elicits Ca(2+) release from lysosomes via the two pore channel 2 (TPC2) in many cell types. Here we found that overexpression of TPC2 in HeLa or mouse embryonic stem cells inhibited autophagosomal-lysosomal fusion, thereby resulting in the accumulation of autophagosomes. Treatment of TPC2 expressing cells with a cell permeant-NAADP agonist, NAADP-AM, further induced autophagosome accumulation. On the other hand, TPC2 knockdown or treatment of cells with Ned-19, a NAADP antagonist, markedly decreased the accumulation of autophagosomes. TPC2-induced accumulation of autophagosomes was also markedly blocked by ATG5 knockdown. Interestingly, inhibiting mTOR activity failed to increase TPC2-induced autophagosome accumulation. Instead, we found that overexpression of TPC2 alkalinized lysosomal pH, and lysosomal re-acidification abolished TPC2-induced autophagosome accumulation. In addition, TPC2 overexpression had no effect on general endosomal-lysosomal degradation but prevented the recruitment of Rab-7 to autophagosomes. Taken together, our data demonstrate that TPC2/NAADP/Ca(2+) signaling alkalinizes lysosomal pH to specifically inhibit the later stage of basal autophagy progression.

  4. Lysosomal membrane stability in laboratory- and field-exposed terrestrial isopods Porcellio scaber (Isopoda, Crustacea).

    Science.gov (United States)

    Nolde, Natasa; Drobne, Damjana; Valant, Janez; Padovan, Ingrid; Horvat, Milena

    2006-08-01

    Two established methods for assessment of the cytotoxicity of contaminants, the lysosomal latency (LL) assay and the neutral red retention (NRR) assay, were successfully applied to in toto digestive gland tubes (hepatopancreas) of the terrestrial isopod Porcellio scaber (Isopoda, Crustacea). In vitro exposure of isolated gland tubes to copper was used as a positive control to determine the performance of the two methods. Lysosomal latency and the NRR assay were then used on in vivo (via food) laboratory-exposed animals and on field populations. Arbitrarily selected criteria for determination of the fitness of P. scaber were set on the basis of lysosomal membrane stability (LMS) as assessed with in toto digestive gland tubes. Decreased LMS was detected in animals from all polluted sites, but cytotoxicity data were not in agreement with concentrations of pollutants. Lysosomal membrane stability in the digestive gland tubes of animals from an environment in Idrija, Slovenia that was highly polluted with mercury (260 microg/g dry wt food and 1,600 microg/g dry wt soil) was less affected than LMS in laboratory animals fed with 5 and 50 microg Hg/g dry weight for 3 d. This probably indicates tolerance of P. scaber to mercury in the mercury-polluted environment and/or lower bioavailability of environmental mercury. In animals from the vicinity of a thermal power plant with environmental mercury concentrations three to four orders of magnitude lower than those in Idrija, LMS was severely affected. In general, the LL assay was more sensitive than the NRR assay. The LMS assay conducted on digestive gland tubes of terrestrial isopods is highly recommended for integrated biomarker studies.

  5. Coffee Polyphenols Change the Expression of STAT5B and ATF-2 Modifying Cyclin D1 Levels in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Carlota Oleaga

    2012-01-01

    Full Text Available Background. Epidemiological studies suggest that coffee consumption reduces the risk of cancer, but the molecular mechanisms of its chemopreventive effects remain unknown. Objective. To identify differentially expressed genes upon incubation of HT29 colon cancer cells with instant caffeinated coffee (ICC or caffeic acid (CA using whole-genome microarrays. Results. ICC incubation of HT29 cells caused the overexpression of 57 genes and the underexpression of 161, while CA incubation induced the overexpression of 12 genes and the underexpression of 32. Using Venn-Diagrams, we built a list of five overexpressed genes and twelve underexpressed genes in common between the two experimental conditions. This list was used to generate a biological association network in which STAT5B and ATF-2 appeared as highly interconnected nodes. STAT5B overexpression was confirmed at the mRNA and protein levels. For ATF-2, the changes in mRNA levels were confirmed for both ICC and CA, whereas the decrease in protein levels was only observed in CA-treated cells. The levels of cyclin D1, a target gene for both STAT5B and ATF-2, were downregulated by CA in colon cancer cells and by ICC and CA in breast cancer cells. Conclusions. Coffee polyphenols are able to affect cyclin D1 expression in cancer cells through the modulation of STAT5B and ATF-2.

  6. Coffee polyphenols change the expression of STAT5B and ATF-2 modifying cyclin D1 levels in cancer cells.

    Science.gov (United States)

    Oleaga, Carlota; Ciudad, Carlos J; Noé, Véronique; Izquierdo-Pulido, Maria

    2012-01-01

    Epidemiological studies suggest that coffee consumption reduces the risk of cancer, but the molecular mechanisms of its chemopreventive effects remain unknown. To identify differentially expressed genes upon incubation of HT29 colon cancer cells with instant caffeinated coffee (ICC) or caffeic acid (CA) using whole-genome microarrays. ICC incubation of HT29 cells caused the overexpression of 57 genes and the underexpression of 161, while CA incubation induced the overexpression of 12 genes and the underexpression of 32. Using Venn-Diagrams, we built a list of five overexpressed genes and twelve underexpressed genes in common between the two experimental conditions. This list was used to generate a biological association network in which STAT5B and ATF-2 appeared as highly interconnected nodes. STAT5B overexpression was confirmed at the mRNA and protein levels. For ATF-2, the changes in mRNA levels were confirmed for both ICC and CA, whereas the decrease in protein levels was only observed in CA-treated cells. The levels of cyclin D1, a target gene for both STAT5B and ATF-2, were downregulated by CA in colon cancer cells and by ICC and CA in breast cancer cells. Coffee polyphenols are able to affect cyclin D1 expression in cancer cells through the modulation of STAT5B and ATF-2.

  7. Cationic lipids delay the transfer of plasmid DNA to lysosomes.

    Science.gov (United States)

    Wattiaux, R; Jadot, M; Laurent, N; Dubois, F; Wattiaux-De Coninck, S

    1996-10-14

    Plasmid 35S DNA, naked or associated with different cationic lipid preparations was injected to rats. Subcellular distribution of radioactivity in the liver one hour after injection, was established by centrifugation methods. Results show that at that time, 35S DNA has reached lysosomes. On the contrary, when 35S DNA was complexed with lipids, radioactivity remains located in organelles whose distribution after differential and isopycnic centrifugation, is clearly distinct from that of arylsulfatase, lysosome marker enzyme. Injection of Triton WR 1339, a specific density perturbant of lysosomes, four days before 35S DNA injection causes a density decrease of radioactivity bearing structures, apparent one hour after naked 35S DNA injection but visible only after more than five hours, when 35S DNA associated with a cationic lipid is injected. These observations show that cationic lipids delay the transfer to lysosomes, of plasmid DNA taken up by the liver.

  8. Secondary Lysosomal Changes in Liver in Preclinical Drug Development

    Institute of Scientific and Technical Information of China (English)

    Vincent P. Meador; D. V. M.; Ph. D.; Diplomate ACVP

    2005-01-01

    @@ Lysosomes are intracytoplasmic membrane-bound organelles that function to degrade intracellular substances by enzymatic digestion. They occur normally in all cells, being especially prominent in phagocytic cells of the reticuloendothelial system.

  9. Endosome-lysosomes, ubiquitin and neurodegeneration.

    Science.gov (United States)

    Mayer, R J; Tipler, C; Arnold, J; Laszlo, L; Al-Khedhairy, A; Lowe, J; Landon, M

    1996-01-01

    Before the advent of ubiquitin immunochemistry and immunogold electron microscopy, there was no known intracellular molecular commonality between neurodegenerative diseases. The application of antibodies which primarily detect ubiquitin protein conjugates has shown that all of the human and animal idiopathic and transmissible chronic neurodegenerative diseases, (including Alzheimer's disease (AD), Lewy body disease (LBD), amyotrophic lateral sclerosis (ALS), Creutzfeldt-Jakob disease (CJD) and scrapie) are related by some form of intraneuronal inclusion which contains ubiquitin protein conjugates. In addition, disorders such as Alzheimer's disease, CJD and sheep scrapie, are characterised by deposits of amyloid, arising through incomplete breakdown of membrane proteins which may be associated with cytoskeletal reorganisation. Although our knowledge about these diseases is increasing, they remain largely untreatable. Recently, attention has focused on the mechanisms of production of different types of amyloid and the likely involvement within cells of the endosome-lysosome system, organelles which are immuno-positive for ubiquitin protein conjugates. These organelles may be 'bioreactor' sites for the unfolding and partial degradation of membrane proteins to generate the amyloid materials or their precursors which subsequently become expelled from the cell, or are released from dead cells, and accumulate as pathological entities. Such common features of the disease processes give new direction to therapeutic intervention.

  10. Stable knockdown of Kif5b in MDCK cells leads to epithelial–mesenchymal transition

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ju, E-mail: juzi.cui@gmail.com [The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing (China); Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR (China); Jin, Guoxiang; Yu, Bin [Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR (China); Wang, Zai [Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR (China); Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing (China); Lin, Raozhou [Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR (China); Huang, Jian-Dong, E-mail: jdhuang@hku.hk [Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR (China); The Centre for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Shenzhen (China)

    2015-07-17

    Polarization of epithelial cells requires vectorial sorting and transport of polarity proteins to apical or basolateral domains. Kif5b is the mouse homologue of the human ubiquitous Kinesin Heavy Chain (uKHC). To investigate the function of Kif5b in epithelial cells, we examined the phenotypes of Kif5b-deficient MDCK cells. Stable knockdown of Kif5b in MDCK cells resulted in reduced cell proliferation rate, profound changes in cell morphology, loss of epithelial cell marker, and gain of mesenchymal marker, as well as increased cell migration, invasion, and tumorigenesis abilities. E-cadherin and NMMIIA could interact with Kif5b in polarized MDCK cells, and their expression levels were decreased in Kif5b-deficient MDCK cells. Overexpression of E-cadherin and NMMIIA in Kif5b depleted MDCK cells could decrease mesenchymal marker expression and cell migration ability. These results indicate that stable knockdown of Kif5b in MDCK cells can lead to epithelial–mesenchymal transition, which is mediated by defective E-cadherin and NMMIIA expression. - Highlights: • Knockdown of Kif5b in MDCK cells resulted in reduced cell proliferation rate. • Kif5b deficient MDCK cells underwent epithelial–mesenchymal transition. • E-cadherin and NMMIIA could interact with Kif5b in polarized MDCK cells. • Decreased E-cadherin and NMMIIA levels mediate EMT in Kif5b deficient MDCK cells. • Overexpression of E-cadherin and NMMIIA reverse the effects of Kif5b knockdown.

  11. Metabolism studies of a small-molecule tumor necrosis factor-alpha (TNF-α) inhibitor, UTL-5b (GBL-5b).

    Science.gov (United States)

    Shaw, Jiajiu; Shay, Brian; Jiang, Jack; Valeriote, Frederick; Chen, Ben

    2012-06-01

    UTL-5b is an anti-inflammatory and anti-arthritic small-molecule tumor necrosis factor-alpha inhibitor and a structural analogue of the anti-arthritic drug, leflunomide. Leflunomide is known to be metabolized to teriflunomide, but the metabolites of UTL-5b have not been reported. The objective of this study was to investigate whether UTL-5b has a similar metabolic behavior as leflunomide. Preliminary studies showed that when exposed to microsomes in vitro with or without NADPH, UTL-5b disappeared within 30 min. To further investigate the microsomal metabolism, liquid chromatography-ultraviolet (LC-UV) and LC/tandem mass spectrometry (LC-MS/MS) were employed to, respectively, monitor the microsomal metabolites and identify the structure of the metabolites using LC-full scan MS and LC combined with multiple-ion monitoring MS. Fragmentation determination was analyzed by two types of scans: product ion scans and precursor ion scan. The in vitro microsomal treatment of UTL-5b resulted in two major metabolites: 5-methylisoxazole-3-carboxylic acid and 2-chloroaniline. Thus, the in vitro metabolic behavior of UTL-5b appears to be different from that of leflunomide in that the isoxazole ring is cleaved.

  12. Magnesium Modulates Doxorubicin Activity through Drug Lysosomal Sequestration and Trafficking.

    Science.gov (United States)

    Trapani, Valentina; Luongo, Francesca; Arduini, Daniela; Wolf, Federica I

    2016-03-21

    Magnesium is directly involved in the control of cell growth and survival, but its role in cancer biology and therapy is multifaceted; in particular, it is highly controversial whether magnesium levels can affect therapy outcomes. Here we investigated whether magnesium availability can modulate cellular responses to the widely used chemotherapeutic doxorubicin. We used an in vitro model consisting of mammary epithelial HC11 cells and found that high magnesium availability was correlated with diminished sensitivity both in cells chronically adapted to high magnesium concentrations and in acutely magnesium-supplemented cells. This decrease in sensitivity resulted from reduced intracellular doxorubicin accumulation in the face of a similar drug uptake rate. We observed that high-magnesium conditions caused a decrease in intracellular drug retention by altering drug lysosomal sequestration and trafficking. In our model, magnesium supplementation correspondingly modulated expression of the TRPM7 channel, which is known to control cytoskeletal organization and dynamics and may be involved in the proposed mechanism. Our findings suggest that magnesium supplementation in hypomagnesemic cancer patients may hinder response to therapy.

  13. Lysosomal enzymes and their receptors in invertebrates: an evolutionary perspective.

    Science.gov (United States)

    Kumar, Nadimpalli Siva; Bhamidimarri, Poorna M

    2015-01-01

    Lysosomal biogenesis is an important process in eukaryotic cells to maintain cellular homeostasis. The key components that are involved in the biogenesis such as the lysosomal enzymes, their modifications and the mannose 6-phosphate receptors have been well studied and their evolutionary conservation across mammalian and non-mammalian vertebrates is clearly established. Invertebrate lysosomal biogenesis pathway on the other hand is not well studied. Although, details on mannose 6-phosphate receptors and enzymes involved in lysosomal enzyme modifications were reported earlier, a clear cut pathway has not been established. Recent research on the invertebrate species involving biogenesis of lysosomal enzymes suggests a possible conserved pathway in invertebrates. This review presents certain observations based on these processes that include biochemical, immunological and functional studies. Major conclusions include conservation of MPR-dependent pathway in higher invertebrates and recent evidence suggests that MPR-independent pathway might have been more prominent among lower invertebrates. The possible components of MPR-independent pathway that may play a role in lysosomal enzyme targeting are also discussed here.

  14. Subcellular Trafficking of Mammalian Lysosomal Proteins: An Extended View

    Directory of Open Access Journals (Sweden)

    Catherine Staudt

    2016-12-01

    Full Text Available Lysosomes clear macromolecules, maintain nutrient and cholesterol homeostasis, participate in tissue repair, and in many other cellular functions. To assume these tasks, lysosomes rely on their large arsenal of acid hydrolases, transmembrane proteins and membrane-associated proteins. It is therefore imperative that, post-synthesis, these proteins are specifically recognized as lysosomal components and are correctly sorted to this organelle through the endosomes. Lysosomal transmembrane proteins contain consensus motifs in their cytosolic regions (tyrosine- or dileucine-based that serve as sorting signals to the endosomes, whereas most lysosomal acid hydrolases acquire mannose 6-phosphate (Man-6-P moieties that mediate binding to two membrane receptors with endosomal sorting motifs in their cytosolic tails. These tyrosine- and dileucine-based motifs are tickets for boarding in clathrin-coated carriers that transport their cargo from the trans-Golgi network and plasma membrane to the endosomes. However, increasing evidence points to additional mechanisms participating in the biogenesis of lysosomes. In some cell types, for example, there are alternatives to the Man-6-P receptors for the transport of some acid hydrolases. In addition, several “non-consensus” sorting motifs have been identified, and atypical transport routes to endolysosomes have been brought to light. These “unconventional” or “less known” transport mechanisms are the focus of this review.

  15. Lysosomal trafficking functions of mucolipin-1 in murine macrophages

    Directory of Open Access Journals (Sweden)

    Dang Hope

    2007-12-01

    Full Text Available Abstract Background Mucolipidosis Type IV is currently characterized as a lysosomal storage disorder with defects that include corneal clouding, achlorhydria and psychomotor retardation. MCOLN1, the gene responsible for this disease, encodes the protein mucolipin-1 that belongs to the "Transient Receptor Potential" family of proteins and has been shown to function as a non-selective cation channel whose activity is modulated by pH. Two cell biological defects that have been described in MLIV fibroblasts are a hyperacidification of lysosomes and a delay in the exit of lipids from lysosomes. Results We show that mucolipin-1 localizes to lysosomal compartments in RAW264.7 mouse macrophages that show subcompartmental accumulations of endocytosed molecules. Using stable RNAi clones, we show that mucolipin-1 is required for the exit of lipids from these compartments, for the transport of endocytosed molecules to terminal lysosomes, and for the transport of the Major Histocompatibility Complex II to the plasma membrane. Conclusion Mucolipin-1 functions in the efficient exit of molecules, destined for various cellular organelles, from lysosomal compartments.

  16. HCV NS5A and NS5B Enhance Expression of Human Ceramide Glucosyltransferase Gene

    Institute of Scientific and Technical Information of China (English)

    Jia Guo; Ran Yan; Guo-dong Xu; Cong-yi Zheng

    2012-01-01

    Host genes involved in lipid metabolism are differentially affected during the early stages of hepatitis C virus (HCV) infection.Here we demonstrate that artificial up-regulation of fatty acid biosynthesis has a positive effect on the replication of the HCV full-length replicon when cells were treated with nystatin.Conversely,the HCV RNA replication was decreased when fatty acid biosynthesis was inhibited with 25-hydroxycholesterol and PDMP(D-threo-1-phenyl-2-decanoylamino-3- morpholino-1-propanol).In agreement with these results,the expression level of GlcT-1(ceramide glucosyltransferase),a host glucosyltransferase in the first step of GSL (glycosphingolipid) biosynthesis,was found to be closely associated with the expression and replication of HCV RNA.On the other hand,the viral RNA can also activate GlcT-1 in the early stage of viral RNA transfection in vitro.To identify viral factors that are responsible for GlcT-1 activation,we constructed ten stable Vero cell lines that express individual HCV proteins.Based on the analyses of these cell lines and transient transfection assay of the GlcT-1 promoter regions,we conclude that HCV proteins,especially NS5A and NS5B,have positive effects on the expression of GlcT-1.It is possible that NS5A and NS5B stimulate transcription factor(s) to activate the expression of GlcT-1 by increasing its transcription level.

  17. Factors influencing the measurement of lysosomal enzymes activity in human cerebrospinal fluid.

    Directory of Open Access Journals (Sweden)

    Emanuele Persichetti

    Full Text Available Measurements of the activities of lysosomal enzymes in cerebrospinal fluid have recently been proposed as putative biomarkers for Parkinson's disease and other synucleinopathies. To define the operating procedures useful for ensuring the reliability of these measurements, we analyzed several pre-analytical factors that may influence the activity of β-glucocerebrosidase, α-mannosidase, β-mannosidase, β-galactosidase, α-fucosidase, β-hexosaminidase, cathepsin D and cathepsin E in cerebrospinal fluid. Lysosomal enzyme activities were measured by well-established fluorimetric assays in a consecutive series of patients (n = 28 with different neurological conditions, including Parkinson's disease. The precision, pre-storage and storage conditions, and freeze/thaw cycles were evaluated. All of the assays showed within- and between-run variabilities below 10%. At -20°C, only cathepsin D was stable up to 40 weeks. At -80°C, the cathepsin D, cathepsin E, and β-mannosidase activities did not change significantly up to 40 weeks, while β-glucocerebrosidase activity was stable up to 32 weeks. The β-galactosidase and α-fucosidase activities significantly increased (+54.9±38.08% after 4 weeks and +88.94±36.19% after 16 weeks, respectively. Up to four freeze/thaw cycles did not significantly affect the activities of cathepsins D and E. The β-glucocerebrosidase activity showed a slight decrease (-14.6% after two freeze/thaw cycles. The measurement of lysosomal enzyme activities in cerebrospinal fluid is reliable and reproducible if pre-analytical factors are accurately taken into consideration. Therefore, the analytical recommendations that ensue from this study may contribute to the establishment of actual values for the activities of cerebrospinal fluid lysosomal enzymes as putative biomarkers for Parkinson's disease and other neurodegenerative disorders.

  18. Revealing the fate of cell surface human P-glycoprotein (ABCB1): The lysosomal degradation pathway.

    Science.gov (United States)

    Katayama, Kazuhiro; Kapoor, Khyati; Ohnuma, Shinobu; Patel, Atish; Swaim, William; Ambudkar, Indu S; Ambudkar, Suresh V

    2015-10-01

    P-glycoprotein (P-gp) transports a variety of chemically dissimilar amphipathic compounds including anticancer drugs. Although mechanisms of P-gp drug transport are widely studied, the pathways involving its internalization are poorly understood. The present study is aimed at elucidating the pathways involved in degradation of cell surface P-gp. The fate of P-gp at the cell surface was determined by biotinylating cell surface proteins followed by flow cytometry and Western blotting. Our data shows that the half-life of endogenously expressed P-gp is 26.7±1.1 h in human colorectal cancer HCT-15 cells. Treatment of cells with Bafilomycin A1 (BafA1) a vacuolar H+ ATPase inhibitor increased the half-life of P-gp at the cell surface to 36.1±0.5 h. Interestingly, treatment with the proteasomal inhibitors MG132, MG115 or lactacystin alone did not alter the half-life of the protein. When cells were treated with both lysosomal and proteasomal inhibitors (BafA1 and MG132), the half-life was further prolonged to 39-50 h. Functional assays done with rhodamine 123 or calcein-AM, fluorescent substrates of P-gp, indicated that the transport function of P-gp was not affected by either biotinylation or treatment with BafA1 or proteasomal inhibitors. Immunofluorescence studies done with the antibody against lysosomal marker LAMP1 and the P-gp-specific antibody UIC2 in permeabilized cells indicated that intracellular P-gp is primarily localized in the lysosomal compartment. Our results suggest that the lysosomal degradation system could be targeted to increase the sensitivity of P-gp- expressing cancer cells towards chemotherapeutic drugs.

  19. Revealing the fate of cell surface human P-glycoprotein (ABCB1): The Lysosomal Degradation Pathway

    Science.gov (United States)

    Katayama, Kazuhiro; Kapoor, Khyati; Ohnuma, Shinobu; Patel, Atish; Swaim, William; Ambudkar, Indu S.; Ambudkar, Suresh V.

    2015-01-01

    P-glycoprotein (P-gp) transports a variety of chemically dissimilar amphipathic compounds including anticancer drugs. Although mechanisms of P-gp drug transport are widely studied, the pathways involving its internalization are poorly understood. The present study is aimed at elucidating the pathways involved in degradation of cell surface P-gp. The fate of P-gp at the cell surface was determined by biotinylating cell surface proteins followed by flow cytometry and Western blotting. Our data shows that the half-life of endogenously expressed P-gp is 26.7 ± 1.1 h in human colorectal cancer HCT-15 cells. Treatment of cells with Bafilomycin A1 (BafA1) a vacuolar H+ ATPase inhibitor increased the half-life of P-gp at the cell surface to 36.1± 0.5 h. Interestingly, treatment with the proteasomal inhibitors MG132, MG115 or lactacystin alone did not alter the half-life of the protein. When cells were treated with both lysosomal and proteasomal inhibitors (BafA1 and MG132), the half-life was further prolonged to 39-50 h. Functional assays done with rhodamine 123 or calcein-AM, fluorescent substrates of P-gp, indicated that the transport function of P-gp was not affected by either biotinylation or treatment with BafA1 or proteasomal inhibitors. Immunofluorescence studies done with the antibody against lysosomal marker LAMP1 and the P-gp-specific antibody UIC2 in permeabilized cells indicated that intracellular P-gp is primarily localized in the lysosomal compartment. Our results suggest that the lysosomal degradation system could be targeted to increase the sensitivity of P-gp expressing cancer cells towards chemotherapeutic drugs. PMID:26057472

  20. Crystal structure of the conserved domain of the DC lysosomal associated membrane protein: implications for the lysosomal glycocalyx

    Directory of Open Access Journals (Sweden)

    Wilke Sonja

    2012-07-01

    Full Text Available Abstract Background The family of lysosome-associated membrane proteins (LAMP comprises the multifunctional, ubiquitous LAMP-1 and LAMP-2, and the cell type-specific proteins DC-LAMP (LAMP-3, BAD-LAMP (UNC-46, C20orf103 and macrosialin (CD68. LAMPs have been implicated in a multitude of cellular processes, including phagocytosis, autophagy, lipid transport and aging. LAMP-2 isoform A acts as a receptor in chaperone-mediated autophagy. LAMP-2 deficiency causes the fatal Danon disease. The abundant proteins LAMP-1 and LAMP-2 are major constituents of the glycoconjugate coat present on the inside of the lysosomal membrane, the 'lysosomal glycocalyx'. The LAMP family is characterized by a conserved domain of 150 to 200 amino acids with two disulfide bonds. Results The crystal structure of the conserved domain of human DC-LAMP was solved. It is the first high-resolution structure of a heavily glycosylated lysosomal membrane protein. The structure represents a novel β-prism fold formed by two β-sheets bent by β-bulges and connected by a disulfide bond. Flexible loops and a hydrophobic pocket represent possible sites of molecular interaction. Computational models of the glycosylated luminal regions of LAMP-1 and LAMP-2 indicate that the proteins adopt a compact conformation in close proximity to the lysosomal membrane. The models correspond to the thickness of the lysosomal glycoprotein coat of only 5 to 12 nm, according to electron microscopy. Conclusion The conserved luminal domain of lysosome-associated membrane proteins forms a previously unknown β-prism fold. Insights into the structure of the lysosomal glycoprotein coat were obtained by computational models of the LAMP-1 and LAMP-2 luminal regions.

  1. Assembly and Regulation of the Membrane Attack Complex Based on Structures of C5b6 and sC5b9

    Directory of Open Access Journals (Sweden)

    Michael A. Hadders

    2012-03-01

    Full Text Available Activation of the complement system results in formation of membrane attack complexes (MACs, pores that disrupt lipid bilayers and lyse bacteria and other pathogens. Here, we present the crystal structure of the first assembly intermediate, C5b6, together with a cryo-electron microscopy reconstruction of a soluble, regulated form of the pore, sC5b9. Cleavage of C5 to C5b results in marked conformational changes, distinct from those observed in the homologous C3-to-C3b transition. C6 captures this conformation, which is preserved in the larger sC5b9 assembly. Together with antibody labeling, these structures reveal that complement components associate through sideways alignment of the central MAC-perforin (MACPF domains, resulting in a C5b6-C7-C8β-C8α-C9 arc. Soluble regulatory proteins below the arc indicate a potential dual mechanism in protection from pore formation. These results provide a structural framework for understanding MAC pore formation and regulation, processes important for fighting infections and preventing complement-mediated tissue damage.

  2. Early involvement of lysosome dysfunction in the degeneration of cerebral cortical neurons caused by the lipid peroxidation product 4-hydroxynonenal.

    Science.gov (United States)

    Zhang, Shi; Eitan, Erez; Mattson, Mark P

    2017-03-01

    Free radical-mediated oxidative damage to proteins, lipids, and DNA occurs in neurons during acute brain injuries and in neurodegenerative disorders. Membrane lipid peroxidation contributes to neuronal dysfunction and death, in part by disrupting neuronal ion homeostasis and cellular bioenergetics. Emerging findings suggest that 4-hydroxynonenal (HNE), an aldehyde produced during lipid peroxidation, impairs the function of various proteins involved in neuronal homeostasis. Here we tested the hypothesis that HNE impairs the cellular system that removes damaged proteins and organelles, the autophagy-lysosome pathway in rat primary cortical neurons. We found that HNE, at a concentration that causes apoptosis over a 48-72 h period, increases protein levels of LC3 II and p62 and within 1 and 4 h of exposure, respectively; LC3 II and p62 immunoreactive puncta were observed in the cytoplasm of HNE-treated neurons at 6 h. The extent of up-regulation of p62 and LC3 II in response to HNE was not affected by co-treatment with the lysosome inhibitor bafilomycin A1, suggesting that the effects of HNE on autophagy were secondary to lysosome inhibition. Indeed, we found that neurons exposed to HNE exhibit elevated pH levels, and decreased protein substrate hydrolysis and cathepsin B activity. Neurons exposed to HNE also exhibited the accumulation of K63-linked polyubiquitinated proteins, which are substrates targeted for lysosomal degradation. Moreover, we found that the levels of LAMP2a and constitutively active heat-shock protein 70, and numbers of LAMP2a-positive lysosomes, are decreased in neurons exposed to HNE. Our findings demonstrate that the lipid peroxidation product HNE causes early impairment of lysosomes which may contribute to the accumulation of damaged and dysfunctional proteins and organelles and consequent neuronal death. Because impaired lysosome function is increasingly recognized as an early event in the neuronal death that occurs in neurodegenerative

  3. Structure and dimerization of translation initiation factor aIF5B in solution

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Louise Caroe Vohlander [Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C (Denmark); Oliveira, Cristiano Luis Pinto [Department of Chemistry, Centre for mRNP Biogenesis and Metabolism, and iNANO Interdisciplinary Nanoscience Center, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C (Denmark); Byron, Olwyn [Glasgow Biomedical Research Center, University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Jensen, Janni Mosgaard [Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C (Denmark); Pedersen, Jan Skov [Department of Chemistry, Centre for mRNP Biogenesis and Metabolism, and iNANO Interdisciplinary Nanoscience Center, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C (Denmark); Sperling-Petersen, Hans Uffe [Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C (Denmark); Mortensen, Kim Kusk, E-mail: kkm@science.au.dk [Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C (Denmark)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer aIF5B forms maximum 5.0-6.8% irreversible dimers in solution. Black-Right-Pointing-Pointer Sedimentation coefficients for monomer and dimer are 3.64 and 5.51 {+-} 0.29 S. Black-Right-Pointing-Pointer Adding only 2% glycerol prevents dimerization. Black-Right-Pointing-Pointer SAXS on aIF5B monomer gave an R{sub g} of 37.5 {+-} 0.2 A and a D{sub max} of {approx}130 A. Black-Right-Pointing-Pointer There are universal structural differences between aIF5B and Escherichia coli IF2. -- Abstract: Translation initiation factor 5B (IF5B) is required for initiation of protein synthesis. The solution structure of archaeal IF5B (aIF5B) was analysed by small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS) and was indicated to be in both monomeric and dimeric form. Sedimentation equilibrium (SE) analytical ultracentrifugation (AUC) of aIF5B indicated that aIF5B forms irreversible dimers in solution but only to a maximum of 5.0-6.8% dimer. Sedimentation velocity (SV) AUC at higher speed also indicated the presence of two species, and the sedimentation coefficients s{sub 20,w}{sup 0} were determined to be 3.64 and 5.51 {+-} 0.29 S for monomer and dimer, respectively. The atomic resolution (crystallographic) structure of aIF5B (Roll-Mecak et al. ) was used to model monomer and dimer, and theoretical sedimentation coefficients for these models were computed (3.89 and 5.63 S, respectively) in good agreement with the sedimentation coefficients obtained from SV analysis. Thus, the structure of aIF5B in solution must be very similar to the atomic resolution structure of aIF5B. SAXS data were acquired in the same buffer with the addition of 2% glycerol to inhibit dimerization, and the resultant monomeric aIF5B in solution did indeed adopt a structure very similar to the one reported earlier for the protein in crystalline form. The p(r) function indicated an elongated conformation supported by a radius of gyration of 37.5 {+-} 0.2 A

  4. Lysosomal {beta}-mannosidase: cDNA cloning and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Leipprandt, J.R.; Traviss, C.E. [Michigan State Univ., East Lansing, MI (United States)] [and others

    1994-09-01

    Lysosomal {beta}-mannosidase is an exoglycosidase that cleaves the single {beta}-linked mannose residue from the non-reducing end of all N-linked glycoprotein oligosaccharides. Deficiency of this enzyme results in {beta}-mannosidosis, a severe neurodegenerative disease in goats and cattle. The human cases described have a milder, highly variable presentation. Study of the molecular pathology of this disease in ruminants and humans and development of the animal model for gene therapy studies required cloning of the gene for {beta}-mannosidase has been cloned. {beta}-Mannosidase cDNA were obtained from a bovine thyroid cDNA library by screening with mixed oligonucleotides derived from peptide sequences resulting from microsequencing of bovine {beta}-mannosidase peptides. A total of six independent positive clones were identified from 5 x 10{sup 5} plaques, covering about 80% of the C-terminal region. The missing 5{prime} region was obtained using 5{prime} RACE. The full-length construct contains 3852-bp nucleotides, encoding 879 amino acids. The initiation codon is followed by 17 amino acids containing the characteristics of a typical signal peptide sequence. The deduced amino acid sequence is colinear with all peptide sequences determined by protein microsequencing. Northern blot analysis demonstrated a 4.2 kb single transcript in various tissues from both normal and affected goats and calves. The mRNA level was decreased in affected {beta}-mannosidosis animals. The gene encoding {beta}-mannosidase was localized on human chromosome 4 by Southern analysis of rodent/human somatic cell hybrids. The mutation in bovine {beta}-mannosidosis has been identified. This is the first report of cloning of the {beta}-mannosidase gene.

  5. Lysosomal storage disorders: Molecular basis and laboratory testing

    Directory of Open Access Journals (Sweden)

    Filocamo Mirella

    2011-03-01

    Full Text Available Abstract Lysosomal storage disorders (LSDs are a large group of more than 50 different inherited metabolic diseases which, in the great majority of cases, result from the defective function of specific lysosomal enzymes and, in cases, of non-enzymatic lysosomal proteins or non-lysosomal proteins involved in lysosomal biogenesis. The progressive lysosomal accumulation of undegraded metabolites results in generalised cell and tissue dysfunction, and, therefore, multi-systemic pathology. Storage may begin during early embryonic development, and the clinical presentation for LSDs can vary from an early and severe phenotype to late-onset mild disease. The diagnosis of most LSDs--after accurate clinical/paraclinical evaluation, including the analysis of some urinary metabolites--is based mainly on the detection of a specific enzymatic deficiency. In these cases, molecular genetic testing (MGT can refine the enzymatic diagnosis. Once the genotype of an individual LSD patient has been ascertained, genetic counselling should include prediction of the possible phenotype and the identification of carriers in the family at risk. MGT is essential for the identification of genetic disorders resulting from non-enzymatic lysosomal protein defects and is complementary to biochemical genetic testing (BGT in complex situations, such as in cases of enzymatic pseudodeficiencies. Prenatal diagnosis is performed on the most appropriate samples, which include fresh or cultured chorionic villus sampling or cultured amniotic fluid. The choice of the test--enzymatic and/or molecular--is based on the characteristics of the defect to be investigated. For prenatal MGT, the genotype of the family index case must be known. The availability of both tests, enzymatic and molecular, enormously increases the reliability of the entire prenatal diagnostic procedure. To conclude, BGT and MGT are mostly complementary for post- and prenatal diagnosis of LSDs. Whenever genotype

  6. Data of evolutionary structure change: 1PA1A-2PA5B [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1PA1A-2PA5B 1PA1 2PA5 A B ----KLEFMEMEKEFEQIDKSG--SWAAIYQDIRHEASD...IFEDTNLKLTLISEDIKSYYTVRQLELENLTTQETREILHFHYTTWPDFGVPESPASFLNFLFKVRESGSLSPE---HGPVVVHDSAGIGRSGTFCLADTCLLLMDKR...HHHH-------------HHHHH - 0 1PA...1 A 1PA1A IDKSG--SWAAI...ne>ILE CA 308 2PA5 B 2PA

  7. Data of evolutionary structure change: 1ACMB-1PG5B [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ACMB-1PG5B 1ACM 1PG5 B B GVEAIKRGTVIDHIPAQIGFKLLSLFKLTETDQRITIGL...nfEVID> 0 1ACM B 1ACM...n> 1ACM B 1ACMB FKLT...Chain> 1ACM B 1ACMB ...PHE CA 192 ARG CA 220 ILE CA 292 ALA CA 295

  8. Loss of COX5B inhibits proliferation and promotes senescence via mitochondrial dysfunction in breast cancer.

    Science.gov (United States)

    Gao, Shui-Ping; Sun, He-Fen; Jiang, Hong-Lin; Li, Liang-Dong; Hu, Xin; Xu, Xiao-En; Jin, Wei

    2015-12-22

    COX5B, a peripheral subunit of the cytochrome c oxidase complex, has previously been reported to maintain the stability of this complex. However, its functions and mechanisms involved in breast cancer progression remain unclear. Here, by performing SILAC assays in breast cancer cell models and detecting COX5B expression in tissues, we found that COX5B expression was elevated in breast cancer. Down-regulation of COX5B in breast cancer cell lines can suppress cell proliferation and induced cell senescence which was accompanied by elevating production of IL-8 and other cytokines. Interestingly, conditioned medium from COX5B knockdown cells could promote breast cancer cell migration. Mechanistic studies reveal that COX5B silence induces an increase in production of ROS, depolarization of MMP and a decrease in ATP. What's more, silence of COX5B leads to metabolic disorders, such as increased glucose uptake and decreased lactate secretion. Collectively, our study shows that loss of COX5B induces mitochondrial dysfunction and subsequently leads to cell growth suppression and cell senescence. Cytokines such as IL-8 secreted by senescent cells may in turn alter the microenvironment which could enhance cell migration. These findings may provide a novel paradigm for the treatment which combined anti-cancer drugs with particular cytokine inhibitors such as IL-8 blockers.

  9. 49 CFR 173.5b - Portable and mobile refrigeration systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Portable and mobile refrigeration systems. 173.5b...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS General § 173.5b Portable and mobile refrigeration... refrigeration systems, which may or may not be permanently mounted to a transport vehicle, used for...

  10. Experimental vaccination of pigs with an Actinobacillus pleuropneumoniae serotype 5b capsular polysaccharide tetanus toxoid conjugate

    DEFF Research Database (Denmark)

    Andresen, Lars Ole; Jacobsen, M.J.; Nielsen, J.P.

    1997-01-01

    The protective efficacy of an Actinobacillus pleuropneumoniae serotype 5b capsular polysaccharide-tetanus toroid conjugate (Ap5bCP-TT) against homologous challenge of pigs was investigated. Four pigs were non-vaccinated controls (group A), 4 pigs were injected with adjuvant without antigen (group B...

  11. Data of evolutionary structure change: 1JDZC-2IQ5B [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available > 2IQ5B VRLDG-ASLHF >EEE - ...SYNQGGLFYQY e>E HHHHHHture> 2IQ5B QTESH----AVKIV > HH----HHHHH...ain>1JDZC EELEKSVMDGAKAV re...> HHHHHHHHHHHH> ATOM 5061 CA GLU C 217 95.716 121.480 11.777 1.

  12. Expression of activated molecules on CD5(+)B lymphocytes in autoimmune hemolytic anemia.

    Science.gov (United States)

    Zhu, Hongli; Xu, Wenyan; Liu, Hong; Wang, Huaquan; Fu, Rong; Wu, Yuhong; Qu, Wen; Wang, Guojin; Guan, Jing; Song, Jia; Xing, Limin; Shao, Zonghong

    2016-05-01

    To investigate the expression of activation molecules on CD5(+)B lymphocytes in peripheral blood of autoimmune hemolytic anemia (AIHA)/Evans patients. The expression of CD80, CD86, and CD69 on CD5(+)B lymphocytes was detected using flow cytometry in 30 AIHA/Evans patients, 18 normal controls (NC) and nine chronic lymphocytic leukemia (CLL) patients. CD80 on CD5(+)B lymphocytes in untreated patients was higher than that in remission patients (P 0.05), but lower than those of CD5(-)B lymphocytes in remission patients and NC (P 0.05). CD80 and CD86 on CD5(+)B lymphocytes was negatively correlated with hemoglobin (HB), C3, C4 (P < 0.05) and positively correlated with reticulocyte (Ret) (P < 0.05). CD69 on CD5(+) and CD5(-)B lymphocytes of CLL was higher than those of AIHA/Evans patients and NC (P < 0.05). The active molecules on CD5(+)B lymphocytes in peripheral blood of AIHA/Evans patients differ from those on CD5(-) and clonal CD5(+)B lymphocytes.

  13. Unprecedentedly mild direct Pd-catalyzed arylation of oxazolo[4,5-b]pyridine

    DEFF Research Database (Denmark)

    Zhuravlev, Fedor

    2006-01-01

    Pd-catalyzed C-2 arylation of oxazolo[4,5-b]pyridine proceeds efficiently at 30 degrees C and tolerates a variety of aryl halides, including derivatized amino acids for which no racemization was observed during the reaction. Experimental evidence for facile deprotonation of oxazolo[4,5-b]pyridine...

  14. TRPML1: an ion channel in the lysosome.

    Science.gov (United States)

    Wang, Wuyang; Zhang, Xiaoli; Gao, Qiong; Xu, Haoxing

    2014-01-01

    The first member of the mammalian mucolipin TRP channel subfamily (TRPML1) is a cation-permeable channel that is predominantly localized on the membranes of late endosomes and lysosomes (LELs) in all mammalian cell types. In response to the regulatory changes of LEL-specific phosphoinositides or other cellular cues, TRPML1 may mediate the release of Ca(2+) and heavy metal Fe(2+)/Zn(2+)ions into the cytosol from the LEL lumen, which in turn may regulate membrane trafficking events (fission and fusion), signal transduction, and ionic homeostasis in LELs. Human mutations in TRPML1 result in type IV mucolipidosis (ML-IV), a childhood neurodegenerative lysosome storage disease. At the cellular level, loss-of-function mutations of mammalian TRPML1 or its C. elegans or Drosophila homolog gene results in lysosomal trafficking defects and lysosome storage. In this chapter, we summarize recent advances in our understandings of the cell biological and channel functions of TRPML1. Studies on TRPML1's channel properties and its regulation by cellular activities may provide clues for developing new therapeutic strategies to delay neurodegeneration in ML-IV and other lysosome-related pediatric diseases.

  15. Eucommia ulmoides Oliver extract, aucubin, and geniposide enhance lysosomal activity to regulate ER stress and hepatic lipid accumulation.

    Directory of Open Access Journals (Sweden)

    Hwa-Young Lee

    Full Text Available Eucommia ulmoides Oliver is a natural product widely used as a dietary supplement and medicinal plant. Here, we examined the potential regulatory effects of Eucommia ulmoides Oliver extracts (EUE on hepatic dyslipidemia and its related mechanisms by in vitro and in vivo studies. EUE and its two active constituents, aucubin and geniposide, inhibited palmitate-induced endoplasmic reticulum (ER stress, reducing hepatic lipid accumulation through secretion of apolipoprotein B and associated triglycerides and cholesterol in human HepG2 hepatocytes. To determine how EUE diminishes the ER stress response, lysosomal and proteasomal protein degradation activities were analyzed. Although proteasomal activity was not affected, lysosomal enzyme activities including V-ATPase were significantly increased by EUE as well as aucubin and geniposide in HepG2 cells. Treatment with the V-ATPase inhibitor, bafilomycin, reversed the inhibition of ER stress, secretion of apolipoprotein B, and hepatic lipid accumulation induced by EUE or its component, aucubin or geniposide. In addition, EUE was determined to regulate hepatic dyslipidemia by enhancing lysosomal activity and to regulate ER stress in rats fed a high-fat diet. Together, these results suggest that EUE and its active components enhance lysosomal activity, resulting in decreased ER stress and hepatic dyslipidemia.

  16. Actin-binding protein coronin 1A controls osteoclastic bone resorption by regulating lysosomal secretion of cathepsin K

    Science.gov (United States)

    Ohmae, Saori; Noma, Naruto; Toyomoto, Masayasu; Shinohara, Masahiro; Takeiri, Masatoshi; Fuji, Hiroaki; Takemoto, Kenji; Iwaisako, Keiko; Fujita, Tomoko; Takeda, Norihiko; Kawatani, Makoto; Aoyama, Mineyoshi; Hagiwara, Masatoshi; Ishihama, Yasushi; Asagiri, Masataka

    2017-01-01

    Osteoclasts degrade bone matrix proteins via the secretion of lysosomal enzymes. However, the precise mechanisms by which lysosomal components are transported and fused to the bone-apposed plasma membrane, termed ruffled border membrane, remain elusive. Here, we identified coronin 1A as a negative regulator of exocytotic release of cathepsin K, one of the most important bone-degrading enzymes in osteoclasts. The modulation of coronin 1A expression did not alter osteoclast differentiation and extracellular acidification, but strongly affected the secretion of cathepsin K and osteoclast bone-resorption activity, suggesting the coronin 1A-mediated regulation of lysosomal trafficking and protease exocytosis. Further analyses suggested that coronin 1A prevented the lipidation-mediated sorting of the autophagy-related protein LC3 to the ruffled border and attenuated lysosome–plasma membrane fusion. In this process, the interactions between coronin 1A and actin were crucial. Collectively, our findings indicate that coronin 1A is a pivotal component that regulates lysosomal fusion and the secretion pathway in osteoclast-lineage cells and may provide a novel therapeutic target for bone diseases. PMID:28300073

  17. Size-dependent accumulation of particles in lysosomes modulates dendritic cell function through impaired antigen degradation

    Science.gov (United States)

    Seydoux, Emilie; Rothen-Rutishauser, Barbara; Nita, Izabela M; Balog, Sandor; Gazdhar, Amiq; Stumbles, Philip A; Petri-Fink, Alke; Blank, Fabian; von Garnier, Christophe

    2014-01-01

    Introduction Nanosized particles may enable therapeutic modulation of immune responses by targeting dendritic cell (DC) networks in accessible organs such as the lung. To date, however, the effects of nanoparticles on DC function and downstream immune responses remain poorly understood. Methods Bone marrow–derived DCs (BMDCs) were exposed in vitro to 20 or 1,000 nm polystyrene (PS) particles. Particle uptake kinetics, cell surface marker expression, soluble protein antigen uptake and degradation, as well as in vitro CD4+ T-cell proliferation and cytokine production were analyzed by flow cytometry. In addition, co-localization of particles within the lysosomal compartment, lysosomal permeability, and endoplasmic reticulum stress were analyzed. Results The frequency of PS particle–positive CD11c+/CD11b+ BMDCs reached an early plateau after 20 minutes and was significantly higher for 20 nm than for 1,000 nm PS particles at all time-points analyzed. PS particles did not alter cell viability or modify expression of the surface markers CD11b, CD11c, MHC class II, CD40, and CD86. Although particle exposure did not modulate antigen uptake, 20 nm PS particles decreased the capacity of BMDCs to degrade soluble antigen, without affecting their ability to induce antigen-specific CD4+ T-cell proliferation. Co-localization studies between PS particles and lysosomes using laser scanning confocal microscopy detected a significantly higher frequency of co-localized 20 nm particles as compared with their 1,000 nm counterparts. Neither size of PS particle caused lysosomal leakage, expression of endoplasmic reticulum stress gene markers, or changes in cytokines profiles. Conclusion These data indicate that although supposedly inert PS nanoparticles did not induce DC activation or alteration in CD4+ T-cell stimulating capacity, 20 nm (but not 1,000 nm) PS particles may reduce antigen degradation through interference in the lysosomal compartment. These findings emphasize the

  18. Salinomycin kills cancer stem cells by sequestering iron in lysosomes

    Science.gov (United States)

    Mai, Trang Thi; Hamaï, Ahmed; Hienzsch, Antje; Cañeque, Tatiana; Müller, Sebastian; Wicinski, Julien; Cabaud, Olivier; Leroy, Christine; David, Amandine; Acevedo, Verónica; Ryo, Akihide; Ginestier, Christophe; Birnbaum, Daniel; Charafe-Jauffret, Emmanuelle; Codogno, Patrice; Mehrpour, Maryam; Rodriguez, Raphaël

    2017-10-01

    Cancer stem cells (CSCs) represent a subset of cells within tumours that exhibit self-renewal properties and the capacity to seed tumours. CSCs are typically refractory to conventional treatments and have been associated to metastasis and relapse. Salinomycin operates as a selective agent against CSCs through mechanisms that remain elusive. Here, we provide evidence that a synthetic derivative of salinomycin, which we named ironomycin (AM5), exhibits a more potent and selective activity against breast CSCs in vitro and in vivo, by accumulating and sequestering iron in lysosomes. In response to the ensuing cytoplasmic depletion of iron, cells triggered the degradation of ferritin in lysosomes, leading to further iron loading in this organelle. Iron-mediated production of reactive oxygen species promoted lysosomal membrane permeabilization, activating a cell death pathway consistent with ferroptosis. These findings reveal the prevalence of iron homeostasis in breast CSCs, pointing towards iron and iron-mediated processes as potential targets against these cells.

  19. Rab2 promotes autophagic and endocytic lysosomal degradation.

    Science.gov (United States)

    Lőrincz, Péter; Tóth, Sarolta; Benkő, Péter; Lakatos, Zsolt; Boda, Attila; Glatz, Gábor; Zobel, Martina; Bisi, Sara; Hegedűs, Krisztina; Takáts, Szabolcs; Scita, Giorgio; Juhász, Gábor

    2017-07-03

    Rab7 promotes fusion of autophagosomes and late endosomes with lysosomes in yeast and metazoan cells, acting together with its effector, the tethering complex HOPS. Here we show that another small GTPase, Rab2, is also required for autophagosome and endosome maturation and proper lysosome function in Drosophila melanogaster We demonstrate that Rab2 binds to HOPS, and that its active, GTP-locked form associates with autolysosomes. Importantly, expression of active Rab2 promotes autolysosomal fusions unlike that of GTP-locked Rab7, suggesting that its amount is normally rate limiting. We also demonstrate that RAB2A is required for autophagosome clearance in human breast cancer cells. In conclusion, we identify Rab2 as a key factor for autophagic and endocytic cargo delivery to and degradation in lysosomes. © 2017 Lőrincz et al.

  20. Insights into Ubiquitination from the Unique Clamp-like Binding of the RING E3 AO7 to the E2 UbcH5B*

    Science.gov (United States)

    Li, Shengjian; Liang, Yu-He; Mariano, Jennifer; Metzger, Meredith B.; Stringer, Daniel K.; Hristova, Ventzislava A.; Li, Jess; Randazzo, Paul A.; Tsai, Yien Che; Ji, Xinhua; Weissman, Allan M.

    2015-01-01

    RING proteins constitute the largest class of E3 ubiquitin ligases. Unlike most RINGs, AO7 (RNF25) binds the E2 ubiquitin-conjugating enzyme, UbcH5B (UBE2D2), with strikingly high affinity. We have defined, by co-crystallization, the distinctive means by which AO7 binds UbcH5B. AO7 contains a structurally unique UbcH5B binding region (U5BR) that is connected by an 11-amino acid linker to its RING domain, forming a clamp surrounding the E2. The U5BR interacts extensively with a region of UbcH5B that is distinct from both the active site and the RING-interacting region, referred to as the backside of the E2. An apparent paradox is that the high-affinity binding of the AO7 clamp to UbcH5B, which is dependent on the U5BR, decreases the rate of ubiquitination. We establish that this is a consequence of blocking the stimulatory, non-covalent, binding of ubiquitin to the backside of UbcH5B. Interestingly, when non-covalent backside ubiquitin binding cannot occur, the AO7 clamp now enhances the rate of ubiquitination. The high-affinity binding of the AO7 clamp to UbcH5B has also allowed for the co-crystallization of previously described and functionally important RING mutants at the RING-E2 interface. We show that mutations having marked effects on function only minimally affect the intermolecular interactions between the AO7 RING and UbcH5B, establishing a high degree of complexity in activation through the RING-E2 interface. PMID:26475854

  1. Identification of STAT5A and STAT5B target genes in human T cells.

    Directory of Open Access Journals (Sweden)

    Takahiro Kanai

    Full Text Available Signal transducer and activator of transcription (STAT comprises a family of universal transcription factors that help cells sense and respond to environmental signals. STAT5 refers to two highly related proteins, STAT5A and STAT5B, with critical function: their complete deficiency is lethal in mice; in humans, STAT5B deficiency alone leads to endocrine and immunological problems, while STAT5A deficiency has not been reported. STAT5A and STAT5B show peptide sequence similarities greater than 90%, but subtle structural differences suggest possible non-redundant roles in gene regulation. However, these roles remain unclear in humans. We applied chromatin immunoprecipitation followed by DNA sequencing using human CD4(+ T cells to detect candidate genes regulated by STAT5A and/or STAT5B, and quantitative-PCR in STAT5A or STAT5B knock-down (KD human CD4(+ T cells to validate the findings. Our data show STAT5A and STAT5B play redundant roles in cell proliferation and apoptosis via SGK1 interaction. Interestingly, we found a novel, unique role for STAT5A in binding to genes involved in neural development and function (NDRG1, DNAJC6, and SSH2, while STAT5B appears to play a distinct role in T cell development and function via DOCK8, SNX9, FOXP3 and IL2RA binding. Our results also suggest that one or more co-activators for STAT5A and/or STAT5B may play important roles in establishing different binding abilities and gene regulation behaviors. The new identification of these genes regulated by STAT5A and/or STAT5B has major implications for understanding the pathophysiology of cancer progression, neural disorders, and immune abnormalities.

  2. Importance of lysosomal cysteine proteases in lung disease

    Directory of Open Access Journals (Sweden)

    Chapman Harold A

    2000-11-01

    Full Text Available Abstract The human lysosomal cysteine proteases are a family of 11 proteases whose members include cathepsins B, C, H, L, and S. The biology of these proteases was largely ignored for decades because of their lysosomal location and the belief that their function was limited to the terminal degradation of proteins. In the past 10 years, this view has changed as these proteases have been found to have specific functions within cells. This review highlights some of these functions, specifically their roles in matrix remodeling and in regulating the immune response, and their relationship to lung diseases.

  3. PDT: loss of autophagic cytoprotection after lysosomal photodamage

    Science.gov (United States)

    Kessel, David; Price, Michael

    2012-02-01

    Photodynamic therapy is known to evoke both autophagy and apoptosis. Apoptosis is an irreversible death pathway while autophagy can serve a cytoprotective function. In this study, we examined two photosensitizing agents that target lysosomes, although they differ in the reactive oxygen species (ROS) formed during irradiation. With both agents, the 'shoulder' on the PDT dose-response curve was substantially attenuated, consistent with loss of a cytoprotective pathway. In contrast, this 'shoulder' is commonly observed when PDT targets mitochondria or the ER. We propose that lysosomal targets may offer the possibility of promoting PDT efficacy by eliminating a potentially protective pathway.

  4. Lysosome stability during lytic infection by simian virus 40.

    Science.gov (United States)

    Einck, K H; Norkin, L C

    1979-01-01

    By 48 h postinfection, 40--80% of SV40-infected CV-1 cells have undergone irreversible injury as indicated by trypan blue staining. Nevertheless, at this time the lysosomes of these cells appear as discrete structures after vital staining with either acridine orange or neutral red. Lysosomes, vitally stained with neutral red at 24 h postinfection, were still intact in cells stained with trypan blue at 48 h. Acid phosphatase activity is localized in discrete cytoplasmic particles at 48 h, as indicated by histochemical staining of both fixed and unfixed cells.

  5. Analyzing Lysosome-Related Organelles by Electron Microscopy

    KAUST Repository

    Hurbain, Ilse

    2017-04-29

    Intracellular organelles have a particular morphological signature that can only be appreciated by ultrastructural analysis at the electron microscopy level. Optical imaging and associated methodologies allow to explore organelle localization and their dynamics at the cellular level. Deciphering the biogenesis and functions of lysosomes and lysosome-related organelles (LROs) and their dysfunctions requires their visualization and detailed characterization at high resolution by electron microscopy. Here, we provide detailed protocols for studying LROs by transmission electron microscopy. While conventional electron microscopy and its recent improvements is the method of choice to investigate organelle morphology, immunoelectron microscopy allows to localize organelle components and description of their molecular make up qualitatively and quantitatively.

  6. Structure and dimerization of translation initiation factor aIF5B in solution

    Energy Technology Data Exchange (ETDEWEB)

    Carø VohlanderRasmussen, Louise; Oliveira, Cristiano Luis Pinto; Byron, Olwyn; Jensen, Janni Mosgaard; Pedersen, Jan Skov; Sperling-Petersen, Hans Uffe; Mortensen, Kim Kusk (Aarhus); (Glasgow)

    2012-02-07

    Translation initiation factor 5B (IF5B) is required for initiation of protein synthesis. The solution structure of archaeal IF5B (aIF5B) was analysed by small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS) and was indicated to be in both monomeric and dimeric form. Sedimentation equilibrium (SE) analytical ultracentrifugation (AUC) of aIF5B indicated that aIF5B forms irreversible dimers in solution but only to a maximum of 5.0-6.8% dimer. Sedimentation velocity (SV) AUC at higher speed also indicated the presence of two species, and the sedimentation coefficients s{sub 20,w}{sup 0} were determined to be 3.64 and 5.51 {+-} 0.29 S for monomer and dimer, respectively. The atomic resolution (crystallographic) structure of aIF5B (Roll-Mecak et al. [6]) was used to model monomer and dimer, and theoretical sedimentation coefficients for these models were computed (3.89 and 5.63 S, respectively) in good agreement with the sedimentation coefficients obtained from SV analysis. Thus, the structure of aIF5B in solution must be very similar to the atomic resolution structure of aIF5B. SAXS data were acquired in the same buffer with the addition of 2% glycerol to inhibit dimerization, and the resultant monomeric aIF5B in solution did indeed adopt a structure very similar to the one reported earlier for the protein in crystalline form. The p(r) function indicated an elongated conformation supported by a radius of gyration of 37.5 {+-} 0.2 {angstrom} and a maximum dimension of {approx}130 {angstrom}. The effects of glycerol on the formation of dimers are discussed. This new model of aIF5B in solution shows that there are universal structural differences between aIF5B and the homologous protein IF2 from Escherichia coli.

  7. The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes.

    Science.gov (United States)

    Garrity, Abigail G; Wang, Wuyang; Collier, Crystal Md; Levey, Sara A; Gao, Qiong; Xu, Haoxing

    2016-05-23

    Impaired homeostasis of lysosomal Ca(2+) causes lysosome dysfunction and lysosomal storage diseases (LSDs), but the mechanisms by which lysosomes acquire and refill Ca(2+) are not known. We developed a physiological assay to monitor lysosomal Ca(2+) store refilling using specific activators of lysosomal Ca(2+) channels to repeatedly induce lysosomal Ca(2+) release. In contrast to the prevailing view that lysosomal acidification drives Ca(2+) into the lysosome, inhibiting the V-ATPase H(+) pump did not prevent Ca(2+) refilling. Instead, pharmacological depletion or chelation of Endoplasmic Reticulum (ER) Ca(2+) prevented lysosomal Ca(2+) stores from refilling. More specifically, antagonists of ER IP3 receptors (IP3Rs) rapidly and completely blocked Ca(2+) refilling of lysosomes, but not in cells lacking IP3Rs. Furthermore, reducing ER Ca(2+) or blocking IP3Rs caused a dramatic LSD-like lysosome storage phenotype. By closely apposing each other, the ER may serve as a direct and primary source of Ca(2+)for the lysosome.

  8. Methods for monitoring Ca(2+) and ion channels in the lysosome.

    Science.gov (United States)

    Zhong, Xi Zoë; Yang, Yiming; Sun, Xue; Dong, Xian-Ping

    2016-12-09

    Lysosomes and lysosome-related organelles are emerging as intracellular Ca(2+) stores and play important roles in a variety of membrane trafficking processes, including endocytosis, exocytosis, phagocytosis and autophagy. Impairment of lysosomal Ca(2+) homeostasis and membrane trafficking has been implicated in many human diseases such as lysosomal storage diseases (LSDs), neurodegeneration, myopathy and cancer. Lysosomal membrane proteins, in particular ion channels, are crucial for lysosomal Ca(2+) signaling. Compared with ion channels in the plasma membrane, lysosomal ion channels and their roles in lysosomal Ca(2+) signaling are less understood, largely due to their intracellular localization and the lack of feasible functional assays directly applied to the native environment. Recent advances in biomedical methodology have made it possible to directly investigate ion channels in the lysosomal membrane. In this review, we provide a summary of the newly developed methods for monitoring lysosomal Ca(2+) and ion channels, as well as the recent discovery of lysosomal ion channels and their significances in intracellular Ca(2+) signaling. These new techniques will expand our research scope and our understanding of the nature of lysosomes and lysosome-related diseases.

  9. A single amino acid change within the R2 domain of the VvMYB5b transcription factor modulates affinity for protein partners and target promoters selectivity

    Directory of Open Access Journals (Sweden)

    Granier Thierry

    2011-08-01

    Full Text Available Abstract Background Flavonoid pathway is spatially and temporally controlled during plant development and the transcriptional regulation of the structural genes is mostly orchestrated by a ternary protein complex that involves three classes of transcription factors (R2-R3-MYB, bHLH and WDR. In grapevine (Vitis vinifera L., several MYB transcription factors have been identified but the interactions with their putative bHLH partners to regulate specific branches of the flavonoid pathway are still poorly understood. Results In this work, we describe the effects of a single amino acid substitution (R69L located in the R2 domain of VvMYB5b and predicted to affect the formation of a salt bridge within the protein. The activity of the mutated protein (name VvMYB5bL, the native protein being referred as VvMYB5bR was assessed in different in vivo systems: yeast, grape cell suspensions, and tobacco. In the first two systems, VvMYB5bL exhibited a modified trans-activation capability. Moreover, using yeast two-hybrid assay, we demonstrated that modification of VvMYB5b transcriptional properties impaired its ability to correctly interact with VvMYC1, a grape bHLH protein. These results were further substantiated by overexpression of VvMYB5bR and VvMYB5bL genes in tobacco. Flowers from 35S::VvMYB5bL transgenic plants showed a distinct phenotype in comparison with 35S::VvMYB5bR and the control plants. Finally, significant differences in transcript abundance of flavonoid metabolism genes were observed along with variations in pigments accumulation. Conclusions Taken together, our findings indicate that VvMYB5bL is still able to bind DNA but the structural consequences linked to the mutation affect the capacity of the protein to activate the transcription of some flavonoid genes by modifying the interaction with its co-partner(s. In addition, this study underlines the importance of an internal salt bridge for protein conformation and thus for the establishment

  10. Genomic expression analyses reveal lysosomal, innate immunity proteins, as disease correlates in murine models of a lysosomal storage disorder.

    Directory of Open Access Journals (Sweden)

    Md Suhail Alam

    Full Text Available Niemann-Pick Type C (NPC disease is a rare, genetic, lysosomal disorder with progressive neurodegeneration. Poor understanding of the pathophysiology and a lack of blood-based diagnostic markers are major hurdles in the treatment and management of NPC and several additional, neurological lysosomal disorders. To identify disease severity correlates, we undertook whole genome expression profiling of sentinel organs, brain, liver, and spleen of Balb/c Npc1(-/- mice relative to Npc1(+/- at an asymptomatic stage, as well as early- and late-symptomatic stages. Unexpectedly, we found prominent up regulation of innate immunity genes with age-dependent change in their expression, in all three organs. We shortlisted a set of 12 secretory genes whose expression steadily increased with age in both brain and liver, as potential plasma correlates of neurological and/or liver disease. Ten were innate immune genes with eight ascribed to lysosomes. Several are known to be elevated in diseased organs of murine models of other lysosomal diseases including Gaucher's disease, Sandhoff disease and MPSIIIB. We validated the top candidate lysozyme, in the plasma of Npc1(-/- as well as Balb/c Npc1(nmf164 mice (bearing a point mutation closer to human disease mutants and show its reduction in response to an emerging therapeutic. We further established elevation of innate immunity in Npc1(-/- mice through multiple functional assays including inhibition of bacterial infection as well as cellular analysis and immunohistochemistry. These data revealed neutrophil elevation in the Npc1(-/- spleen and liver (where large foci were detected proximal to damaged tissue. Together our results yield a set of lysosomal, secretory innate immunity genes that have potential to be developed as pan or specific plasma markers for neurological diseases associated with lysosomal storage and where diagnosis is a major problem. Further, the accumulation of neutrophils in diseased organs

  11. Intrathecal enzyme replacement therapy reduces lysosomal storage in the brain and meninges of the canine model of MPS I.

    Science.gov (United States)

    Kakkis, E; McEntee, M; Vogler, C; Le, S; Levy, B; Belichenko, P; Mobley, W; Dickson, P; Hanson, S; Passage, M

    2004-01-01

    Enzyme replacement therapy (ERT) has been developed for several lysosomal storage disorders, including mucopolysaccharidosis I (MPS I), and is effective at reducing lysosomal storage in many tissues and in ameliorating clinical disease. However, intravenous ERT does not adequately treat storage disease in the central nervous system (CNS), presumably due to effects of the blood-brain barrier on enzyme distribution. To circumvent this barrier, we studied whether intrathecal (IT) recombinant human alpha-L-iduronidase (rhIDU) could penetrate and treat the brain and meninges. An initial dose-response study showed that doses of 0.46-4.14 mg of IT rhIDU successfully penetrated the brain of normal dogs and reached tissue levels 5.6 to 18.9-fold normal overall and 2.7 to 5.9-fold normal in deep brain sections lacking CSF contact. To assess the efficacy and safety in treating lysosomal storage disease, four weekly doses of approximately 1 mg of IT rhIDU were administered to MPS I-affected dogs resulting in a mean 23- and 300-fold normal levels of iduronidase in total brain and meninges, respectively. Quantitative glycosaminoglycan (GAG) analysis showed that the IT treatment reduced mean total brain GAG to normal levels and achieved a 57% reduction in meningeal GAG levels accompanied by histologic improvement in lysosomal storage in all cell types. The dogs did develop a dose-dependent immune response against the recombinant human protein and a meningeal lymphocytic/plasmacytic infiltrate. The IT route of ERT administration may be an effective way to treat the CNS disease in MPS I and could be applicable to other lysosomal storage disorders.

  12. Myo5b knockout mice as a model of microvillus inclusion disease

    NARCIS (Netherlands)

    Carton-Garcia, Fernando; Overeem, Arend W.; Nieto, Rocio; Bazzocco, Sarah; Dopeso, Higinio; Macaya, Irati; Bilic, Josipa; Landolfi, Stefania; Hernandez-Losa, Javier; Schwartz, Simo; Ramon y Cajal, Santiago; van Ijzendoorn, Sven C. D.; Arango, Diego

    2015-01-01

    Inherited MYO5B mutations have recently been associated with microvillus inclusion disease (MVID), an autosomal recessive syndrome characterized by intractable, life-threatening, watery diarrhea appearing shortly after birth. Characterization of the molecular mechanisms underlying this disease and

  13. Myo5b knockout mice as a model of microvillus inclusion disease

    NARCIS (Netherlands)

    Carton-Garcia, Fernando; Overeem, Arend W.; Nieto, Rocio; Bazzocco, Sarah; Dopeso, Higinio; Macaya, Irati; Bilic, Josipa; Landolfi, Stefania; Hernandez-Losa, Javier; Schwartz, Simo; Ramon y Cajal, Santiago; van Ijzendoorn, Sven C. D.; Arango, Diego

    2015-01-01

    Inherited MYO5B mutations have recently been associated with microvillus inclusion disease (MVID), an autosomal recessive syndrome characterized by intractable, life-threatening, watery diarrhea appearing shortly after birth. Characterization of the molecular mechanisms underlying this disease and d

  14. Conceptual design of the 7 megawatt Mod-5B wind turbine generator

    Science.gov (United States)

    Douglas, R. R.

    1982-01-01

    Similar to MOD-2, the MOD-5B wind turbine generator system is designed for the sole purpose of providing electrical power for distribution by a major utility network. The objectives of the MOD-2 and MOD-5B programs are essentially identical with one important exception; the cost-of-electricity (COE) target is reduced from 4 cent/Kwhr on MOD-2 to 3 cent/Kwhr on MOD-5B, based on mid 1977 dollars and large quantity production. The MOD-5B concept studies and eventual concept selection confirmed that the program COE targets could not only be achieved but substantially bettered. Starting from the established MOD-2 technology as a base, this achievement resulted from a combination of concept changes, size changes, and design refinements. The result of this effort is a wind turbine system that can compete with conventional power generation over significant geographical areas, increasing commercial market potential by an order of magnitude.

  15. The MUC5B promoter polymorphism is associated with specific interstitial lung abnormality subtypes.

    Science.gov (United States)

    Putman, Rachel K; Gudmundsson, Gunnar; Araki, Tetsuro; Nishino, Mizuki; Sigurdsson, Sigurdur; Gudmundsson, Elías F; Eiríksdottír, Gudny; Aspelund, Thor; Ross, James C; San José Estépar, Raúl; Miller, Ezra R; Yamada, Yoshitake; Yanagawa, Masahiro; Tomiyama, Noriyuki; Launer, Lenore J; Harris, Tamara B; El-Chemaly, Souheil; Raby, Benjamin A; Cho, Michael H; Rosas, Ivan O; Washko, George R; Schwartz, David A; Silverman, Edwin K; Gudnason, Vilmundur; Hatabu, Hiroto; Hunninghake, Gary M

    2017-09-01

    The MUC5B promoter polymorphism (rs35705950) has been associated with interstitial lung abnormalities (ILA) in white participants from the general population; whether these findings are replicated and influenced by the ILA subtype is not known. We evaluated the associations between the MUC5B genotype and ILA in cohorts with extensive imaging characterisation.We performed ILA phenotyping and MUC5B promoter genotyping in 5308 and 9292 participants from the AGES-Reykjavik and COPDGene cohorts, respectively.We found that ILA was present in 7% of participants from the AGES-Reykjavik, 8% of non-Hispanic white participants from COPDGene and 7% of African-American participants from COPDGene. Although the MUC5B genotype was strongly associated (after correction for multiple testing) with ILA (OR 2.1, 95% CI 1.8-2.4, p=1×10(-26)), there was evidence of significant heterogeneity between cohorts (I(2)=81%). When narrowed to specific radiologic subtypes, (e.g. subpleural ILA), the MUC5B genotype remained strongly associated (OR 2.6, 95% CI 2.2-3.1, p=1×10(-30)) with minimal heterogeneity (I(2)=0%). Although there was no evidence that the MUC5B genotype influenced survival, there was evidence that MUC5B genotype improved risk prediction for possible usual interstitial pneumonia (UIP) or a UIP pattern in non-Hispanic white populations.The MUC5B promoter polymorphism is strongly associated with ILA and specific radiologic subtypes of ILA, with varying degrees of heterogeneity in the underlying populations. The content of this work is not subject to copyright. Design and branding are copyright ©ERS 2017.

  16. Synthesis and evaluation of antitumor activity ofsome thiazolo[4,5-b]pyridines

    Directory of Open Access Journals (Sweden)

    Ogurtsov V. V.

    2012-09-01

    Full Text Available Aim. To synthesize a series of novel 3H-thiazolo[4,5-b]pyridine-2-ones by structural modification of the core heterocycle in its N3- and N6-positions and to evaluate their anticancer activity in vitro on several tumor cell lines. Methods. Organic synthesis, 1H-NMR spectroscopy, trypan blue cell viability assay. Results. A new convenient synthetic approach was developed and optimized conditions were studied for the reaction of preparation of 3H- thiazolo[4,5-b]pyridin-2-one derivatives. 5,7-Dimethyl-3H-thiazolo[4,5-b]pyridin-2-one and 6-phenylazo-5,7- dimethyl-3H-thiazolo[4,5-b]pyridin-2-one were obtained by [3 + 3]cyclocondensation of 4-iminothiazolidone- 2 with acetylacetone and phenylazoacetylacetone in methanol medium in the presence of sodium methylate. They were used as starting compounds for further structural modification of the core thiazolo[4,5-b]pyridine heterocycle in its 3- and 6-positions. On the basis of in vitro cytotoxicity studies of synthesized compounds several structure-functional relationships underlying anticancer potential of 5,7-dimethyl-3H-thiazolo[4,5-b]pyridin- 2-one derivatives were identified. Conclusions. 3H-thiazolo[4,5-b]pyridin-2-one can be considered as a promising molecular scaffold for rational design of potential anticancer drug candidates. Introduction of phenylazo substitute at C6-position of 3H-thiazolo[4,5-b]pyridin-2-one proved to be the most efficient, as it led to 3-fold increase of its anticancer potential.

  17. Chemical and Hormonal Effects on STAT5b-Dependent Sexual Dimorphism of the Liver Transcriptome.

    Directory of Open Access Journals (Sweden)

    Keiyu Oshida

    Full Text Available The growth hormone (GH-activated transcription factor signal transducer and activator of transcription 5b (STAT5b is a key regulator of sexually dimorphic gene expression in the liver. Suppression of hepatic STAT5b signaling is associated with lipid metabolic dysfunction leading to steatosis and liver cancer. In the companion publication, a STAT5b biomarker gene set was identified and used in a rank-based test to predict both increases and decreases in liver STAT5b activation status/function with high (≥ 97% accuracy. Here, this computational approach was used to identify chemicals and hormones that activate (masculinize or suppress (feminize STAT5b function in a large, annotated mouse liver and primary hepatocyte gene expression compendium. Exposure to dihydrotestosterone and thyroid hormone caused liver masculinization, whereas glucocorticoids, fibroblast growth factor 15, and angiotensin II caused liver feminization. In mouse models of diabetes and obesity, liver feminization was consistently observed and was at least partially reversed by leptin or resveratrol exposure. Chemical-induced feminization of male mouse liver gene expression profiles was a relatively frequent phenomenon: of 156 gene expression biosets from chemically-treated male mice, 29% showed feminization of liver STAT5b function, while <1% showed masculinization. Most (93% of the biosets that exhibited feminization of male liver were also associated with activation of one or more xenobiotic-responsive receptors, most commonly constitutive activated receptor (CAR or peroxisome proliferator-activated receptor alpha (PPARα. Feminization was consistently associated with increased expression of peroxisome proliferator-activated receptor gamma (Pparg but not other lipogenic transcription factors linked to steatosis. GH-activated STAT5b signaling in mouse liver is thus commonly altered by diverse chemicals, and provides a linkage between chemical exposure and dysregulated gene

  18. Screening of Rice Genes Interacting with p5b of Rice Black-Streaked Dwarf Virus

    Institute of Scientific and Technical Information of China (English)

    LU Ying; YANG Jian; ZHANG Heng-mu; CHEN Jian-ping

    2013-01-01

    Rice black-streaked dwarf virus (RBSDV) is a recognized member of the genus Fijivirus,family Reoviridae.Its genome has ten double-stranded RNA (dsRNA) segments (S1-S10),in which the fifth genome segment (S5) contains two open reading frames (ORFs) with a partially overlapping region.The second ORF of RBSDV S5 encodes a viral nonstructural protein named p5b with unknown function.To reveal the function of p5b,its gene was ligated into the bait plasmid pGBKT7 and an expression library containing rice cDNAs was constructed using plasmid pGADT7 for yeast two-hybrid assay.The bait protein p5b was detected in yeast by western blot,and the result of an auto-activation test showed that p5b could not autonomously activate the expression of reporter genes in yeast.Then the bait protein p5b was used for screening the cDNA expression libraries of rice.Gene fragments of some pivotal enzymes involved in photosynthesis,respiration and other important metabolic processes,were identified to interact with p5b in yeast,suggesting that these interactions may play roles in symptom development in infected plants.

  19. The relationship between Cd-induced autophagy and lysosomal activation in WRL-68 cells.

    Science.gov (United States)

    Meng, Su-Fang; Mao, Wei-Ping; Wang, Fang; Liu, Xiao-Qian; Shao, Luan-Luan

    2015-11-01

    This study shows that Cd induces autophagy in the human's embryonic normal liver cell line (WRL-68). The expression of LC3B-II and the mature cathepsin L were analyzed by Western blotting. The autophagosomes and lysosomes were directly visualized by electron microscopy and confocal microscopy analysis in Cd-exposed WRL-68 cells. In this study, we first found that autophagy induced the activation of lysosomal function in WRL-68 cells. The lysosomal activation was markedly decreased when the cells were co-treated with 3-MA (an inhibitor of autophagy). Secondly, we provided the evidence that the activation of lysosomal function depended on autophagosome-lysosome fusion. The colocalization of lysosome-associated membrane protein-2 (LAMP2) and GFP-LC3 was significantly reduced, when they were treated with thapsigargin (an inhibitor of autophagosome-lysosome fusion). We demonstrated that deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation, which suggests that lysosomal activation occurring in the course of autophagy is dependent on autophagosome-lysosome fusion. Thirdly, we provided evidence that the activation of lysosomal function was associated with lysosomal acid. We investigated the relationship between autophagosome-lysosome fusion and pH in acidic compartments by visualizing fusion process in WRL-68 cells. This suggests that increasing pH in acidic compartments in WRL-68 cells inhibits the autophagosome-lysosome fusion. Finally, we found that the activation of lysosomal function was associated with Ca(2+) stores and the intracellular Ca(2+) channels or pumps were possibly pH-dependent.

  20. Lysosomal acid phosphatase is internalized via clathrin-coated pits

    NARCIS (Netherlands)

    Klumperman, J.; Hille, A.; Geuze, H.J.; Peters, C.; Brodsky, F.M.; Figura, K. von

    1992-01-01

    The presence of lysosomal acid phosphatase (LAP) in coated pits at the plasma membrane was investigated by immunocytochemistry in thymidine kinase negative mouse L-cells (Ltk-) and baby hamster kidney (BHK) cells overexpressing human LAP (Ltk-LAP and BHK-LAP cells). Double immunogold labeling showed

  1. Recent advances in gene therapy for lysosomal storage disorders

    Directory of Open Access Journals (Sweden)

    Rastall DP

    2015-06-01

    Full Text Available David PW Rastall,1 Andrea Amalfitano1,2 1Department of Microbiology and Molecular Genetics, 2Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA Abstract: Lysosomal storage disorders (LSDs are a group of genetic diseases that result in metabolic derangements of the lysosome. Most LSDs are due to the genetic absence of a single catabolic enzyme, causing accumulation of the enzyme's substrate within the lysosome. Over time, tissue-specific substrate accumulations result in a spectrum of symptoms and disabilities that vary by LSD. LSDs are promising targets for gene therapy because delivery of a single gene into a small percentage of the appropriate target cells may be sufficient to impact the clinical course of the disease. Recently, there have been several significant advancements in the potential for gene therapy of these disorders, including the first human trials. Future clinical trials will build upon these initial attempts, with an improved understanding of immune system responses to gene therapy, the obstacle that the blood–brain barrier poses for neuropathic LSDs, as well other biological barriers that, when overcome, may facilitate gene therapy for LSDs. In this manuscript, we will highlight the recent innovations in gene therapy for LSDs and discuss the clinical limitations that remain to be overcome, with the goal of fostering an understanding and further development of this important field. Keywords: human trials, clinical trials, gene therapy, lysosomal storage disease, blood-brain barrier, adeno-associated virus, lentivirus, adenovirus 

  2. PIG7 promotes leukemia cell chemosensitivity via lysosomal membrane permeabilization.

    Science.gov (United States)

    Liu, Jiazhuo; Peng, Leiwen; Niu, Ting; Wu, Yu; Li, Jianjun; Wang, Fangfang; Zheng, Yuhuan; Liu, Ting

    2016-01-26

    PIG7 localizes to lysosomal membrane in leukemia cells. Our previous work has shown that transduction of pig7 into a series of leukemia cell lines did not result in either apoptosis or differentiation of most tested cell lines. Interestingly, it did significantly sensitize these cell lines to chemotherapeutic drugs. Here, we further investigated the mechanism underlying pig7-induced improved sensitivity of acute leukemia cells to chemotherapy. Our results demonstrated that the sensitization effect driven by exogenous pig7 was more effective in drug-resistant leukemia cell lines which had lower endogenous pig7 expression. Overexpression of pig7 did not directly activate the caspase apoptotic pathway, but decreased the lysosomal stability. The expression of pig7 resulted in lysosomal membrane permeabilization (LMP) and lysosomal protease (e.g. cathepsin B, D, L) release. Moreover, we also observed increased reactive oxygen species (ROS) and decreased mitochondrial membrane potential (ΔΨm) induced by pig7. Some autophagy markers such as LC3I/II, ATG5 and Beclin-1, and necroptosis maker MLKL were also stimulated. However, intrinsic antagonism such as serine/cysteine protease inhibitors Spi2A and Cystatin C prevented downstream effectors from triggering leukemia cells, which were only on the "verge of apoptosis". When combined with chemotherapy, LMP increased and more proteases were released. Once this process was beyond the limit of intrinsic antagonism, it induced programmed cell death cooperatively via caspase-independent and caspase-dependent pathways.

  3. The frequency of lysosomal storage diseases in The Netherlands

    NARCIS (Netherlands)

    Poorthuis, BJHM; Wevers, RA; Kleijer, WJ; Groener, JEM; de Jong, JGN; van Weely, S; Niezen-Koning, KE; van Diggelen, OP

    1999-01-01

    We have calculated the relative frequency and the birth prevalence of lysosomal storage diseases (LSDs) in The Netherlands based on all 963 enzymatically confirmed cases diagnosed during the period 1970-1996. The combined birth prevalence for all LSDs is 14 per 100,000 live births. Glycogenosis type

  4. Clinical, biochemical and genetic heterogeneity in lysosomal storage diseases

    NARCIS (Netherlands)

    A.J.J. Reuser (Arnold)

    1977-01-01

    textabstractThe history of lysosomal storage diseases dates back to the end of the last century when the first clinical reports appeared of patients suffering from these genetic, metabolic disorders (Tay, 1881; Gaucher, 1882; Sachs, 1887; Fabry, 1898). About seventy years wouid pass before the term

  5. The frequency of lysosomal storage diseases in The Netherlands

    NARCIS (Netherlands)

    Poorthuis, BJHM; Wevers, RA; Kleijer, WJ; Groener, JEM; de Jong, JGN; van Weely, S; Niezen-Koning, KE; van Diggelen, OP

    1999-01-01

    We have calculated the relative frequency and the birth prevalence of lysosomal storage diseases (LSDs) in The Netherlands based on all 963 enzymatically confirmed cases diagnosed during the period 1970-1996. The combined birth prevalence for all LSDs is 14 per 100,000 live births. Glycogenosis type

  6. Release and uptake of lysosomal enzymes : studied in cultured cells

    NARCIS (Netherlands)

    D.J.J. Halley (Dicky)

    1980-01-01

    textabstractThe purpose of the experimental work described in this thesiswas to investigate some aspects of the release and uptake of lysosomal enzymes. The experiments involved the use of normal human and animal fibroblasts and some other cell types such as hepatocytes and hepatoma cells as sources

  7. Glycolipid-dependent sorting of melanosomal from lysosomal membrane proteins by lumenal determinants

    NARCIS (Netherlands)

    Groux-Degroote, S.; Dijk, S.M. van; Wolthoorn, J.; Neumann, S.; Theos, A.C.; Mazière, A.M. de; Klumperman, J.; Meer, G. van; Sprong, H.

    2008-01-01

    Melanosomes are lysosome-related organelles that coexist with lysosomes in mammalian pigment cells. Melanosomal and lysosomal membrane proteins share similar sorting signals in their cytoplasmic tail, raising the question how they are segregated. We show that in control melanocytes, the melanosomal

  8. Glycolipid-dependent sorting of melanosomal from lysosomal membrane proteins by lumenal determinants

    NARCIS (Netherlands)

    Groux-Degroote, S.; Dijk, S.M. van; Wolthoorn, J.; Neumann, S.; Theos, A.C.; Mazière, A.M. de; Klumperman, J.; Meer, G. van; Sprong, H.

    2008-01-01

    Melanosomes are lysosome-related organelles that coexist with lysosomes in mammalian pigment cells. Melanosomal and lysosomal membrane proteins share similar sorting signals in their cytoplasmic tail, raising the question how they are segregated. We show that in control melanocytes, the melanosomal

  9. Fusion of lysosomes with secretory organelles leads to uncontrolled exocytosis in the lysosomal storage disease mucolipidosis type IV.

    Science.gov (United States)

    Park, Soonhong; Ahuja, Malini; Kim, Min Seuk; Brailoiu, G Cristina; Jha, Archana; Zeng, Mei; Baydyuk, Maryna; Wu, Ling-Gang; Wassif, Christopher A; Porter, Forbes D; Zerfas, Patricia M; Eckhaus, Michael A; Brailoiu, Eugen; Shin, Dong Min; Muallem, Shmuel

    2016-02-01

    Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells' functions that mediate regulated exocytosis. Here, we analyzed several forms of regulated exocytosis in a mouse model of MLIV and, opposite to expectations, we found enhanced exocytosis in secretory glands due to enlargement of secretory granules in part due to fusion with lysosomes. Preliminary exploration of synaptic vesicle size, spontaneous mEPSCs, and glutamate secretion in neurons provided further evidence for enhanced exocytosis that was rescued by re-expression of TRPML1 in neurons. These features were not observed in Niemann-Pick type C1. These findings suggest that TRPML1 may guard against pathological fusion of lysosomes with secretory organelles and suggest a new approach toward developing treatment for MLIV.

  10. Lysosomal membrane stability plays a major role in the cytotoxic activity of the anti-proliferative agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT).

    Science.gov (United States)

    Gutierrez, Elaine M; Seebacher, Nicole A; Arzuman, Laila; Kovacevic, Zaklina; Lane, Darius J R; Richardson, Vera; Merlot, Angelica M; Lok, Hiu; Kalinowski, Danuta S; Sahni, Sumit; Jansson, Patric J; Richardson, Des R

    2016-07-01

    The potent and selective anti-tumor agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), localizes in lysosomes and forms cytotoxic copper complexes that generate reactive oxygen species (ROS), resulting in lysosomal membrane permeabilization (LMP) and cell death. Herein, the role of lysosomal membrane stability in the anti-tumor activity of Dp44mT was investigated. Studies were performed using molecules that protect lysosomal membranes against Dp44mT-induced LMP, namely heat shock protein 70 (HSP70) and cholesterol. Up-regulation or silencing of HSP70 expression did not affect Dp44mT-induced LMP in MCF7 cells. In contrast, cholesterol accumulation in lysosomes induced by the well characterized cholesterol transport inhibitor, 3-β-[2-(diethyl-amino)ethoxy]androst-5-en-17-one (U18666A), inhibited Dp44mT-induced LMP and markedly and significantly (peffect of U18666A in increasing lysosomal cholesterol and preventing the cytotoxic activity of Dp44mT was not due to induced autophagy. Instead, U18666A was found to decrease lysosomal turnover, resulting in autophagosome accumulation. Moreover, preincubation with U18666A did not prevent the ability of Dp44mT to induce autophagosome synthesis, indicating that autophagic initiation via Dp44mT occurs independently of LMP. These studies demonstrate the significance of lysosomal membrane stability in relation to the ability of Dp44mT to execute tumor cell death and overcome pro-survival autophagy. Hence, lysosomal-dependent cell death induced by Dp44mT serves as an important anti-tumor strategy. These results are important for comprehensively understanding the mechanism of action of Dp44mT.

  11. Acute effects of the sigma-2 receptor agonist siramesine on lysosomal and extra-lysosomal proteolytic systems in lens epithelial cells

    OpenAIRE

    Jonhede, S.; Petersen, A; Zetterberg, M.; Karlsson, J-O

    2010-01-01

    Purpose The aim of the present study was to examine the effects of the sigma-2 receptor agonist, siramesine, on morphology, growth, cell death, lysosomal function, and effects on extra-lysosomal proteolytic systems in human lens epithelial cells. Methods Human lens epithelial cells in culture were exposed to siramesine and examined for morphological changes using Nomarski optics or calcein. Lysosomes were evaluated using acridine orange and Magic Red (RR-cresyl violet). Nuclear morphology was...

  12. A NEW CELL CLONE DERIVED FROM TRICHOPLUSIA NI TN5B1-4 CELLS

    Institute of Scientific and Technical Information of China (English)

    Jian-xiaoTian; Chang-youLi; Gui-lingZheng; Guo-xunLi; PingWang; Granados

    2004-01-01

    The characteristics of a cultured cell line do not always remain stable and may change upon continuous passage. Most continuous cell lines, even after cloning, possess several genotypes that are constantly changing. There are numerous selective and adaptive culture processes, in addition to genetic instability, that may improve phenotypic change in cell growth, virus susceptibility, gene expression, and production of virus. Similar detrimental effects of long term passaging of insect cells have also been reported for continuous cell lines, for example, Tn5B 1-4 cells, which are the most widely used for the baculovirus expression vector system (BEVS), provide superior production of recombinant proteins,however, this high productivity may be more evident in low passage cells. In this paper, we describe the isolation of a cell clone, Tn5B-40, from low passage Tn5B 1-4 cells. The growth characteristics,productions of virus, and high level of recombinant protein productions were determined. The results showed the susceptibility of both clone and Tn5B 1-4 cells to wild-type AcNPV was approximately the same rate with over 95% of infection; when the cloned cells were infected with recombinant baculoviruses expressing β-galactosidase and secreted alkaline phosphatase (SEAP), expression of the recombinant proteins from the cloned cells exceeded that from the parental Tn5B 1-4 cells.

  13. The use of dried blood spot samples in the diagnosis of lysosomal storage disorders--current status and perspectives.

    Science.gov (United States)

    Reuser, Arnold J; Verheijen, Frans W; Bali, Deeksha; van Diggelen, Otto P; Germain, Dominique P; Hwu, Wuh-Liang; Lukacs, Zoltan; Mühl, Adolf; Olivova, Petra; Piraud, Monique; Wuyts, Birgit; Zhang, Kate; Keutzer, Joan

    2011-01-01

    Dried blood spot (DBS) methods are currently available for identification of a range of lysosomal storage disorders (LSDs). These disorders are generally characterized by a deficiency of activity of a lysosomal enzyme and by a broad spectrum of phenotypes. Diagnosis of LSD patients is often delayed, which is of particular concern as therapeutic outcomes (e.g. enzyme replacement therapy) are generally more favorable in early disease stages. Experts in the field of LSDs diagnostics and screening programs convened and reviewed experiences with the use of DBS methods, and discuss the diagnostic challenges, possible applications and quality programs in this paper. Given the easy sampling and shipping and stability of samples, DBS has evident advantages over other laboratory methods and can be particularly helpful in the early identification of affected LSD patients through neonatal screening, high-risk population screening or family screening.

  14. Autophagic flux promotes cisplatin resistance in human ovarian carcinoma cells through ATP-mediated lysosomal function.

    Science.gov (United States)

    Ma, Liwei; Xu, Ye; Su, Jing; Yu, Huimei; Kang, Jinsong; Li, Hongyan; Li, Xiaoning; Xie, Qi; Yu, Chunyan; Sun, Liankun; Li, Yang

    2015-11-01

    Lysosomes are involved in promoting resistance of cancer cells to chemotherapeutic agents. However, the mechanisms underlying lysosomal influence of cisplatin resistance in ovarian cancer remain incompletely understood. We report that, compared with cisplatin-sensitive SKOV3 cells, autophagy increases in cisplatin-resistant SKOV3/DDP cells treated with cisplatin. Inhibition of early-stage autophagy enhanced cisplatin-mediated cytotoxicity in SKOV3/DDP cells, but autophagy inhibition at a later stage by disturbing autophagosome-lysosome fusion is more effective. Notably, SKOV3/DDP cells contained more lysosomes than cisplatin-sensitive SKOV3 cells. Abundant lysosomes and lysosomal cathepsin D activity were required for continued autolysosomal degradation and maintenance of autophagic flux in SKOV3/DDP cells. Furthermore, SKOV3/DDP cells contain abundant lysosomal ATP required for lysosomal function, and inhibition of lysosomal ATP accumulation impaired lysosomal function and blocked autophagic flux. Therefore, our findings suggest that lysosomes at least partially contribute to cisplatin resistance in ovarian cancer cells through their role in cisplatin-induced autophagic processes, and provide insight into the mechanism of cisplatin resistance in tumors.

  15. The Role of Oxidized Cholesterol in Diabetes-Induced Lysosomal Dysfunction in the Brain.

    Science.gov (United States)

    Sims-Robinson, Catrina; Bakeman, Anna; Rosko, Andrew; Glasser, Rebecca; Feldman, Eva L

    2016-05-01

    Abnormalities in lysosomal function have been reported in diabetes, aging, and age-related degenerative diseases. These lysosomal abnormalities are an early manifestation of neurodegenerative diseases and often precede the onset of clinical symptoms such as learning and memory deficits; however, the mechanism underlying lysosomal dysfunction is not known. In the current study, we investigated the mechanism underlying lysosomal dysfunction in the cortex and hippocampi, key structures involved in learning and memory, of a type 2 diabetes (T2D) mouse model, the leptin receptor deficient db/db mouse. We demonstrate for the first time that diabetes leads to destabilization of lysosomes as well as alterations in the protein expression, activity, and/or trafficking of two lysosomal enzymes, hexosaminidase A and cathepsin D, in the hippocampus of db/db mice. Pioglitazone, a thiazolidinedione (TZD) commonly used in the treatment of diabetes due to its ability to improve insulin sensitivity and reverse hyperglycemia, was ineffective in reversing the diabetes-induced changes on lysosomal enzymes. Our previous work revealed that pioglitazone does not reverse hypercholesterolemia; thus, we investigated whether cholesterol plays a role in diabetes-induced lysosomal changes. In vitro, cholesterol promoted the destabilization of lysosomes, suggesting that lysosomal-related changes associated with diabetes are due to elevated levels of cholesterol. Since lysosome dysfunction precedes neurodegeneration, cognitive deficits, and Alzheimer's disease neuropathology, our results may provide a potential mechanism that links diabetes with complications of the central nervous system.

  16. Conceptual design of the 7 megawatt MOD-5B wind turbine generator

    Science.gov (United States)

    Douglas, R. R.

    Similar to MOD-2, the MOD-5B wind turbine generator system is designed for the sole purpose of providing electrical power for distribution by a major utility network. The cost of electricity (COE) target is reduced from 4c/Kwhr on MOD-2 to 3c/Kwhr on MOD-5B. The MOD-5B concept studies and eventual concept studies and eventual concept selection confirmed that the program COE targets could not only be achieved but substantially bettered. Starting from the established MOD-2 technology as a base, this achievement resulted from a combination of concept changes, size changes, and design refinements. The result of this effort is a wind turbine system that can compete with conventional power generation over significant geographical areas, increasing commercial market potential by an order of magnitude.

  17. Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Bin [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Hu, Zhiqiang, E-mail: zhiqhutg@126.com [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Huang, Hui; Zhu, Guangtong; Xiao, Zhiyong [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Wan, Weiqing; Zhang, Peng; Jia, Wang; Zhang, Liwei [Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050 (China)

    2014-11-07

    Highlights: • KDM5B is overexpressed in glioma samples. • KDM5B stimulated proliferation of glioma cells. • Inhibition of p21contributes to KDM5B-induced proliferation. - Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues. Kaplan–Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management.

  18. The Chromosomal Passenger Protein Birc5b Organizes Microfilaments and Germ Plasm in the Zebrafish Embryo

    Science.gov (United States)

    Nair, Sreelaja; Marlow, Florence; Abrams, Elliott; Kapp, Lee; Mullins, Mary C.; Pelegri, Francisco

    2013-01-01

    Microtubule-microfilament interactions are important for cytokinesis and subcellular localization of proteins and mRNAs. In the early zebrafish embryo, astral microtubule-microfilament interactions also facilitate a stereotypic segregation pattern of germ plasm ribonucleoparticles (GP RNPs), which is critical for their eventual selective inheritance by germ cells. The precise mechanisms and molecular mediators for both cytoskeletal interactions and GP RNPs segregation are the focus of intense research. Here, we report the molecular identification of a zebrafish maternal-effect mutation motley as Birc5b, a homolog of the mammalian Chromosomal Passenger Complex (CPC) component Survivin. The meiosis and mitosis defects in motley/birc5b mutant embryos are consistent with failed CPC function, and additional defects in astral microtubule remodeling contribute to failures in the initiation of cytokinesis furrow ingression. Unexpectedly, the motley/birc5b mutation also disrupts cortical microfilaments and GP RNP aggregation during early cell divisions. Birc5b localizes to the tips of astral microtubules along with polymerizing cortical F-actin and the GP RNPs. Mutant Birc5b co-localizes with cortical F-actin and GP RNPs, but fails to associate with astral microtubule tips, leading to disorganized microfilaments and GP RNP aggregation defects. Thus, maternal Birc5b localizes to astral microtubule tips and associates with cortical F-actin and GP RNPs, potentially linking the two cytoskeletons to mediate microtubule-microfilament reorganization and GP RNP aggregation during early embryonic cell cycles in zebrafish. In addition to the known mitotic function of CPC components, our analyses reveal a non-canonical role for an evolutionarily conserved CPC protein in microfilament reorganization and germ plasm aggregation. PMID:23637620

  19. The chromosomal passenger protein birc5b organizes microfilaments and germ plasm in the zebrafish embryo.

    Directory of Open Access Journals (Sweden)

    Sreelaja Nair

    2013-04-01

    Full Text Available Microtubule-microfilament interactions are important for cytokinesis and subcellular localization of proteins and mRNAs. In the early zebrafish embryo, astral microtubule-microfilament interactions also facilitate a stereotypic segregation pattern of germ plasm ribonucleoparticles (GP RNPs, which is critical for their eventual selective inheritance by germ cells. The precise mechanisms and molecular mediators for both cytoskeletal interactions and GP RNPs segregation are the focus of intense research. Here, we report the molecular identification of a zebrafish maternal-effect mutation motley as Birc5b, a homolog of the mammalian Chromosomal Passenger Complex (CPC component Survivin. The meiosis and mitosis defects in motley/birc5b mutant embryos are consistent with failed CPC function, and additional defects in astral microtubule remodeling contribute to failures in the initiation of cytokinesis furrow ingression. Unexpectedly, the motley/birc5b mutation also disrupts cortical microfilaments and GP RNP aggregation during early cell divisions. Birc5b localizes to the tips of astral microtubules along with polymerizing cortical F-actin and the GP RNPs. Mutant Birc5b co-localizes with cortical F-actin and GP RNPs, but fails to associate with astral microtubule tips, leading to disorganized microfilaments and GP RNP aggregation defects. Thus, maternal Birc5b localizes to astral microtubule tips and associates with cortical F-actin and GP RNPs, potentially linking the two cytoskeletons to mediate microtubule-microfilament reorganization and GP RNP aggregation during early embryonic cell cycles in zebrafish. In addition to the known mitotic function of CPC components, our analyses reveal a non-canonical role for an evolutionarily conserved CPC protein in microfilament reorganization and germ plasm aggregation.

  20. An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer's disease.

    Science.gov (United States)

    Kizuka, Yasuhiko; Kitazume, Shinobu; Fujinawa, Reiko; Saito, Takashi; Iwata, Nobuhisa; Saido, Takaomi C; Nakano, Miyako; Yamaguchi, Yoshiki; Hashimoto, Yasuhiro; Staufenbiel, Matthias; Hatsuta, Hiroyuki; Murayama, Shigeo; Manya, Hiroshi; Endo, Tamao; Taniguchi, Naoyuki

    2015-02-01

    The β-site amyloid precursor protein cleaving enzyme-1 (BACE1), an essential protease for the generation of amyloid-β (Aβ) peptide, is a major drug target for Alzheimer's disease (AD). However, there is a concern that inhibiting BACE1 could also affect several physiological functions. Here, we show that BACE1 is modified with bisecting N-acetylglucosamine (GlcNAc), a sugar modification highly expressed in brain, and demonstrate that AD patients have higher levels of bisecting GlcNAc on BACE1. Analysis of knockout mice lacking the biosynthetic enzyme for bisecting GlcNAc, GnT-III (Mgat3), revealed that cleavage of Aβ-precursor protein (APP) by BACE1 is reduced in these mice, resulting in a decrease in Aβ plaques and improved cognitive function. The lack of this modification directs BACE1 to late endosomes/lysosomes where it is less colocalized with APP, leading to accelerated lysosomal degradation. Notably, other BACE1 substrates, CHL1 and contactin-2, are normally cleaved in GnT-III-deficient mice, suggesting that the effect of bisecting GlcNAc on BACE1 is selective to APP. Considering that GnT-III-deficient mice remain healthy, GnT-III may be a novel and promising drug target for AD therapeutics.

  1. Fragment-based discovery of hepatitis C virus NS5b RNA polymerase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Antonysamy, Stephen S.; Aubol, Brandon; Blaney, Jeff; Browner, Michelle F.; Giannetti, Anthony M.; Harris, Seth F.; Hébert, Normand; Hendle, Jörg; Hopkins, Stephanie; Jefferson, Elizabeth; Kissinger, Charles; Leveque, Vincent; Marciano, David; McGee, Ethel; Nájera, Isabel; Nolan, Brian; Tomimoto, Masaki; Torres, Eduardo; Wright, Tobi (SGX); (Roche)

    2009-07-22

    Non-nucleoside inhibitors of HCV NS5b RNA polymerase were discovered by a fragment-based lead discovery approach, beginning with crystallographic fragment screening. The NS5b binding affinity and biochemical activity of fragment hits and inhibitors was determined by surface plasmon resonance (Biacore) and an enzyme inhibition assay, respectively. Crystallographic fragment screening hits with {approx}1-10 mM binding affinity (K{sub D}) were iteratively optimized to give leads with {approx}200 nM biochemical activity and low {micro}M cellular activity in a Replicon assay.

  2. Toksisitas Bacillus sphaericus H-5a5b (VCRC B42) terhadap larva Culex quiquefascitus

    OpenAIRE

    Salamun Salamun; Rosmaida Rosmaida; Ni'matuzzahroh Ni'matuzzahroh; R.A Samsumaharto

    1996-01-01

    Bacillus sphaericus H-5a5b is an entomoathogenic agent which showing high potency for vector control, highly specific to insect target, and do not produce any adverse environmental impact. Such agent would be promising for vector control in Indonesia. The present studies is aimed to observing the toxicity status of Bacillus sphaericus H-5a5b (VCRC B42) against Culex quiquefascitus larvae. The larvae of Culex quiquefascitus were reared under the laboratory conditions. The powder of VCRC B42 we...

  3. Myelin lesions associated with lysosomal and peroxisomal disorders.

    Science.gov (United States)

    Faust, Phyllis L; Kaye, Edward M; Powers, James M

    2010-09-01

    Abnormalities of myelin are common in lysosomal and peroxisomal disorders. Most display a primary loss of myelin in which the myelin sheath and/or oligodendrocytes are selectively targeted by diverse pathogenetic processes. The most severe and, hence, clinically relevant are heritable diseases predominantly of infants and children, the leukodystrophies: metachromatic, globoid cell (Krabbe disease) and adreno-leukodystrophy. Our still limited understanding of these diseases has derived from multiple sources: originally, neurological-neuropathologic-neurochemical correlative studies of the natural disease in humans or other mammals, which has been enhanced by more sophisticated and contemporary techniques of cell and molecular biology. Transgenic mouse models seem to be the most promising methodology, allowing the examination of the cellular role of lysosomes and peroxisomes for formation and maintenance of both myelin and axons, and providing initial platforms to evaluate therapies. Treatment options are woefully inadequate and in their nascent stages, but still inspire some hope for the future.

  4. Induced pluripotent stem cell models of lysosomal storage disorders

    Directory of Open Access Journals (Sweden)

    Daniel K. Borger

    2017-06-01

    Full Text Available Induced pluripotent stem cells (iPSCs have provided new opportunities to explore the cell biology and pathophysiology of human diseases, and the lysosomal storage disorder research community has been quick to adopt this technology. Patient-derived iPSC models have been generated for a number of lysosomal storage disorders, including Gaucher disease, Pompe disease, Fabry disease, metachromatic leukodystrophy, the neuronal ceroid lipofuscinoses, Niemann-Pick types A and C1, and several of the mucopolysaccharidoses. Here, we review the strategies employed for reprogramming and differentiation, as well as insights into disease etiology gleaned from the currently available models. Examples are provided to illustrate how iPSC-derived models can be employed to develop new therapeutic strategies for these disorders. We also discuss how models of these rare diseases could contribute to an enhanced understanding of more common neurodegenerative disorders such as Parkinson’s disease, and discuss key challenges and opportunities in this area of research.

  5. Immune response hinders therapy for lysosomal storage diseases.

    Science.gov (United States)

    Ponder, Katherine P

    2008-08-01

    Enzyme replacement therapy (ERT) for the lysosomal storage disease mucopolysaccharidosis I (MPS I) involves i.v. injection of alpha-l-iduronidase, which can be taken up by cells throughout the body. While a significant immune response to ERT has been shown in patients with MPS I, little is known about what effect anti-enzyme antibodies have on treatment efficacy. In this issue of the JCI, Dickson et al. demonstrate that anti-enzyme antibodies inhibit enzyme uptake and substantially limit the therapeutic efficacy of ERT in canines with MPS I (see the related article beginning on page 2868). Furthermore, the induction of immune tolerance--via oral delivery of cyclosporine A and azathioprine for two months at the time of initiation of ERT with recombinant human alpha-L-iduronidase--improved enzyme uptake in organs. Therefore, transient immunosuppression may enhance ERT for lysosomal storage diseases.

  6. Targeting Androgen Receptor by Lysosomal Degradation in Prostate Cancer

    Science.gov (United States)

    2014-09-01

    were done as described.13 Protein Sample Preparation and Mass Spectrometry Tandem Affinity Purification of FLAG-His-EWS-Fli-1- Interacting Proteins . Forty...incubated with Ni-NTA agarose (Qiagen), FLAG-His-EWS-Fli-1 and its interacting proteins were collected by centrifugation, washed three times with TN buffer...the lysosome fraction was loaded at 100x compared to the input. ■ RESULTS AND DISCUSSION Proteomic Analysis of the EWS-Fli-1- Interacting Proteins To

  7. Methyl-CpG binding protein 2 (Mecp2 Regulates Sensory Function through Sema5b and Robo2

    Directory of Open Access Journals (Sweden)

    Wan Ying eLeong

    2015-12-01

    Full Text Available Mutations in the gene encoding the MECP2 underlies Rett syndrome, a neurodevelopmental disorder in young females. Although reduced pain sensitivity in Rett syndrome patients and in partial MeCP2 deficient mice had been reported, these previous studies focused predominantly on motor impairments. Therefore, it is still unknown how MeCP2 is involved in these sensory defects. In addition, the human disease manifestations where males with mutations in MECP2 gene normally do not survive and females show typical neurological symptoms only after 18 months of age, is profoundly different in MeCP2-deficient mouse where all animals survived, and males but not females displayed Rett syndrome phenotypes at an early age. Thus, the mecp2-deficient zebrafish serves as an additional animal model to aid in deciphering the role and mechanisms of Mecp2 in neurodevelopment. Here, we used 2 independent methods of silencing expression of Mecp2 in zebrafish to uncover a novel role of Mecp2 in trigeminal ganglion sensory neurons during the embryonic development. mecp2-null mutation and morpholino-mediated silencing of Mecp2 in the zebrafish embryos resulted in defects in peripheral innervation of trigeminal sensory neurons and consequently affecting the sensory function. These defects were demonstrated to be dependent on the expression of Sema5b and Robo2. The expression of both proteins together could better overcome the defects caused by Mecp2 deficiency as compared to the expression of either Sema5b or Robo2 alone. Sema5b and Robo2 were downregulated upon Mecp2 silencing or in mecp2-null embryos, and Chromatin immunoprecipitation (ChIP assay using antibody against Mecp2 was able to pull down specific regions of both Sema5b and Robo2 promoters, showing interaction between Mecp2 and the promoters of both genes. In addition, cell-specific expression of Mecp2 can overcome the innervation and sensory response defects in Mecp2 morphants indicating that these MeCP2-mediated

  8. Vamp-7 Mediates Vesicular Transport from Endosomes to Lysosomes

    Science.gov (United States)

    Advani, Raj J.; Yang, Bin; Prekeris, Rytis; Lee, Kelly C.; Klumperman, Judith; Scheller, Richard H.

    1999-01-01

    A more complete picture of the molecules that are critical for the organization of membrane compartments is beginning to emerge through the characterization of proteins in the vesicle-associated membrane protein (also called synaptobrevin) family of membrane trafficking proteins. To better understand the mechanisms of membrane trafficking within the endocytic pathway, we generated a series of monoclonal and polyclonal antibodies against the cytoplasmic domain of vesicle-associated membrane protein 7 (VAMP-7). The antibodies recognize a 25-kD membrane-associated protein in multiple tissues and cell lines. Immunohistochemical analysis reveals colocalization with a marker of late endosomes and lysosomes, lysosome-associated membrane protein 1 (LAMP-1), but not with other membrane markers, including p115 and transferrin receptor. Treatment with nocodozole or brefeldin A does not disrupt the colocalization of VAMP-7 and LAMP-1. Immunoelectron microscopy analysis shows that VAMP-7 is most concentrated in the trans-Golgi network region of the cell as well as late endosomes and transport vesicles that do not contain the mannose-6 phosphate receptor. In streptolysin- O–permeabilized cells, antibodies against VAMP-7 inhibit the breakdown of epidermal growth factor but not the recycling of transferrin. These data are consistent with a role for VAMP-7 in the vesicular transport of proteins from the early endosome to the lysosome. PMID:10459012

  9. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification.

    Science.gov (United States)

    Li, Dan L; Wang, Zhao V; Ding, Guanqiao; Tan, Wei; Luo, Xiang; Criollo, Alfredo; Xie, Min; Jiang, Nan; May, Herman; Kyrychenko, Viktoriia; Schneider, Jay W; Gillette, Thomas G; Hill, Joseph A

    2016-04-26

    The clinical use of doxorubicin is limited by cardiotoxicity. Histopathological changes include interstitial myocardial fibrosis and the appearance of vacuolated cardiomyocytes. Whereas dysregulation of autophagy in the myocardium has been implicated in a variety of cardiovascular diseases, the role of autophagy in doxorubicin cardiomyopathy remains poorly defined. Most models of doxorubicin cardiotoxicity involve intraperitoneal injection of high-dose drug, which elicits lethargy, anorexia, weight loss, and peritoneal fibrosis, all of which confound the interpretation of autophagy. Given this, we first established a model that provokes modest and progressive cardiotoxicity without constitutional symptoms, reminiscent of the effects seen in patients. We report that doxorubicin blocks cardiomyocyte autophagic flux in vivo and in cardiomyocytes in culture. This block was accompanied by robust accumulation of undegraded autolysosomes. We go on to localize the site of block as a defect in lysosome acidification. To test the functional relevance of doxorubicin-triggered autolysosome accumulation, we studied animals with diminished autophagic activity resulting from haploinsufficiency for Beclin 1. Beclin 1(+/-) mice exposed to doxorubicin were protected in terms of structural and functional changes within the myocardium. Conversely, animals overexpressing Beclin 1 manifested an amplified cardiotoxic response. Doxorubicin blocks autophagic flux in cardiomyocytes by impairing lysosome acidification and lysosomal function. Reducing autophagy initiation protects against doxorubicin cardiotoxicity. © 2016 American Heart Association, Inc.

  10. Discriminating lysosomal membrane protein types using dynamic neural network.

    Science.gov (United States)

    Tripathi, Vijay; Gupta, Dwijendra Kumar

    2014-01-01

    This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition.

  11. Recent advances in gene therapy for lysosomal storage disorders.

    Science.gov (United States)

    Rastall, David Pw; Amalfitano, Andrea

    2015-01-01

    Lysosomal storage disorders (LSDs) are a group of genetic diseases that result in metabolic derangements of the lysosome. Most LSDs are due to the genetic absence of a single catabolic enzyme, causing accumulation of the enzyme's substrate within the lysosome. Over time, tissue-specific substrate accumulations result in a spectrum of symptoms and disabilities that vary by LSD. LSDs are promising targets for gene therapy because delivery of a single gene into a small percentage of the appropriate target cells may be sufficient to impact the clinical course of the disease. Recently, there have been several significant advancements in the potential for gene therapy of these disorders, including the first human trials. Future clinical trials will build upon these initial attempts, with an improved understanding of immune system responses to gene therapy, the obstacle that the blood-brain barrier poses for neuropathic LSDs, as well other biological barriers that, when overcome, may facilitate gene therapy for LSDs. In this manuscript, we will highlight the recent innovations in gene therapy for LSDs and discuss the clinical limitations that remain to be overcome, with the goal of fostering an understanding and further development of this important field.

  12. Structure and binding properties of a cameloid nanobody raised against KDM5B

    DEFF Research Database (Denmark)

    Wiuf, Anders; Kristensen, Line Hyltoft; Kristensen, Ole

    2015-01-01

    The histone demethylase KDM5B is considered to be a promising target for anticancer therapy. Single-chain antibodies from llama (nanobodies) have been raised to aid in crystallization and structure determination of this enzyme. The antigen-binding properties of 15 of these nanobodies have been...

  13. Data of evolutionary structure change: 1TT5B-3DBHB [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1TT5B-3DBHB 1TT5 3DBH B B MKLDWEGRWNHVKKFLERSGPFTHPDFEPSTESLQFLLD...CA 209 VAL CA 310 LEU CA 304 3DBH B 3DBHB QNIQF...>LEU CA 232 TYR CA 258 LEU CA 237 3DBH... B 3DBHB ITATLEGKNRTLYL <

  14. The effect of physical exercise on salivary secretion of MUC5B, amylase and lysozyme

    NARCIS (Netherlands)

    Ligtenberg, A.J.M.; Brand, H.S.; van den Keijbus, P.A.M.; Veerman, E.C.I.

    2015-01-01

    Objectives Saliva secretion is regulated by the autonomic nervous system. Parasympathic stimuli increase the secretion of water and mucin MUC5B, whereas sympathetic stimuli such as physical exercise increase the secretion of amylase and other proteins. In the present study we investigated the effect

  15. 45 CFR 5b.7 - Procedures for correction or amendment of records.

    Science.gov (United States)

    2010-10-01

    ... corrected or amended, the subject individual will be informed in writing of the refusal to correct or amend... 45 Public Welfare 1 2010-10-01 2010-10-01 false Procedures for correction or amendment of records... PRIVACY ACT REGULATIONS § 5b.7 Procedures for correction or amendment of records. (a) Any...

  16. Data of evolutionary structure change: 1AO5B-1ELCA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1AO5B-1ELCA 1AO5 1ELC B A VVGGFNCEKNSQPWQVAVYYQ----KEHICGGVLLDRNW...TPTWQKPDDLQCVFITLLPNENCAKV--YLQKVTDVMLCAGEMGGGKDTCRDDSGGPLICD----GILQGTTSYGPV-PCGKPGVPAIYTNLIKFNSWIKDTMMKNA TRP CA 491 1ELC A 1ELCA...hain> 1ELC A 1ELCA PLHCLVNGQYAVHG... PRO CA 225 1ELC A 1ELCA

  17. Phospholipase C-related catalytically inactive protein (PRIP controls KIF5B-mediated insulin secretion

    Directory of Open Access Journals (Sweden)

    Satoshi Asano

    2014-05-01

    Full Text Available We previously reported that phospholipase C-related catalytically inactive protein (PRIP-knockout mice exhibited hyperinsulinemia. Here, we investigated the role of PRIP in insulin granule exocytosis using Prip-knockdown mouse insulinoma (MIN6 cells. Insulin release from Prip-knockdown MIN6 cells was higher than that from control cells, and Prip knockdown facilitated movement of GFP-phogrin-labeled insulin secretory vesicles. Double-immunofluorescent staining and density step-gradient analyses showed that the KIF5B motor protein co-localized with insulin vesicles in Prip-knockdown MIN6 cells. Knockdown of GABAA-receptor-associated protein (GABARAP, a microtubule-associated PRIP-binding partner, by Gabarap silencing in MIN6 cells reduced the co-localization of insulin vesicles with KIF5B and the movement of vesicles, resulting in decreased insulin secretion. However, the co-localization of KIF5B with microtubules was not altered in Prip- and Gabarap-knockdown cells. The presence of unbound GABARAP, freed either by an interference peptide or by Prip silencing, in MIN6 cells enhanced the co-localization of insulin vesicles with microtubules and promoted vesicle mobility. Taken together, these data demonstrate that PRIP and GABARAP function in a complex to regulate KIF5B-mediated insulin secretion, providing new insights into insulin exocytic mechanisms.

  18. Pseudomonas fluorescens Tn5-B20 mutant RA92 responds to carbon limitation in soil

    NARCIS (Netherlands)

    Overbeek, van L.S.; Elsas, van J.D.; Veen, van J.A.

    1997-01-01

    Tn5-B20 (lacZ as reporter gene) transcriptional fusion mutants of Pseudomonas fluorescens R2f Rpr were screened for their response to carbon limitation. Reporter gene expression was specifically induced by this stress factor in one mutant, designated RA92, and to a lower extent by phosphorus and nit

  19. HATS-5b: A Transiting hot-Saturn from the HATSouth Survey

    CERN Document Server

    Zhou, G; Penev, K; Bakos, G Á; Hartman, J D; Jordán, A; Mancini, L; Mohler, M; Csubry, Z; Ciceri, S; Brahm, R; Rabus, M; Buchhave, L; Henning, T; Suc, V; Espinoza, N; Béky, B; Noyes, R W; Schmidt, B; Butler, R P; Shectman, S; Thompson, I; Crane, J; Sato, B; Csák, B; Lázár, J; Papp, I; Sári, P; Nikolov, N

    2014-01-01

    We report the discovery of HATS-5b, a transiting hot-Saturn orbiting a G type star, by the HAT-South survey. HATS-5b has a mass of Mp=0.24 Mj, radius of Rp=0.91 Rj, and transits its host star with a period of P=4.7634d. The radius of HATS-5b is consistent with both theoretical and empirical models. The host star has a V band magnitude of 12.6, mass of 0.94 Msun, and radius of 0.87 Rsun. The relatively high scale height of HATS-5b, and the bright, photometrically quiet host star, make this planet a favourable target for future transmission spectroscopy follow-up observations. We reexamine the correlations in radius, equilibrium temperature, and metallicity of the close-in gas-giants, and find hot Jupiter-mass planets to exhibit the strongest dependence between radius and equilibrium temperature. We find no significant dependence in radius and metallicity for the close-in gas-giant population.

  20. HATS-5b: A TRANSITING HOT SATURN FROM THE HATSouth SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, G.; Bayliss, D.; Schmidt, B. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Penev, K.; Bakos, G. Á.; Hartman, J. D.; Csubry, Z. [Department of Astrophysical Sciences, Princeton University, NJ 08544 (United States); Jordán, A.; Brahm, R.; Rabus, M.; Suc, V.; Espinoza, N. [Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago (Chile); Mancini, L.; Mohler, M.; Ciceri, S.; Henning, T. [Max Planck Institute for Astronomy, Heidelberg (Germany); Buchhave, L. [Niels Bohr Institute, Copenhagen University (Denmark); Béky, B.; Noyes, R. W. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Butler, R. P., E-mail: george.zhou@anu.edu.au [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015-1305 (United States); and others

    2014-06-01

    We report the discovery of HATS-5b, a transiting hot Saturn orbiting a G-type star, by the HATSouth survey. HATS-5b has a mass of M{sub p} ≈ 0.24 M {sub J}, radius of R{sub p} ≈ 0.91 R {sub J}, and transits its host star with a period of P ≈ 4.7634 days. The radius of HATS-5b is consistent with both theoretical and empirical models. The host star has a V-band magnitude of 12.6, mass of 0.94 M {sub ☉}, and radius of 0.87 R {sub ☉}. The relatively high scale height of HATS-5b and the bright, photometrically quiet host star make this planet a favorable target for future transmission spectroscopy follow-up observations. We reexamine the correlations in radius, equilibrium temperature, and metallicity of the close-in gas giants and find hot Jupiter-mass planets to exhibit the strongest dependence between radius and equilibrium temperature. We find no significant dependence in radius and metallicity for the close-in gas giant population.

  1. LOFT CIS analysis 2''-IA-299-AB inside containment penetration S-5B

    Energy Technology Data Exchange (ETDEWEB)

    Morton, D.K.

    1978-09-12

    A stress analysis was performed on the 2''-IA-299-AB pipe system inside containment penetration S-5B. Deadweight, thermal expansion and seismic loads were considered. The results indicate that this piping will meet ASME Section III, Class 2 requirements.

  2. Progress on Developing an Interface Program between WIMSD-5B and RFSP

    Energy Technology Data Exchange (ETDEWEB)

    You, Guk Jong; Kim, Won Young; Park, Joo Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    WIMS (Winfrith Improved Multigroup Scheme) code is a multi-group transport code for the reactor lattice calculations which includes a fuel depletion or burn-up routine. The code, created at the United Kingdom Atomic Energy Authority Establishment, Winfrith (AEEW), was intended to perform the lattice calculations with an acceptable accuracy for the analysis of the experiments in a wide range of geometries. As one of its branches, WIMSD-5B is a code which was released from OECD/NEA Data Bank in 1998 and now has been used widely for thermal research and power reactor calculation. Also one of WIMS codes, WIMS-AECL, has been developed by AECL in Canada as an independent version of the original AEEW code. While WIMS-AECL produces a data file which can generate the information required by other code such as RFSP, WIMSD-5B does not. The data file is used for the reactor analysis by WIMSAECL in connection with RFSP. This study is to develop an interface data file (Tape 16) of WIMSD-5B with RFSP and to develop a process utility to provide the group collapsing and cell average cross-section generation for a CANDU-6 core analysis on the WINDOW system. With this utility, the physics analysis of a CANDU-6 reactor will be performed by RFSP code using the lattice parameters generated by WIMSD-5B.

  3. Data of evolutionary structure change: 1CF5B-2JJRA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1CF5B-2JJRA 1CF5 2JJR B A DVNFDLSTATAKTYTKFIEDFRATLPFSHKVYDIPLLYS...ID> A 2JJRA SYFFNEASATE LEU CA 336 2JJR A 2JJRA...Chain> 2JJR A 2JJRA...bChain>A 2JJRA GKVTS-DIALL

  4. Association of ARID5B gene variants with acute lymphoblastic leukemia in Yemeni children.

    Science.gov (United States)

    Al-Absi, Boshra; Noor, Suzita M; Saif-Ali, Riyadh; Salem, Sameer D; Ahmed, Radwan H; Razif, Muhammad Fm; Muniandy, Sekaran

    2017-04-01

    Studies have shown an association between ARID5B gene polymorphisms and childhood acute lymphoblastic leukemia. However, the association between ARID5B variants and acute lymphoblastic leukemia among the Arab population still needs to be studied. The aim of this study was to investigate the association between ARID5B variants with acute lymphoblastic leukemia in Yemeni children. A total of 14 ARID5B gene single nucleotide polymorphisms (SNPs) were genotyped in 289 Yemeni children, of whom 136 had acute lymphoblastic leukemia and 153 were controls, using the nanofluidic Dynamic Array (Fluidigm 192.24 Dynamic Array). Using logistic regression adjusted for age and gender, the risks of acute lymphoblastic leukemia were presented as odds ratios and 95% confidence intervals. We found that nine SNPs were associated with acute lymphoblastic leukemia under additive genetic models: rs7073837, rs10740055, rs7089424, rs10821936, rs4506592, rs10994982, rs7896246, rs10821938, and rs7923074. Furthermore, the recessive models revealed that six SNPs were risk factors for acute lymphoblastic leukemia: rs10740055, rs7089424, rs10994982, rs7896246, rs10821938, and rs7923074. The gender-specific impact of these SNPs under the recessive genetic model revealed that SNPs rs10740055, rs10994982, and rs6479779 in females, and rs10821938 and rs7923074 in males were significantly associated with acute lymphoblastic leukemia risk. Under the dominant model, SNPs rs7073837, rs10821936, rs7896246, and rs6479778 in males only showed striking association with acute lymphoblastic leukemia. The additive model revealed that SNPs with significant association with acute lymphoblastic leukemia were rs10821936 (both males and females); rs7073837, rs10740055, rs10994982, and rs4948487 (females only); and rs7089424, rs7896246, rs10821938, and rs7923074 (males only). In addition, the ARID5B haplotype block (CGAACACAA) showed a higher risk for acute lymphoblastic leukemia. The haplotype (CCCGACTGC) was

  5. Simvastatin promotes NPC1-mediated free cholesterol efflux from lysosomes through CYP7A1/LXRα signalling pathway in oxLDL-loaded macrophages.

    Science.gov (United States)

    Xu, Xiaoyang; Zhang, Aolin; Halquist, Matthew S; Yuan, Xinxu; Henderson, Scott C; Dewey, William L; Li, Pin-Lan; Li, Ningjun; Zhang, Fan

    2017-02-01

    Statins, 3-hydroxyl-3-methylglutaryl coenzyme A reductase inhibitors, are the first-line medications prescribed for the prevention and treatment of coronary artery diseases. The efficacy of statins has been attributed not only to their systemic cholesterol-lowering actions but also to their pleiotropic effects that are unrelated to cholesterol reduction. These pleiotropic effects have been increasingly recognized as essential in statins therapy. This study was designed to investigate the pleiotropic actions of simvastatin, one of the most commonly prescribed statins, on macrophage cholesterol homeostasis with a focus on lysosomal free cholesterol egression. With simultaneous nile red and filipin staining, analysis of confocal/multi-photon imaging demonstrated that simvastatin markedly attenuated unesterified (free) cholesterol buildup in macrophages loaded with oxidized low-density lipoprotein but had little effect in reducing the sizes of cholesteryl ester-containing lipid droplets; the reduction in free cholesterol was mainly attributed to decreases in lysosome-compartmentalized cholesterol. Functionally, the egression of free cholesterol from lysosomes attenuated pro-inflammatory cytokine secretion. It was determined that the reduction of lysosomal free cholesterol buildup by simvastatin was due to the up-regulation of Niemann-Pick C1 (NPC1), a lysosomal residing cholesterol transporter. Moreover, the enhanced enzymatic production of 7-hydroxycholesterol by cytochrome P450 7A1 and the subsequent activation of liver X receptor α underscored the up-regulation of NPC1. These findings reveal a novel pleiotropic effect of simvastatin in affecting lysosomal cholesterol efflux in macrophages and the associated significance in the treatment of atherosclerosis. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. Bacillus thuringiensis-derived Cry5B has potent anthelmintic activity against Ascaris suum.

    Directory of Open Access Journals (Sweden)

    Joseph F Urban

    Full Text Available Ascaris suum and Ascaris lumbricoides are two closely related geo-helminth parasites that ubiquitously infect pigs and humans, respectively. Ascaris suum infection in pigs is considered a good model for A. lumbricoides infection in humans because of a similar biology and tissue migration to the intestines. Ascaris lumbricoides infections in children are associated with malnutrition, growth and cognitive stunting, immune defects, and, in extreme cases, life-threatening blockage of the digestive tract and aberrant migration into the bile duct and peritoneum. Similar effects can be seen with A. suum infections in pigs related to poor feed efficiency and performance. New strategies to control Ascaris infections are needed largely due to reduced treatment efficacies of current anthelmintics in the field, the threat of resistance development, and the general lack of new drug development for intestinal soil-transmitted helminths for humans and animals. Here we demonstrate for the first time that A. suum expresses the receptors for Bacillus thuringiensis crystal protein and novel anthelmintic Cry5B, which has been previously shown to intoxicate hookworms and which belongs to a class of proteins considered non-toxic to vertebrates. Cry5B is able to intoxicate A. suum larvae and adults and triggers the activation of the p38 mitogen-activated protein kinase pathway similar to that observed with other nematodes. Most importantly, two moderate doses of 20 mg/kg body weight (143 nM/kg of Cry5B resulted in a near complete cure of intestinal A. suum infections in pigs. Taken together, these results demonstrate the excellent potential of Cry5B to treat Ascaris infections in pigs and in humans and for Cry5B to work effectively in the human gastrointestinal tract.

  7. Protection and Delivery of Anthelmintic Protein Cry5B to Nematodes Using Mesoporous Silicon Particles.

    Science.gov (United States)

    Wu, Chia-Chen; Hu, Yan; Miller, Melanie; Aroian, Raffi V; Sailor, Michael J

    2015-06-23

    The ability of nano- and microparticles of partially oxidized mesoporous silicon (pSi) to sequester, protect, and deliver the anthelmintic pore-forming protein Cry5B to nematodes is assessed in vitro and in vivo. Thermally oxidized pSi particles are stable under gastric conditions and show relatively low toxicity to nematodes. Fluorescence images of rhodamine-labeled pSi particles within the nematodes Caenorhabditis elegans and Ancylostoma ceylanicum show that ingestion is dependent on particle size: particles of a 0.4 ± 0.2 μm size are noticeably ingested by both species within 2 h of introduction in vitro, whereas 5 ± 2 μm particles are excluded from C. elegans but enter the pharynx region of A. ceylanicum after 24 h. The anthelmintic protein Cry5B, a pore-forming crystal (Cry) protein derived from Bacillus thuringiensis, is incorporated into the pSi particles by aqueous infiltration. Feeding of Cry5B-loaded pSi particles to C. elegans leads to significant intoxication of the nematode. Protein-loaded particles of size 0.4 μm display the highest level of in vitro toxicity toward C. elegans on a drug-mass basis. The porous nanostructure protects Cry5B from hydrolytic and enzymatic (pepsin) degradation in simulated gastric fluid (pH 1.2) for time periods up to 2 h. In vivo experiments with hookworm-infected hamsters show no significant reduction in worm burden with the Cry5B-loaded particles, which is attributed to slow release of the protein from the particles and/or short residence time of the particles in the duodenum of the animal.

  8. The tumor suppressor p53 regulates autophagosomal and lysosomal biogenesis in lung cancer cells by targeting transcription factor EB.

    Science.gov (United States)

    Zhang, Zengli; Wang, Hongfeng; Ding, Qifeng; Xing, Yufei; Xu, Delai; Xu, Zhonghua; Zhou, Tong; Qian, Bin; Ji, Chenghong; Pan, Xue; Zhong, Anyuan; Ying, Zheng; Zhou, Caicun; Shi, Minhua

    2017-03-10

    The cellular protein degradation system, such as proteasomal or autophagy-lysosomal system plays an important role in the pathogenesis of a variety of human diseases including cancer. Transcription factor EB (TFEB) is a master transcriptional factor in the regulation of autophagy-lysosome pathway (ALP), and it has multiple biological functions including protein degradation, cell homeostasis and cell survival. In the present study we show that the tumor suppressor p53 can regulate TFEB nuclear translocation and activity in lung cancer cells. We found p53 deletion or chemical inhibition of p53 using pifithrin-α could promote the translocation of TFEB from cytoplasm to the nucleus, thus increased the TFEB-mediated lysosomal and autophagosomal biogenesis in lung cancer cells. Moreover, re-expression of p53 could decrease the expression levels of TFEB-targeting genes involved in ALP, and knockdown of TFEB could abolish the effect of p53 on the regulation of ALP gene expression. Taken together, our data indicate that p53 affects ALP through regulating TFEB nuclear translocation in lung cancer cells. Importantly, our study reveals a critical link between two keys factors in tumourigenesis and autophagy, and suggests a potential important role of p53-TFEB signaling axis in lung cancer.

  9. Andrographolide sensitizes cisplatin-induced apoptosis via suppression of autophagosome-lysosome fusion in human cancer cells.

    Science.gov (United States)

    Zhou, Jing; Hu, Shuai-Er; Tan, Shi-Hao; Cao, Ruoxi; Chen, Yiyang; Xia, Dajing; Zhu, Xinqiang; Yang, Xing-Fen; Ong, Choon-Nam; Shen, Han-Ming

    2012-03-01

    Suppression of autophagy has been increasingly recognized as a novel cancer therapeutic approach. Andrographolide (Andro), a diterpenoid lactone isolated from an herbal plant Andrographis paniculata, is known to possess anti-inflammatory and anticancer activity. In this study, we sought to examine the effect of Andro on autophagy, and to evaluate whether such effect is relevant to the sensitization effect of Andro on apoptosis induced by DNA damage agents in cancer cells. First, we found that Andro is able to significantly enhance autophagic markers in various cancer cell lines, including GFP-LC3 puncta and LC3-II level. Interestingly, Andro treatment also led to marked increase of p62 protein level and addition of chloroquine (CQ) failed to further enhance either LC3-II or p62 level, indicating that Andro is likely to suppress autophagic flux at the maturation and degradation stage. Next, we provided evidence that Andro inhibits autophagosome maturation not by affecting the lysosomal function, but by impairing autophagosome-lysosome fusion. Lastly, we demonstrated that treatment with cisplatin, a DNA damage agent, induces autophagy in cancer cells. Importantly, Andro is capable of sensitizing cisplatin-induced cell killing determined with both short-term apoptosis assays and long-term clonogenic test, via suppression of autophagy, a process independent of p53. In summary, these observations collectively suggest that Andro could be a promising anti-cancer agent in combination therapy via its potent inhibitory effect on autophagy by disrupting autophagosome-lysosome fusion.

  10. Changes in the morphology and lability of lysosomal subpopulations in caerulein-induced acute pancreatitis.

    Science.gov (United States)

    Sarmiento, Nancy; Sánchez-Yagüe, Jesús; Juanes, Pedro P; Pérez, Nieves; Ferreira, Laura; García-Hernández, Violeta; Mangas, Arturo; Calvo, José J; Sánchez-Bernal, Carmen

    2011-02-01

    Lysosomes play an important role in acute pancreatitis (AP). Here we developed a method for the isolation of lysosome subpopulations from rat pancreas and assessed the stability of lysosomal membranes. AP was induced by four subcutaneous injections of 20 μg caerulein/kg body weight at hourly intervals. The animals were killed 9h after the first injection. Marker enzymes [N-acetyl-β-D-glucosaminidase (NAG), cathepsin B and succinate dehydrogenase (SDH)] were assayed in subcellular fractions from control pancreas and in pancreatitis. Lysosomal subpopulations were separated by Percoll density gradient centrifugation and observed by electron microscopy. NAG molecular forms were determined by DEAE-cellulose chromatography. AP was associated with: (i) increases in the specific activity of lysosomal enzymes in the soluble fraction, (ii) changes in the size and alterations in the morphology of the organelles from the lysosomal subpopulations, (iii) the appearance of large vacuoles in the primary and secondary lysosome subpopulations, (iv) the increase in the amount of the NAG form associated with the pancreatic lysosomal membrane as well as its release towards the soluble fraction. Lysosome subpopulations are separated by a combination of differential and Percoll density gradient centrifugations. Primary lysosome membrane stability decreases in AP. Copyright © 2010 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  11. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy.

    Science.gov (United States)

    Zhang, Xiaoli; Cheng, Xiping; Yu, Lu; Yang, Junsheng; Calvo, Raul; Patnaik, Samarjit; Hu, Xin; Gao, Qiong; Yang, Meimei; Lawas, Maria; Delling, Markus; Marugan, Juan; Ferrer, Marc; Xu, Haoxing

    2016-06-30

    Cellular stresses trigger autophagy to remove damaged macromolecules and organelles. Lysosomes 'host' multiple stress-sensing mechanisms that trigger the coordinated biogenesis of autophagosomes and lysosomes. For example, transcription factor (TF)EB, which regulates autophagy and lysosome biogenesis, is activated following the inhibition of mTOR, a lysosome-localized nutrient sensor. Here we show that reactive oxygen species (ROS) activate TFEB via a lysosomal Ca(2+)-dependent mechanism independent of mTOR. Exogenous oxidants or increasing mitochondrial ROS levels directly and specifically activate lysosomal TRPML1 channels, inducing lysosomal Ca(2+) release. This activation triggers calcineurin-dependent TFEB-nuclear translocation, autophagy induction and lysosome biogenesis. When TRPML1 is genetically inactivated or pharmacologically inhibited, clearance of damaged mitochondria and removal of excess ROS are blocked. Furthermore, TRPML1's ROS sensitivity is specifically required for lysosome adaptation to mitochondrial damage. Hence, TRPML1 is a ROS sensor localized on the lysosomal membrane that orchestrates an autophagy-dependent negative-feedback programme to mitigate oxidative stress in the cell.

  12. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease.

    Science.gov (United States)

    Nixon, Ralph A

    2017-07-01

    Abnormalities of the endosomal-lysosomal network (ELN) are a signature feature of Alzheimer's disease (AD). These include the earliest known cytopathology that is specific to AD and that affects endosomes and induces the progressive failure of lysosomes, each of which are directly linked by distinct mechanisms to neurodegeneration. The origins of ELN dysfunction and β-amyloidogenesis closely overlap, which reflects their common genetic basis, the established early involvement of endosomes and lysosomes in amyloid precursor protein (APP) processing and clearance, and the pathologic effect of certain APP metabolites on ELN functions. Genes that promote β-amyloidogenesis in AD (APP, PSEN1/2, and APOE4) have primary effects on ELN function. The importance of primary ELN dysfunction to pathogenesis is underscored by the mutations in more than 35 ELN-related genes that, thus far, are known to cause familial neurodegenerative diseases even though different pathogenic proteins may be involved. In this article, I discuss growing evidence that implicates AD gene-driven ELN disruptions as not only the antecedent pathobiology that underlies β-amyloidogenesis but also as the essential partner with APP and its metabolites that drive the development of AD, including tauopathy, synaptic dysfunction, and neurodegeneration. The striking amelioration of diverse deficits in animal AD models by remediating ELN dysfunction further supports a need to integrate APP and ELN relationships, including the role of amyloid-β, into a broader conceptual framework of how AD arises, progresses, and may be effectively therapeutically targeted.-Nixon, R. A. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. © FASEB.

  13. Reduced sulfation of muc5b is linked to xerostomia in patients with Sjögren syndrome

    DEFF Research Database (Denmark)

    Alliende, C; Kwon, Y-J; Brito, M

    2008-01-01

    OBJECTIVES: MUC5B contains sulfated and sialylated oligosaccharides that sequester water required for moisturising the oral mucosa. Xerostomia, in patients with Sjögren syndrome, is generally associated with reduced quantities, rather than altered properties, of saliva. Here, we determined...... the amount of MUC5B (mRNA and protein) as well as sulfation levels in salivary glands of patients with normal or altered unstimulated salivary flow. Localisation of MUC5B and sulfated MUC5B, as well as total levels sulfated groups were determined and compared with acini basal lamina disorganisation. PATIENTS...... AND METHODS: In all, 18 patients with normal or altered unstimulated salivary flow and 16 controls were studied. MUC5B mRNA and protein were evaluated in salivary glands by semiquantitative RT-PCR and Western blot analysis. MUC5B sulfation was determined by Western blotting. MUC5B and sulfo-Lewis(a) antigen...

  14. Age-related changes of serum tartrate-resistant acid phosphatase 5b and the relationship with bone mineral density in Chinese women

    Institute of Scientific and Technical Information of China (English)

    Yue-juan QIN; Zhen-lin ZHANG; Hao ZHANG; Wei-wei HU; Yu-juan LIU; Yun-qiu HU; Miao LI; Jie-mei GU; Jin-wei HE

    2008-01-01

    Aim: Ostcoclastic activity is mainly assessed by measurement of urinary markers (eg C-terminal cross-linked telopeptides of type I collagen, N-terminal cross-linked telopeptides of type I collagen etc), the levels of which could often be affected by renal clearance. Recently, serum tartrate-resistant acid phosphatase 5b (TRACP5b) has been used as an alternative serum marker to evaluate osteoclastic activity. We investigated the age-related changes of TRACP5b level and its association with bone mineral density (BMD) in Chinese women. Methods: Seven-hundred and twenty-two Chinese mainland women aged 20-79 years were recruited in the study. Serum TRACP5b level was measured using immunoassay to evaluate the state of bone resorption. Bone mineral density (BMD) (g/cm2) at lumbar spine 1-4 and proximal femur were measured by duel-energy X-ray absorptiometry. Results: The serum TRACP5b level reached a bottom value in premenopausal women aged 30-39, gradually increased in women aged 40-49, rapidly rose in women aged 50-59, and culminated with a maximum value in women aged 60-69 before a slow drop in women aged 70-79. The average level of TRACPSb was significantly higher in postmenopausal women [(3.29±1.07) U/L] than in premenopausal women ([1.70±0.59] U/L). The levels of TRACP5b were inversely correlated with BMD at all measured sites (P<0.001). Furthermore, the level of TRACP5b was obviously higher in women with osteoporosis and osteopenia than those with normal bone mass (P<0.001). Conclusion: We have established the reference values of serum TRACPSb in Chinese mainland women, and found that postmenopausal women had higher TRACP5b concentration than younger women. The results showed that serum TRACPSb was a sensitive and useful parameter for the evaluation of age-related changes of bone absorption.

  15. Size-dependent accumulation of particles in lysosomes modulates dendritic cell function through impaired antigen degradation

    Directory of Open Access Journals (Sweden)

    Seydoux E

    2014-08-01

    of BMDCs to degrade soluble antigen, without affecting their ability to induce antigen-specific CD4+ T-cell proliferation. Co-localization studies between PS particles and lysosomes using laser scanning confocal microscopy detected a significantly higher frequency of co-localized 20 nm particles as compared with their 1,000 nm counterparts. Neither size of PS particle caused lysosomal leakage, expression of endoplasmic reticulum stress gene markers, or changes in cytokines profiles. Conclusion: These data indicate that although supposedly inert PS nanoparticles did not induce DC activation or alteration in CD4+ T-cell stimulating capacity, 20 nm (but not 1,000 nm PS particles may reduce antigen degradation through interference in the lysosomal compartment. These findings emphasize the importance of performing in-depth analysis of DC function when developing novel approaches for immune modulation with nanoparticles. Keywords: polystyrene particles, nanoparticles, immune modulation, mouse dendritic cells, CD4+ T-cells

  16. Nuclear morphology and lysosomal stability of molluskan hemocytes as possible biomarkers of arsenic toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Sudipta [Post Graduate Department of Zoology, Parasitology and Medical Entomology Laboratory, Darjeeling Government College, Darjeeling (India); Ray, Sajal [Department of Zoology, Aquatic Toxicology Laboratory, University of Calcutta, Kolkata (India)

    2009-10-15

    The frequency of nuclear aberrations and neutral red retention time of hemocytes in the mollusk Lamellidens marginalis were recorded under exposure to sublethal concentrations of sodium arsenite in order to examine the sensitivity and effectiveness of these inexpensive assays for screening the toxicity of As{sup 3+}in a freshwater ecosystem. A dose and time dependent increase in the density of micronucleated and binucleated hemocytes and gill cells was indicative of the pronounced genotoxic effect of arsenic on this animal. The disruption of intrahemocyte homeostasis imposed by this natural toxicant was evident from a dose and time dependent reduction in the lysosomal stability of the hemocytes of the animal. The tested parameters are indicative of arsenic toxicity in L. marginalis in the freshwater systems of the arsenic affected geographical areas of West Bengal, India. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  17. The clinical spectrum and pathophysiology of skeletal complications in lysosomal storage disorders.

    Science.gov (United States)

    Clarke, Lorne A; Hollak, Carla E M

    2015-03-01

    Lysosomal storage disorders affect multiple organs including the skeleton. Disorders with prominent skeletal symptoms are type 1 and 3 Gaucher disease, the mucopolysaccharidoses, the glycoproteinoses and pycnodysostosis. Clinical manifestations range from asymptomatic radiographical evidence of bone pathology to overt bone crises (Gaucher), short stature with typical imaging features known as dysostosis multiplex (MPS), with spine and joint deformities (mucopolysaccharidoses, mucolipidosis), or osteopetrosis with pathological fractures (pynodysostosis). The pathophysiology of skeletal disease is only partially understood and involves direct substrate storage, inflammation and other complex alterations of cartilage and bone metabolism. Current treatments are enzyme replacement therapy, substrate reduction therapy and hematopoietic stem cell transplantation. However, effects of these interventions on skeletal disease manifestations are less well established and outcomes are highly dependent on disease burden at treatment initiation. It is now clear that adjunctive treatments that target skeletal disease are needed and should be part of future research agenda.

  18. Cathepsin B modulates lysosomal biogenesis and host defense against Francisella novicida infection.

    Science.gov (United States)

    Qi, Xiaopeng; Man, Si Ming; Malireddi, R K Subbarao; Karki, Rajendra; Lupfer, Christopher; Gurung, Prajwal; Neale, Geoffrey; Guy, Clifford S; Lamkanfi, Mohamed; Kanneganti, Thirumala-Devi

    2016-09-19

    Lysosomal cathepsins regulate an exquisite range of biological functions, and their deregulation is associated with inflammatory, metabolic, and degenerative diseases in humans. In this study, we identified a key cell-intrinsic role for cathepsin B as a negative feedback regulator of lysosomal biogenesis and autophagy. Mice and macrophages lacking cathepsin B activity had increased resistance to the cytosolic bacterial pathogen Francisella novicida Genetic deletion or pharmacological inhibition of cathepsin B down-regulated mechanistic target of rapamycin activity and prevented cleavage of the lysosomal calcium channel TRPML1. These events drove transcription of lysosomal and autophagy genes via transcription factor EB, which increased lysosomal biogenesis and activation of autophagy initiation kinase ULK1 for clearance of the bacteria. Our results identified a fundamental biological function of cathepsin B in providing a checkpoint for homeostatic maintenance of lysosome populations and basic recycling functions in the cell.

  19. TFEB and TFE3: Linking Lysosomes to Cellular Adaptation to Stress.

    Science.gov (United States)

    Raben, Nina; Puertollano, Rosa

    2016-10-06

    In recent years, our vision of lysosomes has drastically changed. Formerly considered to be mere degradative compartments, they are now recognized as key players in many cellular processes. The ability of lysosomes to respond to different stimuli revealed a complex and coordinated regulation of lysosomal gene expression. This review discusses the participation of the transcription factors TFEB and TFE3 in the regulation of lysosomal function and biogenesis, as well as the role of the lysosomal pathway in cellular adaptation to a variety of stress conditions, including nutrient deprivation, mitochondrial dysfunction, protein misfolding, and pathogen infection. We also describe how cancer cells make use of TFEB and TFE3 to promote their own survival and highlight the potential of these transcription factors as therapeutic targets for the treatment of neurological and lysosomal diseases.

  20. Overexpression of the JmjC histone demethylase KDM5B in human carcinogenesis: involvement in the proliferation of cancer cells through the E2F/RB pathway

    Directory of Open Access Journals (Sweden)

    Kelly John D

    2010-03-01

    Full Text Available Abstract Background Although an increasing number of histone demethylases have been identified and biochemically characterized, their biological functions largely remain uncharacterized, particularly in the context of human diseases such as cancer. We investigated the role of KDM5B, a JmjC histone demethylase, in human carcinogenesis. Quantitative RT-PCR and microarray analyses were used to examine the expression profiles of histone demethylases in clinical tissue samples. We also examined the functional effects of KDM5B on the growth of cancer cell lines treated with small interfering RNAs (siRNAs. Downstream genes and signal cascades induced by KDM5B expression were identified from Affymetrix Gene Chip experiments, and validated by real-time PCR and reporter assays. Cell cycle-dependent characteristics of KDM5B were identified by immunofluorescence and FACS. Results Quantitative RT-PCR analysis confirmed that expression levels of KDM5B are significantly higher in human bladder cancer tissues than in their corresponding non-neoplastic bladder tissues (P KDM5B in various kinds of malignancies. Transfection of KDM5B-specific siRNA into various bladder and lung cancer cell lines significantly suppressed the proliferation of cancer cells and increased the number of cells in sub-G1 phase. Microarray expression analysis indicated that E2F1 and E2F2 are downstream genes in the KDM5B pathway. Conclusions Inhibition of KDM5B may affect apoptosis and reduce growth of cancer cells. Further studies will explore the pan-cancer therapeutic potential of KDM5B inhibition.

  1. Ozonation of reactive dye, Procion red MX-5B catalyzed by metal ions.

    Science.gov (United States)

    Pachhade, K; Sandhya, S; Swaminathan, K

    2009-08-15

    Ozonation of aqueous solution of Procion red MX-5B, a commercial azo reactive dye was investigated. The effect of various experimental variables on decolorization and degradation of the dye has been studied. Color removal was faster than organic removal. Dye mineralization was evident by the generation of sulphate, chloride, nitrate, oxalic and acetic acid during ozonation. The decolorization and organic removal followed pseudo-first-order kinetics. Among the metal ions studied, manganese catalyzed ozonation showed better decolorization and organic removal. Fourier transform infrared (FTIR) spectroscopy results indicated the disappearance of bands for aromatics and appearance of bands due to carboxylic acids in the ozonated samples. Acetyl benzoic acid, diethyl phthalate and phthalic anhydride were identified as intermediates by gas chromatography mass spectra (GC/MS). Based on these findings a tentative pathway for the degradation MX-5B was postulated.

  2. Comparative Investigation of Normal Modes and Molecular Dynamics of Hepatitis C NS5B Protein

    Science.gov (United States)

    Asafi, M. S.; Yildirim, A.; Tekpinar, M.

    2016-04-01

    Understanding dynamics of proteins has many practical implications in terms of finding a cure for many protein related diseases. Normal mode analysis and molecular dynamics methods are widely used physics-based computational methods for investigating dynamics of proteins. In this work, we studied dynamics of Hepatitis C NS5B protein with molecular dynamics and normal mode analysis. Principal components obtained from a 100 nanoseconds molecular dynamics simulation show good overlaps with normal modes calculated with a coarse-grained elastic network model. Coarse-grained normal mode analysis takes at least an order of magnitude shorter time. Encouraged by this good overlaps and short computation times, we analyzed further low frequency normal modes of Hepatitis C NS5B. Motion directions and average spatial fluctuations have been analyzed in detail. Finally, biological implications of these motions in drug design efforts against Hepatitis C infections have been elaborated.

  3. Inmunodeficiencia primaria con déficit del crecimiento: rol de la STAT5b

    OpenAIRE

    MC Cavallo; JR Llugdar; NA Lozano; DL Pacoricona; Lozano, A.

    2006-01-01

    Se analiza la alteración de la proteína STAT5b (Signal transducers and activatiors of transcription) que produce activación intracelular y; media la acción de hormona de crecimiento (GH) y citoquinas, como Interleucina 2 que es responsable de proliferación y diferenciación de; células T. Esta alteración STAT5b produce déficit inmunológico y del crecimiento.Se presenta el caso de una niña de 12 años natural de; Córdoba, Argentina que presenta desde el nacimiento déficit de crecimiento...

  4. Unc5B associates with LARG to mediate the action of repulsive guidance molecule.

    Science.gov (United States)

    Hata, Katsuhiko; Kaibuchi, Kozo; Inagaki, Shinobu; Yamashita, Toshihide

    2009-03-09

    Neuronal axons are guided by attractive and repulsive cues in their local environment. Because the repulsive guidance molecule A (RGMa) was originally identified as an axon repellent in the visual system, diverse functions in the developing and adult central nervous system have been ascribed to it. RGMa binding to its receptor neogenin induces RhoA activation, leading to inhibitory/repulsive behavior and collapse of the neuronal growth cone. However, the precise mechanisms that regulate RhoA activation are poorly understood. In this study, we show that Unc5B, a member of the netrin receptor family, interacts with neogenin as a coreceptor for RGMa. Moreover, leukemia-associated guanine nucleotide exchange factor (LARG) associates with Unc5B to transduce the RhoA signal. Focal adhesion kinase (FAK) is involved in RGMa-induced tyrosine phosphorylation of LARG as well as RhoA activation. These findings uncover the molecular basis for diverse functions mediated by RGMa.

  5. Inmunodeficiencia primaria con déficit del crecimiento: rol de la STAT5b

    OpenAIRE

    MC Cavallo; JR Llugdar; NA Lozano; DL Pacoricona; Lozano, A

    2006-01-01

    Se analiza la alteración de la proteína STAT5b (Signal transducers and activatiors of transcription) que produce activación intracelular y; media la acción de hormona de crecimiento (GH) y citoquinas, como Interleucina 2 que es responsable de proliferación y diferenciación de; células T. Esta alteración STAT5b produce déficit inmunológico y del crecimiento.Se presenta el caso de una niña de 12 años natural de; Córdoba, Argentina que presenta desde el nacimiento déficit de crecimiento...

  6. The immunophenotypic characteristics of 260 patients with CD5~+ B cell lymphoproliferative disorders

    Institute of Scientific and Technical Information of China (English)

    易树华

    2014-01-01

    Objective To explore the immunophenotypic characteristics of CD5+B cell lymphoproliferative disorders(BLPD)of Chinese patients.Methods Immunophenotyping of bone marrow and(or)of peripheral blood was performed in patients with B-LPD by four color multiparameter flow cytometry analysis using a panel of monoclonal antibodes,and the patients clinical data were retrospectively analyzed.The difference in immunophenotypes and

  7. Unit 3 Hobbies《牛津小学英语》(译林版)5B

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ 一、教材分析 本课是(译林版)5B Unit 3 Hobbies的第一课时.教学内容是四个动词词组go shopping,take photos,collect stamps和grow flowers,以及句型"Do you have any hobbies?Yes.I do.I like...He/She likes...too.".

  8. Qatar Exoplanet Survey : Qatar-3b, Qatar-4b and Qatar-5b

    CERN Document Server

    Alsubai, Khalid A; Tsvetanov, Zlatan I; Latham, David W; Bieryla, Allyson; Buchhave, Lars A; Esquerdo, Gilbert A; Bramich, D M; Pyrzas, Stylianos; Vilchez, Nicolas P E; Mancini, Luigi; Southworth, John; Evans, Daniel F; Henning, Thomas; Ciceri, Simona

    2016-01-01

    We report the discovery of Qatar-3b, Qatar-4b, and Qatar-5b, three new transiting planets identified by the Qatar Exoplanet Survey (QES). The three planets belong to the hot Jupiter family, with orbital periods of $P_{Q3b}$=2.5079204 days, $P_{Q4b}$=1.8053949 days, and $P_{Q5b}$=2.8792319 days. Follow-up spectroscopic observations reveal the masses of the planets to be $M_{Q3b}$=4.31$M_{\\rm J}$, $M_{Q4b}$=5.85$M_{\\rm J}$, and $M_{Q5b}$=4.32$M_{\\rm J}$, while model fits to the transit light curves yield radii of $R_{Q3b}$=1.096$R_{\\rm J}$, $R_{Q4b}$=1.552$R_{\\rm J}$, and $R_{Q5b}$=1.107$R_{\\rm J}$. No evidence of eccentric orbit is seen in the radial velocity curve of any of the planets. The host stars are typical main sequence stars with masses and radii $M_{Q3}$=1.145$M_{\\odot}$, $M_{Q4}$=0.954$M_{\\odot}$, $M_{Q5}$=1.128$M_{\\odot}$ and $R_{Q3}$=1.272$R_{\\odot}$, $R_{Q4}$=1.115$R_{\\odot}$ and $R_{Q5}$=1.076$R_{\\odot}$ for the Qatar-3, 4 and 5 respectively. All three new planets can be classified as heavy hot ...

  9. A TRP Channel in the Lysosome Regulates Large Particle Phagocytosis via Focal Exocytosis

    OpenAIRE

    2013-01-01

    Phagocytosis of large extracellular particles such as apoptotic bodies requires delivery of the intracellular endosomal and lysosomal membranes to form plasmalemmal pseudopods. Here we identified Mucolipin TRP channel 1 (TRPML1) as the key lysosomal Ca2+ channel regulating focal exocytosis and phagosome biogenesis. Both particle ingestion and lysosomal exocytosis are inhibited by synthetic TRPML1 blockers, and are defective in macrophages isolated from TRPML1 knockout mice. Furthermore, TRPML...

  10. Disruption of Lysosome Function Promotes Tumor Growth and Metastasis in Drosophila *

    OpenAIRE

    Chi, Congwu; Zhu, Huanhu; Han,Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2010-01-01

    Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the RasV12 cells....

  11. A new lysosomal storage disorder resembling Morquio syndrome in sibs.

    Science.gov (United States)

    Perrin, Laurence; Fenneteau, Odile; Ilharreborde, Brice; Capri, Yline; Gérard, Marion; Quoc, Emmanuel Bui; Passemard, Sandrine; Ghoumid, Jamal; Caillaud, Catherine; Froissart, Roseline; Tabet, Anne-Claude; Lebon, Sophie; El Ghouzzi, Vincent; Mazda, Keyvan; Verloes, Alain

    2012-03-01

    We report two male sibs, born from unrelated French Caribbean parents, presenting with an unclassifiable storage disorder. Pregnancy and delivery were uneventful. Stunted growth was noted during the first year of life. Both children have short stature (below - 4SD) with short trunk, barrel chest, micromelia with rhizomelic shortening, severe kyphoscoliosis, pectus carinatum, short hands and feet with metatarsus adductus, and excessive joint laxity of the small joints. Learning difficulties with borderline intelligence quotient (IQ) were noted in one of them. They had no hepatomegaly, no splenomegaly, and no dysmorphism. Skeletal X-rays survey demonstrated generalized platyspondyly with tongue-like deformity of the anterior part of the vertebral bodies, hypoplasia of the odontoid process, generalized epiphyseal dysplasia and abnormally shaped metaphyses. The acetabular roofs had a trident aspect. Ophthalmologic and cardiac examinations were normal. Spine deformity required surgical correction in one of the patient at age 4 years. Lysosomal enzymes assays including N-acetylgalactosamine-6-sulfate sulfatase and β-galactosidase were normal, excluding mucopolysaccharidoses type IV A and IV B (Morquio syndrome), respectively. Qualitative analysis found traces of dermatan and chondroitin-sulfates in urine, but quantitative glycosaminoglycan excretion fell within normal limits. They were no vacuolated lymphocytes. Abnormal coarse inclusions were present in eosinophils. Mild Alder anomaly was observed in polymorphonuclears. Granulations were discretely metachromatic with toluidine blue. Those morphological anomalies are in favor of a lysosomal storage disease. No inclusions were found in skin fibroblasts. We hypothesize that these two boys have a distinct autosomal recessive or X-linked lysosomal storage disorder of unknown origin that shares clinical and radiological features with Morquio disease.

  12. Sub-lethal oxidative stress induces lysosome biogenesis via a lysosomal membrane permeabilization-cathepsin-caspase 3-transcription factor EB-dependent pathway.

    Science.gov (United States)

    Leow, San Min; Chua, Shu Xian Serene; Venkatachalam, Gireedhar; Shen, Liang; Luo, Le; Clement, Marie-Veronique

    2016-12-18

    Here we provide evidence to link sub-lethal oxidative stress to lysosomal biogenesis. Exposure of cells to sub-lethal concentrations of exogenously added hydrogen peroxide resulted in cytosol to nuclear translocation of the Transcription Factor EB (TFEB), the master controller of lysosome biogenesis and function. Nuclear translocation of TFEB was dependent upon the activation of a cathepsin-caspase 3 signaling pathway, downstream of a lysosomal membrane permeabilization and accompanied by a significant increase in lysosome numbers as well as induction of TFEB dependent lysosome-associated genes expression such as Ctsl, Lamp2 and its spliced variant Lamp2a, Neu1and Ctsb and Sqstm1 and Atg9b. The effects of sub-lethal oxidative stress on lysosomal gene expression and biogenesis were rescued upon gene silencing of caspase 3 and TFEB. Notably, caspase 3 activation was not associated with phenotypic hallmarks of apoptosis, evidenced by the absence of caspase 3 substrate cleavage, such as PARP, Lamin A/C or gelsolin. Taken together, these data demonstrate for the first time an unexpected and non-canonical role of a cathepsin-caspase 3 axis in the nuclear translocation of TFEB leading to lysosomes biogenesis under conditions of sub-lethal oxidative stress.

  13. Reporter Assay for Endo/Lysosomal Escape of Toxin-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Roger Gilabert-Oriol

    2014-05-01

    Full Text Available Protein-based therapeutics with cytosolic targets are capable of exhibiting their therapeutic effect once they have escaped from the endosomes or lysosomes. In this study, the reporters—horseradish peroxidase (HRP, Alexa Fluor 488 (Alexa and ricin A-chain (RTA—were investigated for their capacity to monitor the endo/lysosomal escape of the ribosome-inactivating protein, saporin. The conjugates—saporin-HRP, Alexasaporin and saporin-KQ-RTA—were constructed, and the endo/lysosomal escape of these conjugates alone (lack of endo/lysosomal release or in combination with certain structurally-specific triterpenoidal saponins (efficient endo/lysosomal escape was characterized. HRP failed in reporting the endo/lysosomal escape of saporin. Contrastingly, Alexa Fluor 488 successfully allowed the report of the process at a toxin concentration of 1000 nM. In addition, single endo/lysosome analysis facilitated the determination of the amount of Alexasaporin released from each vesicle. RTA was also successful in reporting the endo/lysosomal escape of the enzymatically inactive mutant, saporin-KQ, but in this case, the sensitivity of the method reached a toxin concentration of 10 nM. In conclusion, the simultaneous usage of Alexa Fluor 488 and RTA as reporters may provide the possibility of monitoring the endo/lysosomal escape of protein-based therapeutics in the concentration range of 10–1000 nM.

  14. Lysosomes serve as a platform for hepatitis A virus particle maturation and nonlytic release.

    Science.gov (United States)

    Seggewiß, Nicole; Paulmann, Dajana; Dotzauer, Andreas

    2016-01-01

    Early studies on hepatitis A virus (HAV) in cell culture demonstrated the inclusion of several viral particles in an intracellular lipid-bilayer membrane. However, the origin of these virus-associated membranes and the mechanism for the non-lytic release of HAV into bile are still unknown. Analyzing the association of this virus with cell organelles, we found that newly synthesized HAV particles accumulate in lysosomal organelles and that lysosomal enzymes are involved in the maturation cleavage of the virion. Furthermore, by inhibiting the processes of fusion of lysosomes with the plasma membrane, we found that the nonlytic release of HAV from infected cells occurs via lysosome-related organelles.

  15. Lipid Storage Disorders Block Lysosomal Trafficking By Inhibiting TRP Channel and Calcium Release

    OpenAIRE

    2012-01-01

    Lysosomal lipid accumulation, defects in membrane trafficking, and altered Ca2+ homeostasis are common features in many lysosomal storage diseases. Mucolipin TRP channel 1 (TRPML1) is the principle Ca2+ channel in the lysosome. Here we show that TRPML1-mediated lysosomal Ca2+ release, measured using a genetically-encoded Ca2+ indicator (GCaMP3) attached directly to TRPML1 and elicited by a potent membrane-permeable synthetic agonist, is dramatically reduced in Niemann-Pick (NP) disease cells....

  16. Reporter assay for endo/lysosomal escape of toxin-based therapeutics.

    Science.gov (United States)

    Gilabert-Oriol, Roger; Thakur, Mayank; von Mallinckrodt, Benedicta; Bhargava, Cheenu; Wiesner, Burkhard; Eichhorst, Jenny; Melzig, Matthias F; Fuchs, Hendrik; Weng, Alexander

    2014-05-22

    Protein-based therapeutics with cytosolic targets are capable of exhibiting their therapeutic effect once they have escaped from the endosomes or lysosomes. In this study, the reporters-horseradish peroxidase (HRP), Alexa Fluor 488 (Alexa) and ricin A-chain (RTA)-were investigated for their capacity to monitor the endo/lysosomal escape of the ribosome-inactivating protein, saporin. The conjugates-saporin-HRP, (Alexa)saporin and saporin-KQ-RTA-were constructed, and the endo/lysosomal escape of these conjugates alone (lack of endo/lysosomal release) or in combination with certain structurally-specific triterpenoidal saponins (efficient endo/lysosomal escape) was characterized. HRP failed in reporting the endo/lysosomal escape of saporin. Contrastingly, Alexa Fluor 488 successfully allowed the report of the process at a toxin concentration of 1000 nM. In addition, single endo/lysosome analysis facilitated the determination of the amount of (Alexa)saporin released from each vesicle. RTA was also successful in reporting the endo/lysosomal escape of the enzymatically inactive mutant, saporin-KQ, but in this case, the sensitivity of the method reached a toxin concentration of 10 nM. In conclusion, the simultaneous usage of Alexa Fluor 488 and RTA as reporters may provide the possibility of monitoring the endo/lysosomal escape of protein-based therapeutics in the concentration range of 10-1000 nM.

  17. Cathepsin inhibition-induced lysosomal dysfunction enhances pancreatic beta-cell apoptosis in high glucose.

    Science.gov (United States)

    Jung, Minjeong; Lee, Jaemeun; Seo, Hye-Young; Lim, Ji Sun; Kim, Eun-Kyoung

    2015-01-01

    Autophagy is a lysosomal degradative pathway that plays an important role in maintaining cellular homeostasis. We previously showed that the inhibition of autophagy causes pancreatic β-cell apoptosis, suggesting that autophagy is a protective mechanism for the survival of pancreatic β-cells. The current study demonstrates that treatment with inhibitors and knockdown of the lysosomal cysteine proteases such as cathepsins B and L impair autophagy, enhancing the caspase-dependent apoptosis of INS-1 cells and islets upon exposure to high concentration of glucose. Interestingly, treatment with cathepsin B and L inhibitors prevented the proteolytic processing of cathepsins B, D and L, as evidenced by gradual accumulation of the respective pro-forms. Of note, inhibition of aspartic cathepsins had no effect on autophagy and cell viability, suggesting the selective role of cathepsins B and L in the regulation of β-cell autophagy and apoptosis. Lysosomal localization of accumulated pro-cathepsins in the presence of cathepsin B and L inhibitors was verified via immunocytochemistry and lysosomal fractionation. Lysotracker staining indicated that cathepsin B and L inhibitors led to the formation of severely enlarged lysosomes in a time-dependent manner. The abnormal accumulation of pro-cathepsins following treatment with inhibitors of cathepsins B and L suppressed normal lysosomal degradation and the processing of lysosomal enzymes, leading to lysosomal dysfunction. Collectively, our findings suggest that cathepsin defects following the inhibition of cathepsin B and L result in lysosomal dysfunction and consequent cell death in pancreatic β-cells.

  18. hLGDB: a database of human lysosomal genes and their regulation.

    Science.gov (United States)

    Brozzi, Alessandro; Urbanelli, Lorena; Germain, Pierre Luc; Magini, Alessandro; Emiliani, Carla

    2013-01-01

    Lysosomes are cytoplasmic organelles present in almost all eukaryotic cells, which play a fundamental role in key aspects of cellular homeostasis such as membrane repair, autophagy, endocitosis and protein metabolism. The characterization of the genes and enzymes constituting the lysosome represents a central issue to be addressed toward a better understanding of the biology of this organelle. In humans, mutations that cause lysosomal enzyme deficiencies result in >50 different disorders and severe pathologies. So far, many experimental efforts using different methodologies have been carried out to identity lysosomal genes. The Human Lysosome Gene Database (hLGDB) is the first resource that provides a comprehensive and accessible census of the human genes belonging to the lysosomal system. This database was developed by collecting and annotating gene lists from many different sources. References to the studies that have identified each gene are provided together with cross databases gene related information. Special attention has been given to the regulation of the genes through microRNAs and the transcription factor EB. The hLGDB can be easily queried to retrieve, combine and analyze information on different lists of lysosomal genes and their regulation by microRNA (binding sites predicted by five different algorithms). The hLGDB is an open access dynamic project that will permit in the future to collapse in a unique publicly accessible resource all the available biological information about lysosome genes and their regulation. Database URL: http://lysosome.unipg.it/.

  19. Degradation of MUC7 and MUC5B in human saliva.

    Directory of Open Access Journals (Sweden)

    Sachiko Takehara

    Full Text Available BACKGROUND: Two types of mucins, MUC7 and MUC5B constitute the major salivary glycoproteins, however their metabolic turnover has not been elucidated in detail to date. This study was conducted to examine turnover of MUC7 and MUC5B in saliva, by focusing on the relationship between their deglycosylation and proteolysis. METHODOLOGY/PRINCIPAL FINDINGS: Whole saliva samples were collected from healthy individuals and incubated at 37°C in the presence of various protease inhibitors, sialidase, or a sialidase inhibitor. General degradation patterns of salivary proteins and glycoproteins were examined by SDS-polyacrylamide-gel-electrophoresis. Furthermore, changes of molecular sizes of MUC7 and MUC5B were examined by Western blot analysis. A protein band was identified as MUC7 by Western blot analysis using an antibody recognizing an N-terminal epitope. The MUC7 signal disappeared rapidly after 20-minutes of incubation. In contrast, the band of MUC7 stained for its carbohydrate components remained visible near its original position for a longer time indicating that the rapid loss of Western blot signal was due to the specific removal of the N-termimal epitope. Pretreatment of saliva with sialidase facilitated MUC7 protein degradation when compared with samples without treatment. Furthermore, addition of sialidase inhibitor to saliva prevented proteolysis of N-terminus of MUC7, suggesting that the desialylation is a prerequisite for the degradation of the N-terminal region of MUC7. The protein band corresponding to MUC5B detected in both Western blotting and glycoprotein staining showed little sign of significant degradation upon incubation in saliva up to 9 hours. CONCLUSIONS/SIGNIFICANCE: MUC7 was highly susceptible to specific proteolysis in saliva, though major part of MUC5B was more resistant to degradation. The N-terminal region of MUC7, particularly sensitive to proteolytic degradation, has also been proposed to have distinct biological

  20. GR-127935-sensitive mechanism mediating hypotension in anesthetized rats: are 5-HT5B receptors involved?

    Science.gov (United States)

    Sánchez-Maldonado, Carolina; López-Sánchez, Pedro; Anguiano-Robledo, Liliana; Leopoldo, Marcello; Lacivita, Enza; Terrón, José A

    2015-04-01

    The 5-HT1B/1D receptor antagonist, GR-127935, inhibits hypotensive responses produced by the 5-HT1A, 5-HT1B/1D and 5-HT7 receptor agonist, and 5-HT5A/5B receptor ligand, 5-carboxamidotryptamine (5-CT), in rats. This work further characterized the above mechanism using more selective 5-HT1B and 5-HT1D receptor antagonists. Also, expression of 5-HT5A and 5-HT5B receptor mRNAs in blood vessels was searched by reverse transcription polymerase chain reaction. Decreases in diastolic blood pressure induced by 5-CT (0.001-10 μg/kg, intravenously) were analyzed in anesthetized rats that had received intravenous vehicle (1 mL/kg), SB-224289 (5-HT1B antagonist; 0.3 and 1.0 mg/kg), BRL15572 (5-HT1D antagonist; 0.3 and 1.0 mg/kg), SB-224289 + BRL15572 (0.3 mg/kg, each), or SB-224289 + BRL15572 (0.3 mg/kg, each) + GR-127935 (1 mg/kg). Because only the latter treatment inhibited 5-CT-induced hypotension, suggestive of a mechanism unrelated to 5-HT1B/1D receptors, the effects of antagonists/ligands at 5-HT5A (SB-699551, 1 mg/kg), 5-HT6 (SB-399885, 1 mg/kg), and 5-HT1B/1D/5A/5B/7 receptors (ergotamine, 0.1 mg/kg) on 5-CT-induced hypotension were tested. Interestingly, only ergotamine blocked 5-CT-induced responses; this effect closely paralleled that of SB-224289 + BRL-15572 + GR-127935. Neither did ergotamine nor GR-127935 inhibit hypotensive responses induced by the 5-HT7 receptor agonist, LP-44. Faint but clear bands corresponding to 5-HT5A and 5-HT5B receptor mRNAs in aorta and mesenteric arteries were detected. Results suggest that the GR-127935-sensitive mechanism mediating hypotension in rats is unrelated to 5-HT1B, 5-HT1D, 5-HT5A, 5-HT6, and 5-HT7 receptors. This mechanism, however, resembles putative 5-HT5B receptors.

  1. Impact of high glucose and AGEs on cultured kidney-derived cells. Effects on cell viability, lysosomal enzymes and effectors of cell signaling pathways.

    Science.gov (United States)

    Peres, Giovani B; Schor, Nestor; Michelacci, Yara M

    2017-04-01

    We have previously reported decreased expression and activities of lysosomal cathepsins B and L in diabetic kidney. Relevant morphological changes were observed in proximal tubules, suggesting that these cells are implicated in the early stages of the disease. The aim of the present study was to investigate the mechanisms that lead to these changes. The effects of high glucose (HG) and advanced glycation end products (AGEs) on cell viability, lysosomal enzymes and other effectors of cell signaling of cultured kidney cells were studied. HG increased viable mesangial cells (ihMC) in 48 h, while epithelial tubular cells were not affected (LLC-PK1 and MDCK). In contrast, the number of viable cells was markedly decreased, for all cell lines, by AGE-BSA. Concerning lysosomal enzymes, the main cysteine-protease expressed by these cells was cathepsin B, and its concentration was much higher in epithelial than in mesangial cells. Exposure to HG had no effect on the cathepsin B activity, but AGE-BSA caused a marked decrease in LLC-PK1, and increased the enzyme activities in the other cell lines. The levels of nitric oxide (NO) was increased by AGE-BSA in all cell lines, suggesting oxidative stress, and Western blotting has shown that, among the investigated proteins, cathepsin B, mTOR and transcription factor EB (TFEB) were the most significantly affected by exposure to AGE-BSA. As mTOR induces anabolism and inhibits autophagy, and TFEB is a master transcription factor for lysosomal enzymes, it is possible that this pathway plays a role in the inhibition of lysosomal enzymes in proximal tubule cells.

  2. Pathogenesis of Pancreatitis in Chickens after Experimental Infection with 9a5b Newcastle Disease Virus Mutant Isolate.

    Science.gov (United States)

    El-Bahrawy, A; Zaid, A; Sunden, Y; Sakurai, M; Ito, H; Ito, T; Morita, T

    2015-11-01

    The aim of this study was to investigate the effect of Newcastle disease virus (NDV) on the chicken pancreas. A virulent 9a5b mutant NDV isolate was inoculated intranasally into 32-day-old specific pathogen-free white Leghorn chickens. The pancreas was examined grossly and fixed for histopathological, immunohistochemical and electron microscopical investigations. Inflammatory changes were observed in the peripancreatic tissue at the early stage of infection (12 h post infection) and became more prevalent towards the end of the experiment. Multifocal areas of necrotizing inflammation were detected in the exocrine portion of the pancreas by 5 days post infection (dpi) and became more severe at 10 dpi. The endocrine islets were generally preserved, but slight degenerative changes were observed at 10 dpi. Immunohistochemically, NDV-nucleoprotein (NDV-NP) signals were detected in the peripancreatic tissues (associated with macrophages and other lymphoid cells) by 1 dpi. In the exocrine portion of the pancreas, NDV-NP signals were detected at 5 dpi and increased in intensity and distribution by 10 dpi. NDV particles were confirmed in the cytoplasm of exocrine acinar cells by transmission electron microscopy. CD3-positive cells were observed in the peripancreatic tissues earlier than in the pancreatic tissue. Moreover, in comparison with control chickens, insulin immunoexpression was unchanged, except on the last day of the experiment, when it was slightly reduced. The 9a5b NDV infection induced an inflammatory reaction and viral replication in the peripancreatic tissues earlier than in the pancreatic tissue. Furthermore, necrosis affected mainly the exocrine portion of the pancreas, while the endocrine portion was generally unaffected.

  3. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase

    DEFF Research Database (Denmark)

    Petersen, Nikolaj H T; Olsen, Ole D; Groth-Pedersen, Line

    2013-01-01

    Lysosomal membrane permeabilization and subsequent cell death may prove useful in cancer treatment, provided that cancer cell lysosomes can be specifically targeted. Here, we identify acid sphingomyelinase (ASM) inhibition as a selective means to destabilize cancer cell lysosomes. Lysosome......-destabilizing experimental anticancer agent siramesine inhibits ASM by interfering with the binding of ASM to its essential lysosomal cofactor, bis(monoacylglycero)phosphate. Like siramesine, several clinically relevant ASM inhibitors trigger cancer-specific lysosomal cell death, reduce tumor growth in vivo, and revert...

  4. Crystal structure of the conserved domain of the DC lysosomal associated membrane protein: implications for the lysosomal glycocalyx

    OpenAIRE

    Wilke Sonja; Krausze Joern; Büssow Konrad

    2012-01-01

    Abstract Background The family of lysosome-associated membrane proteins (LAMP) comprises the multifunctional, ubiquitous LAMP-1 and LAMP-2, and the cell type-specific proteins DC-LAMP (LAMP-3), BAD-LAMP (UNC-46, C20orf103) and macrosialin (CD68). LAMPs have been implicated in a multitude of cellular processes, including phagocytosis, autophagy, lipid transport and aging. LAMP-2 isoform A acts as a receptor in chaperone-mediated autophagy. LAMP-2 deficiency causes the fatal Danon disease. The ...

  5. Klebsiella pneumoniae survives within macrophages by avoiding delivery to lysosomes.

    Science.gov (United States)

    Cano, Victoria; March, Catalina; Insua, Jose Luis; Aguiló, Nacho; Llobet, Enrique; Moranta, David; Regueiro, Verónica; Brennan, Gerard P; Millán-Lou, Maria Isabel; Martín, Carlos; Garmendia, Junkal; Bengoechea, José A

    2015-11-01

    Klebsiella pneumoniae is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that Klebsiella might be able to persist intracellularly within a vacuolar compartment. This study was designed to investigate the interaction between Klebsiella and macrophages. Engulfment of K. pneumoniae was dependent on host cytoskeleton, cell plasma membrane lipid rafts and the activation of phosphoinositide 3-kinase (PI3K). Microscopy studies revealed that K. pneumoniae resides within a vacuolar compartment, the Klebsiella-containing vacuole (KCV), which traffics within vacuoles associated with the endocytic pathway. In contrast to UV-killed bacteria, the majority of live bacteria did not co-localize with markers of the lysosomal compartment. Our data suggest that K. pneumoniae triggers a programmed cell death in macrophages displaying features of apoptosis. Our efforts to identify the mechanism(s) whereby K. pneumoniae prevents the fusion of the lysosomes to the KCV uncovered the central role of the PI3K-Akt-Rab14 axis to control the phagosome maturation. Our data revealed that the capsule is dispensable for Klebsiella intracellular survival if bacteria were not opsonized. Furthermore, the environment found by Klebsiella within the KCV triggered the down-regulation of the expression of cps. Altogether, this study proves evidence that K. pneumoniae survives killing by macrophages by manipulating phagosome maturation that may contribute to Klebsiella pathogenesis.

  6. From Lysosomal Storage Diseases to NKT Cell Activation and Back

    Science.gov (United States)

    Pereira, Cátia S.; Ribeiro, Helena; Macedo, M. Fatima

    2017-01-01

    Lysosomal storage diseases (LSDs) are inherited metabolic disorders characterized by the accumulation of different types of substrates in the lysosome. With a multisystemic involvement, LSDs often present a very broad clinical spectrum. In many LSDs, alterations of the immune system were described. Special emphasis was given to Natural Killer T (NKT) cells, a population of lipid-specific T cells that is activated by lipid antigens bound to CD1d (cluster of differentiation 1 d) molecules at the surface of antigen-presenting cells. These cells have important functions in cancer, infection, and autoimmunity and were altered in a variety of LSDs’ mouse models. In some cases, the observed decrease was attributed to defects in either lipid antigen availability, trafficking, processing, or loading in CD1d. Here, we review the current knowledge about NKT cells in the context of LSDs, including the alterations detected, the proposed mechanisms to explain these defects, and the relevance of these findings for disease pathology. Furthermore, the effect of enzyme replacement therapy on NKT cells is also discussed. PMID:28245613

  7. Noxa couples lysosomal membrane permeabilization and apoptosis during oxidative stress.

    Science.gov (United States)

    Eno, Colins O; Zhao, Guoping; Venkatanarayan, Avinashnarayan; Wang, Bing; Flores, Elsa R; Li, Chi

    2013-12-01

    The exact roles of lysosomal membrane permeabilization (LMP) in oxidative stress-triggered apoptosis are not completely understood. Here, we first studied the temporal relation between LMP and mitochondrial outer membrane permeabilization (MOMP) during the initial stage of apoptosis caused by the oxidative stress inducer H2O2. Despite its essential role in mediating apoptosis, the expression of the BH3-only Bcl-2 protein Noxa was dispensable for LMP. In contrast, MOMP was dependent on Noxa expression and occurred downstream of LMP. When lysosomal membranes were stabilized by the iron-chelating agent desferrioxamine, H2O2-induced increase in DNA damage, Noxa expression, and subsequent apoptosis were abolished by the inhibition of LMP. Importantly, LMP-induced Noxa expression increase was mediated by p53 and seems to be a unique feature of apoptosis caused by oxidative stress. Finally, exogenous iron loading recapitulated the effects of H2O2 on the expression of BH3-only Bcl-2 proteins. Overall, these data reveal a Noxa-mediated signaling pathway that couples LMP with MOMP and ultimate apoptosis during oxidative stress.

  8. From Lysosomal Storage Diseases to NKT Cell Activation and Back

    Directory of Open Access Journals (Sweden)

    Cátia S. Pereira

    2017-02-01

    Full Text Available Lysosomal storage diseases (LSDs are inherited metabolic disorders characterized by the accumulation of different types of substrates in the lysosome. With a multisystemic involvement, LSDs often present a very broad clinical spectrum. In many LSDs, alterations of the immune system were described. Special emphasis was given to Natural Killer T (NKT cells, a population of lipid-specific T cells that is activated by lipid antigens bound to CD1d (cluster of differentiation 1 d molecules at the surface of antigen-presenting cells. These cells have important functions in cancer, infection, and autoimmunity and were altered in a variety of LSDs’ mouse models. In some cases, the observed decrease was attributed to defects in either lipid antigen availability, trafficking, processing, or loading in CD1d. Here, we review the current knowledge about NKT cells in the context of LSDs, including the alterations detected, the proposed mechanisms to explain these defects, and the relevance of these findings for disease pathology. Furthermore, the effect of enzyme replacement therapy on NKT cells is also discussed.

  9. Frustrated phagocytosis on micro-patterned immune complexes to characterize lysosome movements in live macrophages.

    Directory of Open Access Journals (Sweden)

    Arnaud M. Labrousse

    2011-10-01

    Full Text Available Lysosome mobilization is a key cellular process in phagocytes for bactericidal activities and trans-matrix migration. The molecular mechanisms that regulate lysosome mobilization are still poorly known. Lysosomes are hard to track as they move towards phagosomes throughout the cell volume. In order to anticipate cell regions where lysosomes are recruited to, human and RAW264.7 macrophages were seeded on surfaces that were micro-patterned with immune complexes (ICs as 4 µm-side squares. Distances between IC patterns were adapted to optimize cell spreading in order to constrain lysosome movements mostly in 2 dimensions. Fc receptors triggered local frustrated phagocytosis, frustrated phagosomes appeared as rings of F-actin dots around the IC patterns as early as 5 minutes after cells made contact with the substratum. Frustrated phagosomes recruited actin-associated proteins (vinculin, paxillin and gelsolin. The fusion of lysosomes with frustrated phagosomes was shown by the release of beta-hexosaminidase and the recruitment of Lamp-1 to frustrated phagosomes. Lysosomes of RAW264.7 macrophages were labeled with cathepsinD-mCherry to visualize their movements towards frustrated phagosomes. Lysosomes saltatory movements were markedly slowed down compared to cells layered on non-opsonized patterns. In addition, the linearity of the trajectories and the frequency and duration of contacts of lysosomes with frustrated phagosomes were measured.¬¬¬¬¬¬¬¬ Using PP2 we showed that instant velocity, pauses and frequency of lysosome/phagosome contacts were at least in part dependent on Src tyrosine kinases. This experimental set-up is the first step towards deciphering molecular mechanisms which are involved in lysosome movements in the cytoplasm (directionality, docking and fusion using RNA interference, pharmacological inhibition or mutant expression.

  10. Physico-chemical Properties and Bioactivities of a Glycoconjugate LbGp5B from Lycium barbarum L.

    Institute of Scientific and Technical Information of China (English)

    PENG,Xue-Mei(彭雪梅); PENG,Xue-Mei; QI,Chun-Hui(齐春会); QI,Chun-Hui; TIAN,Geng-Yuan (田庚元); TIAN,Geng-Yuan; ZHANG,Yong-Xiang(张永详); ZHANG,Yong-Xiang

    2001-01-01

    A glycoconjugatedesignated as LbGp5B was isolated from the fruit of Lyciun barbarum L. and purified to homogeneity by gel filtration .LbGp5B is composed of rhamnose (Rha), arabinose (Ara), galactose (Gal), glucose (Glc), galacturonic acid (GalA) and seveateen amino acids. The molecular weight of LbGp5B was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and by matrix-asisted laser desorption/ionization (MALDI) time of fight (T OF) mass spectrometry (MS). The preliminary experiments showed that LbGp5B promoted splenocyte proliferation in mice and inhihited the peroxidation of low density lipoprotein (LDL).

  11. MUC5B silencing reduces chemo-resistance of MCF-7 breast tumor cells and impairs maturation of dendritic cells.

    Science.gov (United States)

    García, Enrique P; Tiscornia, Inés; Libisch, Gabriela; Trajtenberg, Felipe; Bollati-Fogolín, Mariela; Rodríguez, Ernesto; Noya, Verónica; Chiale, Carolina; Brossard, Natalie; Robello, Carlos; Santiñaque, Federico; Folle, Gustavo; Osinaga, Eduardo; Freire, Teresa

    2016-05-01

    Mucins participate in cancer progression by regulating cell growth, adhesion, signaling, apoptosis or chemo-resistance to drugs. The secreted mucin MUC5B, the major component of the respiratory tract mucus, is aberrantly expressed in breast cancer, where it could constitute a cancer biomarker. In this study we evaluated the role of MUC5B in breast cancer by gene silencing the MUC5B expression with short hairpin RNA on MCF-7 cells. We found that MUC5B-silenced MCF-7 cells have a reduced capacity to grow, adhere and form cell colonies. Interestingly, MUC5B knock-down increased the sensitivity to death induced by chemotherapeutic drugs. We also show that MUC5B silencing impaired LPS-maturation of DCs, and production of cytokines. Furthermore, MUC5B knock-down also influenced DC-differentiation and activation since it resulted in an upregulation of IL-1β, IL-6 and IL-10, cytokines that might be involved in cancer progression. Thus, MUC5B could enhance the production of LPS-induced cytokines, suggesting that the use of MUC5B-based cancer vaccines combined with DC-maturation stimuli, could favor the induction of an antitumor immune response.

  12. Ouabain-induced internalization and lysosomal degradation of the Na+/K+-ATPase.

    Science.gov (United States)

    Cherniavsky-Lev, Marina; Golani, Ofra; Karlish, Steven J D; Garty, Haim

    2014-01-10

    Internalization of the Na(+)/K(+)-ATPase (the Na(+) pump) has been studied in the human lung carcinoma cell line H1299 that expresses YFP-tagged α1 from its normal genomic localization. Both real-time imaging and surface biotinylation have demonstrated internalization of α1 induced by ≥100 nm ouabain which occurs in a time scale of hours. Unlike previous studies in other systems, the ouabain-induced internalization was insensitive to Src or PI3K inhibitors. Accumulation of α1 in the cells could be augmented by inhibition of lysosomal degradation but not by proteosomal inhibitors. In agreement, the internalized α1 could be colocalized with the lysosomal marker LAMP1 but not with Golgi or nuclear markers. In principle, internalization could be triggered by a conformational change of the ouabain-bound Na(+)/K(+)-ATPase molecule or more generally by the disruption of cation homeostasis (Na(+), K(+), Ca(2+)) due to the partial inhibition of active Na(+) and K(+) transport. Overexpression of ouabain-insensitive rat α1 failed to inhibit internalization of human α1 expressed in the same cells. In addition, incubating cells in a K(+)-free medium did not induce internalization of the pump or affect the response to ouabain. Thus, internalization is not the result of changes in the cellular cation balance but is likely to be triggered by a conformational change of the protein itself. In physiological conditions, internalization may serve to eliminate pumps that have been blocked by endogenous ouabain or other cardiac glycosides. This mechanism may be required due to the very slow dissociation of the ouabain·Na(+)/K(+)-ATPase complex.

  13. Targeted Polymeric Nanoparticles for Brain Delivery of High Molecular Weight Molecules in Lysosomal Storage Disorders.

    Directory of Open Access Journals (Sweden)

    Marika Salvalaio

    Full Text Available Lysosomal Storage Disorders (LSDs are a group of metabolic syndromes, each one due to the deficit of one lysosomal enzyme. Many LSDs affect most of the organ systems and overall about 75% of the patients present neurological impairment. Enzyme Replacement Therapy, although determining some systemic clinical improvements, is ineffective on the CNS disease, due to enzymes' inability to cross the blood-brain barrier (BBB. With the aim to deliver the therapeutic enzymes across the BBB, we here assayed biodegradable and biocompatible PLGA-nanoparticles (NPs in two murine models for LSDs, Mucopolysaccharidosis type I and II (MPS I and MPS II. PLGA-NPs were modified with a 7-aminoacid glycopeptide (g7, yet demonstrated to be able to deliver low molecular weight (MW molecules across the BBB in rodents. We specifically investigated, for the first time, the g7-NPs ability to transfer a model drug (FITC-albumin with a high MW, comparable to the enzymes to be delivered for LSDs brain therapy. In vivo experiments, conducted on wild-type mice and knockout mouse models for MPS I and II, also included a whole series of control injections to obtain a broad preliminary view of the procedure efficiency. Results clearly showed efficient BBB crossing of albumin in all injected mice, underlying the ability of NPs to deliver high MW molecules to the brain. These results encourage successful experiments with enzyme-loaded g7-NPs to deliver sufficient amounts of the drug to the brain district on LSDs, where exerting a corrective effect on the pathological phenotype.

  14. Preubiquitinated chimeric ErbB2 is constitutively endocytosed and subsequently degraded in lysosomes

    Energy Technology Data Exchange (ETDEWEB)

    Vuong, Tram Thu [Institute of Clinical Medicine, University of Oslo, Rikshospitalet, 0027 Oslo (Norway); Berger, Christian [Department of Pathology, Oslo University Hospital, Rikshospitalet, P.O. Box 4950 Nydalen, 0424 Oslo (Norway); Bertelsen, Vibeke; Rødland, Marianne Skeie [Institute of Clinical Medicine, University of Oslo, Rikshospitalet, 0027 Oslo (Norway); Stang, Espen [Department of Pathology, Oslo University Hospital, Rikshospitalet, P.O. Box 4950 Nydalen, 0424 Oslo (Norway); Madshus, Inger Helene, E-mail: i.h.madshus@medisin.uio.no [Institute of Clinical Medicine, University of Oslo, Rikshospitalet, 0027 Oslo (Norway); Department of Pathology, Oslo University Hospital, Rikshospitalet, P.O. Box 4950 Nydalen, 0424 Oslo (Norway)

    2013-02-01

    The oncoprotein ErbB2 is endocytosis-deficient, probably due to its interaction with Heat shock protein 90. We previously demonstrated that clathrin-dependent endocytosis of ErbB2 is induced upon incubation of cells with Ansamycin derivatives, such as geldanamycin and its derivative 17-AAG. Furthermore, we have previously demonstrated that a preubiquitinated chimeric EGFR (EGFR-Ub{sub 4}) is constitutively endocytosed in a clathrin-dependent manner. We now demonstrate that also an ErbB2-Ub{sub 4} chimera is endocytosed constitutively and clathrin-dependently. Upon expression, the ErbB2-Ub{sub 4} was further ubiquitinated, and by Western blotting, we demonstrated the formation of both Lys48-linked and Lys63-linked polyubiquitin chains. ErbB2-Ub{sub 4} was constitutively internalized and eventually sorted to late endosomes and lysosomes where the fusion protein was degraded. ErbB2-Ub{sub 4} was not cleaved prior to internalization. Interestingly, over-expression of Ubiquitin Interaction Motif-containing dominant negative fragments of the clathrin adaptor proteins epsin1 and Eps15 negatively affected endocytosis of ErbB2. Altogether, this argues that ubiquitination is sufficient to induce clathrin-mediated endocytosis and lysosomal degradation of the otherwise plasma membrane localized ErbB2. Also, it appears that C-terminal cleavage is not required for endocytosis. -- Highlights: ► A chimera containing ErbB2 and a tetra-Ubiquitin chain internalizes constitutively. ► Receptor fragmentation is not required for endocytosis of ErbB2. ► Ubiquitination is sufficient to induce endocytosis and degradation of ErbB2. ► ErbB2-Ub4 is internalized clathrin-dependently.

  15. Presenilin 1 regulates epidermal growth factor receptor turnover and signaling in the endosomal-lysosomal pathway.

    Science.gov (United States)

    Repetto, Emanuela; Yoon, Il-Sang; Zheng, Hui; Kang, David E

    2007-10-26

    Mutations in the gene encoding presenilin 1 (PS1) cause the most aggressive form of early-onset familial Alzheimer disease. In addition to its well established role in Abeta production and Notch proteolysis, PS1 has been shown to mediate other physiological activities, such as regulation of the Wnt/beta-catenin signaling pathway, modulation of phosphatidylinositol 3-kinase/Akt and MEK/ERK signaling, and trafficking of select membrane proteins and/or intracellular vesicles. In this study, we present evidence that PS1 is a critical regulator of a key signaling receptor tyrosine kinase, epidermal growth factor receptor (EGFR). Specifically, EGFR levels were robustly increased in fibroblasts deficient in both PS1 and PS2 (PS(-/-)) due to delayed turnover of EGFR protein. Stable transfection of wild-type PS1 but not PS2 corrected EGFR to levels comparable to PS(+/+) cells, while FAD PS1 mutations showed partial loss of activity. The C-terminal fragment of PS1 was sufficient to fully reduce EGFR levels. In addition, the rapid ligand-induced degradation of EGFR was markedly delayed in PS(-/-) cells, resulting in prolonged signal activation. Despite the defective turnover of EGFR, ligand-induced autophosphorylation, ubiquitination, and endocytosis of EGFR were not affected by the lack of PS1. Instead, the trafficking of EGFR from early endosomes to lysosomes was severely delayed by PS1 deficiency. Elevation of EGFR was also seen in brains of adult mice conditionally ablated in PS1 and in skin tumors associated with the loss of PS1. These findings demonstrate a critical role of PS1 in the trafficking and turnover of EGFR and suggest potential pathogenic effects of elevated EGFR as well as perturbed endosomal-lysosomal trafficking in cell cycle control and Alzheimer disease.

  16. KIF5B and Nup358 Cooperatively Mediate the Nuclear Import of HIV-1 during Infection.

    Directory of Open Access Journals (Sweden)

    Adarsh Dharan

    2016-06-01

    Full Text Available Following envelope mediated fusion, the HIV-1 core is released into the cytoplasm of the target cell and undergoes a series of trafficking and replicative steps that result in the nuclear import of the viral genome, which ultimately leads to the integration of the proviral DNA into the host cell genome. Previous studies have found that disruption of microtubules, or depletion of dynein or kinesin motors, perturb the normal uncoating and trafficking of the viral genome. Here, we show that the Kinesin-1 motor, KIF5B, induces a relocalization of the nuclear pore component Nup358 into the cytoplasm during HIV-1 infection. This relocalization of NUP358 is dependent on HIV-1 capsid, and NUP358 directly associates with viral cores following cytoplasmic translocation. This interaction between NUP358 and the HIV-1 core is dependent on multiple capsid binding surfaces, as this association is not observed following infection with capsid mutants in which a conserved hydrophobic binding pocket (N74D or the cyclophilin A binding loop (P90A is disrupted. KIF5B knockdown also prevents the nuclear entry and infection by HIV-1, but does not exert a similar effect on the N74D or P90A capsid mutants which do not rely on Nup358 for nuclear import. Finally, we observe that the relocalization of Nup358 in response to CA is dependent on cleavage protein and polyadenylation factor 6 (CPSF6, but independent of cyclophilin A. Collectively, these observations identify a previously unappreciated role for KIF5B in mediating the Nup358 dependent nuclear import of the viral genome during infection.

  17. High proportion of CD5+ B cells in infants predicts development of allergic disease.

    Science.gov (United States)

    Lundell, Anna-Carin; Johansen, Susanne; Adlerberth, Ingegerd; Wold, Agnes E; Hesselmar, Bill; Rudin, Anna

    2014-07-15

    Delayed maturation of the immune system has been proposed to be a risk factor for development of allergy, but B cell maturation in relation to allergic disease has not been examined. B cells lose CD5 and acquire CD27 during maturation from immature via mature/naive to Ig-secreting cells and memory cells. We sought to investigate B cell maturation in relation to development of allergic disease and sensitization in the FARMFLORA birth cohort including 65 Swedish children. Total B cell numbers, proportions of CD5(+) and CD27(+) B cells, and levels of IgM, IgG, IgA, and IgE were measured in blood on repeated occasions from birth to 36 mo of age, and related to allergic disease and sensitization at 18 and 36 mo of age with multivariate discriminant analysis. We also compared the expression of CD24 and CD38 within CD5(+) and CD5(neg) B cells in children and in adults. We found that infants with a high proportion of CD5(+) B cells at birth and at 1 mo of age had an increased risk for having allergic disease at 18 and 36 mo of life. Further, the proportions of CD5(+) B cells at 1 mo of age were inversely correlated with total IgG levels at 18 and 36 mo of age. The majority of the CD5(+) B cells were of a CD24(hi/+)CD38(hi/+) immature/naive phenotype at birth (97%), 7 y of age (95%), and in adults (86%). These results suggest that development of allergic disease is preceded by an immaturity in neonatal B cell phenotype.

  18. Using NS5B Sequencing for Hepatitis C Virus Genotyping Reveals Discordances with Commercial Platforms

    Science.gov (United States)

    Chueca, Natalia; Rivadulla, Isidro; Lovatti, Rubén; Reina, Gabriel; Blanco, Ana; Fernandez-Caballero, Jose Angel; Cardeñoso, Laura; Rodriguez-Granjer, Javier; Fernandez-Alonso, Miriam; Aguilera, Antonio; Alvarez, Marta

    2016-01-01

    We aimed to evaluate the correct assignment of HCV genotypes by three commercial methods—Trugene HCV genotyping kit (Siemens), VERSANT HCV Genotype 2.0 assay (Siemens), and Real-Time HCV genotype II (Abbott)—compared to NS5B sequencing. We studied 327 clinical samples that carried representative HCV genotypes of the most frequent geno/subtypes in Spain. After commercial genotyping, the sequencing of a 367 bp fragment in the NS5B gene was used to assign genotypes. Major discrepancies were defined, e.g. differences in the assigned genotype by one of the three methods and NS5B sequencing, including misclassification of subtypes 1a and 1b. Minor discrepancies were considered when differences at subtype levels, other than 1a and 1b, were observed. The overall discordance with the reference method was 34% for Trugene and 15% for VERSANT HCV2.0. The Abbott assay correctly identified all 1a and 1b subtypes, but did not subtype all the 2, 3, 4 and 5 (34%) genotypes. Major discordances were found in 16% of cases for Trugene HCV, and the majority were 1b- to 1a-related discordances; major discordances were found for VERSANT HCV 2.0 in 6% of cases, which were all but one 1b to 1a cases. These results indicated that the Trugene assay especially, and to a lesser extent, Versant HCV 2.0, can fail to differentiate HCV subtypes 1a and 1b, and lead to critical errors in clinical practice for correctly using directly acting antiviral agents. PMID:27097040

  19. Superhard W0.5Ta0.5B nanowires prepared at ambient pressure

    Science.gov (United States)

    Yeung, Michael T.; Akopov, Georgiy; Lin, Cheng-Wei; King, Daniel J.; Li, Rebecca L.; Sobell, Zachary C.; Mohammadi, Reza; Kaner, Richard B.

    2016-11-01

    The primary focus of superhard materials development has relied on chemical tuning of the crystal structure. While these intrinsic effects are invaluable, there is a strong possibility that hardness can be dramatically enhanced using extrinsic effects. Here, we demonstrate that the superhard metal W0.5Ta0.5B can be prepared as nanowires through flux growth. The aspect ratios of the nanowires are controlled by the concentration of boride in molten aluminum, and the nanowires grow along the boron-boron chains, confirmed via electron diffraction. This morphology inherently results from the crystal habit of borides and can inspire the development of other nanostructured materials.

  20. Characterization of storage material in cultured fibroblasts by specific lectin binding in lysosomal storage diseases.

    Science.gov (United States)

    Virtanen, I; Ekblom, P; Laurila, P; Nordling, S; Raivio, K O; Aula, P

    1980-11-01

    The lysosomal storage material in cultured fibroblasts from patients with various lysosomal storage diseases was characterized by fluorescence microscopy using lectins specific for different saccharide moieties. In normal fibroblasts and cultured amniotic fluid cells lectins specific for mannosyl and glucosyl moieties, Con A and LcA gave a bright perinuclear cytoplasmic staining corresponding to the localization of endoplasmic reticulum in the cells. All other lectins stained the Golgi apparatus as a juxtanuclear reticular structure. In fucosidosis fibroblasts, only lectins specific for fucosyl groups LTA and UEA, distinctly stained the lysosomal inclusions. The lysosomes in mannosidosis fibroblasts did not react with Con A and LcA, both specific for mannosyl moieties of glycoconjugates, but were brightly labeled with WGA, a lectin specific for N-acetyl glucosaminyl moieties. In I-cell fibroblasts, the numerous perinuclear phase-dense granules, representing abnormal lysosomes, were labeled with every lectin used. In fibroblasts from patients with Salla disease, a newly discovered lysosomal storage disorder, the lysosomes were brightly stained only with LPA, indicating the presence of increased amounts of sialic acid residues in the lysosomal inclusions.

  1. A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis.

    Science.gov (United States)

    Samie, Mohammad; Wang, Xiang; Zhang, Xiaoli; Goschka, Andrew; Li, Xinran; Cheng, Xiping; Gregg, Evan; Azar, Marlene; Zhuo, Yue; Garrity, Abigail G; Gao, Qiong; Slaugenhaupt, Susan; Pickel, Jim; Zolov, Sergey N; Weisman, Lois S; Lenk, Guy M; Titus, Steve; Bryant-Genevier, Marthe; Southall, Noel; Juan, Marugan; Ferrer, Marc; Xu, Haoxing

    2013-09-16

    Phagocytosis of large extracellular particles such as apoptotic bodies requires delivery of the intracellular endosomal and lysosomal membranes to form plasmalemmal pseudopods. Here, we identified mucolipin TRP channel 1 (TRPML1) as the key lysosomal Ca2+ channel regulating focal exocytosis and phagosome biogenesis. Both particle ingestion and lysosomal exocytosis are inhibited by synthetic TRPML1 blockers and are defective in macrophages isolated from TRPML1 knockout mice. Furthermore, TRPML1 overexpression and TRPML1 agonists facilitate both lysosomal exocytosis and particle uptake. Using time-lapse confocal imaging and direct patch clamping of phagosomal membranes, we found that particle binding induces lysosomal PI(3,5)P2 elevation to trigger TRPML1-mediated lysosomal Ca2+ release specifically at the site of uptake, rapidly delivering TRPML1-resident lysosomal membranes to nascent phagosomes via lysosomal exocytosis. Thus phagocytic ingestion of large particles activates a phosphoinositide- and Ca2+-dependent exocytosis pathway to provide membranes necessary for pseudopod extension, leading to clearance of senescent and apoptotic cells in vivo.

  2. Autophagy-lysosomal pathway is involved in lipid degradation in rat liver.

    Science.gov (United States)

    Skop, V; Cahová, M; Papáčková, Z; Páleníčková, E; Daňková, H; Baranowski, M; Zabielski, P; Zdychová, J; Zídková, J; Kazdová, L

    2012-01-01

    We present data supporting the hypothesis that the lysosomal-autophagy pathway is involved in the degradation of intracellular triacylglycerols in the liver. In primary hepatocytes cultivated in the absence of exogenous fatty acids (FFA), both inhibition of autophagy flux (asparagine) or lysosomal activity (chloroquine) decreased secretion of VLDL (very low density lipoproteins) and formation of FFA oxidative products while the stimulation of autophagy by rapamycine increased some of these parameters. Effect of rapamycine was completely abolished by inactivation of lysosomes. Similarly, when autophagic activity was influenced by cultivating the hepatocytes in "starving" (amino-acid poor medium) or "fed" (serum-supplemented medium) conditions, VLDL secretion and FFA oxidation mirrored the changes in autophagy being higher in starvation and lower in fed state. Autophagy inhibition as well as lysosomal inactivation depressed FFA and DAG (diacylglycerol) formation in liver slices in vitro. In vivo, intensity of lysosomal lipid degradation depends on the formation of autophagolysosomes, i.e. structures bringing the substrate for degradation and lysosomal enzymes into contact. We demonstrated that lysosomal lipase (LAL) activity in liver autophagolysosomal fraction was up-regulated in fasting and down-regulated in fed state together with the increased translocation of LAL and LAMP2 proteins from lysosomal pool to this fraction. Changes in autophagy intensity (LC3-II/LC3-I ratio) followed a similar pattern.

  3. The phytoestrogen genistein modulates lysosomal metabolism and transcription factor EB (TFEB) activation.

    Science.gov (United States)

    Moskot, Marta; Montefusco, Sandro; Jakóbkiewicz-Banecka, Joanna; Mozolewski, Paweł; Węgrzyn, Alicja; Di Bernardo, Diego; Węgrzyn, Grzegorz; Medina, Diego L; Ballabio, Andrea; Gabig-Cimińska, Magdalena

    2014-06-13

    Genistein (5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) has been previously proposed as a potential drug for use in substrate reduction therapy for mucopolysaccharidoses, a group of inherited metabolic diseases caused by mutations leading to inefficient degradation of glycosaminoglycans (GAGs) in lysosomes. It was demonstrated that this isoflavone can cross the blood-brain barrier, making it an especially desirable potential drug for the treatment of neurological symptoms present in most lysosomal storage diseases. So far, no comprehensive genomic analyses have been performed to elucidate the molecular mechanisms underlying the effect elicited by genistein. Therefore, the aim of this work was to identify the genistein-modulated gene network regulating GAG biosynthesis and degradation, taking into consideration the entire lysosomal metabolism. Our analyses identified over 60 genes with known roles in lysosomal biogenesis and/or function whose expression was enhanced by genistein. Moreover, 19 genes whose products are involved in both GAG synthesis and degradation pathways were found to be remarkably differentially regulated by genistein treatment. We found a regulatory network linking genistein-mediated control of transcription factor EB (TFEB) gene expression, TFEB nuclear translocation, and activation of TFEB-dependent lysosome biogenesis to lysosomal metabolism. Our data indicate that the molecular mechanism of genistein action involves not only impairment of GAG synthesis but more importantly lysosomal enhancement via TFEB. These findings contribute to explaining the beneficial effects of genistein in lysosomal storage diseases as well as envisage new therapeutic approaches to treat these devastating diseases.

  4. Protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats.

    Science.gov (United States)

    Roy, Subhro Jyoti; Stanely Mainzen Prince, Ponnian

    2012-11-01

    In the pathology of myocardial infarction, lysosomal lipid peroxidation and resulting enzyme release play an important role. We evaluated the protective effects of sinapic acid on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats. Male Wistar rats were treated with sinapic acid (12 mg/kg body weight) orally daily for 10 days and isoproterenol (100 mg/kg body weight) was injected twice at an interval of 24 h (9th and 10th day). Then, lysosomal lipid peroxidation, lysosomal enzymes in serum, heart homogenate, lysosomal fraction and myocardial infarct size were measured. Isoproterenol induced myocardial infarcted rats showed a significant increase in serum creatine kinase-MB and lysosomal lipid peroxidation. The activities of β-glucuronidase, β-galactosidase, cathepsin-B and D were significantly increased in serum, heart and the activities of β-glucuronidase and cathepsin-D were significantly decreased in lysosomal fraction of myocardial infarcted rats. Pre-and-co-treatment with sinapic acid normalized all the biochemical parameters and reduced myocardial infarct size in myocardial infarcted rats. In vitro studies confirmed the free radical scavenging effects of sinapic acid. The possible mechanisms for the observed effects are attributed to sinapic acid's free radical scavenging and membrane stabilizing properties. Thus, sinapic acid has protective effects on lysosomal dysfunction in isoproterenol induced myocardial infarcted rats.

  5. The Octyl Ester of Ginsenoside Rh2 Induces Lysosomal Membrane Permeabilization via Bax Translocation.

    Science.gov (United States)

    Chen, Fang; Zhang, Bing; Sun, Yong; Xiong, Zeng-Xing; Peng, Han; Deng, Ze-Yuan; Hu, Jiang-Ning

    2016-04-25

    Ginsenoside Rh2 is a potential pharmacologically active metabolite of ginseng. Previously, we have reported that an octyl ester derivative of ginsenoside Rh2 (Rh2-O), has been confirmed to possess higher bioavailability and anticancer effect than Rh2 in vitro. In order to better assess the possibility that Rh2-O could be used as an anticancer compound, the underlying mechanism was investigated in this study. The present results revealed that lysosomal destabilization was involved in the early stage of cell apoptosis in HepG2 cells induced by Rh2-O. Rh2-O could induce an early lysosomal membrane permeabilization with the release of lysosomal protease cathepsins to the cytosol in HepG2 cells. The Cat B inhibitor (leu) and Cat D inhibitor (pepA) inhibited Rh2-O-induced HepG2 apoptosis as well as tBid production and Δφm depolarization, indicating that lysosomal permeabilization occurred upstream of mitochondrial dysfunction. In addition, Rh2-O induced a significant increase in the protein levels of DRAM1 and Bax (p lysosomes of HepG2 cells. Knockdown of Bax partially inhibited Rh2-O-induced Cat D release from lysosomes. Thus it was concluded that Rh2-O induced apoptosis of HepG2 cells through activation of the lysosomal-mitochondrial apoptotic pathway involving the translocation of Bax to the lysosome.

  6. Expression Pattern of Lysosomal Protective Protein/Cathepsin A: Implications for the analysis of hnman galactosialidosis

    NARCIS (Netherlands)

    R.J. Rottier (Robbert)

    1998-01-01

    textabstractThe lysosome represents a well characterized, membrane-contained intracellular digestive system. Iu this important organelle a battery of lysosomal hydro lases and accessory proteins work in concert on the step-wise conversion of macromolecular substrates into small biological building b

  7. Vps33B is required for delivery of endocytosed cargo to lysosomes

    NARCIS (Netherlands)

    Galmes, Romain; ten Brink, Corlinda; Oorschot, Viola; Veenendaal, Tineke; Jonker, Caspar; van der Sluijs, Peter; Klumperman, Judith

    2015-01-01

    In mammalian cells Vps33B forms a complex with VIPAS-39 that is recruited to recycling endosomes. Here we show that when Vps33B is expressed together with Rab7-interacting lysosomal protein (RILP) it is recruited to late endosomes-lysosomes and that depletion of Vps33B impairs late

  8. Glycogenosis type II : cloning and characterization of the human lysosomal α-glucosidase gene

    NARCIS (Netherlands)

    E.H. Hoefsloot (Lies)

    1991-01-01

    textabstractGlycogenosis type II is a lysosomal storage disorder. Characteristic features are heart failure and generalized muscle weakness. The disease is caused by the inherited deficiency of acid α-glucosidase, the enzyme responsible for the degradation of lysosomal glycogen. The aim of the work

  9. Lysosomal cholesterol accumulation : driver on the road to inflammation during atherosclerosis and non-alcoholic steatohepatitis

    NARCIS (Netherlands)

    Hendrikx, T.; Walenbergh, S. M. A.; Hofker, M. H.; Shiri-Sverdlov, R.

    2014-01-01

    Many studies show an association between the accumulation of cholesterol inside lysosomes and the progression towards inflammatory disease states that are closely related to obesity. While in the past, the knowledge regarding lysosomal cholesterol accumulation was limited to its association with pla

  10. Calpains mediate epithelial-cell death during mammary gland involution: mitochondria and lysosomal destabilization.

    Science.gov (United States)

    Arnandis, T; Ferrer-Vicens, I; García-Trevijano, E R; Miralles, V J; García, C; Torres, L; Viña, J R; Zaragozá, R

    2012-09-01

    Our aim was to elucidate the physiological role of calpains (CAPN) in mammary gland involution. Both CAPN-1 and -2 were induced after weaning and its activity increased in isolated mitochondria and lysosomes. CAPN activation within the mitochondria could trigger the release of cytochrome c and other pro-apoptotic factors, whereas in lysosomes it might be essential for tissue remodeling by releasing cathepsins into the cytosol. Immunohistochemical analysis localized CAPNs mainly at the luminal side of alveoli. During weaning, CAPNs translocate to the lysosomes processing membrane proteins. To identify these substrates, lysosomal fractions were treated with recombinant CAPN and cleaved products were identified by 2D-DIGE. The subunit b(2) of the v-type H(+) ATPase is proteolyzed and so is the lysosomal-associated membrane protein 2a (LAMP2a). Both proteins are also cleaved in vivo. Furthermore, LAMP2a cleavage was confirmed in vitro by addition of CAPNs to isolated lysosomes and several CAPN inhibitors prevented it. Finally, in vivo inhibition of CAPN1 in 72-h-weaned mice decreased LAMP2a cleavage. Indeed, calpeptin-treated mice showed a substantial delay in tissue remodeling and involution of the mammary gland. These results suggest that CAPNs are responsible for mitochondrial and lysosomal membrane permeabilization, supporting the idea that lysosomal-mediated cell death is a new hallmark of mammary gland involution.

  11. 1,25-Dihydroxyvitamin D3-mediated intestinal calcium transport. Biochemical identification of lysosomes containing calcium and calcium-binding protein (calbindin-D28K).

    Science.gov (United States)

    Nemere, I; Leathers, V; Norman, A W

    1986-12-05

    A variety of intestinal cell organelles and proteins have been proposed to mediate 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3)-stimulated calcium absorption. In the present study biochemical analyses were undertaken to determine the subcellular localization of 45Ca after calcium transport in vivo in ligated duodenal loops of vitamin D-deficient chicks injected with 1.3 nmol of 1,25-(OH)2D3 or vehicle 15 h prior to experimentation. Separation of Golgi, mitochondria, basal lateral membrane, and lysosome fractions in the epithelial homogenates was achieved by differential sedimentation followed by centrifugation in Percoll gradients and evaluation of appropriate marker enzyme activities. Both vitamin D-deficient and 1,25-(OH)2D3-treated chicks had the highest levels of 45Ca-specific activity in lysosomal fractions. The lysosomes were also the only organelles to exhibit a 1,25-(OH)2D3-mediated difference in calcium content, increasing to 138% of controls. Lysosomes prepared from 1,25-(OH)2D3-treated chicks also contained the greatest levels of immunoreactive calbindin-D28k (calcium-binding protein). Chloroquine, a drug known to interfere with lysosomal function, was tested and found to inhibit 1,25-(OH)2D3-stimulated intestinal calcium absorption. Neither 1,25-(OH)2D3 nor chloroquine affected [3H]2O transport. In additional experiments, microsomal membranes (105,000 X g pellets) were subjected to gradient centrifugation. The highest levels of 45Ca-specific activity and calcium-binding protein in material from 1,25-(OH)2D3-treated chicks were found in fractions denser than endoplasmic reticulum and may represent endocytic vesicles. In studies on intestinal mucosa of 1,25-(OH)2D3-treated birds fractionated after 30 min of exposure to lumenal Ca2+ or Ca2+ plus chloroquine, 45Ca was found to accumulate in lysosomes and putative endocytic vesicles, relative to controls. A mechanism involving vesicular flow is proposed for 1,25-(OH)2D3-mediated intestinal calcium transport

  12. Classification of HCV NS5B Polymerase Inhibitors Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Changyuan Yu

    2012-03-01

    Full Text Available Using a support vector machine (SVM, three classification models were built to predict whether a compound is an active or weakly active inhibitor based on a dataset of 386 hepatitis C virus (HCV NS5B polymerase NNIs (non-nucleoside analogue inhibitors fitting into the pocket of the NNI III binding site. For each molecule, global descriptors, 2D and 3D property autocorrelation descriptors were calculated from the program ADRIANA.Code. Three models were developed with the combination of different types of descriptors. Model 2 based on 16 global and 2D autocorrelation descriptors gave the highest prediction accuracy of 88.24% and MCC (Matthews correlation coefficient of 0.789 on test set. Model 1 based on 13 global descriptors showed the highest prediction accuracy of 86.25% and MCC of 0.732 on external test set (including 80 compounds. Some molecular properties such as molecular shape descriptors (InertiaZ, InertiaX and Span, number of rotatable bonds (NRotBond, water solubility (LogS, and hydrogen bonding related descriptors performed important roles in the interactions between the ligand and NS5B polymerase.

  13. Electrochemical treatment of Procion Black 5B using cylindrical flow reactor--a pilot plant study.

    Science.gov (United States)

    Raghu, S; Basha, C Ahmed

    2007-01-10

    The paper presents the results of an efficient electrochemical treatment of Procion Black 5B--a pilot plant study. Experiments were conducted at different current densities and selected electrolyte medium using Ti/RuO2 as anode, stainless-steel as cathode in a cylindrical flow reactor. By cyclic voltammetric analysis, the best condition for maximum redox reaction rate was found to be in NaCl medium. During the various stages of electrolysis, parameters such as COD, colour, FTIR, UV-vis spectra studies, energy consumption and mass transfer coefficient were computed and presented. The experimental results showed that the electrochemical oxidation process could effectively remove colour and the chemical oxygen demand (COD) from the synthetic dye effluent. The maximum COD reduction and colour removal efficiencies were 74.05% and 100%, respectively. Probable theory, reaction mechanism and modeling were proposed for the oxidation of dye effluent. The results obtained reveal the feasibilities of application of electrochemical treatment for the degradation of Procion Black 5B.

  14. Toksisitas Bacillus sphaericus H-5a5b (VCRC B42 terhadap larva Culex quiquefascitus

    Directory of Open Access Journals (Sweden)

    Salamun Salamun

    1996-12-01

    Full Text Available Bacillus sphaericus H-5a5b is an entomoathogenic agent which showing high potency for vector control, highly specific to insect target, and do not produce any adverse environmental impact. Such agent would be promising for vector control in Indonesia. The present studies is aimed to observing the toxicity status of Bacillus sphaericus H-5a5b (VCRC B42 against Culex quiquefascitus larvae. The larvae of Culex quiquefascitus were reared under the laboratory conditions. The powder of VCRC B42 were prepared by Vector Control Research Centre (VCRC, India. Bioassays on VCRC B42 agains larvae of Culex quiquefascitus were also carried out under the laboratory conditions. The value of LD50 and LT50 for VCRC B42 were decided using probit analysis. The toxicity status was compared with standart of VCRC India. The result of the bioassays showed that the VCRC B42 was moderately toxic agains larvae of the Culex quiquefascitus. The value of LD50 for VCRC B42 was 0.058 mg/l and LT50 about 27 hours.

  15. High sphingomyelin levels induce lysosomal damage and autophagy dysfunction in Niemann Pick disease type A

    Science.gov (United States)

    Gabandé-Rodríguez, E; Boya, P; Labrador, V; Dotti, C G; Ledesma, M D

    2014-01-01

    Niemann Pick disease type A (NPA), which is caused by loss of function mutations in the acid sphingomyelinase (ASM) gene, is a lysosomal storage disorder leading to neurodegeneration. Yet, lysosomal dysfunction and its consequences in the disease are poorly characterized. Here we show that undegraded molecules build up in neurons of acid sphingomyelinase knockout mice and in fibroblasts from NPA patients in which autophagolysosomes accumulate. The latter is not due to alterations in autophagy initiation or autophagosome–lysosome fusion but because of inefficient autophago–lysosomal clearance. This, in turn, can be explained by lysosomal membrane permeabilization leading to cytosolic release of Cathepsin B. High sphingomyelin (SM) levels account for these effects as they can be induced in control cells on addition of the lipid and reverted on SM-lowering strategies in ASM-deficient cells. These results unveil a relevant role for SM in autophagy modulation and characterize autophagy anomalies in NPA, opening new perspectives for therapeutic interventions. PMID:24488099

  16. Ubiquitin trafficking to the lysosome: keeping the house tidy and getting rid of unwanted guests.

    Science.gov (United States)

    Purdy, Georgiana E; Russell, David G

    2007-01-01

    Bacterial killing by autophagic delivery to the lysosomal compartment has been shown for Mycobacteria, Streptococcus, Shigella, Legionella and Salmonella, indicating an important role for this conserved trafficking pathway for the control of intracellular bacterial pathogens.(1-5) In a recent study we found that solubilized lysosomes isolated from bone marrow-derived macrophages had potent antibacterial properties against M. tuberculosis and M. smegmatis that were associated with ubiquitin and ubiquitin-derived peptides. We propose that ubiquitinated proteins are delivered to the lysosomal compartment, where degradation by lysosomal proteinases generates ubiquitin-derived peptides with antimycobacterial properties. This surprising finding provokes a number of questions regarding the nature and trafficking of ubiquitin and ubiquitin-modified proteins in mammalian cells. We discuss the possible role(s) that the multivesicular body (MVB), the late endosome and the autophagosome may play in trafficking of ubiquitinated proteins to the lysosome.

  17. The effects of hydrocortisone and glycyrrhizine on the enzyme releases of arylsulfatase and hyaluronidase from lysosomes of liver.

    Science.gov (United States)

    Ozeki, T; Tokawa, Y; Ogasawara, T; Sato, K; Kan, M

    1978-03-15

    Hydrocortisone and glycyrrhizine act as both stabilizers and labilizers of the lysosomes of liver. The effect of both agents on the lysosomes is changeable according to the duration of their administration.

  18. Compensatory Role of Inositol 5-Phosphatase INPP5B to OCRL in Primary Cilia Formation in Oculocerebrorenal Syndrome of Lowe.

    Directory of Open Access Journals (Sweden)

    Na Luo

    Full Text Available Inositol phosphatases are important regulators of cell signaling, polarity, and vesicular trafficking. Mutations in OCRL, an inositol polyphosphate 5-phosphatase, result in Oculocerebrorenal syndrome of Lowe, an X-linked recessive disorder that presents with congenital cataracts, glaucoma, renal dysfunction and mental retardation. INPP5B is a paralog of OCRL and shares similar structural domains. The roles of OCRL and INPP5B in the development of cataracts and glaucoma are not understood. Using ocular tissues, this study finds low levels of INPP5B present in human trabecular meshwork but high levels in murine trabecular meshwork. In contrast, OCRL is localized in the trabecular meshwork and Schlemm's canal endothelial cells in both human and murine eyes. In cultured human retinal pigmented epithelial cells, INPP5B was observed in the primary cilia. A functional role for INPP5B is revealed by defects in cilia formation in cells with silenced expression of INPP5B. This is further supported by the defective cilia formation in zebrafish Kupffer's vesicles and in cilia-dependent melanosome transport assays in inpp5b morphants. Taken together, this study indicates that OCRL and INPP5B are differentially expressed in the human and murine eyes, and play compensatory roles in cilia development.

  19. Metallothionein-3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions.

    Science.gov (United States)

    Lee, Sook-Jeong; Park, Mi-Ha; Kim, Hyun-Jae; Koh, Jae-Young

    2010-08-01

    Cellular zinc plays a key role in lysosomal change and cell death in neurons and astrocytes under oxidative stress. Here, using astrocytes lacking metallothionein-3 (MT3), a potential source of labile zinc in the brain, we studied the role of MT3 in oxidative stress responses. H(2)O(2) induced a large increase in labile zinc in wild-type (WT) astrocytes, but stimulated only a modest rise in MT3-null astrocytes. In addition, H(2)O(2)-induced lysosomal membrane permeabilization (LMP) and cell death were comparably attenuated in MT3-null astrocytes. Expression and glycosylation of Lamp1 (lysosome-associated membrane protein 1) and Lamp2 were increased in MT3-null astrocytes, and the activities of several lysosomal enzymes were significantly reduced, indicating an effect of MT3 on lysosomal components. Consistent with lysosomal dysfunction in MT3-null cells, the level of LC3-II (microtubule-associated protein 1 light chain 3), a marker of early autophagy, was increased by oxidative stress in WT astrocytes, but not in MT3-null cells. Similar changes in Lamp1, LC3, and cathepsin-D were induced by the lysosomal inhibitors bafilomycin A1, chloroquine, and monensin, indicating that lysosomal dysfunction may lie upstream of changes observed in MT3-null astrocytes. Consistent with this idea, lysosomal accumulation of cholesterol and lipofuscin were augmented in MT3-null astrocytes. Similar to the results seen in MT3-null cells, MT3 knockdown by siRNA inhibited oxidative stress-induced increases in zinc and LMP. These results indicate that MT3 may play a key role in normal lysosomal function in cultured astrocytes.

  20. Mild MPP(+) exposure impairs autophagic degradation through a novel lysosomal acidity-independent mechanism.

    Science.gov (United States)

    Miyara, Masatsugu; Kotake, Yaichiro; Tokunaga, Wataru; Sanoh, Seigo; Ohta, Shigeru

    2016-10-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder, but its underlying cause remains unknown. Although recent studies using PD-related neurotoxin MPP(+) suggest autophagy involvement in the pathogenesis of PD, the effect of MPP(+) on autophagic processes under mild exposure, which mimics the slow progressive nature of PD, remains largely unclear. We examined the effect of mild MPP(+) exposure (10 and 200 μM for 48 h), which induces a more slowly developing cell death, on autophagic processes and the mechanistic differences with acute MPP(+) toxicity (2.5 and 5 mM for 24 h). In SH-SY5Y cells, mild MPP(+) exposure predominantly inhibited autophagosome degradation, whereas acute MPP(+) exposure inhibited both autophagosome degradation and basal autophagy. Mild MPP(+) exposure reduced lysosomal hydrolase cathepsin D activity without changing lysosomal acidity, whereas acute exposure decreased lysosomal density. Lysosome biogenesis enhancers trehalose and rapamycin partially alleviated mild MPP(+) exposure induced impaired autophagosome degradation and cell death, but did not prevent the pathogenic response to acute MPP(+) exposure, suggesting irreversible lysosomal damage. We demonstrated impaired autophagic degradation by MPP(+) exposure and mechanistic differences between mild and acute MPP(+) toxicities. Mild MPP(+) toxicity impaired autophagosome degradation through novel lysosomal acidity-independent mechanisms. Sustained mild lysosomal damage may contribute to PD. We examined the effects of MPP(+) on autophagic processes under mild exposure, which mimics the slow progressive nature of Parkinson's disease, in SH-SY5Y cells. This study demonstrated impaired autophagic degradation through a reduction in lysosomal cathepsin D activity without altering lysosomal acidity by mild MPP(+) exposure. Mechanistic differences between acute and mild MPP(+) toxicity were also observed. Sustained mild damage of lysosome may be an underlying cause

  1. Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells.

    Science.gov (United States)

    Groth-Pedersen, Line; Aits, Sonja; Corcelle-Termeau, Elisabeth; Petersen, Nikolaj H T; Nylandsted, Jesper; Jäättelä, Marja

    2012-01-01

    Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 siRNAs was preceded by lysosomal membrane permeabilization, and all identified siRNAs induced several changes in the endo-lysosomal compartment, i.e. increased lysosomal volume (KIF11, KIF20A, KIF25, MYO1G, MYH1), increased cysteine cathepsin activity (KIF20A, KIF25), altered lysosomal localization (KIF25, MYH1, TPM2), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide or cisplatin. Similarly to KIF11 siRNA, the KIF11 inhibitor monastrol induced lysosomal membrane permeabilization and sensitized several cancer cell lines to siramesine. While KIF11 inhibitors are under clinical development as mitotic blockers, our data reveal a new function for KIF11 in controlling lysosomal stability and introduce six other molecular motors as putative cancer drug targets.

  2. Oxidant-induced autophagy and ferritin degradation contribute to epithelial–mesenchymal transition through lysosomal iron

    Science.gov (United States)

    Sioutas, Apostolos; Vainikka, Linda K; Kentson, Magnus; Dam-Larsen, Sören; Wennerström, Urban; Jacobson, Petra; Persson, Hans Lennart

    2017-01-01

    Purpose Transforming growth factor (TGF)-β1 triggers epithelial–mesenchymal transition (EMT) through autophagy, which is partly driven by reactive oxygen species (ROS). The aim of this study was to determine whether leaking lysosomes and enhanced degradation of H-ferritin could be involved in EMT and whether it could be possible to prevent EMT by iron chelation targeting of the lysosome. Materials and methods EMT, H-ferritin, and autophagy were evaluated in TGF-β1-stimulated A549 human lung epithelial cells cultured in vitro using Western blotting, with the additional morphological assessment of EMT. By using immunofluorescence and flow cytometry, lysosomes and ROS were assessed by acridine orange and 6-carboxy-2′,7′-dichlorodihydrofluorescein acetate assays, respectively. Results TGF-β1-stimulated cells demonstrated a loss of H-ferritin, which was prevented by the antioxidant N-acetyl-L-cysteine (NAC) and inhibitors of lysosomal degradation. TGF-β1 stimulation generated ROS and autophagosome formation and led to EMT, which was further promoted by the additional ROS-generating cytokine, tumor necrosis factor-α. Lysosomes of TGF-β1-stimulated cells were sensitized to oxidants but also completely protected by lysosomal loading with dextran-bound deferoxamine (DFO). Autophagy and EMT were prevented by NAC, DFO, and inhibitors of autophagy and lysosomal degradation. Conclusion The findings of this study support the role of enhanced autophagic degradation of H-ferritin as a mechanism for increasing the vulnerability of lysosomes to iron-driven oxidant injury that triggers further autophagy during EMT. This study proposes that lysosomal leakage is a novel pathway of TGF-β1-induced EMT that may be prevented by iron-chelating drugs that target the lysosome.

  3. Cloning and expression of mouse legumain, a lysosomal endopeptidase.

    Science.gov (United States)

    Chen, J M; Dando, P M; Stevens, R A; Fortunato, M; Barrett, A J

    1998-01-01

    Legumain, a recently discovered mammalian cysteine endopeptidase, was found in all mouse tissues examined, but was particularly abundant in kidney and placenta. The distribution in subcellular fractions of mouse and rat kidney showed a lysosomal localization, and activity was detectable only after the organelles were disrupted. Nevertheless, ratios of legumain activity to that of cathepsin B differed considerably between mouse tissues. cDNA encoding mouse legumain was cloned and sequenced, the deduced amino acid sequence proving to be 83% identical to that of the human protein [Chen, Dando, Rawlings, Brown, Young, Stevens, Hewitt, Watts and Barrett (1997) J. Biol. Chem. 272, 8090-8098]. Recombinant mouse legumain was expressed in human embryonic kidney 293 cells by use of a vector containing a cytomegalovirus promoter. The recombinant enzyme was partially purified and found to be an asparagine-specific endopeptidase closely similar to naturally occurring pig kidney legumain. PMID:9742219

  4. Septins as modulators of endo-lysosomal membrane traffic

    Directory of Open Access Journals (Sweden)

    Kyungyeun Song

    2016-11-01

    Full Text Available Septins constitute a family of GTP-binding proteins, which assemble into non-polar filaments in a nucleotide-dependent manner. These filaments can be recruited to negatively charged membrane surfaces. When associated with membranes septin filaments can act as diffusion barriers, which confine subdomains of distinct biological functions. In addition, they serve scaffolding roles by recruiting cytosolic proteins and other cytoskeletal elements. Septins have been implicated in a large variety of membrane-dependent processes, including cytokinesis, signaling, cell migration, and membrane traffic, and several family members have been implicated in disease. However, surprisingly little is known about the molecular mechanisms underlying their biological functions. This review summarizes evidence in support of regulatory roles of septins during endo-lysosomal sorting, with a particular focus on phosphoinositides, which serve as spatial landmarks guiding septin recruitment to distinct subcellular localizations.

  5. Kif5b is an essential forward trafficking motor for the Kv1.5 cardiac potassium channel.

    Science.gov (United States)

    Zadeh, Alireza Dehghani; Cheng, Yvonne; Xu, Hongjian; Wong, Nathan; Wang, Zhuren; Goonasekara, Charitha; Steele, David F; Fedida, David

    2009-10-01

    We have investigated the role of the kinesin I isoform Kif5b in the trafficking of a cardiac voltage-gated potassium channel, Kv1.5. In Kv1.5-expressing HEK293 cells and H9c2 cardiomyoblasts, current densities were increased from control levels of 389 +/- 50.0 and 317 +/- 50.3 pA pF(1), respectively, to 614 +/- 74.3 and 580 +/- 90.9 pA pF(1) in cells overexpressing the Kif5b motor. Overexpression of the Kif5b motor increased Kv1.5 expression additively with several manipulations that reduce channel internalization, suggesting that it is involved in the delivery of the channel to the cell surface. In contrast, expression of a Kif5b dominant negative (Kif5bDN) construct increased Kv1.5 expression non-additively with these manipulations. Thus, the dominant negative acts by indirectly inhibiting endocytosis. The increase in Kv1.5 currents induced by wild-type Kif5b was dependent on Golgi function; a 6 h treatment with Brefeldin A reduced Kv1.5 currents to control levels in Kif5b-overexpressing cells but had little effect on the increase associated with Kif5bDN expression. Finally, expression of the Kif5bDN prior to induction of Kv1.5 in a tetracycline inducible system blocked surface expression of the channel in both HEK293 cells and H9c2 cardiomyoblasts. Thus, Kif5b is essential to anterograde trafficking of a cardiac voltage-gated potassium channel.

  6. Lysosomal exoglycosidases and cathepsin D in colon adenocarcinoma.

    Science.gov (United States)

    Waszkiewicz, Napoleon; Zalewska-Szajda, Beata; Szajda, Sławomir D; Kępka, Alina; Waszkiewicz, Magdalena; Roszkowska-Jakimiec, Wiesława; Wojewódzka-Żeleźniakowicz, Marzena; Milewska, Anna J; Dadan, Jacek; Szulc, Agata; Zwierz, Krzysztof; Ladny, Jerzy R

    2012-01-01

    Changes in the structure of membrane glycoconjugates and activity of glycosidases and proteases are important in tumor formation. The aim of the study was to compare the specific activity of lysosomal exoglycosidases: N-acetyl-β-D-hexosaminidase (HEX), its isoenzymes A (HEX A) and B (HEX B), β-D-galactosidase (GAL), α-fucosidase (FUC), and α-mannosidase (MAN) with the activity of cathepsin D (CD) in serum, urine, and carcinoma tissue of patients with colon adenocarcinoma. The specific activity of HEX, HEX A, HEX B, GAL, FUC, MAN, and CD was assayed in serum, urine, and carcinoma tissue of 12 patients with colon adenocarcinoma. Lysosomal exoglycosidases and CD have similar specific activity in colon adenocarcinoma tissue and urine, which is higher than their activity in serum (with the exception of the highest specific activity of CD in urine). A positive correlation was observed between the specific activity of CD and that of HEX, HEX A, FUC, and MAN in the carcinoma tissue and urine as well as between CD and GAL in the urine of patients with colon adenocarcinoma. Negative correlations were observed between protein levels and the specific activity of HEX, HEX A, FUC, MAN, and CD in the carcinoma tissue and urine, and between protein levels and GAL in urine. Increased degradation and remodeling of glycoconjugates in the colon adenocarcinoma tissue is reflected by increased specific activity of exoglycosidases and CD. The results suggest a strong effect of exoglycosidase action on tissue degradation and a potential role of exoglycosidases in the initiation of proteolysis.

  7. Validation of a Multiplex Tandem Mass Spectrometry Method for the Detection of Selected Lysosomal Storage Diseases in Dried Blood Spots

    Directory of Open Access Journals (Sweden)

    Graziela Schmitt Ribas PhD

    2017-02-01

    Full Text Available Background: Interest in screening methods for lysosomal storage diseases (LSDs has increased in recent years, since early diagnosis and treatment are essential to prevent or attenuate the onset of symptoms and the complications of these diseases. In the current work, we evaluated the performance of tandem mass spectrometry (MS/MS for the detection of some LSDs, aiming the future use of this methodology for the screening of these disorders. Methods: Standard curves and quality control dried blood spots were assayed to evaluate the precision, linearity, and accuracy. A total of 150 controls were grouped according to age and subjected to measurement of lysosomal enzymes deficient in Niemann-Pick A/B, Krabbe, Gaucher, Fabry, Pompe, and Mucopolysaccharidosis type I diseases. Samples from 59 affected patients with a diagnosis of LSDs previously confirmed by fluorimetric methods were analyzed. Results: Data from standard calibration demonstrated good linearity and accuracy and the intra- and interassay precisions varied from 1.17% to 11.60% and 5.39% to 31.24%, respectively. Except for galactocerebrosidase and α- l -iduronidase, enzyme activities were significantly higher in newborns compared to children and adult controls. Affected patients presented enzymatic activities significantly lower compared to all control participants. Conclusion: Our results show that MS/MS is a promising methodology, suitable for the screening of LSDs, but accurate diagnoses will depend on its correlation with other biochemical and/or molecular analyses.

  8. Hydrothermal alteration in the 3.5 b.y. old Onverwacht Group of South Africa

    Science.gov (United States)

    Hart, R.; Dewit, M. J.

    1985-01-01

    K-Ar studies of authigenic and alteration phases from the 3.5 b.y. old Onverwacht group of South Africa delineate hydrothermal metamorphism that ended 3.3 b.y. years ago. A whole rock K-Ar errochron from analysis of barite, dolomite, chert, and serpentinite (komatiite) gives an age of 3.3 b.y. with an intercept of 1,678 + or - 103. The 3.3. b.y. age for the metamorphism in the Onverwacht was confirmed by the Argon isotopes stepwise heating experiments of komatiites and basaltic komatiites from the Onverwacht Group. In addition, the errochron suggests all the phase studied equilibrated with a reservoir of hydrothermal argon with relatively uniform isotopic composition. The concept of hydrothermal activity in the Onverwacht Group is discussed and illustrated with photographs.

  9. Environmental noise characteristics of the MOD5-B (3.2 MW) wind turbine generator

    Science.gov (United States)

    Shepherd, Kevin P.; Hubbard, Harvey H.

    1989-01-01

    Both narrow band and broad band acoustic data were obtained for the MOD5-B wind turbine for a range of wind speeds from 5.8 to 14.3 m/s; for a range of power outputs from 300 to 3100 kW; and for various azimuth angles and distances. Comparisons are made with those of other large machines and with predictions by available methods. The highest levels occur at the lower frequencies and generally decrease as the frequency increases. Low frequency rotational noise components were more intense than expected for an upwind machine and are believed to result from localized wind gradients across the rotor disk due to upwind terrain features. Predicted broad band spectra follow the general trends of the data but tend to underestimate the levels in the frequency range where the turbulent boundary layer-trailing edge interaction noise is expected to be significant.

  10. C5b-9-targeted molecular MR imaging in rats with Heymann nephritis: a new approach in the evaluation of nephrotic syndrome.

    Directory of Open Access Journals (Sweden)

    Qiang Huang

    Full Text Available Membranous nephropathy (MN is the major cause of adult nephrotic syndrome, which severely affects patients' quality of life. Currently, percutaneous renal biopsy is required to definitively diagnose MN. However, this technique is invasive and may cause severe complications. Therefore, an urgent clinical need exists for dynamic noninvasive monitoring of the renal state. In-depth molecular imaging studies could assist in finding a solution. Membrane attack complex C5b-9 is the key factor in the development of MN, and this protein primarily deposits in the glomerulus. The present study bound polyclonal antibodies to C5b-9 with ultrasmall superparamagnetic iron oxide (USPIO nanoparticles to obtain C5b-9-targeted magnetic resonance molecular imaging probes. The probes were injected intravenously into rats with Heymann nephritis, a classic disease model of MN. The signal intensity in the T2*-weighted imaging of kidneys in vivo using 7.0 Tesla magnetic resonance imaging decreased significantly 24 hours after injection compared to the untargeted and control groups. This signal change was consistent with the finding of nanoparticle deposits in pathological glomeruli. This study demonstrated a novel molecular imaging technique for the assessment of MN.

  11. Endosomes and lysosomes are involved in early steps of Tl(III)-mediated apoptosis in rat pheochromocytoma (PC12) cells.

    Science.gov (United States)

    Hanzel, Cecilia E; Almeira Gubiani, María F; Verstraeten, Sandra V

    2012-11-01

    The mechanisms that mediate thallium (Tl) toxicity are still not completely understood. The exposure of rat pheochromocytoma (PC12) cells to Tl(I) or Tl(III) activates both mitochondrial (Tl(I) and Tl(III)) and extrinsic (Tl(III)) pathways of apoptosis. In this work we evaluated the hypothesis that the effects of Tl(III) may be mediated by the damage to lysosomes, where it might be incorporated following the route of iron uptake. PC12 cells exposed for 3 h to 100 μM Tl(III) presented marked endosomal acidification, effect that was absent when cells were incubated in a serum-free medium and that was fully recovered when the latter was supplemented with transferrin. After 6 h of incubation the colocalization of cathepsins D and B with the lysosomal marker Lamp-1 was decreased together with an increase in the total activity of the enzymes. A permanent damage to lysosomes after 18 h of exposure was evidenced from the impairment of acridine orange uptake. Cathepsin D caused the cleavage of pro-apoptotic protein BID that is involved in the activation of the intrinsic pathway of apoptosis. Supporting that, BID cleavage and the activation of caspase 3 by Tl(III) were fully prevented when cells were preincubated with cathepsin D inhibitor (pepstatin A) and only partially prevented when cathepsin B inhibitor (E64d) was used. None of these inhibitors affected BID cleavage or caspase 3 activation in Tl(I)-treated cells. Together, experimental results support the role of Tl(III) uptake by the acidic cell compartments and their involvement in the early steps of Tl(III)-mediated PC12 cells apoptosis.

  12. Antioxidant, genotoxic and lysosomal biomarkers in the freshwater bivalve (Unio pictorum) transplanted in a metal polluted river basin.

    Science.gov (United States)

    Guidi, Patrizia; Frenzilli, Giada; Benedetti, Maura; Bernardeschi, Margherita; Falleni, Alessandra; Fattorini, Daniele; Regoli, Francesco; Scarcelli, Vittoria; Nigro, Marco

    2010-10-01

    The freshwater painter's mussel (Unio pictorum) was used as sentinel species to assess the chemical disturbance in an Italian river (the river Cecina) characterized by elevated levels of trace metals of both natural and anthropogenic origin. Organisms were transplanted for 4 weeks in different locations of the river basin and the bioaccumulation of metals was integrated with a wide battery of biomarkers consisting of oxidative, genotoxic and lysosomal responses. Such parameters included the levels of individual antioxidants (catalase, glutathione-S-transferases, glutathione reductase, Se-dependent and Se-independent glutathione peroxidases, total glutathione), the total oxyradical scavenging capacity (TOSC), metallothionein-like proteins, the assessment of DNA integrity, chromosomal damages and lysosomal membrane stability. Elevated levels of several metals were measured in sediments, but the relatively low tissue concentrations suggested a moderate bioaccumulation, possibly due to a high excretion efficiency, of U. pictorum and/or to a limited bioavailability of these elements, partly deriving from erosion of bedrocks. Among antioxidant responses, those based on glutathione metabolism and the activity of catalase were mostly affected in bivalves showing a significant accumulation of arsenic, mercury and/or nickel. In these specimens, the content of glutathione and the activities of glutathione reductase and glutathione peroxidases (H2O2) were respectively 9-, 6- and 4-fold lower than in controls, while a 3-fold increase was observed for catalase. Despite some differences in the response of individual antioxidants, a significant reduction of the capability to neutralize peroxyl radicals was observed in bivalves caged in all the impacted sites of the river basin; these organisms also exhibited a significant impairment at the DNA, chromosomal and lysosomal levels. Considering the mild contamination gradient in the investigated area, the overall results suggested that

  13. Nanoparticle size and combined toxicity of TiO2 and DSLS (surfactant) contribute to lysosomal responses in digestive cells of mussels exposed to TiO2 nanoparticles.

    Science.gov (United States)

    Jimeno-Romero, A; Oron, M; Cajaraville, M P; Soto, M; Marigómez, I

    2016-10-01

    The aim of this investigation was to understand the bioaccumulation, cell and tissue distribution and biological effects of disodium laureth sulfosuccinate (DSLS)-stabilised TiO2 nanoparticles (NPs) in marine mussels, Mytilus galloprovincialis. Mussels were exposed in vivo to 0.1, 1 and 10 mg Ti/L either as TiO2 NPs (60 and 180 nm) or bulk TiO2, as well as to DSLS alone. A significant Ti accumulation was observed in mussels exposed to TiO2 NPs, which were localised in endosomes, lysosomes and residual bodies of digestive cells, and in the lumen of digestive tubules, as demonstrated by ultrastructural observations and electron probe X-ray microanalysis. TiO2 NPs of 60 nm were internalised within digestive cell lysosomes to a higher extent than TiO2 NPs of 180 nm, as confirmed by the quantification of black silver deposits after autometallography. The latter were localised mainly forming large aggregates in the lumen of the gut. Consequently, lysosomal membrane stability (LMS) was significantly reduced upon exposure to both TiO2 NPs although more markedly after exposure to TiO2-60 NPs. Exposure to bulk TiO2 and to DSLS also affected the stability of the lysosomal membrane. Thus, effects on the lysosomal membrane depended on the nanoparticle size and on the combined biological effects of TiO2 and DSLS.

  14. Diagnosis and management of fluid overload in heart failure and cardio-renal syndrome: the "5B" approach.

    Science.gov (United States)

    Ronco, Claudio; Kaushik, Manish; Valle, Roberto; Aspromonte, Nadia; Peacock, W Frank

    2012-01-01

    Cardio-Renal syndrome may occur as a result of either primarily renal or cardiac dysfunction. This complex interaction requires a tailored approach to manage the underlying pathophysiology while optimizing the patient's symptoms and thus providing the best outcomes. Patients often are admitted to the hospital for signs and symptoms of congestion and fluid overload is the most frequent cause of subsequent re-admission. Fluid management is of paramount importance in the strategy of treatment for heart failure patients. Adequate fluid status should be obtained but a target value should be set according to objective indicators and biomarkers. Once the fluid excess is identified, a careful prescription of fluid removal by diuretics or extracorporeal therapies must be made. While delivering these therapies, adequate monitoring should be performed to prevent unwanted effects such as worsening of renal function or other complications. There is a very narrow window of optimal hydration for heart failure patients. Overhydration can result in myocardial stretching and potential decompensation. Inappropriate dehydration or relative reduction of circulating blood volume may result in distant organ damage caused by inadequate perfusion. We suggest consideration of the "5B" approach. This stands for balance of fluids (reflected by body weight), blood pressure, biomarkers, bioimpedance vector analysis, and blood volume. Addressing these parameters ensures that the most important issues affecting symptoms and outcomes are addressed. Furthermore, the patient is receiving the best possible care while avoiding unwanted side effects of the treatment. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. COOH-terminal isoleucine of lysosome-associated membrane protein-1 is optimal for its efficient targeting to dense secondary lysosomes.

    Science.gov (United States)

    Akasaki, Kenji; Suenobu, Michihisa; Mukaida, Maki; Michihara, Akihiro; Wada, Ikuo

    2010-12-01

    Lysosome-associated membrane protein-1 (LAMP-1) consists of a highly glycosylated luminal domain, a single-transmembrane domain and a short cytoplasmic tail that possesses a lysosome-targeting signal (GYQTI(382)) at the COOH terminus. It is hypothesized that the COOH-terminal isoleucine, I(382), could be substituted with any other bulky hydrophobic amino acid residue for LAMP-1 to exclusively localize in lysosomes. In order to test this hypothesis, we compared subcellular distribution of four substitution mutants with phenylalanine, leucine, methionine and valine at the COOH-terminus (termed I382F, I382L, I382M and I382V, respectively) with that of wild-type (WT)-LAMP-1. Double-labelled immunofluorescence analyses showed that these substitution mutants were localized as significantly to late endocytic organelles as WT-LAMP-1. However, the quantitative subcellular fractionation study revealed different distribution of WT-LAMP-1 and these four COOH-terminal mutants in late endosomes and dense secondary lysosomes. WT-LAMP-1 was accumulated three to six times more in the dense lysosomal fraction than the four mutants. The level of WT-LAMP-1 in late endosomal fraction was comparable to those of I382F, I382M and I382V. Conversely, I382L in the late endosomal fraction was approximately three times more abundant than WT-LAMP-1. These findings define the presence of isoleucine residue at the COOH-terminus of LAMP-1 as critical in governing its efficient delivery to secondary lysosomes and its ratio of lysosomes to late endosomes.

  16. Combined effects of thermal stress and Cd on lysosomal biomarkers and transcription of genes encoding lysosomal enzymes and HSP70 in mussels, Mytilus galloprovincialis.

    Science.gov (United States)

    Izagirre, Urtzi; Errasti, Aitzpea; Bilbao, Eider; Múgica, María; Marigómez, Ionan

    2014-04-01

    In estuaries and coastal areas, intertidal organisms may be subject to thermal stress resulting from global warming, together with pollution. In the present study, the combined effects of thermal stress and exposure to Cd were investigated in the endo-lysosomal system of digestive cells in mussels, Mytilus galloprovincialis. Mussels were maintained for 24h at 18°C and 26°C seawater temperature in absence and presence of 50 μg Cd/L seawater. Cadmium accumulation in digestive gland tissue, lysosomal structural changes and membrane stability were determined. Semi-quantitative PCR was applied to reveal the changes elicited by the different experimental conditions in hexosaminidase (hex), β-glucuronidase (gusb), cathepsin L (ctsl) and heat shock protein 70 (hsp70) gene transcription levels. Thermal stress provoked lysosomal enlargement whilst Cd-exposure led to fusion of lysosomes. Both thermal stress and Cd-exposure caused lysosomal membrane destabilisation. hex, gusb and ctsl genes but not hsp70 gene were transcriptionally up-regulated as a result of thermal stress. In contrast, all the studied genes were transcriptionally down-regulated in response to Cd-exposure. Cd bioaccumulation was comparable at 18°C and 26°C seawater temperatures but interactions between thermal stress and Cd-exposure were remarkable both in lysosomal biomarkers and in gene transcription. hex, gusb and ctsl genes, reacted to elevated temperature in absence of Cd but not in Cd-exposed mussels. Therefore, thermal stress resulting from global warming might influence the use and interpretation of lysosomal biomarkers in marine pollution monitoring programmes and, vice versa, the presence of pollutants may condition the capacity of mussels to respond against thermal stress in a climate change scenario.

  17. Knockout of Lysosomal Enzyme-Targeting Gene Causes Abnormalities in Mouse Pup Isolation Calls

    Science.gov (United States)

    Barnes, Terra D.; Holy, Timothy E.

    2017-01-01

    Humans lacking a working copy of the GNPTAB gene suffer from the metabolic disease Mucolipidosis type II (MLII). MLII symptoms include mental retardation, skeletal deformities and cartilage defects as well as a speech delay with most subjects unable to utter single words (Otomo et al., 2009; Cathey et al., 2010; Leroy et al., 2012). Here we asked whether mice lacking a copy of Gnptab gene exhibited vocal abnormities. We recorded ultrasonic vocalizations from 5 to 8 day old mice separated from their mother and littermates. Although Gnptab−/− pups emitted a similar number of calls, several features of the calls were different from their wild type littermates. Gnptab−/− mice showed a decrease in the length of calls, an increase in the intra-bout pause duration, significantly fewer pitch jumps with smaller mean size, and an increase in the number of isolated calls. In addition, Gnptab−/− mice vocalizations had less power, particularly in the higher frequencies. Gnptab+/− mouse vocalizations did not appear to be affected. We then attempted to classify these recordings using these features to determine the genotype of the animal. We were able to correctly identify 87% of the recordings as either Gnptab−/− or Gnptab+/+ pup, significantly better than chance, demonstrating that genotype is a strong predictor of vocalization phenotype. These data show that deletion of genes in the lysosomal enzyme targeting pathway affect mouse pup isolation calls.

  18. Antimicrobial Properties of Lysosomal Enzymes Immobilized on NH₂Functionalized Silica-Encapsulated Magnetite Nanoparticles.

    Science.gov (United States)

    Bang, Seung Hyuck; Sekhon, Simranjeet Singh; Cho, Sung-Jin; Kim, So Jeong; Le, Thai-Hoang; Kim, Pil; Ahn, Ji-Young; Kim, Yang-Hoon; Min, Jiho

    2016-01-01

    The immobilization efficiency, antimicrobial activity and recovery of lysosomal enzymes on NH2 functionalized magnetite nanoparticles have been studied under various conditions. The immobi- lization efficiency depends upon the ratio of the amount of enzyme and magnetite and it shows an increase with magnetite concentration which is due to the presence of amine group at the magnetite surface that leads to a strong attraction. The optimized reaction time to immobilize the lysosomal enzymes on magnetite was determined by using a rolling method. The immobilization efficiency increases with reaction time and reached a plateau after 5 minutes and then remained constant for 10 minutes. However, after 30 minutes the immobilization efficiency decreased to 85%, which is due to the weaker electrostatic interactions between magnetite and detached lysosomal enzymes. The recovery and stability of immobilized lysosomal enzymes has also been studied. The antimicrobial activity was almost 100% but it decreased upon reuse and no activity was observed after its reuse for seven times. The storage stability of lysosomal enzymes as an antimicrobial agent was about 88%, which decreased to 53% after one day and all activity of immobilized lysosomal enzymes was maintained after five days. Thus, the lysosomal enzymes immobilized on magnetite nanoparticles could potentially be used as antimicrobial agents to remove bacteria.

  19. Involvement of lysosomes in the uptake of macromolecular material by bloodstream forms of Trypanosoma brucei.

    Science.gov (United States)

    Opperdoes, F R; Van Roy, J

    1982-09-01

    To investigate whether the lysosomes of Trypanosoma brucei are capable of uptake of macromolecules after internalization by the cell, we used Triton WR-1339, a non-digestible macromolecular compound, which is known to cause a marked decrease in the density of hepatic lysosomes due to massive intralysosomal storage. Intraperitoneal administration of 0.4 g/kg Triton WR-1339 to rats infected with T. brucei led to the development of a large vacuole in the trypanosomes between nucleus and kinetoplast within 22 h. Higher doses (2 g/kg) led to the disappearance of the trypanosomes from the blood and resulted in permanent cures (greater than 100 days). Lysosomes isolated from the trypanosomes of animals treated with a sub-curative dose showed a decrease in equilibrium density of 0.03 g/cm3 in sucrose gradients. These lysosomes were partly damaged as evidenced by a reduction in latency and an increase in the non-sedimentable part of lysosomal enzymes. We conclude that acid proteinase and alpha-mannosidase-containing organelles of T. brucei take up exogenous macromolecules and must therefore be considered as true lysosomes and that Triton WR-1339 acts in T. brucei as a true lysosomotropic drug. Its trypanocidal action probably results from an interference with lysosomal function.

  20. Chlamydia species-dependent differences in the growth requirement for lysosomes.

    Directory of Open Access Journals (Sweden)

    Scot P Ouellette

    Full Text Available Genome reduction is a hallmark of obligate intracellular pathogens such as Chlamydia, where adaptation to intracellular growth has resulted in the elimination of genes encoding biosynthetic enzymes. Accordingly, chlamydiae rely heavily on the host cell for nutrients yet their specific source is unclear. Interestingly, chlamydiae grow within a pathogen-defined vacuole that is in close apposition to lysosomes. Metabolically-labeled uninfected host cell proteins were provided as an exogenous nutrient source to chlamydiae-infected cells, and uptake and subsequent labeling of chlamydiae suggested lysosomal degradation as a source of amino acids for the pathogen. Indeed, Bafilomycin A1 (BafA1, an inhibitor of the vacuolar H(+/ATPase that blocks lysosomal acidification and functions, impairs the growth of C. trachomatis and C. pneumoniae, and these effects are especially profound in C. pneumoniae. BafA1 induced the marked accumulation of material within the lysosomal lumen, which was due to the inhibition of proteolytic activities, and this response inhibits chlamydiae rather than changes in lysosomal acidification per se, as cathepsin inhibitors also inhibit the growth of chlamydiae. Finally, the addition of cycloheximide, an inhibitor of eukaryotic protein synthesis, compromises the ability of lysosomal inhibitors to block chlamydial growth, suggesting chlamydiae directly access free amino acids in the host cytosol as a preferred source of these nutrients. Thus, chlamydiae co-opt the functions of lysosomes to acquire essential amino acids.

  1. Eucommia ulmoides cortex, geniposide and aucubin regulate lipotoxicity through the inhibition of lysosomal BAX.

    Science.gov (United States)

    Lee, Geum-Hwa; Lee, Mi-Rin; Lee, Hwa-Young; Kim, Seung Hyun; Kim, Hye-Kyung; Kim, Hyung-Ryong; Chae, Han-Jung

    2014-01-01

    In this study we examined the inhibition of hepatic dyslipidemia by Eucommia ulmoides extract (EUE). Using a screening assay for BAX inhibition we determined that EUE regulates BAX-induced cell death. Among various cell death stimuli tested EUE regulated palmitate-induced cell death, which involves lysosomal BAX translocation. EUE rescued palmitate-induced inhibition of lysosomal V-ATPase, α-galactosidase, α-mannosidase, and acid phosphatase, and this effect was reversed by bafilomycin, a lysosomal V-ATPase inhibitor. The active components of EUE, aucubin and geniposide, showed similar inhibition of palmitate-induced cell death to that of EUE through enhancement of lysosome activity. Consistent with these in vitro findings, EUE inhibited the dyslipidemic condition in a high-fat diet animal model by regulating the lysosomal localization of BAX. This study demonstrates that EUE regulates lipotoxicity through a novel mechanism of enhanced lysosomal activity leading to the regulation of lysosomal BAX activation and cell death. Our findings further indicate that geniposide and aucubin, active components of EUE, may be therapeutic candidates for non-alcoholic fatty liver disease.

  2. Action of low-energy monochromatic coherent light on the stability of retinal lysosomes

    Science.gov (United States)

    Metelitsina, Irina P.; Leus, N. F.

    1995-05-01

    The data had been obtained during the experiment in vitro by irradiation of solubilized lysosomal enzymes, retinal homogenates and native lysosomes enabled us to conclude that the laser beam ((lambda) equals 632.8 nm, power density from 0.1 to 15.0 mWt/cm2) acts on the level of membranous structures of lysosomes. During irradiation of rabbits eyes in vitro with an unfocused laser beam (power density on the cornea aur face from 0.01 to 15.0 mWt/cm2 was shown, that low-energy, ranged from 0.01 to 1.0 mWt/cm2 promotes stabilization of lysosomal membranes. Irradiation with laser beam of 8.0 mWt/cm2 and more power induces destabilization of lysosomal membranes. We have also shown that vitamins A and E effecting membranotropic on lysosomes may be corrected by low-energy radiation of helium-neon laser. It is substantiated experimentally that the stabilizing effect of vitamin E may be intensified in case of the combined action of laser radiation on lysosomes. The labilizing effect of vitamin A on membranes of organelles, as was studied, may be weakened by application of laser radiation of low intensities.

  3. Lysosomal cholesterol accumulation: driver on the road to inflammation during atherosclerosis and non-alcoholic steatohepatitis.

    Science.gov (United States)

    Hendrikx, T; Walenbergh, S M A; Hofker, M H; Shiri-Sverdlov, R

    2014-05-01

    Many studies show an association between the accumulation of cholesterol inside lysosomes and the progression towards inflammatory disease states that are closely related to obesity. While in the past, the knowledge regarding lysosomal cholesterol accumulation was limited to its association with plaque severity during atherosclerosis, recently, a growing body of evidence indicates a causal link between lysosomal cholesterol accumulation and inflammation. These findings make lysosomal cholesterol accumulation an important target for intervention in metabolic diseases that are characterized by the presence of an inflammatory response. In this review, we aim to show the importance of cholesterol trapping inside lysosomes to the development of inflammation by focusing upon cardiovascular disease and non-alcoholic steatohepatitis (NASH) in particular. We summarize current data supporting the hypothesis that lysosomal cholesterol accumulation plays a key role in the development of inflammation during atherosclerosis and NASH. In addition, potential mechanisms by which disturbed lysosomal function can trigger the inflammatory response, the challenges in improving cholesterol trafficking in macrophages and recent successful research directions will be discussed.

  4. UNC5B receptor deletion exacerbates DSS-induced colitis in mice by increasing epithelial cell apoptosis.

    Science.gov (United States)

    Ranganathan, Punithavathi; Jayakumar, Calpurnia; Li, Dean Y; Ramesh, Ganesan

    2014-07-01

    The netrin-1 administration or overexpression is known to protect colon from acute colitis. However, the receptor that mediates netrin-1 protective activities in the colon during colitis remains unknown. We tested the hypothesis that UNC5B receptor is a critical mediator of protective function of netrin-1 in dextran sodium sulfate (DSS)-induced colitis using mice with partial deletion of UNC5B receptor. DSS colitis was performed in mice with partial genetic UNC5B deficiency (UNC5B(+/-) mice) or wild-type mice to examine the role of endogenous UNC5B. These studies were supported by in vitro models of DSS-induced apoptosis in human colon epithelial cells. WT mice developed colitis in response to DSS feeding as indicated by reduction in bw, reduction in colon length and increase in colon weight. These changes were exacerbated in heterozygous UNC5B knockout mice treated with DSS. Periodic Acid-Schiff stained section shows damages in colon epithelium and mononuclear cell infiltration in WT mice, which was further increased in UNC5B heterozygous knockout mice. This was associated with large increase in inflammatory mediators such as cytokine and chemokine expression and extensive apoptosis of epithelial cells in heterozygous knockout mice as compared to WT mice. Overexpression of UNC5B human colon epithelial cells suppressed DSS-induced apoptosis and caspase-3 activity. Moreover, DSS induced large amount of netrin-1 and shRNA mediated knockdown of netrin-1 induction exacerbated DSS-induced epithelial cell apoptosis. Our results suggest that UNC5B is a critical mediator of cell survival in response to stress in colon.

  5. Activating mutations of STAT5B and STAT3 in lymphomas derived from ??-T or NK cells.

    OpenAIRE

    2015-01-01

    Lymphomas arising from NK or gamma delta-T cells are very aggressive diseases and little is known regarding their pathogenesis. Here we report frequent activating mutations of STAT3 and STAT5B in NK/T-cell lymphomas (n - 51), gamma delta-T-cell lymphomas (n - 43) and their cell lines (n = 9) through next generation and/or Sanger sequencing. STAT5B N642H is particularly frequent in all forms of gamma delta-T-cell lymphomas. STAT3 and STAT5B mutations are associated with increased phosphorylate...

  6. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease.

    Science.gov (United States)

    Magalhaes, Joana; Gegg, Matthew E; Migdalska-Richards, Anna; Doherty, Mary K; Whitfield, Phillip D; Schapira, Anthony H V

    2016-08-15

    Glucocerebrosidase (GBA1) gene mutations increase the risk of Parkinson disease (PD). While the cellular mechanisms associating GBA1 mutations and PD are unknown, loss of the glucocerebrosidase enzyme (GCase) activity, inhibition of autophagy and increased α-synuclein levels have been implicated. Here we show that autophagy lysosomal reformation (ALR) is compromised in cells lacking functional GCase. ALR is a cellular process controlled by mTOR which regenerates functional lysosomes from autolysosomes formed during macroautophagy. A decrease in phopho-S6K levels, a marker of mTOR activity, was observed in models of GCase deficiency, including primary mouse neurons and the PD patient derived fibroblasts with GBA1 mutations, suggesting that ALR is compromised. Importantly Rab7, a GTPase crucial for endosome-lysosome trafficking and ALR, accumulated in GCase deficient cells, supporting the notion that lysosomal recycling is impaired. Recombinant GCase treatment reversed ALR inhibition and lysosomal dysfunction. Moreover, ALR dysfunction was accompanied by impairment of macroautophagy and chaperone-mediated autophagy, increased levels of total and phosphorylated (S129) monomeric α-synuclein, evidence of amyloid oligomers and increased α-synuclein release. Concurrently, we found increased cholesterol and altered glucosylceramide homeostasis which could compromise ALR. We propose that GCase deficiency in PD inhibits lysosomal recycling. Consequently neurons are unable to maintain the pool of mature and functional lysosomes required for the autophagic clearance of α-synuclein, leading to the accumulation and spread of pathogenic α-synuclein species in the brain. Since GCase deficiency and lysosomal dysfunction occur with ageing and sporadic PD pathology, the decrease in lysosomal reformation may be a common feature in PD. © The Author 2016. Published by Oxford University Press.

  7. Combined effects of thermal stress and Cd on lysosomal biomarkers and transcription of genes encoding lysosomal enzymes and HSP70 in mussels, Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Izagirre, Urtzi; Errasti, Aitzpea; Bilbao, Eider; Múgica, María; Marigómez, Ionan, E-mail: ionan.marigomez@ehu.es

    2014-04-01

    Highlights: • Thermal stress and Cd caused lysosomal enlargement and membrane destabilisation. • hex, gusb and ctsl but not hsp70 were up-regulated at elevated temperature but down-regulated by Cd. • Thermal stress influenced lysosomal responses to Cd exposure. • The presence of Cd jeopardised responsiveness against thermal stress. - Abstract: In estuaries and coastal areas, intertidal organisms may be subject to thermal stress resulting from global warming, together with pollution. In the present study, the combined effects of thermal stress and exposure to Cd were investigated in the endo-lysosomal system of digestive cells in mussels, Mytilus galloprovincialis. Mussels were maintained for 24 h at 18 °C and 26 °C seawater temperature in absence and presence of 50 μg Cd/L seawater. Cadmium accumulation in digestive gland tissue, lysosomal structural changes and membrane stability were determined. Semi-quantitative PCR was applied to reveal the changes elicited by the different experimental conditions in hexosaminidase (hex), β-glucuronidase (gusb), cathepsin L (ctsl) and heat shock protein 70 (hsp70) gene transcription levels. Thermal stress provoked lysosomal enlargement whilst Cd-exposure led to fusion of lysosomes. Both thermal stress and Cd-exposure caused lysosomal membrane destabilisation. hex, gusb and ctsl genes but not hsp70 gene were transcriptionally up-regulated as a result of thermal stress. In contrast, all the studied genes were transcriptionally down-regulated in response to Cd-exposure. Cd bioaccumulation was comparable at 18 °C and 26 °C seawater temperatures but interactions between thermal stress and Cd-exposure were remarkable both in lysosomal biomarkers and in gene transcription. hex, gusb and ctsl genes, reacted to elevated temperature in absence of Cd but not in Cd-exposed mussels. Therefore, thermal stress resulting from global warming might influence the use and interpretation of lysosomal biomarkers in marine pollution

  8. Lysosomal glycosphingolipid catabolism by acid ceramidase: formation of glycosphingoid bases during deficiency of glycosidases.

    Science.gov (United States)

    Ferraz, Maria J; Marques, André R A; Appelman, Monique D; Verhoek, Marri; Strijland, Anneke; Mirzaian, Mina; Scheij, Saskia; Ouairy, Cécile M; Lahav, Daniel; Wisse, Patrick; Overkleeft, Herman S; Boot, Rolf G; Aerts, Johannes M

    2016-03-01

    Glycosphingoid bases are elevated in inherited lysosomal storage disorders with deficient activity of glycosphingolipid catabolizing glycosidases. We investigated the molecular basis of the formation of glucosylsphingosine and globotriaosylsphingosine during deficiency of glucocerebrosidase (Gaucher disease) and α-galactosidase A (Fabry disease). Independent genetic and pharmacological evidence is presented pointing to an active role of acid ceramidase in both processes through deacylation of lysosomal glycosphingolipids. The potential pathophysiological relevance of elevated glycosphingoid bases generated through this alternative metabolism in patients suffering from lysosomal glycosidase defects is discussed.

  9. Complete genome sequence of Shigella flexneri 5b and comparison with Shigella flexneri 2a

    Directory of Open Access Journals (Sweden)

    Xue Ying

    2006-07-01

    Full Text Available Abstract Background Shigella bacteria cause dysentery, which remains a significant threat to public health. Shigella flexneri is the most common species in both developing and developed countries. Five Shigella genomes have been sequenced, revealing dynamic and diverse features. To investigate the intra-species diversity of S. flexneri genomes further, we have sequenced the complete genome of S. flexneri 5b strain 8401 (abbreviated Sf8401 and compared it with S. flexneri 2a (Sf301. Results The Sf8401 chromosome is 4.5-Mb in size, a little smaller than that of Sf301, mainly because the former lacks the SHI-1 pathogenicity island (PAI. Compared with Sf301, there are 6 inversions and one translocation in Sf8401, which are probably mediated by insertion sequences (IS. There are clear differences in the known PAIs between these two genomes. The bacteriophage SfV segment remaining in SHI-O of Sf8401 is clearly larger than the remnants of bacteriophage SfII in Sf301. SHI-1 is absent from Sf8401 but a specific related protein is found next to the pheV locus. SHI-2 is involved in one intra-replichore inversion near the origin of replication, which may change the expression of iut/iuc genes. Moreover, genes related to the glycine-betaine biosynthesis pathway are present only in Sf8401 among the known Shigella genomes. Conclusion Our data show that the two S. flexneri genomes are very similar, which suggests a high level of structural and functional conservation between the two serotypes. The differences reflect different selection pressures during evolution. The ancestor of S. flexneri probably acquired SHI-1 and SHI-2 before SHI-O was integrated and the serotypes diverged. SHI-1 was subsequently deleted from the S. flexneri 5b genome by recombination, but stabilized in the S. flexneri 2a genome. These events may have contributed to the differences in pathogenicity and epidemicity between the two serotypes of S. flexneri.

  10. Expansion of CD5 - B cells in multiple sclerosis correlates with CD80 (B7-1) expression

    DEFF Research Database (Denmark)

    Sellebjerg, F; Jensen, J; Jensen, C.V.

    2002-01-01

    The pathogenetic role of autoantibodies in multiple sclerosis (MS) is uncertain. CD5+ B cells commonly produce autoantibodies, but CD5 expression has also been implicated in B-cell tolerance. We studied B-cell subsets, anti-myelin protein antibody-secreting cells in cerebrospinal fluid (CSF......) and a panel of serum autoantibodies in patients with clinically isolated syndromes (CIS), suggestive of MS and patients with clinically definite MS (CDMS). Patients with CDMS had a higher percentage of CD5- B cells in CSF than did control subjects (P = 0.02). CIS patients with immunoglobulin G (Ig......G) oligoclonal bands in CSF or multiple lesions on magnetic resonance imaging (MRI) had a higher percentage of CD5- B cells in CSF than did the remaining CIS patients (P = 0.03). The percentage of CD5- and CD80+ B cells correlated positively and the percentage of CD5+ B cells correlated negatively...

  11. Prediction of the ligands having the inhibitory activity against the HCV non-structural protein 5B polymerase

    Directory of Open Access Journals (Sweden)

    Fatima Lebbad

    2015-08-01

    Full Text Available Objective: To find similar compounds of rhodanine inhibitors of HCV non-structural protein 5B (NS5B through exploring the PubChem database. Methods: We used the data mining of these ligands and we studied molecular docking of these ligands with the enzyme HCV NS5B for knowing inhibitory activity. We used the the Knime software for the data mining and the USCF Chimera and Molecular Operating Environment for study the molecular docking. Results: As a result, the discovery was two new inhibitors of NS5B HCV, namely CID 211702 and CID 13752. Conclusions: Two new ligands, CID 211702 and CID 13752, were discovered for the inhibition of the HCV and can be used to invent new medicines against the cancerous diseases.

  12. I. Novel HCV NS5B polymerase inhibitors: Discovery of indole 2-carboxylic acids with C3-heterocycles

    Energy Technology Data Exchange (ETDEWEB)

    Anilkumar, Gopinadhan N.; Lesburg, Charles A.; Selyutin, Oleg; Rosenblum, Stuart B.; Zeng, Qingbei; Jiang, Yueheng; Chan, Tin-Yau; Pu, Haiyan; Vaccaro, Henry; Wang, Li; Bennett, Frank; Chen, Kevin X.; Duca, Jose; Gavalas, Stephen; Huang, Yuhua; Pinto, Patrick; Sannigrahi, Mousumi; Velazquez, Francisco; Venkatraman, Srikanth; Vibulbhan, Bancha; Agrawal, Sony; Butkiewicz, Nancy; Feld, Boris; Ferrari, Eric; He, Zhiqing; Jiang, Chuan-kui; Palermo, Robert E.; Mcmonagle, Patricia; Huang, H.-C.; Shih, Neng-Yang; Njoroge, George; Kozlowski, Joseph A. (Merck)

    2012-05-03

    SAR development of indole-based palm site inhibitors of HCV NS5B polymerase exemplified by initial indole lead 1 (NS5B IC{sub 50} = 0.9 {micro}M, replicon EC{sub 50} > 100 {micro}M) is described. Structure-based drug design led to the incorporation of novel heterocyclic moieties at the indole C3-position which formed a bidentate interaction with the protein backbone. SAR development resulted in leads 7q (NS5B IC{sub 50} = 0.032 {micro}M, replicon EC{sub 50} = 1.4 {micro}M) and 7r (NS5B IC{sub 50} = 0.017 {micro}M, replicon EC{sub 50} = 0.3 {micro}M) with improved enzyme and replicon activity.

  13. Visual detection of STAT5B gene expression in living cell using the hairpin DNA modified gold nanoparticle beacon.

    Science.gov (United States)

    Xue, Jianpeng; Shan, Lingling; Chen, Haiyan; Li, Yang; Zhu, Hongyan; Deng, Dawei; Qian, Zhiyu; Achilefu, Samuel; Gu, Yueqing

    2013-03-15

    Signal transducer and activator of transcription 5B (STAT5B) is an important protein in JAK-STAT signaling pathway that is responsible for the metastasis and proliferation of tumor cells. Determination of the STAT5B messenger Ribonucleic Acid (mRNA) relating to the STAT5B expression provides insight into the mechanism of tumor progression. In this study, we designed and used a special hairpin deoxyribonucleic acid (DNA) for human STAT5B mRNA to functionalize gold nanoparticles, which served as a beacon for detecting human STAT5B expression. Up to 90% quenching efficiency was achieved. Upon hybridizing with the target mRNA, the hairpin DNA modified gold nanoparticle beacons (hDAuNP beacons) release the fluorophores attached at 5' end of the oligonucleotide sequence. The fluorescence properties of the beacon before and after the hybridization with the complementary DNA were confirmed in vitro. The stability of hDAuNP beacons against degradation by DNase I and GSH indicated that the prepared beacon is stable inside cells. The detected fluorescence in MCF-7 cancer cells correlates with the specific STAT5B mRNA expression, which is consistent with the result from PCR measurement. Fluorescence microscopy showed that the hDAuNP beacons internalized in cells without using transfection agents, with intracellular distribution in the cytoplasm rather than the nucleus. The results demonstrated that this beacon could directly provide quantitative measurement of the intracellular STAT5B mRNA in living cells. Compared to the previous approaches, this beacon has advantages of higher target to background ratio of detection and an increased resistance to nuclease degradation. The strategy reported in this study is a promising approach for the intracellular measurement of RNA or protein expression in living cells, and has great potential in the study of drug screening and discovery. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Bupivacaine can enhance lysosomal activity in mouse muscle myoblasts%布比卡因增强小鼠成肌细胞溶酶体的活性

    Institute of Scientific and Technical Information of China (English)

    熊静薇; 毛雨; 李荣荣; 丁正年

    2015-01-01

    Objective To investigate the effects of bupivacaine on lysosomal abundance and activity in mouse muscle myoblasts.Methods Mouse myoblasts C2C12 was randomly divided into control group (without any treatment) and bupivacaine group (treated with bupivacaine 600 μ mol/L for 6 h).After then,the changes of lysosomal pH was assessed by LysoSensor pH indicator.The content of lysosomes was detected by LysoTracker probe.The expression of lysosomal-associated membrane protein-1 (LAMP-1) and Cathepsin B was detected by Western blot analysis.The activity of lysosomal proteolytic enzymes Cathepsin B was determined by MagicRed assay kit.Results Bupivacaine did not affect lysosomal pH.However,compared with the controls,lysosomal abundance was significantly increased 15.15% following bupivacaine treatment(P<0.01).Moreover,protein expression levels of LAMP-1 and Cathepsin B were significantly upregulated 36.41% and 35.29% respetctively by bupivacaine (P<0.01).Furthermore,the activity of Cathepsin B was significantly increased 23.74% by bupivacaine(P<0.01).Conclusions Bupivacaine increased lysosomal content and enhance lysosomal activity in mouse muscle myoblasts.%目的 探讨局部麻醉药布比卡因对小鼠成肌细胞溶酶体的影响. 方法 将体外培养的小鼠成肌细胞C2C12分为2组.对照组:不加任何药物;布比卡因组:以600μmol/L布比卡因刺激细胞6h.实验结束后,用LysoSensor探针评价溶酶体腔pH,用LysoTrackor探针检测溶酶体含量,用蛋白免疫印迹法检测溶酶体相关膜蛋白-1(LAMP-1)和溶酶体蛋白水解酶Cathepsin B的表达水平,并以MagicRed染色法测定Cathepsin B的活性.结果 布比卡因对溶酶体腔pH没有影响.但是,与对照组相比,布比卡因组溶酶体含量增加15.15% (P<0.01),LAMP-1与Cathepsin B表达量分别增加36.41%、35.29% (P<0.01),Cathepsin B活性增加23.74%(P<0.01).结论 布比卡因能增加小鼠成肌细胞溶酶体含量,增强溶酶体活性.

  15. Urinary C3dg and C5b-9 indicate active immune disease in human membranous nephropathy.

    Science.gov (United States)

    Brenchley, P E; Coupes, B; Short, C D; O'Donoghue, D J; Ballardie, F W; Mallick, N P

    1992-04-01

    We have measured complement activation markers, C3dg and C5b-9 in plasma and urine from patients with idiopathic membranous nephropathy and IgA nephropathy. There was no significant difference in levels of plasma C5b-9 between the patient groups. However, high plasma concentrations of C3dg were associated significantly with IgA nephropathy with 45% of patients having levels over 25 U/ml (P less than 0.001). High concentrations of urinary C3dg and C5b-9 were associated significantly with membranous nephropathy (43% and 43% of the patient group, respectively) compared to patients with IgA nephropathy (10% and 0%, respectively, P less than 0.001). In a retrospective analysis of 31 patients with membranous nephropathy, 66% of patients with high initial urinary C5b-9 showed an unstable clinical course compared to 18% of patients with initially absent or low C5b-9 (P less than 0.001). We suggest that high urinary C5b-9 identifies those patients with a membranous lesion which retains an active immunological component contributing to the pathology of progressive glomerular damage.

  16. The evaluation of Tracp5b as a marker for monitoring treatment results of bone metastasis in breast cancer patients

    Institute of Scientific and Technical Information of China (English)

    Xiaoyun Huang; Yan Si; Jia Zhao; Qiang Ding

    2008-01-01

    Objective:To evaluate the sensitivity of serum tartrate-resistant acid phosphatase 5b(Tracp5b) activity in monitoring bisphosphonate treatment results of bone metastasis in breast cancer(BC) patients. Methods:The serum activities of Tracp5b, CEA, CA153 were measured in 58 BC patients, including 26 without bone metastasis, 32 with bone metastasis. The serum activities of Tracp5b, CEA, CA153 were also measured in 19 patients with bone metastasis after 3 months of bisphosphonate treatment. Eighteen healthy women with age from 34 to 70 served as control. Results:Serum Tracp5b was significantly elevated in patients with bone metastasis compared with that in all any other groups(P< 0.05). The sensitivity of TracpSb was 78.13% and the specificity was 86.36%. The sensitivity of CA153 was 37.50% and the specificity was 77.27%. The sensitivity of CEA was 21.88% and the specificity was 84.09%. The serum activity of Tracp5b decreased significantly(P < 0.05) after 3 months of bisphosphonate treatment, while the levels of CA153 and CEA were unchanged. Conclusion:Serum TracpSb activity is a useful diagnostic marker for bone metastasis in BC patients and can be used to evaluate the treatment results of bisphosphonate.

  17. C5b-9 complement complex in autoimmune demyelination and multiple sclerosis: dual role in neuroinflammation and neuroprotection.

    Science.gov (United States)

    Rus, Horea; Cudrici, Cornelia; Niculescu, Florin

    2005-01-01

    Complement system activation plays an important role in innate and acquired immunity. Activation of complement leads to the formation of C5b-9 terminal complex. While C5b-9 can promote cell lysis, sublytic assembly of C5b-9 on plasma membranes induces cell cycle activation and survival. Multiple sclerosis (MS) and its animal model experimental allergic encephalomyelitis (EAE) are inflammatory demyelinating diseases of the central nervous system (CNS) mediated by activated lymphocytes, macrophages/microglia and the complement system. Complement activation may contribute to the pathogenesis of these diseases through its dual role: the ability of activated terminal complex C5b-9 to promote demyelination and the capacity of sublytic C5b-9 to protect oligodendrocytes (OLG) from apoptosis. By inducing EAE in C5-deficient mice, we showed that complement C5 promotes remyelination and protects oligodendrocytes from apoptotic cell death. These findings indicate that activation of complement C5b-9 plays a pro-inflammatory role in the acute phase of the disease, but may also be neuroprotective during the chronic phase of the disease.

  18. A study of microstructure and properties of cast Fe-10Cr-1.5B alloy

    Directory of Open Access Journals (Sweden)

    Zhang Haibin

    2014-05-01

    Full Text Available In the present study, the microstructure and mechanical properties of cast Fe-10Cr-1.5B (FCB alloy after different heat treatments were studied. The results showed that the as-cast microstructure of FCB alloy consists of ?Fe, M(M=Cr, Fe, Mn2(B, C and M(M=Cr, Fe, Mn7(C, B3 type borocarbides, and small amounts of pearlite and austenite. After oil quenching treatment, metal matrix transformed into the martensite from the mixture of martensite, pearlite and austenite. There are many M(M=Cr,Fe,Mn23(C,B6 type borocarbide precipitates in the metal matrix, and eutectic borocarbide appears with an apparent disconnection and isolated phenomenon. When the quenching temperature reaches 1,050 oC, the hardness of FCB alloy is the highest, but the change of quenching temperature has no obvious effect on impact toughness of FCB alloy. After tempering, the eutectic microstructure of FCB alloy appears with a "two links" trend. With the increase of tempering temperature, the hardness of FCB alloy decreases gradually and impact toughness increases gradually. Cast FCB alloy oil-quenched from 1,050 oC and tempered from 200 oC has excellent combined properties; its hardness and impact toughness are 61.5 HRC and 8.8 J.m-2 respectively.

  19. De-novo CD5 + B- prolymphocytic leukemia (PLL) presenting at younger age with favourable outcome.

    Science.gov (United States)

    Kar, Rakhee; Kumar, Rajat; Tyagi, Seema

    2008-09-05

    B-cell prolymphocytic leukemia (B-PLL) comprises 1% of chronic lymphocytic leukemias. CD5 positivity is seen in 1/3rd of cases which generally arise from pre existing CLL. They have longer median survival compared with de novo B-PLL which are commonly CD5 negative and are more aggressive with an older age of presentation. Herewith, we describe a 48-year-old male of de-novo CD5+ B-PLL presenting with minimal lymphadenopathy and massive splenomegaly with 90% atypical lymphoid cells in the peripheral smear and bone marrow. Immunophenotyping was strongly positive for CD5, CD45, CD19, CD22, FMC-7, S-Ig and CD38, moderately positive for CD 11c, weakly positive for CD23 and negative for CD-103 and ZAP 70. The patient responded well to fludarabine and cyclophosphamide and had an uneventful hospital course. Our case illustrates a de-novo B-PLL with aberrant CD5 positivity who had a short duration of illness, younger age at presentation and favourable treatment outcome.

  20. Crystallization kinetics of an amorphous Co77Si11.5B11.5 alloy

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2006-04-01

    Full Text Available Purpose: This paper describes crystallization kinetics and changes magnetic properties involved by process of crystallization Co-Si-B amorphous alloy.Design/methodology/approach: The following experimental techniques were used: X-ray diffraction (XRD, electrical resistivity in situ measurements (four-point probe static and dynamic measurements of magnetic properties (magnetic balance, fluxmeter, Maxwell-Wien bridge.Findings: In this work has been performed influence of thermal annealing on crystallization kinetics and magnetic properties amorphous Co77Si11.5B11.5 alloy.Practical implications: The attractive properties of Co-Si-B alloy are of special interest for basic research on the materials as well as for their potential applications, like magnetic sensors. The Co soft magnetic material is used in noise filters, saturable reactors, miniature inductance elements for abating spike noise, mains transformers, choke coils, zero-phase current transformers, and magnetic heads etc., i.e., devices which are expected to exhibit high levels of permeability at high frequencies.Originality/value: It has been shown that thermal annealing at temperature close to the crystallization temperature leads to a significant increase of the initial magnetic permeability.

  1. Episodic adaptive diversification of classical swine fever virus RNA-dependent RNA polymerase NS5B.

    Science.gov (United States)

    Li, Yan; Yang, Zexiao

    2015-12-01

    Classical swine fever virus (CSFV) is the pathogen that causes a highly infectious disease of pigs and has led to disastrous losses to pig farms and related industries. The RNA-dependent RNA polymerase (RdRp) NS5B is a central component of the replicase complex (RC) in some single-stranded RNA viruses, including CSFV. On the basis of genetic variation, the CSFV RdRps could be clearly divided into 2 major groups and a minor group, which is consistent with the phylogenetic relationships and virulence diversification of the CSFV isolates. However, the adaptive signature underlying such an evolutionary profile of the polymerase and the virus is still an interesting open question. We analyzed the evolutionary trajectory of the CSFV RdRps over different timescales to evaluate the potential adaptation. We found that adaptive selection has driven the diversification of the RdRps between, but not within, CSFV major groups. Further, the major adaptive divergence-related sites are located in the surfaces relevant to the interaction with other component(s) of RC and the entrance and exit of the template-binding channel. These results might shed some light on the nature of the RdRp in virulence diversification of CSFV groups.

  2. SECONDARY ECLIPSE PHOTOMETRY OF THE EXOPLANET WASP-5b WITH WARM SPITZER

    Energy Technology Data Exchange (ETDEWEB)

    Baskin, Nathaniel J.; Knutson, Heather A.; Desert, Jean-Michel [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 05844 (United States); Fortney, Jonathan J.; Laughlin, Gregory [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lewis, Nikole K. [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, Evanston, IL 60208 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Langton, Jonathan [Department of Physics, Principia College, Elsah, IL 62028 (United States); Showman, Adam P. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2013-08-20

    We present secondary eclipse photometry of the extrasolar planet WASP-5b taken in the 3.6 and 4.5 {mu}m bands with the Spitzer Space Telescope's Infrared Array Camera as part of the extended warm mission. By estimating the depth of the secondary eclipse in these two bands we can place constraints on the planet's atmospheric pressure-temperature profile and chemistry. We measure secondary eclipse depths of 0.197% {+-} 0.028% and 0.237% {+-} 0.024% in the 3.6 {mu}m and 4.5 {mu}m bands, respectively. For the case of a solar-composition atmosphere and chemistry in local thermal equilibrium, our observations are best matched by models showing a hot dayside and, depending on our choice of model, a weak thermal inversion or no inversion at all. We measure a mean offset from the predicted center of eclipse of 3.7 {+-} 1.8 minutes, corresponding to ecos {omega} = 0.0025 {+-} 0.0012 and consistent with a circular orbit. We conclude that the planet's orbit is unlikely to have been perturbed by interactions with another body in the system as claimed by Fukui et al.

  3. Roles of CUP-5, the Caenorhabditis elegans orthologue of human TRPML1, in lysosome and gut granule biogenesis

    Directory of Open Access Journals (Sweden)

    Fares Hanna

    2010-06-01

    Full Text Available Abstract Background CUP-5 is a Transient Receptor Potential protein in C. elegans that is the orthologue of mammalian TRPML1. Loss of TRPML1 results in the lysosomal storage disorder Mucolipidosis type IV. Loss of CUP-5 results in embryonic lethality and the accumulation of enlarged yolk granules in developing intestinal cells. The embryonic lethality of cup-5 mutants is rescued by mutations in mrp-4, which is required for gut granule differentiation. Gut granules are intestine-specific lysosome-related organelles that accumulate birefringent material. This link between CUP-5 and gut granules led us to determine the roles of CUP-5 in lysosome and gut granule biogenesis in developing intestinal cells. Results We show that CUP-5 protein localizes to lysosomes, but not to gut granules, in developing intestinal cells. Loss of CUP-5 results in defects in endo-lysosomal transport in developing intestinal cells of C. elegans embryos. This ultimately leads to the appearance of enlarged terminal vacuoles that show defective lysosomal degradation and that have lysosomal and endosomal markers. In contrast, gut granule biogenesis is normal in the absence of CUP-5. Furthermore, loss of CUP-5 does not result in inappropriate fusion or mixing of content between lysosomes and gut granules. Conclusions Using an in vivo model of MLIV, we show that there is a defect in lysosomal transport/biogenesis that is earlier than the presumed function of TRPML1 in terminal lysosomes. Our results indicate that CUP-5 is required for the biogenesis of lysosomes but not of gut granules. Thus, cellular phenotypes in Mucolipidosis type IV are likely not due to defects in lysosome-related organelle biogenesis, but due to progressive defects in lysosomal transport that lead to severe lysosomal dysfunction.

  4. Ekspresi Tartrate-Resistant Acid Phosphatase-5b pada Epifisis Tulang Femur Tikus Ovariektomi yang Mengkonsumsi Calcitriol dan Raloxifene (TARTRATE-RESISTANT ACID PHOSPHATASE-5b EXPRESSION OF EPIPHYSYS DISTALIS FEMUR OVARIECTOMIZED RATS CONSUMING CALCITRIO

    Directory of Open Access Journals (Sweden)

    Hartiningsih .

    2016-03-01

    Full Text Available Tartrate resistant alkaline phosphatase 5b (TRACP5b is secreted by osteoclasts during bonedifferentiation and resorption. The objective of the research was to study TRAP5b expression inovariectomized Wistar rat consuming the combinations of calcitriol and raloxifene supplementation foreight weeks. Twenty five female Wistar rats aged eight weeks were randomly divided into five groups:normal control (NK, ovariectomy control (OVK, ovariectomy+calcitriol supplementation (OVD,ovariectomy+ raloxifene supplementation (OVR, and ovariectomy+calcitriol+ raloxifene supplementation(OVDR. At the end of the treatment, blood samples were taken from plexus orbitalis medialis forestrogen analysis. All rats were euthanized, the uteri were taken and weighed. Left femur was taken forhistopatological examination and immunohistochemistry TRAP5b using monoclonal antibody anti TRAP5bwhich was detected with streptavidin-biotin. The results showed that estrogen levels of the rats in OVKgroup were significantly decreased compared to the rats in NK group, meanwhile estrogen levels in the OVDR rat group were significantly decreased compared to the NK and OVK rat group. Histopathologicalobservation of distal femur epiphysis in group NK showed normal structure, meanwhile, distal femurepiphysis in OVK group was found osteoporosis, with some abnormalities, such as: increased of bonemarrow space, domination of adipocytes in the bone marrow, and decrease of trabecular bone speculum inepiphysis. Histopathological findings of distal femur epiphysis in OVDR group were increased of trabecularbone speculum in epiphysis and the domination of adipocytes in the bone marrow of epiphysis.Immunohistochemistry of distal femur epiphysis in OVDR group revealed increasing tartrate resistantalkaline phosphatase 5b (TRAP5b expression in trabecular bone, which was located in bone marrow spaceand trabecular speculum surface as well. It can be concluded that the combination of calcitriol and

  5. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis : LAMP-2 deficient mice develop pancreatitis

    NARCIS (Netherlands)

    Mareninova, Olga A; Sendler, Matthias; Malla, Sudarshan Ravi; Yakubov, Iskandar; French, Samuel W; Tokhtaeva, Elmira; Vagin, Olga; Oorschot, Viola; Lüllmann-Rauch, Renate; Blanz, Judith; Dawson, David; Klumperman, Judith; Lerch, Markus M; Mayerle, Julia; Gukovsky, Ilya; Gukovskaya, Anna S

    2015-01-01

    BACKGROUND & AIMS: The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated memb

  6. Lysosome dysfunction enhances oxidative stress-induced apoptosis through ubiquitinated protein accumulation in Hela cells.

    Science.gov (United States)

    Yu, Chunyan; Huang, Xiaowei; Xu, Ye; Li, Hongyan; Su, Jing; Zhong, Jiateng; Kang, Jinsong; Liu, Yuhe; Sun, Liankun

    2013-01-01

    The role of lysosomal system in oxidative stress-induced apoptosis in cancer cells is not fully understood. Menadione is frequently used as oxidative stress model. It is indicated that menadione could induce autophagy in Hela cells. In the present study, we examined whether the lysosomal inhibitor, ammonium chloride (NH(4)Cl) could prevent the autophagy flux by inhibiting the fusion of autophagosomes with lysosomes and enhance apoptosis induced by menadione via mitochondrial pathway. The results demonstrated generation and accumulation of reactive oxygen species and increased levels of ubiquitinated proteins and GRP78 in cells treated with both menadione and NH(4)Cl. Our data indicates that lysosomal system through autophagy plays an important role in preventing menadione-induced apoptosis in Hela cells by clearing misfolded proteins, which alleviates endoplasmic reticulum stress.

  7. Lysosomal acid lipase: At the crossroads of normal and atherogenic cholesterol metabolism

    Directory of Open Access Journals (Sweden)

    Joshua A Dubland

    2015-02-01

    Full Text Available Unregulated cellular uptake of apolipoprotein B-containing lipoproteins in the arterial intima leads to the formation of foam cells in atherosclerosis. Lysosomal acid lipase (LAL plays a crucial role in both lipoprotein lipid catabolism and excess lipid accumulation as it is the primary enzyme that hydrolyzes cholesteryl esters derived from both low density lipoprotein (LDL and modified forms of LDL. Evidence suggests that as atherosclerosis progresses, accumulation of excess free cholesterol in lysosomes leads to impairment of LAL activity, resulting in accumulation of cholesteryl esters in the lysosome as well as the cytosol in foam cells. Impaired metabolism and release of cholesterol from lysosomes can lead to downstream defects in ATP-binding cassette transporter A1 regulation, needed to offload excess cholesterol from plaque foam cells. This review focuses on the role LAL plays in normal cholesterol metabolism and how the associated changes in its enzymatic activity may ultimately contribute to atherosclerosis progression.

  8. Enantioselective effects of methamidophos on the coelomocytes lysosomal membrane stability of Eisenia fetida.

    Science.gov (United States)

    Chen, Linhua; Lu, Xianting; Ma, Yun

    2012-12-01

    Many of organophosphorous insecticides are chiral compounds. In this study, the enantioselective effects of organophosphate insecticide methamidophos on the coelomocytes lysosomal membrane stability of earthworm Eisenia fetida were studied: (1) The enantiomers of methamidophos were absolutely separated by high-performance liquid chromatography with a commercial chiral column; (2) The neutral red retention assay was used to judge the lysosomal membrane stability. The results showed that with the concentration increasing, lysosomal membranes have been significantly destroyed by individual stereoisomers and racemate of methamidophos. The neutral red retention times were significantly descended from 76.88 to 29.78 min. Both (+)- and (-)-methamidophos showed more prone to destroy the integrity of the lysosomal membrane than the racemate. However, the different effect between stereoisomers is slight.

  9. uPARAP/endo180 directs lysosomal delivery and degradation of collagen IV

    DEFF Research Database (Denmark)

    Kjøller, Lars; Engelholm, Lars H; Høyer-Hansen, Maria

    2004-01-01

    transmembrane glycoprotein urokinase plasminogen activator receptor-associated protein (uPARAP/endo180) directs collagen IV for lysosomal delivery and degradation. In wild-type fibroblasts, fluorescently labeled collagen IV was first internalized into vesicular structures with diffuse fluorescence eventually...... appearing uniformly within the wild-type cells after longer incubation times. In these cells, some collagen-containing vesicles were identified as lysosomes by staining for LAMP-1. In contrast, collagen IV remained extracellular and associated with fiber-like structures on uPARAP/endo180-deficient...... fibroblasts. Blocking lysosomal cysteine proteases with the inhibitor E64d resulted in strong accumulation of collagen IV in lysosomes in wild-type cells, but only very weak intracellular fluorescence accumulation in uPARAP/endo180-deficient fibroblasts. We conclude that uPARAP/endo180 is critical...

  10. High resolution crystal structure of human β-glucuronidase reveals structural basis of lysosome targeting

    National Research Council Canada - National Science Library

    Hassan, Md Imtaiyaz; Waheed, Abdul; Grubb, Jeffery H; Klei, Herbert E; Korolev, Sergey; Sly, William S

    2013-01-01

    ...). Here we report a high resolution crystal structure of human GUS at 1.7 Å resolution and present an extensive analysis of the structural features, unifying recent findings in the field of lysosome targeting and glycosyl hydrolases...

  11. High Resolution Crystal Structure of Human [beta]-Glucuronidase Reveals Structural Basis of Lysosome Targeting

    National Research Council Canada - National Science Library

    Hassan, Md; Waheed, Abdul; Grubb, Jeffery; Klei, Herbert; Korolev, Sergey; Sly, William

    2013-01-01

    ...). Here we report a high resolution crystal structure of human GUS at 1.7 Å resolution and present an extensive analysis of the structural features, unifying recent findings in the field of lysosome targeting and glycosyl hydrolases...

  12. Expression of the lysosomal-associated membrane protein-1 (LAMP-1) in astrocytomas

    DEFF Research Database (Denmark)

    Jensen, Stine Skov; Christensen, Karina; Aaberg-Jessen, Charlotte

    Targeting lysosomes is a novel approach in cancer therapy providing a possible way of killing the otherwise apoptosis-resistant cancer cells. Recent research has thus shown that lysosome targeting compounds induce cell death in a cervix cancer cell line. Tumor stem cells in glioblastomas have...... recently been suggested to possess innate resistance mechanisms against radiation and chemotherapy possibly explaining the high level of therapeutic resistance of these tumors. Since the presence and distribution of lysosomes in tumor cells and especially in tumor stem cells in astrocytomas is unknown......, the aim of this study was to investigate the immunohistochemical expression of LAMP-1, a membrane bound protein in lysosomes, in formalin fixed paraffin embedded tumor tissue from 23 diffuse astrocytomas, 17 anaplastic astrocytomas and 72 glioblastomas. The LAMP-1 expression was scored and compared...

  13. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis : LAMP-2 deficient mice develop pancreatitis

    NARCIS (Netherlands)

    Mareninova, Olga A; Sendler, Matthias; Malla, Sudarshan Ravi; Yakubov, Iskandar; French, Samuel W; Tokhtaeva, Elmira; Vagin, Olga; Oorschot, Viola; Lüllmann-Rauch, Renate; Blanz, Judith; Dawson, David; Klumperman, Judith; Lerch, Markus M; Mayerle, Julia; Gukovsky, Ilya; Gukovskaya, Anna S

    2015-01-01

    BACKGROUND & AIMS: The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated

  14. Emerging therapies for neurodegenerative lysosomal storage disorders - from concept to reality.

    Science.gov (United States)

    Hemsley, Kim M; Hopwood, John J

    2011-10-01

    Lysosomal storage disorders are inherited metabolic diseases in which a mutation in a gene encoding a lysosomal enzyme or lysosome-related protein results in the intra-cellular accumulation of substrate and reduced cell/tissue function. Few patients with neurodegenerative lysosomal storage disorders have access to safe and effective treatments although many therapeutic strategies have been or are presently being studied in vivo thanks to the availability of a large number of animal models. This review will describe the comparative advancement of a variety of therapeutic strategies through the 'research pipeline'. Our goal is to provide information for clinicians, researchers and patients/families alike on the leading therapeutic candidates at this point in time, and also to provide information on emerging approaches that may provide a safe and effective treatment in the future. The length of the pipeline represents the significant and sustained effort required to move a novel concept from the laboratory into the clinic.

  15. Less Is More: Substrate Reduction Therapy for Lysosomal Storage Disorders

    Directory of Open Access Journals (Sweden)

    Maria Francisca Coutinho

    2016-07-01

    Full Text Available Lysosomal storage diseases (LSDs are a group of rare, life-threatening genetic disorders, usually caused by a dysfunction in one of the many enzymes responsible for intralysosomal digestion. Even though no cure is available for any LSD, a few treatment strategies do exist. Traditionally, efforts have been mainly targeting the functional loss of the enzyme, by injection of a recombinant formulation, in a process called enzyme replacement therapy (ERT, with no impact on neuropathology. This ineffectiveness, together with its high cost and lifelong dependence is amongst the main reasons why additional therapeutic approaches are being (and have to be investigated: chaperone therapy; gene enhancement; gene therapy; and, alternatively, substrate reduction therapy (SRT, whose aim is to prevent storage not by correcting the original enzymatic defect but, instead, by decreasing the levels of biosynthesis of the accumulating substrate(s. Here we review the concept of substrate reduction, highlighting the major breakthroughs in the field and discussing the future of SRT, not only as a monotherapy but also, especially, as complementary approach for LSDs.

  16. Lysosomal Changes in Renal Proximal Tubular Epithelial Cells of Male Sprague Dawley Rats Following Decalin Exposure

    Science.gov (United States)

    1990-01-01

    decalin-treated animal. Note large, pale, rcd-staining lysosome (-). An exfoliated epithelial cell can iu- seen in the tubular lumen containing large...photomicrograph contains an exfoliated epithelial cell (-) with enlarged, intact lysosomes. The tubule on the left half of the photomicrograph contains an...metabolism of proteins. In: Cytology , GH Bourne and JF Danielli (eds). Academ- The Kidney: Physiology and Pathophysiology, DW ic Press, NY, pp. 251-300. - ~- i :- d .L n .- 2

  17. The BH3 Mimetic Obatoclax Accumulates in Lysosomes and Causes Their Alkalinization.

    Directory of Open Access Journals (Sweden)

    Vasileios A Stamelos

    Full Text Available Obatoclax belongs to a class of compounds known as BH3 mimetics which function as antagonists of Bcl-2 family apoptosis regulators. It has undergone extensive preclinical and clinical evaluation as a cancer therapeutic. Despite this, it is clear that obatoclax has additional pharmacological effects that contribute to its cytotoxic activity. It has been claimed that obatoclax, either alone or in combination with other molecularly targeted therapeutics, induces an autophagic form of cell death. In addition, obatoclax has been shown to inhibit lysosomal function, but the mechanism of this has not been elucidated. We have evaluated the mechanism of action of obatoclax in eight ovarian cancer cell lines. Consistent with its function as a BH3 mimetic, obatoclax induced apoptosis in three cell lines. However, in the remaining cell lines another form of cell death was evident because caspase activation and PARP cleavage were not observed. Obatoclax also failed to show synergy with carboplatin and paclitaxel, chemotherapeutic agents which we have previously shown to be synergistic with authentic Bcl-2 family antagonists. Obatoclax induced a profound accumulation of LC-3 but knockdown of Atg-5 or beclin had only minor effects on the activity of obatoclax in cell growth assays suggesting that the inhibition of lysosomal function rather than stimulation of autophagy may play a more prominent role in these cells. To evaluate how obatoclax inhibits lysosomal function, confocal microscopy studies were conducted which demonstrated that obatoclax, which contains two basic pyrrole groups, accumulates in lysosomes. Studies using pH sensitive dyes demonstrated that obatoclax induced lysosomal alkalinization. Furthermore, obatoclax was synergistic in cell growth/survival assays with bafilomycin and chloroquine, two other drugs which cause lysosomal alkalinization. These studies explain, for the first time, how obatoclax inhibits lysosomal function and suggest that

  18. Streptococcus oralis Induces Lysosomal Impairment of Macrophages via Bacterial Hydrogen Peroxide.

    Science.gov (United States)

    Okahashi, Nobuo; Nakata, Masanobu; Kuwata, Hirotaka; Kawabata, Shigetada

    2016-07-01

    Streptococcus oralis, an oral commensal, belongs to the mitis group of streptococci and occasionally causes opportunistic infections, such as bacterial endocarditis and bacteremia. Recently, we found that the hydrogen peroxide (H2O2) produced by S. oralis is sufficient to kill human monocytes and epithelial cells, implying that streptococcal H2O2 is a cytotoxin. In the present study, we investigated whether streptococcal H2O2 impacts lysosomes, organelles of the intracellular digestive system, in relation to cell death. S. oralis infection induced the death of RAW 264 macrophages in an H2O2-dependent manner, which was exemplified by the fact that exogenous H2O2 also induced cell death. Infection with either a mutant lacking spxB, which encodes pyruvate oxidase responsible for H2O2 production, or Streptococcus mutans, which does not produce H2O2, showed less cytotoxicity. Visualization of lysosomes with LysoTracker revealed lysosome deacidification after infection with S. oralis or exposure to H2O2, which was corroborated by acridine orange staining. Similarly, fluorescent labeling of lysosome-associated membrane protein-1 gradually disappeared during infection with S. oralis or exposure to H2O2 The deacidification and the following induction of cell death were inhibited by chelating iron in lysosomes. Moreover, fluorescent staining of cathepsin B indicated lysosomal destruction. However, treatment of infected cells with a specific inhibitor of cathepsin B had negligible effects on cell death; instead, it suppressed the detachment of dead cells from the culture plates. These results suggest that streptococcal H2O2 induces cell death with lysosomal destruction and then the released lysosomal cathepsins contribute to the detachment of the dead cells.

  19. Reduction of mutant huntingtin accumulation and toxicity by lysosomal cathepsins D and B in neurons

    OpenAIRE

    Ouyang Xiaosen; Liang Qiuli; Schneider Lonnie; Zhang Jianhua

    2011-01-01

    Abstract Background Huntington's disease is caused by aggregation of mutant huntingtin (mHtt) protein containing more than a 36 polyQ repeat. Upregulation of macroautophagy was suggested as a neuroprotective strategy to degrade mutant huntingtin. However, macroautophagy initiation has been shown to be highly efficient in neurons whereas lysosomal activities are rate limiting. The role of the lysosomal and other proteases in Huntington is not clear. Some studies suggest that certain protease a...

  20. Action of polystyrene nanoparticles of different sizes on lysosomal function and integrity

    OpenAIRE

    Fröhlich Eleonore; Meindl Claudia; Roblegg Eva; Ebner Birgit; Absenger Markus; Pieber Thomas R

    2012-01-01

    Abstract Background Data from environmental exposure to nanoparticles (NPs) suggest that chronic exposure may increase the incidence of lung, cardiovascular and neurodegenerative diseases. Impairment of cell function by intracellular accumulation of NPs is also suspected. Many types of NPs have been detected in the endosomal-lysosomal system and, upon repeated exposure, alterations of the endosomal-lysosomal system may occur. To identify such effects we compared the effect of carboxyl polysty...

  1. Lysosomal responses to heat-shock of seasonal temperature extremes in Cd-exposed mussels.

    Science.gov (United States)

    Múgica, M; Izagirre, U; Marigómez, I

    2015-07-01

    The present study was aimed at determining the effect of temperature extremes on lysosomal biomarkers in mussels exposed to a model toxic pollutant (Cd) at different seasons. For this purpose, temperature was elevated 10°C (from 12°C to 22°C in winter and from 18°C to 28°C in summer) for a period of 6h (heat-shock) in control and Cd-exposed mussels, and then returned back to initial one. Lysosomal membrane stability and lysosomal structural changes in digestive gland were investigated. In winter, heat-shock reduced the labilisation period (LP) of the lysosomal membrane, especially in Cd-exposed mussels, and provoked transient lysosomal enlargement. LP values recovered after the heat-shock cessation but lysosomal enlargement prevailed in both experimental groups. In summer, heat-shock induced remarkable reduction in LP and lysosomal enlargement (more markedly in Cd-exposed mussels), which recovered within 3 days. Besides, whilst heat-shock effects on LP were practically identical for Cd-exposed mussels in winter and summer, the effects were longer-lasting in summer than in winter for control mussels. Thus, lysosomal responsiveness after heat-shock was higher in summer than in winter but recovery was faster as well, and therefore the consequences of the heat shock seem to be more decisive in winter. In contrast, inter-season differences were attenuated in the presence of Cd. Consequently, mussels seem to be better prepared in summer than in winter to stand short periods of abrupt temperature change; this is, however, compromised when mussels are exposed to pollutants such as Cd.

  2. EGFRvIII escapes down-regulation due to impaired internalization and sorting to lysosomes

    DEFF Research Database (Denmark)

    Grandal, Michael V; Zandi, Roza; Pedersen, Mikkel W

    2007-01-01

    . Moreover, internalized EGFRvIII is recycled rather than delivered to lysosomes. EGFRvIII binds the ubiquitin ligase c-Cbl via Grb2, whereas binding via phosphorylated tyrosine residue 1045 seems to be limited. Despite c-Cbl binding, the receptor fails to become effectively ubiquitinylated. Thus, our...... results suggest that the long lifetime of EGFRvIII is caused by inefficient internalization and impaired sorting to lysosomes due to lack of effective ubiquitinylation....

  3. Observation of intracellular interactions between DNA origami and lysosomes by the fluorescence localization method.

    Science.gov (United States)

    Fu, Meifang; Dai, Luru; Jiang, Qiao; Tang, Yunqing; Zhang, Xiaoming; Ding, Baoquan; Li, Junbai

    2016-07-28

    We obtained the fluorescence localization images of tube DNA origami nanostructures in NIH 3T3 cells for the first time. The fluorescence localization images of tube DNA origami nanostructures and TIRF images of lysosomes were combined and they revealed the detailed interactions between the two structures. Quantitative analysis illustrated that the tube origami can be captured as well as degraded by lysosomes with time.

  4. Eps8 is recruited to lysosomes and subjected to chaperone-mediated autophagy in cancer cells.

    Science.gov (United States)

    Welsch, Thilo; Younsi, Alexander; Disanza, Andrea; Rodriguez, Jose Antonio; Cuervo, Ana Maria; Scita, Giorgio; Schmidt, Jan

    2010-07-15

    Eps8 controls actin dynamics directly through its barbed end capping and actin-bundling activity, and indirectly by regulating Rac-activation when engaged into a trimeric complex with Eps8-Abi1-Sos1. Recently, Eps8 has been associated with promotion of various solid malignancies, but neither its mechanisms of action nor its regulation in cancer cells have been elucidated. Here, we report a novel association of Eps8 with the late endosomal/lysosomal compartment, which is independent from actin polymerization and specifically occurs in cancer cells. Endogenous Eps8 localized to large vesicular lysosomal structures in metastatic pancreatic cancer cell lines, such as AsPC-1 and Capan-1 that display high Eps8 levels. Additionally, ectopic expression of Eps8 increased the size of lysosomes. Structure-function analysis revealed that the region encompassing the amino acids 184-535 of Eps8 was sufficient to mediate lysosomal recruitment. Notably, this fragment harbors two KFERQ-like motifs required for chaperone-mediated autophagy (CMA). Furthermore, Eps8 co-immunoprecipitated with Hsc70 and LAMP-2, which are key elements for the CMA degradative pathway. Consistently, in vitro, a significant fraction of Eps8 bound to (11.9+/-5.1%) and was incorporated into (5.3+/-6.5%) lysosomes. Additionally, Eps8 binding to lysosomes was competed by other known CMA-substrates. Fluorescence recovery after photobleaching revealed that Eps8 recruitment to the lysosomal membrane was highly dynamic. Collectively, these results indicate that Eps8 in certain human cancer cells specifically localizes to lysosomes, and is directed to CMA. These results open a new field for the investigation of how Eps8 is regulated and contributes to tumor promotion in human cancers.

  5. The Role of Next-Generation Sequencing in the Diagnosis of Lysosomal Storage Disorders

    Directory of Open Access Journals (Sweden)

    Katalin Komlosi MD, PhD

    2016-10-01

    Full Text Available Next-generation sequencing (NGS panels are used widely in clinical diagnostics to identify genetic causes of various monogenic disease groups including neurometabolic disorders and, more recently, lysosomal storage disorders (LSDs. Many new challenges have been introduced through these new technologies, both at the laboratory level and at the bioinformatics level, with consequences including new requirements for interpretation of results, and for genetic counseling. We review some recent examples of the application of NGS technologies, with purely diagnostic and with both diagnostic and research aims, for establishing a rapid genetic diagnosis in LSDs. Given that NGS can be applied in a way that takes into account the many issues raised by international consensus guidelines, it can have a significant role even early in the course of the diagnostic process, in combination with biochemical and clinical data. Besides decreasing the delay in diagnosis for many patients, a precise molecular diagnosis is extremely important as new therapies are becoming available within the LSD spectrum for patients who share specific types of mutations. A genetic diagnosis is also the prerequisite for genetic counseling, family planning, and the individual choice of reproductive options in affected families.

  6. The nuclear protein Waharan is required for endosomal-lysosomal trafficking in Drosophila.

    Science.gov (United States)

    Lone, Mohiddin; Kungl, Theresa; Koper, Andre; Bottenberg, Wolfgang; Kammerer, Richard; Klein, Melanie; Sweeney, Sean T; Auburn, Richard P; O'Kane, Cahir J; Prokop, Andreas

    2010-07-15

    Here we report Drosophila Waharan (Wah), a 170-kD predominantly nuclear protein with two potential human homologues, as a newly identified regulator of endosomal trafficking. Wah is required for neuromuscular-junction development and muscle integrity. In muscles, knockdown of Wah caused novel accumulations of tightly packed electron-dense tubules, which we termed 'sausage bodies'. Our data suggest that sausage bodies coincide with sites at which ubiquitylated proteins and a number of endosomal and lysosomal markers co-accumulate. Furthermore, loss of Wah function generated loss of the acidic LysoTracker compartment. Together with data demonstrating that Wah acts earlier in the trafficking pathway than the Escrt-III component Drosophila Shrb (snf7 in Schizosaccharomyces pombe), our results indicate that Wah is essential for endocytic trafficking at the late endosome. Highly unexpected phenotypes result from Wah knockdown, in that the distribution of ubiquitylated cargos and endolysosomal morphologies are affected despite Wah being a predominant nuclear protein. This finding suggests the existence of a relationship between nuclear functions and endolysosomal trafficking. Future studies of Wah function will give us insights into this interesting phenomenon.

  7. The Role of Next-Generation Sequencing in the Diagnosis of Lysosomal Storage Disorders

    Directory of Open Access Journals (Sweden)

    Katalin Komlosi MD, PhD

    2016-10-01

    Full Text Available Next-generation sequencing (NGS panels are used widely in clinical diagnostics to identify genetic causes of various monogenic disease groups including neurometabolic disorders and, more recently, lysosomal storage disorders (LSDs. Many new challenges have been introduced through these new technologies, both at the laboratory level and at the bioinformatics level, with consequences including new requirements for interpretation of results, and for genetic counseling. We review some recent examples of the application of NGS technologies, with purely diagnostic and with both diagnostic and research aims, for establishing a rapid genetic diagnosis in LSDs. Given that NGS can be applied in a way that takes into account the many issues raised by international consensus guidelines, it can have a significant role even early in the course of the diagnostic process, in combination with biochemical and clinical data. Besides decreasing the delay in diagnosis for many patients, a precise molecular diagnosis is extremely important as new therapies are becoming available within the LSD spectrum for patients who share specific types of mutations. A genetic diagnosis is also the prerequisite for genetic counseling, family planning, and the individual choice of reproductive options in affected families.

  8. Global fit analysis of myosin-5b motility reveals thermodynamics of Mg2+-sensitive acto-myosin-ADP states.

    Directory of Open Access Journals (Sweden)

    Igor Chizhov

    Full Text Available Kinetic and thermodynamic studies of the mechanochemical cycle of myosin motors are essential for understanding the mechanism of energy conversion. Here, we report our investigation of temperature and free Mg(2+-ion dependencies of sliding velocities of a high duty ratio class-5 myosin motor, myosin-5b from D. discoideum using in vitro motility assays. Previous studies have shown that the sliding velocity of class-5 myosins obeys modulation by free Mg(2+-ions. Free Mg(2+-ions affect ADP release kinetics and the dwell time of actin-attached states. The latter determines the maximal velocity of actin translocation in the sliding filament assay. We measured the temperature dependence of sliding velocity in the range from 5 to 55°C at two limiting free Mg(2+-ion concentrations. Arrhenius plots demonstrated non-linear behavior. Based on this observation we propose a kinetic model, which explains both sensitivity towards free Mg(2+-ions and non-linearity of the temperature dependence of sliding velocity. According to this model, velocity is represented as a simple analytical function of temperature and free Mg(2+-ion concentrations. This function has been applied to global non-linear fit analysis of three data sets including temperature and magnesium (at 20°C dependence of sliding velocity. As a result we obtain thermodynamic parameters (ΔH(Mg and ΔS(Mg of a fast equilibrium between magnesium free (AM·D and magnesium bound acto-myosin-ADP (AM· Mg(2+D states and the corresponding enthalpic barriers associated with ADP release (ΔH1(‡ and ΔH2(‡. The herein presented integrative approach of data analysis based on global fitting can be applied to the remaining steps of the acto-myosin ATPase cycle facilitating the determination of energetic parameters and thermodynamics of acto-myosin interactions.

  9. Interaction of arylsulfatase A with UDP-N-acetylglucosamine:Lysosomal enzyme-N-acetylglucosamine-1-phosphotransferase.

    Science.gov (United States)

    Schierau, A; Dietz, F; Lange, H; Schestag, F; Parastar, A; Gieselmann, V

    1999-02-05

    The critical step in lysosomal targeting of soluble lysosomal enzymes is the recognition by an UDP-N-acetylglucosamine:lysosomal enzyme-N-acetylglucosamine-1-phosphotransferase. The structure of the determinant common to all lysosomal enzymes for proper recognition by the phosphotransferase is not completely understood. Our current knowledge is largely based on the introduction of targeted amino acid substitutions into lysosomal enzymes and analysis of their effects on phosphotransferase recognition. We have investigated the effect of eight anti-arylsulfatase A monoclonal antibodies on the interaction of arylsulfatase A with the lysosomal enzyme phosphotransferase in vitro. We also show that a lysine-rich surface area of arylsulfatases A and B is essential for proper recognition by the phosphotransferase. Monoclonal antibodies bind to at least six different epitopes at different locations on the surface of arylsulfatase A. All antibodies bind outside the lysine-rich recognition area, but nevertheless Fab fragments of these antibodies prevent interaction of arylsulfatase A with the phosphotransferase. Our data support a model in which binding of arylsulfatase A to the phosphotransferase is not restricted to a limited surface area but involves the simultaneous recognition of large parts of arylsulfatase A.

  10. Cross-talk between TRPML1 channel, lipids and lysosomal storage diseases.

    Science.gov (United States)

    Weiss, Norbert

    2012-03-01

    Described by the Belgian cytologist Christian De Duve in 1949,(1) lysosomes (from the Greek "digestive bodies") are ubiquitous specialized intracellular organelles that ensure the degradation/recycling of macromolecules (proteins, lipids, membranes) through the activity of specific enzymes (i.e., acid hydrolases). They receive their substrates through different internalization pathways (i.e., endocytosis, phagocytosis and autophagy) and are involved in a wide range of physiological functions from cell death and signaling to cholesterol homeostasis and plasma membrane repair.(2) In Mammals, 50 soluble lysosomal hydrolases have been described, each targeting specific substrates. They are confined in the lumen of the lysosome and require an optimum pH (i.e., pH 4.5) to work. This acidic pH compared with the slightly alkaline pH of the cytosol (i.e., ~pH 7.2) is maintained by the activity of integral lysosomal membrane proteins (LMPs, that represent the second class of lysosomal proteins), including the V-type proton (H(+))-ATPase(3) and the chloride ion channel CLC7(4) that pumps protons from the cytosol across the lysosomal membrane.

  11. TMEM175 deficiency impairs lysosomal and mitochondrial function and increases α-synuclein aggregation

    Science.gov (United States)

    Jinn, Sarah; Drolet, Robert E.; Cramer, Paige E.; Wong, Andus Hon-Kit; Toolan, Dawn M.; Gretzula, Cheryl A.; Voleti, Bhavya; Vassileva, Galya; Disa, Jyoti; Tadin-Strapps, Marija; Stone, David J.

    2017-01-01

    Parkinson disease (PD) is a neurodegenerative disorder pathologically characterized by nigrostriatal dopamine neuron loss and the postmortem presence of Lewy bodies, depositions of insoluble α-synuclein, and other proteins that likely contribute to cellular toxicity and death during the disease. Genetic and biochemical studies have implicated impaired lysosomal and mitochondrial function in the pathogenesis of PD. Transmembrane protein 175 (TMEM175), the lysosomal K+ channel, is centered under a major genome-wide association studies peak for PD, making it a potential candidate risk factor for the disease. To address the possibility that variation in TMEM175 could play a role in PD pathogenesis, TMEM175 function was investigated in a neuronal model system. Studies confirmed that TMEM175 deficiency results in unstable lysosomal pH, which led to decreased lysosomal catalytic activity, decreased glucocerebrosidase activity, impaired autophagosome clearance by the lysosome, and decreased mitochondrial respiration. Moreover, TMEM175 deficiency in rat primary neurons resulted in increased susceptibility to exogenous α-synuclein fibrils. Following α-synuclein fibril treatment, neurons deficient in TMEM175 were found to have increased phosphorylated and detergent-insoluble α-synuclein deposits. Taken together, data from these studies suggest that TMEM175 plays a direct and critical role in lysosomal and mitochondrial function and PD pathogenesis and highlight this ion channel as a potential therapeutic target for treating PD. PMID:28193887

  12. Reduction of mutant huntingtin accumulation and toxicity by lysosomal cathepsins D and B in neurons

    Directory of Open Access Journals (Sweden)

    Ouyang Xiaosen

    2011-06-01

    Full Text Available Abstract Background Huntington's disease is caused by aggregation of mutant huntingtin (mHtt protein containing more than a 36 polyQ repeat. Upregulation of macroautophagy was suggested as a neuroprotective strategy to degrade mutant huntingtin. However, macroautophagy initiation has been shown to be highly efficient in neurons whereas lysosomal activities are rate limiting. The role of the lysosomal and other proteases in Huntington is not clear. Some studies suggest that certain protease activities may contribute to toxicity whereas others are consistent with protection. These discrepancies may be due to a number of mechanisms including distinct effects of the specific intermediate digestion products of mutant huntingtin generated by different proteases. These observations suggested a critical need to investigate the consequence of upregulation of individual lysosomal enzyme in mutant huntingtin accumulation and toxicity. Results In this study, we used molecular approaches to enhance lysosomal protease activities and examined their effects on mutant huntingtin level and toxicity. We found that enhanced expression of lysosomal cathepsins D and B resulted in their increased enzymatic activities and reduced both full-length and fragmented huntingtin in transfected HEK cells. Furthermore, enhanced expression of cathepsin D or B protected against mutant huntingtin toxicity in primary neurons, and their neuroprotection is dependent on macroautophagy. Conclusions These observations demonstrate a neuroprotective effect of enhancing lysosomal cathepsins in reducing mutant huntingtin level and toxicity in transfected cells. They highlight the potential importance of neuroprotection mediated by cathepsin D or B through macroautophagy.

  13. Para-toluenesulfonamide induces tongue squamous cell carcinoma cell death through disturbing lysosomal stability.

    Science.gov (United States)

    Liu, Zhe; Liang, Chenyuan; Zhang, Zhuoyuan; Pan, Jian; Xia, Hui; Zhong, Nanshan; Li, Longjiang

    2015-11-01

    Para-toluenesulfonamide (PTS) has been implicated with anticancer effects against a variety of tumors. In the present study, we investigated the inhibitory effects of PTS on tongue squamous cell carcinoma (Tca-8113) and explored the lysosomal and mitochondrial changes after PTS treatment in vitro. High-performance liquid chromatography showed that PTS selectively accumulated in Tca-8113 cells with a relatively low concentration in normal fibroblasts. Next, the effects of PTS on cell viability, invasion, and cell death were determined. PTS significantly inhibited Tca-8113 cells' viability and invasive ability with increased cancer cell death. Flow cytometric analysis and the lactate dehydrogenase release assay showed that PTS induced cancer cell death by activating apoptosis and necrosis simultaneously. Morphological changes, such as cellular shrinkage, nuclear condensation as well as formation of apoptotic body and secondary lysosomes, were observed, indicating that PTS might induce cell death through disturbing lysosomal stability. Lysosomal integrity assay and western blot showed that PTS increased lysosomal membrane permeabilization associated with activation of lysosomal cathepsin B. Finally, PTS was shown to inhibit ATP biosynthesis and induce the release of mitochondrial cytochrome c. Therefore, our findings provide a novel insight into the use of PTS in cancer therapy.

  14. Lysosomal interaction of Akt with Phafin2: a critical step in the induction of autophagy.

    Directory of Open Access Journals (Sweden)

    Mami Matsuda-Lennikov

    Full Text Available Autophagy is an evolutionarily conserved mechanism for the gross disposal of intracellular proteins in mammalian cells and dysfunction in this pathway has been associated with human disease. Although the serine threonine kinase Akt is suggested to play a role in this process, little is known about the molecular mechanisms by which Akt induces autophagy. Using a yeast two-hybrid screen, Phafin2 (EAPF or PLEKHF2, a lysosomal protein with a unique structure of N-terminal PH (pleckstrin homology domain and C-terminal FYVE (Fab 1, YOTB, Vac 1, and EEA1 domain was found to interact with Akt. A sucrose gradient fractionation experiment revealed that both Akt and Phafin2 co-existed in the same lysosome enriched fraction after autophagy induction. Confocal microscopic analysis and BiFC analysis demonstrated that both Akt and Phafin2 accumulate in the lysosome after induction of autophagy. BiFC analysis using PtdIns (3P interaction defective mutant of Phafin2 demonstrated that lysosomal accumulation of the Akt-Phafin2 complex and subsequent induction of autophagy were lysosomal PtdIns (3P dependent events. Furthermore, in murine macrophages, both Akt and Phafin2 were required for digestion of fluorescent bacteria and/or LPS-induced autophagy. Taken together, these findings establish that lysosomal accumulation of Akt and Phafin2 is a critical step in the induction of autophagy via an interaction with PtdIns (3P.

  15. Activation of the transcription factor EB rescues lysosomal abnormalities in cystinotic kidney cells.

    Science.gov (United States)

    Rega, Laura R; Polishchuk, Elena; Montefusco, Sandro; Napolitano, Gennaro; Tozzi, Giulia; Zhang, Jinzhong; Bellomo, Francesco; Taranta, Anna; Pastore, Anna; Polishchuk, Roman; Piemonte, Fiorella; Medina, Diego L; Catz, Sergio D; Ballabio, Andrea; Emma, Francesco

    2016-04-01

    Nephropathic cystinosis is a rare autosomal recessive lysosomal storage disease characterized by accumulation of cystine into lysosomes secondary to mutations in the cystine lysosomal transporter, cystinosin. The defect initially causes proximal tubular dysfunction (Fanconi syndrome) which in time progresses to end-stage renal disease. Cystinotic patients treated with the cystine-depleting agent, cysteamine, have improved life expectancy, delayed progression to chronic renal failure, but persistence of Fanconi syndrome. Here, we have investigated the role of the transcription factor EB (TFEB), a master regulator of the autophagy-lysosomal pathway, in conditionally immortalized proximal tubular epithelial cells derived from the urine of a healthy volunteer or a cystinotic patient. Lack of cystinosin reduced TFEB expression and induced TFEB nuclear translocation. Stimulation of endogenous TFEB activity by genistein, or overexpression of exogenous TFEB lowered cystine levels within 24 hours in cystinotic cells. Overexpression of TFEB also stimulated delayed endocytic cargo processing within 24 hours. Rescue of other abnormalities of the lysosomal compartment was observed but required prolonged expression of TFEB. These abnormalities could not be corrected with cysteamine. Thus, these data show that the consequences of cystinosin deficiency are not restricted to cystine accumulation and support the role of TFEB as a therapeutic target for the treatment of lysosomal storage diseases, in particular of cystinosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  16. ARID5B Genetic Polymorphisms Contribute to Racial Disparities in the Incidence and Treatment Outcome of Childhood Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Xu, Heng; Cheng, Cheng; Devidas, Meenakshi; Pei, Deqing; Fan, Yiping; Yang, Wenjian; Neale, Geoff; Scheet, Paul; Burchard, Esteban G.; Torgerson, Dara G.; Eng, Celeste; Dean, Michael; Antillon, Frederico; Winick, Naomi J.; Martin, Paul L.; Willman, Cheryl L.; Camitta, Bruce M.; Reaman, Gregory H.; Carroll, William L.; Loh, Mignon; Evans, William E.; Pui, Ching-Hon; Hunger, Stephen P.; Relling, Mary V.; Yang, Jun J.

    2012-01-01

    Purpose Recent genome-wide screens have identified genetic variations in ARID5B associated with susceptibility to childhood acute lymphoblastic leukemia (ALL). We sought to determine the contribution of ARID5B single nucleotide polymorphisms (SNPs) to racial disparities in ALL susceptibility and treatment outcome. Patients and Methods We compared the association between ARID5B SNP genotype and ALL susceptibility in whites (> 95% European genetic ancestry; 978 cases and 1,046 controls) versus in Hispanics (> 10% Native American ancestry; 330 cases and 541 controls). We determined the relationships between ARID5B SNP genotype and ALL relapse risk in 1,605 children treated on the Children's Oncology Group (COG) P9904/9905 clinical trials. Results Among 49 ARID5B SNPs interrogated, 10 were significantly associated with ALL susceptibility in both whites and Hispanics (P < .05), with risk alleles consistently more frequent in Hispanics than in whites. rs10821936 exhibited the most significant association in both races (P = 8.4 × 10−20 in whites; P = 1 × 10−6 in Hispanics), and genotype at this SNP was highly correlated with local Native American genetic ancestry (P = 1.8 × 10−8). Multivariate analyses in Hispanics identified an additional SNP associated with ALL susceptibility independent of rs10821936. Eight ARID5B SNPs were associated with both ALL susceptibility and relapse hazard; the alleles related to higher ALL incidence were always linked to poorer treatment outcome and were more frequent in Hispanics. Conclusion ARID5B polymorphisms are important determinants of childhood ALL susceptibility and treatment outcome, and they contribute to racial disparities in this disease. PMID:22291082

  17. Genotype and allelic frequencies of CYP2E1*5B polymorphism in the southwest population of Iran

    Directory of Open Access Journals (Sweden)

    Fatemeh Zanganeh

    2014-10-01

    Full Text Available Background: Cytochrome P450 2E1 (CYP2E1 is a main enzyme which plays a major role in activating and detoxifying many xenobiotics, carcinogens and drugs. Available studies suggest that CYP2E1 single nucleotide polymorphisms (SNPs are involved in the risk of developing certain cancers after exposure to carcinogens. The purpose of the present study was to assess genotype and allele frequencies of polymorphic CYP2E1*5B in the Iranian population. Material and Methods: This study was performed on 200 healthy individuals (female: 100, male: 100 in medical laboratories of Ahvaz during 2011. The CYP2E1 *5B (rs3813867 G-1293C assessment was carried out using PCR-RFLP method. The data were analyzed with ĸ2 and hardy-Weinberg Equation statistically methods. Results: The frequency of *1A/*1A (c1/c1, *1A/*5B (c1/c2 and *5B/*5B (c2/c2 genotypes was computed 97, 3 and 0 percent, respectively. The frequency of *1A (c1 and *5B (c2 alleles was computed 98.5 and 1.5 percent, respectively. No statistically significant difference was between two genders (p>0.05. Conclusion: The genotype distribution and allele frequencies of CYP2E1*5B polymorphism were similar to Turkish and some of the European populations. However, there are significant interethnic differences when the Iranian population is compared with the Eastern Asian, American and some of the European populations. The allelic distribution of this polymorphism did not vary with gender.

  18. The second report of a new hypomyelinating disease due to a defect in the VPS11 gene discloses a massive lysosomal involvement.

    Science.gov (United States)

    Hörtnagel, Konstanze; Krägeloh-Mann, Inge; Bornemann, Antje; Döcker, Miriam; Biskup, Saskia; Mayrhofer, Heidi; Battke, Florian; du Bois, Gabriele; Harzer, Klaus

    2016-11-01

    Vesicular protein sorting-associated proteins (VPS, including VPS11) are indispensable in the endocytic network, in particular the endosome-lysosome biogenesis. Exome sequencing revealed the homozygous variant p.Leu387_ Gly395del in the VPS11 gene in two siblings. On immunoblotting, the mutant VPS11 protein showed a distinctly reduced immunostaining intensity. The children presented with primary and severe developmental delay associated with myoclonic seizures, spastic tetraplegia, trunk and neck hypotonia, blindness, hearing loss, and microcephaly. Neuro-imaging showed severe hypomyelination affecting cerebral and cerebellar white matter and corpus callosum, in the absence of a peripheral neuropathy. Electron microscopy of a skin biopsy revealed clusters of membranous cytoplasmic bodies in dermal unmyelinated nerve axons, and numbers of vacuoles in eccrine sweat glands, similar to what is seen in a classic lysosomal storage disease (LSD). Bone marrow cytology showed a high number of storage macrophages with a micro-vacuolated cytoplasm. Biochemically, changes in urinary glycosphingolipids were reminiscent of those in prosaposin deficiency (another LSD). The clinical and neuro-imaged features in our patients were almost identical to those in some recently reported patients with another variant in the VPS11 gene, p.Cys846Gly; underlining the presumed pathogenic potential of VPS11 defects. A new feature was the morphological evidence for lysosomal storage in VPS11 deficiency: This newly characterised disease can be viewed as belonging to the complex field of LSD.

  19. Presence of a lysosomal enzyme, arylsulfatase-A, in the prelysosome-endosome compartments of human cultured fibroblasts.

    Science.gov (United States)

    Kelly, B M; Yu, C Z; Chang, P L

    1989-02-01

    Although endosomes and lysosomes are associated with different subcellular functions, we present evidence that a lysosomal enzyme, arylsulfatase-A, is present in prelysosomal vesicles which constitute part of the endosomal compartment. When human cultured fibroblasts were subfractionated with Percoll gradients, arylsulfatase-A activity was enriched in three subcellular fractions: dense lysosomes, light lysosomes, and light membranous vesicles. Pulsing the cells for 1 to 10 min with the fluid-phase endocytic marker, horseradish peroxidase, showed that endosomes enriched with the marker were distributed partly in the light lysosome fraction but mainly in the light membranous fraction. By pulsing the fibroblasts for 10 min with horseradish peroxidase conjugated to colloidal gold and then staining the light membranous and light lysosomal fractions for arylsulfatase-A activity with a specific cytochemical technique, the endocytic marker was detected under the electron microscope in the same vesicles as the lysosomal enzyme. The origin of the lysosomal enzyme in this endosomal compartment was shown not to be acquired through mannose 6-phosphate receptor-mediated endocytosis of enzymes previously secreted from the cell. Together with our recent finding that the light membranous fraction contains prelysosomes distinct from bona fide lysosomes and was highly enriched with newly synthesized arylsulfatase-A molecules, these results demonstrate that prelysosomes also constitute part of the endosomal compartment to which intracellular lysosomal enzymes are targeted.

  20. Enhancing lysosomal biogenesis and autophagic flux by activating the transcription factor EB protects against cadmium-induced neurotoxicity

    Science.gov (United States)

    Pi, Huifeng; Li, Min; Tian, Li; Yang, Zhiqi; Yu, Zhengping; Zhou, Zhou

    2017-01-01

    Cadmium (Cd), a highly ubiquitous heavy metal, is a well-known inducer of neurotoxicity. However, the mechanism underlying cadmium-induced neurotoxicity remains unclear. In this study, we found that Cd inhibits autophagosome-lysosome fusion and impairs lysosomal function by reducing the levels of lysosomal-associated membrane proteins, inhibiting lysosomal proteolysis and altering lysosomal pH, contributing to defects in autophagic clearance and subsequently leading to nerve cell death. In addition, Cd decreases transcription factor EB (TFEB) expression at both the mRNA and protein levels. Furthermore, Cd induces the nuclear translocation of TFEB and TFEB target-gene expression, associated with compromised lysosomal function or a compensatory effect after the impairment of the autophagic flux. Notably, restoration of the levels of lysosomal-associated membrane protein, lysosomal proteolysis, lysosomal pH and autophagic flux through Tfeb overexpression protects against Cd-induced neurotoxicity, and this protective effect is incompletely dependent on TFEB nuclear translocation. Moreover, gene transfer of the master autophagy regulator TFEB results in the clearance of toxic proteins and the correction of Cd-induced neurotoxicity in vivo. Our study is the first to demonstrate that Cd disrupts lysosomal function and autophagic flux and manipulation of TFEB signalling may be a therapeutic approach for antagonizing Cd-induced neurotoxicity. PMID:28240313

  1. TFEB activation promotes the recruitment of lysosomal glycohydrolases β-hexosaminidase and β-galactosidase to the plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Magini, Alessandro [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy); Department of Medical and Biological Sciences (DSMB), University of Udine, Udine (Italy); Polchi, Alice; Urbanelli, Lorena [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy); Cesselli, Daniela; Beltrami, Antonio [Department of Medical and Biological Sciences (DSMB), University of Udine, Udine (Italy); Tancini, Brunella [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy); Emiliani, Carla, E-mail: carla.emiliani@unipg.it [Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia (Italy)

    2013-10-18

    Highlights: •TFEB activation promotes the increase of Hex and Gal activities. •The increase of Hex and Gal activities is related to transcriptional regulation. •TFEB promotes the recruitment of mature Hex and Gal on cell surface. -- Abstract: Lysosomes are membrane-enclosed organelles containing acid hydrolases. They mediate a variety of physiological processes, such as cellular clearance, lipid homeostasis, energy metabolism and pathogen defence. Lysosomes can secrete their content through a process called lysosome exocytosis in which lysosomes fuse with the plasma membrane realising their content into the extracellular milieu. Lysosomal exocytosis is not only responsible for the secretion of lysosomal enzymes, but it also has a crucial role in the plasma membrane repair. Recently, it has been demonstrated that lysosome response to the physiologic signals is regulated by the transcription factor EB (TFEB). In particular, lysosomal secretion is transcriptionally regulated by TFEB which induces both the docking and fusion of lysosomes with the plasma membrane. In this work we demonstrated that TFEB nuclear translocation is accompanied by an increase of mature glycohydrolases β-hexosaminidase and β-galactosidase on cell surface. This evidence contributes to elucidate an unknown TFEB biological function leading the lysosomal glycohydrolases on plasma membrane.

  2. Membrane cholesterol regulates lysosome-plasma membrane fusion events and modulates Trypanosoma cruzi invasion of host cells.

    Directory of Open Access Journals (Sweden)

    Bárbara Hissa

    Full Text Available BACKGROUND: Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis, which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces endocytosis and parasite internalization. Lysosomes continue to fuse with the newly formed parasitophorous vacuole until the parasite is completely enclosed by lysosomal membrane, a process indispensable for a stable infection. Previous work has shown that host membrane cholesterol is also important for the T. cruzi invasion process in both professional (macrophages and non-professional (epithelial phagocytic cells. However, the mechanism by which cholesterol-enriched microdomains participate in this process has remained unclear. METHODOLOGY/PRINCIPAL FINDING: In the present work we show that cardiomyocytes treated with MβCD, a drug able to sequester cholesterol from cell membranes, leads to a 50% reduction in invasion by T. cruzi trypomastigotes, as well as a decrease in the number of recently internalized parasites co-localizing with lysosomal markers. Cholesterol depletion from host membranes was accompanied by a decrease in the labeling of host membrane lipid rafts, as well as excessive lysosome exocytic events during the earlier stages of treatment. Precocious lysosomal exocytosis in MβCD treated cells led to a change in lysosomal distribution, with a reduction in the number of these organelles at the cell periphery, and probably compromises the intracellular pool of lysosomes necessary for T. cruzi invasion. CONCLUSION/SIGNIFICANCE: Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events, reducing lysosome availability at the cell cortex and consequently compromise T. cruzi entry into host cells. The results also suggest that two different pools of

  3. LITAF mutations associated with Charcot-Marie-Tooth disease 1C show mislocalization from the late endosome/lysosome to the mitochondria.

    Directory of Open Access Journals (Sweden)

    Andressa Ferreira Lacerda

    Full Text Available Charcot-Marie-Tooth (CMT disease is one of the most common heritable neuromuscular disorders, affecting 1 in every 2500 people. Mutations in LITAF have been shown to be causative for CMT type 1C disease. In this paper we explore the subcellular localization of wild type LITAF and mutant forms of LITAF known to cause CMT1C (T49M, A111G, G112S, T115N, W116G, L122V and P135T. The results show that LITAF mutants A111G, G112S, W116G, and T115N mislocalize from the late endosome/lysosome to the mitochondria while the mutants T49M, L122V, and P135T show partial mislocalization with a portion of the total protein present in the late endosome/lysosome and the remainder of the protein localized to the mitochondria. This suggests that different mutants of LITAF will produce differing severity of disease. We also explored the effect of the presence of mutant LITAF on wild-type LITAF localization. We showed that in cells heterozygous for LITAF, CMT1C mutants T49M and G112S are dominant since wild-type LITAF localized to the mitochondria when co-transfected with a LITAF mutant. Finally, we demonstrated how LITAF transits to the endosome and mitochondria compartments of the cell. Using Brefeldin A to block ER to Golgi transport we demonstrated that wild type LITAF traffics through the secretory pathway to the late endosome/lysosome while the LITAF mutants transit to the mitochondria independent of the secretory pathway. In addition, we demonstrated that the C-terminus of LITAF is necessary and sufficient for targeting of wild-type LITAF to the late endosome/lysosome and the mutants to the mitochondria. Together these data provide insight into how mutations in LITAF cause CMT1C disease.

  4. Tartrate-resistant acid phosphatase 5b is a potential biomarker for rheumatoid arthritis: a pilot study in Han Chinese

    Institute of Scientific and Technical Information of China (English)

    Cheng Tao; Wang Mingjun; Chen Zhiwei; Robert A Eisenberg; Zhang Yu; Zou Yaohong; Deng Yingsu

    2014-01-01

    Background Bone damage around the joints is one of the major pathophysiological mechanisms that leads to rheumatoid arthritis (RA) chronic disability.Serum tartrate-resistant acid phosphatase 5b (TRACP-5b) is secreted by osteoclasts,its activity can be used as a clinically relevant bone resorption marker.The aim of this study was to test whether the measurement of serum levels of TRACP-5b in patients with RA would correlate with measures of disease activity and with responses to therapy.Methods Fifty-six patients were randomly assigned to receive recombinant human cytotoxic tlymphocyte-associated antigen-4 immunoglobulin (RhCTLA4-lg),infliximab or methotrexate (MTX).The clinical and serologic indicators of RA activity were evaluated at baseline and at 24 weeks.Serum TRACP-5b was measured by Enzyme-linked Immunosorbent Assay (ELISA) at 0,12 and 24 weeks.Hand X-rays were obtained at baseline.Results At baseline,the levels of TRACP-5b correlated with the severity of X-ray damage,disease duration (r=0.332,P=0.012),and tender joint count (r=0.408,P=0.002).The 24 weeks values of TRACP-5b for RhCTLA4-lg group and infliximab group differed significantly from the baseline values in each group (P <0.05; P <0.05),whereas only the value for RhCTLA4-lg group differed significantly from the 24 weeks value for the MTX group (P <0.01).Considering the two biologics-treated groups together,the TRACP-5b levels at 24 weeks differed significantly from the baseline values only in those patients who reached an ACR70 level (P <0.05).Conclusions Measurement of serum TRACP-5b in RA patients reflects clinical and radiological measures of disease activity,treatment with certain biologics,and degree of response to therapy.TRACP-5b should be investigated further as a potential biomarker to predict response to therapy,including slowing of radiographic progression.

  5. Social isolation stress induces ATF-7 phosphorylation and impairs silencing of the 5-HT 5B receptor gene.

    Science.gov (United States)

    Maekawa, Toshio; Kim, Seungjoon; Nakai, Daisuke; Makino, Chieko; Takagi, Tsuyoshi; Ogura, Hiroo; Yamada, Kazuyuki; Chatton, Bruno; Ishii, Shunsuke

    2010-01-06

    Many symptoms induced by isolation rearing of rodents may be relevant to neuropsychiatric disorders, including depression. However, identities of transcription factors that regulate gene expression in response to chronic social isolation stress remain elusive. The transcription factor ATF-7 is structurally related to ATF-2, which is activated by various stresses, including inflammatory cytokines. Here, we report that Atf-7-deficient mice exhibit abnormal behaviours and increased 5-HT receptor 5B (Htr5b) mRNA levels in the dorsal raphe nuclei. ATF-7 silences the transcription of Htr5B by directly binding to its 5'-regulatory region, and mediates histone H3-K9 trimethylation via interaction with the ESET histone methyltransferase. Isolation-reared wild-type (WT) mice exhibit abnormal behaviours that resemble those of Atf-7-deficient mice. Upon social isolation stress, ATF-7 in the dorsal raphe nucleus is phosphorylated via p38 and is released from the Htr5b promoter, leading to the upregulation of Htr5b. Thus, ATF-7 may have a critical role in gene expression induced by social isolation stress.

  6. Identification of fungi in fungal ball sinusitis: comparison between MUC5B immunohistochemical and Grocott methenamine silver staining.

    Science.gov (United States)

    Ma, Ling; Xu, Rui; Shi, Jianbo; Zhou, Wei; Xu, Geng; Jiang, Guangli; Li, Guangqi; Chen, Zhiqiang

    2013-11-01

    MUC5B immunohistochemical staining was a valuable method for identifying fungi in fungal ball sinusitis, especially in distinguishing aspergillus and mucor. Combined infection with Aspergillus and Mucor fungi was the most common pattern in fungal ball sinusitis. To assess the value of MUC5B immunohistochemical staining in identifying fungi in fungal ball sinusitis by comparing it with conventional Grocott methenamine silver (GMS) staining. GMS staining and MUC5B immunohistochemical staining were used to identify fungi in mucopurulent cheesy or clay-like tissues from sinuses in 180 fungal ball sinusitis patients, and the examination results were compared. In 180 samples of fungal ball sinusitis, GMS staining showed Aspergillus in 130, Mucor in 88, and Candida albicans in 6, while MUC5B immunohistochemical staining identified Aspergillus in 166, Mucor in 172, and Candida albicans in 16. The fungal detection rate for MUC5B immunohistochemical staining was markedly greater than that for GMS staining (p sinusitis. Mixed infection of Aspergillus and Mucor was present in 146 of 180 patients (81.1%).

  7. The salivary mucin MUC5B and lactoperoxidase can be used for layer-by-layer film formation.

    Science.gov (United States)

    Lindh, Liselott; Svendsen, Ida E; Svensson, Olof; Cárdenas, Marité; Arnebrant, Thomas

    2007-06-01

    In situ ellipsometry was used to study layer-by-layer film formation on hydrophilic and hydrophobized silica surfaces by alternating sequential adsorption of human mucin MUC5B and cationic proteins lysozyme, lactoferrin, lactoperoxidase or histatin 5, respectively. The stability of the multilayers was investigated by addition of sodium dodecyl sulfate solution (SDS). Atomic force microscopy was employed to investigate morphological structures on the surfaces during the layer-by-layer film build-up. It was clearly shown that, on both hydrophilic and hydrophobized silica, only MUC5B and lactoperoxidase showed the ability for multilayer formation, resulting in an approximately linear increase in adsorbed amount and film thickness with each deposition cycle. The net increase in amounts per cycle was larger on the hydrophilic silica. Further, MUC5B needs to be adsorbed first on the hydrophilic substrates to obtain this fast build-up behavior. Generally, addition of SDS solution showed that a large fraction of the adsorbed film could be desorbed. However, films on the hydrophobized silica were more resistant to surfactant elution. In conclusion, MUC5B-cationic protein multilayers can be formed on hydrophilic and hydrophobized silica, depending on the choice of the cationic protein as well as in which order the build-up is started on hydrophilic silica. Additionally, SDS disrupts the layer-by-layer film formed by MUC5B and lactoperoxidase.

  8. The G protein-coupled receptor GPRC5B contributes to neurogenesis in the developing mouse neocortex.

    Science.gov (United States)

    Kurabayashi, Nobuhiro; Nguyen, Minh Dang; Sanada, Kamon

    2013-11-01

    Neural progenitor cells in the developing brain give rise to neurons and glia. Multiple extrinsic signalling molecules and their cognate membrane receptors have been identified to control neural progenitor fate. However, a role for G protein-coupled receptors in cell fate decisions in the brain remains largely putative. Here we show that GPRC5B, which encodes an orphan G protein-coupled receptor, is present in the ventricular surface of cortical progenitors in the mouse developing neocortex and is required for their neuronal differentiation. GPRC5B-depleted progenitors fail to adopt a neuronal fate and ultimately become astrocytes. Furthermore, GPRC5B-mediated signalling is associated with the proper regulation of β-catenin signalling, a pathway crucial for progenitor fate decision. Our study uncovers G protein-coupled receptor signalling in the neuronal fate determination of cortical progenitors.

  9. Expression of the lysosomal-associated membrane protein-1 (LAMP-1) in astrocytomas.

    Science.gov (United States)

    Jensen, Stine S; Aaberg-Jessen, Charlotte; Christensen, Karina G; Kristensen, Bjarne

    2013-01-01

    Targeting of lysosomes is a novel therapeutic anti-cancer strategy for killing the otherwise apoptosis-resistant cancer cells. Such strategies are urgently needed for treatment of brain tumors, especially the glioblastoma, which is the most frequent and most malignant type. The aim of the present study was to investigate the presence of lysosomes in astrocytic brain tumors focussing also on the therapy resistant tumor stem cells. Expression of the lysosomal marker LAMP-1 (lysosomal-associated membrane protein-1) was investigated by immunohistochemistry in 112 formalin fixed paraffin embedded astrocytomas and compared with tumor grade and overall patient survival. Moreover, double immunofluorescence stainings were performed with LAMP-1 and the astrocytic marker GFAP and the putative stem cell marker CD133 on ten glioblastomas. Most tumors expressed the LAMP-1 protein in the cytoplasm of the tumor cells, while the blood vessels were positive in all tumors. The percentage of LAMP-1 positive tumor cells and staining intensities increased with tumor grade but variations in tumors of the same grade were also found. No association was found between LAMP-1 expression and patient overall survival in the individual tumor grades. LAMP-1/GFAP showed pronounced co-expression and LAMP-1/CD133 was co-expressed as well suggesting that tumor cells including the proposed tumor stem cells contain lysosomes. The results suggest that high amounts of lysosomes are present in glioblastomas and in the proposed tumor stem cells. Targeting of lysosomes may be a promising novel therapeutic strategy against this highly malignant neoplasm.

  10. DRAM1 regulates apoptosis through increasing protein levels and lysosomal localization of BAX

    Science.gov (United States)

    Guan, J-J; Zhang, X-D; Sun, W; Qi, L; Wu, J-C; Qin, Z-H

    2015-01-01

    DRAM1 (DNA damage-regulated autophagy modulator 1) is a TP53 target gene that modulates autophagy and apoptosis. We previously found that DRAM1 increased autophagy flux by promoting lysosomal acidification and protease activation. However, the molecular mechanisms by which DRAM1 regulates apoptosis are not clearly defined. Here we report a novel pathway by which DRAM1 regulates apoptosis involving BAX and lysosomes. A549 or HeLa cells were treated with the mitochondrial complex II inhibitor, 3-nitropropionic acid (3NP), or an anticancer drug, doxorubicin. Changes in the protein and mRNA levels of BAX and DRAM1 and the role of DRAM1 in BAX induction were determined. The interaction between DRAM1 and BAX and its effect on BAX degradation, BAX lysosomal localization, the release of cathepsin B and cytochrome c by BAX and the role of BAX in 3NP- or doxorubicin-induced cell death were studied. The results showed that BAX, a proapoptotic protein, was induced by DRAM1 in a transcription-independent manner. BAX was degraded by autophagy under basal conditions; however, its degradation was inhibited when DRAM1 expression was induced. There was a protein interaction between DRAM1 and BAX and this interaction prolonged the half-life of BAX. Furthermore, upregulated DRAM1 recruited BAX to lysosomes, leading to the release of lysosomal cathepsin B and cleavage of BID (BH3-interacting domain death agonist). BAX mediated the release of mitochondrial cytochrome c, activation of caspase-3 and cell death partially through the lysosome-cathepsin B-tBid pathway. These results indicate that DRAM1 regulates apoptosis by inhibiting BAX degradation. In addition to mitochondria, lysosomes may also be involved in BAX-initiated apoptosis. PMID:25633293

  11. The Phosphoinositide-Gated Lysosomal Ca(2+) Channel, TRPML1, Is Required for Phagosome Maturation.

    Science.gov (United States)

    Dayam, Roya M; Saric, Amra; Shilliday, Ryan E; Botelho, Roberto J

    2015-09-01

    Macrophages internalize and sequester pathogens into a phagosome. Phagosomes then sequentially fuse with endosomes and lysosomes, converting into degradative phagolysosomes. Phagosome maturation is a complex process that requires regulators of the endosomal pathway including the phosphoinositide lipids. Phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2 ), which respectively control early endosomes and late endolysosomes, are both required for phagosome maturation. Inhibition of PIKfyve, which synthesizes PtdIns(3,5)P2 , blocked phagosome-lysosome fusion and abated the degradative capacity of phagosomes. However, it is not known how PIKfyve and PtdIns(3,5)P2 participate in phagosome maturation. TRPML1 is a PtdIns(3,5)P2 -gated lysosomal Ca(2+) channel. Because Ca(2+) triggers membrane fusion, we postulated that TRPML1 helps mediate phagosome-lysosome fusion. Using Fcγ receptor-mediated phagocytosis as a model, we describe our research showing that silencing of TRPML1 hindered phagosome acquisition of lysosomal markers and reduced the bactericidal properties of phagosomes. Specifically, phagosomes isolated from TRPML1-silenced cells were decorated with lysosomes that docked but did not fuse. We could rescue phagosome maturation in TRPML1-silenced and PIKfyve-inhibited cells by forcible Ca(2+) release with ionomycin. We also provide evidence that cytosolic Ca(2+) concentration increases upon phagocytosis in a manner dependent on TRPML1 and PIKfyve. Overall, we propose a model where PIKfyve and PtdIns(3,5)P2 activate TRPML1 to induce phagosome-lysosome fusion.

  12. Interactions between autophagic and endo-lysosomal markers in endothelial cells.

    Science.gov (United States)

    Oeste, Clara L; Seco, Esther; Patton, Wayne F; Boya, Patricia; Pérez-Sala, Dolores

    2013-05-01

    Autophagic and endo-lysosomal degradative pathways are essential for cell homeostasis. Availability of reliable tools to interrogate these pathways is critical to unveil their involvement in physiology and pathophysiology. Although several probes have been recently developed to monitor autophagic or lysosomal compartments, their specificity has not been validated through co-localization studies with well-known markers. Here, we evaluate the selectivity and interactions between one lysosomal (Lyso-ID) and one autophagosomal (Cyto-ID) probe under conditions modulating autophagy and/or endo-lysosomal function in live cells. The probe for acidic compartments Lyso-ID was fully localized inside vesicles positive for markers of late endosome-lysosomes, including Lamp1-GFP and GFP-CINCCKVL. Induction of autophagy by amino acid deprivation in bovine aortic endothelial cells caused an early and potent increase in the fluorescence of the proposed autophagy dye Cyto-ID. Cyto-ID-positive compartments extensively co-localized with the autophagosomal fluorescent reporter RFP-LC3, although the time and/or threshold for organelle detection was different for each probe. Interestingly, use of Cyto-ID in combination with Lysotracker Red or Lyso-ID allowed the observation of structures labeled with either one or both probes, the extent of co-localization increasing upon treatment with protease inhibitors. Inhibition of the endo-lysosomal pathway with chloroquine or U18666A resulted in the formation of large Cyto-ID and Lyso-ID-positive compartments. These results constitute the first assessment of the selectivity of Cyto-ID and Lyso-ID as probes for the autophagic and lysosomal pathways, respectively. Our observations show that these probes can be used in combination with protein-based markers for monitoring the interactions of both pathways in live cells.

  13. Over-expression of Stat5b confers protection against diabetes in the non-obese diabetic (NOD) mice via up-regulation of CD4{sup +}CD25{sup +} regulatory T cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yulan; Purohit, Sharad [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); Department of Pathology, Medical College of Georgia, Georgia Health Sciences University, GA (United States); Chen, Xueqin; Yi, Bing [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); She, Jin-Xiong, E-mail: jshe@georgiahealth.edu [Center for Biotechnology and Genomic Medicine, Georgia Health Sciences University, GA (United States); Department of Pathology, Medical College of Georgia, Georgia Health Sciences University, GA (United States)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer This is the first study to provide direct evidence of the role of Stat5b in NOD mice. Black-Right-Pointing-Pointer Over-expression of wild type Stat5b transgene protects NOD mice against diabetes. Black-Right-Pointing-Pointer This protection may be mediated by the up-regulation of CD4{sup +}CD25{sup +} Tregs. -- Abstract: The signal transducers and activators of transcription (STAT) family of proteins play a critical role in cytokine signaling required for fine tuning of immune regulation. Previous reports showed that a mutation (L327M) in the Stat5b protein leads to aberrant cytokine signaling in the NOD mice. To further elaborate the role of Stat5b in diabetes, we established a NOD transgenic mouse that over-expresses the wild type Stat5b gene. The incidences of spontaneous diabetes as well as cyclophosphamide-induced diabetes were significantly reduced and delayed in the Stat5b transgenic NOD mice compared to their littermate controls. The total cell numbers of CD4{sup +} T cells and especially CD8{sup +} T cells in the spleen and pancreatic lymph node were increased in the Stat5b transgenic NOD mice. Consistent with these findings, CD4{sup +} and CD8{sup +} T cells from the Stat5b transgenic NOD mice showed a higher proliferation capacity and up-regulation of multiple cytokines including IL-2, IFN-{gamma}, TNF-{alpha} and IL-10 as well as anti-apoptotic gene Bcl-xl. Furthermore, the number and proportion of CD4{sup +}CD25{sup +} regulatory T cells were significantly increased in transgenic mice although in vitro suppression ability of the regulatory T-cells was not affected by the transgene. Our results suggest that Stat5b confers protection against diabetes in the NOD mice by regulating the numbers and function of multiple immune cell types, especially by up-regulating CD4{sup +}CD25{sup +} regulatory T cells.

  14. Artesunate Activates Mitochondrial Apoptosis in Breast Cancer Cells via Iron-catalyzed Lysosomal Reactive Oxygen Species Production*

    Science.gov (United States)

    Hamacher-Brady, Anne; Stein, Henning A.; Turschner, Simon; Toegel, Ina; Mora, Rodrigo; Jennewein, Nina; Efferth, Thomas; Eils, Roland; Brady, Nathan R.

    2011-01-01

    The antimalarial agent artesunate (ART) activates programmed cell death (PCD) in cancer cells in a manner dependent on the presence of iron and the generation of reactive oxygen species. In malaria parasites, ART cytotoxicity originates from interactions with heme-derived iron within the food vacuole. The analogous digestive compartment of mammalian cells, the lysosome, similarly contains high levels of redox-active iron and in response to specific stimuli can initiate mitochondrial apoptosis. We thus investigated the role of lysosomes in ART-induced PCD and determined that in MCF-7 breast cancer cells ART activates lysosome-dependent mitochondrial outer membrane permeabilization. ART impacted endolysosomal and autophagosomal compartments, inhibiting autophagosome turnover and causing perinuclear clustering of autophagosomes, early and late endosomes, and lysosomes. Lysosomal iron chelation blocked all measured parameters of ART-induced PCD, whereas lysosomal iron loading enhanced death, thus identifying lysosomal iron as the lethal source of reactive oxygen species upstream of mitochondrial outer membrane permeabilization. Moreover, lysosomal inhibitors chloroquine and bafilomycin A1 reduced ART-activated PCD, evidencing a requirement for lysosomal function during PCD signaling. ART killing did not involve activation of the BH3-only protein, Bid, yet ART enhanced TNF-mediated Bid cleavage. We additionally demonstrated the lysosomal PCD pathway in T47D and MDA-MB-231 breast cancer cells. Importantly, non-tumorigenic MCF-10A cells resisted ART-induced PCD. Together, our data suggest that ART triggers PCD via engagement of distinct, interconnected PCD pathways, with hierarchical signaling from lysosomes to mitochondria, suggesting a potential clinical use of ART for targeting lysosomes in cancer treatment. PMID:21149439

  15. Protective effect of squalene on certain lysosomal hydrolases and free amino acids in isoprenaline-induced myocardial infarction in rats

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Surendraraj, A.; Anandan, R.

    2010-01-01

    This study was aimed to evaluate the preventive role of squalene on free amino acids and lysosomal alterations in experimentally induced myocardial infarction in rats. The levels of lysosomal enzymes (beta-glucuronidase, beta-galactosidase, beta-glucosidase, acid phosphatase and cathepsin D......) in plasma and lysosomal fractions, hydroxyproline content and free amino acids in heart tissue were determined. Isoprenaline administration to rats resulted in decreased stability of the membranes which was reflected by significantly (p...

  16. MSM enhances GH signaling via the Jak2/STAT5b pathway in osteoblast-like cells and osteoblast differentiation through the activation of STAT5b in MSCs.

    Directory of Open Access Journals (Sweden)

    Youn Hee Joung

    Full Text Available Methylsulfonylmethane (MSM is a naturally occurring sulfur compound with well-known anti-oxidant properties and anti-inflammatory activities. But, its effects on bone are unknown. Growth hormone (GH is regulator of bone growth and bone metabolism. GH activates several signaling pathways such as the Janus kinase (Jak/signal transducers and activators of transcription (STAT pathway, thereby regulating expression of genes including insulin-like growth factor (IGF-1. GH exerts effects both directly and via IGF-1, which signals by activating the IGF-1 receptor (IGF-1R. In this study, we investigated the effects of MSM on the GH signaling via the Jak/STAT pathway in osteoblasts and the differentiation of primary bone marrow mesenchymal stem cells (MSCs. MSM was not toxic to osteoblastic cells and MSCs. MSM increased the expression of GH-related proteins including IGF-1R, p-IGF-1R, STAT5b, p-STAT5b, and Jak2 in osteoblastic cells and MSCs. MSM increased IGF-1R and GHR mRNA expression in osteoblastic cells. The expression of MSM-induced IGF-1R and GHR was inhibited by AG490, a Jak2 kinase inhibitor. MSM induced binding of STAT5 to the IGF-1R and increased IGF-1 and IGF-1R promoter activities. Analysis of cell extracts by immunoprecipitation and Western blot showed that MSM enhanced GH-induced activation of Jak2/STAT5b. We found that MSM and GH, separately or in combination, activated GH signaling via the Jak2/STAT5b pathway in UMR-106 cells. Using siRNA analysis, we found that STAT5b plays an essential role in GH signaling activation in C3H10T1/2 cells. Osteogenic marker genes (ALP, ON, OCN, BSP, OSX, and Runx2 were activated by MSM, and siRNA-mediated STAT5b knockdown inhibited MSM-induced expression of osteogenic markers. Furthermore, MSM increased ALP activity and the mineralization of MSCs. Taken together, these results indicated that MSM can promote osteogenic differentiation of MSCs through activation of STAT5b.

  17. Evidence for lysosomal exocytosis and release of aggrecan-degrading hydrolases from hypertrophic chondrocytes, in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Edward R. Bastow

    2012-02-01

    The abundant proteoglycan, aggrecan, is resorbed from growth plate cartilage during endochondral bone ossification, yet mice with genetically-ablated aggrecan-degrading activity have no defects in bone formation. To account for this apparent anomaly, we propose that lysosomal hydrolases degrade extracellular, hyaluronan-bound aggrecan aggregates in growth plate cartilage, and that lysosomal hydrolases are released from hypertrophic chondrocytes into growth plate cartilage via Ca2+-dependent lysosomal exocytosis. In this study we confirm that hypertrophic chondrocytes release hydrolases via lysosomal exocytosis in vitro and we show in vivo evidence for lysosomal exocytosis in hypertrophic chondrocytes during skeletal development. We show that lysosome-associated membrane protein 1 (LAMP1 is detected at the cell surface following in vitro treatment of epiphyseal chondrocytes with the calcium ionophore, ionomycin. Furthermore, we show that in addition to the lysosomal exocytosis markers, cathepsin D and β-hexosaminidase, ionomycin induces release of aggrecan- and hyaluronan-degrading activity from cultured epiphyseal chondrocytes. We identify VAMP-8 and VAMP7 as v-SNARE proteins with potential roles in lysosomal exocytosis in hypertrophic chondrocytes, based on their colocalisation with LAMP1 at the cell surface in secondary ossification centers in mouse tibiae. We propose that resorbing growth plate cartilage involves release of destructive hydrolases from hypertrophic chondrocytes, via lysosomal exocytosis.

  18. Glucagon-like Peptide-1 Protects Pancreatic Beta-cells from Death by Increasing Autophagic Flux and Restoring Lysosomal Function.

    Science.gov (United States)

    Zummo, Francesco P; Cullen, Kirsty S; Honkanen-Scott, Minna; Shaw, James Am; Lovat, Penny E; Arden, Catherine

    2017-02-23

    Studies in animal models of type 2 diabetes have shown that glucagon-like peptide-1 (GLP-1) receptor agonists prevent β-cell loss. Whether GLP-1 mediates β-cell survival via the key lysosomal-mediated process of autophagy is unknown.Here we report that treatment of INS-1E β-cells and primary islets with glucolipotoxicity (0.5mmol/l palmitate, 25mmol/l glucose) increases LC3 II, a marker of autophagy. Further analysis indicates a blockage in autophagic flux associated with lysosomal dysfunction. Accumulation of defective lysosomes leads to lysosomal membrane permeabilisation (LMP) and release of Cathepsin D, which contributes to cell death. Our data further demonstrated defects in autophagic flux and lysosomal staining in human samples of type 2 diabetes. Co-treatment with the GLP-1 receptor agonist exendin-4 reversed the lysosomal dysfunction, relieving the impairment in autophagic flux and further stimulated autophagy. siRNA knockdown showed the restoration of autophagic flux is also essential for the protective effects of exendin-4.Collectively, our data highlights lysosomal dysfunction as a critical mediator of β-cell loss and shows that exendin-4 improves cell survival via restoration of lysosomal function and autophagic flux. Modulation of autophagy / lysosomal homeostasis may thus define a novel therapeutic strategy for type 2 diabetes, with the GLP-1 signalling pathway as a potential focus.

  19. LAMP-2 is required for incorporating syntaxin-17 into autophagosomes and for their fusion with lysosomes.

    Science.gov (United States)

    Hubert, Virginie; Peschel, Andrea; Langer, Brigitte; Gröger, Marion; Rees, Andrew; Kain, Renate

    2016-10-15

    Autophagy is an evolutionarily conserved process used for removing surplus and damaged proteins and organelles from the cytoplasm. The unwanted material is incorporated into autophagosomes that eventually fuse with lysosomes, leading to the degradation of their cargo. The fusion event is mediated by the interaction between the Qa-SNARE syntaxin-17 (STX17) on autophagosomes and the R-SNARE VAMP8 on lysosomes. Cells deficient in lysosome membrane-associated protein-2 (LAMP-2) have increased numbers of autophagosomes but the underlying mechanism is poorly understood. By transfecting LAMP-2-deficient and LAMP-1/2--double-deficient mouse embryonic fibroblasts (MEFs) with a tandem fluorescent-tagged LC3 we observed a failure of fusion between the autophagosomes and the lysosomes that could be rescued by complementation with LAMP-2A. Although we observed no change in expression and localization of VAMP8, its interacting partner STX17 was absent from autophagosomes of LAMP-2-deficient cells. Thus, LAMP-2 is essential for STX17 expression by the autophagosomes and this absence is sufficient to explain their failure to fuse with lysosomes. The results have clear implications for situations associated with a reduction of LAMP-2 expression.

  20. Induction, adaptation and recovery of lysosomal integrity in green-lipped mussel Perna viridis.

    Science.gov (United States)

    Fang, J K H; Wu, R S S; Zheng, G J; Lam, P K S; Shin, P K S

    2008-01-01

    Biomarkers are generally applied to detect pollution in environmental monitoring. Such biological responses should accurately reflect the stress over time in a quantitative manner. As such, the initial and maximum responses induced by stress, as well as adaptation and recovery of these biomarkers, need to be fully understood or else erroneous false-negative or false-positive may be arrived. However, most of the biomarker studies only provided information on initially induced responses under different concentrations of toxicants, while biological adaptation and recovery were poorly known. In this study, the time required for induction, adaptation and recovery of lysosomal integrity in green-lipped mussel Perna viridis upon exposure to benzo[a]pyrene was investigated over a period of 62 days. Maximum induction occurred on day 6 when lysosomal integrity was significantly reduced by 51%, and no further change or adaptation was detected thereafter. When mussels were depurated in clean seawater after 18 days of exposure to benzo[a]pyrene, a gradual recovery was observed, with lysosomal integrity returning to its background level and showing a complete recovery after 20 days of depuration. Lysosomal integrity was significantly correlated with the body burden concentrations of benzo[a]pyrene and condition index of the mussels. The relatively fast induction (6 days) and recovery (20 days) without apparent adaptation suggested that lysosomal integrity in P. viridis can serve as a good biomarker in biomonitoring, as its response is not likely to generate both false-negative and false-positive results.

  1. Not nanocarbon but dispersant induced abnormality in lysosome in macrophages in vivo

    Science.gov (United States)

    Yudasaka, Masako; Zhang, Minfang; Matsumura, Sachiko; Yuge, Ryota; Ichihashi, Toshinari; Irie, Hiroshi; Shiba, Kiyotaka; Iijima, Sumio

    2015-05-01

    The properties of nanocarbons change from hydrophobic to hydrophilic as a result of coating them with dispersants, typically phospholipid polyethylene glycols, for biological studies. It has been shown that the dispersants remain attached to the nanocarbons when they are injected in mice and influence the nanocarbons’ biodistribution in vivo. We show in this report that the effects of dispersants also appear at the subcellular level in vivo. Carbon nanohorns (CNHs), a type of nanocarbon, were dispersed with ceramide polyethylene glycol (CPEG) and intravenously injected in mice. Histological observations and electron microscopy with energy dispersive x-ray analysis revealed that, in liver and spleen, the lysosome membranes were damaged, and the nanohorns formed a complex with hemosiderin in the lysosomes of the macrophages. It is inferred that the lysosomal membrane was damaged by sphigosine generated as a result of CPEG decomposition, which changed the intra lysosomal conditions, inducing the formation of the CPEG-CNH and hemosiderin complex. For comparison, when glucose was used instead of CPEG, neither the nanohorn-hemosiderin complex nor lysosomal membrane damage was found. Our results suggest that surface functionalization can control the behavior of nancarbons in cells in vivo and thereby improve their suitability for medical applications.

  2. Color reduction of melanin by lysosomal and peroxisomal enzymes isolated from mammalian cells.

    Science.gov (United States)

    Park, Dong Jun; Sekhon, Simranjeet Singh; Yoon, Jihee; Kim, Yang-Hoon; Min, Jiho

    2016-02-01

    Lysosomes and peroxisomes are organelles with many functions in all eukaryotic cells. Lysosomes contain hydrolytic enzymes (lysozyme) that degrade molecules, whereas peroxisomes contain enzymes such as catalase that convert hydrogen peroxide (H2O2) to water and oxygen and neutralize toxicity. In contrast, melanin is known as a helpful element to protect the skin against harmful ultraviolet rays. However, a high quantity of melanin leads to hyperpigmentation or skin cancer in human. New materials have already been discovered to inhibit tyrosinase in melanogenesis; however, melanin reduction does not suggest their preparation. In this study, we report that the color intensity because of melanin decreased by the cellular activation of lysosomes and peroxisomes. An increase in the superficial intensity of lysosome and peroxisome activities of HeLa cells was observed. In addition, a decrease in the amount of melanin has also been observed in mammalian cells without using any other chemical, showing that the process can work in vivo for treating melanin. Therefore, the results of this study indicate that the amount of melanin decreases by the lysosome and peroxisome activity after entering the cells, and functional organelles are effective in color reduction. This mechanism can be used in vivo for treating melanin.

  3. Disruption of lysosome function promotes tumor growth and metastasis in Drosophila.

    Science.gov (United States)

    Chi, Congwu; Zhu, Huanhu; Han, Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2010-07-09

    Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the Ras(V12) cells. Knocking down either of the two other components of the Class C VPS complex, carnation (car) and vps16A, also renders Ras(V12) cells capable for uncontrolled growth and metastatic behavior. Finally, chemical disruption of the lysosomal function by feeding animals with antimalarial drugs, chloroquine or monensin, leads to malignant tumor growth of the Ras(V12) cells. Taken together, our data provide evidence for a causative role of lysosome dysfunction in tumor growth and invasion and indicate that members of the Class C VPS complex behave as tumor suppressors.

  4. Hepatitis C virus non-structural 5B protein interacts with cyclin A2 and regulates viral propagation

    DEFF Research Database (Denmark)

    Pham, Long; Ngo, HT; Lim, YS

    2012-01-01

    Background & Aims Hepatitis C virus (HCV) requires host cellular proteins for its own propagation. To identify the cellular factors necessary for HCV propagation, we have recently screened the small interfering RNA (siRNA) library targeting cell cycle genes using cell culture grown HCV (HCVcc......, in vitro and in vivo protein binding assays, luciferase reporter gene assay, and immunoblot assay. Results We showed that siRNA-mediated depletion of CycA2 significantly inhibited HCV replication in both HCV subgenomic replicon cells and HCVcc-infected cells. Furthermore, HCV non-structural 5B (NS5B......) specifically interacted with CycA2 in vitro and in vivo. Protein interaction was mediated through the cyclin box of CycA2 and the palm domain of NS5B. We further showed that R/HxL motif in the palm domain of HCV NS5B mediated protein interaction with CycA2 and this interaction was necessary for HCV replication...

  5. Mossbauer studies of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy

    DEFF Research Database (Denmark)

    Jiang, Jianzhong

    1996-01-01

    This paper reports a Mossbauer study of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy between 10 and 673 K. The Curie temperature Tc is found to be 620-+ 1 K. The temperature dependence of the reduced average hyperfine field can be explained on the basis of Handrich's model of amorphous ferromagnetism...

  6. Multi-band characterization of the hot Jupiters: WASP-5b, WASP-44b and WASP-46b

    Science.gov (United States)

    Moyano, M.; Almeida, L. A.; von Essen, C.; Jablonski, F.; Pereira, M. G.

    2017-10-01

    We have carried out a campaign to characterize the hot Jupiters WASP-5b, WASP-44b and WASP-46b using multiband photometry collected at the Observatório do Pico Dos Dias in Brazil. We have determined the planetary physical properties and new transit ephemerides for these systems. The new orbital parameters and physical properties of WASP-5b and WASP-44b are consistent with previous estimates. In the case of WASP-46b, there is some quota of disagreement between previous results. We provide a new determination of the radius of this planet and help clarify the previous differences. We also studied the transit time variations including our new measurements. No clear variation from a linear trend was found for the systems WASP-5b and WASP-44b. In the case of WASP-46b, we found evidence of deviations indicating the presence of a companion but statistical analysis of the existing times points to a signal due to the sampling rather than a new planet. Finally, we studied the fractional radius variation as a function of wavelength for these systems. The broad-band spectrums of WASP-5b and WASP-44b are mostly flat. In the case of WASP-46b we found a trend, but further measurements are necessary to confirm this finding.

  7. Mossbauer studies of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy

    DEFF Research Database (Denmark)

    Jiang, Jianzhong

    1996-01-01

    This paper reports a Mossbauer study of amorphous Fe73.5Cu1Nb3Si13.5B9 alloy between 10 and 673 K. The Curie temperature Tc is found to be 620-+ 1 K. The temperature dependence of the reduced average hyperfine field can be explained on the basis of Handrich's model of amorphous ferromagnetism...

  8. Evaluation of a new recombinant oncolytic vaccinia virus strain GLV-5b451 for feline mammary carcinoma therapy.

    Directory of Open Access Journals (Sweden)

    Marion Adelfinger

    Full Text Available Virotherapy on the basis of oncolytic vaccinia virus (VACV infection is a promising approach for cancer therapy. In this study we describe the establishment of a new preclinical model of feline mammary carcinoma (FMC using a recently established cancer cell line, DT09/06. In addition, we evaluated a recombinant vaccinia virus strain, GLV-5b451, expressing the anti-vascular endothelial growth factor (VEGF single-chain antibody (scAb GLAF-2 as an oncolytic agent against FMC. Cell culture data demonstrate that GLV-5b451 virus efficiently infected, replicated in and destroyed DT09/06 cancer cells. In the selected xenografts of FMC, a single systemic administration of GLV-5b451 led to significant inhibition of tumor growth in comparison to untreated tumor-bearing mice. Furthermore, tumor-specific virus infection led to overproduction of functional scAb GLAF-2, which caused drastic reduction of intratumoral VEGF levels and inhibition of angiogenesis. In summary, here we have shown, for the first time, that the vaccinia virus strains and especially GLV-5b451 have great potential for effective treatment of FMC in animal model.

  9. Anomalous grain growth in nanocrystalline Fe73.5Cu1Nb3Su13.5B9 alloys

    DEFF Research Database (Denmark)

    Jiang, Jianzhong

    1997-01-01

    The grain growth of the FeSi phase during the crystallization process of the amorphous Fe73.5Cu1Nb3Si13.5B9 alloy was studied using transmission electron microscopy and x-ray diffractometry. An anomalous grain growth behaviour of the FeSi phase in the samples annealed in temperature range from 74...

  10. Degradation of azo dye direct sky blue 5B by sonication combined with zero-valent iron.

    Science.gov (United States)

    Chen, Bing; Wang, Xikui; Wang, Chen; Jiang, Wenqiang; Li, Shuping

    2011-09-01

    The degradation of azo dye direct sky blue 5B by sonication combined with zero-valent iron (US-Fe(0))was investigated and an evident synergistic effect was observed. The synergetic effect is mainly due to the increase of ()OH radical concentration from Fenton's reaction. The ()OH radical concentrations in sole sonication and US-Fe(0) process were detected by using terephthalic acid as a fluorescent probe and found that ()OH radicals were generated continuously during sonication and the production of ()OH radicals in US-Fe(0) process was much higher than that in sole sonication. The degradation of direct sky blue 5B followed a pseudo-first-order kinetics and the degradation rate constants were found to be 0.0206 and 0.169 min(-1) with sole sonication and US-Fe(0) process respectively. It was also found that the degradation ratio of direct sky blue 5B increased with the increase of zero-valent iron dosage and decrease of pH value of the dye aqueous solution. The degradation mechanism of direct sky blue 5B with US-Fe(0) process was discussed by the changes of UV-Vis spectrogram of the dye during degradation. The dramatic changes of UV spectra showed a disappearance of both azo and aromatic groups during the degradation.

  11. Therapeutic potential of Taraxacum officinale against HCV NS5B polymerase: In-vitro and In silico study.

    Science.gov (United States)

    Rehman, Sidra; Ijaz, Bushra; Fatima, Nighat; Muhammad, Syed Aun; Riazuddin, Sheikh

    2016-10-01

    Discovery of alternative and complementary regimens for HCV infection treatment is a need of time from clinical as well as economical point of views. Low cost of bioactive natural compounds production, high biochemical diversity and inexistent/milder side effects contribute to new therapies. Aim of this study is to clarify anti-HCV role of Taraxacum officinale, a natural habitat plant rich of flavonoids. In this study, methanol extract of T. officinale leaves was initially analyzed for its cytotoxic activity in human hepatoma (Huh-7) and CHO cell lines. Hepatoma cells were transfected with pCR3.1/Flagtag/HCV NS5B gene cloned vector (genotype 1a) along with T. officinale extract. Considering NS5B polymerase as potential therapeutic drug target, twelve phytochemicals of T. officinale were selected as ligands for molecular interaction with NS5B protein using Molecular Operating Environment (MOE) software. Sofosbuvir (Sovaldi: brand name) currently approved as new anti-HCV drug, was used as standard in current study for comparative analysis in computational docking screening. HCV NS5B polymerase as name indicates plays key role in viral genome replication. On the basis of which NS5B gene is targeted for determining antiviral role of T. officinale extract and 65% inhibition of NS5B expression was documented at nontoxic dose concentration (200μg/ml) using Real-time PCR. In addition, 57% inhibition of HCV replication was recorded when incubating Huh-7 cells with high titer serum of HCV infected patients along with leaves extract. Phytochemicals for instance d-glucopyranoside (-31.212 Kcal/mol), Quercetin (-29.222 Kcal/mol), Luteolin (-26.941 Kcal/mol) and some others displayed least binding energies as compared to standard drug Sofosbuvir (-21.0746 Kcal/mol). Results of our study strongly revealed that T. officinale leaves extract potentially blocked the viral replication and NS5B gene expression without posing any toxic effect on normal fibroblast cells of body.

  12. A specific box switches the cell fate determining activity of XOTX2 and XOTX5b in the Xenopus retina

    Directory of Open Access Journals (Sweden)

    He Rong-Qiao

    2007-06-01

    Full Text Available Abstract Background Otx genes, orthologues of the Drosophila orthodenticle gene (otd, play crucial roles in vertebrate brain development. In the Xenopus eye, Xotx2 and Xotx5b promote bipolar and photoreceptor cell fates, respectively. The molecular basis of their differential action is not completely understood, though the carboxyl termini of the two proteins seem to be crucial. To define the molecular domains that make the action of these proteins so different, and to determine whether their retinal abilities are shared by Drosophila OTD, we performed an in vivo molecular dissection of their activity by transfecting retinal progenitors with several wild-type, deletion and chimeric constructs of Xotx2, Xotx5b and otd. Results We identified a small 8–10 amino acid divergent region, directly downstream of the homeodomain, that is crucial for the respective activities of XOTX2 and XOTX5b. In lipofection experiments, the exchange of this 'specificity box' completely switches the retinal activity of XOTX5b into that of XOTX2 and vice versa. Moreover, the insertion of this box into Drosophila OTD, which has no effect on retinal cell fate, endows it with the specific activity of either XOTX protein. Significantly, in cell transfection experiments, the diverse ability of XOTX2 and XOTX5b to synergize with NRL, a cofactor essential for vertebrate rod development, to transactivate the rhodopsin promoter is also switched depending on the box. We also show by GST-pull down that XOTX2 and XOTX5b differentially interact with NRL, though this property is not strictly dependent on the box. Conclusion Our data provide molecular evidence on how closely related homeodomain gene products can differentiate their functions to regulate distinct cell fates. A small 'specificity box' is both necessary and sufficient to confer on XOTX2 and XOTX5b their distinct activities in the developing frog retina and to convert the neutral orthologous OTD protein of Drosophila

  13. Elimination of paternal mitochondria through the lysosomal degradation pathway in C.elegans

    Institute of Scientific and Technical Information of China (English)

    Qinghua Zhou; Haimin Li; Ding Xue

    2011-01-01

    In mammals,the inheritance of mitochondrion and its DNA (mtDNA) is strictly maternal,despite the fact that a sperm can inject up to 100 functional mitochondria into the oocyte during fertilization.The mechanisms responsible for the elimination of the paternal mitochondria remain largely unknown.We report here that this paternal mitochondrial elimination process is conserved in Caenorhabditis elegans,and that the lysosomal pathway actively participates in this process.Molecular and cell biological analyses indicate that in wild-type animals paternal mitoehondria and mtDNA are destroyed within two hours after fertilization.In animals with compromised lysosomes,paternal mitochondria persist until late embryonic stages.Therefore,the lysosomal pathway plays an important role in degrading paternal mitochondria introduced into the oocyte during fertilization.Our study indicates that C.elegans is an excellent animal model for understanding and dissecting this conserved biological process critical for animal development and reproduction.

  14. Guanidinylated neomycin mediates heparan sulfate-dependent transport of active enzymes to lysosomes.

    Science.gov (United States)

    Sarrazin, Stéphane; Wilson, Beth; Sly, William S; Tor, Yitzhak; Esko, Jeffrey D

    2010-07-01

    Guanidinylated neomycin (GNeo) can transport bioactive, high molecular weight cargo into the interior of cells in a process that depends on cell surface heparan sulfate proteoglycans. In this report, we show that GNeo-modified quantum dots bind to cell surface heparan sulfate, undergo endocytosis and eventually reach the lysosomal compartment. An N-hydroxysuccinimide activated ester of GNeo (GNeo-NHS) was prepared and conjugated to two lysosomal enzymes, beta-D-glucuronidase (GUS) and alpha-L-iduronidase. Conjugation did not interfere with enzyme activity and enabled binding of the enzymes to heparin-Sepharose and heparan sulfate on primary human fibroblasts. Cells lacking the corresponding lysosomal enzyme took up sufficient amounts of the conjugated enzymes to restore normal turnover of glycosaminoglycans. The high capacity of proteoglycan-mediated uptake suggests that this method of delivery might be used for enzyme replacement or introduction of foreign enzymes into cells.

  15. Molecular characterization of aspartylglucosaminidase, a lysosomal hydrolase upregulated during strobilation in the moon jellyfish, Aurelia aurita.

    Science.gov (United States)

    Tsujita, Natsumi; Kuwahara, Hiroyuki; Koyama, Hiroki; Yanaka, Noriyuki; Arakawa, Kenji; Kuniyoshi, Hisato

    2017-05-01

    The life cycle of the moon jellyfish, Aurelia aurita, alternates between a benthic asexual polyp stage and a planktonic sexual medusa (jellyfish) stage. Transition from polyp to medusa is called strobilation. To investigate the molecular mechanisms of strobilation, we screened for genes that are upregulated during strobilation using the differential display method and we identified aspartylglucosaminidase (AGA), which encodes a lysosomal hydrolase. Similar to AGAs from other species, Aurelia AGA possessed an N-terminal signal peptide and potential N-glycosylation sites. The genomic region of Aurelia AGA was approximately 9.8 kb in length and contained 12 exons and 11 introns. Quantitative RT-PCR analysis revealed that AGA expression increased during strobilation, and was then decreased in medusae. To inhibit AGA function, we administered the lysosomal acidification inhibitors, chloroquine or bafilomycin A1, to animals during strobilation. Both inhibitors disturbed medusa morphogenesis at the oral end, suggesting involvement of lysosomal hydrolases in strobilation.

  16. Involvement of the endosomal-lysosomal system correlates with regional pathology in Creutzfeldt-Jakob disease

    DEFF Research Database (Denmark)

    Kovács, Gábor G; Gelpi, Ellen; Ströbel, Thomas

    2007-01-01

    The endosomal-lysosomal system (ELS) has been suggested to play a role in the pathogenesis of prion diseases. The purpose of this study was to examine how experimental observations can be translated to human neuropathology and whether alterations of the ELS relate to neuropathologic changes....... Combined with stereologic techniques, we examined components of the ELS in human sporadic Creutzfeldt-Jakob disease brains. We immunostained for the early endosomal marker Rab5 and lysosomal enzymes cathepsin D and B. We determined neuron-specific changes in their expression and correlated......-immunoreactive lysosomes. The intraneuronal distribution of cathepsin D and B diverges between Purkinje cells and frontal cortical neurons in sporadic Creutzfeldt-Jakob disease brains. We demonstrated focal intra- and perineuronal colocalization of cathepsin D and PrP. Our results indicate that effects in the ELS...

  17. The inactivation of the sortilin gene leads to a partial disruption of prosaposin trafficking to the lysosomes

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Jibin; Racicott, Jesse [Department of Anatomy and Cell Biology, McGill University, Montreal (Canada); Morales, Carlos R., E-mail: carlos.morales@mcgill.ca [Department of Anatomy and Cell Biology, McGill University, Montreal (Canada)

    2009-11-01

    Lysosomes are intracellular organelles which contain enzymes and activator proteins involved in the digestion and recycling of a variety of cellular and extracellular substances. We have identified a novel sorting receptor, sortilin, which is involved in the lysosomal trafficking of the sphingolipid activator proteins, prosaposin and GM{sub 2}AP, and the soluble hydrolases cathepsin D, cathepsin H, and acid sphingomyelinase. Sortilin belongs to a growing family of receptors with homology to the yeast Vps10 protein, which acts as a lysosomal sorting receptor for carboxypeptidase Y. In this study we examined the effects of the sortilin gene inactivation in mice. The inactivation of this gene did not yield any noticeable lysosomal pathology. To determine the existence of an alternative receptor complementing the sorting function of sortilin, we quantified the concentration of prosaposin in the lysosomes of the nonciliated epithelial cells lining the efferent ducts. These cells were chosen because they express sortilin and have a large number of lysosomes containing prosaposin. In addition, the nonciliated cells are known to endocytose luminal prosaposin that is synthesized and secreted by Sertoli cells into the seminiferous luminal fluids. Consequently, the nonciliated cells are capable of targeting both exogenous and endogenous prosaposin to the lysosomes. Using electron microscope immunogold labeling and quantitative analysis, our results demonstrate that inactivation of the sortilin gene produces a significant decrease of prosaposin in the lysosomes. When luminal prosaposin was excluded from the efferent ducts, the level of prosaposin in lysosomes was even lower in the mutant mice. Nonetheless, a significant amount of prosaposin continues to reach the lysosomal compartment. These results strongly suggest the existence of an alternative receptor that complements the function of sortilin and explains the lack of lysosomal storage disorders in the sortilin

  18. Comparison of five peptide vectors for improved brain delivery of the lysosomal enzyme arylsulfatase A.

    Science.gov (United States)

    Böckenhoff, Annika; Cramer, Sandra; Wölte, Philipp; Knieling, Simeon; Wohlenberg, Claudia; Gieselmann, Volkmar; Galla, Hans-Joachim; Matzner, Ulrich

    2014-02-26

    Enzyme replacement therapy (ERT) is a treatment option for lysosomal storage disorders (LSDs) caused by deficiencies of soluble lysosomal enzymes. ERT depends on receptor-mediated transport of intravenously injected recombinant enzyme to lysosomes of patient cells. The blood-brain barrier (BBB) prevents efficient transfer of therapeutic polypeptides from the blood to the brain parenchyma and thus hinders effective treatment of LSDs with CNS involvement. We compared the potential of five brain-targeting peptides to promote brain delivery of the lysosomal enzyme arylsulfatase A (ASA). Fusion proteins between ASA and the protein transduction domain of the human immunodeficiency virus TAT protein (Tat), an Angiopep peptide (Ang-2), and the receptor-binding domains of human apolipoprotein B (ApoB) and ApoE (two versions, ApoE-I and ApoE-II) were generated. All ASA fusion proteins were enzymatically active and targeted to lysosomes when added to cultured cells. In contrast to wild-type ASA, which is taken up by mannose-6-phosphate receptors, all chimeric proteins were additionally endocytosed via mannose-6-phosphate-independent routes. For ASA-Ang-2, ASA-ApoE-I, and ASA-ApoE-II, uptake was partially due to the low-density lipoprotein receptor-related protein 1. Transendothelial transfer in a BBB cell culture model was elevated for ASA-ApoB, ASA-ApoE-I, and ASA-ApoE-II. Brain delivery was, however, increased only for ASA-ApoE-II. ApoE-II was also superior to wild-type ASA in reducing lysosomal storage in the CNS of ASA-knock-out mice treated by ERT. Therefore, the ApoE-derived peptide appears useful to treat metachromatic leukodystrophy and possibly other neurological disorders more efficiently.

  19. Cytosolic peroxidases protect the lysosome of bloodstream African trypanosomes from iron-mediated membrane damage.

    Directory of Open Access Journals (Sweden)

    Corinna Hiller

    2014-04-01

    Full Text Available African trypanosomes express three virtually identical non-selenium glutathione peroxidase (Px-type enzymes which preferably detoxify lipid-derived hydroperoxides. As shown previously, bloodstream Trypanosoma brucei lacking the mitochondrial Px III display only a weak and transient proliferation defect whereas parasites that lack the cytosolic Px I and Px II undergo extremely fast lipid peroxidation and cell lysis. The phenotype can completely be rescued by supplementing the medium with the α-tocopherol derivative Trolox. The mechanism underlying the rapid cell death remained however elusive. Here we show that the lysosome is the origin of the cellular injury. Feeding the px I-II knockout parasites with Alexa Fluor-conjugated dextran or LysoTracker in the presence of Trolox yielded a discrete lysosomal staining. Yet upon withdrawal of the antioxidant, the signal became progressively spread over the whole cell body and was completely lost, respectively. T. brucei acquire iron by endocytosis of host transferrin. Supplementing the medium with iron or transferrin induced, whereas the iron chelator deferoxamine and apo-transferrin attenuated lysis of the px I-II knockout cells. Immunofluorescence microscopy with MitoTracker and antibodies against the lysosomal marker protein p67 revealed that disintegration of the lysosome precedes mitochondrial damage. In vivo experiments confirmed the negligible role of the mitochondrial peroxidase: Mice infected with px III knockout cells displayed only a slightly delayed disease development compared to wild-type parasites. Our data demonstrate that in bloodstream African trypanosomes, the lysosome, not the mitochondrion, is the primary site of oxidative damage and cytosolic trypanothione/tryparedoxin-dependent peroxidases protect the lysosome from iron-induced membrane peroxidation. This process appears to be closely linked to the high endocytic rate and distinct iron acquisition mechanisms of the infective

  20. Lysosomal exoglycosidases in serum and urine of patients with pancreatic adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Anna Stypułkowska

    2010-11-01

    Full Text Available Lysosomal exoglycosidases: N-acetyl-β-D-hexosaminidase (HEX, β-D-galactosidase (GAL, ι-L-fucosidase (FUC and ι-D-mannosidase (MAN modify oligosaccharide chains of glycoconjugates in endoplasmatic reticulum and/or Golgi apparatus and degrade them in lysosomes. In acid environment of lysosome, exoglycosidases degrade oligosaccharide chains of glycoproteins, glycolipids and glycosaminoglycans by eliminating single sugars from the edges of oligosaccharide chains. Neoplasms change biochemical processes in tissues and may significantly change the activity of many enzymes including the activity of lysosomal exoglycosidasses in serum and urine of persons with neoplasmatic diseases. The aim of the present paper was evaluation the activity of HEX, GAL, FUC and MAN in serum and urine of patients with pancreatic adenocarcinoma. Serum and urine samples were collected from 15 patients with adenocarcinoma of the pancreas and 15 healthy persons. The activity of lysosomal exoglycosidases was determined by the method of Marciniak et al. adapted to serum and urine of patients with adenocarcinoma of the pancreas. Our results indicate significant decrease in activity of GAL (p=0.037 in serum of patients with pancreatic adenocarcinoma, significant increase in activity of HEX (p<0.001 and FUC (p=0.027 in serum, and HEX (p=0.003 in urine, as well as significant decrease of FUC (p=0.016 and MAN (p=0.029 in urine o patients with adenocarcinoma of the pancreas, in comparison to the control group. Increase in activity of some lysosomal enzymes in serum and urine of pancreatic adenocarcinoma patients, may indicate on destruction of pancreatic tissue by pancreatic adenocarcinoma. Determination of the HEX, GAL, FUC and MAN in serum and urine may be useful in diagnostics of pancreatic adenocarcinoma.

  1. Lysosomal and mitochondrial permeabilization mediates zinc(II) cationic phthalocyanine phototoxicity.

    Science.gov (United States)

    Marino, Julieta; García Vior, María C; Furmento, Verónica A; Blank, Viviana C; Awruch, Josefina; Roguin, Leonor P

    2013-11-01

    In order to find a novel photosensitizer to be used in photodynamic therapy for cancer treatment, we have previously showed that the cationic zinc(II) phthalocyanine named Pc13, the sulfur-linked dye 2,9(10),16(17),23(24)-tetrakis[(2-trimethylammonium) ethylsulfanyl]phthalocyaninatozinc(II) tetraiodide, exerts a selective phototoxic effect on human nasopharynx KB carcinoma cells and induces an apoptotic response characterized by an increase in the activity of caspase-3. Since the activation of an apoptotic pathway by chemotherapeutic agents contributes to the elimination of malignant cells, in this study we investigated the molecular mechanisms underlying the antitumor action of Pc13. We found that after light exposure, Pc13 induced the production of reactive oxygen species (ROS), which are mediating the resultant cytotoxic action on KB cells. ROS led to an early permeabilization of lysosomal membranes as demonstrated by the reduction of lysosome fluorescence with acridine orange and the release of lysosomal proteases to cytosol. Treatment with antioxidants inhibited ROS generation, preserved the integrity of lysosomal membrane and increased cell proliferation in a concentration-dependent manner. Lysosome disruption was followed by mitochondrial depolarization, cytosolic release of cytochrome C and caspases activation. Although no change in the total amount of Bax was observed, the translocation of Bax from cytosol to mitochondria, the cleavage of the pro-apoptotic protein Bid, together with the decrease of the anti-apoptotic proteins Bcl-XL and Bcl-2 indicated the involvement of Bcl-2 family proteins in the induction of the mitochondrial pathway. It was also demonstrated that cathepsin D, but not caspase-8, contributed to Bid cleavage. In conclusion, Pc13-induced cell photodamage is triggered by ROS generation and activation of the mitochondrial apoptotic pathway through the release of lysosomal proteases. In addition, our results also indicated that Pc13 induced

  2. Characterization of Two-pore Channel 2 (TPCN2)-mediated Ca2+ Currents in Isolated Lysosomes*

    OpenAIRE

    Schieder, Michael; Rötzer, Katrin; Brüggemann, Andrea; Biel, Martin; Wahl-Schott, Christian A.

    2010-01-01

    Two-pore channels (TPCNs) have been proposed to form lysosomal Ca2+ release channels that are activated by nicotinic acid adenine dinucleotide phosphate. Here, we employ a glass chip-based method to record for the first time nicotinic acid adenine dinucleotide phosphate -dependent currents through a two-pore channel (TPCN2) from intact lysosomes. We show that TPCN2 is a highly selective Ca2+ channel that is regulated by intralysosomal pH. Using site-directed mutagenesis, we identify an amino ...

  3. Three-layer poly(methyl methacrylate) microsystem for analysis of lysosomal enzymes for diagnostic purposes

    DEFF Research Database (Denmark)

    Kwapiszewski, Radoslaw; Kwapiszewska, Karina; Kutter, Jörg P

    2015-01-01

    Lysosomal storage diseases are chronic, progressive and typically have a devastating impact on the patient and the family. The diagnosis of these diseases is still a challenge, however, even for trained specialists. Accurate diagnostic methods and high-throughput tools that could be readily...... incorporated into existing screening laboratories are urgently required. We propose a new method for measuring the activity of lysosomal enzymes using a microfluidic device. The principle of the method is the fluorometric determination of a protonated form of 4-methylumbelliferone directly in the enzymatic...

  4. Effects of the lysosomal destabilizing drug siramesine on glioblastoma in vitro and in vivo

    DEFF Research Database (Denmark)

    Jensen, Stine S.; Asferg Petterson, Stine; Halle, Bo

    2017-01-01

    confirmed by immunohistochemical staining of histological sections of spheroids, spheroids in brain slice cultures and tumors in mice brains. Results: The results showed that siramesine killed standard glioma cell lines in vitro, and loss of acridine orange staining suggested a compromised lysosomal...... cell death and inhibited tumor cell migration. This could not be reproduced in the organotypic three dimensional spheroid-brain slice culture model or in the mice xenograft model. Conclusions: In conclusion the in vitro results obtained with tumor cells and spheroids suggest a potential of lysosomal...

  5. Amyloid-β secretion, generation, and lysosomal sequestration in response to proteasome inhibition

    DEFF Research Database (Denmark)

    Agholme, Lotta; Hallbeck, Martin; Benedikz, Eirikur

    2012-01-01

    that proteasome inhibition resulted in autophagy-dependent accumulation of Aβ in lysosomes, and increased levels of intracellular and secreted Aβ. The enhanced levels of Aβ could not be explained by increased amounts of AβPP. Instead, reduced degradation of the C-terminal fragment of AβPP (C99) by the proteasome....... Furthermore, proteasome inhibition caused a reduction in cellular viability, which was reverted by inhibition of autophagy. Dysfunction of the proteasome could cause lysosomal accumulation of Aβ, as well as increased generation and secretion of Aβ, which is partly facilitated by autophagy. As a decrease...

  6. Lysosomal membrane stability of the mussel, Mytilus galloprovincialis (L.), as a biomarker of tributyltin exposure.

    Science.gov (United States)

    Okoro, Hussein K; Snyman, Reinette G; Fatoki, Olalekan S; Adekola, Folahan A; Ximba, Bhekumusa J; Slabber, Michelle Y

    2015-05-01

    The effect of tributyltin (TBT) on the stability of hemocytic lysosome membranes of the mussel, Mytilus galloprovincialis, and the use thereof as a biomarker of TBT-induced stress, was investigated. Mussels were exposed to 0.1 and 1.0 µg/L tributyltin respectively for 4 weeks. Lysosomal membrane stability of hemocytes was tested weekly by means of the neutral red retention time (NRRT) assay, after which the mussel samples were analyzed for TBT content. The two exposed groups exhibited significantly increased (p galloprovincialis.

  7. Effect of various lysosomes and endotoxin on vascular permeability in frogs and mice.

    Science.gov (United States)

    Csákó, G; Reichel, A; Csernyánszky, H; Reichel, U

    1975-01-01

    Blood-lymph permeability increasing effects of frog liver lysosomes, Escherichia coli 0111 endotoxin, bradykinin and serotonin were demonstrated in frogs with a method developed by the authors. These actions were expressed in a faster dye saturation in the lymph as compared to that of the controls. 2. The method is based on the determinations of concentration of Evans blue transported as protein-bound dye into the lymph. 3. Frog liver and polymorphonuclear leukocyte lysosomes had a capillary permeability increasing action tested by local skin response when injecting Evans blue intravenously in mice. 4. All these phenomena are similar to events described earlier in mammalian systems.

  8. Impact of lysosomal storage disorders on biology of mesenchymal stem cells: Evidences from in vitro silencing of glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes.

    Science.gov (United States)

    Squillaro, Tiziana; Antonucci, Ivana; Alessio, Nicola; Esposito, Anna; Cipollaro, Marilena; Melone, Mariarosa Anna Beatrice; Peluso, Gianfranco; Stuppia, Liborio; Galderisi, Umberto

    2017-01-18

    Lysosomal storage disorders (LDS) comprise a group of rare multisystemic diseases resulting from inherited gene mutations that impair lysosomal homeostasis. The most common LSDs, Gaucher disease (GD), and Fabry disease (FD) are caused by deficiencies in the lysosomal glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes, respectively. Given the systemic nature of enzyme deficiency, we hypothesized that the stem cell compartment of GD and FD patients might be also affected. Among stem cells, mesenchymal stem cells (MSCs) are a commonly investigated population given their role in hematopoiesis and the homeostatic maintenance of many organs and tissues. Since the impairment of MSC functions could pose profound consequences on body physiology, we evaluated whether GBA and GLA silencing could affect the biology of MSCs isolated from bone marrow and amniotic fluid. Those cell populations were chosen given the former's key role in organ physiology and the latter's intriguing potential as an alternative stem cell model for human genetic disease. Our results revealed that GBA and GLA deficiencies prompted cell cycle arrest along with the impairment of autophagic flux and an increase of apoptotic and senescent cell percentages. Moreover, an increase in ataxia-telangiectasia-mutated staining 1 hr after oxidative stress induction and a return to basal level at 48 hr, along with persistent gamma-H2AX staining, indicated that MSCs properly activated DNA repair signaling, though some damages remained unrepaired. Our data therefore suggest that MSCs with reduced GBA or GLA activity are prone to apoptosis and senescence due to impaired autophagy and DNA repair capacity.

  9. The Possible "Proton Sponge " Effect of Polyethylenimine (PEI) Does Not Include Change in Lysosomal pH

    DEFF Research Database (Denmark)

    Søndergaard, Rikke Vicki; Mattebjerg, Maria Ahlm; Henriksen, Jonas Rosager

    2013-01-01

    " hypothesis. Our measurements show that PEI does not induce change in lysosomal pH as previously suggested and quantification of PEI concentrations in lysosomes makes it uncertain that the "proton sponge " effect is the dominant mechanism of polyplex escape.Molecular Therapy (2012); doi:10.1038/mt.2012.185....

  10. Disorders of lysosomal acidification-The emerging role of v-ATPase in aging and neurodegenerative disease.

    Science.gov (United States)

    Colacurcio, Daniel J; Nixon, Ralph A

    2016-12-01

    Autophagy and endocytosis deliver unneeded cellular materials to lysosomes for degradation. Beyond processing cellular waste, lysosomes release metabolites and ions that serve signaling and nutrient sensing roles, linking the functions of the lysosome to various pathways for intracellular metabolism and nutrient homeostasis. Each of these lysosomal behaviors is influenced by the intraluminal pH of the lysosome, which is maintained in the low acidic range by a proton pump, the vacuolar ATPase (v-ATPase). New reports implicate altered v-ATPase activity and lysosomal pH dysregulation in cellular aging, longevity, and adult-onset neurodegenerative diseases, including forms of Parkinson disease and Alzheimer disease. Genetic defects of subunits composing the v-ATPase or v-ATPase-related proteins occur in an increasingly recognized group of familial neurodegenerative diseases. Here, we review the expanding roles of the v-ATPase complex as a platform regulating lysosomal hydrolysis and cellular homeostasis. We discuss the unique vulnerability of neurons to persistent low level lysosomal dysfunction and review recent clinical and experimental studies that link dysfunction of the v-ATPase complex to neurodegenerative diseases across the age spectrum. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Iron content and acid phosphatase activity in hepatic parenchymal lysosomes of patients with hemochromatosis before and after phlebotomy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cleton, M.I.; de Bruijn, W.C.; van Blokland, W.T.; Marx, J.J.; Roelofs, J.M.; Rademakers, L.H.

    1988-03-01

    Lysosomal structures in liver parenchymal cells of 3 patients with iron overload and of 3 subjects without iron-storage disorders were investigated. A combination of enzyme cytochemistry--with cerium as a captive ion to demonstrate lysosomal acid phosphatase activity--and electron probe X-ray microanalysis (EPMA) was used. We were able (1) to define and quantify lysosomal structures as lysosomes, siderosomes, or residual bodies, (2) to quantify the amount of iron and cerium simultaneously in these structures, and (3) to evaluate a possible relation between iron storage and enzyme activity. With histopathologically increased iron storage, the number of siderosomes had increased at the cost of lysosomes, with a corresponding increase in acid phosphatase activity in both organelles. In histopahtologically severe iron overload, however, acid phosphatase activity was low or not detectable and most of the iron was stored in residual bodies. After phlebotomy treatment, the number of siderosomes had decreased in favor of the lysosomes, approaching values obtained in control subjects, and acid phosphatase activity was present in all iron-containing structures. In this way a relationship between iron storage and enzyme activity was established. The iron content of the individual lysosomal structures per unit area had increased with histopathologically increased iron storage and had decreased after phlebotomy treatment. From this observation, it is concluded that the iron status of the patient is not only reflected by the amount of iron-containing hepatocytes but, as well, by the iron content lysosomal unit area.

  12. Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis.

    Science.gov (United States)

    Yang, Dun-Sheng; Stavrides, Philip; Mohan, Panaiyur S; Kaushik, Susmita; Kumar, Asok; Ohno, Masuo; Schmidt, Stephen D; Wesson, Daniel W; Bandyopadhyay, Urmi; Jiang, Ying; Pawlik, Monika; Peterhoff, Corrinne M; Yang, Austin J; Wilson, Donald A; St George-Hyslop, Peter; Westaway, David; Mathews, Paul M; Levy, Efrat; Cuervo, Ana M; Nixon, Ralph A

    2011-07-01

    The extensive autophagic-lysosomal pathology in Alzheimer disease (AD) brain has revealed a major defect: in the proteolytic clearance of autophagy substrates. Autophagy failure contributes on several levels to AD pathogenesis and has become an important therapeutic target for AD and other neurodegenerative diseases. We recently observed broad therapeutic effects of stimulating autophagic-lysosomal proteolysis in the TgCRND8 mouse model of AD that exhibits defective proteolytic clearance of autophagic substrates, robust intralysosomal amyloid-β peptide (Aβ) accumulation, extracellular β-amyloid deposition and cognitive deficits. By genetically deleting the lysosomal cysteine protease inhibitor, cystatin B (CstB), to selectively restore depressed cathepsin activities, we substantially cleared Aβ, ubiquitinated proteins and other autophagic substrates from autolysosomes/lysosomes and rescued autophagic-lysosomal pathology, as well as reduced total Aβ40/42 levels and extracellular amyloid deposition, highlighting the underappreciated importance of the lysosomal system for Aβ clearance. Most importantly, lysosomal remediation prevented the marked learning and memory deficits in TgCRND8 mice. Our findings underscore the pathogenic significance of autophagic-lysosomal dysfunction in AD and demonstrate the value of reversing this dysfunction as an innovative therapeautic strategy for AD.

  13. Effect of quenching rate on spin texture in amorphous Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 13.5}B{sub 9} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kane, S.N. [Devi Ahilya Univ., Indore (India). Sch. of Phys.; Bhagat, N. [Inter-University Consortium for DAEF, University Campus, Khandwa Road, Indore (India); Gupta, A. [Inter-University Consortium for DAEF, University Campus, Khandwa Road, Indore (India); Varga, L.K. [MTA KFKI Research Institute for Solid State Physics, P.O. Box 49, H-1525, Budapest (Hungary)

    1997-03-01

    X-ray diffraction and Moessbauer spectroscopy have been used to study the structural changes in amorphous Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 13.5}B{sub 9} as a function of quenching rate from the melt. Variation in quenching rates influences mainly the quenched-in free volume and the internal stresses, which in turn affects the spin texture and the magnetic properties of the ribbons. (orig.).

  14. Partial correction of the CNS lysosomal storage defect in a mouse model of juvenile neuronal ceroid lipofuscinosis by neonatal CNS administration of an adeno-associated virus serotype rh.10 vector expressing the human CLN3 gene.

    Science.gov (United States)

    Sondhi, Dolan; Scott, Emma C; Chen, Alvin; Hackett, Neil R; Wong, Andrew M S; Kubiak, Agnieszka; Nelvagal, Hemanth R; Pearse, Yewande; Cotman, Susan L; Cooper, Jonathan D; Crystal, Ronald G

    2014-03-01

    Juvenile neuronal ceroid lipofuscinosis (JNCL or CLN3 disease) is an autosomal recessive lysosomal storage disease resulting from mutations in the CLN3 gene that encodes a lysosomal membrane protein. The disease primarily affects the brain with widespread intralysosomal accumulation of autofluorescent material and fibrillary gliosis, as well as the loss of specific neuronal populations. As an experimental treatment for the CNS manifestations of JNCL, we have developed a serotype rh.10 adeno-associated virus vector expressing the human CLN3 cDNA (AAVrh.10hCLN3). We hypothesized that administration of AAVrh.10hCLN3 to the Cln3(Δex7/8) knock-in mouse model of JNCL would reverse the lysosomal storage defect, as well as have a therapeutic effect on gliosis and neuron loss. Newborn Cln3(Δex7/8) mice were administered 3 × 10(10) genome copies of AAVrh.10hCLN3 to the brain, with control groups including untreated Cln3(Δex7/8) mice and wild-type littermate mice. After 18 months, CLN3 transgene expression was detected in various locations throughout the brain, particularly in the hippocampus and deep anterior cortical regions. Changes in the CNS neuronal lysosomal accumulation of storage material were assessed by immunodetection of subunit C of ATP synthase, luxol fast blue staining, and periodic acid-Schiff staining. For all parameters, Cln3(Δex7/8) mice exhibited abnormal lysosomal accumulation, but AAVrh.10hCLN3 administration resulted in significant reductions in storage material burden. There was also a significant decrease in gliosis in AAVrh.10hCLN3-treated Cln3(Δex7/8) mice, and a trend toward improved neuron counts, compared with their untreated counterparts. These data demonstrate that AAVrh.10 delivery of a wild-type cDNA to the CNS is not harmful and instead provides a partial correction of the neurological lysosomal storage defect of a disease caused by a lysosomal membrane protein, indicating that this may be an effective therapeutic strategy for JNCL and

  15. Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties.

    Directory of Open Access Journals (Sweden)

    Etay Hay

    2011-07-01

    Full Text Available The thick-tufted layer 5b pyramidal cell extends its dendritic tree to all six layers of the mammalian neocortex and serves as a major building block for the cortical column. L5b pyramidal cells have been the subject of extensive experimental and modeling studies, yet conductance-based models of these cells that faithfully reproduce both their perisomatic Na(+-spiking behavior as well as key dendritic active properties, including Ca(2+ spikes and back-propagating action potentials, are still lacking. Based on a large body of experimental recordings from both the soma and dendrites of L5b pyramidal cells in adult rats, we characterized key features of the somatic and dendritic firing and quantified their statistics. We used these features to constrain the density of a set of ion channels over the soma and dendritic surface via multi-objective optimization with an evolutionary algorithm, thus generating a set of detailed conductance-based models that faithfully replicate the back-propagating action potential activated Ca(2+ spike firing and the perisomatic firing response to current steps, as well as the experimental variability of the properties. Furthermore, we show a useful way to analyze model parameters with our sets of models, which enabled us to identify some of the mechanisms responsible for the dynamic properties of L5b pyramidal cells as well as mechanisms that are sensitive to morphological changes. This automated framework can be used to develop a database of faithful models for other neuron types. The models we present provide several experimentally-testable predictions and can serve as a powerful tool for theoretical investigations of the contribution of single-cell dynamics to network activity and its computational capabilities.

  16. 3D-QSAR and molecular docking studies on designing inhibitors of the hepatitis C virus NS5B polymerase

    Science.gov (United States)

    Li, Wenlian; Si, Hongzong; Li, Yang; Ge, Cuizhu; Song, Fucheng; Ma, Xiuting; Duan, Yunbo; Zhai, Honglin

    2016-08-01

    Viral hepatitis C infection is one of the main causes of the hepatitis after blood transfusion and hepatitis C virus (HCV) infection is a global health threat. The HCV NS5B polymerase, an RNA dependent RNA polymerase (RdRp) and an essential role in the replication of the virus, has no functional equivalent in mammalian cells. So the research and development of efficient NS5B polymerase inhibitors provides a great strategy for antiviral therapy against HCV. A combined three-dimensional quantitative structure-activity relationship (QSAR) modeling was accomplished to profoundly understand the structure-activity correlation of a train of indole-based inhibitors of the HCV NS5B polymerase to against HCV. A comparative molecular similarity indices analysis (COMSIA) model as the foundation of the maximum common substructure alignment was developed. The optimum model exhibited statistically significant results: the cross-validated correlation coefficient q2 was 0.627 and non-cross-validated r2 value was 0.943. In addition, the results of internal validations of bootstrapping and Y-randomization confirmed the rationality and good predictive ability of the model, as well as external validation (the external predictive correlation coefficient rext2 = 0.629). The information obtained from the COMSIA contour maps enables the interpretation of their structure-activity relationship. Furthermore, the molecular docking study of the compounds for 3TYV as the protein target revealed important interactions between active compounds and amino acids, and several new potential inhibitors with higher activity predicted were designed basis on our analyses and supported by the simulation of molecular docking. Meanwhile, the OSIRIS Property Explorer was introduced to help select more satisfactory compounds. The satisfactory results from this study may lay a reliable theoretical base for drug development of hepatitis C virus NS5B polymerase inhibitors.

  17. Aromatic derivatives of 1H-2,3-dihydropyrazolo(4,5-b)-1,5-diazepine

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, V.D.; Kiroga, Kh.; Kolos, N.N.

    1987-09-01

    Aromatic derivatives of 1H-2,3-dihydropyrazole(4,5-b)-1,5-diazepine were obtained by the reaction of 1-phenyl-3-methyl-4,5-diaminopyrazole with chalcones and acetylarenes, catalyzed by acetic or sulfuric acid. The seven-membered ring in these compounds has a conformation of the boat type. The IR, UV, PMR, and mass spectra of the compounds are discussed.

  18. Role of lysosomal enzymes released by alveolar macrophages in the pathogenesis of the acute phase of hypersensitivity pneumonitis

    Directory of Open Access Journals (Sweden)

    J. L. Pérez-Arellano

    1995-01-01

    Full Text Available Hydrolytic enzymes are the major constituents of alveolar macrophages (AM and have been shown to be involved in many aspects of the inflammatory pulmonary response. The aim of this study was to evaluate the role of lysosomal enzymes in the acute phase of hypersensitivity pneumonitis (HPs. An experimental study on AM lysosomal enzymes of an HP-guinea-pig model was performed. The results obtained both in vivo and in vitro suggest that intracellular enzymatic activity decrease is, at least partly, due to release of lysosomal enzymes into the medium. A positive but slight correlation was found between extracellular lysosomal activity and four parameters of lung lesion (lung index, bronchoalveolar fluid total (BALF protein concentration, BALF LDH and BALF alkaline phosphatase activities. All the above findings suggest that the AM release of lysosomal enzymes during HP is a factor involved, although possibly not the only one, in the pulmonary lesions appearing in this disease.

  19. Decreased Tissue COX5B Expression and Mitochondrial Dysfunction during Sepsis-Induced Kidney Injury in Rats

    Science.gov (United States)

    Böhm, Lennert; Braunecker, Stefan; Adler, Christoph; De Robertis, Edoardo; Cirillo, Fabrizio

    2017-01-01

    Background. Sepsis is defined as a life-threatening organ dysfunction due to a dysregulated host response to infection. Sepsis is the dominant cause of acute kidney injury (AKI), accounting for nearly 50% of episodes of acute renal failure. Signaling cascades and pathways within the kidney are largely unknown and analysis of these molecular mechanisms may enhance knowledge on pathophysiology and possible therapeutic options. Material and Methods. 26 male Wistar rats were assigned to either a sham group (control, N = 6) or sepsis group (N = 20; cecal ligature and puncture model, 24 and 48 hours after CLP). Surviving rats (n = 12) were decapitated at 24 hours (early phase; n = 6) or 48 hours (late phase; n = 6) after CLP and kidneys removed for proteomic analysis. 2D-DIGE and DeCyder 2D software (t-test, P cytochrome c oxidase subunit B (COX5b), myosin-6 (MYH6), and myosin-7 (MYH7). A significant correlation with the proteins was found for mitochondrial energy production and electron transport. Conclusions. COX5B could be a promising biomarker candidate since a significant association was found during experimental sepsis in the present study. For future research, COX5B should be evaluated as a biomarker in both human urine and serum to identify sepsis. PMID:28246552

  20. Paulus als Schriftuitlegger Paulus’ vertolking van Genesis 15:5b-6 in Romeinen 4:3

    Directory of Open Access Journals (Sweden)

    Pieter K. Baaij

    2005-07-01

    Full Text Available Paul as expositor of Scripture. Paul’s interpretation of Genesis 15:5b-6 in Romans 4:3 The author of this article has since 1986 been working exclusively on the translation and exegesis of the Epistle to the Romans. In the course of this work, he discovered that Paul first carefully considered his text in Biblical Hebrew before writing it accurately in Greek. It then transpires that “the difficult Paul” proclaimed the gospel of the crowning of the Law (10:4 with great clarity. The real Paul is pre-eminently the expositor of Scripture. Provided we use the instruments provided to the reader by Paul, we shall thus not only understand the proclamation of Paul better but also Scripture itself.  In this article the author illustrates that Paul in Romans 4:3 accurately renders what is written in Genesis 15:5b and 6. Paul teaches us to understand the Hebrew text better by indicating where the emphasis lies in the Hebrew text and how we must interpret the Hebrew terms used. For this reason Paul’s interpretation of Genesis 15:5b and 6 in Romans 4:3 is of great importance in the continually more topical debate on how we must translate the Bible.

  1. Ground-based detection of the near-infrared emission from the dayside of WASP-5b

    CERN Document Server

    Chen, Guo; Madhusudhan, Nikku; Wang, Hongchi; Nikolov, Nikolay; Seemann, Ulf; Henning, Thomas

    2014-01-01

    (Abridged) WASP-5b is a highly irradiated dense hot Jupiter orbiting a G4V star every 1.6 days. We observed two secondary eclipses of WASP-5b in the J, H and K bands simultaneously. Thermal emission of WASP-5b is detected in the J and K bands. The retrieved planet-to-star flux ratios in the J and K bands are 0.168 +0.050/-0.052% and 0.269+/-0.062%, corresponding to brightness temperatures of 2996 +212/-261K and 2890 +246/-269K, respectively. No thermal emission is detected in the H band, with a 3-sigma upper limit of 0.166%, corresponding to a maximum temperature of 2779K. On the whole, our J, H, K results can be explained by a roughly isothermal temperature profile of ~2700K in the deep layers of the planetary dayside atmosphere that are probed at these wavelengths. Together with Spitzer observations, which probe higher layers that are found to be at ~1900K, a temperature inversion is ruled out in the range of pressures probed by the combined data set. While an oxygen-rich model is unable to explain all the ...

  2. Species-specific difference in expression and splice-site choice in Inpp5b, an inositol polyphosphate 5-phosphatase paralogous to the enzyme deficient in Lowe Syndrome.

    Science.gov (United States)

    Bothwell, Susan P; Farber, Leslie W; Hoagland, Adam; Nussbaum, Robert L

    2010-10-01

    The oculocerebrorenal syndrome of Lowe (OCRL; MIM #309000) is an X-linked human disorder characterized by congenital cataracts, mental retardation, and renal proximal tubular dysfunction caused by loss-of-function mutations in the OCRL gene that encodes Ocrl, a type II phosphatidylinositol bisphosphate (PtdIns4,5P(2)) 5-phosphatase. In contrast, mice with complete loss-of-function of the highly homologous ortholog Ocrl have no detectable renal, ophthalmological, or central nervous system abnormalities. We inferred that the disparate phenotype between Ocrl-deficient humans and mice was likely due to differences in how the two species compensate for loss of the Ocrl enzyme. We therefore turned our attention to Inpp5b, another type II PtdIns4,5P(2) 5-phosphatase encoded by Inpp5b in mice and INPP5B in humans, as potential compensating genes in the two species, because Inpp5b/INPP5B are the most highly conserved paralogs to Ocrl/OCRL in the respective genomes of both species and Inpp5b demonstrates functional overlap with Ocrl in mice in vivo. We used in silico sequence analysis, reverse-transcription PCR, quantitative PCR, and transient transfection assays of promoter function to define splice-site usage and the function of an internal promoter in mouse Inpp5b versus human INPP5B. We found mouse Inpp5b and human INPP5B differ in their transcription, splicing, and primary amino acid sequence. These observations form the foundation for analyzing the functional basis for the difference in how Inpp5b and INPP5B compensate for loss of Ocrl function and, by providing insight into the cellular roles of Ocrl and Inpp5b, aid in the development of a model system in which to study Lowe syndrome.

  3. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11.

    Science.gov (United States)

    Varga, Rita-Eva; Khundadze, Mukhran; Damme, Markus; Nietzsche, Sandor; Hoffmann, Birgit; Stauber, Tobias; Koch, Nicole; Hennings, J Christopher; Franzka, Patricia; Huebner, Antje K; Kessels, Michael M; Biskup, Christoph; Jentsch, Thomas J; Qualmann, Britta; Braulke, Thomas; Kurth, Ingo; Beetz, Christian; Hübner, Christian A

    2015-08-01

    Hereditary spastic paraplegia (HSP) is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs). Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.

  4. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11.

    Directory of Open Access Journals (Sweden)

    Rita-Eva Varga

    2015-08-01

    Full Text Available Hereditary spastic paraplegia (HSP is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs. Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.

  5. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11.

    Directory of Open Access Journals (Sweden)

    Rita-Eva Varga

    2015-08-01

    Full Text Available Hereditary spastic paraplegia (HSP is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs. Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice.

  6. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11

    Science.gov (United States)

    Varga, Rita-Eva; Khundadze, Mukhran; Damme, Markus; Nietzsche, Sandor; Hoffmann, Birgit; Stauber, Tobias; Koch, Nicole; Hennings, J. Christopher; Franzka, Patricia; Huebner, Antje K.; Kessels, Michael M.; Biskup, Christoph; Jentsch, Thomas J.; Qualmann, Britta; Braulke, Thomas; Kurth, Ingo; Beetz, Christian; Hübner, Christian A.

    2015-01-01

    Hereditary spastic paraplegia (HSP) is characterized by a dying back degeneration of corticospinal axons which leads to progressive weakness and spasticity of the legs. SPG11 is the most common autosomal-recessive form of HSPs and is caused by mutations in SPG11. A recent in vitro study suggested that Spatacsin, the respective gene product, is needed for the recycling of lysosomes from autolysosomes, a process known as autophagic lysosome reformation. The relevance of this observation for hereditary spastic paraplegia, however, has remained unclear. Here, we report that disruption of Spatacsin in mice indeed causes hereditary spastic paraplegia-like phenotypes with loss of cortical neurons and Purkinje cells. Degenerating neurons accumulate autofluorescent material, which stains for the lysosomal protein Lamp1 and for p62, a marker of substrate destined to be degraded by autophagy, and hence appears to be related to autolysosomes. Supporting a more generalized defect of autophagy, levels of lipidated LC3 are increased in Spatacsin knockout mouse embryonic fibrobasts (MEFs). Though distinct parameters of lysosomal function like processing of cathepsin D and lysosomal pH are preserved, lysosome numbers are reduced in knockout MEFs and the recovery of lysosomes during sustained starvation impaired consistent with a defect of autophagic lysosome reformation. Because lysosomes are reduced in cortical neurons and Purkinje cells in vivo, we propose that the decreased number of lysosomes available for fusion with autophagosomes impairs autolysosomal clearance, results in the accumulation of undegraded material and finally causes death of particularly sensitive neurons like cortical motoneurons and Purkinje cells in knockout mice. PMID:26284655

  7. TPC1 Has Two Variant Isoforms, and Their Removal Has Different Effects on Endo-Lysosomal Functions Compared to Loss of TPC2

    OpenAIRE

    Ruas, Margarida; Chuang, Kai-Ting; Davis, Lianne C.; Al-Douri, Areej; Tynan, Patricia W.; Tunn, Ruth; Teboul, Lydia; Galione, Antony; Parrington, John

    2014-01-01

    Organelle ion homeostasis within the endo-lysosomal system is critical for physiological functions. Two-pore channels (TPCs) are cation channels that reside in endo-lysosomal organelles, and overexpression results in endo-lysosomal trafficking defects. However, the impact of a lack of TPC expression on endo-lysosomal trafficking is unknown. Here, we characterize Tpcn1 expression in two transgenic mouse lines (Tpcn1 XG716 and Tpcn1 T159) and show expression of a novel evolutionarily conserved ...

  8. Involvement of lysosomal dysfunction in autophagosome accumulation and early pathologies in adipose tissue of obese mice.

    Science.gov (United States)

    Mizunoe, Yuhei; Sudo, Yuka; Okita, Naoyuki; Hiraoka, Hidenori; Mikami, Kentaro; Narahara, Tomohiro; Negishi, Arisa; Yoshida, Miki; Higashibata, Rikako; Watanabe, Shukoh; Kaneko, Hiroki; Natori, Daiki; Furuichi, Takuma; Yasukawa, Hiromine; Kobayashi, Masaki; Higami, Yoshikazu

    2017-04-03

    Whether obesity accelerates or suppresses autophagy in adipose tissue is still debatable. To clarify dysregulation of autophagy and its role in pathologies of obese adipose tissue, we focused on lysosomal function, protease maturation and activity, both in vivo and in vitro. First, we showed that autophagosome formation was accelerated, but autophagic clearance was impaired in obese adipose tissue. We also found protein and activity levels of CTSL (cathepsin L) were suppressed in obese adipose tissue, while the activity of CTSB (cathepsin B) was significantly enhanced. Moreover, cellular senescence and inflammasomes were activated in obese adipose tissue. In 3T3L1 adipocytes, downregulation of CTSL deteriorated autophagic clearance, upregulated expression of CTSB, promoted cellular senescence and activated inflammasomes. Upregulation of CTSB promoted additional activation of inflammasomes. Therefore, we suggest lysosomal dysfunction observed in obese adipose tissue leads to lower autophagic clearance, resulting in autophagosome accumulation. Simultaneously, lysosomal abnormalities, including deteriorated CTSL function and compensatory activation of CTSB, caused cellular senescence and inflammasome activation. Our findings strongly suggest lysosomal dysfunction is involved in early pathologies of obese adipose tissue.

  9. Structural and functional analysis of lysosomal ss-galactosidase and its relation to the protective protein.

    NARCIS (Netherlands)

    H. Morreau (Hans)

    1992-01-01

    textabstractLysosomal B-galactosidase is the glycosidase, that cleaves B-linked galactosyl mmenes from a variety of natural and synthetic substrates. In normal tissues of various species this enzyme appears to associate with two other hydrolases, N-acetyl-o:-neuraminidase and the protective protein.

  10. AP-3 and Rabip4' coordinately regulate spatial distribution of lysosomes.

    Directory of Open Access Journals (Sweden)

    Viorica Ivan

    Full Text Available The RUN and FYVE domain proteins rabip4 and rabip4' are encoded by RUFY1 and differ in a 108 amino acid N-terminal extension in rabip4'. Their identical C terminus binds rab5 and rab4, but the function of rabip4s is incompletely understood. We here found that silencing RUFY1 gene products promoted outgrowth of plasma membrane protrusions, and polarized distribution and clustering of lysosomes at their tips. An interactor screen for proteins that function together with rabip4' yielded the adaptor protein complex AP-3, of which the hinge region in the β3 subunit bound directly to the FYVE domain of rabip4'. Rabip4' colocalized with AP-3 on a tubular subdomain of early endosomes and the extent of colocalization was increased by a dominant negative rab4 mutant. Knock-down of AP-3 had an ever more dramatic effect and caused accumulation of lysosomes in protrusions at the plasma membrane. The most peripheral lysosomes were localized beyond microtubules, within the cortical actin network. Our results uncover a novel function for AP-3 and rabip4' in regulating lysosome positioning through an interorganellar pathway.

  11. Brucella suis-Impaired Specific Recognition of Phagosomes by Lysosomes due to Phagosomal Membrane Modifications

    Science.gov (United States)

    Naroeni, Aroem; Jouy, Nicolas; Ouahrani-Bettache, Safia; Liautard, Jean-Pierre; Porte, Françoise

    2001-01-01

    Brucella species are gram-negative, facultatively intracellular bacteria that infect humans and animals. These organisms can survive and replicate within a membrane-bound compartment in phagocytic and nonprofessional phagocytic cells. Inhibition of phagosome-lysosome fusion has been proposed as a mechanism for intracellular survival in both types of cells. However, the biochemical mechanisms and microbial factors implicated in Brucella maturation are still completely unknown. We developed two different approaches in an attempt to gain further insight into these mechanisms: (i) a fluorescence microscopy analysis of general intracellular trafficking on whole cells in the presence of Brucella and (ii) a flow cytometry analysis of in vitro reconstitution assays showing the interaction between Brucella suis-containing phagosomes and lysosomes. The fluorescence microscopy results revealed that fusion properties of latex bead-containing phagosomes with lysosomes were not modified in the presence of live Brucella suis in the cells. We concluded that fusion inhibition was restricted to the pathogen phagosome and that the host cell fusion machinery was not altered by the presence of live Brucella in the cell. By in vitro reconstitution experiments, we observed a specific association between killed B. suis-containing phagosomes and lysosomes, which was dependent on exogenously supplied cytosol, energy, and temperature. This association was observed with killed bacteria but not with live bacteria. Hence, this specific recognition inhibition seemed to be restricted to the pathogen phagosomal membrane, as noted in the in vivo experiments. PMID:11119541

  12. Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells

    DEFF Research Database (Denmark)

    Groth-Pedersen, Line; Aits, Sonja; Corcelle-Termeau, Elisabeth

    2012-01-01

    Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library...... in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 si......), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide...

  13. Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology

    DEFF Research Database (Denmark)

    Clayton, Emma L.; Mizielinska, Sarah; Edgar, James R.;

    2015-01-01

    Mutations in the charged multivesicular body protein 2B (CHMP2B) cause frontotemporal dementia (FTD). We report that mice which express FTD-causative mutant CHMP2B at physiological levels develop a novel lysosomal storage pathology characterised by large neuronal autofluorescent aggregates. The a...

  14. Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology

    DEFF Research Database (Denmark)

    Clayton, Emma L.; Mizielinska, Sarah; Edgar, James R.

    2015-01-01

    Mutations in the charged multivesicular body protein 2B (CHMP2B) cause frontotemporal dementia (FTD). We report that mice which express FTD-causative mutant CHMP2B at physiological levels develop a novel lysosomal storage pathology characterised by large neuronal autofluorescent aggregates. The a...

  15. Reference values for lysosomal enzymes activities using dried blood spots samples - a Brazilian experience

    Directory of Open Access Journals (Sweden