WorldWideScience

Sample records for 5a receptor chimeras

  1. Complement factor 5a receptor chimeras reveal the importance of lipid-facing residues in transport competence

    DEFF Research Database (Denmark)

    Klco, Jeffery M; Sen, Saurabh; Hansen, Jakob L

    2009-01-01

    . Despite relatively conservative substitutions, the lipid-facing chimeras (TM1, TM2, TM4, TM5, TM6 or TM7) were retained in the endoplasmic reticulum/cis-Golgi network. With the exception of the TM7 chimera that did not bind ligand, the lipid-facing chimeras bound ligand with low affinity, but similar...... oligomerization studies demonstrated energy transfer between the wild-type complement factor 5a receptor and the lipid-facing chimeras, suggesting that the lipid-facing residues within a single TM segment are not essential for oligomerization. These studies highlight the importance of the lipid-facing residues...

  2. Formyl peptide receptor chimeras define domains involved in ligand binding.

    Science.gov (United States)

    Perez, H D; Holmes, R; Vilander, L R; Adams, R R; Manzana, W; Jolley, D; Andrews, W H

    1993-02-05

    We have begun to study the structural requirements for the binding of formyl peptides to their specific receptors. As an initial approach, we constructed C5a-formyl peptide receptor chimeras. Unique (and identical) restriction sites were introduced within the transmembrane domains of these receptors that allowed for the exchange of specific areas. Four types of chimeric receptors were generated. 1) The C5a receptor was progressively substituted by the formyl peptide receptor. 2) The formyl peptide receptor was progressively substituted by the C5a receptor. 3) Specific domains of the C5a receptor were substituted by the corresponding domain of the formyl peptide receptor. 4) Specific domains of the formyl peptide receptor were replaced by the same corresponding domain of the C5a receptor. Wild type and chimeric receptors were transfected into COS 7 cells and their ability to bind formyl peptide determined, taking into account efficiency of transfection and expression of chimeric protein. Based on these results, a ligand binding model is presented in which the second, third, and fourth extracellular (and/or their transmembrane) domains together with the first transmembrane domain form a ligand binding pocket for formyl peptides. It is proposed that the amino-terminal domain plays a role by presumably providing a "lid" to the pocket. The carboxyl-terminal cytoplasmic tail appears to modulate ligand binding by regulating receptor affinity.

  3. GABAρ1/GABAAα1 receptor chimeras to study receptor desensitization

    Science.gov (United States)

    Martínez-Torres, Ataúlfo; Demuro, Angelo; Miledi, Ricardo

    2000-01-01

    γ-Aminobutyrate type C (GABAC) receptors are ligand-gated ion channels that are expressed preponderantly in the vertebrate retina and are characterized, among other things, by a very low rate of desensitization and resistance to the specific GABAA antagonist bicuculline. To examine which structural elements determine the nondesensitizing character of the human homomeric ρ1 receptor, we used a combination of gene chimeras and electrophysiology of receptors expressed in Xenopus oocytes. Two chimeric genes were constructed, made up of portions of the ρ1-subunit and of the α1-subunit of the GABAA receptor. When expressed in Xenopus oocytes, one chimeric gene (ρ1/α1) formed functional homooligomeric receptors that were fully resistant to bicuculline and were blocked by the specific GABAC antagonist (1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid and by zinc. Moreover, these chimeric receptors had a fast-desensitizing component, even faster than that of heterooligomeric GABAA receptors, in striking contrast to the almost nil desensitization of wild-type ρ1 (wt ρ1) receptors. To see whether the fast-desensitizing characteristic of the chimera was determined by the amino acids forming the ion channels, we replaced the second transmembrane segment (TM2) of ρ1 by that of the α1-subunit of GABAA. Although the α1-subunit forms fast-desensitizing receptors when coexpressed with other GABAA subunits, the sole transfer of the α1TM2 segment to ρ1 was not sufficient to form desensitizing receptors. All this suggests that the slow-desensitizing trait of ρ1 receptors is determined by a combination of several interacting domains along the molecule. PMID:10725369

  4. Chimeras of receptors for gibbon ape leukemia virus/feline leukemia virus B and amphotropic murine leukemia virus reveal different modes of receptor recognition by retrovirus

    DEFF Research Database (Denmark)

    Pedersen, Lene; Johann, Stephen V; van Zeijl, Marja

    1995-01-01

    in several of their predicted extracellular loops, with the highest degree of divergence in region A. Chimeras were made between the two genes to further investigate the role of Glvr1 region A in defining receptor specificity for GALV and FeLV-B and to map which regions of Glvr2 control receptor specificity...... for A-MLVs. Region A from Glvr1 was sufficient to confer receptor specificity for GALV upon Glvr2, with the same chimera failing to act as a receptor for FeLV-B. However, introduction of additional N- or C-terminal Glvr1-encoding sequences in addition to Glvr1 region A-encoding sequences resulted......-MLV infection upon Glvr1. Surprisingly, though GALV/FeLV-B and A-MLV belong to different interference groups, some chimeras functioned as receptors for all three viruses...

  5. Transient replication of a hepatitis C virus genotype 1b replicon chimera encoding NS5A-5B from genotype 3a.

    Science.gov (United States)

    Kylefjord, Helen; Danielsson, Axel; Sedig, Susanne; Belda, Oscar; Wiktelius, Daniel; Vrang, Lotta; Targett-Adams, Paul

    2014-01-01

    Although hepatitis C virus (HCV) is a pathogen of global significance, experimental therapies in current clinical development include highly efficacious all-oral combinations of HCV direct-acting antivirals (DAAs). If approved for use, these new treatment regimens will impact dramatically upon our capacity to eradicate HCV in the majority of virus-infected patients. However, recent data from late-stage clinical evaluations demonstrated that individuals infected with HCV genotype (GT) 3 responded less well to all-oral DAA combinations than patients infected with other HCV GTs. In light of these observations, the present study sought to expand the number of molecular tools available to investigate small molecule-mediated inhibition of HCV GT3 NS5A and NS5B proteins in preclinical tissue-culture systems. Accordingly, a novel subgenomic HCV replicon chimera was created by utilizing a GT1b backbone modified to produce NS5A and NS5B proteins from a consensus sequence generated from HCV GT3a genomic sequences deposited online at the European Hepatitis C Virus database. This approach avoided the need to isolate and amplify HCV genomes from sera derived from HCV-infected patients. The replicon chimera, together with a version engineered to express NS5A encoding a Y93H mutation, demonstrated levels of replication in transient assays robust enough to assess accurate antiviral activities of inhibitors representing different HCV DAA classes. Thus, the replicon chimera represents a new simple molecular tool suitable for drug discovery programmes aimed at investigating, understanding, and improving GT3a activities of HCV DAAs targeting NS5A or NS5B.

  6. Bioassays for TSH Receptor Autoantibodies, from FRTL-5 Cells to TSH Receptor-LH/CG Receptor Chimeras: The Contribution of Leonard D. Kohn.

    Science.gov (United States)

    Giuliani, Cesidio; Saji, Motoyasu; Bucci, Ines; Napolitano, Giorgio

    2016-01-01

    Since the discovery 60 years ago of the "long-acting thyroid stimulator" by Adams and Purves, great progress has been made in the detection of thyroid-stimulating hormone (TSH) receptor (TSHR) autoantibodies (TRAbs) in Graves' disease. Today, commercial assays are available that can detect TRAbs with high accuracy and provide diagnostic and prognostic evaluation of patients with Graves' disease. The present review focuses on the development of TRAbs bioassays, and particularly on the role that Leonard D. Kohn had in this. Indeed, 30 years ago, the Kohn group developed a bioassay based on the use of FRTL-5 cells that was characterized by high reproducibility, feasibility, and diagnostic accuracy. Using this FRTL-5 bioassay, Kohn and his colleagues were the first to develop monoclonal antibodies (moAbs) against the TSHR. Furthermore, they demonstrated the multifaceted functional nature of TRAbs in patients with Graves' disease, with the identification of stimulating and blocking TRAbs, and even antibodies that activated pathways other than cAMP. After the cloning of the TSHR, the Kohn laboratory constructed human TSHR-rat luteinizing hormone/chorionic gonadotropin receptor chimeras. This paved the way to a new bioassay based on the use of non-thyroid cells transfected with the Mc4 chimera. The new Mc4 bioassay is characterized by high diagnostic and prognostic accuracy, greater than for other assays. The availability of a commercial kit based on the Mc4 chimera is spreading the use of this assay worldwide, indicating its benefits for these patients with Graves' disease. This review also describes the main contributions made by other researchers in TSHR molecular biology and TRAbs assay, especially with the development of highly potent moAbs. A comparison of the diagnostic accuracies of the main TRAbs assays, as both immunoassays and bioassays, is also provided.

  7. Allosteric and orthosteric sites in CC chemokine receptor (CCR5), a chimeric receptor approach

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Steen, Anne; Jensen, Pia C;

    2011-01-01

    molecules often act more deeply in an allosteric mode. However, opposed to the well described molecular interaction of allosteric modulators in class C 7-transmembrane helix (7TM) receptors, the interaction in class A, to which the chemokine receptors belong, is more sparsely described. Using the CCR5...... chemokine receptor as a model system, we studied the molecular interaction and conformational interchange required for proper action of various orthosteric chemokines and allosteric small molecules, including the well known CCR5 antagonists TAK-779, SCH-C, and aplaviroc, and four novel CCR5 ago......-allosteric molecules. A chimera was successfully constructed between CCR5 and the closely related CCR2 by transferring all extracellular regions of CCR2 to CCR5, i.e. a Trojan horse that resembles CCR2 extracellularly but signals through a CCR5 transmembrane unit. The chimera bound CCR2 (CCL2 and CCL7), but not CCR5...

  8. Pharmacological characterisation of α6β4* nicotinic acetylcholine receptors assembled from three different α6/α3 subunit chimeras in tsA201 cells

    DEFF Research Database (Denmark)

    Jensen, Anne Bjørnskov; Hoestgaard-Jensen, Kirsten; Jensen, Anders A.

    2014-01-01

    by their inefficient functional expression in vitro. In the present study we have characterized and compared the pharmacological properties displayed by α6β4 and α6β4β3 nicotinic acetylcholine receptors assembled in tsA201 cells from the classical α6/α3 chimera (C1) and two novel α6/α3 chimeras (C6F223L and C16F223L...... should be made keeping the molecular modifications in the α6 surrogate subunits in mind, this study sheds light on the pharmacological properties of α6β4⁎ nicotinic acetylcholine receptors and demonstrates the applicability of the C6F223L and C16F223L chimeras for studies of these receptors....

  9. Bioassays for TSH receptor autoantibodies, from FRTL-5 cells to TSH receptor–LH/CG receptor chimeras: the contribution of Leonard D. Kohn

    Directory of Open Access Journals (Sweden)

    Cesidio Giuliani

    2016-07-01

    Full Text Available Since the discovery 60 years ago of the long-acting thyroid stimulator by Adams and Purves, great progress has been made in the detection of thyroid-stimulating hormone (TSH receptor autoantibodies (TRAbs in Graves’ disease. Today, commercial assays are available that can detect TRAbs with high accuracy and provide diagnostic and prognostic evaluation of patients with Graves’ disease. The present review focuses on the development of TRAbs bioassays, and particularly on the role that Leonard D. Kohn had in this. Indeed, 30 years ago, the Kohn group developed a bioassay based on the use of FRTL-5 cells that was characterized by high reproducibility, feasibility, and diagnostic accuracy. Using this FRTL-5 bioassay, Kohn and his colleagues were the first to develop monoclonal antibodies against the TSH receptor. Furthermore, they demonstrated the multifaceted functional nature of TRAbs in patients with Graves’ disease, with the identification of stimulating and blocking TRAbs, and even antibodies that activated pathways other than cAMP. After the cloning of the TSH receptor, the Kohn laboratory constructed human TSH receptor–rat luteinizing hormone/ chorionic gonadotropin receptor chimeras. This paved the way to a new bioassay based on the use of nonthyroid cells transfected with the Mc4 chimera. The new Mc4 bioassay is characterized by high diagnostic and prognostic accuracy, greater than for other assays. The availability of a commercial kit based on the Mc4 chimera is spreading the use of this assay worldwide, indicating its benefits for these patients with Graves’ disease. This review also describes the main contributions made by others researchers in TSH receptor molecular biology and TRAbs assay, especially with the development of highly potent monoclonal antibodies. A comparison of the diagnostic accuracies of the main TRAbs assays, as both immunoassays and bioassays, is also provided.

  10. Bioassays for TSH Receptor Autoantibodies, from FRTL-5 Cells to TSH Receptor–LH/CG Receptor Chimeras: The Contribution of Leonard D. Kohn

    Science.gov (United States)

    Giuliani, Cesidio; Saji, Motoyasu; Bucci, Ines; Napolitano, Giorgio

    2016-01-01

    Since the discovery 60 years ago of the “long-acting thyroid stimulator” by Adams and Purves, great progress has been made in the detection of thyroid-stimulating hormone (TSH) receptor (TSHR) autoantibodies (TRAbs) in Graves’ disease. Today, commercial assays are available that can detect TRAbs with high accuracy and provide diagnostic and prognostic evaluation of patients with Graves’ disease. The present review focuses on the development of TRAbs bioassays, and particularly on the role that Leonard D. Kohn had in this. Indeed, 30 years ago, the Kohn group developed a bioassay based on the use of FRTL-5 cells that was characterized by high reproducibility, feasibility, and diagnostic accuracy. Using this FRTL-5 bioassay, Kohn and his colleagues were the first to develop monoclonal antibodies (moAbs) against the TSHR. Furthermore, they demonstrated the multifaceted functional nature of TRAbs in patients with Graves’ disease, with the identification of stimulating and blocking TRAbs, and even antibodies that activated pathways other than cAMP. After the cloning of the TSHR, the Kohn laboratory constructed human TSHR–rat luteinizing hormone/chorionic gonadotropin receptor chimeras. This paved the way to a new bioassay based on the use of non-thyroid cells transfected with the Mc4 chimera. The new Mc4 bioassay is characterized by high diagnostic and prognostic accuracy, greater than for other assays. The availability of a commercial kit based on the Mc4 chimera is spreading the use of this assay worldwide, indicating its benefits for these patients with Graves’ disease. This review also describes the main contributions made by other researchers in TSHR molecular biology and TRAbs assay, especially with the development of highly potent moAbs. A comparison of the diagnostic accuracies of the main TRAbs assays, as both immunoassays and bioassays, is also provided. PMID:27504107

  11. Niemann-Pick C1 (NPC1/NPC1-like1 Chimeras Define Sequences Critical for NPC1’s Function as a Filovirus Entry Receptor

    Directory of Open Access Journals (Sweden)

    Esther Ndungo

    2012-10-01

    Full Text Available We recently demonstrated that Niemann-Pick C1 (NPC1, a ubiquitous 13-pass cellular membrane protein involved in lysosomal cholesterol transport, is a critical entry receptor for filoviruses. Here we show that Niemann-Pick C1-like1 (NPC1L1, an NPC1 paralog and hepatitis C virus entry factor, lacks filovirus receptor activity. We exploited the structural similarity between NPC1 and NPC1L1 to construct and analyze a panel of chimeras in which NPC1L1 sequences were replaced with cognate sequences from NPC1. Only one chimera, NPC1L1 containing the second luminal domain (C of NPC1 in place of its own, bound to the viral glycoprotein, GP. This engineered protein mediated authentic filovirus infection nearly as well as wild-type NPC1, and more efficiently than did a minimal NPC1 domain C-based receptor recently described by us. A reciprocal chimera, NPC1 containing NPC1L1’s domain C, was completely inactive. Remarkably, an intra-domain NPC1L1-NPC1 chimera bearing only a ~130-amino acid N–terminal region of NPC1 domain C could confer substantial viral receptor activity on NPC1L1. Taken together, these findings account for the failure of NPC1L1 to serve as a filovirus receptor, highlight the central role of the luminal domain C of NPC1 in filovirus entry, and reveal the direct involvement of N–terminal domain C sequences in NPC1’s function as a filovirus receptor.

  12. Bridge Technology with TSH Receptor Chimera for Sensitive Direct Detection of TSH Receptor Antibodies Causing Graves' Disease: Analytical and Clinical Evaluation.

    Science.gov (United States)

    Frank, C U; Braeth, S; Dietrich, J W; Wanjura, D; Loos, U

    2015-11-01

    Graves' disease is caused by stimulating autoantibodies against the thyrotropin receptor inducing uncontrolled overproduction of thyroid hormones. A Bridge Assay is presented for direct detection of these thyroid-stimulating immunoglobulins using thyrotropin receptor chimeras. A capture receptor, formed by replacing aa residues 261-370 of the human thyrotropin receptor with residues 261-329 from rat lutropin/choriogonadotropin receptor and fixed to microtiter plates, binds one arm of the autoantibody. The second arm bridges to the signal receptor constructed from thyrotropin receptor (aa 21-261) and secretory alkaline phosphatase (aa 1-519) inducing chemiluminescence. The working range of the assay is from 0.3 IU/l to 50 IU/l with a cutoff of 0.54 IU/l and functional sensitivity of 0.3 IU/l. Sensitivity and specificity are 99.8 and 99.1%, respectively, with a diagnostic accuracy of 0.998. The low grey zone is from 0.3-0.54 IU/l. The stimulatory character of the assayed antibodies is shown through a good correlation (r=0.7079, pGraves' disease, titers are increased in associated eye disease. In 3 hypothyroid patients with sera positive in the thyrotropin receptor competition assay and in the blocking bioassay, antibodies are not detected by the Bridge Assay, while the monoclonal blocking antibody K1-70 was detected. In Hashimoto disease thyrotropin receptor autoantibodies are detected in some patients, but not in goiter. This Bridge Assay delivers good diagnostic accuracy for identification of Graves' disease patients. Its high sensitivity may facilitate early detection of onset, remission, or recurrence of Graves' disease enabling timely adaption of the treatment.Human genes: TSHR, Homo sapiens, acc. no. M31774.1.

  13. Development of a tightly regulated and highly inducible ecdysone receptor gene switch for plants through the use of retinoid X receptor chimeras.

    Science.gov (United States)

    Tavva, Venkata S; Dinkins, Randy D; Palli, Subba R; Collins, Glenn B

    2007-10-01

    Chemical inducible gene regulation systems provide essential tools for the precise regulation of transgene expression in plants and animals. Recent development of a two-hybrid ecdysone receptor (EcR) gene regulation system has solved some of the drawbacks that were associated with the monopartate gene switch. To further improve the versatility of the two-hybrid EcR gene switch for wide spread use in plants, chimeras between Homo sapiens retinoid X receptor (HsRXR) and insect, Locusta migratoria RXR (LmRXR) were tested in tobacco protoplasts as partners with Choristoneura fumiferana EcR (CfEcR) in inducing expression of the luciferase reporter gene. The RXR chimera 9 (CH9) along with CfEcR, in a two-hybrid format gave the best results in terms of low-background expression levels in the absence of ligand and high-induced expression levels of the reporter gene in the presence of nanomolar concentrations of the methoxyfenozide ligand. The performance of CH9 was further tested in corn and soybean protoplasts and the data obtained was compared with the other EcR switches that contained the wild-type LmRXR or HsRXR as EcR partners. In both transient expression studies and stable transformation experiments, the fold induction values obtained with the CH9 switch were several times higher than the values obtained with the other EcR switches containing LmRXR or HsRXR. The new CfEcR two-hybrid gene switch that uses the RXR CH9 as a partner in inducing reporter gene expression provides an efficient, ligand-sensitive and tightly regulated gene switch for plants.

  14. Rearrangement and junctional-site sequence analyses of T-cell receptor gamma genes in intestinal intraepithelial lymphocytes from murine athymic chimeras.

    Science.gov (United States)

    Whetsell, M; Mosley, R L; Whetsell, L; Schaefer, F V; Miller, K S; Klein, J R

    1991-12-01

    The molecular organization of rearranged T-cell receptor (TCR) gamma genes intraepithelial lymphocytes (IEL) was studied in athymic radiation chimeras and was compared with the organization of gamma gene rearrangements in IEL from thymus-bearing animals by polymerase chain reaction and by sequence analyses of DNA spanning the junction of the variable (V) and joining (J) genes. In both thymus-bearing mice and athymic chimeras, IEL V-J gamma-gene rearrangements occurred for V gamma 1.2, V gamma 2, and V gamma 5 but not for V gamma 3 or V gamma 4. Sequence analyses of cloned V-J polymerase chain reaction-amplified products indicated that in both thymus-bearing mice and athymic chimeras, rearrangement of V gamma 1.2 and V gamma 5 resulted in in-frame as well as out-of-frame genes, whereas nearly all V gamma 2 rearrangements were out of frame from either type of animal. V-segment nucleotide removal occurred in most V gamma 1.2, V gamma 2, and V gamma 5 rearrangements; J-segment nucleotide removal was common in V gamma 1.2 but not in V gamma 2 or V gamma 5 rearrangements. N-segment nucleotide insertions were present in V gamma 1.2, V gamma 2, and V gamma 5 IEL rearrangements in both thymus-bearing mice and athymic chimeras, resulting in a predominant in-frame sequence for V gamma 5 and a predominant out-of-frame sequence for V gamma 2 genes. These findings demonstrate that (i) TCR gamma-gene rearrangement occurs extrathymically in IEL, (ii) rearrangements of TCR gamma genes involve the same V gene regardless of thymus influence; and (iii) the thymus does not determine the degree to which functional or nonfunctional rearrangements occur in IEL.

  15. Novel GLP-1 fusion chimera as potent long acting GLP-1 receptor agonist.

    Directory of Open Access Journals (Sweden)

    Qinghua Wang

    Full Text Available GLP-1 has a variety of anti-diabetic effects. However, native GLP-1 is not suitable for therapy of diabetes due to its short half-life (t1/2168 h. Intraperitoneal glucose tolerance test (IPGTT in mice showed that GLP-1/hIgG2 significantly decreased glucose excursion. Furthermore, IPGTT performed on mice one week after a single drug-injection also displayed significantly reduced glucose excursion, indicating that GLP-1/hIgG2 fusion protein has long-lasting effects on the modulation of glucose homeostasis. GLP-1/hIgG2 was found to be effective in reducing the incidence of diabetes in multiple-low-dose streptozotocin-induced type 1 diabetes in mice. Together, the long-lasting bioactive GLP-1/hIgG2 retains native GLP-1 activities and thus may serve as a potent GLP-1 receptor agonist.

  16. The N-terminal extracellular domain 23-60 of the calcitonin receptor-like receptor in chimeras with the parathyroid hormone receptor mediates association with receptor activity-modifying protein 1.

    Science.gov (United States)

    Ittner, Lars M; Koller, Daniela; Muff, Roman; Fischer, Jan A; Born, Walter

    2005-04-19

    The calcitonin receptor-like receptor (CLR) requires the associated receptor activity-modifying protein (RAMP)1 to reveal a calcitonin gene-related peptide (CGRP) receptor. Here, the subdomain of the CLR that associates with RAMP1 has been identified in chimeras between the CLR and the parathyroid hormone (PTH) receptor 1 (PTHR). The PTHR alone does not interact with RAMP1. RAMP1 requires the CLR for its transport to the cell surface. Thus, receptor-dependent RAMP1 delivery to the plasma membrane and coimmunoprecipitation from the cell surface were used as measures for receptor/RAMP1 interaction. Several chimeric CLR-PTHR included the N-terminal amino acids 23-60 of the CLR transported RAMP1 to the surface of COS-7 cells much like the intact CLR. Moreover, RAMP1 coimmunoprecipitated with these receptors from the cell surface. A CLR deletion mutant, consisting of the N-terminal extracellular domain, the first transmembrane domain, and the C-terminal intracellular region, revealed the same results. Cyclic AMP was stimulated by CGRP in CLR/RAMP1 expressing cells (58 +/- 19-fold, EC(50) = 0.12 +/- 0.03 nM) and by PTH-related protein in cells expressing the PTHR (50 +/- 10-fold, EC(50) = 0.25 +/- 0.03 nM) or a PTHR with the N-terminal amino acids 23-60 of the CLR (23 +/- 5-fold, EC(50) > 1000 nM). Other chimeric CLR-PTHR were inactive. In conclusion, structural elements in the extreme N-terminus of the CLR between amino acids 23-60 are required and sufficient for CLR/RAMP1 cotransport to the plasma membrane and heterodimerization.

  17. Quantum chimera states

    Energy Technology Data Exchange (ETDEWEB)

    Viennot, David, E-mail: david.viennot@utinam.cnrs.fr; Aubourg, Lucile

    2016-02-15

    We study a theoretical model of closed quasi-hermitian chain of spins which exhibits quantum analogues of chimera states, i.e. long life classical states for which a part of an oscillator chain presents an ordered dynamics whereas another part presents a disordered dynamics. For the quantum analogue, the chimera behaviour deals with the entanglement between the spins of the chain. We discuss the entanglement properties, quantum chaos, quantum disorder and semi-classical similarity of our quantum chimera system. The quantum chimera concept is novel and induces new perspectives concerning the entanglement of multipartite systems. - Highlights: • We propose a spin chain model with long range couplings having purely quantum states similar to the classical chimera states. • The quantum chimera states are characterized by the coexistence of strongly entangled and non-entangled spins in the same chain. • The quantum chimera states present some characteristics of quantum chaos.

  18. Smallest chimera states

    Science.gov (United States)

    Maistrenko, Yuri; Brezetsky, Serhiy; Jaros, Patrycja; Levchenko, Roman; Kapitaniak, Tomasz

    2017-01-01

    We demonstrate that chimera behavior can be observed in small networks consisting of three identical oscillators, with mutual all-to-all coupling. Three different types of chimeras, characterized by the coexistence of two coherent oscillators and one incoherent oscillator (i.e., rotating with another frequency) have been identified, where the oscillators show periodic (two types) and chaotic (one type) behaviors. Typical bifurcations at the transitions from full synchronization to chimera states and between different types of chimeras have been described. Parameter regions for the chimera states are obtained in the form of Arnold tongues, issued from a singular parameter point. Our analysis suggests that chimera states can be observed in small networks relevant to various real-world systems.

  19. Chimeras and human dignity.

    Science.gov (United States)

    de Melo-Martín, Inmaculada

    2008-12-01

    Discussions about whether new biomedical technologies threaten or violate human dignity are now common. Indeed, appeals to human dignity have played a central role in national and international debates about whether to allow particular kinds of biomedical investigations. The focus of this paper is on chimera research. I argue here that both those who claim that particular types of human-nonhuman chimera research threaten human dignity and those who argue that such threat does not exist fail to make their case. I first introduce some of the arguments that have been offered supporting the claim that the creation of certain sorts of chimeras threatens or violates human dignity. I next present opponents' assessments of such arguments. Finally I critically analyze both the critics' and the supporters' claims about whether chimera research threatens human dignity.

  20. A C-terminal segment of the V{sub 1}R vasopressin receptor is unstructured in the crystal structure of its chimera with the maltose-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Adikesavan, Nallini Vijayarangan; Mahmood, Syed Saad; Stanley, Nithianantham; Xu, Zhen; Wu, Nan [Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4935 (United States); Thibonnier, Marc [Department of Medicine, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4935 (United States); Shoham, Menachem, E-mail: mxs10@case.edu [Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4935 (United States)

    2005-04-01

    The 1.8 Å crystal structure of an MBP-fusion protein with the C-terminal cytoplasmic segment of the V1 vasopressin receptor reveals that the receptor segment is unstructured. The V{sub 1} vascular vasopressin receptor (V{sub 1}R) is a G-protein-coupled receptor (GPCR) involved in the regulation of body-fluid osmolality, blood volume and blood pressure. Signal transduction is mediated by the third intracellular loop of this seven-transmembrane protein as well as by the C-terminal cytoplasmic segment. A chimera of the maltose-binding protein (MBP) and the C-terminal segment of V{sub 1}R has been cloned, expressed, purified and crystallized. The crystals belong to space group P2{sub 1}, with unit-cell parameters a = 51.10, b = 66.56, c = 115.72 Å, β = 95.99°. The 1.8 Å crystal structure reveals the conformation of MBP and part of the linker region of this chimera, with the C-terminal segment being unstructured. This may reflect a conformational plasticity in the C-terminal segment that may be necessary for proper function of V{sub 1}R.

  1. H-2 incompatible chimera

    Energy Technology Data Exchange (ETDEWEB)

    Matzinger, P.; Mirkwood, G.

    1978-07-01

    Fully H-2 incompatible radiation chimeras were prepared using BALB congenic mice. Such chimeric mice were immunized in vivo against histocompatibility antigens of the C57BL/10Sn (B10) background in association with either the parental H-2 haplotypes, and their spleen cells subsequently boosted in vitro with the same minor antigens. Strong H-2-restricted cytotoxic activity against minor antigens was detected, and the specificity of the restriction could be to the H-2 haplotype of the donor or the host depending on the cells used for priming or boosting. Cross priming could also be demonstrated in these mice. The results show that fully allogenic radiation chimeras can produce H-2-restricted T-cell responses to minor histocompatibility (H) antigens, and are discussed in relation to contrasting results.

  2. The myelin basic protein-specific T cell repertoire in (transgenic) Lewis rat/SCID mouse chimeras: preferential V beta 8.2 T cell receptor usage depends on an intact Lewis thymic microenvironment.

    Science.gov (United States)

    Kääb, G; Brandl, G; Marx, A; Wekerle, H; Bradl, M

    1996-05-01

    In the Lewis rat, myelin basic protein (MBP)-specific, encephalitogenic T cells preferentially recognize sequence 68-88, and use the V beta 8.2 gene to encode their T cell receptors. To analyze the structural prerequisites for the development of the MBP-specific T cell repertoire, we reconstituted severe-combined immunodeficient (SCID) mice with fetal (embryonic day 15-16) Lewis rat lymphoid tissue, and then isolated MBP-specific T cell lines from the adult chimeras after immunization. Two types of chimera were constructed: SCID mice reconstituted with rat fetal liver cells only, allowing T cell maturation within a chimeric SCID thymus consisting of mouse thymic epithelium and rat interdigitating dendritic cells, and SCID mice reconstituted with rat fetal liver cells and rat fetal thymus grafts, allowing T cell maturation within the chimeric SCID and the intact Lewis rat thymic microenvironment. Without exception, the T cell lines isolated from MBP-immunized SCID chimeras were restricted by MHC class II of the Lewis rat (RT1.B1), and none by I-Ad of the SCID mouse. Most of the T cell lines recognized the immunodominant MBP epitope 68-88. In striking contrast to intact Lewis rats, in SCID mice reconstituted by rat fetal liver only, MBP-specific T cell clones used a seemingly random repertoire of V beta genes without a bias for V beta 8.2. In chimeras containing fetal Lewis liver plus fetal thymus grafted under the kidney capsule, however, dominant utilization of V beta 8.2 was restored. The migration of liver-derived stem cells through rat thymus grafts was documented by combining fetal tissues from wild-type and transgenic Lewis rats. The results confirm that the recognition of the immunodominant epitope 68-88 by MBP-specific encephalitogenic T cells is a genetically determined feature of the Lewis rat T cell repertoire. They further suggest that the formation of the repertoire requires T cell differentiation in a syngeneic thymic microenvironment.

  3. Chimera and other fertilization errors.

    Science.gov (United States)

    Malan, V; Vekemans, M; Turleau, C

    2006-11-01

    The finding of a mixture of 46,XX and 46,XY cells in an individual has been rarely reported in literature. It usually results in individuals with ambiguous genitalia. Approximately 10% of true human hermaphrodites show this type of karyotype. However, the underlying mechanisms are poorly understood. It may be the result of mosaicism or chimerism. By definition, a chimera is produced by the fusion of two different zygotes in a single embryo, while a mosaic contains genetically different cells issued from a single zygote. Several mechanisms are involved in the production of chimera. Stricto sensu, chimerism occurs from the post-zygotic fusion of two distinct embryos leading to a tetragametic chimera. In addition, there are other entities, which are also referred to as chimera: parthenogenetic chimera and chimera resulting from fertilization of the second polar body. Furthermore, a particular type of chimera called 'androgenetic chimera' recently described in fetuses with placental mesenchymal dysplasia and in rare patients with Beckwith-Wiedemann syndrome is discussed. Strategies to study mechanisms leading to the production of chimera and mosaics are also proposed.

  4. Serotonin receptor 5-HT5A in rat hippocampus decrease by leptin treatment.

    Science.gov (United States)

    García-Alcocer, Guadalupe; Rodríguez, Angelina; Moreno-Layseca, Paulina; Berumen, Laura C; Escobar, Jesica; Miledi, Ricardo

    2010-12-17

    5-Hydroxytryptamine (5-HT) is involved in a variety of different physiological processes and behaviors through the activation of equally diverse receptors subtypes. In this work we studied the changes on the expression of 5-HT(5A) receptors in rat hippocampus induced by leptin, an adipocyte-derived hormone that has been reported to participate in the modulation of food intake and in adult hippocampal neurogenesis. To study the effect of leptin on the 5-HT(5A) receptor gene expression a qRT-PCR was used and the distribution of those receptors in the hippocampus was visualized by immunohistochemistry. Rats were separated in four groups: control (untreated rats), leptin-treated, serotonin-treated and leptin+serotonin treated. The results showed that even though the 5-HT(5A) gene expression did not change in the hippocampus of any of the treated groups, in the rats treated with leptin and serotonin, the specific immunostaining for the 5-HT(5A) serotonin receptor decreased significantly in the dentate gyrus.

  5. The Major Prognostic Features of Nuclear Receptor NR5A2 in Infiltrating Ductal Breast Carcinomas

    Directory of Open Access Journals (Sweden)

    Li-Yun Chang

    2015-01-01

    Full Text Available Background. Gene expression profiles of 181 breast cancer samples were analyzed to identify prognostic features of nuclear receptors NR5A1 and NR5A2 based upon their associated transcriptional networks. Methods. A supervised network analysis approach was used to build the NR5A-mediated transcriptional regulatory network. Other bioinformatic tools and statistical methods were utilized to confirm and extend results from the network analysis methodology. Results. NR5A2 expression is a negative factor in breast cancer prognosis in both ER(− and ER(−/ER(+ mixed cohorts. The clinical and cohort significance of NR5A2-mediated transcriptional activities indicates that it may have a significant role in attenuating grade development and cancer related signal transduction pathways. NR5A2 signature that conditions poor prognosis was identified based upon results from 15 distinct probes. Alternatively, the expression of NR5A1 predicts favorable prognosis when concurrent NR5A2 expression is low. A favorable signature of eight transcription factors mediated by NR5A1 was also identified. Conclusions. Correlation of poor prognosis and NR5A2 activity is identified by NR5A2-mediated 15-gene signature. NR5A2 may be a potential drug target for treating a subset of breast cancer tumors across breast cancer subtypes, especially ER(− breast tumors. The favorable prognostic feature of NR5A1 is predicted by NR5A1-mediated 8-gene signature.

  6. Emergence of multicluster chimera states.

    Science.gov (United States)

    Yao, Nan; Huang, Zi-Gang; Grebogi, Celso; Lai, Ying-Cheng

    2015-09-09

    A remarkable phenomenon in spatiotemporal dynamical systems is chimera state, where the structurally and dynamically identical oscillators in a coupled networked system spontaneously break into two groups, one exhibiting coherent motion and another incoherent. This phenomenon was typically studied in the setting of non-local coupling configurations. We ask what can happen to chimera states under systematic changes to the network structure when links are removed from the network in an orderly fashion but the local coupling topology remains invariant with respect to an index shift. We find the emergence of multicluster chimera states. Remarkably, as a parameter characterizing the amount of link removal is increased, chimera states of distinct numbers of clusters emerge and persist in different parameter regions. We develop a phenomenological theory, based on enhanced or reduced interactions among oscillators in different spatial groups, to explain why chimera states of certain numbers of clusters occur in certain parameter regions. The theoretical prediction agrees well with numerics.

  7. Role of 5-HT5A receptors in the consolidation of memory.

    Science.gov (United States)

    Gonzalez, Roberto; Chávez-Pascacio, Karla; Meneses, Alfredo

    2013-09-01

    5-HT5 receptor occurs in brain areas implicated in learning and memory. Hence, the effects (0.01-3.0 mg/kg) of SB-6995516 (a 5-HT5A receptor antagonist) in the associative learning task of autoshaping were studied. The results showed that post-training injection of SB-699551 decreased conditioned responses (CR) during short-term (STM; 1.5h; at 0.1mg/kg) and long-term memory (LTM; 24 h; at 3.0 mg/kg) relative to the vehicle animals. Moreover, considering that there are no selective 5-HT5A receptor agonists, next, diverse doses of the serotonin precursor l-tryptophan were studied during STM and LTM, showing that l-tryptophan (5-100mg/kg) facilitated performance, particularly at 50mg/kg. In interactions experiments, l-tryptophan (50 mg/kg) attenuated the impairment effect induced by SB-699551 (either 0.3 or 3.0 mg/kg). All together this evidence suggests that the blockade of 5-HT5A receptor appear to be able to impair STM and LTM (24 h), while its stimulation might facilitate it. Of course further investigation is necessary, meanly with selective 5-HT5A compounds are necessary.

  8. Recurrence quantification analysis of chimera states

    Energy Technology Data Exchange (ETDEWEB)

    Santos, M.S. [Pós-Graduação em Ciências/Física, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Szezech, J.D., E-mail: jdanilo@gmail.com [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Batista, A.M., E-mail: antoniomarcosbatista@gmail.com [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900, Ponta Grossa, PR (Brazil); Caldas, I.L. [Instituto de Física, Universidade de São Paulo, 05315-970, São Paulo, SP (Brazil); Viana, R.L.; Lopes, S.R. [Departamento de Física, Universidade Federal do Paraná, 81531-990, Curitiba, PR (Brazil)

    2015-10-02

    Chimera states, characterised by coexistence of coherence and incoherence in coupled dynamical systems, have been found in various physical systems, such as mechanical oscillator networks and Josephson-junction arrays. We used recurrence plots to provide graphical representations of recurrent patterns and identify chimera states. Moreover, we show that recurrence plots can be used as a diagnostic of chimera states and also to identify the chimera collapse. - Highlights: • Chimera states have been found in various physical systems. • Recurrence plots is a graphical method useful to locate recurring patterns. • We used recurrence plots to identify the chimera states. • We show also the recurrence plots can identify the chimera collapse.

  9. Wnt5a regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor.

    Science.gov (United States)

    Povinelli, Benjamin J; Nemeth, Michael J

    2014-01-01

    Proper regulation of the balance between hematopoietic stem cell (HSC) proliferation, self-renewal, and differentiation is necessary to maintain hematopoiesis throughout life. The Wnt family of ligands has been implicated as critical regulators of these processes through a network of signaling pathways. Previously, we have demonstrated that the Wnt5a ligand can induce HSC quiescence through a noncanonical Wnt pathway, resulting in an increased ability to reconstitute hematopoiesis. In this study, we tested the hypothesis that the Ryk protein, a Wnt ligand receptor that can bind the Wnt5a ligand, regulated the response of HSCs to Wnt5a. We observed that inhibiting Ryk blocked the ability of Wnt5a to induce HSC quiescence and enhance short-term and long-term hematopoietic repopulation. We found that Wnt5a suppressed production of reactive oxygen species, a known inducer of HSC proliferation. The ability of Wnt5a to inhibit ROS production was also regulated by Ryk. From these data, we propose that Wnt5a regulates HSC quiescence and hematopoietic repopulation through the Ryk receptor and that this process is mediated by suppression of reactive oxygen species. © 2013 AlphaMed Press.

  10. Reduced expression of C5a receptors on neutrophils from cord blood

    DEFF Research Database (Denmark)

    Nybo, Mads; Sørensen, O; Leslie, R;

    1998-01-01

    MLP was tested by measuring migration and exocytosis of myeloperoxidase and lactoferrin. RESULTS: C5a mean fluorescence on neutrophils from neonates was significantly lower (22.4 (SD 3.5)) than in adult controls (31.5 (3.1)). Neutrophils from neonates migrated poorly towards both C5a and fMLP compared with those...... from adult controls. Exocytosis of myeloperoxidase, but not lactoferrin from neonatal neutrophils stimulated with C5a, was significantly lower than in adult controls. fMLP stimulation, on the other hand, resulted in significantly higher exocytosis in neonates. CONCLUSION: The lower expression of C5a...... receptors on neutrophils from neonates could be related to reduced C5a mediated exocytosis of myeloperoxidase....

  11. C5a receptor deficiency alters energy utilization and fat storage.

    Directory of Open Access Journals (Sweden)

    Christian Roy

    Full Text Available OBJECTIVE: To investigate the impact of whole body C5a receptor (C5aR deficiency on energy metabolism and fat storage. DESIGN: Male wildtype (WT and C5aR knockout (C5aRKO mice were fed a low fat (CHOW or a high fat high sucrose diet-induced obesity (DIO diet for 14 weeks. Body weight and food intake were measured weekly. Indirect calorimetry, dietary fatload clearance, insulin and glucose tolerance tests were also evaluated. Liver, muscle and adipose tissue mRNA gene expression were measured by RT-PCR. RESULTS: At week one and 12, C5aRKO mice on DIO had increased oxygen consumption. After 12 weeks, although food intake was comparable, C5aRKO mice had lower body weight (-7% CHOW, -12% DIO as well as smaller gonadal (-38% CHOW, -36% DIO and inguinal (-29% CHOW, -30% DIO fat pads than their WT counterparts. Conversely, in WT mice, C5aR was upregulated in DIO vs CHOW diets in gonadal adipose tissue, muscle and liver, while C5L2 mRNA expression was lower in C5aRKO on both diet. Furthermore, blood analysis showed lower plasma triglyceride and non-esterified fatty acid levels in both C5aRKO groups, with faster postprandial triglyceride clearance after a fatload. Additionally, C5aRKO mice showed lower CD36 expression in gonadal and muscle on both diets, while DGAT1 expression was higher in gonadal (CHOW and liver (CHOW and DIO and PPARγ was increased in muscle and liver. CONCLUSION: These observations point towards a role (either direct or indirect for C5aR in energy expenditure and fat storage, suggesting a dual role for C5aR in metabolism as well as in immunity.

  12. Wnt5a uses CD146 as a receptor to regulate cell motility and convergent extension

    Science.gov (United States)

    Ye, Zhongde; Zhang, Chunxia; Tu, Tao; Sun, Min; Liu, Dan; Lu, Di; Feng, Jing; Yang, Dongling; Liu, Feng; Yan, Xiyun

    2013-12-01

    Dysregulation of Wnt signalling leads to developmental defects and diseases. Non-canonical Wnt signalling via planar cell polarity proteins regulates cell migration and convergent extension; however, the underlying mechanisms are poorly understood. Here we report that Wnt5a uses CD146 as a receptor to regulate cell migration and zebrafish embryonic convergent extension. CD146 binds to Wnt5a with the high affinity required for Wnt5a-induced activation of Dishevelled (Dvl) and c-jun amino-terminal kinase (JNK). The interaction between CD146 and Dvl2 is enhanced on Wnt5a treatment. Mutation of the Dvl2-binding region impairs its ability to activate JNK, promote cell migration and facilitate the formation of cell protrusions. Knockdown of Dvls impairs CD146-induced cell migration. Interestingly, CD146 inhibits canonical Wnt signalling by promoting β-catenin degradation. Our results suggest a model in which CD146 acts as a functional Wnt5a receptor in regulating cell migration and convergent extension, turning off the canonical Wnt signalling branch.

  13. C5a receptor signaling prevents folate deficiency-induced neural tube defects in mice.

    Science.gov (United States)

    Denny, Kerina J; Coulthard, Liam G; Jeanes, Angela; Lisgo, Steven; Simmons, David G; Callaway, Leonie K; Wlodarczyk, Bogdan; Finnell, Richard H; Woodruff, Trent M; Taylor, Stephen M

    2013-04-01

    The complement system is involved in a range of diverse developmental processes, including cell survival, growth, differentiation, and regeneration. However, little is known about the role of complement in embryogenesis. In this study, we demonstrate a novel role for the canonical complement 5a receptor (C5aR) in the development of the mammalian neural tube under conditions of maternal dietary folic acid deficiency. Specifically, we found C5aR and C5 to be expressed throughout the period of neurulation in wild-type mice and localized the expression to the cephalic regions of the developing neural tube. C5aR was also found to be expressed in the neuroepithelium of early human embryos. Ablation of the C5ar1 gene or the administration of a specific C5aR peptide antagonist to folic acid-deficient pregnant mice resulted in a high prevalence of severe anterior neural tube defect-associated congenital malformations. These findings provide a new and compelling insight into the role of the complement system during mammalian embryonic development.

  14. Cyclic guanidines as dual 5-HT5A/5-HT7 receptor ligands: optimising brain penetration.

    Science.gov (United States)

    Peters, Jens-Uwe; Lübbers, Thomas; Alanine, Alexander; Kolczewski, Sabine; Blasco, Francesca; Steward, Lucinda

    2008-01-01

    The optimisation of molecular properties within a series of 2-amino dihydroquinazoline 5-HT5A/5-HT7 receptor ligands resulted in a significantly improved brain-to-plasma ratio, enhancing the pharmacological utility of these compounds. By modulating the lipophilicity and pKa, a 20-fold increase in brain-to-plasma ratio could be achieved, leading to micromolar brain concentrations after oral administration. The enantiomers of one representative of this series of improved compounds were separated, and the configuration of the eutomer was determined by X-ray crystallography.

  15. Recurrence quantification analysis of chimera states

    Science.gov (United States)

    Santos, M. S.; Szezech, J. D.; Batista, A. M.; Caldas, I. L.; Viana, R. L.; Lopes, S. R.

    2015-10-01

    Chimera states, characterised by coexistence of coherence and incoherence in coupled dynamical systems, have been found in various physical systems, such as mechanical oscillator networks and Josephson-junction arrays. We used recurrence plots to provide graphical representations of recurrent patterns and identify chimera states. Moreover, we show that recurrence plots can be used as a diagnostic of chimera states and also to identify the chimera collapse.

  16. Chimera and chimera-like states in populations of nonlocally coupled homogeneous and heterogeneous chemical oscillators

    Science.gov (United States)

    Nkomo, Simbarashe; Tinsley, Mark R.; Showalter, Kenneth

    2016-09-01

    Chimera and chimera-like states are characterized in populations of photochemically coupled Belousov-Zhabotinsky (BZ) oscillators. Simple chimeras and chimera states with multiple and traveling phase clusters, phase-slip behavior, and chimera-like states with phase waves are described. Simulations with a realistic model of the discrete BZ system of populations of homogeneous and heterogeneous oscillators are compared with each other and with experimental behavior.

  17. Petascale Supernova Simulation with CHIMERA

    Energy Technology Data Exchange (ETDEWEB)

    Messer, Bronson [ORNL; Bruenn, S. W. [Florida Atlantic University; Blondin, J. M. [North Carolina State University; Mezzacappa, Anthony [ORNL; Hix, William Raphael [ORNL; Dirk, Charlotte [Florida Atlantic University

    2007-01-01

    CHIMERA is a multi-dimensional radiation hydrodynamics code designed to study core-collapse supernovae. The code is made up of three essentially independent parts: a hydrodynamics module, a nuclear burning module, and a neutrino transport solver combined within an operator-split approach. We describe some ma jor algorithmic facets of the code and briefly discuss some recent results. The multi-physics nature of the problem, and the specific implementation of that physics in CHIMERA, provide a rather straightforward path to effective use of multi-core platforms in the near future.

  18. Petascale supernova simulation with CHIMERA

    Energy Technology Data Exchange (ETDEWEB)

    Messer, O E B [National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6008 (United States); Bruenn, S W [Department of Physics, Florida Atlantic University, 777 W Glades Road, Boca Raton, FL 33431-0991 (United States); Blondin, J M [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Hix, W R [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Mezzacappa, A [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Dirk, C J [Department of Physics, Florida Atlantic University, 777 W Glades Road, Boca Raton, FL 33431-0991 (United States)

    2007-07-15

    CHIMERA is a multi-dimensional radiation hydrodynamics code designed to study core-collapse supernovae. The code is made up of three essentially independent parts: a hydrodynamics module, a nuclear burning module, and a neutrino transport solver combined within an operator-split approach. We describe some major algorithmic facets of the code and briefly discuss some recent results. The multi-physics nature of the problem, and the specific implementation of that physics in CHIMERA, provide a rather straightforward path to effective use of multi-core platforms in the near future.

  19. Nuclear receptor 5A (NR5A) family regulates 5-aminolevulinic acid synthase 1 (ALAS1) gene expression in steroidogenic cells.

    Science.gov (United States)

    Ju, Yunfeng; Mizutani, Tetsuya; Imamichi, Yoshitaka; Yazawa, Takashi; Matsumura, Takehiro; Kawabe, Shinya; Kanno, Masafumi; Umezawa, Akihiro; Kangawa, Kenji; Miyamoto, Kaoru

    2012-11-01

    5-Aminolevulinic acid synthase 1 (ALAS1) is a rate-limiting enzyme for heme biosynthesis in mammals. Heme is essential for the catalytic activities of P450 enzymes including steroid metabolic enzymes. Nuclear receptor 5A (NR5A) family proteins, steroidogenic factor-1 (SF-1), and liver receptor homolog-1 (LRH-1) play pivotal roles in regulation of steroidogenic enzymes. Recently, we showed that expression of SF-1/LRH-1 induces differentiation of mesenchymal stem cells into steroidogenic cells. In this study, genome-wide analysis revealed that ALAS1 was a novel SF-1-target gene in differentiated mesenchymal stem cells. Chromatin immunoprecipitation and reporter assays revealed that SF-1/LRH-1 up-regulated ALAS1 gene transcription in steroidogenic cells via binding to a 3.5-kb upstream region of ALAS1. The ALAS1 gene was up-regulated by overexpression of SF-1/LRH-1 in steroidogenic cells and down-regulated by knockdown of SF-1 in these cells. Peroxisome proliferator-activated receptor-γ coactivator-1α, a coactivator of nuclear receptors, also strongly coactivated expression of NR5A-target genes. Reporter analysis revealed that peroxisome proliferator-activated receptor-γ coactivator-1α strongly augmented ALAS1 gene transcription caused by SF-1 binding to the 3.5-kb upstream region. Finally knockdown of ALAS1 resulted in reduced progesterone production by steroidogenic cells. These results indicate that ALAS1 is a novel NR5A-target gene and participates in steroid hormone production.

  20. Complement factor C5a and C5a receptor contribute to morphine tolerance and withdrawal-induced hyperalgesia in rats.

    Science.gov (United States)

    Li, Yan-Hua; Jin, Hua; Xu, Jing-Shu; Guo, Guang-Qiong; Chen, DA-Lin; Bo, Yun

    2012-10-01

    Morphine is a potent opioid analgesic. However, the repeated use of morphine causes tolerance and hyperalgesia. Neuroinflammation has been reported to be involved in morphine tolerance and withdrawal-induced hyperalgesia. The complement system is a crucial effector mechanism of immune responses. The present study investigated the roles of complement factor C5a and C5a receptor (C5aR) in the development of morphine tolerance and withdrawal-induced hyperalgesia. In the present study, the levels of C5a and C5aR were increased in the L5 lumbar spinal cords of morphine-tolerant rats. The administration of C5a promoted the development of hyperalgesia and the expression of spinal antinociceptive tolerance to intrathecal morphine in both mechanical and thermal test. However, these phenomena caused by morphine were significantly attenuated by the C5aR antagonist PMX53. These results suggest that complement activation within the spinal cord is involved in morphine tolerance and withdrawal-induced hyperalgesia. C5a and C5aR may serve as novel targets for the control of morphine tolerance and withdrawal-induced hyperalgesia.

  1. Ethical considerations in chimera research.

    Science.gov (United States)

    Hermerén, Göran

    2015-01-01

    The development of human pluripotent stem cells has opened up the possibility to analyse the function of human cells and tissues in animal hosts, thus generating chimeras. Although such lines of research have great potential for both basic and translational science, they also raise unique ethical issues that must be considered.

  2. Constraining QGP properties with CHIMERA

    Science.gov (United States)

    Garishvili, Irakli; Abelev, Betty; Cheng, Michael; Glenn, Andrew; Soltz, Ron

    2011-10-01

    Understanding essential properties of strongly interacting matter is arguably the most important goal of the relativistic heavy-ion programs both at RHIC and the LHC. In particular, constraining observables such as ratio of shear viscosity to entropy density, η/s, initial temperature, Tinit, and energy density is of critical importance. For this purpose we have developed CHIMERA, Comprehensive Heavy Ion Model Reporting and Evaluation Algorithm. CHIMERA is designed to facilitate global statistical comparison of results from our multi-stage hydrodynamics/hadron cascade model of heavy ion collisions to the key soft observables (HBT, elliptic flow, spectra) measured at RHIC and the LHC. Within this framework the data representing multiple different measurements from different experiments are compiled into single format. One of the unique features of CHIMERA is, that in addition to taking into account statistical errors, it also treats different types of systematic uncertainties. The hydrodynamics/hadron cascade model used in the framework incorporates different initial state conditions, pre-equilibrium flow, the UVH2+1 viscous hydro model, Cooper-Frye freezeout, and the UrQMD hadronic cascade model. The sensitivity of the observables to the equation of state (EoS) is explored using several EoS's in the hydrodynamic evolution. The latest results from CHIMERA, including data from the LHC, will be presented.

  3. Cyclic guanidines as dual 5-HT5A/5-HT7 receptor ligands: structure-activity relationship elucidation.

    Science.gov (United States)

    Peters, Jens-Uwe; Lübbers, Thomas; Alanine, Alexander; Kolczewski, Sabine; Blasco, Francesca; Steward, Lucinda

    2008-01-01

    The optimisation of affinity and selectivity in a novel series of dual 5-HT5A/5-HT7 receptor ligands is described. Brain penetrant 2-aminodihydroquinazolines with low nanomolar affinities were identified.

  4. WNT5A and Its Receptors in the Bone-Cancer Dialogue.

    Science.gov (United States)

    Thiele, Stefanie; Rachner, Tilman D; Rauner, Martina; Hofbauer, Lorenz C

    2016-08-01

    Wnt signaling is critical for tumorigenesis and skeletal remodeling. However, its contribution to the formation of metastatic bone lesions remains poorly defined. One major challenge of unraveling its role in cancer progression is the high complexity of Wnt signaling, which includes numerous ligands, receptors, and inhibitors, with intricate biological effects and specific signaling pathways depending on the cellular context. In this perspective, we summarize the role of the noncanonical Wnt ligand WNT5A in the development and metastatic process of osteotropic cancer entities. We focus on its tumor-suppressive function in breast cancer, tumor promoting effects in melanoma, and ambiguous role in prostate cancer, and discuss potential challenges and opportunities that may be associated with targeting Wnt signaling for cancer therapy and treatment of bone metastases. © 2016 American Society for Bone and Mineral Research.

  5. Complement anaphylatoxin C5a neuroprotects through regulation of glutamate receptor subunit 2 in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Thomas Sunil

    2008-01-01

    Full Text Available Abstract Background The complement system is thought to be involved in the pathogenesis of numerous neurological diseases. We previously reported that pre-treatment of murine cortico-hippocampal neuronal cultures with the complement derived anaphylatoxin C5a, protects against glutamate mediated apoptosis. Our present study with C5a receptor knock out (C5aRKO mice corroborates that the deficiency of C5a renders C5aRKO mouse more susceptible to apoptotic injury in vivo. In this study we explored potential upstream mechanisms involved in C5a mediated neuroprotection in vivo and in vitro. Methods Based on evidence suggesting that reduced expression of glutamate receptor subunit 2 (GluR2 may influence apoptosis in neurons, we studied the effect of human recombinant C5a on GluR2 expression in response to glutamate neurotoxicity. Glutamate analogs were injected into C5aRKO mice or used to treat in vitro neuronal culture and GluR2 expression were assessed in respect with cell death. Results In C5aRKO mice we found that the neurons are more susceptible to excitotoxicity resulting in apoptotic injury in the absence of the C5a receptor compared to WT control mice. Our results suggest that C5a protects against apoptotic pathways in neurons in vitro and in vivo through regulation of GluR2 receptor expression. Conclusion Complement C5a neuroprotects through regulation of GluR2 receptor subunit.

  6. In vivo antinociception of potent mu opioid agonist tetrapeptide analogues and comparison with a compact opioid agonist - neurokinin 1 receptor antagonist chimera

    Directory of Open Access Journals (Sweden)

    Guillemyn Karel

    2012-01-01

    Full Text Available Abstract Background An important limiting factor in the development of centrally acting pharmaceuticals is the blood-brain barrier (BBB. Transport of therapeutic peptides through this highly protective physiological barrier remains a challenge for peptide drug delivery into the central nervous system (CNS. Because the most common strategy to treat moderate to severe pain consists of the activation of opioid receptors in the brain, the development of active opioid peptide analogues as potential analgesics requires compounds with a high resistance to enzymatic degradation and an ability to cross the BBB. Results Herein we report that tetrapeptide analogues of the type H-Dmt1-Xxx2-Yyy3-Gly4-NH2 are transported into the brain after intravenous and subcutaneous administration and are able to activate the μ- and δ opioid receptors more efficiently and over longer periods of time than morphine. Using the hot water tail flick test as the animal model for antinociception, a comparison in potency is presented between a side chain conformationally constrained analogue containing the benzazepine ring (BVD03, Yyy3: Aba, and a "ring opened" analogue (BVD02, Yyy3: Phe. The results show that in addition to the increased lipophilicity through amide bond N-methylation, the conformational constraint introduced at the level of the Phe3 side chain causes a prolonged antinociception. Further replacement of NMe-D-Ala2 by D-Arg2 in the tetrapeptide sequence led to an improved potency as demonstrated by a higher and maintained antinociception for AN81 (Xxx2: D-Arg vs. BVD03 (Xxx2: NMe-D-Ala. A daily injection of the studied opioid ligands over a time period of 5 days did however result in a substantial decrease in antinociception on the fifth day of the experiment. The compact opioid agonist - NK1 antagonist hybrid SBCHM01 could not circumvent opioid induced tolerance. Conclusions We demonstrated that the introduction of a conformational constraint has an important

  7. Pinning control of chimera states

    Science.gov (United States)

    Gambuzza, Lucia Valentina; Frasca, Mattia

    2016-08-01

    The position of the coherent and incoherent domain of a chimera state in a ring of nonlocally coupled oscillators is strongly influenced by the initial conditions, making nontrivial the problem of confining them in a specific region of the structure. In this paper we propose the use of spatial pinning to induce a chimera state where the nodes belonging to one domain, either the coherent or the incoherent, are fixed by the control action. We design two different techniques according to the dynamics to be forced in the region of pinned nodes, and validate them on FitzHugh-Nagumo and Kuramoto oscillators. Furthermore, we introduce a suitable strategy to deal with the effects of finite size in small structures.

  8. Recent results of CHIMERA activity

    Directory of Open Access Journals (Sweden)

    Pagano A.

    2012-07-01

    Full Text Available The experimental activity of CHIMERA in recent years has been characterized by a steady progress in the detection technique and data analysis. Since 2008 the detector system benefits of new implementations: a new reaction chamber, a new charged particle identification in silicon detector made by an extended pulse shape method and an efficient system for the identification of exotic beams produced by projectile-like fragmentation (In-flight method. These implementations appear to be promising tools in view of further exclusive experiments in the field of isospin physics. The coupling of CHIMERA with other equipments (such as interferometers and highly segmented arrays, magnetic elements, neutron detectors, etc. is also envisaged in order to extend the studies of the reaction mechanism in heavy ion physics.

  9. Cloning, expression, cellular distribution, and role in chemotaxis of a C5a receptor in rainbow trout: the first identification of a C5a receptor in a nonmammalian species

    Science.gov (United States)

    Boshra, Hani; Li, Jun; Peters, Rodney; Hansen, John; Matlapudi, Anjan; Sunyer, J. Oriol

    2004-01-01

    C3a, C4a, and C5a anaphylatoxins generated during complement activation play a key role in inflammation. C5a is the most potent of the three anaphylatoxins in eliciting biological responses. The effects of C5a are mediated by its binding to C5a receptor (C5aR, CD88). To date, C5aR has only been identified and cloned in mammalian species, and its evolutionary history remains ill-defined. To gain insights into the evolution, conserved structural domains, and functions of C5aR, we have cloned and characterized a C5aR in rainbow trout, a teleost fish. The isolated cDNA encoded a 350-aa protein that showed the highest sequence similarity to C5aR from other species. Genomic analysis revealed the presence of one continuous exon encoding the entire open reading frame. Northern blot analysis showed significant expression of the trout C5a receptor (TC5aR) message in PBLs and kidney. Flow cytometric analysis showed that two Abs generated against two different areas of the extracellular N-terminal region of TC5aR positively stained the same leukocyte populations from PBLs. B lymphocytes and granulocytes comprised the majority of cells recognized by the anti-TC5aR. More importantly, these Abs inhibited chemotaxis of PBLs toward a chemoattractant fraction purified from complement-activated trout serum. Our data suggest that the split between C5aR and C3aR from a common ancestral molecule occurred before the emergence of teleost fish. Moreover, we demonstrate that the overall structure of C5aR as well as its role in chemotaxis have remained conserved for >300 million years.

  10. Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists

    Science.gov (United States)

    Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.

    2016-04-01

    Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1-3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents.

  11. Expression of semaphorin 5A and its receptor plexin B3 contributes to invasion and metastasis of gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Guo-Qing Pan; Hong-Zheng Ren; Shu-Fang Zhang; Xi-Mei Wang; Ji-Fang Wen

    2009-01-01

    AIM:To investigate the protein and mRNA expression of semaphorin 5A and its receptor plexin B3 in gastric carcinoma and explore its role in the invasion and metastasis of gastric carcinoma.METHODS:Expression of semaphorin 5A and its receptor plexin B3 in 48 samples of primary gastric carcinoma,its corresponding non-neoplastic mucosa,and matched regional lymph node metastasis was assayed by reverse transcription-polymerase chain reaction (RT-PCR),real-time RT-PCR and Western blotting.RESULTS:The protein and mRNA expression of semaphorin 5A and its receptor plexin B3 increased gradually in non-neoplastic mucosa,primary gastric carcinoma and lymph node metastasis (P<0.05).Moreover,the expression of semaphorin 5A was closely correlated with that of plexin B3.CONCLUSION:Semaphorin 5A and its receptor plexin B3 play an important role in the invasion and metastasis of gastric carcinoma.

  12. Chimera states in mechanical oscillator networks

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Thutupalli, Shashi; Fourrière, Antoine

    2013-01-01

    of identical oscillators, numerous theoretical studies in recent years have revealed the intriguing possibility of "chimera states," in which the symmetry of the oscillator population is broken into a synchronous part and an asynchronous part. However, a striking lack of empirical evidence raises the question...... of whether chimeras are indeed characteristic of natural systems. This calls for a palpable realization of chimera states without any fine-tuning, from which physical mechanisms underlying their emergence can be uncovered. Here, we devise a simple experiment with mechanical oscillators coupled...... in a hierarchical network to show that chimeras emerge naturally from a competition between two antagonistic synchronization patterns. We identify a wide spectrum of complex states, encompassing and extending the set of previously described chimeras. Our mathematical model shows that the self-organization observed...

  13. The smallest chimera state for coupled pendula

    Science.gov (United States)

    Wojewoda, Jerzy; Czolczynski, Krzysztof; Maistrenko, Yuri; Kapitaniak, Tomasz

    2016-01-01

    Chimera states in the systems of coupled identical oscillators are spatiotemporal patterns in which different groups of oscillators can exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Although these states are typically observed in large ensembles of oscillators, recently it has been suggested that chimera states may occur in the systems with small numbers of oscillators. Here, considering three coupled pendula showing chaotic behavior, we find the pattern of the smallest chimera state, which is characterized by the coexistence of two synchronized and one incoherent oscillator. We show that this chimera state can be observed in simple experiments with mechanical oscillators, which are controlled by elementary dynamical equations derived from Newton’s laws. Our finding suggests that chimera states are observable in small networks relevant to various real-world systems. PMID:27713483

  14. The smallest chimera state for coupled pendula

    Science.gov (United States)

    Wojewoda, Jerzy; Czolczynski, Krzysztof; Maistrenko, Yuri; Kapitaniak, Tomasz

    2016-10-01

    Chimera states in the systems of coupled identical oscillators are spatiotemporal patterns in which different groups of oscillators can exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Although these states are typically observed in large ensembles of oscillators, recently it has been suggested that chimera states may occur in the systems with small numbers of oscillators. Here, considering three coupled pendula showing chaotic behavior, we find the pattern of the smallest chimera state, which is characterized by the coexistence of two synchronized and one incoherent oscillator. We show that this chimera state can be observed in simple experiments with mechanical oscillators, which are controlled by elementary dynamical equations derived from Newton’s laws. Our finding suggests that chimera states are observable in small networks relevant to various real-world systems.

  15. Structural complexes of the agonist, inverse agonist and antagonist bound C5a receptor: insights into pharmacology and signaling.

    Science.gov (United States)

    Rana, Soumendra; Sahoo, Amita Rani; Majhi, Bharat Kumar

    2016-04-26

    The C5a receptor (C5aR) is a pharmacologically important G-protein coupled receptor (GPCR) that interacts with (h)C5a, by recruiting both the "orthosteric" sites (site1 at the N-terminus and site2 at the ECS, extra cellular surface) on C5aR in a two site-binding model. However, the complex pharmacological landscape and the distinguishing chemistry operating either at the "orthosteric" site1 or at the functionally important "orthosteric" site2 of C5aR are still not clear, which greatly limits the understanding of C5aR pharmacology. One of the major bottlenecks is the lack of an experimental structure or a refined model structure of C5aR with appropriately defined active sites. The study attempts to understand the pharmacology at the "orthosteric" site2 of C5aR rationally by generating a highly refined full-blown model structure of C5aR through advanced molecular modeling techniques, and further subjecting it to automated docking and molecular dynamics (MD) studies in the POPC bilayer. The first series of structural complexes of C5aR respectively bound to a linear native peptide agonist ((h)C5a-CT), a small molecule inverse agonist (NDT) and a cyclic peptide antagonist (PMX53) are reported, apparently establishing the unique pharmacological landscape of the "orthosteric" site2, which also illustrates an energetically distinct but coherent competitive chemistry ("cation-π" vs. "π-π" interactions) involved in distinguishing the established ligands known for targeting the "orthosteric" site2 of C5aR. Over a total of 1 μs molecular dynamics (MD) simulation in the POPC bilayer, it is evidenced that while the agonist prefers a "cation-π" interaction, the inverse agonist prefers a "cogwheel/L-shaped" interaction in contrast to the "edge-to-face/T-shaped" type π-π interactions demonstrated by the antagonist by engaging the F275(7.28) of the C5aR. In the absence of a NMR or crystallographically guided model structure of C5aR, the computational model complexes not only

  16. Orphan G protein-coupled receptor GPRC5A modulates integrin β1-mediated epithelial cell adhesion.

    Science.gov (United States)

    Bulanova, Daria R; Akimov, Yevhen A; Rokka, Anne; Laajala, Teemu D; Aittokallio, Tero; Kouvonen, Petri; Pellinen, Teijo; Kuznetsov, Sergey G

    2016-10-07

    G-Protein Coupled Receptor (GPCR), Class C, Group 5, Member A (GPRC5A) has been implicated in several malignancies. The underlying mechanisms, however, remain poorly understood. Using a panel of human cell lines, we demonstrate that CRISPR/Cas9-mediated knockout and RNAi-mediated depletion of GPRC5A impairs cell adhesion to integrin substrates: collagens I and IV, fibronectin, as well as to extracellular matrix proteins derived from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma (Matrigel). Consistent with the phenotype, knock-out of GPRC5A correlated with a reduced integrin β1 (ITGB1) protein expression, impaired phosphorylation of the focal adhesion kinase (FAK), and lower activity of small GTPases RhoA and Rac1. Furthermore, we provide the first evidence for a direct interaction between GPRC5A and a receptor tyrosine kinase EphA2, an upstream regulator of FAK, although its contribution to the observed adhesion phenotype is unclear. Our findings reveal an unprecedented role for GPRC5A in regulation of the ITGB1-mediated cell adhesion and it's downstream signaling, thus indicating a potential novel role for GPRC5A in human epithelial cancers.

  17. Generation of axolotl hematopoietic chimeras

    Directory of Open Access Journals (Sweden)

    David Lopez

    2015-02-01

    Full Text Available Wound repair is an extremely complex process that requires precise coordination between various cell types including immune cells.  Unfortunately, in mammals this usually results in scar formation instead of restoration of the original fully functional tissue, otherwise known as regeneration.  Various animal models like frogs and salamanders are currently being studied to determine the intracellular and intercellular pathways, controlled by gene expression, that elicit cell proliferation, differentiation, and migration of cells during regenerative healing.  Now, the necessary genetic tools to map regenerative pathways are becoming available for the axolotl salamander, thus allowing comparative studies between scarring and regeneration.  Here, we describe in detail three methods to produce axolotl hematopoietic cell-tagged chimeras for the study of hematopoiesis and regeneration.

  18. 1,2,4-Triazolo[1,5-a]quinoxaline derivatives: synthesis and biological evaluation as adenosine receptor antagonists.

    Science.gov (United States)

    Catarzi, Daniela; Colotta, Vittoria; Varano, Flavia; Filacchioni, Guido; Martini, Claudia; Trincavelli, Letizia; Lucacchini, Antonio

    2004-02-01

    Since most of the reported adenosine receptor antagonists are 2-(hetero)aryl-substituted tricyclic heteroaromatic derivatives, in the present study we report the synthesis and the biological evaluation of a new set of 4-amino-1,2,4-triazolo[1,5-a]quinoxalines containing at position-2 an ethyl carboxylate group or a hydrogen atom. The structure-activity relationships on these compounds were in accordance with those of a previously reported series of analogous size and shape, thus suggesting a similar A(1)-binding mode. In particular, the binding data indicate that alkylation of the 4-amino group of these derivatives lead to potent A(1)-receptor antagonists. Moreover, as new results, this study has pointed out that the ethyl 2-carboxylate group can advantageously replace the 2-(hetero)aryl ring of previously reported triazoloquinoxaline derivatives, affording an ameliorated interaction with the A(1)-receptor subtype.

  19. Metabotropic glutamate receptor 5 - a promising target in drug development and neuroimaging

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rajapillai L.I.; Tipre, Dnyanesh N. [Stony Brook University Health Science Center, Department of Psychiatry, Stony Brook, NY (United States)

    2016-06-15

    This review summarizes the contributions by various teams of scientists in assessing the metabotropic glutamate receptor 5 (mGluR5) as a biomarker in neuropsychiatric disorders and diseases. Development of positive and negative allosteric modulators of mGluR5 is reviewed, as is the development of PET radioligands that have the potential to measure mGluR5 receptor density in neurological disorders and during therapeutic interventions. PET imaging provides an effective tool to assess the specificity of new drugs, select dose regimens in clinical trials, and study drug mechanisms of action. We summarize and deliver comparative analyses of mGluR5-specific PET radiotracers and their applications in understanding the pathophysiology of mGluR5-related nervous system disorders and to speed up drug development. (orig.)

  20. Chimera States in Mechanical Oscillator Networks

    CERN Document Server

    Martens, Erik Andreas; Fourrière, Antoine; Hallatschek, Oskar

    2013-01-01

    The synchronization of coupled oscillators is a fascinating manifestation of self-organization that nature employs to orchestrate essential processes of life, such as the beating of the heart. While it was long thought that synchrony or disorder were mutually exclusive steady states for a network of identical oscillators, numerous theoretical studies in recent years revealed the intriguing possibility of 'chimera states', in which the symmetry of the oscillator population is broken into a synchronous and an asynchronous part. However, a striking lack of empirical evidence raises the question of whether chimeras are indeed characteristic to natural systems. This calls for a palpable realization of chimera states without any fine-tuning, from which physical mechanisms underlying their emergence can be uncovered. Here, we devise a simple experiment with mechanical oscillators coupled in a hierarchical network to show that chimeras emerge naturally from a competition between two antagonistic synchronization patte...

  1. Transferring morality to human-nonhuman chimeras.

    Science.gov (United States)

    Piotrowska, Monika

    2014-01-01

    Human-nonhuman chimeras have been the focus of ethical controversies for more than a decade, yet some related issues remain unaddressed. For example, little has been said about the relationship between the origin of transferred cells and the morally relevant capacities to which they may give rise. Consider, for example, a developing mouse fetus that receives a brain stem cell transplant from a human and another that receives a brain stem cell transplant from a dolphin. If both chimeras acquire morally relevant capacities as a result of transplantation, and if those capacities are indistinguishable, should the difference in cell origin matter to how we classify these creatures? I argue that if morally relevant capacities are easy to detect, cell origin is irrelevant to how the chimera ought to be treated. However, if such capacities are hard to detect, cell origin should play a role in considerations about how to treat the chimera.

  2. Intermittent chaotic chimeras for coupled rotators

    DEFF Research Database (Denmark)

    Olmi, Simona; Martens, Erik Andreas; Thutupalli, Shashi

    2015-01-01

    Two symmetrically coupled populations of N oscillators with inertia m display chaotic solutions with broken symmetry similar to experimental observations with mechanical pendulums. In particular, we report evidence of intermittent chaotic chimeras, where one population is synchronized and the other...

  3. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Bolado-Carrancio, A. [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain); Riancho, J.A. [Department of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, University of Cantabria, RETICEF, Santander (Spain); Sainz, J. [Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC-University of Cantabria, Santander (Spain); Rodríguez-Rey, J.C., E-mail: rodriguj@unican.es [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain)

    2014-04-04

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.

  4. Antiarthritic activity of an orally active C5a receptor antagonist against antigen-induced monarticular arthritis in the rat.

    Science.gov (United States)

    Woodruff, Trent M; Strachan, Anna J; Dryburgh, Nathan; Shiels, Ian A; Reid, Robert C; Fairlie, David P; Taylor, Stephen M

    2002-09-01

    To determine if the new, orally active C5a receptor antagonist, the cyclic peptide AcF-[OPdChaWR], reduces the severity of pathology in a rat model of immune-mediated monarticular arthritis. Arthritis was induced in the right knee of previously sensitized rats by the intraarticular injection of methylated bovine serum albumin. Rats were examined for either 14 days or 28 days, or for 49 days following a second antigen challenge at 28 days. The C5a antagonist (1 or 3 mg/kg/day) and/or ibuprofen (30 mg/kg/day) were administered orally on a daily basis either before or after arthritis induction. Rats receiving AcF-[OPdChaWR] had significant reductions in right knee swelling, gait disturbance, lavaged joint cell numbers, and right knee histopathology, as well as in serum levels of tumor necrosis factor alpha (TNFalpha) and intraarticular levels of interleukin-6 and TNFalpha on day 14. In the 14- and 28-day studies, ibuprofen resulted in a similar reduction in gait abnormalities and intraarticular inflammatory cells compared with the C5a antagonist, but was less effective in reducing knee swelling over the course of the study and had no effect on knee histopathology. Combination therapy with AcF-[OPdChaWR] and ibuprofen resulted in no greater efficacy than with the C5a antagonist alone. Rats injected twice with the antigen in the 49-day study displayed the most severe histopathology and this, as well as knee swelling and gait abnormalities, was significantly reduced by repeated treatment with the C5a antagonist. An agent that inhibits the action of C5a in this model significantly reduced joint pathology, while ibuprofen was not effective. C5a antagonists could therefore have broader therapeutic benefits than nonsteroidal antiinflammatory drugs as antiarthritic agents for rheumatoid arthritis.

  5. Imperfect traveling chimera states induced by local synaptic gradient coupling

    Science.gov (United States)

    Bera, Bidesh K.; Ghosh, Dibakar; Banerjee, Tanmoy

    2016-07-01

    In this paper, we report the occurrence of chimera patterns in a network of neuronal oscillators, which are coupled through local, synaptic gradient coupling. We discover a new chimera pattern, namely the imperfect traveling chimera state, where the incoherent traveling domain spreads into the coherent domain of the network. Remarkably, we also find that chimera states arise even for one-way local coupling, which is in contrast to the earlier belief that only nonlocal, global, or nearest-neighbor local coupling can give rise to chimera state; this find further relaxes the essential connectivity requirement of getting a chimera state. We choose a network of identical bursting Hindmarsh-Rose neuronal oscillators, and we show that depending upon the relative strength of the synaptic and gradient coupling, several chimera patterns emerge. We map all the spatiotemporal behaviors in parameter space and identify the transitions among several chimera patterns, an in-phase synchronized state, and a global amplitude death state.

  6. C5a receptor (CD88) inhibition improves hypothermia-induced neuroprotection in an in vitro ischemic model.

    Science.gov (United States)

    Thundyil, John; Pavlovski, Dale; Hsieh, Yu-Hsuan; Gelderblom, Mathias; Magnus, Tim; Fairlie, David P; Arumugam, Thiruma V

    2012-03-01

    The concept of 'salvageble penumbra' has prompted both scientists and physicians to explore various neuroprotective approaches that could be beneficial during stroke therapy. Unfortunately, most of them have proved ineffective in targeting multiple cellular death cascades incited within the ischemic penumbra. Hypothermia has been shown to be capable of addressing this problem to some extent. Although many studies have shown that hypothermia targets several cellular processes, its effects on innate immune receptor-mediated apoptotic death still remain unclear. Moreover, whether inhibiting the signaling of innate immune receptors like complement anaphylatoxin C5a receptor (CD88) plays a role in this hypothermic neuroprotection still need to be deciphered. Using various types of ischemic insults in different neuronal cells, we confirm that hypothermia does indeed attenuate apoptotic neuronal cell death in vitro and this effect can be further enhanced by pharmacologically blocking or knocking out CD88. Thus, our study raises a promising therapeutic possibility of adding CD88 antagonists along with hypothermia to improve stroke outcomes.

  7. Turbulent chimeras in large semiconductor laser arrays

    CERN Document Server

    Shena, Joniald; Kovanis, Vassilios; Tsironis, George P

    2016-01-01

    Semiconductor laser arrays have been investigated experimentally and theoretically from the viewpoint of temporal and spatial coherence for the past forty years. In this work, we are focusing on a rather novel complex collective behavior, namely chimera states, where synchronized clusters of emitters coexist with unsynchronized ones. For the first time, we find such states exist in large diode arrays based on quantum well gain media with nearest-neighbor interactions. The crucial parameters are the evanescent coupling strength and the relative optical frequency detuning between the emitters of the array. By employing a recently proposed figure of merit for classifying chimera states, we provide quantitative and qualitative evidence for the observed dynamics. The corresponding chimeras are identified as turbulent according to the irregular temporal behavior of the classification measure. Such studies may be the springboard for designing next generation photonic emitters providing on demand diverse waveforms.

  8. Basins of Attraction for Chimera States

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Panaggio, Mark; Abrams, Daniel

    2016-01-01

    Chimera states---curious symmetry-broken states in systems of identical coupled oscillators---typically occur only for certain initial conditions. Here we analyze their basins of attraction in a simple system comprised of two populations. Using perturbative analysis and numerical simulation we...... evaluate asymptotic states and associated destination maps, and demonstrate that basins form a complex twisting structure in phase space. Understanding the basins' precise nature may help in the development of control methods to switch between chimera patterns, with possible technological and neural system...

  9. A Discontinuous Galerkin Chimera Overset Solver

    Science.gov (United States)

    Galbraith, Marshall Christopher

    This work summarizes the development of an accurate, efficient, and flexible Computational Fluid Dynamics computer code that is an improvement relative to the state of the art. The improved accuracy and efficiency is obtained by using a high-order discontinuous Galerkin (DG) discretization scheme. In order to maximize the computational efficiency, quadrature-free integration and numerical integration optimized as matrix-vector multiplications is employed and implemented through a pre-processor (PyDG). Using the PyDG pre-processor, a C++ polynomial library has been developed that uses overloaded operators to design an efficient Domain Specific Language (DSL) that allows expressions involving polynomials to be written as if they are scalars. The DSL, which makes the syntax of computer code legible and intuitive, promotes maintainability of the software and simplifies the development of additional capabilities. The flexibility of the code is achieved by combining the DG scheme with the Chimera overset method. The Chimera overset method produces solutions on a set of overlapping grids that communicate through an exchange of data on grid boundaries (known as artificial boundaries). Finite volume and finite difference discretizations use fringe points, which are layers of points on the artificial boundaries, to maintain the interior stencil on artificial boundaries. The fringe points receive solution values interpolated from overset grids. Proper interpolation requires fringe points to be contained in overset grids. Insufficient overlap must be corrected by modifying the grid system. The Chimera scheme can also exclude regions of grids that lie outside the computational domain; a process commonly known as hole cutting. The Chimera overset method has traditionally enabled the use of high-order finite difference and finite volume approaches such as WENO and compact differencing schemes, which require structured meshes, for modeling fluid flow associated with complex

  10. Bistable Chimera Attractors on a Triangular Network of Oscillator Populations

    DEFF Research Database (Denmark)

    Martens, Erik Andreas

    2010-01-01

    . This triangular network is the simplest discretization of a continuous ring of oscillators. Yet it displays an unexpectedly different behavior: in contrast to the lone stable chimera observed in continuous rings of oscillators, we find that this system exhibits two coexisting stable chimeras. Both chimeras are......, as usual, born through a saddle-node bifurcation. As the coupling becomes increasingly local in nature they lose stability through a Hopf bifurcation, giving rise to breathing chimeras, which in turn get destroyed through a homoclinic bifurcation. Remarkably, one of the chimeras reemerges by a reversal...

  11. Signaling components of the 1α,25(OH)2D3-dependent Pdia3 receptor complex are required for Wnt5a calcium-dependent signaling.

    Science.gov (United States)

    Doroudi, Maryam; Olivares-Navarrete, Rene; Hyzy, Sharon L; Boyan, Barbara D; Schwartz, Zvi

    2014-11-01

    Wnt5a and 1α,25(OH)2D3 are important regulators of endochondral ossification. In osteoblasts and growth plate chondrocytes, 1α,25(OH)2D3 initiates rapid effects via its membrane-associated receptor protein disulfide isomerase A3 (Pdia3) in caveolae, activating phospholipase A2 (PLA2)-activating protein (PLAA), calcium/calmodulin-dependent protein kinase II (CaMKII), and PLA2, resulting in protein kinase C (PKC) activation. Wnt5a initiates its calcium-dependent effects via intracellular calcium release, activating PKC and CaMKII. We investigated the requirement for components of the Pdia3 receptor complex in Wnt5a calcium-dependent signaling. We determined that Wnt5a signals through a CaMKII/PLA2/PGE2/PKC cascade. Silencing or blocking Pdia3, PLAA, or vitamin D receptor (VDR), and inhibition of calmodulin (CaM), CaMKII, or PLA2 inhibited Wnt5a-induced PKC activity. Wnt5a activated PKC in caveolin-1-silenced cells, but methyl-beta-cyclodextrin reduced its stimulatory effect. 1α,25(OH)2D3 reduced stimulatory effects of Wnt5a on PKC in a dose-dependent manner. In contrast, Wnt5a had a biphasic effect on 1α,25(OH)2D3-stimulated PKC activation; 50ng/ml Wnt5a caused a 2-fold increase in 1α,25(OH)2D3-stimulated PKC but higher Wnt5a concentrations reduced 1α,25(OH)2D3-stimulated PKC activation. Western blots showed that Wnt receptors Frizzled2 (FZD2) and Frizzled5 (FZD5), and receptor tyrosine kinase-like orphan receptor 2 (ROR2) were localized to caveolae. Blocking ROR2, but not FZD2 or FZD5, abolished the stimulatory effects of 1α,25(OH)2D3 on PKC and CaMKII. 1α,25(OH)2D3 membrane receptor complex components (Pdia3, PLAA, caveolin-1, CaM) interacted with Wnt5a receptors/co-receptors (ROR2, FZD2, FZD5) in immunoprecipitation studies, interactions that changed with either 1α,25(OH)2D3 or Wnt5a treatment. This study demonstrates that 1α,25(OH)2D3 and Wnt5a mediate their effects via similar receptor components and suggests that these pathways may interact.

  12. A Potential Link between the C5a Receptor 1 and the β1-Adrenoreceptor in the Mouse Heart.

    Directory of Open Access Journals (Sweden)

    Kuan Hua Khor

    Full Text Available Inflammation may contribute to the pathogenesis of specific cardiovascular diseases, but it is uncertain if mediators released during the inflammatory process will affect the continued efficacy of drugs used to treat clinical signs of the cardiac disease. We investigated the role of the complement 5a receptor 1 (C5aR1/CD88 in the cardiac response to inflammation or atenolol, and the effect of C5aR1 deletion in control of baseline heart rate in an anesthetized mouse model.An initial study showed that PMX53, an antagonist of C5aR1 in normal C57BL6/J (wild type, WT mice reduced heart rate (HR and appeared to have a protective effect on the heart following induced sepsis. C5aR1 knockout (CD88-/- mice had a lower HR than wild type mice, even during sham surgery. A model to assess heart rate variability (HRV in anesthetized mice was developed to assess the effects of inhibiting the β1-adrenoreceptor (β1-AR in a randomized crossover study design.HR and LF Norm were constitutively lower and SDNN and HF Norm constitutively higher in the CD88-/- compared with WT mice (P 0.05, except for the reduced LF/HF (Lower frequency/High frequency ratio (P< 0.05 at 60 min post-atenolol, suggesting increased parasympathetic tone of the heart due to the effect of atenolol administration. The HR of the WT mice were lower post atenolol compared to the CD88-/- mice (P = 0.001 but the HRV of CD88-/- mice were significantly increased (P< 0.05, compared with WT mice.Knockout of the C5aR1 attenuated the effect of β1-AR in the heart, suggesting an association between the β1-AR and C5aR1, although further investigation is required to determine if this is a direct or causal association.

  13. Purification and characterization of Yersinia enterocolitica and Yersinia pestis LcrV-cholera toxin A(2)/B chimeras.

    Science.gov (United States)

    Tinker, Juliette K; Davis, Chadwick T; Arlian, Britni M

    2010-11-01

    Yersinia pestis is a virulent human pathogen and potential biological weapon. Despite a long history of research on this organism, there is no licensed vaccine to protect against pneumonic forms of Y. pestis disease. In the present study, plasmids were constructed to express cholera toxin A(2)/B chimeric molecules containing the LcrV protective antigen from Yersinia enterocolitica and Y. pestis. These chimeras were expressed and purified to high yields from the supernatant of transformed Escherichia coli. Western and GM(1) ELISA assays were used to characterize the composition, receptor-binding and relative stability of the LcrV-CTA(2)/B chimera in comparison to cholera toxin. In addition, we investigated the ability of the Y. pestis LcrV-CTA(2)/B chimera to bind to and internalize into cultured epithelial cells and macrophages by confocal microscopy. These studies indicate that the uptake and trafficking of the LcrV antigen from the chimera is comparable to the trafficking of native toxin. Together these findings report that stable, receptor-binding, non-toxic LcrV-cholera toxin A(2)/B chimeras can be expressed at high levels in E. coli and purified from the supernatant. In addition, the internalization of antigen in vitro reported here supports the development of these molecules as novel mucosal vaccine candidates. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Treatment with the C5a receptor antagonist ADC-1004 reduces myocardial infarction in a porcine ischemia-reperfusion model

    Directory of Open Access Journals (Sweden)

    Arheden Håkan

    2010-09-01

    Full Text Available Abstract Background Polymorphonuclear neutrophils, stimulated by the activated complement factor C5a, have been implicated in cardiac ischemia/reperfusion injury. ADC-1004 is a competitive C5a receptor antagonist that has been shown to inhibit complement related neutrophil activation. ADC-1004 shields the neutrophils from C5a activation before they enter the reperfused area, which could be a mechanistic advantage compared to previous C5a directed reperfusion therapies. We investigated if treatment with ADC-1004, according to a clinically applicable protocol, would reduce infarct size and microvascular obstruction in a large animal myocardial infarct model. Methods In anesthetized pigs (42-53 kg, a percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 minutes, followed by 4 hours of reperfusion. Twenty minutes after balloon inflation the pigs were randomized to an intravenous bolus administration of ADC-1004 (175 mg, n = 8 or saline (9 mg/ml, n = 8. Area at risk (AAR was evaluated by ex vivo SPECT. Infarct size and microvascular obstruction were evaluated by ex vivo MRI. The observers were blinded to the treatment at randomization and analysis. Results ADC-1004 treatment reduced infarct size by 21% (ADC-1004: 58.3 ± 3.4 vs control: 74.1 ± 2.9%AAR, p = 0.007. Microvascular obstruction was similar between the groups (ADC-1004: 2.2 ± 1.2 vs control: 5.3 ± 2.5%AAR, p = 0.23. The mean plasma concentration of ADC-1004 was 83 ± 8 nM at sacrifice. There were no significant differences between the groups with respect to heart rate, mean arterial pressure, cardiac output and blood-gas data. Conclusions ADC-1004 treatment reduces myocardial ischemia-reperfusion injury and represents a novel treatment strategy of myocardial infarct with potential clinical applicability.

  15. α-Peptide/ß-Peptoid Chimeras

    DEFF Research Database (Denmark)

    Olsen, Christian Adam; Bonke, Gitte; Vedel, Line;

    2007-01-01

    We describe the synthesis and characterization of the first generation of oligomers consisting of alternating repeats of a-amino acids and chiral N-alkyl-ß-alanine (ß-peptoid) residues. These chimeras are stable toward proteolysis, non-hemolytic, and possess antibacterial activity comparable...... peptidomimetic backbone construct for biologically active ligands....

  16. CHIMERA Multidetector at Laboratori Nazionali del Sud

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, S.; Anzalone, A.; Baldo, M.; Barna, R.; Campisi, M.g.; Cardella, G.; Cavallaro, Sl., Amico, V.D.; De Filippo, E.; DePasquale, D.; Femino, S.; Geraci, E.; Giustolisi, F.; Guazzoni, P.; Iacono-Manno, C.M.; Italiano, A.; Lanzalone, G.; Lanzano, G.; LoNigro, S.; Lombardo, U.; Manfredi, G.; Pagano, A.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Sambataro, S.; Sperduto, M.L.; Sutera, C.M.; Zetta, L.

    2000-12-31

    The installation of CHIMERA multidetector, designed in order to study central collisions in heavy ion reactions at intermediate energy, is going on at LNS and the first experiment with the forward part (688 telescopes) is running since May 1999. The aim of this contribution is to present the status of the project.

  17. Experimental Malaria in Pregnancy Induces Neurocognitive Injury in Uninfected Offspring via a C5a-C5a Receptor Dependent Pathway.

    Directory of Open Access Journals (Sweden)

    Chloë R McDonald

    2015-09-01

    Full Text Available The in utero environment profoundly impacts childhood neurodevelopment and behaviour. A substantial proportion of pregnancies in Africa are at risk of malaria in pregnancy (MIP however the impact of in utero exposure to MIP on fetal neurodevelopment is unknown. Complement activation, in particular C5a, may contribute to neuropathology and adverse outcomes during MIP. We used an experimental model of MIP and standardized neurocognitive testing, MRI, micro-CT and HPLC analysis of neurotransmitter levels, to test the hypothesis that in utero exposure to malaria alters neurodevelopment through a C5a-C5aR dependent pathway. We show that malaria-exposed offspring have persistent neurocognitive deficits in memory and affective-like behaviour compared to unexposed controls. These deficits were associated with reduced regional brain levels of major biogenic amines and BDNF that were rescued by disruption of C5a-C5aR signaling using genetic and functional approaches. Our results demonstrate that experimental MIP induces neurocognitive deficits in offspring and suggest novel targets for intervention.

  18. Fosb gene products contribute to excitotoxic microglial activation by regulating the expression of complement C5a receptors in microglia.

    Science.gov (United States)

    Nomaru, Hiroko; Sakumi, Kunihiko; Katogi, Atsuhisa; Ohnishi, Yoshinori N; Kajitani, Kosuke; Tsuchimoto, Daisuke; Nestler, Eric J; Nakabeppu, Yusaku

    2014-08-01

    The Fosb gene encodes subunits of the activator protein-1 transcription factor complex. Two mature mRNAs, Fosb and ΔFosb, encoding full-length FOSB and ΔFOSB proteins respectively, are formed by alternative splicing of Fosb mRNA. Fosb products are expressed in several brain regions. Moreover, Fosb-null mice exhibit depressive-like behaviors and adult-onset spontaneous epilepsy, demonstrating important roles in neurological and psychiatric disorders. Study of Fosb products has focused almost exclusively on neurons; their function in glial cells remains to be explored. In this study, we found that microglia express equivalent levels of Fosb and ΔFosb mRNAs to hippocampal neurons and, using microarray analysis, we identified six microglial genes whose expression is dependent on Fosb products. Of these genes, we focused on C5ar1 and C5ar2, which encode receptors for complement C5a. In isolated Fosb-null microglia, chemotactic responsiveness toward the truncated form of C5a was significantly lower than that in wild-type cells. Fosb-null mice were significantly resistant to kainate-induced seizures compared with wild-type mice. C5ar1 mRNA levels and C5aR1 immunoreactivity were increased in wild-type hippocampus 24 hours after kainate administration; however, such induction was significantly reduced in Fosb-null hippocampus. Furthermore, microglial activation after kainate administration was significantly diminished in Fosb-null hippocampus, as shown by significant reductions in CD68 immunoreactivity, morphological change and reduced levels of Il6 and Tnf mRNAs, although no change in the number of Iba-1-positive cells was observed. These findings demonstrate that, under excitotoxicity, Fosb products contribute to a neuroinflammatory response in the hippocampus through regulation of microglial C5ar1 and C5ar2 expression.

  19. Differential Contributions of the Complement Anaphylotoxin Receptors C5aR1 and C5aR2 to the Early Innate Immune Response against Staphylococcus aureus Infection

    Directory of Open Access Journals (Sweden)

    Sarah A. Horst

    2015-10-01

    Full Text Available The complement anaphylatoxin C5a contributes to host defense against Staphylococcus aureus. In this study, we investigated the functional role of the two known C5a receptors, C5aR1 and C5aR2, in the host response to S. aureus. We found that C5aR1−/− mice exhibited greater susceptibility to S. aureus bloodstream infection than wild type and C5aR2−/− mice, as demonstrated by the significantly higher bacterial loads in the kidneys and heart at 24 h of infection, and by the higher levels of inflammatory IL-6 in serum. Histological and immunohistochemistry investigation of infected kidneys at 24 h after bacterial inoculation revealed a discrete infiltration of neutrophils in wild type mice but already well-developed abscesses consisting of bacterial clusters surrounded by a large number of neutrophils in both C5aR1−/− and C5aR2−/− mice. Furthermore, blood neutrophils from C5aR1−/− mice were less efficient than those from wild type or C5aR2−/− mice at killing S. aureus. The requirement of C5aR1 for efficient killing of S. aureus was also demonstrated in human blood after disrupting C5a-C5aR1 signaling using specific inhibitors. These results demonstrated a role for C5aR1 in S. aureus clearance as well as a role for both C5aR1 and C5aR2 in the orchestration of the inflammatory response during infection.

  20. A Novel Role for the Receptor of the Complement Cleavage Fragment C5a, C5aR1, in CCR5-Mediated Entry of HIV into Macrophages.

    Science.gov (United States)

    Moreno-Fernandez, Maria E; Aliberti, Julio; Groeneweg, Sander; Köhl, Jörg; Chougnet, Claire A

    2016-04-01

    The complement system is an ancient pattern recognition system that becomes activated during all stages of HIV infection. Previous studies have shown that C5a can enhance the infection of monocyte-derived macrophages and T cells indirectly through the production of interleukin (IL)-6 and tumor necrosis factor (TNF)-α and the attraction of dendritic cells. C5a exerts its multiple biologic functions mainly through activation of C5a receptor 1 (C5aR1). Here, we assessed the role of C5aR1 as an enhancer of CCR5-mediated HIV infection. We determined CCR5 and C5aR1 heterodimer formation in myeloid cells and the impact of C5aR1 blockade on HIV entry and genomic integration. C5aR1/CCR5 heterodimer formation was identified by immunoprecipitation and western blotting. THP-1 cells and monocyte-derived macrophages (MDM) were infected by R5 laboratory strains or HIV pseudotyped for the vesicular stomatitis virus (VSV) envelope. Levels of integrated HIV were measured by quantitative PCR after targeting of C5aR1 by a C5aR antagonist, neutralizing C5aR1 monoclonal antibody (mAb) or hC5a. C5aR1 was also silenced by specific siRNA prior to viral entry. We found that C5aR1 forms heterodimers with the HIV coreceptor CCR5 in myeloid cells. Targeting C5aR1 significantly decreased integration by R5 viruses but not by VSV-pseudotyped viruses, suggesting that C5aR1 is critical for viral entry. The level of inhibition achieved with C5aR1-blocking reagents was comparable to that of CCR5 antagonists. Mechanistically, C5aR1 targeting decreased CCR5 expression. MDM from CCR5Δ32 homozygous subjects expressed levels of C5aR1 similar to CCR5 WT individuals, suggesting that mere C5aR1 expression is not sufficient for HIV infection. HIV appeared to preferentially enter THP-1 cells expressing high levels of both C5aR1 and CCR5. Targeted reduction of C5aR1 expression in such cells reduced HIV infection by ~50%. Our data thus suggest that C5aR1 acts as an enhancer of CCR5-mediated HIV entry into

  1. Nectin-4 Co-stimulates the Prolactin Receptor by Interacting with SOCS1 and Inhibiting Its Activity on the JAK2-STAT5a Signaling Pathway.

    Science.gov (United States)

    Maruoka, Masahiro; Kedashiro, Shin; Ueda, Yuki; Mizutani, Kiyohito; Takai, Yoshimi

    2017-03-03

    Cell surface cytokine receptors are regulated by their cis-interacting stimulatory and inhibitory co-receptors. We previously showed that the immunoglobulin-like cell adhesion molecule nectin-4 cis-interacts with the prolactin receptor through the extracellular region and stimulates prolactin-induced prolactin receptor activation and signaling, resulting in alveolar development in the mouse mammary gland. However, it remains unknown how this interaction stimulates these effects. We show here that the cis-interaction of the extracellular region of nectin-4 with the prolactin receptor was not sufficient for eliciting these effects and that nectin-4's cytoplasmic region was also required for eliciting these effects. The cytoplasmic region of nectin-4 directly interacted with suppressor of cytokine signaling (SOCS) 1, but not SOCS3, JAK2, or STAT5a, and inhibited SOCS1's interaction with JAK2, eventually resulting in the increased phosphorylation of STAT5a. The juxtamembrane region of nectin-4 interacts with the Src homology 2 domain of SOCS1. Both the interactions of nectin-4 with the extracellular region of the prolactin receptor and the interactions of SOCS1 with nectin-4's cytoplasmic region were required for the stimulatory effect of nectin-4 on the prolactin-induced prolactin receptor activation. The third immunoglobulin-like domain of nectin-4 and the second fibronectin type-III domain of the prolactin receptor were involved in this cis-interaction, and both the extracellular and transmembrane regions of nectin-4 and the prolactin receptor were required for this direct interaction. These results indicate that nectin-4 serves as a stimulatory co-receptor for the prolactin receptor by regulating the feedback inhibition of SOCS1 in the JAK2-STAT5a signaling pathway.

  2. Complement anaphylatoxin receptors C3aR and C5aR are required in the pathogenesis of experimental autoimmune uveitis.

    Science.gov (United States)

    Zhang, Lingjun; Bell, Brent A; Yu, Minzhong; Chan, Chi-Chao; Peachey, Neal S; Fung, John; Zhang, Xiaoming; Caspi, Rachel R; Lin, Feng

    2016-03-01

    Recent studies have suggested that reagents inhibiting complement activation could be effective in treating T cell mediated autoimmune diseases such as autoimmune uveitis. However, the precise role of the complement anaphylatoxin receptors (C3a and C5a receptors) in the pathogenesis of autoimmune uveitis remains elusive and controversial. We induced experimental autoimmune uveitis in mice deficient or sufficient in both C3a and C5a receptors and rigorously compared their retinal phenotype using various imaging techniques, including indirect ophthalmoscopy, confocal scanning laser ophthalmoscopy, spectral domain optical coherence tomography, topical endoscopic fundus imaging, and histopathological analysis. We also assessed retinal function using electroretinography. Moreover, we performed Ag-specific T cell recall assays and T cell adoptive transfer experiments to compare pathogenic T cell activity between wild-type and knockout mice with experimental autoimmune uveitis. These experiments showed that C3a receptor/C5a receptor-deficient mice developed much less severe uveitis than did control mice using all retinal examination methods and that these mice had reduced pathogenic T cell responses. Our data demonstrate that both complement anaphylatoxin receptors are important for the development of experimental autoimmune uveitis, suggesting that targeting these receptors could be a valid approach for treating patients with autoimmune uveitis.

  3. Expression of hippocampal serotonin receptors 5-HT2C and 5-HT5A in a rat model of diet-induced obesity supplemented with tryptophan.

    Science.gov (United States)

    Lopez-Esparza, Sarahi; Berumen, Laura C; Padilla, Karla; Miledi, Ricardo; García-Alcocer, Guadalupe

    2015-05-01

    Food intake regulation is a complex mechanism that involves endogenous substances and central nervous system structures like hypothalamus or even hippocampus. The neurotransmitter serotonin is distinguished as food intake mediator; within its multiples receptors, the 5-HT2C type is characterized by its inhibitory appetite action but there is no information about 5-HT5A receptors involvement in obesity disease. It is also unknown if there are any changes in the receptors expression in rats hippocampus with induced obesity during development through a high energy diet (HED) supplemented with tryptophan (W). To appreciate the receptors expression pattern in the hippocampus, obesity was induced to young Sprague Dawley rats through a HED and supplemented with W. Immunocytochemical and western blot techniques were used to study the receptor distribution and quantify the protein expression. The rats with HED diet developed obesity until week 13 of treatment. The 5-HT2C receptor expression decreased in CA1, CA2, CA3 and DG of HED group; and also in CA2, CA3 and DG for HEDW group. The 5-HT5A receptor expression only decreased in DG for HED group. Variations of the two serotonin receptors subtypes support their potential role in obesity.

  4. Intermittent chaotic chimeras for coupled rotators.

    Science.gov (United States)

    Olmi, Simona; Martens, Erik A; Thutupalli, Shashi; Torcini, Alessandro

    2015-09-01

    Two symmetrically coupled populations of N oscillators with inertia m display chaotic solutions with broken symmetry similar to experimental observations with mechanical pendulums. In particular, we report evidence of intermittent chaotic chimeras, where one population is synchronized and the other jumps erratically between laminar and turbulent phases. These states have finite lifetimes diverging as a power law with N and m. Lyapunov analyses reveal chaotic properties in quantitative agreement with theoretical predictions for globally coupled dissipative systems.

  5. Preliminary results of Digital Pulse Shape Acquisition from Chimera

    Energy Technology Data Exchange (ETDEWEB)

    Alderighi, D.M.; Sechi, G. [INFN Milano and IASF, CNR, Milano (France); Anzalone, A.; Cavallaro, S.; Giustolisi, F.; Laguidara, E.; Lanzalone, G.; Porto, F. [Catania Univ., LNS and Dipartimento di Fisica (France); Bassini, R.; Boiano, C.; Guazzoni, P.; Russo, S.; Sassi, M.; Zetta, L. [Milano Univ., INFN and Dipartimento di Fisica (Italy); Cardella, G.; Defilippo, S.E.; Lanzano, G.; Paganod, A.; Papa, M.; Pirrone, S.; Politi, G. [Catania Univ., INFN and Dipartimento di Fisica (Italy); Geraci, E. [Bologna Univ., INFN and Dipartimento di Fisica (Italy)

    2003-07-01

    A 100 MS/s 14-bit Sampling Analog-to-Digital converter has been used to perform digital pulse-shape acquisition of signals collected from CHIMERA telescopes. The signals from a typical CHIMERA detection cell have been collected using both a standard CHIMERA electronic chain up to the amplifier, and a very simple analog front end, basically reduced to the preamplifier. The preliminary on-beam results are presented. (authors)

  6. A review of 1α,25(OH)2D3 dependent Pdia3 receptor complex components in Wnt5a non-canonical pathway signaling.

    Science.gov (United States)

    Doroudi, Maryam; Olivares-Navarrete, Rene; Boyan, Barbara D; Schwartz, Zvi

    2015-08-01

    Wnt5a and 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] regulate endochondral ossification. 1α,25(OH)2D3 initiates its calcium-dependent effects via its membrane-associated receptor, protein disulfide isomerase A3 (Pdia3). 1α,25(OH)2D3 binding to Pdia3 triggers the interaction between Pdia3 and phospholipase A2 (PLA2)-activating protein (PLAA), resulting in downstream activation of calcium/calmodulin-dependent protein kinase II (CaMKII), PLA2, and protein kinase C (PKC). Wnt5a initiates its calcium-dependent effects via binding its receptors Frizzled2 (FZD2) and Frizzled5 (FZD5) and receptor tyrosine kinase-like orphan receptor 2 (ROR2), activating intracellular calcium release and stimulating PKC and CaMKII. Recent efforts to determine the inter-relation between Wnt5a and 1α,25(OH)2D3 signaling pathways have demonstrated that Wnt5a signals through a CaMKII/PLA2/PGE2/PKC cascade in chondrocytes and osteoblasts in which the components of the Pdia3 receptor complex were required. Furthermore, ROR2, but not FZD2 or FZD5, was required to mediate the calcium-dependent actions of 1α,25(OH)2D3. This review provides evidence that 1α,25(OH)2D3 and Wnt5a mediate their calcium-dependent pathways via similar receptor components and proposes that these pathways may interact since they are competing for the same receptor complex components.

  7. Coherence-Resonance Chimeras in a Network of Excitable Elements.

    Science.gov (United States)

    Semenova, Nadezhda; Zakharova, Anna; Anishchenko, Vadim; Schöll, Eckehard

    2016-07-01

    We demonstrate that chimera behavior can be observed in nonlocally coupled networks of excitable systems in the presence of noise. This phenomenon is distinct from classical chimeras, which occur in deterministic oscillatory systems, and it combines temporal features of coherence resonance, i.e., the constructive role of noise, and spatial properties of chimera states, i.e., the coexistence of spatially coherent and incoherent domains in a network of identical elements. Coherence-resonance chimeras are associated with alternating switching of the location of coherent and incoherent domains, which might be relevant in neuronal networks.

  8. Fast and reliable production, purification and characterization of heat-stable, bifunctional enzyme chimeras.

    Science.gov (United States)

    Neddersen, Mara; Elleuche, Skander

    2015-12-01

    Degradation of complex plant biomass demands a fine-regulated portfolio of glycoside hydrolases. The LE (LguI/Eco81I)-cloning approach was used to produce two enzyme chimeras CB and BC composed of an endoglucanase Cel5A (C) from the extreme thermophilic bacterium Fervidobacterium gondwanense and an archaeal β-glucosidase Bgl1 (B) derived from a hydrothermal spring metagenome. Recombinant chimeras and parental enzymes were produced in Escherichia coli and purified using a two-step affinity chromatography approach. Enzymatic properties revealed that both chimeras closely resemble the parental enzymes and physical mixtures, but Cel5A displayed lower temperature tolerance at 100°C when fused to Bgl1 independent of the conformational order. Moreover, the determination of enzymatic performances resulted in the detection of additive effects in case of BC fusion chimera. Kinetic measurements in combination with HPLC-mediated product analyses and site-directed mutation constructs indicated that Cel5A was strongly impaired when fused at the N-terminus, while activity was reduced to a slighter extend as C-terminal fusion partner. In contrast to these results, catalytic activity of Bgl1 at the N-terminus was improved 1.2-fold, effectively counteracting the slightly reduced activity of Cel5A by converting cellobiose into glucose. In addition, cellobiose exhibited inhibitory effects on Cel5A, resulting in a higher yield of cellobiose and glucose by application of an enzyme mixture (53.1%) compared to cellobiose produced from endoglucanase alone (10.9%). However, the overall release of cellobiose and glucose was even increased by catalytic action of BC (59.2%). These results indicate possible advantages of easily produced bifunctional fusion enzymes for the improved conversion of complex polysaccharide plant materials.

  9. The C5a anaphylatoxin receptor CD88 is expressed in presynaptic terminals of hippocampal mossy fibres

    Directory of Open Access Journals (Sweden)

    Taylor Stephen M

    2009-11-01

    Full Text Available Abstract Background In the periphery, C5a acts through the G-protein coupled receptor CD88 to enhance/maintain inflammatory responses. In the brain, CD88 can be expressed on astrocytes, microglia and neurons. Previous studies have shown that the hippocampal CA3 region displays CD88-immunolabelling, and CD88 mRNA is present within dentate gyrus granule cells. As granule cells send dense axonal projections (mossy fibres to CA3 pyramidal neurons, CD88 expression could be expressed on mossy fibres. However, the cellular location of CD88 within the hippocampal CA3 region is unknown. Methods The expression of CD88 within the hippocampal CA3 region was characterized using dual-immunolabelling of hippocampal sections prepared from Wistar rats. Immunolabelling for CD88, using a monoclonal antibody, was combined with immunolabelling for markers of astrocytes (GFAP, microglia (IBA1, presynaptic proteins (synaptophysin and synapsin-1 and preterminal axons (neurofilament. In addition, electron microscopy was performed on peroxidase-visualized CD88-immunolabelling to determine its cellular localisation within the CA3 region. Results Dense CD88-immunolabelling was observed within the stratum lucidum of the CA3, consistent with the presence of CD88 on mossy fibres. Labelling for CD88 rarely co-localized with astrocytes or microglia, but was highly co-localized with presynaptic proteins. Electron microscopy revealed CD88-immunolabelling was localized to large presynaptic terminals within the stratum lucidum. Conclusion These results demonstrate that CD88 is expressed on presynaptic terminals of mossy fibres within the CA3 region of the hippocampus. Although the role of CD88 on mossy fibres remains to be established, their involvement in synaptic/cellular plasticity, and in cognitive disorders such as Alzheimer's disease deserves investigation.

  10. Nanostructured electrochemical biosensor for th0065 detection of the weak binding between the dengue virus and the CLEC5A receptor.

    Science.gov (United States)

    Tung, Yen-Ting; Wu, Ming-Fang; Wang, Gou-Jen; Hsieh, Shie-Liang

    2014-08-01

    In this paper, we develop an effective method for detecting weak molecular bonding between the dengue virus (DV) and its receptor C-type lectin domain family 5, member A (CLEC5A). The CLEC5A-DV interaction is critical for DV-induced hemorrhagic fever and shock syndrome, so the sensing of CLEC5A-DV binding is crucial to realize a thorough study of the pathogenesis of dengue fever. Through a highly sensitive nanostructured sensing electrode of gold nanoparticles (GNPs) uniformly deposited on a nanohemisphere array, a label-free detection of the ultra weak binding between CLEC5A and the DV can be performed with electrochemical impedance spectroscopy (EIS). Experimental results demonstrate that the proposed approach is a highly promising method for investigating weak molecular interactions such as the ligand-receptor interaction of dengue fever, enterovirus (EV), or the interaction between cancer surface glycoproteins and their receptors. Authors of this study investigated the ultra-weak binding between dengue virus and its CLEC5A receptor via electrochemical impedance spectroscopy and gold NP sensing electrode. Similar methods may be applicable in other infections and in cancer models as well. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The effects of a 5-HT5A receptor antagonist in a ketamine-based rat model of cognitive dysfunction and the negative symptoms of schizophrenia.

    Science.gov (United States)

    Nikiforuk, Agnieszka; Hołuj, Małgorzata; Kos, Tomasz; Popik, Piotr

    2016-06-01

    Serotonin (5-HT) receptors still represent promising targets for the development of novel multireceptor or stand-alone antipsychotic drugs with a potential to ameliorate cognitive impairments and negative symptoms in schizophrenia. The 5-HT5A receptor, one of the least known members of the serotonin receptor family, has also drawn attention in this regard. Although the antipsychotic efficacy of 5-HT5A antagonists is still equivocal, recent experimental data suggest the cognitive-enhancing activity of this strategy. The aim of the present study was to evaluate pro-cognitive and pro-social efficacies of the 5-HT5A receptor antagonist in a rat pharmacological model of schizophrenia employing the administration of the NMDA receptor antagonist, ketamine. The ability of SB-699551 to reverse ketamine-induced cognitive deficits in the attentional set-shifting task (ASST) and novel object recognition task (NORT) was examined. The compound's efficacy against ketamine-induced social withdrawal was assessed in the social interaction test (SIT) and in the social choice test (SCT). The results demonstrated the efficacy of SB-699551 in ameliorating ketamine-induced impairments on the ASST and NORT. Moreover, the tested compound also enhanced set-shifting performance in cognitively unimpaired control rats and improved object recognition memory in conditions of delay-induced natural forgetting. The pro-social activity of SB-699551 was demonstrated on both employed paradigms, the SIT and SCT. The present study suggests the preclinical efficacy of a strategy based on the blockade of 5-HT5A receptors against schizophrenia-like cognitive deficits and negative symptoms. The utility of this receptor as a target for improvement of cognitive and social dysfunctions warrants further studies.

  12. Expression of complement C5a receptor and the viability of 4T1 tumor cells following agonist–antagonist treatment

    Directory of Open Access Journals (Sweden)

    Nurneqman Nashreq Kosni

    2016-01-01

    Conclusion: This experiment shows the presence of C5a receptor on 4T1 cell line. We believe that the antagonist peptide is eligible to be used widely in cancer immunotherapy field; but in vivo studies need to be carried out first in the future, as it will determine how these drugs affect the tumor cell growth.

  13. Assessing reprogramming by chimera formation and tetraploid complementation.

    Science.gov (United States)

    Li, Xin; Xia, Bao-long; Li, Wei; Zhou, Qi

    2015-01-01

    Pluripotent stem cells can be evaluated by pluripotent markers expression, embryoid body aggregation, teratoma formation, chimera contribution and even more, tetraploid complementation. Whether iPS cells in general are functionally equivalent to normal ESCs is difficult to establish. Here, we present the detailed procedure for chimera formation and tetraploid complementation, the most stringent criterion, to assessing pluripotency.

  14. MEMBRANE BILE ACID RECEPTOR TGR5 - A NEW TARGET IN THE STUDY OF METABOLIC, INFLAMMATORY AND NEOPLASTIC DISEASES

    Directory of Open Access Journals (Sweden)

    O. M. Drapkina

    2016-01-01

    Full Text Available TGR5 are G-protein-linked, membrane bile acids receptors that widely express in tissues of animals and humans. Namely tissue localization of TGR5 determines biological effects of activation of these receptors. This review focuses on the role of TGR5 as a new pharmacological target for the treatment of patients with metabolic syndrome, diabetes, obesity, atherosclerosis, liver disease and cancer processes.

  15. Solvable Model of Spiral Wave Chimeras

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Laing, Carlo R.; Strogatz, Steven H.

    2010-01-01

    Spiral waves are ubiquitous in two-dimensional systems of chemical or biological oscillators coupled locally by diffusion. At the center of such spirals is a phase singularity, a topological defect where the oscillator amplitude drops to zero. But if the coupling is nonlocal, a new kind of spiral...... can occur, with a circular core consisting of desynchronized oscillators running at full amplitude. Here, we provide the first analytical description of such a spiral wave chimera and use perturbation theory to calculate its rotation speed and the size of its incoherent core....

  16. Metaphysical and ethical perspectives on creating animal-human chimeras.

    Science.gov (United States)

    Eberl, Jason T; Ballard, Rebecca A

    2009-10-01

    This paper addresses several questions related to the nature, production, and use of animal-human (a-h) chimeras. At the heart of the issue is whether certain types of a-h chimeras should be brought into existence, and, if they are, how we should treat such creatures. In our current research environment, we recognize a dichotomy between research involving nonhuman animal subjects and research involving human subjects, and the classification of a research protocol into one of these categories will trigger different ethical standards as to the moral permissibility of the research in question. Are a-h chimeras entitled to the more restrictive and protective ethical standards applied to human research subjects? We elucidate an Aristotelian-Thomistic metaphysical framework in which to argue how such chimeras ought to be defined ontologically. We then examine when the creation of, and experimentation upon, certain types of a-h chimeras may be morally permissible.

  17. Chimera patterns in the Kuramoto-Battogtokh model

    Science.gov (United States)

    Smirnov, Lev; Osipov, Grigory; Pikovsky, Arkady

    2017-02-01

    Kuramoto and Battogtokh (2002 Nonlinear Phenom. Complex Syst. 5 380) discovered chimera states represented by stable coexisting synchrony and asynchrony domains in a lattice of coupled oscillators. After a reformulation in terms of a local order parameter, the problem can be reduced to partial differential equations. We find uniformly rotating, spatially periodic chimera patterns as solutions of a reversible ordinary differential equation, and demonstrate a plethora of such states. In the limit of neutral coupling they reduce to analytical solutions in the form of one- and two-point chimera patterns as well as localized chimera solitons. Patterns at weakly attracting coupling are characterized by virtue of a perturbative approach. Stability analysis reveals that only the simplest chimeras with one synchronous region are stable.

  18. Bovine prolactin elevates hTF expression directed by a tissue-specific goat β-casein promoter through prolactin receptor-mediated STAT5a activation.

    Science.gov (United States)

    Jiang, Shizhong; Ren, Zhaorui; Xie, Fei; Yan, Jingbin; Huang, Shuzhen; Zeng, Yitao

    2012-11-01

    Prolactin promotes the expression of exogenous human transferrin gene in the milk of transgenic mice. To elucidate this, a recombinant plasmid of bovine prolactin plus human transferrin vector was co-transfected into cultured murine mammary gland epithelial cells. Prolactin-receptor antagonist and shRNA corresponding to prolactin-receptor mRNA were added into the cell culture mixture to investigate the relations between prolactin-receptor and human transferrin expression after bovine prolactin inducement. Levels of human transferrin in the supernatants were increased under the presentation of bovine prolactin (from 1,076 ± 115 to 1,886 ± 114 pg/ml). With the treatment of prolactin-receptor antagonist or shRNA, human transferrin in cells was declined (1,886 ± 113 vs. 1,233 ± 85 pg/ml or 1,114 ± 75 pg/ml, respectively). An inverse correlation was found between the dosage of prolactin-receptor antagonist and expression level of human transferrin. Real-time qRT-PCR analysis showed that the relative level of signal transducer and activator of transcription 5a (STAT5a) transcript in transfected cells correlated with expression levels of human transferrin in the supernatant of the same cells. Bovine prolactin thus improved the expression of human transferrin through such a possible mechanism that bovine prolactin activated STAT5a transcription expression via combined with prolactin-receptor and suggest a potential utility of the bovine prolactin for efficient expression of valuable pharmaceutical proteins in mammary glands of transgenic animals.

  19. Functional prokaryotic-eukaryotic chimera from the pentameric ligand-gated ion channel family.

    Science.gov (United States)

    Duret, Guillaume; Van Renterghem, Catherine; Weng, Yun; Prevost, Marie; Moraga-Cid, Gustavo; Huon, Christèle; Sonner, James M; Corringer, Pierre-Jean

    2011-07-19

    Pentameric ligand-gated ion channels (pLGICs), which mediate chemo-electric signal transduction in animals, have been recently found in bacteria. Despite clear sequence and 3D structure homology, the phylogenetic distance between prokaryotic and eukaryotic homologs suggests significant structural divergences, especially at the interface between the extracellular (ECD) and the transmembrane (TMD) domains. To challenge this possibility, we constructed a chimera in which the ECD of the bacterial protein GLIC is fused to the TMD of the human α1 glycine receptor (α1GlyR). Electrophysiology in Xenopus oocytes shows that it functions as a proton-gated ion channel, thereby locating the proton activation site(s) of GLIC in its ECD. Patch-clamp experiments in BHK cells show that the ion channel displays an anionic selectivity with a unitary conductance identical to that of the α1GlyR. In addition, pharmacological investigations result in transmembrane allosteric modulation similar to the one observed on α1GlyR. Indeed, the clinically active drugs propofol, four volatile general anesthetics, alcohols, and ivermectin all potentiate the chimera while they inhibit GLIC. Collectively, this work shows the compatibility between GLIC and α1GlyR domains and points to conservation of the ion channel and transmembrane allosteric regulatory sites in the chimera. This provides evidence that GLIC and α1GlyR share a highly homologous 3D structure. GLIC is thus a relevant model of eukaryotic pLGICs, at least from the anionic type. In addition, the chimera is a good candidate for mass production in Escherichia coli, opening the way for investigations of "druggable" eukaryotic allosteric sites by X-ray crystallography.

  20. Nonstructural 5A Protein of Hepatitis C Virus Interferes with Toll-Like Receptor Signaling and Suppresses the Interferon Response in Mouse Liver

    Science.gov (United States)

    Okushin, Kazuya; Enooku, Kenichiro; Fujinaga, Hidetaka; Moriya, Kyoji; Yotsuyanagi, Hiroshi; Aizaki, Hideki; Suzuki, Tetsuro; Matsuura, Yoshiharu; Koike, Kazuhiko

    2017-01-01

    The hepatitis C virus nonstructural protein NS5A is involved in resistance to the host immune response, as well as the viral lifecycle such as replication and maturation. Here, we established transgenic mice expressing NS5A protein in the liver and examined innate immune responses against lipopolysaccharide (LPS) in vivo. Intrahepatic gene expression levels of cytokines such as interleukin-6, tumor necrosis factor-α, and interferon-γ were significantly suppressed after LPS injection in the transgenic mouse liver. Induction of the C-C motif chemokine ligand 2, 4, and 5 was also suppressed. Phosphorylation of the signal transducer and activator of transcription 3, which is activated by cytokines, was also reduced, and expression levels of interferon-stimulated genes, 2’-5’ oligoadenylate synthase, interferon-inducible double-stranded RNA-activated protein kinase, and myxovirus resistance 1 were similarly suppressed. Since LPS binds to toll-like receptor 4 and stimulates the downstream pathway leading to induction of these genes, we examined the extracellular signal-regulated kinase and IκB-α. The phosphorylation levels of these molecules were reduced in transgenic mouse liver, indicating that the pathway upstream of the molecules was disrupted by NS5A. Further analyses revealed that the interaction between interleukin-1 receptor-associated kinase-1 and tumor necrosis factor receptor associated factor-6 was dispersed in transgenic mice, suggesting that NS5A may interfere with this interaction via myeloid differentiation primary response gene 88, which was shown to interact with NS5A. Since the gut microbiota, a source of LPS, is known to be associated with pathological conditions in liver diseases, our results suggest the involvement of NS5A in the pathogenesis of HCV infected-liver via the suppression of innate immunity. PMID:28107512

  1. Multi-headed chimera states in coupled pendula

    Science.gov (United States)

    Jaros, P.; Borkowski, L.; Witkowski, B.; Czolczynski, K.; Kapitaniak, T.

    2015-07-01

    We discuss the occurrence of the chimera states in the network of coupled, excited by the clock's mechanisms pendula. We find the patterns of multi-headed chimera states in which pendula clustered in different heads behave differently (oscillate with different frequencies) and create different types of synchronous states (complete or phase synchronization). The mathematical model of the network shows that the observed chimera states are controlled by elementary dynamical equations derived from the Newton's laws that are ubiquitous in many physical and engineering systems.

  2. TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells

    Directory of Open Access Journals (Sweden)

    Hofmann Thomas

    2007-07-01

    Full Text Available Abstract Background A growing number of TRP channels have been identified as key players in the sensation of smell, temperature, mechanical forces and taste. TRPM5 is known to be abundantly expressed in taste receptor cells where it participates in sweet, amino acid and bitter perception. A role of TRPM5 in other sensory systems, however, has not been studied so far. Results Here, we systematically investigated the expression of TRPM5 in rat and mouse tissues. Apart from taste buds, where we found TRPM5 to be predominantly localized on the basolateral surface of taste receptor cells, TRPM5 immunoreactivity was seen in other chemosensory organs – the main olfactory epithelium and the vomeronasal organ. Most strikingly, we found solitary TRPM5-enriched epithelial cells in all parts of the respiratory and gastrointestinal tract. Based on their tissue distribution, the low cell density, morphological features and co-immunostaining with different epithelial markers, we identified these cells as brush cells (also known as tuft, fibrillovesicular, multivesicular or caveolated cells. In terms of morphological characteristics, brush cells resemble taste receptor cells, while their origin and biological role are still under intensive debate. Conclusion We consider TRPM5 to be an intrinsic signaling component of mammalian chemosensory organs, and provide evidence for brush cells being an important cellular correlate in the periphery.

  3. Chimeras and Mirages of the Golden Horde

    Directory of Open Access Journals (Sweden)

    V.A. Ivanov

    2014-01-01

    Full Text Available The article examines the problem of so-called “imperial culture” of the Golden Horde. The author analyzes the archaeological material regarding it as a component of “imperial culture”. The author evaluates the quality of the archaeological material as well as the breadth and intensity of its distribution among the population of the Golden Horde and the neighboring tribal areas, which the author considers a priori as consumers of this “imperial culture”. Based on this analysis, the author concludes that in general, the concept of “imperial culture” of the Golden Horde is a chimera. In turn, the expected powerful effect of “imperial culture” of the Golden Horde in the culture of neighboring peoples of the Urals and the Volga region is a mirage created by the imagination of researchers.

  4. Biophysical and structural investigation of bacterially expressed and engineered CCR5, a G protein-coupled receptor.

    Science.gov (United States)

    Wiktor, Maciej; Morin, Sébastien; Sass, Hans-Jürgen; Kebbel, Fabian; Grzesiek, Stephan

    2013-01-01

    The chemokine receptor CCR5 belongs to the class of G protein-coupled receptors. Besides its role in leukocyte trafficking, it is also the major HIV-1 coreceptor and hence a target for HIV-1 entry inhibitors. Here, we report Escherichia coli expression and a broad range of biophysical studies on E. coli-produced CCR5. After systematic screening and optimization, we obtained 10 mg of purified, detergent-solubilized, folded CCR5 from 1L culture in a triply isotope-labeled ((2)H/(15)N/(13)C) minimal medium. Thus the material is suitable for NMR spectroscopic studies. The expected α-helical secondary structure content is confirmed by circular dichroism spectroscopy. The solubilized CCR5 is monodisperse and homogeneous as judged by transmission electron microscopy. Interactions of CCR5 with its ligands, RANTES and MIP-1β were assessed by surface plasmon resonance yielding K(D) values in the nanomolar range. Using size exclusion chromatography, stable monomeric CCR5 could be isolated. We show that cysteine residues affect both the yield and oligomer distribution of CCR5. HSQC spectra suggest that the transmembrane domains of CCR5 are in equilibrium between several conformations. In addition we present a model of CCR5 based on the crystal structure of CXCR4 as a starting point for protein engineering.

  5. Biophysical and structural investigation of bacterially expressed and engineered CCR5, a G protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Wiktor, Maciej; Morin, Sebastien; Sass, Hans-Juergen [University of Basel, Focal Area Structural Biology and Biophysics, Biozentrum (Switzerland); Kebbel, Fabian [University of Basel, Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum (Switzerland); Grzesiek, Stephan, E-mail: stephan.grzesiek@unibas.ch [University of Basel, Focal Area Structural Biology and Biophysics, Biozentrum (Switzerland)

    2013-01-15

    The chemokine receptor CCR5 belongs to the class of G protein-coupled receptors. Besides its role in leukocyte trafficking, it is also the major HIV-1 coreceptor and hence a target for HIV-1 entry inhibitors. Here, we report Escherichia coli expression and a broad range of biophysical studies on E. coli-produced CCR5. After systematic screening and optimization, we obtained 10 mg of purified, detergent-solubilized, folded CCR5 from 1L culture in a triply isotope-labeled ({sup 2}H/{sup 15}N/{sup 13}C) minimal medium. Thus the material is suitable for NMR spectroscopic studies. The expected {alpha}-helical secondary structure content is confirmed by circular dichroism spectroscopy. The solubilized CCR5 is monodisperse and homogeneous as judged by transmission electron microscopy. Interactions of CCR5 with its ligands, RANTES and MIP-1{beta} were assessed by surface plasmon resonance yielding K{sub D} values in the nanomolar range. Using size exclusion chromatography, stable monomeric CCR5 could be isolated. We show that cysteine residues affect both the yield and oligomer distribution of CCR5. HSQC spectra suggest that the transmembrane domains of CCR5 are in equilibrium between several conformations. In addition we present a model of CCR5 based on the crystal structure of CXCR4 as a starting point for protein engineering.

  6. Fast clique minor generation in Chimera qubit connectivity graphs

    Science.gov (United States)

    Boothby, Tomas; King, Andrew D.; Roy, Aidan

    2016-01-01

    The current generation of D-Wave quantum annealing processor is designed to minimize the energy of an Ising spin configuration whose pairwise interactions lie on the edges of a Chimera graph C_{M,N,L}. In order to solve an Ising spin problem with arbitrary pairwise interaction structure, the corresponding graph must be minor-embedded into a Chimera graph. We define a combinatorial class of native clique minors in Chimera graphs with vertex images of uniform, near minimal size and provide a polynomial-time algorithm that finds a maximum native clique minor in a given induced subgraph of a Chimera graph. These minors allow improvement over recent work and have immediate practical applications in the field of quantum annealing.

  7. Chimera States in Two Populations with Heterogeneous Phase-lag

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Bick, Christian; Panaggio, Mark

    2016-01-01

    The simplest network of coupled phase-oscillators exhibiting chimera states is given by two populations with disparate intra- and inter-population coupling strengths. We explore the effects of heterogeneous coupling phase-lags between the two populations. Such heterogeneity arises naturally......-uniform synchronization, including in-phase and anti-phase synchrony, full incoherence (splay state), chimera states with phase separation of 0 or π between populations, and states where both populations remain desynchronized. These desynchronized states exhibit stable, oscillatory, and even chaotic dynamics. Moreover......, we identify the bifurcations through which chimera and desynchronized states emerge. Stable chimera states and desynchronized solutions, which do not arise for homogeneous phase-lag parameters, emerge as a result of competition between synchronized in-phase, anti-phase equilibria, and fully...

  8. La Chimera di Dino Campana e Altre Chimere

    Directory of Open Access Journals (Sweden)

    Lucia Wataghin

    2008-08-01

    Full Text Available The current article brings considerations on the results and problems of reusing material from the literary tradition in one of the most celebrated of Dino Campana’s poems, La Chimera.

  9. Chimera in a neuronal network model of the cat brain

    OpenAIRE

    Santos, M. S.; Szezech Jr., J. D.; Borges, F. S.; Iarosz, K. C.; Caldas, I. L.; Batista, A. M.; Viana, R. L.; Kurths, J.

    2016-01-01

    Neuronal systems have been modeled by complex networks in different description levels. Recently, it has been verified that networks can simultaneously exhibit one coherent and other incoherent domain, known as chimera states. In this work, we study the existence of chimera states in a network considering the connectivity matrix based on the cat cerebral cortex. The cerebral cortex of the cat can be separated in 65 cortical areas organised into the four cognitive regions: visual, auditory, so...

  10. Human neuronal acetylcholine receptor A5-A3-B4 haplotypes are associated with multiple nicotine dependence phenotypes

    Science.gov (United States)

    Weiss, Robert B.; Bolt, Daniel; von Niederhausern, Andrew; Fiore, Michael C.; Dunn, Diane M.; Piper, Megan E.; Matsunami, Nori; Smith, Stevens S.; Coon, Hilary; McMahon, William M.; Scholand, Mary B.; Singh, Nanda; Hoidal, John R.; Kim, Su-Young; Leppert, Mark F.; Cannon, Dale S.

    2009-01-01

    Introduction: Previous research revealed significant associations between haplotypes in the CHRNA5-A3-B4 subunit cluster and scores on the Fagerström Test for Nicotine Dependence among individuals reporting daily smoking by age 17. The present study used subsamples of participants from that study to investigate associations between the CHRNA5-A3-B4 haplotypes and an array of phenotypes not analyzed previously (i.e., withdrawal severity, ability to stop smoking, and specific scales on the Wisconsin Inventory of Smoking Dependence Motives (WISDM-68) that reflect loss of control, strong craving, and heavy smoking. Methods: Two cohorts of current or former smokers (N = 886) provided both self-report data and DNA samples. One sample (Wisconsin) comprised smokers making a quit smoking attempt, which permitted the assessment of withdrawal and relapse during the attempt. The other sample (Utah) comprised participants studied for risk factors for nicotine dependence and chronic obstructive pulmonary disease and included individuals originally recruited in the Lung Health Study. Results: The CHRNA5-A3-B4 haplotypes were significantly associated with the targeted WISDM-68 scales (Tolerance, Craving, Loss of Control) in both samples of participants but only among individuals who began smoking early in life. The haplotypes were significantly associated with relapse likelihood and withdrawal severity, but these associations showed no evidence of an interaction with age at daily smoking. Discussion: The CHRNA5-A3-B4 haplotypes are associated with a broad range of nicotine dependence phenotypes, but these associations are not consistently moderated by age at initial smoking. PMID:19436041

  11. Regulation of C. elegans fat uptake and storage by acyl-CoA synthase-3 is dependent on NR5A family nuclear hormone receptor nhr-25

    DEFF Research Database (Denmark)

    Mullaney, Brendan C; Blind, Raymond D; Lemieux, George A;

    2010-01-01

    Acyl-CoA synthases are important for lipid synthesis and breakdown, generation of signaling molecules, and lipid modification of proteins, highlighting the challenge of understanding metabolic pathways within intact organisms. From a C. elegans mutagenesis screen, we found that loss of ACS-3...... mutant phenotypes require the nuclear hormone receptor NHR-25, a key regulator of C. elegans molting. Our findings suggest that ACS-3-derived long-chain fatty acyl-CoAs, perhaps incorporated into complex ligands such as phosphoinositides, modulate NHR-25 function, which in turn regulates an endocrine...... program of lipid uptake and synthesis. These results reveal a link between acyl-CoA synthase function and an NR5A family nuclear receptor in C. elegans....

  12. The nuclear hormone receptor family member NR5A2 controls aspects of multipotent progenitor cell formation and acinar differentiation during pancreatic organogenesis.

    Science.gov (United States)

    Hale, Michael A; Swift, Galvin H; Hoang, Chinh Q; Deering, Tye G; Masui, Toshi; Lee, Youn-Kyoung; Xue, Jumin; MacDonald, Raymond J

    2014-08-01

    The orphan nuclear receptor NR5A2 is necessary for the stem-like properties of the epiblast of the pre-gastrulation embryo and for cellular and physiological homeostasis of endoderm-derived organs postnatally. Using conditional gene inactivation, we show that Nr5a2 also plays crucial regulatory roles during organogenesis. During the formation of the pancreas, Nr5a2 is necessary for the expansion of the nascent pancreatic epithelium, for the subsequent formation of the multipotent progenitor cell (MPC) population that gives rise to pre-acinar cells and bipotent cells with ductal and islet endocrine potential, and for the formation and differentiation of acinar cells. At birth, the NR5A2-deficient pancreas has defects in all three epithelial tissues: a partial loss of endocrine cells, a disrupted ductal tree and a >90% deficit of acini. The acinar defects are due to a combination of fewer MPCs, deficient allocation of those MPCs to pre-acinar fate, disruption of acinar morphogenesis and incomplete acinar cell differentiation. NR5A2 controls these developmental processes directly as well as through regulatory interactions with other pancreatic transcriptional regulators, including PTF1A, MYC, GATA4, FOXA2, RBPJL and MIST1 (BHLHA15). In particular, Nr5a2 and Ptf1a establish mutually reinforcing regulatory interactions and collaborate to control developmentally regulated pancreatic genes by binding to shared transcriptional regulatory regions. At the final stage of acinar cell development, the absence of NR5A2 affects the expression of Ptf1a and its acinar specific partner Rbpjl, so that the few acinar cells that form do not complete differentiation. Nr5a2 controls several temporally distinct stages of pancreatic development that involve regulatory mechanisms relevant to pancreatic oncogenesis and the maintenance of the exocrine phenotype. © 2014. Published by The Company of Biologists Ltd.

  13. The herbicide atrazine activates endocrine gene networks via non-steroidal NR5A nuclear receptors in fish and mammalian cells.

    Directory of Open Access Journals (Sweden)

    Miyuki Suzawa

    Full Text Available Atrazine (ATR remains a widely used broadleaf herbicide in the United States despite the fact that this s-chlorotriazine has been linked to reproductive abnormalities in fish and amphibians. Here, using zebrafish we report that environmentally relevant ATR concentrations elevated zcyp19a1 expression encoding aromatase (2.2 microg/L, and increased the ratio of female to male fish (22 microg/L. ATR selectively increased zcyp19a1, a known gene target of the nuclear receptor SF-1 (NR5A1, whereas zcyp19a2, which is estrogen responsive, remained unchanged. Remarkably, in mammalian cells ATR functions in a cell-specific manner to upregulate SF-1 targets and other genes critical for steroid synthesis and reproduction, including Cyp19A1, StAR, Cyp11A1, hCG, FSTL3, LHss, INHalpha, alphaGSU, and 11ss-HSD2. Our data appear to eliminate the possibility that ATR directly affects SF-1 DNA- or ligand-binding. Instead, we suggest that the stimulatory effects of ATR on the NR5A receptor subfamily (SF-1, LRH-1, and zff1d are likely mediated by receptor phosphorylation, amplification of cAMP and PI3K signaling, and possibly an increase in the cAMP-responsive cellular kinase SGK-1, which is known to be upregulated in infertile women. Taken together, we propose that this pervasive and persistent environmental chemical alters hormone networks via convergence of NR5A activity and cAMP signaling, to potentially disrupt normal endocrine development and function in lower and higher vertebrates.

  14. Deletion of the complement C5a receptor alleviates the severity of acute pneumococcal otitis media following influenza A virus infection in mice.

    Directory of Open Access Journals (Sweden)

    Hua Hua Tong

    Full Text Available There is considerable evidence that influenza A virus (IAV promotes adherence, colonization, and superinfection by S. pneumoniae (Spn and contributes to the pathogenesis of otitis media (OM. The complement system is a critical innate immune defense against both pathogens. To assess the role of the complement system in the host defense and the pathogenesis of acute pneumococcal OM following IAV infection, we employed a well-established transtympanically-induced mouse model of acute pneumococcal OM. We found that antecedent IAV infection enhanced the severity of acute pneumococcal OM. Mice deficient in complement C1qa (C1qa-/- or factor B (Bf -/- exhibited delayed viral and bacterial clearance from the middle ear and developed significant mucosal damage in the eustachian tube and middle ear. This indicates that both the classical and alternative complement pathways are critical for the oto-immune defense against acute pneumococcal OM following influenza infection. We also found that Spn increased complement activation following IAV infection. This was characterized by sustained increased levels of anaphylatoxins C3a and C5a in serum and middle ear lavage samples. In contrast, mice deficient in the complement C5a receptor (C5aR demonstrated enhanced bacterial clearance and reduced severity of OM. Our data support the concept that C5a-C5aR interactions play a significant role in the pathogenesis of acute pneumococcal OM following IAV infection. It is possible that targeting the C5a-C5aR axis might prove useful in attenuating acute pneumococcal OM in patients with influenza infection.

  15. Tools for integrated sequence-structure analysis with UCSF Chimera

    Directory of Open Access Journals (Sweden)

    Huang Conrad C

    2006-07-01

    Full Text Available Abstract Background Comparing related structures and viewing the structures in the context of sequence alignments are important tasks in protein structure-function research. While many programs exist for individual aspects of such work, there is a need for interactive visualization tools that: (a provide a deep integration of sequence and structure, far beyond mapping where a sequence region falls in the structure and vice versa; (b facilitate changing data of one type based on the other (for example, using only sequence-conserved residues to match structures, or adjusting a sequence alignment based on spatial fit; (c can be used with a researcher's own data, including arbitrary sequence alignments and annotations, closely or distantly related sets of proteins, etc.; and (d interoperate with each other and with a full complement of molecular graphics features. We describe enhancements to UCSF Chimera to achieve these goals. Results The molecular graphics program UCSF Chimera includes a suite of tools for interactive analyses of sequences and structures. Structures automatically associate with sequences in imported alignments, allowing many kinds of crosstalk. A novel method is provided to superimpose structures in the absence of a pre-existing sequence alignment. The method uses both sequence and secondary structure, and can match even structures with very low sequence identity. Another tool constructs structure-based sequence alignments from superpositions of two or more proteins. Chimera is designed to be extensible, and mechanisms for incorporating user-specific data without Chimera code development are also provided. Conclusion The tools described here apply to many problems involving comparison and analysis of protein structures and their sequences. Chimera includes complete documentation and is intended for use by a wide range of scientists, not just those in the computational disciplines. UCSF Chimera is free for non-commercial use and is

  16. NF-κB and androgen receptor variant 7 induce expression of SRD5A isoforms and confer 5ARI resistance

    DEFF Research Database (Denmark)

    Austin, David C; Strand, Douglas W; Love, Harold L;

    2016-01-01

    BACKGROUND: Benign prostatic hyperplasia (BPH) is treated with 5α-reductase inhibitors (5ARI). These drugs inhibit the conversion of testosterone to dihydrotestosterone resulting in apoptosis and prostate shrinkage. Most patients initially respond to 5ARIs; however, failure is common especially...... tract symptoms secondary to advanced BPH; and, cancer free transition zone from "Incidental" patients treated for low grade, localized peripheral zone prostate cancer. Clinical, molecular and histopathological profiles were analyzed. Human prostatic stromal and epithelial cell lines were genetically...... modified to regulate NF-κB activity, androgen receptor (AR) full length (AR-FL), and AR variant 7 (AR-V7) expression. RESULTS: SRD5A2 is upregulated in advanced BPH. SRD5A2 was significantly associated with prostate volume determined by Transrectal Ultrasound (TRUS), and with more severe lower urinary...

  17. Modeling Quark Gluon Plasma Using CHIMERA

    Science.gov (United States)

    Abelev, Betty

    2011-09-01

    We attempt to model Quark Gluon Plasma (QGP) evolution from the initial Heavy Ion collision to the final hadronic gas state by combining the Glauber model initial state conditions with eccentricity fluctuations, pre-equilibrium flow, UVH2+1 viscous hydrodynamics with lattice QCD Equation of State (EoS), a modified Cooper-Frye freeze-out and the UrQMD hadronic cascade. We then evaluate the model parameters using a comprehensive analytical framework which together with the described model we call CHIMERA. Within our framework, the initial state parameters, such as the initial temperature (Tinit), presence or absence of initial flow, viscosity over entropy density (η/S) and different Equations of State (EoS), are varied and then compared simultaneously to several experimental data observables: HBT radii, particle spectra and particle flow. χ2/nds values from comparison to the experimental data for each set of initial parameters will then used to find the optimal description of the QGP with parameters that are difficult to obtain experimentally, but are crucial to understanding of the matter produced.

  18. Modeling Quark Gluon Plasma Using CHIMERA

    CERN Document Server

    Abelev, Betty B I

    2011-01-01

    We attempt to model Quark Gluon Plasma (QGP) evolution from the initial Heavy Ion collision to the final hadronic gas state by combining the Glauber model initial state conditions with eccentricity fluctuations, pre-equilibrium flow, UVH2+1 viscous hydrodynamics with lattice QCD Equation of State (EoS), a modified Cooper-Frye freeze-out and the UrQMD hadronic cascade. We then evaluate the model parameters using a comprehensive analytical framework which together with the described model we call CHIMERA. Within our framework, the initial state parameters, such as the initial temperature (T$_{\\mathrm{init}}$), presence or absence of initial flow, viscosity over entropy density ($\\eta$/s) and different Equations of State (EoS), are varied and then compared simultaneously to several experimental data observables: HBT radii, particle spectra and particle flow. $\\chi^2$/nds values from comparison to the experimental data for each set of initial parameters will then used to find the optimal description of the QGP wi...

  19. Chimera states in coupled Kuramoto oscillators with inertia

    Energy Technology Data Exchange (ETDEWEB)

    Olmi, Simona, E-mail: simona.olmi@fi.isc.cnr.it [CNR - Consiglio Nazionale delle Ricerche - Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); INFN Sez. Firenze, via Sansone, 1 - I-50019 Sesto Fiorentino (Italy)

    2015-12-15

    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.

  20. Deterministic and stochastic control of chimera states in delayed feedback oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, V. [Department of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov (Russian Federation); Zakharova, A.; Schöll, E. [Institut für Theoretische Physik, TU Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Maistrenko, Y. [Institute of Mathematics and Center for Medical and Biotechnical Research, NAS of Ukraine, Tereschenkivska Str. 3, 01601 Kyiv (Ukraine)

    2016-06-08

    Chimera states, characterized by the coexistence of regular and chaotic dynamics, are found in a nonlinear oscillator model with negative time-delayed feedback. The control of these chimera states by external periodic forcing is demonstrated by numerical simulations. Both deterministic and stochastic external periodic forcing are considered. It is shown that multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. The constructive role of noise in the formation of a chimera states is shown.

  1. Delayed-feedback chimera states: Forced multiclusters and stochastic resonance

    Science.gov (United States)

    Semenov, V.; Zakharova, A.; Maistrenko, Y.; Schöll, E.

    2016-07-01

    A nonlinear oscillator model with negative time-delayed feedback is studied numerically under external deterministic and stochastic forcing. It is found that in the unforced system complex partial synchronization patterns like chimera states as well as salt-and-pepper-like solitary states arise on the route from regular dynamics to spatio-temporal chaos. The control of the dynamics by external periodic forcing is demonstrated by numerical simulations. It is shown that one-cluster and multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. If a stochastic component is superimposed to the deterministic external forcing, chimera states can be induced in a way similar to stochastic resonance, they appear, therefore, in regimes where they do not exist without noise.

  2. Chimera states and synchronization in magnetically driven SQUID metamaterials

    Science.gov (United States)

    Hizanidis, J.; Lazarides, N.; Neofotistos, G.; Tsironis, G. P.

    2016-09-01

    One-dimensional arrays of Superconducting QUantum Interference Devices (SQUIDs) form magnetic metamaterials exhibiting extraordinary properties, including tunability, dynamic multistability, negative magnetic permeability, and broadband transparency. The SQUIDs in a metamaterial interact through non-local, magnetic dipole-dipole forces, that makes it possible for multiheaded chimera states and coexisting patterns, including solitary states, to appear. The spontaneous emergence of chimera states and the role of multistability is demonstrated numerically for a SQUID metamaterial driven by an alternating magnetic field. The spatial synchronization and temporal complexity are discussed and the parameter space for the global synchronization reveals the areas of coherence-incoherence transition. Given that both one- and two-dimensional SQUID metamaterials have been already fabricated and investigated in the lab, the presence of a chimera state could in principle be detected with presently available experimental set-ups.

  3. Chimeras in locally coupled SQUIDs: Lions, goats and snakes

    CERN Document Server

    Hizanidis, J; Tsironis, G P

    2016-01-01

    We report on the emergence of robust multi-clustered chimera states in a dissipative-driven system of symmetrically and locally coupled identical SQUID oscillators. The "snake-like" resonance curve of the single SQUID (Superconducting QUantum Interference Device) is the key to the formation of the chimera states and is responsible for the extreme multistability exhibited by the coupled system that leads to attractor crowding at the geometrical resonance frequency. Until now, chimera states were mostly believed to exist for nonlocal coupling. Our findings provide theoretical evidence that nearest neighbor interactions is indeed capable of supporting such states in a wide parameter range. SQUID metamaterials are the subject of intense experimental investigations and we are highly confident that the complex dynamics demonstrated in this manuscript can be confirmed in the laboratory.

  4. Pulse shape method for the Chimera silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pagano, A.; Arena, N.; Cardella, G.; D' Andrea, M.; Filippo, E. de; Fichera, F.; Giudice, N.; Guardone, N.; Grimaldi, A.; Nicotra, D.; Papa, M.; Pirrone, S.; Politi, G.; Rapicavoli, C.; Rizza, G.; Russotto, P.; Sacca, G.; Urso, S.; Lanzano, G. [Catania Univ., INFN Catania and Dipartimento di Fisica e Astronomia (Italy); Alderighi, M.; Sechi, G. [INFN Milano and Istituto di Fisica Cosmica CNR, Milano (Italy); Amorini, F.; Anzalone, A.; Cali, C.; Campagna, V.; Cavallaro, S.; Di Stefano, A.; Giustolisi, F.; La Guidara, E.; Lanzalone, G.; Maiolino, C.; Porto, F.; Rizzo, F.; Salamone, S. [Catania Univ., INFN-LNS and Dipartimento di Fisica e Astronomia (Italy); Auditore, L.; Trifiro, A.; Trimarchi, M. [Messina Univ., INFN and Dipartimento di Fisica (Italy); Bassini, R.; Boiano, C.; Guazzoni, P.; Russo, S.; Sassi, M.; Zetta, L. [Milano Univ., INFN Milano and Dipartimento di Fisica (Italy); Blicharska, J.; Grzeszczuk, A. [Silesia Univ., Institute of Physics, Katowice (Poland); Chatterjee, M.B. [Saha Institute Of Nuclear Physics, Kolkata (India); Geraci, E.; Zipper, W. [Bologna Univ., INFN Bologna and Dipartimento di Fisica (Italy); Rosato, E.; Vigilante, M. [Napoli Univ., INFN and Dipartimento di Fisica (Italy); Schroder, W.U.; T-ke, J. [Rochester Univ., Dept. of Chemistry, Rochester, N.Y. (United States)

    2003-07-01

    Since January 2003, the 4{pi} CHIMERA (Charged Heavy Ions Mass and Energy Resolving Array) detector in its full configuration has successfully been operated at the 'Catania Laboratori Nazionali del Sud' (LNS) accelerator facility. The detector has been used with a variety of beams from the Superconducting Cyclotron in heavy-ion reaction studies at Fermi bombarding energies. Future experiments with a focus on isospin physics at Fermi energies, planned for both primary and less intense secondary particle beams, suggest the development of new and more versatile experimental particle identification methods. Recent achievements in implementing specific pulse shape particle identification methods for CHIMERA silicon detectors are reported. They suggest an upgrade of the present charge and mass identification capability of CHIMERA by a simple extension of the method. (authors)

  5. Robust chimera states in SQUID metamaterials with local interactions

    Science.gov (United States)

    Hizanidis, J.; Lazarides, N.; Tsironis, G. P.

    2016-09-01

    We report on the emergence of robust multiclustered chimera states in a dissipative-driven system of symmetrically and locally coupled identical superconducting quantum interference device (SQUID) oscillators. The "snakelike" resonance curve of the single SQUID is the key to the formation of the chimera states and is responsible for the extreme multistability exhibited by the coupled system that leads to attractor crowding at the geometrical resonance (inductive-capacitive) frequency. Until now, chimera states were mostly believed to exist for nonlocal coupling. Our findings provide theoretical evidence that nearest-neighbor interactions are indeed capable of supporting such states in a wide parameter range. SQUID metamaterials are the subject of intense experimental investigations, and we are highly confident that the complex dynamics demonstrated in this paper can be confirmed in the laboratory.

  6. Chimera-like states in modular neural networks

    CERN Document Server

    Hizanidis, Johanne; Zamora-López, Gorka; Díaz-Guilera, Albert; Antonopoulos, Chris G

    2016-01-01

    Chimera states, namely the coexistence of coherent and incoherent behavior, were previously analyzed in complex networks. However, they have not been extensively studied in modular networks. Here, we consider the neural network of the \\textit{C.elegans} soil worm, organized into six interconnected communities, where neurons obey chaotic bursting dynamics. Neurons are assumed to be connected with electrical synapses within their communities and with chemical synapses across them. As our numerical simulations reveal, the coaction of these two types of coupling can shape the dynamics in such a way that chimera-like states can happen. They consist of a fraction of synchronized neurons which belong to the larger communities, and a fraction of desynchronized neurons which are part of smaller communities. In addition to the Kuramoto order parameter $\\rho$, we also employ other measures of coherence, such as the chimera-like $\\chi$ and metastability $\\lambda$ indices, which quantify the degree of synchronization amon...

  7. Mechanism of chimera formation during the Multiple Displacement Amplification reaction

    Directory of Open Access Journals (Sweden)

    Stockwell Timothy B

    2007-04-01

    Full Text Available Abstract Background Multiple Displacement Amplification (MDA is a method used for amplifying limiting DNA sources. The high molecular weight amplified DNA is ideal for DNA library construction. While this has enabled genomic sequencing from one or a few cells of unculturable microorganisms, the process is complicated by the tendency of MDA to generate chimeric DNA rearrangements in the amplified DNA. Determining the source of the DNA rearrangements would be an important step towards reducing or eliminating them. Results Here, we characterize the major types of chimeras formed by carrying out an MDA whole genome amplification from a single E. coli cell and sequencing by the 454 Life Sciences method. Analysis of 475 chimeras revealed the predominant reaction mechanisms that create the DNA rearrangements. The highly branched DNA synthesized in MDA can assume many alternative secondary structures. DNA strands extended on an initial template can be displaced becoming available to prime on a second template creating the chimeras. Evidence supports a model in which branch migration can displace 3'-ends freeing them to prime on the new templates. More than 85% of the resulting DNA rearrangements were inverted sequences with intervening deletions that the model predicts. Intramolecular rearrangements were favored, with displaced 3'-ends reannealing to single stranded 5'-strands contained within the same branched DNA molecule. In over 70% of the chimeric junctions, the 3' termini had initiated priming at complimentary sequences of 2–21 nucleotides (nts in the new templates. Conclusion Formation of chimeras is an important limitation to the MDA method, particularly for whole genome sequencing. Identification of the mechanism for chimera formation provides new insight into the MDA reaction and suggests methods to reduce chimeras. The 454 sequencing approach used here will provide a rapid method to assess the utility of reaction modifications.

  8. Mutant U5A cells are complemented by an interferon-alpha beta receptor subunit generated by alternative processing of a new member of a cytokine receptor gene cluster.

    Science.gov (United States)

    Lutfalla, G; Holland, S J; Cinato, E; Monneron, D; Reboul, J; Rogers, N C; Smith, J M; Stark, G R; Gardiner, K; Mogensen, K E

    1995-10-16

    The cellular receptor for the alpha/beta interferons contains at least two components that interact with interferon. The ifnar1 component is well characterized and a putative ifnar2 cDNA has recently been identified. We have cloned the gene for ifnar2 and show that it produces four different transcripts encoding three different polypeptides that are generated by exon skipping, alternative splicing and differential use of polyadenylation sites. One polypeptide is likely to be secreted and two are transmembrane proteins with identical extracellular and transmembrane domains but divergent cytoplasmic tails of 67 and 251 amino acids. A mutant cell line U5A, completely defective in IFN-alpha beta binding and response, has been isolated and characterized. Expression in U5A cells of the polypeptide with the long cytoplasmic domain reconstitutes a functional receptor that restores normal interferon binding, activation of the JAK/STAT signal transduction pathway, interferon-inducible gene expression and antiviral response. The IFNAR2 gene maps at 0.5 kb from the CRFB4 gene, establishing that together IFNAR2, CRFB4, IFNAR1 and AF1 form a cluster of class II cytokine receptor genes on human chromosome 21.

  9. The LIM domain protein FHL2 interacts with the NR5A family of nuclear receptors and CREB to activate the inhibin-α subunit gene in ovarian granulosa cells.

    Science.gov (United States)

    Matulis, Christina K; Mayo, Kelly E

    2012-08-01

    Nuclear receptor transcriptional activity is enhanced by interaction with coactivators. The highly related nuclear receptor 5A (NR5A) subfamily members liver receptor homolog 1 and steroidogenic factor 1 bind to and activate several of the same genes, many of which are important for reproductive function. To better understand transcriptional activation by these nuclear receptors, we sought to identify interacting proteins that might function as coactivators. The LIM domain protein four and a half LIM domain 2 (FHL2) was identified as interacting with the NR5A receptors in a yeast two-hybrid screen of a human ovary cDNA library. FHL2, and the closely related FHL1, are both expressed in the rodent ovary and in granulosa cells. Small interfering RNA-mediated knockdown of FHL1 and FHL2 in primary mouse granulosa cells reduced expression of the NR5A target genes encoding inhibin-α and P450scc. In vitro assays confirmed the interaction between the FHL and NR5A proteins and revealed that a single LIM domain of FHL2 is sufficient for this interaction, whereas determinants in both the ligand binding domain and DNA binding domain of NR5A proteins are important. FHL2 enhances the ability of both liver receptor homolog 1 and steroidogenic factor 1 to activate the inhibin-α subunit gene promoter in granulosa cells and thus functions as a transcriptional coactivator. FHL2 also interacts with cAMP response element-binding protein and substantially augments activation of inhibin gene expression by the combination of NR5A receptors and forskolin, suggesting that FHL2 may facilitate integration of these two signals. Collectively these results identify FHL2 as a novel coactivator of NR5A nuclear receptors in ovarian granulosa cells and suggest its involvement in regulating target genes important for mammalian reproduction.

  10. Development of surface-based assays for transmembrane proteins: selective immobilization of functional CCR5, a G protein-coupled receptor.

    Science.gov (United States)

    Silin, Vitalii I; Karlik, Evan A; Ridge, Kevin D; Vanderah, David J

    2006-02-15

    A general method to develop surface-based assays for transmembrane (TM) receptor function(s) without the need to isolate, purify, and reconstitute the proteins is presented. Based on the formation of an active surface that selectively immobilizes membrane vesicles, the method is illustrated using the chemokine receptor CCR5, a member of the largest family of cell surface eukaryotic TM proteins, the G protein-coupled receptors (GPCRs). The method begins with a protein-resistant surface containing a low percentage (1-5%) of surface-bound biotin on gold as the initial template. Surface plasmon resonance (SPR) data show specific immobilization of functional CCR5 after the initial template is activated by immobilization of rho 1D4 antibody, an anti-rhodopsin monoclonal antibody specific for the carboxyl terminal nine amino acids on bovine rhodopsin that had been engineered into the carboxyl terminus of CCR5, and exposure to vesicles obtained from mammalian cells transfected with a synthetic human CCR5 gene. Activation of the initial template is effected by sequential immobilization of avidin, which binds to the biotin in the initial template, a biotinylated goat anti-mouse immunoglobulin G (Bt-IgG), which binds to the avidin binding sites distal to the surface and the F(c) portion of the rho 1D4 antibody through its F(ab) region(s) and finally rho 1D4. This approach establishes a broad outline for the development and application of various assays for CCR5 functions. SPR data also showed that vesicle immobilization could be achieved through an integrin-integrin antibody interaction after activation of the initial template with a goat anti-human integrin beta1 antibody. These results suggest that the generic nature of the initial platform and flexibility of the subsequent surface activation for specific immobilization of membrane vesicles can be applied to the development of assays for other GPCRs or TM receptors for which antibodies are available or can be engineered to

  11. What’s Wrong with Human/Nonhuman Chimera Research?

    Science.gov (United States)

    Hyun, Insoo

    2016-01-01

    The National Institutes of Health (NIH) is poised to lift its funding moratorium on research involving chimeric human/nonhuman embryos, pending further consideration by an NIH steering committee. The kinds of ethical concerns that seem to underlie this research and chimera research more generally can be adequately addressed. PMID:27574863

  12. Chimera states in two populations with heterogeneous phase-lag

    Science.gov (United States)

    Martens, Erik A.; Bick, Christian; Panaggio, Mark J.

    2016-09-01

    The simplest network of coupled phase-oscillators exhibiting chimera states is given by two populations with disparate intra- and inter-population coupling strengths. We explore the effects of heterogeneous coupling phase-lags between the two populations. Such heterogeneity arises naturally in various settings, for example, as an approximation to transmission delays, excitatory-inhibitory interactions, or as amplitude and phase responses of oscillators with electrical or mechanical coupling. We find that breaking the phase-lag symmetry results in a variety of states with uniform and non-uniform synchronization, including in-phase and anti-phase synchrony, full incoherence (splay state), chimera states with phase separation of 0 or π between populations, and states where both populations remain desynchronized. These desynchronized states exhibit stable, oscillatory, and even chaotic dynamics. Moreover, we identify the bifurcations through which chimeras emerge. Stable chimera states and desynchronized solutions, which do not arise for homogeneous phase-lag parameters, emerge as a result of competition between synchronized in-phase, anti-phase equilibria, and fully incoherent states when the phase-lags are near ± /π 2 (cosine coupling). These findings elucidate previous experimental results involving a network of mechanical oscillators and provide further insight into the breakdown of synchrony in biological systems.

  13. CHIMERA CBRN protective suit. Advanced embodiment design. Final report

    NARCIS (Netherlands)

    Bogerd, C.P.; Smit, B. de; Olarte, C.; Kane, G.; Bie, M. de; Megen, X. van; Schenk, J.; Hooop, J. de

    2015-01-01

    The Chimera project started of with the following design challenge: Designing a switchable CBRN (chemical, biological, radiological, nuclear) protective suit for soldiers, one phase being a regular work state and the other phase being a protective state to enable the soldier to get away from the tox

  14. Use of fragmentation beams at LNS with CHIMERA detector

    Directory of Open Access Journals (Sweden)

    Gianí R.

    2012-07-01

    Full Text Available The recent intensity upgrade of the LNS fragmentation beam is discussed. The available beams, the tagging procedures and details on the beam quality are reported. The experimental program started with the CHIMERA detector using such beams is also discussed with preliminary results and future perspectives.

  15. CHIMERA CBRN protective suit. Advanced embodiment design. Final report

    NARCIS (Netherlands)

    Bogerd, C.P.; Smit, B. de; Olarte, C.; Kane, G.; Bie, M. de; Megen, X. van; Schenk, J.; Hooop, J. de

    2015-01-01

    The Chimera project started of with the following design challenge: Designing a switchable CBRN (chemical, biological, radiological, nuclear) protective suit for soldiers, one phase being a regular work state and the other phase being a protective state to enable the soldier to get away from the

  16. Chimera: construction of chimeric sequences for phylogenetic analysis

    NARCIS (Netherlands)

    Leunissen, J.A.M.

    2003-01-01

    Chimera allows the construction of chimeric protein or nucleic acid sequence files by concatenating sequences from two or more sequence files in PHYLIP formats. It allows the user to interactively select genes and species from the input files. The concatenated result is stored to one single output

  17. Genetic engineering in film: the case of chimeras

    Directory of Open Access Journals (Sweden)

    Josep-E. BAÑOS

    2016-04-01

    Full Text Available The development of molecular genetics in the second half of XXth century has allowed considering situations, which were in the bioscience fiction field until then. Among them, the possibility of making chimeras using the combination of genetic material is now a real option. Movies have repeatedly shown this possibility by means of literary works o directly by screen plays. This article analyzes some films that may help to understand social beliefs on chimeras in the last century. We have considered Island of lost souls (1932, The island of doctor Moreau (1977, The fly (1958, 1986, Mimic (1997 and Splice (2009. The main conclusions of this analysis are the presence of a negative view to the possibility of making chimeras following the point of view that was used in Frankenstein. The movies also lack of a consideration of the potential benefits of using chimeras. Ethical misgivings and the vision of playing God scientists avoid a impartial view of a situation, which is already among us.

  18. Chimera states in uncoupled neurons induced by a multilayer structure

    CERN Document Server

    Majhi, Soumen; Ghosh, Dibakar

    2016-01-01

    Spatial coexistence of coherent and incoherent dynamics in network of coupled oscillators is called a chimera state. We study such chimera states in a network of neurons without any direct interactions but connected through another medium of neurons, forming a multilayer structure. The upper layer is thus made up of uncoupled neurons and the lower layer plays the role of a medium through which the neurons in the upper layer share information among each other. Hindmarsh-Rose neurons with square wave bursting dynamics are considered as nodes in both layers. In addition, we also discuss the existence of chimera states in presence of inter layer heterogeneity. The neurons in the bottom layer are globally connected through electrical synapses, while across the two layers chemical synapses are formed. According to our research, the competing effects of these two types of synapses can lead to chimera states in the upper layer of uncoupled neurons. Remarkably, we find a density-dependent threshold for the emergence o...

  19. Chimera states in two populations with heterogeneous phase-lag.

    Science.gov (United States)

    Martens, Erik A; Bick, Christian; Panaggio, Mark J

    2016-09-01

    The simplest network of coupled phase-oscillators exhibiting chimera states is given by two populations with disparate intra- and inter-population coupling strengths. We explore the effects of heterogeneous coupling phase-lags between the two populations. Such heterogeneity arises naturally in various settings, for example, as an approximation to transmission delays, excitatory-inhibitory interactions, or as amplitude and phase responses of oscillators with electrical or mechanical coupling. We find that breaking the phase-lag symmetry results in a variety of states with uniform and non-uniform synchronization, including in-phase and anti-phase synchrony, full incoherence (splay state), chimera states with phase separation of 0 or π between populations, and states where both populations remain desynchronized. These desynchronized states exhibit stable, oscillatory, and even chaotic dynamics. Moreover, we identify the bifurcations through which chimeras emerge. Stable chimera states and desynchronized solutions, which do not arise for homogeneous phase-lag parameters, emerge as a result of competition between synchronized in-phase, anti-phase equilibria, and fully incoherent states when the phase-lags are near ±π2 (cosine coupling). These findings elucidate previous experimental results involving a network of mechanical oscillators and provide further insight into the breakdown of synchrony in biological systems.

  20. Using CHIMERA detector at LNS for gamma-particle coincidences

    Directory of Open Access Journals (Sweden)

    Cardella G.

    2016-01-01

    Full Text Available We have recently evaluated the quality of γ-ray angular distributions that can be extracted in particle-gamma coincidence measurements using the CHIMERA detector at LNS. γ-rays have been detected using the CsI(Tl detectors of the spherical part of the CHIMERA array. Very clean γ-rays angular distributions were extracted in reactions induced by different stable beams impinging on 12C thin targets. The results evidenced an effect of projectile spin flip on the γ-rays angular distributions. γ-particle coincidence measurements were also performed in reactions induced by neutron rich exotic beams produced through in-flight fragmentation at LNS. In recent experiments also the Farcos array was used to improve energy and angular resolution measurements of the detected charged particles. Results obtained with both stable and radioactive beams are reported.

  1. Chimera regimes in a ring of oscillators with local nonlinear interaction

    Science.gov (United States)

    Shepelev, Igor A.; Zakharova, Anna; Vadivasova, Tatiana E.

    2017-03-01

    One of important problems concerning chimera states is the conditions of their existence and stability. Until now, it was assumed that chimeras could arise only in ensembles with nonlocal character of interactions. However, this assumption is not exactly right. In some special cases chimeras can be realized for local type of coupling [1-3]. We propose a simple model of ensemble with local coupling when chimeras are realized. This model is a ring of linear oscillators with the local nonlinear unidirectional interaction. Chimera structures in the ring are found using computer simulations for wide area of values of parameters. Diagram of the regimes on plane of control parameters is plotted and scenario of chimera destruction are studied when the parameters are changed.

  2. Chimera states in two populations with heterogeneous phase-lag

    OpenAIRE

    Martens, Erik Andreas; Bick, Christian; Panaggio, Mark J.

    2016-01-01

    The simplest network of coupled phase-oscillators exhibiting chimera states is given by two populations with disparate intra- and inter-population coupling strengths. We explore the effects of heterogeneous coupling phase-lags between the two populations. Such heterogeneity arises naturally in various settings, for example as an approximation to transmission delays, excitatory-inhibitory interactions, or as amplitude and phase responses of oscillators with electrical or mechanical coupling. W...

  3. Icing modelling in NSMB with chimera overset grids

    Energy Technology Data Exchange (ETDEWEB)

    Pena, D. [Ècole Polytechnique de Montréal (Canada); ICUBE, Strasbourg University (France); Deloze, T.; Laurendeau, E. [Ècole Polytechnique de Montréal (Canada); Hoarau, Y. [ICUBE, Strasbourg University (France)

    2015-03-10

    In aerospace Engineering, the accurate simulation of ice accretion is a key element to increase flight safety and avoid accidents related to icing effects. The icing code developed in the NSMB solver is based on an Eulerian formulation for droplets tracking, an iterative Messinger model using a modified water runback scheme for ice thickness calculation and mesh deformation to track the ice/air interface through time. The whole process is parallelized with MPI and applied with chimera grids.

  4. Anticipatory Governance: Bioethical Expertise for Human/Animal Chimeras.

    Science.gov (United States)

    Harvey, Alison; Salter, Brian

    2012-09-01

    The governance demands generated by the use of human/animal chimeras in scientific research offer both a challenge and an opportunity for the development of new forms of anticipatory governance through the novel application of bioethical expertise. Anticipatory governance can be seen to have three stages of development whereby bioethical experts move from a reactive to a proactive stance at the edge of what is scientifically possible. In the process, the ethicists move upstream in their engagement with the science of human-to-animal chimeras. To what extent is the anticipatory coestablishment of the principles and operational rules of governance at this early stage in the development of the human-to-animal research field likely to result in a framework for bioethical decision making that is in support of science? The process of anticipatory governance is characterised by the entwining of the scientific and the philosophical so that judgements against science are also found to be philosophically unfounded, and conversely, those activities that are permissible are deemed so on both scientific and ethical grounds. Through what is presented as an organic process, the emerging bioethical framework for human-to-animal chimera research becomes a legitimating framework within which 'good' science can safely progress. Science gives bioethical expertise access to new governance territory; bioethical expertise gives science access to political acceptability.

  5. Chimeras, moral status, and public policy: implications of the abortion debate for public policy on human/nonhuman chimera research.

    Science.gov (United States)

    Streiffer, Robert

    2010-01-01

    Researchers are increasingly interested in creating chimeras by transplanting human embryonic stem cells (hESCs) into animals early in development. One concern is that such research could confer upon an animal the moral status of a normal human adult but then impermissibly fail to accord it the protections it merits in virtue of its enhanced moral status. Understanding the public policy implications of this ethical conclusion, though, is complicated by the fact that claims about moral status cannot play an unfettered role in public policy. Arguments like those employed in the abortion debate for the conclusion that abortion should be legally permissible even if abortion is not morally permissible also support, to a more limited degree, a liberal policy on hESC research involving the creation of chimeras.

  6. Chimera states and the interplay between initial conditions and non-local coupling

    Science.gov (United States)

    Kalle, Peter; Sawicki, Jakub; Zakharova, Anna; Schöll, Eckehard

    2017-03-01

    Chimera states are complex spatio-temporal patterns that consist of coexisting domains of coherent and incoherent dynamics. We study chimera states in a network of non-locally coupled Stuart-Landau oscillators. We investigate the impact of initial conditions in combination with non-local coupling. Based on an analytical argument, we show how the coupling phase and the coupling strength are linked to the occurrence of chimera states, flipped profiles of the mean phase velocity, and the transition from a phase- to an amplitude-mediated chimera state.

  7. An Activin A/BMP2 chimera displays bone healing properties superior to those of BMP2

    Science.gov (United States)

    Yoon, Byung-Hak; Esquivies, Luis; Ahn, Chihoon; Gray, Peter C.; Ye, Sang-kyu; Kwiatkowski, Witek; Choe, Senyon

    2014-01-01

    Recombinant Bone Morphogenetic Protein 2 (rhBMP2) has been used clinically to treat bone fractures in human patients. However, the high doses of rhBMP2 required for a therapeutic response can cause undesirable side effects. Here, we demonstrate that a novel Activin A/BMP2 (AB2) chimera, AB204, promotes osteogenesis and bone healing much more potently and effectively than rhBMP2. Remarkably, 1 month of AB204 treatment completely heals tibial and calvarial defects of critical size in mice at a concentration 10-fold lower than a dose of rhBMP2 that only partially heals the defect. We determine the structure of AB204 to 2.3 Å that reveals a distinct BMP2-like fold in which the Activin A sequence segments confer insensitivity to the BMP2 antagonist Noggin and an affinity for the Activin/BMP type II receptor ActRII that is 100-fold greater than that of BMP2. The structure also led to our identification of a single Activin A-derived amino acid residue which when mutated to the corresponding BMP2 residue resulted in a significant increase in the affinity of AB204 for its type I receptor BMPRIa and a further enhancement in AB204's osteogenic potency. Together, these findings demonstrate that rationally designed AB2 chimeras can provide BMP2 substitutes with enhanced potency for treating non-union bone fractures. PMID:24692083

  8. An activin A/BMP2 chimera, AB204, displays bone-healing properties superior to those of BMP2.

    Science.gov (United States)

    Yoon, Byung-Hak; Esquivies, Luis; Ahn, Chihoon; Gray, Peter C; Ye, Sang-Kyu; Kwiatkowski, Witek; Choe, Senyon

    2014-09-01

    Recombinant bone morphogenetic protein 2 (rhBMP2) has been used clinically to treat bone fractures in human patients. However, the high doses of rhBMP2 required for a therapeutic response can cause undesirable side effects. Here, we demonstrate that a novel Activin A/BMP2 (AB2) chimera, AB204, promotes osteogenesis and bone healing much more potently and effectively than rhBMP2. Remarkably, 1 month of AB204 treatment completely heals tibial and calvarial defects of critical size in mice at a concentration 10-fold lower than a dose of rhBMP2 that only partially heals the defect. We determine the structure of AB204 to 2.3 Å that reveals a distinct BMP2-like fold in which the Activin A sequence segments confer insensitivity to the BMP2 antagonist Noggin and an affinity for the Activin/BMP type II receptor ActRII that is 100-fold greater than that of BMP2. The structure also led to our identification of a single Activin A-derived amino acid residue, which, when mutated to the corresponding BMP2 residue, resulted in a significant increase in the affinity of AB204 for its type I receptor BMPRIa and a further enhancement in AB204's osteogenic potency. Together, these findings demonstrate that rationally designed AB2 chimeras can provide BMP2 substitutes with enhanced potency for treating non-union bone fractures.

  9. Immunogenicity of a West Nile Virus DIII-Cholera Toxin A2/B Chimera after Intranasal Delivery

    Directory of Open Access Journals (Sweden)

    Juliette K. Tinker

    2014-04-01

    Full Text Available West Nile virus (WNV causes potentially fatal neuroinvasive disease and persists at endemic levels in many parts of the world. Despite advances in our understanding of WNV pathogenesis, there remains a significant need for a human vaccine. The domain III (DIII region of the WNV envelope protein contains epitopes that are the target of neutralizing antibodies. We have constructed a chimeric fusion of the non-toxic cholera toxin (CT CTA2/B domains to DIII for investigation as a novel mucosally-delivered WNV vaccine. Purification and assembly of the chimera, as well as receptor-binding and antigen delivery, were verified by western blot, GM1 ELISA and confocal microscopy. Groups of BALB/c mice were immunized intranasally with DIII-CTA2/B, DIII, DIII mixed with CTA2/B, or CTA2/B control, and boosted at 10 days. Analysis of serum IgG after 14 and 45 days revealed that mucosal immunization with DIII-CTA2/B induced significant DIII-specific humoral immunity and drove isotype switching to IgG2a. The DIII-CTA2/B chimera also induced antigen-specific IgM and IgA responses. Bactericidal assays indicate that the DIII-CTA2/B immunized mice produced DIII-specific antibodies that can trigger complement-mediated killing. A dose escalation resulted in increased DIII-specific serum IgG titers on day 45. DIII antigen alone, in the absence of adjuvant, also induced significant systemic responses after intranasal delivery. Our results indicate that the DIII-CTA2/B chimera is immunogenic after intranasal delivery and merits further investigation as a novel WNV vaccine candidate.

  10. Immunogenicity of a West Nile virus DIII-cholera toxin A2/B chimera after intranasal delivery.

    Science.gov (United States)

    Tinker, Juliette K; Yan, Jie; Knippel, Reece J; Panayiotou, Panos; Cornell, Kenneth A

    2014-04-22

    West Nile virus (WNV) causes potentially fatal neuroinvasive disease and persists at endemic levels in many parts of the world. Despite advances in our understanding of WNV pathogenesis, there remains a significant need for a human vaccine. The domain III (DIII) region of the WNV envelope protein contains epitopes that are the target of neutralizing antibodies. We have constructed a chimeric fusion of the non-toxic cholera toxin (CT) CTA2/B domains to DIII for investigation as a novel mucosally-delivered WNV vaccine. Purification and assembly of the chimera, as well as receptor-binding and antigen delivery, were verified by western blot, GM1 ELISA and confocal microscopy. Groups of BALB/c mice were immunized intranasally with DIII-CTA2/B, DIII, DIII mixed with CTA2/B, or CTA2/B control, and boosted at 10 days. Analysis of serum IgG after 14 and 45 days revealed that mucosal immunization with DIII-CTA2/B induced significant DIII-specific humoral immunity and drove isotype switching to IgG2a. The DIII-CTA2/B chimera also induced antigen-specific IgM and IgA responses. Bactericidal assays indicate that the DIII-CTA2/B immunized mice produced DIII-specific antibodies that can trigger complement-mediated killing. A dose escalation resulted in increased DIII-specific serum IgG titers on day 45. DIII antigen alone, in the absence of adjuvant, also induced significant systemic responses after intranasal delivery. Our results indicate that the DIII-CTA2/B chimera is immunogenic after intranasal delivery and merits further investigation as a novel WNV vaccine candidate.

  11. Characteristic distribution of finite-time Lyapunov exponents for chimera states.

    Science.gov (United States)

    Botha, André E

    2016-07-04

    Our fascination with chimera states stems partially from the somewhat paradoxical, yet fundamental trait of identical, and identically coupled, oscillators to split into spatially separated, coherently and incoherently oscillating groups. While the list of systems for which various types of chimeras have already been detected continues to grow, there is a corresponding increase in the number of mathematical analyses aimed at elucidating the fundamental reasons for this surprising behaviour. Based on the model systems, there are strong indications that chimera states may generally be ubiquitous in naturally occurring systems containing large numbers of coupled oscillators - certain biological systems and high-Tc superconducting materials, for example. In this work we suggest a new way of detecting and characterising chimera states. Specifically, it is shown that the probability densities of finite-time Lyapunov exponents, corresponding to chimera states, have a definite characteristic shape. Such distributions could be used as signatures of chimera states, particularly in systems for which the phases of all the oscillators cannot be measured directly. For such cases, we suggest that chimera states could perhaps be detected by reconstructing the characteristic distribution via standard embedding techniques, thus making it possible to detect chimera states in systems where they could otherwise exist unnoticed.

  12. Studies on mu and delta opioid receptor selectivity utilizing chimeric and site-mutagenized receptors.

    Science.gov (United States)

    Wang, W W; Shahrestanifar, M; Jin, J; Howells, R D

    1995-01-01

    Opioid receptors are members of the guanine nucleotide binding protein (G protein)-coupled receptor family. Three types of opioid receptors have been cloned and characterized and are referred to as the delta, kappa and mu types. Analysis of receptor chimeras and site-directed mutant receptors has provided a great deal of information about functionally important amino acid side chains that constitute the ligand-binding domains and G-protein-coupling domains of G-protein-coupled receptors. We have constructed delta/mu opioid receptor chimeras that were express in human embryonic kidney 293 cells in order to define receptor domains that are responsible for receptor type selectivity. All chimeric receptors and wild-type delta and mu opioid receptors displayed high-affinity binding of etorphine (an agonist), naloxone (an antagonist), and bremazocine (a mixed agonist/antagonist). In contrast, chimeras that lacked the putative first extracellular loop of the mu receptor did not bind the mu-selective peptide [D-Ala2,MePhe4,Gly5-ol]enkephalin (DAMGO). Chimeras that lacked the putative third extracellular loop of the delta receptor did not bind the delta-selective peptide, [D-Ser2,D-Leu5]enkephalin-Thr (DSLET). Point mutations in the putative third extracellular loop of the wild-type delta receptor that converted vicinal arginine residues to glutamine abolished DSLET binding while not affecting bremazocine, etorphine, and naltrindole binding. We conclude that amino acids in the putative first extracellular loop of the mu receptor are critical for high-affinity DAMGO binding and that arginine residues in the putative third extracellular loop of the delta receptor are important for high-affinity DSLET binding. Images Fig. 3 PMID:8618916

  13. Experimental observation of chimera and cluster states in a minimal globally coupled network

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Joseph D. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Bansal, Kanika [Department of Mathematics, University at Buffalo, SUNY Buffalo, New York 14260 (United States); US Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); Murphy, Thomas E. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742 (United States); Roy, Rajarshi [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States)

    2016-09-15

    A “chimera state” is a dynamical pattern that occurs in a network of coupled identical oscillators when the symmetry of the oscillator population is broken into synchronous and asynchronous parts. We report the experimental observation of chimera and cluster states in a network of four globally coupled chaotic opto-electronic oscillators. This is the minimal network that can support chimera states, and our study provides new insight into the fundamental mechanisms underlying their formation. We use a unified approach to determine the stability of all the observed partially synchronous patterns, highlighting the close relationship between chimera and cluster states as belonging to the broader phenomenon of partial synchronization. Our approach is general in terms of network size and connectivity. We also find that chimera states often appear in regions of multistability between global, cluster, and desynchronized states.

  14. Targeted chimera delivery to ovarian cancer cells by heterogeneous gold magnetic nanoparticle

    Science.gov (United States)

    Chen, Yao; Xu, Mengjiao; Guo, Yi; Tu, Keyao; Wu, Weimin; Wang, Jianjun; Tong, Xiaowen; Wu, Wenjuan; Qi, Lifeng; Shi, Donglu

    2017-01-01

    Efficient delivery of small interfering RNAs (siRNAs) to the targeted cells has remained a significant challenge in clinical applications. In the present study, we developed a novel aptamer-siRNA chimera delivery system mediated by cationic Au-Fe3O4 nanoparticles (NPs). The chimera constructed by VEGF RNA aptamer and Notch3 siRNA was bonded with heterogeneous Au-Fe3O4 nanoparticles by electrostatic interaction. The obtained complex exhibited much higher silencing efficiency against Notch3 gene compared with chimera alone and lipofectamine-siRNA complex, and improved the antitumor effects of the loaded chimera. Moreover, the efficient delivery of the chimera by Au-Fe3O4 NPs could reverse multi-drug resistance (MDR) of ovarian cancer cells against the chemotherapeutic drug cisplatin, indicating its potential capability for future targeted cancer therapy while overcoming MDR.

  15. Laser chimeras as a paradigm for multistable patterns in complex systems

    Science.gov (United States)

    Larger, Laurent; Penkovsky, Bogdan; Maistrenko, Yuri

    2015-07-01

    A chimera state is a rich and fascinating class of self-organized solutions developed in high-dimensional networks. Necessary features of the network for the emergence of such complex but structured motions are non-local and symmetry breaking coupling. An accurate understanding of chimera states is expected to bring important insights on deterministic mechanism occurring in many structurally similar high-dimensional dynamics such as living systems, brain operation principles and even turbulence in hydrodynamics. Here we report on a powerful and highly controllable experiment based on an optoelectronic delayed feedback applied to a wavelength tuneable semiconductor laser, with which a wide variety of chimera patterns can be accurately investigated and interpreted. We uncover a cascade of higher-order chimeras as a pattern transition from N to N+1 clusters of chaoticity. Finally, we follow visually, as the gain increases, how chimera state is gradually destroyed on the way to apparent turbulence-like system behaviour.

  16. Ethical aspects of creating human-nonhuman chimeras capable of human gamete production and human pregnancy.

    Science.gov (United States)

    Palacios-González, César

    2015-01-01

    In this paper I explore some of the moral issues that could emerge from the creation of human-nonhuman chimeras (HNH-chimeras) capable of human gamete production and human pregnancy. First I explore whether there is a cogent argument against the creation of HNH-chimeras that could produce human gametes. I conclude that so far there is none, and that in fact there is at least one good moral reason for producing such types of creatures. Afterwards I explore some of the moral problems that could emerge from the fact that a HNH-chimera could become pregnant with a human conceptus. I focus on two sets of problems: problems that would arise by virtue of the fact that a human is gestated by a nonhuman creature, and problems that would emerge from the fact that such pregnancies could affect the health of the HNH-chimera.

  17. Radiochemical synthesis and biological evaluation of 3-[4-(4-[{sup 18}F]fluorobenzyl)piperazin-1-ylmethyl]pyrazolo[1,5-a]pyridine as dopamine D{sub 4} receptor radioligand

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gu-Cai; Zhang, Ru; Jiang, Kai-Jun; Chen, Bo [Hunan Institute of Engineering, Xiangtan (China). College of Chemistry and Chemical Engineering

    2014-09-01

    A potential dopamine D{sub 4} receptor radioligand, 3-[4-(4-[{sup 18}F]fluorobenzyl)piperazin-1-ylmethyl]pyrazolo[1,5-a]pyridine was synthesized through a one-pot two-step procedure with total yield 18.5% (decay corrected). The molar radioactivity was 115 GBq/μmol and the radiochemical purity was greater than 95.5%. Its affinity and selectivity for dopamine D{sub 2}-like receptors were measured through in vitro receptor binding experiments and the K{sub i} for D{sub 4} receptor was determined to be 17 ± 0.5 nM. The partition coefficient (Log P) of it was determined to be 2.80 ± 0.10 through octanol experiment. The in vivo biodistribution of it in rat brain exposed that the radioligand penetrates through blood-brain- barrier (BBB) and may specifically bind to dopamine D{sub 4} receptor. The results indicated that the radioligand shows promise for the in vivo study of dopamine D{sub 4} receptor. (orig.)

  18. PRMT5, a novel TRAIL receptor-binding protein, inhibits TRAIL-induced apoptosis via nuclear factor-kappaB activation.

    Science.gov (United States)

    Tanaka, Hiroshi; Hoshikawa, Yutaka; Oh-hara, Tomoko; Koike, Sumie; Naito, Mikihiko; Noda, Tetsuo; Arai, Hiroyuki; Tsuruo, Takashi; Fujita, Naoya

    2009-04-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily and has selective antitumor activity. Although TNF-alpha-induced intracellular signaling pathways have been well studied, TRAIL signaling is not fully understood. Here, we identified a novel TRAIL receptor-binding protein, protein arginine methyltransferase 5 (PRMT5), as a result of proteomic screening. PRMT5 selectively interacted with death receptor 4 and death receptor 5 but not with TNF receptor 1 or Fas. PRMT5 gene silencing sensitized various cancer cells to TRAIL without affecting TRAIL resistance in nontransformed cells. PRMT5 contributed to TRAIL-induced activation of inhibitor of kappaB kinase (IKK) and nuclear factor-kappaB (NF-kappaB), leading to induction of several NF-kappaB target genes. Although IKK inhibition increased sensitivity to both TRAIL and TNF-alpha, PRMT5 knockdown potentiated TRAIL-mediated cytotoxicity alone. PRMT5 had no effect on TNF-alpha-mediated NF-kappaB signaling. These results show the selectivity of PRMT5 for TRAIL signaling. The PRMT5 small interfering RNA-mediated susceptibility to TRAIL was rescued by ectopic expression of active IKKbeta, confirming the involvement of PRMT5 in TRAIL resistance by activating the NF-kappaB pathway. Collectively, our findings suggest the therapeutic potential of PRMT5 in TRAIL-based cancer treatments

  19. Protein-DNA chimeras: synthesis of two-arm chimeras and non-mechanical effects of the DNA spring

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yong; Wang, Andrew; Qu Hao; Zocchi, Giovanni, E-mail: zocchi@physics.ucla.ed [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095-1547 (United States)

    2009-08-19

    DNA molecular springs have recently been used to control the activity of enzymes and ribozymes. In this approach, the mechanical stress exerted by the molecular spring alters the enzyme's conformation and thus the enzymatic activity. Here we describe a method alternative to our previous one to attach DNA molecular springs to proteins, where two separate DNA 'arms' are coupled to the protein and subsequently ligated. We report certain non-mechanical effects associated with the DNA spring observed in some chimeras with specific DNA sequences and the nucleotide binding enzyme guanylate kinase. If a ssDNA 'arm' is attached to the protein by one end only, we find that in some cases (depending on the DNA sequence and attachment point on the protein's surface) the unhybridized DNA arm inhibits the enzyme, while hybridization of the DNA arm leads to an apparent activation of the enzyme. One interpretation is that, in these cases, hybridization of the DNA arm removes it from the vicinity of the active site of the enzyme. We show how mechanical and non-mechanical effects of the DNA spring can be distinguished. This is important if one wants to use the protein-DNA chimeras to quantitatively study the response of the enzyme to mechanical perturbations.

  20. Chimera states in a Hodgkin-Huxley model of thermally sensitive neurons

    Science.gov (United States)

    Glaze, Tera A.; Lewis, Scott; Bahar, Sonya

    2016-08-01

    Chimera states occur when identically coupled groups of nonlinear oscillators exhibit radically different dynamics, with one group exhibiting synchronized oscillations and the other desynchronized behavior. This dynamical phenomenon has recently been studied in computational models and demonstrated experimentally in mechanical, optical, and chemical systems. The theoretical basis of these states is currently under active investigation. Chimera behavior is of particular relevance in the context of neural synchronization, given the phenomenon of unihemispheric sleep and the recent observation of asymmetric sleep in human patients with sleep apnea. The similarity of neural chimera states to neural "bump" states, which have been suggested as a model for working memory and visual orientation tuning in the cortex, adds to their interest as objects of study. Chimera states have been demonstrated in the FitzHugh-Nagumo model of excitable cells and in the Hindmarsh-Rose neural model. Here, we demonstrate chimera states and chimera-like behaviors in a Hodgkin-Huxley-type model of thermally sensitive neurons both in a system with Abrams-Strogatz (mean field) coupling and in a system with Kuramoto (distance-dependent) coupling. We map the regions of parameter space for which chimera behavior occurs in each of the two coupling schemes.

  1. A chimera embryo assay reveals a decrease in embryonic cellular proliferation induced by sperm from X-irradiated male mice

    Energy Technology Data Exchange (ETDEWEB)

    Obasaju, M.F.; Wiley, L.M.; Oudiz, D.J.; Raabe, O.; Overstreet, J.W.

    1989-05-01

    Male mice were divided into three experimental groups and a control group. Mice in the experimental groups received one of three doses of acute X irradiation (1.73, 0.29, and 0.05 Gy) and together with the control unirradiated mice were then mated weekly to unirradiated female mice for a 9-week experimental period. Embryos were recovered from the weekly matings at the four-cell stage and examined by the chimera assay for proliferative disadvantage. Aggregation chimeras were constructed of embryos from female mice mated to irradiated males (experimental embryos) and embryos from females mated to unexposed males (control embryos) and contained either one experimental embryo and one control embryo (heterologous chimera) or two control embryos (control chimera). The control embryo in heterologous chimeras and either embryo in control chimeras were prelabeled with the vital dye fluorescein isothiocyanate (FITC), and the chimeras were cultured for 40 h and viewed under phase-contrast and epifluorescence microscopy to obtain total embryo cell number and the cellular contribution from the FITC-labeled embryo. Experimental and control embryos that were cultured singly were also examined for embryo cell number at the end of the 40-h culture period. In control chimeras, the mean ratio of the unlabeled cells:total chimera cell number (henceforth referred to as ''mean ratio'') was 0.50 with little or no weekly variation over the 9-week experimental period. During Weeks 4-7, the mean ratios of heterologous chimeras differed significantly from the mean ratio of control chimeras with the greatest differences occurring during Week 7 (0.41 for chimeras of 0.05 Gy dose group, 0.40 for chimeras of the 0.29 Gy dose group, and 0.17 for chimeras of the 1.73 Gy dose group).

  2. Study on proliferative responses to host Ia antigens in allogeneic bone marrow chimera in mice: sequential analysis of the reactivity and characterization of the cells involved in the responses

    Energy Technology Data Exchange (ETDEWEB)

    Iwabuchi, K.; Ogasawara, K.; Ogasawara, M.; Yasumizu, R.; Noguchi, M.; Geng, L.; Fujita, M.; Good, R.A.; Onoe, K.

    1987-01-01

    Irradiation bone marrow chimeras were established by reconstitution of lethally irradiated AKR mice with C57BL/10 marrow cells to permit serial analysis of the developing reactivities of lymphocytes from such chimeras, (B10----AKR), against donor, host, or third party antigens. We found that substantial proliferative responses to Ia antigens of the recipient strain and also to third party antigens were generated by the thymocytes obtained from the irradiation chimeras at an early stage after bone marrow reconstitution. The majority of the responding thymocytes had surfaces lacking demonstrable peanut agglutinin receptors and were donor type Thy-1+, Ly-2-, and L3T4+ in both anti-recipient and anti-third party MLR. In anti-host responses, however, Ly-2+ thymocytes seemed to be at least partially involved. This capacity of thymus cells to mount a response to antigens of the recipient strain declined shortly thereafter, whereas the capacity to mount MLR against third party antigens persisted. The spleen cells of (B10----AKR) chimeras at the same time developed a more durable capability to exhibit anti-host reactivities and a permanent capability of reacting to third party allo-antigens. The stimulator antigens were Ia molecules on the stimulator cells in both anti-recipient and anti-third party MLR. The responding splenocytes were of donor origin and most of them had Thy-1+, Ly-1+2-, and L3T4+ phenotype.

  3. RGF1 INSENSITIVE 1 to 5, a group of LRR receptor-like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana.

    Science.gov (United States)

    Ou, Yang; Lu, Xiaoting; Zi, Quaner; Xun, Qingqing; Zhang, Jingjie; Wu, Yujun; Shi, Hongyong; Wei, Zhuoyun; Zhao, Baolin; Zhang, Xiaoyue; He, Kai; Gou, Xiaoping; Li, Chuanyou; Li, Jia

    2016-06-01

    RGF1, a secreted peptide hormone, plays key roles in root meristem development in Arabidopsis. Previous studies indicated that a functional RGF1 needs to be sulfated at a tyrosine residue by a tyrosylprotein sulfotransferase and that RGF1 regulates the root meristem activity mainly via two downstream transcription factors, PLETHORA 1 (PLT1) and PLT2. How extracellular RGF1 is perceived by a plant cell, however, is unclear. Using genetic approaches, we discovered a clade of leucine-rich repeat receptor-like kinases, designated as RGF1 INSENSITIVE 1 (RGI1) to RGI5, serving as receptors of RGF1. Two independent rgi1 rgi2 rgi3 rgi4 rgi5 quintuple mutants display a consistent short primary root phenotype with a small size of meristem. An rgi1 rgi2 rgi3 rgi4 quadruple mutant shows a significantly reduced sensitivity to RGF1, and the quintuple mutant is completely insensitive to RGF1. The expression of PLT1 and PLT2 is almost undetectable in the quintuple mutant. Ectopic expression of PLT2 driven by an RGI2 promoter in the quintuple mutant greatly rescued its root meristem defects. One of the RGIs, RGI1, was subsequently analyzed biochemically in detail. In vitro dot blotting and pull-down analyses indicated that RGI1 can physically interact with RGF1. Exogenous application of RGF1 can quickly and simultaneously induce the phosphorylation and ubiquitination of RGI1, indicating that RGI1 can perceive and transduce the RGF1 peptide signal. Yet, the activated RGI1 is likely turned over rapidly. These results demonstrate that RGIs, acting as the receptors of RGF1, play essential roles in RGF1-PLT-mediated root meristem development in Arabidopsis thaliana.

  4. Mechanisms of appearance of amplitude and phase chimera states in ensembles of nonlocally coupled chaotic systems

    Science.gov (United States)

    Bogomolov, Sergey A.; Slepnev, Andrei V.; Strelkova, Galina I.; Schöll, Eckehard; Anishchenko, Vadim S.

    2017-02-01

    We explore the bifurcation transition from coherence to incoherence in ensembles of nonlocally coupled chaotic systems. It is firstly shown that two types of chimera states, namely, amplitude and phase, can be found in a network of coupled logistic maps, while only amplitude chimera states can be observed in a ring of continuous-time chaotic systems. We reveal a bifurcation mechanism by analyzing the evolution of space-time profiles and the coupling function with varying coupling coefficient and formulate the necessary and sufficient conditions for realizing the chimera states in the ensembles.

  5. Chimeras in a network of three oscillator populations with varying network topology

    DEFF Research Database (Denmark)

    Martens, Erik Andreas

    2010-01-01

    this system as a model system, we discuss for the first time the influence of network topology on the existence of so-called chimera states. In this context, the network with three populations represents an interesting case because the populations may either be connected as a triangle, or as a chain, thereby......-like. By showing that chimera states only exist for a bounded set of parameter values, we demonstrate that their existence depends strongly on the underlying network structures, and conclude that chimeras exist on networks with a chain-like character....

  6. T and B lymphocytes in the marmoset: a natural haemopoietic chimera

    Energy Technology Data Exchange (ETDEWEB)

    Niblack, G.D.; Gengozian, N.

    1976-01-01

    The thymus-derived (T) lymphocyte and bone marrow-derived (B) lymphocyte populations of the marmoset were characterized using specific cell surface markers. Approximately 85% of the thymocytes formed rosettes with neuraminidase-treated sheep erythrocytes (E/sub n/). The percentage (approximately 69%) of peripheral blood lymphocytes (PBL) forming rosettes with E/sub n/ was the same as that which stained with fluorescently labelled goat anti-marmoset thymocyte serum (ATS). These two assays identified the same cell population since treatment of cells with ATS and complement resulted in a concomitant decrease in E/sub n/ rosette formation. Marmoset PBL also formed rosettes with human erythrocytes sensitized with antibody and complement (HEAC); since the percentage (approximately 20%) HEAC rosette was the same as that of cells stained with fluorescently labelled goat anti-marmoset IgG, these cells were considered to be B cells. A small percentage of cells (aproximately 1.5%) possessed both types of receptors. The mean percentages of T and B cells present in PBL of single-born, presumably non-chimeric animals, were the same as that of isosexual and heterosexual chimeras.

  7. Linked and knotted chimera filaments in oscillatory systems.

    Science.gov (United States)

    Lau, Hon Wai; Davidsen, Jörn

    2016-07-01

    While the existence of stable knotted and linked vortex lines has been established in many experimental and theoretical systems, their existence in oscillatory systems and systems with nonlocal coupling has remained elusive. Here, we present strong numerical evidence that stable knots and links such as trefoils and Hopf links do exist in simple, complex, and chaotic oscillatory systems if the coupling between the oscillators is neither too short ranged nor too long ranged. In this case, effective repulsive forces between vortex lines in knotted and linked structures stabilize curvature-driven shrinkage observed for single vortex rings. In contrast to real fluids and excitable media, the vortex lines correspond to scroll wave chimeras [synchronized scroll waves with spatially extended (tubelike) unsynchronized filaments], a prime example of spontaneous synchrony breaking in systems of identical oscillators. In the case of complex oscillatory systems, this leads to a topological superstructure combining knotted filaments and synchronization defect sheets.

  8. CaLecRK-S.5, a pepper L-type lectin receptor kinase gene, confers broad-spectrum resistance by activating priming

    Science.gov (United States)

    Woo, Joo Yong; Jeong, Kwang Ju; Kim, Young Jin; Paek, Kyung-Hee

    2016-01-01

    In Arabidopsis, several L-type lectin receptor kinases (LecRKs) have been identified as putative immune receptors. However, to date, there have been few analyses of LecRKs in crop plants. Virus-induced gene silencing of CaLecRK-S.5 verified the role of CaLecRK-S.5 in broad-spectrum resistance. Compared with control plants, CaLecRK-S.5-silenced plants showed reduced hypersensitive response, reactive oxygen species burst, secondary metabolite production, mitogen-activated protein kinase activation, and defense-related gene expression in response to Tobacco mosaic virus pathotype P0 (TMV-P0) infection. Suppression of CaLecRK-S.5 expression significantly enhanced the susceptibility to Pepper mild mottle virus pathotype P1,2,3, Xanthomonas campestris pv. vesicatoria, Phytophthora capsici, as well as TMV-P0. Additionally, β-aminobutyric acid treatment and a systemic acquired resistance assay revealed that CaLecRK-S.5 is involved in priming of plant immunity. Pre-treatment with β-aminobutyric acid before viral infection restored the reduced disease resistance phenotypes shown in CaLecRK-S.5-silenced plants. Systemic acquired resistance was also abolished in CaLecRK-S.5-silenced plants. Finally, RNA sequencing analysis indicated that CaLecRK-S.5 positively regulates plant immunity at the transcriptional level. Altogether, these results suggest that CaLecRK-S.5-mediated broad-spectrum resistance is associated with the regulation of priming. PMID:27647723

  9. CaLecRK-S.5, a pepper L-type lectin receptor kinase gene, confers broad-spectrum resistance by activating priming.

    Science.gov (United States)

    Woo, Joo Yong; Jeong, Kwang Ju; Kim, Young Jin; Paek, Kyung-Hee

    2016-10-01

    In Arabidopsis, several L-type lectin receptor kinases (LecRKs) have been identified as putative immune receptors. However, to date, there have been few analyses of LecRKs in crop plants. Virus-induced gene silencing of CaLecRK-S.5 verified the role of CaLecRK-S.5 in broad-spectrum resistance. Compared with control plants, CaLecRK-S.5-silenced plants showed reduced hypersensitive response, reactive oxygen species burst, secondary metabolite production, mitogen-activated protein kinase activation, and defense-related gene expression in response to Tobacco mosaic virus pathotype P0 (TMV-P0) infection. Suppression of CaLecRK-S.5 expression significantly enhanced the susceptibility to Pepper mild mottle virus pathotype P1,2,3, Xanthomonas campestris pv. vesicatoria, Phytophthora capsici, as well as TMV-P0 Additionally, β-aminobutyric acid treatment and a systemic acquired resistance assay revealed that CaLecRK-S.5 is involved in priming of plant immunity. Pre-treatment with β-aminobutyric acid before viral infection restored the reduced disease resistance phenotypes shown in CaLecRK-S.5-silenced plants. Systemic acquired resistance was also abolished in CaLecRK-S.5-silenced plants. Finally, RNA sequencing analysis indicated that CaLecRK-S.5 positively regulates plant immunity at the transcriptional level. Altogether, these results suggest that CaLecRK-S.5-mediated broad-spectrum resistance is associated with the regulation of priming.

  10. Laser Chimeras as a paradigm for multi-stable patterns in complex systems

    CERN Document Server

    Larger, Laurent; Maistrenko, Yuri

    2014-01-01

    Chimera is a rich and fascinating class of self-organized solutions developed in high dimensional networks having non-local and symmetry breaking coupling features. Its accurate understanding is expected to bring important insight in many phenomena observed in complex spatio-temporal dynamics, from living systems, brain operation principles, and even turbulence in hydrodynamics. In this article we report on a powerful and highly controllable experiment based on optoelectronic delayed feedback applied to a wavelength tunable semiconductor laser, with which a wide variety of Chimera patterns can be accurately investigated and interpreted. We uncover a cascade of higher order Chimeras as a pattern transition from N to N - 1 clusters of chaoticity. Finally, we follow visually, as the gain increases, how Chimera is gradually destroyed on the way to apparent turbulence-like system behaviour.

  11. Generation of chimeras by aggregation of embryonic stem cells with diploid or tetraploid mouse embryos.

    Science.gov (United States)

    Artus, Jérôme; Hadjantonakis, Anna-Katerina

    2011-01-01

    From the hybrid creatures of the Greek and Egyptian mythologies, the concept of the chimera has evolved and, in modern day biology, refers to an organism comprises of at least two populations of genetically distinct cells. Mouse chimeras have proven an invaluable tool for the generation of genetically modified strains. In addition, chimeras have been extensively used in developmental biology as a powerful tool to analyze the phenotype of specific mutations, to attribute function to gene products and to address the question of cell autonomy versus noncell autonomy of gene function. This chapter describes a simple and economical technique used to generate mouse chimeras by embryo aggregation. Multiple aggregation combinations are described each of which can be tailored to answer particular biological questions.

  12. Chimera states in a network-organized public goods game with destructive agents

    Science.gov (United States)

    Kouvaris, Nikos E.; Requejo, Rubén J.; Hizanidis, Johanne; Díaz-Guilera, Albert

    2016-12-01

    We found that a network-organized metapopulation of cooperators, defectors, and destructive agents playing the public goods game with mutations can collectively reach global synchronization or chimera states. Global synchronization is accompanied by a collective periodic burst of cooperation, whereas chimera states reflect the tendency of the networked metapopulation to be fragmented in clusters of synchronous and incoherent bursts of cooperation. Numerical simulations have shown that the system's dynamics switches between these two steady states through a first order transition. Depending on the parameters determining the dynamical and topological properties, chimera states with different numbers of coherent and incoherent clusters are observed. Our results present the first systematic study of chimera states and their characterization in the context of evolutionary game theory. This provides a valuable insight into the details of their occurrence, extending the relevance of such states to natural and social systems.

  13. Effect of glycyrrhizin on pseudomonal skin infections in human-mouse chimeras.

    Directory of Open Access Journals (Sweden)

    Shohei Yoshida

    Full Text Available In our previous studies, peripheral blood lineage(-CD34(+CD31(+ cells (CD31(+ IMC appearing in severely burned patients have been characterized as inhibitor cells for the production of β-defensins (HBDs by human epidermal keratinocytes (NHEK. In this study, the effect of glycyrrhizin on pseudomonal skin infections was studied in a chimera model of thermal injury. Two different chimera models were utilized. Patient chimeras were created in murine antimicrobial peptide-depleted NOD-SCID IL-2rγ(null mice that were grafted with unburned skin tissues of severely burned patients and inoculated with the same patient peripheral blood CD31(+ IMC. Patient chimera substitutes were created in the same mice that were grafted with NHEK and inoculated with experimentally induced CD31(+ IMC. In the results, both groups of chimeras treated with glycyrrhizin resisted a 20 LD50 dose of P. aeruginosa skin infection, while all chimeras in both groups treated with saline died within 3 days of the infection. Human antimicrobial peptides were detected from the grafted site tissues of both groups of chimeras treated with glycyrrhizin, while the peptides were not detected in the same area tissues of controls. HBD-1 was produced by keratinocytes in transwell-cultures performed with CD31(+ IMC and glycyrrhizin. Also, inhibitors (IL-10 and CCL2 of HBD-1 production by keratinocytes were not detected in cultures of patient CD31(+ IMC treated with glycyrrhizin. These results indicate that sepsis stemming from pseudomonal grafted site infections in a chimera model of burn injury is controllable by glycyrrhizin. Impaired antimicrobial peptide production at the infection site of severely burned patients may be restored after treatment with glycyrrhizin.

  14. Greengenes: Chimera-checked 16S rRNA gene database and workbenchcompatible in ARB

    Energy Technology Data Exchange (ETDEWEB)

    DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie,E.L; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L.

    2006-02-01

    A 16S rRNA gene database (http://greengenes.lbl.gov) addresses limitations of public repositories by providing chimera-screening, standard alignments and taxonomic classification using multiple published taxonomies. It was revealed that incongruent taxonomic nomenclature exists among curators even at the phylum-level. Putative chimeras were identified in 3% of environmental sequences and 0.2% of records derived from isolates. Environmental sequences were classified into 100 phylum-level lineages within the Archaea and Bacteria.

  15. Chimeras in globally coupled oscillatory systems: From ensembles of oscillators to spatially continuous media

    Science.gov (United States)

    Schmidt, Lennart; Krischer, Katharina

    2015-06-01

    We study an oscillatory medium with a nonlinear global coupling that gives rise to a harmonic mean-field oscillation with constant amplitude and frequency. Two types of cluster states are found, each undergoing a symmetry-breaking transition towards a related chimera state. We demonstrate that the diffusional coupling is non-essential for these complex dynamics. Furthermore, we investigate localized turbulence and discuss whether it can be categorized as a chimera state.

  16. The Chemokine Receptor CCR5, a Therapeutic Target for HIV/AIDS Antagonists, Is Critical for Recovery in a Mouse Model of Japanese Encephalitis

    Science.gov (United States)

    Larena, Maximilian; Regner, Matthias; Lobigs, Mario

    2012-01-01

    Japanese encephalitis is a severe central nervous system (CNS) inflammatory disease caused by the mosquito-borne flavivirus, Japanese encephalitis virus (JEV). In the current study we have investigated the immune responses against JEV in mice lacking expression of the chemokine receptor CCR5, which functions in activation and chemotaxis of leukocytes during infection. We show that CCR5 serves as a host antiviral factor against Japanese encephalitis, with CCR5 deficiency markedly increasing mortality, and viral burden in the CNS. Humoral immune responses, which are essential in recovery from JEV infection, were of similar magnitude in CCR5 sufficient and deficient mice. However, absence of CCR5 resulted in a multifaceted deficiency of cellular immune responses characterized by reduced natural killer and CD8+ T cell activity, low splenic cellularity, and impaired trafficking of leukocytes to the brain. Interestingly, adoptive transfer of immune spleen cells, depleted of B lymphocytes, increased resistance of CCR5-deficient recipient mice against JEV regardless of whether the cells were obtained from CCR5-deficient or wild-type donor mice, and only when transferred at one but not at three days post-challenge. This result is consistent with a mechanism by which CCR5 expression enhances lymphocyte activation and thereby promotes host survival in Japanese encephalitis. PMID:23028638

  17. Down-regulation of pancreatic and duodenal homeobox-1 by somatostatin receptor subtype 5: a novel mechanism for inhibition of cellular proliferation and insulin secretion by somatostatin

    Directory of Open Access Journals (Sweden)

    Charles eBrunicardi

    2014-06-01

    Full Text Available Somatostatin is a regulatory peptide and acts as an endogenous inhibitory regulator of the secretory and proliferative responses of target cells. Somatostatin’s actions are mediated by a family of seven transmembrane domain G protein-coupled receptors that comprise five distinct subtypes (SSTR1-5. SSTR5 is one of the major SSTRs in the islets of Langerhans. Homeodomain-containing transcription factor pancreatic and duodenal homeobox-1 (PDX-1 is essential for pancreatic development, β cell differentiation, maintenance of normal β cell functions in adults and tumorigenesis. Recent studies show that SSTR5 acts as a negative regulator for PDX-1 expression and that SSTR5 mediates somatostatin’s inhibitory effect on cell proliferation and insulin expression/excretion through down-regulating PDX-1 expression. SSTR5 exerts its inhibitory effect on PDX-1 expression at both the transcriptional level by down-regulating PDX-1 mRNA and the post-translational level by enhancing PDX-1 ubiquitination. Identification of PDX-1 as a transcriptional target for SSTR5 may help in guiding the choice of therapeutic cancer treatments.

  18. TCP: a tool for designing chimera proteins based on the tertiary structure information

    Directory of Open Access Journals (Sweden)

    Nishida Reina

    2009-01-01

    Full Text Available Abstract Background Chimera proteins are widely used for the analysis of the protein-protein interaction region. One of the major issues is the epitope analysis of the monoclonal antibody. In the analysis, a continuous portion of an antigen is sequentially substituted into a different sequence. This method works well for an antibody recognizing a linear epitope, but not for that recognizing a discontinuous epitope. Although the designing the chimera proteins based on the tertiary structure information is required in such situations, there is no appropriate tool so far. Results In light of the problem, we developed a tool named TCP (standing for a Tool for designing Chimera Proteins, which extracts some sets of mutually orthogonal cutting surfaces for designing chimera proteins using a genetic algorithm. TCP can also incorporate and consider the solvent accessible surface area information calculated by a DSSP program. The test results of our method indicate that the TCP is robust and applicable to various shapes of proteins. Conclusion We developed TCP, a tool for designing chimera proteins based on the tertiary structure information. TCP is robust and possesses several favourable features, and we believe it is a useful tool for designing chimera proteins. TCP is freely available as an additional file of this manuscript for academic and non-profit organization.

  19. N1-Guanyl-1,7-Diaminoheptane Sensitizes Estrogen Receptor Negative Breast Cancer Cells to Doxorubicin by Preventing Epithelial-Mesenchymal Transition through Inhibition of Eukaryotic Translation Initiation Factor 5A2 Activation

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2015-08-01

    Full Text Available Background: Approximately 30% of breast cancer does not express the estrogen receptor (ER, which is necessary for endocrine-based therapy approaches. Many studies demonstrated that eukaryotic translation initiation factor 5A2 (eIF5A2 serves as a proliferation-related oncogene in tumorigenic processes. Methods: The present study used cell viability assays, EdU incorporation assays, western blot, and immunofluorescence to explore whether N1-guanyl-1,7-diaminoheptane (GC7, which inhibits eIF5A2 activation, exerts synergistic cytotoxicity with doxorubicin in breast cancer. Results: We found that GC7 enhanced doxorubicin cytotoxicity in ER-negative HCC1937 cells but had little effect in ER-positive MCF-7 and Bcap-37 cells. Administration of GC7 reversed the doxorubicin-induced epithelial-mesenchymal transition (EMT in ER-negative breast cancer cells. Knockdown of eIF5A2 by siRNA inhibited the doxorubicin-induced EMT in ER-negative HCC1937 cells. Conclusion: These data demonstrated that GC7 combination therapy may enhance the therapeutic efficacy of doxorubicin in estrogen negative breast cancer cells by preventing EMT through inhibition of eIF5A2 activation.

  20. Structural basis of LaDR5, a novel agonistic anti-death receptor 5 (DR5 monoclonal antibody, to inhibit DR5/TRAIL complex formation

    Directory of Open Access Journals (Sweden)

    Qiao Chunxia

    2012-07-01

    Full Text Available Abstract Background As a member of the TNF superfamily, TRAIL could induce human tumor cell apoptosis through its cognate death receptors DR4 or DR5, which can induce formation of the death inducing signaling complex (DISC and activation of the membrane proximal caspases (caspase-8 or caspase-10 and mitochondrial pathway. Some monoclonal antibodies against DR4 or DR5 have been reported to have anti-tumor activity. Results In this study, we reported a novel mouse anti-human DR5 monoclonal antibody, named as LaDR5, which could compete with TRAIL to bind DR5 and induce the apoptosis of Jurkat cells in the absence of second cross-linking in vitro. Using computer-guided molecular modeling method, the 3-D structure of LaDR5 Fv fragment was constructed. According to the crystal structure of DR5, the 3-D complex structure of DR5 and LaDR5 was modeled using molecular docking method. Based on distance geometry method and intermolecular hydrogen bonding analysis, the key functional domain in DR5 was predicted and the DR5 mutants were designed. And then, three mutants of DR5 was expressed in prokaryotic system and purified by affinity chromatograph to determine the epitope of DR5 identified by LaDR5, which was consistent with the theoretical results of computer-aided analysis. Conclusions Our results demonstrated the specific epitope located in DR5 that plays a crucial role in antibody binding and even antineoplastic bioactivity. Meanwhile, revealed structural features of DR5 may be important to design or screen novel drugs agonist DR5.

  1. Role of the intracellular domain of the human type I interferon receptor 2 chain (IFNAR2c) in interferon signaling. Expression of IFNAR2c truncation mutants in U5A cells.

    Science.gov (United States)

    Russell-Harde, D; Wagner, T C; Rani, M R; Vogel, D; Colamonici, O; Ransohoff, R M; Majchrzak, B; Fish, E; Perez, H D; Croze, E

    2000-08-01

    A human cell line (U5A) lacking the type I interferon (IFN) receptor chain 2 (IFNAR2c) was used to determine the role of the IFNAR2c cytoplasmic domain in regulating IFN-dependent STAT activation, interferon-stimulated gene factor 3 (ISGF3) and c-sis-inducible factor (SIF) complex formation, gene expression, and antiproliferative effects. A panel of U5A cells expressing truncation mutants of IFNAR2c on their cell surface were generated for study. Janus kinase (JAK) activation was detected in all mutant cell lines; however, STAT1 and STAT2 activation was observed only in U5A cells expressing full-length IFNAR2c and IFNAR2c truncated at residue 462 (R2.462). IFNAR2c mutants truncated at residues 417 (R2. 417) and 346 (R2.346) or IFNAR2c mutant lacking tyrosine residues in its cytoplasmic domain (R2.Y-F) render the receptor inactive. A similar pattern was observed for IFN-inducible STAT activation, STAT complex formation, and STAT-DNA binding. Consistent with these data, IFN-inducible gene expression was ablated in U5A, R2.Y-F, R2.417, and R2.346 cell lines. The implications are that tyrosine phosphorylation and the 462-417 region of IFNAR2c are independently obligatory for receptor activation. In addition, the distal 53 amino acids of the intracellular domain of IFNAR2c are not required for IFN-receptor mediated STAT activation, ISFG3 or SIF complex formation, induction of gene expression, and inhibition of thymidine incorporation. These data demonstrate for the first time that both tyrosine phosphorylation and a specific domain of IFNAR2c are required in human cells for IFN-dependent coupling of JAK activation to STAT phosphorylation, gene induction, and antiproliferative effects. In addition, human and murine cells appear to require different regions of the cytoplasmic domain of IFNAR2c for regulation of IFN responses.

  2. Complement Receptors C5aR and C5L2 Are Associated with Metabolic Profile, Sex Hormones, and Liver Enzymes in Obese Women Pre- and Postbariatric Surgery

    Directory of Open Access Journals (Sweden)

    Reza Rezvani

    2014-01-01

    Full Text Available Objective. Obesity is associated with metabolic dysfunction with sex differences and chronic, low-grade inflammation. We proposed that hepatic expression of immune complement C3 related receptors (C3aR, C5aR, and C5L2 would be associated with pre- or postmenopausal status and metabolic profile in severely obese women. We hypothesized that C5L2/C5aR ratio, potentially influencing the ASP/C5L2 metabolic versus C5a/C5aR immune response, would predict metabolic profiles after weight loss surgery. Materials and Methods. Fasting plasma (hormone, lipid, and enzyme analysis and liver biopsies (RT-PCR gene expression were obtained from 91 women during surgery. Results. Hepatic C5L2 mRNA expression was elevated in pre- versus postmenopausal women (P<0.01 and correlated positively with circulating estradiol, estrone, ApoB, ApoA1, ApoA1/B, waist circumference, age, and LDL-C (all P<0.05. While plasma ASP was lower in pre- versus postmenopausal women (P<0.01, the hepatic C5L2/C5aR mRNA ratio was increased (P<0.001 and correlated positively with estrone (P<0.01 and estradiol (P<0.001 and negatively with circulating ApoB and liver enzymes ALT, AST, and GGT (all P<0.05. Over 12 months postoperatively, liver enzymes in low C5L2/C5aR mRNA ratio group remained higher (ALP and ALT, P<0.05, AST and GGT, P<0.001 2-way-ANOVA. Conclusion. C5L2-C5aR association with other mediators including estrogens may contribute to hepatic metabolic and inflammatory function.

  3. T cell receptor zeta allows stable expression of receptors containing the CD3gamma leucine-based receptor-sorting motif

    DEFF Research Database (Denmark)

    Dietrich, J; Geisler, C

    1998-01-01

    The leucine-based motif in the T cell receptor (TCR) subunit CD3gamma constitutes a strong internalization signal. In fully assembled TCR this motif is inactive unless phosphorylated. In contrast, the motif is constitutively active in CD4/CD3gamma and Tac/CD3gamma chimeras independently of phosph......The leucine-based motif in the T cell receptor (TCR) subunit CD3gamma constitutes a strong internalization signal. In fully assembled TCR this motif is inactive unless phosphorylated. In contrast, the motif is constitutively active in CD4/CD3gamma and Tac/CD3gamma chimeras independently...... of phosphorylation and leads to rapid internalization and sorting of these chimeras to lysosomal degradation. Because the TCRzeta chain rescues incomplete TCR complexes from lysosomal degradation and allows stable surface expression of fully assembled TCR, we addressed the question whether TCRzeta has the potential...... to mask the CD3gamma leucine-based motif. By studying CD4/CD3gamma and CD16/CD3gamma chimeras, we found that CD16/CD3gamma chimeras associated with TCRzeta. The CD16/CD3gamma-TCRzeta complexes were stably expressed at the cell surface and had a low spontaneous internalization rate, indicating...

  4. Mutant U5A cells are complemented by an interferon-alpha beta receptor subunit generated by alternative processing of a new member of a cytokine receptor gene cluster.

    OpenAIRE

    Lutfalla, G; Holland, S J; Cinato, E; Monneron, D; Reboul, J.; Rogers, N C; J. M. Smith; Stark, G R; Gardiner, K.; Mogensen, K E

    1995-01-01

    The cellular receptor for the alpha/beta interferons contains at least two components that interact with interferon. The ifnar1 component is well characterized and a putative ifnar2 cDNA has recently been identified. We have cloned the gene for ifnar2 and show that it produces four different transcripts encoding three different polypeptides that are generated by exon skipping, alternative splicing and differential use of polyadenylation sites. One polypeptide is likely to be secreted and two ...

  5. Chronic Exposure to Androgenic-Anabolic Steroids Exacerbates Axonal Injury and Microgliosis in the CHIMERA Mouse Model of Repetitive Concussion.

    Directory of Open Access Journals (Sweden)

    Dhananjay R Namjoshi

    Full Text Available Concussion is a serious health concern. Concussion in athletes is of particular interest with respect to the relationship of concussion exposure to risk of chronic traumatic encephalopathy (CTE, a neurodegenerative condition associated with altered cognitive and psychiatric functions and profound tauopathy. However, much remains to be learned about factors other than cumulative exposure that could influence concussion pathogenesis. Approximately 20% of CTE cases report a history of substance use including androgenic-anabolic steroids (AAS. How acute, chronic, or historical AAS use may affect the vulnerability of the brain to concussion is unknown. We therefore tested whether antecedent AAS exposure in young, male C57Bl/6 mice affects acute behavioral and neuropathological responses to mild traumatic brain injury (TBI induced with the CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration platform. Male C57Bl/6 mice received either vehicle or a cocktail of three AAS (testosterone, nandrolone and 17α-methyltestosterone from 8-16 weeks of age. At the end of the 7th week of treatment, mice underwent two closed-head TBI or sham procedures spaced 24 h apart using CHIMERA. Post-repetitive TBI (rTBI behavior was assessed for 7 d followed by tissue collection. AAS treatment induced the expected physiological changes including increased body weight, testicular atrophy, aggression and downregulation of brain 5-HT1B receptor expression. rTBI induced behavioral deficits, widespread axonal injury and white matter microgliosis. While AAS treatment did not worsen post-rTBI behavioral changes, AAS-treated mice exhibited significantly exacerbated axonal injury and microgliosis, indicating that AAS exposure can alter neuronal and innate immune responses to concussive TBI.

  6. Pharmacological characterisation of strychnine and brucine analogues at glycine and alpha7 nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Gharagozloo, Parviz; Birdsall, Nigel J M

    2006-01-01

    of tertiary and quaternary analogues as well as bisquaternary dimers of strychnine and brucine at human alpha1 and alpha1beta glycine receptors and at a chimera consisting of the amino-terminal domain of the alpha7 nicotinic receptor (containing the orthosteric ligand binding site) and the ion channel domain...... of strychnine and brucine, none of the analogues displayed significant selectivity between the alpha1 and alpha1beta subtypes. The structure-activity relationships for the compounds at the alpha7/5-HT3 chimera were significantly different from those at the glycine receptors. Most strikingly, quaternization...... of strychnine and brucine with substituents possessing different steric and electronic properties completely eliminated the activity at the glycine receptors, whereas binding affinity to the alpha7/5-HT3 chimera was retained for the majority of the quaternary analogues. This study provides an insight...

  7. Human-animal chimeras for vaccine development: an endangered species or opportunity for the developing world?

    Directory of Open Access Journals (Sweden)

    Daar Abdallah S

    2010-05-01

    Full Text Available Abstract Background In recent years, the field of vaccines for diseases such as Human Immunodeficiency Virus (HIV which take a heavy toll in developing countries has faced major failures. This has led to a call for more basic science research, and development as well as evaluation of new vaccine candidates. Human-animal chimeras, developed with a 'humanized' immune system could be useful to study infectious diseases, including many neglected diseases. These would also serve as an important tool for the efficient testing of new vaccine candidates to streamline promising candidates for further trials in humans. However, developing human-animal chimeras has proved to be controversial. Discussion Development of human-animal chimeras for vaccine development has been slowed down because of opposition by some philosophers, ethicists and policy makers in the west-they question the moral status of such animals, and also express discomfort about transgression of species barriers. Such opposition often uses a contemporary western world view as a reference point. Human-animal chimeras are often being created for diseases which cause significantly higher morbidity and mortality in the developing world as compared to the developed world. We argue in our commentary that given this high disease burden, we should look at socio-cultural perspectives on human-animal chimera like beings in the developing world. On examination, it's clear that such beings have been part of mythology and cultural descriptions in many countries in the developing world. Summary To ensure that important research on diseases afflicting millions like malaria, HIV, Hepatitis-C and dengue continues to progress, we recommend supporting human-animal chimera research for vaccine development in developing countries (especially China and India which have growing technical expertise in the area. The negative perceptions in some parts of the west about human-animal chimeras can be used as an

  8. Present status of the Chimera-Isospin experiment

    Energy Technology Data Exchange (ETDEWEB)

    Politi, G.; Arena, N.; Cardella, G.; DeFilippo, E.; Lanzano, G.; Nigro, S.L.; Pagano, A.; Papa, M.; Pirrone, S.; Russotto, P. [Catania Univ., INFN (Italy); Alderighi, M.; Sechi, G.; Sperduto, M.L. [Milano Univ., INFN, CNR (Italy); Amorini, F.; Anzalone, A.; Baran, V.; Bonasera, A.; Cavallaro, S.L.; Colonna, M.; Di Toro, M.; LaGuidara, E.; Lanzalone, G.; IaconoManno, M.; Giustolisi, F.; Maiolino, C.; Porto, F.; Rizzo, F.; Trifiro, A.; Trimarchi, M. [Catania Univ., INFN, Lab. Nazionali del Sud (Italy); Auditore, L.; Barna, R.; DePasquale, D. [Messina Univ., INFN (Italy); Berceanu, I.; Petrovici, M.; Pop, A. [Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Blicharska, J.; Grzeszczuk, A.; Kowalski, S.; Zipper, W. [Univ. of Silesia, Inst. of Physics, Katowice (Poland); Borderie, B.; LeNeindre, N.; Rivet, M.F. [Paris-11 Univ., IPN-IN2P3-CNRS, 91 - Orsay (France); Bougault, R. [Caen Univ., LPC-ISMRA (France); Briczycnski, J.; Gawlikowicz, W.; Majka, Z.; Planeta, R. [M. Smoluchowski Inst. of Physics, Jagellonian Univ., Cracow (Poland); Bruno, M.; D' Agostino, M.; Fuschini, E.; Geraci, E.; Vannini, G. [Bologna Univ., INFN (Italy); Chatterjee, M.B. [Saha Inst. of Nuclear Physics, NIS Div., Kolkata (India); Chbihi, A.; Wieleczko, J.P. [GANIL -CEA-IN2P3-CNRS, 14 - Caen (France); Cibor, J. [H.Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland); Dayras, R. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, SPhN, 91- Gif sur Yvette (France); Guazzoni, P.; Russo, S.; Sassi, M.; Zetta, L. [Milano Univ., INFN (Italy); Guinet, D. [Univ. Claude Bernard, IPN-IN2P3-CNRS, 69 - Lyon (France); Li, S.; Wu, H.; Xiao, Z. [Inst. of Modern Physics, Lanzhou (China); Nicolis, N.G. [Ioannina Univ., Dept. of Physics (Greece); Piasecki, E.; Swiderski, L.; Siwek-Wilczynska, K.; Skwira, I. [Warsaw Univ., Inst. for Experimental Physics (Poland); Rosato, E.; Vigilante, M.; Wilczynski, J.

    2003-07-01

    The CHIMERA detector was designed to significantly contribute to multifragmentation studies in the field of heavy ion collisions at intermediate energies. The device has been used at 'Laboratori Nazionali del Sud' (LNS) in Catania (Italy) to study different aspects of the relevant nuclear reaction mechanism, in two different campaigns: the first one in 2000, by using the forward part (1 - 30 degrees) of the device, and the second one in 2003, by using the 4{pi} geometry. The experimental results have confirmed the capability of the apparatus for good isotopic identification of light charged particles and light fragments (3

  9. Generation of an adenovirus-parvovirus chimera with enhanced oncolytic potential.

    Science.gov (United States)

    El-Andaloussi, Nazim; Bonifati, Serena; Kaufmann, Johanna K; Mailly, Laurent; Daeffler, Laurent; Deryckère, François; Nettelbeck, Dirk M; Rommelaere, Jean; Marchini, Antonio

    2012-10-01

    In this study, our goal was to generate a chimeric adenovirus-parvovirus (Ad-PV) vector that combines the high-titer and efficient gene transfer of adenovirus with the anticancer potential of rodent parvovirus. To this end, the entire oncolytic PV genome was inserted into a replication-defective E1- and E3-deleted Ad5 vector genome. As we found that parvoviral NS expression inhibited Ad-PV chimera production, we engineered the parvoviral P4 early promoter, which governs NS expression, by inserting into its sequence tetracycline operator elements. As a result of these modifications, P4-driven expression was blocked in the packaging T-REx-293 cells, which constitutively express the tetracycline repressor, allowing high-yield chimera production. The chimera effectively delivered the PV genome into cancer cells, from which fully infectious replication-competent parvovirus particles were generated. Remarkably, the Ad-PV chimera exerted stronger cytotoxic activities against various cancer cell lines, compared with the PV and Ad parental viruses, while being still innocuous to a panel of tested healthy primary human cells. This Ad-PV chimera represents a novel versatile anticancer agent which can be subjected to further genetic manipulations in order to reinforce its enhanced oncolytic capacity through arming with transgenes or retargeting into tumor cells.

  10. Chimera-like states in a neuronal network model of the cat brain

    Science.gov (United States)

    Santos, M. S.; Szezech, J. D.; Borges, F. S.; Iarosz, K. C.; Caldas, I. L.; Batista, A. M.; Viana, R. L.; Kurths, J.

    2017-08-01

    Neuronal systems have been modeled by complex networks in different description levels. Recently, it has been verified that networks can simultaneously exhibit one coherent and other incoherent domain, known as chimera states. In this work, we study the existence of chimera states in a network considering the connectivity matrix based on the cat cerebral cortex. The cerebral cortex of the cat can be separated in 65 cortical areas organised into the four cognitive regions: visual, auditory, somatosensory-motor and frontolimbic. We consider a network where the local dynamics is given by the Hindmarsh-Rose model. The Hindmarsh-Rose equations are a well known model of neuronal activity that has been considered to simulate membrane potential in neuron. Here, we analyse under which conditions chimera states are present, as well as the affects induced by intensity of coupling on them. We observe the existence of chimera states in that incoherent structure can be composed of desynchronised spikes or desynchronised bursts. Moreover, we find that chimera states with desynchronised bursts are more robust to neuronal noise than with desynchronised spikes.

  11. Engineering human cytochrome P450 enzymes into catalytically self-sufficient chimeras using molecular Lego.

    Science.gov (United States)

    Dodhia, Vikash Rajnikant; Fantuzzi, Andrea; Gilardi, Gianfranco

    2006-10-01

    The membrane-bound human cytochrome P450s have essential roles in the metabolism of endogenous compounds and drugs. Presented here are the results on the construction and characterization of three fusion proteins containing the N-terminally modified human cytochrome P450s CYP2C9, CY2C19 and CYP3A4 fused to the soluble NADPH-dependent oxidoreductase domain of CYP102A1 from Bacillus megaterium. The constructs, CYP2C9/BMR, CYP2C19/BMR and CYP3A4/BMR are well expressed in Escherichia coli as holo proteins. The chimeras can be purified in the absence of detergent and the purified enzymes are both active and correctly folded in the absence of detergent, as demonstrated by circular dichroism and functional studies. Additionally, in comparison with the parent P450 enzyme, these chimeras have greatly improved solubility properties. The chimeras are catalytically self-sufficient and present turnover rates similar to those reported for the native enzymes in reconstituted systems, unlike previously reported mammalian cytochrome P450 fusion proteins. Furthermore the specific activities of these chimeras are not dependent on the enzyme concentration present in the reaction buffer and they do not require the addition of accessory proteins, detergents or phospholipids to be fully active. The solubility, catalytic self-sufficiency and wild-type like activities of these chimeras would greatly simplify the studies of cytochrome P450 mediated drug metabolism in solution.

  12. Status and perspectives of fragmentation beams at LNS with CHIMERA detector

    Directory of Open Access Journals (Sweden)

    Cardella G.

    2015-01-01

    Full Text Available Relatively large yields of various exotic beams produced through in-flight fragmentation are available at LNS. Using the CHIMERA detector, we performed various experiments to study elastic and inelastic scattering, transfer, break-up, and reaction dynamics with targets from proton and deuteron to carbon and heavier. For reactions with relatively light systems we used the kinematical coincidence method to extract high resolution angular distributions of binary reactions from the measured light particle energy spectra. We also used the CsI detectors of CHIMERA to detect gamma rays emitted in the reactions. Some of most recent results are presented together with future perspectives with the coupling of CHIMERA with FARCOS array.

  13. The Influence of the Resonant Frequency on the Presence Of Chimera State

    Directory of Open Access Journals (Sweden)

    Phablo Ramos Carvalho

    2016-04-01

    Full Text Available The Chimera State could be a result of the interaction between the resonant frequency and the synchronization process in a network of identical oscillators. The target of this paper is to do the numerically investigation of the chimera occurrence in a model with fifteen metronomes on each swing and two coupled swings Therefore, changing the value of metronomes oscillation frequency one can observe the level of synchronization between the two populations of metronomes through the Kuramoto complex order parameter. This analysis was conducted considering three different values of the connecting spring’s stiffness among the swings. Thus, a relation between the presence of chimera state and the system resonant frequency was observed

  14. A Multitier System for the Verification, Visualization and Management of CHIMERA

    Energy Technology Data Exchange (ETDEWEB)

    Lingerfelt, Eric J [ORNL; Messer, Bronson [ORNL; Osborne, James A [National Institute for Computational Sciences (NICS); Budiardja, R. D. [University of Tennessee, Knoxville (UTK); Mezzacappa, Anthony [ORNL

    2011-01-01

    CHIMERA is a multi-dimensional radiation hydrodynamics code designed to study core-collapse supernovae. The code is made up of three essentially independent parts: a hydrodynamics module, a nuclear burning module, and a neutrino transport solver combined within an operator-split approach. Given CHIMERA s complexity and pace of ongoing development, a new support system, Bellerophon, has been designed and implemented to perform automated verification, visualization and management tasks while integrating with other workflow systems utilized by CHIMERA s development group. In order to achieve these goals, a multitier approach has been adopted. By integrating supercomputing platforms, visualization clusters, a dedicated web server and a client-side desktop application, this system attempts to provide an encapsulated, end-to-end solution to these needs.

  15. The Chimera II Real-Time Operating System for advanced sensor-based control applications

    Science.gov (United States)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1992-01-01

    Attention is given to the Chimera II Real-Time Operating System, which has been developed for advanced sensor-based control applications. The Chimera II provides a high-performance real-time kernel and a variety of IPC features. The hardware platform required to run Chimera II consists of commercially available hardware, and allows custom hardware to be easily integrated. The design allows it to be used with almost any type of VMEbus-based processors and devices. It allows radially differing hardware to be programmed using a common system, thus providing a first and necessary step towards the standardization of reconfigurable systems that results in a reduction of development time and cost.

  16. Multicluster and traveling chimera states in nonlocal phase-coupled oscillators.

    Science.gov (United States)

    Xie, Jianbo; Knobloch, Edgar; Kao, Hsien-Ching

    2014-08-01

    Chimera states consisting of domains of coherently and incoherently oscillating identical oscillators with nonlocal coupling are studied. These states usually coexist with the fully synchronized state and have a small basin of attraction. We propose a nonlocal phase-coupled model in which chimera states develop from random initial conditions. Several classes of chimera states have been found: (a) stationary multicluster states with evenly distributed coherent clusters, (b) stationary multicluster states with unevenly distributed clusters, and (c) a single cluster state traveling with a constant speed across the system. Traveling coherent states are also identified. A self-consistent continuum description of these states is provided and their stability properties analyzed through a combination of linear stability analysis and numerical simulation.

  17. New insight into the central benzodiazepine receptor-ligand interactions: design, synthesis, biological evaluation, and molecular modeling of 3-substituted 6-phenyl-4H-imidazo[1,5-a][1,4]benzodiazepines and related compounds.

    Science.gov (United States)

    Anzini, Maurizio; Valenti, Salvatore; Braile, Carlo; Cappelli, Andrea; Vomero, Salvatore; Alcaro, Stefano; Ortuso, Francesco; Marinelli, Luciana; Limongelli, Vittorio; Novellino, Ettore; Betti, Laura; Giannaccini, Gino; Lucacchini, Antonio; Daniele, Simona; Martini, Claudia; Ghelardini, Carla; Di Cesare Mannelli, Lorenzo; Giorgi, Gianluca; Mascia, Maria Paola; Biggio, Giovanni

    2011-08-25

    3-Substituted 6-phenyl-4H-imidazo[1,5-a][1,4]benzodiazepines and related compounds were synthesized as central benzodiazepine receptor (CBR) ligands. Most of the compounds showed high affinity for bovine and human CBR, their K(i) values spanning from the low nanomolar to the submicromolar range. In particular, imidazoester 5f was able to promote a massive flow of (36)Cl(-) in rat cerebrocortical synaptoneurosomes overlapping its efficacy profile with that of a typical full agonist. Compound 5f was then examined in mice for its pharmacological effects where it proved to be a safe anxiolytic agent devoid of the unpleasant myorelaxant and amnesic effects of the classical 1,4-benzodiazepines. Moreover, the selectivity of some selected compounds has been assessed in recombinant α(1)β(2)γ(2)L, α(2)β(1)γ(2)L, and α(5)β(2)γ(2)L human GABA(A) receptors. Finally, some compounds were submitted to molecular docking calculations along with molecular dynamics simulations in the Cromer's GABA(A) homology model.

  18. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  19. Glassy Chimeras Could Be Blind to Quantum Speedup: Designing Better Benchmarks for Quantum Annealing Machines

    Science.gov (United States)

    Katzgraber, Helmut G.; Hamze, Firas; Andrist, Ruben S.

    2014-04-01

    Recently, a programmable quantum annealing machine has been built that minimizes the cost function of hard optimization problems by, in principle, adiabatically quenching quantum fluctuations. Tests performed by different research teams have shown that, indeed, the machine seems to exploit quantum effects. However, experiments on a class of random-bond instances have not yet demonstrated an advantage over classical optimization algorithms on traditional computer hardware. Here, we present evidence as to why this might be the case. These engineered quantum annealing machines effectively operate coupled to a decohering thermal bath. Therefore, we study the finite-temperature critical behavior of the standard benchmark problem used to assess the computational capabilities of these complex machines. We simulate both random-bond Ising models and spin glasses with bimodal and Gaussian disorder on the D-Wave Chimera topology. Our results show that while the worst-case complexity of finding a ground state of an Ising spin glass on the Chimera graph is not polynomial, the finite-temperature phase space is likely rather simple because spin glasses on Chimera have only a zero-temperature transition. This means that benchmarking optimization methods using spin glasses on the Chimera graph might not be the best benchmark problems to test quantum speedup. We propose alternative benchmarks by embedding potentially harder problems on the Chimera topology. Finally, we also study the (reentrant) disorder-temperature phase diagram of the random-bond Ising model on the Chimera graph and show that a finite-temperature ferromagnetic phase is stable up to 19.85(15)% antiferromagnetic bonds. Beyond this threshold, the system only displays a zero-temperature spin-glass phase. Our results therefore show that a careful design of the hardware architecture and benchmark problems is key when building quantum annealing machines.

  20. Glassy Chimeras Could Be Blind to Quantum Speedup: Designing Better Benchmarks for Quantum Annealing Machines

    Directory of Open Access Journals (Sweden)

    Helmut G. Katzgraber

    2014-04-01

    Full Text Available Recently, a programmable quantum annealing machine has been built that minimizes the cost function of hard optimization problems by, in principle, adiabatically quenching quantum fluctuations. Tests performed by different research teams have shown that, indeed, the machine seems to exploit quantum effects. However, experiments on a class of random-bond instances have not yet demonstrated an advantage over classical optimization algorithms on traditional computer hardware. Here, we present evidence as to why this might be the case. These engineered quantum annealing machines effectively operate coupled to a decohering thermal bath. Therefore, we study the finite-temperature critical behavior of the standard benchmark problem used to assess the computational capabilities of these complex machines. We simulate both random-bond Ising models and spin glasses with bimodal and Gaussian disorder on the D-Wave Chimera topology. Our results show that while the worst-case complexity of finding a ground state of an Ising spin glass on the Chimera graph is not polynomial, the finite-temperature phase space is likely rather simple because spin glasses on Chimera have only a zero-temperature transition. This means that benchmarking optimization methods using spin glasses on the Chimera graph might not be the best benchmark problems to test quantum speedup. We propose alternative benchmarks by embedding potentially harder problems on the Chimera topology. Finally, we also study the (reentrant disorder-temperature phase diagram of the random-bond Ising model on the Chimera graph and show that a finite-temperature ferromagnetic phase is stable up to 19.85(15% antiferromagnetic bonds. Beyond this threshold, the system only displays a zero-temperature spin-glass phase. Our results therefore show that a careful design of the hardware architecture and benchmark problems is key when building quantum annealing machines.

  1. Chimera states in a population of identical oscillators under planar cross-coupling

    Indian Academy of Sciences (India)

    C R Hens; A Mishra; P K Roy; A Sen; S K Dana

    2015-02-01

    We report the existence of chimera states in an assembly of identical nonlinear oscillators that are globally linked to each other in a simple planar cross-coupled form. The rotational symmetry breaking of the coupling term appears to be responsible for the emergence of these collective states that display a characteristic coexistence of coherent and incoherent behaviour. The finding, observed in both a collection of van der Pol oscillators and chaotic Rössler oscillators, further simplifies the existence criterion for chimeras, thereby broadens the range of their applicability to real-world situations.

  2. Greengenes, a Chimera-checked 16S rRNA gene database and workbenchcompatible with ARB

    Energy Technology Data Exchange (ETDEWEB)

    DeSantis, Todd Z.; Hugenholtz, Philip; Larsen, Neils; Rojas,Mark; Brodie, Eoin L.; Keller, Keith; Huber, Thomas; Dalevi, Daniel; Hu,Ping; Andersen, Gary L.

    2006-04-10

    A 16S rRNA gene database (http://greengenes.lbl.gov) addresses limitations of public repositories by providing chimera-screening, standard alignments and taxonomic classification using multiple published taxonomies. It was revealed that in congruent taxonomic nomenclature exists among curators even at the phylum-level. Putative chimeras were identified in 3 percent of environmental sequences and 0.2 percent of records derived from isolates. Environmental sequences were classified into 100 phylum-level lineages within the Archaea and Bacteria.

  3. Marginal chimera state at cross-frequency locking of pulse-coupled neural networks

    Science.gov (United States)

    Bolotov, M. I.; Osipov, G. V.; Pikovsky, A.

    2016-03-01

    We consider two coupled populations of leaky integrate-and-fire neurons. Depending on the coupling strength, mean fields generated by these populations can have incommensurate frequencies or become frequency locked. In the observed 2:1 locking state of the mean fields, individual neurons in one population are asynchronous with the mean fields, while in another population they have the same frequency as the mean field. These synchronous neurons form a chimera state, where part of them build a fully synchronized cluster, while other remain scattered. We explain this chimera as a marginal one, caused by a self-organized neutral dynamics of the effective circle map.

  4. Occurrence and stability of chimera states in coupled externally excited oscillators

    Science.gov (United States)

    Dudkowski, Dawid; Maistrenko, Yuri; Kapitaniak, Tomasz

    2016-11-01

    We studied the phenomenon of chimera states in networks of non-locally coupled externally excited oscillators. Units of the considered networks are bi-stable, having two co-existing attractors of different types (chaotic and periodic). The occurrence of chimeras is discussed, and the influence of coupling radius and coupling strength on their co-existence is analyzed (including typical bifurcation scenarios). We present a statistical analysis and investigate sensitivity of the probability of observing chimeras to the initial conditions and parameter values. Due to the fact that each unit of the considered networks is individually excited, we study the influence of the excitation failure on stability of observed states. Typical transitions are shown, and changes in network's dynamics are discussed. We analyze systems of coupled van der Pol-Duffing oscillators and the Duffing ones. Described chimera states are robust as they are observed in the wide regions of parameter values, as well as in other networks of coupled forced oscillators.

  5. "American Chimera: The Ever-Present Domination of Whiteness, Patriarchy, and Capitalism…A Parable"

    Science.gov (United States)

    Montoya, Roberto; Matias, Cheryl E.; Nishi, Naomi W. M.; Sarcedo, Geneva L.

    2016-01-01

    In Greek mythology, the Chimera is a fire-breathing monster with three heads: one of a lion, one of a horned goat, and one of a powerful dragon. Of similar construction is the presence of three structures in US society, whiteness, patriarchy, and capitalism, which are overwhelmingly represented, valued, and espoused when examining areas of…

  6. CHIMERA: Clustering of Heterogeneous Disease Effects via Distribution Matching of Imaging Patterns.

    Science.gov (United States)

    Dong, Aoyan; Honnorat, Nicolas; Gaonkar, Bilwaj; Davatzikos, Christos

    2016-02-01

    Many brain disorders and diseases exhibit heterogeneous symptoms and imaging characteristics. This heterogeneity is typically not captured by commonly adopted neuroimaging analyses that seek only a main imaging pattern when two groups need to be differentiated (e.g., patients and controls, or clinical progressors and non-progressors). We propose a novel probabilistic clustering approach, CHIMERA, modeling the pathological process by a combination of multiple regularized transformations from normal/control population to the patient population, thereby seeking to identify multiple imaging patterns that relate to disease effects and to better characterize disease heterogeneity. In our framework, normal and patient populations are considered as point distributions that are matched by a variant of the coherent point drift algorithm. We explain how the posterior probabilities produced during the MAP optimization of CHIMERA can be used for clustering the patients into groups and identifying disease subtypes. CHIMERA was first validated on a synthetic dataset and then on a clinical dataset mixing 317 control subjects and patients suffering from Alzheimer's Disease (AD) and Parkison's Disease (PD). CHIMERA produced better clustering results compared to two standard clustering approaches. We further analyzed 390 T1 MRI scans from Alzheimer's patients. We discovered two main and reproducible AD subtypes displaying significant differences in cognitive performance.

  7. "American Chimera: The Ever-Present Domination of Whiteness, Patriarchy, and Capitalism…A Parable"

    Science.gov (United States)

    Montoya, Roberto; Matias, Cheryl E.; Nishi, Naomi W. M.; Sarcedo, Geneva L.

    2016-01-01

    In Greek mythology, the Chimera is a fire-breathing monster with three heads: one of a lion, one of a horned goat, and one of a powerful dragon. Of similar construction is the presence of three structures in US society, whiteness, patriarchy, and capitalism, which are overwhelmingly represented, valued, and espoused when examining areas of…

  8. Incoherent chimera and glassy states in coupled oscillators with frustrated interactions

    Science.gov (United States)

    Choe, Chol-Ung; Ri, Ji-Song; Kim, Ryong-Son

    2016-09-01

    We suggest a site disorder model that describes the population of identical oscillators with quenched random interactions for both the coupling strength and coupling phase. We obtain the reduced equations for the suborder parameters, on the basis of Ott-Antonsen ansatz theory, and present a complete bifurcation analysis of the reduced system. New effects include the appearance of the incoherent chimera and glassy state, both of which are caused by heterogeneity of the coupling phases. In the incoherent chimera state, the system displays an exotic symmetry-breaking behavior in spite of the apparent structural symmetry where the oscillators for both of the two subpopulations are in a frustrated state, while the phase distribution for each subpopulation approaches a steady state that differs from each other. When the incoherent chimera undergoes Hopf bifurcation, the system displays a breathing incoherent chimera. The glassy state that occurs on a surface of three-dimensional parameter space exhibits a continuum of metastable states with zero value of the global order parameter. Explicit formulas are derived for the system's Hopf, saddle-node, and transcritical bifurcation curves, as well as the codimension-2 crossing points, including the Takens-Bogdanov point.

  9. Embryonic stem cells contribute to mouse chimeras in the absence of detectable cell fusion.

    Science.gov (United States)

    Kidder, Benjamin L; Oseth, Leann; Miller, Shanna; Hirsch, Betsy; Verfaillie, Catherine; Coucouvanis, Electra

    2008-06-01

    Embryonic stem (ES) cells are capable of differentiating into all embryonic and adult cell types following mouse chimera production. Although injection of diploid ES cells into tetraploid blastocysts suggests that tetraploid cells have a selective disadvantage in the developing embryo, tetraploid hybrid cells, formed by cell fusion between ES cells and somatic cells, have been reported to contribute to mouse chimeras. In addition, other examples of apparent stem cell plasticity have recently been shown to be the result of cell fusion. Here we investigate whether ES cells contribute to mouse chimeras through a cell fusion mechanism. Fluorescence in situ hybridization (FISH) analysis for X and Y chromosomes was performed on dissociated tissues from embryonic, neonatal, and adult wild-type, and chimeric mice to follow the ploidy distributions of cells from various tissues. FISH analysis showed that the ploidy distributions in dissociated tissues, notably the tetraploid cell number, did not differ between chimeric and wild-type tissues. To address the possibility that early cell fusion events are hidden by subsequent reductive divisions or other changes in cell ploidy, we injected Z/EG (lacZ/EGFP) ES cells into ACTB-cre blastocysts. Recombination can only occur as the result of cell fusion, and the recombined allele should persist through any subsequent changes in cell ploidy. We did not detect evidence of fusion in embryonic chimeras either by direct fluorescence microscopy for GFP or by PCR amplification of the recombined Z/EG locus on genomic DNA from ACTB-cre::Z/EG chimeric embryos. Our results argue strongly against cell fusion as a mechanism by which ES cells contribute to chimeras.

  10. Non-invasive screening for Alzheimer's disease by sensing salivary sugar using Drosophila cells expressing gustatory receptor (Gr5a) immobilized on an extended gate ion-sensitive field-effect transistor (EG-ISFET) biosensor.

    Science.gov (United States)

    Lau, Hui-Chong; Lee, In-Kyu; Ko, Pan-Woo; Lee, Ho-Won; Huh, Jeung-Soo; Cho, Won-Ju; Lim, Jeong-Ok

    2015-01-01

    Body fluids are often used as specimens for medical diagnosis. With the advent of advanced analytical techniques in biotechnology, the diagnostic potential of saliva has been the focus of many studies. We recently reported the presence of excess salivary sugars, in patients with Alzheimer's disease (AD). In the present study, we developed a highly sensitive, cell-based biosensor to detect trehalose levels in patient saliva. The developed biosensor relies on the overexpression of sugar sensitive gustatory receptors (Gr5a) in Drosophila cells to detect the salivary trehalose. The cell-based biosensor was built on the foundation of an improved extended gate ion-sensitive field-effect transistor (EG-ISFET). Using an EG-ISFET, instead of a traditional ion-sensitive field-effect transistor (ISFET), resulted in an increase in the sensitivity and reliability of detection. The biosensor was designed with the gate terminals segregated from the conventional ISFET device. This design allows the construction of an independent reference and sensing region for simultaneous and accurate measurements of samples from controls and patients respectively. To investigate the efficacy of the cell-based biosensor for AD screening, we collected 20 saliva samples from each of the following groups: participants diagnosed with AD, participants diagnosed with Parkinson's disease (PD), and a control group composed of healthy individuals. We then studied the response generated from the interaction of the salivary trehalose of the saliva samples and the Gr5a in the immobilized cells on an EG-ISFET sensor. The cell-based biosensor significantly distinguished salivary sugar, trehalose of the AD group from the PD and control groups. Based on these findings, we propose that salivary trehalose, might be a potential biomarker for AD and could be detected using our cell-based EG-ISFET biosensor. The cell-based EG-ISFET biosensor provides a sensitive and direct approach for salivary sugar detection and

  11. Designer Nodal/BMP2 Chimeras Mimic Nodal Signaling, Promote Chondrogenesis, and Reveal a BMP2-like Structure

    Science.gov (United States)

    Esquivies, Luis; Blackler, Alissa; Peran, Macarena; Rodriguez-Esteban, Concepcion; Izpisua Belmonte, Juan Carlos; Booker, Evan; Gray, Peter C.; Ahn, Chihoon; Kwiatkowski, Witek; Choe, Senyon

    2014-01-01

    Nodal, a member of the TGF-β superfamily, plays an important role in vertebrate and invertebrate early development. The biochemical study of Nodal and its signaling pathway has been a challenge, mainly because of difficulties in producing the protein in sufficient quantities. We have developed a library of stable, chemically refoldable Nodal/BMP2 chimeric ligands (NB2 library). Three chimeras, named NB250, NB260, and NB264, show Nodal-like signaling properties including dependence on the co-receptor Cripto and activation of the Smad2 pathway. NB250, like Nodal, alters heart looping during the establishment of embryonic left-right asymmetry, and both NB250 and NB260, as well as Nodal, induce chondrogenic differentiation of human adipose-derived stem cells. This Nodal-induced differentiation is shown to be more efficient than BPM2-induced differentiation. Interestingly, the crystal structure of NB250 shows a backbone scaffold similar to that of BMP2. Our results show that these chimeric ligands may have therapeutic implications in cartilage injuries. PMID:24311780

  12. [{sup 18}F]D.P.A.-714: a novel fluorine-18-labelled pyrazolo[1,5-a]pyrimidine acetamide for imaging the peripheral benzodiazepine receptors with PET - radiosynthesis on a zymate-xp robotic system

    Energy Technology Data Exchange (ETDEWEB)

    Dolle, F.; Damont, A.; Hinnen, F.; Kuhnast, B.; Chauveau, F.; Van camp, N.; Hantraye, P.; Tavitian, B. [Servvice Hospitalier Frederic Joliot, I2BM/DSV, 91 - Orsay (France); James, M.; Creelman, A.; Fulton, R.; Kassiou, M. [Sydney Univ., Brain and Mind Research Institute, NSW (Australia); Vercouillie, J.; Guilloteau, D. [Universite Francois Rabelais de Tours, 37 (France); Vercouillie, J.; Guilloteau, D. [Centre Hospitalier Regional Universitaire, 37 - Tours (France); Selleri, S.; Kassiou, M. [Sydney Univ., Discipline of Medical Radiations, Sciences and School of Chemistry, NSW (Australia)

    2008-02-15

    {sup 11}C D.P.A.-713 (N,N-diethyl-2-[2-(4-[{sup 11}C]methoxy-phenyl)-5,7-dimethyl-pyrazolo [1,5-a]pyrimidin-3-yl]acetamide) is a recently developed carbon-11-labelled (half life: 20.4 min)pyrazolo[1,5-a]pyrimidine acetamide for the in vivo imaging of the peripheral benzodiazepine receptors (P.B.R. or translocator protein (18 kDa, T.S.P.O.)). Preliminary results obtained in a rodent-model demonstrates that {sup 11}C D.P.A.-713 showed a high potential to in vivo image neuro-inflammation and additionally, this radioligand allowed a higher contrast between the lesioned area and the corresponding area in the intact contralateral hemisphere when compared to the radioligand of reference. D.P.A-714 (N,N-diethyl-2-[2-[4-(2-fluoro-ethoxy)phenyl] -5,7-dimethyl-pyrazolo[1,5-a]pyrimidin-3-yl]acetamide), a chemically closely related derivative of D.P.A.-713, had been designed with a fluorine atom in its structure, allowing ultimate labelling with fluorine-18, a longer-lived positron-emitter (half life:109.8 min) and today one of the most attractive PET isotopes for radiopharmaceutical chemistry. D.P.A.-714 as well as its corresponding tosylated derivative have been re-synthesized in 2 chemicals steps from D.P.A.-713. D.P.A.-714 has then been labelled at its aromatic fluoro-ethoxy group from the corresponding tosyl-derivative using the K{sup 18}FF-kryptofix{sub 222} (in CH{sub 3}CN (3 mL) at 85 degrees C for 5 min or D.M.S.O. (600 {mu}L) at 130 degrees C for 5 min). {sup 18}FD.P.A.-714 was then purified using semi preparative X terra reverse phase H.P.L.C., adequately formulated for i.v. injection and was found to be > 95% chemically and radiochemically pure. The total synthesis time was less than 90 min and the specific radioactivities at the end of the radiosynthesis ranged from 1 to 3 Ci/micro-mole. (N.C.)

  13. Chronic graft-versus-host disease in the rat radiation chimera: I. clinical features, hematology, histology, and immunopathology in long-term chimeras

    Energy Technology Data Exchange (ETDEWEB)

    Beschorner, W.E.; Tutschka, P.J.; Santos, G.W.

    1982-04-01

    The clinical features, pathology, and immunopathology of chronic graft-versus-host disease (GVHD) developing in the long-term rat radiation chimera are described. At 6 to 12 months post-transplant, the previously stable ACI/LEW chimeras developed patchy to diffuse severe hair loss and thickened skin folds, and had microscopic features resembling scleroderma, Sjogren's syndrome, and chronic hepatitis. Skin histology showed dermal inflammation and acanthosis with atrophy of the appendages, with progression to dermal sclerosis. The liver revealed chronic hepatitis with bile duct injury and proliferation and periportal piecemeal necrosis. The tongue had considerable submucosal inflammation, muscular necrosis, and atrophy and arteritis. The serous salivary glands, lacrimal glands, and bronchi had lymphocytic inflammation and injury to duct, acinar, and mucosal columnar epithelium. The thymus had lymphocyte depletion of the medulla with prominent epithelium. The spleen and lymph nodes had poorly developed germinal centers but increased numbers of plasma cells. IgM was observed along the basement membrane and around the basal cells of the skin and tongue and along the basement membrane of the bile ducts. IgM was present also in the arteries of the tongue. Immunoglobulins eluted from the skin, cross-reacted with the bile duct epithelium and usually with both ACI and Lewis skin. Increased titers of speckled antinuclear antibodies were present in the serum of rats with chronic (GVHD). Chronic GVHD in the long-term rat radiation chimera is very similar to human chronic GVHD and is a potentially excellent model for autoimmune disorders including scleroderma, Sjorgren's syndrome, and chronic hepatitis.

  14. Fungal phosphate transporter serves as a receptor backbone for gibbon ape leukemia virus

    DEFF Research Database (Denmark)

    Pedersen, Lene; van Zeijl, Marja; Johann, Stephen V

    1997-01-01

    Pit1, the receptor for gibbon ape leukemia virus (GALV), is proposed to be an integral membrane protein with five extracellular loops. Chimeras made between Pit1 homologs differing in permissivity for infection and between Pit1 and the related protein Pit2 have shown that the fourth extracellular...... in a functional GALV receptor. Therefore, the presence of a Pit1 loop 4-specific sequence is sufficient to confer receptor function for the mammalian retrovirus GALV on the fungal phosphate transporter Pho-4...

  15. Novel GLP-1 Fusion Chimera as Potent Long Acting GLP-1 Receptor Agonist

    OpenAIRE

    Qinghua Wang; Kui Chen; Rui Liu; Fang Zhao; Sandeep Gupta; Nina Zhang; Prud'homme, Gerald J.

    2010-01-01

    GLP-1 has a variety of anti-diabetic effects. However, native GLP-1 is not suitable for therapy of diabetes due to its short half-life (t1/2168 h. Intraperitoneal glucose tolerance test (IPGTT) in mice showed that GLP-1/hIgG2 significantly decreased glucose excursion. Furthermore, IPGTT performed on mice one week after a single drug-injection also displayed significantly reduced glucose excursion, indicating that GLP-1/hIgG2 fusion protein has long-lasting effects on the modulation of glucose...

  16. Suppressor cells in transplantation tolerance II. Maturation of suppressor cells in the bone marrow chimera

    Energy Technology Data Exchange (ETDEWEB)

    Tutschka, P.J.; Ki, P.F.; Beschorner, W.E.; Hess, A.D.; Santos, G.W.

    1981-10-01

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods.

  17. Suppressor cells in transplantation tolerance. II. maturation of suppressor cells in the bone marrow chimera

    Energy Technology Data Exchange (ETDEWEB)

    Tutschka, P.J.; Ki, P.F.; Beschorner, W.E.; Hess, A.D.; Santos, G.W.

    1981-10-01

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods.

  18. Chimera patterns induced by distance-dependent power-law coupling in ecological networks

    Science.gov (United States)

    Banerjee, Tanmoy; Dutta, Partha Sharathi; Zakharova, Anna; Schöll, Eckehard

    2016-09-01

    This paper reports the occurrence of several chimera patterns and the associated transitions among them in a network of coupled oscillators, which are connected by a long-range interaction that obeys a distance-dependent power law. This type of interaction is common in physics and biology and constitutes a general form of coupling scheme, where by tuning the power-law exponent of the long-range interaction the coupling topology can be varied from local via nonlocal to global coupling. To explore the effect of the power-law coupling on collective dynamics, we consider a network consisting of a realistic ecological model of oscillating populations, namely the Rosenzweig-MacArthur model, and show that the variation of the power-law exponent mediates transitions between spatial synchrony and various chimera patterns. We map the possible spatiotemporal states and their scenarios that arise due to the interplay between the coupling strength and the power-law exponent.

  19. Impact of hyperbolicity on chimera states in ensembles of nonlocally coupled chaotic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Semenova, N.; Anishchenko, V. [Department of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov (Russian Federation); Zakharova, A.; Schöll, E. [Institut für Theoretische Physik, TU Berlin, Hardenbergstraße 36, 10623 Berlin (Germany)

    2016-06-08

    In this work we analyse nonlocally coupled networks of identical chaotic oscillators. We study both time-discrete and time-continuous systems (Henon map, Lozi map, Lorenz system). We hypothesize that chimera states, in which spatial domains of coherent (synchronous) and incoherent (desynchronized) dynamics coexist, can be obtained only in networks of chaotic non-hyperbolic systems and cannot be found in networks of hyperbolic systems. This hypothesis is supported by numerical simulations for hyperbolic and non-hyperbolic cases.

  20. Mass and charge identification of fragments detected with the Chimera Silicon-CsI(Tl) telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Le Neindre, N.; Alderighi, M.; Anzalone, A.; Barna, R.; Bartolucci, M.; Berceanu, I.; Borderie, B.; Bougault, R.; Bruno, M.; Cardella, G.; Cavallaro, S.; D' Agostino, M. E-mail: dagostino@bo.infn.it; Dayras, R.; De Filippo, E.; De Pasquale, D.; Geraci, E.; Giustolisi, F.; Grzeszczuk, A.; Guazzoni, P.; Guinet, D.; Iacono-Manno, M.; Italiano, A.; Kowalski, S.; Lanchais, A.; Lanzano, G.; Lanzalone, G.; Li, S.; Lo Nigro, S.; Maiolino, C.; Manfredi, G.; Moisa, D.; Pagano, A.; Papa, M.; Paduszynski, T.; Petrovici, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Pop, A.; Porto, F.; Rivet, M.F.; Rosato, E.; Russo, S.; Sambataro, S.; Sechi, G.; Simion, V.; Sperduto, M.L.; Steckmeyer, J.C.; Sutera, C.; Trifiro, A.; Tassan-Got, L.; Trimarchi, M.; Vannini, G.; Vigilante, M.; Wilczynski, J.; Wu, H.; Xiao, Z.; Zetta, L.; Zipper, W

    2002-09-01

    Mass and charge identification of charged products detected with Silicon-CsI(Tl) telescopes of the Chimera apparatus are presented. An identification function, based on the Bethe-Bloch formula, is used to fit empirical correlations between {delta}E and E ADC readings, in order to determine, event by event, the atomic and mass numbers of the detected charged reaction products prior to energy calibration.

  1. Human-animal chimera: a neuro driven discussion? Comparison of three leading European research countries.

    Science.gov (United States)

    Cabrera Trujillo, Laura Yenisa; Engel-Glatter, Sabrina

    2015-06-01

    Research with human-animal chimera raises a number of ethical concerns, especially when neural stem cells are transplanted into the brains of non-human primates (NHPs). Besides animal welfare concerns and ethical issues associated with the use of embryonic stem cells, the research is also regarded as controversial from the standpoint of NHPs developing cognitive or behavioural capabilities that are regarded as "unique" to humans. However, scientists are urging to test new therapeutic approaches for neurological diseases in primate models as they better mimic human physiology than all current animal models. As a response, various countries have issued reports on the topic. Our paper summarizes the ethical issues raised by research with human-animal brain chimeras and compares the relevant regulatory instruments and different recommendations issued in national reports from three important European research nations: Germany, Switzerland and the United Kingdom. We assess and discuss the focus and priorities set by the different reports, review various reasons for and perspectives on the importance of the brain in chimera research, and identify critical points in the reports that warrant further specification and debate.

  2. Synthesis of Phosphorodiamidate Morpholino Oligonucleotides and Their Chimeras Using Phosphoramidite Chemistry.

    Science.gov (United States)

    Paul, Sibasish; Caruthers, Marvin H

    2016-12-07

    Phosphorodiamidate morpholinos (PMOs) and PMO-DNA chimeras have been prepared on DNA synthesizers using phosphoramidite chemistry. This was possible by first generating boranephosphoroamidate morpholino internucleotide linkages followed by oxidative substitution with four different amines: N,N-dimethylamine, N-methylamine, ammonia, and morpholine. When compared to a natural DNA duplex, the amino modified PMO was found to have a higher melting temperature with either complementary DNA or RNA, whereas the remaining PMO analogues having morpholino, dimethylamino, or N-methylamino phosphorodiamidate linkages had melting temperatures that were either comparable or reduced. Additionally the N,N-dimethylamino PMO-DNA chimeras were found to stimulate RNaseH1 activity. Treatment of HeLa cells with fluorescently labeled PMO chimeras demonstrated that these analogues were efficiently taken up by cells in the presence of a lipid transfection reagent. Because of the simplistic synthesis procedures, various PMO analogues are now readily available and should therefore open new pathways for research into the antisense, diagnostic, and nanotechnology oligonucleotide fields.

  3. Flexible and rapid construction of viral chimeras applied to hepatitis C virus.

    Science.gov (United States)

    McClure, C Patrick; Urbanowicz, Richard A; King, Barnabas J; Cano-Crespo, Sara; Tarr, Alexander W; Ball, Jonathan K

    2016-09-01

    A novel and broadly applicable strategy combining site-directed mutagenesis and DNA assembly for constructing seamless viral chimeras is described using hepatitis C virus (HCV) as an exemplar. Full-length HCV genomic cloning cassettes, which contained flexibly situated restriction endonuclease sites, were prepared via a single, site-directed mutagenesis reaction and digested to receive PCR-amplified virus envelope genes by In-Fusion cloning. Using this method, we were able to construct gene-shuttle cassettes for generation of cell culture-infectious JFH-1-based chimeras containing genotype 1-3 E1E2 genes. Importantly, using this method we also show that E1E2 clones that were not able to support cell entry in the HCV pseudoparticle assay did confer entry when shuttled into the chimeric cell culture chimera system. This method can be easily applied to other genes of study and other viruses and, as such, will greatly simplify reverse genetics studies of variable viruses.

  4. Sch proteins are localized on endoplasmic reticulum membranes and are redistributed after tyrosine kinase receptor activation

    DEFF Research Database (Denmark)

    Lotti, L V; Lanfrancone, L; Migliaccio, E

    1996-01-01

    The intracellular localization of Shc proteins was analyzed by immunofluorescence and immunoelectron microscopy in normal cells and cells expressing the epidermal growth factor receptor or the EGFR/erbB2 chimera. In unstimulated cells, the immunolabeling was localized in the central perinuclear...

  5. Requirement for Tumor Necrosis Factor Receptor 2 Expression on Vascular Cells To Induce Experimental Cerebral Malaria

    OpenAIRE

    Stoelcker, Benjamin; Hehlgans, Thomas; Weigl, Karin; Bluethmann, Horst; Grau, Georges E.; Männel, Daniela N

    2002-01-01

    Using tumor necrosis factor receptor type 2 (TNFR2)-deficient mice and generating bone marrow chimeras which express TNFR2 on either hematopoietic or nonhematopoietic cells, we demonstrated the requirement for TNFR2 expression on tissue cells to induce lethal cerebral malaria. Thus, TNFR2 on the brain vasculature mediates tumor necrosis factor-induced neurovascular lesions in experimental cerebral malaria.

  6. Tamoxifen-regulated adenoviral E1A chimeras for the control of tumor selective oncolytic adenovirus replication in vitro and in vivo.

    Science.gov (United States)

    Sipo, I; Wang, X; Hurtado Picó, A; Suckau, L; Weger, S; Poller, W; Fechner, H

    2006-01-01

    Pharmacological control is a desirable safety feature of oncolytic adenoviruses (oAdV). It has recently been shown that oAdV replication may be controlled by drug-dependent transcriptional regulation of E1A expression. Here, we present a novel concept that relies on tamoxifen-dependent regulation of E1A activity through functional linkage to the mutated hormone-binding domain of the murine estrogen receptor (Mer). Four different E1A-Mer chimeras (ME, EM, E(DeltaNLS)M, MEM) were constructed and inserted into the adenoviral genome under control of a lung-specific surfactant protein B promoter. The highest degree of regulation in vitro was seen for the corresponding oAdVs Ad.E(DeltaNLS)M and Ad.MEM, which exhibited an up to 100-fold higher oAdV replication in the presence as compared with the absence of 4-OH-tamoxifen. Moreover, destruction of nontarget cells was six- and 13-fold reduced for Ad.E(DeltaNLS)M and Ad.MEM, respectively, as compared with Ad.E. Further investigations supported tamoxifen-dependent regulation of Ad.E(DeltaNLS)M and Ad.MEM in vivo. Induction of Ad.E(DeltaNLS)M inhibited growth of H441 lung tumors as efficient as a control oAdV expressing E1A. E(DeltaNLS)M and the MEM chimeras can be easily inserted into a single vector genome, which extends their application to existing oAdVs and strongly facilitates in vivo application.

  7. The anxioselective agent 7-(2-chloropyridin-4-yl)pyrazolo-[1,5-a]-pyrimidin-3-yl](pyridin-2-yl)methanone (DOV 51892) is more efficacious than diazepam at enhancing GABA-gated currents at alpha1 subunit-containing GABAA receptors.

    Science.gov (United States)

    Popik, Piotr; Kostakis, Emmanuel; Krawczyk, Martyna; Nowak, Gabriel; Szewczyk, Bernadeta; Krieter, Philip; Chen, Zhengming; Russek, Shelley J; Gibbs, Terrell T; Farb, David H; Skolnick, Phil; Lippa, Arnold S; Basile, Anthony S

    2006-12-01

    Studies using mice with point mutations of GABA(A) receptor alpha subunits suggest that the sedative and anxiolytic properties of 1,4-benzodiazepines are mediated, respectively, by GABA(A) receptors bearing the alpha(1) and alpha(2) subunits. This hypothesis predicts that a compound with high efficacy at GABA(A) receptors containing the alpha(1) subunit would produce sedation, whereas an agonist acting at alpha(2) subunit-containing receptors (with low or null efficacy at alpha(1)-containing receptors) would be anxioselective. Electrophysiological studies using recombinant GABA(A) receptors expressed in Xenopus oocytes indicate that maximal potentiation of GABA-stimulated currents by the pyrazolo-[1,5-a]-pyrimidine, DOV 51892, at alpha(1)beta(2)gamma(2S) constructs of the GABA(A) receptor was significantly higher (148%) than diazepam. In contrast, DOV 51892 was considerably less efficacious and/or potent than diazepam in enhancing GABA-stimulated currents mediated by constructs containing alpha(2), alpha(3), or alpha(5) subunits. In vivo, DOV 51892 increased punished responding in the Vogel conflict test, an effect blocked by flumazenil, and increased the percentage of time spent in the open arms of the elevated plus-maze. However, DOV 51892 had no consistent effects on motor function or muscle relaxation at doses more than 1 order of magnitude greater than the minimal effective anxiolytic dose. Although the mutant mouse data predict that the high-efficacy potentiation of GABA(A1a) receptor-mediated currents by DOV 51892 would be sedating, behavioral studies demonstrate that DOV 51892 is anxioselective, indicating that GABA potentiation mediated by alpha(1) subunit-containing GABA(A) receptors may be neither the sole mechanism nor highly predictive of the sedative properties of benzodiazepine recognition site modulators.

  8. Histopathological changes in exocrine glands of murine transplantation chimeras. II: Sjögren's syndrome-like exocrinopathy in mice without lupus nephritis. A model of primary Sjögren's syndrome

    DEFF Research Database (Denmark)

    Ussing, Anne Phaff; Prause, J.U.; Sørensen, Inger

    1992-01-01

    Autoimmune disease, primary Sjögren's syndrome, transplantation chimeras, experimental model, exocrinopathy, inbred mouse strains......Autoimmune disease, primary Sjögren's syndrome, transplantation chimeras, experimental model, exocrinopathy, inbred mouse strains...

  9. Regulation of FSHβ induction in LβT2 cells by BMP2 and an Activin A/BMP2 chimera, AB215.

    Science.gov (United States)

    Jung, Jae Woo; Ahn, Chihoon; Shim, Sun Young; Gray, Peter C; Kwiatkowski, Witek; Choe, Senyon

    2014-10-01

    Activins and bone morphogenetic proteins (BMPs) share activin type 2 signaling receptors but utilize different type 1 receptors and Smads. We designed AB215, a potent BMP2-like Activin A/BMP2 chimera incorporating the high-affinity type 2 receptor-binding epitope of Activin A. In this study, we compare the signaling properties of AB215 and BMP2 in HEK293T cells and gonadotroph LβT2 cells in which Activin A and BMP2 synergistically induce FSHβ. In HEK293T cells, AB215 is more potent than BMP2 and competitively blocks Activin A signaling, while BMP2 has a partial blocking activity. Activin A signaling is insensitive to BMP pathway antagonism in HEK293T cells but is strongly inhibited by constitutively active (CA) BMP type 1 receptors. By contrast, the potencies of AB215 and BMP2 are indistinguishable in LβT2 cells and although AB215 blocks Activin A signaling, BMP2 has no inhibitory effect. Unlike HEK293T, Activin A signaling is strongly inhibited by BMP pathway antagonism in LβT2 cells but is largely unaffected by CA BMP type 1 receptors. BMP2 increases phospho-Smad3 levels in LβT2 cells, in both the absence and the presence of Activin A treatment, and augments Activin A-induced FSHβ. AB215 has the opposite effect and sharply decreases basal phospho-Smad3 levels and blocks Smad2 phosphorylation and FSHβ induction resulting from Activin A treatment. These findings together demonstrate that while AB215 activates the BMP pathway, it has opposing effects to those of BMP2 on FSHβ induction in LβT2 cells apparently due to its ability to block Activin A signaling.

  10. PCSK9 prosegment chimera as novel inhibitors of LDLR degradation.

    Directory of Open Access Journals (Sweden)

    Yascara Grisel Luna Saavedra

    Full Text Available The proprotein convertase PCSK9, a target for the treatment of hypercholesterolemia, is a negative regulator of the LDL receptor (LDLR leading to its degradation in endosomes/lysosomes and up-regulation of plasma LDL-cholesterol levels. The proprotein convertases, a family of nine secretory serine proteases, are first synthesized as inactive zymogens. Except for PCSK9, all other convertases are activated following the autocatalytic excision of their inhibitory N-terminal prosegment. PCSK9 is unique since the mature enzyme exhibits a cleaved prosegment complexed with the catalytic subunit and has no protease activity towards other substrates. Similar to other convertases, we hypothesized that the in trans presence of the PCSK9 prosegment would interfere with PCSK9's activity on the LDLR. Since the prosegment cannot be secreted alone, we engineered a chimeric protein using the Fc-region of human IgG1 fused to the PCSK9 prosegment. The expression of such Fcpro-fusion protein in HEK293 and HepG2 cells resulted in a secreted protein that binds PCSK9 and markedly inhibits its activity on the LDLR. This was observed by either intracellular co-expression of PCSK9 and Fcpro or by an extracellular in vitro co-incubation of Fcpro with PCSK9. Structure-function studies revealed that the inhibitory function of Fcpro does not require the acidic N-terminal stretch (residues 31-58 nor the C-terminal Gln 152 of the prosegment. Fcpro likely interacts with the prosegment and/or catalytic subunit of the prosegment≡PCSK9 complex thereby allosterically modulating its function. Our data suggest a novel strategic approach for the design and isolation of PCSK9 inhibitors.

  11. Pharmacological characterisation of strychnine and brucine analogues at glycine and alpha7 nicotinic acetylcholine receptors.

    Science.gov (United States)

    Jensen, Anders A; Gharagozloo, Parviz; Birdsall, Nigel J M; Zlotos, Darius P

    2006-06-06

    Strychnine and brucine from the plant Strychnos nux vomica have been shown to have interesting pharmacological effects on several neurotransmitter receptors, including some members of the superfamily of ligand-gated ion channels. In this study, we have characterised the pharmacological properties of tertiary and quaternary analogues as well as bisquaternary dimers of strychnine and brucine at human alpha1 and alpha1beta glycine receptors and at a chimera consisting of the amino-terminal domain of the alpha7 nicotinic receptor (containing the orthosteric ligand binding site) and the ion channel domain of the 5-HT3A serotonin receptor. Although the majority of the analogues displayed significantly increased Ki values at the glycine receptors compared to strychnine and brucine, a few retained the high antagonist potencies of the parent compounds. However, mirroring the pharmacological profiles of strychnine and brucine, none of the analogues displayed significant selectivity between the alpha1 and alpha1beta subtypes. The structure-activity relationships for the compounds at the alpha7/5-HT3 chimera were significantly different from those at the glycine receptors. Most strikingly, quaternization of strychnine and brucine with substituents possessing different steric and electronic properties completely eliminated the activity at the glycine receptors, whereas binding affinity to the alpha7/5-HT3 chimera was retained for the majority of the quaternary analogues. This study provides an insight into the structure-activity relationships for strychnine and brucine analogues at these ligand-gated ion channels.

  12. Asparagine, valine, and threonine in the third extracellular loop of muscarinic receptor have essential roles in the positive cooperativity of strychnine-like allosteric modulators.

    Science.gov (United States)

    Jakubík, J; Krejcí, A; Dolezal, V

    2005-05-01

    We have investigated allosteric interactions of four closely related strychnine-like substances: Wieland-Gumlich aldehyde (WGA), propargyl Wieland-Gumlich aldehyde, strychnine, and brucine with N-methylscopolamine (NMS) on M(3) subtype of muscarinic receptor genetically modified in the second or the third extracellular loop to corresponding loops of M(2) subtype (M(3)o2 and M(3)o3 chimera). The M(3)o2 chimeric receptor The exhibited no change in either affinity of strychnine, brucine, and WGA or in cooperativity of brucine or WGA, whereas both parameters for propargyl-WGA changed. In contrast, there was a change in affinity of all tested modulators (except for brucine) and in their cooperativity in the M(3)o3 chimera. Directions of affinity changes in both chimeras were always toward values of the donor M(2) subtype, but changes in cooperativity were variable. Compared with the native M(3) receptor, strychnine displayed a slight increase in positive cooperativity and propargyl-WGA a robust decrease in negative cooperativity at M(3)o2 chimera. Similar changes were found in the M(3)o3 chimera. Interestingly, cooperativity of brucine and WGA at the M(3)o3 chimera changed from negative to positive. This is the first evidence of constitution of positive cooperativity of WGA by switching sequences of two parental receptors, both exhibiting negative cooperativity. Gradual replacement of individual amino acids revealed that only three residues (NVT of the o3 loop of the M(2) receptor) are involved in this effect. Data suggest that these amino acids are essential for propagation of a conformation change resulting in positive cooperativity induced by these modulators.

  13. Anti-bacterial immunity to Listeria monocytogenes in allogeneic bone marrow chimera in mice

    Energy Technology Data Exchange (ETDEWEB)

    Onoe, K.; Good, R.A.; Yamamoto, K.

    1986-06-01

    Protection and delayed-type hypersensitivity (DTH) to the facultative intracellular bacterium Listeria monocytogenes (L.m.) were studied in allogeneic and syngeneic bone marrow chimeras. Lethally irradiated AKR (H-2k) mice were successfully reconstituted with marrow cells from C57BL/10 (B10) (H-2b), B10 H-2-recombinant strains or syngeneic mice. Irradiated AKR mice reconstituted with marrow cells from H-2-compatible B10.BR mice, (BR----AKR), as well as syngeneic marrow cells, (AKR----AKR), showed a normal level of responsiveness to the challenge stimulation with the listeria antigens when DTH was evaluated by footpad reactions. These mice also showed vigorous activities in acquired resistance to the L.m. By contrast, chimeric mice that had total or partial histoincompatibility at the H-2 determinants between donor and recipient, (B10----AKR), (B10.AQR----AKR), (B10.A(4R)----AKR), or (B10.A(5R)----AKR), were almost completely unresponsive in DTH and antibacterial immunity. However, when (B10----AKR) H-2-incompatible chimeras had been immunized with killed L.m. before challenge with live L.m., these mice manifested considerable DTH and resistance to L.m. These observations suggest that compatibility at the entire MHC between donor and recipient is required for bone marrow chimeras to be able to manifest DTH and protection against L.m. after a short-term immunization schedule. However, this requirement is overcome by a preceding or more prolonged period of immunization with L.m. antigens. These antigens, together with marrow-derived antigen-presenting cells, can then stimulate and expand cell populations that are restricted to the MHC (H-2) products of the donor type.

  14. Formation of germline chimera Gaok chicken used circulation primordial germ cells (circulation PGCs fresh and thawed

    Directory of Open Access Journals (Sweden)

    Kostaman T

    2014-03-01

    Full Text Available Formation of germline chimeras by transfer of chicken primordial germ cells (PGCs is one of the effective techniques for preservation and regeneration of genetic resources in chickens. This study attempted to form germline chimeras of Gaok chicken buy purifying circulated PGCs of donor embryo before it is transferred to the recipient (White Leghorn chickens=WL and studied the ability of recipient embryo on survival in incubators, and hatchability. This study used 200 fertile eggs of Gaok and 90 fertile WL breed all of the eggs was incubated at 380C and 60% humidity in a portable incubator. PGCs-circulation of the blood collected Gaok embryos at stage 14-16 were taken from the dorsal aorta, and then purified by centrifugation method using nycodenz. PGCs-circulation results further purification frozen in liquid nitrogen before being transferred to the recipient embryo. The results showed that for the development of embryos transferred to the fresh circulation of PGCs-circulation as many as 25 cells can survive up to day 14, while one of the transferred of 50 and 100 cells into recipient embryos was hatched (10%. On the contrari recipient embryos that are transferred to the frozen PGCs-circulation the embryos development was shorter, and only survived until day 10th (treatment 25 cells, day 14th (treatment of 50 cells and day 17th (treatment of 100 cells. It is concluded that the amount of PGCs-circulation embryos transferred to the recipient is one factor that influence the success of the development germline chimeras.

  15. Plasmodium vivax Promiscuous T-Helper Epitopes Defined and Evaluated as Linear Peptide Chimera Immunogens

    Science.gov (United States)

    Caro-Aguilar, Ivette; Rodríguez, Alexandra; Calvo-Calle, J. Mauricio; Guzmán, Fanny; De la Vega, Patricia; Elkin Patarroyo, Manuel; Galinski, Mary R.; Moreno, Alberto

    2002-01-01

    Clinical trials of malaria vaccines have confirmed that parasite-derived T-cell epitopes are required to elicit consistent and long-lasting immune responses. We report here the identification and functional characterization of six T-cell epitopes that are present in the merozoite surface protein-1 of Plasmodium vivax (PvMSP-1) and bind promiscuously to four different HLA-DRB1∗ alleles. Each of these peptides induced lymphoproliferative responses in cells from individuals with previous P. vivax infections. Furthermore, linear-peptide chimeras containing the promiscuous PvMSP-1 T-cell epitopes, synthesized in tandem with the Plasmodium falciparum immunodominant circumsporozoite protein (CSP) B-cell epitope, induced high specific antibody titers, cytokine production, long-lasting immune responses, and immunoglobulin G isotype class switching in BALB/c mice. A linear-peptide chimera containing an allele-restricted P. falciparum T-cell epitope with the CSP B-cell epitope was not effective. Two out of the six promiscuous T-cell epitopes exhibiting the highest anti-peptide response also contain B-cell epitopes. Antisera generated against these B-cell epitopes recognize P. vivax merozoites in immunofluorescence assays. Importantly, the anti-peptide antibodies generated to the CSP B-cell epitope inhibited the invasion of P. falciparum sporozoites into human hepatocytes. These data and the simplicity of design of the chimeric constructs highlight the potential of multimeric, multistage, and multispecies linear-peptide chimeras containing parasite promiscuous T-cell epitopes for malaria vaccine development. PMID:12065487

  16. Transfer of experimental allergic encephalomyelitis to bone marrow chimeras. Endothelial cells are not a restricting element

    Energy Technology Data Exchange (ETDEWEB)

    Hinrichs, D.J.; Wegmann, K.W.; Dietsch, G.N.

    1987-12-01

    The adoptive transfer of clinical and histopathologic signs of experimental allergic encephalomyelitis (EAE) requires MHC compatibility between cell donor and cell recipient. The results of adoptive transfer studies using F1 to parent bone marrow chimeras as recipients of parental-derived BP-sensitive spleen cells indicate that this restriction is not expressed at the level of the endothelial cell but is confined to the cells of bone marrow derivation. Furthermore, these results indicate that the development of EAE is not dependent on the activity of MHC-restricted cytotoxic cells.

  17. Core Collapse Supernovae Using CHIMERA: Gravitational Radiation from Non-Rotating Progenitors

    Energy Technology Data Exchange (ETDEWEB)

    Yakunin, Konstantin [Florida Atlantic University; Marronetti, Pedro [Florida Atlantic University; Mezzacappa, Anthony [ORNL; Bruenn, S. W. [Florida Atlantic University; Lee, Ching-Tsai [University of Tennessee, Knoxville (UTK); Chertkow, Merek A [ORNL; Hix, William Raphael [ORNL; Blondin, J. M. [North Carolina State University; Lentz, Eric J [ORNL; Messer, Bronson [ORNL; Yoshida, S. [University of Tokyo, Tokyo, Japan

    2011-01-01

    The CHIMERA code is a multi-dimensional multi-physics engine dedicated primarily to the simulation of core collapse supernova explosions. One of the most important aspects of these explosions is their capacity to produce gravitational radiation that is detectable by earth-based laser-interferometric gravitational wave observatories such as LIGO and VIRGO. We present here preliminary gravitational signatures of two-dimensional models with non-rotating progenitors. These simulations exhibit explosions, which are followed for more than half a second after stellar core bounce.

  18. Self-renewal of pulmonary alveolar macrophages: evidence from radiation chimera studies

    Energy Technology Data Exchange (ETDEWEB)

    Tarling, J.D.; Lin, H.S.; Hsu, S.

    1987-11-01

    Radiation-induced chimeric mice were used to study the origin of pulmonary alveolar macrophages. Unlike in other studies, these radiation chimeras were prepared by using a special fractionated irradiation regimen to minimize the killing of alveolar macrophage colony-forming cells, putative local stem cells. For this study CBA mice with or without T6 chromosome marker were used. Under this experimental condition, the majority of alveolar macrophages in mitosis are of host origin even after 45 weeks. These data suggest that alveolar macrophages are a self-renewing population under normal steady-state conditions.

  19. Using opioid receptors to expand the chemogenetic and optogenetic toolbox.

    Science.gov (United States)

    Damez-Werno, Diane M; Kenny, Paul J

    2015-05-20

    In this issue of Neuron, innovative new modifications to opioid receptors are used to expand the tools available to modulate neuronal activity. Vardy et al. (2015) describe a new "DREADD" chemogenetic tool based on the inhibitory κ opioid receptor (KORD) that can be used in conjunction with already-available DREADDs. Siuda et al. (2015) report the development of "opto-MOR," a light-activatable μ opioid receptor (MOR) chimera that can be used to better understand the complexities of MOR signaling.

  20. Embryonic stem cell/fibroblast hybrid cells with near-tetraploid karyotype provide high yield of chimeras.

    Science.gov (United States)

    Kruglova, A A; Kizilova, E A; Zhelezova, A I; Gridina, M M; Golubitsa, A N; Serov, O L

    2008-12-01

    Ten primary clones of hybrid cells were produced by the fusion of diploid embryonic stem (ES) cells, viz., line E14Tg2aSc4TP6.3 marked by green fluorescent protein (GFP), with diploid embryonic or adult fibroblasts derived from DD/c mice. All the hybrid clones had many characteristics similar to those of ES cells and were positive for GFP. Five hybrid clones having ploidy close to tetraploidy (over 80% of cells had 76-80 chromosomes) were chosen for the generation of chimeras via injection into C57BL blastocysts. These hybrid clones also contained microsatellites marking all ES cell and fibroblast chromosomes judging from microsatellite analysis. Twenty chimeric embryos at 11-13 days post-conception were obtained after injection of hybrid cells derived from two of three clones. Many embryos showed a high content of GFP-positive descendents of the tested hybrid cells. Twenty one adult chimeras were generated by the injection of hybrid cells derived from three clones. The contribution of GFP-labeled hybrid cells was significant and comparable with that of diploid E14Tg2aSc4TP6.3 cells. Cytogenetic and microsatellite analyses of cell cultures derived from chimeric embryos or adults indicated that the initial karyotype of the tested hybrid cells remained stable during the development of the chimeras, i.e., the hybrid cells were mainly responsible for the generation of the chimeras. Thus, ES cell/fibroblast hybrid cells with near-tetraploid karyotype are able to generate chimeras at a high rate, and many adult chimeras contain a high percentage of descendants of the hybrid cells.

  1. Artificial modulation of the gating behavior of a K+ channel in a KvAP-DNA chimera.

    Directory of Open Access Journals (Sweden)

    Andrew Wang

    Full Text Available We present experiments where the gating behavior of a voltage-gated ion channel is modulated by artificial ligand binding. We construct a channel-DNA chimera with the KvAP potassium channel reconstituted in an artificial membrane. The channel is functional and the single channel ion conductivity unperturbed by the presence of the DNA. However, the channel opening probability vs. bias voltage, i.e., the gating, can be shifted considerably by the electrostatic force between the charges on the DNA and the voltage sensing domain of the protein. Different hybridization states of the chimera DNA thus lead to different response curves of the channel.

  2. Resistance to infection with Eimeria vermiformis in mouse radiation chimeras is determined by donor bone-marrow cells

    Energy Technology Data Exchange (ETDEWEB)

    Joysey, H.S.; Wakelin, D.; Rose, M.E.

    1988-05-01

    The course of infection with Eimeria vermiformis was determined in BALB/b, BALB/c, and C57BL/10ScSn (B10) mice and in radiation chimeras prepared from the H-2-compatible BALB/b and B10 mice. The BALB strains, irrespective of H-2 haplotype, were resistant, the B10 mice were susceptible, and in the chimeras infection was characterized by the genotype of the donated bone-marrow cells and not by the phenotype of the recipient. Thus, the genetic control of relative resistance or susceptibility to infection with this parasite is expressed through bone-marrow-derived cells.

  3. Synthesis and biological evaluation of analogues of 7-chloro-4,5-dihydro-4- oxo-8-(1,2,4-triazol-4-yl)-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylic acid (TQX-173) as novel selective AMPA receptor antagonists.

    Science.gov (United States)

    Catarzi, Daniela; Colotta, Vittoria; Varano, Flavia; Calabri, Francesca Romana; Filacchioni, Guido; Galli, Alessandro; Costagli, Chiara; Carlà, Vincenzo

    2004-01-01

    In recent papers (Catarzi, D.; et al. J. Med. Chem. 2000, 43, 3824-3826; 2001, 44, 3157-3165) we reported chemical and biological studies on 4,5-dihydro-4-oxo-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylates (TQXs) bearing different nitrogen-containing heterocycles at position-8. In particular, from these studies it emerged that both the 7-chloro-4,5-dihydro-4-oxo-8-(1,2,4-triazol-4-yl)-1,2,4-triazolo[1,5-a] quinoxaline-2-carboxylic acid TQX-173 (compound B) and its corresponding ethyl ester (compound A) were the most active and selective compounds of this series. In pursuing our investigation on the structure-activity relationships of these TQX derivatives, different electron-withdrawing groups (CF(3), NO(2)) were introduced at position 7 on the TQX ring system, replacing the 7-chloro substituent of B and of other selected 8-heteroaryltriazoloquinoxaline-2-carboxylates previously described. All the newly synthesized compounds were biologically evaluated for their binding at the Gly/NMDA, AMPA, and KA high-affinity receptors. Gly/NMDA binding assays were performed to assess the selectivity of the reported compounds toward the AMPA receptor. Compounds endowed with micromolar binding affinity for the KA high-affinity binding site were also evaluated for their binding at the KA low-affinity receptor. Some selected compounds were also tested for their functional antagonist activity at the AMPA and NMDA receptor-ion channel complex. The results obtained in this study have pointed out that 4,5-dihydro-7-nitro-4-oxo-8-(3-carboxypyrrol-1-yl)-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylic acid (9b) and its corresponding ethyl ester (9a) are the most potent and selective AMPA receptor antagonists reported to date among the TQX series.

  4. 1,2,4-Triazolo[1,5-a]quinoxaline as a versatile tool for the design of selective human A3 adenosine receptor antagonists: synthesis, biological evaluation, and molecular modeling studies of 2-(hetero)aryl- and 2-carboxy-substituted derivatives.

    Science.gov (United States)

    Catarzi, Daniela; Colotta, Vittoria; Varano, Flavia; Lenzi, Ombretta; Filacchioni, Guido; Trincavelli, Letizia; Martini, Claudia; Montopoli, Christian; Moro, Stefano

    2005-12-15

    A number of 4-oxo-substituted 1,2,4-triazolo[1,5-a]quinoxaline derivatives bearing at position-2 the claimed (hetero)aryl moiety (compounds 1-15) but also a carboxylate group (16-28, 32-36) or a hydrogen atom (29-31) were designed as human A3 (hA3) adenosine receptor (AR) antagonists. This study produced some interesting compounds and among them the 2-(4-methoxyphenyl)-1,2,4-triazolo[1,5-a]quinoxalin-4-one (8), which can be considered one of the most potent and selective hA3 adenosine receptor antagonists reported till now. Moreover, as a new finding, replacement of the classical 2-(hetero)aryl moiety with a 2-carboxylate function (compounds 16-28 and 32-36) maintained good hA3 AR binding activity but, most importantly and interestingly, produced a large increase in hA3 versus hA1 selectivity. A receptor-based SAR analysis provided new interesting insights about the steric and electrostatic requirements that are important for the anchoring of these derivatives at the hA3 receptor recognition site, thus highlighting the versatility of the triazoloquinoxaline scaffold for obtaining potent and selective hA3 AR antagonists.

  5. Acute serum amyloid A induces migration, angiogenesis, and inflammation in synovial cells in vitro and in a human rheumatoid arthritis/SCID mouse chimera model.

    LENUS (Irish Health Repository)

    Connolly, Mary

    2010-06-01

    Serum amyloid A (A-SAA), an acute-phase protein with cytokine-like properties, is expressed at sites of inflammation. This study investigated the effects of A-SAA on chemokine-regulated migration and angiogenesis using rheumatoid arthritis (RA) cells and whole-tissue explants in vitro, ex vivo, and in vivo. A-SAA levels were measured by real-time PCR and ELISA. IL-8 and MCP-1 expression was examined in RA synovial fibroblasts, human microvascular endothelial cells, and RA synovial explants by ELISA. Neutrophil transendothelial cell migration, cell adhesion, invasion, and migration were examined using transwell leukocyte\\/monocyte migration assays, invasion assays, and adhesion assays with or without anti-MCP-1\\/anti-IL-8. NF-kappaB was examined using a specific inhibitor and Western blotting. An RA synovial\\/SCID mouse chimera model was used to examine the effects of A-SAA on cell migration, proliferation, and angiogenesis in vivo. High expression of A-SAA was demonstrated in RA patients (p < 0.05). A-SAA induced chemokine expression in a time- and dose-dependent manner (p < 0.05). Blockade with anti-scavenger receptor class B member 1 and lipoxin A4 (A-SAA receptors) significantly reduced chemokine expression in RA synovial tissue explants (p < 0.05). A-SAA induced cell invasion, neutrophil-transendothelial cell migration, monocyte migration, and adhesion (all p < 0.05), effects that were blocked by anti-IL-8 or anti-MCP-1. A-SAA-induced chemokine expression was mediated through NF-kappaB in RA explants (p < 0.05). Finally, in the RA synovial\\/SCID mouse chimera model, we demonstrated for the first time in vivo that A-SAA directly induces monocyte migration from the murine circulation into RA synovial grafts, synovial cell proliferation, and angiogenesis (p < 0.05). A-SAA promotes cell migrational mechanisms and angiogenesis critical to RA pathogenesis.

  6. Transient scaling and resurgence of chimera states in networks of Boolean phase oscillators

    Science.gov (United States)

    Rosin, David P.; Rontani, Damien; Haynes, Nicholas D.; Schöll, Eckehard; Gauthier, Daniel J.

    2014-09-01

    We study networks of nonlocally coupled electronic oscillators that can be described approximately by a Kuramoto-like model. The experimental networks show long complex transients from random initial conditions on the route to network synchronization. The transients display complex behaviors, including resurgence of chimera states, which are network dynamics where order and disorder coexists. The spatial domain of the chimera state moves around the network and alternates with desynchronized dynamics. The fast time scale of our oscillators (on the order of 100ns) allows us to study the scaling of the transient time of large networks of more than a hundred nodes, which has not yet been confirmed previously in an experiment and could potentially be important in many natural networks. We find that the average transient time increases exponentially with the network size and can be modeled as a Poisson process in experiment and simulation. This exponential scaling is a result of a synchronization rate that follows a power law of the phase-space volume.

  7. Fluorescent protein-scorpion toxin chimera is a convenient molecular tool for studies of potassium channels.

    Science.gov (United States)

    Kuzmenkov, Alexey I; Nekrasova, Oksana V; Kudryashova, Kseniya S; Peigneur, Steve; Tytgat, Jan; Stepanov, Alexey V; Kirpichnikov, Mikhail P; Grishin, Eugene V; Feofanov, Alexey V; Vassilevski, Alexander A

    2016-09-21

    Ion channels play a central role in a host of physiological and pathological processes and are the second largest target for existing drugs. There is an increasing need for reliable tools to detect and visualize particular ion channels, but existing solutions suffer from a number of limitations such as high price, poor specificity, and complicated protocols. As an alternative, we produced recombinant chimeric constructs (FP-Tx) consisting of fluorescent proteins (FP) fused with potassium channel toxins from scorpion venom (Tx). In particular, we used two FP, eGFP and TagRFP, and two Tx, OSK1 and AgTx2, to create eGFP-OSK1 and RFP-AgTx2. We show that these chimeras largely retain the high affinity of natural toxins and display selectivity to particular ion channel subtypes. FP-Tx are displaced by other potassium channel blockers and can be used as an imaging tool in ion channel ligand screening setups. We believe FP-Tx chimeras represent a new efficient molecular tool for neurobiology.

  8. Crystal structure of the minimalist Max-E47 protein chimera.

    Directory of Open Access Journals (Sweden)

    Faraz Ahmadpour

    Full Text Available Max-E47 is a protein chimera generated from the fusion of the DNA-binding basic region of Max and the dimerization region of E47, both members of the basic region/helix-loop-helix (bHLH superfamily of transcription factors. Like native Max, Max-E47 binds with high affinity and specificity to the E-box site, 5'-CACGTG, both in vivo and in vitro. We have determined the crystal structure of Max-E47 at 1.7 Å resolution, and found that it associates to form a well-structured dimer even in the absence of its cognate DNA. Analytical ultracentrifugation confirms that Max-E47 is dimeric even at low micromolar concentrations, indicating that the Max-E47 dimer is stable in the absence of DNA. Circular dichroism analysis demonstrates that both non-specific DNA and the E-box site induce similar levels of helical secondary structure in Max-E47. These results suggest that Max-E47 may bind to the E-box following the two-step mechanism proposed for other bHLH proteins. In this mechanism, a rapid step where protein binds to DNA without sequence specificity is followed by a slow step where specific protein:DNA interactions are fine-tuned, leading to sequence-specific recognition. Collectively, these results show that the designed Max-E47 protein chimera behaves both structurally and functionally like its native counterparts.

  9. Prototype and Chimera-Type Galectins in Placentas with Spontaneous and Recurrent Miscarriages

    Directory of Open Access Journals (Sweden)

    Laura Unverdorben

    2016-04-01

    Full Text Available Galectins are galactose binding proteins and, in addition, factors for a wide range of pathologies in pregnancy. We have analyzed the expression of prototype (gal-1, -2, -7, -10 and chimera-type (gal-3 galectins in the placenta in cases of spontaneous abortions (SPA and recurrent abortions (RA in the first trimester. Fifteen placental samples from healthy pregnancies were used as a control group. Nine placentas were examined for spontaneous abortions, and 12 placentas for recurrent abortions. For differentiation and evaluation of different cell types of galectin-expression in the decidua, immunofluorescence was used. For all investigated prototype galectins (gal-1, -2, -7, -10 in SPA and RA placenta trophoblast cells the expression is significantly decreased. In the decidua/extravillous trophoblast only gal-2 expression was significantly lowered, which could be connected to its role in angiogenesis. In trophoblasts in first-trimester placentas and in cases of SPA and RA, prototype galectins are altered in the same way. We suspect prototype galectins have a similar function in placental tissue because of their common biochemical structure. Expression of galectin 3 as a chimera type galectin was not found to be significantly altered in abortive placentas.

  10. Proteomic Analysis Reveals the Leaf Color Regulation Mechanism in Chimera Hosta “Gold Standard” Leaves

    Directory of Open Access Journals (Sweden)

    Juanjuan Yu

    2016-03-01

    Full Text Available Leaf color change of variegated leaves from chimera species is regulated by fine-tuned molecular mechanisms. Hosta “Gold Standard” is a typical chimera Hosta species with golden-green variegated leaves, which is an ideal material to investigate the molecular mechanisms of leaf variegation. In this study, the margin and center regions of young and mature leaves from Hosta “Gold Standard”, as well as the leaves from plants after excess nitrogen fertilization were studied using physiological and comparative proteomic approaches. We identified 31 differentially expressed proteins in various regions and development stages of variegated leaves. Some of them may be related to the leaf color regulation in Hosta “Gold Standard”. For example, cytosolic glutamine synthetase (GS1, heat shock protein 70 (Hsp70, and chloroplastic elongation factor G (cpEF-G were involved in pigment-related nitrogen synthesis as well as protein synthesis and processing. By integrating the proteomics data with physiological results, we revealed the metabolic patterns of nitrogen metabolism, photosynthesis, energy supply, as well as chloroplast protein synthesis, import and processing in various leaf regions at different development stages. Additionally, chloroplast-localized proteoforms involved in nitrogen metabolism, photosynthesis and protein processing implied that post-translational modifications were crucial for leaf color regulation. These results provide new clues toward understanding the mechanisms of leaf color regulation in variegated leaves.

  11. Crystal Structure of the Minimalist Max-E47 Protein Chimera

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadpour, Faraz [McMaster Univ., Hamilton, ON (Canada); Ghirlando, Rodolfo [National Inst. of Health (NIH), Bethesda, MD (United States); De Jong, Antonia T. [Univ. of Toronto, ON (Canada); Gloyd, Melanie [McMaster Univ., Hamilton, ON (Canada); Shin, Jumi A. [Univ. of Toronto, ON (Canada); Guarné, Alba [McMaster Univ., Hamilton, ON (Canada)

    2012-02-28

    Max-E47 is a protein chimera generated from the fusion of the DNA-binding basic region of Max and the dimerization region of E47, both members of the basic region/helix-loop-helix (bHLH) superfamily of transcription factors. Like native Max, Max-E47 binds with high affinity and specificity to the E-box site, 5'-CACGTG, both in vivo and in vitro. We have determined the crystal structure of Max-E47 at 1.7 Å resolution, and found that it associates to form a well-structured dimer even in the absence of its cognate DNA. Analytical ultracentrifugation confirms that Max-E47 is dimeric even at low micromolar concentrations, indicating that the Max-E47 dimer is stable in the absence of DNA. Circular dichroism analysis demonstrates that both non-specific DNA and the E-box site induce similar levels of helical secondary structure in Max-E47. These results suggest that Max-E47 may bind to the E-box following the two-step mechanism proposed for other bHLH proteins. In this mechanism, a rapid step where protein binds to DNA without sequence specificity is followed by a slow step where specific protein:DNA interactions are fine-tuned, leading to sequence-specific recognition. Collectively, these results show that the designed Max-E47 protein chimera behaves both structurally and functionally like its native counterparts.

  12. Ethical questions concerning research on human embryos, embryonic stem cells and chimeras.

    Science.gov (United States)

    Bobbert, Monika

    2006-12-01

    Research using human embryos and embryonic stem cells is viewed as important for various reasons. Apart from questions concerning legal regulations, numerous ethical objections are raised pertaining to the use of surplus embryos from reproductive medicine as well as the creation of embryos and stem cells through cloning. In the hopes of avoiding ethical problems, alternatives have been proposed including the extraction of egg cells from "dead" embryos derived from in vitro fertilization procedures, the extraction of pluripotent stem cells from blastocysts, technologies such as "altered nuclear transfer" (ANT) and "oocyte-assisted reprogramming" (ANT-OAR) as well as parthenogenesis. Initial ethical assessments show that certain questions pertaining to such strategies have remained unanswered. Furthermore, with the help of new or more differentiated biotechnological procedures, it is possible to create chimeras and hybrids in which human and non-human cells are combined. Human-animal chimeras, in which gametes or embryonic tissue have been mixed with embryonic or adult stem cells, demonstrate a different "quality" and "degree of penetration" from those produced in previous experiments. Not only does this have consequences regarding questions of patentability, this situation also raises fundamental questions concerning the human being's self image, the concept of person, identity and species and the moral rights and duties that are connected with such concepts. There is a need for legal regulation, on the national as well as the international level.

  13. Regulation of prolactin receptor (PRLR) gene expression in insulin-producing cells. Prolactin and growth hormone activate one of the rat prlr gene promoters via STAT5a and STAT5b

    DEFF Research Database (Denmark)

    Galsgaard, E D; Møldrup, Annette; Nielsen, Jens Høiriis

    1999-01-01

    Expression of the prolactin receptor (PRLR) gene is increased in pancreatic islets during pregnancy and in vitro in insulin-producing cells by growth hormone (GH) and prolactin (PRL). The 5'-region of the rat PRLR gene contains at least three alternative first exons that are expressed tissue......-specifically because of differential promoter usage. We show by reverse transcription-polymerase chain reaction analysis that both exon 1A- and exon 1C-containing PRLR transcripts are expressed in rat islets and that human (h)GH, ovine (o)PRL, and bovine (b)GH increase exon 1A expression 6.5 +/- 0. 8-fold, 6.8 +/- 0...

  14. The internal meristem layer (L3) determines floral meristem size and carpel number in tomato periclinal chimeras.

    Science.gov (United States)

    Szymkowiak, E J; Sussex, I M

    1992-01-01

    Cell-cell interactions are important during plant development. We have generated periclinal chimeras between plants that differ in the number of carpels per flower to determine the roles of cells occupying specific positions in the floral meristem in determining the number of carpels initiated. Intraspecific chimeras were generated between tomato (Lycopersicon esculentum) expressing the mutation fasciated, which causes an increased number of floral organs per whorl, and tomato wild type for fasciated. Interspecific chimeras were generated between tomato and L. peruvianum, which differ in number of carpels per flower. In both sets of chimeras, carpel number as well as the size of the floral meristem during carpel initiation were not determined by the genotype of cells in the outer two layers of the meristem (L1 and L2) but were determined by the genotype of cells occupying the inner layer (L3) of the meristem. We concluded from these experiments that during floral organ initiation, cells in certain layers of the meristem respond to information supplied to them from other cells in the meristem. PMID:1392610

  15. The ChimERA project: Coupling mechanistic exposure and effect models into an integrated platform for ecological risk assessment

    NARCIS (Netherlands)

    Laender, de F.; Brink, van den P.J.; Janssen, C.R.; Guardo, Di A.

    2014-01-01

    Current techniques for the ecological risk assessment of chemical substances are often criticised for their lack of environmental realism, ecological relevance and methodological accuracy. ChimERA is a 3-year project (2013-2016), funded by Cefic's Long Range Initiative (LRI) that aims to address som

  16. The ChimERA project: Coupling mechanistic exposure and effect models into an integrated platform for ecological risk assessment

    NARCIS (Netherlands)

    Laender, de F.; Brink, van den P.J.; Janssen, C.R.; Guardo, Di A.

    2014-01-01

    Current techniques for the ecological risk assessment of chemical substances are often criticised for their lack of environmental realism, ecological relevance and methodological accuracy. ChimERA is a 3-year project (2013-2016), funded by Cefic's Long Range Initiative (LRI) that aims to address

  17. A GTPase chimera illustrates an uncoupled nucleotide affinity and release rate, Providing insight into the activation mechanism

    DEFF Research Database (Denmark)

    Guilfoyle, Amy P.; Deshpande, Chandrika N.; Font Sadurni, Josep

    2014-01-01

    for GDP release, or, alternatively, the movement is a consequence of release. To gain additional insight into the sequence of events leading to GDP release, we have created a chimeric protein comprised of Escherichia coli NFeoB and the G5 loop from the human Giα1 protein. The protein chimera retains...

  18. Chronic graft-versus-host disease in the rat radiation chimera. III. Immunology and immunopathology in rapidly induced models

    Energy Technology Data Exchange (ETDEWEB)

    Beschorner, W.E.; Tutschka, P.J.; Santos, G.W.

    1983-03-01

    Although chronic graft-versus-host disease (GVHD) frequently develops in the long-term rat radiation chimera, we present three additional models in which a histologically similar disease is rapidly induced. These include adoptive transfer of spleen and bone marrow from rats with spontaneous chronic GVHD into lethally irradiated rats of the primary host strain; sublethal irradiation of stable chimeras followed by a booster transplant; and transfer of spleen cells of chimeras recovering from acute GVHD into second-party (primary recipient strain) or third-party hosts. Some immunopathologic and immune abnormalities associated with spontaneous chronic GVHD were not observed in one or more of the induced models. Thus, IgM deposition in the skin, antinuclear antibodies, and vasculitis appear to be paraphenomena. On the other hand, lymphoid hypocellularity of the thymic medulla, immaturity of splenic follicles, and nonspecific suppressor cells were consistently present in the long term chimeras, and in all models. These abnormalities therefore may be pathogenetically important, or closely related to the development of chronic GVHD.

  19. EpCAM Aptamer-siRNA Chimera Targets and Regress Epithelial Cancer.

    Directory of Open Access Journals (Sweden)

    Nithya Subramanian

    Full Text Available Epithelial cell adhesion molecule (EpCAM, a cancer stem cell (CSC marker is over expressed in epithelial cancers and in retinoblastoma (RB. We fabricated an EpCAM targeting aptamer-siRNA chimera and investigated its anti-tumor property and EpCAM intracellular domain (EpICD mediated signaling in epithelial cancer. The anti-tumor efficacy of EpCAM aptamer-siEpCAM chimera (EpApt-siEp was evaluated by qPCR, northern and Western blotting in WERI-Rb1- RB cell line, primary RB tumor cells and in MCF7- breast cancer cell line. Anti-tumor activity of EpApt-siEp was studied in vivo using epithelial cancer (MCF7 mice xenograft model. The mechanism and pathways involved in the anti-tumor activity was further studied using protein arrays and qPCR. EpApt-siEp chimera was processed in vitro by dicer enzyme. Treatment of the WERI-Rb1 and MCF7 cells with EpApt-siEp revealed statistically significant down regulation of EpCAM expression (P<0.005 and concomitant reduction in cellular proliferation. In primary RB cells cultured from RB tumors, EpApt-siEp silenced EpCAM, significantly inhibited (P<0.01 cell proliferation and induced cytotoxicity. Knockdown of EpICD expressed in RB primary tumors led to repression of pluripotency markers, SOX2, OCT4, NANOG, and CD133. In vivo studies showed complete tumor growth regression without any toxicity in animals (P<0.001 and tumor tissues showed significant downregulation (P<0.05 of EpCAM, MRP1, ABCG2, stathmin, survivin and upregulation of ATM (P<0.05 leading to apoptosis by intrinsic pathway with minor alteration in cytokines. Our results revealed that EpApt-siEp potentially eradicated EpCAM positive cancer cells through CSC marker suppression and apoptosis, while sparing normal EpCAM negative adjacent cells.

  20. Generating porcine chimeras using inner cell mass cells and parthenogenetic preimplantation embryos.

    Directory of Open Access Journals (Sweden)

    Kazuaki Nakano

    Full Text Available BACKGROUND: The development and validation of stem cell therapies using induced pluripotent stem (iPS cells can be optimized through translational research using pigs as large animal models, because pigs have the closest characteristics to humans among non-primate animals. As the recent investigations have been heading for establishment of the human iPS cells with naïve type characteristics, it is an indispensable challenge to develop naïve type porcine iPS cells. The pluripotency of the porcine iPS cells can be evaluated using their abilities to form chimeras. Here, we describe a simple aggregation method using parthenogenetic host embryos that offers a reliable and effective means of determining the chimera formation ability of pluripotent porcine cells. METHODOLOGY/SIGNIFICANT PRINCIPAL FINDINGS: In this study, we show that a high yield of chimeric blastocysts can be achieved by aggregating the inner cell mass (ICM from porcine blastocysts with parthenogenetic porcine embryos. ICMs cultured with morulae or 4-8 cell-stage parthenogenetic embryos derived from in vitro-matured (IVM oocytes can aggregate to form chimeric blastocysts that can develop into chimeric fetuses after transfer. The rate of production of chimeric blastocysts after aggregation with host morulae (20/24, 83.3% was similar to that after the injection of ICMs into morulae (24/29, 82.8%. We also found that 4-8 cell-stage embryos could be used; chimeric blastocysts were produced with a similar efficiency (17/26, 65.4%. After transfer into recipients, these blastocysts yielded chimeric fetuses at frequencies of 36.0% and 13.6%, respectively. CONCLUSION/SIGNIFICANCE: Our findings indicate that the aggregation method using parthenogenetic morulae or 4-8 cell-stage embryos offers a highly reproducible approach for producing chimeric fetuses from porcine pluripotent cells. This method provides a practical and highly accurate system for evaluating pluripotency of undifferentiated

  1. Generating Porcine Chimeras Using Inner Cell Mass Cells and Parthenogenetic Preimplantation Embryos

    Science.gov (United States)

    Nakano, Kazuaki; Watanabe, Masahito; Matsunari, Hitomi; Matsuda, Taisuke; Honda, Kasumi; Maehara, Miki; Kanai, Takahiro; Hayashida, Gota; Kobayashi, Mirina; Kuramoto, Momoko; Arai, Yoshikazu; Umeyama, Kazuhiro; Fujishiro, Shuh-hei; Mizukami, Yoshihisa; Nagaya, Masaki; Hanazono, Yutaka; Nagashima, Hiroshi

    2013-01-01

    Background The development and validation of stem cell therapies using induced pluripotent stem (iPS) cells can be optimized through translational research using pigs as large animal models, because pigs have the closest characteristics to humans among non-primate animals. As the recent investigations have been heading for establishment of the human iPS cells with naïve type characteristics, it is an indispensable challenge to develop naïve type porcine iPS cells. The pluripotency of the porcine iPS cells can be evaluated using their abilities to form chimeras. Here, we describe a simple aggregation method using parthenogenetic host embryos that offers a reliable and effective means of determining the chimera formation ability of pluripotent porcine cells. Methodology/Significant Principal Findings In this study, we show that a high yield of chimeric blastocysts can be achieved by aggregating the inner cell mass (ICM) from porcine blastocysts with parthenogenetic porcine embryos. ICMs cultured with morulae or 4–8 cell-stage parthenogenetic embryos derived from in vitro-matured (IVM) oocytes can aggregate to form chimeric blastocysts that can develop into chimeric fetuses after transfer. The rate of production of chimeric blastocysts after aggregation with host morulae (20/24, 83.3%) was similar to that after the injection of ICMs into morulae (24/29, 82.8%). We also found that 4–8 cell-stage embryos could be used; chimeric blastocysts were produced with a similar efficiency (17/26, 65.4%). After transfer into recipients, these blastocysts yielded chimeric fetuses at frequencies of 36.0% and 13.6%, respectively. Conclusion/Significance Our findings indicate that the aggregation method using parthenogenetic morulae or 4–8 cell-stage embryos offers a highly reproducible approach for producing chimeric fetuses from porcine pluripotent cells. This method provides a practical and highly accurate system for evaluating pluripotency of undifferentiated cells, such

  2. Optimization of construct design and fermentation strategy for the production of bioactive ATF-SAP, a saporin based anti-tumoral uPAR-targeted chimera.

    Science.gov (United States)

    Errico Provenzano, Alfredo; Posteri, Riccardo; Giansanti, Francesco; Angelucci, Francesco; Flavell, Sopsamorn U; Flavell, David J; Fabbrini, Maria Serena; Porro, Danilo; Ippoliti, Rodolfo; Ceriotti, Aldo; Branduardi, Paola; Vago, Riccardo

    2016-11-14

    The big challenge in any anti-tumor therapeutic approach is represented by the development of drugs selectively acting on the target with limited side effects, that exploit the unique characteristics of malignant cells. The urokinase (urokinase-type plasminogen activator, uPA) and its receptor uPAR have been identified as preferential target candidates since they play a key role in the evolution of neoplasms and are associated with neoplasm aggressiveness and poor clinical outcome in several different tumor types. To selectively target uPAR over-expressing cancer cells, we prepared a set of chimeric proteins (ATF-SAP) formed by the human amino terminal fragments (ATF) of uPA and the plant ribosome inactivating protein saporin (SAP). Codon-usage optimization was used to increase the expression levels of the chimera in the methylotrophic yeast Pichia pastoris. We then moved the bioprocess to bioreactors and demonstrated that the fed-batch production of the recombinant protein can be successfully achieved, obtaining homogeneous discrete batches of the desired constructs. We also determined the cytotoxic activity of the obtained batch of ATF-SAP which was specifically cytotoxic for U937 leukemia cells, while another construct containing a catalytically inactive mutant form of SAP showed no activity. Our results demonstrate that the uPAR-targeted, saporin-based recombinant fusion ATF-SAP can be produced in a fed-batch fermentation with full retention of the molecules selective cytotoxicity and hence therapeutic potential.

  3. Structure-based receptor MIMICS targeted against bacterial superantigen toxins

    Science.gov (United States)

    Gupta, Goutam; Hong-Geller, Elizabeth; Shiflett, Patrick R.; Lehnert, Nancy M.

    2009-08-18

    The invention provides therapeutic compositions useful in the treatment of bacterial superantigen mediated conditions, such as Toxic Shock Syndrome. The compositions comprise genetically engineered bifunctional polypeptides containing a specific T-cell receptor binding domain and a specific MHC class II receptor binding domain, each targeting non-overlapping epitopes on a superantigen molecule against which they are designed. The anti-superantigen "receptor mimetics" or "chimeras" are rationally designed to recreate the modality of superantigen binding directly to both the TCR and the MHC-II receptor, and are capable of acting as decoys for superantigen binding, effectively out-competing the host T-cell and MHC-II receptors, the natural host receptors.

  4. Chimera distribution amplitudes for the pion and the longitudinally polarized ρ-meson

    Energy Technology Data Exchange (ETDEWEB)

    Stefanis, N.G., E-mail: stefanis@tp2.ruhr-uni-bochum.de [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Pimikov, A.V., E-mail: pimikov@theor.jinr.ru [Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna (Russian Federation); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China)

    2016-01-15

    Using QCD sum rules with nonlocal condensates, we show that the distribution amplitude of the longitudinally polarized ρ-meson may have a shorttailed platykurtic profile in close analogy to our recently proposed platykurtic distribution amplitude for the pion. Such a chimera distribution de facto amalgamates the broad unimodal profile of the distribution amplitude, obtained with a Dyson–Schwinger equations-based computational scheme, with the suppressed tails characterizing the bimodal distribution amplitudes derived from QCD sum rules with nonlocal condensates. We argue that pattern formation, emerging from the collective synchronization of coupled oscillators, can provide a single theoretical scaffolding to study unimodal and bimodal distribution amplitudes of light mesons without recourse to particular computational schemes and the reasons for them.

  5. 2D and 3D Core-Collapse Supernovae Simulation Results Obtained with the CHIMERA Code

    CERN Document Server

    Bruenn, S W; Hix, W R; Blondin, J M; Marronetti, P; Messer, O E B; Dirk, C J; Yoshida, S

    2010-01-01

    Much progress in realistic modeling of core-collapse supernovae has occurred recently through the availability of multi-teraflop machines and the increasing sophistication of supernova codes. These improvements are enabling simulations with enough realism that the explosion mechanism, long a mystery, may soon be delineated. We briefly describe the CHIMERA code, a supernova code we have developed to simulate core-collapse supernovae in 1, 2, and 3 spatial dimensions. We then describe the results of an ongoing suite of 2D simulations initiated from a 12, 15, 20, and 25 solar mass progenitor. These have all exhibited explosions and are currently in the expanding phase with the shock at between 5,000 and 20,000 km. We also briefly describe an ongoing simulation in 3 spatial dimensions initiated from the 15 solar mass progenitor.

  6. Monsters, dreams and madness: Commentary on 'The arms of the chimeras'.

    Science.gov (United States)

    Reis, Bruce

    2016-04-01

    Considering Freudian and Post-Freudian approaches to the intersubjective Beatrice Ithier puts the work of Michel de M'Uzan and Thomas Ogden in comparison. To this comparison I add a consideration of the work of Christopher Bollas. The highly creative clinical approaches these three theorists take is shown to be informed by their elaborations of the Freudian notion of unconscious communication and by new approaches to the issue of identity. Attention is paid to differentiating traumatic from fanciful chimeras; and to the experience of the analyst undergoing the sorts of transformations requisite to entering this psychic space marked by fluid exchanges of being and becoming, wherein analyst becomes patient, new subjects are created through shared dreams, and through which monsters appear. Copyright © 2016 Institute of Psychoanalysis.

  7. THE KEY TO THE TREASURE IS THE TREASURE: BARTH’S METAFICTION IN CHIMERA

    Directory of Open Access Journals (Sweden)

    Katarina Drzajic

    2014-11-01

    Full Text Available John Barth, one of the most prominent postmodern authors, is famous for his creative literary games: while his favorite tool, metafiction, is at times hard to comprehend, he is almost always both the writer and a character of his stories. “Everyone is necessarily the hero of his own life story,” he said, thus confirming the quite loose difference between reality and fiction in post-modernism. Bearing in mind that the story within a story is a common characteristic of his work, in this paper we shall analyze the most interesting points at which we encounter this phenomenon an d discover what actually represents the treasure in one of his most perplexing, yet incredibly captivating novels, Chimera.

  8. Novel type of chimera spiral waves arising from decoupling of a diffusible component

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaodong; Yang, Tao; Liu, Yang; Zhao, Yuemin; Gao, Qingyu, E-mail: epstein@brandeis.edu, E-mail: gaoqy@cumt.edu.cn [College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008 (China); Epstein, Irving R., E-mail: epstein@brandeis.edu, E-mail: gaoqy@cumt.edu.cn [Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, Massachusetts 02454-9110 (United States)

    2014-07-14

    Spiral waves composed of coherent traveling waves surrounding a core containing stochastically distributed stationary areas are found in numerical simulations of a three-variable reaction-diffusion system with one diffusible species. In the spiral core, diffusion of this component (w) mediates transitions between dynamic states of the subsystem formed by the other two components, whose dynamics is more rapid than that of w. Diffusive coupling between adjacent sites can be “on” or “off” depending on the subsystem state. The incoherent structures in the spiral core are produced by this decoupling of the slow diffusive component from the fast non-diffusing subsystem. The phase diagram reveals that the region of incoherent behavior in chimera spirals grows drastically, leading to modulation and breakup of the spirals, in the transition zones between 1{sup n-1} and 1{sup n} local mixed-mode oscillations.

  9. Two- and three-dimensional simulations of core-collapse supernovae with CHIMERA

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Eric J [ORNL; Bruenn, S. W. [Florida Atlantic University, Boca Raton; Harris, James A [ORNL; Chertkow, Merek A [ORNL; Hix, William Raphael [ORNL; Mezzacappa, Anthony [ORNL; Messer, Bronson [ORNL; Blondin, J. M. [North Carolina State University; Marronetti, Pedro [Florida Atlantic University, Boca Raton; Mauney, Christopher M [ORNL; Yakunin, Konstantin [Florida Atlantic University, Boca Raton

    2012-01-01

    Ascertaining the core-collapse supernova mechanism is a complex, and yet unsolved, problem dependent on the interaction of general relativity, hydrodynamics, neutrino transport, neutrino-matter interactions, and nuclear equations of state and reaction kinetics. Ab initio modeling of core-collapse supernovae and their nucleosynthetic outcomes requires care in the coupling and approximations of the physical components. We have built our multi-physics CHIMERA code for supernova modeling in 1-, 2-, and 3-D, using ray-by-ray neutrino transport, approximate general relativity, and detailed neutrino and nuclear physics. We discuss some early results from our current series of exploding 2D simulations and our work to perform computationally tractable simulations in 3D using the ``Yin--Yang'' grid.

  10. 2D and 3D core-collapse supernovae simulation results obtained with the CHIMERA code

    Energy Technology Data Exchange (ETDEWEB)

    Bruenn, S W; Marronetti, P; Dirk, C J [Physics Department, Florida Atlantic University, 777 W. Glades Road, Boca Raton, FL 33431-0991 (United States); Mezzacappa, A; Hix, W R [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Blondin, J M [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Messer, O E B [Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States); Yoshida, S, E-mail: bruenn@fau.ed [Max-Planck-Institut fur Gravitationsphysik, Albert Einstein Institut, Golm (Germany)

    2009-07-01

    Much progress in realistic modeling of core-collapse supernovae has occurred recently through the availability of multi-teraflop machines and the increasing sophistication of supernova codes. These improvements are enabling simulations with enough realism that the explosion mechanism, long a mystery, may soon be delineated. We briefly describe the CHIMERA code, a supernova code we have developed to simulate core-collapse supernovae in 1, 2, and 3 spatial dimensions. We then describe the results of an ongoing suite of 2D simulations initiated from a 12, 15, 20, and 25 M{sub o-dot} progenitor. These have all exhibited explosions and are currently in the expanding phase with the shock at between 5,000 and 20,000 km. We also briefly describe an ongoing simulation in 3 spatial dimensions initiated from the 15 M{sub o-dot} progenitor.

  11. Chimera distribution amplitudes for the pion and the longitudinally polarized $\\rho$-meson

    CERN Document Server

    Stefanis, N G

    2016-01-01

    Using QCD sum rules with nonlocal condensates, we show that the distribution amplitude of the longitudinally polarized $\\rho$-meson may have a shorttailed platykurtic profile in close analogy to our recently proposed platykurtic distribution amplitude for the pion. Such a chimera distribution de facto amalgamates the broad unimodal profile of the distribution amplitude, obtained with a Dyson-Schwinger equations-based computational scheme, with the suppressed tails characterizing the bimodal distribution amplitudes derived from QCD sum rules with nonlocal condensates. We argue that pattern formation, emerging from the collective synchronization of coupled oscillators, can provide a single theoretical scaffolding to study unimodal and bimodal distribution amplitudes of light mesons without recourse to particular computational schemes and the reasons for them.

  12. TRAPS, CHIMERAS AND PATHWAYS: THREE APPROACHES OF ART IN CONTEMPORARY ANTHROPOLOGY

    Directory of Open Access Journals (Sweden)

    André Demarchi

    2009-12-01

    Full Text Available Based upon the concepts of traps, chimera and pathways proposed by Alfred Gell, Carlo Severi and Els Lagrou respectively, this bibliographic essay presents the characteristics, similarities and specificities of three approaches on art in contemporary anthropology. The work focuses on the ruptures created by these approaches, concerning the symbolic analysis that has long dominated the anthropological art studies. Breaking away from the conception of art as a symbolic language, the studies we analyzed emphasized, in different ways, the cognitive action of art in native contexts, privileging categories such as agency, efficacy, counter-intuitiveness, and presentification. In the conclusion, we demonstrate how these categories are applied to Amerindian Art through the work of Els Lagrou on Cashinahua Art.

  13. Adaptive differentiation of H-2- and Igh-restricted B lymphocyte in tetraparental bone marrow chimera

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H.; Bitoh, S.; Fujimoto, S.

    1987-01-15

    Immunization of BALB/c mice with MOPC-104E myeloma protein induced idiotype-specific enhancing B cells that acted on anti-dextran antibody producing B cells. The enhancing cells have the surface phenotype of B cells. With the use of several H-2 or Igh congenic mice, it was found that the cooperation among B cells was controlled by both the major histocompatibility complex (MHC) and Igh. The capability to generate enhancing B cell activity was analyzed by using tetraparental bone marrow chimeras. (C57BL/6 X BALB/c)F1 mice, for example, were lethally irradiated and were reconstituted with C57BL/6 and BALB/c bone marrow cells. Nine to 12 wk after the reconstitution, the chimeras were immunized with the myeloma protein and were tested for their enhancing B cell activity. After the removal of C57BL/6 origin cells by treatment with anti-H-2b + complement, residual cells exhibited enhancing B cell activity on BALB.B, as well as BALB/c antidextran antibody response. This indicates that the generation of H-2-restricted, idiotype-specific enhancing B cell activity differentiated adaptively so as to recognize foreign MHC as self under chimeric conditions. On the other hand, splenic B cells treated with anti-H-2d + complement did not enhance the responses of BALB/c or BALB.B. Even in a chimeric environment, the B cells of C57BL/6 origin could not obtain the ability to generate enhancing B cell activity upon immunization of the idiotype. The results described here, taken in conjunction with our previous studies, suggest that the Ig heavy chain gene(s) predominantly control the Igh restriction properties of enhancing B cells, and the capability of MHC recognition by B cells is selected under chimeric conditions.

  14. Cross-reactivity of hypervariable region 1 chimera of hepatitis C virus

    Institute of Scientific and Technical Information of China (English)

    Bing-Shui Xiu; Shi-Gan Ling; Xiao-Guo Song; He-Qiu Zhang; Kun Chen; Cui-Xia Zhu

    2003-01-01

    AIM: To analyze the amino acid sequences of hypervariable region 1 (HVR1) of HCV isolates in China and to construct a combinatorial chimeric HVR1 protein having a very broad high cross-reactivity. METHODS: All of the published HVR1 sequences from China were collected and processed with a computer program.Several representative HVR1's sequences were formulated based on a consensus profile and homology within certain subdivision. A few reported HVR1 mimotope sequences were also included for a broader representation. All of them were cloned and expressed in E.coli. The cross-reactivity of the purified recombinant HVR1 antigens was tested by ELISA with a panel of sera from HCV infected patients in China.Some of them were further ligated together to form a combinatorial HVR1 chimera. RESULTS: Altogether 12 HVR1s were selected and expressed in E. coli and purified to homogeneity. All of these purified antigens showed some cross-reactivity with sera in a 27 HCV positive panel. Recombinant HVR1s of No. 1, 2, 4, and 8# showing broad cross-reactivities and complementarity with each other, were selected for the ligation elements. The chimera containing these 4 HVR1s was highly expressed in E. coli. The purified chimeric antigen could react not only with all the HCV antibody positive sera in the panel but also with 90/91 sera of HCV -infected patients. CONCLUSION: The chimeric antigen was shown to have a broad cross-reactivity. It may be helpful for solving the problem caused by high variability of HCV, and in the efforts for a novel vaccine against the virus.

  15. Tissue distribution of cells derived from the area opaca in heterospecific quail-chick blastodermal chimeras.

    Science.gov (United States)

    Karagenç, Levent; Sandikci, Mustafa

    2010-01-01

    The objective of the current study was to determine the tissue distribution of cells derived from the area opaca in heterospecific quail-chick blastodermal chimeras. Quail-chick chimeras were constructed by transferring dissociated cells from the area opaca of the stage X-XII (EG&K) quail embryo into the subgerminal cavity of the unincubated chick blastoderm. The distribution of quail cells in embryonic as well as extra-embryonic tissues of the recipient embryo were examined using the QCPN monoclonal antibody after 6 days of incubation in serial sections taken at 100-mum intervals. Data gathered in the present study demonstrated that, when introduced into the subgerminal cavity of a recipient embryo, cells of the area opaca are able to populate not only extra-embryonic structures such as the amnion and the yolk sac, but also various embryonic tissues derived from the ectoderm and less frequently the mesoderm. Ectodermal chimerism was confined mainly to the head region and was observed in tissues derived from the neural ectoderm and the surface ectoderm, including the optic cup, diencephalon and lens. Although the possibility of random incorporation of transplanted cells into these embryonic structures cannot be excluded, these results would suggest that area opaca, a peripheral ring of cells in the avian embryo destined to form the extra-embryonic ectoderm and endoderm of the yolk sac, might harbor cells that have the potential to give rise to various cell types in the recipient chick embryo, including those derived from the surface ectoderm and neural ectoderm.

  16. Signaling of human frizzled receptors to the mating pathway in yeast.

    Directory of Open Access Journals (Sweden)

    Dietmar Dirnberger

    Full Text Available Frizzled receptors have seven membrane-spanning helices and are considered as atypical G protein-coupled receptors (GPCRs. The mating response of the yeast Saccharomyces cerevisiae is mediated by a GPCR signaling system and this model organism has been used extensively in the past to study mammalian GPCR function. We show here that human Frizzled receptors (Fz1 and Fz2 can be properly targeted to the yeast plasma membrane, and that they stimulate the yeast mating pathway in the absence of added Wnt ligands, as evidenced by cell cycle arrest in G1 and reporter gene expression dependent on the mating pathway-activated FUS1 gene. Introducing intracellular portions of Frizzled receptors into the Ste2p backbone resulted in the generation of constitutively active receptor chimeras that retained mating factor responsiveness. Introducing intracellular portions of Ste2p into the Frizzled receptor backbone was found to strongly enhance mating pathway activation as compared to the native Frizzleds, likely by facilitating interaction with the yeast Galpha protein Gpa1p. Furthermore, we show reversibility of the highly penetrant G1-phase arrests exerted by the receptor chimeras by deletion of the mating pathway effector FAR1. Our data demonstrate that Frizzled receptors can functionally replace mating factor receptors in yeast and offer an experimental system to study modulators of Frizzled receptors.

  17. Signaling of human frizzled receptors to the mating pathway in yeast.

    Science.gov (United States)

    Dirnberger, Dietmar; Seuwen, Klaus

    2007-09-26

    Frizzled receptors have seven membrane-spanning helices and are considered as atypical G protein-coupled receptors (GPCRs). The mating response of the yeast Saccharomyces cerevisiae is mediated by a GPCR signaling system and this model organism has been used extensively in the past to study mammalian GPCR function. We show here that human Frizzled receptors (Fz1 and Fz2) can be properly targeted to the yeast plasma membrane, and that they stimulate the yeast mating pathway in the absence of added Wnt ligands, as evidenced by cell cycle arrest in G1 and reporter gene expression dependent on the mating pathway-activated FUS1 gene. Introducing intracellular portions of Frizzled receptors into the Ste2p backbone resulted in the generation of constitutively active receptor chimeras that retained mating factor responsiveness. Introducing intracellular portions of Ste2p into the Frizzled receptor backbone was found to strongly enhance mating pathway activation as compared to the native Frizzleds, likely by facilitating interaction with the yeast Galpha protein Gpa1p. Furthermore, we show reversibility of the highly penetrant G1-phase arrests exerted by the receptor chimeras by deletion of the mating pathway effector FAR1. Our data demonstrate that Frizzled receptors can functionally replace mating factor receptors in yeast and offer an experimental system to study modulators of Frizzled receptors.

  18. Bacterial membrane activity of a-peptide/b-peptoid chimeras: Influence of amino acid composition and chain length on the activity against different bacterial strains

    DEFF Research Database (Denmark)

    Hein-Kristensen, Line; Knapp, Kolja M; Franzyk, Henrik;

    2011-01-01

    , and this was parallel by the largest reduction in number of viable bacteria. CONCLUSION: We found that chain length but not type of cationic amino acid influenced the antibacterial activity of a series of synthetic α-peptide/β-peptoid chimeras. The synthetic chimeras exert their killing effect by permeabilization......BACKGROUND: Characterization and use of antimicrobial peptides (AMPs) requires that their mode of action is determined. The interaction of membrane-active peptides with their target is often established using model membranes, however, the actual permeabilization of live bacterial cells...... acid only had a minor effect on MIC values, whereas chain length had a profound influence on activity. All chimeras were less active against Serratia marcescens (MICs above 46 μM). The chimeras were bactericidal and induced leakage of ATP from Staphylococcus aureus and S. marcescens with similar time...

  19. C-terminal tail of FGF19 determines its specificity toward Klotho co-receptors.

    Science.gov (United States)

    Wu, Xinle; Lemon, Bryan; Li, XiaoFan; Gupte, Jamila; Weiszmann, Jennifer; Stevens, Jennitte; Hawkins, Nessa; Shen, Wenyan; Lindberg, Richard; Chen, Jin-Long; Tian, Hui; Li, Yang

    2008-11-28

    FGF19 subfamily proteins (FGF19, FGF21, and FGF23) are unique members of fibroblast growth factors (FGFs) that regulate energy, bile acid, glucose, lipid, phosphate, and vitamin D homeostasis in an endocrine fashion. Their activities require the presence of alpha or betaKlotho, two related single-pass transmembrane proteins, as co-receptors in relevant target tissues. We previously showed that FGF19 can bind to both alpha and betaKlotho, whereas FGF21 and FGF23 can bind only to either betaKlotho or alphaKlotho, respectively in vitro. To determine the mechanism regulating the binding and specificity among FGF19 subfamily members to Klotho family proteins, chimeric proteins between FGF19 subfamily members or chimeric proteins between Klotho family members were constructed to probe the interaction between those two families. Our results showed that a chimera of FGF19 with the FGF21 C-terminal tail interacts only with betaKlotho and a chimera with the FGF23 C-terminal tail interacts only with alphaKlotho. FGF signaling assays also reflected the change of specificity we observed for the chimeras. These results identified the C-terminal tail of FGF19 as a region necessary for its recognition of Klotho family proteins. In addition, chimeras between alpha and betaKlotho were also generated to probe the regions in Klotho proteins that are important for signaling by this FGF subfamily. Both FGF23 and FGF21 require intact alpha or betaKlotho for signaling, respectively, whereas FGF19 can signal through a Klotho chimera consisting of the N terminus of alphaKlotho and the C terminus of betaKlotho. Our results provide the first glimpse of the regions that regulate the binding specificity between this unique family of FGFs and their co-receptors.

  20. Assimilatory pigments, photosynthetic activity and ultrastructure of chloroplasts of the variegated-leaf chimera of Acer platanoides L.

    Directory of Open Access Journals (Sweden)

    S. Więckowski

    2015-01-01

    Full Text Available The assimilatory pigment composition, photosynthetic activity and ultrastructure of chloroplasts were studied in the chlorophyll - deficient chimera of Acer platanoides L. Part of the crown of this chimera is a virescent mutant with variegated leaves. It was found that there exists no qualitative difference in the pigment composition between normal and variegated leaves. The accumulation of chlorophyll in the mutated part is more delayed that the accumulation of carotenoids. The photosynthetic rate on a chlorophyll basis is much higher in variegated than in green leaves. This difference gradually falls off with development. In the early spring, chloroplasts from the yellow spots of leaf blade have no lamellar system but only many vesicles are dispersed in the stroma. Occasionally also a single granum consisting of a few thylakoids occurs in the stroma. At the end of summer chloroplasts from yellow spots of variegated leaves possess a poorly developed lamellar system.

  1. Generation of mouse chimeras with high contribution of tetraploid embryonic stem cells and embryonic stem cell-fibroblast hybrid cells.

    Science.gov (United States)

    Matveeva, Natalia M; Kizilova, Elena A; Serov, Oleg L

    2015-01-01

    The in vitro long-term cultivation of embryonic stem (ES) cells derived from pre-implantation embryos offers the unique possibility of combining ES cells with pre-implantation embryos to generate chimeras, thus facilitating the creation of a bridge between in vitro and in vivo investigations. Genomic manipulation using ES cells and homologous recombination is one of the most outstanding scientific achievements, resulting in the generation of animals with desirable genome modifications. As such, the generation of ES cells with different ploidy via cell fusion also deserves much attention because this approach allows for the production of chimeras that contain somatic cells with various ploidy. Therefore, this is a powerful tool that can be used to study the role of polyploidy in the normal development of mammals.

  2. New type of chimera structures in a ring of bistable FitzHugh–Nagumo oscillators with nonlocal interaction

    Energy Technology Data Exchange (ETDEWEB)

    Shepelev, I.A., E-mail: igor_sar@li.ru; Vadivasova, T.E., E-mail: vadivasovate@yandex.ru; Bukh, A.V., E-mail: buh.andrey@yandex.ru; Strelkova, G.I., E-mail: strelkovagi@info.sgu.ru; Anishchenko, V.S., E-mail: wadim@info.sgu.ru

    2017-04-25

    We study the spatiotemporal dynamics of a ring of nonlocally coupled FitzHugh–Nagumo oscillators in the bistable regime. A new type of chimera patterns has been found in the noise-free network and when isolated elements do not oscillate. The region of existence of these structures has been explored when the coupling range and the coupling strength between the network elements are varied. - Highlights: • Dynamics of a ring of nonlocally coupled FitzHugh–Nagumo oscillators in the bistable regime is studied. • A new type of chimera patterns has been found in the noise-free network. • The region of existence of new structures has been explored when varying the coupling parameters.

  3. New type of chimera structures in a ring of bistable FitzHugh-Nagumo oscillators with nonlocal interaction

    Science.gov (United States)

    Shepelev, I. A.; Vadivasova, T. E.; Bukh, A. V.; Strelkova, G. I.; Anishchenko, V. S.

    2017-04-01

    We study the spatiotemporal dynamics of a ring of nonlocally coupled FitzHugh-Nagumo oscillators in the bistable regime. A new type of chimera patterns has been found in the noise-free network and when isolated elements do not oscillate. The region of existence of these structures has been explored when the coupling range and the coupling strength between the network elements are varied.

  4. Antigenic characteristics of rhinovirus chimeras designed in silico for enhanced presentation of HIV-1 gp41 epitopes [corrected].

    Science.gov (United States)

    Lapelosa, Mauro; Arnold, Gail Ferstandig; Gallicchio, Emilio; Arnold, Eddy; Levy, Ronald M

    2010-04-02

    The development of an effective AIDS vaccine remains the most promising long-term strategy to combat human immunodeficiency virus (HIV)/AIDS. Here, we report favorable antigenic characteristics of vaccine candidates isolated from a combinatorial library of human rhinoviruses displaying the ELDKWA epitope of the gp41 glycoprotein of HIV-1. The design principles of this library emerged from the application of molecular modeling calculations in conjunction with our knowledge of previously obtained ELDKWA-displaying chimeras, including knowledge of a chimera with one of the best 2F5-binding characteristics obtained to date. The molecular modeling calculations identified the energetic and structural factors affecting the ability of the epitope to assume conformations capable of fitting into the complementarity determining region of the ELDKWA-binding, broadly neutralizing human mAb 2F5. Individual viruses were isolated from the library following competitive immunoselection and were tested using ELISA and fluorescence quenching experiments. Dissociation constants obtained using both techniques revealed that some of the newly isolated chimeras bind 2F5 with greater affinity than previously identified chimeric rhinoviruses. Molecular dynamics simulations of two of these same chimeras confirmed that their HIV inserts were partially preorganized for binding, which is largely responsible for their corresponding gains in binding affinity. The study illustrates the utility of combining structure-based experiments with computational modeling approaches for improving the odds of selecting vaccine component designs with preferred antigenic characteristics. The results obtained also confirm the flexibility of HRV as a presentation vehicle for HIV epitopes and the potential of this platform for the development of vaccine components against AIDS.

  5. Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning.

    Science.gov (United States)

    Qiu, X; Wu, L; Huang, H; McDonel, P E; Palumbo, A V; Tiedje, J M; Zhou, J

    2001-02-01

    To evaluate PCR-generated artifacts (i.e., chimeras, mutations, and heteroduplexes) with the 16S ribosomal DNA (rDNA)-based cloning approach, a model community of four species was constructed from alpha, beta, and gamma subdivisions of the division Proteobacteria as well as gram-positive bacterium, all of which could be distinguished by HhaI restriction digestion patterns. The overall PCR artifacts were significantly different among the three Taq DNA polymerases examined: 20% for Z-Taq, with the highest processitivity; 15% for LA-Taq, with the highest fidelity and intermediate processitivity; and 7% for the conventionally used DNA polymerase, AmpliTaq. In contrast to the theoretical prediction, the frequency of chimeras for both Z-Taq (8.7%) and LA-Taq (6.2%) was higher than that for AmpliTaq (2.5%). The frequencies of chimeras and of heteroduplexes for Z-Taq were almost three times higher than those of AmpliTaq. The total PCR artifacts increased as PCR cycles and template concentrations increased and decreased as elongation time increased. Generally the frequency of chimeras was lower than that of mutations but higher than that of heteroduplexes. The total PCR artifacts as well as the frequency of heteroduplexes increased as the species diversity increased. PCR artifacts were significantly reduced by using AmpliTaq and fewer PCR cycles (fewer than 20 cycles), and the heteroduplexes could be effectively removed from PCR products prior to cloning by polyacrylamide gel purification or T7 endonuclease I digestion. Based upon these results, an optimal approach is proposed to minimize PCR artifacts in 16S rDNA-based microbial community studies.

  6. Human liver cytochrome P450 3A4 ubiquitination: molecular recognition by UBC7-gp78 autocrine motility factor receptor and UbcH5a-CHIP-Hsc70-Hsp40 E2-E3 ubiquitin ligase complexes.

    Science.gov (United States)

    Wang, YongQiang; Kim, Sung-Mi; Trnka, Michael J; Liu, Yi; Burlingame, A L; Correia, Maria Almira

    2015-02-06

    CYP3A4 is an abundant and catalytically dominant human liver endoplasmic reticulum-anchored cytochrome P450 enzyme engaged in the biotransformation of endo- and xenobiotics, including >50% of clinically relevant drugs. Alterations of CYP3A4 protein turnover can influence clinically relevant drug metabolism and bioavailability and drug-drug interactions. This CYP3A4 turnover involves endoplasmic reticulum-associated degradation via the ubiquitin (Ub)-dependent 26 S proteasomal system that relies on two highly complementary E2 Ub-conjugating-E3 Ub-ligase (UBC7-gp78 and UbcH5a-C terminus of Hsc70-interacting protein (CHIP)-Hsc70-Hsp40) complexes, as well as protein kinases (PK) A and C. We have documented that CYP3A4 Ser/Thr phosphorylation (Ser(P)/Thr(P)) by PKA and/or PKC accelerates/enhances its Lys ubiquitination by either of these E2-E3 systems. Intriguingly, CYP3A4 Ser(P)/Thr(P) and ubiquitinated Lys residues reside within the cytosol-accessible surface loop and/or conformationally assembled acidic Asp/Glu clusters, leading us to propose that such post-translational Ser/Thr protein phosphorylation primes CYP3A4 for ubiquitination. Herein, this possibility was examined through various complementary approaches, including site-directed mutagenesis, chemical cross-linking, peptide mapping, and LC-MS/MS analyses. Our findings reveal that such CYP3A4 Asp/Glu/Ser(P)/Thr(P) surface clusters are indeed important for its intermolecular electrostatic interactions with each of these E2-E3 subcomponents. By imparting additional negative charge to these Asp/Glu clusters, such Ser/Thr phosphorylation would generate P450 phosphodegrons for molecular recognition by the E2-E3 complexes, thereby controlling the timing of CYP3A4 ubiquitination and endoplasmic reticulum-associated degradation. Although the importance of phosphodegrons in the CHIP targeting of its substrates is known, to our knowledge this is the first example of phosphodegron involvement in gp78-substrate

  7. The assay of thyrotropin receptor antibodies with human TSH/LH-CG chimeric receptor expressed on chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ka Hee; Kim, Chang Min [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1996-12-01

    TSH/LH-CG chimera cDNA is transfected to CHO-K1 cell to obtain the chimeric receptor expressed on the cell surface. The optimal conditions for TSAb and TSBAb measurements are determined using chimeric receptors and under these conditions activity of TSAb and TSBAb in the sera of the Graves` patients. The results obtained are compared to those of TSAb assays using FRTL5 cells CHO-TSHR cells which have wild type human TSH receptor. The transfection procedure of chimeric receptor gene to CHO-K1 cells are on going. The optimal conditions for TSAb and TSBAb measurement using chimeric receptor will be determined after success of transfection procedure. If this study is successfully completed, not only the heterogeneity of Graves. IgG but also pathogenesis of Graves` disease will be elucidated. (author). 25 refs.

  8. The assay of thyrotropin receptor antibodies with human TSH/LH-CG chimeric receptor expressed on chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ka Hee; Kim, Chang Min [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1996-12-01

    TSH/LH-CG chimera cDNA is transfected to CHO-K1 cell to obtain the chimeric receptor expressed on the cell surface. The optimal conditions for TSAb and TSBAb measurements are determined using chimeric receptors and under these conditions activity of TSAb and TSBAb in the sera of the Graves` patients. The results obtained are compared to those of TSAb assays using FRTL5 cells CHO-TSHR cells which have wild type human TSH receptor. The transfection procedure of chimeric receptor gene to CHO-K1 cells are on going. The optimal conditions for TSAb and TSBAb measurement using chimeric receptor will be determined after success of transfection procedure. If this study is successfully completed, not only the heterogeneity of Graves. IgG but also pathogenesis of Graves` disease will be elucidated. (author). 25 refs.

  9. A Direct Mapping of Max k-SAT and High Order Parity Checks to a Chimera Graph

    Science.gov (United States)

    Chancellor, N.; Zohren, S.; Warburton, P. A.; Benjamin, S. C.; Roberts, S.

    2016-11-01

    We demonstrate a direct mapping of max k-SAT problems (and weighted max k-SAT) to a Chimera graph, which is the non-planar hardware graph of the devices built by D-Wave Systems Inc. We further show that this mapping can be used to map a similar class of maximum satisfiability problems where the clauses are replaced by parity checks over potentially large numbers of bits. The latter is of specific interest for applications in decoding for communication. We discuss an example in which the decoding of a turbo code, which has been demonstrated to perform near the Shannon limit, can be mapped to a Chimera graph. The weighted max k-SAT problem is the most general class of satisfiability problems, so our result effectively demonstrates how any satisfiability problem may be directly mapped to a Chimera graph. Our methods faithfully reproduce the low energy spectrum of the target problems, so therefore may also be used for maximum entropy inference.

  10. 2′-O-Methyl RNA/Ethylene-Bridged Nucleic Acid Chimera Antisense Oligonucleotides to Induce Dystrophin Exon 45 Skipping

    Directory of Open Access Journals (Sweden)

    Tomoko Lee

    2017-02-01

    Full Text Available Duchenne muscular dystrophy (DMD is a fatal muscle-wasting disease characterized by dystrophin deficiency from mutations in the dystrophin gene. Antisense oligonucleotide (AO-mediated exon skipping targets restoration of the dystrophin reading frame to allow production of an internally deleted dystrophin protein with functional benefit for DMD patients who have out-of-frame deletions. After accelerated US approval of eteplirsen (Exondys 51, which targets dystrophin exon 51 for skipping, efforts are now focused on targeting other exons. For improved clinical benefits, this strategy requires more studies of the delivery method and modification of nucleic acids. We studied a nucleotide with a 2′-O,4′-C-ethylene-bridged nucleic acid (ENA, which shows high nuclease resistance and high affinity for complementary RNA strands. Here, we describe the process of developing a 2′-O-methyl RNA(2′-OMeRNA/ENA chimera AO to induce dystrophin exon 45 skipping. One 18-mer 2′-OMeRNA/ENA chimera (AO85 had the most potent activity for inducing exon 45 skipping in cultured myotubes. AO85 was administered to mdx mice without significant side effects. AO85 transfection into cultured myotubes from 13 DMD patients induced exon 45 skipping in all samples at different levels and dystrophin expression in 11 patients. These results suggest the possible efficacy of AO-mediated exon skipping changes in individual patients and highlight the 2′-OMeRNA/ENA chimera AO as a potential fundamental treatment for DMD.

  11. The ethics of killing human/great-ape chimeras for their organs: a reply to Shaw et al.

    Science.gov (United States)

    Palacios-González, César

    2016-06-01

    The aim of this paper is to critically examine David Shaw, Wybo Dondorp, and Guido de Wert's arguments in favour of the procurement of human organs from human/nonhuman-primate chimeras, specifically from great-ape/human chimeras. My main claim is that their arguments fail and are in need of substantial revision. To prove this I first introduce the topic, and then reconstruct Shaw et al.'s position and arguments. Next, I show that Shaw et al.: (1) failed to properly apply the subsidiarity and proportionality principles; (2) neglected species overlapping cases in their ethical assessment; (3) ignored the ethics literature on borderline persons; and (4) misunderstood McMahan's two-tiered moral theory. These mistakes render an important part of their conclusions either false or problematic to the point that they would no longer endorse them. Finally I will briefly mention a possible multipolar solution to the human organ shortage problem that would reduce the need for chimeras' organs.

  12. Contribution of cells derived from the area pellucida to extraembryonic mesodermal cell lineages in heterospecific quail chick blastodermal chimeras.

    Science.gov (United States)

    Karagenç, Levent; Sandikci, Mustafa

    2013-01-01

    The current study has two main objectives: first, to determine if cells derived from the area pellucida are able to populate extraembryonic membranes, and second, to determine if donor cells have the potential to differentiate to endothelial (EC) and hematopoietic cells (HC) in the yolk sac and allantois, the two extraembryonic membranes functioning as hematopoietic organs in the avian embryo. To this end, quail chick chimeras were constructed by transferring dissociated cells from the areae pellucidae of the stage X-XII (EG&K) quail embryo into the subgerminal cavity of the unincubated chick blastoderm. The distribution of quail cells in the allantois, yolk sac, amnion, and chorion of resulting putative chimeras was examined using quail cell-specific antibody against a perinuclear antigen (QCPN) after 6 days of incubation. The presence of EC, HC, and smooth muscle cells among the QCPN(+) donor cells was examined using QH-1, a quail-specific marker identifying HC and EC and an anti-α-smooth muscle actin antibody. Evidence gathered in the present study demonstrates that quail cells derived from the areae pellucidae are able to populate all of the extraembryonic membranes of resulting heterospecific quail chick chimeras and, most importantly, give rise to HC, EC, and smooth muscle cells, all of the three main mesodermal lineages derived from the posterior mesoderm both in the yolk sac and allantois.

  13. The binding site for neohesperidin dihydrochalcone at the human sweet taste receptor

    OpenAIRE

    2007-01-01

    Abstract Background Differences in sweet taste perception among species depend on structural variations of the sweet taste receptor. The commercially used isovanillyl sweetener neohesperidin dihydrochalcone activates the human but not the rat sweet receptor TAS1R2+TAS1R3. Analysis of interspecies combinations and chimeras of rat and human TAS1R2+TAS1R3 suggested that the heptahelical domain of human TAS1R3 is crucial for the activation of the sweet receptor by neohesperidin dihydrochalcone. R...

  14. Chimeras in leaky integrate-and-fire neural networks: effects of reflecting connectivities

    Science.gov (United States)

    Tsigkri-DeSmedt, Nefeli Dimitra; Hizanidis, Johanne; Schöll, Eckehard; Hövel, Philipp; Provata, Astero

    2017-07-01

    The effects of attracting-nonlocal and reflecting connectivity are investigated in coupled Leaky Integrate-and-Fire (LIF) elements, which model the exchange of electrical signals between neurons. Earlier investigations have demonstrated that repulsive-nonlocal and hierarchical network connectivity can induce complex synchronization patterns and chimera states in systems of coupled oscillators. In the LIF system we show that if the elements are nonlocally linked with positive diffusive coupling on a ring network, the system splits into a number of alternating domains. Half of these domains contain elements whose potential stays near the threshold and they are interrupted by active domains where the elements perform regular LIF oscillations. The active domains travel along the ring with constant velocity, depending on the system parameters. When we introduce reflecting coupling in LIF networks unexpected complex spatio-temporal structures arise. For relatively extensive ranges of parameter values, the system splits into two coexisting domains: one where all elements stay near the threshold and one where incoherent states develop, characterized by multi-leveled mean phase velocity profiles.

  15. Aerodynamic study of sounding rocket flows using Chimera and patched multiblock meshes

    Directory of Open Access Journals (Sweden)

    João Alves de Oliveira Neto

    2011-01-01

    Full Text Available Aerodynamic flow simulations over a typical sounding rocket are presented in this paper. The work is inserted in the effort of developing computational tools necessary to simulate aerodynamic flows over configurations of interest for Instituto de Aeronáutica e Espaço of Departamento de Ciência e Tecnologia Aeroespacial. Sounding rocket configurations usually require fairly large fins and, quite frequently, have more than one set of fins. In order to be able to handle such configurations, the present paper presents a novel methodology which combines both Chimera and patched multiblock grids in the discretization of the computational domain. The flows of interest are modeled using the 3-D Euler equations and the work describes the details of discretization procedure, which uses a finite difference approach for structure, body-conforming, multiblock grids. The method is used to calculate the aerodynamics of a sounding rocket vehicle. The results indicate that the present approach can be a powerful aerodynamic analysis and design tool.

  16. The data acquisition and control system for the 4{pi} detector CHIMERA

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, S.; Anzalone, A.; Cardella, G. [Ist. Nazionale di Fisica Nucleare, Catania (Italy)] [and others

    1998-08-01

    CHIMERA (Charged Heavy Ions Mass and Energy Resolving Array), a new 4{pi} detector for charged particles is under development at various sites of the Istituto Nazionale di Fisica Nucleare. This paper describes the new data acquisition system built to handle the signals coming out from the detector with a rate up to 1 kHz on almost 5000 electronic channels. The required average throughput for the system is in the order of the 1 MB/s. The used converters allow double-range conversion on 15 bits, in less than 50 {micro}s for all the 64 channels. The FDL link connects the different VME 9U crates performing a programmable hardware readout with a rate up to 100 MB/s. It uses a fast hardware protocol (Sparse Data Scan) to read the data buffers and send them to a FIC 8243 CPU board. A FIC 8243 dual-processor board forwards data (through Ethernet) to the analysis station (266 Mhz Digital AlphaStation or Sun Sparcstation). A DLT (Digital Linear Tape) unit connected to analysis station is used to store data. The new data acquisition system has been tested under beam conditions at the Laboratorio Nazionale del Sud (Catania, Italy) and at GANIL (Caen, France).

  17. Fragmentation studies with the CHIMERA detector at LNS in Catania: recent progress

    Energy Technology Data Exchange (ETDEWEB)

    Pagano, A.; Alderighi, M.; Amorini, F.; Anzalone, A.; Arena, L.; Auditore, L.; Baran, V.; Bartolucci, M.; Berceanu, I.; Blicharska, J.; Brzychczyk, J.; Bonasera, A.; Borderie, B.; Bougault, R.; Bruno, M.; Cardella, G.; Cavallaro, S.; Chatterjee, M.B.; Chbihi, A.; Cibor, J.; Colonna, M.; D' Agostino, M.; Dayras, R.; De Filippo, E.; Di Toro, M.; Gawlikowicz, W.; Geraci, E.; Giustolisi, F.; Grzeszczuk, A.; Guazzoni, P.; Guinet, D.; Iacono-Manno, M.; Kowalski, S.; La Guidara, E.; Lanzano, G.; Lanzalone, G.; Le Neindre, N.; Li, S.; Lo Nigro, S.; Maiolino, C.; Majka, Z.; Manfredi, G.; Paduszynski, T.; Papa, M.; Petrovici, M.; Piasecki, E.; Pirrone, S.; Planeta, R.; Politi, G.; Pop, A.; Porto, F.; Rivet, M.F.; Rosato, E.; Rizzo, F.; Russo, S.; Russotto, P.; Sassi, M.; Sechi, G.; Simion, V.; Siwek-Wilczynska, K.; Skwira, I.; Sperduto, M.L.; Steckmeyer, J.C.; Swiderski, L.; Trifiro, A.; Trimarchi, M.; Vannini, G.; Vigilante, M.; Wieleczko, J.P.; Wilczynski, J.; Wu, H.; Xiao, Z.; Zetta, L.; Zipper, W

    2004-04-05

    The new detector CHIMERA, in its final 4{pi} configuration, has been installed at Laboratori Nazionali del Sud (LNS) in Catania in January 2003. Beams of different energies ranging from protons to Au ions were delivered by the Tandem and the Super Conducting Cyclotron for nuclear reaction studies, in agreement with the approval of the Scientific Advisory Committee of LNS. Recent experimental results confirm very low energy thresholds of the trigger (below 0.5 MeV/nucleon), ensured within a wide dynamical range. Good characteristics of identification of light charged particles and heavy fragments have been obtained by using three detection techniques: {delta}E-E, {delta}E-time of flight, and the Pulse-Shape discrimination method. We present results of recent analysis concerning the production of intermediate mass fragments (IMF) in semi-peripheral collisions. Our results combined with theoretical Boltzmann-Nordheim-Vlasov simulations clearly demonstrate the presence of very fast processes of IMF production in the overlapping region of the target and projectile nuclei during re-separation, i.e. in the time scale comparable with the collision time. Evidence for slower, sequential-like production of IMF's is also shown.

  18. Spatially organized dynamical states in chemical oscillator networks: synchronization, dynamical differentiation, and chimera patterns.

    Directory of Open Access Journals (Sweden)

    Mahesh Wickramasinghe

    Full Text Available Dynamical processes in many engineered and living systems take place on complex networks of discrete dynamical units. We present laboratory experiments with a networked chemical system of nickel electrodissolution in which synchronization patterns are recorded in systems with smooth periodic, relaxation periodic, and chaotic oscillators organized in networks composed of up to twenty dynamical units and 140 connections. The reaction system formed domains of synchronization patterns that are strongly affected by the architecture of the network. Spatially organized partial synchronization could be observed either due to densely connected network nodes or through the 'chimera' symmetry breaking mechanism. Relaxation periodic and chaotic oscillators formed structures by dynamical differentiation. We have identified effects of network structure on pattern selection (through permutation symmetry and coupling directness and on formation of hierarchical and 'fuzzy' clusters. With chaotic oscillators we provide experimental evidence that critical coupling strengths at which transition to identical synchronization occurs can be interpreted by experiments with a pair of oscillators and analysis of the eigenvalues of the Laplacian connectivity matrix. The experiments thus provide an insight into the extent of the impact of the architecture of a network on self-organized synchronization patterns.

  19. Establishment of rat embryonic stem cells and making of chimera rats.

    Directory of Open Access Journals (Sweden)

    Shinobu Ueda

    Full Text Available The rat is a reference animal model for physiological studies and for the analysis of multigenic human diseases such as hypertension, diabetes, neurological disorders, and cancer. The rats have long been used in extensive chemical carcinogenesis studies. Thus, the rat embryonic stem (rES cell is an important resource for the study of disease models. Attempts to derive ES cells from various mammals, including the rat, have not succeeded. Here we have established two independent rES cells from Wister rat blastocysts that have undifferentiated characters such as Nanog and Oct3/4 genes expression and they have stage-specific embryonic antigen (SSEA -1, -3, -4, and TRA-1-81 expression. The cells were successfully cultured in an undifferentiated state and can be possible over 18 passages with maintaining more than 40% of normal karyotype. Their pluripotent potential was confirmed by the differentiation into derivatives of the endoderm, mesoderm, and ectoderm. Most importantly, the rES cells are capable of producing chimera rats. Therefore, we established pluripotent rES cell lines that are widely used to produce genetically modified experimental rats for study of human diseases.

  20. Human-animal chimeras: ethical issues about farming chimeric animals bearing human organs.

    Science.gov (United States)

    Bourret, Rodolphe; Martinez, Eric; Vialla, François; Giquel, Chloé; Thonnat-Marin, Aurélie; De Vos, John

    2016-06-29

    Recent advances in stem cells and gene engineering have paved the way for the generation of interspecies chimeras, such as animals bearing an organ from another species. The production of a rat pancreas by a mouse has demonstrated the feasibility of this approach. The next step will be the generation of larger chimeric animals, such as pigs bearing human organs. Because of the dramatic organ shortage for transplantation, the medical needs for such a transgressive practice are indisputable. However, there are serious technical barriers and complex ethical issues that must be discussed and solved before producing human organs in animals. The main ethical issues are the risks of consciousness and of human features in the chimeric animal due to a too high contribution of human cells to the brain, in the first case, or for instance to limbs, in the second. Another critical point concerns the production of human gametes by such chimeric animals. These worst-case scenarios are obviously unacceptable and must be strictly monitored by careful risk assessment, and, if necessary, technically prevented. The public must be associated with this ethical debate. Scientists and physicians have a critical role in explaining the medical needs, the advantages and limits of this potential medical procedure, and the ethical boundaries that must not be trespassed. If these prerequisites are met, acceptance of such a new, borderline medical procedure may prevail, as happened before for in-vitro fertilization or preimplantation genetic diagnosis.

  1. Mouse embryos and chimera cloned from neural cells in the postnatal cerebral cortex.

    Science.gov (United States)

    Makino, Hatsune; Yamazaki, Yukiko; Hirabayashi, Takahiro; Kaneko, Ryosuke; Hamada, Shun; Kawamura, Yoshimi; Osada, Tomoharu; Yanagimachi, Ryuzo; Yagi, Takeshi

    2005-01-01

    Cloning of mice has been achieved by transferring nuclei of various types of somatic cell nuclei into enucleated oocytes. However, all attempts to produce live cloned offspring using the nuclei of neurons from adult cerebral cortex have failed. Previously we obtained cloned mice using the nuclei of neural cells collected from fetal cerebral cortex. Here, we attempted to generate cloned mice using differentiated neurons from the cerebral cortex of postnatal (day 0-4) mice. Although we were unable to obtain live cloned pups, many fetuses reached day 10.5 days of development. These fetuses showed various abnormalities such as spherical omission of the neuroepithelium, collapsed lumen of neural tube, and aberrant expressions of marker proteins of neurons. We produced chimeric mice in which some hair cells and kidney cells were originated from differentiated neurons. In chimeric fetuses, LacZ-positive donor cells were in all three germ cell layers. However, chimeras with large contribution of donor-derived cells were not obtained. These results indicate that nuclei of differentiated neurons have lost their developmental totipotency. In other words, the conventional nuclear transfer technique does not allow nuclei of differentiated neurons to undergo complete genomic reprogramming required for normal embryonic development.

  2. Clonal and territorial development of the pancreas as revealed by eGFP-labelled mouse chimeras.

    Science.gov (United States)

    Eberhard, Daniel; Jockusch, Harald

    2010-10-01

    The clonal structure of the pancreas was analysed in neonatal and adult mouse chimeras in which one partner displayed cell patches expressing green fluorescent protein (eGFP). Coherent growth during pancreatic histogenesis was suggested by the presence of large eGFP-labelled acinar clusters rather than a scattered distribution of individual labelled acinar cells. The adult chimeric pancreas contained monophenotypic acini, whereas surprisingly 5% of acini in neonates were polyclonal. Monophenotypic acini presumably arose by coherent expansion leading to large 3D patches and may not be monoclonal. Islets of Langerhans were oligoclonal at both ages investigated. The proportion of eGFP positive cells within islets did not correlate with that of the surrounding acinar tissue indicating clonal independence of islets from their neighbourhood. The patterns observed argue against a secondary contribution of blood-borne progenitor/stem cells to the acinar compartment during tissue turnover. The different clonal origins of acini and islets are integrated into a model of pancreatic histogenesis.

  3. Dechorionation of medaka embryos and cell transplantation for the generation of chimeras.

    Science.gov (United States)

    Porazinski, Sean R; Wang, Huijia; Furutani-Seiki, Makoto

    2010-12-22

    Medaka is a small egg-laying freshwater fish that allows both genetic and embryological analyses and is one of the three vertebrate model organisms in which genome-wide phenotype-driven mutant screens were carried out (1). Divergence of functional overlap of related genes between medaka and zebrafish allows identification of novel phenotypes that are unidentifiable in a single species (2), thus medaka and zebrafish are complementary for genetic dissection of the vertebrate genome functions. Manipulation of medaka embryos, such as dechorionation, mounting embryos for imaging and cell transplantation, are key procedures to work on both medaka and zebrafish in a laboratory. Cell transplantation examines cell autonomy of medaka mutations. Chimeras are generated by transplanting labeled cells from donor embryos into unlabeled recipient embryos. Donor cells can be transplanted to specific areas of the recipient embryos based on the fate maps (3) so that clones from transplanted cells can be integrated in the tissue of interest during development. Due to the hard chorion and soft embryos, manipulation of medaka embryos is more involved than in zebrafish. In this video, we show detailed procedures to manipulate medaka embryos.

  4. CONSTRUCTION OF HU-PBL/SCID CHIMERAS AND DEVELOPMENT OF EBV-RELATED LYMPHOMAS

    Institute of Scientific and Technical Information of China (English)

    Run-liang Gan; Ke Lan; Zhi-hua Yin; Li-jiang Wang; Ying Song; Kai-tai Yao

    2005-01-01

    Objective To construct hu-PBL/SCID chimeras and to investigate the development of lymphoma and oncogenicity of the Epstein-Barr virus (EBV).Mtehods Human peripheral blood lymphocytes (PBLs) were isolated from healthy adult donors and transplanted intraperitoneally into severe combined immunodeficient (SCID) mice. Mice with hu-PBL engraftment from healthy EBV seronegative donors were injected intraperitoneally with EBV-containing supematant from suspension culture of B95-8 cell line (active infection), whereas mice receiving lymphocytes from healthy EBV seropositive donors were not re-infected with B95-8 derived EBV (latent infection). Pathological examination and molecular analysis were performed on experimental animals and induced neoplasms.Results In the early stage of this experiment, 12 mice died of acute graft-versus-host disease, mortality was 34.3%(12/35 mice) with an average life span of 17.5 days. In 19 survival hu-PBL/SCID chimeric recipients from 12 healthy donors,tumor incidence was 84.2% (16/19 mice). The average survival time of tumor-bearing mice was 65.5 days. EBV-related neoplasms in SCID mice were nodular tumors with aggressive and fatal features. Histological morphology of tumors exhibited diffuse large cell lymphomas. Immunohistochemistry revealed that LCA (CD45) and L26 (CD20) were positive, but both PS1 (CD3) and UCHL-1 (CD45RO) were negative, and EBV products ZEBRA, LMP1, and EBNA2 were expressed in a small number of tumor cells. EB virus particles were seen in the nuclei of some tumor cells by electron microscopy, and EBV DNA could be amplified in the tumor tissues by PCR. In situ hybridization indicated that the nuclei of tumor cells contained human-specific Alu sequence.Conclusions EBV-induced tumors were human B-cell malignant lymphomas. We obtained direct causative evidence dealing with EBV-associated tumor deriving from normal human cells.

  5. Magnetorotational dynamo chimeras. The missing link to turbulent accretion disk dynamo models?

    Science.gov (United States)

    Riols, A.; Rincon, F.; Cossu, C.; Lesur, G.; Ogilvie, G. I.; Longaretti, P.-Y.

    2017-02-01

    In Keplerian accretion disks, turbulence and magnetic fields may be jointly excited through a subcritical dynamo mechanisminvolving magnetorotational instability (MRI). This dynamo may notably contribute to explaining the time-variability of various accreting systems, as high-resolution simulations of MRI dynamo turbulence exhibit statistical self-organization into large-scale cyclic dynamics. However, understanding the physics underlying these statistical states and assessing their exact astrophysical relevance is theoretically challenging. The study of simple periodic nonlinear MRI dynamo solutions has recently proven useful in this respect, and has highlighted the role of turbulent magnetic diffusion in the seeming impossibility of a dynamo at low magnetic Prandtl number (Pm), a common regime in disks. Arguably though, these simple laminar structures may not be fully representative of the complex, statistically self-organized states expected in astrophysical regimes. Here, we aim at closing this seeming discrepancy by reporting the numerical discovery of exactly periodic, yet semi-statistical "chimeral MRI dynamo states" which are the organized outcome of a succession of MRI-unstable, non-axisymmetric dynamical stages of different forms and amplitudes. Interestingly, these states, while reminiscent of the statistical complexity of turbulent simulations, involve the same physical principles as simpler laminar cycles, and their analysis further confirms the theory that subcritical turbulent magnetic diffusion impedes the sustainment of an MRI dynamo at low Pm. Overall, chimera dynamo cycles therefore offer an unprecedented dual physical and statistical perspective on dynamos in rotating shear flows, which may prove useful in devising more accurate, yet intuitive mean-field models of time-dependent turbulent disk dynamos. Movies associated to Fig. 1 are available at http://www.aanda.org

  6. Functional assignment by Chimera construction of the domain affecting heterotropic activation of deoxyadenosine kinase from Lactobacillus acidophilus R-26.

    Science.gov (United States)

    Guo, S; Ives, D H

    1998-10-01

    The heterodimeric subunits of deoxyadenosine kinase (dAK)-deoxyguanosine kinase (dGK) from Lactobacillus acidophilus R-26 exhibit contrasting conformations manifested in the nearly unidirectional heterotropic activation of dAK when dGK binds deoxyguanosine. This is mediated, in part, by the conserved Ras switch I-like sequence (residues 153-161) [Guo et al. (1997) J. Biol. Chem. 272, 6890-6897]. In an attempt to identify domains differentiating the specificities of dAK and dGK, we constructed several chimeras splicing heterodimeric dAK within this region. In Chimera-III, dAK residues 120-170 were replaced by the homologous section of dGK. dAK activity was elevated 40%, but although it retained its original specificity and Km values, it could no longer be activated by deoxyguanosine. Moreover, both the activated dAK and the "dAK" of Chimera-III exhibited (i) an increased Ks for the leading substrate ATP-Mg2+, suggesting the formation of intermediate enzyme species along their respective kinetic pathways, and (ii) broadened and lower pH optima for the dAK activities. These observations further indicate the importance of dAK residues 120-170, including the Ras-like segment, in catalysis and heterotropic activation. The other conformational properties of dAK (e.g. self-inactivity and MgATP being the leading substrate) were unaltered by this substitution, thus localizing the responsible domains even further upstream.

  7. Newspaper coverage of human-pig chimera research: A qualitative study on select media coverage of scientific breakthrough.

    Science.gov (United States)

    Hagan-Brown, Abena; Favaretto, Maddalena; Borry, Pascal

    2017-07-01

    A recently published article in the journal Cell by scientists from the Salk Institute highlighted the successful integration of stem cells from humans in pig embryos. This marks the first step toward the goal of growing human organs in animals for transplantation. There has, to date, been no research performed on the presentation of this breakthrough in the media. We thus assessed early newspaper coverage of the chimera study, looking into the descriptions as well as the benefits and concerns raised by the study mentioned by newspaper sources. We looked at newspaper coverage of the human-pig chimera study in the two weeks after the publication of the article describing the breakthrough in Cell. This time period spanned from January 26 to February 9, 2017. We used the LexisNexis Academic database and identified articles using the search string "hybrid OR chimera AND pig OR human OR embryo." The relevant articles were analyzed using qualitative content analysis. Two researchers openly coded the articles independently using themes that emerged from the raw texts. Our search yielded 31 unique articles, after extensive screening for relevance and duplicates. Through our analysis, we were able to identify several themes in a majority of the texts. Almost every article gave descriptive information about the chimera experiment with details about the study findings. All of the articles mentioned the benefits of the study, citing both immediate- and long-term goals, which included creating transplantable human organs, disease and drug development, and personalized medicine, among others. Some of the articles highlighted some ethical, social, and health concerns that the study and its future implications pose. Many of the articles also offered reassurances over the concerns brought up by the experiment. Our results appeared to align with similar research performed on the media representation of sensitive scientific news coverage. We also explored the inconsistency between

  8. Particle identification method in the CsI(Tl) scintillator used for the CHIMERA 4{pi} detector

    Energy Technology Data Exchange (ETDEWEB)

    Alderighi, M.; Anzalone, A.; Basssini, R.; Berceanu, I.; Blicharska, J.; Boiano, C.; Borderie, B.; Bougault, R.; Bruno, M.; Cali, C.; Cardella, G. E-mail: cardella@ct.infn.it; Cavallaro, Sl.; D' Agostino, M.; D' Andrea, M.; Dayras, R.; De Filippo, E.; Fichera, F.; Geraci, E.; Giustolisi, F.; Grzeszczuk, A.; Guardone, N.; Guazzoni, P.; Guinet, D.; Iacono-Manno, C.M.; Kowalski, S.; La Guidara, E.; Lanchais, A.L.; Lanzalone, G.; Lanzano, G.; Le Neindre, N.; Li, S.; Maiolino, C.; Majka, Z.; Manfredi, G.; Nicotra, D.; Paduszynski, T.; Pagano, A.; Papa, M.; Petrovici, C.M.; Piasecki, E.; Pirrone, S.; Politi, G.; Pop, A.; Porto, F.; Rivet, M.F.; Rosato, E.; Sacca, G.; Sechi, G.; Simion, V.; Sperduto, M.L.; Steckmeyer, J.C.; Trifiro, A.; Trimarchi, M.; Urso, S.; Vannini, G.; Vigilante, M.; Wilczynski, J.; Wu, H.; Xiao, Z.; Zetta, L.; Zipper, W

    2002-08-21

    The charged particle identification obtained by the analysis of signals coming from the CsI(Tl) detectors of the CHIMERA 4{pi} heavy-ion detector is presented. A simple double-gate integration method, with the use of the cyclotron radiofrequency as reference time, results in low thresholds for isotopic particle identification. The dependence of the identification quality on the gate generation timing is discussed. Isotopic identification of light ions up to Beryllium is clearly seen. For the first time also the identification of Z=5 particles is observed. The identification of neutrons interacting with CsI(Tl) by (n,{alpha}) and (n,{gamma}) reactions is also discussed.

  9. Particle identification method in the CsI(Tl) scintillator used for the CHIMERA 4 pi detector

    CERN Document Server

    Alderighi, M; Basssini, R; Berceanu, I; Blicharska, J; Boiano, C; Borderie, B; Bougault, R; Bruno, M; Cali, C; Cardella, G; Cavallaro, S; D'Agostino, M; D'andrea, M; Dayras, R; De Filippo, E; Fichera, F; Geraci, E; Giustolisi, F; Grzeszczuk, A; Guardone, N; Guazzoni, P; Guinet, D; Iacono-Manno, M; Kowalski, S; La Guidara, E; Lanchais, A L; Lanzalone, G; Lanzanò, G; Le Neindre, N; Li, S; Maiolino, C; Majka, Z; Manfredi, G; Nicotra, D; Paduszynski, T; Pagano, A; Papa, M; Petrovici, C M; Piasecki, E; Pirrone, S; Politi, G; Pop, A; Porto, F; Rivet, M F; Rosato, E; Sacca, G; Sechi, G; Simion, V; Sperduto, M L; Steckmeyer, J C; Trifiró, A; Trimarchi, M; Urso, S; Vannini, G; Vigilante, M; Wilczynski, J; Wu, H; Xiao, Z; Zetta, L; Zipper, W

    2002-01-01

    The charged particle identification obtained by the analysis of signals coming from the CsI(Tl) detectors of the CHIMERA 4 pi heavy-ion detector is presented. A simple double-gate integration method, with the use of the cyclotron radiofrequency as reference time, results in low thresholds for isotopic particle identification. The dependence of the identification quality on the gate generation timing is discussed. Isotopic identification of light ions up to Beryllium is clearly seen. For the first time also the identification of Z=5 particles is observed. The identification of neutrons interacting with CsI(Tl) by (n,alpha) and (n,gamma) reactions is also discussed.

  10. Imperfectly synchronized states and chimera states in two interacting populations of nonlocally coupled Stuart-Landau oscillators.

    Science.gov (United States)

    Premalatha, K; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M

    2016-07-01

    We investigate the emergence of different kinds of imperfectly synchronized states and chimera states in two interacting populations of nonlocally coupled Stuart-Landau oscillators. We find that the complete synchronization in population I and existence of solitary oscillators which escape from the synchronized group in population II lead to imperfectly synchronized states for sufficiently small values of nonisochronicity parameter. Interestingly, upon increasing the strength of this parameter further there occurs an onset of mixed imperfectly synchronized states where the solitary oscillators occur from both the populations. Synchronized oscillators from both the populations are locked to a common average frequency. In both cases of imperfectly synchronized states, synchronized oscillators exhibit periodic motion while the solitary oscillators are quasiperiodic in nature. In this region, for spatially prepared initial conditions, we can observe the mixed chimera states where the coexistence of synchronized and desynchronized oscillations occur from both the populations. On the other hand, imperfectly synchronized states are not always stable, and they can drift aperiodically due to instability caused by an increase of nonisochronicity parameter. We observe that these states are robust to the introduction of frequency mismatch between the two populations.

  11. In-cell aggregation of a polyglutamine-containing chimera is a multistep process initiated by the flanking sequence.

    Science.gov (United States)

    Ignatova, Zoya; Thakur, Ashwani K; Wetzel, Ronald; Gierasch, Lila M

    2007-12-14

    Toxicity in amyloid diseases is intimately linked to the nature of aggregates, with early oligomeric species believed to be more cytotoxic than later fibrillar aggregates. Yet mechanistic understanding of how aggregating species evolve with time is currently lacking. We have explored the aggregation process of a chimera composed of a globular protein (cellular retinoic acid-binding protein, CRABP) and huntingtin exon 1 with polyglutamine tracts either above (Q53) or below (Q20) the pathological threshold using Escherichia coli cells as a model intracellular environment. Previously we showed that fusion of the huntingtin exon 1 sequence with >40Q led to structural perturbation and decreased stability of CRABP (Ignatova, Z., and Gierasch, L. M. (2006) J. Biol. Chem. 281, 12959-12967). Here we report that the Q53 chimera aggregates in cells via a multistep process: early stage aggregates are spherical and detergent-soluble, characteristics of prefibrillar aggregates, and appear to be dominated structurally by CRABP, in that they can promote aggregation of a CRABP variant but not oligoglutamine aggregation, and the CRABP domain is relatively sequestered based on its protection from proteolysis. Late stage aggregates appear to be dominated by polyGln; they are fibrillar, detergent-resistant, capable of seeding aggregation of oligoglutamine but not the CRABP variant, and show relative protection of the polyglutamine-exon1 domain from proteolysis. These results point to an evolution of the dominant sequences in intracellular aggregates and may provide molecular insight into origins of toxic prefibrillar aggregates.

  12. SCHEMA computational design of virus capsid chimeras: calibrating how genome packaging, protection, and transduction correlate with calculated structural disruption.

    Science.gov (United States)

    Ho, Michelle L; Adler, Benjamin A; Torre, Michael L; Silberg, Jonathan J; Suh, Junghae

    2013-12-20

    Adeno-associated virus (AAV) recombination can result in chimeric capsid protein subunits whose ability to assemble into an oligomeric capsid, package a genome, and transduce cells depends on the inheritance of sequence from different AAV parents. To develop quantitative design principles for guiding site-directed recombination of AAV capsids, we have examined how capsid structural perturbations predicted by the SCHEMA algorithm correlate with experimental measurements of disruption in seventeen chimeric capsid proteins. In our small chimera population, created by recombining AAV serotypes 2 and 4, we found that protection of viral genomes and cellular transduction were inversely related to calculated disruption of the capsid structure. Interestingly, however, we did not observe a correlation between genome packaging and calculated structural disruption; a majority of the chimeric capsid proteins formed at least partially assembled capsids and more than half packaged genomes, including those with the highest SCHEMA disruption. These results suggest that the sequence space accessed by recombination of divergent AAV serotypes is rich in capsid chimeras that assemble into 60-mer capsids and package viral genomes. Overall, the SCHEMA algorithm may be useful for delineating quantitative design principles to guide the creation of libraries enriched in genome-protecting virus nanoparticles that can effectively transduce cells. Such improvements to the virus design process may help advance not only gene therapy applications but also other bionanotechnologies dependent upon the development of viruses with new sequences and functions.

  13. Strain-transcending immune response generated by chimeras of the malaria vaccine candidate merozoite surface protein 2

    Science.gov (United States)

    Krishnarjuna, Bankala; Andrew, Dean; MacRaild, Christopher A.; Morales, Rodrigo A. V.; Beeson, James G.; Anders, Robin F.; Richards, Jack S.; Norton, Raymond S.

    2016-01-01

    MSP2 is an intrinsically disordered protein that is abundant on the merozoite surface and essential to the parasite Plasmodium falciparum. Naturally-acquired antibody responses to MSP2 are biased towards dimorphic sequences within the central variable region of MSP2 and have been linked to naturally-acquired protection from malaria. In a phase IIb study, an MSP2-containing vaccine induced an immune response that reduced parasitemias in a strain-specific manner. A subsequent phase I study of a vaccine that contained both dimorphic forms of MSP2 induced antibodies that exhibited functional activity in vitro. We have assessed the contribution of the conserved and variable regions of MSP2 to the generation of a strain-transcending antibody response by generating MSP2 chimeras that included conserved and variable regions of the 3D7 and FC27 alleles. Robust anti-MSP2 antibody responses targeting both conserved and variable regions were generated in mice, although the fine specificity and the balance of responses to these regions differed amongst the constructs tested. We observed significant differences in antibody subclass distribution in the responses to these chimeras. Our results suggest that chimeric MSP2 antigens can elicit a broad immune response suitable for protection against different strains of P. falciparum. PMID:26865062

  14. New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras.

    Science.gov (United States)

    Ashelford, Kevin E; Chuzhanova, Nadia A; Fry, John C; Jones, Antonia J; Weightman, Andrew J

    2006-09-01

    A new computer program, called Mallard, is presented for screening entire 16S rRNA gene libraries of up to 1,000 sequences for chimeras and other artifacts. Written in the Java computer language and capable of running on all major operating systems, the program provides a novel graphical approach for visualizing phylogenetic relationships among 16S rRNA gene sequences. To illustrate its use, we analyzed most of the large libraries of cloned bacterial 16S rRNA gene sequences submitted to the public repository during 2005. Defining a large library as one containing 100 or more sequences of 1,200 bases or greater, we screened 25 of the 28 libraries and found that all but three contained substantial anomalies. Overall, 543 anomalous sequences were found. The average anomaly content per clone library was 9.0%, 4% higher than that previously estimated for the public repository overall. In addition, 90.8% of anomalies had characteristic chimeric patterns, a rise of 25.4% over that found previously. One library alone was found to contain 54 chimeras, representing 45.8% of its content. These figures far exceed previous estimates of artifacts within public repositories and further highlight the urgent need for all researchers to adequately screen their libraries prior to submission. Mallard is freely available from our website at http://www.cardiff.ac.uk/biosi/research/biosoft/.

  15. CHIMERA: a wide-field, multi-color, high-speed photometer at the prime focus of the Hale telescope

    CERN Document Server

    Harding, Leon K; Milburn, Jennifer; Gardner, Paul; Konidaris, Nick; Singh, Navtej; Shao, Michael; Sandhu, Jagmit; Kyne, Gillian; Schlichting, Hilke E

    2016-01-01

    The Caltech HIgh-speed Multi-color camERA (CHIMERA) is a new instrument that has been developed for use at the prime focus of the Hale 200-inch telescope. Simultaneous optical imaging in two bands is enabled by a dichroic beam splitter centered at 567 nm, with Sloan u' and g' bands available on the blue arm and Sloan r', i' and z_s' bands available on the red arm. Additional narrow-band filters will also become available as required. An Electron Multiplying CCD (EMCCD) detector is employed for both optical channels, each capable of simultaneously delivering sub-electron effective read noise under multiplication gain and frame rates of up to 26 fps full frame (several 1000 fps windowed), over a fully corrected 5 x 5 arcmin field of view. CHIMERA was primarily developed to enable the characterization of the size distribution of sub-km Kuiper Belt Objects via stellar occultation, a science case that motivates the frame-rate, the simultaneous multi-color imaging and the wide field of view of the instrument. In ad...

  16. Generation of germ-line chimera zebrafish using primordial germ cells isolated from cultured blastomeres and cryopreserved embryoids.

    Science.gov (United States)

    Kawakami, Yutaka; Goto-Kazeto, Rie; Saito, Taiju; Fujimoto, Takafumi; Higaki, Shogo; Takahashi, Yoshiyuki; Arai, Katsutoshi; Yamaha, Etsuro

    2010-01-01

    Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. In our previous study, a single PGC transplanted into a host differentiated into fertile gametes and produced germ-line chimeras of cyprinid fish, including zebrafish. In this study, we aimed to induce germ-line chimeras by transplanting donor PGCs from various sources (normal embryos at different stages, dissociated blastomeres, embryoids, or embryoids cryopreserved by vitrification) into host blastulae, and compare the migration rates of the PGCs towards the gonadal ridge. Isolated, cultured blastomeres not subject to mesodermal induction were able to differentiate into PGCs that retained their motility. Moreover, these PGCs successfully migrated towards the gonadal ridge of the host and formed viable gametes. Motility depended on developmental stage and culture duration: PGCs obtained at earlier developmental stages and with shorter cultivation periods showed an increased rate of migration to the gonadal ridge. Offspring were obtained from natural spawning between normal females and chimeric males. These results provide the basis for new methods of gene preservation in zebrafish.

  17. Infectious RNA transcripts from Ross River virus cDNA clones and the construction and characterization of defined chimeras with Sindbis virus.

    Science.gov (United States)

    Kuhn, R J; Niesters, H G; Hong, Z; Strauss, J H

    1991-06-01

    We have constructed a full-length cDNA clone of the virulent T48 strain of Ross River virus, a member of the alphavirus genus. Infectious RNA can be transcribed from this clone using SP6 or T7 RNA polymerase. The rescued virus has properties indistinguishable from those of the T48 strain of Ross River virus. We have used this clone, together with a full-length cDNA clone of Sindbis virus, to construct chimeric plasmids in which the 5' and the 3' nontranslated regions of the Sindbis and Ross River genomes were exchanged. The nontranslated regions of the two viral genomes differ in both size and sequence although they maintain specific conserved sequence elements. Virus was recovered from all four chimeras. Chimeras containing heterologous 3' nontranslated regions had replicative efficiencies equal to those of the parents. In contrast, the chimeras containing heterologous 5' nontranslated regions were defective in RNA synthesis and virus production, and the severity of the defect was dependent upon the host. Replication of a virus containing a heterologous 5' nontranslated region may be inefficient due to the formation of defective protein-RNA complexes, whereas, the presumptive complexes formed between host or virus proteins and the 3' nontranslated region to promote RNA synthesis appear to function normally in the chimeras.

  18. Synthesis of ethyl 8-fluoro-5,6-dihydro-5-(/sup 11/C)methyl-6-oxo-4H-imidazo(1,5-a)(1,4)benzodiazepine-3-carboxylate (RO 15. 1788-/sup 11/C): a specific radioligand for the in vivo study of central benzodiazepine receptors by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Maziere, M.; Hantraye, P.; Prenant, C.; Sastre, J.; Comar, D. (CEA, 91 - Orsay (France). Service Hospitalier Frederic Joliot)

    1984-10-01

    A method of labelling ethyl 8-fluoro-5,6-dihydro-5-(/sup 11/C) methyl-6-oxo-4H-imidazo(1,5-a)(1,4)benzodiazepine-3-carboxylate (RO 15.1788 /sup 11/C), a benzodiazepine antagonist with carbon-11 has been developed. RO 15.1788-/sup 11/C was prepared by methylation of the nor derivative by I/sup 11/CH/sub 3/. About 100 mCi (maximum 153 mCi, 5.66 GBq) of the chemically and radiochemically pure labelled product were obtained within 25 min with a specific activity on average of 1100 mCi/..mu.. mol (maximum 1740 mCi/..mu..mol-64.4 GBq/..mu..mol). Preliminary results obtained after i.v. administration in the baboon have shown RO 15.1788-/sup 11/C to be of interest as a benzodiazepine radioligand for the in vivo study of benzodiazepine receptors by positron emission tomography.

  19. Functional analysis of chimeric lysin motif domain receptors mediating Nod factor-induced defense signaling in Arabidopsis thaliana and chitin-induced nodulation signaling in Lotus japonicus.

    Science.gov (United States)

    Wang, Wei; Xie, Zhi-Ping; Staehelin, Christian

    2014-04-01

    The expression of chimeric receptors in plants is a way to activate specific signaling pathways by corresponding signal molecules. Defense signaling induced by chitin from pathogens and nodulation signaling of legumes induced by rhizobial Nod factors (NFs) depend on receptors with extracellular lysin motif (LysM) domains. Here, we constructed chimeras by replacing the ectodomain of chitin elicitor receptor kinase 1 (AtCERK1) of Arabidopsis thaliana with ectodomains of NF receptors of Lotus japonicus (LjNFR1 and LjNFR5). The hybrid constructs, named LjNFR1-AtCERK1 and LjNFR5-AtCERK1, were expressed in cerk1-2, an A. thaliana CERK1 mutant lacking chitin-induced defense signaling. When treated with NFs from Rhizobium sp. NGR234, cerk1-2 expressing both chimeras accumulated reactive oxygen species, expressed chitin-responsive defense genes and showed increased resistance to Fusarium oxysporum. In contrast, expression of a single chimera showed no effects. Likewise, the ectodomains of LjNFR1 and LjNFR5 were replaced by those of OsCERK1 (Oryza sativa chitin elicitor receptor kinase 1) and OsCEBiP (O. sativa chitin elicitor-binding protein), respectively. The chimeras, named OsCERK1-LjNFR1 and OsCEBiP-LjNFR5, were expressed in L. japonicus NF receptor mutants (nfr1-1; nfr5-2) carrying a GUS (β-glucuronidase) gene under the control of the NIN (nodule inception) promoter. Upon chitin treatment, GUS activation reflecting nodulation signaling was observed in the roots of NF receptor mutants expressing both chimeras, whereas a single construct was not sufficient for activation. Hence, replacement of ectodomains in LysM domain receptors provides a way to specifically trigger NF-induced defense signaling in non-legumes and chitin-induced nodulation signaling in legumes. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  20. Study of structure function correlation of chemokine receptor CXCR4

    Institute of Scientific and Technical Information of China (English)

    ZHENG Hong; Stephen C PEIPER; ZHU Xi-hua

    2002-01-01

    Objective: To explore the correlation between structure domains and functions of chemokine receptor CXCR4. Methods: After the establishment of wild type chemokine receptor CXCR4 and CXCR2 expressing cell lines, 5 CXCR4/CXCR2 chimeras, 2 CXCR4 mutants were stably expressed on CHO cell line.Binding activities of all variants with the ligand, recombinant human SDF-1β, signal transduction ability after stimulation and their function as coreceptor for HIV-1 were studied with ligand-binding assay, Cytosensor/microphysiometry and cell-cell reporter gene fusion assay. Results: Among all 7 changed CXCR4 receptors, 3 chimeras (2444a, 4442, 4122), and 1 mutant (CXCR4-Tr) bond with SDF-1β in varying degrees, of which only 2444a totally and CXCR4-Tr partially maintain signaling. All changed receptors except for 4222 could act as coreceptors for HIV-1(LAI) in varying degrees. Conclusion: Several structure domains of CXCR4 are involved in the binding with SDF-1β, among which, N-terminal extracellular domain has high affinity of binding with SDF-1β, and the 3rd extracellular loop contributes to the binding, too. Although the C-terminal intracellular domain has no association with the maintenance of the overall structure of the receptor and ligand binding capability, the signaling is decreased when this domain is truncated. For CXCR4 signaling, not only is the conserved motif DRY box needed, but also the characterized conformation of the whole molecule must be formed when activation is required. There are some overlaps between SDF-1β binding domains and coreceptor function domains in molecular structure of CXCR4.

  1. Three dimensional visualization and fractal analysis of mosaic patches in rat chimeras: cell assortment in liver, adrenal cortex and cornea.

    Science.gov (United States)

    Iannaccone, Stephen; Zhou, Yue; Walterhouse, David; Taborn, Greg; Landini, Gabriel; Iannaccone, Philip

    2012-01-01

    The production of organ parenchyma in a rapid and reproducible manner is critical to normal development. In chimeras produced by the combination of genetically distinguishable tissues, mosaic patterns of cells derived from the combined genotypes can be visualized. These patterns comprise patches of contiguously similar genotypes and are different in different organs but similar in a given organ from individual to individual. Thus, the processes that produce the patterns are regulated and conserved. We have previously established that mosaic patches in multiple tissues are fractal, consistent with an iterative, recursive growth model with simple stereotypical division rules. Fractal dimensions of various tissues are consistent with algorithmic models in which changing a single variable (e.g. daughter cell placement after division) switches the mosaic pattern from islands to stripes of cells. Here we show that the spiral pattern previously observed in mouse cornea can also be visualized in rat chimeras. While it is generally held that the pattern is induced by stem cell division dynamics, there is an unexplained discrepancy in the speed of cellular migration and the emergence of the pattern. We demonstrate in chimeric rat corneas both island and striped patterns exist depending on the age of the animal. The patches that comprise the pattern are fractal, and the fractal dimension changes with the age of the animal and indicates the constraint in patch complexity as the spiral pattern emerges. The spiral patterns are consistent with a loxodrome. Such data are likely to be relevant to growth and cell division in organ systems and will help in understanding how organ parenchyma are generated and maintained from multipotent stem cell populations located in specific topographical locations within the organ. Ultimately, understanding algorithmic growth is likely to be essential in achieving organ regeneration in vivo or in vitro from stem cell populations.

  2. Three dimensional visualization and fractal analysis of mosaic patches in rat chimeras: cell assortment in liver, adrenal cortex and cornea.

    Directory of Open Access Journals (Sweden)

    Stephen Iannaccone

    Full Text Available The production of organ parenchyma in a rapid and reproducible manner is critical to normal development. In chimeras produced by the combination of genetically distinguishable tissues, mosaic patterns of cells derived from the combined genotypes can be visualized. These patterns comprise patches of contiguously similar genotypes and are different in different organs but similar in a given organ from individual to individual. Thus, the processes that produce the patterns are regulated and conserved. We have previously established that mosaic patches in multiple tissues are fractal, consistent with an iterative, recursive growth model with simple stereotypical division rules. Fractal dimensions of various tissues are consistent with algorithmic models in which changing a single variable (e.g. daughter cell placement after division switches the mosaic pattern from islands to stripes of cells. Here we show that the spiral pattern previously observed in mouse cornea can also be visualized in rat chimeras. While it is generally held that the pattern is induced by stem cell division dynamics, there is an unexplained discrepancy in the speed of cellular migration and the emergence of the pattern. We demonstrate in chimeric rat corneas both island and striped patterns exist depending on the age of the animal. The patches that comprise the pattern are fractal, and the fractal dimension changes with the age of the animal and indicates the constraint in patch complexity as the spiral pattern emerges. The spiral patterns are consistent with a loxodrome. Such data are likely to be relevant to growth and cell division in organ systems and will help in understanding how organ parenchyma are generated and maintained from multipotent stem cell populations located in specific topographical locations within the organ. Ultimately, understanding algorithmic growth is likely to be essential in achieving organ regeneration in vivo or in vitro from stem cell populations.

  3. A Chimera Containing CD4+ and CD8+ T-Cell Epitopes of the Leishmania donovani Nucleoside Hydrolase (NH36) Optimizes Cross-Protection against Leishmania amazonesis Infection

    Science.gov (United States)

    Alves-Silva, Marcus Vinícius; Nico, Dirlei; Morrot, Alexandre; Palatnik, Marcos; Palatnik-de-Sousa, Clarisa B.

    2017-01-01

    The Leishmania donovani nucleoside hydrolase (NH36) and NH A34480 of Leishmania amazonensis share 93% of sequence identity. In mice, the NH36 induced protection against visceral leishmaniasis is mediated by a CD4+ T cell response against its C-terminal domain (F3). Besides this CD4+ Th1 response, prevention and cure of L. amazonensis infection require also additional CD8+ and regulatory T-cell responses to the NH36 N-terminal (F1 domain). We investigated if mice vaccination with F1 and F3 domains cloned in tandem, in a recombinant chimera, with saponin, optimizes the vaccine efficacy against L. amazonensis infection above the levels promoted by the two admixed domains or by each domain independently. The chimera induced the highest IgA, IgG, and IgG2a anti-NH36 antibody, IDR, IFN-γ, and IL-10 responses, while TNF-α was more secreted by mice vaccinated with F3 or all F3-contaning vaccines. Additionally, the chimera and the F1 vaccine also induced the highest proportions of CD4+ and CD8+ T cells secreting IL-2, TNF-α, or IFN-γ alone, TNF-α in combination with IL-2 or IFN-γ, and of CD4+ multifunctional cells secreting IL-2, TNF-α, and IFN-γ. Correlating with the immunological results, the strongest reductions of skin lesions sizes were determined by the admixed domains (80%) and by the chimera (84%), which also promoted the most pronounced and significant reduction of the parasite load (99.8%). Thus, the epitope presentation in a recombinant chimera optimizes immunogenicity and efficacy above the levels induced by the independent or admixed F1 and F3 domains. The multiparameter analysis disclosed that the Th1-CD4+ T helper response induced by the chimera is mainly directed against its FRYPRPKHCHTQVA epitope. Additionally, the YPPEFKTKL epitope of F1 induced the second most important CD4+ T cell response, and, followed by the DVAGIVGVPVAAGCT, FMLQILDFYTKVYE, and ELLAITTVVGNQ sequences, also the most potent CD8+ T cell responses and IL-10 secretion. Remarkably

  4. Human formyl peptide receptor ligand binding domain(s). Studies using an improved mutagenesis/expression vector reveal a novel mechanism for the regulation of receptor occupancy.

    Science.gov (United States)

    Perez, H D; Vilander, L; Andrews, W H; Holmes, R

    1994-09-09

    Recently, we reported the domain requirements for the binding of formyl peptide to its specific receptor. Based on experiments using receptor chimeras, we also postulated an importance for the amino-terminal domain of the receptor in ligand binding (Perez, H. D., Holmes, R., Vilander, L., Adams, R., Manzana, W., Jolley, D., and Andrews, W. H. (1993) J. Biol. Chem. 268, 2292-2295). We have begun to perform a detailed analysis of the regions within the formyl peptide receptor involved in ligand binding. To address the importance of the receptor amino-terminal domain, we substituted (or inserted) hydrophilic sequences within the amino-terminal domain, expressed the receptors, and determined their ability to bind ligand. A stretch of nine amino acids next to the initial methionine was identified as crucial for receptor occupancy. A peptide containing such a sequence specifically completed binding of the ligand to the receptor. Alanine screen mutagenesis of the second extracellular domain also identified amino acids involved in ligand binding as well as a disulfide bond (Cys98 to Cys176) crucial for maintaining the binding pocket. These studies provide evidence for a novel mechanism involved in regulation of receptor occupancy. Binding of the ligand induces conformational changes in the receptor that result in the apposition of the amino-terminal domain over the ligand, providing a lid to the binding pocket.

  5. Genes encoding chimeras of Neurospora crassa erg-3 and human TM7SF2 proteins fail to complement Neurospora and yeast sterol C-14 reductase mutants

    Indian Academy of Sciences (India)

    A Prakash; Durgadas P Kasbekar

    2002-03-01

    The human gene TM7SF2 encodes a polypeptide (SR-1) with high sequence similarity to sterol C-14 reductase, a key sterol biosynthetic enzyme in fungi, plants and mammals. In Neurospora and yeast this enzyme is encoded by the erg-3 and erg24 genes respectively. In an effort to demonstrate sterol C-14 reductase activity for SR-1 we constructed six recombinant genes coding for chimeras of the Neurospora erg-3 and SR-1 protein sequences and tested them for complementation of the Neurospora erg-3 mutant. To our surprise, all the chimeras failed to complement erg-3. A few of the chimeric proteins were also tested against the yeast erg24 mutant, but again there was no complementation. We discuss some reasons that might account for these unexpected findings.

  6. Mouse immature oocytes irradiated in vivo at 14-days of age and evaluated for transmitted effects using the aggregation embryo chimera assay

    Energy Technology Data Exchange (ETDEWEB)

    Straume, T. [University of California Lawrence Livermore National Laboratory, Livermore, CA (United States); Raabe, O.G.; Walsh, K.J.; Wiley, L.M. [Institute of Toxicology and Environmental Health, Davis, CA (United States)

    1996-09-23

    A previous study using the mouse-preimplantation-embryo-chimera assay demonstrated a reproducible transmitted effect (proliferation disadvantage observed in early embryos) from females irradiated as 49-day-old adults using 0.15 Gy of gamma rays and then mated seven weeks later, i.e., embryos were from oocytes that were immature at time of irradiation. Because mouse immature oocytes are known to be much more radiosensitive to cell killing in juveniles than in adults, a follow-on study was performed here using 14-day-old juvenile mice. In contrast to adults, the exposure of juveniles to 0.15 Gy of gamma rays did not result in a detectable transmitted proliferation disadvantage when animals were mated 7 or 12 weeks later. This observation is discussed in light of previous studies on mouse immature oocytes and embryo chimeras.

  7. NHE1 inhibition by amiloride- and benzoylguanidine-type compounds. Inhibitor binding loci deduced from chimeras of NHE1 homologues with endogenous differences in inhibitor sensitivity

    DEFF Research Database (Denmark)

    Pedersen, Stine F; King, Scott A; Nygaard, Eva B

    2007-01-01

    NHE1). Although highly homologous to the amiloride- and HOE-sensitive human NHE1 (hNHE1), AtNHE1 is insensitive to HOE-type and PaNHE1 to both amiloride- and HOE-type compounds. Here we generated chimeras to "knock in" amiloride and HOE sensitivity to PaNHE1, and we thereby identified several NHE1...

  8. Human-Mouse Chimeras with Normal Expression and Function Reveal That Major Domain Swapping Is Tolerated by P-Glycoprotein (ABCB1).

    Science.gov (United States)

    Pluchino, Kristen M; Hall, Matthew D; Moen, Janna K; Chufan, Eduardo E; Fetsch, Patricia A; Shukla, Suneet; Gill, Deborah R; Hyde, Stephen C; Xia, Di; Ambudkar, Suresh V; Gottesman, Michael M

    2016-02-23

    The efflux transporter P-glycoprotein (P-gp) plays a vital role in the transport of molecules across cell membranes and has been shown to interact with a panoply of functionally and structurally unrelated compounds. How human P-gp interacts with this large number of drugs has not been well understood, although structural flexibility has been implicated. To gain insight into this transporter's broad substrate specificity and to assess its ability to accommodate a variety of molecular and structural changes, we generated human-mouse P-gp chimeras by the exchange of homologous transmembrane and nucleotide-binding domains. High-level expression of these chimeras by BacMam- and baculovirus-mediated transduction in mammalian (HeLa) and insect cells, respectively, was achieved. There were no detectable differences between wild-type and chimeric P-gp in terms of cell surface expression, ability to efflux the P-gp substrates rhodamine 123, calcein-AM, and JC-1, or to be inhibited by the substrate cyclosporine A and the inhibitors tariquidar and elacridar. Additionally, expression of chimeric P-gp was able to confer a paclitaxel-resistant phenotype to HeLa cells characteristic of P-gp-mediated drug resistance. P-gp ATPase assays and photo-cross-linking with [(125)I]iodoarylazidoprazosin confirmed that transport and biochemical properties of P-gp chimeras were similar to those of wild-type P-gp, although differences in drug binding were detected when human and mouse transmembrane domains were combined. Overall, chimeras with one or two mouse P-gp domains were deemed functionally equivalent to human wild-type P-gp, demonstrating the ability of human P-gp to tolerate major structural changes.

  9. Influence of the hinge region and its adjacent domains on binding and signaling patterns of the thyrotropin and follitropin receptor.

    Directory of Open Access Journals (Sweden)

    Jörg Schaarschmidt

    Full Text Available Glycoprotein hormone receptors (GPHR have a large extracellular domain (ECD divided into the leucine rich repeat (LRR domain for binding of the glycoprotein hormones and the hinge region (HinR, which connects the LRR domain with the transmembrane domain (TMD. Understanding of the activation mechanism of GPHRs is hindered by the unknown interaction of the ECD with the TMD and the structural changes upon ligand binding responsible for receptor activation. Recently, our group showed that the HinR of the thyrotropin receptor (TSHR can be replaced by those of the follitropin (FSHR and lutropin receptor (LHCGR without effects on surface expression and hTSH signaling. However, differences in binding characteristics for bovine TSH at the various HinRs were obvious. To gain further insights into the interplay between LRR domain, HinR and TMD we generated chimeras between the TSHR and FSHR. Our results obtained by the determination of cell surface expression, ligand binding and G protein activation confirm the similar characteristics of GPHR HinRs but they also demonstrate an involvement of the HinR in ligand selectivity indicated by the observed promiscuity of some chimeras. While the TSHR HinR contributes to specific binding of TSH and its variants, no such contribution is observed for FSH and its analog TR4401 at the HinR of the FSHR. Furthermore, the charge distribution at the poorly characterized LRR domain/HinR transition affected ligand binding and signaling even though this area is not in direct contact with the ligand. In addition our results also demonstrate the importance of the TMD/HinR interface. Especially the combination of the TSHR HinR with the FSHR-TMD resulted in a loss of cell surface expression of the respective chimeras. In conclusion, the HinRs of GPHRs do not only share similar characteristics but also behave as ligand specific structural and functional entities.

  10. Detection of Hepatitis C core antibody by dual-affinity yeast chimera and smartphone-based electrochemical sensing.

    Science.gov (United States)

    Aronoff-Spencer, Eliah; Venkatesh, A G; Sun, Alex; Brickner, Howard; Looney, David; Hall, Drew A

    2016-12-15

    Yeast cell lines were genetically engineered to display Hepatitis C virus (HCV) core antigen linked to gold binding peptide (GBP) as a dual-affinity biobrick chimera. These multifunctional yeast cells adhere to the gold sensor surface while simultaneously acting as a "renewable" capture reagent for anti-HCV core antibody. This streamlined functionalization and detection strategy removes the need for traditional purification and immobilization techniques. With this biobrick construct, both optical and electrochemical immunoassays were developed. The optical immunoassays demonstrated detection of anti-HCV core antibody down to 12.3pM concentrations while the electrochemical assay demonstrated higher binding constants and dynamic range. The electrochemical format and a custom, low-cost smartphone-based potentiostat ($20 USD) yielded comparable results to assays performed on a state-of-the-art electrochemical workstation. We propose this combination of synthetic biology and scalable, point-of-care sensing has potential to provide low-cost, cutting edge diagnostic capability for many pathogens in a variety of settings.

  11. Tracking Neospora caninum parasites using chimera monoclonal antibodies against its surface antigen-related sequences (rNcSRS2).

    Science.gov (United States)

    Dong, Jinhua; Otsuki, Takahiro; Kato, Tatsuya; Park, Enoch Y

    2014-03-01

    Neosporosis, an infectious disease of cattle and dogs, causes an abortion in cattle, which has a major damage on the dairy industry worldwide. Tracking of Neospora caninum parasite that is responsible for neosporosis is required for the prevention of this infectious disease. We developed three chimera monoclonal antibodies consist of variable regions of murine antibody and constant regions of human antibody against N. caninum. Recombinant surface antigen-related sequence 2 (rNcSRS2) of N. caninum was expressed in silkworm larvae, and immunized in mice to obtain phage displaying antibody library. Through three rounds of selection, three antibodies, A6, E1 and H3, were isolated and bound to rNcSRS2 with nanomolar to micromolar affinity. In immunofluorescent staining assays, A6 and E1 bound to N. caninum strain Nc-Liv, demonstrating a successful tracking of the parasite. H3 clone bound to rNcSRS2 but not to a truncated protein without glycosylphosphatidylinositol (GPI) anchor domain in the carboxyl terminal. Amino acid sequences of A6 and E1 were similar, but that of H3 differed in the CDR-H1 region, which might be the reason of their difference of affinity. These antibodies are thought to be useful for prevention of cattle from neosporosis.

  12. Interspecies avian brain chimeras reveal that large brain size differences are influenced by cell-interdependent processes.

    Science.gov (United States)

    Chen, Chun-Chun; Balaban, Evan; Jarvis, Erich D

    2012-01-01

    Like humans, birds that exhibit vocal learning have relatively delayed telencephalon maturation, resulting in a disproportionately smaller brain prenatally but enlarged telencephalon in adulthood relative to vocal non-learning birds. To determine if this size difference results from evolutionary changes in cell-autonomous or cell-interdependent developmental processes, we transplanted telencephala from zebra finch donors (a vocal-learning species) into Japanese quail hosts (a vocal non-learning species) during the early neural tube stage (day 2 of incubation), and harvested the chimeras at later embryonic stages (between 9-12 days of incubation). The donor and host tissues fused well with each other, with known major fiber pathways connecting the zebra finch and quail parts of the brain. However, the overall sizes of chimeric finch telencephala were larger than non-transplanted finch telencephala at the same developmental stages, even though the proportional sizes of telencephalic subregions and fiber tracts were similar to normal finches. There were no significant changes in the size of chimeric quail host midbrains, even though they were innervated by the physically smaller zebra finch brain, including the smaller retinae of the finch eyes. Chimeric zebra finch telencephala had a decreased cell density relative to normal finches. However, cell nucleus size differences between each species were maintained as in normal birds. These results suggest that telencephalic size development is partially cell-interdependent, and that the mechanisms controlling the size of different brain regions may be functionally independent.

  13. Interspecies avian brain chimeras reveal that large brain size differences are influenced by cell-interdependent processes.

    Directory of Open Access Journals (Sweden)

    Chun-Chun Chen

    Full Text Available Like humans, birds that exhibit vocal learning have relatively delayed telencephalon maturation, resulting in a disproportionately smaller brain prenatally but enlarged telencephalon in adulthood relative to vocal non-learning birds. To determine if this size difference results from evolutionary changes in cell-autonomous or cell-interdependent developmental processes, we transplanted telencephala from zebra finch donors (a vocal-learning species into Japanese quail hosts (a vocal non-learning species during the early neural tube stage (day 2 of incubation, and harvested the chimeras at later embryonic stages (between 9-12 days of incubation. The donor and host tissues fused well with each other, with known major fiber pathways connecting the zebra finch and quail parts of the brain. However, the overall sizes of chimeric finch telencephala were larger than non-transplanted finch telencephala at the same developmental stages, even though the proportional sizes of telencephalic subregions and fiber tracts were similar to normal finches. There were no significant changes in the size of chimeric quail host midbrains, even though they were innervated by the physically smaller zebra finch brain, including the smaller retinae of the finch eyes. Chimeric zebra finch telencephala had a decreased cell density relative to normal finches. However, cell nucleus size differences between each species were maintained as in normal birds. These results suggest that telencephalic size development is partially cell-interdependent, and that the mechanisms controlling the size of different brain regions may be functionally independent.

  14. Design, synthesis and DNA interactions of a chimera between a platinum complex and an IHF mimicking peptide.

    Science.gov (United States)

    Rao, Harita; Damian, Mariana S; Alshiekh, Alak; Elmroth, Sofi K C; Diederichsen, Ulf

    2015-12-28

    Conjugation of metal complexes with peptide scaffolds possessing high DNA binding affinity has shown to modulate their biological activities and to enhance their interaction with DNA. In this work, a platinum complex/peptide chimera was synthesized based on a model of the Integration Host Factor (IHF), an architectural protein possessing sequence specific DNA binding and bending abilities through its interaction with a minor groove. The model peptide consists of a cyclic unit resembling the minor grove binding subdomain of IHF, a positively charged lysine dendrimer for electrostatic interactions with the DNA phosphate backbone and a flexible glycine linker tethering the two units. A norvaline derived artificial amino acid was designed to contain a dimethylethylenediamine as a bidentate platinum chelating unit, and introduced into the IHF mimicking peptides. The interaction of the chimeric peptides with various DNA sequences was studied by utilizing the following experiments: thermal melting studies, agarose gel electrophoresis for plasmid DNA unwinding experiments, and native and denaturing gel electrophoresis to visualize non-covalent and covalent peptide-DNA adducts, respectively. By incorporation of the platinum metal center within the model peptide mimicking IHF we have attempted to improve its specificity and DNA targeting ability, particularly towards those sequences containing adjacent guanine residues.

  15. Particle gamma correlations in {sup 12}C measured with the CsI(Tl) based detector array CHIMERA

    Energy Technology Data Exchange (ETDEWEB)

    Cardella, G., E-mail: cardella@ct.infn.it [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Acosta, L. [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Amorini, F. [INFN - Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Auditore, L. [INFN Gruppo collegato di Messina and Dip. di Fisica e Scienze della Terra, Università di Messina (Italy); Berceanu, I. [Institute for Physics and Nuclear Engineering, Bucharest (Romania); Castoldi, A. [INFN Sezione di Milano e Politecnico Milano (Italy); De Filippo, E. [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Dell' Aquila, D. [Dipartimento di scienze Fisiche, Università Federico II and INFN Sezione di Napoli (Italy); Francalanza, L. [INFN - Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dip. di Fisica e Astronomia, Università di Catania, Via S. Sofia, Catania (Italy); Gnoffo, B. [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Guazzoni, C. [INFN Sezione di Milano e Politecnico Milano (Italy); Lanzalone, G. [INFN - Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Facoltà di Ingegneria e Architettura, Università Kore, Enna (Italy); Lombardo, I. [Dipartimento di scienze Fisiche, Università Federico II and INFN Sezione di Napoli (Italy); Minniti, T.; Morgana, E.; Norella, S. [INFN Gruppo collegato di Messina and Dip. di Fisica e Scienze della Terra, Università di Messina (Italy); Pagano, A. [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Pagano, E.V. [INFN - Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dip. di Fisica e Astronomia, Università di Catania, Via S. Sofia, Catania (Italy); Papa, M.; Pirrone, S. [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); and others

    2015-11-01

    The gamma decay of the first excited 4.44 MeV 2+level of {sup 12}C, populated by inelastic scattering of proton and {sup 16}O beams at various energies was studied in order to test γ-ray detection efficiency and the quality of angular distribution information given by the CsI(Tl) detectors of the 4π CHIMERA array. The γ-decay was measured in coincidence with ejectile scattered particles in an approximately 4π geometry allowing to extract the angular distribution in the reference frame of recoiling {sup 12}C target. The typical sin{sup 2} (2θ) behavior of angular distribution was observed in the case of {sup 16}O beam. Besides that, for the proton beam, in order to explain the observed distribution, the addition of an incoherent flat contribution was required. This latter is the effect of proton spin flip events allowing the population of M=±1 magnetic substates, that is not possible in reactions induced by {sup 16}O beam. A comparison with previously collected data, obtained measuring only in and out of plane proton-γ-ray coincidences, confirms the good quality of the angular distribution information given by the apparatus. Possible applications with radioactive beams are outlined.

  16. Chimeras Reveal a Single Lipid-Interface Residue that Controls MscL Channel Kinetics as well as Mechanosensitivity

    Directory of Open Access Journals (Sweden)

    Li-Min Yang

    2013-02-01

    Full Text Available MscL, the highly conserved bacterial mechanosensitive channel of large conductance, serves as an osmotic “emergency release valve,” is among the best-studied mechanosensors, and is a paradigm of how a channel senses and responds to membrane tension. Although all homologs tested thus far encode channel activity, many show functional differences. We tested Escherichia coli and Staphylococcus aureus chimeras and found that the periplasmic region of the protein, particularly E. coli I49 and the equivalent S. aureus F47 at the periplasmic lipid-aqueous interface of the first transmembrane domain, drastically influences both the open dwell time and the threshold of channel opening. One mutant shows a severe hysteresis, confirming the importance of this residue in determining the energy barriers for channel gating. We propose that this site acts similarly to a spring for a clasp knife, adjusting the resistance for obtaining and stabilizing an open or closed channel structure.

  17. Sushi domains confer distinct trafficking profiles on GABAB receptors

    Science.gov (United States)

    Hannan, Saad; Wilkins, Megan E.; Smart, Trevor G.

    2012-01-01

    GABAB receptors mediate slow inhibitory neurotransmission in the brain and feature during excitatory synaptic plasticity, as well as various neurological conditions. These receptors are obligate heterodimers composed of GABABR1 and R2 subunits. The two predominant R1 isoforms differ by the presence of two complement control protein modules or Sushi domains (SDs) in the N terminus of R1a. By using live imaging, with an α-bungarotoxin-binding site (BBS) and fluorophore-linked bungarotoxin, we studied how R2 stabilizes R1b subunits at the cell surface. Heterodimerization with R2 reduced the rate of internalization of R1b, compared with R1b homomers. However, R1aR2 heteromers exhibited increased cell surface stability compared with R1bR2 receptors in hippocampal neurons, suggesting that for receptors containing the R1a subunit, the SDs play an additional role in the surface stability of GABAB receptors. Both SDs were necessary to increase the stability of R1aR2 because single deletions caused the receptors to be internalized at the same rate and extent as R1bR2 receptors. Consistent with these findings, a chimera formed from the metabotropic glutamate receptor (mGluR)2 and the SDs from R1a increased the surface stability of mGluR2. These results suggest a role for SDs in stabilizing cell surface receptors that could impart different pre- and postsynaptic trafficking itineraries on GABAB receptors, thereby contributing to their physiological and pathological roles. PMID:22778417

  18. Impaired virus control and severe CD8+ T-cell-mediated immunopathology in chimeric mice deficient in gamma interferon receptor expression on both parenchymal and hematopoietic cells

    DEFF Research Database (Denmark)

    Henrichsen, Pernille; Bartholdy, Christina; Christensen, Jan Pravsgaard

    2005-01-01

    Bone marrow chimeras were used to determine the cellular target(s) for the antiviral activity of gamma interferon (IFN-gamma). By transfusing such mice with high numbers of naive virus-specific CD8(+) T cells, a system was created in which the majority of virus-specific CD8(+) T cells would...... virus completely lack the ability to control the infection and develop severe wasting disease. Further, the study shows that IFN-gamma receptor expression on parenchymal cells in the viscera is more important for virus control than IFN-gamma receptor expression on bone marrow-derived cells....

  19. Loss of bone marrow adrenergic beta 1 and 2 receptors modifies transcriptional networks, reduces circulating inflammatory factors, and regulates blood pressure.

    Science.gov (United States)

    Ahmari, Niousha; Schmidt, Jordan T; Krane, Gregory A; Malphurs, Wendi; Cunningham, Bruce E; Owen, Jennifer L; Martyniuk, Christopher J; Zubcevic, Jasenka

    2016-07-01

    Hypertension (HTN) is a prevalent condition with complex etiology and pathophysiology. Evidence exists of significant communication between the nervous system and the immune system (IS), and there appears to be a direct role for inflammatory bone marrow (BM) cells in the pathophysiology of hypertension. However, the molecular and neural mechanisms underlying this interaction have not been characterized. Here, we transplanted whole BM cells from the beta 1 and 2 adrenergic receptor (AdrB1(tm1Bkk)AdrB2(tm1Bkk)/J) knockout (KO) mice into near lethally irradiated C57BL/6J mice to generate a BM AdrB1.B2 KO chimera. This allowed us to evaluate the role of the BM beta 1 and beta 2 adrenergic receptors in mediating BM IS homeostasis and regulating blood pressure (BP) in an otherwise intact physiological setting. Fluorescence-activated cell sorting demonstrated that a decrease in systolic and mean BP in the AdrB1.B2 KO chimera is associated with a decrease in circulating inflammatory T cells, macrophage/monocytes, and neutrophils. Transcriptomics in the BM identified 7,419 differentially expressed transcripts between the C57 and AdrB1.B2 KO chimera. Pathway analysis revealed differentially expressed transcripts related to several cell processes in the BM of C57 compared with AdrB1.B2 KO chimera, including processes related to immunity (e.g., T-cell activation, T-cell recruitment, cytokine production, leukocyte migration and function), the cardiovascular system (e.g., blood vessel development, peripheral nerve blood flow), and the brain (e.g., central nervous system development, neurite development) among others. This study generates new insight into the molecular events that underlie the interaction between the sympathetic drive and IS in modulation of BP.

  20. Importance of constitutive activity and arrestin-independent mechanisms for intracellular trafficking of the ghrelin receptor

    DEFF Research Database (Denmark)

    Holliday, Nicholas D; Holst, Birgitte; Rodionova, Elena A

    2007-01-01

    . Furthermore the interaction between phosphorylated receptors and beta-arrestin adaptor proteins has been examined. Replacement of the FLAG-tagged GhrelinR C tail with the equivalent GPR39 domain (GhR-39 chimera) preserved G(q) signaling. However in contrast to the GhrelinR, GhR-39 receptors exhibited no basal...... and substantially decreased agonist-induced internalization in transiently transfected HEK293 cells. Internalized GhrelinR and GhR-39 were predominantly localized to recycling compartments, identified with transferrin and the monomeric G proteins Rab5 and Rab11. Both the inverse agonist [d-Arg(1), d-Phe(5), d-Trp(7....... In contrast, agonist-stimulated GhrelinRs recruited the clathrin adaptor green fluorescent protein-tagged beta-arrestin2 to endosomes, coincident with increased receptor phosphorylation. Thus, GhrelinR internalization to recycling compartments depends on C-terminal motifs and constitutive activity...

  1. Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor.

    Science.gov (United States)

    Dobrowsky, R T; Werner, M H; Castellino, A M; Chao, M V; Hannun, Y A

    1994-09-09

    The role of the low-affinity neurotrophin receptor (p75NTR) in signal transduction is undefined. Nerve growth factor can activate the sphingomyelin cycle, generating the putative-lipid second messenger ceramide. In T9 glioma cells, addition of a cell-permeable ceramide analog mimicked the effects of nerve growth factor on cell growth inhibition and process formation. This signaling pathway appears to be mediated by p75NTR in T9 cells and NIH 3T3 cells overexpressing p75NTR. Expression of an epidermal growth factor receptor-p75NTR chimera in T9 cells imparted to epidermal growth factor the ability to activate the sphingomyelin cycle. These data demonstrate that p75NTR is capable of signaling independently of the trk neurotrophin receptor (p140trk) and that ceramide may be a mediator in neurotrophin biology.

  2. Inhibition of Monocyte Adhesion to Brain-Derived Endothelial Cells by Dual Functional RNA Chimeras

    Directory of Open Access Journals (Sweden)

    Jing Hu

    2014-01-01

    Full Text Available Because adhesion of leukocytes to endothelial cells is the first step of vascular-neuronal inflammation, inhibition of adhesion and recruitment of leukocytes to vascular endothelial cells will have a beneficial effect on neuroinflammatory diseases. In this study, we used the pRNA of bacteriophage phi29 DNA packaging motor to construct a novel RNA nanoparticle for specific targeting to transferrin receptor (TfR on the murine brain-derived endothelial cells (bEND5 to deliver ICAM-1 siRNA. This RNA nanoparticle (FRS-NPs contained a FB4 aptamer targeting to TfR and a siRNA moiety for silencing the intercellular adhesion molecule-1 (ICAM-1. Our data indicated that this RNA nanoparticle was delivered into murine brain-derived endothelial cells. Furthermore, the siRNA was released from the FRS-NPs in the cells and knocked down ICAM-1 expression in the TNF-α–stimulated cells and in the cells under oxygen-glucose deprivation/reoxygenation (OGD/R condition. The functional end points of the study indicated that FRS-NPs significantly inhibited monocyte adhesion to the bEND5 cells induced by TNF-α and OGD/R. In conclusion, our approach using RNA nanotechnology for siRNA delivery could be potentially applied for inhibition of inflammation in ischemic stroke and other neuroinflammatory diseases, or diseases affecting endothelium of vasculature.

  3. Endocytosis of a functionally enhanced GFP-tagged transferrin receptor in CHO cells.

    Directory of Open Access Journals (Sweden)

    Qi He

    Full Text Available The endocytosis of transferrin receptor (TfR has served as a model to study the receptor-targeted cargo delivery system for cancer therapy for many years. To accurately evaluate and optically measure this TfR targeting delivery in vitro, a CHO cell line with enhanced green fluorescent protein (EGFP-tagged human TfR was established. A chimera of the hTfR and EGFP was engineered by fusing EGFP to the amino terminus of hTfR. Data were provided to demonstrate that hTfR-EGFP chimera was predominantly localized on the plasma membrane with some intracellular fluorescent structures on CHO cells and the EGFP moiety did not affect the endocytosis property of hTfR. Receptor internalization occurred similarly to that of HepG2 cells expressing wild-type hTfR. The internalization percentage of this chimeric receptor was about 81 ± 3% of wild type. Time-dependent co-localization of hTfR-EGFP and PE-conjugated anti-hTfR mAb in living cells demonstrated the trafficking of mAb-receptor complexes through the endosomes followed by segregation of part of the mAb and receptor at the late stages of endocytosis. The CHO-hTfR cells preferentially took up anti-hTfR mAb conjugated nanoparticles. This CHO-hTfR cell line makes it feasible for accurate evaluation and visualization of intracellular trafficking of therapeutic agents conjugated with transferrin or Abs targeting the hTfRs.

  4. Somatostatin receptors

    DEFF Research Database (Denmark)

    Møller, Lars Neisig; Stidsen, Carsten Enggaard; Hartmann, Bolette

    2003-01-01

    therefore been acknowledged to be a third endogenous ligand at SRIF receptors. This review goes through mechanisms of signal transduction, pharmacology, and anatomical distribution of SRIF receptors. Structurally, SRIF receptors belong to the superfamily of G protein-coupled (GPC) receptors, sharing....... The generation of knock-out (KO) mice, intended as a means to define the contributions made by individual receptor subtypes, necessarily marks but an approximation. Furthermore, we must now take into account the stunning complexity of receptor co-operation indicated by the observation of receptor homo......-peptides, receptor agonists and antagonists. Relatively long half lives, as compared to those of the endogenous ligands, have been paramount from the outset. Motivated by theoretical puzzles or the shortcomings of present-day diagnostics and therapy, investigators have also aimed to produce subtype...

  5. [Leaf anatomy of the mosaic ficus benjamina cv. Starlight and interaction of source and sink chimera components].

    Science.gov (United States)

    Labunskaia, E A; Zhigalova, T V; Chub, V V

    2007-01-01

    Leaf anatomy was studied in the mosaic Ficus benjamina cv. Starlight and non-chimeric Ficus benjamina cv. Daniel. The number of chloroplasts in a white, chlorophyll-deficient tissue declines as compared to the green tissue. However, their functional activity is retained. The leaf of the mosaic F. benjamina contains two or, sometimes, three subepidermal layers. Mesophyll forms one layer in the green and white parts of leaf palisade and one white and one green layer in the transitional zone (edge). In the transitional zone, green spongy mesophyll is located between two white spongy layers and the proportion of photosynthesizing cells varies. In cv. Daniel, there are two subepidermal layers and one layer of columnar mesophyll cells. According to the morphometry data, the proportion of white zone in the leaf correlates with the leaf position in the whole shoot: the higher the branch order, the larger the proportion of white zone. The total leaf area depends also on its position in the shoot. No such correlation was found in non-chimeric F. benjamina cv. Daniel. In the mosaic chimera, the source-sink status appears to depend on the leaf position in the shoot. Experiments with individual shoots of the same order and elimination of all lateral shoots have shown that the proportion of white zone in new leaves on the shoot increases with the total area of green zone. Thus, the area of assimilating shoot surface affects the formation of leaves in the meristem. A hypothesis was put forward that the source-sink state affects the ratio of green and white parts in the leaf primordium. Products of photosynthesis (carbohydrates) are a possible metabolic signal affecting the meristem. It cannot be excluded as well that the hormonal state undergoes changes in the chimeric plant.

  6. Soluble Jagged 1/Fc chimera protein induces the differentiation and maturation of bone marrow-derived dendritic cells

    Institute of Scientific and Technical Information of China (English)

    XING FeiYue; LIU Jing; YU Zhe; JI YuHua

    2008-01-01

    A soluble Jagged 1/Fc chimera protein (Jagged 1/Fc) was directly used to induce differentiation and maturation of bone marrow-derived dendritic cells (DCs) in mice in vitro. A model of inducing and am-plifying DCs in vitro was established. The effect of Jagged 1/Fc on morphology of DCs induced by both rmGM-CSF and rmlL-4 was observed under a confocal microscope. A fluorescein-labeled monoclonal antibody staining combined with flow cytometry was applied to detect the effect of Jagged 1/Fc on the expression of CD11c, MHC-Ⅱ, CD86, CD80 and CD40 molecules on the surface of DCs. The results showed that Jagged 1/Fc did not affect the morphological properties of DC differentiation induced by both rmGM-CSF and rmlL-4. But it could promote the differentiation and maturation of DCs induced by both. The effect of it was strikingly different in the expression profile of co-stimulating molecules and the morphologic properties of DCs from lipopolysaccharide (LPS). The levels of MHC-Ⅱ and CD40 molecule expression on the surface of DCs stimulated by Jagged 1/Fc were significantly lower than those stimulated by LPS, and the level of CD80 expression on the surface of DCs induced by Jagged 1/Fc was near to that induced by LPS. Jagged 1/Fc had no influence on the expression of CD86 mole-cule on the surface of DCs. Jagged 1/Fc when used alone could not maintain the growth, differentiation and maturation of DCs. All the findings indicate that Jagged 1/Fc influences the differentiation and maturation of DCs, which is not markedly similar to LPS, providing important evidence for its devel-opment and application as a novel immunosuppressant.

  7. Chimera-free, high copy number YAC libraries and efficient methods of analysis. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The first experiment involved a low chimera YAC library in recombination deficient host strains. To determine if the genetic background of the yeast host strain contributes to the formation of chimeric YACs the same YAC ligation mixture was introduced into three isogenic yeast hosts differing only in their recombination abilities. To prepare YACs, human genomic DNA was partially digested with EcoR1 and then ligated to YAC vector pCGS966 arms. DNA was size fractionated before and after ligation by preparative pulsed field gel electrophoresis (CHEF), selecting for fragments greater than 400 kb, and introduced into competent spheroplasts. CHEF gel Southern blots of resulting colony-purified YACs were probed with human DNA to determine if multiple YACs or YAC fragments were present in the same cell. The frequency of chimeric YACs was measured by fluorescence in situ hybridization (FISH) of YACs to human prometaphase spreads. YACs that hybridized to more than one location were assumed to be chimeric. In the second experiment new YAC vectors featuring tags for capture of YACs and YAC inserts were constructed. Yeast Artificial Chromosomes (YACs) have been of tremendous value in the physical mapping of the human genome. Because they can carry very large inserts, YACs are likely not only to contain entire genes but also their control elements. However, the only mode of purification of YAC DNA from current commonly used YAC libraries such as the CEPH library is by pulsed field gel electrophoresis. This is an inefficient, time consuming process and due to the single copy nature of these YACs, often result in poor yields. The vector pCGS1000 was designed to test new efficient ways of YAC DNA purification.

  8. CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks

    Science.gov (United States)

    Franke, R.

    2016-11-01

    In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.

  9. Chimera-free, high copy number YAC libraries and efficient methods of analysis. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The first experiment involved a low chimera YAC library in recombination deficient host strains. To determine if the genetic background of the yeast host strain contributes to the formation of chimeric YACs the same YAC ligation mixture was introduced into three isogenic yeast hosts differing only in their recombination abilities. To prepare YACs, human genomic DNA was partially digested with EcoR1 and then ligated to YAC vector pCGS966 arms. DNA was size fractionated before and after ligation by preparative pulsed field gel electrophoresis (CHEF), selecting for fragments greater than 400 kb, and introduced into competent spheroplasts. CHEF gel Southern blots of resulting colony-purified YACs were probed with human DNA to determine if multiple YACs or YAC fragments were present in the same cell. The frequency of chimeric YACs was measured by fluorescence in situ hybridization (FISH) of YACs to human prometaphase spreads. YACs that hybridized to more than one location were assumed to be chimeric. In the second experiment new YAC vectors featuring tags for capture of YACs and YAC inserts were constructed. Yeast Artificial Chromosomes (YACs) have been of tremendous value in the physical mapping of the human genome. Because they can carry very large inserts, YACs are likely not only to contain entire genes but also their control elements. However, the only mode of purification of YAC DNA from current commonly used YAC libraries such as the CEPH library is by pulsed field gel electrophoresis. This is an inefficient, time consuming process and due to the single copy nature of these YACs, often result in poor yields. The vector pCGS1000 was designed to test new efficient ways of YAC DNA purification.

  10. Construction, Expression, and Characterization of a Recombinant Annexin B1-Low Molecular Weight Urokinase Chimera in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Hong-Li YAN; Wei-Ting WANG; Yan HE; Zhuan-You ZHAO; Yuan-Jian GAO; Yi ZHANG; Shu-Han SUN

    2004-01-01

    To produce a thrombi-targeting plasminogen activator,low molecular weight single-chain urokinase gene(scuPA32k)was spliced with the full-length cDNA of annexin B 1 gene(anxB1)by overlap extension method.The fused gene anxBlscuPA was ligated into pET28a vector,transformed into E.coli BL21-RIL,and then induced to express under the control of T7 promoter.The AnxB 1ScuPA protein expressed amounted to 22% of the total bacterial proteins.The product was refolded,and then purified by using DEAE Sepharose fast flow ion-exchange column and Superdex S-200 gel-filtration column.HPLC analysis revealed that the final purity is about 95%.The specific activity ofAnxB 1ScuPA,measured as amidolytic activity,reached 100,000 IU/mg.It had a similar S2444 catalytic efficiency(kcat/Km)to ScuPA32k,and also showed high activated-platelet membrane-binding activity and anticoagulant activity,indicating that the chimera fully retained the components of enzymatic and membrane-binding activities of the parent molecules.In vivo test revealed that,the dogs administered with AnxB 1ScuPA had less reperfusion time,higher reperfusion ratio,and less bleeding effects than those with urokinase.These findings indicated that AnxB 1ScuPAmight have advantages over current available thrombolytic agents.

  11. Ampullary sense organs, peripheral, central and behavioral electroreception in chimeras (Hydrolagus, Holocephali, Chondrichthyes).

    Science.gov (United States)

    Fields, R D; Bullock, T H; Lange, G D

    1993-01-01

    hypothesized, on this idea, once in the ancestors of the hagfishes and once in the ancestors of the neopterygians, which include the teleosts. Some orders of teleosts then evolved a new system of electroreception independently. The ciliary receptor cells are probably primitive; microvillar sense cells evolved independently.

  12. Screening of biotechnical parameters for production of bovine inter-subspecies embryonic chimeras by the aggregation of tetraploid Bos indicus and diploid crossbred Bos taurus embryos.

    Science.gov (United States)

    Razza, Eduardo M; Satrapa, Rafael A; Emanuelli, Isabele P; Barros, Ciro M; Nogueira, Marcelo F G

    2016-03-01

    The aggregation of a tetraploid zebu embryo (Bos indicus, a thermotolerant breed) with a diploid taurine embryo (Bos taurus, a thermosensitive breed) should create a complete taurine fetus, whose extra-embryonic components, e.g., the chorion, is derived mainly from the zebu embryo. These zebu-derived extra-embryonic components may interact positively with the taurine embryo/fetus during pregnancy in a tropical environment. We tested different parameters for the production of tetraploid Nelore (Bos indicus) embryos to be combined via aggregation with crossbred Bos taurus (diploid) embryos in order to produce viable chimeric blastocysts. Bovine (Bos indicus or crossbred Bos taurus) embryos were produced in vitro according to standard procedures. Two-cell Bos indicus embryos were submitted to electrofusion with varying numbers of pulses (1 or 2), voltages (0.4, 0.5, 0.75, 1.0, 1.4 and 5.0 kV/cm) and time (20, 25, 50 and 60 μs) to produce tetraploid embryos. Electrofused embryos were cultured with crossbred non-fused embryos to form chimeras that developed until the blastocyst stage. The best fusion parameter was 0.75 kV/cm for 60 μs. Four chimeric blastocysts (tetraploid Nelore with diploid crossbred Holstein) were formed after 31 attempts in 4 replicates (13%). We established an optimal procedure for the production of tetraploid Bos indicus (4n) embryos and embryonic chimeras by aggregation of crossbred Bos taurus (2n) with Bos indicus (4n) embryos. This technique would be valid in applied research, by producing exclusively taurine calves, but with placental elements from the Bos indicus breed, following transfer of these chimeras into recipient cows.

  13. DNAzyme-mediated recovery of small recombinant RNAs from a 5S rRNA-derived chimera expressed in Escherichia coli.

    Science.gov (United States)

    Liu, Yamei; Stepanov, Victor G; Strych, Ulrich; Willson, Richard C; Jackson, George W; Fox, George E

    2010-12-06

    Manufacturing large quantities of recombinant RNAs by overexpression in a bacterial host is hampered by their instability in intracellular environment. To overcome this problem, an RNA of interest can be fused into a stable bacterial RNA for the resulting chimeric construct to accumulate in the cytoplasm to a sufficiently high level. Being supplemented with cost-effective procedures for isolation of the chimera from cells and recovery of the recombinant RNA from stabilizing scaffold, this strategy might become a viable alternative to the existing methods of chemical or enzymatic RNA synthesis. Sequence encoding a 71-nucleotide recombinant RNA was inserted into a plasmid-borne deletion mutant of the Vibrio proteolyticus 5S rRNA gene in place of helix III - loop C segment of the original 5S rRNA. After transformation into Escherichia coli, the chimeric RNA (3×pen aRNA) was expressed constitutively from E. coli rrnB P1 and P2 promoters. The RNA chimera accumulated to levels that exceeded those of the host's 5S rRNA. A novel method relying on liquid-solid partitioning of cellular constituents was developed for isolation of total RNA from bacterial cells. This protocol avoids toxic chemicals, and is therefore more suitable for large scale RNA purification than traditional methods. A pair of biotinylated 8-17 DNAzymes was used to bring about the quantitative excision of the 71-nt recombinant RNA from the chimera. The recombinant RNA was isolated by sequence-specific capture on beads with immobilized complementary deoxyoligonucleotide, while DNAzymes were recovered by biotin affinity chromatography for reuse. The feasibility of a fermentation-based approach for manufacturing large quantities of small RNAs in vivo using a "5S rRNA scaffold" strategy is demonstrated. The approach provides a route towards an economical method for the large-scale production of small RNAs including shRNAs, siRNAs and aptamers for use in clinical and biomedical research.

  14. Adaptation of Soybean mosaic virus avirulent chimeras containing P3 sequences from virulent strains to Rsv1-genotype soybeans is mediated by mutations in HC-Pro.

    Science.gov (United States)

    Hajimorad, M R; Eggenberger, A L; Hill, J H

    2008-07-01

    In Rsv1-genotype soybean, Soybean mosaic virus (SMV)-N (an avirulent isolate of strain G2) elicits extreme resistance (ER) whereas strain SMV-G7 provokes a lethal systemic hypersensitive response (LSHR). SMV-G7d, an experimentally evolved variant of SMV-G7, induces systemic mosaic. Thus, for Rsv1-genotype soybean, SMV-N is avirulent whereas SMV-G7 and SMV-G7d are both virulent. Exploiting these differential interactions, we recently mapped the elicitor functions of SMV provoking Rsv1-mediated ER and LSHR to the N-terminal 271 amino acids of P3 from SMV-N and SMV-G7, respectively. The phenotype of both SMV-G7 and SMV-G7d were rendered avirulent on Rsv1-genotype soybean when the part of the genome encoding the N-terminus or the entire P3 cistron was replaced with that from SMV-N; however, reciprocal exchanges did not confer virulence to SMV-N-derived P3 chimeras. Here, we describe virulent SMV-N-derived P3 chimeras containing the full-length or the N-terminal P3 from SMV-G7 or SMV-G7d, with or without additional mutations in P3, that were selected on Rsv1-genotype soybean by sequential transfers on rsv1 and Rsv1-genotype soybean. Sequence analyses of the P3 and helper-component proteinase (HC-Pro) cistrons of progeny recovered from Rsv1-genotype soybean consistently revealed the presence of mutations in HC-Pro. Interestingly, the precise mutations in HC-Pro required for the adaptation varied among the chimeras. No mutation was detected in the HC-Pro of progeny passaged continuously in rsv1-genotype soybean, suggesting that selection is a consequence of pressure imposed by Rsv1. Mutations in HC-Pro alone failed to confer virulence to SMV-N; however, reconstruction of mutations in HC-Pro of the SMV-N-derived P3 chimeras resulted in virulence. Taken together, the data suggest that HC-Pro complementation of P3 is essential for SMV virulence on Rsv1-genotype soybean.

  15. DNA encoding an HIV-1 Gag/human lysosome-associated membrane protein-1 chimera elicits a broad cellular and humoral immune response in Rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Priya Chikhlikar

    Full Text Available Previous studies of HIV-1 p55Gag immunization of mice have demonstrated the usefulness of targeting antigens to the cellular compartment containing the major histocompatibility complex type II (MHC II complex molecules by use of a DNA antigen formulation encoding Gag as a chimera with the mouse lysosome-associated membrane protein (mLAMP/gag. In the present study, we have analyzed the magnitude and breadth of Gag-specific T-lymphocyte and antibody responses elicited in Rhesus macaques after immunization with DNA encoding a human LAMP/gag (hLAMP/gag chimera. ELISPOT analyses indicated that the average Gag-specific IFN-gamma response elicited by the hLAMP/gag chimera was detectable after only two or three naked DNA immunizations in all five immunized macaques and reached an average of 1000 spot-forming cells (SFC/10(6 PBMCs. High IFN-gamma ELISPOT responses were detected in CD8(+-depleted cells, indicating that CD4(+ T-cells play a major role in these responses. The T-cell responses of four of the macaques were also tested by use of ELISPOT to 12 overlapping 15-amino acids (aa peptide pools containing ten peptides each, encompassing the complete Gag protein sequence. The two Mamu 08 immunized macaques responded to eight and twelve of the pools, the Mamu B01 to six, and the other macaque to five pools indicating that the hLAMP/gag DNA antigen formulation elicits a broad T-cell response against Gag. Additionally, there was a strong HIV-1-specific IgG response. The IgG antibody titers increased after each DNA injection, indicating a strong amnestic B-cell response, and were highly elevated in all the macaques after three immunizations. Moreover, the serum of each macaque recognized 13 of the 49 peptides of a 20-aa peptide library covering the complete Gag amino acid sequence. In addition, HIV-1-specific IgA antibodies were present in the plasma and external secretions, including nasal washes. These data support the findings of increased

  16. Intracellular Movement of Green Fluorescent Protein–Tagged Phosphatidylinositol 3-Kinase in Response to Growth Factor Receptor Signaling

    Science.gov (United States)

    Gillham, Helen; Golding, Matthew C.H.M.; Pepperkok, Rainer; Gullick, William J.

    1999-01-01

    Phosphatidylinositol 3-kinase (PI 3-kinase) is a lipid kinase which has been implicated in mitogenesis, protein trafficking, inhibition of apoptosis, and integrin and actin functions. Here we show using a green fluorescent protein–tagged p85 subunit that phosphatidylinositol 3-kinase is distributed throughout the cytoplasm and is localized to focal adhesion complexes in resting NIH-3T3, A431, and MCF-7 cells. Ligand stimulation of an epidermal growth factor receptor/c-erbB-3 chimera expressed in these cells results in a redistribution of p85 to the cell membrane which is independent of the catalytic activity of the enzyme and the integrity of the actin cytoskeleton. The movement is, however, dependent on the phosphorylation status of the erbB-3 chimera. Using rhodamine-labeled epidermal growth factor we show that the phosphatidylinositol 3-kinase and the receptors colocalize in discrete patches on the cell surface. Low concentrations of ligand cause patching only at the periphery of the cells, whereas at high concentrations patches were seen over the whole cell surface. Using green fluorescent protein–tagged fragments of p85 we show that binding to the receptor requires the NH2-terminal part of the protein as well as its SH2 domains. PMID:10459020

  17. Identification of the critical sequence elements in the cytoplasmic domain of leptin receptor isoforms required for Janus kinase/signal transducer and activator of transcription activation by receptor heterodimers.

    Science.gov (United States)

    Bahrenberg, Gregor; Behrmann, Iris; Barthel, Andreas; Hekerman, Paul; Heinrich, Peter Claus; Joost, Hans-Georg; Becker, Walter

    2002-04-01

    Two predominant splice variants of the leptin receptor (LEPR) are coexpressed in leptin-responsive tissues: the long form, LEPRb, characterized as the signal-transducing receptor, and the signaling-defective short form, LEPRa. It is unknown whether heterodimers of these isoforms are capable of signal transduction via the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. To address this question, chimeric receptors were constructed consisting of the transmembrane and intracellular parts of LEPRb and LEPRa fused with the extracellular domains of either the alpha- or beta-subunit of the IL-5 receptor. This strategy allows the directed heterodimerization of different LEPR cytoplasmic tails and excludes homodimerization. In COS-7 and HEPG2 cells, chimeric receptor heterodimers of LEPRa and LEPRb failed to activate the JAK/STAT pathway, whereas receptor dimers of LEPRb gave rise to the expected ligand-dependent activation of JAK2, phosphorylation of STAT3, and STAT3-dependent promoter activity. Markedly lower amounts of JAK2 were found to be associated with immunoprecipitated LEPRa chimeras than with LEPRb chimeras. Analysis of a series of deletion constructs indicated that a segment of 15 amino acids in addition to the 29 amino acids common to LEPRa and LEPRb was required for partial restoration of JAK/STAT activation. Site-directed mutagenesis of the critical sequence indicated that two hydrophobic residues (Leu896, Phe897) not present in LEPRa were indispensable for receptor signaling. These findings show that LEPRa/LEPRb heterodimers cannot activate STAT3 and identify sequence elements within the LEPR that are critical for the activation of JAK2 and STAT3.

  18. Modulation of Wnt5a expression by periodontopathic bacteria.

    Directory of Open Access Journals (Sweden)

    Hiromi Nanbara

    Full Text Available Wingless proteins, termed Wnt, are involved in embryonic development, blood cell differentiation, and tumorigenesis. In mammalian hematopoiesis, Wnt signaling is essential for stem-cell homeostasis and lymphocyte differentiation. Recent studies have suggested that these molecules are associated with cardiovascular diseases, rheumatoid arthritis, and osteoarthritis. Furthermore, Wnt5a signaling is essential for the general inflammatory response of human macrophages. Periodontitis is a chronic inflammatory disease caused by gram-negative periodontopathic bacteria and the resultant host immune response. Periodontitis is characterized by loss of tooth-supporting structures and alveolar bone resorption. There have been no previous reports on Wnt5a expression in periodontitis tissue, and only few study reported the molecular mechanisms of Wnt5a expression in LPS-stimulated monocytic cells. Using RT-PCR, we demonstrated that Wnt5a mRNA expression was up-regulated in chronic periodontitis tissue as compared to healthy control tissue. P. gingivalis LPS induced Wnt5a mRNA in the human monocytic cell line THP-1 with a peak at 4 hrs after stimulation. P. gingivalis LPS induced higher up-regulation of Wnt5a mRNA than E. coli LPS. The LPS receptors TLR2 and TLR4 were equally expressed on the surface of THP-1 cells. P. gingivalis LPS induced IκBα degradation and was able to increase the NF-κB binding activity to DNA. P. gingivalis LPS-induced Wnt5a expression was inhibited by NF-κB inhibitors, suggesting NF-κB involvement. Furthermore, IFN-γ synergistically enhanced the P. gingivalis LPS-induced production of Wnt5a. Pharmacological investigation and siRNA experiments showed that STAT1 was important for P. gingivalis LPS-induced Wnt5a expression. These results suggest that the modulation of Wnt5a expression by P. gingivalis may play an important role in the periodontal inflammatory process and serve a target for the development of new therapies.

  19. Avoidance and Potential Remedy Solutions of Chimeras in Reconstructing the Phylogeny of Aphids Using the 16S rRNA Gene of Buchnera: A Case in Lachninae (Hemiptera).

    Science.gov (United States)

    Chen, Rui; Wang, Zhe; Chen, Jing; Qiao, Ge-Xia

    2015-08-25

    It is known that PCR amplification of highly homologous genes from complex DNA mixtures can generate a significant proportion of chimeric sequences. The 16S rRNA gene is not only widely used in estimating the species diversity of endosymbionts in aphids but also used to explore the co-diversification of aphids and their endosymbionts. Thus, chimeric sequences may lead to the discovery of non-existent endosymbiont species and mislead Buchnera-based phylogenetic analysis that lead to false conclusions. In this study, a high probability (6.49%) of chimeric sequence occurrence was found in the amplified 16S rRNA gene sequences of endosymbionts from aphid species in the subfamily Lachninae. These chimeras are hybrid products of multiple parent sequences from the dominant species of endosymbionts in each corresponding host. It is difficult to identify the chimeric sequences of a new or unidentified species due to the high variability of their main parent, Buchnera aphidicola, and because the chimeric sequences can confuse the phylogenetic analysis of 16S rRNA gene sequences. These chimeras present a challenge to Buchnera-based phylogenetic research in aphids. Thus, our study strongly suggests that using appropriate methods to detect chimeric 16S rRNA sequences may avoid some false conclusions in endosymbiont-based aphid research.

  20. Generation of anti-idiotype scFv for pharmacokinetic measurement in lymphoma patients treated with chimera anti-CD22 antibody SM03.

    Directory of Open Access Journals (Sweden)

    Qi Zhao

    Full Text Available Pre-clinical and clinical studies of therapeutic antibodies require highly specific reagents to examine their immune responses, bio-distributions, immunogenicity, and pharmacodynamics in patients. Selective antigen-mimicking anti-idiotype antibody facilitates the assessment of therapeutic antibody in the detection, quantitation and characterization of antibody immune responses. Using mouse specific degenerate primer pairs and splenocytic RNA, we generated an idiotype antibody-immunized phage-displayed scFv library in which an anti-idiotype antibody against the therapeutic chimera anti-CD22 antibody SM03 was isolated. The anti-idiotype scFv recognized the idiotype of anti-CD22 antibody and inhibited binding of SM03 to CD22 on Raji cell surface. The anti-idiotype scFv was subsequently classified as Ab2γ type. Moreover, our results also demonstrated firstly that the anti-idiotype scFv could be used for pharmacokinetic measurement of circulating residual antibody in lymphoma patients treated with chimera anti-CD22 monoclonal antibody SM03. Of important, the present approach could be easily adopted to generate anti-idiotype antibodies for therapeutic antibodies targeting membrane proteins, saving the cost and time for producing a soluble antigen.

  1. A hormone receptor-based transactivator bridges different binary systems to precisely control spatial-temporal gene expression in Drosophila.

    Directory of Open Access Journals (Sweden)

    Shu-Yun Kuo

    Full Text Available The GAL4/UAS gene expression system is a precise means of targeted gene expression employed to study biological phenomena in Drosophila. A modified GAL4/UAS system can be conditionally regulated using a temporal and regional gene expression targeting (TARGET system that responds to heat shock induction. However heat shock-related temperature shifts sometimes cause unexpected physiological responses that confound behavioral analyses. We describe here the construction of a drug-inducible version of this system that takes advantage of tissue-specific GAL4 driver lines to yield either RU486-activated LexA-progesterone receptor chimeras (LexPR or β-estradiol-activated LexA-estrogen receptor chimeras (XVE. Upon induction, these chimeras bind to a LexA operator (LexAop and activate transgene expression. Using GFP expression as a marker for induction in fly brain cells, both approaches are capable of tightly and precisely modulating transgene expression in a temporal and dosage-dependent manner. Additionally, tissue-specific GAL4 drivers resulted in target gene expression that was restricted to those specific tissues. Constitutive expression of the active PKA catalytic subunit using these systems altered the sleep pattern of flies, demonstrating that both systems can regulate transgene expression that precisely mimics regulation that was previously engineered using the GeneSwitch/UAS system. Unlike the limited number of GeneSwitch drivers, this approach allows for the usage of the multitudinous, tissue-specific GAL4 lines for studying temporal gene regulation and tissue-specific gene expression. Together, these new inducible systems provide additional, highly valuable tools available to study gene function in Drosophila.

  2. Small Molecule Agonists of the Orphan Nuclear Receptors Steroidogenic Factor-1 (SF-1, NR5A1) and Liver Receptor Homologue-1 (LRH-1, NR5A2)

    Energy Technology Data Exchange (ETDEWEB)

    Whitby, Richard J.; Stec, Jozef; Blind, Raymond D.; Dixon, Sally; Leesnitzer, Lisa M.; Orband-Miller, Lisa A.; Williams, Shawn P.; Willson, Timothy M.; Xu, Robert; Zuercher, William J.; Cai, Fang; Ingraham, Holly A. (GSKNC); (Southampton); (UCSF)

    2011-09-27

    The crystal structure of LRH-1 ligand binding domain bound to our previously reported agonist 3-(E-oct-4-en-4-yl)-1-phenylamino-2-phenyl-cis-bicyclo[3.3.0]oct-2-ene 5 is described. Two new classes of agonists in which the bridgehead anilino group from our first series was replaced with an alkoxy or 1-ethenyl group were designed, synthesized, and tested for activity in a peptide recruitment assay. Both new classes gave very active compounds, particularly against SF-1. Structure-activity studies led to excellent dual-LRH-1/SF-1 agonists (e.g., RJW100) as well as compounds selective for LRH-1 (RJW101) and SF-1 (RJW102 and RJW103). The series based on 1-ethenyl substitution was acid stable, overcoming a significant drawback of our original bridgehead anilino-substituted series. Initial studies on the regulation of gene expression in human cell lines showed excellent, reproducible activity at endogenous target genes.

  3. PNA Peptide chimerae

    DEFF Research Database (Denmark)

    Koch, T.; Næsby, M.; Wittung, P.;

    1995-01-01

    Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields.......Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields....

  4. Chimeras: an ethical consideration

    Directory of Open Access Journals (Sweden)

    H. J.G. Zandman

    2011-07-01

    Full Text Available Scientists have started with experimentation that raises difficult ethical questions. It comprises taking material from the human blueprint (DNA and inserting this in various test animals. The purpose of such research is noble, namely the alleviation of hu- man suffering. Yet the ethical ramifications of blending the hu- man and animal genome are significant, especially for Chris- tians. The creation of all living entities after their kind and the image-bearing dignity attributed to man both come under se- vere ethical stress for those who presuppose divine order in God’s ecology.  For non-Christians the philosophical dilemma ought not to exist in the ethical sense if applied at the purest level. If the human is merely a kind of animal, along with and ontologically not diffe- rent from other animals, there is little logical reason to object to chimeric research apart from a concern about what such re- search and application might do to the order of life pragmati- cally. However, many non-Christian do object. Man is made in God’s image and the concept of human dignity and a universal sense of right and wrong still binds Christians and non-Chris- tians when considering ethics in the field of chimeric research. As the mixing of human stem cells with embryonic animals takes place, certain non-Christian authors protest that human dignity is being diminished and the animal essence is being vio- lated.

  5. Chimeras: an ethical consideration

    Directory of Open Access Journals (Sweden)

    H.J.G. Zandman

    2011-07-01

    Full Text Available Scientists have started with experimentation that raises difficult ethical questions. It comprises taking material from the human blueprint (DNA and inserting this in various test animals. The purpose of such research is noble, namely the alleviation of hu- man suffering. Yet the ethical ramifications of blending the hu- man and animal genome are significant, especially for Chris- tians. The creation of all living entities after their kind and the image-bearing dignity attributed to man both come under se- vere ethical stress for those who presuppose divine order in God’s ecology.  For non-Christians the philosophical dilemma ought not to exist in the ethical sense if applied at the purest level. If the human is merely a kind of animal, along with and ontologically not diffe- rent from other animals, there is little logical reason to object to chimeric research apart from a concern about what such re- search and application might do to the order of life pragmati- cally. However, many non-Christian do object. Man is made in God’s image and the concept of human dignity and a universal sense of right and wrong still binds Christians and non-Chris- tians when considering ethics in the field of chimeric research. As the mixing of human stem cells with embryonic animals takes place, certain non-Christian authors protest that human dignity is being diminished and the animal essence is being vio- lated.

  6. DNAzyme-mediated recovery of small recombinant RNAs from a 5S rRNA-derived chimera expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Willson Richard C

    2010-12-01

    Full Text Available Abstract Background Manufacturing large quantities of recombinant RNAs by overexpression in a bacterial host is hampered by their instability in intracellular environment. To overcome this problem, an RNA of interest can be fused into a stable bacterial RNA for the resulting chimeric construct to accumulate in the cytoplasm to a sufficiently high level. Being supplemented with cost-effective procedures for isolation of the chimera from cells and recovery of the recombinant RNA from stabilizing scaffold, this strategy might become a viable alternative to the existing methods of chemical or enzymatic RNA synthesis. Results Sequence encoding a 71-nucleotide recombinant RNA was inserted into a plasmid-borne deletion mutant of the Vibrio proteolyticus 5S rRNA gene in place of helix III - loop C segment of the original 5S rRNA. After transformation into Escherichia coli, the chimeric RNA (3×pen aRNA was expressed constitutively from E. coli rrnB P1 and P2 promoters. The RNA chimera accumulated to levels that exceeded those of the host's 5S rRNA. A novel method relying on liquid-solid partitioning of cellular constituents was developed for isolation of total RNA from bacterial cells. This protocol avoids toxic chemicals, and is therefore more suitable for large scale RNA purification than traditional methods. A pair of biotinylated 8-17 DNAzymes was used to bring about the quantitative excision of the 71-nt recombinant RNA from the chimera. The recombinant RNA was isolated by sequence-specific capture on beads with immobilized complementary deoxyoligonucleotide, while DNAzymes were recovered by biotin affinity chromatography for reuse. Conclusions The feasibility of a fermentation-based approach for manufacturing large quantities of small RNAs in vivo using a "5S rRNA scaffold" strategy is demonstrated. The approach provides a route towards an economical method for the large-scale production of small RNAs including shRNAs, siRNAs and aptamers for use

  7. Structural and functional characterization of human and murine C5a anaphylatoxins

    Energy Technology Data Exchange (ETDEWEB)

    Schatz-Jakobsen, Janus Asbjørn; Yatime, Laure, E-mail: lay@mb.au.dk; Larsen, Casper [Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus (Denmark); Petersen, Steen Vang [Aarhus University, Bartholin Building, Wilhelm Meyers Allé 4, DK-8000 Aarhus (Denmark); Klos, Andreas [Medical School Hannover, Hannover (Germany); Andersen, Gregers Rom, E-mail: lay@mb.au.dk [Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus (Denmark)

    2014-06-01

    The structure of the human C5aR antagonist, C5a-A8, reveals a three-helix bundle conformation similar to that observed for human C5a-desArg, whereas murine C5a and C5a-desArg both form the canonical four-helix bundle. These conformational differences are discussed in light of the differential C5aR activation properties observed for the human and murine complement anaphylatoxins across species. Complement is an ancient part of the innate immune system that plays a pivotal role in protection against invading pathogens and helps to clear apoptotic and necrotic cells. Upon complement activation, a cascade of proteolytic events generates the complement effectors, including the anaphylatoxins C3a and C5a. Signalling through their cognate G-protein coupled receptors, C3aR and C5aR, leads to a wide range of biological events promoting inflammation at the site of complement activation. The function of anaphylatoxins is regulated by circulating carboxypeptidases that remove their C-terminal arginine residue, yielding C3a-desArg and C5a-desArg. Whereas human C3a and C3a-desArg adopt a canonical four-helix bundle fold, the conformation of human C5a-desArg has recently been described as a three-helix bundle. Here, the crystal structures of an antagonist version of human C5a, A8{sup Δ71–73}, and of murine C5a and C5a-desArg are reported. Whereas A8{sup Δ71–73} adopts a three-helix bundle conformation similar to human C5a-desArg, the two murine proteins form a four-helix bundle. A cell-based functional assay reveals that murine C5a-desArg, in contrast to its human counterpart, exerts the same level of activition as murine C5a on its cognate receptor. The role of the different C5a conformations is discussed in relation to the differential activation of C5a receptors across species.

  8. Identification of residues involved in binding of IL5 to betacom using betaIL3 and betacom chimeras.

    Science.gov (United States)

    Czabotar, P E; Holland, J; Sanderson, C J

    1999-10-22

    In mice there are two forms of the beta chain used in the IL3 receptor system, betacom and betaIL3. betacom is used by the IL3, IL5 and GM-CSF receptors whereas betaIL3 is only used in the IL3 receptor. In this work an assay was developed to identify residues of beta1L3 that restrict IL5 activity. It was found that such residues reside within the 2nd CRM of the molecule. Furthermore, when residues in the betaIL3 B'-C' loop were replaced with betacom sequence a form of betaIL3 was produced that was able to respond to IL5. This region is also responsible for IL3 binding to betaIL3 in the absence of alpha chain. It is therefore an important structural motif of betacom and betaIL3 responsible for both ligand interaction and specificity.

  9. The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots.

    Directory of Open Access Journals (Sweden)

    Nicholas Holton

    2015-01-01

    Full Text Available During plant immunity, surface-localized pattern recognition receptors (PRRs recognize pathogen-associated molecular patterns (PAMPs. The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs EFR and XA21 from Arabidopsis thaliana (Arabidopsis and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots.

  10. Complement 5a Enhances Hepatic Metastases of Colon Cancer via Monocyte Chemoattractant Protein-1-mediated Inflammatory Cell Infiltration.

    Science.gov (United States)

    Piao, Chunmei; Cai, Lun; Qiu, Shulan; Jia, Lixin; Song, Wenchao; Du, Jie

    2015-04-24

    Complement 5a (C5a), a potent immune mediator generated by complement activation, promotes tumor growth; however, its role in tumor metastasis remains unclear. We demonstrate that C5a contributes to tumor metastases by modulating tumor inflammation in hepatic metastases of colon cancer. Colon cancer cell lines generate C5a under serum-free conditions, and C5a levels increase over time in a murine syngeneic colon cancer hepatic metastasis model. Furthermore, in the absence of C5a receptor or upon pharmacological inhibition of C5a production with an anti-C5 monoclonal antibody, tumor metastasis is severely impaired. A lack of C5a receptor in colon cancer metastatic foci reduces the infiltration of macrophages, neutrophils, and dendritic cells, and the role for C5a receptor on these cells were further verified by bone marrow transplantation experiments. Moreover, C5a signaling increases the expression of the chemokine monocyte chemoattractant protein-1 and the anti-inflammatory molecules arginase-1, interleukin 10, and transforming growth factor β, but is inversely correlated with the expression of pro-inflammatory molecules, which suggests a mechanism for the role of C5a in the inflammatory microenvironment required for tumor metastasis. Our results indicate a new and potentially promising therapeutic application of complement C5a inhibitor for the treatment of malignant tumors.

  11. Optimization of three-dimensional imaging on in vitro produced porcine blastocysts and chimeras for stem cell testing: A technology report

    DEFF Research Database (Denmark)

    Secher, Jan; Freude, Karla; Li, Rong

    2015-01-01

    Differential staining is an immunocytochemical staining that visualizes trophectoderm (TE) and the inner cell mass (ICM) of the blastocysts. It is used to determine the blastocyst quality, but could also be a useful tool to assess the integration site of injected cells into the early embryo....... This is relevant for testing of presumed pluripotent stem cells. The gold standard for pluripotent stem cells is to test if the cells are capable of contributing to germline chimeras. Differential staining can be used to evaluate the possibility of chimeric contribution; if the cells are located in the area...... of the ICM they are likely to contribute to the fetus and if they are located in the area of the TE they are likely to contribute to the fetal membranes. In this article, we optimize on methods for embryo staining and mounting so that the exact location of injected stem cells within preimplantation porcine...

  12. Experimental effects of dynamics and thermodynamics in nuclear reactions on the symmetry energy as seen by the CHIMERA 4 π detector

    Energy Technology Data Exchange (ETDEWEB)

    De Filippo, E.; Pagano, A. [INFN, Catania (Italy)

    2014-02-15

    Heavy-ion collisions have been widely used in the last decade to constrain the parameterizations of the symmetry energy term of the nuclear equation of state (EOS) for asymmetric nuclear matter as a function of baryonic density. In the Fermi energy domain one is faced with variations of the density within a narrow range of values around the saturation density ρ{sub 0}=0.16 fm{sup -3} down towards sub-saturation densities. The experimental observables which are sensitive to the symmetry energy are constructed starting from the detected light particles, clusters and heavy fragments that, in heavy-ion collisions, are generally produced by different emission mechanisms at different stages and time scales of the reaction. In this review the effects of dynamics and thermodynamics on the symmetry energy in nuclear reactions are discussed and characterized using an overview of the data taken so far with the CHIMERA multi detector array. (orig.)

  13. Efficient generation of germ line transmitting chimeras from C57BL/6N ES cells by aggregation with outbred host embryos.

    Directory of Open Access Journals (Sweden)

    Marina Gertsenstein

    Full Text Available Genetically modified mouse strains derived from embryonic stem (ES cells have become essential tools for functional genomics and biomedical research. Large scale mutagenesis projects are producing libraries of mutant C57BL/6 (B6 ES cells to enable the functional annotation of every gene of the mouse genome. To realize the utility of these resources, efficient and accessible methods of generating mutant mice from these ES cells are necessary. Here, we describe a combination of ICR morula aggregation and a chemically-defined culture medium with widely available and accessible components for the high efficiency generation of germline transmitting chimeras from C57BL/6N ES cells. Together these methods will ease the access of the broader biomedical research community to the publicly available B6 ES cell resources.

  14. Primordial germ cell-mediated chimera technology produces viable pure-line Houbara bustard offspring: potential for repopulating an endangered species.

    Directory of Open Access Journals (Sweden)

    Ulrich Wernery

    Full Text Available BACKGROUND: The Houbara bustard (Chlamydotis undulata is a wild seasonal breeding bird populating arid sandy semi-desert habitats in North Africa and the Middle East. Its population has declined drastically during the last two decades and it is classified as vulnerable. Captive breeding programmes have, hitherto, been unsuccessful in reviving population numbers and thus radical technological solutions are essential for the long term survival of this species. The purpose of this study was to investigate the use of primordial germ cell-mediated chimera technology to produce viable Houbara bustard offspring. METHODOLOGY/PRINCIPAL FINDINGS: Embryonic gonadal tissue was dissected from Houbara bustard embryos at eight days post-incubation. Subsequently, Houbara tissue containing gonadal primordial germ cells (gPGCs was injected into White Leghorn chicken (Gallus gallus domesticus embryos, producing 83/138 surviving male chimeric embryos, of which 35 chimeric roosters reached sexual maturity after 5 months. The incorporation and differentiation of Houbara gPGCs in chimeric chicken testis were assessed by PCR with Houbara-specific primers and 31.3% (5/16 gonads collected from the injected chicken embryos showed the presence of donor Houbara cells. A total of 302 semen samples from 34 chimeric roosters were analyzed and eight were confirmed as germline chimeras. Semen samples from these eight roosters were used to artificially inseminate three female Houbara bustards. Subsequently, 45 Houbara eggs were obtained and incubated, two of which were fertile. One egg hatched as a male live born Houbara; the other was female but died before hatching. Genotyping confirmed that the male chick was a pure-line Houbara derived from a chimeric rooster. CONCLUSION: This study demonstrates for the first time that Houbara gPGCs can migrate, differentiate and eventually give rise to functional sperm in the chimeric chicken testis. This approach may provide a promising

  15. Transient Expression of an LEDGF/p75 Chimera Retargets Lentivector Integration and Functionally Rescues in a Model for X-CGD.

    Science.gov (United States)

    Vets, Sofie; De Rijck, Jan; Brendel, Christian; Grez, Manuel; Bushman, Frederic; Debyser, Zeger; Gijsbers, Rik

    2013-03-05

    Retrovirus-based vectors are commonly used as delivery vehicles to correct genetic diseases because of their ability to integrate new sequences stably. However, adverse events in which vector integration activates proto-oncogenes, leading to clonal expansion and leukemogenesis hamper their application. The host cell-encoded lens epithelium-derived growth factor (LEDGF/p75) binds lentiviral integrase and targets integration to active transcription units. We demonstrated earlier that replacing the LEDGF/p75 chromatin interaction domain with an alternative DNA-binding protein could retarget integration. Here, we show that transient expression of the chimeric protein using mRNA electroporation efficiently redirects lentiviral vector (LV) integration in wild-type (WT) cells. We then employed this technology in a model for X-linked chronic granulomatous disease (X-CGD) using myelomonocytic PLB-985 gp91(-/-) cells. Following electroporation with mRNA encoding the LEDGF-chimera, the cells were treated with a therapeutic lentivector encoding gp91(phox). Integration site analysis revealed retargeted integration away from genes and towards heterochromatin-binding protein 1β (CBX1)-binding sites, in regions enriched in marks associated with gene silencing. Nevertheless, gp91(phox) expression was stable for at least 6 months after electroporation and NADPH-oxidase activity was restored to normal levels as determined by superoxide production. Together, these data provide proof-of-principle that transient expression of engineered LEDGF-chimera can retarget lentivector integration and rescues the disease phenotype in a cell model, opening perspectives for safer gene therapy.Molecular Therapy - Nucleic Acids (2013) 2, e77; doi:10.1038/mtna.2013.4; published online 5 March 2013.

  16. Transient Expression of an LEDGF/p75 Chimera Retargets Lentivector Integration and Functionally Rescues in a Model for X-CGD

    Directory of Open Access Journals (Sweden)

    Sofie Vets

    2013-01-01

    Full Text Available Retrovirus-based vectors are commonly used as delivery vehicles to correct genetic diseases because of their ability to integrate new sequences stably. However, adverse events in which vector integration activates proto-oncogenes, leading to clonal expansion and leukemogenesis hamper their application. The host cell-encoded lens epithelium-derived growth factor (LEDGF/p75 binds lentiviral integrase and targets integration to active transcription units. We demonstrated earlier that replacing the LEDGF/p75 chromatin interaction domain with an alternative DNA-binding protein could retarget integration. Here, we show that transient expression of the chimeric protein using mRNA electroporation efficiently redirects lentiviral vector (LV integration in wild-type (WT cells. We then employed this technology in a model for X-linked chronic granulomatous disease (X-CGD using myelomonocytic PLB-985 gp91−/− cells. Following electroporation with mRNA encoding the LEDGF-chimera, the cells were treated with a therapeutic lentivector encoding gp91phox. Integration site analysis revealed retargeted integration away from genes and towards heterochromatin-binding protein 1β (CBX1-binding sites, in regions enriched in marks associated with gene silencing. Nevertheless, gp91phox expression was stable for at least 6 months after electroporation and NADPH-oxidase activity was restored to normal levels as determined by superoxide production. Together, these data provide proof-of-principle that transient expression of engineered LEDGF-chimera can retarget lentivector integration and rescues the disease phenotype in a cell model, opening perspectives for safer gene therapy.

  17. Construction of a novel chimera consisting of a chelator-containing Tat peptide conjugated to a morpholino antisense oligomer for technetium-99m labeling and accelerating cellular kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yumin [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States)]. E-mail: yumin.zhang@mpi.com; Tung, C.-H. [Center for Molecular Imaging Research, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129 (United States); He Jiang [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Liu Ning [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Yanachkov, Ivan [GlSynthesis, Worcester, MA 01605 (United States); Liu Guozheng [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Rusckowski, Mary [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Vanderheyden, Jean-Luc [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States)

    2006-02-15

    The attempt to target the limited copies of messenger RNA (mRNA) in vivo with radiolabeled nucleobase oligomers as antisense probes is challenging. Selecting an antisense molecule with superior properties, enhancing the cellular kinetics, and improving the radiolabeling chemistry would be the reasonable approach to accomplish this goal. The present study reports a method to construct a chimera of phosphorodiamidate morpholino nucleobase oligomer (MORF) covalently conjugated to a peptide containing a cell membrane transduction Tat peptide and an N{sub 2}S{sub 2} chelator for technetium-99m ({sup 99m}Tc) radiolabeling (N{sub 2}S{sub 2}-Tat-MORF). The radiolabeling properties and cellular kinetics of {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF were measured. As hypothesized, the preparation of {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF could be achieved by an instant one-step method with labeling efficiency greater than 95%, and the {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF showed distinct properties in cell culture from those of a control, the same MORF sequence without Tat but with mercaptoacetyltriglycine (MAG{sub 3}) as chelator for {sup 99m}Tc ({sup 99m}Tc-MAG{sub 3}-MORF). {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF achieved maximum accumulation of about 35% within 2 h, while {sup 99m}Tc-MAG{sub 3}-MORF showed lower and steadily increasing accumulations but of less than 1% in 24 h. These preliminary results demonstrated that the proposed chimera has properties for easy labeling, and {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF prepared by this method possesses enhanced cellular kinetics and merits further investigation for in vivo mRNA targeting.

  18. Solid-State Nuclear Magnetic Resonance Investigation of the Structural Topology and Lipid Interactions of a Viral Fusion Protein Chimera Containing the Fusion Peptide and Transmembrane Domain.

    Science.gov (United States)

    Yao, Hongwei; Lee, Myungwoon; Liao, Shu-Yu; Hong, Mei

    2016-12-13

    The fusion peptide (FP) and transmembrane domain (TMD) of viral fusion proteins play important roles during virus-cell membrane fusion, by inducing membrane curvature and transient dehydration. The structure of the water-soluble ectodomain of viral fusion proteins has been extensively studied crystallographically, but the structures of the FP and TMD bound to phospholipid membranes are not well understood. We recently investigated the conformations and lipid interactions of the separate FP and TMD peptides of parainfluenza virus 5 (PIV5) fusion protein F using solid-state nuclear magnetic resonance. These studies provide structural information about the two domains when they are spatially well separated in the fusion process. To investigate how these two domains are structured relative to each other in the postfusion state, when the ectodomain forms a six-helix bundle that is thought to force the FP and TMD together in the membrane, we have now expressed and purified a chimera of the FP and TMD, connected by a Gly-Lys linker, and measured the chemical shifts and interdomain contacts of the protein in several lipid membranes. The FP-TMD chimera exhibits α-helical chemical shifts in all the membranes examined and does not cause strong curvature of lamellar membranes or membranes with negative spontaneous curvature. These properties differ qualitatively from those of the separate peptides, indicating that the FP and TMD interact with each other in the lipid membrane. However, no (13)C-(13)C cross peaks are observed in two-dimensional correlation spectra, suggesting that the two helices are not tightly associated. These results suggest that the ectodomain six-helix bundle does not propagate into the membrane to the two hydrophobic termini. However, the loosely associated FP and TMD helices are found to generate significant negative Gaussian curvature to membranes that possess spontaneous positive curvature, consistent with the notion that the FP-TMD assembly may

  19. Reversal of type 1 diabetes by a new MHC II-peptide chimera: "Single-epitope-mediated suppression" to stabilize a polyclonal autoimmune T-cell process.

    Science.gov (United States)

    Lin, Marvin; Stoica-Nazarov, Cristina; Surls, Jacqueline; Kehl, Margaret; Bona, Constantin; Olsen, Cara; Brumeanu, Teodor D; Casares, Sofia

    2010-08-01

    Polyclonality of self-reactive CD4(+) T cells is the hallmark of several autoimmune diseases like type 1 diabetes. We have previously reported that a soluble dimeric MHC II-peptide chimera prevents and reverses type 1 diabetes induced by a monoclonal diabetogenic T-cell population in double Tg mice [Casares, S. et al., Nat. Immunol. 2002. 3: 383-391]. Since most of the glutamic acid decarboxylase 65 (GAD65)-specific CD4(+) T cells in the NOD mouse are tolerogenic but unable to function in an autoimmune environment, we have activated a silent, monoclonal T-regulatory cell population (GAD65(217-230)-specific CD4(+) T cells) using a soluble I-A(αβ) (g7)/GAD65(217-230)/Fcγ2a dimer, and measured the effect on the ongoing polyclonal diabetogenic T-cell process. Activated GAD65(217-230)-specific T cells and a fraction of the diabetogenic (B(9-23)-specific) T cells were polarized toward the IL-10-secreting T-regulatory type 1-like function in the pancreas of diabetic NOD mice. More importantly, this led to the reversal of hyperglycemia for more than 2 months post-therapy in 80% of mice in the context of stabilization of pancreatic insulitis and improved insulin secretion by the β cells. These findings argue for the stabilization of a polyclonal self-reactive T-cell process by a single epitope-mediated bystander suppression. Dimeric MHC class II-peptide chimeras-like approach may provide rational grounds for the development of more efficient antigen-specific therapies in type 1 diabetes.

  20. Zeolite 5A Catalyzed Etherification of Diphenylmethanol

    Science.gov (United States)

    Cooke, Jason; Henderson, Eric J.; Lightbody, Owen C.

    2009-01-01

    An experiment for the synthetic undergraduate laboratory is described in which zeolite 5A catalyzes the room temperature dehydration of diphenylmethanol, (C[subscript 6]H[subscript 5])[subscript 2]CHOH, producing 1,1,1',1'-tetraphenyldimethyl ether, (C[subscript 6]H[subscript 5])[subscript 2]CHOCH(C[subscript 6]H[subscript 5])[subscript 2]. The…

  1. Lipoxin Receptors

    Directory of Open Access Journals (Sweden)

    Mario Romano

    2007-01-01

    Full Text Available Lipoxins (LXs represent a class of arachidonic acid (AA metabolites that carry potent immunoregulatory and anti-inflammatory properties, LXA4 and LXB4 being the main components of this series. LXs are generated by cooperation between 5-lipoxygenase (LO and 12- or 15-LO during cell-cell interactions or by single cell types. LX epimers at carbon 15, the 15-epi-LXs, are formed by aspirin-acetylated cyclooxygenase-2 (COX-2 in cooperation with 5-LO. 15-epi-LXA4 is also termed aspirin-triggered LX (ATL. In vivo studies with stable LX and ATL analogs have established that these eicosanoids possess potent anti-inflammatory activities. A LXA4 receptor has been cloned. It belongs to the family of chemotactic receptors and clusters with formyl peptide receptors on chromosome 19. Therefore, it was initially denominated formyl peptide receptor like 1 (FPRL1. This receptor binds with high affinity and stereoselectivity LXA4 and ATL. It also recognizes a variety of peptides, synthetic, endogenously generated, or disease associated, but with lower affinity compared to LXA4. For this reason, this receptor has been renamed ALX. This review summarizes the current knowledge on ALX expression, signaling, and potential pathophysiological role. The involvement of additional recognition sites in LX bioactions is also discussed.

  2. Establishment of Sf9 transformants constitutively expressing PBAN receptor (PBANR variants: application to functional evaluation

    Directory of Open Access Journals (Sweden)

    Jae Min Lee

    2012-04-01

    Full Text Available To facilitate further evaluation of pheromone biosynthesis activating neuropeptide receptor (PBANR functionality and regulation, we generated cultured insect cell lines constitutively expressing green fluorescent protein chimeras of the recently identified Bombyx mori PBANR (BommoPBANR and Pseudaletia separata PBANR (PsesePBANR variants. Fluorescent chimeras included the BommoPBANR-A, B, and C variants and the PsesePBANR-B and C variants. Cell lines expressing non-chimeric BommoPBANR-B and C variants were also generated. Functional evaluation of these transformed cell lines using confocal laser microscopy revealed that a Rhodamine Red-labeled PBAN derivative (RR-C10PBANR2K specifically co-localized with all of the respective PBANR variants at the plasma membrane. Near complete internalization of the fluorescent RR-C10PBANR2K ligand 30 min after binding was observed in all cell lines except those expressing the BommoPBANR-A variant, in which the ligand/receptor complex remained at the plasma membrane. Fluorescent Ca2+ imaging further showed that, unlike the BommoPBANR-B or BommoPBANR-C cell lines, RR-C10PBANR2K binding failed to mobilize extracellular Ca2+ in the BommoPBANR-A cell line even at concentrations of 10 M. These observations demonstrate a clear functional difference between the BommoPBANR-A variant and the BommoPBANR-B and –C variants in terms of receptor regulation and activation of downstream effector molecules. We also found that, contrary to previous reports, ligand-induced internalization of BommoPBANR-B and BommoPBANR-C in cell lines stably expressing these variants occurred in the absence of extracellular Ca2+.

  3. The C5a/C5aR1 axis controls the development of experimental allergic asthma independent of LysM-expressing pulmonary immune cells.

    Science.gov (United States)

    Wiese, Anna V; Ender, Fanny; Quell, Katharina M; Antoniou, Konstantina; Vollbrandt, Tillman; König, Peter; Köhl, Jörg; Laumonnier, Yves

    2017-01-01

    C5a regulates the development of maladaptive immune responses in allergic asthma mainly through the activation of C5a receptor 1 (C5aR1). Yet, the cell types and the mechanisms underlying this regulation are ill-defined. Recently, we described increased C5aR1 expression in lung tissue eosinophils but decreased expression in airway and pulmonary macrophages as well as in pulmonary CD11b+ conventional dendritic cells (cDCs) and monocyte-derived DCs (moDCs) during the allergic effector phase using a floxed green fluorescent protein (GFP)-C5aR1 knock-in mouse. Here, we determined the role of C5aR1 signaling in neutrophils, moDCs and macrophages for the pulmonary recruitment of such cells and the importance of C5aR1-mediated activation of LysM-expressing cells for the development of allergic asthma. We used LysM-C5aR1 KO mice with a specific deletion of C5aR1 in LysMCre-expressing cells and confirmed the specific deletion of C5aR1 in neutrophils, macrophages and moDCs in the airways and/or the lung tissue. We found that alveolar macrophage numbers were significantly increased in LysM-C5aR1 KO mice. Induction of ovalbumin (OVA)-driven experimental allergic asthma in GFP-C5aR1fl/fl and LysM-C5aR1 KO mice resulted in strong but similar airway resistance, mucus production and Th2/Th17 cytokine production. In contrast, the number of airway but not of pulmonary neutrophils was lower in LysM-C5aR1 KO as compared with GFP-C5aR1fl/fl mice. The recruitment of macrophages, cDCs, moDCs, T cells and type 2 innate lymphoid cells was not altered in LysM-C5aR1 KO mice. Our findings demonstrate that C5aR1 is critical for steady state control of alveolar macrophage numbers and the transition of neutrophils from the lung into the airways in OVA-driven allergic asthma. However, C5aR1 activation of LysM-expressing cells plays a surprisingly minor role in the recruitment and activation of such cells and the development of the allergic phenotype in OVA-driven experimental allergic asthma.

  4. Synaptic AMPA receptor subunit trafficking is independent of the C terminus in the GluR2-lacking mouse.

    Science.gov (United States)

    Panicker, Sandip; Brown, Keith; Nicoll, Roger A

    2008-01-22

    Glutamate is the primary excitatory neurotransmitter in the brain, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type glutamate receptors mediate most fast synaptic transmission. AMPA receptors are tetrameric assemblies composed from four possible subunits (GluR1-4). In hippocampal pyramidal cells, AMPA receptors are heteromeric receptors containing the GluR2 subunit and either GluR1 or GluR3. It is generally accepted that the trafficking of GluR1/GluR2 receptors to synapses requires activity, whereas GluR2/GluR3 receptors traffic constitutively. It has been suggested that the trafficking is governed by the cytoplasmic C termini of the subunits. Because the basis for this theory relied on the introduction of unnatural, homomeric, calcium-permeable AMPA receptors, we have used the GluR2(-/-) knock out mouse to determine whether the expression of mutated forms of GluR2 can rescue WT synaptic responses. We find that GluR2, lacking its entire C terminus, or a GluR2 chimera containing the C terminus of GluR1, is capable of trafficking to the synapse in the absence of activity. These findings suggest that the GluR2 C terminus is not required for GluR2 synaptic insertion.

  5. Interaction of plant essential oil terpenoids with the southern cattle tick tyramine receptor: A potential biopesticide target.

    Science.gov (United States)

    Gross, Aaron D; Temeyer, Kevin B; Day, Tim A; Pérez de León, Adalberto A; Kimber, Michael J; Coats, Joel R

    2017-02-01

    An outbreak of the southern cattle tick, Rhipicephalus (Boophilus) microplus, (Canestrini), in the United States would have devastating consequences on the cattle industry. Tick populations have developed resistance to current acaricides, highlighting the need to identify new biochemical targets along with new chemistry. Furthermore, acaricide resistance could further hamper control of tick populations during an outbreak. Botanically-based compounds may provide a safe alternative for efficacious control of the southern cattle tick. We have developed a heterologous expression system that stably expresses the cattle tick's tyramine receptor with a G-protein chimera, producing a system that is amenable to high-throughput screening. Screening an in-house terpenoid library, at two screening concentrations (10 μM and 100 μM), has identified four terpenoids (piperonyl alcohol, 1,4-cineole, carvacrol and isoeugenol) that we believe are positive modulators of the southern cattle tick's tyramine receptor.

  6. Characterizing ligand-gated ion channel receptors with genetically encoded Ca2++ sensors.

    Directory of Open Access Journals (Sweden)

    John G Yamauchi

    Full Text Available We present a cell based system and experimental approach to characterize agonist and antagonist selectivity for ligand-gated ion channels (LGIC by developing sensor cells stably expressing a Ca(2+ permeable LGIC and a genetically encoded Förster (or fluorescence resonance energy transfer (FRET-based calcium sensor. In particular, we describe separate lines with human α7 and human α4β2 nicotinic acetylcholine receptors, mouse 5-HT(3A serotonin receptors and a chimera of human α7/mouse 5-HT(3A receptors. Complete concentration-response curves for agonists and Schild plots of antagonists were generated from these sensors and the results validate known pharmacology of the receptors tested. Concentration-response relations can be generated from either the initial rate or maximal amplitudes of FRET-signal. Although assaying at a medium throughput level, this pharmacological fluorescence detection technique employs a clonal line for stability and has versatility for screening laboratory generated congeners as agonists or antagonists on multiple subtypes of ligand-gated ion channels. The clonal sensor lines are also compatible with in vivo usage to measure indirectly receptor activation by endogenous neurotransmitters.

  7. RAB5A — EDRN Public Portal

    Science.gov (United States)

    From UniProtKB/Swiss-Prot: The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion. RAB5A is required for the fusion of plasma membranes and early endosomes. Contributes to the regulation of filopodia extension.

  8. FRET-Based Detection of M1 Muscarinic Acetylcholine Receptor Activation by Orthosteric and Allosteric Agonists

    Science.gov (United States)

    Markovic, Danijela; Holdich, Jonathan; Al-Sabah, Suleiman; Mistry, Rajendra; Krasel, Cornelius; Mahaut-Smith, Martyn P.; Challiss, R. A. John

    2012-01-01

    Background and Objective Muscarinic acetylcholine receptors (mAChRs) are 7-transmembrane, G protein-coupled receptors that regulate a variety of physiological processes and represent potentially important targets for therapeutic intervention. mAChRs can be stimulated by full and partial orthosteric and allosteric agonists, however the relative abilities of such ligands to induce conformational changes in the receptor remain unclear. To gain further insight into the actions of mAChR agonists, we have developed a fluorescently tagged M1 mAChR that reports ligand-induced conformational changes in real-time by changes in Förster resonance energy transfer (FRET). Methods Variants of CFP and YFP were inserted into the third intracellular loop and at the end of the C-terminus of the mouse M1 mAChR, respectively. The optimized FRET receptor construct (M1-cam5) was expressed stably in HEK293 cells. Results The variant CFP/YFP-receptor chimera expressed predominantly at the plasma membrane of HEK293 cells and displayed ligand-binding affinities comparable with those of the wild-type receptor. It also retained an ability to interact with Gαq/11 proteins and to stimulate phosphoinositide turnover, ERK1/2 phosphorylation and undergo agonist-dependent internalization. Addition of the full agonist methacholine caused a reversible decrease in M1 FRET (FEYFP/FECFP) that was prevented by atropine pre-addition and showed concentration-dependent amplitude and kinetics. Partial orthosteric agonists, arecoline and pilocarpine, as well as allosteric agonists, AC-42 and 77-LH-28-1, also caused atropine-sensitive decreases in the FRET signal, which were smaller in amplitude and significantly slower in onset compared to those evoked by methacholine. Conclusion The M1 FRET-based receptor chimera reports that allosteric and orthosteric agonists induce similar conformational changes in the third intracellular loop and/or C-terminus, and should prove to be a valuable molecular reagent for

  9. FRET-based detection of M1 muscarinic acetylcholine receptor activation by orthosteric and allosteric agonists.

    Directory of Open Access Journals (Sweden)

    Danijela Markovic

    Full Text Available BACKGROUND AND OBJECTIVE: Muscarinic acetylcholine receptors (mAChRs are 7-transmembrane, G protein-coupled receptors that regulate a variety of physiological processes and represent potentially important targets for therapeutic intervention. mAChRs can be stimulated by full and partial orthosteric and allosteric agonists, however the relative abilities of such ligands to induce conformational changes in the receptor remain unclear. To gain further insight into the actions of mAChR agonists, we have developed a fluorescently tagged M(1 mAChR that reports ligand-induced conformational changes in real-time by changes in Förster resonance energy transfer (FRET. METHODS: Variants of CFP and YFP were inserted into the third intracellular loop and at the end of the C-terminus of the mouse M(1 mAChR, respectively. The optimized FRET receptor construct (M(1-cam5 was expressed stably in HEK293 cells. RESULTS: The variant CFP/YFP-receptor chimera expressed predominantly at the plasma membrane of HEK293 cells and displayed ligand-binding affinities comparable with those of the wild-type receptor. It also retained an ability to interact with Gα(q/11 proteins and to stimulate phosphoinositide turnover, ERK1/2 phosphorylation and undergo agonist-dependent internalization. Addition of the full agonist methacholine caused a reversible decrease in M(1 FRET (F(EYFP/F(ECFP that was prevented by atropine pre-addition and showed concentration-dependent amplitude and kinetics. Partial orthosteric agonists, arecoline and pilocarpine, as well as allosteric agonists, AC-42 and 77-LH-28-1, also caused atropine-sensitive decreases in the FRET signal, which were smaller in amplitude and significantly slower in onset compared to those evoked by methacholine. CONCLUSION: The M(1 FRET-based receptor chimera reports that allosteric and orthosteric agonists induce similar conformational changes in the third intracellular loop and/or C-terminus, and should prove to be a

  10. Differential palmitoylation directs the AMPA receptor-binding protein ABP to spines or to intracellular clusters.

    Science.gov (United States)

    DeSouza, Sunita; Fu, Jie; States, Bradley A; Ziff, Edward B

    2002-05-01

    Long-term changes in excitatory synapse strength are thought to reflect changes in synaptic abundance of AMPA receptors mediated by receptor trafficking. AMPA receptor-binding protein (ABP) and glutamate receptor-interacting protein (GRIP) are two similar PDZ (postsynaptic density 95/Discs large/zona occludens 1) proteins that interact with glutamate receptors 2 and 3 (GluR2 and GluR3) subunits. Both proteins have proposed roles during long-term potentiation and long-term depression in the delivery and anchorage of AMPA receptors at synapses. Here we report a variant of ABP-L (seven PDZ form of ABP) called pABP-L that is palmitoylated at a cysteine residue at position 11 within a novel 18 amino acid N-terminal leader sequence encoded through differential splicing. In cultured hippocampal neurons, nonpalmitoylated ABP-L localizes with internal GluR2 pools expressed from a Sindbis virus vector, whereas pABP-L is membrane targeted and associates with surface-localized GluR2 receptors at the plasma membrane in spines. Mutation of Cys-11 to alanine blocks the palmitoylation of pABP-L and targets the protein to intracellular clusters, confirming that targeting the protein to spines is dependent on palmitoylation. Non-palmitoylated GRIP is primarily intracellular, but a chimera with the pABP-L N-terminal palmitoylation sequence linked to the body of the GRIP protein is targeted to spines. We suggest that pABP-L and ABP-L provide, respectively, synaptic and intracellular sites for the anchorage of AMPA receptors during receptor trafficking to and from the synapse.

  11. Daphnia HR96 is a promiscuous xenobiotic and endobiotic nuclear receptor

    Energy Technology Data Exchange (ETDEWEB)

    Karimullina, Elina [Environmental Toxicology Program, Clemson University, Clemson, SC 29634 (United States); Institute of Plant and Animal Ecology, Russian Academy of Sciences, Ural Branch, Yekaterinburg 620144 (Russian Federation); Li Yangchun; Ginjupalli, Gautam K. [Environmental Toxicology Program, Clemson University, Clemson, SC 29634 (United States); Baldwin, William S., E-mail: baldwin@clemson.edu [Environmental Toxicology Program, Clemson University, Clemson, SC 29634 (United States); Biological Sciences, Clemson University, Clemson, SC (United States)

    2012-07-15

    Daphnia pulex is the first crustacean to have its genome sequenced. The genome project provides new insight and data into how an aquatic crustacean may respond to environmental stressors, including toxicants. We cloned Daphnia pulex HR96 (DappuHR96), a nuclear receptor orthologous to the CAR/PXR/VDR group of nuclear receptors. In Drosophila melanogaster, (hormone receptor 96) HR96 responds to phenobarbital exposure and has been hypothesized as a toxicant receptor. Therefore, we set up a transactivation assay to test whether DappuHR96 is a promiscuous receptor activated by xenobiotics and endobiotics similar to the constitutive androstane receptor (CAR) and the pregnane X-receptor (PXR). Transactivation assays performed with a GAL4-HR96 chimera demonstrate that HR96 is a promiscuous toxicant receptor activated by a diverse set of chemicals such as pesticides, hormones, and fatty acids. Several environmental toxicants activate HR96 including estradiol, pyriproxyfen, chlorpyrifos, atrazine, and methane arsonate. We also observed repression of HR96 activity by chemicals such as triclosan, androstanol, and fluoxetine. Nearly 50% of the chemicals tested activated or inhibited HR96. Interestingly, unsaturated fatty acids were common activators or inhibitors of HR96 activity, indicating a link between diet and toxicant response. The omega-6 and omega-9 unsaturated fatty acids linoleic and oleic acid activated HR96, but the omega-3 unsaturated fatty acids alpha-linolenic acid and docosahexaenoic acid inhibited HR96, suggesting that these two distinct sets of lipids perform opposing roles in Daphnia physiology. This also provides a putative mechanism by which the ratio of dietary unsaturated fats may affect the ability of an organism to respond to a toxic insult. In summary, HR96 is a promiscuous nuclear receptor activated by numerous endo- and xenobiotics.

  12. Opioid Receptors.

    Science.gov (United States)

    Stein, Christoph

    2016-01-01

    Opioids are the oldest and most potent drugs for the treatment of severe pain. Their clinical application is undisputed in acute (e.g., postoperative) and cancer pain, but their long-term use in chronic pain has met increasing scrutiny. This article reviews mechanisms underlying opioid analgesia and other opioid actions. It discusses the structure, function, and plasticity of opioid receptors; the central and peripheral sites of analgesic actions and side effects; endogenous and exogenous opioid receptor ligands; and conventional and novel opioid compounds. Challenging clinical situations, such as the tension between chronic pain and addiction, are also illustrated.

  13. Wnt5a Regulates the Assembly of Human Adipose Derived Stromal Vascular Fraction-Derived Microvasculatures.

    Directory of Open Access Journals (Sweden)

    Venkat M Ramakrishnan

    Full Text Available Human adipose-derived stromal vascular fraction (hSVF cells are an easily accessible, heterogeneous cell system that can spontaneously self-assemble into functional microvasculatures in vivo. However, the mechanisms underlying vascular self-assembly and maturation are poorly understood, therefore we utilized an in vitro model to identify potential in vivo regulatory mechanisms. We utilized passage one (P1 hSVF because of the rapid UEA1+ endothelium (EC loss at even P2 culture. We exposed hSVF cells to a battery of angiogenesis inhibitors and found that the pan-Wnt inhibitor IWP2 produced the most significant hSVF-EC networking decrease (~25%. To determine which Wnt isoform(s and receptor(s may be involved, hSVF was screened by PCR for isoforms associated with angiogenesis, with only WNT5A and its receptor, FZD4, being expressed for all time points observed. Immunocytochemistry confirmed Wnt5a protein expression by hSVF. To see if Wnt5a alone could restore IWP2-induced EC network inhibition, recombinant human Wnt5a (0-150 ng/ml was added to IWP2-treated cultures. The addition of rhWnt5a significantly increased EC network area and significantly decreased the ratio of total EC network length to EC network area compared to untreated controls. To determine if Wnt5a mediates in vivo microvascular self-assembly, 3D hSVF constructs containing an IgG isotype control, anti-Wnt5a neutralizing antibody or rhWnt5a were implanted subcutaneously for 2w in immune compromised mice. Compared to IgG controls, anti-Wnt5a treatment significantly reduced vessel length density by ~41%, while rhWnt5a significantly increased vessel length density by ~62%. However, anti-Wnt5a or rhWnt5a did not significantly affect the density of segments and nodes, both of which measure vascular complexity. Taken together, this data demonstrates that endogenous Wnt5a produced by hSVF plays a regulatory role in microvascular self-assembly in vivo. These findings also suggest that

  14. Tolerance of CD8+ T cells developing in parent-->F1 chimeras prepared with supralethal irradiation: step-wise induction of tolerance in the intrathymic and extrathymic environments.

    Science.gov (United States)

    Kosaka, H; Sprent, J

    1993-02-01

    Tolerance of CD8+ cells was examined in parent-->F1 bone marrow chimeras (BMC) prepared with supralethal irradiation; host class I expression in the chimeras was limited to non-BM-derived cells. In terms of helper-independent proliferative responses in vitro and induction of graft-vs.-host disease on adoptive transfer, CD8+ cells from long-term chimeras showed profound tolerance to host antigens irrespective of whether the cells were prepared from the thymus or from spleen or lymph nodes. By limiting dilution analysis, cytotoxic T lymphocyte (CTL) precursors specific for host antigens were rare in the extrathymic lymphoid tissues. In the thymus, by contrast, host-specific CTL precursors were only slightly less frequent than in normal parental strain mice. These host-specific CD8+ cells survived when BMC thymocytes were transferred intravenously to a neutral environment, i.e., to donor strain mice. When transferred to further BMC hosts, however, most of the host-reactive cells disappeared. Collectively, the data suggest that tolerance of CD8+ cells in BMC hosts occurs in both the intrathymic and extrathymic environments. In the thymus, contact with host antigens on thymic epithelial cells deletes CD8+ cells controlling helper-independent proliferative responses and in vivo effector functions but spares typical helper-dependent CTL precursors. After export from the thymus, most of the CTL precursors are eliminated after contacting host antigens on stromal cells in the extrathymic environment.

  15. Structures of the G81A mutant form of the active chimera of (S)-mandelate dehydrogenase and its complex with two of its substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar, Narayanasami [NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, Argonne, IL 60439 (United States); Dewanti, Asteriani [Department of Chemistry and Physics, Western Carolina University, Cullowhee, NC 28723 (United States); Merli, Angelo; Rossi, Gian Luigi [Department of Biochemistry and Molecular Biology, University of Parma, Parma (Italy); Mitra, Bharati [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Mathews, F. Scott, E-mail: mathews@biochem.wustl.edu [Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110 (United States); NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2009-06-01

    The crystal structure of the G81A mutant form of the chimera of (S)-mandelate dehydrogenase and of its complexes with two of its substrates reveal productive and non-productive modes of binding for the catalytic reaction. The structure also indicates the role of G81A in lowering the redox potential of the flavin co-factor leading to an ∼200-fold slower catalytic rate of substrate oxidation. (S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida, a membrane-associated flavoenzyme, catalyzes the oxidation of (S)-mandelate to benzoylformate. Previously, the structure of a catalytically similar chimera, MDH-GOX2, rendered soluble by the replacement of its membrane-binding segment with the corresponding segment of glycolate oxidase (GOX), was determined and found to be highly similar to that of GOX except within the substituted segments. Subsequent attempts to cocrystallize MDH-GOX2 with substrate proved unsuccessful. However, the G81A mutants of MDH and of MDH-GOX2 displayed ∼100-fold lower reactivity with substrate and a modestly higher reactivity towards molecular oxygen. In order to understand the effect of the mutation and to identify the mode of substrate binding in MDH-GOX2, a crystallographic investigation of the G81A mutant of the MDH-GOX2 enzyme was initiated. The structures of ligand-free G81A mutant MDH-GOX2 and of its complexes with the substrates 2-hydroxyoctanoate and 2-hydroxy-3-indolelactate were determined at 1.6, 2.5 and 2.2 Å resolution, respectively. In the ligand-free G81A mutant protein, a sulfate anion previously found at the active site is displaced by the alanine side chain introduced by the mutation. 2-Hydroxyoctanoate binds in an apparently productive mode for subsequent reaction, while 2-hydroxy-3-indolelactate is bound to the enzyme in an apparently unproductive mode. The results of this investigation suggest that a lowering of the polarity of the flavin environment resulting from the displacement of nearby water molecules caused by

  16. Analysis of the cloverleaf element in a human rhinovirus type 14/poliovirus chimera: correlation of subdomain D structure, ternary protein complex formation and virus replication.

    Science.gov (United States)

    Rieder, Elizabeth; Xiang, Wenkai; Paul, Aniko; Wimmer, Eckard

    2003-08-01

    RNA genomes of enteroviruses and rhinoviruses contain a 5'-terminal structure, the cloverleaf (CL), which serves as signal in RNA synthesis. Substitution of the poliovirus [PV1(M)] CL with that of human rhinovirus type 2 (HRV2) was shown previously to produce a viable chimeric PV, whereas substitution with the HRV14 CL produced a null phenotype. Fittingly, the HRV14 CL failed to form a complex with PV-specific proteins 3CD(pro)-3AB or 3CD(pro)-PCBP2, considered essential for RNA synthesis. It was reported previously (Rohll et al., J Virol 68, 4384-4391, 1994) that the major determinant for the null phenotype of a PV/HRV14 chimera resides in subdomain Id of the HRV14 CL. Using a chimeric PV/HRV14 CL in the context of the PV genome, stem-loop Id of HRV14 CL was genetically dissected. It contains the sequence C(57)UAU(60)-G, the underlined nucleotides forming the loop that is shorter by 1 nt when compared to the corresponding PV structure (UUGC(60)GG). Insertion of a G nucleotide to form a tetra loop (C(57)UAU(60)GG(61)) did not rescue replication of the chimera. However, an additional mutation at position 60 (C(57)UAC(60)GG(61)) yielded a replicating genome. Only the mutant PV/HRV14 CL with the UAC(60)G tetra loop formed ternary complexes efficiently with either PV proteins 3CD(pro)-3AB or 3CD(pro)-PCBP2. Thus, in the context of PV RNA synthesis, the presence of a tetra loop in subdomain D of the CL per se is not sufficient for function. The sequence and, consequently, the structure of the tetra loop plays an essential role. Biochemical assays demonstrated that the function of the CL element and the function of the cis-acting replication element in the 3D(pol)-3CD(pro)-dependent uridylylation of VPg are not linked.

  17. Increased local concentration of complement C5a contributes to incisional pain in mice

    Directory of Open Access Journals (Sweden)

    Clark David J

    2011-07-01

    Full Text Available Abstract Background In our previous study, we demonstrated that local injection of complement C5a and C3a produce mechanical and heat hyperalgesia, and that C5a and C3a activate and sensitize cutaneous nociceptors in normal skin, suggesting a contribution of complement fragments to acute pain. Other studies also have shown that the complement system can be activated by surgical incision, and the systemic blockade of C5a receptor (C5aR reduces incision-induced pain and inflammation. In this study, we further examined the possible contribution of wound area C5a to incisional pain. Methods Using of a hind paw incisional model, the effects of a selective C5aR antagonist, PMX53, on nociceptive behaviors were measured after incision in vivo. mRNA levels of C5 and C5aR in skin, dorsal root ganglia (DRG and spinal cord, and C5a protein levels in the skin were quantified after incision. The responses of nociceptors to C5a were also evaluated using the in vitro skin-nerve preparation. Results Local administration of PMX53 suppressed heat hyperalgesia and mechanical allodynia induced by C5a injection or after hind paw incision in vivo. mRNA levels of C5 and C5aR in the skin, but not DRG and spinal cord, were dramatically increased after incision. C5a protein in the skin was also increased after incision. In vitro C5a did not increase the prevalence of fibers with ongoing activity in afferents from incised versus control, unincised skin. C5a sensitized C-fiber afferent responses to heat; however, this was less evident in afferents adjacent to the incision. PMX53 blocked sensitization of C-fiber afferents to heat by C5a but did not by itself influence ongoing activity or heat sensitivity in afferents innervating control or incised skin. The magnitude of mechanical responses was also not affected by C5a in any nociceptive fibers innervating incised or unincised skin. Conclusions This study demonstrates that high locally generated C5a levels are present in

  18. Lamprey TLRs with properties distinct from those of the variable lymphocyte receptors.

    Science.gov (United States)

    Ishii, Akihiro; Matsuo, Aya; Sawa, Hirofumi; Tsujita, Tadayuki; Shida, Kyoko; Matsumoto, Misako; Seya, Tsukasa

    2007-01-01

    Fish express mammalian-type (M-type) TLRs consisting of leucine-rich repeats (LRRs) and Toll-IL-1R (TIR) homology domain for immunity, whereas invertebrates in deuterostomes appear to have no orthologs of M-type TLRs. Lampetra japonica (lamprey) belongs to the lowest class of vertebrates with little information about its TLRs. We have identified two cDNA sequences of putative TLRs in the lamprey (laTLRs) that contain LRRs and TIR domains. The two laTLRs were 56% homologous to each other, and their TIRs were similar to those of members of the human TLR2 subfamily, most likely orthologs of fish TLR14. We named them laTLR14a and laTLR14b. We raised a rabbit polyclonal Ab against laTLR14b and identified a 85-kDa protein in a human HEK293 transfectant by immunoblotting using the Ab. FACS, histochemical, and confocal analyses showed that laTLR14b is expressed intracellularly in lamprey gill cells and that the overexpressed protein resides in the endoplasmic reticulum of human and fish (medaka) cell lines. Because natural agonists of TLR14 remained unidentified, we made a chimera construct of extracellular CD4 and the cytoplasmic domain of laTLR14. The chimera molecule of laTLR14b, when expressed in HEK293 cells, elicited activation of NF-kappaB and, consequently, weak activation of the IFN-beta promoter. laTLR14b mRNA was observed in various organs and leukocytes. This lamprey species expressed a variable lymphocyte receptor structurally independent of laTLR14 in leukocytes. Thus, the jawless vertebrate lamprey possesses two LRR-based recognition systems, the variable lymphocyte receptor and TLR, and the M-type TLRs are conserved across humans, fish, and lampreys.

  19. EFFECTS OF INTEGRIN ALPHA ⅡbR995A MUTATION ON RECEPTOR AFFINITY AND pp 125 (FAK) PHOSPHORYLATION

    Institute of Scientific and Technical Information of China (English)

    Xue-yuan Tang; Zai-fu Jian; Guo-ping Wang; Hong-hui Yang; Wei Liu

    2004-01-01

    Objective To investigate the role of cytoplasmic domain of integrin alpha Ⅱb in platelet signal transduction.Methods Binding capacity of integrin alpha ⅡbR995Ato antibody platelet activation complex-1 (PAC-1) and pp125focal adhesion kinase (FAK) phosphorylation of cells were detected by flow cytometry, immune precipitation, and Western blotting.Results Without activation, wild-type alpha Ⅱ bbeta3 Chinese hamster ovary (CHO) cells failed to bind to PAC-1, but mutant chimera alpha ⅡbR995Aeta3 CHO cells were able to bind with PAC-1. Furthermore, phosphorylation of pp125 (FAK)in wild-type alpha Ⅱbbeta3 CHO cells occured only when cells were adhered to fibrinogen, but could not be detected in bovine serum albumin suspension. However in the mutant chimera group, it could be detected in both conditions.Conclusion The mutation in integrin alpha ⅡbR995Aalters its affinity state as a receptor, thus also mediating cytoplasmic signal transduction leading to the phosphorylation of pp125 (FAK) without ligand binding.

  20. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis.

    Science.gov (United States)

    Nemoto, Eiji; Ebe, Yukari; Kanaya, Sousuke; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi

    2012-06-15

    Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent pathway.

  1. Evaluation of TcpF-A2-CTB chimera and evidence of additive protective efficacy of immunizing with TcpF and CTB in the suckling mouse model of cholera.

    Directory of Open Access Journals (Sweden)

    Gregory A Price

    Full Text Available The secreted colonization factor, TcpF, which is produced by Vibrio cholerae 01 and 0139, has generated interest as a potential protective antigen in the development of a subunit vaccine against cholera. This study evaluated immunogenicity/protective efficacy of a TcpF holotoxin-like chimera (TcpF-A2-CTB following intraperitoneal immunization compared to TcpF alone, a TcpF+CTB mixture, or CTB alone. Immunization with the TcpF-A2-CTB chimera elicited significantly greater amounts of anti-TcpF IgG than immunization with the other antigens (P<0.05. Protective efficacy was measured using 6-day-old pups reared from immunized dams and orogastrically challenged with a lethal dose of El Tor V. cholerae 01 Inaba strain N16961. Protection from death, and weight loss analysis at 24 and 48 hours post-infection demonstrated that immunization with TcpF alone was poorly protective. However, immunization with TcpF+CTB was highly protective and showed a trend toward greater protection than immunization with CTB alone (82% vs 64% survival. Immunization with the TcpF-A2-CTB chimera demonstrated less protection (50% survival than immunization with the TcpF+CTB mixture. The TcpF-A2-CTB chimera used for this study contained the heterologous classical CTB variant whereas the El Tor CTB variant (expressed by the challenge strain was used in the other immunization groups. For all immunization groups that received CTB, quantitative ELISA data demonstrated that the amounts of serum IgG directed against the homologous immunizing CTB antigen was statistically greater than the amount to the heterologous CTB antigen (P≤0.003. This finding provides a likely explanation for the poorer protection observed following immunization with the TcpF-A2-CTB chimera and the relatively high level of protection seen after immunization with homologous CTB alone. Though immunization with TcpF alone provided no protection, the additive protective effect when TcpF was combined with CTB

  2. Synthesis and interactions of sulfated C5a-receptor and CHIPS mimics

    NARCIS (Netherlands)

    Bunschoten, A.|info:eu-repo/dai/nl/304836958

    2010-01-01

    Post-translational modifications are modifications of peptides or proteins after they have been synthesized in the ribosomes. These post-translational modifications (PTM’s) are intended to augment functional diversity of the 20 natural L-amino acids of which proteins are constructed. PTM’s have impo

  3. Neurotrophic activities of trk receptors conserved over 600 million years of evolution.

    Science.gov (United States)

    Beck, Gad; Munno, David W; Levy, Zehava; Dissel, Helga M; Van-Minnen, Jan; Syed, Naweed I; Fainzilber, Mike

    2004-07-01

    The trk family of receptor tyrosine kinases is crucial for neuronal survival in the vertebrate nervous system, however both C. elegans and Drosophila lack genes encoding trks or their ligands. The only invertebrate representative of this gene family identified to date is Ltrk from the mollusk Lymnaea. Did trophic functions of trk receptors originate early in evolution, or were they an innovation of the vertebrates? Here we show that the Ltrk gene conserves a similar exon/intron order as mammalian trk genes in the region encoding defined extracellular motifs, including one exon encoding a putative variant immunoglobulin-like domain. Chimeric receptors containing the intracellular and transmembrane domains of Ltrk undergo ligand-induced autophosphorylation followed by MAP kinase activation in transfected cells. The chimeras are internalized similarly to TrkA in PC12 cells, and their stimulation leads to differentiation and neurite extension. Knock-down of endogenous Ltrk expression compromises outgrowth and survival of Lymnaea neurons cultured in CNS-conditioned medium. Thus, Ltrk is required for neuronal survival, suggesting that trophic activities of the trk receptor family originated before the divergence of molluscan and vertebrate lineages approximately 600 million years ago.

  4. 17 CFR 259.5a - Form U5A, for notification of registration filed under section 5(a) of the Act.

    Science.gov (United States)

    2010-04-01

    ...: For Federal Register citations affecting Form U5A, see the List of CFR Sections Affected, which... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Form U5A, for notification of... OF 1935 Forms for Registration and Annual Supplements § 259.5a Form U5A, for notification...

  5. DYNAMICS OF SOMATIC CELLLINEAGE COMPETITION IN CHIMERAS OF Hydractinia symbiolongicarpus (CNIDARIA: HYDROZOA Dinámica de competencia entre líneas celulares somáticas en quimeras de Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa

    Directory of Open Access Journals (Sweden)

    RYAN S SCHWARZ

    Full Text Available Sessile colonial invertebrates often fuse with conspecifics to form chimeras. Chimerism represents an unequivocal instance of withinindividual selection where genetically different celllineages compete for representation in the somatic and gametic pools. We analyzed temporal and spatial variations in somatic celllineage composition of laboratoryestablished chimeras of the hydroid Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa. Using three clones with different allotypic specificities (i.e., two rejecting one another but fusing with a third one, we established two classes of twoway chimeras, a single threeway chimera class, and an incompatible interaction as control. Chimeras were sampled at five time intervals for a year. Celllineages in samples were identified by polyp fusibility assays against tester colonies of known fusibility. The cell lineages composing the chimeras showed a differential competitive ability, with one of them representing close to 80% by the end of the study. Rare celllineages stabilized at low frequencies but preserved their ability to gain somatic representation and to colonize distant parts of the chimera. This behavior characterizes cell parasites. As a consequence of the reproductive plasticity of most colonial invertebrates, celllineage variability may be transmitted to the offspring both sexually and asexually. Successful somatic competitors are expected to be preferentially transmitted asexually, whereas cell parasites would be preferentially transmitted sexuallyLos invertebrados coloniales y sésiles con frecuencia se fusionan con conespecíficos para formar quimeras. Estas quimeras son un ejemplo de selección natural actuando al interior del individuo en donde células genéticamente distintas compiten por acceso tanto a la línea somática como a la germinal. En este estudio se analizaron las variaciones temporal y espacial de linajes celulares somáticos en quimeras establecidas en el laboratorio del

  6. Dynamics of Somatic Cell-Lineage Competition in Chimeras of Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa Dinámica de competencia entre líneas celulares somáticas en quimeras de Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa

    Directory of Open Access Journals (Sweden)

    Schwarz Ryan S.

    2007-12-01

    Full Text Available Sessile colonial invertebrates often fuse with conspecifics to form chimeras. Chimerism represents an unequivocal instance of withinindividual selection where genetically different celllineages compete for representation in the somatic and gametic pools. We analyzed temporal and spatial variations in somatic celllineage composition of laboratoryestablished chimeras of the hydroid Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa. Using three clones with different allotypic specificities (i.e., two rejecting one another but fusing with a third one, we established two classes of twoway chimeras, a single threeway chimera class, and an incompatible interaction as control. Chimeras were sampled at five time intervals for a year. Celllineages in samples were identified by polyp fusibility assays against tester colonies of known fusibility. The cell lineages composing the chimeras showed a differential competitive ability, with one of them representing close to 80% by the end of the study. Rare celllineages stabilized at low frequencies but preserved their ability to gain somatic representation and to colonize distant parts of the chimera. This behavior characterizes cell parasites. As a consequence of the reproductive plasticity of most colonial invertebrates, celllineage variability may be transmitted to the offspring both sexually and asexually. Successful somatic competitors are expected to be preferentially transmitted asexually, whereas cell parasites would be preferentially transmitted sexually.Los invertebrados coloniales y sésiles con frecuencia se fusionan con conespecíficos para formar quimeras. Estas quimeras son un ejemplo de selección natural actuando al interior del individuo en donde células genéticamente distintas compiten por acceso tanto a la línea somática como a la germinal. En este estudio se analizaron las variaciones temporal y espacial de linajes celulares somáticos en quimeras establecidas en el

  7. Anatomical structure of leaf sectors with different resistance to powdery mildew (Erisiphe cruciferarum Opiz ex. L. Junell in winter rapeseed chimera

    Directory of Open Access Journals (Sweden)

    J. Cebrat

    2014-02-01

    Full Text Available The subject of the study was a sectorial chimera of dihaploid winter rapeseed, obtained with the help of gamma ray treatment (30 Gy during shoot cloning in vitro. One sector of the plant was infected by Erisiphe cruciferarum Opiz ex. L. Junell and the other one was resistant. The anatomical structure of a leaf, divided into the two sectors along the midrib, was studied. The infected part of the leaf blade was thinner and built of a smaller number of palisade and spongy mesophyll cell layers. The size of cells in this sector, both in the epidermis and in the mesophyll, as well as the size of nuclei, chloroplasts and intercellular spaces were bigger than those in the resistant portion. On the other hand, the stomata in the infected segment were smaller but their number was higher than that in the healthy part. The study made it possible to analyse the relation between the anatomical structure of the host plant and the pathogen.

  8. Surface functionalization of inorganic nano-crystals with fibronectin and E-cadherin chimera synergistically accelerates trans-gene delivery into embryonic stem cells.

    Science.gov (United States)

    Kutsuzawa, K; Chowdhury, E H; Nagaoka, M; Maruyama, K; Akiyama, Y; Akaike, T

    2006-11-24

    Stem cells holding great promises in regenerative medicine have the potential to be differentiated to a specific cell type through genetic manipulation. However, conventional ways of gene transfer to such progenitor cells suffer from a number of disadvantages particularly involving safety and efficacy issues. Here, we report on the development of a bio-functionalized inorganic nano-carrier of DNA by embedding fibronectin and E-cadherin chimera on the carrier, leading to its high affinity interactions with embryonic stem cell surface and accelerated trans-gene delivery for subsequent expression. While only apatite nano-particles were very inefficient in transfecting embryonic stem cells, fibronectin-anchored particles and to a more significant extent, fibronectin and E-cadherin-Fc-associated particles dramatically enhanced trans-gene delivery with a value notably higher than that of commercially available lipofection system. The involvement of both cell surface integrin and E-cadherin in mediating intracellular localization of the hybrid carrier was verified by blocking integrin binding site with excess free fibronectin and up-regulating both integrin and E-cadherin through PKC activation. Thus, the new establishment of a bio-functional hybrid gene-carrier would promote and facilitate development of stem cell-based therapy in regenerative medicine.

  9. Design of potent inhibitors of human RAD51 recombinase based on BRC motifs of BRCA2 protein: modeling and experimental validation of a chimera peptide.

    KAUST Repository

    Nomme, Julian

    2010-08-01

    We have previously shown that a 28-amino acid peptide derived from the BRC4 motif of BRCA2 tumor suppressor inhibits selectively human RAD51 recombinase (HsRad51). With the aim of designing better inhibitors for cancer treatment, we combined an in silico docking approach with in vitro biochemical testing to construct a highly efficient chimera peptide from eight existing human BRC motifs. We built a molecular model of all BRC motifs complexed with HsRad51 based on the crystal structure of the BRC4 motif-HsRad51 complex, computed the interaction energy of each residue in each BRC motif, and selected the best amino acid residue at each binding position. This analysis enabled us to propose four amino acid substitutions in the BRC4 motif. Three of these increased the inhibitory effect in vitro, and this effect was found to be additive. We thus obtained a peptide that is about 10 times more efficient in inhibiting HsRad51-ssDNA complex formation than the original peptide.

  10. An Engineered PrPsc-like Molecule from the Chimera of Mammalian Prion Protein and Yeast Ure2p Prion-inducing Domain

    Institute of Scientific and Technical Information of China (English)

    Shao-Man YIN; Man-Sun SY; Po TIEN

    2004-01-01

    Production of the pathogenic prion isoform prpsc-like molecules is thought to be useful forunderstanding the mysterious mechanism of conformational conversion process of prion diseases andproving the "protein-only" hypothesis. In this report, an engineered PrPsc-like conformation was producedfrom a chimera of mammalian bovine prion protein (bPrP) and yeast Ure2p prion-inducing domain (UPrD).Compared with the normal form of bPrP, the engineered recombinant protein, termed bPrP-UPrD,spontaneously aggregated into ordered fibrils under physiological condition, displaying amyloid-likecharacteristics, such as fibrillar morphology, birefringence upon binding to Congo red and increasedfluorescence intensity with Thioflavine T. Limited resistance to protease K digestion and CD spectroscopyexperiments suggested that the structure of bPrP-UPrD had been changed, and adopted a new, high contentβ-sheet conformation during the fibrils formation. Moreover, bPrP-UPrD amyloid fibrils could recruit moresoluble forms into the aggregates. Therefore, the engineered molecules could mimic significant behaviors ofPrPsc and will be helpful for further understanding the mechanism of conformational conversion process.

  11. An Engineered PrPsc-like Molecule from the Chimera of Mammalian Prion Protein and Yeast Ure2p Prion-inducing Domain

    Institute of Scientific and Technical Information of China (English)

    Shao-ManYIN; Man-SunSY; PoTIEN

    2004-01-01

    Production of the pathogenic prion isoform PrPsc-like molecules is thought to be useful forunderstanding the mysterious mechanism of conformational conversion process of prion diseases andproving the "protein-only" hypothesis. In this report, an engineered PrPsc-like conformation was producedfrom a chimera of mammalian bovine prion protein (bPrP) and yeast Ure2p prion-inducing domain (UPrD).Compared with the normal form of bPrP, the engineered recombinant protein, termed bPrP-UPrD,spontaneously aggregated into ordered fibrils under physiological condition, displaying amyloid-likecharacteristics, such as fibrillar morphology, birefringence upon binding to Congo red and increasedfluorescence intensity with Thioflavine T. Limited resistance to protease K digestion and CD spectroscopyexperiments suggested that the structure of bPrP-UPrD had been changed, and adopted a new, high contentB-sheet conformation during the fibrils formation. Moreover, bPrP-UPrD amyloid fibrils could recruit moresoluble forms into the aggregates. Therefore, the engineered molecules could mimic significant behaviors of PrPse and will be helpful for further understanding the mechanism of conformational conversion process.

  12. Autosomal P[ovoD1] dominant female-sterile insertions in Drosophila and their use in generating germ-line chimeras.

    Science.gov (United States)

    Chou, T B; Noll, E; Perrimon, N

    1993-12-01

    The 'dominant female-sterile' technique used to generate germ-line mosaics in Drosophila is a powerful tool to determine the tissue specificity (germ line versus somatic) of recessive female-sterile mutations as well as to analyze the maternal effect of recessive zygotic lethal mutations. This technique requires the availability of germ-line-dependent, dominant female-sterile (DFS) mutations that block egg laying but do not affect viability. To date only one X-linked mutation, ovoD1 has been isolated that completely fulfills these criteria. Thus the 'DFS technique' has been largely limited to the X-chromosome. To extend this technique to the autosomes, we have cloned the ovoD1 mutation into a P-element vector and recovered fully expressed P[ovoD1] insertions on each autosomal arm. We describe the generation of these P[ovoD1] strains as well as demonstrate their use in generating germ-line chimeras. Specifically, we show that the Gap1 gene, which encodes a Drosophila homologue of mammalian GTPase-activating protein, is required in somatic follicle cells for embryonic dorsoventral polarity determination.

  13. Expression of sex-specific molecular markers in clones of bipartite allophenic nemertines produced by somatic embryogenesis from Lineus sanguineus male/female chimera fragments.

    Science.gov (United States)

    Tarpin, M; Bierne, J

    1995-04-01

    SDS-PAGE electrophoresis showed major sex-specific proteins in sexually maturing and mature Lineus sanguineus. These "egg-specific" (145, 78 and 40 kDa) and "sperm-specific" (55,52 and 28 kDa) proteins are useful for studying sex differentiation in bilaterally allophenic worms produced by asexual reproduction of bipartite male/female chimeric worms. This study was carried out on 2 symmetrical clones of bilaterally allophenic worms, derived by somatic embryogenesis from fragments transected from chimeras obtained by exchange-grafting lateral body halves of male and female specimens, and from their asexually-derived progeny. The electrophoretic patterns of proteins extracted from sexually immature, maturing and mature allophenic animals from the 5th to the 19th year of cloning, showed the presence of all female-specific markers and the absence of male-specific markers. There was also complete biochemical feminization of the male halves. The synthesis of the only egg-specific molecules in initially male lateral body halves means that the long-term cloning results in the total repression of genes encoding sperm-specific proteins, since genetically male determinant-bearing cells can randomly re-express the testis characteristic as fertile but rudimentary male gonads.

  14. Protein nanopore-based, single-molecule exploration of copper binding to an antimicrobial-derived, histidine-containing chimera peptide.

    Science.gov (United States)

    Mereuta, Loredana; Schiopu, Irina; Asandei, Alina; Park, Yoonkyung; Hahm, Kyung-Soo; Luchian, Tudor

    2012-12-11

    Metal ions binding exert a crucial influence upon the aggregation properties and stability of peptides, and the propensity of folding in various substates. Herein, we demonstrate the use of the α-HL protein as a powerful nanoscopic tool to probe Cu(2+)-triggered physicochemical changes of a 20 aminoacids long, antimicrobial-derived chimera peptide with a His residue as metal-binding site, and simultaneously dissect the kinetics of the free- and Cu(2+)-bound peptide interaction to the α-HL pore. Combining single-molecule electrophysiology on reconstituted lipid membranes and fluorescence spectroscopy, we show that the association rate constant between the α-HL pore and a Cu(2+)-free peptide is higher than that of a Cu(2+)-complexed peptide. We posit that mainly due to conformational changes induced by the bound Cu(2+) on the peptide, the resulting complex encounters a higher energy barrier toward its association with the protein pore, stemming most likely from an extra entropy cost needed to fit the Cu(2+)-complexed peptide within the α-HL lumen region. The lower dissociation rate constant of the Cu(2+)-complexed peptide from α-HL pore, as compared to that of Cu(2+)-free peptide, supports the existence of a deeper free energy well for the protein interaction with a Cu(2+)-complexed peptide, which may be indicative of specific Cu(2+)-mediated contributions to the binding of the Cu(2+)-complexed peptide within the pore lumen.

  15. Peptidyl arginine deiminase from Porphyromonas gingivalis abolishes anaphylatoxin C5a activity.

    Science.gov (United States)

    Bielecka, Ewa; Scavenius, Carsten; Kantyka, Tomasz; Jusko, Monika; Mizgalska, Danuta; Szmigielski, Borys; Potempa, Barbara; Enghild, Jan J; Prossnitz, Eric R; Blom, Anna M; Potempa, Jan

    2014-11-21

    Evasion of killing by the complement system, a crucial part of innate immunity, is a key evolutionary strategy of many human pathogens. A major etiological agent of chronic periodontitis, the Gram-negative bacterium Porphyromonas gingivalis, produces a vast arsenal of virulence factors that compromise human defense mechanisms. One of these is peptidylarginine deiminase (PPAD), an enzyme unique to P. gingivalis among bacteria, which converts Arg residues in polypeptide chains into citrulline. Here, we report that PPAD citrullination of a critical C-terminal arginine of the anaphylatoxin C5a disabled the protein function. Treatment of C5a with PPAD in vitro resulted in decreased chemotaxis of human neutrophils and diminished calcium signaling in monocytic cell line U937 transfected with the C5a receptor (C5aR) and loaded with a fluorescent intracellular calcium probe: Fura-2 AM. Moreover, a low degree of citrullination of internal arginine residues by PPAD was also detected using mass spectrometry. Further, after treatment of C5 with outer membrane vesicles naturally shed by P. gingivalis, we observed generation of C5a totally citrullinated at the C-terminal Arg-74 residue (Arg74Cit). In stark contrast, only native C5a was detected after treatment with PPAD-null outer membrane vesicles. Our study suggests reduced antibacterial and proinflammatory capacity of citrullinated C5a, achieved via lower level of chemotactic potential of the modified molecule, and weaker cell activation. In the context of previous studies, which showed crosstalk between C5aR and Toll-like receptors, as well as enhanced arthritis development in mice infected with PPAD-expressing P. gingivalis, our findings support a crucial role of PPAD in the virulence of P. gingivalis.

  16. Bone marrow angiotensin AT2 receptor deficiency aggravates atherosclerosis development by eliminating macrophage liver X receptor-mediated anti-atherogenic actions.

    Science.gov (United States)

    Kato, Taku; Kawahito, Hiroyuki; Kishida, Sou; Irie, Daisuke; Wakana, Noriyuki; Kikai, Masakazu; Takata, Hiroki; Ogata, Takehiro; Ueyama, Tomomi; Matoba, Satoaki; Yamada, Hiroyuki

    2015-12-01

    Bone marrow (BM) Angiotensin II (Ang II) type 1 (AT1) receptor plays a crucial role in atherosclerosis development; however, the effect of BM Ang II type 2 (AT2) receptor on atherogenesis remains undefined. We generated BM chimera apoE-deficient (apoE(-/-)) mice whose BM cells were repopulated with AT2-deficient (Agtr2(-/-)) or wild-type (Agtr2(+/+)) cells. After 2 months of a high-cholesterol diet, the atherosclerotic lesion area was significantly increased in the apoE(-/-)/BM-Agtr2(-/-) mice compared with the apoE(-/-)/BM-Agtr2(+/+) mice (51%, P < 0.05), accompanied by an augmented accumulation of lesion macrophages. Although phenotypic polarization in BM-derived macrophages and lipopolysaccharide-induced expression of proinflammatory cytokines in thioglycollate-induced peritoneal macrophages (TGPMs) were not affected by AT2-deficiency, mRNA and protein expression levels of macrophage liver X receptor β (LXRβ) were significantly decreased in Agtr2(-/-) TGPMs compared with Agtr2(+/+) TGPMs. Anti-inflammatory effects of LXR agonist (GW3965) were markedly inhibited in Agtr2(-/-) TGPMs. Furthermore, the expression levels of ATP-binding cassette transporter ABCA1 and CCR7 were much lower in Agtr2(-/-) TGPMs than Agtr2(+/+) TGPMs, accompanied by a significantly reduced cholesterol efflux. Our findings demonstrate that BM-AT2 deficiency aggravates atherosclerosis, at least in part, by eliminating the anti-atherogenic properties of macrophages elicited by LXRβ activation. © The Author(s) 2014.

  17. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Eiji, E-mail: e-nemoto@dent.tohoku.ac.jp [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Ebe, Yukari; Kanaya, Sousuke [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tsuchiya, Masahiro [Department of Aging and Geriatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nakamura, Takashi [Department of Pediatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tamura, Masato [Department of Biochemistry and Molecular Biology, Hokkaido University Graduate School of Dentistry, Sapporo 060-8586 (Japan); Shimauchi, Hidetoshi [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. Black-Right-Pointing-Pointer Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. Black-Right-Pointing-Pointer Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. Black-Right-Pointing-Pointer Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through {beta}-catenin-dependent canonical and {beta}-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent

  18. WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors.

    Science.gov (United States)

    Anastas, Jamie N; Kulikauskas, Rima M; Tamir, Tigist; Rizos, Helen; Long, Georgina V; von Euw, Erika M; Yang, Pei-Tzu; Chen, Hsiao-Wang; Haydu, Lauren; Toroni, Rachel A; Lucero, Olivia M; Chien, Andy J; Moon, Randall T

    2014-07-01

    About half of all melanomas harbor a mutation that results in a constitutively active BRAF kinase mutant (BRAF(V600E/K)) that can be selectively inhibited by targeted BRAF inhibitors (BRAFis). While patients treated with BRAFis initially exhibit measurable clinical improvement, the majority of patients eventually develop drug resistance and relapse. Here, we observed marked elevation of WNT5A in a subset of tumors from patients exhibiting disease progression on BRAFi therapy. WNT5A transcript and protein were also elevated in BRAFi-resistant melanoma cell lines generated by long-term in vitro treatment with BRAFi. RNAi-mediated reduction of endogenous WNT5A in melanoma decreased cell growth, increased apoptosis in response to BRAFi challenge, and decreased the activity of prosurvival AKT signaling. Conversely, overexpression of WNT5A promoted melanoma growth, tumorigenesis, and activation of AKT signaling. Similarly to WNT5A knockdown, knockdown of the WNT receptors FZD7 and RYK inhibited growth, sensitized melanoma cells to BRAFi, and reduced AKT activation. Together, these findings suggest that chronic BRAF inhibition elevates WNT5A expression, which promotes AKT signaling through FZD7 and RYK, leading to increased growth and therapeutic resistance. Furthermore, increased WNT5A expression in BRAFi-resistant melanomas correlates with a specific transcriptional signature, which identifies potential therapeutic targets to reduce clinical BRAFi resistance.

  19. A membrane-proximal, C-terminal α-helix is required for plasma membrane localization and function of the G Protein-coupled receptor (GPCR) TGR5.

    Science.gov (United States)

    Spomer, Lina; Gertzen, Christoph G W; Schmitz, Birte; Häussinger, Dieter; Gohlke, Holger; Keitel, Verena

    2014-02-07

    The C terminus of G protein-coupled receptors (GPCRs) is important for G protein-coupling and activation; in addition, sorting motifs have been identified in the C termini of several GPCRs that facilitate correct trafficking from the endoplasmic reticulum to the plasma membrane. The C terminus of the GPCR TGR5 lacks any known sorting motif such that other factors must determine its trafficking. Here, we investigate deletion and substitution variants of the membrane-proximal C terminus of TGR5 with respect to plasma membrane localization and function using immunofluorescence staining, flow cytometry, and luciferase assays. Peptides of the membrane-proximal C-terminal variants are subjected to molecular dynamics simulations and analyzed with respect to their secondary structure. Our results reveal that TGR5 plasma membrane localization and responsiveness to extracellular ligands is fostered by a long (≥ 9 residues) α-helical stretch at the C terminus, whereas the presence of β-strands or only a short α-helical stretch leads to retention in the endoplasmic reticulum and a loss of function. As a proof-of-principle, chimeras of TGR5 containing the membrane-proximal amino acids of the β2 adrenergic receptor (β2AR), the sphingosine 1-phosphate receptor-1 (S1P1), or the κ-type opioid receptor (κOR) were generated. These TGR5β2AR, TGR5S1P1, or TGR5κOR chimeras were correctly sorted to the plasma membrane. As the exchanged amino acids of the β2AR, the S1P1, or the κOR form α-helices in crystal structures but lack significant sequence identity to the respective TGR5 sequence, we conclude that the secondary structure of the TGR5 membrane-proximal C terminus is the determining factor for plasma membrane localization and responsiveness towards extracellular ligands.

  20. Targeting Discoidin Domain Receptors in Prostate Cancer

    Science.gov (United States)

    2016-08-01

    1 AWARD NUMBER: W81XWH-15-1-0226 TITLE: Targeting Discoidin Domain Receptors in Prostate Cancer PRINCIPAL INVESTIGATOR: Dr. Rafael Fridman...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-15-1-0226 Targeting Discoidin Domain Receptors in Prostate Cancer 5b. GRANT NUMBER W81XWH-15...DDRs in prostate cancer . During the first funding period, we conducted immunohistochemical studies by staining a 200 case Grade/Stage tissue

  1. Purinergic Receptors in Ocular Inflammation

    Directory of Open Access Journals (Sweden)

    Ana Guzman-Aranguez

    2014-01-01

    Full Text Available Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly “tuned,” can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P1,P4-diadenosine tetraphosphate (Ap4A, and P1,P5-diadenosine pentaphosphate (Ap5A are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particular A2A adenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3 receptor, selective agonists like N6-(3-iodobenzyl-5′-N-methylcarboxamidoadenosine (CF101 have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation.

  2. Bimodal activation of different neuron classes with the spectrally red-shifted channelrhodopsin chimera C1V1 in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Karen Erbguth

    Full Text Available The C. elegans nervous system is particularly well suited for optogenetic analyses of circuit function: Essentially all connections have been mapped, and light can be directed at the neuron of interest in the freely moving, transparent animals, while behavior is observed. Thus, different nodes of a neuronal network can be probed for their role in controlling a particular behavior, using different optogenetic tools for photo-activation or -inhibition, which respond to different colors of light. As neurons may act in concert or in opposing ways to affect a behavior, one would further like to excite these neurons concomitantly, yet independent of each other. In addition to the blue-light activated Channelrhodopsin-2 (ChR2, spectrally red-shifted ChR variants have been explored recently. Here, we establish the green-light activated ChR chimera C1V1 (from Chlamydomonas and Volvox ChR1's for use in C. elegans. We surveyed a number of red-shifted ChRs, and found that C1V1-ET/ET (E122T; E162T works most reliable in C. elegans, with 540-580 nm excitation, which leaves ChR2 silent. However, as C1V1-ET/ET is very light sensitive, it still becomes activated when ChR2 is stimulated, even at 400 nm. Thus, we generated a highly efficient blue ChR2, the H134R; T159C double mutant (ChR2-HR/TC. Both proteins can be used in the same animal, in different neurons, to independently control each cell type with light, enabling a further level of complexity in circuit analyses.

  3. Structures of the G81A mutant form of the active chimera of (S)-mandelate dehydrogenase and its complex with two of its substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar, Narayanasami; Dewanti, Asteriani; Merli, Angelo; Rossi, Gian Luigi; Mitra, Bharati; Mathews, F. Scott; (Cornell); (Parma); (WCU); (WSU); (WU-MED)

    2009-06-12

    (S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida, a membrane-associated flavoenzyme, catalyzes the oxidation of (S)-mandelate to benzoylformate. Previously, the structure of a catalytically similar chimera, MDH-GOX2, rendered soluble by the replacement of its membrane-binding segment with the corresponding segment of glycolate oxidase (GOX), was determined and found to be highly similar to that of GOX except within the substituted segments. Subsequent attempts to cocrystallize MDH-GOX2 with substrate proved unsuccessful. However, the G81A mutants of MDH and of MDH-GOX2 displayed {approx}100-fold lower reactivity with substrate and a modestly higher reactivity towards molecular oxygen. In order to understand the effect of the mutation and to identify the mode of substrate binding in MDH-GOX2, a crystallographic investigation of the G81A mutant of the MDH-GOX2 enzyme was initiated. The structures of ligand-free G81A mutant MDH-GOX2 and of its complexes with the substrates 2-hydroxyoctanoate and 2-hydroxy-3-indolelactate were determined at 1.6, 2.5 and 2.2 {angstrom} resolution, respectively. In the ligand-free G81A mutant protein, a sulfate anion previously found at the active site is displaced by the alanine side chain introduced by the mutation. 2-Hydroxyoctanoate binds in an apparently productive mode for subsequent reaction, while 2-hydroxy-3-indolelactate is bound to the enzyme in an apparently unproductive mode. The results of this investigation suggest that a lowering of the polarity of the flavin environment resulting from the displacement of nearby water molecules caused by the glycine-to-alanine mutation may account for the lowered catalytic activity of the mutant enzyme, which is consistent with the 30 mV lower flavin redox potential. Furthermore, the altered binding mode of the indolelactate substrate may account for its reduced activity compared with octanoate, as observed in the crystalline state.

  4. Human-derived IgG level as an indicator for EBV-associated lymphoma model in Hu-PBL/SCID chimeras.

    Science.gov (United States)

    Tang, Yunlian; He, Rongfang; Zhang, Yang; Liu, Fang; Cheng, Ailan; Wu, Yimou; Gan, Runliang

    2011-05-09

    Epstein-Barr virus (EBV) has a close association with various types of human lymphomas. Animal models are essential to elucidate the pathogenesis of human EBV-associated lymphomas. The aim of the present study is to evaluate the association between human IgG concentration and EBV-associated lymphoma development in huPBL/SCID mice. Human peripheral blood lymphocytes (hu-PBL) from EBV-seropositive donors were inoculated intraperitoneally into SCID mouse. Immunohistochemical staining was used to examine differentiated antigens of tumor cells. EBV infection of the induced tumors was detected by in situ hybridization. IgG concentrations in the serums of 12 SCID mice were measured by unidirectional immunodiffusion assay. 21 out of 29 mice developed tumors in their body. Immunohistochemical staining showed that all induced tumors were LCA (leukocyte common antigen) positive, B-cell markers (CD20, CD79a) positive, and T-cell markers (both CD3 and CD45RO) negative. The tumors can be diagnosed as human B-cell lymphomas by these morphological and immunohistochemical features. In situ hybridization exhibited resultant tumor cells had EBV encoded small RNA-1 (EBER-1). Human-derived IgG could be found in the serum from SCID mice on the 15th day following hu-PBL transplantation, and IgG levels increased with the tumor development in 6 hu-PBL/SCID chimeras. Intraperitoneal transfer of hu-PBLs from EBV+ donors to SCID mice leads to high human IgG levels in mouse serum and B cell lymphomas. Our findings suggest that increasing levels of human-derived IgG in peripheral blood from hu-PBL/SCID mice could be used to monitor EBV-related human B-cell lymphoma development in experimental animals.

  5. Anti-CD20 single chain variable antibody fragment-apolipoprotein A-I chimera containing nanodisks promote targeted bioactive agent delivery to CD20-positive lymphomas.

    Science.gov (United States)

    Crosby, Natasha M; Ghosh, Mistuni; Su, Betty; Beckstead, Jennifer A; Kamei, Ayako; Simonsen, Jens B; Luo, Bing; Gordon, Leo I; Forte, Trudy M; Ryan, Robert O

    2015-08-01

    A fusion protein comprising an α-CD20 single chain variable fragment (scFv) antibody, a spacer peptide, and human apolipoprotein (apo) A-I was constructed and expressed in Escherichia coli. The lipid interaction properties intrinsic to apoA-I as well as the antigen recognition properties of the scFv were retained by the chimera. scFv•apoA-I was formulated into nanoscale reconstituted high-density lipoprotein particles (termed nanodisks; ND) and incubated with cultured cells. α-CD20 scFv•apoA-I ND bound to CD20-positive non-Hodgkins lymphoma (NHL) cells (Ramos and Granta) but not to CD20-negative T lymphocytes (i.e., Jurkat). Binding to NHL cells was partially inhibited by pre-incubation with rituximab, a monoclonal antibody directed against CD20. Confocal fluorescence microscopy analysis of Granta cells following incubation with α-CD20 scFv•apoA-I ND formulated with the intrinsically fluorescent hydrophobic polyphenol, curcumin, revealed α-CD20 scFv•apoA-I localizes to the cell surface, while curcumin off-loads and gains entry to the cell. Compared to control incubations, viability of cultured NHL cells was decreased upon incubation with α-CD20 scFv•apoA-I ND harboring curcumin. Thus, formulation of curcumin ND with α-CD20 scFv•apoA-I as the scaffold component confers cell targeting and enhanced bioactive agent delivery, providing a strategy to minimize toxicity associated with chemotherapeutic agents.

  6. Chimeras of mature pediocin PA-1 fused to the signal peptide of enterocin P permits the cloning, production, and expression of pediocin PA-1 in Lactococcus lactis.

    Science.gov (United States)

    Martín, María; Gutiérrez, Jorge; Criado, Raquel; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E

    2007-12-01

    Chimeras of pediocin PA-1 (PedA-1), a bacteriocin produced by Pediococcus acidilactici PLBH9, fused to the signal peptide of enterocin P (EntP), a sec-dependent bacteriocin produced by Enterococcus faecium P13, permitted the production of PedA-1 in Lactococcus lactis. Chimeric genes encoding the EntP signal peptide (SP(entP)) fused to mature PedA-1 (pedA), with or without its immunity gene (pedB), were cloned into the expression vector pMG36c to generate the recombinant plasmids pMPP9 (SP(entP):pedA) and pMPP14i (SP(entP):pedA + pedB). Transformation of competent L. lactis subsp. lactis IL1403, L. lactis subsp. cremoris NZ9000, and L. lactis subsp. lactis DPC5598 with the recombinant plasmids has permitted the detection and quantitation of PedA-1 and the coproduction of nisin A and PedA-1 in supernatants of producer cells with specific anti-PedA-1 antibodies and a noncompetitive indirect enzyme-linked immunosorbent assay. Recombinant L. lactis hosts carrying pMPP9 or pMPP14i displayed antimicrobial activity, suggesting that mature PedA-1 fused to SP(EntP) is the minimum requirement for the synthesis, processing, and secretion of biologically active PedA-1 in L. lactis. However, the production and antimicrobial activity of the PedA-1 produced by L. lactis was lower than that produced by the P. acidilactici control strains.

  7. Advanced Modelling and Functional Characterization of B2 Bradykinin Receptor

    Directory of Open Access Journals (Sweden)

    Muhammad Saad Khan

    2015-06-01

    Full Text Available Hereditary angioedema (giant hives is an autosomal dominant malady characterized by repetitive episodes of probably life-threatening angioedema due to a partial deficiency of C1 inhibitor. B2 Bradykinin Receptor's (BKRB2 amino acid sequence is deposited within UniProt under accession number P30411. The Physicochemical properties of BKRB2 sequence are determined by using ProtParam. BKRB2's secondary structure was predicted through PROTEUS. Pfam domain was used for functional characterization of BKRB2. PSI-BLAST was used to find homologs of known structure. Modelling by satisfaction of spatial restraints, either uses distance geometry or optimization techniques to satisfy spatial restraints performed by MODELLER. The quality of the generated model was evaluated with PROCHECK by Ramachandran plot analysis. Validation of the generated models was further performed by WHAT IF. ProSA was used for the analysis of Z-scores and energy plots. The 3D structures of the modeled proteins were analyzed using UCSF Chimera. Clustal Omega is used for multiple sequence alignment that uses seeded guide trees and HMM profile-profile techniques to generate alignments.

  8. A Modular High-Throughput In Vivo Screening Platform Based on Chimeric Bacterial Receptors

    DEFF Research Database (Denmark)

    Lehning, Christina Eva; Heidelberger, Jan B; Reinhard, John

    2017-01-01

    currently existing small molecule libraries. Here, we have examined two previously created Tar-EnvZ chimeras and a novel NarX-EnvZ chimera. We demonstrate that it is possible to couple periplasmic stimulus-perceiving domains to an invariable cytoplasmic domain that governs transcription of a dynamic...... fluorescent reporter system. Furthermore, we show that aromatic tuning, or repositioning the aromatic residues at the end of the second transmembrane helix (TM2), modulates baseline signal output from the tested chimeras and even restores output from a nonfunctional NarX-EnvZ chimera. Finally, we observe...

  9. Immunizing adult female mice with a TcpA-A2-CTB chimera provides a high level of protection for their pups in the infant mouse model of cholera.

    Directory of Open Access Journals (Sweden)

    Gregory A Price

    2014-12-01

    Full Text Available Vibrio cholerae expresses two primary virulence factors, cholera toxin (CT and the toxin-coregulated pilus (TCP. CT causes profuse watery diarrhea, and TCP (composed of repeating copies of the major pilin TcpA is required for intestinal colonization by V. cholerae. Antibodies to CT or TcpA can protect against cholera in animal models. We developed a TcpA holotoxin-like chimera (TcpA-A2-CTB to elicit both anti-TcpA and anti-CTB antibodies and evaluated its immunogenicity and protective efficacy in the infant mouse model of cholera. Adult female CD-1 mice were immunized intraperitoneally three times with the TcpA-A2-CTB chimera and compared with similar groups immunized with a TcpA+CTB mixture, TcpA alone, TcpA with Salmonella typhimurium flagellin subunit FliC as adjuvant, or CTB alone. Blood and fecal samples were analyzed for antigen-specific IgG or IgA, respectively, using quantitative ELISA. Immunized females were mated; their reared offspring were challenged orogastrically with 10 or 20 LD50 of V. cholerae El Tor N16961; and vaccine efficacy was assessed by survival of the challenged pups at 48 hrs. All pups from dams immunized with the TcpA-A2-CTB chimera or the TcpA+CTB mixture survived at both challenge doses. In contrast, no pups from dams immunized with TcpA+FliC or CTB alone survived at the 20 LD50 challenge dose, although the anti-TcpA or anti-CTB antibody level elicited by these immunizations was comparable to the corresponding antibody level achieved by immunization with TcpA-A2-CTB or TcpA+CTB. Taken together, these findings comprise strong preliminary evidence for synergistic action between anti-TcpA and anti-CTB antibodies in protecting mice against cholera. Weight loss analysis showed that only immunization of dams with TcpA-A2-CTB chimera or TcpA+CTB mixture protected their pups against excess weight loss from severe diarrhea. These data support the concept of including both TcpA and CTB as immunogens in development of an

  10. The androgen receptor and estrogen receptor

    NARCIS (Netherlands)

    Oosterkamp, H.M.; Bernards, R.A.

    2002-01-01

    The androgen receptor (AR) and the estrogen receptors (ER) are members of the nuclear receptor (NR) family. These NRs are distinguished from the other transcription factors by their ability to control gene expression upon ligand binding (steroids, retinoids, thyroid hormone, vitamin D, fatty acids,

  11. A case-based evaluation of SRD5A1, SRD5A2, AR, and ADRA1A as candidate genes for severity of BPH.

    Science.gov (United States)

    Klotsman, M; Weinberg, C R; Davis, K; Binnie, C G; Hartmann, K E

    2004-01-01

    In men with a clinical diagnosis of benign prostatic hyperplasia (BPH), polytomous logistic regression analysis was conducted to evaluate associations between two silent polymorphisms in SRD5A1 (codon positions 30 and 116), two polymorphisms in SRD5A2 (Val89Leu substitution and C to T transition in intron 1), a trinucleotide (CAG)n repeat in androgen receptor (AR), and an Arg492Cys substitution in ADRA1A and clinical parameters that characterize severity of BPH. Candidate gene selection was based on two mechanistic pathways targeted by pharmacotherapy for BPH: (1) androgen metabolic loci contributing to prostate growth (static obstruction); and (2) factors affecting smooth muscle tone (dynamic obstruction). Polymorphisms in SRD5A2 were not associated with severity of BPH; however, SRD5A1 polymorphisms were associated with severity of BPH. The process(es) in which these silent single-nucleotide polymorphisms (SNPs) influence BPH phenotypes is unknown and additional studies will be needed to assess whether these SNPs have direct functional consequences. The characterization of additional molecular factors that contribute to static and dynamic obstruction may help predict response to pharmacotherapy and serve to identify novel drug targets for the clinical management of BPH.

  12. Wnt5a functions in planar cell polarity regulation in mice.

    Science.gov (United States)

    Qian, Dong; Jones, Chonnettia; Rzadzinska, Agnieszka; Mark, Sharayne; Zhang, Xiaohui; Steel, Karen P; Dai, Xing; Chen, Ping

    2007-06-01

    Planar cell polarity (PCP) refers to the polarization of cells within the plane of a cell sheet. A distinctive epithelial PCP in vertebrates is the uniform orientation of stereociliary bundles of the sensory hair cells in the mammalian cochlea. In addition to establishing epithelial PCP, planar polarization is also required for convergent extension (CE); a polarized cellular movement that occurs during neural tube closure and cochlear extension. Studies in Drosophila and vertebrates have revealed a conserved PCP pathway, including Frizzled (Fz) receptors. Here we use the cochlea as a model system to explore the involvement of known ligands of Fz, Wnt morphogens, in PCP regulation. We show that Wnt5a forms a reciprocal expression pattern with a Wnt antagonist, the secreted frizzled-related protein 3 (Sfrp3 or Frzb), along the axis of planar polarization in the cochlear epithelium. We further demonstrate that Wnt5a antagonizes Frzb in regulating cochlear extension and stereociliary bundle orientation in vitro, and that Wnt5a(-/-) animals have a shortened and widened cochlea. Finally, we show that Wnt5a is required for proper subcellular distribution of a PCP protein, Ltap/Vangl2, and that Wnt5a interacts genetically with Ltap/Vangl2 for uniform orientation of stereocilia, cochlear extension, and neural tube closure. Together, these findings demonstrate that Wnt5a functions in PCP regulation in mice.

  13. Subcellular localization of the hypusine-containing eukaryotic initiation factor 5A by immunofluorescent staining and green fluorescent protein tagging.

    Science.gov (United States)

    Jao, David Li-En; Yu Chen, Kuang

    2002-01-01

    Eukaryotic initiation factor 5A (eIF-5A) is the only protein in nature that contains hypusine, an unusual amino acid residue formed posttranslationally by deoxyhypusine synthase and deoxyhypusine hydroxylase. Although the eIF-5A gene is essential for cell survival and proliferation, the precise function and localization of eIF-5A remain unclear. In this study, we have determined the subcellular distribution of eIF-5A by indirect immunofluorescent staining and by direct visualization of green fluorescent protein tagged eIF-5A (GFP-eIF5A). Immunofluorescent staining of the formaldehyde-fixed cells showed that eIF-5A was present in both the nucleus and cytoplasm. Only the nuclear eIF-5A was resistant to Triton extraction. Direct visualization of GFP tagged eIF-5A in living cells revealed the same whole-cell distribution pattern. However, a fusion of an additional pyruvate kinase (PK) moiety into GFP-eIF-5A precluded the nuclear localization of GFP-PK-eIF-5A fusion protein. Fusion of the GFP-PK tag with three different domains of eIF-5A also failed to reveal any nuclear localization of the fusion proteins, suggesting the absence of receptor-mediated nuclear import. Using interspecies heterokaryon fusion assay, we could detect the nuclear export of GFP-Rev, but not of GFP-eIF-5A. The whole-cell distribution pattern of eIF-5A was recalcitrant to the treatments that included energy depletion, heat shock, and inhibition of transcription, translation, polyamine synthesis, or CRM1-dependent nuclear export. Collectively, our data indicate that eIF-5A gains nuclear entry via passive diffusion, but it does not undergo active nucleocytoplasmic shuttling. Copyright 2002 Wiley-Liss, Inc.

  14. GLP-1 Receptor Agonists

    Science.gov (United States)

    ... in Balance › GLP-1 Receptor Agonists Fact Sheet GLP-1 Receptor Agonists May, 2012 Download PDFs English Espanol Editors Silvio ... are too high or too low. What are GLP-1 receptor agonist medicines? GLP-1 receptor agonist medicines, also called ...

  15. Discoidin Domain Receptors: Novel Targets in Breast Cancer Bone Metastasis

    Science.gov (United States)

    2017-02-01

    AWARD NUMBER: W81XWH-16-1-0046 TITLE: Discoidin Domain Receptors: Novel Targets in Breast Cancer Bone Metastasis PRINCIPAL INVESTIGATOR: Dr...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Discoidin Domain Receptors: Novel Targets in Breast Cancer Bone Metastasis 5b. GRANT NUMBER W81XWH-16-1-0046 5c...14. ABSTRACT Here we report major findings for our project aimed at studying the expression of Discoidin Domain Receptors (DDRs) in breast cancer

  16. Directed Evolution of a Cyclized Peptoid-Peptide Chimera against a Cell-Free Expressed Protein and Proteomic Profiling of the Interacting Proteins to Create a Protein-Protein Interaction Inhibitor.

    Science.gov (United States)

    Kawakami, Takashi; Ogawa, Koji; Hatta, Tomohisa; Goshima, Naoki; Natsume, Tohru

    2016-06-17

    N-alkyl amino acids are useful building blocks for the in vitro display evolution of ribosomally synthesized peptides because they can increase the proteolytic stability and cell permeability of these peptides. However, the translation initiation substrate specificity of nonproteinogenic N-alkyl amino acids has not been investigated. In this study, we screened various N-alkyl amino acids and nonamino carboxylic acids for translation initiation with an Escherichia coli reconstituted cell-free translation system (PURE system) and identified those that efficiently initiated translation. Using seven of these efficiently initiating acids, we next performed in vitro display evolution of cyclized peptidomimetics against an arbitrarily chosen model human protein (β-catenin) cell-free expressed from its cloned cDNA (HUPEX) and identified a novel β-catenin-binding cyclized peptoid-peptide chimera. Furthermore, by a proteomic approach using direct nanoflow liquid chromatography-tandem mass spectrometry (DNLC-MS/MS), we successfully identified which protein-β-catenin interaction is inhibited by the chimera. The combination of in vitro display evolution of cyclized N-alkyl peptidomimetics and in vitro expression of human proteins would be a powerful approach for the high-speed discovery of diverse human protein-targeted cyclized N-alkyl peptidomimetics.

  17. Overexpression of Wnt5a Promotes Angiogenesis in NSCLC

    Directory of Open Access Journals (Sweden)

    Lingli Yao

    2014-01-01

    Full Text Available To evaluate Wnt5a expression and its role in angiogenesis of non-small-cell lung cancer (NSCLC, immunohistochemistry and CD31/PAS double staining were performed to examine the Wnt5a expression and we analyze the relationships between Wnt5a and microvessel density (MVD, vasculogenic mimicry (VM, and some related proteins. About 61.95% of cases of 205 NSCLC specimens exhibited high expression of Wnt5a. Wnt5a expression level was upregulated in the majority of NSCLC tissues, especially in squamous cell carcinoma, while its expression level in adenocarcinoma was the lowest. Wnt5a was also found more frequently expressed in male patients than in female patients. Except for histological classification and gender, little association was found between Wnt5a and clinicopathological features. Moreover, Wnt5a was significantly correlated with prognosis. Overall, Wnt5a-positive expression in patients with NSCLC indicated shorter survival time. As for vascularization in NSCLC, Wnt5a showed close association with VM and MVD. In addition, Wnt5a was positively related with β-catenin-nu, VE-cadherin, MMP2, and MMP9. The results demonstrated that overexpression of Wnt5a may play an important role in NSCLC angiogenesis and it may function via canonical Wnt signal pathway. This study will provide evidence for further research on NSCLC and also will provide new possible target for NSCLC diagnosis and therapeutic strategies.

  18. Wnt5a regulates growth, patterning, and odontoblast differentiation of developing mouse tooth

    Science.gov (United States)

    Lin, Minkui; Li, Lu; Liu, Chao; Liu, Hongbing; He, Fenglei; Yan, Fuhua; Zhang, Yanding; Chen, YiPing

    2011-01-01

    Wnt/β-catenin signaling is essential for tooth development beyond the bud stage, but little is known about the role of non-canonical Wnt signaling in odontogenesis. Here we compared the expression of Wnt5a, a representative of noncanonical Wnts, with that of Ror2, the Wnt5a receptor for non-canonical signaling, in the developing tooth, and analyzed tooth phenotype in Wnt5a mutants. Wnt5a deficient mice exhibit retarded tooth development beginning from E16.5, leading to the formation of smaller and abnormally patterned teeth with a delayed odontoblast differentiation at birth. These defects are associated with upregulated Axin2 and Shh expression in the dental epithelium and reduced levels of cell proliferation in the dental epithelium and mesenchyme. Retarded tooth development and defective odontoblast differentiation were also observed in Ror2 mutant mice. Our results suggest that Wnt5a regulates growth, patterning, and odontoblast differentiation during odontogenesis, at least partially by modulating Wnt/β-catenin canonical signaling. PMID:21246660

  19. Differential expression of eIF5A-1 and eIF5A-2 in human cancer cells

    Science.gov (United States)

    Clement, Paul M. J.; Johansson, Hans E.; Wolff, Edith C.; Park, Myung H.

    2015-01-01

    Eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein that contains the unusual amino acid hypusine [Nε-(4-amino-2-hydroxybutyl)lysine]. Vertebrates carry two genes that encode two eIF5A isoforms, eIF5A-1 and eIF5A-2, which, in humans, are 84% identical. eIF5A-1 mRNA (1.3 kb) and protein (18 kDa) are constitutively expressed in human cells. In contrast, expression of eIF5A-2 mRNA (0.7–5.6 kb) and eIF5A-2 protein (20 kDa) varies widely. Whereas eIF5A-2 mRNA was demonstrable in most cells, eIF5A-2 protein was detectable only in the colorectal and ovarian cancer-derived cell lines SW-480 and UACC-1598, which showed high overexpression of eIF5A-2 mRNA. Multiple forms of eIF5A-2 mRNA (5.6, 3.8, 1.6 and 0.7 kb) were identified as the products of one gene with various lengths of 3′-UTR, resulting from the use of different polyadenylation (AAUAAA) signals. The eIF5A-1 and eIF5A-2 precursor proteins were modified comparably in UACC-1598 cells and both were similarly stable. When eIF5A-1 and eIF5A-2 coding sequences were expressed from mammalian vectors in 293T cells, eIF5A-2 precursor was synthesized at a level comparable to that of eIF5A-1 precursor, indicating that the elements causing inefficient translation of eIF5A-2 mRNA reside outside of the open reading frame. On sucrose gradient separation of cytoplasmic RNA, only a small portion of total eIF5A-2 mRNA was associated with the polysomal fraction, compared with a much larger portion of eIF5A-1 mRNA in the polysomes. These findings suggest that the failure to detect eIF5A-2 protein even in eIF5A-2 mRNA positive cells is, at least in part, due to inefficient translation. PMID:16519677

  20. Phytoceramide and sphingoid bases derived from brewer's yeast Saccharomyces pastorianus activate peroxisome proliferator-activated receptors

    Directory of Open Access Journals (Sweden)

    Mitsutake Susumu

    2011-08-01

    Full Text Available Abstract Background Peroxisome proliferator-activated receptors (PPARs are ligand-activated transcription factors that regulate lipid and glucose metabolism. PPARα is highly expressed in the liver and controls genes involved in lipid catabolism. We previously reported that synthetic sphingolipid analogs, part of which contains shorter-length fatty acid chains than natural sphingolipids, stimulated the transcriptional activities of PPARs. Sphingosine and dihydrosphingosine (DHS are abundant sphingoid bases, and ceramide and dihydroceramide are major ceramide species in mammals. In contrast, phytosphingosine (PHS and DHS are the main sphingoid bases in fungi. PHS and phytoceramide exist in particular tissues such as the epidermis in mammals, and involvement of ceramide species in PPARβ activation in cultured keratinocytes has been reported. The purpose of the present study is to investigate whether natural sphingolipids with C18 fatty acid and yeast-derived sphingoid bases activate PPARs as PPAR agonists. Method Lipids of brewer's yeast contain PHS- and DHS-based sphingolipids. To obtain the sphingoid bases, lipids were extracted from brewer's yeast and acid-hydrolyzed. The sphingoid base fraction was purified and quantified. To assess the effects of sphingolipids on PPAR activation, luciferase reporter assay was carried out. NIH/3T3 and human hepatoma (HepG2 cells were transfected with expression vectors for PPARs and retinoid × receptors, and PPAR responsive element reporter vector. When indicated, the PPAR/Gal4 chimera system was performed to enhance the credibility of experiments. Sphingolipids were added to the cells and the dual luciferase reporter assay was performed to determine the transcriptional activity of PPARs. Results We observed that phytoceramide increased the transcriptional activities of PPARs significantly, whereas ceramide and dihydroceramide did not change PPAR activities. Phytoceramide also increased transactivation of

  1. Phytoceramide and sphingoid bases derived from brewer's yeast Saccharomyces pastorianus activate peroxisome proliferator-activated receptors.

    Science.gov (United States)

    Murakami, Itsuo; Wakasa, Yukari; Yamashita, Shinji; Kurihara, Toshio; Zama, Kota; Kobayashi, Naoyuki; Mizutani, Yukiko; Mitsutake, Susumu; Shigyo, Tatsuro; Igarashi, Yasuyuki

    2011-08-24

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that regulate lipid and glucose metabolism. PPARα is highly expressed in the liver and controls genes involved in lipid catabolism. We previously reported that synthetic sphingolipid analogs, part of which contains shorter-length fatty acid chains than natural sphingolipids, stimulated the transcriptional activities of PPARs. Sphingosine and dihydrosphingosine (DHS) are abundant sphingoid bases, and ceramide and dihydroceramide are major ceramide species in mammals. In contrast, phytosphingosine (PHS) and DHS are the main sphingoid bases in fungi. PHS and phytoceramide exist in particular tissues such as the epidermis in mammals, and involvement of ceramide species in PPARβ activation in cultured keratinocytes has been reported. The purpose of the present study is to investigate whether natural sphingolipids with C18 fatty acid and yeast-derived sphingoid bases activate PPARs as PPAR agonists. Lipids of brewer's yeast contain PHS- and DHS-based sphingolipids. To obtain the sphingoid bases, lipids were extracted from brewer's yeast and acid-hydrolyzed. The sphingoid base fraction was purified and quantified. To assess the effects of sphingolipids on PPAR activation, luciferase reporter assay was carried out. NIH/3T3 and human hepatoma (HepG2) cells were transfected with expression vectors for PPARs and retinoid × receptors, and PPAR responsive element reporter vector. When indicated, the PPAR/Gal4 chimera system was performed to enhance the credibility of experiments. Sphingolipids were added to the cells and the dual luciferase reporter assay was performed to determine the transcriptional activity of PPARs. We observed that phytoceramide increased the transcriptional activities of PPARs significantly, whereas ceramide and dihydroceramide did not change PPAR activities. Phytoceramide also increased transactivation of PPAR/Gal4 chimera receptors. Yeast-derived sphingoid

  2. Loss of Wnt5a and Ror2 protein in hepatocellular carcinoma associated with poor prognosis

    Institute of Scientific and Technical Information of China (English)

    Ming Geng; Yong-Cheng Cao; Ying-Jian Chen; Hui Jiang; Li-Quan Bi; Xiao-Hong Liu

    2012-01-01

    AIM:To investigate the expression and clinical significance of Wnt member 5a (Wnt5a) and receptor tyrosine kinase-like orphan receptor 2 (Ror2) in hepatocellular carcinoma (HCC).METHODS:In HCC tissues obtained from 85 patients,the protein expressions of Wnt5a,Ror2,β-catenin,and Ki-67 via immunohistochemical staining using the Envision Plus System.The antibody binding was visualized with 3,3'-diaminobenzidine tetrahydrochloride (DAB) before brief counterstaining with Mayer's hematoxylin.The degree of immunohistochemical staining was recorded using a semiquantitative and subjective grading system.The mRNA expression of Ror2 was examined by real-time reverse transcription polymerase chain reaction,including nineteen of the 85 HCC and three normal liver tissues.The ratios of Ror2 to the housekeeping gene GAPDH represented the normalized relative levels of Ror2 expression.To determine the prognostic factor,the outcome of the 82 patients was determined by reviewing their medical charts.The overall and disease-free survival rates were estimated using the Kaplan-Meier method and compared with the log-rank test.The prognostic analysis was carried out with univariate and multivariate Cox regressions models.RESULTS:Compared to nontumorous (hepatitis or cirrhotic) tissues,Ror2 mRNA expression was clearly decreased in HCC.Ror2 and Wnt5a protein expressions in the majority of HCC patients (63% and 77%,respectively) was significantly less in tumor tissues,as compared to adjacent nontumorous tissues,and this reduction was correlated with increasing serum α-fetoprotein and tumor stage.In 68% (58/85) of the HCC cases,the expression of β-catenin in tumor tissues was either downregulated in the cellular membrane,upregulated in the cytoplasm,or both.Survival analysis indicated that Wnt5a and Ror2 protein expressions could be regarded as independent prognostic factors for HCC; HCC patients with decreased Wnt5a or Ror2 protein expression had a poorer prognosis than those with

  3. Analysis list: Stat5a [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Stat5a Blood,Breast,Embryonic fibroblast,Liver,Pluripotent stem cell + mm9 http://d...at5a.Breast.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Stat5a.Embryonic_fibroblast...dbc.jp/kyushu-u/mm9/colo/Stat5a.Pluripotent_stem_cell.tsv http://dbarchive.biosci...barchive.biosciencedbc.jp/kyushu-u/mm9/target/Stat5a.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/St...at5a.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Stat5a.10.tsv http://dbarchive.biosc

  4. Role of ERα in the differential response of Stat5a loss in susceptibility to mammary preneoplasia and DMBA-induced carcinogenesis

    OpenAIRE

    Miermont, Anne M.; Parrish, Angela R.; Furth, Priscilla A

    2010-01-01

    Deregulated estrogen signaling is evidently linked to breast cancer pathophysiology, although the role of signal transducer and activator of transcription (Stat)5a, integral to normal mammary gland development, is less clear. A mouse model of mammary epithelial cell-targeted deregulated estrogen receptor α (ERα) expression [conditional ERα in mammary epithelium (CERM)] was crossed with mice carrying a germ line deletion of Stat5a [Stat5a−/−] to investigate interactions between ERα and Stat5a ...

  5. C5a enhances dysregulated inflammatory and angiogenic responses to malaria in vitro: potential implications for placental malaria.

    Directory of Open Access Journals (Sweden)

    Andrea Conroy

    Full Text Available BACKGROUND: Placental malaria (PM is a leading cause of maternal and infant mortality. Although the accumulation of parasitized erythrocytes (PEs and monocytes within the placenta is thought to contribute to the pathophysiology of PM, the molecular mechanisms underlying PM remain unclear. Based on the hypothesis that excessive complement activation may contribute to PM, in particular generation of the potent inflammatory peptide C5a, we investigated the role of C5a in the pathogenesis of PM in vitro and in vivo. METHODOLOGY AND PRINCIPAL FINDINGS: Using primary human monocytes, the interaction between C5a and malaria in vitro was assessed. CSA- and CD36-binding PEs induced activation of C5 in the presence of human serum. Plasmodium falciparum GPI (pfGPI enhanced C5a receptor expression (CD88 on monocytes, and the co-incubation of monocytes with C5a and pfGPI resulted in the synergistic induction of cytokines (IL-6, TNF, IL-1beta, and IL-10, chemokines (IL-8, MCP-1, MIP1alpha, MIP1beta and the anti-angiogenic factor sFlt-1 in a time and dose-dependent manner. This dysregulated response was abrogated by C5a receptor blockade. To assess the potential role of C5a in PM, C5a plasma levels were measured in malaria-exposed primigravid women in western Kenya. Compared to pregnant women without malaria, C5a levels were significantly elevated in women with PM. CONCLUSIONS AND SIGNIFICANCE: These results suggest that C5a may contribute to the pathogenesis of PM by inducing dysregulated inflammatory and angiogenic responses that impair placental function.

  6. Bioinformatic analysis ofhuman nuclear receptornr5a2(hblf) genomic sequence

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We have cloned the cDNA of human nuclear receptor nrSa2(hb1f) gene and obtained its whole genomic sequence previously. In this work we carried out in-depth bioinformatic analysis on the genomic sequence of nrSa2(hb1f) gene. Sequence comparison and prediction algorithms implicated that there might be additional coding regions in the 210 kb genomic sequence besides known exons,especially in the two largest introns. Comparison of the structures of nr5a loci in different species revealed distinguishable conservation and apparent gene duplication during evolution. The remarkable conservation among promoters of zebrafish, mouse and human nr5a2 genes suggested that they would be regulated by the same transcription factors.

  7. Interaction of the LILRB1 inhibitory receptor with HLA class Ia dimers.

    Science.gov (United States)

    Baía, Diogo; Pou, Jordi; Jones, Des; Mandelboim, Ofer; Trowsdale, John; Muntasell, Aura; López-Botet, Miguel

    2016-07-01

    Leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1) has been reported to interact with a wide spectrum of HLA class I (HLA-I) molecules, albeit with different affinities determined by allelic polymorphisms and conformational features. HLA-G dimerization and the presence of intracellular Cys residues in HLA-B7 have been shown to be critical for their recognition by LILRB1. We hypothesized that dimerization of classical HLA class Ia molecules, previously detected in exosomes, might enhance their interaction with LILRB1. A soluble LILRB1-Fc fusion protein and a sensitive cellular reporter system expressing a LILRB1-ζ chimera were employed to assess receptor interaction with different HLA class Ia molecules transfected in the human lymphoblastoid 721.221 cell line. Under these conditions, intracellular Cys residues and HLA-I dimerization appeared associated with increased LILRB1 recognition. On the other hand, a marginal interaction of LILRB1 with primary monocytic cells, irrespective of their high HLA-I expression, was enhanced by type I interferon (IFN). This effect appeared disproportionate to the cytokine-induced increase of surface HLA-I expression and was accompanied by detection of HLA class Ia dimers. Altogether, the results support that a regulated assembly of these noncanonical HLA-I conformers during the immune response may enhance the avidity of their interaction with LILRB1.

  8. Heterologous Expression of Rat Testis GABAA Receptor β3t Splicing Variant in CHO Cells

    Institute of Scientific and Technical Information of China (English)

    Shi-feng LI; Yu-guang CHEN; Yuan-chang YAN; Yi-ping LI

    2004-01-01

    Objective To characterize a possible retention function of unique sequence in the 5'end of rat testis GABAA receptor β3t splicing variantMethods Rat testis GABAA receptor β3t splicing variant cDNA was cloned and two eukaryotic expression recombinant plasmids of pEGFP-N1 and pEGFP-C1 were constructed respectively by fusing green fluorescent protein to the N or C-terminus of β3t isoform. The recombinant plasmids were transfected into CHO cells by calcium phosphate co-precipitation method. Fluorescence microscope and laser confocal microscope were used to analyze localization of β3t in the transfected cells. ConA-Texas-Red was used to label cell ER and the localization of rat testis β3t splicing variant in CHO cells was determined.Results When rat testis β3t splicing variant was expressed in CHO cells, two expression patterns were delineated, the distributions of uniform and mainly discrete intracellular compartments respectively. The chimera product failed to be translocated into the cell surface when expressed in CHO cells; whereas the β3 subunit of rat brain was incorporated into the plasma membrane.Conclusion The inability of β3t to target into the ER may be a consequence of the unique 25 specific amino acid segments in the N terminus.

  9. The search for the chimera

    CERN Document Server

    Randi, J

    1991-01-01

    Session 1 Mr. Randi will give an update of his lecture to the American Physical Society on the occasion of his award of the 1989 Forum Prize. The citation said: "for his unique defense of Science and the scientific method in many disciplines, including physics, against pseudoscience, frauds and charlatans. His use of scientific techniques has contributed to refuting suspicious and fraudulent claims of paranormal results. He has contributed significantly to public understanding of important issues where science and society interact". He is a professional magician and author of many books. He worked with John Maddox, the Editor of Nature to investigate the claims of "water with memory".

  10. Acetylcholine receptor antibody

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003576.htm Acetylcholine receptor antibody To use the sharing features on this page, please enable JavaScript. Acetylcholine receptor antibody is a protein found in the blood ...

  11. Phosphodiesterase-5A (PDE5A) is localized to the endothelial caveolae and modulates NOS3 activity.

    Science.gov (United States)

    Gebska, Milena A; Stevenson, Blake K; Hemnes, Anna R; Bivalacqua, Trinity J; Haile, Azeb; Hesketh, Geoffrey G; Murray, Christopher I; Zaiman, Ari L; Halushka, Marc K; Krongkaew, Nispa; Strong, Travis D; Cooke, Carol A; El-Haddad, Hazim; Tuder, Rubin M; Berkowitz, Dan E; Champion, Hunter C

    2011-05-01

    It has been well demonstrated that phosphodiesterase-5A (PDE5A) is expressed in smooth muscle cells and plays an important role in regulation of vascular tone. The role of endothelial PDE5A, however, has not been yet characterized. The present study was undertaken to determine the presence, localization, and potential physiologic significance of PDE5A within vascular endothelial cells. We demonstrate primary location of human, mouse, and bovine endothelial PDE5A at or near caveolae. We found that the spatial localization of PDE5A at the level of caveolin-rich lipid rafts allows for a feedback loop between endothelial PDE5A and nitric oxide synthase (NOS3). Treatment of human endothelium with PDE5A inhibitors resulted in a significant increase in NOS3 activity, whereas overexpression of PDE5A using an adenoviral vector, both in vivo and in cell culture, resulted in decreased NOS3 activity and endothelium-dependent vasodilation. The molecular mechanism responsible for these interactions is primarily regulated by cGMP-dependent second messenger. PDE5A overexpression also resulted in a significant decrease in protein kinase 1 (PKG1) activity. Overexpression of PKG1 rapidly activated NOS3, whereas silencing of the PKG1 gene with siRNA inhibited both NOS3 phosphorylation (S1179) and activity, indicating a novel role for PKG1 in direct regulation of NOS3. Our data collectively suggest another target for PDE5A inhibition in endothelial dysfunction and provide another physiologic significance for PDE5A in the modulation of endothelial-dependent flow-mediated vasodilation. Using both in vitro and in vivo models, as well as human data, we show that inhibition of endothelial PDE5A improves endothelial function.

  12. Characterization of the hormone-binding domain of the chicken c-erbA/thyroid hormone receptor protein

    DEFF Research Database (Denmark)

    Muñoz, A; Zenke, M; Gehring, U

    1988-01-01

    mutations present in the carboxy-terminal half of P75gag-v-erbA co-operate in abolishing hormone binding, and that the ligand-binding domain resides in a position analogous to that of steroid receptors. Furthermore, a point mutation that is located between the putative DNA and ligand-binding domains of P75......To identify and characterize the hormone-binding domain of the thyroid hormone receptor, we analyzed the ligand-binding capacities of proteins representing chimeras between the normal receptor and P75gag-v-erbA, the retrovirus-encoded form deficient in binding ligand. Our results show that several......gag-v-erbA and that renders it biologically inactive fails to affect hormone binding by the c-erbA protein. These results suggest that the mutation changed the ability of P75gag-v-erbA to affect transcription since it also had no effect on DNA binding. Our data also suggest that hormone...

  13. Treatment with anti-C5aR mAb leads to early-onset clinical and mechanistic effects in the murine delayed-type hypersensitivity arthritis model

    DEFF Research Database (Denmark)

    Atkinson, Sara Marie; Nansen, Anneline; Usher, Pernille A.

    2015-01-01

    Blockade of the complement cascade at the C5a/C5a receptor (C5aR)-axis is believed to be an attractive treatment avenue in rheumatoid arthritis (RA). However, the effects of such interventions during the early phases of arthritis remain to be clarified. In this study we use the murine delayed-typ...

  14. Androgen receptor abnormalities

    NARCIS (Netherlands)

    A.O. Brinkmann (Albert); G.G.J.M. Kuiper (George); C. Ris-Stalpers (Carolyn); H.C.J. van Rooij (Henri); G. Romalo (G.); G. Trifiro (Gianluca); E. Mulder (Eppo); L. Pinsky (L.); H.U. Schweikert (H.); J. Trapman (Jan)

    1991-01-01

    markdownabstract__Abstract__ The human androgen receptor is a member of the superfamily of steroid hormone receptors. Proper functioning of this protein is a prerequisite for normal male sexual differentiation and development. The cloning of the human androgen receptor cDNA and the elucidation of t

  15. Mammalian Sweet Taste Receptors

    National Research Council Canada - National Science Library

    Nelson, Greg; Hoon, Mark A; Chandrashekar, Jayaram; Zhang, Yifeng; Ryba, Nicholas J.P; Zuker, Charles S

    2001-01-01

    ... and information coding, and have focused on the isolation and characterization of genes encoding sweet and bitter taste receptors. The identification of taste receptors generates powerful molecular tools to investigate not only the function of taste receptor cells, but also the logic of taste coding. For example, defining the size and diversity of the re...

  16. Murine complement receptor 1 is required for germinal center B cell maintenance but not initiation.

    Science.gov (United States)

    Donius, Luke R; Weis, Janis J; Weis, John H

    2014-06-01

    Germinal centers are the anatomic sites for the generation of high affinity immunoglobulin expressing plasma cells and memory B cells. The germinal center B cells that are precursors of these cells circulate between the light zone B cell population that interact with antigen laden follicular dendritic cells (FDC) and the proliferative dark zone B cell population. Antigen retention by follicular dendritic cells is dependent on Fc receptors and complement receptors, and complement receptor 1 (Cr1) is the predominant complement receptor expressed by FDC. The newly created Cr1KO mouse was used to test the effect of Cr1-deficiency on the kinetics of the germinal center reaction and the generation of IgM and switched memory B cell formation. Immunization of Cr1KO mice with a T cell-dependent antigen resulted in the normal initial expansion of B cells with a germinal center phenotype however these cells were preferentially lost in the Cr1KO animal over time (days). Bone marrow chimera animals documented the surprising finding that the loss of germinal center B cell maintenance was linked to the expression of Cr1 on B cells, not the FDC. Cr1-deficiency further resulted in antigen-specific IgM titer and IgM memory B cell reductions, but not antigen-specific IgG after 35-37 days. Investigations of nitrophenyl (NP)-specific IgG demonstrated that Cr1 is not necessary for affinity maturation during the response to particulate antigen. These data, along with those generated in our initial description of the Cr1KO animal describe unique functions of Cr1 on the surface of both B cells and FDC.

  17. HSV neutralization by the microbicidal candidate C5A

    NARCIS (Netherlands)

    de Witte, L.; Bobardt, M.D.; Chatterji, U.; van Loenen, F.B.; Verjans, G.M.G.M.; Geijtenbeek, T.B.H.; Gallay, P.A.

    2011-01-01

    Genital herpes is a major risk factor in acquiring human immunodeficiency virus type-1 (HIV-1) infection and is caused by both Herpes Simplex virus type 1 (HSV-1) and HSV-2. The amphipathic peptide C5A, derived from the non-structural hepatitis C virus (HCV) protein 5A, was shown to prevent HIV-1 in

  18. 42 CFR 5a.3 - Definition of Underserved Rural Community.

    Science.gov (United States)

    2010-10-01

    ... county; or (2) If it is within a Metropolitan county, all Census Tracts that are assigned a Rural-Urban... 42 Public Health 1 2010-10-01 2010-10-01 false Definition of Underserved Rural Community. 5a.3... PROVISIONS RURAL PHYSICIAN TRAINING GRANT PROGRAM § 5a.3 Definition of Underserved Rural...

  19. [Melatonin receptor agonist].

    Science.gov (United States)

    Uchiyama, Makoto

    2015-06-01

    Melatonin is a hormone secreted by the pineal gland and is involved in the regulation of human sleep-wake cycle and circadian rhythms. The melatonin MT1 and MT2 receptors located in the suprachiasmatic nucleus in the hypothalamus play a pivotal role in the sleep-wake regulation. Based on the fact that MT1 receptors are involved in human sleep onset process, melatonin receptor agonists have been developed to treat insomnia. In this article, we first reviewed functions of melatonin receptors with special reference to MT1 and MT2, and properties and clinical application of melatonin receptor agonists as hypnotics.

  20. Effect of anaphylatoxin C3a, C5a on the tubular epithelial-myofibroblast transdifferentiation in vitro

    Institute of Scientific and Technical Information of China (English)

    LIU Fang; QIU Hong-yu; WEI Da-peng; GOU Rong; HUANG Jun; FU Ping; CHEN Feng; FAN Wen-xing; HUANG You-qun; ZANG Li; WU Min

    2011-01-01

    Background Tubulointerstitial renal fibrosis is the common end point of progressive kidney diseases,and tubular epithelial-myofibroblast transdifferentiation (TEMT) plays a key role in the progress of tubulointerstitial renal fibrosis.Anaphylatoxin C3a and C5a are identified as novel profibrotic factors in renal disease and as potential new therapeutic targets.The aim of this study was to investigate whether C3a,C5a can regulate TEMT by transforming growth factor-β31 (TGF-β1)/connective tissue growth factor (CTGF) signaling pathway and the effects of C3a and C5a receptor antagonists (C3aRA and C5aRA) on C3a- and C5a-induced TEMT.Methods HK-2 cells were divided into C3a and C5a groups which were subdivided into four subgroups:control group,10 ng/ml TGF-β1 group,50 nmol/L C3a group,50 nmol/L C3a plus 1 μmol/L C3aRA group; control group,10 ng/ml TGF-β31 group,50 nmol/L C5a group,50 nmol/L C5a plus 2.5 μmol/L C5aRA group.TGF-β1 receptor antagonist (TGF-β1 RA) 10 μg/ml was used to investigate the mechanism of C3a- and C5a-induced TEMT.Electron microscopy was used to observe the morphological changes.Immunocytochemistry staining,real-time PCR and Western blotting were used to detect the expressions of α smooth muscle actin (α-SMA),E-cadherin,Col-I,C3a receptor (C3aR),C5aR,CTGF and TGF-β1.Results HK-2 cells cultured with C3a and C5a for 72 hours exhibited strong staining of α-SMA,lost the positive staining of E-cadherin,and showed a slightly spindle-like shape and loss of microvilli on the cell surface.The expressions of α-SMA,E-cadherin,Col-I,C3aR,C5aR,TGF-β1 and CTGF in C3a- and C5a-treated groups were higher than normal control group (P <0.05).C3aRA and C5aRA inhibited the expressions of α-SMA,Col-I,C3aR,C5aR,and up-regulated the expression of E-cadherin (P <0.05).TGF-β1 and CTGF mRNA expressions induced by C3a and C5a were partly blocked by TGF-β1 RA (P <0.05).Conclusion C3a and C5a can induce TEMT via the up-regulations of C3aR and C5aR m

  1. Cloning, production, and functional expression of the bacteriocin sakacin A (SakA) and two SakA-derived chimeras in lactic acid bacteria (LAB) and the yeasts Pichia pastoris and Kluyveromyces lactis.

    Science.gov (United States)

    Jiménez, Juan J; Borrero, Juan; Diep, Dzung B; Gútiez, Loreto; Nes, Ingolf F; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E

    2013-09-01

    Mature sakacin A (SakA, encoded by sapA) and its cognate immunity protein (SakI, encoded by sapiA), and two SakA-derived chimeras mimicking the N-terminal end of mature enterocin P (EntP/SakA) and mature enterocin A (EntA/SakA) together with SakI, were fused to different signal peptides (SP) and cloned into the protein expression vectors pNZ8048 and pMG36c for evaluation of their production and functional expression by different lactic acid bacteria. The amount, antimicrobial activity, and specific antimicrobial activity of SakA and its chimeras produced by Lactococcus lactis subsp. cremoris NZ9000 depended on the SP and the expression vector. Only L. lactis NZ9000 (pNUPS), producing EntP/SakA, showed higher bacteriocin production and antimicrobial activity than the natural SakA-producer Lactobacillus sakei Lb706. The lower antimicrobial activity of the SakA-producer L. lactis NZ9000 (pNUS) and that of the EntA/SakA-producer L. lactis NZ9000 (pNUAS) could be ascribed to secretion of truncated bacteriocins. On the other hand, of the Lb. sakei Lb706 cultures transformed with the pMG36c-derived vectors only Lb. sakei Lb706 (pGUS) overproducing SakA showed a higher antimicrobial activity than Lb. sakei Lb706. Finally, cloning of SakA and EntP/SakA into pPICZαA and pKLAC2 permitted the production of SakA and EntP/SakA by recombinant Pichia pastoris X-33 and Kluyveromyces lactis GG799 derivatives although their antimicrobial activity was lower than expected from their production.

  2. Characterization and pharmacology of the GHB receptor.

    Science.gov (United States)

    Ticku, Maharaj K; Mehta, Ashok K

    2008-10-01

    Radioligand binding using [(3)H]NCS-382, an antagonist of the GHB receptor, revealed specific binding sites in the rat cerebrocortical and hippocampal membranes. Scatchard analysis of saturation isotherms revealed two different populations of binding sites. NCS-382 was about 10 times more potent than GHB in inhibiting [(3)H]NCS-382 binding. A variety of ligands for other receptors did not affect [(3)H]NCS-382 binding. Quantitative autoradiographic analysis of [(3)H]NCS-382 binding revealed similar characteristics. Thus [(3)H]NCS-382, being more potent and selective, offers advantage over [(3)H]GHB as a radioligand. Unlike GHB, several analogues of GHB such as UMB68 (a tertiary alcohol analogue of GHB), UMB86 (4-hydroxy-4-napthylbutanoic acid, sodium salt), UMB72 [4-(3-phenylpropyloxy)butyric acid, sodium salt], UMB73 (4-benzyloxybutyric acid, sodium salt), UMB66 (3-chloropropanoic acid), gamma-hydroxyvaleric acid (that is, GHV, a 4-methyl-substituted analogue of GHB), 3-HPA (3-hydroxyphenylacetic acid), and ethers of 3-hydroxyphenylacetic acid (UMB108, UMB109, and UMB119) displaced [(3)H]NCS-382 without affecting [(3)H]GABA binding to GABA(B) receptor. Thus these compounds offer an advantage over GHB as an experimental tool. Our study, aimed at exploring the potential involvement of the GHB receptor in the pharmacology of ethanol, indicated that ethanol does not affect [(3)H]NCS-382 binding in the rat brain, thereby suggesting that ethanol does not interact directly with the GHB receptor. Our study, aimed at exploring the involvement of the GHB receptor in the pathology of succinate semialdehyde dehydrogenase deficiency, which is known to cause elevation of GHB levels, revealed no change in the affinity, receptor density or displacement potency as determined by using [(3)H]NCS-382 as a radioligand in Aldh5a1(-/-) vs. Aldh5a1(+/+) mouse brain.

  3. Dopamine receptors and hypertension.

    Science.gov (United States)

    Banday, Anees Ahmad; Lokhandwala, Mustafa F

    2008-08-01

    Dopamine plays an important role in regulating renal function and blood pressure. Dopamine synthesis and dopamine receptor subtypes have been shown in the kidney. Dopamine acts via cell surface receptors coupled to G proteins; the receptors are classified via pharmacologic and molecular cloning studies into two families, D1-like and D2-like. Two D1-like receptors cloned in mammals, the D1 and D5 receptors (D1A and D1B in rodents), are linked to adenylyl cyclase stimulation. Three D2-like receptors (D2, D3, and D4) have been cloned and are linked mainly to adenylyl cyclase inhibition. Activation of D1-like receptors on the proximal tubules inhibits tubular sodium reabsorption by inhibiting Na/H-exchanger and Na/K-adenosine triphosphatase activity. Reports exist of defective renal dopamine production and/or dopamine receptor function in human primary hypertension and in genetic models of animal hypertension. In humans with essential hypertension, renal dopamine production in response to sodium loading is often impaired and may contribute to hypertension. A primary defect in D1-like receptors and an altered signaling system in proximal tubules may reduce dopamine-mediated effects on renal sodium excretion. The molecular basis for dopamine receptor dysfunction in hypertension is being investigated, and may involve an abnormal posttranslational modification of the dopamine receptor.

  4. The binding site for neohesperidin dihydrochalcone at the human sweet taste receptor

    Directory of Open Access Journals (Sweden)

    Kratochwil Nicole A

    2007-10-01

    Full Text Available Abstract Background Differences in sweet taste perception among species depend on structural variations of the sweet taste receptor. The commercially used isovanillyl sweetener neohesperidin dihydrochalcone activates the human but not the rat sweet receptor TAS1R2+TAS1R3. Analysis of interspecies combinations and chimeras of rat and human TAS1R2+TAS1R3 suggested that the heptahelical domain of human TAS1R3 is crucial for the activation of the sweet receptor by neohesperidin dihydrochalcone. Results By mutational analysis combined with functional studies and molecular modeling we identified a set of different amino acid residues within the heptahelical domain of human TAS1R3 that forms the neohesperidin dihydrochalcone binding pocket. Sixteen amino acid residues in the transmembrane domains 2 to 7 and one in the extracellular loop 2 of hTAS1R3 influenced the receptor's response to neohesperidin dihydrochalcone. Some of these seventeen residues are also part of the binding sites for the sweetener cyclamate or the sweet taste inhibitor lactisole. In line with this observation, lactisole inhibited activation of the sweet receptor by neohesperidin dihydrochalcone and cyclamate competitively, whereas receptor activation by aspartame, a sweetener known to bind to the N-terminal domain of TAS1R2, was allosterically inhibited. Seven of the amino acid positions crucial for activation of hTAS1R2+hTAS1R3 by neohesperidin dihydrochalcone are thought to play a role in the binding of allosteric modulators of other class C GPCRs, further supporting our model of the neohesperidin dihydrochalcone pharmacophore. Conclusion From our data we conclude that we identified the neohesperidin dihydrochalcone binding site at the human sweet taste receptor, which overlaps with those for the sweetener cyclamate and the sweet taste inhibitor lactisole. This readily delivers a molecular explanation of our finding that lactisole is a competitive inhibitor of the receptor

  5. Mapping sites of herpes simplex virus type 1 glycoprotein D that permit insertions and impact gD and gB receptors usage

    Science.gov (United States)

    Fan, Qing; Kopp, Sarah; Connolly, Sarah A.; Muller, William J.; Longnecker, Richard

    2017-01-01

    Glycoprotein D (gD) of herpes simplex virus type 1 (HSV-1) is one of four glycoproteins essential for HSV entry and cell fusion. The purpose of this study was to determine the plasticity of gD to tolerate insertion or deletion mutations and to construct an oncolytic HSV-1 that utilizes the disialoganglioside GD2 as a HSV-1 entry receptor. We found that the N-terminus of gD tolerates long insertions, whereas residues adjacent to the gD Ig-like V-type core tolerated shorter insertions (up to 15 amino acids), but not greater than 60 amino acids. Recombinant HSV-1 containing the ch14.18 single chain variable fragment (scFv) at the N-terminus of gD failed to mediate entry, even though the ch14.18 scFv-gD chimera Fc bound to neuroblastoma cells expressing GD2. Finally, we found that hyperfusogenic gB mutants enhanced fusion to a greater degree with the gB receptor the paired immunoglobulin-like type 2 receptor alpha (PILRα) than with gD receptors HVEM and nectin-1. Hyperfusogenic gB could restore the fusion function with PILRα when a gD constructed contained only the “profusion domain” (PFD), suggesting the hyperfusogenic form of gB may regulate fusion of PILRα via a novel mechanism through gH/gL and the gD PFD. PMID:28255168

  6. Role of ERalpha in the differential response of Stat5a loss in susceptibility to mammary preneoplasia and DMBA-induced carcinogenesis.

    Science.gov (United States)

    Miermont, Anne M; Parrish, Angela R; Furth, Priscilla A

    2010-06-01

    Deregulated estrogen signaling is evidently linked to breast cancer pathophysiology, although the role of signal transducer and activator of transcription (Stat)5a, integral to normal mammary gland development, is less clear. A mouse model of mammary epithelial cell-targeted deregulated estrogen receptor alpha (ERalpha) expression [conditional ERalpha in mammary epithelium (CERM)] was crossed with mice carrying a germ line deletion of Stat5a [Stat5a-/-] to investigate interactions between ERalpha and Stat5a in mammary tissue. CERM, CERM/Stat5a+/-, CERM/Stat5a-/-, Stat5a+/-, Stat5a-/- and wild-type (WT) mice were generated to test the roles of ERalpha and Stat5a on pubertal differentiation and cancer progression with and without exposure to the chemical carcinogen 7,12-dimethylbenz[a]anthracene (DMBA). Only CERM/Stat5a-/- mice demonstrated delayed pubertal terminal end bud differentiation. Without DMBA exposure, Stat5a loss abrogated ERalpha-initiated hyperplastic alveolar nodule (HAN) development and, similarly, Stat5a-/- mice did not develop HANs. However, although Stat5a loss still reduced ERalpha-initiated HAN prevalence following DMBA exposure, Stat5a loss without deregulated ERalpha was associated with an increased HAN prevalence compared with WT. Progression to ERalpha(+) and ERalpha(-) adenocarcinoma was found in all CERM-containing genotypes (CERM, CERM/Stat5a+/-, CERM/Stat5a-/-) and ERalpha(+) adenocarcinoma in the Stat5a-/- genotype. The mammary epithelial cell proliferative index was increased only in CERM mice independent of Stat5a loss. No differences in apoptotic indices were found. In summary, Stat5a cooperated with deregulated ERalpha in retarding pubertal mammary differentiation and contributed to ERalpha-initiated preneoplasia, but its loss did not prevent development of invasive cancer. Moreover, in the absence of deregulated ERalpha, Stat5a loss was associated with development of both HANs and invasive cancer following DMBA exposure.

  7. GABA receptor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Doo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA{sub A}-receptor that allows chloride to pass through a ligand gated ion channel and GABA{sub B}-receptor that uses G-proteins for signaling. The GABA{sub A}-receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA{sub A}-receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with {sup 11}C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, {sup 18}F-fluoroflumazenil (FFMZ) has been developed to overcome {sup 11}C's short half-life. {sup 18}F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1{sup 1}C-FMZ PET instead of {sup 18}F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA{sub A} receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas.

  8. WNT5A-JNK regulation of vascular insulin resistance in human obesity.

    Science.gov (United States)

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2016-12-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m(2)) and five metabolically normal non-obese (BMI 26±2 kg/m(2)) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (pobese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (pinsulin resistance and impaired eNOS phosphorylation (pinsulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. © The Author(s) 2016.

  9. Chicken NK cell receptors.

    Science.gov (United States)

    Straub, Christian; Neulen, Marie-Luise; Sperling, Beatrice; Windau, Katharina; Zechmann, Maria; Jansen, Christine A; Viertlboeck, Birgit C; Göbel, Thomas W

    2013-11-01

    Natural killer cells are innate immune cells that destroy virally infected or transformed cells. They recognize these altered cells by a plethora of diverse receptors and thereby differ from other lymphocytes that use clonally distributed antigen receptors. To date, several receptor families that play a role in either activating or inhibiting NK cells have been identified in mammals. In the chicken, NK cells have been functionally and morphologically defined, however, a conclusive analysis of receptors involved in NK cell mediated functions has not been available. This is partly due to the low frequencies of NK cells in blood or spleen that has hampered their intensive characterization. Here we will review recent progress regarding the diverse NK cell receptor families, with special emphasis on novel families identified in the chicken genome with potential as chicken NK cell receptors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. An intracellular allosteric site for a specific class of antagonists of the CC chemokine G protein-coupled receptors CCR4 and CCR5.

    Science.gov (United States)

    Andrews, Glen; Jones, Carolyn; Wreggett, Keith A

    2008-03-01

    A novel mechanism for antagonism of the human chemokine receptors CCR4 and CCR5 has been discovered with a series of small-molecule compounds that seems to interact with an allosteric, intracellular site on the receptor. The existence of this site is supported by a series of observations: 1) intracellular access of these antagonists is required for their activity; 2) specific, saturable binding of a radiolabeled antagonist requires the presence of CCR4; and 3) through engineering receptor chimeras by reciprocal transfer of C-terminal domains between CCR4 and CCR5, compound binding and the selective structure-activity relationships for antagonism of these receptors seem to be associated with the integrity of that intracellular region. Published antagonists from other chemical series do not seem to bind to the novel site, and their interaction with either CCR4 or CCR5 is not affected by alteration of the C-terminal domain. The precise location of the proposed binding site remains to be determined, but the known close association of the C-terminal domain, including helix 8, as a proposed intracellular region that interacts with transduction proteins (e.g., G proteins and beta-arrestin) suggests that this could be a generic allosteric site for chemokine receptors and perhaps more broadly for class A G protein-coupled receptors. The existence of such a site that can be targeted for drug discovery has implications for screening assays for receptor antagonists, which would need, therefore, to consider compound properties for access to this intracellular site.

  11. Novel cannabinoid receptors

    OpenAIRE

    Brown, A J

    2007-01-01

    Cannabinoids have numerous physiological effects. In the years since the molecular identification of the G protein-coupled receptors CB1 and CB2, the ion channel TRPV1, and their corresponding endogenous ligand systems, many cannabinoid-evoked actions have been shown conclusively to be mediated by one of these specific receptor targets. However, there remain several examples where these classical cannabinoid receptors do not explain observed pharmacology. Studies using mice genetically delete...

  12. Therapeutic androgen receptor ligands

    OpenAIRE

    Allan, George F.; Sui, Zhihua

    2003-01-01

    In the past several years, the concept of tissue-selective nuclear receptor ligands has emerged. This concept has come to fruition with estrogens, with the successful marketing of drugs such as raloxifene. The discovery of raloxifene and other selective estrogen receptor modulators (SERMs) has raised the possibility of generating selective compounds for other pathways, including androgens (that is, selective androgen receptor modulators, or SARMs).

  13. AMPA receptor ligands

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Mellor, Ian

    2004-01-01

    Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR), subtype of the ionotropic glutamate receptors (IGRs), mediate fast synaptic transmission in the central nervous system (CNS), and are involved in many neurological disorders, as well as being a key player in the f......Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR), subtype of the ionotropic glutamate receptors (IGRs), mediate fast synaptic transmission in the central nervous system (CNS), and are involved in many neurological disorders, as well as being a key player...