Sample records for 5a receptor chimeras

  1. Complement factor 5a receptor chimeras reveal the importance of lipid-facing residues in transport competence

    DEFF Research Database (Denmark)

    Klco, Jeffery M; Sen, Saurabh; Hansen, Jakob L


    was exchanged with the cognate residues from the angiotensin type 1 receptor. Disulfide-trapping and bioluminescence resonance energy transfer (BRET) studies demonstrated robust homodimerization of both complement factor 5a receptor and angiotensin type 1 receptor, but no evidence for heterodimerization...

  2. Formyl peptide receptor chimeras define domains involved in ligand binding. (United States)

    Perez, H D; Holmes, R; Vilander, L R; Adams, R R; Manzana, W; Jolley, D; Andrews, W H


    We have begun to study the structural requirements for the binding of formyl peptides to their specific receptors. As an initial approach, we constructed C5a-formyl peptide receptor chimeras. Unique (and identical) restriction sites were introduced within the transmembrane domains of these receptors that allowed for the exchange of specific areas. Four types of chimeric receptors were generated. 1) The C5a receptor was progressively substituted by the formyl peptide receptor. 2) The formyl peptide receptor was progressively substituted by the C5a receptor. 3) Specific domains of the C5a receptor were substituted by the corresponding domain of the formyl peptide receptor. 4) Specific domains of the formyl peptide receptor were replaced by the same corresponding domain of the C5a receptor. Wild type and chimeric receptors were transfected into COS 7 cells and their ability to bind formyl peptide determined, taking into account efficiency of transfection and expression of chimeric protein. Based on these results, a ligand binding model is presented in which the second, third, and fourth extracellular (and/or their transmembrane) domains together with the first transmembrane domain form a ligand binding pocket for formyl peptides. It is proposed that the amino-terminal domain plays a role by presumably providing a "lid" to the pocket. The carboxyl-terminal cytoplasmic tail appears to modulate ligand binding by regulating receptor affinity.

  3. GABAρ1/GABAAα1 receptor chimeras to study receptor desensitization (United States)

    Martínez-Torres, Ataúlfo; Demuro, Angelo; Miledi, Ricardo


    γ-Aminobutyrate type C (GABAC) receptors are ligand-gated ion channels that are expressed preponderantly in the vertebrate retina and are characterized, among other things, by a very low rate of desensitization and resistance to the specific GABAA antagonist bicuculline. To examine which structural elements determine the nondesensitizing character of the human homomeric ρ1 receptor, we used a combination of gene chimeras and electrophysiology of receptors expressed in Xenopus oocytes. Two chimeric genes were constructed, made up of portions of the ρ1-subunit and of the α1-subunit of the GABAA receptor. When expressed in Xenopus oocytes, one chimeric gene (ρ1/α1) formed functional homooligomeric receptors that were fully resistant to bicuculline and were blocked by the specific GABAC antagonist (1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid and by zinc. Moreover, these chimeric receptors had a fast-desensitizing component, even faster than that of heterooligomeric GABAA receptors, in striking contrast to the almost nil desensitization of wild-type ρ1 (wt ρ1) receptors. To see whether the fast-desensitizing characteristic of the chimera was determined by the amino acids forming the ion channels, we replaced the second transmembrane segment (TM2) of ρ1 by that of the α1-subunit of GABAA. Although the α1-subunit forms fast-desensitizing receptors when coexpressed with other GABAA subunits, the sole transfer of the α1TM2 segment to ρ1 was not sufficient to form desensitizing receptors. All this suggests that the slow-desensitizing trait of ρ1 receptors is determined by a combination of several interacting domains along the molecule. PMID:10725369

  4. Transient replication of a hepatitis C virus genotype 1b replicon chimera encoding NS5A-5B from genotype 3a. (United States)

    Kylefjord, Helen; Danielsson, Axel; Sedig, Susanne; Belda, Oscar; Wiktelius, Daniel; Vrang, Lotta; Targett-Adams, Paul


    Although hepatitis C virus (HCV) is a pathogen of global significance, experimental therapies in current clinical development include highly efficacious all-oral combinations of HCV direct-acting antivirals (DAAs). If approved for use, these new treatment regimens will impact dramatically upon our capacity to eradicate HCV in the majority of virus-infected patients. However, recent data from late-stage clinical evaluations demonstrated that individuals infected with HCV genotype (GT) 3 responded less well to all-oral DAA combinations than patients infected with other HCV GTs. In light of these observations, the present study sought to expand the number of molecular tools available to investigate small molecule-mediated inhibition of HCV GT3 NS5A and NS5B proteins in preclinical tissue-culture systems. Accordingly, a novel subgenomic HCV replicon chimera was created by utilizing a GT1b backbone modified to produce NS5A and NS5B proteins from a consensus sequence generated from HCV GT3a genomic sequences deposited online at the European Hepatitis C Virus database. This approach avoided the need to isolate and amplify HCV genomes from sera derived from HCV-infected patients. The replicon chimera, together with a version engineered to express NS5A encoding a Y93H mutation, demonstrated levels of replication in transient assays robust enough to assess accurate antiviral activities of inhibitors representing different HCV DAA classes. Thus, the replicon chimera represents a new simple molecular tool suitable for drug discovery programmes aimed at investigating, understanding, and improving GT3a activities of HCV DAAs targeting NS5A or NS5B.

  5. Bioassays for TSH Receptor Autoantibodies, from FRTL-5 Cells to TSH Receptor-LH/CG Receptor Chimeras: The Contribution of Leonard D. Kohn. (United States)

    Giuliani, Cesidio; Saji, Motoyasu; Bucci, Ines; Napolitano, Giorgio


    Since the discovery 60 years ago of the "long-acting thyroid stimulator" by Adams and Purves, great progress has been made in the detection of thyroid-stimulating hormone (TSH) receptor (TSHR) autoantibodies (TRAbs) in Graves' disease. Today, commercial assays are available that can detect TRAbs with high accuracy and provide diagnostic and prognostic evaluation of patients with Graves' disease. The present review focuses on the development of TRAbs bioassays, and particularly on the role that Leonard D. Kohn had in this. Indeed, 30 years ago, the Kohn group developed a bioassay based on the use of FRTL-5 cells that was characterized by high reproducibility, feasibility, and diagnostic accuracy. Using this FRTL-5 bioassay, Kohn and his colleagues were the first to develop monoclonal antibodies (moAbs) against the TSHR. Furthermore, they demonstrated the multifaceted functional nature of TRAbs in patients with Graves' disease, with the identification of stimulating and blocking TRAbs, and even antibodies that activated pathways other than cAMP. After the cloning of the TSHR, the Kohn laboratory constructed human TSHR-rat luteinizing hormone/chorionic gonadotropin receptor chimeras. This paved the way to a new bioassay based on the use of non-thyroid cells transfected with the Mc4 chimera. The new Mc4 bioassay is characterized by high diagnostic and prognostic accuracy, greater than for other assays. The availability of a commercial kit based on the Mc4 chimera is spreading the use of this assay worldwide, indicating its benefits for these patients with Graves' disease. This review also describes the main contributions made by other researchers in TSHR molecular biology and TRAbs assay, especially with the development of highly potent moAbs. A comparison of the diagnostic accuracies of the main TRAbs assays, as both immunoassays and bioassays, is also provided.

  6. Allosteric and orthosteric sites in CC chemokine receptor (CCR5), a chimeric receptor approach

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Steen, Anne; Jensen, Pia C;


    molecules often act more deeply in an allosteric mode. However, opposed to the well described molecular interaction of allosteric modulators in class C 7-transmembrane helix (7TM) receptors, the interaction in class A, to which the chemokine receptors belong, is more sparsely described. Using the CCR5...... chemokine receptor as a model system, we studied the molecular interaction and conformational interchange required for proper action of various orthosteric chemokines and allosteric small molecules, including the well known CCR5 antagonists TAK-779, SCH-C, and aplaviroc, and four novel CCR5 ago......-allosteric molecules. A chimera was successfully constructed between CCR5 and the closely related CCR2 by transferring all extracellular regions of CCR2 to CCR5, i.e. a Trojan horse that resembles CCR2 extracellularly but signals through a CCR5 transmembrane unit. The chimera bound CCR2 (CCL2 and CCL7), but not CCR5...

  7. Bioassays for TSH receptor autoantibodies, from FRTL-5 cells to TSH receptor–LH/CG receptor chimeras: the contribution of Leonard D. Kohn

    Directory of Open Access Journals (Sweden)

    Cesidio Giuliani


    Full Text Available Since the discovery 60 years ago of the long-acting thyroid stimulator by Adams and Purves, great progress has been made in the detection of thyroid-stimulating hormone (TSH receptor autoantibodies (TRAbs in Graves’ disease. Today, commercial assays are available that can detect TRAbs with high accuracy and provide diagnostic and prognostic evaluation of patients with Graves’ disease. The present review focuses on the development of TRAbs bioassays, and particularly on the role that Leonard D. Kohn had in this. Indeed, 30 years ago, the Kohn group developed a bioassay based on the use of FRTL-5 cells that was characterized by high reproducibility, feasibility, and diagnostic accuracy. Using this FRTL-5 bioassay, Kohn and his colleagues were the first to develop monoclonal antibodies against the TSH receptor. Furthermore, they demonstrated the multifaceted functional nature of TRAbs in patients with Graves’ disease, with the identification of stimulating and blocking TRAbs, and even antibodies that activated pathways other than cAMP. After the cloning of the TSH receptor, the Kohn laboratory constructed human TSH receptor–rat luteinizing hormone/ chorionic gonadotropin receptor chimeras. This paved the way to a new bioassay based on the use of nonthyroid cells transfected with the Mc4 chimera. The new Mc4 bioassay is characterized by high diagnostic and prognostic accuracy, greater than for other assays. The availability of a commercial kit based on the Mc4 chimera is spreading the use of this assay worldwide, indicating its benefits for these patients with Graves’ disease. This review also describes the main contributions made by others researchers in TSH receptor molecular biology and TRAbs assay, especially with the development of highly potent monoclonal antibodies. A comparison of the diagnostic accuracies of the main TRAbs assays, as both immunoassays and bioassays, is also provided.

  8. Bioassays for TSH Receptor Autoantibodies, from FRTL-5 Cells to TSH Receptor–LH/CG Receptor Chimeras: The Contribution of Leonard D. Kohn (United States)

    Giuliani, Cesidio; Saji, Motoyasu; Bucci, Ines; Napolitano, Giorgio


    Since the discovery 60 years ago of the “long-acting thyroid stimulator” by Adams and Purves, great progress has been made in the detection of thyroid-stimulating hormone (TSH) receptor (TSHR) autoantibodies (TRAbs) in Graves’ disease. Today, commercial assays are available that can detect TRAbs with high accuracy and provide diagnostic and prognostic evaluation of patients with Graves’ disease. The present review focuses on the development of TRAbs bioassays, and particularly on the role that Leonard D. Kohn had in this. Indeed, 30 years ago, the Kohn group developed a bioassay based on the use of FRTL-5 cells that was characterized by high reproducibility, feasibility, and diagnostic accuracy. Using this FRTL-5 bioassay, Kohn and his colleagues were the first to develop monoclonal antibodies (moAbs) against the TSHR. Furthermore, they demonstrated the multifaceted functional nature of TRAbs in patients with Graves’ disease, with the identification of stimulating and blocking TRAbs, and even antibodies that activated pathways other than cAMP. After the cloning of the TSHR, the Kohn laboratory constructed human TSHR–rat luteinizing hormone/chorionic gonadotropin receptor chimeras. This paved the way to a new bioassay based on the use of non-thyroid cells transfected with the Mc4 chimera. The new Mc4 bioassay is characterized by high diagnostic and prognostic accuracy, greater than for other assays. The availability of a commercial kit based on the Mc4 chimera is spreading the use of this assay worldwide, indicating its benefits for these patients with Graves’ disease. This review also describes the main contributions made by other researchers in TSHR molecular biology and TRAbs assay, especially with the development of highly potent moAbs. A comparison of the diagnostic accuracies of the main TRAbs assays, as both immunoassays and bioassays, is also provided. PMID:27504107

  9. Niemann-Pick C1 (NPC1/NPC1-like1 Chimeras Define Sequences Critical for NPC1’s Function as a Filovirus Entry Receptor

    Directory of Open Access Journals (Sweden)

    Esther Ndungo


    Full Text Available We recently demonstrated that Niemann-Pick C1 (NPC1, a ubiquitous 13-pass cellular membrane protein involved in lysosomal cholesterol transport, is a critical entry receptor for filoviruses. Here we show that Niemann-Pick C1-like1 (NPC1L1, an NPC1 paralog and hepatitis C virus entry factor, lacks filovirus receptor activity. We exploited the structural similarity between NPC1 and NPC1L1 to construct and analyze a panel of chimeras in which NPC1L1 sequences were replaced with cognate sequences from NPC1. Only one chimera, NPC1L1 containing the second luminal domain (C of NPC1 in place of its own, bound to the viral glycoprotein, GP. This engineered protein mediated authentic filovirus infection nearly as well as wild-type NPC1, and more efficiently than did a minimal NPC1 domain C-based receptor recently described by us. A reciprocal chimera, NPC1 containing NPC1L1’s domain C, was completely inactive. Remarkably, an intra-domain NPC1L1-NPC1 chimera bearing only a ~130-amino acid N–terminal region of NPC1 domain C could confer substantial viral receptor activity on NPC1L1. Taken together, these findings account for the failure of NPC1L1 to serve as a filovirus receptor, highlight the central role of the luminal domain C of NPC1 in filovirus entry, and reveal the direct involvement of N–terminal domain C sequences in NPC1’s function as a filovirus receptor.

  10. Bridge Technology with TSH Receptor Chimera for Sensitive Direct Detection of TSH Receptor Antibodies Causing Graves' Disease: Analytical and Clinical Evaluation. (United States)

    Frank, C U; Braeth, S; Dietrich, J W; Wanjura, D; Loos, U


    Graves' disease is caused by stimulating autoantibodies against the thyrotropin receptor inducing uncontrolled overproduction of thyroid hormones. A Bridge Assay is presented for direct detection of these thyroid-stimulating immunoglobulins using thyrotropin receptor chimeras. A capture receptor, formed by replacing aa residues 261-370 of the human thyrotropin receptor with residues 261-329 from rat lutropin/choriogonadotropin receptor and fixed to microtiter plates, binds one arm of the autoantibody. The second arm bridges to the signal receptor constructed from thyrotropin receptor (aa 21-261) and secretory alkaline phosphatase (aa 1-519) inducing chemiluminescence. The working range of the assay is from 0.3 IU/l to 50 IU/l with a cutoff of 0.54 IU/l and functional sensitivity of 0.3 IU/l. Sensitivity and specificity are 99.8 and 99.1%, respectively, with a diagnostic accuracy of 0.998. The low grey zone is from 0.3-0.54 IU/l. The stimulatory character of the assayed antibodies is shown through a good correlation (r=0.7079, pGraves' disease, titers are increased in associated eye disease. In 3 hypothyroid patients with sera positive in the thyrotropin receptor competition assay and in the blocking bioassay, antibodies are not detected by the Bridge Assay, while the monoclonal blocking antibody K1-70 was detected. In Hashimoto disease thyrotropin receptor autoantibodies are detected in some patients, but not in goiter. This Bridge Assay delivers good diagnostic accuracy for identification of Graves' disease patients. Its high sensitivity may facilitate early detection of onset, remission, or recurrence of Graves' disease enabling timely adaption of the treatment.Human genes: TSHR, Homo sapiens, acc. no. M31774.1.

  11. Development of a tightly regulated and highly inducible ecdysone receptor gene switch for plants through the use of retinoid X receptor chimeras. (United States)

    Tavva, Venkata S; Dinkins, Randy D; Palli, Subba R; Collins, Glenn B


    Chemical inducible gene regulation systems provide essential tools for the precise regulation of transgene expression in plants and animals. Recent development of a two-hybrid ecdysone receptor (EcR) gene regulation system has solved some of the drawbacks that were associated with the monopartate gene switch. To further improve the versatility of the two-hybrid EcR gene switch for wide spread use in plants, chimeras between Homo sapiens retinoid X receptor (HsRXR) and insect, Locusta migratoria RXR (LmRXR) were tested in tobacco protoplasts as partners with Choristoneura fumiferana EcR (CfEcR) in inducing expression of the luciferase reporter gene. The RXR chimera 9 (CH9) along with CfEcR, in a two-hybrid format gave the best results in terms of low-background expression levels in the absence of ligand and high-induced expression levels of the reporter gene in the presence of nanomolar concentrations of the methoxyfenozide ligand. The performance of CH9 was further tested in corn and soybean protoplasts and the data obtained was compared with the other EcR switches that contained the wild-type LmRXR or HsRXR as EcR partners. In both transient expression studies and stable transformation experiments, the fold induction values obtained with the CH9 switch were several times higher than the values obtained with the other EcR switches containing LmRXR or HsRXR. The new CfEcR two-hybrid gene switch that uses the RXR CH9 as a partner in inducing reporter gene expression provides an efficient, ligand-sensitive and tightly regulated gene switch for plants.

  12. Rearrangement and junctional-site sequence analyses of T-cell receptor gamma genes in intestinal intraepithelial lymphocytes from murine athymic chimeras. (United States)

    Whetsell, M; Mosley, R L; Whetsell, L; Schaefer, F V; Miller, K S; Klein, J R


    The molecular organization of rearranged T-cell receptor (TCR) gamma genes intraepithelial lymphocytes (IEL) was studied in athymic radiation chimeras and was compared with the organization of gamma gene rearrangements in IEL from thymus-bearing animals by polymerase chain reaction and by sequence analyses of DNA spanning the junction of the variable (V) and joining (J) genes. In both thymus-bearing mice and athymic chimeras, IEL V-J gamma-gene rearrangements occurred for V gamma 1.2, V gamma 2, and V gamma 5 but not for V gamma 3 or V gamma 4. Sequence analyses of cloned V-J polymerase chain reaction-amplified products indicated that in both thymus-bearing mice and athymic chimeras, rearrangement of V gamma 1.2 and V gamma 5 resulted in in-frame as well as out-of-frame genes, whereas nearly all V gamma 2 rearrangements were out of frame from either type of animal. V-segment nucleotide removal occurred in most V gamma 1.2, V gamma 2, and V gamma 5 rearrangements; J-segment nucleotide removal was common in V gamma 1.2 but not in V gamma 2 or V gamma 5 rearrangements. N-segment nucleotide insertions were present in V gamma 1.2, V gamma 2, and V gamma 5 IEL rearrangements in both thymus-bearing mice and athymic chimeras, resulting in a predominant in-frame sequence for V gamma 5 and a predominant out-of-frame sequence for V gamma 2 genes. These findings demonstrate that (i) TCR gamma-gene rearrangement occurs extrathymically in IEL, (ii) rearrangements of TCR gamma genes involve the same V gene regardless of thymus influence; and (iii) the thymus does not determine the degree to which functional or nonfunctional rearrangements occur in IEL.

  13. Novel GLP-1 fusion chimera as potent long acting GLP-1 receptor agonist.

    Directory of Open Access Journals (Sweden)

    Qinghua Wang

    Full Text Available GLP-1 has a variety of anti-diabetic effects. However, native GLP-1 is not suitable for therapy of diabetes due to its short half-life (t1/2168 h. Intraperitoneal glucose tolerance test (IPGTT in mice showed that GLP-1/hIgG2 significantly decreased glucose excursion. Furthermore, IPGTT performed on mice one week after a single drug-injection also displayed significantly reduced glucose excursion, indicating that GLP-1/hIgG2 fusion protein has long-lasting effects on the modulation of glucose homeostasis. GLP-1/hIgG2 was found to be effective in reducing the incidence of diabetes in multiple-low-dose streptozotocin-induced type 1 diabetes in mice. Together, the long-lasting bioactive GLP-1/hIgG2 retains native GLP-1 activities and thus may serve as a potent GLP-1 receptor agonist.

  14. Smallest chimera states (United States)

    Maistrenko, Yuri; Brezetsky, Serhiy; Jaros, Patrycja; Levchenko, Roman; Kapitaniak, Tomasz


    We demonstrate that chimera behavior can be observed in small networks consisting of three identical oscillators, with mutual all-to-all coupling. Three different types of chimeras, characterized by the coexistence of two coherent oscillators and one incoherent oscillator (i.e., rotating with another frequency) have been identified, where the oscillators show periodic (two types) and chaotic (one type) behaviors. Typical bifurcations at the transitions from full synchronization to chimera states and between different types of chimeras have been described. Parameter regions for the chimera states are obtained in the form of Arnold tongues, issued from a singular parameter point. Our analysis suggests that chimera states can be observed in small networks relevant to various real-world systems.

  15. Chimeras and human dignity. (United States)

    de Melo-Martín, Inmaculada


    Discussions about whether new biomedical technologies threaten or violate human dignity are now common. Indeed, appeals to human dignity have played a central role in national and international debates about whether to allow particular kinds of biomedical investigations. The focus of this paper is on chimera research. I argue here that both those who claim that particular types of human-nonhuman chimera research threaten human dignity and those who argue that such threat does not exist fail to make their case. I first introduce some of the arguments that have been offered supporting the claim that the creation of certain sorts of chimeras threatens or violates human dignity. I next present opponents' assessments of such arguments. Finally I critically analyze both the critics' and the supporters' claims about whether chimera research threatens human dignity.

  16. Chimera and other fertilization errors. (United States)

    Malan, V; Vekemans, M; Turleau, C


    The finding of a mixture of 46,XX and 46,XY cells in an individual has been rarely reported in literature. It usually results in individuals with ambiguous genitalia. Approximately 10% of true human hermaphrodites show this type of karyotype. However, the underlying mechanisms are poorly understood. It may be the result of mosaicism or chimerism. By definition, a chimera is produced by the fusion of two different zygotes in a single embryo, while a mosaic contains genetically different cells issued from a single zygote. Several mechanisms are involved in the production of chimera. Stricto sensu, chimerism occurs from the post-zygotic fusion of two distinct embryos leading to a tetragametic chimera. In addition, there are other entities, which are also referred to as chimera: parthenogenetic chimera and chimera resulting from fertilization of the second polar body. Furthermore, a particular type of chimera called 'androgenetic chimera' recently described in fetuses with placental mesenchymal dysplasia and in rare patients with Beckwith-Wiedemann syndrome is discussed. Strategies to study mechanisms leading to the production of chimera and mosaics are also proposed.

  17. The Major Prognostic Features of Nuclear Receptor NR5A2 in Infiltrating Ductal Breast Carcinomas

    Directory of Open Access Journals (Sweden)

    Li-Yun Chang


    Full Text Available Background. Gene expression profiles of 181 breast cancer samples were analyzed to identify prognostic features of nuclear receptors NR5A1 and NR5A2 based upon their associated transcriptional networks. Methods. A supervised network analysis approach was used to build the NR5A-mediated transcriptional regulatory network. Other bioinformatic tools and statistical methods were utilized to confirm and extend results from the network analysis methodology. Results. NR5A2 expression is a negative factor in breast cancer prognosis in both ER(− and ER(−/ER(+ mixed cohorts. The clinical and cohort significance of NR5A2-mediated transcriptional activities indicates that it may have a significant role in attenuating grade development and cancer related signal transduction pathways. NR5A2 signature that conditions poor prognosis was identified based upon results from 15 distinct probes. Alternatively, the expression of NR5A1 predicts favorable prognosis when concurrent NR5A2 expression is low. A favorable signature of eight transcription factors mediated by NR5A1 was also identified. Conclusions. Correlation of poor prognosis and NR5A2 activity is identified by NR5A2-mediated 15-gene signature. NR5A2 may be a potential drug target for treating a subset of breast cancer tumors across breast cancer subtypes, especially ER(− breast tumors. The favorable prognostic feature of NR5A1 is predicted by NR5A1-mediated 8-gene signature.

  18. Serotonin receptor 5-HT5A in rat hippocampus decrease by leptin treatment. (United States)

    García-Alcocer, Guadalupe; Rodríguez, Angelina; Moreno-Layseca, Paulina; Berumen, Laura C; Escobar, Jesica; Miledi, Ricardo


    5-Hydroxytryptamine (5-HT) is involved in a variety of different physiological processes and behaviors through the activation of equally diverse receptors subtypes. In this work we studied the changes on the expression of 5-HT(5A) receptors in rat hippocampus induced by leptin, an adipocyte-derived hormone that has been reported to participate in the modulation of food intake and in adult hippocampal neurogenesis. To study the effect of leptin on the 5-HT(5A) receptor gene expression a qRT-PCR was used and the distribution of those receptors in the hippocampus was visualized by immunohistochemistry. Rats were separated in four groups: control (untreated rats), leptin-treated, serotonin-treated and leptin+serotonin treated. The results showed that even though the 5-HT(5A) gene expression did not change in the hippocampus of any of the treated groups, in the rats treated with leptin and serotonin, the specific immunostaining for the 5-HT(5A) serotonin receptor decreased significantly in the dentate gyrus.

  19. Emergence of multicluster chimera states. (United States)

    Yao, Nan; Huang, Zi-Gang; Grebogi, Celso; Lai, Ying-Cheng


    A remarkable phenomenon in spatiotemporal dynamical systems is chimera state, where the structurally and dynamically identical oscillators in a coupled networked system spontaneously break into two groups, one exhibiting coherent motion and another incoherent. This phenomenon was typically studied in the setting of non-local coupling configurations. We ask what can happen to chimera states under systematic changes to the network structure when links are removed from the network in an orderly fashion but the local coupling topology remains invariant with respect to an index shift. We find the emergence of multicluster chimera states. Remarkably, as a parameter characterizing the amount of link removal is increased, chimera states of distinct numbers of clusters emerge and persist in different parameter regions. We develop a phenomenological theory, based on enhanced or reduced interactions among oscillators in different spatial groups, to explain why chimera states of certain numbers of clusters occur in certain parameter regions. The theoretical prediction agrees well with numerics.

  20. Role of 5-HT5A receptors in the consolidation of memory. (United States)

    Gonzalez, Roberto; Chávez-Pascacio, Karla; Meneses, Alfredo


    5-HT5 receptor occurs in brain areas implicated in learning and memory. Hence, the effects (0.01-3.0 mg/kg) of SB-6995516 (a 5-HT5A receptor antagonist) in the associative learning task of autoshaping were studied. The results showed that post-training injection of SB-699551 decreased conditioned responses (CR) during short-term (STM; 1.5h; at 0.1mg/kg) and long-term memory (LTM; 24 h; at 3.0 mg/kg) relative to the vehicle animals. Moreover, considering that there are no selective 5-HT5A receptor agonists, next, diverse doses of the serotonin precursor l-tryptophan were studied during STM and LTM, showing that l-tryptophan (5-100mg/kg) facilitated performance, particularly at 50mg/kg. In interactions experiments, l-tryptophan (50 mg/kg) attenuated the impairment effect induced by SB-699551 (either 0.3 or 3.0 mg/kg). All together this evidence suggests that the blockade of 5-HT5A receptor appear to be able to impair STM and LTM (24 h), while its stimulation might facilitate it. Of course further investigation is necessary, meanly with selective 5-HT5A compounds are necessary.

  1. Reduced expression of C5a receptors on neutrophils from cord blood

    DEFF Research Database (Denmark)

    Nybo, Mads; Sørensen, O; Leslie, R;


    MLP was tested by measuring migration and exocytosis of myeloperoxidase and lactoferrin. RESULTS: C5a mean fluorescence on neutrophils from neonates was significantly lower (22.4 (SD 3.5)) than in adult controls (31.5 (3.1)). Neutrophils from neonates migrated poorly towards both C5a and fMLP compared with those...... from adult controls. Exocytosis of myeloperoxidase, but not lactoferrin from neonatal neutrophils stimulated with C5a, was significantly lower than in adult controls. fMLP stimulation, on the other hand, resulted in significantly higher exocytosis in neonates. CONCLUSION: The lower expression of C5a...... receptors on neutrophils from neonates could be related to reduced C5a mediated exocytosis of myeloperoxidase....

  2. C5a receptor deficiency alters energy utilization and fat storage.

    Directory of Open Access Journals (Sweden)

    Christian Roy

    Full Text Available OBJECTIVE: To investigate the impact of whole body C5a receptor (C5aR deficiency on energy metabolism and fat storage. DESIGN: Male wildtype (WT and C5aR knockout (C5aRKO mice were fed a low fat (CHOW or a high fat high sucrose diet-induced obesity (DIO diet for 14 weeks. Body weight and food intake were measured weekly. Indirect calorimetry, dietary fatload clearance, insulin and glucose tolerance tests were also evaluated. Liver, muscle and adipose tissue mRNA gene expression were measured by RT-PCR. RESULTS: At week one and 12, C5aRKO mice on DIO had increased oxygen consumption. After 12 weeks, although food intake was comparable, C5aRKO mice had lower body weight (-7% CHOW, -12% DIO as well as smaller gonadal (-38% CHOW, -36% DIO and inguinal (-29% CHOW, -30% DIO fat pads than their WT counterparts. Conversely, in WT mice, C5aR was upregulated in DIO vs CHOW diets in gonadal adipose tissue, muscle and liver, while C5L2 mRNA expression was lower in C5aRKO on both diet. Furthermore, blood analysis showed lower plasma triglyceride and non-esterified fatty acid levels in both C5aRKO groups, with faster postprandial triglyceride clearance after a fatload. Additionally, C5aRKO mice showed lower CD36 expression in gonadal and muscle on both diets, while DGAT1 expression was higher in gonadal (CHOW and liver (CHOW and DIO and PPARγ was increased in muscle and liver. CONCLUSION: These observations point towards a role (either direct or indirect for C5aR in energy expenditure and fat storage, suggesting a dual role for C5aR in metabolism as well as in immunity.

  3. Wnt5a uses CD146 as a receptor to regulate cell motility and convergent extension (United States)

    Ye, Zhongde; Zhang, Chunxia; Tu, Tao; Sun, Min; Liu, Dan; Lu, Di; Feng, Jing; Yang, Dongling; Liu, Feng; Yan, Xiyun


    Dysregulation of Wnt signalling leads to developmental defects and diseases. Non-canonical Wnt signalling via planar cell polarity proteins regulates cell migration and convergent extension; however, the underlying mechanisms are poorly understood. Here we report that Wnt5a uses CD146 as a receptor to regulate cell migration and zebrafish embryonic convergent extension. CD146 binds to Wnt5a with the high affinity required for Wnt5a-induced activation of Dishevelled (Dvl) and c-jun amino-terminal kinase (JNK). The interaction between CD146 and Dvl2 is enhanced on Wnt5a treatment. Mutation of the Dvl2-binding region impairs its ability to activate JNK, promote cell migration and facilitate the formation of cell protrusions. Knockdown of Dvls impairs CD146-induced cell migration. Interestingly, CD146 inhibits canonical Wnt signalling by promoting β-catenin degradation. Our results suggest a model in which CD146 acts as a functional Wnt5a receptor in regulating cell migration and convergent extension, turning off the canonical Wnt signalling branch.

  4. A classification scheme for chimera states (United States)

    Kemeth, Felix P.; Haugland, Sindre W.; Schmidt, Lennart; Kevrekidis, Ioannis G.; Krischer, Katharina


    We present a universal characterization scheme for chimera states applicable to both numerical and experimental data sets. The scheme is based on two correlation measures that enable a meaningful definition of chimera states as well as their classification into three categories: stationary, turbulent, and breathing. In addition, these categories can be further subdivided according to the time-stationarity of these two measures. We demonstrate that this approach is both consistent with previously recognized chimera states and enables us to classify states as chimeras which have not been categorized as such before. Furthermore, the scheme allows for a qualitative and quantitative comparison of experimental chimeras with chimeras obtained through numerical simulations.

  5. C5a receptor signaling prevents folate deficiency-induced neural tube defects in mice. (United States)

    Denny, Kerina J; Coulthard, Liam G; Jeanes, Angela; Lisgo, Steven; Simmons, David G; Callaway, Leonie K; Wlodarczyk, Bogdan; Finnell, Richard H; Woodruff, Trent M; Taylor, Stephen M


    The complement system is involved in a range of diverse developmental processes, including cell survival, growth, differentiation, and regeneration. However, little is known about the role of complement in embryogenesis. In this study, we demonstrate a novel role for the canonical complement 5a receptor (C5aR) in the development of the mammalian neural tube under conditions of maternal dietary folic acid deficiency. Specifically, we found C5aR and C5 to be expressed throughout the period of neurulation in wild-type mice and localized the expression to the cephalic regions of the developing neural tube. C5aR was also found to be expressed in the neuroepithelium of early human embryos. Ablation of the C5ar1 gene or the administration of a specific C5aR peptide antagonist to folic acid-deficient pregnant mice resulted in a high prevalence of severe anterior neural tube defect-associated congenital malformations. These findings provide a new and compelling insight into the role of the complement system during mammalian embryonic development.

  6. Cyclic guanidines as dual 5-HT5A/5-HT7 receptor ligands: optimising brain penetration. (United States)

    Peters, Jens-Uwe; Lübbers, Thomas; Alanine, Alexander; Kolczewski, Sabine; Blasco, Francesca; Steward, Lucinda


    The optimisation of molecular properties within a series of 2-amino dihydroquinazoline 5-HT5A/5-HT7 receptor ligands resulted in a significantly improved brain-to-plasma ratio, enhancing the pharmacological utility of these compounds. By modulating the lipophilicity and pKa, a 20-fold increase in brain-to-plasma ratio could be achieved, leading to micromolar brain concentrations after oral administration. The enantiomers of one representative of this series of improved compounds were separated, and the configuration of the eutomer was determined by X-ray crystallography.

  7. Recurrence quantification analysis of chimera states (United States)

    Santos, M. S.; Szezech, J. D.; Batista, A. M.; Caldas, I. L.; Viana, R. L.; Lopes, S. R.


    Chimera states, characterised by coexistence of coherence and incoherence in coupled dynamical systems, have been found in various physical systems, such as mechanical oscillator networks and Josephson-junction arrays. We used recurrence plots to provide graphical representations of recurrent patterns and identify chimera states. Moreover, we show that recurrence plots can be used as a diagnostic of chimera states and also to identify the chimera collapse.

  8. Chimera and chimera-like states in populations of nonlocally coupled homogeneous and heterogeneous chemical oscillators (United States)

    Nkomo, Simbarashe; Tinsley, Mark R.; Showalter, Kenneth


    Chimera and chimera-like states are characterized in populations of photochemically coupled Belousov-Zhabotinsky (BZ) oscillators. Simple chimeras and chimera states with multiple and traveling phase clusters, phase-slip behavior, and chimera-like states with phase waves are described. Simulations with a realistic model of the discrete BZ system of populations of homogeneous and heterogeneous oscillators are compared with each other and with experimental behavior.

  9. Complement factor C5a and C5a receptor contribute to morphine tolerance and withdrawal-induced hyperalgesia in rats. (United States)

    Li, Yan-Hua; Jin, Hua; Xu, Jing-Shu; Guo, Guang-Qiong; Chen, DA-Lin; Bo, Yun


    Morphine is a potent opioid analgesic. However, the repeated use of morphine causes tolerance and hyperalgesia. Neuroinflammation has been reported to be involved in morphine tolerance and withdrawal-induced hyperalgesia. The complement system is a crucial effector mechanism of immune responses. The present study investigated the roles of complement factor C5a and C5a receptor (C5aR) in the development of morphine tolerance and withdrawal-induced hyperalgesia. In the present study, the levels of C5a and C5aR were increased in the L5 lumbar spinal cords of morphine-tolerant rats. The administration of C5a promoted the development of hyperalgesia and the expression of spinal antinociceptive tolerance to intrathecal morphine in both mechanical and thermal test. However, these phenomena caused by morphine were significantly attenuated by the C5aR antagonist PMX53. These results suggest that complement activation within the spinal cord is involved in morphine tolerance and withdrawal-induced hyperalgesia. C5a and C5aR may serve as novel targets for the control of morphine tolerance and withdrawal-induced hyperalgesia.

  10. Constraining QGP properties with CHIMERA (United States)

    Garishvili, Irakli; Abelev, Betty; Cheng, Michael; Glenn, Andrew; Soltz, Ron


    Understanding essential properties of strongly interacting matter is arguably the most important goal of the relativistic heavy-ion programs both at RHIC and the LHC. In particular, constraining observables such as ratio of shear viscosity to entropy density, η/s, initial temperature, Tinit, and energy density is of critical importance. For this purpose we have developed CHIMERA, Comprehensive Heavy Ion Model Reporting and Evaluation Algorithm. CHIMERA is designed to facilitate global statistical comparison of results from our multi-stage hydrodynamics/hadron cascade model of heavy ion collisions to the key soft observables (HBT, elliptic flow, spectra) measured at RHIC and the LHC. Within this framework the data representing multiple different measurements from different experiments are compiled into single format. One of the unique features of CHIMERA is, that in addition to taking into account statistical errors, it also treats different types of systematic uncertainties. The hydrodynamics/hadron cascade model used in the framework incorporates different initial state conditions, pre-equilibrium flow, the UVH2+1 viscous hydro model, Cooper-Frye freezeout, and the UrQMD hadronic cascade model. The sensitivity of the observables to the equation of state (EoS) is explored using several EoS's in the hydrodynamic evolution. The latest results from CHIMERA, including data from the LHC, will be presented.

  11. Ethical considerations in chimera research. (United States)

    Hermerén, Göran


    The development of human pluripotent stem cells has opened up the possibility to analyse the function of human cells and tissues in animal hosts, thus generating chimeras. Although such lines of research have great potential for both basic and translational science, they also raise unique ethical issues that must be considered.

  12. Cyclic guanidines as dual 5-HT5A/5-HT7 receptor ligands: structure-activity relationship elucidation. (United States)

    Peters, Jens-Uwe; Lübbers, Thomas; Alanine, Alexander; Kolczewski, Sabine; Blasco, Francesca; Steward, Lucinda


    The optimisation of affinity and selectivity in a novel series of dual 5-HT5A/5-HT7 receptor ligands is described. Brain penetrant 2-aminodihydroquinazolines with low nanomolar affinities were identified.

  13. WNT5A and Its Receptors in the Bone-Cancer Dialogue. (United States)

    Thiele, Stefanie; Rachner, Tilman D; Rauner, Martina; Hofbauer, Lorenz C


    Wnt signaling is critical for tumorigenesis and skeletal remodeling. However, its contribution to the formation of metastatic bone lesions remains poorly defined. One major challenge of unraveling its role in cancer progression is the high complexity of Wnt signaling, which includes numerous ligands, receptors, and inhibitors, with intricate biological effects and specific signaling pathways depending on the cellular context. In this perspective, we summarize the role of the noncanonical Wnt ligand WNT5A in the development and metastatic process of osteotropic cancer entities. We focus on its tumor-suppressive function in breast cancer, tumor promoting effects in melanoma, and ambiguous role in prostate cancer, and discuss potential challenges and opportunities that may be associated with targeting Wnt signaling for cancer therapy and treatment of bone metastases. © 2016 American Society for Bone and Mineral Research.

  14. Complement anaphylatoxin C5a neuroprotects through regulation of glutamate receptor subunit 2 in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Thomas Sunil


    Full Text Available Abstract Background The complement system is thought to be involved in the pathogenesis of numerous neurological diseases. We previously reported that pre-treatment of murine cortico-hippocampal neuronal cultures with the complement derived anaphylatoxin C5a, protects against glutamate mediated apoptosis. Our present study with C5a receptor knock out (C5aRKO mice corroborates that the deficiency of C5a renders C5aRKO mouse more susceptible to apoptotic injury in vivo. In this study we explored potential upstream mechanisms involved in C5a mediated neuroprotection in vivo and in vitro. Methods Based on evidence suggesting that reduced expression of glutamate receptor subunit 2 (GluR2 may influence apoptosis in neurons, we studied the effect of human recombinant C5a on GluR2 expression in response to glutamate neurotoxicity. Glutamate analogs were injected into C5aRKO mice or used to treat in vitro neuronal culture and GluR2 expression were assessed in respect with cell death. Results In C5aRKO mice we found that the neurons are more susceptible to excitotoxicity resulting in apoptotic injury in the absence of the C5a receptor compared to WT control mice. Our results suggest that C5a protects against apoptotic pathways in neurons in vitro and in vivo through regulation of GluR2 receptor expression. Conclusion Complement C5a neuroprotects through regulation of GluR2 receptor subunit.

  15. Pharmacological characterisation of α6β4* nicotinic acetylcholine receptors assembled from three different α6/α3 subunit chimeras in tsA201 cells

    DEFF Research Database (Denmark)

    Jensen, Anne Bjørnskov; Hoestgaard-Jensen, Kirsten; Jensen, Anders A.


    . In the FLIPR™ Membrane Potential Blue assay, the agonists exhibited the same rank order of potencies [(±)-epibatidine>sazetidine A>varenicline>(−)-cytisine~(S)-nicotine>acetylcholine>carbachol] at the C1β4, C1β4β3, C6F223Lβ4, C6F223Lβ4β3, C16F223Lβ4 and C16F223Lβ4β3 receptors, albeit the absolute EC50 values...

  16. Pinning control of chimera states (United States)

    Gambuzza, Lucia Valentina; Frasca, Mattia


    The position of the coherent and incoherent domain of a chimera state in a ring of nonlocally coupled oscillators is strongly influenced by the initial conditions, making nontrivial the problem of confining them in a specific region of the structure. In this paper we propose the use of spatial pinning to induce a chimera state where the nodes belonging to one domain, either the coherent or the incoherent, are fixed by the control action. We design two different techniques according to the dynamics to be forced in the region of pinned nodes, and validate them on FitzHugh-Nagumo and Kuramoto oscillators. Furthermore, we introduce a suitable strategy to deal with the effects of finite size in small structures.

  17. Cloning, expression, cellular distribution, and role in chemotaxis of a C5a receptor in rainbow trout: the first identification of a C5a receptor in a nonmammalian species (United States)

    Boshra, Hani; Li, Jun; Peters, Rodney; Hansen, John; Matlapudi, Anjan; Sunyer, J. Oriol


    C3a, C4a, and C5a anaphylatoxins generated during complement activation play a key role in inflammation. C5a is the most potent of the three anaphylatoxins in eliciting biological responses. The effects of C5a are mediated by its binding to C5a receptor (C5aR, CD88). To date, C5aR has only been identified and cloned in mammalian species, and its evolutionary history remains ill-defined. To gain insights into the evolution, conserved structural domains, and functions of C5aR, we have cloned and characterized a C5aR in rainbow trout, a teleost fish. The isolated cDNA encoded a 350-aa protein that showed the highest sequence similarity to C5aR from other species. Genomic analysis revealed the presence of one continuous exon encoding the entire open reading frame. Northern blot analysis showed significant expression of the trout C5a receptor (TC5aR) message in PBLs and kidney. Flow cytometric analysis showed that two Abs generated against two different areas of the extracellular N-terminal region of TC5aR positively stained the same leukocyte populations from PBLs. B lymphocytes and granulocytes comprised the majority of cells recognized by the anti-TC5aR. More importantly, these Abs inhibited chemotaxis of PBLs toward a chemoattractant fraction purified from complement-activated trout serum. Our data suggest that the split between C5aR and C3aR from a common ancestral molecule occurred before the emergence of teleost fish. Moreover, we demonstrate that the overall structure of C5aR as well as its role in chemotaxis have remained conserved for >300 million years.

  18. Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists (United States)

    Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.


    Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1-3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents.

  19. Expression of semaphorin 5A and its receptor plexin B3 contributes to invasion and metastasis of gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Guo-Qing Pan; Hong-Zheng Ren; Shu-Fang Zhang; Xi-Mei Wang; Ji-Fang Wen


    AIM:To investigate the protein and mRNA expression of semaphorin 5A and its receptor plexin B3 in gastric carcinoma and explore its role in the invasion and metastasis of gastric carcinoma.METHODS:Expression of semaphorin 5A and its receptor plexin B3 in 48 samples of primary gastric carcinoma,its corresponding non-neoplastic mucosa,and matched regional lymph node metastasis was assayed by reverse transcription-polymerase chain reaction (RT-PCR),real-time RT-PCR and Western blotting.RESULTS:The protein and mRNA expression of semaphorin 5A and its receptor plexin B3 increased gradually in non-neoplastic mucosa,primary gastric carcinoma and lymph node metastasis (P<0.05).Moreover,the expression of semaphorin 5A was closely correlated with that of plexin B3.CONCLUSION:Semaphorin 5A and its receptor plexin B3 play an important role in the invasion and metastasis of gastric carcinoma.

  20. The smallest chimera state for coupled pendula (United States)

    Wojewoda, Jerzy; Czolczynski, Krzysztof; Maistrenko, Yuri; Kapitaniak, Tomasz


    Chimera states in the systems of coupled identical oscillators are spatiotemporal patterns in which different groups of oscillators can exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Although these states are typically observed in large ensembles of oscillators, recently it has been suggested that chimera states may occur in the systems with small numbers of oscillators. Here, considering three coupled pendula showing chaotic behavior, we find the pattern of the smallest chimera state, which is characterized by the coexistence of two synchronized and one incoherent oscillator. We show that this chimera state can be observed in simple experiments with mechanical oscillators, which are controlled by elementary dynamical equations derived from Newton’s laws. Our finding suggests that chimera states are observable in small networks relevant to various real-world systems. PMID:27713483

  1. The smallest chimera state for coupled pendula (United States)

    Wojewoda, Jerzy; Czolczynski, Krzysztof; Maistrenko, Yuri; Kapitaniak, Tomasz


    Chimera states in the systems of coupled identical oscillators are spatiotemporal patterns in which different groups of oscillators can exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Although these states are typically observed in large ensembles of oscillators, recently it has been suggested that chimera states may occur in the systems with small numbers of oscillators. Here, considering three coupled pendula showing chaotic behavior, we find the pattern of the smallest chimera state, which is characterized by the coexistence of two synchronized and one incoherent oscillator. We show that this chimera state can be observed in simple experiments with mechanical oscillators, which are controlled by elementary dynamical equations derived from Newton’s laws. Our finding suggests that chimera states are observable in small networks relevant to various real-world systems.

  2. Structural complexes of the agonist, inverse agonist and antagonist bound C5a receptor: insights into pharmacology and signaling. (United States)

    Rana, Soumendra; Sahoo, Amita Rani; Majhi, Bharat Kumar


    The C5a receptor (C5aR) is a pharmacologically important G-protein coupled receptor (GPCR) that interacts with (h)C5a, by recruiting both the "orthosteric" sites (site1 at the N-terminus and site2 at the ECS, extra cellular surface) on C5aR in a two site-binding model. However, the complex pharmacological landscape and the distinguishing chemistry operating either at the "orthosteric" site1 or at the functionally important "orthosteric" site2 of C5aR are still not clear, which greatly limits the understanding of C5aR pharmacology. One of the major bottlenecks is the lack of an experimental structure or a refined model structure of C5aR with appropriately defined active sites. The study attempts to understand the pharmacology at the "orthosteric" site2 of C5aR rationally by generating a highly refined full-blown model structure of C5aR through advanced molecular modeling techniques, and further subjecting it to automated docking and molecular dynamics (MD) studies in the POPC bilayer. The first series of structural complexes of C5aR respectively bound to a linear native peptide agonist ((h)C5a-CT), a small molecule inverse agonist (NDT) and a cyclic peptide antagonist (PMX53) are reported, apparently establishing the unique pharmacological landscape of the "orthosteric" site2, which also illustrates an energetically distinct but coherent competitive chemistry ("cation-π" vs. "π-π" interactions) involved in distinguishing the established ligands known for targeting the "orthosteric" site2 of C5aR. Over a total of 1 μs molecular dynamics (MD) simulation in the POPC bilayer, it is evidenced that while the agonist prefers a "cation-π" interaction, the inverse agonist prefers a "cogwheel/L-shaped" interaction in contrast to the "edge-to-face/T-shaped" type π-π interactions demonstrated by the antagonist by engaging the F275(7.28) of the C5aR. In the absence of a NMR or crystallographically guided model structure of C5aR, the computational model complexes not only

  3. Orphan G protein-coupled receptor GPRC5A modulates integrin β1-mediated epithelial cell adhesion. (United States)

    Bulanova, Daria R; Akimov, Yevhen A; Rokka, Anne; Laajala, Teemu D; Aittokallio, Tero; Kouvonen, Petri; Pellinen, Teijo; Kuznetsov, Sergey G


    G-Protein Coupled Receptor (GPCR), Class C, Group 5, Member A (GPRC5A) has been implicated in several malignancies. The underlying mechanisms, however, remain poorly understood. Using a panel of human cell lines, we demonstrate that CRISPR/Cas9-mediated knockout and RNAi-mediated depletion of GPRC5A impairs cell adhesion to integrin substrates: collagens I and IV, fibronectin, as well as to extracellular matrix proteins derived from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma (Matrigel). Consistent with the phenotype, knock-out of GPRC5A correlated with a reduced integrin β1 (ITGB1) protein expression, impaired phosphorylation of the focal adhesion kinase (FAK), and lower activity of small GTPases RhoA and Rac1. Furthermore, we provide the first evidence for a direct interaction between GPRC5A and a receptor tyrosine kinase EphA2, an upstream regulator of FAK, although its contribution to the observed adhesion phenotype is unclear. Our findings reveal an unprecedented role for GPRC5A in regulation of the ITGB1-mediated cell adhesion and it's downstream signaling, thus indicating a potential novel role for GPRC5A in human epithelial cancers.

  4. 1,2,4-Triazolo[1,5-a]quinoxaline derivatives: synthesis and biological evaluation as adenosine receptor antagonists. (United States)

    Catarzi, Daniela; Colotta, Vittoria; Varano, Flavia; Filacchioni, Guido; Martini, Claudia; Trincavelli, Letizia; Lucacchini, Antonio


    Since most of the reported adenosine receptor antagonists are 2-(hetero)aryl-substituted tricyclic heteroaromatic derivatives, in the present study we report the synthesis and the biological evaluation of a new set of 4-amino-1,2,4-triazolo[1,5-a]quinoxalines containing at position-2 an ethyl carboxylate group or a hydrogen atom. The structure-activity relationships on these compounds were in accordance with those of a previously reported series of analogous size and shape, thus suggesting a similar A(1)-binding mode. In particular, the binding data indicate that alkylation of the 4-amino group of these derivatives lead to potent A(1)-receptor antagonists. Moreover, as new results, this study has pointed out that the ethyl 2-carboxylate group can advantageously replace the 2-(hetero)aryl ring of previously reported triazoloquinoxaline derivatives, affording an ameliorated interaction with the A(1)-receptor subtype.

  5. Generation of axolotl hematopoietic chimeras

    Directory of Open Access Journals (Sweden)

    David Lopez


    Full Text Available Wound repair is an extremely complex process that requires precise coordination between various cell types including immune cells.  Unfortunately, in mammals this usually results in scar formation instead of restoration of the original fully functional tissue, otherwise known as regeneration.  Various animal models like frogs and salamanders are currently being studied to determine the intracellular and intercellular pathways, controlled by gene expression, that elicit cell proliferation, differentiation, and migration of cells during regenerative healing.  Now, the necessary genetic tools to map regenerative pathways are becoming available for the axolotl salamander, thus allowing comparative studies between scarring and regeneration.  Here, we describe in detail three methods to produce axolotl hematopoietic cell-tagged chimeras for the study of hematopoiesis and regeneration.

  6. Metabotropic glutamate receptor 5 - a promising target in drug development and neuroimaging

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rajapillai L.I.; Tipre, Dnyanesh N. [Stony Brook University Health Science Center, Department of Psychiatry, Stony Brook, NY (United States)


    This review summarizes the contributions by various teams of scientists in assessing the metabotropic glutamate receptor 5 (mGluR5) as a biomarker in neuropsychiatric disorders and diseases. Development of positive and negative allosteric modulators of mGluR5 is reviewed, as is the development of PET radioligands that have the potential to measure mGluR5 receptor density in neurological disorders and during therapeutic interventions. PET imaging provides an effective tool to assess the specificity of new drugs, select dose regimens in clinical trials, and study drug mechanisms of action. We summarize and deliver comparative analyses of mGluR5-specific PET radiotracers and their applications in understanding the pathophysiology of mGluR5-related nervous system disorders and to speed up drug development. (orig.)

  7. Chimera States in Mechanical Oscillator Networks

    CERN Document Server

    Martens, Erik Andreas; Fourrière, Antoine; Hallatschek, Oskar


    The synchronization of coupled oscillators is a fascinating manifestation of self-organization that nature employs to orchestrate essential processes of life, such as the beating of the heart. While it was long thought that synchrony or disorder were mutually exclusive steady states for a network of identical oscillators, numerous theoretical studies in recent years revealed the intriguing possibility of 'chimera states', in which the symmetry of the oscillator population is broken into a synchronous and an asynchronous part. However, a striking lack of empirical evidence raises the question of whether chimeras are indeed characteristic to natural systems. This calls for a palpable realization of chimera states without any fine-tuning, from which physical mechanisms underlying their emergence can be uncovered. Here, we devise a simple experiment with mechanical oscillators coupled in a hierarchical network to show that chimeras emerge naturally from a competition between two antagonistic synchronization patte...

  8. Transferring morality to human-nonhuman chimeras. (United States)

    Piotrowska, Monika


    Human-nonhuman chimeras have been the focus of ethical controversies for more than a decade, yet some related issues remain unaddressed. For example, little has been said about the relationship between the origin of transferred cells and the morally relevant capacities to which they may give rise. Consider, for example, a developing mouse fetus that receives a brain stem cell transplant from a human and another that receives a brain stem cell transplant from a dolphin. If both chimeras acquire morally relevant capacities as a result of transplantation, and if those capacities are indistinguishable, should the difference in cell origin matter to how we classify these creatures? I argue that if morally relevant capacities are easy to detect, cell origin is irrelevant to how the chimera ought to be treated. However, if such capacities are hard to detect, cell origin should play a role in considerations about how to treat the chimera.

  9. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Bolado-Carrancio, A. [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain); Riancho, J.A. [Department of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, University of Cantabria, RETICEF, Santander (Spain); Sainz, J. [Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC-University of Cantabria, Santander (Spain); Rodríguez-Rey, J.C., E-mail: [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain)


    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.

  10. Imperfect traveling chimera states induced by local synaptic gradient coupling (United States)

    Bera, Bidesh K.; Ghosh, Dibakar; Banerjee, Tanmoy


    In this paper, we report the occurrence of chimera patterns in a network of neuronal oscillators, which are coupled through local, synaptic gradient coupling. We discover a new chimera pattern, namely the imperfect traveling chimera state, where the incoherent traveling domain spreads into the coherent domain of the network. Remarkably, we also find that chimera states arise even for one-way local coupling, which is in contrast to the earlier belief that only nonlocal, global, or nearest-neighbor local coupling can give rise to chimera state; this find further relaxes the essential connectivity requirement of getting a chimera state. We choose a network of identical bursting Hindmarsh-Rose neuronal oscillators, and we show that depending upon the relative strength of the synaptic and gradient coupling, several chimera patterns emerge. We map all the spatiotemporal behaviors in parameter space and identify the transitions among several chimera patterns, an in-phase synchronized state, and a global amplitude death state.

  11. C5a receptor (CD88) inhibition improves hypothermia-induced neuroprotection in an in vitro ischemic model. (United States)

    Thundyil, John; Pavlovski, Dale; Hsieh, Yu-Hsuan; Gelderblom, Mathias; Magnus, Tim; Fairlie, David P; Arumugam, Thiruma V


    The concept of 'salvageble penumbra' has prompted both scientists and physicians to explore various neuroprotective approaches that could be beneficial during stroke therapy. Unfortunately, most of them have proved ineffective in targeting multiple cellular death cascades incited within the ischemic penumbra. Hypothermia has been shown to be capable of addressing this problem to some extent. Although many studies have shown that hypothermia targets several cellular processes, its effects on innate immune receptor-mediated apoptotic death still remain unclear. Moreover, whether inhibiting the signaling of innate immune receptors like complement anaphylatoxin C5a receptor (CD88) plays a role in this hypothermic neuroprotection still need to be deciphered. Using various types of ischemic insults in different neuronal cells, we confirm that hypothermia does indeed attenuate apoptotic neuronal cell death in vitro and this effect can be further enhanced by pharmacologically blocking or knocking out CD88. Thus, our study raises a promising therapeutic possibility of adding CD88 antagonists along with hypothermia to improve stroke outcomes.

  12. Chimera states in mechanical oscillator networks

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Thutupalli, Shashi; Fourrière, Antoine


    The synchronization of coupled oscillators is a fascinating manifestation of self-organization that nature uses to orchestrate essential processes of life, such as the beating of the heart. Although it was long thought that synchrony and disorder were mutually exclusive steady states for a network...... of identical oscillators, numerous theoretical studies in recent years have revealed the intriguing possibility of "chimera states," in which the symmetry of the oscillator population is broken into a synchronous part and an asynchronous part. However, a striking lack of empirical evidence raises the question...... of whether chimeras are indeed characteristic of natural systems. This calls for a palpable realization of chimera states without any fine-tuning, from which physical mechanisms underlying their emergence can be uncovered. Here, we devise a simple experiment with mechanical oscillators coupled...

  13. Turbulent chimeras in large semiconductor laser arrays

    CERN Document Server

    Shena, Joniald; Kovanis, Vassilios; Tsironis, George P


    Semiconductor laser arrays have been investigated experimentally and theoretically from the viewpoint of temporal and spatial coherence for the past forty years. In this work, we are focusing on a rather novel complex collective behavior, namely chimera states, where synchronized clusters of emitters coexist with unsynchronized ones. For the first time, we find such states exist in large diode arrays based on quantum well gain media with nearest-neighbor interactions. The crucial parameters are the evanescent coupling strength and the relative optical frequency detuning between the emitters of the array. By employing a recently proposed figure of merit for classifying chimera states, we provide quantitative and qualitative evidence for the observed dynamics. The corresponding chimeras are identified as turbulent according to the irregular temporal behavior of the classification measure. Such studies may be the springboard for designing next generation photonic emitters providing on demand diverse waveforms.

  14. A Discontinuous Galerkin Chimera Overset Solver (United States)

    Galbraith, Marshall Christopher

    This work summarizes the development of an accurate, efficient, and flexible Computational Fluid Dynamics computer code that is an improvement relative to the state of the art. The improved accuracy and efficiency is obtained by using a high-order discontinuous Galerkin (DG) discretization scheme. In order to maximize the computational efficiency, quadrature-free integration and numerical integration optimized as matrix-vector multiplications is employed and implemented through a pre-processor (PyDG). Using the PyDG pre-processor, a C++ polynomial library has been developed that uses overloaded operators to design an efficient Domain Specific Language (DSL) that allows expressions involving polynomials to be written as if they are scalars. The DSL, which makes the syntax of computer code legible and intuitive, promotes maintainability of the software and simplifies the development of additional capabilities. The flexibility of the code is achieved by combining the DG scheme with the Chimera overset method. The Chimera overset method produces solutions on a set of overlapping grids that communicate through an exchange of data on grid boundaries (known as artificial boundaries). Finite volume and finite difference discretizations use fringe points, which are layers of points on the artificial boundaries, to maintain the interior stencil on artificial boundaries. The fringe points receive solution values interpolated from overset grids. Proper interpolation requires fringe points to be contained in overset grids. Insufficient overlap must be corrected by modifying the grid system. The Chimera scheme can also exclude regions of grids that lie outside the computational domain; a process commonly known as hole cutting. The Chimera overset method has traditionally enabled the use of high-order finite difference and finite volume approaches such as WENO and compact differencing schemes, which require structured meshes, for modeling fluid flow associated with complex

  15. Signaling components of the 1α,25(OH)2D3-dependent Pdia3 receptor complex are required for Wnt5a calcium-dependent signaling. (United States)

    Doroudi, Maryam; Olivares-Navarrete, Rene; Hyzy, Sharon L; Boyan, Barbara D; Schwartz, Zvi


    Wnt5a and 1α,25(OH)2D3 are important regulators of endochondral ossification. In osteoblasts and growth plate chondrocytes, 1α,25(OH)2D3 initiates rapid effects via its membrane-associated receptor protein disulfide isomerase A3 (Pdia3) in caveolae, activating phospholipase A2 (PLA2)-activating protein (PLAA), calcium/calmodulin-dependent protein kinase II (CaMKII), and PLA2, resulting in protein kinase C (PKC) activation. Wnt5a initiates its calcium-dependent effects via intracellular calcium release, activating PKC and CaMKII. We investigated the requirement for components of the Pdia3 receptor complex in Wnt5a calcium-dependent signaling. We determined that Wnt5a signals through a CaMKII/PLA2/PGE2/PKC cascade. Silencing or blocking Pdia3, PLAA, or vitamin D receptor (VDR), and inhibition of calmodulin (CaM), CaMKII, or PLA2 inhibited Wnt5a-induced PKC activity. Wnt5a activated PKC in caveolin-1-silenced cells, but methyl-beta-cyclodextrin reduced its stimulatory effect. 1α,25(OH)2D3 reduced stimulatory effects of Wnt5a on PKC in a dose-dependent manner. In contrast, Wnt5a had a biphasic effect on 1α,25(OH)2D3-stimulated PKC activation; 50ng/ml Wnt5a caused a 2-fold increase in 1α,25(OH)2D3-stimulated PKC but higher Wnt5a concentrations reduced 1α,25(OH)2D3-stimulated PKC activation. Western blots showed that Wnt receptors Frizzled2 (FZD2) and Frizzled5 (FZD5), and receptor tyrosine kinase-like orphan receptor 2 (ROR2) were localized to caveolae. Blocking ROR2, but not FZD2 or FZD5, abolished the stimulatory effects of 1α,25(OH)2D3 on PKC and CaMKII. 1α,25(OH)2D3 membrane receptor complex components (Pdia3, PLAA, caveolin-1, CaM) interacted with Wnt5a receptors/co-receptors (ROR2, FZD2, FZD5) in immunoprecipitation studies, interactions that changed with either 1α,25(OH)2D3 or Wnt5a treatment. This study demonstrates that 1α,25(OH)2D3 and Wnt5a mediate their effects via similar receptor components and suggests that these pathways may interact.

  16. A Potential Link between the C5a Receptor 1 and the β1-Adrenoreceptor in the Mouse Heart.

    Directory of Open Access Journals (Sweden)

    Kuan Hua Khor

    Full Text Available Inflammation may contribute to the pathogenesis of specific cardiovascular diseases, but it is uncertain if mediators released during the inflammatory process will affect the continued efficacy of drugs used to treat clinical signs of the cardiac disease. We investigated the role of the complement 5a receptor 1 (C5aR1/CD88 in the cardiac response to inflammation or atenolol, and the effect of C5aR1 deletion in control of baseline heart rate in an anesthetized mouse model.An initial study showed that PMX53, an antagonist of C5aR1 in normal C57BL6/J (wild type, WT mice reduced heart rate (HR and appeared to have a protective effect on the heart following induced sepsis. C5aR1 knockout (CD88-/- mice had a lower HR than wild type mice, even during sham surgery. A model to assess heart rate variability (HRV in anesthetized mice was developed to assess the effects of inhibiting the β1-adrenoreceptor (β1-AR in a randomized crossover study design.HR and LF Norm were constitutively lower and SDNN and HF Norm constitutively higher in the CD88-/- compared with WT mice (P 0.05, except for the reduced LF/HF (Lower frequency/High frequency ratio (P< 0.05 at 60 min post-atenolol, suggesting increased parasympathetic tone of the heart due to the effect of atenolol administration. The HR of the WT mice were lower post atenolol compared to the CD88-/- mice (P = 0.001 but the HRV of CD88-/- mice were significantly increased (P< 0.05, compared with WT mice.Knockout of the C5aR1 attenuated the effect of β1-AR in the heart, suggesting an association between the β1-AR and C5aR1, although further investigation is required to determine if this is a direct or causal association.

  17. Treatment with the C5a receptor antagonist ADC-1004 reduces myocardial infarction in a porcine ischemia-reperfusion model

    Directory of Open Access Journals (Sweden)

    Arheden Håkan


    Full Text Available Abstract Background Polymorphonuclear neutrophils, stimulated by the activated complement factor C5a, have been implicated in cardiac ischemia/reperfusion injury. ADC-1004 is a competitive C5a receptor antagonist that has been shown to inhibit complement related neutrophil activation. ADC-1004 shields the neutrophils from C5a activation before they enter the reperfused area, which could be a mechanistic advantage compared to previous C5a directed reperfusion therapies. We investigated if treatment with ADC-1004, according to a clinically applicable protocol, would reduce infarct size and microvascular obstruction in a large animal myocardial infarct model. Methods In anesthetized pigs (42-53 kg, a percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 minutes, followed by 4 hours of reperfusion. Twenty minutes after balloon inflation the pigs were randomized to an intravenous bolus administration of ADC-1004 (175 mg, n = 8 or saline (9 mg/ml, n = 8. Area at risk (AAR was evaluated by ex vivo SPECT. Infarct size and microvascular obstruction were evaluated by ex vivo MRI. The observers were blinded to the treatment at randomization and analysis. Results ADC-1004 treatment reduced infarct size by 21% (ADC-1004: 58.3 ± 3.4 vs control: 74.1 ± 2.9%AAR, p = 0.007. Microvascular obstruction was similar between the groups (ADC-1004: 2.2 ± 1.2 vs control: 5.3 ± 2.5%AAR, p = 0.23. The mean plasma concentration of ADC-1004 was 83 ± 8 nM at sacrifice. There were no significant differences between the groups with respect to heart rate, mean arterial pressure, cardiac output and blood-gas data. Conclusions ADC-1004 treatment reduces myocardial ischemia-reperfusion injury and represents a novel treatment strategy of myocardial infarct with potential clinical applicability.

  18. Basins of Attraction for Chimera States

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Panaggio, Mark; Abrams, Daniel


    Chimera states---curious symmetry-broken states in systems of identical coupled oscillators---typically occur only for certain initial conditions. Here we analyze their basins of attraction in a simple system comprised of two populations. Using perturbative analysis and numerical simulation we...

  19. α-Peptide/ß-Peptoid Chimeras

    DEFF Research Database (Denmark)

    Olsen, Christian Adam; Bonke, Gitte; Vedel, Line;


    We describe the synthesis and characterization of the first generation of oligomers consisting of alternating repeats of a-amino acids and chiral N-alkyl-ß-alanine (ß-peptoid) residues. These chimeras are stable toward proteolysis, non-hemolytic, and possess antibacterial activity comparable...... peptidomimetic backbone construct for biologically active ligands....

  20. Experimental Malaria in Pregnancy Induces Neurocognitive Injury in Uninfected Offspring via a C5a-C5a Receptor Dependent Pathway.

    Directory of Open Access Journals (Sweden)

    Chloë R McDonald


    Full Text Available The in utero environment profoundly impacts childhood neurodevelopment and behaviour. A substantial proportion of pregnancies in Africa are at risk of malaria in pregnancy (MIP however the impact of in utero exposure to MIP on fetal neurodevelopment is unknown. Complement activation, in particular C5a, may contribute to neuropathology and adverse outcomes during MIP. We used an experimental model of MIP and standardized neurocognitive testing, MRI, micro-CT and HPLC analysis of neurotransmitter levels, to test the hypothesis that in utero exposure to malaria alters neurodevelopment through a C5a-C5aR dependent pathway. We show that malaria-exposed offspring have persistent neurocognitive deficits in memory and affective-like behaviour compared to unexposed controls. These deficits were associated with reduced regional brain levels of major biogenic amines and BDNF that were rescued by disruption of C5a-C5aR signaling using genetic and functional approaches. Our results demonstrate that experimental MIP induces neurocognitive deficits in offspring and suggest novel targets for intervention.

  1. Fosb gene products contribute to excitotoxic microglial activation by regulating the expression of complement C5a receptors in microglia. (United States)

    Nomaru, Hiroko; Sakumi, Kunihiko; Katogi, Atsuhisa; Ohnishi, Yoshinori N; Kajitani, Kosuke; Tsuchimoto, Daisuke; Nestler, Eric J; Nakabeppu, Yusaku


    The Fosb gene encodes subunits of the activator protein-1 transcription factor complex. Two mature mRNAs, Fosb and ΔFosb, encoding full-length FOSB and ΔFOSB proteins respectively, are formed by alternative splicing of Fosb mRNA. Fosb products are expressed in several brain regions. Moreover, Fosb-null mice exhibit depressive-like behaviors and adult-onset spontaneous epilepsy, demonstrating important roles in neurological and psychiatric disorders. Study of Fosb products has focused almost exclusively on neurons; their function in glial cells remains to be explored. In this study, we found that microglia express equivalent levels of Fosb and ΔFosb mRNAs to hippocampal neurons and, using microarray analysis, we identified six microglial genes whose expression is dependent on Fosb products. Of these genes, we focused on C5ar1 and C5ar2, which encode receptors for complement C5a. In isolated Fosb-null microglia, chemotactic responsiveness toward the truncated form of C5a was significantly lower than that in wild-type cells. Fosb-null mice were significantly resistant to kainate-induced seizures compared with wild-type mice. C5ar1 mRNA levels and C5aR1 immunoreactivity were increased in wild-type hippocampus 24 hours after kainate administration; however, such induction was significantly reduced in Fosb-null hippocampus. Furthermore, microglial activation after kainate administration was significantly diminished in Fosb-null hippocampus, as shown by significant reductions in CD68 immunoreactivity, morphological change and reduced levels of Il6 and Tnf mRNAs, although no change in the number of Iba-1-positive cells was observed. These findings demonstrate that, under excitotoxicity, Fosb products contribute to a neuroinflammatory response in the hippocampus through regulation of microglial C5ar1 and C5ar2 expression.

  2. Differential Contributions of the Complement Anaphylotoxin Receptors C5aR1 and C5aR2 to the Early Innate Immune Response against Staphylococcus aureus Infection

    Directory of Open Access Journals (Sweden)

    Sarah A. Horst


    Full Text Available The complement anaphylatoxin C5a contributes to host defense against Staphylococcus aureus. In this study, we investigated the functional role of the two known C5a receptors, C5aR1 and C5aR2, in the host response to S. aureus. We found that C5aR1−/− mice exhibited greater susceptibility to S. aureus bloodstream infection than wild type and C5aR2−/− mice, as demonstrated by the significantly higher bacterial loads in the kidneys and heart at 24 h of infection, and by the higher levels of inflammatory IL-6 in serum. Histological and immunohistochemistry investigation of infected kidneys at 24 h after bacterial inoculation revealed a discrete infiltration of neutrophils in wild type mice but already well-developed abscesses consisting of bacterial clusters surrounded by a large number of neutrophils in both C5aR1−/− and C5aR2−/− mice. Furthermore, blood neutrophils from C5aR1−/− mice were less efficient than those from wild type or C5aR2−/− mice at killing S. aureus. The requirement of C5aR1 for efficient killing of S. aureus was also demonstrated in human blood after disrupting C5a-C5aR1 signaling using specific inhibitors. These results demonstrated a role for C5aR1 in S. aureus clearance as well as a role for both C5aR1 and C5aR2 in the orchestration of the inflammatory response during infection.

  3. A Novel Role for the Receptor of the Complement Cleavage Fragment C5a, C5aR1, in CCR5-Mediated Entry of HIV into Macrophages. (United States)

    Moreno-Fernandez, Maria E; Aliberti, Julio; Groeneweg, Sander; Köhl, Jörg; Chougnet, Claire A


    The complement system is an ancient pattern recognition system that becomes activated during all stages of HIV infection. Previous studies have shown that C5a can enhance the infection of monocyte-derived macrophages and T cells indirectly through the production of interleukin (IL)-6 and tumor necrosis factor (TNF)-α and the attraction of dendritic cells. C5a exerts its multiple biologic functions mainly through activation of C5a receptor 1 (C5aR1). Here, we assessed the role of C5aR1 as an enhancer of CCR5-mediated HIV infection. We determined CCR5 and C5aR1 heterodimer formation in myeloid cells and the impact of C5aR1 blockade on HIV entry and genomic integration. C5aR1/CCR5 heterodimer formation was identified by immunoprecipitation and western blotting. THP-1 cells and monocyte-derived macrophages (MDM) were infected by R5 laboratory strains or HIV pseudotyped for the vesicular stomatitis virus (VSV) envelope. Levels of integrated HIV were measured by quantitative PCR after targeting of C5aR1 by a C5aR antagonist, neutralizing C5aR1 monoclonal antibody (mAb) or hC5a. C5aR1 was also silenced by specific siRNA prior to viral entry. We found that C5aR1 forms heterodimers with the HIV coreceptor CCR5 in myeloid cells. Targeting C5aR1 significantly decreased integration by R5 viruses but not by VSV-pseudotyped viruses, suggesting that C5aR1 is critical for viral entry. The level of inhibition achieved with C5aR1-blocking reagents was comparable to that of CCR5 antagonists. Mechanistically, C5aR1 targeting decreased CCR5 expression. MDM from CCR5Δ32 homozygous subjects expressed levels of C5aR1 similar to CCR5 WT individuals, suggesting that mere C5aR1 expression is not sufficient for HIV infection. HIV appeared to preferentially enter THP-1 cells expressing high levels of both C5aR1 and CCR5. Targeted reduction of C5aR1 expression in such cells reduced HIV infection by ~50%. Our data thus suggest that C5aR1 acts as an enhancer of CCR5-mediated HIV entry into

  4. Nectin-4 Co-stimulates the Prolactin Receptor by Interacting with SOCS1 and Inhibiting Its Activity on the JAK2-STAT5a Signaling Pathway. (United States)

    Maruoka, Masahiro; Kedashiro, Shin; Ueda, Yuki; Mizutani, Kiyohito; Takai, Yoshimi


    Cell surface cytokine receptors are regulated by their cis-interacting stimulatory and inhibitory co-receptors. We previously showed that the immunoglobulin-like cell adhesion molecule nectin-4 cis-interacts with the prolactin receptor through the extracellular region and stimulates prolactin-induced prolactin receptor activation and signaling, resulting in alveolar development in the mouse mammary gland. However, it remains unknown how this interaction stimulates these effects. We show here that the cis-interaction of the extracellular region of nectin-4 with the prolactin receptor was not sufficient for eliciting these effects and that nectin-4's cytoplasmic region was also required for eliciting these effects. The cytoplasmic region of nectin-4 directly interacted with suppressor of cytokine signaling (SOCS) 1, but not SOCS3, JAK2, or STAT5a, and inhibited SOCS1's interaction with JAK2, eventually resulting in the increased phosphorylation of STAT5a. The juxtamembrane region of nectin-4 interacts with the Src homology 2 domain of SOCS1. Both the interactions of nectin-4 with the extracellular region of the prolactin receptor and the interactions of SOCS1 with nectin-4's cytoplasmic region were required for the stimulatory effect of nectin-4 on the prolactin-induced prolactin receptor activation. The third immunoglobulin-like domain of nectin-4 and the second fibronectin type-III domain of the prolactin receptor were involved in this cis-interaction, and both the extracellular and transmembrane regions of nectin-4 and the prolactin receptor were required for this direct interaction. These results indicate that nectin-4 serves as a stimulatory co-receptor for the prolactin receptor by regulating the feedback inhibition of SOCS1 in the JAK2-STAT5a signaling pathway.

  5. Complement anaphylatoxin receptors C3aR and C5aR are required in the pathogenesis of experimental autoimmune uveitis. (United States)

    Zhang, Lingjun; Bell, Brent A; Yu, Minzhong; Chan, Chi-Chao; Peachey, Neal S; Fung, John; Zhang, Xiaoming; Caspi, Rachel R; Lin, Feng


    Recent studies have suggested that reagents inhibiting complement activation could be effective in treating T cell mediated autoimmune diseases such as autoimmune uveitis. However, the precise role of the complement anaphylatoxin receptors (C3a and C5a receptors) in the pathogenesis of autoimmune uveitis remains elusive and controversial. We induced experimental autoimmune uveitis in mice deficient or sufficient in both C3a and C5a receptors and rigorously compared their retinal phenotype using various imaging techniques, including indirect ophthalmoscopy, confocal scanning laser ophthalmoscopy, spectral domain optical coherence tomography, topical endoscopic fundus imaging, and histopathological analysis. We also assessed retinal function using electroretinography. Moreover, we performed Ag-specific T cell recall assays and T cell adoptive transfer experiments to compare pathogenic T cell activity between wild-type and knockout mice with experimental autoimmune uveitis. These experiments showed that C3a receptor/C5a receptor-deficient mice developed much less severe uveitis than did control mice using all retinal examination methods and that these mice had reduced pathogenic T cell responses. Our data demonstrate that both complement anaphylatoxin receptors are important for the development of experimental autoimmune uveitis, suggesting that targeting these receptors could be a valid approach for treating patients with autoimmune uveitis.

  6. Expression of hippocampal serotonin receptors 5-HT2C and 5-HT5A in a rat model of diet-induced obesity supplemented with tryptophan. (United States)

    Lopez-Esparza, Sarahi; Berumen, Laura C; Padilla, Karla; Miledi, Ricardo; García-Alcocer, Guadalupe


    Food intake regulation is a complex mechanism that involves endogenous substances and central nervous system structures like hypothalamus or even hippocampus. The neurotransmitter serotonin is distinguished as food intake mediator; within its multiples receptors, the 5-HT2C type is characterized by its inhibitory appetite action but there is no information about 5-HT5A receptors involvement in obesity disease. It is also unknown if there are any changes in the receptors expression in rats hippocampus with induced obesity during development through a high energy diet (HED) supplemented with tryptophan (W). To appreciate the receptors expression pattern in the hippocampus, obesity was induced to young Sprague Dawley rats through a HED and supplemented with W. Immunocytochemical and western blot techniques were used to study the receptor distribution and quantify the protein expression. The rats with HED diet developed obesity until week 13 of treatment. The 5-HT2C receptor expression decreased in CA1, CA2, CA3 and DG of HED group; and also in CA2, CA3 and DG for HEDW group. The 5-HT5A receptor expression only decreased in DG for HED group. Variations of the two serotonin receptors subtypes support their potential role in obesity.

  7. Intermittent chaotic chimeras for coupled rotators. (United States)

    Olmi, Simona; Martens, Erik A; Thutupalli, Shashi; Torcini, Alessandro


    Two symmetrically coupled populations of N oscillators with inertia m display chaotic solutions with broken symmetry similar to experimental observations with mechanical pendulums. In particular, we report evidence of intermittent chaotic chimeras, where one population is synchronized and the other jumps erratically between laminar and turbulent phases. These states have finite lifetimes diverging as a power law with N and m. Lyapunov analyses reveal chaotic properties in quantitative agreement with theoretical predictions for globally coupled dissipative systems.

  8. A review of 1α,25(OH)2D3 dependent Pdia3 receptor complex components in Wnt5a non-canonical pathway signaling. (United States)

    Doroudi, Maryam; Olivares-Navarrete, Rene; Boyan, Barbara D; Schwartz, Zvi


    Wnt5a and 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] regulate endochondral ossification. 1α,25(OH)2D3 initiates its calcium-dependent effects via its membrane-associated receptor, protein disulfide isomerase A3 (Pdia3). 1α,25(OH)2D3 binding to Pdia3 triggers the interaction between Pdia3 and phospholipase A2 (PLA2)-activating protein (PLAA), resulting in downstream activation of calcium/calmodulin-dependent protein kinase II (CaMKII), PLA2, and protein kinase C (PKC). Wnt5a initiates its calcium-dependent effects via binding its receptors Frizzled2 (FZD2) and Frizzled5 (FZD5) and receptor tyrosine kinase-like orphan receptor 2 (ROR2), activating intracellular calcium release and stimulating PKC and CaMKII. Recent efforts to determine the inter-relation between Wnt5a and 1α,25(OH)2D3 signaling pathways have demonstrated that Wnt5a signals through a CaMKII/PLA2/PGE2/PKC cascade in chondrocytes and osteoblasts in which the components of the Pdia3 receptor complex were required. Furthermore, ROR2, but not FZD2 or FZD5, was required to mediate the calcium-dependent actions of 1α,25(OH)2D3. This review provides evidence that 1α,25(OH)2D3 and Wnt5a mediate their calcium-dependent pathways via similar receptor components and proposes that these pathways may interact since they are competing for the same receptor complex components.

  9. Fast and reliable production, purification and characterization of heat-stable, bifunctional enzyme chimeras. (United States)

    Neddersen, Mara; Elleuche, Skander


    Degradation of complex plant biomass demands a fine-regulated portfolio of glycoside hydrolases. The LE (LguI/Eco81I)-cloning approach was used to produce two enzyme chimeras CB and BC composed of an endoglucanase Cel5A (C) from the extreme thermophilic bacterium Fervidobacterium gondwanense and an archaeal β-glucosidase Bgl1 (B) derived from a hydrothermal spring metagenome. Recombinant chimeras and parental enzymes were produced in Escherichia coli and purified using a two-step affinity chromatography approach. Enzymatic properties revealed that both chimeras closely resemble the parental enzymes and physical mixtures, but Cel5A displayed lower temperature tolerance at 100°C when fused to Bgl1 independent of the conformational order. Moreover, the determination of enzymatic performances resulted in the detection of additive effects in case of BC fusion chimera. Kinetic measurements in combination with HPLC-mediated product analyses and site-directed mutation constructs indicated that Cel5A was strongly impaired when fused at the N-terminus, while activity was reduced to a slighter extend as C-terminal fusion partner. In contrast to these results, catalytic activity of Bgl1 at the N-terminus was improved 1.2-fold, effectively counteracting the slightly reduced activity of Cel5A by converting cellobiose into glucose. In addition, cellobiose exhibited inhibitory effects on Cel5A, resulting in a higher yield of cellobiose and glucose by application of an enzyme mixture (53.1%) compared to cellobiose produced from endoglucanase alone (10.9%). However, the overall release of cellobiose and glucose was even increased by catalytic action of BC (59.2%). These results indicate possible advantages of easily produced bifunctional fusion enzymes for the improved conversion of complex polysaccharide plant materials.

  10. Coherence-Resonance Chimeras in a Network of Excitable Elements. (United States)

    Semenova, Nadezhda; Zakharova, Anna; Anishchenko, Vadim; Schöll, Eckehard


    We demonstrate that chimera behavior can be observed in nonlocally coupled networks of excitable systems in the presence of noise. This phenomenon is distinct from classical chimeras, which occur in deterministic oscillatory systems, and it combines temporal features of coherence resonance, i.e., the constructive role of noise, and spatial properties of chimera states, i.e., the coexistence of spatially coherent and incoherent domains in a network of identical elements. Coherence-resonance chimeras are associated with alternating switching of the location of coherent and incoherent domains, which might be relevant in neuronal networks.

  11. The effects of a 5-HT5A receptor antagonist in a ketamine-based rat model of cognitive dysfunction and the negative symptoms of schizophrenia. (United States)

    Nikiforuk, Agnieszka; Hołuj, Małgorzata; Kos, Tomasz; Popik, Piotr


    Serotonin (5-HT) receptors still represent promising targets for the development of novel multireceptor or stand-alone antipsychotic drugs with a potential to ameliorate cognitive impairments and negative symptoms in schizophrenia. The 5-HT5A receptor, one of the least known members of the serotonin receptor family, has also drawn attention in this regard. Although the antipsychotic efficacy of 5-HT5A antagonists is still equivocal, recent experimental data suggest the cognitive-enhancing activity of this strategy. The aim of the present study was to evaluate pro-cognitive and pro-social efficacies of the 5-HT5A receptor antagonist in a rat pharmacological model of schizophrenia employing the administration of the NMDA receptor antagonist, ketamine. The ability of SB-699551 to reverse ketamine-induced cognitive deficits in the attentional set-shifting task (ASST) and novel object recognition task (NORT) was examined. The compound's efficacy against ketamine-induced social withdrawal was assessed in the social interaction test (SIT) and in the social choice test (SCT). The results demonstrated the efficacy of SB-699551 in ameliorating ketamine-induced impairments on the ASST and NORT. Moreover, the tested compound also enhanced set-shifting performance in cognitively unimpaired control rats and improved object recognition memory in conditions of delay-induced natural forgetting. The pro-social activity of SB-699551 was demonstrated on both employed paradigms, the SIT and SCT. The present study suggests the preclinical efficacy of a strategy based on the blockade of 5-HT5A receptors against schizophrenia-like cognitive deficits and negative symptoms. The utility of this receptor as a target for improvement of cognitive and social dysfunctions warrants further studies.

  12. Expression of complement C5a receptor and the viability of 4T1 tumor cells following agonist–antagonist treatment

    Directory of Open Access Journals (Sweden)

    Nurneqman Nashreq Kosni


    Conclusion: This experiment shows the presence of C5a receptor on 4T1 cell line. We believe that the antagonist peptide is eligible to be used widely in cancer immunotherapy field; but in vivo studies need to be carried out first in the future, as it will determine how these drugs affect the tumor cell growth.

  13. Assessing reprogramming by chimera formation and tetraploid complementation. (United States)

    Li, Xin; Xia, Bao-long; Li, Wei; Zhou, Qi


    Pluripotent stem cells can be evaluated by pluripotent markers expression, embryoid body aggregation, teratoma formation, chimera contribution and even more, tetraploid complementation. Whether iPS cells in general are functionally equivalent to normal ESCs is difficult to establish. Here, we present the detailed procedure for chimera formation and tetraploid complementation, the most stringent criterion, to assessing pluripotency.

  14. Chimera patterns in the Kuramoto-Battogtokh model (United States)

    Smirnov, Lev; Osipov, Grigory; Pikovsky, Arkady


    Kuramoto and Battogtokh (2002 Nonlinear Phenom. Complex Syst. 5 380) discovered chimera states represented by stable coexisting synchrony and asynchrony domains in a lattice of coupled oscillators. After a reformulation in terms of a local order parameter, the problem can be reduced to partial differential equations. We find uniformly rotating, spatially periodic chimera patterns as solutions of a reversible ordinary differential equation, and demonstrate a plethora of such states. In the limit of neutral coupling they reduce to analytical solutions in the form of one- and two-point chimera patterns as well as localized chimera solitons. Patterns at weakly attracting coupling are characterized by virtue of a perturbative approach. Stability analysis reveals that only the simplest chimeras with one synchronous region are stable.

  15. Metaphysical and ethical perspectives on creating animal-human chimeras. (United States)

    Eberl, Jason T; Ballard, Rebecca A


    This paper addresses several questions related to the nature, production, and use of animal-human (a-h) chimeras. At the heart of the issue is whether certain types of a-h chimeras should be brought into existence, and, if they are, how we should treat such creatures. In our current research environment, we recognize a dichotomy between research involving nonhuman animal subjects and research involving human subjects, and the classification of a research protocol into one of these categories will trigger different ethical standards as to the moral permissibility of the research in question. Are a-h chimeras entitled to the more restrictive and protective ethical standards applied to human research subjects? We elucidate an Aristotelian-Thomistic metaphysical framework in which to argue how such chimeras ought to be defined ontologically. We then examine when the creation of, and experimentation upon, certain types of a-h chimeras may be morally permissible.

  16. Functional prokaryotic-eukaryotic chimera from the pentameric ligand-gated ion channel family. (United States)

    Duret, Guillaume; Van Renterghem, Catherine; Weng, Yun; Prevost, Marie; Moraga-Cid, Gustavo; Huon, Christèle; Sonner, James M; Corringer, Pierre-Jean


    Pentameric ligand-gated ion channels (pLGICs), which mediate chemo-electric signal transduction in animals, have been recently found in bacteria. Despite clear sequence and 3D structure homology, the phylogenetic distance between prokaryotic and eukaryotic homologs suggests significant structural divergences, especially at the interface between the extracellular (ECD) and the transmembrane (TMD) domains. To challenge this possibility, we constructed a chimera in which the ECD of the bacterial protein GLIC is fused to the TMD of the human α1 glycine receptor (α1GlyR). Electrophysiology in Xenopus oocytes shows that it functions as a proton-gated ion channel, thereby locating the proton activation site(s) of GLIC in its ECD. Patch-clamp experiments in BHK cells show that the ion channel displays an anionic selectivity with a unitary conductance identical to that of the α1GlyR. In addition, pharmacological investigations result in transmembrane allosteric modulation similar to the one observed on α1GlyR. Indeed, the clinically active drugs propofol, four volatile general anesthetics, alcohols, and ivermectin all potentiate the chimera while they inhibit GLIC. Collectively, this work shows the compatibility between GLIC and α1GlyR domains and points to conservation of the ion channel and transmembrane allosteric regulatory sites in the chimera. This provides evidence that GLIC and α1GlyR share a highly homologous 3D structure. GLIC is thus a relevant model of eukaryotic pLGICs, at least from the anionic type. In addition, the chimera is a good candidate for mass production in Escherichia coli, opening the way for investigations of "druggable" eukaryotic allosteric sites by X-ray crystallography.

  17. Nonstructural 5A Protein of Hepatitis C Virus Interferes with Toll-Like Receptor Signaling and Suppresses the Interferon Response in Mouse Liver (United States)

    Okushin, Kazuya; Enooku, Kenichiro; Fujinaga, Hidetaka; Moriya, Kyoji; Yotsuyanagi, Hiroshi; Aizaki, Hideki; Suzuki, Tetsuro; Matsuura, Yoshiharu; Koike, Kazuhiko


    The hepatitis C virus nonstructural protein NS5A is involved in resistance to the host immune response, as well as the viral lifecycle such as replication and maturation. Here, we established transgenic mice expressing NS5A protein in the liver and examined innate immune responses against lipopolysaccharide (LPS) in vivo. Intrahepatic gene expression levels of cytokines such as interleukin-6, tumor necrosis factor-α, and interferon-γ were significantly suppressed after LPS injection in the transgenic mouse liver. Induction of the C-C motif chemokine ligand 2, 4, and 5 was also suppressed. Phosphorylation of the signal transducer and activator of transcription 3, which is activated by cytokines, was also reduced, and expression levels of interferon-stimulated genes, 2’-5’ oligoadenylate synthase, interferon-inducible double-stranded RNA-activated protein kinase, and myxovirus resistance 1 were similarly suppressed. Since LPS binds to toll-like receptor 4 and stimulates the downstream pathway leading to induction of these genes, we examined the extracellular signal-regulated kinase and IκB-α. The phosphorylation levels of these molecules were reduced in transgenic mouse liver, indicating that the pathway upstream of the molecules was disrupted by NS5A. Further analyses revealed that the interaction between interleukin-1 receptor-associated kinase-1 and tumor necrosis factor receptor associated factor-6 was dispersed in transgenic mice, suggesting that NS5A may interfere with this interaction via myeloid differentiation primary response gene 88, which was shown to interact with NS5A. Since the gut microbiota, a source of LPS, is known to be associated with pathological conditions in liver diseases, our results suggest the involvement of NS5A in the pathogenesis of HCV infected-liver via the suppression of innate immunity. PMID:28107512

  18. TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells

    Directory of Open Access Journals (Sweden)

    Hofmann Thomas


    Full Text Available Abstract Background A growing number of TRP channels have been identified as key players in the sensation of smell, temperature, mechanical forces and taste. TRPM5 is known to be abundantly expressed in taste receptor cells where it participates in sweet, amino acid and bitter perception. A role of TRPM5 in other sensory systems, however, has not been studied so far. Results Here, we systematically investigated the expression of TRPM5 in rat and mouse tissues. Apart from taste buds, where we found TRPM5 to be predominantly localized on the basolateral surface of taste receptor cells, TRPM5 immunoreactivity was seen in other chemosensory organs – the main olfactory epithelium and the vomeronasal organ. Most strikingly, we found solitary TRPM5-enriched epithelial cells in all parts of the respiratory and gastrointestinal tract. Based on their tissue distribution, the low cell density, morphological features and co-immunostaining with different epithelial markers, we identified these cells as brush cells (also known as tuft, fibrillovesicular, multivesicular or caveolated cells. In terms of morphological characteristics, brush cells resemble taste receptor cells, while their origin and biological role are still under intensive debate. Conclusion We consider TRPM5 to be an intrinsic signaling component of mammalian chemosensory organs, and provide evidence for brush cells being an important cellular correlate in the periphery.

  19. Multi-headed chimera states in coupled pendula (United States)

    Jaros, P.; Borkowski, L.; Witkowski, B.; Czolczynski, K.; Kapitaniak, T.


    We discuss the occurrence of the chimera states in the network of coupled, excited by the clock's mechanisms pendula. We find the patterns of multi-headed chimera states in which pendula clustered in different heads behave differently (oscillate with different frequencies) and create different types of synchronous states (complete or phase synchronization). The mathematical model of the network shows that the observed chimera states are controlled by elementary dynamical equations derived from the Newton's laws that are ubiquitous in many physical and engineering systems.

  20. Biophysical and structural investigation of bacterially expressed and engineered CCR5, a G protein-coupled receptor. (United States)

    Wiktor, Maciej; Morin, Sébastien; Sass, Hans-Jürgen; Kebbel, Fabian; Grzesiek, Stephan


    The chemokine receptor CCR5 belongs to the class of G protein-coupled receptors. Besides its role in leukocyte trafficking, it is also the major HIV-1 coreceptor and hence a target for HIV-1 entry inhibitors. Here, we report Escherichia coli expression and a broad range of biophysical studies on E. coli-produced CCR5. After systematic screening and optimization, we obtained 10 mg of purified, detergent-solubilized, folded CCR5 from 1L culture in a triply isotope-labeled ((2)H/(15)N/(13)C) minimal medium. Thus the material is suitable for NMR spectroscopic studies. The expected α-helical secondary structure content is confirmed by circular dichroism spectroscopy. The solubilized CCR5 is monodisperse and homogeneous as judged by transmission electron microscopy. Interactions of CCR5 with its ligands, RANTES and MIP-1β were assessed by surface plasmon resonance yielding K(D) values in the nanomolar range. Using size exclusion chromatography, stable monomeric CCR5 could be isolated. We show that cysteine residues affect both the yield and oligomer distribution of CCR5. HSQC spectra suggest that the transmembrane domains of CCR5 are in equilibrium between several conformations. In addition we present a model of CCR5 based on the crystal structure of CXCR4 as a starting point for protein engineering.

  1. Biophysical and structural investigation of bacterially expressed and engineered CCR5, a G protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Wiktor, Maciej; Morin, Sebastien; Sass, Hans-Juergen [University of Basel, Focal Area Structural Biology and Biophysics, Biozentrum (Switzerland); Kebbel, Fabian [University of Basel, Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum (Switzerland); Grzesiek, Stephan, E-mail: [University of Basel, Focal Area Structural Biology and Biophysics, Biozentrum (Switzerland)


    The chemokine receptor CCR5 belongs to the class of G protein-coupled receptors. Besides its role in leukocyte trafficking, it is also the major HIV-1 coreceptor and hence a target for HIV-1 entry inhibitors. Here, we report Escherichia coli expression and a broad range of biophysical studies on E. coli-produced CCR5. After systematic screening and optimization, we obtained 10 mg of purified, detergent-solubilized, folded CCR5 from 1L culture in a triply isotope-labeled ({sup 2}H/{sup 15}N/{sup 13}C) minimal medium. Thus the material is suitable for NMR spectroscopic studies. The expected {alpha}-helical secondary structure content is confirmed by circular dichroism spectroscopy. The solubilized CCR5 is monodisperse and homogeneous as judged by transmission electron microscopy. Interactions of CCR5 with its ligands, RANTES and MIP-1{beta} were assessed by surface plasmon resonance yielding K{sub D} values in the nanomolar range. Using size exclusion chromatography, stable monomeric CCR5 could be isolated. We show that cysteine residues affect both the yield and oligomer distribution of CCR5. HSQC spectra suggest that the transmembrane domains of CCR5 are in equilibrium between several conformations. In addition we present a model of CCR5 based on the crystal structure of CXCR4 as a starting point for protein engineering.

  2. Fast clique minor generation in Chimera qubit connectivity graphs (United States)

    Boothby, Tomas; King, Andrew D.; Roy, Aidan


    The current generation of D-Wave quantum annealing processor is designed to minimize the energy of an Ising spin configuration whose pairwise interactions lie on the edges of a Chimera graph C_{M,N,L}. In order to solve an Ising spin problem with arbitrary pairwise interaction structure, the corresponding graph must be minor-embedded into a Chimera graph. We define a combinatorial class of native clique minors in Chimera graphs with vertex images of uniform, near minimal size and provide a polynomial-time algorithm that finds a maximum native clique minor in a given induced subgraph of a Chimera graph. These minors allow improvement over recent work and have immediate practical applications in the field of quantum annealing.

  3. Chimera in a neuronal network model of the cat brain


    Santos, M. S.; Szezech Jr., J. D.; Borges, F. S.; Iarosz, K. C.; Caldas, I. L.; Batista, A. M.; Viana, R. L.; Kurths, J.


    Neuronal systems have been modeled by complex networks in different description levels. Recently, it has been verified that networks can simultaneously exhibit one coherent and other incoherent domain, known as chimera states. In this work, we study the existence of chimera states in a network considering the connectivity matrix based on the cat cerebral cortex. The cerebral cortex of the cat can be separated in 65 cortical areas organised into the four cognitive regions: visual, auditory, so...

  4. Regulation of C. elegans fat uptake and storage by acyl-CoA synthase-3 is dependent on NR5A family nuclear hormone receptor nhr-25

    DEFF Research Database (Denmark)

    Mullaney, Brendan C; Blind, Raymond D; Lemieux, George A;


    Acyl-CoA synthases are important for lipid synthesis and breakdown, generation of signaling molecules, and lipid modification of proteins, highlighting the challenge of understanding metabolic pathways within intact organisms. From a C. elegans mutagenesis screen, we found that loss of ACS-3...... mutant phenotypes require the nuclear hormone receptor NHR-25, a key regulator of C. elegans molting. Our findings suggest that ACS-3-derived long-chain fatty acyl-CoAs, perhaps incorporated into complex ligands such as phosphoinositides, modulate NHR-25 function, which in turn regulates an endocrine...... program of lipid uptake and synthesis. These results reveal a link between acyl-CoA synthase function and an NR5A family nuclear receptor in C. elegans....

  5. Deletion of the complement C5a receptor alleviates the severity of acute pneumococcal otitis media following influenza A virus infection in mice.

    Directory of Open Access Journals (Sweden)

    Hua Hua Tong

    Full Text Available There is considerable evidence that influenza A virus (IAV promotes adherence, colonization, and superinfection by S. pneumoniae (Spn and contributes to the pathogenesis of otitis media (OM. The complement system is a critical innate immune defense against both pathogens. To assess the role of the complement system in the host defense and the pathogenesis of acute pneumococcal OM following IAV infection, we employed a well-established transtympanically-induced mouse model of acute pneumococcal OM. We found that antecedent IAV infection enhanced the severity of acute pneumococcal OM. Mice deficient in complement C1qa (C1qa-/- or factor B (Bf -/- exhibited delayed viral and bacterial clearance from the middle ear and developed significant mucosal damage in the eustachian tube and middle ear. This indicates that both the classical and alternative complement pathways are critical for the oto-immune defense against acute pneumococcal OM following influenza infection. We also found that Spn increased complement activation following IAV infection. This was characterized by sustained increased levels of anaphylatoxins C3a and C5a in serum and middle ear lavage samples. In contrast, mice deficient in the complement C5a receptor (C5aR demonstrated enhanced bacterial clearance and reduced severity of OM. Our data support the concept that C5a-C5aR interactions play a significant role in the pathogenesis of acute pneumococcal OM following IAV infection. It is possible that targeting the C5a-C5aR axis might prove useful in attenuating acute pneumococcal OM in patients with influenza infection.

  6. NF-κB and androgen receptor variant 7 induce expression of SRD5A isoforms and confer 5ARI resistance

    DEFF Research Database (Denmark)

    Austin, David C; Strand, Douglas W; Love, Harold L;


    BACKGROUND: Benign prostatic hyperplasia (BPH) is treated with 5α-reductase inhibitors (5ARI). These drugs inhibit the conversion of testosterone to dihydrotestosterone resulting in apoptosis and prostate shrinkage. Most patients initially respond to 5ARIs; however, failure is common especially...... tract symptoms secondary to advanced BPH; and, cancer free transition zone from "Incidental" patients treated for low grade, localized peripheral zone prostate cancer. Clinical, molecular and histopathological profiles were analyzed. Human prostatic stromal and epithelial cell lines were genetically...... modified to regulate NF-κB activity, androgen receptor (AR) full length (AR-FL), and AR variant 7 (AR-V7) expression. RESULTS: SRD5A2 is upregulated in advanced BPH. SRD5A2 was significantly associated with prostate volume determined by Transrectal Ultrasound (TRUS), and with more severe lower urinary...

  7. Tools for integrated sequence-structure analysis with UCSF Chimera

    Directory of Open Access Journals (Sweden)

    Huang Conrad C


    Full Text Available Abstract Background Comparing related structures and viewing the structures in the context of sequence alignments are important tasks in protein structure-function research. While many programs exist for individual aspects of such work, there is a need for interactive visualization tools that: (a provide a deep integration of sequence and structure, far beyond mapping where a sequence region falls in the structure and vice versa; (b facilitate changing data of one type based on the other (for example, using only sequence-conserved residues to match structures, or adjusting a sequence alignment based on spatial fit; (c can be used with a researcher's own data, including arbitrary sequence alignments and annotations, closely or distantly related sets of proteins, etc.; and (d interoperate with each other and with a full complement of molecular graphics features. We describe enhancements to UCSF Chimera to achieve these goals. Results The molecular graphics program UCSF Chimera includes a suite of tools for interactive analyses of sequences and structures. Structures automatically associate with sequences in imported alignments, allowing many kinds of crosstalk. A novel method is provided to superimpose structures in the absence of a pre-existing sequence alignment. The method uses both sequence and secondary structure, and can match even structures with very low sequence identity. Another tool constructs structure-based sequence alignments from superpositions of two or more proteins. Chimera is designed to be extensible, and mechanisms for incorporating user-specific data without Chimera code development are also provided. Conclusion The tools described here apply to many problems involving comparison and analysis of protein structures and their sequences. Chimera includes complete documentation and is intended for use by a wide range of scientists, not just those in the computational disciplines. UCSF Chimera is free for non-commercial use and is

  8. Modeling Quark Gluon Plasma Using CHIMERA (United States)

    Abelev, Betty


    We attempt to model Quark Gluon Plasma (QGP) evolution from the initial Heavy Ion collision to the final hadronic gas state by combining the Glauber model initial state conditions with eccentricity fluctuations, pre-equilibrium flow, UVH2+1 viscous hydrodynamics with lattice QCD Equation of State (EoS), a modified Cooper-Frye freeze-out and the UrQMD hadronic cascade. We then evaluate the model parameters using a comprehensive analytical framework which together with the described model we call CHIMERA. Within our framework, the initial state parameters, such as the initial temperature (Tinit), presence or absence of initial flow, viscosity over entropy density (η/S) and different Equations of State (EoS), are varied and then compared simultaneously to several experimental data observables: HBT radii, particle spectra and particle flow. χ2/nds values from comparison to the experimental data for each set of initial parameters will then used to find the optimal description of the QGP with parameters that are difficult to obtain experimentally, but are crucial to understanding of the matter produced.

  9. Modeling Quark Gluon Plasma Using CHIMERA

    CERN Document Server

    Abelev, Betty B I


    We attempt to model Quark Gluon Plasma (QGP) evolution from the initial Heavy Ion collision to the final hadronic gas state by combining the Glauber model initial state conditions with eccentricity fluctuations, pre-equilibrium flow, UVH2+1 viscous hydrodynamics with lattice QCD Equation of State (EoS), a modified Cooper-Frye freeze-out and the UrQMD hadronic cascade. We then evaluate the model parameters using a comprehensive analytical framework which together with the described model we call CHIMERA. Within our framework, the initial state parameters, such as the initial temperature (T$_{\\mathrm{init}}$), presence or absence of initial flow, viscosity over entropy density ($\\eta$/s) and different Equations of State (EoS), are varied and then compared simultaneously to several experimental data observables: HBT radii, particle spectra and particle flow. $\\chi^2$/nds values from comparison to the experimental data for each set of initial parameters will then used to find the optimal description of the QGP wi...

  10. Chimera states in coupled Kuramoto oscillators with inertia

    Energy Technology Data Exchange (ETDEWEB)

    Olmi, Simona, E-mail: [CNR - Consiglio Nazionale delle Ricerche - Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); INFN Sez. Firenze, via Sansone, 1 - I-50019 Sesto Fiorentino (Italy)


    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.

  11. Chimera States in Two Populations with Heterogeneous Phase-lag

    DEFF Research Database (Denmark)

    Martens, Erik Andreas


    The simplest network of coupled phase-oscillators exhibiting chimera states is given by two populations with disparate intra- and inter-population coupling strengths. We explore the effects of heterogeneous coupling phase-lags between the two populations. Such heterogeneity arises naturally......, we identify the bifurcations through which chimera and desynchronized states emerge. Stable chimera states and desynchronized solutions, which do not arise for homogeneous phase-lag parameters, emerge as a result of competition between synchronized in-phase, anti-phase equilibria, and fully...... incoherent states when the phase-lags are near ±π/2 (cosine coupling). These findings elucidate previous experimental results involving a network of mechanical oscillators and provide further insight into the breakdown of synchrony in biological systems....

  12. Chimera-like states in modular neural networks

    CERN Document Server

    Hizanidis, Johanne; Zamora-López, Gorka; Díaz-Guilera, Albert; Antonopoulos, Chris G


    Chimera states, namely the coexistence of coherent and incoherent behavior, were previously analyzed in complex networks. However, they have not been extensively studied in modular networks. Here, we consider the neural network of the \\textit{C.elegans} soil worm, organized into six interconnected communities, where neurons obey chaotic bursting dynamics. Neurons are assumed to be connected with electrical synapses within their communities and with chemical synapses across them. As our numerical simulations reveal, the coaction of these two types of coupling can shape the dynamics in such a way that chimera-like states can happen. They consist of a fraction of synchronized neurons which belong to the larger communities, and a fraction of desynchronized neurons which are part of smaller communities. In addition to the Kuramoto order parameter $\\rho$, we also employ other measures of coherence, such as the chimera-like $\\chi$ and metastability $\\lambda$ indices, which quantify the degree of synchronization amon...

  13. Chimeras in locally coupled SQUIDs: Lions, goats and snakes

    CERN Document Server

    Hizanidis, J; Tsironis, G P


    We report on the emergence of robust multi-clustered chimera states in a dissipative-driven system of symmetrically and locally coupled identical SQUID oscillators. The "snake-like" resonance curve of the single SQUID (Superconducting QUantum Interference Device) is the key to the formation of the chimera states and is responsible for the extreme multistability exhibited by the coupled system that leads to attractor crowding at the geometrical resonance frequency. Until now, chimera states were mostly believed to exist for nonlocal coupling. Our findings provide theoretical evidence that nearest neighbor interactions is indeed capable of supporting such states in a wide parameter range. SQUID metamaterials are the subject of intense experimental investigations and we are highly confident that the complex dynamics demonstrated in this manuscript can be confirmed in the laboratory.

  14. Chimera states and synchronization in magnetically driven SQUID metamaterials (United States)

    Hizanidis, J.; Lazarides, N.; Neofotistos, G.; Tsironis, G. P.


    One-dimensional arrays of Superconducting QUantum Interference Devices (SQUIDs) form magnetic metamaterials exhibiting extraordinary properties, including tunability, dynamic multistability, negative magnetic permeability, and broadband transparency. The SQUIDs in a metamaterial interact through non-local, magnetic dipole-dipole forces, that makes it possible for multiheaded chimera states and coexisting patterns, including solitary states, to appear. The spontaneous emergence of chimera states and the role of multistability is demonstrated numerically for a SQUID metamaterial driven by an alternating magnetic field. The spatial synchronization and temporal complexity are discussed and the parameter space for the global synchronization reveals the areas of coherence-incoherence transition. Given that both one- and two-dimensional SQUID metamaterials have been already fabricated and investigated in the lab, the presence of a chimera state could in principle be detected with presently available experimental set-ups.

  15. Robust chimera states in SQUID metamaterials with local interactions (United States)

    Hizanidis, J.; Lazarides, N.; Tsironis, G. P.


    We report on the emergence of robust multiclustered chimera states in a dissipative-driven system of symmetrically and locally coupled identical superconducting quantum interference device (SQUID) oscillators. The "snakelike" resonance curve of the single SQUID is the key to the formation of the chimera states and is responsible for the extreme multistability exhibited by the coupled system that leads to attractor crowding at the geometrical resonance (inductive-capacitive) frequency. Until now, chimera states were mostly believed to exist for nonlocal coupling. Our findings provide theoretical evidence that nearest-neighbor interactions are indeed capable of supporting such states in a wide parameter range. SQUID metamaterials are the subject of intense experimental investigations, and we are highly confident that the complex dynamics demonstrated in this paper can be confirmed in the laboratory.

  16. Delayed-feedback chimera states: Forced multiclusters and stochastic resonance (United States)

    Semenov, V.; Zakharova, A.; Maistrenko, Y.; Schöll, E.


    A nonlinear oscillator model with negative time-delayed feedback is studied numerically under external deterministic and stochastic forcing. It is found that in the unforced system complex partial synchronization patterns like chimera states as well as salt-and-pepper-like solitary states arise on the route from regular dynamics to spatio-temporal chaos. The control of the dynamics by external periodic forcing is demonstrated by numerical simulations. It is shown that one-cluster and multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. If a stochastic component is superimposed to the deterministic external forcing, chimera states can be induced in a way similar to stochastic resonance, they appear, therefore, in regimes where they do not exist without noise.

  17. Mutant U5A cells are complemented by an interferon-alpha beta receptor subunit generated by alternative processing of a new member of a cytokine receptor gene cluster. (United States)

    Lutfalla, G; Holland, S J; Cinato, E; Monneron, D; Reboul, J; Rogers, N C; Smith, J M; Stark, G R; Gardiner, K; Mogensen, K E


    The cellular receptor for the alpha/beta interferons contains at least two components that interact with interferon. The ifnar1 component is well characterized and a putative ifnar2 cDNA has recently been identified. We have cloned the gene for ifnar2 and show that it produces four different transcripts encoding three different polypeptides that are generated by exon skipping, alternative splicing and differential use of polyadenylation sites. One polypeptide is likely to be secreted and two are transmembrane proteins with identical extracellular and transmembrane domains but divergent cytoplasmic tails of 67 and 251 amino acids. A mutant cell line U5A, completely defective in IFN-alpha beta binding and response, has been isolated and characterized. Expression in U5A cells of the polypeptide with the long cytoplasmic domain reconstitutes a functional receptor that restores normal interferon binding, activation of the JAK/STAT signal transduction pathway, interferon-inducible gene expression and antiviral response. The IFNAR2 gene maps at 0.5 kb from the CRFB4 gene, establishing that together IFNAR2, CRFB4, IFNAR1 and AF1 form a cluster of class II cytokine receptor genes on human chromosome 21.

  18. Development of surface-based assays for transmembrane proteins: selective immobilization of functional CCR5, a G protein-coupled receptor. (United States)

    Silin, Vitalii I; Karlik, Evan A; Ridge, Kevin D; Vanderah, David J


    A general method to develop surface-based assays for transmembrane (TM) receptor function(s) without the need to isolate, purify, and reconstitute the proteins is presented. Based on the formation of an active surface that selectively immobilizes membrane vesicles, the method is illustrated using the chemokine receptor CCR5, a member of the largest family of cell surface eukaryotic TM proteins, the G protein-coupled receptors (GPCRs). The method begins with a protein-resistant surface containing a low percentage (1-5%) of surface-bound biotin on gold as the initial template. Surface plasmon resonance (SPR) data show specific immobilization of functional CCR5 after the initial template is activated by immobilization of rho 1D4 antibody, an anti-rhodopsin monoclonal antibody specific for the carboxyl terminal nine amino acids on bovine rhodopsin that had been engineered into the carboxyl terminus of CCR5, and exposure to vesicles obtained from mammalian cells transfected with a synthetic human CCR5 gene. Activation of the initial template is effected by sequential immobilization of avidin, which binds to the biotin in the initial template, a biotinylated goat anti-mouse immunoglobulin G (Bt-IgG), which binds to the avidin binding sites distal to the surface and the F(c) portion of the rho 1D4 antibody through its F(ab) region(s) and finally rho 1D4. This approach establishes a broad outline for the development and application of various assays for CCR5 functions. SPR data also showed that vesicle immobilization could be achieved through an integrin-integrin antibody interaction after activation of the initial template with a goat anti-human integrin beta1 antibody. These results suggest that the generic nature of the initial platform and flexibility of the subsequent surface activation for specific immobilization of membrane vesicles can be applied to the development of assays for other GPCRs or TM receptors for which antibodies are available or can be engineered to

  19. Chimera states in uncoupled neurons induced by a multilayer structure

    CERN Document Server

    Majhi, Soumen; Ghosh, Dibakar


    Spatial coexistence of coherent and incoherent dynamics in network of coupled oscillators is called a chimera state. We study such chimera states in a network of neurons without any direct interactions but connected through another medium of neurons, forming a multilayer structure. The upper layer is thus made up of uncoupled neurons and the lower layer plays the role of a medium through which the neurons in the upper layer share information among each other. Hindmarsh-Rose neurons with square wave bursting dynamics are considered as nodes in both layers. In addition, we also discuss the existence of chimera states in presence of inter layer heterogeneity. The neurons in the bottom layer are globally connected through electrical synapses, while across the two layers chemical synapses are formed. According to our research, the competing effects of these two types of synapses can lead to chimera states in the upper layer of uncoupled neurons. Remarkably, we find a density-dependent threshold for the emergence o...

  20. Chimera states in two populations with heterogeneous phase-lag. (United States)

    Martens, Erik A; Bick, Christian; Panaggio, Mark J


    The simplest network of coupled phase-oscillators exhibiting chimera states is given by two populations with disparate intra- and inter-population coupling strengths. We explore the effects of heterogeneous coupling phase-lags between the two populations. Such heterogeneity arises naturally in various settings, for example, as an approximation to transmission delays, excitatory-inhibitory interactions, or as amplitude and phase responses of oscillators with electrical or mechanical coupling. We find that breaking the phase-lag symmetry results in a variety of states with uniform and non-uniform synchronization, including in-phase and anti-phase synchrony, full incoherence (splay state), chimera states with phase separation of 0 or π between populations, and states where both populations remain desynchronized. These desynchronized states exhibit stable, oscillatory, and even chaotic dynamics. Moreover, we identify the bifurcations through which chimeras emerge. Stable chimera states and desynchronized solutions, which do not arise for homogeneous phase-lag parameters, emerge as a result of competition between synchronized in-phase, anti-phase equilibria, and fully incoherent states when the phase-lags are near ±π2 (cosine coupling). These findings elucidate previous experimental results involving a network of mechanical oscillators and provide further insight into the breakdown of synchrony in biological systems.

  1. Chimera states in two populations with heterogeneous phase-lag (United States)

    Martens, Erik A.; Bick, Christian; Panaggio, Mark J.


    The simplest network of coupled phase-oscillators exhibiting chimera states is given by two populations with disparate intra- and inter-population coupling strengths. We explore the effects of heterogeneous coupling phase-lags between the two populations. Such heterogeneity arises naturally in various settings, for example, as an approximation to transmission delays, excitatory-inhibitory interactions, or as amplitude and phase responses of oscillators with electrical or mechanical coupling. We find that breaking the phase-lag symmetry results in a variety of states with uniform and non-uniform synchronization, including in-phase and anti-phase synchrony, full incoherence (splay state), chimera states with phase separation of 0 or π between populations, and states where both populations remain desynchronized. These desynchronized states exhibit stable, oscillatory, and even chaotic dynamics. Moreover, we identify the bifurcations through which chimeras emerge. Stable chimera states and desynchronized solutions, which do not arise for homogeneous phase-lag parameters, emerge as a result of competition between synchronized in-phase, anti-phase equilibria, and fully incoherent states when the phase-lags are near ± /π 2 (cosine coupling). These findings elucidate previous experimental results involving a network of mechanical oscillators and provide further insight into the breakdown of synchrony in biological systems.

  2. CHIMERA CBRN protective suit. Advanced embodiment design. Final report

    NARCIS (Netherlands)

    Bogerd, C.P.; Smit, B. de; Olarte, C.; Kane, G.; Bie, M. de; Megen, X. van; Schenk, J.; Hooop, J. de


    The Chimera project started of with the following design challenge: Designing a switchable CBRN (chemical, biological, radiological, nuclear) protective suit for soldiers, one phase being a regular work state and the other phase being a protective state to enable the soldier to get away from the tox

  3. What’s Wrong with Human/Nonhuman Chimera Research? (United States)

    Hyun, Insoo


    The National Institutes of Health (NIH) is poised to lift its funding moratorium on research involving chimeric human/nonhuman embryos, pending further consideration by an NIH steering committee. The kinds of ethical concerns that seem to underlie this research and chimera research more generally can be adequately addressed. PMID:27574863

  4. Using CHIMERA detector at LNS for gamma-particle coincidences

    Directory of Open Access Journals (Sweden)

    Cardella G.


    Full Text Available We have recently evaluated the quality of γ-ray angular distributions that can be extracted in particle-gamma coincidence measurements using the CHIMERA detector at LNS. γ-rays have been detected using the CsI(Tl detectors of the spherical part of the CHIMERA array. Very clean γ-rays angular distributions were extracted in reactions induced by different stable beams impinging on 12C thin targets. The results evidenced an effect of projectile spin flip on the γ-rays angular distributions. γ-particle coincidence measurements were also performed in reactions induced by neutron rich exotic beams produced through in-flight fragmentation at LNS. In recent experiments also the Farcos array was used to improve energy and angular resolution measurements of the detected charged particles. Results obtained with both stable and radioactive beams are reported.

  5. Chimera regimes in a ring of oscillators with local nonlinear interaction (United States)

    Shepelev, Igor A.; Zakharova, Anna; Vadivasova, Tatiana E.


    One of important problems concerning chimera states is the conditions of their existence and stability. Until now, it was assumed that chimeras could arise only in ensembles with nonlocal character of interactions. However, this assumption is not exactly right. In some special cases chimeras can be realized for local type of coupling [1-3]. We propose a simple model of ensemble with local coupling when chimeras are realized. This model is a ring of linear oscillators with the local nonlinear unidirectional interaction. Chimera structures in the ring are found using computer simulations for wide area of values of parameters. Diagram of the regimes on plane of control parameters is plotted and scenario of chimera destruction are studied when the parameters are changed.

  6. Chimera states in two populations with heterogeneous phase-lag


    Martens, Erik Andreas; Bick, Christian; Panaggio, Mark J.


    The simplest network of coupled phase-oscillators exhibiting chimera states is given by two populations with disparate intra- and inter-population coupling strengths. We explore the effects of heterogeneous coupling phase-lags between the two populations. Such heterogeneity arises naturally in various settings, for example as an approximation to transmission delays, excitatory-inhibitory interactions, or as amplitude and phase responses of oscillators with electrical or mechanical coupling. W...

  7. Chimeras, moral status, and public policy: implications of the abortion debate for public policy on human/nonhuman chimera research. (United States)

    Streiffer, Robert


    Researchers are increasingly interested in creating chimeras by transplanting human embryonic stem cells (hESCs) into animals early in development. One concern is that such research could confer upon an animal the moral status of a normal human adult but then impermissibly fail to accord it the protections it merits in virtue of its enhanced moral status. Understanding the public policy implications of this ethical conclusion, though, is complicated by the fact that claims about moral status cannot play an unfettered role in public policy. Arguments like those employed in the abortion debate for the conclusion that abortion should be legally permissible even if abortion is not morally permissible also support, to a more limited degree, a liberal policy on hESC research involving the creation of chimeras.

  8. Chimera states and the interplay between initial conditions and non-local coupling (United States)

    Kalle, Peter; Sawicki, Jakub; Zakharova, Anna; Schöll, Eckehard


    Chimera states are complex spatio-temporal patterns that consist of coexisting domains of coherent and incoherent dynamics. We study chimera states in a network of non-locally coupled Stuart-Landau oscillators. We investigate the impact of initial conditions in combination with non-local coupling. Based on an analytical argument, we show how the coupling phase and the coupling strength are linked to the occurrence of chimera states, flipped profiles of the mean phase velocity, and the transition from a phase- to an amplitude-mediated chimera state.

  9. An Activin A/BMP2 chimera displays bone healing properties superior to those of BMP2 (United States)

    Yoon, Byung-Hak; Esquivies, Luis; Ahn, Chihoon; Gray, Peter C.; Ye, Sang-kyu; Kwiatkowski, Witek; Choe, Senyon


    Recombinant Bone Morphogenetic Protein 2 (rhBMP2) has been used clinically to treat bone fractures in human patients. However, the high doses of rhBMP2 required for a therapeutic response can cause undesirable side effects. Here, we demonstrate that a novel Activin A/BMP2 (AB2) chimera, AB204, promotes osteogenesis and bone healing much more potently and effectively than rhBMP2. Remarkably, 1 month of AB204 treatment completely heals tibial and calvarial defects of critical size in mice at a concentration 10-fold lower than a dose of rhBMP2 that only partially heals the defect. We determine the structure of AB204 to 2.3 Å that reveals a distinct BMP2-like fold in which the Activin A sequence segments confer insensitivity to the BMP2 antagonist Noggin and an affinity for the Activin/BMP type II receptor ActRII that is 100-fold greater than that of BMP2. The structure also led to our identification of a single Activin A-derived amino acid residue which when mutated to the corresponding BMP2 residue resulted in a significant increase in the affinity of AB204 for its type I receptor BMPRIa and a further enhancement in AB204's osteogenic potency. Together, these findings demonstrate that rationally designed AB2 chimeras can provide BMP2 substitutes with enhanced potency for treating non-union bone fractures. PMID:24692083

  10. An activin A/BMP2 chimera, AB204, displays bone-healing properties superior to those of BMP2. (United States)

    Yoon, Byung-Hak; Esquivies, Luis; Ahn, Chihoon; Gray, Peter C; Ye, Sang-Kyu; Kwiatkowski, Witek; Choe, Senyon


    Recombinant bone morphogenetic protein 2 (rhBMP2) has been used clinically to treat bone fractures in human patients. However, the high doses of rhBMP2 required for a therapeutic response can cause undesirable side effects. Here, we demonstrate that a novel Activin A/BMP2 (AB2) chimera, AB204, promotes osteogenesis and bone healing much more potently and effectively than rhBMP2. Remarkably, 1 month of AB204 treatment completely heals tibial and calvarial defects of critical size in mice at a concentration 10-fold lower than a dose of rhBMP2 that only partially heals the defect. We determine the structure of AB204 to 2.3 Å that reveals a distinct BMP2-like fold in which the Activin A sequence segments confer insensitivity to the BMP2 antagonist Noggin and an affinity for the Activin/BMP type II receptor ActRII that is 100-fold greater than that of BMP2. The structure also led to our identification of a single Activin A-derived amino acid residue, which, when mutated to the corresponding BMP2 residue, resulted in a significant increase in the affinity of AB204 for its type I receptor BMPRIa and a further enhancement in AB204's osteogenic potency. Together, these findings demonstrate that rationally designed AB2 chimeras can provide BMP2 substitutes with enhanced potency for treating non-union bone fractures.

  11. Immunogenicity of a West Nile virus DIII-cholera toxin A2/B chimera after intranasal delivery. (United States)

    Tinker, Juliette K; Yan, Jie; Knippel, Reece J; Panayiotou, Panos; Cornell, Kenneth A


    West Nile virus (WNV) causes potentially fatal neuroinvasive disease and persists at endemic levels in many parts of the world. Despite advances in our understanding of WNV pathogenesis, there remains a significant need for a human vaccine. The domain III (DIII) region of the WNV envelope protein contains epitopes that are the target of neutralizing antibodies. We have constructed a chimeric fusion of the non-toxic cholera toxin (CT) CTA2/B domains to DIII for investigation as a novel mucosally-delivered WNV vaccine. Purification and assembly of the chimera, as well as receptor-binding and antigen delivery, were verified by western blot, GM1 ELISA and confocal microscopy. Groups of BALB/c mice were immunized intranasally with DIII-CTA2/B, DIII, DIII mixed with CTA2/B, or CTA2/B control, and boosted at 10 days. Analysis of serum IgG after 14 and 45 days revealed that mucosal immunization with DIII-CTA2/B induced significant DIII-specific humoral immunity and drove isotype switching to IgG2a. The DIII-CTA2/B chimera also induced antigen-specific IgM and IgA responses. Bactericidal assays indicate that the DIII-CTA2/B immunized mice produced DIII-specific antibodies that can trigger complement-mediated killing. A dose escalation resulted in increased DIII-specific serum IgG titers on day 45. DIII antigen alone, in the absence of adjuvant, also induced significant systemic responses after intranasal delivery. Our results indicate that the DIII-CTA2/B chimera is immunogenic after intranasal delivery and merits further investigation as a novel WNV vaccine candidate.

  12. Characteristic distribution of finite-time Lyapunov exponents for chimera states. (United States)

    Botha, André E


    Our fascination with chimera states stems partially from the somewhat paradoxical, yet fundamental trait of identical, and identically coupled, oscillators to split into spatially separated, coherently and incoherently oscillating groups. While the list of systems for which various types of chimeras have already been detected continues to grow, there is a corresponding increase in the number of mathematical analyses aimed at elucidating the fundamental reasons for this surprising behaviour. Based on the model systems, there are strong indications that chimera states may generally be ubiquitous in naturally occurring systems containing large numbers of coupled oscillators - certain biological systems and high-Tc superconducting materials, for example. In this work we suggest a new way of detecting and characterising chimera states. Specifically, it is shown that the probability densities of finite-time Lyapunov exponents, corresponding to chimera states, have a definite characteristic shape. Such distributions could be used as signatures of chimera states, particularly in systems for which the phases of all the oscillators cannot be measured directly. For such cases, we suggest that chimera states could perhaps be detected by reconstructing the characteristic distribution via standard embedding techniques, thus making it possible to detect chimera states in systems where they could otherwise exist unnoticed.

  13. Studies on mu and delta opioid receptor selectivity utilizing chimeric and site-mutagenized receptors. (United States)

    Wang, W W; Shahrestanifar, M; Jin, J; Howells, R D


    Opioid receptors are members of the guanine nucleotide binding protein (G protein)-coupled receptor family. Three types of opioid receptors have been cloned and characterized and are referred to as the delta, kappa and mu types. Analysis of receptor chimeras and site-directed mutant receptors has provided a great deal of information about functionally important amino acid side chains that constitute the ligand-binding domains and G-protein-coupling domains of G-protein-coupled receptors. We have constructed delta/mu opioid receptor chimeras that were express in human embryonic kidney 293 cells in order to define receptor domains that are responsible for receptor type selectivity. All chimeric receptors and wild-type delta and mu opioid receptors displayed high-affinity binding of etorphine (an agonist), naloxone (an antagonist), and bremazocine (a mixed agonist/antagonist). In contrast, chimeras that lacked the putative first extracellular loop of the mu receptor did not bind the mu-selective peptide [D-Ala2,MePhe4,Gly5-ol]enkephalin (DAMGO). Chimeras that lacked the putative third extracellular loop of the delta receptor did not bind the delta-selective peptide, [D-Ser2,D-Leu5]enkephalin-Thr (DSLET). Point mutations in the putative third extracellular loop of the wild-type delta receptor that converted vicinal arginine residues to glutamine abolished DSLET binding while not affecting bremazocine, etorphine, and naltrindole binding. We conclude that amino acids in the putative first extracellular loop of the mu receptor are critical for high-affinity DAMGO binding and that arginine residues in the putative third extracellular loop of the delta receptor are important for high-affinity DSLET binding. Images Fig. 3 PMID:8618916

  14. Laser chimeras as a paradigm for multistable patterns in complex systems (United States)

    Larger, Laurent; Penkovsky, Bogdan; Maistrenko, Yuri


    A chimera state is a rich and fascinating class of self-organized solutions developed in high-dimensional networks. Necessary features of the network for the emergence of such complex but structured motions are non-local and symmetry breaking coupling. An accurate understanding of chimera states is expected to bring important insights on deterministic mechanism occurring in many structurally similar high-dimensional dynamics such as living systems, brain operation principles and even turbulence in hydrodynamics. Here we report on a powerful and highly controllable experiment based on an optoelectronic delayed feedback applied to a wavelength tuneable semiconductor laser, with which a wide variety of chimera patterns can be accurately investigated and interpreted. We uncover a cascade of higher-order chimeras as a pattern transition from N to N+1 clusters of chaoticity. Finally, we follow visually, as the gain increases, how chimera state is gradually destroyed on the way to apparent turbulence-like system behaviour.

  15. Targeted chimera delivery to ovarian cancer cells by heterogeneous gold magnetic nanoparticle (United States)

    Chen, Yao; Xu, Mengjiao; Guo, Yi; Tu, Keyao; Wu, Weimin; Wang, Jianjun; Tong, Xiaowen; Wu, Wenjuan; Qi, Lifeng; Shi, Donglu


    Efficient delivery of small interfering RNAs (siRNAs) to the targeted cells has remained a significant challenge in clinical applications. In the present study, we developed a novel aptamer-siRNA chimera delivery system mediated by cationic Au-Fe3O4 nanoparticles (NPs). The chimera constructed by VEGF RNA aptamer and Notch3 siRNA was bonded with heterogeneous Au-Fe3O4 nanoparticles by electrostatic interaction. The obtained complex exhibited much higher silencing efficiency against Notch3 gene compared with chimera alone and lipofectamine-siRNA complex, and improved the antitumor effects of the loaded chimera. Moreover, the efficient delivery of the chimera by Au-Fe3O4 NPs could reverse multi-drug resistance (MDR) of ovarian cancer cells against the chemotherapeutic drug cisplatin, indicating its potential capability for future targeted cancer therapy while overcoming MDR.

  16. Ethical aspects of creating human-nonhuman chimeras capable of human gamete production and human pregnancy. (United States)

    Palacios-González, César


    In this paper I explore some of the moral issues that could emerge from the creation of human-nonhuman chimeras (HNH-chimeras) capable of human gamete production and human pregnancy. First I explore whether there is a cogent argument against the creation of HNH-chimeras that could produce human gametes. I conclude that so far there is none, and that in fact there is at least one good moral reason for producing such types of creatures. Afterwards I explore some of the moral problems that could emerge from the fact that a HNH-chimera could become pregnant with a human conceptus. I focus on two sets of problems: problems that would arise by virtue of the fact that a human is gestated by a nonhuman creature, and problems that would emerge from the fact that such pregnancies could affect the health of the HNH-chimera.

  17. Radiochemical synthesis and biological evaluation of 3-[4-(4-[{sup 18}F]fluorobenzyl)piperazin-1-ylmethyl]pyrazolo[1,5-a]pyridine as dopamine D{sub 4} receptor radioligand

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gu-Cai; Zhang, Ru; Jiang, Kai-Jun; Chen, Bo [Hunan Institute of Engineering, Xiangtan (China). College of Chemistry and Chemical Engineering


    A potential dopamine D{sub 4} receptor radioligand, 3-[4-(4-[{sup 18}F]fluorobenzyl)piperazin-1-ylmethyl]pyrazolo[1,5-a]pyridine was synthesized through a one-pot two-step procedure with total yield 18.5% (decay corrected). The molar radioactivity was 115 GBq/μmol and the radiochemical purity was greater than 95.5%. Its affinity and selectivity for dopamine D{sub 2}-like receptors were measured through in vitro receptor binding experiments and the K{sub i} for D{sub 4} receptor was determined to be 17 ± 0.5 nM. The partition coefficient (Log P) of it was determined to be 2.80 ± 0.10 through octanol experiment. The in vivo biodistribution of it in rat brain exposed that the radioligand penetrates through blood-brain- barrier (BBB) and may specifically bind to dopamine D{sub 4} receptor. The results indicated that the radioligand shows promise for the in vivo study of dopamine D{sub 4} receptor. (orig.)

  18. PRMT5, a novel TRAIL receptor-binding protein, inhibits TRAIL-induced apoptosis via nuclear factor-kappaB activation. (United States)

    Tanaka, Hiroshi; Hoshikawa, Yutaka; Oh-hara, Tomoko; Koike, Sumie; Naito, Mikihiko; Noda, Tetsuo; Arai, Hiroyuki; Tsuruo, Takashi; Fujita, Naoya


    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily and has selective antitumor activity. Although TNF-alpha-induced intracellular signaling pathways have been well studied, TRAIL signaling is not fully understood. Here, we identified a novel TRAIL receptor-binding protein, protein arginine methyltransferase 5 (PRMT5), as a result of proteomic screening. PRMT5 selectively interacted with death receptor 4 and death receptor 5 but not with TNF receptor 1 or Fas. PRMT5 gene silencing sensitized various cancer cells to TRAIL without affecting TRAIL resistance in nontransformed cells. PRMT5 contributed to TRAIL-induced activation of inhibitor of kappaB kinase (IKK) and nuclear factor-kappaB (NF-kappaB), leading to induction of several NF-kappaB target genes. Although IKK inhibition increased sensitivity to both TRAIL and TNF-alpha, PRMT5 knockdown potentiated TRAIL-mediated cytotoxicity alone. PRMT5 had no effect on TNF-alpha-mediated NF-kappaB signaling. These results show the selectivity of PRMT5 for TRAIL signaling. The PRMT5 small interfering RNA-mediated susceptibility to TRAIL was rescued by ectopic expression of active IKKbeta, confirming the involvement of PRMT5 in TRAIL resistance by activating the NF-kappaB pathway. Collectively, our findings suggest the therapeutic potential of PRMT5 in TRAIL-based cancer treatments

  19. Protein-DNA chimeras: synthesis of two-arm chimeras and non-mechanical effects of the DNA spring

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yong; Wang, Andrew; Qu Hao; Zocchi, Giovanni, E-mail: zocchi@physics.ucla.ed [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095-1547 (United States)


    DNA molecular springs have recently been used to control the activity of enzymes and ribozymes. In this approach, the mechanical stress exerted by the molecular spring alters the enzyme's conformation and thus the enzymatic activity. Here we describe a method alternative to our previous one to attach DNA molecular springs to proteins, where two separate DNA 'arms' are coupled to the protein and subsequently ligated. We report certain non-mechanical effects associated with the DNA spring observed in some chimeras with specific DNA sequences and the nucleotide binding enzyme guanylate kinase. If a ssDNA 'arm' is attached to the protein by one end only, we find that in some cases (depending on the DNA sequence and attachment point on the protein's surface) the unhybridized DNA arm inhibits the enzyme, while hybridization of the DNA arm leads to an apparent activation of the enzyme. One interpretation is that, in these cases, hybridization of the DNA arm removes it from the vicinity of the active site of the enzyme. We show how mechanical and non-mechanical effects of the DNA spring can be distinguished. This is important if one wants to use the protein-DNA chimeras to quantitatively study the response of the enzyme to mechanical perturbations.

  20. Chimera states in a Hodgkin-Huxley model of thermally sensitive neurons (United States)

    Glaze, Tera A.; Lewis, Scott; Bahar, Sonya


    Chimera states occur when identically coupled groups of nonlinear oscillators exhibit radically different dynamics, with one group exhibiting synchronized oscillations and the other desynchronized behavior. This dynamical phenomenon has recently been studied in computational models and demonstrated experimentally in mechanical, optical, and chemical systems. The theoretical basis of these states is currently under active investigation. Chimera behavior is of particular relevance in the context of neural synchronization, given the phenomenon of unihemispheric sleep and the recent observation of asymmetric sleep in human patients with sleep apnea. The similarity of neural chimera states to neural "bump" states, which have been suggested as a model for working memory and visual orientation tuning in the cortex, adds to their interest as objects of study. Chimera states have been demonstrated in the FitzHugh-Nagumo model of excitable cells and in the Hindmarsh-Rose neural model. Here, we demonstrate chimera states and chimera-like behaviors in a Hodgkin-Huxley-type model of thermally sensitive neurons both in a system with Abrams-Strogatz (mean field) coupling and in a system with Kuramoto (distance-dependent) coupling. We map the regions of parameter space for which chimera behavior occurs in each of the two coupling schemes.

  1. Mechanisms of appearance of amplitude and phase chimera states in ensembles of nonlocally coupled chaotic systems (United States)

    Bogomolov, Sergey A.; Slepnev, Andrei V.; Strelkova, Galina I.; Schöll, Eckehard; Anishchenko, Vadim S.


    We explore the bifurcation transition from coherence to incoherence in ensembles of nonlocally coupled chaotic systems. It is firstly shown that two types of chimera states, namely, amplitude and phase, can be found in a network of coupled logistic maps, while only amplitude chimera states can be observed in a ring of continuous-time chaotic systems. We reveal a bifurcation mechanism by analyzing the evolution of space-time profiles and the coupling function with varying coupling coefficient and formulate the necessary and sufficient conditions for realizing the chimera states in the ensembles.

  2. T and B lymphocytes in the marmoset: a natural haemopoietic chimera

    Energy Technology Data Exchange (ETDEWEB)

    Niblack, G.D.; Gengozian, N.


    The thymus-derived (T) lymphocyte and bone marrow-derived (B) lymphocyte populations of the marmoset were characterized using specific cell surface markers. Approximately 85% of the thymocytes formed rosettes with neuraminidase-treated sheep erythrocytes (E/sub n/). The percentage (approximately 69%) of peripheral blood lymphocytes (PBL) forming rosettes with E/sub n/ was the same as that which stained with fluorescently labelled goat anti-marmoset thymocyte serum (ATS). These two assays identified the same cell population since treatment of cells with ATS and complement resulted in a concomitant decrease in E/sub n/ rosette formation. Marmoset PBL also formed rosettes with human erythrocytes sensitized with antibody and complement (HEAC); since the percentage (approximately 20%) HEAC rosette was the same as that of cells stained with fluorescently labelled goat anti-marmoset IgG, these cells were considered to be B cells. A small percentage of cells (aproximately 1.5%) possessed both types of receptors. The mean percentages of T and B cells present in PBL of single-born, presumably non-chimeric animals, were the same as that of isosexual and heterosexual chimeras.

  3. Linked and knotted chimera filaments in oscillatory systems. (United States)

    Lau, Hon Wai; Davidsen, Jörn


    While the existence of stable knotted and linked vortex lines has been established in many experimental and theoretical systems, their existence in oscillatory systems and systems with nonlocal coupling has remained elusive. Here, we present strong numerical evidence that stable knots and links such as trefoils and Hopf links do exist in simple, complex, and chaotic oscillatory systems if the coupling between the oscillators is neither too short ranged nor too long ranged. In this case, effective repulsive forces between vortex lines in knotted and linked structures stabilize curvature-driven shrinkage observed for single vortex rings. In contrast to real fluids and excitable media, the vortex lines correspond to scroll wave chimeras [synchronized scroll waves with spatially extended (tubelike) unsynchronized filaments], a prime example of spontaneous synchrony breaking in systems of identical oscillators. In the case of complex oscillatory systems, this leads to a topological superstructure combining knotted filaments and synchronization defect sheets.

  4. CaLecRK-S.5, a pepper L-type lectin receptor kinase gene, confers broad-spectrum resistance by activating priming (United States)

    Woo, Joo Yong; Jeong, Kwang Ju; Kim, Young Jin; Paek, Kyung-Hee


    In Arabidopsis, several L-type lectin receptor kinases (LecRKs) have been identified as putative immune receptors. However, to date, there have been few analyses of LecRKs in crop plants. Virus-induced gene silencing of CaLecRK-S.5 verified the role of CaLecRK-S.5 in broad-spectrum resistance. Compared with control plants, CaLecRK-S.5-silenced plants showed reduced hypersensitive response, reactive oxygen species burst, secondary metabolite production, mitogen-activated protein kinase activation, and defense-related gene expression in response to Tobacco mosaic virus pathotype P0 (TMV-P0) infection. Suppression of CaLecRK-S.5 expression significantly enhanced the susceptibility to Pepper mild mottle virus pathotype P1,2,3, Xanthomonas campestris pv. vesicatoria, Phytophthora capsici, as well as TMV-P0. Additionally, β-aminobutyric acid treatment and a systemic acquired resistance assay revealed that CaLecRK-S.5 is involved in priming of plant immunity. Pre-treatment with β-aminobutyric acid before viral infection restored the reduced disease resistance phenotypes shown in CaLecRK-S.5-silenced plants. Systemic acquired resistance was also abolished in CaLecRK-S.5-silenced plants. Finally, RNA sequencing analysis indicated that CaLecRK-S.5 positively regulates plant immunity at the transcriptional level. Altogether, these results suggest that CaLecRK-S.5-mediated broad-spectrum resistance is associated with the regulation of priming. PMID:27647723

  5. CaLecRK-S.5, a pepper L-type lectin receptor kinase gene, confers broad-spectrum resistance by activating priming. (United States)

    Woo, Joo Yong; Jeong, Kwang Ju; Kim, Young Jin; Paek, Kyung-Hee


    In Arabidopsis, several L-type lectin receptor kinases (LecRKs) have been identified as putative immune receptors. However, to date, there have been few analyses of LecRKs in crop plants. Virus-induced gene silencing of CaLecRK-S.5 verified the role of CaLecRK-S.5 in broad-spectrum resistance. Compared with control plants, CaLecRK-S.5-silenced plants showed reduced hypersensitive response, reactive oxygen species burst, secondary metabolite production, mitogen-activated protein kinase activation, and defense-related gene expression in response to Tobacco mosaic virus pathotype P0 (TMV-P0) infection. Suppression of CaLecRK-S.5 expression significantly enhanced the susceptibility to Pepper mild mottle virus pathotype P1,2,3, Xanthomonas campestris pv. vesicatoria, Phytophthora capsici, as well as TMV-P0 Additionally, β-aminobutyric acid treatment and a systemic acquired resistance assay revealed that CaLecRK-S.5 is involved in priming of plant immunity. Pre-treatment with β-aminobutyric acid before viral infection restored the reduced disease resistance phenotypes shown in CaLecRK-S.5-silenced plants. Systemic acquired resistance was also abolished in CaLecRK-S.5-silenced plants. Finally, RNA sequencing analysis indicated that CaLecRK-S.5 positively regulates plant immunity at the transcriptional level. Altogether, these results suggest that CaLecRK-S.5-mediated broad-spectrum resistance is associated with the regulation of priming.

  6. Laser Chimeras as a paradigm for multi-stable patterns in complex systems

    CERN Document Server

    Larger, Laurent; Maistrenko, Yuri


    Chimera is a rich and fascinating class of self-organized solutions developed in high dimensional networks having non-local and symmetry breaking coupling features. Its accurate understanding is expected to bring important insight in many phenomena observed in complex spatio-temporal dynamics, from living systems, brain operation principles, and even turbulence in hydrodynamics. In this article we report on a powerful and highly controllable experiment based on optoelectronic delayed feedback applied to a wavelength tunable semiconductor laser, with which a wide variety of Chimera patterns can be accurately investigated and interpreted. We uncover a cascade of higher order Chimeras as a pattern transition from N to N - 1 clusters of chaoticity. Finally, we follow visually, as the gain increases, how Chimera is gradually destroyed on the way to apparent turbulence-like system behaviour.

  7. Generation of chimeras by aggregation of embryonic stem cells with diploid or tetraploid mouse embryos. (United States)

    Artus, Jérôme; Hadjantonakis, Anna-Katerina


    From the hybrid creatures of the Greek and Egyptian mythologies, the concept of the chimera has evolved and, in modern day biology, refers to an organism comprises of at least two populations of genetically distinct cells. Mouse chimeras have proven an invaluable tool for the generation of genetically modified strains. In addition, chimeras have been extensively used in developmental biology as a powerful tool to analyze the phenotype of specific mutations, to attribute function to gene products and to address the question of cell autonomy versus noncell autonomy of gene function. This chapter describes a simple and economical technique used to generate mouse chimeras by embryo aggregation. Multiple aggregation combinations are described each of which can be tailored to answer particular biological questions.

  8. Chimera states in a network-organized public goods game with destructive agents (United States)

    Kouvaris, Nikos E.; Requejo, Rubén J.; Hizanidis, Johanne; Díaz-Guilera, Albert


    We found that a network-organized metapopulation of cooperators, defectors, and destructive agents playing the public goods game with mutations can collectively reach global synchronization or chimera states. Global synchronization is accompanied by a collective periodic burst of cooperation, whereas chimera states reflect the tendency of the networked metapopulation to be fragmented in clusters of synchronous and incoherent bursts of cooperation. Numerical simulations have shown that the system's dynamics switches between these two steady states through a first order transition. Depending on the parameters determining the dynamical and topological properties, chimera states with different numbers of coherent and incoherent clusters are observed. Our results present the first systematic study of chimera states and their characterization in the context of evolutionary game theory. This provides a valuable insight into the details of their occurrence, extending the relevance of such states to natural and social systems.

  9. Greengenes: Chimera-checked 16S rRNA gene database and workbenchcompatible in ARB

    Energy Technology Data Exchange (ETDEWEB)

    DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie,E.L; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L.


    A 16S rRNA gene database ( addresses limitations of public repositories by providing chimera-screening, standard alignments and taxonomic classification using multiple published taxonomies. It was revealed that incongruent taxonomic nomenclature exists among curators even at the phylum-level. Putative chimeras were identified in 3% of environmental sequences and 0.2% of records derived from isolates. Environmental sequences were classified into 100 phylum-level lineages within the Archaea and Bacteria.

  10. Chimeras in globally coupled oscillatory systems: From ensembles of oscillators to spatially continuous media (United States)

    Schmidt, Lennart; Krischer, Katharina


    We study an oscillatory medium with a nonlinear global coupling that gives rise to a harmonic mean-field oscillation with constant amplitude and frequency. Two types of cluster states are found, each undergoing a symmetry-breaking transition towards a related chimera state. We demonstrate that the diffusional coupling is non-essential for these complex dynamics. Furthermore, we investigate localized turbulence and discuss whether it can be categorized as a chimera state.

  11. Effect of glycyrrhizin on pseudomonal skin infections in human-mouse chimeras.

    Directory of Open Access Journals (Sweden)

    Shohei Yoshida

    Full Text Available In our previous studies, peripheral blood lineage(-CD34(+CD31(+ cells (CD31(+ IMC appearing in severely burned patients have been characterized as inhibitor cells for the production of β-defensins (HBDs by human epidermal keratinocytes (NHEK. In this study, the effect of glycyrrhizin on pseudomonal skin infections was studied in a chimera model of thermal injury. Two different chimera models were utilized. Patient chimeras were created in murine antimicrobial peptide-depleted NOD-SCID IL-2rγ(null mice that were grafted with unburned skin tissues of severely burned patients and inoculated with the same patient peripheral blood CD31(+ IMC. Patient chimera substitutes were created in the same mice that were grafted with NHEK and inoculated with experimentally induced CD31(+ IMC. In the results, both groups of chimeras treated with glycyrrhizin resisted a 20 LD50 dose of P. aeruginosa skin infection, while all chimeras in both groups treated with saline died within 3 days of the infection. Human antimicrobial peptides were detected from the grafted site tissues of both groups of chimeras treated with glycyrrhizin, while the peptides were not detected in the same area tissues of controls. HBD-1 was produced by keratinocytes in transwell-cultures performed with CD31(+ IMC and glycyrrhizin. Also, inhibitors (IL-10 and CCL2 of HBD-1 production by keratinocytes were not detected in cultures of patient CD31(+ IMC treated with glycyrrhizin. These results indicate that sepsis stemming from pseudomonal grafted site infections in a chimera model of burn injury is controllable by glycyrrhizin. Impaired antimicrobial peptide production at the infection site of severely burned patients may be restored after treatment with glycyrrhizin.

  12. Down-regulation of pancreatic and duodenal homeobox-1 by somatostatin receptor subtype 5: a novel mechanism for inhibition of cellular proliferation and insulin secretion by somatostatin

    Directory of Open Access Journals (Sweden)

    Charles eBrunicardi


    Full Text Available Somatostatin is a regulatory peptide and acts as an endogenous inhibitory regulator of the secretory and proliferative responses of target cells. Somatostatin’s actions are mediated by a family of seven transmembrane domain G protein-coupled receptors that comprise five distinct subtypes (SSTR1-5. SSTR5 is one of the major SSTRs in the islets of Langerhans. Homeodomain-containing transcription factor pancreatic and duodenal homeobox-1 (PDX-1 is essential for pancreatic development, β cell differentiation, maintenance of normal β cell functions in adults and tumorigenesis. Recent studies show that SSTR5 acts as a negative regulator for PDX-1 expression and that SSTR5 mediates somatostatin’s inhibitory effect on cell proliferation and insulin expression/excretion through down-regulating PDX-1 expression. SSTR5 exerts its inhibitory effect on PDX-1 expression at both the transcriptional level by down-regulating PDX-1 mRNA and the post-translational level by enhancing PDX-1 ubiquitination. Identification of PDX-1 as a transcriptional target for SSTR5 may help in guiding the choice of therapeutic cancer treatments.

  13. N1-Guanyl-1,7-Diaminoheptane Sensitizes Estrogen Receptor Negative Breast Cancer Cells to Doxorubicin by Preventing Epithelial-Mesenchymal Transition through Inhibition of Eukaryotic Translation Initiation Factor 5A2 Activation

    Directory of Open Access Journals (Sweden)

    Yu Liu


    Full Text Available Background: Approximately 30% of breast cancer does not express the estrogen receptor (ER, which is necessary for endocrine-based therapy approaches. Many studies demonstrated that eukaryotic translation initiation factor 5A2 (eIF5A2 serves as a proliferation-related oncogene in tumorigenic processes. Methods: The present study used cell viability assays, EdU incorporation assays, western blot, and immunofluorescence to explore whether N1-guanyl-1,7-diaminoheptane (GC7, which inhibits eIF5A2 activation, exerts synergistic cytotoxicity with doxorubicin in breast cancer. Results: We found that GC7 enhanced doxorubicin cytotoxicity in ER-negative HCC1937 cells but had little effect in ER-positive MCF-7 and Bcap-37 cells. Administration of GC7 reversed the doxorubicin-induced epithelial-mesenchymal transition (EMT in ER-negative breast cancer cells. Knockdown of eIF5A2 by siRNA inhibited the doxorubicin-induced EMT in ER-negative HCC1937 cells. Conclusion: These data demonstrated that GC7 combination therapy may enhance the therapeutic efficacy of doxorubicin in estrogen negative breast cancer cells by preventing EMT through inhibition of eIF5A2 activation.

  14. TCP: a tool for designing chimera proteins based on the tertiary structure information

    Directory of Open Access Journals (Sweden)

    Nishida Reina


    Full Text Available Abstract Background Chimera proteins are widely used for the analysis of the protein-protein interaction region. One of the major issues is the epitope analysis of the monoclonal antibody. In the analysis, a continuous portion of an antigen is sequentially substituted into a different sequence. This method works well for an antibody recognizing a linear epitope, but not for that recognizing a discontinuous epitope. Although the designing the chimera proteins based on the tertiary structure information is required in such situations, there is no appropriate tool so far. Results In light of the problem, we developed a tool named TCP (standing for a Tool for designing Chimera Proteins, which extracts some sets of mutually orthogonal cutting surfaces for designing chimera proteins using a genetic algorithm. TCP can also incorporate and consider the solvent accessible surface area information calculated by a DSSP program. The test results of our method indicate that the TCP is robust and applicable to various shapes of proteins. Conclusion We developed TCP, a tool for designing chimera proteins based on the tertiary structure information. TCP is robust and possesses several favourable features, and we believe it is a useful tool for designing chimera proteins. TCP is freely available as an additional file of this manuscript for academic and non-profit organization.

  15. Role of the intracellular domain of the human type I interferon receptor 2 chain (IFNAR2c) in interferon signaling. Expression of IFNAR2c truncation mutants in U5A cells. (United States)

    Russell-Harde, D; Wagner, T C; Rani, M R; Vogel, D; Colamonici, O; Ransohoff, R M; Majchrzak, B; Fish, E; Perez, H D; Croze, E


    A human cell line (U5A) lacking the type I interferon (IFN) receptor chain 2 (IFNAR2c) was used to determine the role of the IFNAR2c cytoplasmic domain in regulating IFN-dependent STAT activation, interferon-stimulated gene factor 3 (ISGF3) and c-sis-inducible factor (SIF) complex formation, gene expression, and antiproliferative effects. A panel of U5A cells expressing truncation mutants of IFNAR2c on their cell surface were generated for study. Janus kinase (JAK) activation was detected in all mutant cell lines; however, STAT1 and STAT2 activation was observed only in U5A cells expressing full-length IFNAR2c and IFNAR2c truncated at residue 462 (R2.462). IFNAR2c mutants truncated at residues 417 (R2. 417) and 346 (R2.346) or IFNAR2c mutant lacking tyrosine residues in its cytoplasmic domain (R2.Y-F) render the receptor inactive. A similar pattern was observed for IFN-inducible STAT activation, STAT complex formation, and STAT-DNA binding. Consistent with these data, IFN-inducible gene expression was ablated in U5A, R2.Y-F, R2.417, and R2.346 cell lines. The implications are that tyrosine phosphorylation and the 462-417 region of IFNAR2c are independently obligatory for receptor activation. In addition, the distal 53 amino acids of the intracellular domain of IFNAR2c are not required for IFN-receptor mediated STAT activation, ISFG3 or SIF complex formation, induction of gene expression, and inhibition of thymidine incorporation. These data demonstrate for the first time that both tyrosine phosphorylation and a specific domain of IFNAR2c are required in human cells for IFN-dependent coupling of JAK activation to STAT phosphorylation, gene induction, and antiproliferative effects. In addition, human and murine cells appear to require different regions of the cytoplasmic domain of IFNAR2c for regulation of IFN responses.

  16. Structural basis of LaDR5, a novel agonistic anti-death receptor 5 (DR5 monoclonal antibody, to inhibit DR5/TRAIL complex formation

    Directory of Open Access Journals (Sweden)

    Qiao Chunxia


    Full Text Available Abstract Background As a member of the TNF superfamily, TRAIL could induce human tumor cell apoptosis through its cognate death receptors DR4 or DR5, which can induce formation of the death inducing signaling complex (DISC and activation of the membrane proximal caspases (caspase-8 or caspase-10 and mitochondrial pathway. Some monoclonal antibodies against DR4 or DR5 have been reported to have anti-tumor activity. Results In this study, we reported a novel mouse anti-human DR5 monoclonal antibody, named as LaDR5, which could compete with TRAIL to bind DR5 and induce the apoptosis of Jurkat cells in the absence of second cross-linking in vitro. Using computer-guided molecular modeling method, the 3-D structure of LaDR5 Fv fragment was constructed. According to the crystal structure of DR5, the 3-D complex structure of DR5 and LaDR5 was modeled using molecular docking method. Based on distance geometry method and intermolecular hydrogen bonding analysis, the key functional domain in DR5 was predicted and the DR5 mutants were designed. And then, three mutants of DR5 was expressed in prokaryotic system and purified by affinity chromatograph to determine the epitope of DR5 identified by LaDR5, which was consistent with the theoretical results of computer-aided analysis. Conclusions Our results demonstrated the specific epitope located in DR5 that plays a crucial role in antibody binding and even antineoplastic bioactivity. Meanwhile, revealed structural features of DR5 may be important to design or screen novel drugs agonist DR5.

  17. Complement Receptors C5aR and C5L2 Are Associated with Metabolic Profile, Sex Hormones, and Liver Enzymes in Obese Women Pre- and Postbariatric Surgery

    Directory of Open Access Journals (Sweden)

    Reza Rezvani


    Full Text Available Objective. Obesity is associated with metabolic dysfunction with sex differences and chronic, low-grade inflammation. We proposed that hepatic expression of immune complement C3 related receptors (C3aR, C5aR, and C5L2 would be associated with pre- or postmenopausal status and metabolic profile in severely obese women. We hypothesized that C5L2/C5aR ratio, potentially influencing the ASP/C5L2 metabolic versus C5a/C5aR immune response, would predict metabolic profiles after weight loss surgery. Materials and Methods. Fasting plasma (hormone, lipid, and enzyme analysis and liver biopsies (RT-PCR gene expression were obtained from 91 women during surgery. Results. Hepatic C5L2 mRNA expression was elevated in pre- versus postmenopausal women (P<0.01 and correlated positively with circulating estradiol, estrone, ApoB, ApoA1, ApoA1/B, waist circumference, age, and LDL-C (all P<0.05. While plasma ASP was lower in pre- versus postmenopausal women (P<0.01, the hepatic C5L2/C5aR mRNA ratio was increased (P<0.001 and correlated positively with estrone (P<0.01 and estradiol (P<0.001 and negatively with circulating ApoB and liver enzymes ALT, AST, and GGT (all P<0.05. Over 12 months postoperatively, liver enzymes in low C5L2/C5aR mRNA ratio group remained higher (ALP and ALT, P<0.05, AST and GGT, P<0.001 2-way-ANOVA. Conclusion. C5L2-C5aR association with other mediators including estrogens may contribute to hepatic metabolic and inflammatory function.

  18. Mutant U5A cells are complemented by an interferon-alpha beta receptor subunit generated by alternative processing of a new member of a cytokine receptor gene cluster.


    Lutfalla, G; Holland, S J; Cinato, E; Monneron, D; Reboul, J.; Rogers, N C; J. M. Smith; Stark, G R; Gardiner, K.; Mogensen, K E


    The cellular receptor for the alpha/beta interferons contains at least two components that interact with interferon. The ifnar1 component is well characterized and a putative ifnar2 cDNA has recently been identified. We have cloned the gene for ifnar2 and show that it produces four different transcripts encoding three different polypeptides that are generated by exon skipping, alternative splicing and differential use of polyadenylation sites. One polypeptide is likely to be secreted and two ...

  19. Chronic Exposure to Androgenic-Anabolic Steroids Exacerbates Axonal Injury and Microgliosis in the CHIMERA Mouse Model of Repetitive Concussion.

    Directory of Open Access Journals (Sweden)

    Dhananjay R Namjoshi

    Full Text Available Concussion is a serious health concern. Concussion in athletes is of particular interest with respect to the relationship of concussion exposure to risk of chronic traumatic encephalopathy (CTE, a neurodegenerative condition associated with altered cognitive and psychiatric functions and profound tauopathy. However, much remains to be learned about factors other than cumulative exposure that could influence concussion pathogenesis. Approximately 20% of CTE cases report a history of substance use including androgenic-anabolic steroids (AAS. How acute, chronic, or historical AAS use may affect the vulnerability of the brain to concussion is unknown. We therefore tested whether antecedent AAS exposure in young, male C57Bl/6 mice affects acute behavioral and neuropathological responses to mild traumatic brain injury (TBI induced with the CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration platform. Male C57Bl/6 mice received either vehicle or a cocktail of three AAS (testosterone, nandrolone and 17α-methyltestosterone from 8-16 weeks of age. At the end of the 7th week of treatment, mice underwent two closed-head TBI or sham procedures spaced 24 h apart using CHIMERA. Post-repetitive TBI (rTBI behavior was assessed for 7 d followed by tissue collection. AAS treatment induced the expected physiological changes including increased body weight, testicular atrophy, aggression and downregulation of brain 5-HT1B receptor expression. rTBI induced behavioral deficits, widespread axonal injury and white matter microgliosis. While AAS treatment did not worsen post-rTBI behavioral changes, AAS-treated mice exhibited significantly exacerbated axonal injury and microgliosis, indicating that AAS exposure can alter neuronal and innate immune responses to concussive TBI.

  20. Generation of an adenovirus-parvovirus chimera with enhanced oncolytic potential. (United States)

    El-Andaloussi, Nazim; Bonifati, Serena; Kaufmann, Johanna K; Mailly, Laurent; Daeffler, Laurent; Deryckère, François; Nettelbeck, Dirk M; Rommelaere, Jean; Marchini, Antonio


    In this study, our goal was to generate a chimeric adenovirus-parvovirus (Ad-PV) vector that combines the high-titer and efficient gene transfer of adenovirus with the anticancer potential of rodent parvovirus. To this end, the entire oncolytic PV genome was inserted into a replication-defective E1- and E3-deleted Ad5 vector genome. As we found that parvoviral NS expression inhibited Ad-PV chimera production, we engineered the parvoviral P4 early promoter, which governs NS expression, by inserting into its sequence tetracycline operator elements. As a result of these modifications, P4-driven expression was blocked in the packaging T-REx-293 cells, which constitutively express the tetracycline repressor, allowing high-yield chimera production. The chimera effectively delivered the PV genome into cancer cells, from which fully infectious replication-competent parvovirus particles were generated. Remarkably, the Ad-PV chimera exerted stronger cytotoxic activities against various cancer cell lines, compared with the PV and Ad parental viruses, while being still innocuous to a panel of tested healthy primary human cells. This Ad-PV chimera represents a novel versatile anticancer agent which can be subjected to further genetic manipulations in order to reinforce its enhanced oncolytic capacity through arming with transgenes or retargeting into tumor cells.

  1. Engineering human cytochrome P450 enzymes into catalytically self-sufficient chimeras using molecular Lego. (United States)

    Dodhia, Vikash Rajnikant; Fantuzzi, Andrea; Gilardi, Gianfranco


    The membrane-bound human cytochrome P450s have essential roles in the metabolism of endogenous compounds and drugs. Presented here are the results on the construction and characterization of three fusion proteins containing the N-terminally modified human cytochrome P450s CYP2C9, CY2C19 and CYP3A4 fused to the soluble NADPH-dependent oxidoreductase domain of CYP102A1 from Bacillus megaterium. The constructs, CYP2C9/BMR, CYP2C19/BMR and CYP3A4/BMR are well expressed in Escherichia coli as holo proteins. The chimeras can be purified in the absence of detergent and the purified enzymes are both active and correctly folded in the absence of detergent, as demonstrated by circular dichroism and functional studies. Additionally, in comparison with the parent P450 enzyme, these chimeras have greatly improved solubility properties. The chimeras are catalytically self-sufficient and present turnover rates similar to those reported for the native enzymes in reconstituted systems, unlike previously reported mammalian cytochrome P450 fusion proteins. Furthermore the specific activities of these chimeras are not dependent on the enzyme concentration present in the reaction buffer and they do not require the addition of accessory proteins, detergents or phospholipids to be fully active. The solubility, catalytic self-sufficiency and wild-type like activities of these chimeras would greatly simplify the studies of cytochrome P450 mediated drug metabolism in solution.

  2. New insight into the central benzodiazepine receptor-ligand interactions: design, synthesis, biological evaluation, and molecular modeling of 3-substituted 6-phenyl-4H-imidazo[1,5-a][1,4]benzodiazepines and related compounds. (United States)

    Anzini, Maurizio; Valenti, Salvatore; Braile, Carlo; Cappelli, Andrea; Vomero, Salvatore; Alcaro, Stefano; Ortuso, Francesco; Marinelli, Luciana; Limongelli, Vittorio; Novellino, Ettore; Betti, Laura; Giannaccini, Gino; Lucacchini, Antonio; Daniele, Simona; Martini, Claudia; Ghelardini, Carla; Di Cesare Mannelli, Lorenzo; Giorgi, Gianluca; Mascia, Maria Paola; Biggio, Giovanni


    3-Substituted 6-phenyl-4H-imidazo[1,5-a][1,4]benzodiazepines and related compounds were synthesized as central benzodiazepine receptor (CBR) ligands. Most of the compounds showed high affinity for bovine and human CBR, their K(i) values spanning from the low nanomolar to the submicromolar range. In particular, imidazoester 5f was able to promote a massive flow of (36)Cl(-) in rat cerebrocortical synaptoneurosomes overlapping its efficacy profile with that of a typical full agonist. Compound 5f was then examined in mice for its pharmacological effects where it proved to be a safe anxiolytic agent devoid of the unpleasant myorelaxant and amnesic effects of the classical 1,4-benzodiazepines. Moreover, the selectivity of some selected compounds has been assessed in recombinant α(1)β(2)γ(2)L, α(2)β(1)γ(2)L, and α(5)β(2)γ(2)L human GABA(A) receptors. Finally, some compounds were submitted to molecular docking calculations along with molecular dynamics simulations in the Cromer's GABA(A) homology model.

  3. Multicluster and traveling chimera states in nonlocal phase-coupled oscillators. (United States)

    Xie, Jianbo; Knobloch, Edgar; Kao, Hsien-Ching


    Chimera states consisting of domains of coherently and incoherently oscillating identical oscillators with nonlocal coupling are studied. These states usually coexist with the fully synchronized state and have a small basin of attraction. We propose a nonlocal phase-coupled model in which chimera states develop from random initial conditions. Several classes of chimera states have been found: (a) stationary multicluster states with evenly distributed coherent clusters, (b) stationary multicluster states with unevenly distributed clusters, and (c) a single cluster state traveling with a constant speed across the system. Traveling coherent states are also identified. A self-consistent continuum description of these states is provided and their stability properties analyzed through a combination of linear stability analysis and numerical simulation.

  4. The Chimera II Real-Time Operating System for advanced sensor-based control applications (United States)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.


    Attention is given to the Chimera II Real-Time Operating System, which has been developed for advanced sensor-based control applications. The Chimera II provides a high-performance real-time kernel and a variety of IPC features. The hardware platform required to run Chimera II consists of commercially available hardware, and allows custom hardware to be easily integrated. The design allows it to be used with almost any type of VMEbus-based processors and devices. It allows radially differing hardware to be programmed using a common system, thus providing a first and necessary step towards the standardization of reconfigurable systems that results in a reduction of development time and cost.

  5. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti


    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  6. Glassy Chimeras Could Be Blind to Quantum Speedup: Designing Better Benchmarks for Quantum Annealing Machines (United States)

    Katzgraber, Helmut G.; Hamze, Firas; Andrist, Ruben S.


    Recently, a programmable quantum annealing machine has been built that minimizes the cost function of hard optimization problems by, in principle, adiabatically quenching quantum fluctuations. Tests performed by different research teams have shown that, indeed, the machine seems to exploit quantum effects. However, experiments on a class of random-bond instances have not yet demonstrated an advantage over classical optimization algorithms on traditional computer hardware. Here, we present evidence as to why this might be the case. These engineered quantum annealing machines effectively operate coupled to a decohering thermal bath. Therefore, we study the finite-temperature critical behavior of the standard benchmark problem used to assess the computational capabilities of these complex machines. We simulate both random-bond Ising models and spin glasses with bimodal and Gaussian disorder on the D-Wave Chimera topology. Our results show that while the worst-case complexity of finding a ground state of an Ising spin glass on the Chimera graph is not polynomial, the finite-temperature phase space is likely rather simple because spin glasses on Chimera have only a zero-temperature transition. This means that benchmarking optimization methods using spin glasses on the Chimera graph might not be the best benchmark problems to test quantum speedup. We propose alternative benchmarks by embedding potentially harder problems on the Chimera topology. Finally, we also study the (reentrant) disorder-temperature phase diagram of the random-bond Ising model on the Chimera graph and show that a finite-temperature ferromagnetic phase is stable up to 19.85(15)% antiferromagnetic bonds. Beyond this threshold, the system only displays a zero-temperature spin-glass phase. Our results therefore show that a careful design of the hardware architecture and benchmark problems is key when building quantum annealing machines.

  7. Marginal chimera state at cross-frequency locking of pulse-coupled neural networks (United States)

    Bolotov, M. I.; Osipov, G. V.; Pikovsky, A.


    We consider two coupled populations of leaky integrate-and-fire neurons. Depending on the coupling strength, mean fields generated by these populations can have incommensurate frequencies or become frequency locked. In the observed 2:1 locking state of the mean fields, individual neurons in one population are asynchronous with the mean fields, while in another population they have the same frequency as the mean field. These synchronous neurons form a chimera state, where part of them build a fully synchronized cluster, while other remain scattered. We explain this chimera as a marginal one, caused by a self-organized neutral dynamics of the effective circle map.

  8. Chimera states in a population of identical oscillators under planar cross-coupling

    Indian Academy of Sciences (India)

    C R Hens; A Mishra; P K Roy; A Sen; S K Dana


    We report the existence of chimera states in an assembly of identical nonlinear oscillators that are globally linked to each other in a simple planar cross-coupled form. The rotational symmetry breaking of the coupling term appears to be responsible for the emergence of these collective states that display a characteristic coexistence of coherent and incoherent behaviour. The finding, observed in both a collection of van der Pol oscillators and chaotic Rössler oscillators, further simplifies the existence criterion for chimeras, thereby broadens the range of their applicability to real-world situations.

  9. "American Chimera: The Ever-Present Domination of Whiteness, Patriarchy, and Capitalism…A Parable" (United States)

    Montoya, Roberto; Matias, Cheryl E.; Nishi, Naomi W. M.; Sarcedo, Geneva L.


    In Greek mythology, the Chimera is a fire-breathing monster with three heads: one of a lion, one of a horned goat, and one of a powerful dragon. Of similar construction is the presence of three structures in US society, whiteness, patriarchy, and capitalism, which are overwhelmingly represented, valued, and espoused when examining areas of…

  10. CHIMERA: Clustering of Heterogeneous Disease Effects via Distribution Matching of Imaging Patterns. (United States)

    Dong, Aoyan; Honnorat, Nicolas; Gaonkar, Bilwaj; Davatzikos, Christos


    Many brain disorders and diseases exhibit heterogeneous symptoms and imaging characteristics. This heterogeneity is typically not captured by commonly adopted neuroimaging analyses that seek only a main imaging pattern when two groups need to be differentiated (e.g., patients and controls, or clinical progressors and non-progressors). We propose a novel probabilistic clustering approach, CHIMERA, modeling the pathological process by a combination of multiple regularized transformations from normal/control population to the patient population, thereby seeking to identify multiple imaging patterns that relate to disease effects and to better characterize disease heterogeneity. In our framework, normal and patient populations are considered as point distributions that are matched by a variant of the coherent point drift algorithm. We explain how the posterior probabilities produced during the MAP optimization of CHIMERA can be used for clustering the patients into groups and identifying disease subtypes. CHIMERA was first validated on a synthetic dataset and then on a clinical dataset mixing 317 control subjects and patients suffering from Alzheimer's Disease (AD) and Parkison's Disease (PD). CHIMERA produced better clustering results compared to two standard clustering approaches. We further analyzed 390 T1 MRI scans from Alzheimer's patients. We discovered two main and reproducible AD subtypes displaying significant differences in cognitive performance.

  11. Incoherent chimera and glassy states in coupled oscillators with frustrated interactions (United States)

    Choe, Chol-Ung; Ri, Ji-Song; Kim, Ryong-Son


    We suggest a site disorder model that describes the population of identical oscillators with quenched random interactions for both the coupling strength and coupling phase. We obtain the reduced equations for the suborder parameters, on the basis of Ott-Antonsen ansatz theory, and present a complete bifurcation analysis of the reduced system. New effects include the appearance of the incoherent chimera and glassy state, both of which are caused by heterogeneity of the coupling phases. In the incoherent chimera state, the system displays an exotic symmetry-breaking behavior in spite of the apparent structural symmetry where the oscillators for both of the two subpopulations are in a frustrated state, while the phase distribution for each subpopulation approaches a steady state that differs from each other. When the incoherent chimera undergoes Hopf bifurcation, the system displays a breathing incoherent chimera. The glassy state that occurs on a surface of three-dimensional parameter space exhibits a continuum of metastable states with zero value of the global order parameter. Explicit formulas are derived for the system's Hopf, saddle-node, and transcritical bifurcation curves, as well as the codimension-2 crossing points, including the Takens-Bogdanov point.

  12. Non-invasive screening for Alzheimer's disease by sensing salivary sugar using Drosophila cells expressing gustatory receptor (Gr5a) immobilized on an extended gate ion-sensitive field-effect transistor (EG-ISFET) biosensor. (United States)

    Lau, Hui-Chong; Lee, In-Kyu; Ko, Pan-Woo; Lee, Ho-Won; Huh, Jeung-Soo; Cho, Won-Ju; Lim, Jeong-Ok


    Body fluids are often used as specimens for medical diagnosis. With the advent of advanced analytical techniques in biotechnology, the diagnostic potential of saliva has been the focus of many studies. We recently reported the presence of excess salivary sugars, in patients with Alzheimer's disease (AD). In the present study, we developed a highly sensitive, cell-based biosensor to detect trehalose levels in patient saliva. The developed biosensor relies on the overexpression of sugar sensitive gustatory receptors (Gr5a) in Drosophila cells to detect the salivary trehalose. The cell-based biosensor was built on the foundation of an improved extended gate ion-sensitive field-effect transistor (EG-ISFET). Using an EG-ISFET, instead of a traditional ion-sensitive field-effect transistor (ISFET), resulted in an increase in the sensitivity and reliability of detection. The biosensor was designed with the gate terminals segregated from the conventional ISFET device. This design allows the construction of an independent reference and sensing region for simultaneous and accurate measurements of samples from controls and patients respectively. To investigate the efficacy of the cell-based biosensor for AD screening, we collected 20 saliva samples from each of the following groups: participants diagnosed with AD, participants diagnosed with Parkinson's disease (PD), and a control group composed of healthy individuals. We then studied the response generated from the interaction of the salivary trehalose of the saliva samples and the Gr5a in the immobilized cells on an EG-ISFET sensor. The cell-based biosensor significantly distinguished salivary sugar, trehalose of the AD group from the PD and control groups. Based on these findings, we propose that salivary trehalose, might be a potential biomarker for AD and could be detected using our cell-based EG-ISFET biosensor. The cell-based EG-ISFET biosensor provides a sensitive and direct approach for salivary sugar detection and

  13. Embryonic stem cells contribute to mouse chimeras in the absence of detectable cell fusion. (United States)

    Kidder, Benjamin L; Oseth, Leann; Miller, Shanna; Hirsch, Betsy; Verfaillie, Catherine; Coucouvanis, Electra


    Embryonic stem (ES) cells are capable of differentiating into all embryonic and adult cell types following mouse chimera production. Although injection of diploid ES cells into tetraploid blastocysts suggests that tetraploid cells have a selective disadvantage in the developing embryo, tetraploid hybrid cells, formed by cell fusion between ES cells and somatic cells, have been reported to contribute to mouse chimeras. In addition, other examples of apparent stem cell plasticity have recently been shown to be the result of cell fusion. Here we investigate whether ES cells contribute to mouse chimeras through a cell fusion mechanism. Fluorescence in situ hybridization (FISH) analysis for X and Y chromosomes was performed on dissociated tissues from embryonic, neonatal, and adult wild-type, and chimeric mice to follow the ploidy distributions of cells from various tissues. FISH analysis showed that the ploidy distributions in dissociated tissues, notably the tetraploid cell number, did not differ between chimeric and wild-type tissues. To address the possibility that early cell fusion events are hidden by subsequent reductive divisions or other changes in cell ploidy, we injected Z/EG (lacZ/EGFP) ES cells into ACTB-cre blastocysts. Recombination can only occur as the result of cell fusion, and the recombined allele should persist through any subsequent changes in cell ploidy. We did not detect evidence of fusion in embryonic chimeras either by direct fluorescence microscopy for GFP or by PCR amplification of the recombined Z/EG locus on genomic DNA from ACTB-cre::Z/EG chimeric embryos. Our results argue strongly against cell fusion as a mechanism by which ES cells contribute to chimeras.

  14. Designer Nodal/BMP2 Chimeras Mimic Nodal Signaling, Promote Chondrogenesis, and Reveal a BMP2-like Structure (United States)

    Esquivies, Luis; Blackler, Alissa; Peran, Macarena; Rodriguez-Esteban, Concepcion; Izpisua Belmonte, Juan Carlos; Booker, Evan; Gray, Peter C.; Ahn, Chihoon; Kwiatkowski, Witek; Choe, Senyon


    Nodal, a member of the TGF-β superfamily, plays an important role in vertebrate and invertebrate early development. The biochemical study of Nodal and its signaling pathway has been a challenge, mainly because of difficulties in producing the protein in sufficient quantities. We have developed a library of stable, chemically refoldable Nodal/BMP2 chimeric ligands (NB2 library). Three chimeras, named NB250, NB260, and NB264, show Nodal-like signaling properties including dependence on the co-receptor Cripto and activation of the Smad2 pathway. NB250, like Nodal, alters heart looping during the establishment of embryonic left-right asymmetry, and both NB250 and NB260, as well as Nodal, induce chondrogenic differentiation of human adipose-derived stem cells. This Nodal-induced differentiation is shown to be more efficient than BPM2-induced differentiation. Interestingly, the crystal structure of NB250 shows a backbone scaffold similar to that of BMP2. Our results show that these chimeric ligands may have therapeutic implications in cartilage injuries. PMID:24311780

  15. [{sup 18}F]D.P.A.-714: a novel fluorine-18-labelled pyrazolo[1,5-a]pyrimidine acetamide for imaging the peripheral benzodiazepine receptors with PET - radiosynthesis on a zymate-xp robotic system

    Energy Technology Data Exchange (ETDEWEB)

    Dolle, F.; Damont, A.; Hinnen, F.; Kuhnast, B.; Chauveau, F.; Van camp, N.; Hantraye, P.; Tavitian, B. [Servvice Hospitalier Frederic Joliot, I2BM/DSV, 91 - Orsay (France); James, M.; Creelman, A.; Fulton, R.; Kassiou, M. [Sydney Univ., Brain and Mind Research Institute, NSW (Australia); Vercouillie, J.; Guilloteau, D. [Universite Francois Rabelais de Tours, 37 (France); Vercouillie, J.; Guilloteau, D. [Centre Hospitalier Regional Universitaire, 37 - Tours (France); Selleri, S.; Kassiou, M. [Sydney Univ., Discipline of Medical Radiations, Sciences and School of Chemistry, NSW (Australia)


    {sup 11}C D.P.A.-713 (N,N-diethyl-2-[2-(4-[{sup 11}C]methoxy-phenyl)-5,7-dimethyl-pyrazolo [1,5-a]pyrimidin-3-yl]acetamide) is a recently developed carbon-11-labelled (half life: 20.4 min)pyrazolo[1,5-a]pyrimidine acetamide for the in vivo imaging of the peripheral benzodiazepine receptors (P.B.R. or translocator protein (18 kDa, T.S.P.O.)). Preliminary results obtained in a rodent-model demonstrates that {sup 11}C D.P.A.-713 showed a high potential to in vivo image neuro-inflammation and additionally, this radioligand allowed a higher contrast between the lesioned area and the corresponding area in the intact contralateral hemisphere when compared to the radioligand of reference. D.P.A-714 (N,N-diethyl-2-[2-[4-(2-fluoro-ethoxy)phenyl] -5,7-dimethyl-pyrazolo[1,5-a]pyrimidin-3-yl]acetamide), a chemically closely related derivative of D.P.A.-713, had been designed with a fluorine atom in its structure, allowing ultimate labelling with fluorine-18, a longer-lived positron-emitter (half life:109.8 min) and today one of the most attractive PET isotopes for radiopharmaceutical chemistry. D.P.A.-714 as well as its corresponding tosylated derivative have been re-synthesized in 2 chemicals steps from D.P.A.-713. D.P.A.-714 has then been labelled at its aromatic fluoro-ethoxy group from the corresponding tosyl-derivative using the K{sup 18}FF-kryptofix{sub 222} (in CH{sub 3}CN (3 mL) at 85 degrees C for 5 min or D.M.S.O. (600 {mu}L) at 130 degrees C for 5 min). {sup 18}FD.P.A.-714 was then purified using semi preparative X terra reverse phase H.P.L.C., adequately formulated for i.v. injection and was found to be > 95% chemically and radiochemically pure. The total synthesis time was less than 90 min and the specific radioactivities at the end of the radiosynthesis ranged from 1 to 3 Ci/micro-mole. (N.C.)

  16. Chronic graft-versus-host disease in the rat radiation chimera: I. clinical features, hematology, histology, and immunopathology in long-term chimeras

    Energy Technology Data Exchange (ETDEWEB)

    Beschorner, W.E.; Tutschka, P.J.; Santos, G.W.


    The clinical features, pathology, and immunopathology of chronic graft-versus-host disease (GVHD) developing in the long-term rat radiation chimera are described. At 6 to 12 months post-transplant, the previously stable ACI/LEW chimeras developed patchy to diffuse severe hair loss and thickened skin folds, and had microscopic features resembling scleroderma, Sjogren's syndrome, and chronic hepatitis. Skin histology showed dermal inflammation and acanthosis with atrophy of the appendages, with progression to dermal sclerosis. The liver revealed chronic hepatitis with bile duct injury and proliferation and periportal piecemeal necrosis. The tongue had considerable submucosal inflammation, muscular necrosis, and atrophy and arteritis. The serous salivary glands, lacrimal glands, and bronchi had lymphocytic inflammation and injury to duct, acinar, and mucosal columnar epithelium. The thymus had lymphocyte depletion of the medulla with prominent epithelium. The spleen and lymph nodes had poorly developed germinal centers but increased numbers of plasma cells. IgM was observed along the basement membrane and around the basal cells of the skin and tongue and along the basement membrane of the bile ducts. IgM was present also in the arteries of the tongue. Immunoglobulins eluted from the skin, cross-reacted with the bile duct epithelium and usually with both ACI and Lewis skin. Increased titers of speckled antinuclear antibodies were present in the serum of rats with chronic (GVHD). Chronic GVHD in the long-term rat radiation chimera is very similar to human chronic GVHD and is a potentially excellent model for autoimmune disorders including scleroderma, Sjorgren's syndrome, and chronic hepatitis.

  17. Fungal phosphate transporter serves as a receptor backbone for gibbon ape leukemia virus

    DEFF Research Database (Denmark)

    Pedersen, Lene; van Zeijl, Marja; Johann, Stephen V


    Pit1, the receptor for gibbon ape leukemia virus (GALV), is proposed to be an integral membrane protein with five extracellular loops. Chimeras made between Pit1 homologs differing in permissivity for infection and between Pit1 and the related protein Pit2 have shown that the fourth extracellular...... in a functional GALV receptor. Therefore, the presence of a Pit1 loop 4-specific sequence is sufficient to confer receptor function for the mammalian retrovirus GALV on the fungal phosphate transporter Pho-4...

  18. Novel GLP-1 Fusion Chimera as Potent Long Acting GLP-1 Receptor Agonist


    Qinghua Wang; Kui Chen; Rui Liu; Fang Zhao; Sandeep Gupta; Nina Zhang; Prud'homme, Gerald J.


    GLP-1 has a variety of anti-diabetic effects. However, native GLP-1 is not suitable for therapy of diabetes due to its short half-life (t1/2168 h. Intraperitoneal glucose tolerance test (IPGTT) in mice showed that GLP-1/hIgG2 significantly decreased glucose excursion. Furthermore, IPGTT performed on mice one week after a single drug-injection also displayed significantly reduced glucose excursion, indicating that GLP-1/hIgG2 fusion protein has long-lasting effects on the modulation of glucose...

  19. Chimera patterns induced by distance-dependent power-law coupling in ecological networks (United States)

    Banerjee, Tanmoy; Dutta, Partha Sharathi; Zakharova, Anna; Schöll, Eckehard


    This paper reports the occurrence of several chimera patterns and the associated transitions among them in a network of coupled oscillators, which are connected by a long-range interaction that obeys a distance-dependent power law. This type of interaction is common in physics and biology and constitutes a general form of coupling scheme, where by tuning the power-law exponent of the long-range interaction the coupling topology can be varied from local via nonlocal to global coupling. To explore the effect of the power-law coupling on collective dynamics, we consider a network consisting of a realistic ecological model of oscillating populations, namely the Rosenzweig-MacArthur model, and show that the variation of the power-law exponent mediates transitions between spatial synchrony and various chimera patterns. We map the possible spatiotemporal states and their scenarios that arise due to the interplay between the coupling strength and the power-law exponent.

  20. Flexible and rapid construction of viral chimeras applied to hepatitis C virus. (United States)

    McClure, C Patrick; Urbanowicz, Richard A; King, Barnabas J; Cano-Crespo, Sara; Tarr, Alexander W; Ball, Jonathan K


    A novel and broadly applicable strategy combining site-directed mutagenesis and DNA assembly for constructing seamless viral chimeras is described using hepatitis C virus (HCV) as an exemplar. Full-length HCV genomic cloning cassettes, which contained flexibly situated restriction endonuclease sites, were prepared via a single, site-directed mutagenesis reaction and digested to receive PCR-amplified virus envelope genes by In-Fusion cloning. Using this method, we were able to construct gene-shuttle cassettes for generation of cell culture-infectious JFH-1-based chimeras containing genotype 1-3 E1E2 genes. Importantly, using this method we also show that E1E2 clones that were not able to support cell entry in the HCV pseudoparticle assay did confer entry when shuttled into the chimeric cell culture chimera system. This method can be easily applied to other genes of study and other viruses and, as such, will greatly simplify reverse genetics studies of variable viruses.

  1. Human-animal chimera: a neuro driven discussion? Comparison of three leading European research countries. (United States)

    Cabrera Trujillo, Laura Yenisa; Engel-Glatter, Sabrina


    Research with human-animal chimera raises a number of ethical concerns, especially when neural stem cells are transplanted into the brains of non-human primates (NHPs). Besides animal welfare concerns and ethical issues associated with the use of embryonic stem cells, the research is also regarded as controversial from the standpoint of NHPs developing cognitive or behavioural capabilities that are regarded as "unique" to humans. However, scientists are urging to test new therapeutic approaches for neurological diseases in primate models as they better mimic human physiology than all current animal models. As a response, various countries have issued reports on the topic. Our paper summarizes the ethical issues raised by research with human-animal brain chimeras and compares the relevant regulatory instruments and different recommendations issued in national reports from three important European research nations: Germany, Switzerland and the United Kingdom. We assess and discuss the focus and priorities set by the different reports, review various reasons for and perspectives on the importance of the brain in chimera research, and identify critical points in the reports that warrant further specification and debate.

  2. Requirement for Tumor Necrosis Factor Receptor 2 Expression on Vascular Cells To Induce Experimental Cerebral Malaria


    Stoelcker, Benjamin; Hehlgans, Thomas; Weigl, Karin; Bluethmann, Horst; Grau, Georges E.; Männel, Daniela N


    Using tumor necrosis factor receptor type 2 (TNFR2)-deficient mice and generating bone marrow chimeras which express TNFR2 on either hematopoietic or nonhematopoietic cells, we demonstrated the requirement for TNFR2 expression on tissue cells to induce lethal cerebral malaria. Thus, TNFR2 on the brain vasculature mediates tumor necrosis factor-induced neurovascular lesions in experimental cerebral malaria.

  3. Tamoxifen-regulated adenoviral E1A chimeras for the control of tumor selective oncolytic adenovirus replication in vitro and in vivo. (United States)

    Sipo, I; Wang, X; Hurtado Picó, A; Suckau, L; Weger, S; Poller, W; Fechner, H


    Pharmacological control is a desirable safety feature of oncolytic adenoviruses (oAdV). It has recently been shown that oAdV replication may be controlled by drug-dependent transcriptional regulation of E1A expression. Here, we present a novel concept that relies on tamoxifen-dependent regulation of E1A activity through functional linkage to the mutated hormone-binding domain of the murine estrogen receptor (Mer). Four different E1A-Mer chimeras (ME, EM, E(DeltaNLS)M, MEM) were constructed and inserted into the adenoviral genome under control of a lung-specific surfactant protein B promoter. The highest degree of regulation in vitro was seen for the corresponding oAdVs Ad.E(DeltaNLS)M and Ad.MEM, which exhibited an up to 100-fold higher oAdV replication in the presence as compared with the absence of 4-OH-tamoxifen. Moreover, destruction of nontarget cells was six- and 13-fold reduced for Ad.E(DeltaNLS)M and Ad.MEM, respectively, as compared with Ad.E. Further investigations supported tamoxifen-dependent regulation of Ad.E(DeltaNLS)M and Ad.MEM in vivo. Induction of Ad.E(DeltaNLS)M inhibited growth of H441 lung tumors as efficient as a control oAdV expressing E1A. E(DeltaNLS)M and the MEM chimeras can be easily inserted into a single vector genome, which extends their application to existing oAdVs and strongly facilitates in vivo application.

  4. The anxioselective agent 7-(2-chloropyridin-4-yl)pyrazolo-[1,5-a]-pyrimidin-3-yl](pyridin-2-yl)methanone (DOV 51892) is more efficacious than diazepam at enhancing GABA-gated currents at alpha1 subunit-containing GABAA receptors. (United States)

    Popik, Piotr; Kostakis, Emmanuel; Krawczyk, Martyna; Nowak, Gabriel; Szewczyk, Bernadeta; Krieter, Philip; Chen, Zhengming; Russek, Shelley J; Gibbs, Terrell T; Farb, David H; Skolnick, Phil; Lippa, Arnold S; Basile, Anthony S


    Studies using mice with point mutations of GABA(A) receptor alpha subunits suggest that the sedative and anxiolytic properties of 1,4-benzodiazepines are mediated, respectively, by GABA(A) receptors bearing the alpha(1) and alpha(2) subunits. This hypothesis predicts that a compound with high efficacy at GABA(A) receptors containing the alpha(1) subunit would produce sedation, whereas an agonist acting at alpha(2) subunit-containing receptors (with low or null efficacy at alpha(1)-containing receptors) would be anxioselective. Electrophysiological studies using recombinant GABA(A) receptors expressed in Xenopus oocytes indicate that maximal potentiation of GABA-stimulated currents by the pyrazolo-[1,5-a]-pyrimidine, DOV 51892, at alpha(1)beta(2)gamma(2S) constructs of the GABA(A) receptor was significantly higher (148%) than diazepam. In contrast, DOV 51892 was considerably less efficacious and/or potent than diazepam in enhancing GABA-stimulated currents mediated by constructs containing alpha(2), alpha(3), or alpha(5) subunits. In vivo, DOV 51892 increased punished responding in the Vogel conflict test, an effect blocked by flumazenil, and increased the percentage of time spent in the open arms of the elevated plus-maze. However, DOV 51892 had no consistent effects on motor function or muscle relaxation at doses more than 1 order of magnitude greater than the minimal effective anxiolytic dose. Although the mutant mouse data predict that the high-efficacy potentiation of GABA(A1a) receptor-mediated currents by DOV 51892 would be sedating, behavioral studies demonstrate that DOV 51892 is anxioselective, indicating that GABA potentiation mediated by alpha(1) subunit-containing GABA(A) receptors may be neither the sole mechanism nor highly predictive of the sedative properties of benzodiazepine recognition site modulators.

  5. Regulation of FSHβ induction in LβT2 cells by BMP2 and an Activin A/BMP2 chimera, AB215. (United States)

    Jung, Jae Woo; Ahn, Chihoon; Shim, Sun Young; Gray, Peter C; Kwiatkowski, Witek; Choe, Senyon


    Activins and bone morphogenetic proteins (BMPs) share activin type 2 signaling receptors but utilize different type 1 receptors and Smads. We designed AB215, a potent BMP2-like Activin A/BMP2 chimera incorporating the high-affinity type 2 receptor-binding epitope of Activin A. In this study, we compare the signaling properties of AB215 and BMP2 in HEK293T cells and gonadotroph LβT2 cells in which Activin A and BMP2 synergistically induce FSHβ. In HEK293T cells, AB215 is more potent than BMP2 and competitively blocks Activin A signaling, while BMP2 has a partial blocking activity. Activin A signaling is insensitive to BMP pathway antagonism in HEK293T cells but is strongly inhibited by constitutively active (CA) BMP type 1 receptors. By contrast, the potencies of AB215 and BMP2 are indistinguishable in LβT2 cells and although AB215 blocks Activin A signaling, BMP2 has no inhibitory effect. Unlike HEK293T, Activin A signaling is strongly inhibited by BMP pathway antagonism in LβT2 cells but is largely unaffected by CA BMP type 1 receptors. BMP2 increases phospho-Smad3 levels in LβT2 cells, in both the absence and the presence of Activin A treatment, and augments Activin A-induced FSHβ. AB215 has the opposite effect and sharply decreases basal phospho-Smad3 levels and blocks Smad2 phosphorylation and FSHβ induction resulting from Activin A treatment. These findings together demonstrate that while AB215 activates the BMP pathway, it has opposing effects to those of BMP2 on FSHβ induction in LβT2 cells apparently due to its ability to block Activin A signaling.

  6. Formation of germline chimera Gaok chicken used circulation primordial germ cells (circulation PGCs fresh and thawed

    Directory of Open Access Journals (Sweden)

    Kostaman T


    Full Text Available Formation of germline chimeras by transfer of chicken primordial germ cells (PGCs is one of the effective techniques for preservation and regeneration of genetic resources in chickens. This study attempted to form germline chimeras of Gaok chicken buy purifying circulated PGCs of donor embryo before it is transferred to the recipient (White Leghorn chickens=WL and studied the ability of recipient embryo on survival in incubators, and hatchability. This study used 200 fertile eggs of Gaok and 90 fertile WL breed all of the eggs was incubated at 380C and 60% humidity in a portable incubator. PGCs-circulation of the blood collected Gaok embryos at stage 14-16 were taken from the dorsal aorta, and then purified by centrifugation method using nycodenz. PGCs-circulation results further purification frozen in liquid nitrogen before being transferred to the recipient embryo. The results showed that for the development of embryos transferred to the fresh circulation of PGCs-circulation as many as 25 cells can survive up to day 14, while one of the transferred of 50 and 100 cells into recipient embryos was hatched (10%. On the contrari recipient embryos that are transferred to the frozen PGCs-circulation the embryos development was shorter, and only survived until day 10th (treatment 25 cells, day 14th (treatment of 50 cells and day 17th (treatment of 100 cells. It is concluded that the amount of PGCs-circulation embryos transferred to the recipient is one factor that influence the success of the development germline chimeras.

  7. Plasmodium vivax Promiscuous T-Helper Epitopes Defined and Evaluated as Linear Peptide Chimera Immunogens (United States)

    Caro-Aguilar, Ivette; Rodríguez, Alexandra; Calvo-Calle, J. Mauricio; Guzmán, Fanny; De la Vega, Patricia; Elkin Patarroyo, Manuel; Galinski, Mary R.; Moreno, Alberto


    Clinical trials of malaria vaccines have confirmed that parasite-derived T-cell epitopes are required to elicit consistent and long-lasting immune responses. We report here the identification and functional characterization of six T-cell epitopes that are present in the merozoite surface protein-1 of Plasmodium vivax (PvMSP-1) and bind promiscuously to four different HLA-DRB1∗ alleles. Each of these peptides induced lymphoproliferative responses in cells from individuals with previous P. vivax infections. Furthermore, linear-peptide chimeras containing the promiscuous PvMSP-1 T-cell epitopes, synthesized in tandem with the Plasmodium falciparum immunodominant circumsporozoite protein (CSP) B-cell epitope, induced high specific antibody titers, cytokine production, long-lasting immune responses, and immunoglobulin G isotype class switching in BALB/c mice. A linear-peptide chimera containing an allele-restricted P. falciparum T-cell epitope with the CSP B-cell epitope was not effective. Two out of the six promiscuous T-cell epitopes exhibiting the highest anti-peptide response also contain B-cell epitopes. Antisera generated against these B-cell epitopes recognize P. vivax merozoites in immunofluorescence assays. Importantly, the anti-peptide antibodies generated to the CSP B-cell epitope inhibited the invasion of P. falciparum sporozoites into human hepatocytes. These data and the simplicity of design of the chimeric constructs highlight the potential of multimeric, multistage, and multispecies linear-peptide chimeras containing parasite promiscuous T-cell epitopes for malaria vaccine development. PMID:12065487

  8. Using opioid receptors to expand the chemogenetic and optogenetic toolbox. (United States)

    Damez-Werno, Diane M; Kenny, Paul J


    In this issue of Neuron, innovative new modifications to opioid receptors are used to expand the tools available to modulate neuronal activity. Vardy et al. (2015) describe a new "DREADD" chemogenetic tool based on the inhibitory κ opioid receptor (KORD) that can be used in conjunction with already-available DREADDs. Siuda et al. (2015) report the development of "opto-MOR," a light-activatable μ opioid receptor (MOR) chimera that can be used to better understand the complexities of MOR signaling.

  9. Embryonic stem cell/fibroblast hybrid cells with near-tetraploid karyotype provide high yield of chimeras. (United States)

    Kruglova, A A; Kizilova, E A; Zhelezova, A I; Gridina, M M; Golubitsa, A N; Serov, O L


    Ten primary clones of hybrid cells were produced by the fusion of diploid embryonic stem (ES) cells, viz., line E14Tg2aSc4TP6.3 marked by green fluorescent protein (GFP), with diploid embryonic or adult fibroblasts derived from DD/c mice. All the hybrid clones had many characteristics similar to those of ES cells and were positive for GFP. Five hybrid clones having ploidy close to tetraploidy (over 80% of cells had 76-80 chromosomes) were chosen for the generation of chimeras via injection into C57BL blastocysts. These hybrid clones also contained microsatellites marking all ES cell and fibroblast chromosomes judging from microsatellite analysis. Twenty chimeric embryos at 11-13 days post-conception were obtained after injection of hybrid cells derived from two of three clones. Many embryos showed a high content of GFP-positive descendents of the tested hybrid cells. Twenty one adult chimeras were generated by the injection of hybrid cells derived from three clones. The contribution of GFP-labeled hybrid cells was significant and comparable with that of diploid E14Tg2aSc4TP6.3 cells. Cytogenetic and microsatellite analyses of cell cultures derived from chimeric embryos or adults indicated that the initial karyotype of the tested hybrid cells remained stable during the development of the chimeras, i.e., the hybrid cells were mainly responsible for the generation of the chimeras. Thus, ES cell/fibroblast hybrid cells with near-tetraploid karyotype are able to generate chimeras at a high rate, and many adult chimeras contain a high percentage of descendants of the hybrid cells.

  10. Synthesis and biological evaluation of analogues of 7-chloro-4,5-dihydro-4- oxo-8-(1,2,4-triazol-4-yl)-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylic acid (TQX-173) as novel selective AMPA receptor antagonists. (United States)

    Catarzi, Daniela; Colotta, Vittoria; Varano, Flavia; Calabri, Francesca Romana; Filacchioni, Guido; Galli, Alessandro; Costagli, Chiara; Carlà, Vincenzo


    In recent papers (Catarzi, D.; et al. J. Med. Chem. 2000, 43, 3824-3826; 2001, 44, 3157-3165) we reported chemical and biological studies on 4,5-dihydro-4-oxo-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylates (TQXs) bearing different nitrogen-containing heterocycles at position-8. In particular, from these studies it emerged that both the 7-chloro-4,5-dihydro-4-oxo-8-(1,2,4-triazol-4-yl)-1,2,4-triazolo[1,5-a] quinoxaline-2-carboxylic acid TQX-173 (compound B) and its corresponding ethyl ester (compound A) were the most active and selective compounds of this series. In pursuing our investigation on the structure-activity relationships of these TQX derivatives, different electron-withdrawing groups (CF(3), NO(2)) were introduced at position 7 on the TQX ring system, replacing the 7-chloro substituent of B and of other selected 8-heteroaryltriazoloquinoxaline-2-carboxylates previously described. All the newly synthesized compounds were biologically evaluated for their binding at the Gly/NMDA, AMPA, and KA high-affinity receptors. Gly/NMDA binding assays were performed to assess the selectivity of the reported compounds toward the AMPA receptor. Compounds endowed with micromolar binding affinity for the KA high-affinity binding site were also evaluated for their binding at the KA low-affinity receptor. Some selected compounds were also tested for their functional antagonist activity at the AMPA and NMDA receptor-ion channel complex. The results obtained in this study have pointed out that 4,5-dihydro-7-nitro-4-oxo-8-(3-carboxypyrrol-1-yl)-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylic acid (9b) and its corresponding ethyl ester (9a) are the most potent and selective AMPA receptor antagonists reported to date among the TQX series.

  11. Resistance to infection with Eimeria vermiformis in mouse radiation chimeras is determined by donor bone-marrow cells

    Energy Technology Data Exchange (ETDEWEB)

    Joysey, H.S.; Wakelin, D.; Rose, M.E.


    The course of infection with Eimeria vermiformis was determined in BALB/b, BALB/c, and C57BL/10ScSn (B10) mice and in radiation chimeras prepared from the H-2-compatible BALB/b and B10 mice. The BALB strains, irrespective of H-2 haplotype, were resistant, the B10 mice were susceptible, and in the chimeras infection was characterized by the genotype of the donated bone-marrow cells and not by the phenotype of the recipient. Thus, the genetic control of relative resistance or susceptibility to infection with this parasite is expressed through bone-marrow-derived cells.

  12. 1,2,4-Triazolo[1,5-a]quinoxaline as a versatile tool for the design of selective human A3 adenosine receptor antagonists: synthesis, biological evaluation, and molecular modeling studies of 2-(hetero)aryl- and 2-carboxy-substituted derivatives. (United States)

    Catarzi, Daniela; Colotta, Vittoria; Varano, Flavia; Lenzi, Ombretta; Filacchioni, Guido; Trincavelli, Letizia; Martini, Claudia; Montopoli, Christian; Moro, Stefano


    A number of 4-oxo-substituted 1,2,4-triazolo[1,5-a]quinoxaline derivatives bearing at position-2 the claimed (hetero)aryl moiety (compounds 1-15) but also a carboxylate group (16-28, 32-36) or a hydrogen atom (29-31) were designed as human A3 (hA3) adenosine receptor (AR) antagonists. This study produced some interesting compounds and among them the 2-(4-methoxyphenyl)-1,2,4-triazolo[1,5-a]quinoxalin-4-one (8), which can be considered one of the most potent and selective hA3 adenosine receptor antagonists reported till now. Moreover, as a new finding, replacement of the classical 2-(hetero)aryl moiety with a 2-carboxylate function (compounds 16-28 and 32-36) maintained good hA3 AR binding activity but, most importantly and interestingly, produced a large increase in hA3 versus hA1 selectivity. A receptor-based SAR analysis provided new interesting insights about the steric and electrostatic requirements that are important for the anchoring of these derivatives at the hA3 receptor recognition site, thus highlighting the versatility of the triazoloquinoxaline scaffold for obtaining potent and selective hA3 AR antagonists.

  13. Acute serum amyloid A induces migration, angiogenesis, and inflammation in synovial cells in vitro and in a human rheumatoid arthritis/SCID mouse chimera model.

    LENUS (Irish Health Repository)

    Connolly, Mary


    Serum amyloid A (A-SAA), an acute-phase protein with cytokine-like properties, is expressed at sites of inflammation. This study investigated the effects of A-SAA on chemokine-regulated migration and angiogenesis using rheumatoid arthritis (RA) cells and whole-tissue explants in vitro, ex vivo, and in vivo. A-SAA levels were measured by real-time PCR and ELISA. IL-8 and MCP-1 expression was examined in RA synovial fibroblasts, human microvascular endothelial cells, and RA synovial explants by ELISA. Neutrophil transendothelial cell migration, cell adhesion, invasion, and migration were examined using transwell leukocyte\\/monocyte migration assays, invasion assays, and adhesion assays with or without anti-MCP-1\\/anti-IL-8. NF-kappaB was examined using a specific inhibitor and Western blotting. An RA synovial\\/SCID mouse chimera model was used to examine the effects of A-SAA on cell migration, proliferation, and angiogenesis in vivo. High expression of A-SAA was demonstrated in RA patients (p < 0.05). A-SAA induced chemokine expression in a time- and dose-dependent manner (p < 0.05). Blockade with anti-scavenger receptor class B member 1 and lipoxin A4 (A-SAA receptors) significantly reduced chemokine expression in RA synovial tissue explants (p < 0.05). A-SAA induced cell invasion, neutrophil-transendothelial cell migration, monocyte migration, and adhesion (all p < 0.05), effects that were blocked by anti-IL-8 or anti-MCP-1. A-SAA-induced chemokine expression was mediated through NF-kappaB in RA explants (p < 0.05). Finally, in the RA synovial\\/SCID mouse chimera model, we demonstrated for the first time in vivo that A-SAA directly induces monocyte migration from the murine circulation into RA synovial grafts, synovial cell proliferation, and angiogenesis (p < 0.05). A-SAA promotes cell migrational mechanisms and angiogenesis critical to RA pathogenesis.

  14. Ethical questions concerning research on human embryos, embryonic stem cells and chimeras. (United States)

    Bobbert, Monika


    Research using human embryos and embryonic stem cells is viewed as important for various reasons. Apart from questions concerning legal regulations, numerous ethical objections are raised pertaining to the use of surplus embryos from reproductive medicine as well as the creation of embryos and stem cells through cloning. In the hopes of avoiding ethical problems, alternatives have been proposed including the extraction of egg cells from "dead" embryos derived from in vitro fertilization procedures, the extraction of pluripotent stem cells from blastocysts, technologies such as "altered nuclear transfer" (ANT) and "oocyte-assisted reprogramming" (ANT-OAR) as well as parthenogenesis. Initial ethical assessments show that certain questions pertaining to such strategies have remained unanswered. Furthermore, with the help of new or more differentiated biotechnological procedures, it is possible to create chimeras and hybrids in which human and non-human cells are combined. Human-animal chimeras, in which gametes or embryonic tissue have been mixed with embryonic or adult stem cells, demonstrate a different "quality" and "degree of penetration" from those produced in previous experiments. Not only does this have consequences regarding questions of patentability, this situation also raises fundamental questions concerning the human being's self image, the concept of person, identity and species and the moral rights and duties that are connected with such concepts. There is a need for legal regulation, on the national as well as the international level.

  15. Transient scaling and resurgence of chimera states in networks of Boolean phase oscillators (United States)

    Rosin, David P.; Rontani, Damien; Haynes, Nicholas D.; Schöll, Eckehard; Gauthier, Daniel J.


    We study networks of nonlocally coupled electronic oscillators that can be described approximately by a Kuramoto-like model. The experimental networks show long complex transients from random initial conditions on the route to network synchronization. The transients display complex behaviors, including resurgence of chimera states, which are network dynamics where order and disorder coexists. The spatial domain of the chimera state moves around the network and alternates with desynchronized dynamics. The fast time scale of our oscillators (on the order of 100ns) allows us to study the scaling of the transient time of large networks of more than a hundred nodes, which has not yet been confirmed previously in an experiment and could potentially be important in many natural networks. We find that the average transient time increases exponentially with the network size and can be modeled as a Poisson process in experiment and simulation. This exponential scaling is a result of a synchronization rate that follows a power law of the phase-space volume.

  16. Fluorescent protein-scorpion toxin chimera is a convenient molecular tool for studies of potassium channels. (United States)

    Kuzmenkov, Alexey I; Nekrasova, Oksana V; Kudryashova, Kseniya S; Peigneur, Steve; Tytgat, Jan; Stepanov, Alexey V; Kirpichnikov, Mikhail P; Grishin, Eugene V; Feofanov, Alexey V; Vassilevski, Alexander A


    Ion channels play a central role in a host of physiological and pathological processes and are the second largest target for existing drugs. There is an increasing need for reliable tools to detect and visualize particular ion channels, but existing solutions suffer from a number of limitations such as high price, poor specificity, and complicated protocols. As an alternative, we produced recombinant chimeric constructs (FP-Tx) consisting of fluorescent proteins (FP) fused with potassium channel toxins from scorpion venom (Tx). In particular, we used two FP, eGFP and TagRFP, and two Tx, OSK1 and AgTx2, to create eGFP-OSK1 and RFP-AgTx2. We show that these chimeras largely retain the high affinity of natural toxins and display selectivity to particular ion channel subtypes. FP-Tx are displaced by other potassium channel blockers and can be used as an imaging tool in ion channel ligand screening setups. We believe FP-Tx chimeras represent a new efficient molecular tool for neurobiology.

  17. Regulation of prolactin receptor (PRLR) gene expression in insulin-producing cells. Prolactin and growth hormone activate one of the rat prlr gene promoters via STAT5a and STAT5b

    DEFF Research Database (Denmark)

    Galsgaard, E D; Møldrup, Annette; Nielsen, Jens Høiriis


    Expression of the prolactin receptor (PRLR) gene is increased in pancreatic islets during pregnancy and in vitro in insulin-producing cells by growth hormone (GH) and prolactin (PRL). The 5'-region of the rat PRLR gene contains at least three alternative first exons that are expressed tissue......-specifically because of differential promoter usage. We show by reverse transcription-polymerase chain reaction analysis that both exon 1A- and exon 1C-containing PRLR transcripts are expressed in rat islets and that human (h)GH, ovine (o)PRL, and bovine (b)GH increase exon 1A expression 6.5 +/- 0. 8-fold, 6.8 +/- 0...

  18. Generating Porcine Chimeras Using Inner Cell Mass Cells and Parthenogenetic Preimplantation Embryos (United States)

    Nakano, Kazuaki; Watanabe, Masahito; Matsunari, Hitomi; Matsuda, Taisuke; Honda, Kasumi; Maehara, Miki; Kanai, Takahiro; Hayashida, Gota; Kobayashi, Mirina; Kuramoto, Momoko; Arai, Yoshikazu; Umeyama, Kazuhiro; Fujishiro, Shuh-hei; Mizukami, Yoshihisa; Nagaya, Masaki; Hanazono, Yutaka; Nagashima, Hiroshi


    Background The development and validation of stem cell therapies using induced pluripotent stem (iPS) cells can be optimized through translational research using pigs as large animal models, because pigs have the closest characteristics to humans among non-primate animals. As the recent investigations have been heading for establishment of the human iPS cells with naïve type characteristics, it is an indispensable challenge to develop naïve type porcine iPS cells. The pluripotency of the porcine iPS cells can be evaluated using their abilities to form chimeras. Here, we describe a simple aggregation method using parthenogenetic host embryos that offers a reliable and effective means of determining the chimera formation ability of pluripotent porcine cells. Methodology/Significant Principal Findings In this study, we show that a high yield of chimeric blastocysts can be achieved by aggregating the inner cell mass (ICM) from porcine blastocysts with parthenogenetic porcine embryos. ICMs cultured with morulae or 4–8 cell-stage parthenogenetic embryos derived from in vitro-matured (IVM) oocytes can aggregate to form chimeric blastocysts that can develop into chimeric fetuses after transfer. The rate of production of chimeric blastocysts after aggregation with host morulae (20/24, 83.3%) was similar to that after the injection of ICMs into morulae (24/29, 82.8%). We also found that 4–8 cell-stage embryos could be used; chimeric blastocysts were produced with a similar efficiency (17/26, 65.4%). After transfer into recipients, these blastocysts yielded chimeric fetuses at frequencies of 36.0% and 13.6%, respectively. Conclusion/Significance Our findings indicate that the aggregation method using parthenogenetic morulae or 4–8 cell-stage embryos offers a highly reproducible approach for producing chimeric fetuses from porcine pluripotent cells. This method provides a practical and highly accurate system for evaluating pluripotency of undifferentiated cells, such

  19. EpCAM Aptamer-siRNA Chimera Targets and Regress Epithelial Cancer.

    Directory of Open Access Journals (Sweden)

    Nithya Subramanian

    Full Text Available Epithelial cell adhesion molecule (EpCAM, a cancer stem cell (CSC marker is over expressed in epithelial cancers and in retinoblastoma (RB. We fabricated an EpCAM targeting aptamer-siRNA chimera and investigated its anti-tumor property and EpCAM intracellular domain (EpICD mediated signaling in epithelial cancer. The anti-tumor efficacy of EpCAM aptamer-siEpCAM chimera (EpApt-siEp was evaluated by qPCR, northern and Western blotting in WERI-Rb1- RB cell line, primary RB tumor cells and in MCF7- breast cancer cell line. Anti-tumor activity of EpApt-siEp was studied in vivo using epithelial cancer (MCF7 mice xenograft model. The mechanism and pathways involved in the anti-tumor activity was further studied using protein arrays and qPCR. EpApt-siEp chimera was processed in vitro by dicer enzyme. Treatment of the WERI-Rb1 and MCF7 cells with EpApt-siEp revealed statistically significant down regulation of EpCAM expression (P<0.005 and concomitant reduction in cellular proliferation. In primary RB cells cultured from RB tumors, EpApt-siEp silenced EpCAM, significantly inhibited (P<0.01 cell proliferation and induced cytotoxicity. Knockdown of EpICD expressed in RB primary tumors led to repression of pluripotency markers, SOX2, OCT4, NANOG, and CD133. In vivo studies showed complete tumor growth regression without any toxicity in animals (P<0.001 and tumor tissues showed significant downregulation (P<0.05 of EpCAM, MRP1, ABCG2, stathmin, survivin and upregulation of ATM (P<0.05 leading to apoptosis by intrinsic pathway with minor alteration in cytokines. Our results revealed that EpApt-siEp potentially eradicated EpCAM positive cancer cells through CSC marker suppression and apoptosis, while sparing normal EpCAM negative adjacent cells.

  20. Structure-based receptor MIMICS targeted against bacterial superantigen toxins (United States)

    Gupta, Goutam; Hong-Geller, Elizabeth; Shiflett, Patrick R.; Lehnert, Nancy M.


    The invention provides therapeutic compositions useful in the treatment of bacterial superantigen mediated conditions, such as Toxic Shock Syndrome. The compositions comprise genetically engineered bifunctional polypeptides containing a specific T-cell receptor binding domain and a specific MHC class II receptor binding domain, each targeting non-overlapping epitopes on a superantigen molecule against which they are designed. The anti-superantigen "receptor mimetics" or "chimeras" are rationally designed to recreate the modality of superantigen binding directly to both the TCR and the MHC-II receptor, and are capable of acting as decoys for superantigen binding, effectively out-competing the host T-cell and MHC-II receptors, the natural host receptors.

  1. Chimera distribution amplitudes for the pion and the longitudinally polarized $\\rho$-meson

    CERN Document Server

    Stefanis, N G


    Using QCD sum rules with nonlocal condensates, we show that the distribution amplitude of the longitudinally polarized $\\rho$-meson may have a shorttailed platykurtic profile in close analogy to our recently proposed platykurtic distribution amplitude for the pion. Such a chimera distribution de facto amalgamates the broad unimodal profile of the distribution amplitude, obtained with a Dyson-Schwinger equations-based computational scheme, with the suppressed tails characterizing the bimodal distribution amplitudes derived from QCD sum rules with nonlocal condensates. We argue that pattern formation, emerging from the collective synchronization of coupled oscillators, can provide a single theoretical scaffolding to study unimodal and bimodal distribution amplitudes of light mesons without recourse to particular computational schemes and the reasons for them.

  2. Monsters, dreams and madness: Commentary on 'The arms of the chimeras'. (United States)

    Reis, Bruce


    Considering Freudian and Post-Freudian approaches to the intersubjective Beatrice Ithier puts the work of Michel de M'Uzan and Thomas Ogden in comparison. To this comparison I add a consideration of the work of Christopher Bollas. The highly creative clinical approaches these three theorists take is shown to be informed by their elaborations of the Freudian notion of unconscious communication and by new approaches to the issue of identity. Attention is paid to differentiating traumatic from fanciful chimeras; and to the experience of the analyst undergoing the sorts of transformations requisite to entering this psychic space marked by fluid exchanges of being and becoming, wherein analyst becomes patient, new subjects are created through shared dreams, and through which monsters appear.

  3. Chimera distribution amplitudes for the pion and the longitudinally polarized ρ-meson

    Energy Technology Data Exchange (ETDEWEB)

    Stefanis, N.G., E-mail: [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Pimikov, A.V., E-mail: [Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna (Russian Federation); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China)


    Using QCD sum rules with nonlocal condensates, we show that the distribution amplitude of the longitudinally polarized ρ-meson may have a shorttailed platykurtic profile in close analogy to our recently proposed platykurtic distribution amplitude for the pion. Such a chimera distribution de facto amalgamates the broad unimodal profile of the distribution amplitude, obtained with a Dyson–Schwinger equations-based computational scheme, with the suppressed tails characterizing the bimodal distribution amplitudes derived from QCD sum rules with nonlocal condensates. We argue that pattern formation, emerging from the collective synchronization of coupled oscillators, can provide a single theoretical scaffolding to study unimodal and bimodal distribution amplitudes of light mesons without recourse to particular computational schemes and the reasons for them.

  4. 2D and 3D Core-Collapse Supernovae Simulation Results Obtained with the CHIMERA Code

    CERN Document Server

    Bruenn, S W; Hix, W R; Blondin, J M; Marronetti, P; Messer, O E B; Dirk, C J; Yoshida, S


    Much progress in realistic modeling of core-collapse supernovae has occurred recently through the availability of multi-teraflop machines and the increasing sophistication of supernova codes. These improvements are enabling simulations with enough realism that the explosion mechanism, long a mystery, may soon be delineated. We briefly describe the CHIMERA code, a supernova code we have developed to simulate core-collapse supernovae in 1, 2, and 3 spatial dimensions. We then describe the results of an ongoing suite of 2D simulations initiated from a 12, 15, 20, and 25 solar mass progenitor. These have all exhibited explosions and are currently in the expanding phase with the shock at between 5,000 and 20,000 km. We also briefly describe an ongoing simulation in 3 spatial dimensions initiated from the 15 solar mass progenitor.

  5. Novel type of chimera spiral waves arising from decoupling of a diffusible component

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaodong; Yang, Tao; Liu, Yang; Zhao, Yuemin; Gao, Qingyu, E-mail:, E-mail: [College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008 (China); Epstein, Irving R., E-mail:, E-mail: [Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, Massachusetts 02454-9110 (United States)


    Spiral waves composed of coherent traveling waves surrounding a core containing stochastically distributed stationary areas are found in numerical simulations of a three-variable reaction-diffusion system with one diffusible species. In the spiral core, diffusion of this component (w) mediates transitions between dynamic states of the subsystem formed by the other two components, whose dynamics is more rapid than that of w. Diffusive coupling between adjacent sites can be “on” or “off” depending on the subsystem state. The incoherent structures in the spiral core are produced by this decoupling of the slow diffusive component from the fast non-diffusing subsystem. The phase diagram reveals that the region of incoherent behavior in chimera spirals grows drastically, leading to modulation and breakup of the spirals, in the transition zones between 1{sup n-1} and 1{sup n} local mixed-mode oscillations.


    Directory of Open Access Journals (Sweden)

    André Demarchi


    Full Text Available Based upon the concepts of traps, chimera and pathways proposed by Alfred Gell, Carlo Severi and Els Lagrou respectively, this bibliographic essay presents the characteristics, similarities and specificities of three approaches on art in contemporary anthropology. The work focuses on the ruptures created by these approaches, concerning the symbolic analysis that has long dominated the anthropological art studies. Breaking away from the conception of art as a symbolic language, the studies we analyzed emphasized, in different ways, the cognitive action of art in native contexts, privileging categories such as agency, efficacy, counter-intuitiveness, and presentification. In the conclusion, we demonstrate how these categories are applied to Amerindian Art through the work of Els Lagrou on Cashinahua Art.

  7. Cross-reactivity of hypervariable region 1 chimera of hepatitis C virus

    Institute of Scientific and Technical Information of China (English)

    Bing-Shui Xiu; Shi-Gan Ling; Xiao-Guo Song; He-Qiu Zhang; Kun Chen; Cui-Xia Zhu


    AIM: To analyze the amino acid sequences of hypervariable region 1 (HVR1) of HCV isolates in China and to construct a combinatorial chimeric HVR1 protein having a very broad high cross-reactivity. METHODS: All of the published HVR1 sequences from China were collected and processed with a computer program.Several representative HVR1's sequences were formulated based on a consensus profile and homology within certain subdivision. A few reported HVR1 mimotope sequences were also included for a broader representation. All of them were cloned and expressed in E.coli. The cross-reactivity of the purified recombinant HVR1 antigens was tested by ELISA with a panel of sera from HCV infected patients in China.Some of them were further ligated together to form a combinatorial HVR1 chimera. RESULTS: Altogether 12 HVR1s were selected and expressed in E. coli and purified to homogeneity. All of these purified antigens showed some cross-reactivity with sera in a 27 HCV positive panel. Recombinant HVR1s of No. 1, 2, 4, and 8# showing broad cross-reactivities and complementarity with each other, were selected for the ligation elements. The chimera containing these 4 HVR1s was highly expressed in E. coli. The purified chimeric antigen could react not only with all the HCV antibody positive sera in the panel but also with 90/91 sera of HCV -infected patients. CONCLUSION: The chimeric antigen was shown to have a broad cross-reactivity. It may be helpful for solving the problem caused by high variability of HCV, and in the efforts for a novel vaccine against the virus.

  8. Tissue distribution of cells derived from the area opaca in heterospecific quail-chick blastodermal chimeras. (United States)

    Karagenç, Levent; Sandikci, Mustafa


    The objective of the current study was to determine the tissue distribution of cells derived from the area opaca in heterospecific quail-chick blastodermal chimeras. Quail-chick chimeras were constructed by transferring dissociated cells from the area opaca of the stage X-XII (EG&K) quail embryo into the subgerminal cavity of the unincubated chick blastoderm. The distribution of quail cells in embryonic as well as extra-embryonic tissues of the recipient embryo were examined using the QCPN monoclonal antibody after 6 days of incubation in serial sections taken at 100-mum intervals. Data gathered in the present study demonstrated that, when introduced into the subgerminal cavity of a recipient embryo, cells of the area opaca are able to populate not only extra-embryonic structures such as the amnion and the yolk sac, but also various embryonic tissues derived from the ectoderm and less frequently the mesoderm. Ectodermal chimerism was confined mainly to the head region and was observed in tissues derived from the neural ectoderm and the surface ectoderm, including the optic cup, diencephalon and lens. Although the possibility of random incorporation of transplanted cells into these embryonic structures cannot be excluded, these results would suggest that area opaca, a peripheral ring of cells in the avian embryo destined to form the extra-embryonic ectoderm and endoderm of the yolk sac, might harbor cells that have the potential to give rise to various cell types in the recipient chick embryo, including those derived from the surface ectoderm and neural ectoderm.

  9. Signaling of human frizzled receptors to the mating pathway in yeast.

    Directory of Open Access Journals (Sweden)

    Dietmar Dirnberger

    Full Text Available Frizzled receptors have seven membrane-spanning helices and are considered as atypical G protein-coupled receptors (GPCRs. The mating response of the yeast Saccharomyces cerevisiae is mediated by a GPCR signaling system and this model organism has been used extensively in the past to study mammalian GPCR function. We show here that human Frizzled receptors (Fz1 and Fz2 can be properly targeted to the yeast plasma membrane, and that they stimulate the yeast mating pathway in the absence of added Wnt ligands, as evidenced by cell cycle arrest in G1 and reporter gene expression dependent on the mating pathway-activated FUS1 gene. Introducing intracellular portions of Frizzled receptors into the Ste2p backbone resulted in the generation of constitutively active receptor chimeras that retained mating factor responsiveness. Introducing intracellular portions of Ste2p into the Frizzled receptor backbone was found to strongly enhance mating pathway activation as compared to the native Frizzleds, likely by facilitating interaction with the yeast Galpha protein Gpa1p. Furthermore, we show reversibility of the highly penetrant G1-phase arrests exerted by the receptor chimeras by deletion of the mating pathway effector FAR1. Our data demonstrate that Frizzled receptors can functionally replace mating factor receptors in yeast and offer an experimental system to study modulators of Frizzled receptors.

  10. Signaling of human frizzled receptors to the mating pathway in yeast. (United States)

    Dirnberger, Dietmar; Seuwen, Klaus


    Frizzled receptors have seven membrane-spanning helices and are considered as atypical G protein-coupled receptors (GPCRs). The mating response of the yeast Saccharomyces cerevisiae is mediated by a GPCR signaling system and this model organism has been used extensively in the past to study mammalian GPCR function. We show here that human Frizzled receptors (Fz1 and Fz2) can be properly targeted to the yeast plasma membrane, and that they stimulate the yeast mating pathway in the absence of added Wnt ligands, as evidenced by cell cycle arrest in G1 and reporter gene expression dependent on the mating pathway-activated FUS1 gene. Introducing intracellular portions of Frizzled receptors into the Ste2p backbone resulted in the generation of constitutively active receptor chimeras that retained mating factor responsiveness. Introducing intracellular portions of Ste2p into the Frizzled receptor backbone was found to strongly enhance mating pathway activation as compared to the native Frizzleds, likely by facilitating interaction with the yeast Galpha protein Gpa1p. Furthermore, we show reversibility of the highly penetrant G1-phase arrests exerted by the receptor chimeras by deletion of the mating pathway effector FAR1. Our data demonstrate that Frizzled receptors can functionally replace mating factor receptors in yeast and offer an experimental system to study modulators of Frizzled receptors.

  11. Bacterial membrane activity of a-peptide/b-peptoid chimeras: Influence of amino acid composition and chain length on the activity against different bacterial strains

    DEFF Research Database (Denmark)

    Hein-Kristensen, Line; Knapp, Kolja M; Franzyk, Henrik;


    , and this was parallel by the largest reduction in number of viable bacteria. CONCLUSION: We found that chain length but not type of cationic amino acid influenced the antibacterial activity of a series of synthetic α-peptide/β-peptoid chimeras. The synthetic chimeras exert their killing effect by permeabilization......BACKGROUND: Characterization and use of antimicrobial peptides (AMPs) requires that their mode of action is determined. The interaction of membrane-active peptides with their target is often established using model membranes, however, the actual permeabilization of live bacterial cells...... acid only had a minor effect on MIC values, whereas chain length had a profound influence on activity. All chimeras were less active against Serratia marcescens (MICs above 46 μM). The chimeras were bactericidal and induced leakage of ATP from Staphylococcus aureus and S. marcescens with similar time...

  12. C-terminal tail of FGF19 determines its specificity toward Klotho co-receptors. (United States)

    Wu, Xinle; Lemon, Bryan; Li, XiaoFan; Gupte, Jamila; Weiszmann, Jennifer; Stevens, Jennitte; Hawkins, Nessa; Shen, Wenyan; Lindberg, Richard; Chen, Jin-Long; Tian, Hui; Li, Yang


    FGF19 subfamily proteins (FGF19, FGF21, and FGF23) are unique members of fibroblast growth factors (FGFs) that regulate energy, bile acid, glucose, lipid, phosphate, and vitamin D homeostasis in an endocrine fashion. Their activities require the presence of alpha or betaKlotho, two related single-pass transmembrane proteins, as co-receptors in relevant target tissues. We previously showed that FGF19 can bind to both alpha and betaKlotho, whereas FGF21 and FGF23 can bind only to either betaKlotho or alphaKlotho, respectively in vitro. To determine the mechanism regulating the binding and specificity among FGF19 subfamily members to Klotho family proteins, chimeric proteins between FGF19 subfamily members or chimeric proteins between Klotho family members were constructed to probe the interaction between those two families. Our results showed that a chimera of FGF19 with the FGF21 C-terminal tail interacts only with betaKlotho and a chimera with the FGF23 C-terminal tail interacts only with alphaKlotho. FGF signaling assays also reflected the change of specificity we observed for the chimeras. These results identified the C-terminal tail of FGF19 as a region necessary for its recognition of Klotho family proteins. In addition, chimeras between alpha and betaKlotho were also generated to probe the regions in Klotho proteins that are important for signaling by this FGF subfamily. Both FGF23 and FGF21 require intact alpha or betaKlotho for signaling, respectively, whereas FGF19 can signal through a Klotho chimera consisting of the N terminus of alphaKlotho and the C terminus of betaKlotho. Our results provide the first glimpse of the regions that regulate the binding specificity between this unique family of FGFs and their co-receptors.

  13. Generation of mouse chimeras with high contribution of tetraploid embryonic stem cells and embryonic stem cell-fibroblast hybrid cells. (United States)

    Matveeva, Natalia M; Kizilova, Elena A; Serov, Oleg L


    The in vitro long-term cultivation of embryonic stem (ES) cells derived from pre-implantation embryos offers the unique possibility of combining ES cells with pre-implantation embryos to generate chimeras, thus facilitating the creation of a bridge between in vitro and in vivo investigations. Genomic manipulation using ES cells and homologous recombination is one of the most outstanding scientific achievements, resulting in the generation of animals with desirable genome modifications. As such, the generation of ES cells with different ploidy via cell fusion also deserves much attention because this approach allows for the production of chimeras that contain somatic cells with various ploidy. Therefore, this is a powerful tool that can be used to study the role of polyploidy in the normal development of mammals.

  14. Antigenic characteristics of rhinovirus chimeras designed in silico for enhanced presentation of HIV-1 gp41 epitopes [corrected]. (United States)

    Lapelosa, Mauro; Arnold, Gail Ferstandig; Gallicchio, Emilio; Arnold, Eddy; Levy, Ronald M


    The development of an effective AIDS vaccine remains the most promising long-term strategy to combat human immunodeficiency virus (HIV)/AIDS. Here, we report favorable antigenic characteristics of vaccine candidates isolated from a combinatorial library of human rhinoviruses displaying the ELDKWA epitope of the gp41 glycoprotein of HIV-1. The design principles of this library emerged from the application of molecular modeling calculations in conjunction with our knowledge of previously obtained ELDKWA-displaying chimeras, including knowledge of a chimera with one of the best 2F5-binding characteristics obtained to date. The molecular modeling calculations identified the energetic and structural factors affecting the ability of the epitope to assume conformations capable of fitting into the complementarity determining region of the ELDKWA-binding, broadly neutralizing human mAb 2F5. Individual viruses were isolated from the library following competitive immunoselection and were tested using ELISA and fluorescence quenching experiments. Dissociation constants obtained using both techniques revealed that some of the newly isolated chimeras bind 2F5 with greater affinity than previously identified chimeric rhinoviruses. Molecular dynamics simulations of two of these same chimeras confirmed that their HIV inserts were partially preorganized for binding, which is largely responsible for their corresponding gains in binding affinity. The study illustrates the utility of combining structure-based experiments with computational modeling approaches for improving the odds of selecting vaccine component designs with preferred antigenic characteristics. The results obtained also confirm the flexibility of HRV as a presentation vehicle for HIV epitopes and the potential of this platform for the development of vaccine components against AIDS.

  15. Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. (United States)

    Qiu, X; Wu, L; Huang, H; McDonel, P E; Palumbo, A V; Tiedje, J M; Zhou, J


    To evaluate PCR-generated artifacts (i.e., chimeras, mutations, and heteroduplexes) with the 16S ribosomal DNA (rDNA)-based cloning approach, a model community of four species was constructed from alpha, beta, and gamma subdivisions of the division Proteobacteria as well as gram-positive bacterium, all of which could be distinguished by HhaI restriction digestion patterns. The overall PCR artifacts were significantly different among the three Taq DNA polymerases examined: 20% for Z-Taq, with the highest processitivity; 15% for LA-Taq, with the highest fidelity and intermediate processitivity; and 7% for the conventionally used DNA polymerase, AmpliTaq. In contrast to the theoretical prediction, the frequency of chimeras for both Z-Taq (8.7%) and LA-Taq (6.2%) was higher than that for AmpliTaq (2.5%). The frequencies of chimeras and of heteroduplexes for Z-Taq were almost three times higher than those of AmpliTaq. The total PCR artifacts increased as PCR cycles and template concentrations increased and decreased as elongation time increased. Generally the frequency of chimeras was lower than that of mutations but higher than that of heteroduplexes. The total PCR artifacts as well as the frequency of heteroduplexes increased as the species diversity increased. PCR artifacts were significantly reduced by using AmpliTaq and fewer PCR cycles (fewer than 20 cycles), and the heteroduplexes could be effectively removed from PCR products prior to cloning by polyacrylamide gel purification or T7 endonuclease I digestion. Based upon these results, an optimal approach is proposed to minimize PCR artifacts in 16S rDNA-based microbial community studies.

  16. The assay of thyrotropin receptor antibodies with human TSH/LH-CG chimeric receptor expressed on chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ka Hee; Kim, Chang Min [Korea Cancer Center Hospital, Seoul (Korea, Republic of)


    TSH/LH-CG chimera cDNA is transfected to CHO-K1 cell to obtain the chimeric receptor expressed on the cell surface. The optimal conditions for TSAb and TSBAb measurements are determined using chimeric receptors and under these conditions activity of TSAb and TSBAb in the sera of the Graves` patients. The results obtained are compared to those of TSAb assays using FRTL5 cells CHO-TSHR cells which have wild type human TSH receptor. The transfection procedure of chimeric receptor gene to CHO-K1 cells are on going. The optimal conditions for TSAb and TSBAb measurement using chimeric receptor will be determined after success of transfection procedure. If this study is successfully completed, not only the heterogeneity of Graves. IgG but also pathogenesis of Graves` disease will be elucidated. (author). 25 refs.

  17. A Direct Mapping of Max k-SAT and High Order Parity Checks to a Chimera Graph (United States)

    Chancellor, N.; Zohren, S.; Warburton, P. A.; Benjamin, S. C.; Roberts, S.


    We demonstrate a direct mapping of max k-SAT problems (and weighted max k-SAT) to a Chimera graph, which is the non-planar hardware graph of the devices built by D-Wave Systems Inc. We further show that this mapping can be used to map a similar class of maximum satisfiability problems where the clauses are replaced by parity checks over potentially large numbers of bits. The latter is of specific interest for applications in decoding for communication. We discuss an example in which the decoding of a turbo code, which has been demonstrated to perform near the Shannon limit, can be mapped to a Chimera graph. The weighted max k-SAT problem is the most general class of satisfiability problems, so our result effectively demonstrates how any satisfiability problem may be directly mapped to a Chimera graph. Our methods faithfully reproduce the low energy spectrum of the target problems, so therefore may also be used for maximum entropy inference.

  18. The ethics of killing human/great-ape chimeras for their organs: a reply to Shaw et al. (United States)

    Palacios-González, César


    The aim of this paper is to critically examine David Shaw, Wybo Dondorp, and Guido de Wert's arguments in favour of the procurement of human organs from human/nonhuman-primate chimeras, specifically from great-ape/human chimeras. My main claim is that their arguments fail and are in need of substantial revision. To prove this I first introduce the topic, and then reconstruct Shaw et al.'s position and arguments. Next, I show that Shaw et al.: (1) failed to properly apply the subsidiarity and proportionality principles; (2) neglected species overlapping cases in their ethical assessment; (3) ignored the ethics literature on borderline persons; and (4) misunderstood McMahan's two-tiered moral theory. These mistakes render an important part of their conclusions either false or problematic to the point that they would no longer endorse them. Finally I will briefly mention a possible multipolar solution to the human organ shortage problem that would reduce the need for chimeras' organs.

  19. Contribution of cells derived from the area pellucida to extraembryonic mesodermal cell lineages in heterospecific quail chick blastodermal chimeras. (United States)

    Karagenç, Levent; Sandikci, Mustafa


    The current study has two main objectives: first, to determine if cells derived from the area pellucida are able to populate extraembryonic membranes, and second, to determine if donor cells have the potential to differentiate to endothelial (EC) and hematopoietic cells (HC) in the yolk sac and allantois, the two extraembryonic membranes functioning as hematopoietic organs in the avian embryo. To this end, quail chick chimeras were constructed by transferring dissociated cells from the areae pellucidae of the stage X-XII (EG&K) quail embryo into the subgerminal cavity of the unincubated chick blastoderm. The distribution of quail cells in the allantois, yolk sac, amnion, and chorion of resulting putative chimeras was examined using quail cell-specific antibody against a perinuclear antigen (QCPN) after 6 days of incubation. The presence of EC, HC, and smooth muscle cells among the QCPN(+) donor cells was examined using QH-1, a quail-specific marker identifying HC and EC and an anti-α-smooth muscle actin antibody. Evidence gathered in the present study demonstrates that quail cells derived from the areae pellucidae are able to populate all of the extraembryonic membranes of resulting heterospecific quail chick chimeras and, most importantly, give rise to HC, EC, and smooth muscle cells, all of the three main mesodermal lineages derived from the posterior mesoderm both in the yolk sac and allantois.

  20. The binding site for neohesperidin dihydrochalcone at the human sweet taste receptor



    Abstract Background Differences in sweet taste perception among species depend on structural variations of the sweet taste receptor. The commercially used isovanillyl sweetener neohesperidin dihydrochalcone activates the human but not the rat sweet receptor TAS1R2+TAS1R3. Analysis of interspecies combinations and chimeras of rat and human TAS1R2+TAS1R3 suggested that the heptahelical domain of human TAS1R3 is crucial for the activation of the sweet receptor by neohesperidin dihydrochalcone. R...

  1. Clonal and territorial development of the pancreas as revealed by eGFP-labelled mouse chimeras. (United States)

    Eberhard, Daniel; Jockusch, Harald


    The clonal structure of the pancreas was analysed in neonatal and adult mouse chimeras in which one partner displayed cell patches expressing green fluorescent protein (eGFP). Coherent growth during pancreatic histogenesis was suggested by the presence of large eGFP-labelled acinar clusters rather than a scattered distribution of individual labelled acinar cells. The adult chimeric pancreas contained monophenotypic acini, whereas surprisingly 5% of acini in neonates were polyclonal. Monophenotypic acini presumably arose by coherent expansion leading to large 3D patches and may not be monoclonal. Islets of Langerhans were oligoclonal at both ages investigated. The proportion of eGFP positive cells within islets did not correlate with that of the surrounding acinar tissue indicating clonal independence of islets from their neighbourhood. The patterns observed argue against a secondary contribution of blood-borne progenitor/stem cells to the acinar compartment during tissue turnover. The different clonal origins of acini and islets are integrated into a model of pancreatic histogenesis.

  2. Mouse embryos and chimera cloned from neural cells in the postnatal cerebral cortex. (United States)

    Makino, Hatsune; Yamazaki, Yukiko; Hirabayashi, Takahiro; Kaneko, Ryosuke; Hamada, Shun; Kawamura, Yoshimi; Osada, Tomoharu; Yanagimachi, Ryuzo; Yagi, Takeshi


    Cloning of mice has been achieved by transferring nuclei of various types of somatic cell nuclei into enucleated oocytes. However, all attempts to produce live cloned offspring using the nuclei of neurons from adult cerebral cortex have failed. Previously we obtained cloned mice using the nuclei of neural cells collected from fetal cerebral cortex. Here, we attempted to generate cloned mice using differentiated neurons from the cerebral cortex of postnatal (day 0-4) mice. Although we were unable to obtain live cloned pups, many fetuses reached day 10.5 days of development. These fetuses showed various abnormalities such as spherical omission of the neuroepithelium, collapsed lumen of neural tube, and aberrant expressions of marker proteins of neurons. We produced chimeric mice in which some hair cells and kidney cells were originated from differentiated neurons. In chimeric fetuses, LacZ-positive donor cells were in all three germ cell layers. However, chimeras with large contribution of donor-derived cells were not obtained. These results indicate that nuclei of differentiated neurons have lost their developmental totipotency. In other words, the conventional nuclear transfer technique does not allow nuclei of differentiated neurons to undergo complete genomic reprogramming required for normal embryonic development.

  3. Human-animal chimeras: ethical issues about farming chimeric animals bearing human organs. (United States)

    Bourret, Rodolphe; Martinez, Eric; Vialla, François; Giquel, Chloé; Thonnat-Marin, Aurélie; De Vos, John


    Recent advances in stem cells and gene engineering have paved the way for the generation of interspecies chimeras, such as animals bearing an organ from another species. The production of a rat pancreas by a mouse has demonstrated the feasibility of this approach. The next step will be the generation of larger chimeric animals, such as pigs bearing human organs. Because of the dramatic organ shortage for transplantation, the medical needs for such a transgressive practice are indisputable. However, there are serious technical barriers and complex ethical issues that must be discussed and solved before producing human organs in animals. The main ethical issues are the risks of consciousness and of human features in the chimeric animal due to a too high contribution of human cells to the brain, in the first case, or for instance to limbs, in the second. Another critical point concerns the production of human gametes by such chimeric animals. These worst-case scenarios are obviously unacceptable and must be strictly monitored by careful risk assessment, and, if necessary, technically prevented. The public must be associated with this ethical debate. Scientists and physicians have a critical role in explaining the medical needs, the advantages and limits of this potential medical procedure, and the ethical boundaries that must not be trespassed. If these prerequisites are met, acceptance of such a new, borderline medical procedure may prevail, as happened before for in-vitro fertilization or preimplantation genetic diagnosis.

  4. Spatially organized dynamical states in chemical oscillator networks: synchronization, dynamical differentiation, and chimera patterns.

    Directory of Open Access Journals (Sweden)

    Mahesh Wickramasinghe

    Full Text Available Dynamical processes in many engineered and living systems take place on complex networks of discrete dynamical units. We present laboratory experiments with a networked chemical system of nickel electrodissolution in which synchronization patterns are recorded in systems with smooth periodic, relaxation periodic, and chaotic oscillators organized in networks composed of up to twenty dynamical units and 140 connections. The reaction system formed domains of synchronization patterns that are strongly affected by the architecture of the network. Spatially organized partial synchronization could be observed either due to densely connected network nodes or through the 'chimera' symmetry breaking mechanism. Relaxation periodic and chaotic oscillators formed structures by dynamical differentiation. We have identified effects of network structure on pattern selection (through permutation symmetry and coupling directness and on formation of hierarchical and 'fuzzy' clusters. With chaotic oscillators we provide experimental evidence that critical coupling strengths at which transition to identical synchronization occurs can be interpreted by experiments with a pair of oscillators and analysis of the eigenvalues of the Laplacian connectivity matrix. The experiments thus provide an insight into the extent of the impact of the architecture of a network on self-organized synchronization patterns.

  5. Aerodynamic study of sounding rocket flows using Chimera and patched multiblock meshes

    Directory of Open Access Journals (Sweden)

    João Alves de Oliveira Neto


    Full Text Available Aerodynamic flow simulations over a typical sounding rocket are presented in this paper. The work is inserted in the effort of developing computational tools necessary to simulate aerodynamic flows over configurations of interest for Instituto de Aeronáutica e Espaço of Departamento de Ciência e Tecnologia Aeroespacial. Sounding rocket configurations usually require fairly large fins and, quite frequently, have more than one set of fins. In order to be able to handle such configurations, the present paper presents a novel methodology which combines both Chimera and patched multiblock grids in the discretization of the computational domain. The flows of interest are modeled using the 3-D Euler equations and the work describes the details of discretization procedure, which uses a finite difference approach for structure, body-conforming, multiblock grids. The method is used to calculate the aerodynamics of a sounding rocket vehicle. The results indicate that the present approach can be a powerful aerodynamic analysis and design tool.

  6. Magnetorotational dynamo chimeras. The missing link to turbulent accretion disk dynamo models? (United States)

    Riols, A.; Rincon, F.; Cossu, C.; Lesur, G.; Ogilvie, G. I.; Longaretti, P.-Y.


    In Keplerian accretion disks, turbulence and magnetic fields may be jointly excited through a subcritical dynamo mechanisminvolving magnetorotational instability (MRI). This dynamo may notably contribute to explaining the time-variability of various accreting systems, as high-resolution simulations of MRI dynamo turbulence exhibit statistical self-organization into large-scale cyclic dynamics. However, understanding the physics underlying these statistical states and assessing their exact astrophysical relevance is theoretically challenging. The study of simple periodic nonlinear MRI dynamo solutions has recently proven useful in this respect, and has highlighted the role of turbulent magnetic diffusion in the seeming impossibility of a dynamo at low magnetic Prandtl number (Pm), a common regime in disks. Arguably though, these simple laminar structures may not be fully representative of the complex, statistically self-organized states expected in astrophysical regimes. Here, we aim at closing this seeming discrepancy by reporting the numerical discovery of exactly periodic, yet semi-statistical "chimeral MRI dynamo states" which are the organized outcome of a succession of MRI-unstable, non-axisymmetric dynamical stages of different forms and amplitudes. Interestingly, these states, while reminiscent of the statistical complexity of turbulent simulations, involve the same physical principles as simpler laminar cycles, and their analysis further confirms the theory that subcritical turbulent magnetic diffusion impedes the sustainment of an MRI dynamo at low Pm. Overall, chimera dynamo cycles therefore offer an unprecedented dual physical and statistical perspective on dynamos in rotating shear flows, which may prove useful in devising more accurate, yet intuitive mean-field models of time-dependent turbulent disk dynamos. Movies associated to Fig. 1 are available at


    Institute of Scientific and Technical Information of China (English)

    Run-liang Gan; Ke Lan; Zhi-hua Yin; Li-jiang Wang; Ying Song; Kai-tai Yao


    Objective To construct hu-PBL/SCID chimeras and to investigate the development of lymphoma and oncogenicity of the Epstein-Barr virus (EBV).Mtehods Human peripheral blood lymphocytes (PBLs) were isolated from healthy adult donors and transplanted intraperitoneally into severe combined immunodeficient (SCID) mice. Mice with hu-PBL engraftment from healthy EBV seronegative donors were injected intraperitoneally with EBV-containing supematant from suspension culture of B95-8 cell line (active infection), whereas mice receiving lymphocytes from healthy EBV seropositive donors were not re-infected with B95-8 derived EBV (latent infection). Pathological examination and molecular analysis were performed on experimental animals and induced neoplasms.Results In the early stage of this experiment, 12 mice died of acute graft-versus-host disease, mortality was 34.3%(12/35 mice) with an average life span of 17.5 days. In 19 survival hu-PBL/SCID chimeric recipients from 12 healthy donors,tumor incidence was 84.2% (16/19 mice). The average survival time of tumor-bearing mice was 65.5 days. EBV-related neoplasms in SCID mice were nodular tumors with aggressive and fatal features. Histological morphology of tumors exhibited diffuse large cell lymphomas. Immunohistochemistry revealed that LCA (CD45) and L26 (CD20) were positive, but both PS1 (CD3) and UCHL-1 (CD45RO) were negative, and EBV products ZEBRA, LMP1, and EBNA2 were expressed in a small number of tumor cells. EB virus particles were seen in the nuclei of some tumor cells by electron microscopy, and EBV DNA could be amplified in the tumor tissues by PCR. In situ hybridization indicated that the nuclei of tumor cells contained human-specific Alu sequence.Conclusions EBV-induced tumors were human B-cell malignant lymphomas. We obtained direct causative evidence dealing with EBV-associated tumor deriving from normal human cells.

  8. Functional assignment by Chimera construction of the domain affecting heterotropic activation of deoxyadenosine kinase from Lactobacillus acidophilus R-26. (United States)

    Guo, S; Ives, D H


    The heterodimeric subunits of deoxyadenosine kinase (dAK)-deoxyguanosine kinase (dGK) from Lactobacillus acidophilus R-26 exhibit contrasting conformations manifested in the nearly unidirectional heterotropic activation of dAK when dGK binds deoxyguanosine. This is mediated, in part, by the conserved Ras switch I-like sequence (residues 153-161) [Guo et al. (1997) J. Biol. Chem. 272, 6890-6897]. In an attempt to identify domains differentiating the specificities of dAK and dGK, we constructed several chimeras splicing heterodimeric dAK within this region. In Chimera-III, dAK residues 120-170 were replaced by the homologous section of dGK. dAK activity was elevated 40%, but although it retained its original specificity and Km values, it could no longer be activated by deoxyguanosine. Moreover, both the activated dAK and the "dAK" of Chimera-III exhibited (i) an increased Ks for the leading substrate ATP-Mg2+, suggesting the formation of intermediate enzyme species along their respective kinetic pathways, and (ii) broadened and lower pH optima for the dAK activities. These observations further indicate the importance of dAK residues 120-170, including the Ras-like segment, in catalysis and heterotropic activation. The other conformational properties of dAK (e.g. self-inactivity and MgATP being the leading substrate) were unaltered by this substitution, thus localizing the responsible domains even further upstream.

  9. Particle identification method in the CsI(Tl) scintillator used for the CHIMERA 4 pi detector

    CERN Document Server

    Alderighi, M; Basssini, R; Berceanu, I; Blicharska, J; Boiano, C; Borderie, B; Bougault, R; Bruno, M; Cali, C; Cardella, G; Cavallaro, S; D'Agostino, M; D'andrea, M; Dayras, R; De Filippo, E; Fichera, F; Geraci, E; Giustolisi, F; Grzeszczuk, A; Guardone, N; Guazzoni, P; Guinet, D; Iacono-Manno, M; Kowalski, S; La Guidara, E; Lanchais, A L; Lanzalone, G; Lanzanò, G; Le Neindre, N; Li, S; Maiolino, C; Majka, Z; Manfredi, G; Nicotra, D; Paduszynski, T; Pagano, A; Papa, M; Petrovici, C M; Piasecki, E; Pirrone, S; Politi, G; Pop, A; Porto, F; Rivet, M F; Rosato, E; Sacca, G; Sechi, G; Simion, V; Sperduto, M L; Steckmeyer, J C; Trifiró, A; Trimarchi, M; Urso, S; Vannini, G; Vigilante, M; Wilczynski, J; Wu, H; Xiao, Z; Zetta, L; Zipper, W


    The charged particle identification obtained by the analysis of signals coming from the CsI(Tl) detectors of the CHIMERA 4 pi heavy-ion detector is presented. A simple double-gate integration method, with the use of the cyclotron radiofrequency as reference time, results in low thresholds for isotopic particle identification. The dependence of the identification quality on the gate generation timing is discussed. Isotopic identification of light ions up to Beryllium is clearly seen. For the first time also the identification of Z=5 particles is observed. The identification of neutrons interacting with CsI(Tl) by (n,alpha) and (n,gamma) reactions is also discussed.

  10. Imperfectly synchronized states and chimera states in two interacting populations of nonlocally coupled Stuart-Landau oscillators. (United States)

    Premalatha, K; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M


    We investigate the emergence of different kinds of imperfectly synchronized states and chimera states in two interacting populations of nonlocally coupled Stuart-Landau oscillators. We find that the complete synchronization in population I and existence of solitary oscillators which escape from the synchronized group in population II lead to imperfectly synchronized states for sufficiently small values of nonisochronicity parameter. Interestingly, upon increasing the strength of this parameter further there occurs an onset of mixed imperfectly synchronized states where the solitary oscillators occur from both the populations. Synchronized oscillators from both the populations are locked to a common average frequency. In both cases of imperfectly synchronized states, synchronized oscillators exhibit periodic motion while the solitary oscillators are quasiperiodic in nature. In this region, for spatially prepared initial conditions, we can observe the mixed chimera states where the coexistence of synchronized and desynchronized oscillations occur from both the populations. On the other hand, imperfectly synchronized states are not always stable, and they can drift aperiodically due to instability caused by an increase of nonisochronicity parameter. We observe that these states are robust to the introduction of frequency mismatch between the two populations.

  11. New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. (United States)

    Ashelford, Kevin E; Chuzhanova, Nadia A; Fry, John C; Jones, Antonia J; Weightman, Andrew J


    A new computer program, called Mallard, is presented for screening entire 16S rRNA gene libraries of up to 1,000 sequences for chimeras and other artifacts. Written in the Java computer language and capable of running on all major operating systems, the program provides a novel graphical approach for visualizing phylogenetic relationships among 16S rRNA gene sequences. To illustrate its use, we analyzed most of the large libraries of cloned bacterial 16S rRNA gene sequences submitted to the public repository during 2005. Defining a large library as one containing 100 or more sequences of 1,200 bases or greater, we screened 25 of the 28 libraries and found that all but three contained substantial anomalies. Overall, 543 anomalous sequences were found. The average anomaly content per clone library was 9.0%, 4% higher than that previously estimated for the public repository overall. In addition, 90.8% of anomalies had characteristic chimeric patterns, a rise of 25.4% over that found previously. One library alone was found to contain 54 chimeras, representing 45.8% of its content. These figures far exceed previous estimates of artifacts within public repositories and further highlight the urgent need for all researchers to adequately screen their libraries prior to submission. Mallard is freely available from our website at

  12. CHIMERA: a wide-field, multi-color, high-speed photometer at the prime focus of the Hale telescope

    CERN Document Server

    Harding, Leon K; Milburn, Jennifer; Gardner, Paul; Konidaris, Nick; Singh, Navtej; Shao, Michael; Sandhu, Jagmit; Kyne, Gillian; Schlichting, Hilke E


    The Caltech HIgh-speed Multi-color camERA (CHIMERA) is a new instrument that has been developed for use at the prime focus of the Hale 200-inch telescope. Simultaneous optical imaging in two bands is enabled by a dichroic beam splitter centered at 567 nm, with Sloan u' and g' bands available on the blue arm and Sloan r', i' and z_s' bands available on the red arm. Additional narrow-band filters will also become available as required. An Electron Multiplying CCD (EMCCD) detector is employed for both optical channels, each capable of simultaneously delivering sub-electron effective read noise under multiplication gain and frame rates of up to 26 fps full frame (several 1000 fps windowed), over a fully corrected 5 x 5 arcmin field of view. CHIMERA was primarily developed to enable the characterization of the size distribution of sub-km Kuiper Belt Objects via stellar occultation, a science case that motivates the frame-rate, the simultaneous multi-color imaging and the wide field of view of the instrument. In ad...

  13. Strain-transcending immune response generated by chimeras of the malaria vaccine candidate merozoite surface protein 2 (United States)

    Krishnarjuna, Bankala; Andrew, Dean; MacRaild, Christopher A.; Morales, Rodrigo A. V.; Beeson, James G.; Anders, Robin F.; Richards, Jack S.; Norton, Raymond S.


    MSP2 is an intrinsically disordered protein that is abundant on the merozoite surface and essential to the parasite Plasmodium falciparum. Naturally-acquired antibody responses to MSP2 are biased towards dimorphic sequences within the central variable region of MSP2 and have been linked to naturally-acquired protection from malaria. In a phase IIb study, an MSP2-containing vaccine induced an immune response that reduced parasitemias in a strain-specific manner. A subsequent phase I study of a vaccine that contained both dimorphic forms of MSP2 induced antibodies that exhibited functional activity in vitro. We have assessed the contribution of the conserved and variable regions of MSP2 to the generation of a strain-transcending antibody response by generating MSP2 chimeras that included conserved and variable regions of the 3D7 and FC27 alleles. Robust anti-MSP2 antibody responses targeting both conserved and variable regions were generated in mice, although the fine specificity and the balance of responses to these regions differed amongst the constructs tested. We observed significant differences in antibody subclass distribution in the responses to these chimeras. Our results suggest that chimeric MSP2 antigens can elicit a broad immune response suitable for protection against different strains of P. falciparum. PMID:26865062

  14. SCHEMA computational design of virus capsid chimeras: calibrating how genome packaging, protection, and transduction correlate with calculated structural disruption. (United States)

    Ho, Michelle L; Adler, Benjamin A; Torre, Michael L; Silberg, Jonathan J; Suh, Junghae


    Adeno-associated virus (AAV) recombination can result in chimeric capsid protein subunits whose ability to assemble into an oligomeric capsid, package a genome, and transduce cells depends on the inheritance of sequence from different AAV parents. To develop quantitative design principles for guiding site-directed recombination of AAV capsids, we have examined how capsid structural perturbations predicted by the SCHEMA algorithm correlate with experimental measurements of disruption in seventeen chimeric capsid proteins. In our small chimera population, created by recombining AAV serotypes 2 and 4, we found that protection of viral genomes and cellular transduction were inversely related to calculated disruption of the capsid structure. Interestingly, however, we did not observe a correlation between genome packaging and calculated structural disruption; a majority of the chimeric capsid proteins formed at least partially assembled capsids and more than half packaged genomes, including those with the highest SCHEMA disruption. These results suggest that the sequence space accessed by recombination of divergent AAV serotypes is rich in capsid chimeras that assemble into 60-mer capsids and package viral genomes. Overall, the SCHEMA algorithm may be useful for delineating quantitative design principles to guide the creation of libraries enriched in genome-protecting virus nanoparticles that can effectively transduce cells. Such improvements to the virus design process may help advance not only gene therapy applications but also other bionanotechnologies dependent upon the development of viruses with new sequences and functions.

  15. In-cell aggregation of a polyglutamine-containing chimera is a multistep process initiated by the flanking sequence. (United States)

    Ignatova, Zoya; Thakur, Ashwani K; Wetzel, Ronald; Gierasch, Lila M


    Toxicity in amyloid diseases is intimately linked to the nature of aggregates, with early oligomeric species believed to be more cytotoxic than later fibrillar aggregates. Yet mechanistic understanding of how aggregating species evolve with time is currently lacking. We have explored the aggregation process of a chimera composed of a globular protein (cellular retinoic acid-binding protein, CRABP) and huntingtin exon 1 with polyglutamine tracts either above (Q53) or below (Q20) the pathological threshold using Escherichia coli cells as a model intracellular environment. Previously we showed that fusion of the huntingtin exon 1 sequence with >40Q led to structural perturbation and decreased stability of CRABP (Ignatova, Z., and Gierasch, L. M. (2006) J. Biol. Chem. 281, 12959-12967). Here we report that the Q53 chimera aggregates in cells via a multistep process: early stage aggregates are spherical and detergent-soluble, characteristics of prefibrillar aggregates, and appear to be dominated structurally by CRABP, in that they can promote aggregation of a CRABP variant but not oligoglutamine aggregation, and the CRABP domain is relatively sequestered based on its protection from proteolysis. Late stage aggregates appear to be dominated by polyGln; they are fibrillar, detergent-resistant, capable of seeding aggregation of oligoglutamine but not the CRABP variant, and show relative protection of the polyglutamine-exon1 domain from proteolysis. These results point to an evolution of the dominant sequences in intracellular aggregates and may provide molecular insight into origins of toxic prefibrillar aggregates.

  16. Generation of germ-line chimera zebrafish using primordial germ cells isolated from cultured blastomeres and cryopreserved embryoids. (United States)

    Kawakami, Yutaka; Goto-Kazeto, Rie; Saito, Taiju; Fujimoto, Takafumi; Higaki, Shogo; Takahashi, Yoshiyuki; Arai, Katsutoshi; Yamaha, Etsuro


    Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. In our previous study, a single PGC transplanted into a host differentiated into fertile gametes and produced germ-line chimeras of cyprinid fish, including zebrafish. In this study, we aimed to induce germ-line chimeras by transplanting donor PGCs from various sources (normal embryos at different stages, dissociated blastomeres, embryoids, or embryoids cryopreserved by vitrification) into host blastulae, and compare the migration rates of the PGCs towards the gonadal ridge. Isolated, cultured blastomeres not subject to mesodermal induction were able to differentiate into PGCs that retained their motility. Moreover, these PGCs successfully migrated towards the gonadal ridge of the host and formed viable gametes. Motility depended on developmental stage and culture duration: PGCs obtained at earlier developmental stages and with shorter cultivation periods showed an increased rate of migration to the gonadal ridge. Offspring were obtained from natural spawning between normal females and chimeric males. These results provide the basis for new methods of gene preservation in zebrafish.

  17. Synthesis of ethyl 8-fluoro-5,6-dihydro-5-(/sup 11/C)methyl-6-oxo-4H-imidazo(1,5-a)(1,4)benzodiazepine-3-carboxylate (RO 15. 1788-/sup 11/C): a specific radioligand for the in vivo study of central benzodiazepine receptors by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Maziere, M.; Hantraye, P.; Prenant, C.; Sastre, J.; Comar, D. (CEA, 91 - Orsay (France). Service Hospitalier Frederic Joliot)


    A method of labelling ethyl 8-fluoro-5,6-dihydro-5-(/sup 11/C) methyl-6-oxo-4H-imidazo(1,5-a)(1,4)benzodiazepine-3-carboxylate (RO 15.1788 /sup 11/C), a benzodiazepine antagonist with carbon-11 has been developed. RO 15.1788-/sup 11/C was prepared by methylation of the nor derivative by I/sup 11/CH/sub 3/. About 100 mCi (maximum 153 mCi, 5.66 GBq) of the chemically and radiochemically pure labelled product were obtained within 25 min with a specific activity on average of 1100 mCi/ mol (maximum 1740 mCi/ GBq/ Preliminary results obtained after i.v. administration in the baboon have shown RO 15.1788-/sup 11/C to be of interest as a benzodiazepine radioligand for the in vivo study of benzodiazepine receptors by positron emission tomography.

  18. Infectious RNA transcripts from Ross River virus cDNA clones and the construction and characterization of defined chimeras with Sindbis virus. (United States)

    Kuhn, R J; Niesters, H G; Hong, Z; Strauss, J H


    We have constructed a full-length cDNA clone of the virulent T48 strain of Ross River virus, a member of the alphavirus genus. Infectious RNA can be transcribed from this clone using SP6 or T7 RNA polymerase. The rescued virus has properties indistinguishable from those of the T48 strain of Ross River virus. We have used this clone, together with a full-length cDNA clone of Sindbis virus, to construct chimeric plasmids in which the 5' and the 3' nontranslated regions of the Sindbis and Ross River genomes were exchanged. The nontranslated regions of the two viral genomes differ in both size and sequence although they maintain specific conserved sequence elements. Virus was recovered from all four chimeras. Chimeras containing heterologous 3' nontranslated regions had replicative efficiencies equal to those of the parents. In contrast, the chimeras containing heterologous 5' nontranslated regions were defective in RNA synthesis and virus production, and the severity of the defect was dependent upon the host. Replication of a virus containing a heterologous 5' nontranslated region may be inefficient due to the formation of defective protein-RNA complexes, whereas, the presumptive complexes formed between host or virus proteins and the 3' nontranslated region to promote RNA synthesis appear to function normally in the chimeras.

  19. Study of structure function correlation of chemokine receptor CXCR4

    Institute of Scientific and Technical Information of China (English)

    ZHENG Hong; Stephen C PEIPER; ZHU Xi-hua


    Objective: To explore the correlation between structure domains and functions of chemokine receptor CXCR4. Methods: After the establishment of wild type chemokine receptor CXCR4 and CXCR2 expressing cell lines, 5 CXCR4/CXCR2 chimeras, 2 CXCR4 mutants were stably expressed on CHO cell line.Binding activities of all variants with the ligand, recombinant human SDF-1β, signal transduction ability after stimulation and their function as coreceptor for HIV-1 were studied with ligand-binding assay, Cytosensor/microphysiometry and cell-cell reporter gene fusion assay. Results: Among all 7 changed CXCR4 receptors, 3 chimeras (2444a, 4442, 4122), and 1 mutant (CXCR4-Tr) bond with SDF-1β in varying degrees, of which only 2444a totally and CXCR4-Tr partially maintain signaling. All changed receptors except for 4222 could act as coreceptors for HIV-1(LAI) in varying degrees. Conclusion: Several structure domains of CXCR4 are involved in the binding with SDF-1β, among which, N-terminal extracellular domain has high affinity of binding with SDF-1β, and the 3rd extracellular loop contributes to the binding, too. Although the C-terminal intracellular domain has no association with the maintenance of the overall structure of the receptor and ligand binding capability, the signaling is decreased when this domain is truncated. For CXCR4 signaling, not only is the conserved motif DRY box needed, but also the characterized conformation of the whole molecule must be formed when activation is required. There are some overlaps between SDF-1β binding domains and coreceptor function domains in molecular structure of CXCR4.

  20. Three dimensional visualization and fractal analysis of mosaic patches in rat chimeras: cell assortment in liver, adrenal cortex and cornea. (United States)

    Iannaccone, Stephen; Zhou, Yue; Walterhouse, David; Taborn, Greg; Landini, Gabriel; Iannaccone, Philip


    The production of organ parenchyma in a rapid and reproducible manner is critical to normal development. In chimeras produced by the combination of genetically distinguishable tissues, mosaic patterns of cells derived from the combined genotypes can be visualized. These patterns comprise patches of contiguously similar genotypes and are different in different organs but similar in a given organ from individual to individual. Thus, the processes that produce the patterns are regulated and conserved. We have previously established that mosaic patches in multiple tissues are fractal, consistent with an iterative, recursive growth model with simple stereotypical division rules. Fractal dimensions of various tissues are consistent with algorithmic models in which changing a single variable (e.g. daughter cell placement after division) switches the mosaic pattern from islands to stripes of cells. Here we show that the spiral pattern previously observed in mouse cornea can also be visualized in rat chimeras. While it is generally held that the pattern is induced by stem cell division dynamics, there is an unexplained discrepancy in the speed of cellular migration and the emergence of the pattern. We demonstrate in chimeric rat corneas both island and striped patterns exist depending on the age of the animal. The patches that comprise the pattern are fractal, and the fractal dimension changes with the age of the animal and indicates the constraint in patch complexity as the spiral pattern emerges. The spiral patterns are consistent with a loxodrome. Such data are likely to be relevant to growth and cell division in organ systems and will help in understanding how organ parenchyma are generated and maintained from multipotent stem cell populations located in specific topographical locations within the organ. Ultimately, understanding algorithmic growth is likely to be essential in achieving organ regeneration in vivo or in vitro from stem cell populations.

  1. Three dimensional visualization and fractal analysis of mosaic patches in rat chimeras: cell assortment in liver, adrenal cortex and cornea.

    Directory of Open Access Journals (Sweden)

    Stephen Iannaccone

    Full Text Available The production of organ parenchyma in a rapid and reproducible manner is critical to normal development. In chimeras produced by the combination of genetically distinguishable tissues, mosaic patterns of cells derived from the combined genotypes can be visualized. These patterns comprise patches of contiguously similar genotypes and are different in different organs but similar in a given organ from individual to individual. Thus, the processes that produce the patterns are regulated and conserved. We have previously established that mosaic patches in multiple tissues are fractal, consistent with an iterative, recursive growth model with simple stereotypical division rules. Fractal dimensions of various tissues are consistent with algorithmic models in which changing a single variable (e.g. daughter cell placement after division switches the mosaic pattern from islands to stripes of cells. Here we show that the spiral pattern previously observed in mouse cornea can also be visualized in rat chimeras. While it is generally held that the pattern is induced by stem cell division dynamics, there is an unexplained discrepancy in the speed of cellular migration and the emergence of the pattern. We demonstrate in chimeric rat corneas both island and striped patterns exist depending on the age of the animal. The patches that comprise the pattern are fractal, and the fractal dimension changes with the age of the animal and indicates the constraint in patch complexity as the spiral pattern emerges. The spiral patterns are consistent with a loxodrome. Such data are likely to be relevant to growth and cell division in organ systems and will help in understanding how organ parenchyma are generated and maintained from multipotent stem cell populations located in specific topographical locations within the organ. Ultimately, understanding algorithmic growth is likely to be essential in achieving organ regeneration in vivo or in vitro from stem cell populations.

  2. A Chimera Containing CD4+ and CD8+ T-Cell Epitopes of the Leishmania donovani Nucleoside Hydrolase (NH36) Optimizes Cross-Protection against Leishmania amazonesis Infection (United States)

    Alves-Silva, Marcus Vinícius; Nico, Dirlei; Morrot, Alexandre; Palatnik, Marcos; Palatnik-de-Sousa, Clarisa B.


    The Leishmania donovani nucleoside hydrolase (NH36) and NH A34480 of Leishmania amazonensis share 93% of sequence identity. In mice, the NH36 induced protection against visceral leishmaniasis is mediated by a CD4+ T cell response against its C-terminal domain (F3). Besides this CD4+ Th1 response, prevention and cure of L. amazonensis infection require also additional CD8+ and regulatory T-cell responses to the NH36 N-terminal (F1 domain). We investigated if mice vaccination with F1 and F3 domains cloned in tandem, in a recombinant chimera, with saponin, optimizes the vaccine efficacy against L. amazonensis infection above the levels promoted by the two admixed domains or by each domain independently. The chimera induced the highest IgA, IgG, and IgG2a anti-NH36 antibody, IDR, IFN-γ, and IL-10 responses, while TNF-α was more secreted by mice vaccinated with F3 or all F3-contaning vaccines. Additionally, the chimera and the F1 vaccine also induced the highest proportions of CD4+ and CD8+ T cells secreting IL-2, TNF-α, or IFN-γ alone, TNF-α in combination with IL-2 or IFN-γ, and of CD4+ multifunctional cells secreting IL-2, TNF-α, and IFN-γ. Correlating with the immunological results, the strongest reductions of skin lesions sizes were determined by the admixed domains (80%) and by the chimera (84%), which also promoted the most pronounced and significant reduction of the parasite load (99.8%). Thus, the epitope presentation in a recombinant chimera optimizes immunogenicity and efficacy above the levels induced by the independent or admixed F1 and F3 domains. The multiparameter analysis disclosed that the Th1-CD4+ T helper response induced by the chimera is mainly directed against its FRYPRPKHCHTQVA epitope. Additionally, the YPPEFKTKL epitope of F1 induced the second most important CD4+ T cell response, and, followed by the DVAGIVGVPVAAGCT, FMLQILDFYTKVYE, and ELLAITTVVGNQ sequences, also the most potent CD8+ T cell responses and IL-10 secretion. Remarkably

  3. Human formyl peptide receptor ligand binding domain(s). Studies using an improved mutagenesis/expression vector reveal a novel mechanism for the regulation of receptor occupancy. (United States)

    Perez, H D; Vilander, L; Andrews, W H; Holmes, R


    Recently, we reported the domain requirements for the binding of formyl peptide to its specific receptor. Based on experiments using receptor chimeras, we also postulated an importance for the amino-terminal domain of the receptor in ligand binding (Perez, H. D., Holmes, R., Vilander, L., Adams, R., Manzana, W., Jolley, D., and Andrews, W. H. (1993) J. Biol. Chem. 268, 2292-2295). We have begun to perform a detailed analysis of the regions within the formyl peptide receptor involved in ligand binding. To address the importance of the receptor amino-terminal domain, we substituted (or inserted) hydrophilic sequences within the amino-terminal domain, expressed the receptors, and determined their ability to bind ligand. A stretch of nine amino acids next to the initial methionine was identified as crucial for receptor occupancy. A peptide containing such a sequence specifically completed binding of the ligand to the receptor. Alanine screen mutagenesis of the second extracellular domain also identified amino acids involved in ligand binding as well as a disulfide bond (Cys98 to Cys176) crucial for maintaining the binding pocket. These studies provide evidence for a novel mechanism involved in regulation of receptor occupancy. Binding of the ligand induces conformational changes in the receptor that result in the apposition of the amino-terminal domain over the ligand, providing a lid to the binding pocket.

  4. Genes encoding chimeras of Neurospora crassa erg-3 and human TM7SF2 proteins fail to complement Neurospora and yeast sterol C-14 reductase mutants

    Indian Academy of Sciences (India)

    A Prakash; Durgadas P Kasbekar


    The human gene TM7SF2 encodes a polypeptide (SR-1) with high sequence similarity to sterol C-14 reductase, a key sterol biosynthetic enzyme in fungi, plants and mammals. In Neurospora and yeast this enzyme is encoded by the erg-3 and erg24 genes respectively. In an effort to demonstrate sterol C-14 reductase activity for SR-1 we constructed six recombinant genes coding for chimeras of the Neurospora erg-3 and SR-1 protein sequences and tested them for complementation of the Neurospora erg-3 mutant. To our surprise, all the chimeras failed to complement erg-3. A few of the chimeric proteins were also tested against the yeast erg24 mutant, but again there was no complementation. We discuss some reasons that might account for these unexpected findings.

  5. Human-Mouse Chimeras with Normal Expression and Function Reveal That Major Domain Swapping Is Tolerated by P-Glycoprotein (ABCB1). (United States)

    Pluchino, Kristen M; Hall, Matthew D; Moen, Janna K; Chufan, Eduardo E; Fetsch, Patricia A; Shukla, Suneet; Gill, Deborah R; Hyde, Stephen C; Xia, Di; Ambudkar, Suresh V; Gottesman, Michael M


    The efflux transporter P-glycoprotein (P-gp) plays a vital role in the transport of molecules across cell membranes and has been shown to interact with a panoply of functionally and structurally unrelated compounds. How human P-gp interacts with this large number of drugs has not been well understood, although structural flexibility has been implicated. To gain insight into this transporter's broad substrate specificity and to assess its ability to accommodate a variety of molecular and structural changes, we generated human-mouse P-gp chimeras by the exchange of homologous transmembrane and nucleotide-binding domains. High-level expression of these chimeras by BacMam- and baculovirus-mediated transduction in mammalian (HeLa) and insect cells, respectively, was achieved. There were no detectable differences between wild-type and chimeric P-gp in terms of cell surface expression, ability to efflux the P-gp substrates rhodamine 123, calcein-AM, and JC-1, or to be inhibited by the substrate cyclosporine A and the inhibitors tariquidar and elacridar. Additionally, expression of chimeric P-gp was able to confer a paclitaxel-resistant phenotype to HeLa cells characteristic of P-gp-mediated drug resistance. P-gp ATPase assays and photo-cross-linking with [(125)I]iodoarylazidoprazosin confirmed that transport and biochemical properties of P-gp chimeras were similar to those of wild-type P-gp, although differences in drug binding were detected when human and mouse transmembrane domains were combined. Overall, chimeras with one or two mouse P-gp domains were deemed functionally equivalent to human wild-type P-gp, demonstrating the ability of human P-gp to tolerate major structural changes.

  6. Influence of the hinge region and its adjacent domains on binding and signaling patterns of the thyrotropin and follitropin receptor.

    Directory of Open Access Journals (Sweden)

    Jörg Schaarschmidt

    Full Text Available Glycoprotein hormone receptors (GPHR have a large extracellular domain (ECD divided into the leucine rich repeat (LRR domain for binding of the glycoprotein hormones and the hinge region (HinR, which connects the LRR domain with the transmembrane domain (TMD. Understanding of the activation mechanism of GPHRs is hindered by the unknown interaction of the ECD with the TMD and the structural changes upon ligand binding responsible for receptor activation. Recently, our group showed that the HinR of the thyrotropin receptor (TSHR can be replaced by those of the follitropin (FSHR and lutropin receptor (LHCGR without effects on surface expression and hTSH signaling. However, differences in binding characteristics for bovine TSH at the various HinRs were obvious. To gain further insights into the interplay between LRR domain, HinR and TMD we generated chimeras between the TSHR and FSHR. Our results obtained by the determination of cell surface expression, ligand binding and G protein activation confirm the similar characteristics of GPHR HinRs but they also demonstrate an involvement of the HinR in ligand selectivity indicated by the observed promiscuity of some chimeras. While the TSHR HinR contributes to specific binding of TSH and its variants, no such contribution is observed for FSH and its analog TR4401 at the HinR of the FSHR. Furthermore, the charge distribution at the poorly characterized LRR domain/HinR transition affected ligand binding and signaling even though this area is not in direct contact with the ligand. In addition our results also demonstrate the importance of the TMD/HinR interface. Especially the combination of the TSHR HinR with the FSHR-TMD resulted in a loss of cell surface expression of the respective chimeras. In conclusion, the HinRs of GPHRs do not only share similar characteristics but also behave as ligand specific structural and functional entities.

  7. Interspecies avian brain chimeras reveal that large brain size differences are influenced by cell-interdependent processes. (United States)

    Chen, Chun-Chun; Balaban, Evan; Jarvis, Erich D


    Like humans, birds that exhibit vocal learning have relatively delayed telencephalon maturation, resulting in a disproportionately smaller brain prenatally but enlarged telencephalon in adulthood relative to vocal non-learning birds. To determine if this size difference results from evolutionary changes in cell-autonomous or cell-interdependent developmental processes, we transplanted telencephala from zebra finch donors (a vocal-learning species) into Japanese quail hosts (a vocal non-learning species) during the early neural tube stage (day 2 of incubation), and harvested the chimeras at later embryonic stages (between 9-12 days of incubation). The donor and host tissues fused well with each other, with known major fiber pathways connecting the zebra finch and quail parts of the brain. However, the overall sizes of chimeric finch telencephala were larger than non-transplanted finch telencephala at the same developmental stages, even though the proportional sizes of telencephalic subregions and fiber tracts were similar to normal finches. There were no significant changes in the size of chimeric quail host midbrains, even though they were innervated by the physically smaller zebra finch brain, including the smaller retinae of the finch eyes. Chimeric zebra finch telencephala had a decreased cell density relative to normal finches. However, cell nucleus size differences between each species were maintained as in normal birds. These results suggest that telencephalic size development is partially cell-interdependent, and that the mechanisms controlling the size of different brain regions may be functionally independent.

  8. Particle gamma correlations in {sup 12}C measured with the CsI(Tl) based detector array CHIMERA

    Energy Technology Data Exchange (ETDEWEB)

    Cardella, G., E-mail: [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Acosta, L. [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Amorini, F. [INFN - Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Auditore, L. [INFN Gruppo collegato di Messina and Dip. di Fisica e Scienze della Terra, Università di Messina (Italy); Berceanu, I. [Institute for Physics and Nuclear Engineering, Bucharest (Romania); Castoldi, A. [INFN Sezione di Milano e Politecnico Milano (Italy); De Filippo, E. [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Dell' Aquila, D. [Dipartimento di scienze Fisiche, Università Federico II and INFN Sezione di Napoli (Italy); Francalanza, L. [INFN - Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dip. di Fisica e Astronomia, Università di Catania, Via S. Sofia, Catania (Italy); Gnoffo, B. [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Guazzoni, C. [INFN Sezione di Milano e Politecnico Milano (Italy); Lanzalone, G. [INFN - Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Facoltà di Ingegneria e Architettura, Università Kore, Enna (Italy); Lombardo, I. [Dipartimento di scienze Fisiche, Università Federico II and INFN Sezione di Napoli (Italy); Minniti, T.; Morgana, E.; Norella, S. [INFN Gruppo collegato di Messina and Dip. di Fisica e Scienze della Terra, Università di Messina (Italy); Pagano, A. [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Pagano, E.V. [INFN - Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dip. di Fisica e Astronomia, Università di Catania, Via S. Sofia, Catania (Italy); Papa, M.; Pirrone, S. [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); and others


    The gamma decay of the first excited 4.44 MeV 2+level of {sup 12}C, populated by inelastic scattering of proton and {sup 16}O beams at various energies was studied in order to test γ-ray detection efficiency and the quality of angular distribution information given by the CsI(Tl) detectors of the 4π CHIMERA array. The γ-decay was measured in coincidence with ejectile scattered particles in an approximately 4π geometry allowing to extract the angular distribution in the reference frame of recoiling {sup 12}C target. The typical sin{sup 2} (2θ) behavior of angular distribution was observed in the case of {sup 16}O beam. Besides that, for the proton beam, in order to explain the observed distribution, the addition of an incoherent flat contribution was required. This latter is the effect of proton spin flip events allowing the population of M=±1 magnetic substates, that is not possible in reactions induced by {sup 16}O beam. A comparison with previously collected data, obtained measuring only in and out of plane proton-γ-ray coincidences, confirms the good quality of the angular distribution information given by the apparatus. Possible applications with radioactive beams are outlined.

  9. Interspecies avian brain chimeras reveal that large brain size differences are influenced by cell-interdependent processes.

    Directory of Open Access Journals (Sweden)

    Chun-Chun Chen

    Full Text Available Like humans, birds that exhibit vocal learning have relatively delayed telencephalon maturation, resulting in a disproportionately smaller brain prenatally but enlarged telencephalon in adulthood relative to vocal non-learning birds. To determine if this size difference results from evolutionary changes in cell-autonomous or cell-interdependent developmental processes, we transplanted telencephala from zebra finch donors (a vocal-learning species into Japanese quail hosts (a vocal non-learning species during the early neural tube stage (day 2 of incubation, and harvested the chimeras at later embryonic stages (between 9-12 days of incubation. The donor and host tissues fused well with each other, with known major fiber pathways connecting the zebra finch and quail parts of the brain. However, the overall sizes of chimeric finch telencephala were larger than non-transplanted finch telencephala at the same developmental stages, even though the proportional sizes of telencephalic subregions and fiber tracts were similar to normal finches. There were no significant changes in the size of chimeric quail host midbrains, even though they were innervated by the physically smaller zebra finch brain, including the smaller retinae of the finch eyes. Chimeric zebra finch telencephala had a decreased cell density relative to normal finches. However, cell nucleus size differences between each species were maintained as in normal birds. These results suggest that telencephalic size development is partially cell-interdependent, and that the mechanisms controlling the size of different brain regions may be functionally independent.

  10. Detection of Hepatitis C core antibody by dual-affinity yeast chimera and smartphone-based electrochemical sensing. (United States)

    Aronoff-Spencer, Eliah; Venkatesh, A G; Sun, Alex; Brickner, Howard; Looney, David; Hall, Drew A


    Yeast cell lines were genetically engineered to display Hepatitis C virus (HCV) core antigen linked to gold binding peptide (GBP) as a dual-affinity biobrick chimera. These multifunctional yeast cells adhere to the gold sensor surface while simultaneously acting as a "renewable" capture reagent for anti-HCV core antibody. This streamlined functionalization and detection strategy removes the need for traditional purification and immobilization techniques. With this biobrick construct, both optical and electrochemical immunoassays were developed. The optical immunoassays demonstrated detection of anti-HCV core antibody down to 12.3pM concentrations while the electrochemical assay demonstrated higher binding constants and dynamic range. The electrochemical format and a custom, low-cost smartphone-based potentiostat ($20 USD) yielded comparable results to assays performed on a state-of-the-art electrochemical workstation. We propose this combination of synthetic biology and scalable, point-of-care sensing has potential to provide low-cost, cutting edge diagnostic capability for many pathogens in a variety of settings.

  11. Tracking Neospora caninum parasites using chimera monoclonal antibodies against its surface antigen-related sequences (rNcSRS2). (United States)

    Dong, Jinhua; Otsuki, Takahiro; Kato, Tatsuya; Park, Enoch Y


    Neosporosis, an infectious disease of cattle and dogs, causes an abortion in cattle, which has a major damage on the dairy industry worldwide. Tracking of Neospora caninum parasite that is responsible for neosporosis is required for the prevention of this infectious disease. We developed three chimera monoclonal antibodies consist of variable regions of murine antibody and constant regions of human antibody against N. caninum. Recombinant surface antigen-related sequence 2 (rNcSRS2) of N. caninum was expressed in silkworm larvae, and immunized in mice to obtain phage displaying antibody library. Through three rounds of selection, three antibodies, A6, E1 and H3, were isolated and bound to rNcSRS2 with nanomolar to micromolar affinity. In immunofluorescent staining assays, A6 and E1 bound to N. caninum strain Nc-Liv, demonstrating a successful tracking of the parasite. H3 clone bound to rNcSRS2 but not to a truncated protein without glycosylphosphatidylinositol (GPI) anchor domain in the carboxyl terminal. Amino acid sequences of A6 and E1 were similar, but that of H3 differed in the CDR-H1 region, which might be the reason of their difference of affinity. These antibodies are thought to be useful for prevention of cattle from neosporosis.

  12. Chimeras Reveal a Single Lipid-Interface Residue that Controls MscL Channel Kinetics as well as Mechanosensitivity

    Directory of Open Access Journals (Sweden)

    Li-Min Yang


    Full Text Available MscL, the highly conserved bacterial mechanosensitive channel of large conductance, serves as an osmotic “emergency release valve,” is among the best-studied mechanosensors, and is a paradigm of how a channel senses and responds to membrane tension. Although all homologs tested thus far encode channel activity, many show functional differences. We tested Escherichia coli and Staphylococcus aureus chimeras and found that the periplasmic region of the protein, particularly E. coli I49 and the equivalent S. aureus F47 at the periplasmic lipid-aqueous interface of the first transmembrane domain, drastically influences both the open dwell time and the threshold of channel opening. One mutant shows a severe hysteresis, confirming the importance of this residue in determining the energy barriers for channel gating. We propose that this site acts similarly to a spring for a clasp knife, adjusting the resistance for obtaining and stabilizing an open or closed channel structure.

  13. Design, synthesis and DNA interactions of a chimera between a platinum complex and an IHF mimicking peptide. (United States)

    Rao, Harita; Damian, Mariana S; Alshiekh, Alak; Elmroth, Sofi K C; Diederichsen, Ulf


    Conjugation of metal complexes with peptide scaffolds possessing high DNA binding affinity has shown to modulate their biological activities and to enhance their interaction with DNA. In this work, a platinum complex/peptide chimera was synthesized based on a model of the Integration Host Factor (IHF), an architectural protein possessing sequence specific DNA binding and bending abilities through its interaction with a minor groove. The model peptide consists of a cyclic unit resembling the minor grove binding subdomain of IHF, a positively charged lysine dendrimer for electrostatic interactions with the DNA phosphate backbone and a flexible glycine linker tethering the two units. A norvaline derived artificial amino acid was designed to contain a dimethylethylenediamine as a bidentate platinum chelating unit, and introduced into the IHF mimicking peptides. The interaction of the chimeric peptides with various DNA sequences was studied by utilizing the following experiments: thermal melting studies, agarose gel electrophoresis for plasmid DNA unwinding experiments, and native and denaturing gel electrophoresis to visualize non-covalent and covalent peptide-DNA adducts, respectively. By incorporation of the platinum metal center within the model peptide mimicking IHF we have attempted to improve its specificity and DNA targeting ability, particularly towards those sequences containing adjacent guanine residues.

  14. Loss of bone marrow adrenergic beta 1 and 2 receptors modifies transcriptional networks, reduces circulating inflammatory factors, and regulates blood pressure. (United States)

    Ahmari, Niousha; Schmidt, Jordan T; Krane, Gregory A; Malphurs, Wendi; Cunningham, Bruce E; Owen, Jennifer L; Martyniuk, Christopher J; Zubcevic, Jasenka


    Hypertension (HTN) is a prevalent condition with complex etiology and pathophysiology. Evidence exists of significant communication between the nervous system and the immune system (IS), and there appears to be a direct role for inflammatory bone marrow (BM) cells in the pathophysiology of hypertension. However, the molecular and neural mechanisms underlying this interaction have not been characterized. Here, we transplanted whole BM cells from the beta 1 and 2 adrenergic receptor (AdrB1(tm1Bkk)AdrB2(tm1Bkk)/J) knockout (KO) mice into near lethally irradiated C57BL/6J mice to generate a BM AdrB1.B2 KO chimera. This allowed us to evaluate the role of the BM beta 1 and beta 2 adrenergic receptors in mediating BM IS homeostasis and regulating blood pressure (BP) in an otherwise intact physiological setting. Fluorescence-activated cell sorting demonstrated that a decrease in systolic and mean BP in the AdrB1.B2 KO chimera is associated with a decrease in circulating inflammatory T cells, macrophage/monocytes, and neutrophils. Transcriptomics in the BM identified 7,419 differentially expressed transcripts between the C57 and AdrB1.B2 KO chimera. Pathway analysis revealed differentially expressed transcripts related to several cell processes in the BM of C57 compared with AdrB1.B2 KO chimera, including processes related to immunity (e.g., T-cell activation, T-cell recruitment, cytokine production, leukocyte migration and function), the cardiovascular system (e.g., blood vessel development, peripheral nerve blood flow), and the brain (e.g., central nervous system development, neurite development) among others. This study generates new insight into the molecular events that underlie the interaction between the sympathetic drive and IS in modulation of BP.

  15. Sch proteins are localized on endoplasmic reticulum membranes and are redistributed after tyrosine kinase receptor activation

    DEFF Research Database (Denmark)

    Lotti, L V; Lanfrancone, L; Migliaccio, E;


    area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane......The intracellular localization of Shc proteins was analyzed by immunofluorescence and immunoelectron microscopy in normal cells and cells expressing the epidermal growth factor receptor or the EGFR/erbB2 chimera. In unstimulated cells, the immunolabeling was localized in the central perinuclear....... The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein....

  16. Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. (United States)

    Dobrowsky, R T; Werner, M H; Castellino, A M; Chao, M V; Hannun, Y A


    The role of the low-affinity neurotrophin receptor (p75NTR) in signal transduction is undefined. Nerve growth factor can activate the sphingomyelin cycle, generating the putative-lipid second messenger ceramide. In T9 glioma cells, addition of a cell-permeable ceramide analog mimicked the effects of nerve growth factor on cell growth inhibition and process formation. This signaling pathway appears to be mediated by p75NTR in T9 cells and NIH 3T3 cells overexpressing p75NTR. Expression of an epidermal growth factor receptor-p75NTR chimera in T9 cells imparted to epidermal growth factor the ability to activate the sphingomyelin cycle. These data demonstrate that p75NTR is capable of signaling independently of the trk neurotrophin receptor (p140trk) and that ceramide may be a mediator in neurotrophin biology.

  17. Importance of constitutive activity and arrestin-independent mechanisms for intracellular trafficking of the ghrelin receptor

    DEFF Research Database (Denmark)

    Holliday, Nicholas D; Holst, Birgitte; Rodionova, Elena A


    . Furthermore the interaction between phosphorylated receptors and beta-arrestin adaptor proteins has been examined. Replacement of the FLAG-tagged GhrelinR C tail with the equivalent GPR39 domain (GhR-39 chimera) preserved G(q) signaling. However in contrast to the GhrelinR, GhR-39 receptors exhibited no basal...... and substantially decreased agonist-induced internalization in transiently transfected HEK293 cells. Internalized GhrelinR and GhR-39 were predominantly localized to recycling compartments, identified with transferrin and the monomeric G proteins Rab5 and Rab11. Both the inverse agonist [d-Arg(1), d-Phe(5), d-Trp(7....... In contrast, agonist-stimulated GhrelinRs recruited the clathrin adaptor green fluorescent protein-tagged beta-arrestin2 to endosomes, coincident with increased receptor phosphorylation. Thus, GhrelinR internalization to recycling compartments depends on C-terminal motifs and constitutive activity...

  18. Endocytosis of a functionally enhanced GFP-tagged transferrin receptor in CHO cells.

    Directory of Open Access Journals (Sweden)

    Qi He

    Full Text Available The endocytosis of transferrin receptor (TfR has served as a model to study the receptor-targeted cargo delivery system for cancer therapy for many years. To accurately evaluate and optically measure this TfR targeting delivery in vitro, a CHO cell line with enhanced green fluorescent protein (EGFP-tagged human TfR was established. A chimera of the hTfR and EGFP was engineered by fusing EGFP to the amino terminus of hTfR. Data were provided to demonstrate that hTfR-EGFP chimera was predominantly localized on the plasma membrane with some intracellular fluorescent structures on CHO cells and the EGFP moiety did not affect the endocytosis property of hTfR. Receptor internalization occurred similarly to that of HepG2 cells expressing wild-type hTfR. The internalization percentage of this chimeric receptor was about 81 ± 3% of wild type. Time-dependent co-localization of hTfR-EGFP and PE-conjugated anti-hTfR mAb in living cells demonstrated the trafficking of mAb-receptor complexes through the endosomes followed by segregation of part of the mAb and receptor at the late stages of endocytosis. The CHO-hTfR cells preferentially took up anti-hTfR mAb conjugated nanoparticles. This CHO-hTfR cell line makes it feasible for accurate evaluation and visualization of intracellular trafficking of therapeutic agents conjugated with transferrin or Abs targeting the hTfRs.

  19. Construction, Expression, and Characterization of a Recombinant Annexin B1-Low Molecular Weight Urokinase Chimera in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Hong-Li YAN; Wei-Ting WANG; Yan HE; Zhuan-You ZHAO; Yuan-Jian GAO; Yi ZHANG; Shu-Han SUN


    To produce a thrombi-targeting plasminogen activator,low molecular weight single-chain urokinase gene(scuPA32k)was spliced with the full-length cDNA of annexin B 1 gene(anxB1)by overlap extension method.The fused gene anxBlscuPA was ligated into pET28a vector,transformed into E.coli BL21-RIL,and then induced to express under the control of T7 promoter.The AnxB 1ScuPA protein expressed amounted to 22% of the total bacterial proteins.The product was refolded,and then purified by using DEAE Sepharose fast flow ion-exchange column and Superdex S-200 gel-filtration column.HPLC analysis revealed that the final purity is about 95%.The specific activity ofAnxB 1ScuPA,measured as amidolytic activity,reached 100,000 IU/mg.It had a similar S2444 catalytic efficiency(kcat/Km)to ScuPA32k,and also showed high activated-platelet membrane-binding activity and anticoagulant activity,indicating that the chimera fully retained the components of enzymatic and membrane-binding activities of the parent molecules.In vivo test revealed that,the dogs administered with AnxB 1ScuPA had less reperfusion time,higher reperfusion ratio,and less bleeding effects than those with urokinase.These findings indicated that AnxB 1ScuPAmight have advantages over current available thrombolytic agents.

  20. Chimera-free, high copy number YAC libraries and efficient methods of analysis. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)



    The first experiment involved a low chimera YAC library in recombination deficient host strains. To determine if the genetic background of the yeast host strain contributes to the formation of chimeric YACs the same YAC ligation mixture was introduced into three isogenic yeast hosts differing only in their recombination abilities. To prepare YACs, human genomic DNA was partially digested with EcoR1 and then ligated to YAC vector pCGS966 arms. DNA was size fractionated before and after ligation by preparative pulsed field gel electrophoresis (CHEF), selecting for fragments greater than 400 kb, and introduced into competent spheroplasts. CHEF gel Southern blots of resulting colony-purified YACs were probed with human DNA to determine if multiple YACs or YAC fragments were present in the same cell. The frequency of chimeric YACs was measured by fluorescence in situ hybridization (FISH) of YACs to human prometaphase spreads. YACs that hybridized to more than one location were assumed to be chimeric. In the second experiment new YAC vectors featuring tags for capture of YACs and YAC inserts were constructed. Yeast Artificial Chromosomes (YACs) have been of tremendous value in the physical mapping of the human genome. Because they can carry very large inserts, YACs are likely not only to contain entire genes but also their control elements. However, the only mode of purification of YAC DNA from current commonly used YAC libraries such as the CEPH library is by pulsed field gel electrophoresis. This is an inefficient, time consuming process and due to the single copy nature of these YACs, often result in poor yields. The vector pCGS1000 was designed to test new efficient ways of YAC DNA purification.

  1. [Leaf anatomy of the mosaic ficus benjamina cv. Starlight and interaction of source and sink chimera components]. (United States)

    Labunskaia, E A; Zhigalova, T V; Chub, V V


    Leaf anatomy was studied in the mosaic Ficus benjamina cv. Starlight and non-chimeric Ficus benjamina cv. Daniel. The number of chloroplasts in a white, chlorophyll-deficient tissue declines as compared to the green tissue. However, their functional activity is retained. The leaf of the mosaic F. benjamina contains two or, sometimes, three subepidermal layers. Mesophyll forms one layer in the green and white parts of leaf palisade and one white and one green layer in the transitional zone (edge). In the transitional zone, green spongy mesophyll is located between two white spongy layers and the proportion of photosynthesizing cells varies. In cv. Daniel, there are two subepidermal layers and one layer of columnar mesophyll cells. According to the morphometry data, the proportion of white zone in the leaf correlates with the leaf position in the whole shoot: the higher the branch order, the larger the proportion of white zone. The total leaf area depends also on its position in the shoot. No such correlation was found in non-chimeric F. benjamina cv. Daniel. In the mosaic chimera, the source-sink status appears to depend on the leaf position in the shoot. Experiments with individual shoots of the same order and elimination of all lateral shoots have shown that the proportion of white zone in new leaves on the shoot increases with the total area of green zone. Thus, the area of assimilating shoot surface affects the formation of leaves in the meristem. A hypothesis was put forward that the source-sink state affects the ratio of green and white parts in the leaf primordium. Products of photosynthesis (carbohydrates) are a possible metabolic signal affecting the meristem. It cannot be excluded as well that the hormonal state undergoes changes in the chimeric plant.

  2. CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks (United States)

    Franke, R.


    In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.

  3. Soluble Jagged 1/Fc chimera protein induces the differentiation and maturation of bone marrow-derived dendritic cells

    Institute of Scientific and Technical Information of China (English)

    XING FeiYue; LIU Jing; YU Zhe; JI YuHua


    A soluble Jagged 1/Fc chimera protein (Jagged 1/Fc) was directly used to induce differentiation and maturation of bone marrow-derived dendritic cells (DCs) in mice in vitro. A model of inducing and am-plifying DCs in vitro was established. The effect of Jagged 1/Fc on morphology of DCs induced by both rmGM-CSF and rmlL-4 was observed under a confocal microscope. A fluorescein-labeled monoclonal antibody staining combined with flow cytometry was applied to detect the effect of Jagged 1/Fc on the expression of CD11c, MHC-Ⅱ, CD86, CD80 and CD40 molecules on the surface of DCs. The results showed that Jagged 1/Fc did not affect the morphological properties of DC differentiation induced by both rmGM-CSF and rmlL-4. But it could promote the differentiation and maturation of DCs induced by both. The effect of it was strikingly different in the expression profile of co-stimulating molecules and the morphologic properties of DCs from lipopolysaccharide (LPS). The levels of MHC-Ⅱ and CD40 molecule expression on the surface of DCs stimulated by Jagged 1/Fc were significantly lower than those stimulated by LPS, and the level of CD80 expression on the surface of DCs induced by Jagged 1/Fc was near to that induced by LPS. Jagged 1/Fc had no influence on the expression of CD86 mole-cule on the surface of DCs. Jagged 1/Fc when used alone could not maintain the growth, differentiation and maturation of DCs. All the findings indicate that Jagged 1/Fc influences the differentiation and maturation of DCs, which is not markedly similar to LPS, providing important evidence for its devel-opment and application as a novel immunosuppressant.

  4. Cell culture system of a hepatitis C genotype 3a and 2a chimera

    DEFF Research Database (Denmark)


    A robust and genetically stable cell culture system for Hepatitis C Virus (HCV) genotype 3a is provided. A genotype 3a/2a (S52/JFH1) recombinant containing the structural genes (Core, E1, E2), p7 and NS2 of strain S52 was constructed and characterized in Huh7.5 cells. S52/JFH1 and J6/JFH viruses...... passaged in cell culture had comparable growth kinetics and yielded similar peak HCV RNA titers and infectivity titers. Direct genome sequencing of cell culture derived S52/JFH1 viruses identified putative adaptive mutations in Core, E2, p7, NS3, and NS5A; clonal analysis revealed that all genomes analyzed...... exhibited different combinations of these mutations. Finally, viruses resulting from transfection with RNA transcripts of five S52/JFH1 recombinants containing these combinations of putative adaptive mutations performed as efficiently as J6/JFH viruses in Huh7.5 cells and were all genetically stable after...

  5. Screening of biotechnical parameters for production of bovine inter-subspecies embryonic chimeras by the aggregation of tetraploid Bos indicus and diploid crossbred Bos taurus embryos. (United States)

    Razza, Eduardo M; Satrapa, Rafael A; Emanuelli, Isabele P; Barros, Ciro M; Nogueira, Marcelo F G


    The aggregation of a tetraploid zebu embryo (Bos indicus, a thermotolerant breed) with a diploid taurine embryo (Bos taurus, a thermosensitive breed) should create a complete taurine fetus, whose extra-embryonic components, e.g., the chorion, is derived mainly from the zebu embryo. These zebu-derived extra-embryonic components may interact positively with the taurine embryo/fetus during pregnancy in a tropical environment. We tested different parameters for the production of tetraploid Nelore (Bos indicus) embryos to be combined via aggregation with crossbred Bos taurus (diploid) embryos in order to produce viable chimeric blastocysts. Bovine (Bos indicus or crossbred Bos taurus) embryos were produced in vitro according to standard procedures. Two-cell Bos indicus embryos were submitted to electrofusion with varying numbers of pulses (1 or 2), voltages (0.4, 0.5, 0.75, 1.0, 1.4 and 5.0 kV/cm) and time (20, 25, 50 and 60 μs) to produce tetraploid embryos. Electrofused embryos were cultured with crossbred non-fused embryos to form chimeras that developed until the blastocyst stage. The best fusion parameter was 0.75 kV/cm for 60 μs. Four chimeric blastocysts (tetraploid Nelore with diploid crossbred Holstein) were formed after 31 attempts in 4 replicates (13%). We established an optimal procedure for the production of tetraploid Bos indicus (4n) embryos and embryonic chimeras by aggregation of crossbred Bos taurus (2n) with Bos indicus (4n) embryos. This technique would be valid in applied research, by producing exclusively taurine calves, but with placental elements from the Bos indicus breed, following transfer of these chimeras into recipient cows.

  6. NHE1 inhibition by amiloride- and benzoylguanidine-type compounds. Inhibitor binding loci deduced from chimeras of NHE1 homologues with endogenous differences in inhibitor sensitivity

    DEFF Research Database (Denmark)

    Pedersen, Stine F; King, Scott A; Nygaard, Eva B;


    The interaction of the ubiquitous Na(+)/H(+) exchanger, NHE1, with its commonly used inhibitors, amiloride- and benzoylguanidine (Hoechst type inhibitor (HOE))-type compounds, is incompletely understood. We previously cloned NHE1 from Amphiuma tridactylum (AtNHE1) and Pleuronectes americanus (Pa......NHE1). Although highly homologous to the amiloride- and HOE-sensitive human NHE1 (hNHE1), AtNHE1 is insensitive to HOE-type and PaNHE1 to both amiloride- and HOE-type compounds. Here we generated chimeras to "knock in" amiloride and HOE sensitivity to PaNHE1, and we thereby identified several NHE1...

  7. Adaptation of Soybean mosaic virus avirulent chimeras containing P3 sequences from virulent strains to Rsv1-genotype soybeans is mediated by mutations in HC-Pro. (United States)

    Hajimorad, M R; Eggenberger, A L; Hill, J H


    In Rsv1-genotype soybean, Soybean mosaic virus (SMV)-N (an avirulent isolate of strain G2) elicits extreme resistance (ER) whereas strain SMV-G7 provokes a lethal systemic hypersensitive response (LSHR). SMV-G7d, an experimentally evolved variant of SMV-G7, induces systemic mosaic. Thus, for Rsv1-genotype soybean, SMV-N is avirulent whereas SMV-G7 and SMV-G7d are both virulent. Exploiting these differential interactions, we recently mapped the elicitor functions of SMV provoking Rsv1-mediated ER and LSHR to the N-terminal 271 amino acids of P3 from SMV-N and SMV-G7, respectively. The phenotype of both SMV-G7 and SMV-G7d were rendered avirulent on Rsv1-genotype soybean when the part of the genome encoding the N-terminus or the entire P3 cistron was replaced with that from SMV-N; however, reciprocal exchanges did not confer virulence to SMV-N-derived P3 chimeras. Here, we describe virulent SMV-N-derived P3 chimeras containing the full-length or the N-terminal P3 from SMV-G7 or SMV-G7d, with or without additional mutations in P3, that were selected on Rsv1-genotype soybean by sequential transfers on rsv1 and Rsv1-genotype soybean. Sequence analyses of the P3 and helper-component proteinase (HC-Pro) cistrons of progeny recovered from Rsv1-genotype soybean consistently revealed the presence of mutations in HC-Pro. Interestingly, the precise mutations in HC-Pro required for the adaptation varied among the chimeras. No mutation was detected in the HC-Pro of progeny passaged continuously in rsv1-genotype soybean, suggesting that selection is a consequence of pressure imposed by Rsv1. Mutations in HC-Pro alone failed to confer virulence to SMV-N; however, reconstruction of mutations in HC-Pro of the SMV-N-derived P3 chimeras resulted in virulence. Taken together, the data suggest that HC-Pro complementation of P3 is essential for SMV virulence on Rsv1-genotype soybean.

  8. Somatostatin receptors

    DEFF Research Database (Denmark)

    Møller, Lars Neisig; Stidsen, Carsten Enggaard; Hartmann, Bolette;


    therefore been acknowledged to be a third endogenous ligand at SRIF receptors. This review goes through mechanisms of signal transduction, pharmacology, and anatomical distribution of SRIF receptors. Structurally, SRIF receptors belong to the superfamily of G protein-coupled (GPC) receptors, sharing......In 1972, Brazeau et al. isolated somatostatin (somatotropin release-inhibiting factor, SRIF), a cyclic polypeptide with two biologically active isoforms (SRIF-14 and SRIF-28). This event prompted the successful quest for SRIF receptors. Then, nearly a quarter of a century later, it was announced...... that a neuropeptide, to be named cortistatin (CST), had been cloned, bearing strong resemblance to SRIF. Evidence of special CST receptors never emerged, however. CST rather competed with both SRIF isoforms for specific receptor binding. And binding to the known subtypes with affinities in the nanomolar range, it has...

  9. Avoidance and Potential Remedy Solutions of Chimeras in Reconstructing the Phylogeny of Aphids Using the 16S rRNA Gene of Buchnera: A Case in Lachninae (Hemiptera). (United States)

    Chen, Rui; Wang, Zhe; Chen, Jing; Qiao, Ge-Xia


    It is known that PCR amplification of highly homologous genes from complex DNA mixtures can generate a significant proportion of chimeric sequences. The 16S rRNA gene is not only widely used in estimating the species diversity of endosymbionts in aphids but also used to explore the co-diversification of aphids and their endosymbionts. Thus, chimeric sequences may lead to the discovery of non-existent endosymbiont species and mislead Buchnera-based phylogenetic analysis that lead to false conclusions. In this study, a high probability (6.49%) of chimeric sequence occurrence was found in the amplified 16S rRNA gene sequences of endosymbionts from aphid species in the subfamily Lachninae. These chimeras are hybrid products of multiple parent sequences from the dominant species of endosymbionts in each corresponding host. It is difficult to identify the chimeric sequences of a new or unidentified species due to the high variability of their main parent, Buchnera aphidicola, and because the chimeric sequences can confuse the phylogenetic analysis of 16S rRNA gene sequences. These chimeras present a challenge to Buchnera-based phylogenetic research in aphids. Thus, our study strongly suggests that using appropriate methods to detect chimeric 16S rRNA sequences may avoid some false conclusions in endosymbiont-based aphid research.

  10. Generation of anti-idiotype scFv for pharmacokinetic measurement in lymphoma patients treated with chimera anti-CD22 antibody SM03.

    Directory of Open Access Journals (Sweden)

    Qi Zhao

    Full Text Available Pre-clinical and clinical studies of therapeutic antibodies require highly specific reagents to examine their immune responses, bio-distributions, immunogenicity, and pharmacodynamics in patients. Selective antigen-mimicking anti-idiotype antibody facilitates the assessment of therapeutic antibody in the detection, quantitation and characterization of antibody immune responses. Using mouse specific degenerate primer pairs and splenocytic RNA, we generated an idiotype antibody-immunized phage-displayed scFv library in which an anti-idiotype antibody against the therapeutic chimera anti-CD22 antibody SM03 was isolated. The anti-idiotype scFv recognized the idiotype of anti-CD22 antibody and inhibited binding of SM03 to CD22 on Raji cell surface. The anti-idiotype scFv was subsequently classified as Ab2γ type. Moreover, our results also demonstrated firstly that the anti-idiotype scFv could be used for pharmacokinetic measurement of circulating residual antibody in lymphoma patients treated with chimera anti-CD22 monoclonal antibody SM03. Of important, the present approach could be easily adopted to generate anti-idiotype antibodies for therapeutic antibodies targeting membrane proteins, saving the cost and time for producing a soluble antigen.

  11. Structural and functional characterization of human and murine C5a anaphylatoxins

    Energy Technology Data Exchange (ETDEWEB)

    Schatz-Jakobsen, Janus Asbjørn; Yatime, Laure, E-mail:; Larsen, Casper [Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus (Denmark); Petersen, Steen Vang [Aarhus University, Bartholin Building, Wilhelm Meyers Allé 4, DK-8000 Aarhus (Denmark); Klos, Andreas [Medical School Hannover, Hannover (Germany); Andersen, Gregers Rom, E-mail: [Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus (Denmark)


    The structure of the human C5aR antagonist, C5a-A8, reveals a three-helix bundle conformation similar to that observed for human C5a-desArg, whereas murine C5a and C5a-desArg both form the canonical four-helix bundle. These conformational differences are discussed in light of the differential C5aR activation properties observed for the human and murine complement anaphylatoxins across species. Complement is an ancient part of the innate immune system that plays a pivotal role in protection against invading pathogens and helps to clear apoptotic and necrotic cells. Upon complement activation, a cascade of proteolytic events generates the complement effectors, including the anaphylatoxins C3a and C5a. Signalling through their cognate G-protein coupled receptors, C3aR and C5aR, leads to a wide range of biological events promoting inflammation at the site of complement activation. The function of anaphylatoxins is regulated by circulating carboxypeptidases that remove their C-terminal arginine residue, yielding C3a-desArg and C5a-desArg. Whereas human C3a and C3a-desArg adopt a canonical four-helix bundle fold, the conformation of human C5a-desArg has recently been described as a three-helix bundle. Here, the crystal structures of an antagonist version of human C5a, A8{sup Δ71–73}, and of murine C5a and C5a-desArg are reported. Whereas A8{sup Δ71–73} adopts a three-helix bundle conformation similar to human C5a-desArg, the two murine proteins form a four-helix bundle. A cell-based functional assay reveals that murine C5a-desArg, in contrast to its human counterpart, exerts the same level of activition as murine C5a on its cognate receptor. The role of the different C5a conformations is discussed in relation to the differential activation of C5a receptors across species.

  12. PNA Peptide chimerae

    DEFF Research Database (Denmark)

    Koch, T.; Næsby, M.; Wittung, P.;


    Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields.......Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields....

  13. Chimeras: an ethical consideration

    Directory of Open Access Journals (Sweden)

    H.J.G. Zandman


    Full Text Available Scientists have started with experimentation that raises difficult ethical questions. It comprises taking material from the human blueprint (DNA and inserting this in various test animals. The purpose of such research is noble, namely the alleviation of hu- man suffering. Yet the ethical ramifications of blending the hu- man and animal genome are significant, especially for Chris- tians. The creation of all living entities after their kind and the image-bearing dignity attributed to man both come under se- vere ethical stress for those who presuppose divine order in God’s ecology.  For non-Christians the philosophical dilemma ought not to exist in the ethical sense if applied at the purest level. If the human is merely a kind of animal, along with and ontologically not diffe- rent from other animals, there is little logical reason to object to chimeric research apart from a concern about what such re- search and application might do to the order of life pragmati- cally. However, many non-Christian do object. Man is made in God’s image and the concept of human dignity and a universal sense of right and wrong still binds Christians and non-Chris- tians when considering ethics in the field of chimeric research. As the mixing of human stem cells with embryonic animals takes place, certain non-Christian authors protest that human dignity is being diminished and the animal essence is being vio- lated.

  14. Small Molecule Agonists of the Orphan Nuclear Receptors Steroidogenic Factor-1 (SF-1, NR5A1) and Liver Receptor Homologue-1 (LRH-1, NR5A2)

    Energy Technology Data Exchange (ETDEWEB)

    Whitby, Richard J.; Stec, Jozef; Blind, Raymond D.; Dixon, Sally; Leesnitzer, Lisa M.; Orband-Miller, Lisa A.; Williams, Shawn P.; Willson, Timothy M.; Xu, Robert; Zuercher, William J.; Cai, Fang; Ingraham, Holly A. (GSKNC); (Southampton); (UCSF)


    The crystal structure of LRH-1 ligand binding domain bound to our previously reported agonist 3-(E-oct-4-en-4-yl)-1-phenylamino-2-phenyl-cis-bicyclo[3.3.0]oct-2-ene 5 is described. Two new classes of agonists in which the bridgehead anilino group from our first series was replaced with an alkoxy or 1-ethenyl group were designed, synthesized, and tested for activity in a peptide recruitment assay. Both new classes gave very active compounds, particularly against SF-1. Structure-activity studies led to excellent dual-LRH-1/SF-1 agonists (e.g., RJW100) as well as compounds selective for LRH-1 (RJW101) and SF-1 (RJW102 and RJW103). The series based on 1-ethenyl substitution was acid stable, overcoming a significant drawback of our original bridgehead anilino-substituted series. Initial studies on the regulation of gene expression in human cell lines showed excellent, reproducible activity at endogenous target genes.

  15. Complement 5a Enhances Hepatic Metastases of Colon Cancer via Monocyte Chemoattractant Protein-1-mediated Inflammatory Cell Infiltration. (United States)

    Piao, Chunmei; Cai, Lun; Qiu, Shulan; Jia, Lixin; Song, Wenchao; Du, Jie


    Complement 5a (C5a), a potent immune mediator generated by complement activation, promotes tumor growth; however, its role in tumor metastasis remains unclear. We demonstrate that C5a contributes to tumor metastases by modulating tumor inflammation in hepatic metastases of colon cancer. Colon cancer cell lines generate C5a under serum-free conditions, and C5a levels increase over time in a murine syngeneic colon cancer hepatic metastasis model. Furthermore, in the absence of C5a receptor or upon pharmacological inhibition of C5a production with an anti-C5 monoclonal antibody, tumor metastasis is severely impaired. A lack of C5a receptor in colon cancer metastatic foci reduces the infiltration of macrophages, neutrophils, and dendritic cells, and the role for C5a receptor on these cells were further verified by bone marrow transplantation experiments. Moreover, C5a signaling increases the expression of the chemokine monocyte chemoattractant protein-1 and the anti-inflammatory molecules arginase-1, interleukin 10, and transforming growth factor β, but is inversely correlated with the expression of pro-inflammatory molecules, which suggests a mechanism for the role of C5a in the inflammatory microenvironment required for tumor metastasis. Our results indicate a new and potentially promising therapeutic application of complement C5a inhibitor for the treatment of malignant tumors.

  16. Identification of residues involved in binding of IL5 to betacom using betaIL3 and betacom chimeras. (United States)

    Czabotar, P E; Holland, J; Sanderson, C J


    In mice there are two forms of the beta chain used in the IL3 receptor system, betacom and betaIL3. betacom is used by the IL3, IL5 and GM-CSF receptors whereas betaIL3 is only used in the IL3 receptor. In this work an assay was developed to identify residues of beta1L3 that restrict IL5 activity. It was found that such residues reside within the 2nd CRM of the molecule. Furthermore, when residues in the betaIL3 B'-C' loop were replaced with betacom sequence a form of betaIL3 was produced that was able to respond to IL5. This region is also responsible for IL3 binding to betaIL3 in the absence of alpha chain. It is therefore an important structural motif of betacom and betaIL3 responsible for both ligand interaction and specificity.

  17. Efficient generation of germ line transmitting chimeras from C57BL/6N ES cells by aggregation with outbred host embryos.

    Directory of Open Access Journals (Sweden)

    Marina Gertsenstein

    Full Text Available Genetically modified mouse strains derived from embryonic stem (ES cells have become essential tools for functional genomics and biomedical research. Large scale mutagenesis projects are producing libraries of mutant C57BL/6 (B6 ES cells to enable the functional annotation of every gene of the mouse genome. To realize the utility of these resources, efficient and accessible methods of generating mutant mice from these ES cells are necessary. Here, we describe a combination of ICR morula aggregation and a chemically-defined culture medium with widely available and accessible components for the high efficiency generation of germline transmitting chimeras from C57BL/6N ES cells. Together these methods will ease the access of the broader biomedical research community to the publicly available B6 ES cell resources.

  18. Optimization of three-dimensional imaging on in vitro produced porcine blastocysts and chimeras for stem cell testing: A technology report

    DEFF Research Database (Denmark)

    Secher, Jan; Freude, Karla; Li, Rong


    Differential staining is an immunocytochemical staining that visualizes trophectoderm (TE) and the inner cell mass (ICM) of the blastocysts. It is used to determine the blastocyst quality, but could also be a useful tool to assess the integration site of injected cells into the early embryo....... This is relevant for testing of presumed pluripotent stem cells. The gold standard for pluripotent stem cells is to test if the cells are capable of contributing to germline chimeras. Differential staining can be used to evaluate the possibility of chimeric contribution; if the cells are located in the area...... of the ICM they are likely to contribute to the fetus and if they are located in the area of the TE they are likely to contribute to the fetal membranes. In this article, we optimize on methods for embryo staining and mounting so that the exact location of injected stem cells within preimplantation porcine...

  19. Reversal of type 1 diabetes by a new MHC II-peptide chimera: "Single-epitope-mediated suppression" to stabilize a polyclonal autoimmune T-cell process. (United States)

    Lin, Marvin; Stoica-Nazarov, Cristina; Surls, Jacqueline; Kehl, Margaret; Bona, Constantin; Olsen, Cara; Brumeanu, Teodor D; Casares, Sofia


    Polyclonality of self-reactive CD4(+) T cells is the hallmark of several autoimmune diseases like type 1 diabetes. We have previously reported that a soluble dimeric MHC II-peptide chimera prevents and reverses type 1 diabetes induced by a monoclonal diabetogenic T-cell population in double Tg mice [Casares, S. et al., Nat. Immunol. 2002. 3: 383-391]. Since most of the glutamic acid decarboxylase 65 (GAD65)-specific CD4(+) T cells in the NOD mouse are tolerogenic but unable to function in an autoimmune environment, we have activated a silent, monoclonal T-regulatory cell population (GAD65(217-230)-specific CD4(+) T cells) using a soluble I-A(αβ) (g7)/GAD65(217-230)/Fcγ2a dimer, and measured the effect on the ongoing polyclonal diabetogenic T-cell process. Activated GAD65(217-230)-specific T cells and a fraction of the diabetogenic (B(9-23)-specific) T cells were polarized toward the IL-10-secreting T-regulatory type 1-like function in the pancreas of diabetic NOD mice. More importantly, this led to the reversal of hyperglycemia for more than 2 months post-therapy in 80% of mice in the context of stabilization of pancreatic insulitis and improved insulin secretion by the β cells. These findings argue for the stabilization of a polyclonal self-reactive T-cell process by a single epitope-mediated bystander suppression. Dimeric MHC class II-peptide chimeras-like approach may provide rational grounds for the development of more efficient antigen-specific therapies in type 1 diabetes.

  20. Transient Expression of an LEDGF/p75 Chimera Retargets Lentivector Integration and Functionally Rescues in a Model for X-CGD. (United States)

    Vets, Sofie; De Rijck, Jan; Brendel, Christian; Grez, Manuel; Bushman, Frederic; Debyser, Zeger; Gijsbers, Rik


    Retrovirus-based vectors are commonly used as delivery vehicles to correct genetic diseases because of their ability to integrate new sequences stably. However, adverse events in which vector integration activates proto-oncogenes, leading to clonal expansion and leukemogenesis hamper their application. The host cell-encoded lens epithelium-derived growth factor (LEDGF/p75) binds lentiviral integrase and targets integration to active transcription units. We demonstrated earlier that replacing the LEDGF/p75 chromatin interaction domain with an alternative DNA-binding protein could retarget integration. Here, we show that transient expression of the chimeric protein using mRNA electroporation efficiently redirects lentiviral vector (LV) integration in wild-type (WT) cells. We then employed this technology in a model for X-linked chronic granulomatous disease (X-CGD) using myelomonocytic PLB-985 gp91(-/-) cells. Following electroporation with mRNA encoding the LEDGF-chimera, the cells were treated with a therapeutic lentivector encoding gp91(phox). Integration site analysis revealed retargeted integration away from genes and towards heterochromatin-binding protein 1β (CBX1)-binding sites, in regions enriched in marks associated with gene silencing. Nevertheless, gp91(phox) expression was stable for at least 6 months after electroporation and NADPH-oxidase activity was restored to normal levels as determined by superoxide production. Together, these data provide proof-of-principle that transient expression of engineered LEDGF-chimera can retarget lentivector integration and rescues the disease phenotype in a cell model, opening perspectives for safer gene therapy.Molecular Therapy - Nucleic Acids (2013) 2, e77; doi:10.1038/mtna.2013.4; published online 5 March 2013.

  1. Solid-State Nuclear Magnetic Resonance Investigation of the Structural Topology and Lipid Interactions of a Viral Fusion Protein Chimera Containing the Fusion Peptide and Transmembrane Domain. (United States)

    Yao, Hongwei; Lee, Myungwoon; Liao, Shu-Yu; Hong, Mei


    The fusion peptide (FP) and transmembrane domain (TMD) of viral fusion proteins play important roles during virus-cell membrane fusion, by inducing membrane curvature and transient dehydration. The structure of the water-soluble ectodomain of viral fusion proteins has been extensively studied crystallographically, but the structures of the FP and TMD bound to phospholipid membranes are not well understood. We recently investigated the conformations and lipid interactions of the separate FP and TMD peptides of parainfluenza virus 5 (PIV5) fusion protein F using solid-state nuclear magnetic resonance. These studies provide structural information about the two domains when they are spatially well separated in the fusion process. To investigate how these two domains are structured relative to each other in the postfusion state, when the ectodomain forms a six-helix bundle that is thought to force the FP and TMD together in the membrane, we have now expressed and purified a chimera of the FP and TMD, connected by a Gly-Lys linker, and measured the chemical shifts and interdomain contacts of the protein in several lipid membranes. The FP-TMD chimera exhibits α-helical chemical shifts in all the membranes examined and does not cause strong curvature of lamellar membranes or membranes with negative spontaneous curvature. These properties differ qualitatively from those of the separate peptides, indicating that the FP and TMD interact with each other in the lipid membrane. However, no (13)C-(13)C cross peaks are observed in two-dimensional correlation spectra, suggesting that the two helices are not tightly associated. These results suggest that the ectodomain six-helix bundle does not propagate into the membrane to the two hydrophobic termini. However, the loosely associated FP and TMD helices are found to generate significant negative Gaussian curvature to membranes that possess spontaneous positive curvature, consistent with the notion that the FP-TMD assembly may

  2. Primordial germ cell-mediated chimera technology produces viable pure-line Houbara bustard offspring: potential for repopulating an endangered species.

    Directory of Open Access Journals (Sweden)

    Ulrich Wernery

    Full Text Available BACKGROUND: The Houbara bustard (Chlamydotis undulata is a wild seasonal breeding bird populating arid sandy semi-desert habitats in North Africa and the Middle East. Its population has declined drastically during the last two decades and it is classified as vulnerable. Captive breeding programmes have, hitherto, been unsuccessful in reviving population numbers and thus radical technological solutions are essential for the long term survival of this species. The purpose of this study was to investigate the use of primordial germ cell-mediated chimera technology to produce viable Houbara bustard offspring. METHODOLOGY/PRINCIPAL FINDINGS: Embryonic gonadal tissue was dissected from Houbara bustard embryos at eight days post-incubation. Subsequently, Houbara tissue containing gonadal primordial germ cells (gPGCs was injected into White Leghorn chicken (Gallus gallus domesticus embryos, producing 83/138 surviving male chimeric embryos, of which 35 chimeric roosters reached sexual maturity after 5 months. The incorporation and differentiation of Houbara gPGCs in chimeric chicken testis were assessed by PCR with Houbara-specific primers and 31.3% (5/16 gonads collected from the injected chicken embryos showed the presence of donor Houbara cells. A total of 302 semen samples from 34 chimeric roosters were analyzed and eight were confirmed as germline chimeras. Semen samples from these eight roosters were used to artificially inseminate three female Houbara bustards. Subsequently, 45 Houbara eggs were obtained and incubated, two of which were fertile. One egg hatched as a male live born Houbara; the other was female but died before hatching. Genotyping confirmed that the male chick was a pure-line Houbara derived from a chimeric rooster. CONCLUSION: This study demonstrates for the first time that Houbara gPGCs can migrate, differentiate and eventually give rise to functional sperm in the chimeric chicken testis. This approach may provide a promising

  3. Zeolite 5A Catalyzed Etherification of Diphenylmethanol (United States)

    Cooke, Jason; Henderson, Eric J.; Lightbody, Owen C.


    An experiment for the synthetic undergraduate laboratory is described in which zeolite 5A catalyzes the room temperature dehydration of diphenylmethanol, (C[subscript 6]H[subscript 5])[subscript 2]CHOH, producing 1,1,1',1'-tetraphenyldimethyl ether, (C[subscript 6]H[subscript 5])[subscript 2]CHOCH(C[subscript 6]H[subscript 5])[subscript 2]. The…

  4. Establishment of Sf9 transformants constitutively expressing PBAN receptor (PBANR variants: application to functional evaluation

    Directory of Open Access Journals (Sweden)

    Jae Min Lee


    Full Text Available To facilitate further evaluation of pheromone biosynthesis activating neuropeptide receptor (PBANR functionality and regulation, we generated cultured insect cell lines constitutively expressing green fluorescent protein chimeras of the recently identified Bombyx mori PBANR (BommoPBANR and Pseudaletia separata PBANR (PsesePBANR variants. Fluorescent chimeras included the BommoPBANR-A, B, and C variants and the PsesePBANR-B and C variants. Cell lines expressing non-chimeric BommoPBANR-B and C variants were also generated. Functional evaluation of these transformed cell lines using confocal laser microscopy revealed that a Rhodamine Red-labeled PBAN derivative (RR-C10PBANR2K specifically co-localized with all of the respective PBANR variants at the plasma membrane. Near complete internalization of the fluorescent RR-C10PBANR2K ligand 30 min after binding was observed in all cell lines except those expressing the BommoPBANR-A variant, in which the ligand/receptor complex remained at the plasma membrane. Fluorescent Ca2+ imaging further showed that, unlike the BommoPBANR-B or BommoPBANR-C cell lines, RR-C10PBANR2K binding failed to mobilize extracellular Ca2+ in the BommoPBANR-A cell line even at concentrations of 10 M. These observations demonstrate a clear functional difference between the BommoPBANR-A variant and the BommoPBANR-B and –C variants in terms of receptor regulation and activation of downstream effector molecules. We also found that, contrary to previous reports, ligand-induced internalization of BommoPBANR-B and BommoPBANR-C in cell lines stably expressing these variants occurred in the absence of extracellular Ca2+.

  5. Synaptic AMPA receptor subunit trafficking is independent of the C terminus in the GluR2-lacking mouse. (United States)

    Panicker, Sandip; Brown, Keith; Nicoll, Roger A


    Glutamate is the primary excitatory neurotransmitter in the brain, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type glutamate receptors mediate most fast synaptic transmission. AMPA receptors are tetrameric assemblies composed from four possible subunits (GluR1-4). In hippocampal pyramidal cells, AMPA receptors are heteromeric receptors containing the GluR2 subunit and either GluR1 or GluR3. It is generally accepted that the trafficking of GluR1/GluR2 receptors to synapses requires activity, whereas GluR2/GluR3 receptors traffic constitutively. It has been suggested that the trafficking is governed by the cytoplasmic C termini of the subunits. Because the basis for this theory relied on the introduction of unnatural, homomeric, calcium-permeable AMPA receptors, we have used the GluR2(-/-) knock out mouse to determine whether the expression of mutated forms of GluR2 can rescue WT synaptic responses. We find that GluR2, lacking its entire C terminus, or a GluR2 chimera containing the C terminus of GluR1, is capable of trafficking to the synapse in the absence of activity. These findings suggest that the GluR2 C terminus is not required for GluR2 synaptic insertion.

  6. Interaction of plant essential oil terpenoids with the southern cattle tick tyramine receptor: A potential biopesticide target. (United States)

    Gross, Aaron D; Temeyer, Kevin B; Day, Tim A; Pérez de León, Adalberto A; Kimber, Michael J; Coats, Joel R


    An outbreak of the southern cattle tick, Rhipicephalus (Boophilus) microplus, (Canestrini), in the United States would have devastating consequences on the cattle industry. Tick populations have developed resistance to current acaricides, highlighting the need to identify new biochemical targets along with new chemistry. Furthermore, acaricide resistance could further hamper control of tick populations during an outbreak. Botanically-based compounds may provide a safe alternative for efficacious control of the southern cattle tick. We have developed a heterologous expression system that stably expresses the cattle tick's tyramine receptor with a G-protein chimera, producing a system that is amenable to high-throughput screening. Screening an in-house terpenoid library, at two screening concentrations (10 μM and 100 μM), has identified four terpenoids (piperonyl alcohol, 1,4-cineole, carvacrol and isoeugenol) that we believe are positive modulators of the southern cattle tick's tyramine receptor.

  7. Opioid Receptors. (United States)

    Stein, Christoph


    Opioids are the oldest and most potent drugs for the treatment of severe pain. Their clinical application is undisputed in acute (e.g., postoperative) and cancer pain, but their long-term use in chronic pain has met increasing scrutiny. This article reviews mechanisms underlying opioid analgesia and other opioid actions. It discusses the structure, function, and plasticity of opioid receptors; the central and peripheral sites of analgesic actions and side effects; endogenous and exogenous opioid receptor ligands; and conventional and novel opioid compounds. Challenging clinical situations, such as the tension between chronic pain and addiction, are also illustrated.

  8. Daphnia HR96 is a promiscuous xenobiotic and endobiotic nuclear receptor

    Energy Technology Data Exchange (ETDEWEB)

    Karimullina, Elina [Environmental Toxicology Program, Clemson University, Clemson, SC 29634 (United States); Institute of Plant and Animal Ecology, Russian Academy of Sciences, Ural Branch, Yekaterinburg 620144 (Russian Federation); Li Yangchun; Ginjupalli, Gautam K. [Environmental Toxicology Program, Clemson University, Clemson, SC 29634 (United States); Baldwin, William S., E-mail: [Environmental Toxicology Program, Clemson University, Clemson, SC 29634 (United States); Biological Sciences, Clemson University, Clemson, SC (United States)


    Daphnia pulex is the first crustacean to have its genome sequenced. The genome project provides new insight and data into how an aquatic crustacean may respond to environmental stressors, including toxicants. We cloned Daphnia pulex HR96 (DappuHR96), a nuclear receptor orthologous to the CAR/PXR/VDR group of nuclear receptors. In Drosophila melanogaster, (hormone receptor 96) HR96 responds to phenobarbital exposure and has been hypothesized as a toxicant receptor. Therefore, we set up a transactivation assay to test whether DappuHR96 is a promiscuous receptor activated by xenobiotics and endobiotics similar to the constitutive androstane receptor (CAR) and the pregnane X-receptor (PXR). Transactivation assays performed with a GAL4-HR96 chimera demonstrate that HR96 is a promiscuous toxicant receptor activated by a diverse set of chemicals such as pesticides, hormones, and fatty acids. Several environmental toxicants activate HR96 including estradiol, pyriproxyfen, chlorpyrifos, atrazine, and methane arsonate. We also observed repression of HR96 activity by chemicals such as triclosan, androstanol, and fluoxetine. Nearly 50% of the chemicals tested activated or inhibited HR96. Interestingly, unsaturated fatty acids were common activators or inhibitors of HR96 activity, indicating a link between diet and toxicant response. The omega-6 and omega-9 unsaturated fatty acids linoleic and oleic acid activated HR96, but the omega-3 unsaturated fatty acids alpha-linolenic acid and docosahexaenoic acid inhibited HR96, suggesting that these two distinct sets of lipids perform opposing roles in Daphnia physiology. This also provides a putative mechanism by which the ratio of dietary unsaturated fats may affect the ability of an organism to respond to a toxic insult. In summary, HR96 is a promiscuous nuclear receptor activated by numerous endo- and xenobiotics.

  9. Differential palmitoylation directs the AMPA receptor-binding protein ABP to spines or to intracellular clusters. (United States)

    DeSouza, Sunita; Fu, Jie; States, Bradley A; Ziff, Edward B


    Long-term changes in excitatory synapse strength are thought to reflect changes in synaptic abundance of AMPA receptors mediated by receptor trafficking. AMPA receptor-binding protein (ABP) and glutamate receptor-interacting protein (GRIP) are two similar PDZ (postsynaptic density 95/Discs large/zona occludens 1) proteins that interact with glutamate receptors 2 and 3 (GluR2 and GluR3) subunits. Both proteins have proposed roles during long-term potentiation and long-term depression in the delivery and anchorage of AMPA receptors at synapses. Here we report a variant of ABP-L (seven PDZ form of ABP) called pABP-L that is palmitoylated at a cysteine residue at position 11 within a novel 18 amino acid N-terminal leader sequence encoded through differential splicing. In cultured hippocampal neurons, nonpalmitoylated ABP-L localizes with internal GluR2 pools expressed from a Sindbis virus vector, whereas pABP-L is membrane targeted and associates with surface-localized GluR2 receptors at the plasma membrane in spines. Mutation of Cys-11 to alanine blocks the palmitoylation of pABP-L and targets the protein to intracellular clusters, confirming that targeting the protein to spines is dependent on palmitoylation. Non-palmitoylated GRIP is primarily intracellular, but a chimera with the pABP-L N-terminal palmitoylation sequence linked to the body of the GRIP protein is targeted to spines. We suggest that pABP-L and ABP-L provide, respectively, synaptic and intracellular sites for the anchorage of AMPA receptors during receptor trafficking to and from the synapse.

  10. RAB5A — EDRN Public Portal (United States)

    From UniProtKB/Swiss-Prot: The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion. RAB5A is required for the fusion of plasma membranes and early endosomes. Contributes to the regulation of filopodia extension.

  11. Wnt5a Regulates the Assembly of Human Adipose Derived Stromal Vascular Fraction-Derived Microvasculatures.

    Directory of Open Access Journals (Sweden)

    Venkat M Ramakrishnan

    Full Text Available Human adipose-derived stromal vascular fraction (hSVF cells are an easily accessible, heterogeneous cell system that can spontaneously self-assemble into functional microvasculatures in vivo. However, the mechanisms underlying vascular self-assembly and maturation are poorly understood, therefore we utilized an in vitro model to identify potential in vivo regulatory mechanisms. We utilized passage one (P1 hSVF because of the rapid UEA1+ endothelium (EC loss at even P2 culture. We exposed hSVF cells to a battery of angiogenesis inhibitors and found that the pan-Wnt inhibitor IWP2 produced the most significant hSVF-EC networking decrease (~25%. To determine which Wnt isoform(s and receptor(s may be involved, hSVF was screened by PCR for isoforms associated with angiogenesis, with only WNT5A and its receptor, FZD4, being expressed for all time points observed. Immunocytochemistry confirmed Wnt5a protein expression by hSVF. To see if Wnt5a alone could restore IWP2-induced EC network inhibition, recombinant human Wnt5a (0-150 ng/ml was added to IWP2-treated cultures. The addition of rhWnt5a significantly increased EC network area and significantly decreased the ratio of total EC network length to EC network area compared to untreated controls. To determine if Wnt5a mediates in vivo microvascular self-assembly, 3D hSVF constructs containing an IgG isotype control, anti-Wnt5a neutralizing antibody or rhWnt5a were implanted subcutaneously for 2w in immune compromised mice. Compared to IgG controls, anti-Wnt5a treatment significantly reduced vessel length density by ~41%, while rhWnt5a significantly increased vessel length density by ~62%. However, anti-Wnt5a or rhWnt5a did not significantly affect the density of segments and nodes, both of which measure vascular complexity. Taken together, this data demonstrates that endogenous Wnt5a produced by hSVF plays a regulatory role in microvascular self-assembly in vivo. These findings also suggest that

  12. Tolerance of CD8+ T cells developing in parent-->F1 chimeras prepared with supralethal irradiation: step-wise induction of tolerance in the intrathymic and extrathymic environments. (United States)

    Kosaka, H; Sprent, J


    Tolerance of CD8+ cells was examined in parent-->F1 bone marrow chimeras (BMC) prepared with supralethal irradiation; host class I expression in the chimeras was limited to non-BM-derived cells. In terms of helper-independent proliferative responses in vitro and induction of graft-vs.-host disease on adoptive transfer, CD8+ cells from long-term chimeras showed profound tolerance to host antigens irrespective of whether the cells were prepared from the thymus or from spleen or lymph nodes. By limiting dilution analysis, cytotoxic T lymphocyte (CTL) precursors specific for host antigens were rare in the extrathymic lymphoid tissues. In the thymus, by contrast, host-specific CTL precursors were only slightly less frequent than in normal parental strain mice. These host-specific CD8+ cells survived when BMC thymocytes were transferred intravenously to a neutral environment, i.e., to donor strain mice. When transferred to further BMC hosts, however, most of the host-reactive cells disappeared. Collectively, the data suggest that tolerance of CD8+ cells in BMC hosts occurs in both the intrathymic and extrathymic environments. In the thymus, contact with host antigens on thymic epithelial cells deletes CD8+ cells controlling helper-independent proliferative responses and in vivo effector functions but spares typical helper-dependent CTL precursors. After export from the thymus, most of the CTL precursors are eliminated after contacting host antigens on stromal cells in the extrathymic environment.

  13. Increased local concentration of complement C5a contributes to incisional pain in mice

    Directory of Open Access Journals (Sweden)

    Clark David J


    Full Text Available Abstract Background In our previous study, we demonstrated that local injection of complement C5a and C3a produce mechanical and heat hyperalgesia, and that C5a and C3a activate and sensitize cutaneous nociceptors in normal skin, suggesting a contribution of complement fragments to acute pain. Other studies also have shown that the complement system can be activated by surgical incision, and the systemic blockade of C5a receptor (C5aR reduces incision-induced pain and inflammation. In this study, we further examined the possible contribution of wound area C5a to incisional pain. Methods Using of a hind paw incisional model, the effects of a selective C5aR antagonist, PMX53, on nociceptive behaviors were measured after incision in vivo. mRNA levels of C5 and C5aR in skin, dorsal root ganglia (DRG and spinal cord, and C5a protein levels in the skin were quantified after incision. The responses of nociceptors to C5a were also evaluated using the in vitro skin-nerve preparation. Results Local administration of PMX53 suppressed heat hyperalgesia and mechanical allodynia induced by C5a injection or after hind paw incision in vivo. mRNA levels of C5 and C5aR in the skin, but not DRG and spinal cord, were dramatically increased after incision. C5a protein in the skin was also increased after incision. In vitro C5a did not increase the prevalence of fibers with ongoing activity in afferents from incised versus control, unincised skin. C5a sensitized C-fiber afferent responses to heat; however, this was less evident in afferents adjacent to the incision. PMX53 blocked sensitization of C-fiber afferents to heat by C5a but did not by itself influence ongoing activity or heat sensitivity in afferents innervating control or incised skin. The magnitude of mechanical responses was also not affected by C5a in any nociceptive fibers innervating incised or unincised skin. Conclusions This study demonstrates that high locally generated C5a levels are present in

  14. Analysis of the cloverleaf element in a human rhinovirus type 14/poliovirus chimera: correlation of subdomain D structure, ternary protein complex formation and virus replication. (United States)

    Rieder, Elizabeth; Xiang, Wenkai; Paul, Aniko; Wimmer, Eckard


    RNA genomes of enteroviruses and rhinoviruses contain a 5'-terminal structure, the cloverleaf (CL), which serves as signal in RNA synthesis. Substitution of the poliovirus [PV1(M)] CL with that of human rhinovirus type 2 (HRV2) was shown previously to produce a viable chimeric PV, whereas substitution with the HRV14 CL produced a null phenotype. Fittingly, the HRV14 CL failed to form a complex with PV-specific proteins 3CD(pro)-3AB or 3CD(pro)-PCBP2, considered essential for RNA synthesis. It was reported previously (Rohll et al., J Virol 68, 4384-4391, 1994) that the major determinant for the null phenotype of a PV/HRV14 chimera resides in subdomain Id of the HRV14 CL. Using a chimeric PV/HRV14 CL in the context of the PV genome, stem-loop Id of HRV14 CL was genetically dissected. It contains the sequence C(57)UAU(60)-G, the underlined nucleotides forming the loop that is shorter by 1 nt when compared to the corresponding PV structure (UUGC(60)GG). Insertion of a G nucleotide to form a tetra loop (C(57)UAU(60)GG(61)) did not rescue replication of the chimera. However, an additional mutation at position 60 (C(57)UAC(60)GG(61)) yielded a replicating genome. Only the mutant PV/HRV14 CL with the UAC(60)G tetra loop formed ternary complexes efficiently with either PV proteins 3CD(pro)-3AB or 3CD(pro)-PCBP2. Thus, in the context of PV RNA synthesis, the presence of a tetra loop in subdomain D of the CL per se is not sufficient for function. The sequence and, consequently, the structure of the tetra loop plays an essential role. Biochemical assays demonstrated that the function of the CL element and the function of the cis-acting replication element in the 3D(pol)-3CD(pro)-dependent uridylylation of VPg are not linked.

  15. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis. (United States)

    Nemoto, Eiji; Ebe, Yukari; Kanaya, Sousuke; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi


    Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent pathway.

  16. Lamprey TLRs with properties distinct from those of the variable lymphocyte receptors. (United States)

    Ishii, Akihiro; Matsuo, Aya; Sawa, Hirofumi; Tsujita, Tadayuki; Shida, Kyoko; Matsumoto, Misako; Seya, Tsukasa


    Fish express mammalian-type (M-type) TLRs consisting of leucine-rich repeats (LRRs) and Toll-IL-1R (TIR) homology domain for immunity, whereas invertebrates in deuterostomes appear to have no orthologs of M-type TLRs. Lampetra japonica (lamprey) belongs to the lowest class of vertebrates with little information about its TLRs. We have identified two cDNA sequences of putative TLRs in the lamprey (laTLRs) that contain LRRs and TIR domains. The two laTLRs were 56% homologous to each other, and their TIRs were similar to those of members of the human TLR2 subfamily, most likely orthologs of fish TLR14. We named them laTLR14a and laTLR14b. We raised a rabbit polyclonal Ab against laTLR14b and identified a 85-kDa protein in a human HEK293 transfectant by immunoblotting using the Ab. FACS, histochemical, and confocal analyses showed that laTLR14b is expressed intracellularly in lamprey gill cells and that the overexpressed protein resides in the endoplasmic reticulum of human and fish (medaka) cell lines. Because natural agonists of TLR14 remained unidentified, we made a chimera construct of extracellular CD4 and the cytoplasmic domain of laTLR14. The chimera molecule of laTLR14b, when expressed in HEK293 cells, elicited activation of NF-kappaB and, consequently, weak activation of the IFN-beta promoter. laTLR14b mRNA was observed in various organs and leukocytes. This lamprey species expressed a variable lymphocyte receptor structurally independent of laTLR14 in leukocytes. Thus, the jawless vertebrate lamprey possesses two LRR-based recognition systems, the variable lymphocyte receptor and TLR, and the M-type TLRs are conserved across humans, fish, and lampreys.


    Institute of Scientific and Technical Information of China (English)

    Xue-yuan Tang; Zai-fu Jian; Guo-ping Wang; Hong-hui Yang; Wei Liu


    Objective To investigate the role of cytoplasmic domain of integrin alpha Ⅱb in platelet signal transduction.Methods Binding capacity of integrin alpha ⅡbR995Ato antibody platelet activation complex-1 (PAC-1) and pp125focal adhesion kinase (FAK) phosphorylation of cells were detected by flow cytometry, immune precipitation, and Western blotting.Results Without activation, wild-type alpha Ⅱ bbeta3 Chinese hamster ovary (CHO) cells failed to bind to PAC-1, but mutant chimera alpha ⅡbR995Aeta3 CHO cells were able to bind with PAC-1. Furthermore, phosphorylation of pp125 (FAK)in wild-type alpha Ⅱbbeta3 CHO cells occured only when cells were adhered to fibrinogen, but could not be detected in bovine serum albumin suspension. However in the mutant chimera group, it could be detected in both conditions.Conclusion The mutation in integrin alpha ⅡbR995Aalters its affinity state as a receptor, thus also mediating cytoplasmic signal transduction leading to the phosphorylation of pp125 (FAK) without ligand binding.

  18. Neurotrophic activities of trk receptors conserved over 600 million years of evolution. (United States)

    Beck, Gad; Munno, David W; Levy, Zehava; Dissel, Helga M; Van-Minnen, Jan; Syed, Naweed I; Fainzilber, Mike


    The trk family of receptor tyrosine kinases is crucial for neuronal survival in the vertebrate nervous system, however both C. elegans and Drosophila lack genes encoding trks or their ligands. The only invertebrate representative of this gene family identified to date is Ltrk from the mollusk Lymnaea. Did trophic functions of trk receptors originate early in evolution, or were they an innovation of the vertebrates? Here we show that the Ltrk gene conserves a similar exon/intron order as mammalian trk genes in the region encoding defined extracellular motifs, including one exon encoding a putative variant immunoglobulin-like domain. Chimeric receptors containing the intracellular and transmembrane domains of Ltrk undergo ligand-induced autophosphorylation followed by MAP kinase activation in transfected cells. The chimeras are internalized similarly to TrkA in PC12 cells, and their stimulation leads to differentiation and neurite extension. Knock-down of endogenous Ltrk expression compromises outgrowth and survival of Lymnaea neurons cultured in CNS-conditioned medium. Thus, Ltrk is required for neuronal survival, suggesting that trophic activities of the trk receptor family originated before the divergence of molluscan and vertebrate lineages approximately 600 million years ago.

  19. 17 CFR 259.5a - Form U5A, for notification of registration filed under section 5(a) of the Act. (United States)


    ...: For Federal Register citations affecting Form U5A, see the List of CFR Sections Affected, which... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Form U5A, for notification of... OF 1935 Forms for Registration and Annual Supplements § 259.5a Form U5A, for notification...

  20. An Engineered PrPsc-like Molecule from the Chimera of Mammalian Prion Protein and Yeast Ure2p Prion-inducing Domain

    Institute of Scientific and Technical Information of China (English)

    Shao-Man YIN; Man-Sun SY; Po TIEN


    Production of the pathogenic prion isoform prpsc-like molecules is thought to be useful forunderstanding the mysterious mechanism of conformational conversion process of prion diseases andproving the "protein-only" hypothesis. In this report, an engineered PrPsc-like conformation was producedfrom a chimera of mammalian bovine prion protein (bPrP) and yeast Ure2p prion-inducing domain (UPrD).Compared with the normal form of bPrP, the engineered recombinant protein, termed bPrP-UPrD,spontaneously aggregated into ordered fibrils under physiological condition, displaying amyloid-likecharacteristics, such as fibrillar morphology, birefringence upon binding to Congo red and increasedfluorescence intensity with Thioflavine T. Limited resistance to protease K digestion and CD spectroscopyexperiments suggested that the structure of bPrP-UPrD had been changed, and adopted a new, high contentβ-sheet conformation during the fibrils formation. Moreover, bPrP-UPrD amyloid fibrils could recruit moresoluble forms into the aggregates. Therefore, the engineered molecules could mimic significant behaviors ofPrPsc and will be helpful for further understanding the mechanism of conformational conversion process.

  1. An Engineered PrPsc-like Molecule from the Chimera of Mammalian Prion Protein and Yeast Ure2p Prion-inducing Domain

    Institute of Scientific and Technical Information of China (English)

    Shao-ManYIN; Man-SunSY; PoTIEN


    Production of the pathogenic prion isoform PrPsc-like molecules is thought to be useful forunderstanding the mysterious mechanism of conformational conversion process of prion diseases andproving the "protein-only" hypothesis. In this report, an engineered PrPsc-like conformation was producedfrom a chimera of mammalian bovine prion protein (bPrP) and yeast Ure2p prion-inducing domain (UPrD).Compared with the normal form of bPrP, the engineered recombinant protein, termed bPrP-UPrD,spontaneously aggregated into ordered fibrils under physiological condition, displaying amyloid-likecharacteristics, such as fibrillar morphology, birefringence upon binding to Congo red and increasedfluorescence intensity with Thioflavine T. Limited resistance to protease K digestion and CD spectroscopyexperiments suggested that the structure of bPrP-UPrD had been changed, and adopted a new, high contentB-sheet conformation during the fibrils formation. Moreover, bPrP-UPrD amyloid fibrils could recruit moresoluble forms into the aggregates. Therefore, the engineered molecules could mimic significant behaviors of PrPse and will be helpful for further understanding the mechanism of conformational conversion process.

  2. Design of potent inhibitors of human RAD51 recombinase based on BRC motifs of BRCA2 protein: modeling and experimental validation of a chimera peptide.

    KAUST Repository

    Nomme, Julian


    We have previously shown that a 28-amino acid peptide derived from the BRC4 motif of BRCA2 tumor suppressor inhibits selectively human RAD51 recombinase (HsRad51). With the aim of designing better inhibitors for cancer treatment, we combined an in silico docking approach with in vitro biochemical testing to construct a highly efficient chimera peptide from eight existing human BRC motifs. We built a molecular model of all BRC motifs complexed with HsRad51 based on the crystal structure of the BRC4 motif-HsRad51 complex, computed the interaction energy of each residue in each BRC motif, and selected the best amino acid residue at each binding position. This analysis enabled us to propose four amino acid substitutions in the BRC4 motif. Three of these increased the inhibitory effect in vitro, and this effect was found to be additive. We thus obtained a peptide that is about 10 times more efficient in inhibiting HsRad51-ssDNA complex formation than the original peptide.

  3. Protein nanopore-based, single-molecule exploration of copper binding to an antimicrobial-derived, histidine-containing chimera peptide. (United States)

    Mereuta, Loredana; Schiopu, Irina; Asandei, Alina; Park, Yoonkyung; Hahm, Kyung-Soo; Luchian, Tudor


    Metal ions binding exert a crucial influence upon the aggregation properties and stability of peptides, and the propensity of folding in various substates. Herein, we demonstrate the use of the α-HL protein as a powerful nanoscopic tool to probe Cu(2+)-triggered physicochemical changes of a 20 aminoacids long, antimicrobial-derived chimera peptide with a His residue as metal-binding site, and simultaneously dissect the kinetics of the free- and Cu(2+)-bound peptide interaction to the α-HL pore. Combining single-molecule electrophysiology on reconstituted lipid membranes and fluorescence spectroscopy, we show that the association rate constant between the α-HL pore and a Cu(2+)-free peptide is higher than that of a Cu(2+)-complexed peptide. We posit that mainly due to conformational changes induced by the bound Cu(2+) on the peptide, the resulting complex encounters a higher energy barrier toward its association with the protein pore, stemming most likely from an extra entropy cost needed to fit the Cu(2+)-complexed peptide within the α-HL lumen region. The lower dissociation rate constant of the Cu(2+)-complexed peptide from α-HL pore, as compared to that of Cu(2+)-free peptide, supports the existence of a deeper free energy well for the protein interaction with a Cu(2+)-complexed peptide, which may be indicative of specific Cu(2+)-mediated contributions to the binding of the Cu(2+)-complexed peptide within the pore lumen.

  4. Autosomal P[ovoD1] dominant female-sterile insertions in Drosophila and their use in generating germ-line chimeras. (United States)

    Chou, T B; Noll, E; Perrimon, N


    The 'dominant female-sterile' technique used to generate germ-line mosaics in Drosophila is a powerful tool to determine the tissue specificity (germ line versus somatic) of recessive female-sterile mutations as well as to analyze the maternal effect of recessive zygotic lethal mutations. This technique requires the availability of germ-line-dependent, dominant female-sterile (DFS) mutations that block egg laying but do not affect viability. To date only one X-linked mutation, ovoD1 has been isolated that completely fulfills these criteria. Thus the 'DFS technique' has been largely limited to the X-chromosome. To extend this technique to the autosomes, we have cloned the ovoD1 mutation into a P-element vector and recovered fully expressed P[ovoD1] insertions on each autosomal arm. We describe the generation of these P[ovoD1] strains as well as demonstrate their use in generating germ-line chimeras. Specifically, we show that the Gap1 gene, which encodes a Drosophila homologue of mammalian GTPase-activating protein, is required in somatic follicle cells for embryonic dorsoventral polarity determination.

  5. Expression of sex-specific molecular markers in clones of bipartite allophenic nemertines produced by somatic embryogenesis from Lineus sanguineus male/female chimera fragments. (United States)

    Tarpin, M; Bierne, J


    SDS-PAGE electrophoresis showed major sex-specific proteins in sexually maturing and mature Lineus sanguineus. These "egg-specific" (145, 78 and 40 kDa) and "sperm-specific" (55,52 and 28 kDa) proteins are useful for studying sex differentiation in bilaterally allophenic worms produced by asexual reproduction of bipartite male/female chimeric worms. This study was carried out on 2 symmetrical clones of bilaterally allophenic worms, derived by somatic embryogenesis from fragments transected from chimeras obtained by exchange-grafting lateral body halves of male and female specimens, and from their asexually-derived progeny. The electrophoretic patterns of proteins extracted from sexually immature, maturing and mature allophenic animals from the 5th to the 19th year of cloning, showed the presence of all female-specific markers and the absence of male-specific markers. There was also complete biochemical feminization of the male halves. The synthesis of the only egg-specific molecules in initially male lateral body halves means that the long-term cloning results in the total repression of genes encoding sperm-specific proteins, since genetically male determinant-bearing cells can randomly re-express the testis characteristic as fertile but rudimentary male gonads.

  6. Surface functionalization of inorganic nano-crystals with fibronectin and E-cadherin chimera synergistically accelerates trans-gene delivery into embryonic stem cells. (United States)

    Kutsuzawa, K; Chowdhury, E H; Nagaoka, M; Maruyama, K; Akiyama, Y; Akaike, T


    Stem cells holding great promises in regenerative medicine have the potential to be differentiated to a specific cell type through genetic manipulation. However, conventional ways of gene transfer to such progenitor cells suffer from a number of disadvantages particularly involving safety and efficacy issues. Here, we report on the development of a bio-functionalized inorganic nano-carrier of DNA by embedding fibronectin and E-cadherin chimera on the carrier, leading to its high affinity interactions with embryonic stem cell surface and accelerated trans-gene delivery for subsequent expression. While only apatite nano-particles were very inefficient in transfecting embryonic stem cells, fibronectin-anchored particles and to a more significant extent, fibronectin and E-cadherin-Fc-associated particles dramatically enhanced trans-gene delivery with a value notably higher than that of commercially available lipofection system. The involvement of both cell surface integrin and E-cadherin in mediating intracellular localization of the hybrid carrier was verified by blocking integrin binding site with excess free fibronectin and up-regulating both integrin and E-cadherin through PKC activation. Thus, the new establishment of a bio-functional hybrid gene-carrier would promote and facilitate development of stem cell-based therapy in regenerative medicine.

  7. Anatomical structure of leaf sectors with different resistance to powdery mildew (Erisiphe cruciferarum Opiz ex. L. Junell in winter rapeseed chimera

    Directory of Open Access Journals (Sweden)

    J. Cebrat


    Full Text Available The subject of the study was a sectorial chimera of dihaploid winter rapeseed, obtained with the help of gamma ray treatment (30 Gy during shoot cloning in vitro. One sector of the plant was infected by Erisiphe cruciferarum Opiz ex. L. Junell and the other one was resistant. The anatomical structure of a leaf, divided into the two sectors along the midrib, was studied. The infected part of the leaf blade was thinner and built of a smaller number of palisade and spongy mesophyll cell layers. The size of cells in this sector, both in the epidermis and in the mesophyll, as well as the size of nuclei, chloroplasts and intercellular spaces were bigger than those in the resistant portion. On the other hand, the stomata in the infected segment were smaller but their number was higher than that in the healthy part. The study made it possible to analyse the relation between the anatomical structure of the host plant and the pathogen.

  8. DYNAMICS OF SOMATIC CELLLINEAGE COMPETITION IN CHIMERAS OF Hydractinia symbiolongicarpus (CNIDARIA: HYDROZOA Dinámica de competencia entre líneas celulares somáticas en quimeras de Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa

    Directory of Open Access Journals (Sweden)


    Full Text Available Sessile colonial invertebrates often fuse with conspecifics to form chimeras. Chimerism represents an unequivocal instance of withinindividual selection where genetically different celllineages compete for representation in the somatic and gametic pools. We analyzed temporal and spatial variations in somatic celllineage composition of laboratoryestablished chimeras of the hydroid Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa. Using three clones with different allotypic specificities (i.e., two rejecting one another but fusing with a third one, we established two classes of twoway chimeras, a single threeway chimera class, and an incompatible interaction as control. Chimeras were sampled at five time intervals for a year. Celllineages in samples were identified by polyp fusibility assays against tester colonies of known fusibility. The cell lineages composing the chimeras showed a differential competitive ability, with one of them representing close to 80% by the end of the study. Rare celllineages stabilized at low frequencies but preserved their ability to gain somatic representation and to colonize distant parts of the chimera. This behavior characterizes cell parasites. As a consequence of the reproductive plasticity of most colonial invertebrates, celllineage variability may be transmitted to the offspring both sexually and asexually. Successful somatic competitors are expected to be preferentially transmitted asexually, whereas cell parasites would be preferentially transmitted sexuallyLos invertebrados coloniales y sésiles con frecuencia se fusionan con conespecíficos para formar quimeras. Estas quimeras son un ejemplo de selección natural actuando al interior del individuo en donde células genéticamente distintas compiten por acceso tanto a la línea somática como a la germinal. En este estudio se analizaron las variaciones temporal y espacial de linajes celulares somáticos en quimeras establecidas en el laboratorio del

  9. Dynamics of Somatic Cell-Lineage Competition in Chimeras of Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa Dinámica de competencia entre líneas celulares somáticas en quimeras de Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa

    Directory of Open Access Journals (Sweden)

    Schwarz Ryan S.


    Full Text Available Sessile colonial invertebrates often fuse with conspecifics to form chimeras. Chimerism represents an unequivocal instance of withinindividual selection where genetically different celllineages compete for representation in the somatic and gametic pools. We analyzed temporal and spatial variations in somatic celllineage composition of laboratoryestablished chimeras of the hydroid Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa. Using three clones with different allotypic specificities (i.e., two rejecting one another but fusing with a third one, we established two classes of twoway chimeras, a single threeway chimera class, and an incompatible interaction as control. Chimeras were sampled at five time intervals for a year. Celllineages in samples were identified by polyp fusibility assays against tester colonies of known fusibility. The cell lineages composing the chimeras showed a differential competitive ability, with one of them representing close to 80% by the end of the study. Rare celllineages stabilized at low frequencies but preserved their ability to gain somatic representation and to colonize distant parts of the chimera. This behavior characterizes cell parasites. As a consequence of the reproductive plasticity of most colonial invertebrates, celllineage variability may be transmitted to the offspring both sexually and asexually. Successful somatic competitors are expected to be preferentially transmitted asexually, whereas cell parasites would be preferentially transmitted sexually.Los invertebrados coloniales y sésiles con frecuencia se fusionan con conespecíficos para formar quimeras. Estas quimeras son un ejemplo de selección natural actuando al interior del individuo en donde células genéticamente distintas compiten por acceso tanto a la línea somática como a la germinal. En este estudio se analizaron las variaciones temporal y espacial de linajes celulares somáticos en quimeras establecidas en el

  10. Peptidyl arginine deiminase from Porphyromonas gingivalis abolishes anaphylatoxin C5a activity. (United States)

    Bielecka, Ewa; Scavenius, Carsten; Kantyka, Tomasz; Jusko, Monika; Mizgalska, Danuta; Szmigielski, Borys; Potempa, Barbara; Enghild, Jan J; Prossnitz, Eric R; Blom, Anna M; Potempa, Jan


    Evasion of killing by the complement system, a crucial part of innate immunity, is a key evolutionary strategy of many human pathogens. A major etiological agent of chronic periodontitis, the Gram-negative bacterium Porphyromonas gingivalis, produces a vast arsenal of virulence factors that compromise human defense mechanisms. One of these is peptidylarginine deiminase (PPAD), an enzyme unique to P. gingivalis among bacteria, which converts Arg residues in polypeptide chains into citrulline. Here, we report that PPAD citrullination of a critical C-terminal arginine of the anaphylatoxin C5a disabled the protein function. Treatment of C5a with PPAD in vitro resulted in decreased chemotaxis of human neutrophils and diminished calcium signaling in monocytic cell line U937 transfected with the C5a receptor (C5aR) and loaded with a fluorescent intracellular calcium probe: Fura-2 AM. Moreover, a low degree of citrullination of internal arginine residues by PPAD was also detected using mass spectrometry. Further, after treatment of C5 with outer membrane vesicles naturally shed by P. gingivalis, we observed generation of C5a totally citrullinated at the C-terminal Arg-74 residue (Arg74Cit). In stark contrast, only native C5a was detected after treatment with PPAD-null outer membrane vesicles. Our study suggests reduced antibacterial and proinflammatory capacity of citrullinated C5a, achieved via lower level of chemotactic potential of the modified molecule, and weaker cell activation. In the context of previous studies, which showed crosstalk between C5aR and Toll-like receptors, as well as enhanced arthritis development in mice infected with PPAD-expressing P. gingivalis, our findings support a crucial role of PPAD in the virulence of P. gingivalis.

  11. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Eiji, E-mail: [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Ebe, Yukari; Kanaya, Sousuke [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tsuchiya, Masahiro [Department of Aging and Geriatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nakamura, Takashi [Department of Pediatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tamura, Masato [Department of Biochemistry and Molecular Biology, Hokkaido University Graduate School of Dentistry, Sapporo 060-8586 (Japan); Shimauchi, Hidetoshi [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)


    Highlights: Black-Right-Pointing-Pointer Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. Black-Right-Pointing-Pointer Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. Black-Right-Pointing-Pointer Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. Black-Right-Pointing-Pointer Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through {beta}-catenin-dependent canonical and {beta}-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent

  12. WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors. (United States)

    Anastas, Jamie N; Kulikauskas, Rima M; Tamir, Tigist; Rizos, Helen; Long, Georgina V; von Euw, Erika M; Yang, Pei-Tzu; Chen, Hsiao-Wang; Haydu, Lauren; Toroni, Rachel A; Lucero, Olivia M; Chien, Andy J; Moon, Randall T


    About half of all melanomas harbor a mutation that results in a constitutively active BRAF kinase mutant (BRAF(V600E/K)) that can be selectively inhibited by targeted BRAF inhibitors (BRAFis). While patients treated with BRAFis initially exhibit measurable clinical improvement, the majority of patients eventually develop drug resistance and relapse. Here, we observed marked elevation of WNT5A in a subset of tumors from patients exhibiting disease progression on BRAFi therapy. WNT5A transcript and protein were also elevated in BRAFi-resistant melanoma cell lines generated by long-term in vitro treatment with BRAFi. RNAi-mediated reduction of endogenous WNT5A in melanoma decreased cell growth, increased apoptosis in response to BRAFi challenge, and decreased the activity of prosurvival AKT signaling. Conversely, overexpression of WNT5A promoted melanoma growth, tumorigenesis, and activation of AKT signaling. Similarly to WNT5A knockdown, knockdown of the WNT receptors FZD7 and RYK inhibited growth, sensitized melanoma cells to BRAFi, and reduced AKT activation. Together, these findings suggest that chronic BRAF inhibition elevates WNT5A expression, which promotes AKT signaling through FZD7 and RYK, leading to increased growth and therapeutic resistance. Furthermore, increased WNT5A expression in BRAFi-resistant melanomas correlates with a specific transcriptional signature, which identifies potential therapeutic targets to reduce clinical BRAFi resistance.

  13. Targeting Discoidin Domain Receptors in Prostate Cancer (United States)


    1 AWARD NUMBER: W81XWH-15-1-0226 TITLE: Targeting Discoidin Domain Receptors in Prostate Cancer PRINCIPAL INVESTIGATOR: Dr. Rafael Fridman...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-15-1-0226 Targeting Discoidin Domain Receptors in Prostate Cancer 5b. GRANT NUMBER W81XWH-15...DDRs in prostate cancer . During the first funding period, we conducted immunohistochemical studies by staining a 200 case Grade/Stage tissue

  14. Purinergic Receptors in Ocular Inflammation

    Directory of Open Access Journals (Sweden)

    Ana Guzman-Aranguez


    Full Text Available Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly “tuned,” can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P1,P4-diadenosine tetraphosphate (Ap4A, and P1,P5-diadenosine pentaphosphate (Ap5A are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particular A2A adenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3 receptor, selective agonists like N6-(3-iodobenzyl-5′-N-methylcarboxamidoadenosine (CF101 have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation.

  15. Advanced Modelling and Functional Characterization of B2 Bradykinin Receptor

    Directory of Open Access Journals (Sweden)

    Muhammad Saad Khan


    Full Text Available Hereditary angioedema (giant hives is an autosomal dominant malady characterized by repetitive episodes of probably life-threatening angioedema due to a partial deficiency of C1 inhibitor. B2 Bradykinin Receptor's (BKRB2 amino acid sequence is deposited within UniProt under accession number P30411. The Physicochemical properties of BKRB2 sequence are determined by using ProtParam. BKRB2's secondary structure was predicted through PROTEUS. Pfam domain was used for functional characterization of BKRB2. PSI-BLAST was used to find homologs of known structure. Modelling by satisfaction of spatial restraints, either uses distance geometry or optimization techniques to satisfy spatial restraints performed by MODELLER. The quality of the generated model was evaluated with PROCHECK by Ramachandran plot analysis. Validation of the generated models was further performed by WHAT IF. ProSA was used for the analysis of Z-scores and energy plots. The 3D structures of the modeled proteins were analyzed using UCSF Chimera. Clustal Omega is used for multiple sequence alignment that uses seeded guide trees and HMM profile-profile techniques to generate alignments.

  16. Anti-CD20 single chain variable antibody fragment-apolipoprotein A-I chimera containing nanodisks promote targeted bioactive agent delivery to CD20-positive lymphomas. (United States)

    Crosby, Natasha M; Ghosh, Mistuni; Su, Betty; Beckstead, Jennifer A; Kamei, Ayako; Simonsen, Jens B; Luo, Bing; Gordon, Leo I; Forte, Trudy M; Ryan, Robert O


    A fusion protein comprising an α-CD20 single chain variable fragment (scFv) antibody, a spacer peptide, and human apolipoprotein (apo) A-I was constructed and expressed in Escherichia coli. The lipid interaction properties intrinsic to apoA-I as well as the antigen recognition properties of the scFv were retained by the chimera. scFv•apoA-I was formulated into nanoscale reconstituted high-density lipoprotein particles (termed nanodisks; ND) and incubated with cultured cells. α-CD20 scFv•apoA-I ND bound to CD20-positive non-Hodgkins lymphoma (NHL) cells (Ramos and Granta) but not to CD20-negative T lymphocytes (i.e., Jurkat). Binding to NHL cells was partially inhibited by pre-incubation with rituximab, a monoclonal antibody directed against CD20. Confocal fluorescence microscopy analysis of Granta cells following incubation with α-CD20 scFv•apoA-I ND formulated with the intrinsically fluorescent hydrophobic polyphenol, curcumin, revealed α-CD20 scFv•apoA-I localizes to the cell surface, while curcumin off-loads and gains entry to the cell. Compared to control incubations, viability of cultured NHL cells was decreased upon incubation with α-CD20 scFv•apoA-I ND harboring curcumin. Thus, formulation of curcumin ND with α-CD20 scFv•apoA-I as the scaffold component confers cell targeting and enhanced bioactive agent delivery, providing a strategy to minimize toxicity associated with chemotherapeutic agents.

  17. Chimeras of mature pediocin PA-1 fused to the signal peptide of enterocin P permits the cloning, production, and expression of pediocin PA-1 in Lactococcus lactis. (United States)

    Martín, María; Gutiérrez, Jorge; Criado, Raquel; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E


    Chimeras of pediocin PA-1 (PedA-1), a bacteriocin produced by Pediococcus acidilactici PLBH9, fused to the signal peptide of enterocin P (EntP), a sec-dependent bacteriocin produced by Enterococcus faecium P13, permitted the production of PedA-1 in Lactococcus lactis. Chimeric genes encoding the EntP signal peptide (SP(entP)) fused to mature PedA-1 (pedA), with or without its immunity gene (pedB), were cloned into the expression vector pMG36c to generate the recombinant plasmids pMPP9 (SP(entP):pedA) and pMPP14i (SP(entP):pedA + pedB). Transformation of competent L. lactis subsp. lactis IL1403, L. lactis subsp. cremoris NZ9000, and L. lactis subsp. lactis DPC5598 with the recombinant plasmids has permitted the detection and quantitation of PedA-1 and the coproduction of nisin A and PedA-1 in supernatants of producer cells with specific anti-PedA-1 antibodies and a noncompetitive indirect enzyme-linked immunosorbent assay. Recombinant L. lactis hosts carrying pMPP9 or pMPP14i displayed antimicrobial activity, suggesting that mature PedA-1 fused to SP(EntP) is the minimum requirement for the synthesis, processing, and secretion of biologically active PedA-1 in L. lactis. However, the production and antimicrobial activity of the PedA-1 produced by L. lactis was lower than that produced by the P. acidilactici control strains.

  18. A case-based evaluation of SRD5A1, SRD5A2, AR, and ADRA1A as candidate genes for severity of BPH. (United States)

    Klotsman, M; Weinberg, C R; Davis, K; Binnie, C G; Hartmann, K E


    In men with a clinical diagnosis of benign prostatic hyperplasia (BPH), polytomous logistic regression analysis was conducted to evaluate associations between two silent polymorphisms in SRD5A1 (codon positions 30 and 116), two polymorphisms in SRD5A2 (Val89Leu substitution and C to T transition in intron 1), a trinucleotide (CAG)n repeat in androgen receptor (AR), and an Arg492Cys substitution in ADRA1A and clinical parameters that characterize severity of BPH. Candidate gene selection was based on two mechanistic pathways targeted by pharmacotherapy for BPH: (1) androgen metabolic loci contributing to prostate growth (static obstruction); and (2) factors affecting smooth muscle tone (dynamic obstruction). Polymorphisms in SRD5A2 were not associated with severity of BPH; however, SRD5A1 polymorphisms were associated with severity of BPH. The process(es) in which these silent single-nucleotide polymorphisms (SNPs) influence BPH phenotypes is unknown and additional studies will be needed to assess whether these SNPs have direct functional consequences. The characterization of additional molecular factors that contribute to static and dynamic obstruction may help predict response to pharmacotherapy and serve to identify novel drug targets for the clinical management of BPH.

  19. Wnt5a functions in planar cell polarity regulation in mice. (United States)

    Qian, Dong; Jones, Chonnettia; Rzadzinska, Agnieszka; Mark, Sharayne; Zhang, Xiaohui; Steel, Karen P; Dai, Xing; Chen, Ping


    Planar cell polarity (PCP) refers to the polarization of cells within the plane of a cell sheet. A distinctive epithelial PCP in vertebrates is the uniform orientation of stereociliary bundles of the sensory hair cells in the mammalian cochlea. In addition to establishing epithelial PCP, planar polarization is also required for convergent extension (CE); a polarized cellular movement that occurs during neural tube closure and cochlear extension. Studies in Drosophila and vertebrates have revealed a conserved PCP pathway, including Frizzled (Fz) receptors. Here we use the cochlea as a model system to explore the involvement of known ligands of Fz, Wnt morphogens, in PCP regulation. We show that Wnt5a forms a reciprocal expression pattern with a Wnt antagonist, the secreted frizzled-related protein 3 (Sfrp3 or Frzb), along the axis of planar polarization in the cochlear epithelium. We further demonstrate that Wnt5a antagonizes Frzb in regulating cochlear extension and stereociliary bundle orientation in vitro, and that Wnt5a(-/-) animals have a shortened and widened cochlea. Finally, we show that Wnt5a is required for proper subcellular distribution of a PCP protein, Ltap/Vangl2, and that Wnt5a interacts genetically with Ltap/Vangl2 for uniform orientation of stereocilia, cochlear extension, and neural tube closure. Together, these findings demonstrate that Wnt5a functions in PCP regulation in mice.

  20. GLP-1 Receptor Agonists (United States)

    ... in Balance › GLP-1 Receptor Agonists Fact Sheet GLP-1 Receptor Agonists May, 2012 Download PDFs English Espanol Editors Silvio ... are too high or too low. What are GLP-1 receptor agonist medicines? GLP-1 receptor agonist medicines, also called ...

  1. Directed Evolution of a Cyclized Peptoid-Peptide Chimera against a Cell-Free Expressed Protein and Proteomic Profiling of the Interacting Proteins to Create a Protein-Protein Interaction Inhibitor. (United States)

    Kawakami, Takashi; Ogawa, Koji; Hatta, Tomohisa; Goshima, Naoki; Natsume, Tohru


    N-alkyl amino acids are useful building blocks for the in vitro display evolution of ribosomally synthesized peptides because they can increase the proteolytic stability and cell permeability of these peptides. However, the translation initiation substrate specificity of nonproteinogenic N-alkyl amino acids has not been investigated. In this study, we screened various N-alkyl amino acids and nonamino carboxylic acids for translation initiation with an Escherichia coli reconstituted cell-free translation system (PURE system) and identified those that efficiently initiated translation. Using seven of these efficiently initiating acids, we next performed in vitro display evolution of cyclized peptidomimetics against an arbitrarily chosen model human protein (β-catenin) cell-free expressed from its cloned cDNA (HUPEX) and identified a novel β-catenin-binding cyclized peptoid-peptide chimera. Furthermore, by a proteomic approach using direct nanoflow liquid chromatography-tandem mass spectrometry (DNLC-MS/MS), we successfully identified which protein-β-catenin interaction is inhibited by the chimera. The combination of in vitro display evolution of cyclized N-alkyl peptidomimetics and in vitro expression of human proteins would be a powerful approach for the high-speed discovery of diverse human protein-targeted cyclized N-alkyl peptidomimetics.

  2. Overexpression of Wnt5a Promotes Angiogenesis in NSCLC

    Directory of Open Access Journals (Sweden)

    Lingli Yao


    Full Text Available To evaluate Wnt5a expression and its role in angiogenesis of non-small-cell lung cancer (NSCLC, immunohistochemistry and CD31/PAS double staining were performed to examine the Wnt5a expression and we analyze the relationships between Wnt5a and microvessel density (MVD, vasculogenic mimicry (VM, and some related proteins. About 61.95% of cases of 205 NSCLC specimens exhibited high expression of Wnt5a. Wnt5a expression level was upregulated in the majority of NSCLC tissues, especially in squamous cell carcinoma, while its expression level in adenocarcinoma was the lowest. Wnt5a was also found more frequently expressed in male patients than in female patients. Except for histological classification and gender, little association was found between Wnt5a and clinicopathological features. Moreover, Wnt5a was significantly correlated with prognosis. Overall, Wnt5a-positive expression in patients with NSCLC indicated shorter survival time. As for vascularization in NSCLC, Wnt5a showed close association with VM and MVD. In addition, Wnt5a was positively related with β-catenin-nu, VE-cadherin, MMP2, and MMP9. The results demonstrated that overexpression of Wnt5a may play an important role in NSCLC angiogenesis and it may function via canonical Wnt signal pathway. This study will provide evidence for further research on NSCLC and also will provide new possible target for NSCLC diagnosis and therapeutic strategies.

  3. Loss of Wnt5a and Ror2 protein in hepatocellular carcinoma associated with poor prognosis

    Institute of Scientific and Technical Information of China (English)

    Ming Geng; Yong-Cheng Cao; Ying-Jian Chen; Hui Jiang; Li-Quan Bi; Xiao-Hong Liu


    AIM:To investigate the expression and clinical significance of Wnt member 5a (Wnt5a) and receptor tyrosine kinase-like orphan receptor 2 (Ror2) in hepatocellular carcinoma (HCC).METHODS:In HCC tissues obtained from 85 patients,the protein expressions of Wnt5a,Ror2,β-catenin,and Ki-67 via immunohistochemical staining using the Envision Plus System.The antibody binding was visualized with 3,3'-diaminobenzidine tetrahydrochloride (DAB) before brief counterstaining with Mayer's hematoxylin.The degree of immunohistochemical staining was recorded using a semiquantitative and subjective grading system.The mRNA expression of Ror2 was examined by real-time reverse transcription polymerase chain reaction,including nineteen of the 85 HCC and three normal liver tissues.The ratios of Ror2 to the housekeeping gene GAPDH represented the normalized relative levels of Ror2 expression.To determine the prognostic factor,the outcome of the 82 patients was determined by reviewing their medical charts.The overall and disease-free survival rates were estimated using the Kaplan-Meier method and compared with the log-rank test.The prognostic analysis was carried out with univariate and multivariate Cox regressions models.RESULTS:Compared to nontumorous (hepatitis or cirrhotic) tissues,Ror2 mRNA expression was clearly decreased in HCC.Ror2 and Wnt5a protein expressions in the majority of HCC patients (63% and 77%,respectively) was significantly less in tumor tissues,as compared to adjacent nontumorous tissues,and this reduction was correlated with increasing serum α-fetoprotein and tumor stage.In 68% (58/85) of the HCC cases,the expression of β-catenin in tumor tissues was either downregulated in the cellular membrane,upregulated in the cytoplasm,or both.Survival analysis indicated that Wnt5a and Ror2 protein expressions could be regarded as independent prognostic factors for HCC; HCC patients with decreased Wnt5a or Ror2 protein expression had a poorer prognosis than those with

  4. Phytoceramide and sphingoid bases derived from brewer's yeast Saccharomyces pastorianus activate peroxisome proliferator-activated receptors

    Directory of Open Access Journals (Sweden)

    Mitsutake Susumu


    Full Text Available Abstract Background Peroxisome proliferator-activated receptors (PPARs are ligand-activated transcription factors that regulate lipid and glucose metabolism. PPARα is highly expressed in the liver and controls genes involved in lipid catabolism. We previously reported that synthetic sphingolipid analogs, part of which contains shorter-length fatty acid chains than natural sphingolipids, stimulated the transcriptional activities of PPARs. Sphingosine and dihydrosphingosine (DHS are abundant sphingoid bases, and ceramide and dihydroceramide are major ceramide species in mammals. In contrast, phytosphingosine (PHS and DHS are the main sphingoid bases in fungi. PHS and phytoceramide exist in particular tissues such as the epidermis in mammals, and involvement of ceramide species in PPARβ activation in cultured keratinocytes has been reported. The purpose of the present study is to investigate whether natural sphingolipids with C18 fatty acid and yeast-derived sphingoid bases activate PPARs as PPAR agonists. Method Lipids of brewer's yeast contain PHS- and DHS-based sphingolipids. To obtain the sphingoid bases, lipids were extracted from brewer's yeast and acid-hydrolyzed. The sphingoid base fraction was purified and quantified. To assess the effects of sphingolipids on PPAR activation, luciferase reporter assay was carried out. NIH/3T3 and human hepatoma (HepG2 cells were transfected with expression vectors for PPARs and retinoid × receptors, and PPAR responsive element reporter vector. When indicated, the PPAR/Gal4 chimera system was performed to enhance the credibility of experiments. Sphingolipids were added to the cells and the dual luciferase reporter assay was performed to determine the transcriptional activity of PPARs. Results We observed that phytoceramide increased the transcriptional activities of PPARs significantly, whereas ceramide and dihydroceramide did not change PPAR activities. Phytoceramide also increased transactivation of

  5. C5a enhances dysregulated inflammatory and angiogenic responses to malaria in vitro: potential implications for placental malaria.

    Directory of Open Access Journals (Sweden)

    Andrea Conroy

    Full Text Available BACKGROUND: Placental malaria (PM is a leading cause of maternal and infant mortality. Although the accumulation of parasitized erythrocytes (PEs and monocytes within the placenta is thought to contribute to the pathophysiology of PM, the molecular mechanisms underlying PM remain unclear. Based on the hypothesis that excessive complement activation may contribute to PM, in particular generation of the potent inflammatory peptide C5a, we investigated the role of C5a in the pathogenesis of PM in vitro and in vivo. METHODOLOGY AND PRINCIPAL FINDINGS: Using primary human monocytes, the interaction between C5a and malaria in vitro was assessed. CSA- and CD36-binding PEs induced activation of C5 in the presence of human serum. Plasmodium falciparum GPI (pfGPI enhanced C5a receptor expression (CD88 on monocytes, and the co-incubation of monocytes with C5a and pfGPI resulted in the synergistic induction of cytokines (IL-6, TNF, IL-1beta, and IL-10, chemokines (IL-8, MCP-1, MIP1alpha, MIP1beta and the anti-angiogenic factor sFlt-1 in a time and dose-dependent manner. This dysregulated response was abrogated by C5a receptor blockade. To assess the potential role of C5a in PM, C5a plasma levels were measured in malaria-exposed primigravid women in western Kenya. Compared to pregnant women without malaria, C5a levels were significantly elevated in women with PM. CONCLUSIONS AND SIGNIFICANCE: These results suggest that C5a may contribute to the pathogenesis of PM by inducing dysregulated inflammatory and angiogenic responses that impair placental function.

  6. Analysis list: Stat5a [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Stat5a Blood,Breast,Embryonic fibroblast,Liver,Pluripotent stem cell + mm9 http://d...at5a.Breast.tsv, http://dbarchive.biosc

  7. Bioinformatic analysis ofhuman nuclear receptornr5a2(hblf) genomic sequence

    Institute of Scientific and Technical Information of China (English)


    We have cloned the cDNA of human nuclear receptor nrSa2(hb1f) gene and obtained its whole genomic sequence previously. In this work we carried out in-depth bioinformatic analysis on the genomic sequence of nrSa2(hb1f) gene. Sequence comparison and prediction algorithms implicated that there might be additional coding regions in the 210 kb genomic sequence besides known exons,especially in the two largest introns. Comparison of the structures of nr5a loci in different species revealed distinguishable conservation and apparent gene duplication during evolution. The remarkable conservation among promoters of zebrafish, mouse and human nr5a2 genes suggested that they would be regulated by the same transcription factors.

  8. Heterologous Expression of Rat Testis GABAA Receptor β3t Splicing Variant in CHO Cells

    Institute of Scientific and Technical Information of China (English)

    Shi-feng LI; Yu-guang CHEN; Yuan-chang YAN; Yi-ping LI


    Objective To characterize a possible retention function of unique sequence in the 5'end of rat testis GABAA receptor β3t splicing variantMethods Rat testis GABAA receptor β3t splicing variant cDNA was cloned and two eukaryotic expression recombinant plasmids of pEGFP-N1 and pEGFP-C1 were constructed respectively by fusing green fluorescent protein to the N or C-terminus of β3t isoform. The recombinant plasmids were transfected into CHO cells by calcium phosphate co-precipitation method. Fluorescence microscope and laser confocal microscope were used to analyze localization of β3t in the transfected cells. ConA-Texas-Red was used to label cell ER and the localization of rat testis β3t splicing variant in CHO cells was determined.Results When rat testis β3t splicing variant was expressed in CHO cells, two expression patterns were delineated, the distributions of uniform and mainly discrete intracellular compartments respectively. The chimera product failed to be translocated into the cell surface when expressed in CHO cells; whereas the β3 subunit of rat brain was incorporated into the plasma membrane.Conclusion The inability of β3t to target into the ER may be a consequence of the unique 25 specific amino acid segments in the N terminus.

  9. Interaction of the LILRB1 inhibitory receptor with HLA class Ia dimers. (United States)

    Baía, Diogo; Pou, Jordi; Jones, Des; Mandelboim, Ofer; Trowsdale, John; Muntasell, Aura; López-Botet, Miguel


    Leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1) has been reported to interact with a wide spectrum of HLA class I (HLA-I) molecules, albeit with different affinities determined by allelic polymorphisms and conformational features. HLA-G dimerization and the presence of intracellular Cys residues in HLA-B7 have been shown to be critical for their recognition by LILRB1. We hypothesized that dimerization of classical HLA class Ia molecules, previously detected in exosomes, might enhance their interaction with LILRB1. A soluble LILRB1-Fc fusion protein and a sensitive cellular reporter system expressing a LILRB1-ζ chimera were employed to assess receptor interaction with different HLA class Ia molecules transfected in the human lymphoblastoid 721.221 cell line. Under these conditions, intracellular Cys residues and HLA-I dimerization appeared associated with increased LILRB1 recognition. On the other hand, a marginal interaction of LILRB1 with primary monocytic cells, irrespective of their high HLA-I expression, was enhanced by type I interferon (IFN). This effect appeared disproportionate to the cytokine-induced increase of surface HLA-I expression and was accompanied by detection of HLA class Ia dimers. Altogether, the results support that a regulated assembly of these noncanonical HLA-I conformers during the immune response may enhance the avidity of their interaction with LILRB1.

  10. Acetylcholine receptor antibody (United States)

    ... page: // Acetylcholine receptor antibody To use the sharing features on this page, please enable JavaScript. Acetylcholine receptor antibody is a protein found in the blood ...

  11. The search for the chimera

    CERN Document Server

    Randi, J


    Session 1 Mr. Randi will give an update of his lecture to the American Physical Society on the occasion of his award of the 1989 Forum Prize. The citation said: "for his unique defense of Science and the scientific method in many disciplines, including physics, against pseudoscience, frauds and charlatans. His use of scientific techniques has contributed to refuting suspicious and fraudulent claims of paranormal results. He has contributed significantly to public understanding of important issues where science and society interact". He is a professional magician and author of many books. He worked with John Maddox, the Editor of Nature to investigate the claims of "water with memory".

  12. Androgen receptor abnormalities

    NARCIS (Netherlands)

    A.O. Brinkmann (Albert); G.G.J.M. Kuiper (George); C. Ris-Stalpers (Carolyn); H.C.J. van Rooij (Henri); G. Romalo (G.); G. Trifiro (Gianluca); E. Mulder (Eppo); L. Pinsky (L.); H.U. Schweikert (H.); J. Trapman (Jan)


    markdownabstract__Abstract__ The human androgen receptor is a member of the superfamily of steroid hormone receptors. Proper functioning of this protein is a prerequisite for normal male sexual differentiation and development. The cloning of the human androgen receptor cDNA and the elucidation of t

  13. Targeting Nuclear FGF Receptor to Improve Chemotherapy Response in Triple-Negative Breast Cancer (United States)


    AWARD NUMBER: W81XWH-13-1-0404 TITLE: Targeting Nuclear FGF Receptor to Improve Chemotherapy Response in Triple-Negative Breast Cancer...4. TITLE AND SUBTITLE Targeting Nuclear FGF Receptor to Improve Chemotherapy response 5a. CONTRACT NUMBER Response in Triple-Negative Breast Cancer...patients post-chemotherapy treatment, validating our in vitro model. We determined that FGF receptor 1 (FGFR1) protein, but not FGF receptor 3 (FGFR3

  14. Murine complement receptor 1 is required for germinal center B cell maintenance but not initiation. (United States)

    Donius, Luke R; Weis, Janis J; Weis, John H


    Germinal centers are the anatomic sites for the generation of high affinity immunoglobulin expressing plasma cells and memory B cells. The germinal center B cells that are precursors of these cells circulate between the light zone B cell population that interact with antigen laden follicular dendritic cells (FDC) and the proliferative dark zone B cell population. Antigen retention by follicular dendritic cells is dependent on Fc receptors and complement receptors, and complement receptor 1 (Cr1) is the predominant complement receptor expressed by FDC. The newly created Cr1KO mouse was used to test the effect of Cr1-deficiency on the kinetics of the germinal center reaction and the generation of IgM and switched memory B cell formation. Immunization of Cr1KO mice with a T cell-dependent antigen resulted in the normal initial expansion of B cells with a germinal center phenotype however these cells were preferentially lost in the Cr1KO animal over time (days). Bone marrow chimera animals documented the surprising finding that the loss of germinal center B cell maintenance was linked to the expression of Cr1 on B cells, not the FDC. Cr1-deficiency further resulted in antigen-specific IgM titer and IgM memory B cell reductions, but not antigen-specific IgG after 35-37 days. Investigations of nitrophenyl (NP)-specific IgG demonstrated that Cr1 is not necessary for affinity maturation during the response to particulate antigen. These data, along with those generated in our initial description of the Cr1KO animal describe unique functions of Cr1 on the surface of both B cells and FDC.

  15. 42 CFR 5a.3 - Definition of Underserved Rural Community. (United States)


    ... county; or (2) If it is within a Metropolitan county, all Census Tracts that are assigned a Rural-Urban... 42 Public Health 1 2010-10-01 2010-10-01 false Definition of Underserved Rural Community. 5a.3... PROVISIONS RURAL PHYSICIAN TRAINING GRANT PROGRAM § 5a.3 Definition of Underserved Rural...

  16. HSV neutralization by the microbicidal candidate C5A

    NARCIS (Netherlands)

    de Witte, L.; Bobardt, M.D.; Chatterji, U.; van Loenen, F.B.; Verjans, G.M.G.M.; Geijtenbeek, T.B.H.; Gallay, P.A.


    Genital herpes is a major risk factor in acquiring human immunodeficiency virus type-1 (HIV-1) infection and is caused by both Herpes Simplex virus type 1 (HSV-1) and HSV-2. The amphipathic peptide C5A, derived from the non-structural hepatitis C virus (HCV) protein 5A, was shown to prevent HIV-1 in

  17. Characterization and pharmacology of the GHB receptor. (United States)

    Ticku, Maharaj K; Mehta, Ashok K


    Radioligand binding using [(3)H]NCS-382, an antagonist of the GHB receptor, revealed specific binding sites in the rat cerebrocortical and hippocampal membranes. Scatchard analysis of saturation isotherms revealed two different populations of binding sites. NCS-382 was about 10 times more potent than GHB in inhibiting [(3)H]NCS-382 binding. A variety of ligands for other receptors did not affect [(3)H]NCS-382 binding. Quantitative autoradiographic analysis of [(3)H]NCS-382 binding revealed similar characteristics. Thus [(3)H]NCS-382, being more potent and selective, offers advantage over [(3)H]GHB as a radioligand. Unlike GHB, several analogues of GHB such as UMB68 (a tertiary alcohol analogue of GHB), UMB86 (4-hydroxy-4-napthylbutanoic acid, sodium salt), UMB72 [4-(3-phenylpropyloxy)butyric acid, sodium salt], UMB73 (4-benzyloxybutyric acid, sodium salt), UMB66 (3-chloropropanoic acid), gamma-hydroxyvaleric acid (that is, GHV, a 4-methyl-substituted analogue of GHB), 3-HPA (3-hydroxyphenylacetic acid), and ethers of 3-hydroxyphenylacetic acid (UMB108, UMB109, and UMB119) displaced [(3)H]NCS-382 without affecting [(3)H]GABA binding to GABA(B) receptor. Thus these compounds offer an advantage over GHB as an experimental tool. Our study, aimed at exploring the potential involvement of the GHB receptor in the pharmacology of ethanol, indicated that ethanol does not affect [(3)H]NCS-382 binding in the rat brain, thereby suggesting that ethanol does not interact directly with the GHB receptor. Our study, aimed at exploring the involvement of the GHB receptor in the pathology of succinate semialdehyde dehydrogenase deficiency, which is known to cause elevation of GHB levels, revealed no change in the affinity, receptor density or displacement potency as determined by using [(3)H]NCS-382 as a radioligand in Aldh5a1(-/-) vs. Aldh5a1(+/+) mouse brain.

  18. [Melatonin receptor agonist]. (United States)

    Uchiyama, Makoto


    Melatonin is a hormone secreted by the pineal gland and is involved in the regulation of human sleep-wake cycle and circadian rhythms. The melatonin MT1 and MT2 receptors located in the suprachiasmatic nucleus in the hypothalamus play a pivotal role in the sleep-wake regulation. Based on the fact that MT1 receptors are involved in human sleep onset process, melatonin receptor agonists have been developed to treat insomnia. In this article, we first reviewed functions of melatonin receptors with special reference to MT1 and MT2, and properties and clinical application of melatonin receptor agonists as hypnotics.

  19. Effect of anaphylatoxin C3a, C5a on the tubular epithelial-myofibroblast transdifferentiation in vitro

    Institute of Scientific and Technical Information of China (English)

    LIU Fang; QIU Hong-yu; WEI Da-peng; GOU Rong; HUANG Jun; FU Ping; CHEN Feng; FAN Wen-xing; HUANG You-qun; ZANG Li; WU Min


    Background Tubulointerstitial renal fibrosis is the common end point of progressive kidney diseases,and tubular epithelial-myofibroblast transdifferentiation (TEMT) plays a key role in the progress of tubulointerstitial renal fibrosis.Anaphylatoxin C3a and C5a are identified as novel profibrotic factors in renal disease and as potential new therapeutic targets.The aim of this study was to investigate whether C3a,C5a can regulate TEMT by transforming growth factor-β31 (TGF-β1)/connective tissue growth factor (CTGF) signaling pathway and the effects of C3a and C5a receptor antagonists (C3aRA and C5aRA) on C3a- and C5a-induced TEMT.Methods HK-2 cells were divided into C3a and C5a groups which were subdivided into four subgroups:control group,10 ng/ml TGF-β1 group,50 nmol/L C3a group,50 nmol/L C3a plus 1 μmol/L C3aRA group; control group,10 ng/ml TGF-β31 group,50 nmol/L C5a group,50 nmol/L C5a plus 2.5 μmol/L C5aRA group.TGF-β1 receptor antagonist (TGF-β1 RA) 10 μg/ml was used to investigate the mechanism of C3a- and C5a-induced TEMT.Electron microscopy was used to observe the morphological changes.Immunocytochemistry staining,real-time PCR and Western blotting were used to detect the expressions of α smooth muscle actin (α-SMA),E-cadherin,Col-I,C3a receptor (C3aR),C5aR,CTGF and TGF-β1.Results HK-2 cells cultured with C3a and C5a for 72 hours exhibited strong staining of α-SMA,lost the positive staining of E-cadherin,and showed a slightly spindle-like shape and loss of microvilli on the cell surface.The expressions of α-SMA,E-cadherin,Col-I,C3aR,C5aR,TGF-β1 and CTGF in C3a- and C5a-treated groups were higher than normal control group (P <0.05).C3aRA and C5aRA inhibited the expressions of α-SMA,Col-I,C3aR,C5aR,and up-regulated the expression of E-cadherin (P <0.05).TGF-β1 and CTGF mRNA expressions induced by C3a and C5a were partly blocked by TGF-β1 RA (P <0.05).Conclusion C3a and C5a can induce TEMT via the up-regulations of C3aR and C5aR m

  20. Dopamine receptors and hypertension. (United States)

    Banday, Anees Ahmad; Lokhandwala, Mustafa F


    Dopamine plays an important role in regulating renal function and blood pressure. Dopamine synthesis and dopamine receptor subtypes have been shown in the kidney. Dopamine acts via cell surface receptors coupled to G proteins; the receptors are classified via pharmacologic and molecular cloning studies into two families, D1-like and D2-like. Two D1-like receptors cloned in mammals, the D1 and D5 receptors (D1A and D1B in rodents), are linked to adenylyl cyclase stimulation. Three D2-like receptors (D2, D3, and D4) have been cloned and are linked mainly to adenylyl cyclase inhibition. Activation of D1-like receptors on the proximal tubules inhibits tubular sodium reabsorption by inhibiting Na/H-exchanger and Na/K-adenosine triphosphatase activity. Reports exist of defective renal dopamine production and/or dopamine receptor function in human primary hypertension and in genetic models of animal hypertension. In humans with essential hypertension, renal dopamine production in response to sodium loading is often impaired and may contribute to hypertension. A primary defect in D1-like receptors and an altered signaling system in proximal tubules may reduce dopamine-mediated effects on renal sodium excretion. The molecular basis for dopamine receptor dysfunction in hypertension is being investigated, and may involve an abnormal posttranslational modification of the dopamine receptor.

  1. The binding site for neohesperidin dihydrochalcone at the human sweet taste receptor

    Directory of Open Access Journals (Sweden)

    Kratochwil Nicole A


    Full Text Available Abstract Background Differences in sweet taste perception among species depend on structural variations of the sweet taste receptor. The commercially used isovanillyl sweetener neohesperidin dihydrochalcone activates the human but not the rat sweet receptor TAS1R2+TAS1R3. Analysis of interspecies combinations and chimeras of rat and human TAS1R2+TAS1R3 suggested that the heptahelical domain of human TAS1R3 is crucial for the activation of the sweet receptor by neohesperidin dihydrochalcone. Results By mutational analysis combined with functional studies and molecular modeling we identified a set of different amino acid residues within the heptahelical domain of human TAS1R3 that forms the neohesperidin dihydrochalcone binding pocket. Sixteen amino acid residues in the transmembrane domains 2 to 7 and one in the extracellular loop 2 of hTAS1R3 influenced the receptor's response to neohesperidin dihydrochalcone. Some of these seventeen residues are also part of the binding sites for the sweetener cyclamate or the sweet taste inhibitor lactisole. In line with this observation, lactisole inhibited activation of the sweet receptor by neohesperidin dihydrochalcone and cyclamate competitively, whereas receptor activation by aspartame, a sweetener known to bind to the N-terminal domain of TAS1R2, was allosterically inhibited. Seven of the amino acid positions crucial for activation of hTAS1R2+hTAS1R3 by neohesperidin dihydrochalcone are thought to play a role in the binding of allosteric modulators of other class C GPCRs, further supporting our model of the neohesperidin dihydrochalcone pharmacophore. Conclusion From our data we conclude that we identified the neohesperidin dihydrochalcone binding site at the human sweet taste receptor, which overlaps with those for the sweetener cyclamate and the sweet taste inhibitor lactisole. This readily delivers a molecular explanation of our finding that lactisole is a competitive inhibitor of the receptor

  2. Cloning, production, and functional expression of the bacteriocin sakacin A (SakA) and two SakA-derived chimeras in lactic acid bacteria (LAB) and the yeasts Pichia pastoris and Kluyveromyces lactis. (United States)

    Jiménez, Juan J; Borrero, Juan; Diep, Dzung B; Gútiez, Loreto; Nes, Ingolf F; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E


    Mature sakacin A (SakA, encoded by sapA) and its cognate immunity protein (SakI, encoded by sapiA), and two SakA-derived chimeras mimicking the N-terminal end of mature enterocin P (EntP/SakA) and mature enterocin A (EntA/SakA) together with SakI, were fused to different signal peptides (SP) and cloned into the protein expression vectors pNZ8048 and pMG36c for evaluation of their production and functional expression by different lactic acid bacteria. The amount, antimicrobial activity, and specific antimicrobial activity of SakA and its chimeras produced by Lactococcus lactis subsp. cremoris NZ9000 depended on the SP and the expression vector. Only L. lactis NZ9000 (pNUPS), producing EntP/SakA, showed higher bacteriocin production and antimicrobial activity than the natural SakA-producer Lactobacillus sakei Lb706. The lower antimicrobial activity of the SakA-producer L. lactis NZ9000 (pNUS) and that of the EntA/SakA-producer L. lactis NZ9000 (pNUAS) could be ascribed to secretion of truncated bacteriocins. On the other hand, of the Lb. sakei Lb706 cultures transformed with the pMG36c-derived vectors only Lb. sakei Lb706 (pGUS) overproducing SakA showed a higher antimicrobial activity than Lb. sakei Lb706. Finally, cloning of SakA and EntP/SakA into pPICZαA and pKLAC2 permitted the production of SakA and EntP/SakA by recombinant Pichia pastoris X-33 and Kluyveromyces lactis GG799 derivatives although their antimicrobial activity was lower than expected from their production.

  3. Mapping sites of herpes simplex virus type 1 glycoprotein D that permit insertions and impact gD and gB receptors usage (United States)

    Fan, Qing; Kopp, Sarah; Connolly, Sarah A.; Muller, William J.; Longnecker, Richard


    Glycoprotein D (gD) of herpes simplex virus type 1 (HSV-1) is one of four glycoproteins essential for HSV entry and cell fusion. The purpose of this study was to determine the plasticity of gD to tolerate insertion or deletion mutations and to construct an oncolytic HSV-1 that utilizes the disialoganglioside GD2 as a HSV-1 entry receptor. We found that the N-terminus of gD tolerates long insertions, whereas residues adjacent to the gD Ig-like V-type core tolerated shorter insertions (up to 15 amino acids), but not greater than 60 amino acids. Recombinant HSV-1 containing the ch14.18 single chain variable fragment (scFv) at the N-terminus of gD failed to mediate entry, even though the ch14.18 scFv-gD chimera Fc bound to neuroblastoma cells expressing GD2. Finally, we found that hyperfusogenic gB mutants enhanced fusion to a greater degree with the gB receptor the paired immunoglobulin-like type 2 receptor alpha (PILRα) than with gD receptors HVEM and nectin-1. Hyperfusogenic gB could restore the fusion function with PILRα when a gD constructed contained only the “profusion domain” (PFD), suggesting the hyperfusogenic form of gB may regulate fusion of PILRα via a novel mechanism through gH/gL and the gD PFD. PMID:28255168

  4. GABA receptor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Doo [Yonsei University College of Medicine, Seoul (Korea, Republic of)


    GABA is primary an inhibitory neurotransmitter that is localized in inhibitory interneurons. GABA is released from presynaptic terminals and functions by binding to GABA receptors. There are two types of GABA receptors, GABA{sub A}-receptor that allows chloride to pass through a ligand gated ion channel and GABA{sub B}-receptor that uses G-proteins for signaling. The GABA{sub A}-receptor has a GABA binding site as well as a benzodiazepine binding sites, which modulate GABA{sub A}-receptor function. Benzodiazepine GABAA receptor imaging can be accomplished by radiolabeling derivates that activates benzodiazepine binding sites. There has been much research on flumazenil (FMZ) labeled with {sup 11}C-FMZ, a benzodiazepine derivate that is a selective, reversible antagonist to GABAA receptors. Recently, {sup 18}F-fluoroflumazenil (FFMZ) has been developed to overcome {sup 11}C's short half-life. {sup 18}F-FFMZ shows high selective affinity and good pharmacodynamics, and is a promising PET agent with better central benzodiazepine receptor imaging capabilities. In an epileptic focus, because the GABA/benzodiazepine receptor amount is decreased, using '1{sup 1}C-FMZ PET instead of {sup 18}F-FDG, PET, restrict the foci better and may also help find lesions better than high resolution MR. GABA{sub A} receptors are widely distributed in the cerebral cortex, and can be used as an viable neuronal marker. Therefore it can be used as a neuronal cell viability marker in cerebral ischemia. Also, GABA-receptors decrease in areas where neuronal plasticity develops, therefore, GABA imaging can be used to evaluate plasticity. Besides these usages, GABA receptors are related with psychological diseases, especially depression and schizophrenia as well as cerebral palsy, a motor-related disorder, so further in-depth studies are needed for these areas.

  5. Novel cannabinoid receptors


    Brown, A J


    Cannabinoids have numerous physiological effects. In the years since the molecular identification of the G protein-coupled receptors CB1 and CB2, the ion channel TRPV1, and their corresponding endogenous ligand systems, many cannabinoid-evoked actions have been shown conclusively to be mediated by one of these specific receptor targets. However, there remain several examples where these classical cannabinoid receptors do not explain observed pharmacology. Studies using mice genetically delete...

  6. An intracellular allosteric site for a specific class of antagonists of the CC chemokine G protein-coupled receptors CCR4 and CCR5. (United States)

    Andrews, Glen; Jones, Carolyn; Wreggett, Keith A


    A novel mechanism for antagonism of the human chemokine receptors CCR4 and CCR5 has been discovered with a series of small-molecule compounds that seems to interact with an allosteric, intracellular site on the receptor. The existence of this site is supported by a series of observations: 1) intracellular access of these antagonists is required for their activity; 2) specific, saturable binding of a radiolabeled antagonist requires the presence of CCR4; and 3) through engineering receptor chimeras by reciprocal transfer of C-terminal domains between CCR4 and CCR5, compound binding and the selective structure-activity relationships for antagonism of these receptors seem to be associated with the integrity of that intracellular region. Published antagonists from other chemical series do not seem to bind to the novel site, and their interaction with either CCR4 or CCR5 is not affected by alteration of the C-terminal domain. The precise location of the proposed binding site remains to be determined, but the known close association of the C-terminal domain, including helix 8, as a proposed intracellular region that interacts with transduction proteins (e.g., G proteins and beta-arrestin) suggests that this could be a generic allosteric site for chemokine receptors and perhaps more broadly for class A G protein-coupled receptors. The existence of such a site that can be targeted for drug discovery has implications for screening assays for receptor antagonists, which would need, therefore, to consider compound properties for access to this intracellular site.

  7. Mouse models of SCN5A-related cardiac arrhythmias

    Directory of Open Access Journals (Sweden)

    Flavien eCharpentier


    Full Text Available Mutations of SCN5A gene, which encodes the α-subunit of the voltage-gated Na+ channel NaV1.5, underlie hereditary cardiac arrhythmic syndromes such as the type 3 long QT syndrome, cardiac conduction diseases, the Brugada syndrome, the sick sinus syndrome, atrial standstill and numerous overlap syndromes. Patch-clamp studies in heterologous expression systems have provided important information to understand the genotype-phenotype relationships of these diseases. However, they could not clarify how SCN5A mutations can be responsible for such a large spectrum of diseases, for the late age of onset or the progressiveness of some of these diseases and for the overlapping syndromes. Genetically modified mice rapidly appeared as promising tools for understanding the pathophysiological mechanisms of cardiac SCN5A-related arrhythmic syndromes and several mouse models have been established. This paper reviews some of the results obtained on these models that, for most of them, recapitulate the clinical phenotypes of the patients. It also points out that these models also have their own limitations. Overall, mouse models appear as powerful tools to elucidate the pathophysiological mechanisms of SCN5A-related diseases and offer the opportunity to investigate the secondary cellular consequences of SCN5A mutations such as the expression remodelling of other genes that might participate to the overall phenotype. Finally, they constitute useful tools for addressing the role of genetic and environmental modifiers on cardiac electrical activity.

  8. Characterization of SLCO5A1/OATP5A1, a solute carrier transport protein with non-classical function.

    Directory of Open Access Journals (Sweden)

    Katrin Sebastian

    Full Text Available Organic anion transporting polypeptides (OATP/SLCO have been identified to mediate the uptake of a broad range of mainly amphipathic molecules. Human OATP5A1 was found to be expressed in the epithelium of many cancerous and non-cancerous tissues throughout the body but protein characterization and functional analysis have not yet been performed. This study focused on the biochemical characterization of OATP5A1 using Xenopus laevis oocytes and Flp-In T-REx-HeLa cells providing evidence regarding a possible OATP5A1 function. SLCO5A1 is highly expressed in mature dendritic cells compared to immature dendritic cells (∼6.5-fold and SLCO5A1 expression correlates with the differentiation status of primary blood cells. A core- and complex- N-glycosylated polypeptide monomer of ∼105 kDa and ∼130 kDa could be localized in intracellular membranes and on the plasma membrane, respectively. Inducible expression of SLCO5A1 in HeLa cells led to an inhibitory effect of ∼20% after 96 h on cell proliferation. Gene expression profiling with these cells identified immunologically relevant genes (e.g. CCL20 and genes implicated in developmental processes (e.g. TGM2. A single nucleotide polymorphism leading to the exchange of amino acid 33 (L→F revealed no differences regarding protein expression and function. In conclusion, we provide evidence that OATP5A1 might be a non-classical OATP family member which is involved in biological processes that require the reorganization of the cell shape, such as differentiation and migration.

  9. 重组人可溶性PDGFRβ/Fc在昆虫细胞Sf9中的表达%Expression of recombinant human soluble platelet-derived growth factor receptor Beta/Fc chimera in insect cell Sf9

    Institute of Scientific and Technical Information of China (English)

    谢秋玲; 刘兰; 刘秀贵; 张玲; 徐丽慧; 洪岸


    [目的]利用昆虫细胞Bac-to-Bac杆状病毒表达系统表达血小板源性生长因子受体β (PDGFRβ)链膜外区与人IgG Fc片段的可溶性受体融合蛋白sPDGFRβ/Fc,并检测重组蛋白的特异性和生物活性.[方法]采用Bac-to-Bac系统,构建重组转移质粒pFastbac-sPDGFRβ/Fc,转化到含穿梭载体Bacmid的感受态细胞DH10Bac中,使目的基因与杆状病毒基因组DNA发生位点特异性重组,获得重组病毒DNA,将其通过脂质体转染昆虫细胞Sf9获得重组病毒.将该重组病毒感染Sf9无血清细胞系,在Sf9细胞中表达sPDGFRβ/Fc,对表达产物进行Western blotting检测和Protein A亲合层析纯化,并进一步通过MTT法检测获得的重组蛋白生物学活性.[结果]重组病毒感染Sf9细胞后,经Western blotting分析,能检测到一条分子量约为97 kDa的特异性条带,与目的蛋白大小相符.通过Protein A亲和层析,获得了纯度达75%以上,表达量为1 μg/mL细胞培养上清的重组融合蛋白,MTT结果显示该重组融合蛋白sPDGFRβ/Fc具有抑制PDGF刺激的Balb/c 3T3细胞增殖的能力.[结论]具有生物活性的重组可溶性受体融合蛋白sPDGFRβ/Fc可在昆虫细胞中成功地得到表达.

  10. [The LDL receptor family]. (United States)

    Meilinger, Melinda


    The members of the LDL receptor family are structurally related endocytic receptors. Our view on these receptors has considerably changed in recent years. Not only have new members of the family been identified, but also several interesting observations have been published concerning the biological function of these molecules. The LDL receptor family members are able to bind and internalize a plethora of ligands; as a consequence, they play important roles in diverse physiological processes. These receptors are key players in the lipoprotein metabolism, vitamin homeostasis, Ca2+ homeostasis, cell migration, and embryonic development. Until recently, LDL receptor family members were thought to be classic endocytic receptors that provide cells with metabolites on one hand, while regulating the concentration of their ligands in the extracellular fluids on the other hand. However, recent findings indicate that in addition to their cargo transport function, LDL receptor family members can act as signal transducers, playing important roles in the development of the central nervous system or the skeleton. Better understanding of physiological and pathophysiological functions of these molecules may open new avenues for the treatment or prevention of many disorders.

  11. AMPA receptor ligands

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Mellor, Ian


    Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR), subtype of the ionotropic glutamate receptors (IGRs), mediate fast synaptic transmission in the central nervous system (CNS), and are involved in many neurological disorders, as well as being a key player in the f...

  12. Glutamate receptor agonists

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart;


    The neurotransmitter (S)-glutamate [(S)-Glu] is responsible for most of the excitatory neurotransmission in the central nervous system. The effect of (S)-Glu is mediated by both ionotropic and metabotropic receptors. Glutamate receptor agonists are generally a-amino acids with one or more...... stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  13. Hepatitis C virus expressing reporter tagged NS5A protein

    DEFF Research Database (Denmark)


    Hepatitis C reporter viruses containing Core through NS2 of prototype isolates of all major HCV genotypes and the remaining genes of isolate JFH1, by insertion of reporter genes in domain III of HCV NS5A were developed. A deletion upstream of the inserted reporter gene sequence conferred favorable...

  14. NS5A Resistance: Clinical Implications and Treatment Possibilities. (United States)

    Calleja, José Luis; Llerena, Susana; Perelló, Christie; Crespo, Javier


    Treatments with interferon-free direct-acting antiviral agents have high efficacy, with sustained virological response rates of more than 90%. Nevertheless, they fail to eliminate the infection in 1-7% of patients. The majority of virological failures are due to relapse following treatment discontinuation, while virological rebound during therapy is rare. Although not the only factor, the presence of resistance-associated variants is one of the major causes for said failure. Resistance-associated variants affect the sequence involved in protein synthesis on which different direct-acting antiviral agents act (NS3/4A, NS5A, NS5B). Of all these variants, the ones with the greatest impact are resistance-associated variants that affect the NS5A region due to their long-term persistence. In this article we will describe the most significant NS5A resistance-associated variants, the clinical relevance of their detection both before and after treatment, their persistence over time, and lastly, we will devote particular attention to discussing what approach to adopt when dealing with treatment failure to an antiviral regimen that includes NS5A inhibitors.

  15. 5-Hydroxytryptamine Receptor Subtypes and their Modulators with Therapeutic Potentials


    Pithadia, Anand B.; Jain, Sunita M.


    5-hydroxytryptamine (5-HT) has become one of the most investigated and complex biogenic amines. The main receptors and their subtypes, e.g., 5-HTI (5-HT1A, 5-HT1B, 5-HTID, 5-HTIE and 5-HT1F), 5-HT2 (5-HT2A, 5-HT2B and 5-HT2C), 5-HT3, 5-HT4, 5-HT5 (5-HT5A, 5-HT5B), 5-HT6 and 5-HT7 have been identified. Specific drugs which are capable of either selectively stimulating or inhibiting these receptor subtypes are being designed. This has generated therapeutic potentials of 5-HT receptor modulators...

  16. Editing CCR5: a novel approach to HIV gene therapy. (United States)

    Cornu, Tatjana I; Mussolino, Claudio; Bloom, Kristie; Cathomen, Toni


    Acquired immunodeficiency syndrome (AIDS) is a life-threatening disorder caused by infection of individuals with the human immunodeficiency virus (HIV). Entry of HIV-1 into target cells depends on the presence of two surface proteins on the cell membrane: CD4, which serves as the main receptor, and either CCR5 or CXCR4 as a co-receptor. A limited number of people harbor a genomic 32-bp deletion in the CCR5 gene (CCR5∆32), leading to expression of a truncated gene product that provides resistance to HIV-1 infection in individuals homozygous for this mutation. Moreover, allogeneic hematopoietic stem cell (HSC) transplantation with CCR5∆32 donor cells seems to confer HIV-1 resistance to the recipient as well. However, since Δ32 donors are scarce and allogeneic HSC transplantation is not exempt from risks, the development of gene editing tools to knockout CCR5 in the genome of autologous cells is highly warranted. Targeted gene editing can be accomplished with designer nucleases, which essentially are engineered restriction enzymes that can be designed to cleave DNA at specific sites. During repair of these breaks, the cellular repair pathway often introduces small mutations at the break site, which makes it possible to disrupt the ability of the targeted locus to express a functional protein, in this case CCR5. Here, we review the current promise and limitations of CCR5 gene editing with engineered nucleases, including factors affecting the efficiency of gene disruption and potential off-target effects.

  17. Hematopoietic sphingosine 1-phosphate lyase deficiency decreases atherosclerotic lesion development in LDL-receptor deficient mice.

    Directory of Open Access Journals (Sweden)

    Martine Bot

    Full Text Available AIMS: Altered sphingosine 1-phosphate (S1P homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1(-/- deficiency on leukocyte subsets relevant to atherosclerosis. METHODS AND RESULTS: LDL receptor deficient mice that were transplanted with Sgpl1(-/- bone marrow showed disrupted S1P gradients translating into lymphopenia and abrogated lymphocyte mitogenic and cytokine response as compared to controls. Remarkably however, Sgpl1(-/- chimeras displayed mild monocytosis, due to impeded stromal retention and myelopoiesis, and plasma cytokine and macrophage expression patterns, that were largely compatible with classical macrophage activation. Collectively these two phenotypic features of Sgpl1 deficiency culminated in diminished atherogenic response. CONCLUSIONS: Here we not only firmly establish the critical role of hematopoietic S1P lyase in controlling S1P levels and T cell trafficking in blood and lymphoid tissue, but also identify leukocyte Sgpl1 as critical factor in monocyte macrophage differentiation and function. Its, partly counterbalancing, pro- and anti-inflammatory activity spectrum imply that intervention in S1P lyase function in inflammatory disorders such as atherosclerosis should be considered with caution.

  18. The nuclear orphan receptor COUP-TFII is required for limb and skeletal muscle development. (United States)

    Lee, Christopher T; Li, Luoping; Takamoto, Norio; Martin, James F; Demayo, Francesco J; Tsai, Ming-Jer; Tsai, Sophia Y


    The nuclear orphan receptor COUP-TFII is widely expressed in multiple tissues and organs throughout embryonic development, suggesting that COUP-TFII is involved in multiple aspects of embryogenesis. Because of the early embryonic lethality of COUP-TFII knockout mice, the role of COUP-TFII during limb development has not been determined. COUP-TFII is expressed in lateral plate mesoderm of the early embryo prior to limb bud formation. In addition, COUP-TFII is also expressed in the somites and skeletal muscle precursors of the limbs. Therefore, in order to study the potential role of COUP-TFII in limb and skeletal muscle development, we bypassed the early embryonic lethality of the COUP-TFII mutant by using two methods. First, embryonic chimera analysis has revealed an obligatory role for COUP-TFII in limb bud outgrowth since mutant cells are unable to contribute to the distally growing limb mesenchyme. Second, we used a conditional-knockout approach to ablate COUP-TFII specifically in the limbs. Loss of COUP-TFII in the limbs leads to hypoplastic skeletal muscle development, as well as shorter limbs. Taken together, our results demonstrate that COUP-TFII plays an early role in limb bud outgrowth but not limb bud initiation. Also, COUP-TFII is required for appropriate development of the skeletal musculature of developing limbs.

  19. Loxoprofen sodium induces the production of complement C5a in human serum. (United States)

    Kumagai, Tomoaki; Yamaguchi, Nozomi; Hirai, Hiroyuki; Kojima, Shigeyuki; Kodani, Yoshiko; Hashiguchi, Akihiko; Haida, Michiko; Nakamura, Masataka


    Basophil activation test (BAT) is an in vitro allergy test that is useful to identify allergens that cause IgE-dependent allergies. The test has been used to detect not only food allergies and allergies caused by environmental factors but also to detect drug hypersensitivity, which has been known to include IgE-independent reactions. In our preliminary studies in which BAT was applied to detect hypersensitivity of loxoprofen, a non-steroidal anti-inflammatory drug (NSAID), conventional BAT with incubation for 30min did not show basophil activation by means of increased CD203c expression. In this study, we extended the incubation time to 24h on the basis of the hypothesis that loxoprofen indirectly activates basophils. Basophils from healthy control donors as well as allergic patients showed up-regulation of CD203c after incubation with loxoprofen for 24h. Activation was induced using loxoprofen-treated serum. Proteomic and pharmacologic analyses revealed that serum incubation with loxoprofen generated an active complement component C5a, which induced CD203c expression via binding to the C5a receptor on basophils. Because C3a production was also detected after incubation for 24h, loxoprofen is likely to stimulate the complement classical pathway. Our findings suggest that the complement activation is involved in drug hypersensitivity and the suppression of this activation may contribute to the elimination of false positive of BAT for drug allergies.

  20. Opiate receptors: an introduction. (United States)

    Carmody, J J


    Current status of opiate receptors and their agonists is reviewed--basic aspects of receptor theory, the importance of stereospecificity in drug-receptor interactions and the role of 'second messengers' in drug action. The three classes of endogenous opioids, originating from three distinct genes, are discussed: pro-opiomelanocortin, giving rise to beta-endorphin, ACTH and various MSHs; pro-enkephalin, giving methionine enkephalin and leucine enkephalin; and prodynorphin; their anatomical distribution and the main classes of receptors with which they interact, the mu-receptor, with a high affinity for met-enkephalin and beta-endorphin (as well as morphine and dynorphin A); the delta-receptor for which the primary ligand is leu-enkephalin; and the kappa-receptor which is the main target for the dynorphins. Functional roles for endogenous opioids are considered. Essentially they are inhibitory to target neurones, depressing motor reflexes, baroreflexes and nociception. They also have roles in the response to physical and psychological stress.

  1. Distinct human and mouse membrane trafficking systems for sweet taste receptors T1r2 and T1r3. (United States)

    Shimizu, Madoka; Goto, Masao; Kawai, Takayuki; Yamashita, Atsuko; Kusakabe, Yuko


    The sweet taste receptors T1r2 and T1r3 are included in the T1r taste receptor family that belongs to class C of the G protein-coupled receptors. Heterodimerization of T1r2 and T1r3 is required for the perception of sweet substances, but little is known about the mechanisms underlying this heterodimerization, including membrane trafficking. We developed tagged mouse T1r2 and T1r3, and human T1R2 and T1R3 and evaluated membrane trafficking in human embryonic kidney 293 (HEK293) cells. We found that human T1R3 surface expression was only observed when human T1R3 was coexpressed with human T1R2, whereas mouse T1r3 was expressed without mouse T1r2 expression. A domain-swapped chimera and truncated human T1R3 mutant showed that the Venus flytrap module and cysteine-rich domain (CRD) of human T1R3 contain a region related to the inhibition of human T1R3 membrane trafficking and coordinated regulation of human T1R3 membrane trafficking. We also found that the Venus flytrap module of both human T1R2 and T1R3 are needed for membrane trafficking, suggesting that the coexpression of human T1R2 and T1R3 is required for this event. These results suggest that the Venus flytrap module and CRD receive taste substances and play roles in membrane trafficking of human T1R2 and T1R3. These features are different from those of mouse receptors, indicating that human T1R2 and T1R3 are likely to have a novel membrane trafficking system.

  2. The Ascaris suum nicotinic receptor, ACR-16, as a drug target: Four novel negative allosteric modulators from virtual screening

    Directory of Open Access Journals (Sweden)

    Fudan Zheng


    Full Text Available Soil-transmitted helminth infections in humans and livestock cause significant debility, reduced productivity and economic losses globally. There are a limited number of effective anthelmintic drugs available for treating helminths infections, and their frequent use has led to the development of resistance in many parasite species. There is an urgent need for novel therapeutic drugs for treating these parasites. We have chosen the ACR-16 nicotinic acetylcholine receptor of Ascaris suum (Asu-ACR-16, as a drug target and have developed three-dimensional models of this transmembrane protein receptor to facilitate the search for new bioactive compounds. Using the human α7 nAChR chimeras and Torpedo marmorata nAChR for homology modeling, we defined orthosteric and allosteric binding sites on the Asu-ACR-16 receptor for virtual screening. We identified four ligands that bind to sites on Asu-ACR-16 and tested their activity using electrophysiological recording from Asu-ACR-16 receptors expressed in Xenopus oocytes. The four ligands were acetylcholine inhibitors (SB-277011-A, IC50, 3.12 ± 1.29 μM; (+-butaclamol Cl, IC50, 9.85 ± 2.37 μM; fmoc-1, IC50, 10.00 ± 1.38 μM; fmoc-2, IC50, 16.67 ± 1.95 μM that behaved like negative allosteric modulators. Our work illustrates a structure-based in silico screening method for seeking anthelmintic hits, which can then be tested electrophysiologically for further characterization.

  3. Characterization of the stoichiometry of the complex formed by Staphylococcal toxin LukSF and human C5a receptor

    NARCIS (Netherlands)

    Haapasalo-Tuomainen, Karita; Wollman, Adam; De Haas, Carla; Aerts, Piet; Van'T Veld, Esther; Strijbis, Karin; Wubbolts, Richard; Van Kessel, Kok; Leake, Mark; Van Strijp, Jos


    Staphylococcus aureus causes diseases ranging from superficial skin and soft tissue infections (SSTI) to severe invasive diseases like osteomyelitis and necrotizing pneumonia. Panton Valentine Leukocidin (PVL) is a powerful leukocidal toxin produced by multiple S. aureus isolates. It is a pro-phage

  4. Dopamine receptor and hypertension. (United States)

    Zeng, Chunyu; Eisner, Gilbert M; Felder, Robin A; Jose, Pedro A


    Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and reactive oxygen and by interacting with vasopressin, renin-angiotensin, and the sympathetic nervous system. Decreased renal dopamine production and/or impaired dopamine receptor function have been reported in hypertension. Disruption of any of the dopamine receptors (D(1), D(2), D(3), D(4), and D(5)) results in hypertension. In this paper, we review the mechanisms by which hypertension develops when dopamine receptor function is perturbed.

  5. Serotonin Receptors in Hippocampus

    Directory of Open Access Journals (Sweden)

    Laura Cristina Berumen


    Full Text Available Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a functional network that uses several serotonin receptors to regulate their roles in this particular part of the limbic system.

  6. Serotonin Receptors in Hippocampus (United States)

    Berumen, Laura Cristina; Rodríguez, Angelina; Miledi, Ricardo; García-Alcocer, Guadalupe


    Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a functional network that uses several serotonin receptors to regulate their roles in this particular part of the limbic system. PMID:22629209

  7. Serotonin receptors in hippocampus. (United States)

    Berumen, Laura Cristina; Rodríguez, Angelina; Miledi, Ricardo; García-Alcocer, Guadalupe


    Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a functional network that uses several serotonin receptors to regulate their roles in this particular part of the limbic system.

  8. Increased mitochondrial function downstream from KDM5A histone demethylase rescues differentiation in pRB-deficient cells. (United States)

    Váraljai, Renáta; Islam, Abul B M M K; Beshiri, Michael L; Rehman, Jalees; Lopez-Bigas, Nuria; Benevolenskaya, Elizaveta V


    The retinoblastoma tumor suppressor protein pRb restricts cell growth through inhibition of cell cycle progression. Increasing evidence suggests that pRb also promotes differentiation, but the mechanisms are poorly understood, and the key question remains as to how differentiation in tumor cells can be enhanced in order to diminish their aggressive potential. Previously, we identified the histone demethylase KDM5A (lysine [K]-specific demethylase 5A), which demethylates histone H3 on Lys4 (H3K4), as a pRB-interacting protein counteracting pRB's role in promoting differentiation. Here we show that loss of Kdm5a restores differentiation through increasing mitochondrial respiration. This metabolic effect is both necessary and sufficient to induce the expression of a network of cell type-specific signaling and structural genes. Importantly, the regulatory functions of pRB in the cell cycle and differentiation are distinct because although restoring differentiation requires intact mitochondrial function, it does not necessitate cell cycle exit. Cells lacking Rb1 exhibit defective mitochondria and decreased oxygen consumption. Kdm5a is a direct repressor of metabolic regulatory genes, thus explaining the compensatory role of Kdm5a deletion in restoring mitochondrial function and differentiation. Significantly, activation of mitochondrial function by the mitochondrial biogenesis regulator Pgc-1α (peroxisome proliferator-activated receptor γ-coactivator 1α; also called PPARGC1A) a coactivator of the Kdm5a target genes, is sufficient to override the differentiation block. Overexpression of Pgc-1α, like KDM5A deletion, inhibits cell growth in RB-negative human cancer cell lines. The rescue of differentiation by loss of KDM5A or by activation of mitochondrial biogenesis reveals the switch to oxidative phosphorylation as an essential step in restoring differentiation and a less aggressive cancer phenotype.

  9. Characterization of a peptide domain within the GB virus C NS5A phosphoprotein that inhibits HIV replication.

    Directory of Open Access Journals (Sweden)

    Jinhua Xiang

    Full Text Available BACKGROUND: GBV-C infection is associated with prolonged survival in HIV-infected people and GBV-C inhibits HIV replication in co-infection models. Expression of the GBV-C nonstructural phosphoprotein 5A (NS5A decreases surface levels of the HIV co-receptor CXCR4, induces the release of SDF-1 and inhibits HIV replication in Jurkat CD4+ T cell lines. METHODOLOGY/PRINCIPAL FINDINGS: Jurkat cell lines stably expressing NS5A protein and peptides were generated and HIV replication in these cell lines assessed. HIV replication was significantly inhibited in all cell lines expressing NS5A amino acids 152-165. Substitution of an either alanine or glycine for the serine at position 158 (S158A or S158G resulted in a significant decrease in the HIV inhibitory effect. In contrast, substituting a phosphomimetic amino acid (glutamic acid; S158E inhibited HIV as well as the parent peptide. HIV inhibition was associated with lower levels of surface expression of the HIV co-receptor CXCR4 and increased release of the CXCR4 ligand, SDF-1 compared to control cells. Incubation of CD4+ T cell lines with synthetic peptides containing amino acids 152-167 or the S158E mutant peptide prior to HIV infection resulted in HIV replication inhibition compared to control peptides. CONCLUSIONS/SIGNIFICANCE: Expression of GBV-C NS5A amino acids 152-165 are sufficient to inhibit HIV replication in vitro, and the serine at position 158 appears important for this effect through either phosphorylation or structural changes in this peptide. The addition of synthetic peptides containing 152-167 or the S158E substitution to Jurkat cells resulted in HIV replication inhibition in vitro. These data suggest that GBV-C peptides or a peptide mimetic may offer a novel, cellular-based approach to antiretroviral therapy.

  10. Somatostatin receptor skintigrafi

    DEFF Research Database (Denmark)

    Rasmussen, Karin; Nielsen, Jørn Theil; Rehling, Michael


    Somatostatin receptor scintigraphy (SRS) is a very valuable imaging technique for visualisation of a diversity of neuroendocrine tumours. The sensitivity for localisation of carcinoid tumours is high, but somewhat lower for other neuroendocrine tumours. The methodology, multiple clinical aspects...

  11. Update on Melatonin Receptors. IUPHAR Review. : Melatonin Receptors


    Jockers, Ralf; Delagrange, Philippe; Dubocovich, Margarita ,; Markus, Regina ,; Renault, Nicolas; Tosini, Gianluca; Cecon, Erika; Zlotos, Darius Paul


    International audience; Melatonin receptors are seven transmembrane-spanning proteins belonging to the G protein-coupled receptor super-family. In mammals, two melatonin receptor subtypes exit MT1 and MT2 encoded by the MTNR1A and MTNR1B genes, respectively. The current review provides an update on melatonin receptors by the corresponding sub-committee of the International Union of Basic and Clinical Pharmacology. We will highlight recent developments of melatonin receptor ligands, including ...

  12. Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A (United States)

    Liu, Wuxing; Wang, Qingling; Hou, Jinyu; Tu, Chen; Luo, Yongming; Christie, Peter


    This research undertook the systematic analysis of the Klebsiella sp. D5A genome and identification of genes that contribute to plant growth-promoting (PGP) traits, especially genes related to salt tolerance and wide pH adaptability. The genome sequence of isolate D5A was obtained using an Illumina HiSeq 2000 sequencing system with average coverages of 174.7× and 200.1× using the paired-end and mate-pair sequencing, respectively. Predicted and annotated gene sequences were analyzed for similarity with the Kyoto Encyclopedia of Genes and Genomes (KEGG) enzyme database followed by assignment of each gene into the KEGG pathway charts. The results show that the Klebsiella sp. D5A genome has a total of 5,540,009 bp with 57.15% G + C content. PGP conferring genes such as indole-3-acetic acid (IAA) biosynthesis, phosphate solubilization, siderophore production, acetoin and 2,3-butanediol synthesis, and N2 fixation were determined. Moreover, genes putatively responsible for resistance to high salinity including glycine-betaine synthesis, trehalose synthesis and a number of osmoregulation receptors and transport systems were also observed in the D5A genome together with numerous genes that contribute to pH homeostasis. These genes reveal the genetic adaptation of D5A to versatile environmental conditions and the effectiveness of the isolate to serve as a plant growth stimulator.

  13. The Tumor Suppressor Actions of the Vitamin D Receptor in Skin (United States)


    Vitamin D Receptor in Skin PRINCIPAL INVESTIGATOR: Daniel D. Bikle, M.D., Ph.D. CONTRACTING ORGANIZATION: Northern California Institute for...SUBTITLE The Tumor Suppressor Actions of the Vitamin D Receptor in Skin 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0235 5c. PROGRAM...13. SUPPLEMENTARY NOTES 14. ABSTRACT The epidermis of the mouse lacking the vitamin D receptor (VDR) is susceptible to chemical and UVB

  14. Receptors for enterovirus 71


    Yamayoshi, Seiya; Fujii, Ken; Koike, Satoshi


    Enterovirus 71 (EV71) is one of the major causative agents of hand, foot and mouth disease (HFMD). Occasionally, EV71 infection is associated with severe neurological diseases, such as acute encephalitis, acute flaccid paralysis and cardiopulmonary failure. Several molecules act as cell surface receptors that stimulate EV71 infection, including scavenger receptor B2 (SCARB2), P-selectin glycoprotein ligand-1 (PSGL-1), sialylated glycan, heparan sulfate and annexin II (Anx2). SCARB2 plays crit...

  15. Serotonin Receptors in Hippocampus


    Laura Cristina Berumen; Angelina Rodríguez; Ricardo Miledi; Guadalupe García-Alcocer


    Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a fu...

  16. Adenosine receptor neurobiology: overview. (United States)

    Chen, Jiang-Fan; Lee, Chien-fei; Chern, Yijuang


    Adenosine is a naturally occurring nucleoside that is distributed ubiquitously throughout the body as a metabolic intermediary. In the brain, adenosine functions as an important upstream neuromodulator of a broad spectrum of neurotransmitters, receptors, and signaling pathways. By acting through four G-protein-coupled receptors, adenosine contributes critically to homeostasis and neuromodulatory control of a variety of normal and abnormal brain functions, ranging from synaptic plasticity, to cognition, to sleep, to motor activity to neuroinflammation, and cell death. This review begun with an overview of the gene and genome structure and the expression pattern of adenosine receptors (ARs). We feature several new developments over the past decade in our understanding of AR functions in the brain, with special focus on the identification and characterization of canonical and noncanonical signaling pathways of ARs. We provide an update on functional insights from complementary genetic-knockout and pharmacological studies on the AR control of various brain functions. We also highlight several novel and recent developments of AR neurobiology, including (i) recent breakthrough in high resolution of three-dimension structure of adenosine A2A receptors (A2ARs) in several functional status, (ii) receptor-receptor heterodimerization, (iii) AR function in glial cells, and (iv) the druggability of AR. We concluded the review with the contention that these new developments extend and strengthen the support for A1 and A2ARs in brain as therapeutic targets for neurologic and psychiatric diseases.

  17. A Single Residue in Ebola Virus Receptor NPC1 Influences Cellular Host Range in Reptiles. (United States)

    Ndungo, Esther; Herbert, Andrew S; Raaben, Matthijs; Obernosterer, Gregor; Biswas, Rohan; Miller, Emily Happy; Wirchnianski, Ariel S; Carette, Jan E; Brummelkamp, Thijn R; Whelan, Sean P; Dye, John M; Chandran, Kartik


    Filoviruses are the causative agents of an increasing number of disease outbreaks in human populations, including the current unprecedented Ebola virus disease (EVD) outbreak in western Africa. One obstacle to controlling these epidemics is our poor understanding of the host range of filoviruses and their natural reservoirs. Here, we investigated the role of the intracellular filovirus receptor, Niemann-Pick C1 (NPC1) as a molecular determinant of Ebola virus (EBOV) host range at the cellular level. Whereas human cells can be infected by EBOV, a cell line derived from a Russell's viper (Daboia russellii) (VH-2) is resistant to infection in an NPC1-dependent manner. We found that VH-2 cells are resistant to EBOV infection because the Russell's viper NPC1 ortholog bound poorly to the EBOV spike glycoprotein (GP). Analysis of panels of viper-human NPC1 chimeras and point mutants allowed us to identify a single amino acid residue in NPC1, at position 503, that bidirectionally influenced both its binding to EBOV GP and its viral receptor activity in cells. Significantly, this single residue change perturbed neither NPC1's endosomal localization nor its housekeeping role in cellular cholesterol trafficking. Together with other recent work, these findings identify sequences in NPC1 that are important for viral receptor activity by virtue of their direct interaction with EBOV GP and suggest that they may influence filovirus host range in nature. Broader surveys of NPC1 orthologs from vertebrates may delineate additional sequence polymorphisms in this gene that control susceptibility to filovirus infection. IMPORTANCE Identifying cellular factors that determine susceptibility to infection can help us understand how Ebola virus is transmitted. We asked if the EBOV receptor Niemann-Pick C1 (NPC1) could explain why reptiles are resistant to EBOV infection. We demonstrate that cells derived from the Russell's viper are not susceptible to infection because EBOV cannot bind to

  18. Bone marrow and nonbone marrow Toll like receptor 4 regulate acute hepatic injury induced by endotoxemia.

    Directory of Open Access Journals (Sweden)

    Edith Hochhauser

    Full Text Available BACKGROUND: Toll-like receptors (TLRs are expressed in immune cells and hepatocytes. We examined whether hepatic Toll-like receptor 4 (TLR4 is involved in the acute hepatic injury caused by the administration of lipopolysaccharide (LPS (septic shock model. METHODS: Wild type (WT, TLR4-deficient and chimera mice underwent myeloablative bone marrow transplantation to dissociate between TLR4 expression in the liver or in the immune-hematopoietic system. Mice were injected with LPS and sacrificed 4 hours later. RESULTS: Compared to TLR4 deficient mice, WT mice challenged with LPS displayed increased serum liver enzymes and hepatic cellular inflammatory infiltrate together with increased serum and hepatic levels of interleukin 1β (IL-1β, tumor necrosis factor α (TNFα ,Up-regulation of hepatic mRNA encoding TLR4, IκB and c-jun expressions. TLR4 mutant mice transplanted with WT bone marrow were more protected than WT chimeric mice bearing TLR4 mutant hemopoietic cells from LPS, as seen by IL-1β and TNFα levels. We then used hepatocytes (Huh7 and macrophages from monocytic cell lines to detect TLR mRNA expression. Macrophages expressed a significantly higher level of TLR4 mRNA and TLR2 (more than 3000- and 8000-fold respectively compared with the hepatocyte cell line. LPS administration induced TLR4 activation in a hepatocyte cell line in a dose dependent manner while TLR2 mRNA hardly changed. CONCLUSIONS: These results suggest that TLR4 activation of hepatocytes participate in the immediate response to LPS induced hepatic injury. However, in this response, the contribution of TLR4 on bone marrow derived cells is more significant than those of the hepatocytes. The absence of the TLR4 gene plays a pivotal role in reducing hepatic LPS induced injury.

  19. Rebuilding a macromolecular membrane complex at the atomic scale: case of the Kir6.2 potassium channel coupled to the muscarinic acetylcholine receptor M2. (United States)

    Sapay, Nicolas; Estrada-Mondragon, Argel; Moreau, Christophe; Vivaudou, Michel; Crouzy, Serge


    Ion channel-coupled receptors (ICCR) are artificial proteins built from a G protein-coupled receptor and an ion channel. Their use as molecular biosensors is promising in diagnosis and high-throughput drug screening. The concept of ICCR was initially validated with the combination of the muscarinic receptor M2 with the inwardly rectifying potassium channel Kir6.2. A long protein engineering phase has led to the biochemical characterization of the M2-Kir6.2 construct. However, its molecular mechanism remains to be elucidated. In particular, it is important to determine how the activation of M2 by its agonist acetylcholine triggers the modulation of the Kir6.2 channel via the M2-Kir6.2 linkage. In the present study, we have developed and validated a computational approach to rebuild models of the M2-Kir6.2 chimera from the molecular structure of M2 and Kir6.2. The protocol was first validated on the known protein complexes of the μ-opioid Receptor, the CXCR4 receptor and the Kv1.2 potassium channel. When applied to M2-Kir6.2, our protocol produced two possible models corresponding to two different orientations of M2. Both models highlights the role of the M2 helices I and VIII in the interaction with Kir6.2, as well as the role of the Kir6.2 N-terminus in the channel opening. Those two hypotheses will be explored in a future experimental study of the M2-Kir6.2 construct.

  20. Identification of Androgen Receptor-Specific Enhancer RNAs (United States)


    AND SUBTITLE Identification of Androgen Receptor-Specific Enhancer RNAs 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0120 5c. PROGRAM ELEMENT ...interesting eRNAs and their sequences are shown below. AR-eRNA-#1 ( 117 bp

  1. Cholera toxin B subunit-five-stranded α-helical coiled-coil fusion protein: "five-to-five" molecular chimera displays robust physicochemical stability. (United States)

    Arakawa, Takeshi; Harakuni, Tetsuya


    To create a physicochemically stable cholera toxin (CT) B subunit (CTB), it was fused to the five-stranded α-helical coiled-coil domain of cartilage oligomeric matrix protein (COMP). The chimeric fusion protein (CTB-COMP) was expressed in Pichia pastoris, predominantly as a pentamer, and retained its affinity for the monosialoganglioside GM1, a natural receptor of CT. The fusion protein displayed thermostability, tolerating the boiling temperature of water for 10min, whereas unfused CTB readily dissociated to its monomers and lost its affinity for GM1. The fusion protein also displayed resistance to strong acid at pHs as low as 0.1, and to the protein denaturant sodium dodecyl sulfate at concentrations up to 10%. Intranasal administration of the fusion protein to mice induced anti-B subunit serum IgG, even after the protein was boiled, whereas unfused CTB showed no thermostable mucosal immunogenicity. This study demonstrates that CTB fused to a pentameric α-helical coiled coil has a novel physicochemical phenotype, which may provide important insight into the molecular design of enterotoxin-B-subunit-based vaccines and vaccine delivery molecules.

  2. Ionotropic crustacean olfactory receptors.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Corey

    Full Text Available The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs, the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs, as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.

  3. Evaluation of Recharge Potential at Crater U5a (WISHBONE)

    Energy Technology Data Exchange (ETDEWEB)

    Richard H. French; Samuel L. Hokett


    Radionuclides are present both below and above the water table at the Nevada Test Site (NTS), as the result of underground nuclear testing. Mobilization and transport of radionuclides from the vadose zone is a complex process that is influenced by the solubility and sorption characteristics of the individual radionuclides, as well as the soil water flux. On the NTS, subsidence craters resulting from testing underground nuclear weapons are numerous, and many intercept surface water flows. Because craters collect surface water above the sub-surface point of device detonation, these craters may provide a mechanism for surface water to recharge the groundwater aquifer system underlying the NTS. Given this situation, there is a potential for the captured water to introduce contaminants into the groundwater system. Crater U5a (WISHBONE), located in Frenchman Flat, was selected for study because of its potentially large drainage area, and significant erosional features, which suggested that it has captured more runoff than other craters in the Frenchman Flat area. Recharge conditions were studied in subsidence crater U5a by first drilling boreholes and analyzing the collected soil cores to determine the soil properties and moisture conditions. This information, coupled with a 32-year precipitation record, was used to conduct surface and vaodse zone modeling. Surface water modeling predicted that approximately 13 ponding events had occurred during the life of the crater. Vadose zone modeling indicated that since the crater's formation approximately 5,900 m3 of water were captured by the crater. Of this total, approximately 5,200 m3 of potential recahrge may have occurred, and the best estimates of annual average potential recharge rates lie between 36 and 188 cm of water per year. The term potential is used here to indicate that the water is not technically recharged because it has not yet reached the water table.

  4. Targeting the minor pocket of C5aR for the rational design of an oral allosteric inhibitor for inflammatory and neuropathic pain relief (United States)

    Moriconi, Alessio; Cunha, Thiago M.; Souza, Guilherme R.; Lopes, Alexandre H.; Cunha, Fernando Q.; Carneiro, Victor L.; Pinto, Larissa G.; Brandolini, Laura; Aramini, Andrea; Bizzarri, Cinzia; Bianchini, Gianluca; Beccari, Andrea R.; Fanton, Marco; Bruno, Agostino; Costantino, Gabriele; Bertini, Riccardo; Galliera, Emanuela; Locati, Massimo; Ferreira, Sérgio H.; Teixeira, Mauro M.; Allegretti, Marcello


    Chronic pain resulting from inflammatory and neuropathic disorders causes considerable economic and social burden. Pharmacological therapies currently available for certain types of pain are only partially effective and may cause severe adverse side effects. The C5a anaphylatoxin acting on its cognate G protein-coupled receptor (GPCR), C5aR, is a potent pronociceptive mediator in several models of inflammatory and neuropathic pain. Although there has long been interest in the identification of C5aR inhibitors, their development has been complicated, as for many peptidomimetic drugs, mostly by poor drug-like properties. Herein, we report the de novo design of a potent and selective C5aR noncompetitive allosteric inhibitor, DF2593A, guided by the hypothesis that an allosteric site, the “minor pocket,” previously characterized in CXC chemokine receptors-1 and -2, is functionally conserved in the GPCR class. In vitro, DF2593A potently inhibited C5a-induced migration of human and rodent neutrophils. In vivo, oral administration of DF2593A effectively reduced mechanical hyperalgesia in several models of acute and chronic inflammatory and neuropathic pain, without any apparent side effects. Mechanical hyperalgesia after spared nerve injury was also reduced in C5aR−/− mice compared with WT mice. Furthermore, treatment of C5aR−/− mice with DF2593A did not produce any further antinociceptive effect compared with C5aR−/− mice treated with vehicle. The successful medicinal chemistry strategy confirms that a conserved minor pocket is amenable for the rational design of selective inhibitors and the pharmacological results support that the allosteric blockade of the C5aR represents a highly promising therapeutic approach to control chronic inflammatory and neuropathic pain. PMID:25385614

  5. Presynaptic P2 receptors? (United States)

    Stone, T W; O'Kane, E M; Nikbakht, M R; Ross, F M


    Although the emphasis in ATP research has been on postjunctional receptors, there is also evidence for presynaptic receptors regulating transmitter release in the autonomic nervous system. Recent work has attempted to identify similar mechanisms in the central nervous system. Some of the existing results can be explained by the metabolism of nucleotides to adenosine or adenosine 5'-monophosphate (AMP). However, studies of presynaptic effects using sensitive electrophysiological tests such as paired-pulse interactions indicate that nucleotides can act at presynaptic sites, but that their effects may be mediated by a release of adenosine. Results are also described which indicate that, under some conditions, nucleotides can mediate phenomena such as long-term potentiation, which probably involves a significant presynaptic element. In part these effects may involve a nucleotide-induced release of adenosine and the simultaneous activation of P1 and P2 receptors.

  6. Human presynaptic receptors. (United States)

    Schlicker, Eberhard; Feuerstein, Thomas


    Presynaptic receptors are sites at which transmitters, locally formed mediators or hormones inhibit or facilitate the release of a given transmitter from its axon terminals. The interest in the identification of presynaptic receptors has faded in recent years and it may therefore be justified to give an overview of their occurrence in the autonomic and central nervous system; this review will focus on presynaptic receptors in human tissues. Autoreceptors are presynaptic receptors at which a given transmitter restrains its further release, though in some instances may also increase its release. Inhibitory autoreceptors represent a typical example of a negative feedback; they are tonically activated by the respective endogenous transmitter and/or are constitutively active. Autoreceptors also play a role under pathophysiological conditions, e.g. by limiting the massive noradrenaline release occurring during congestive heart failure. They can be used for therapeutic purposes; e.g., the α2-adrenoceptor antagonist mirtazapine is used as an antidepressant and the inverse histamine H3 receptor agonist pitolisant has been marketed as a new drug for the treatment of narcolepsy in 2016. Heteroreceptors are presynaptic receptors at which transmitters from adjacent neurons, locally formed mediators (e.g. endocannabinoids) or hormones (e.g. adrenaline) can inhibit or facilitate transmitter release; they may be subject to an endogenous tone. The constipating effect of the sympathetic nervous system or of the antihypertensive drug clonidine is related to the activation of inhibitory α2-adrenoceptors on postganglionic parasympathetic neurons. Part of the stimulating effect of adrenaline on the sympathetic nervous system during stress is related to its facilitatory effect on noradrenaline release via β2-adrenoceptors.

  7. Angiotensin type 2 receptor (AT2R) and receptor Mas

    DEFF Research Database (Denmark)

    Villela, Daniel; Leonhardt, Julia; Patel, Neal;


    The angiotensin type 2 receptor (AT2R) and the receptor Mas are components of the protective arms of the renin-angiotensin system (RAS), i.e. they both mediate tissue protective and regenerative actions. The spectrum of actions of these two receptors and their signalling mechanisms display striking...... similarities. Moreover, in some instances, antagonists for one receptor are able to inhibit the action of agonists for the respective other receptor. These observations suggest that there may be a functional or even physical interaction of both receptors. This article discusses potential mechanisms underlying...... the phenomenon of blockade of angiotensin-(1-7) [Ang-(1-7)] actions by AT2R antagonists and vice versa. Such mechanisms may comprise dimerization of the receptors or dimerization-independent mechanisms such as lack of specificity of the receptor ligands used in the experiments or involvement of the Ang-(1...

  8. Assays for calcitonin receptors

    Energy Technology Data Exchange (ETDEWEB)

    Teitelbaum, A.P.; Nissenson, R.A.; Arnaud, C.D.


    The assays for calcitonin receptors described focus on their use in the study of the well-established target organs for calcitonin, bone and kidney. The radioligand used in virtually all calcitonin binding studies is /sup 125/I-labelled salmon calcitonin. The lack of methionine residues in this peptide permits the use of chloramine-T for the iodination reaction. Binding assays are described for intact bone, skeletal plasma membranes, renal plasma membranes, and primary kidney cell cultures of rats. Studies on calcitonin metabolism in laboratory animals and regulation of calcitonin receptors are reviewed.

  9. Beyond the Receptor

    Institute of Scientific and Technical Information of China (English)

    Russell Jones


    @@ Had this Special Issue on plant hormones been published 5 years ago,it is likely that details about biosynthetic pathways would have taken center stage.As articles in this issue show,however,the field of plant hormone research has progressed rapidly and is now moving beyond the search for receptors.Progress in research on the mechanism of action of plant hormones has been rapid;receptors for the main classes of hormones have been identified;and the search is on for players downstream in signal-transduction chains.

  10. Biomimetic Receptors and Sensors

    Directory of Open Access Journals (Sweden)

    Franz L. Dickert


    Full Text Available In biomimetics, living systems are imitated to develop receptors for ions, molecules and bioparticles. The most pertinent idea is self-organization in analogy to evolution in nature, which created the key-lock principle. Today, modern science has been developing host-guest chemistry, a strategy of supramolecular chemistry for designing interactions of analytes with synthetic receptors. This can be realized, e.g., by self-assembled monolayers (SAMs or molecular imprinting. The strategies are used for solid phase extraction (SPE, but preferably in developing recognition layers of chemical sensors.

  11. Chemokine Receptors and Transplantation

    Institute of Scientific and Technical Information of China (English)

    Jinquan Tan; Gang Zhou


    A complex process including both the innate and acquired immune responses results in allograft rejection. Some chemokine receptors and their ligands play essential roles not only for leukocyte migration into the graft but also in facilitating dendritic and T cell trafficking between lymph nodes and the transplant in the early and late stage of the allogeneic response. This review focuses on the impact of these chemoattractant proteins on transplant outcome and novel diagnostic and therapeutic approaches for antirejection therapy based on targeting of chemokine receptors and/or their ligands. Cellular & Molecular Immunology.

  12. Chemical synthesis and 1H-NMR 3D structure determination of AgTx2-MTX chimera, a new potential blocker for Kv1.2 channel, derived from MTX and AgTx2 scorpion toxins. (United States)

    Pimentel, Cyril; M'Barek, Sarrah; Visan, Violetta; Grissmer, Stephan; Sampieri, François; Sabatier, Jean-Marc; Darbon, Hervé; Fajloun, Ziad


    Agitoxin 2 (AgTx2) is a 38-residue scorpion toxin, cross-linked by three disulfide bridges, which acts on voltage-gated K(+) (Kv) channels. Maurotoxin (MTX) is a 34-residue scorpion toxin with an uncommon four-disulfide bridge reticulation, acting on both Ca(2+)-activated and Kv channels. A 39-mer chimeric peptide, named AgTx2-MTX, was designed from the sequence of the two toxins and chemically synthesized. It encompasses residues 1-5 of AgTx2, followed by the complete sequence of MTX. As established by enzyme cleavage, the new AgTx2-MTX molecule displays half-cystine pairings of the type C1-C5, C2-C6, C3-C7, and C4-C8, which is different from that of MTX. The 3D structure of AgTx2-MTX solved by (1)H-NMR, revealed both alpha-helical and beta-sheet structures, consistent with a common alpha/beta scaffold of scorpion toxins. Pharmacological assays of AgTx2-MTX revealed that this new molecule is more potent than both original toxins in blocking rat Kv1.2 channel. Docking simulations, performed with the 3D structure of AgTx2-MTX, confirmed this result and demonstrated the participation of the N-terminal domain of AgTx2 in its increased affinity for Kv1.2 through additional molecular contacts. Altogether, the data indicated that replacement of the N-terminal domain of MTX by the one of AgTx2 in the AgTx2-MTX chimera results in a reorganization of the disulfide bridge arrangement and an increase of affinity to the Kv1.2 channel.

  13. Chemical synthesis and 1H-NMR 3D structure determination of AgTx2-MTX chimera, a new potential blocker for Kv1.2 channel, derived from MTX and AgTx2 scorpion toxins (United States)

    Pimentel, Cyril; M'Barek, Sarrah; Visan, Violetta; Grissmer, Stephan; Sampieri, François; Sabatier, Jean-Marc; Darbon, Hervé; Fajloun, Ziad


    Agitoxin 2 (AgTx2) is a 38-residue scorpion toxin, cross-linked by three disulfide bridges, which acts on voltage-gated K+ (Kv) channels. Maurotoxin (MTX) is a 34-residue scorpion toxin with an uncommon four-disulfide bridge reticulation, acting on both Ca2+-activated and Kv channels. A 39-mer chimeric peptide, named AgTx2-MTX, was designed from the sequence of the two toxins and chemically synthesized. It encompasses residues 1–5 of AgTx2, followed by the complete sequence of MTX. As established by enzyme cleavage, the new AgTx2-MTX molecule displays half-cystine pairings of the type C1–C5, C2–C6, C3–C7, and C4–C8, which is different from that of MTX. The 3D structure of AgTx2-MTX solved by 1H-NMR, revealed both α-helical and β-sheet structures, consistent with a common α/β scaffold of scorpion toxins. Pharmacological assays of AgTx2-MTX revealed that this new molecule is more potent than both original toxins in blocking rat Kv1.2 channel. Docking simulations, performed with the 3D structure of AgTx2-MTX, confirmed this result and demonstrated the participation of the N-terminal domain of AgTx2 in its increased affinity for Kv1.2 through additional molecular contacts. Altogether, the data indicated that replacement of the N-terminal domain of MTX by the one of AgTx2 in the AgTx2-MTX chimera results in a reorganization of the disulfide bridge arrangement and an increase of affinity to the Kv1.2 channel. PMID:18042681

  14. Screening and familial characterization of copy-number variations in NR5A1 in 46,XY disorders of sex development and premature ovarian failure. (United States)

    Harrison, Steven M; Campbell, Ian M; Keays, Melise; Granberg, Candace F; Villanueva, Carlos; Tannin, Grace; Zinn, Andrew R; Castrillon, Diego H; Shaw, Chad A; Stankiewicz, Pawel; Baker, Linda A


    The NR5A1 gene encodes for steroidogenic factor 1, a nuclear receptor that regulates proper adrenal and gonadal development and function. Mutations identified by NR5A1 sequencing have been associated with disorders of sex development (DSD), ranging from sex reversal to severe hypospadias in 46,XY patients and premature ovarian failure (POF) in 46,XX patients. Previous reports have identified four families with a history of both 46,XY DSD and 46,XX POF carrying segregating NR5A1 sequence mutations. Recently, three 46,XY DSD sporadic cases with NR5A1 microdeletions have been reported. Here, we identify the first NR5A1 microdeletion transmitted in a pedigree with both 46,XY DSD and 46,XX POF. A 46,XY individual with DSD due to gonadal dysgenesis was born to a young mother who developed POF. Array CGH analysis revealed a maternally inherited 0.23 Mb microdeletion of chromosome 9q33.3, including the NR5A1 gene. Based on this finding, we screened patients with unexplained 46,XY DSD (n = 11), proximal hypospadias (n = 21) and 46,XX POF (n = 36) for possible NR5A1 copy-number variations (CNVs) via multiplex ligation-dependent probe amplification (MLPA), but did not identify any additional CNVs involving NR5A1. These data suggest that NR5A1 CNVs are an infrequent cause of these disorders but that array CGH and MLPA are useful genomic screening tools to uncover the genetic basis of such unexplained cases. This case is the first report of a familial NR5A1 CNV transmitting in a pedigree, causing both the male and female phenotypes associated with NR5A1 mutations, and the first report of a NR5A1 CNV associated with POF.

  15. Ginkgolides and glycine receptors

    DEFF Research Database (Denmark)

    Jaracz, Stanislav; Nakanishi, Koji; Jensen, Anders A.


    Ginkgolides from the Ginkgo biloba tree are diterpenes with a cage structure consisting of six five-membered rings and a unique tBu group. They exert a variety of biological properties. In addition to being antagonists of the platelet activating factor receptor (PAFR), it has recently been shown...

  16. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea;


    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA......-ray crystallographic analyses, chemical correlation, and CD spectral analyses. The effects of the individual stereoisomers at ionotropic and metabotropic (S)-Glu receptors (iGluRs and mGluRs) were characterized. Compounds with S-configuration at the alpha-carbon generally showed mGluR2 agonist activity of similar...... limited effect on pharmacology. Structure-activity relationships at iGluRs in the rat cortical wedge preparation showed a complex pattern, some compounds being NMDA receptor agonists [e.g., EC(50) =110 microM for (2S,5RS)-5-methyl-AA (6a,b)] and some compounds showing NMDA receptor antagonist effects [e...

  17. P2-purinerge receptorer

    DEFF Research Database (Denmark)

    Solgaard, Marie; Jørgensen, Niklas Rye


    and by osteoclasts, and agonist binding affects cell proliferation, differentiation, activity and apoptosis. With increasing knowledge of the function and role of these receptors in bone biology, they will undoubtedly be a future target for the design of new drugs which can be used for treatment of metabolic bone...

  18. Androgen receptor mutations

    NARCIS (Netherlands)

    A.O. Brinkmann (Albert); G.W. Jenster (Guido); C. Ris-Stalpers (Carolyn); J.A.G.M. van der Korput (J. A G M); H.T. Brüggenwirth (Hennie); A.L.M. Boehmer (Annemie); J. Trapman (Jan)


    textabstractMale sexual differentiation and development proceed under direct control of androgens. Androgen action is mediated by the intracellular androgen receptor, which belongs to the superfamily of ligand-dependent transcription factors. At least three pathological situations are associated wit

  19. Meeting report: nuclear receptors

    DEFF Research Database (Denmark)

    Tuckermann, Jan; Bourguet, William; Mandrup, Susanne


    The biannual European Molecular Biology Organization (EMBO) conference on nuclear receptors was organized by Beatrice Desvergne and Laszlo Nagy and took place in Cavtat near Dubrovnik on the Adriatic coast of Croatia September 25-29, 2009. The meeting brought together researchers from all over...

  20. Characterization of melanocortin receptors. (United States)

    Goetz, Aaron S; Ignar, Diane M


    This unit describes a Scintillation Proximity Assay (SPA) for the measurement of ligand binding to melanocortin receptors (MCRs) using membranes prepared from cell lines stably expressing recombinant MCRs. It provides a facile method for determining the affinity of compounds at MC1R, MC3R, MC4R, or MC5R.

  1. Metformin and insulin receptors

    Energy Technology Data Exchange (ETDEWEB)

    Vigneri, R.; Gullo, D.; Pezzino, V.

    The authors evaluated the effect of metformin (N,N-dimethylbiguanide), a biguanide known to be less toxic than phenformin, on insulin binding to its receptors, both in vitro and in vivo. Specific /sup 125/I-insulin binding to cultured IM-9 human lymphocytes and MCF-7 human breast cancer cells was determined after preincubation with metformin. Specific /sup 125/I-insulin binding to circulating monocytes was also evaluated in six controls, eight obese subjects, and six obese type II diabetic patients before and after a short-term treatment with metformin. Plasma insulin levels and blood glucose were also measured on both occasions. Metformin significantly increased insulin binding in vitro to both IM-9 lymphocytes and MCF-7 cells; the maximum increment was 47.1% and 38.0%, respectively. Metformin treatment significantly increased insulin binding in vivo to monocytes of obese subjects and diabetic patients. Scatchard analysis indicated that the increased binding was mainly due to an increase in receptor capacity. Insulin binding to monocytes of normal controls was unchanged after metformin as were insulin levels in all groups; blood glucose was significantly reduced after metformin only in diabetic patients. These data indicate that metformin increases insulin binding to its receptors in vitro and in vivo. The effect in vivo is observed in obese subjects and in obese type II diabetic patients, paralleling the clinical effectiveness of this antidiabetic agent, and is not due to receptor regulation by circulating insulin, since no variation in insulin levels was recorded.

  2. Gab2 is phosphorylated on tyrosine upon interleukin-2/interleukin-15 stimulation in mycosis-fungoides-derived tumor T cells and associates inducibly with SHP-2 and Stat5a

    DEFF Research Database (Denmark)

    Brockdorff, J L; Gu, H; Mustelin, T


    Cutaneous T cell lymphomas (CTCLs) often show abnormal interleukin-2 (IL-2) receptor signaling. In this study, we investigated the role of Gab2, a recently identified adaptor molecule involved in IL-2 receptor signaling in CTCLs. We show that Gab2 was transiently phosphorylated by tyrosine in human...... mycosis fungoides (MF) tumor T cells upon IL-2 stimulation and that SHP2 as well as Stat5a associated inducibly with Gab2. IL-15, but not IL-4, also induced tyrosine phosphorylation of Gab2, suggesting that the IL-2 receptor beta-chain is important for IL-2-induced Gab2 phosphorylation. Preincubation...

  3. Histamine H3-receptor isoforms. (United States)

    Bakker, R A


    Increasing evidence supports a role for HA as a neurotransmitter and neuromodulator in various brain functions, including emotion, cognition, and feeding. The recent cloning of the histamine H3 receptor allowed for the subsequent cloning of a variety of H3 receptor isoforms from different species as well as the H4 receptor. As a result a wide variety of H3-receptor isoforms are now known that display differential brain expression patterns and signalling properties. These recent discoveries are discussed in view of the growing interest of the H3 receptor as a target for the development of potential therapeutics.

  4. Levamisole receptors: a second awakening (United States)

    Martin, Richard J.; Robertson, Alan P.; Buxton, Samuel K.; Beech, Robin N.; Charvet, Claude L.; Neveu, Cedric


    Levamisole and pyrantel are old (1965) but useful anthelmintics that selectively activate nematode acetylcholine ion-channel receptors; they are used to treat roundworm infections in humans and animals. Interest in their actions has surged, giving rise to new knowledge and technical advances, including an ability to reconstitute receptors that reveal more details of modes of action/resistance. We now know that the receptors are plastic and may form diverse species-dependent subtypes of receptor with different sensitivities to individual cholinergic anthelmintics. Understanding the biology of the levamisole receptors is expected to inform other studies on anthelmintics (ivermectin and emodepside) that act on ion-channels. PMID:22607692

  5. Oligomerisation of C. elegans Olfactory Receptors, ODR-10 and STR-112, in Yeast

    KAUST Repository

    Tehseen, Muhammad


    It is widely accepted that vertebrate G-Protein Coupled Receptors (GPCRs) associate with each other as homo- or hetero-dimers or higher-order oligomers. The C. elegans genome encodes hundreds of olfactory GPCRs, which may be expressed in fewer than a dozen chemosensory neurons, suggesting an opportunity for oligomerisation. Here we show, using three independent lines of evidence: co-immunoprecipitation, bioluminescence resonance energy transfer and a yeast two-hybrid assay that nematode olfactory receptors (ORs) oligomerise when heterologously expressed in yeast. Specifically, the nematode receptor ODR-10 is able to homo-oligomerise and can also form heteromers with the related nematode receptor STR-112. ODR-10 also oligomerised with the rat I7 OR but did not oligomerise with the human somatostatin receptor 5, a neuropeptide receptor. In this study, the question of functional relevance was not addressed and remains to be investigated.

  6. Recombinant HCV variants with NS5A from genotypes 1-7 have different sensitivities to an NS5A inhibitor but not interferon-a

    DEFF Research Database (Denmark)

    Scheel, Troels K H; Gottwein, Judith M; Mikkelsen, Lotte S;


    Heterogeneity in the hepatitis C virus (HCV) protein NS5A influences its sensitivity to interferon-based therapy. Furthermore, NS5A is an important target for development of HCV-specific inhibitors. We aimed to develop recombinant infectious cell culture systems that express NS5A from isolates...... of the 7 major HCV genotypes, and determining their sensitivity to a specific NS5A inhibitor and to interferon-a....

  7. MADANALYSIS 5, a user-friendly framework for collider phenomenology (United States)

    Conte, Eric; Fuks, Benjamin; Serret, Guillaume


    We present MADANALYSIS 5, a new framework for phenomenological investigations at particle colliders. Based on a C++ kernel, this program allows us to efficiently perform, in a straightforward and user-friendly fashion, sophisticated physics analyses of event files such as those generated by a large class of Monte Carlo event generators. MADANALYSIS 5 comes with two modes of running. The first one, easier to handle, uses the strengths of a powerful PYTHON interface in order to implement physics analyses by means of a set of intuitive commands. The second one requires one to implement the analyses in the C++ programming language, directly within the core of the analysis framework. This opens unlimited possibilities concerning the level of complexity which can be reached, being only limited by the programming skills and the originality of the user. Program summaryProgram title: MadAnalysis 5 Catalogue identifier: AENO_v1_0 Program summary URL: Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Permission to use, copy, modify and distribute this program is granted under the terms of the GNU General Public License. No. of lines in distributed program, including test data, etc.: 31087 No. of bytes in distributed program, including test data, etc.: 399105 Distribution format: tar.gz Programming language: PYTHON, C++. Computer: All platforms on which Python version 2.7, Root version 5.27 and the g++ compiler are available. Compatibility with newer versions of these programs is also ensured. However, the Python version must be below version 3.0. Operating system: Unix, Linux and Mac OS operating systems on which the above-mentioned versions of Python and Root, as well as g++, are available. Classification: 11.1. External routines: ROOT ( Nature of problem: Implementing sophisticated phenomenological analyses in high-energy physics through a

  8. Receptor tyrosine kinases in carcinogenesis. (United States)

    Zhang, Xiao-Ying; Zhang, Pei-Ying


    Receptor tyrosine kinases (RTKs) are cell surface glycoproteins with enzymatic activity involved in the regulation of various important functions. In all-important physiological functions including differentiation, cell-cell interactions, survival, proliferation, metabolism, migration and signaling these receptors are the key players of regulation. Additionally, mutations of RTKs or their overexpression have been described in many human cancers and are being explored as a novel avenue for a new therapeutic approach. Some of the deregulated RTKs observed to be significantly affected in cancers included vascular endothelial growth factor receptor, epidermal growth factor receptor, fibroblast growth factor receptor, RTK-like orphan receptor 1 (ROR1) and the platelet-derived growth factor receptor. These deregulated RTKs offer attractive possibilities for the new anticancer therapeutic approach involving specific targeting by monoclonal antibodies as well as kinase. The present review aimed to highlight recent perspectives of RTK ROR1 in cancer.

  9. Virally encoded 7TM receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Waldhoer, M; Lüttichau, H R


    A number of herpes- and poxviruses encode 7TM G-protein coupled receptors most of which clearly are derived from their host chemokine system as well as induce high expression of certain 7TM receptors in the infected cells. The receptors appear to be exploited by the virus for either immune evasion...... in various parts of the viral life cyclus. Most of the receptors encoded by human pathogenic virus are still orphan receptors, i.e. the endogenous ligand is unknown. In the few cases where it has been possible to characterize these receptors pharmacologically, they have been found to bind a broad spectrum...... expression of this single gene in certain lymphocyte cell lineages leads to the development of lesions which are remarkably similar to Kaposi's sarcoma, a human herpesvirus 8 associated disease. Thus, this and other virally encoded 7TM receptors appear to be attractive future drug targets....


    Michalek, Krzysztof; Morshed, Syed A.; Latif, Rauf; Davies, Terry F.


    Thyrotropin receptor autoantibodies (TSHR-Abs) of the stimulating variety are the hallmark of Graves’ disease. The presence of immune defects leading to synthesis of TSHR-Abs causes hyperthyroidism and is associated with other extrathyroidal manifestations. Further characterization of these antibodies has now been made possible by the generation of monoclonal antibodies with this unique stimulating capacity as well as similar TSHR-Abs not associated with hyperthyroidism. Their present classification divides TSHR-Abs into stimulating, blocking (competing with TSH binding) and neutral (no signaling). Recent studies using monoclonal TSHR-Abs has revealed that stimulating and blocking antibodies bind to the receptor using mostly conformational epitopes, whilst neutral antibodies utilize exclusively linear peptides. Subtle differences in epitopes for stimulating and blocking antibodies account for the diversity of their biological actions. Recently non-classical signaling elicited by neutral antibodies has also been described, raising the need for a new classification of TSHR-Abs. PMID:19332151

  11. Ligand-Receptor Interactions

    CERN Document Server

    Bongrand, Pierre


    The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the ...

  12. The interleukin-4 receptor: signal transduction by a hematopoietin receptor. (United States)

    Keegan, A D; Pierce, J H


    Over the last several years, the receptors for numerous cytokines have been molecularly characterized. Analysis of their amino acid sequences shows that some of these receptors bear certain motifs in their extracellular domains that define a family of receptors called the Hematopoietin receptor superfamily. Significant advances in characterizing the structure, function, and mechanisms of signal transduction have been made for several members of this family. The purpose of this review is to discuss the recent advances made for one of the family members, the interleukin (IL) 4 receptor. Other receptor systems have recently been reviewed elsewhere. The IL-4 receptor consists of, at the minimum, the cloned 140 kDa IL-4-binding chain with the potential for associating with other chains. The IL-4 receptor transduces its signal by activating a tyrosine kinase that phosphorylates cellular substrates, including the receptor itself, and the 170 kDa substrate called 4PS. Phosphorylated 4PS interacts with the SH2 domain of the enzyme PI-3'-kinase and increases its enzymatic activity. These early events in the IL-4 receptor initiated signaling pathway may trigger a series of signals that will ultimately lead to an IL-4 specific biologic outcome.

  13. Data of evolutionary structure change: 1EQ5A-2EQLA [Confc[Archive

    Lifescience Database Archive (English)


  14. C5a Regulates IL-1β Production and Leukocyte Recruitment in a Murine Model of Monosodium Urate Crystal-Induced Peritonitis (United States)

    Khameneh, Hanif J.; Ho, Adrian W. S.; Laudisi, Federica; Derks, Heidi; Kandasamy, Matheswaran; Sivasankar, Baalasubramanian; Teng, Gim Gee; Mortellaro, Alessandra


    Gouty arthritis results from the generation of monosodium urate (MSU) crystals within joints. These MSU crystals elicit acute inflammation characterized by massive infiltration of neutrophils and monocytes that are mobilized by the pro-inflammatory cytokine IL-1β. MSU crystals also activate the complement system, which regulates the inflammatory response; however, it is unclear whether or how MSU-mediated complement activation is linked to IL-1β release in vivo, and the various roles that might be played by individual components of the complement cascade. Here we show that exposure to MSU crystals in vivo triggers the complement cascade, leading to the generation of the biologically active complement proteins C3a and C5a. C5a, but not C3a, potentiated IL-1β and IL-1α release from LPS–primed MSU-exposed peritoneal macrophages and human monocytic cells in vitro; while in vivo MSU–induced C5a mediated murine neutrophil recruitment as well as IL-1β production at the site of inflammation. These effects were significantly ameliorated by treatment of mice with a C5a receptor antagonist. Mechanistic studies revealed that C5a most likely increased NLRP3 inflammasome activation via production of reactive oxygen species (ROS), and not through increased transcription of inflammasome components. Therefore we conclude that C5a generated upon MSU-induced complement activation increases neutrophil recruitment in vivo by promoting IL-1 production via the generation of ROS, which activate the NLRP3 inflammasome. Identification of the C5a receptor as a key determinant of IL-1-mediated recruitment of inflammatory cells provides a novel potential target for therapeutic intervention to mitigate gouty arthritis. PMID:28167912

  15. [Lipoprotein receptors. Old acquaintances and newcomers]. (United States)

    Ducobu, J


    Lipoprotein receptors are plasma membrane proteins of high affinity which interact with circulating lipoprotein particles. The well characterized LDL receptor continues to be analysed and some new findings on its intracellular mechanisms of action have emerged. New lipoprotein receptors have recently been described: the chylomicron remnant receptor or LDL-related protein (LRP), the lipolysis stimulated receptor (LSR), the very low density lipoprotein receptor (VLDLR), the HDL receptor (HDLR) and the scavenger receptor (SR). The molecular details of the receptors will facilitate the development of new therapeutic means to improve receptor-mediated clearance of lipoproteins.

  16. Analysis of the Binding Sites of Porcine Sialoadhesin Receptor with PRRSV

    Directory of Open Access Journals (Sweden)

    Yibo Jiang


    Full Text Available Porcine reproductive and respiratory syndrome virus (PRRSV can infect pigs and cause enormous economic losses to the pig industry worldwide. Porcine sialoadhesin (pSN and CD163 have been identified as key viral receptors on porcine alveolar macrophages (PAM, a main target cell infected by PRRSV. In this study, the protein structures of amino acids 1–119 from the pSN and cSN (cattle sialoadhesin N-termini (excluding the 19-amino acid signal peptide were modeled via homology modeling based on mSN (mouse sialoadhesin template structures using bioinformatics tools. Subsequently, pSN and cSN homology structures were superposed onto the mSN protein structure to predict the binding sites of pSN. As a validation experiment, the SN N-terminus (including the wild-type and site-directed-mutant-types of pSN and cSN was cloned and expressed as a SN-GFP chimera protein. The binding activity between SN and PRRSV was confirmed by WB (Western blotting, FAR-WB (far Western blotting, ELISA (enzyme-linked immunosorbent assay and immunofluorescence assay. We found that the S107 amino acid residue in the pSN N-terminal played a crucial role in forming a special cavity, as well as a hydrogen bond for enhancing PRRSV binding during PRRSV infection. S107 may be glycosylated during PRRSV infection and may also be involved in forming the cavity for binding PRRSV along with other sites, including W2, Y44, S45, R97, R105, W106 and V109. Additionally, S107 might also be important for pSN binding with PRRSV. However, the function of these binding sites must be confirmed by further studies.

  17. Similarity of Bovine Rotavirus Receptor and Human Rotavirus Receptor

    Institute of Scientific and Technical Information of China (English)

    苏琦华; 訾自强; 潘菊芬; 徐燕


    The monoclonal antibody against bovine rotavirus (BRV) receptor (BRV-R-mAb) was used to explore the similarity between the receptors of BRV and human rotavirus (HRV). ELISA, dot immunobinding assay, cell protection assay, solid-phase assay and immunohistochemistry method were applied. BRV-R-mAb bound both anti-BRV IgG and anti-HRV IgG respectively and could protect MA 104 cells against BRV and HRV challenges. Immunohistochemistry test showed that there were rotavirus receptors on the surfaces of foetal intestinal, tracheal mucosa and MA 104 cells membrane. We purified the rotavirus receptors on MA 104 ceils, which could bind both BRV and HRV in vitro. It is concluded that BRV receptor and HRV receptor are homogenous proteins and can be recognized by both BRV and HRV.

  18. CdiA Effectors from Uropathogenic Escherichia coli Use Heterotrimeric Osmoporins as Receptors to Recognize Target Bacteria (United States)

    Beck, Christina M.; Willett, Julia L. E.; Kim, Jeff J.; Low, David A.; Hayes, Christopher S.


    Many Gram-negative bacterial pathogens express contact-dependent growth inhibition (CDI) systems that promote cell-cell interaction. CDI+ bacteria express surface CdiA effector proteins, which transfer their C-terminal toxin domains into susceptible target cells upon binding to specific receptors. CDI+ cells also produce immunity proteins that neutralize the toxin domains delivered from neighboring siblings. Here, we show that CdiAEC536 from uropathogenic Escherichia coli 536 (EC536) uses OmpC and OmpF as receptors to recognize target bacteria. E. coli mutants lacking either ompF or ompC are resistant to CDIEC536-mediated growth inhibition, and both porins are required for target-cell adhesion to inhibitors that express CdiAEC536. Experiments with single-chain OmpF fusions indicate that the CdiAEC536 receptor is heterotrimeric OmpC-OmpF. Because the OmpC and OmpF porins are under selective pressure from bacteriophages and host immune systems, their surface-exposed loops vary between E. coli isolates. OmpC polymorphism has a significant impact on CDIEC536 mediated competition, with many E. coli isolates expressing alleles that are not recognized by CdiAEC536. Analyses of recombinant OmpC chimeras suggest that extracellular loops L4 and L5 are important recognition epitopes for CdiAEC536. Loops L4 and L5 also account for much of the sequence variability between E. coli OmpC proteins, raising the possibility that CDI contributes to the selective pressure driving OmpC diversification. We find that the most efficient CdiAEC536 receptors are encoded by isolates that carry the same cdi gene cluster as E. coli 536. Thus, it appears that CdiA effectors often bind preferentially to "self" receptors, thereby promoting interactions between sibling cells. As a consequence, these effector proteins cannot recognize nor suppress the growth of many potential competitors. These findings suggest that self-recognition and kin selection are important functions of CDI. PMID:27723824

  19. Melatonin Receptor Genes in Vertebrates

    Directory of Open Access Journals (Sweden)

    Hua Dong Yin


    Full Text Available Melatonin receptors are members of the G protein-coupled receptor (GPCR family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A and MT2 (or Mel1b or MTNR1B receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C, has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor.

  20. Pan-cancer analyses of the nuclear receptor superfamily (United States)

    Long, Mark D.; Campbell, Moray J.


    Nuclear receptors (NR) act as an integrated conduit for environmental and hormonal signals to govern genomic responses, which relate to cell fate decisions. We review how their integrated actions with each other, shared co-factors and other transcription factors are disrupted in cancer. Steroid hormone nuclear receptors are oncogenic drivers in breast and prostate cancer and blockade of signaling is a major therapeutic goal. By contrast to blockade of receptors, in other cancers enhanced receptor function is attractive, as illustrated initially with targeting of retinoic acid receptors in leukemia. In the post-genomic era large consortia, such as The Cancer Genome Atlas, have developed a remarkable volume of genomic data with which to examine multiple aspects of nuclear receptor status in a pan-cancer manner. Therefore to extend the review of NR function we have also undertaken bioinformatics analyses of NR expression in over 3000 tumors, spread across six different tumor types (bladder, breast, colon, head and neck, liver and prostate). Specifically, to ask how the NR expression was distorted (altered expression, mutation and CNV) we have applied bootstrapping approaches to simulate data for comparison, and also compared these NR findings to 12 other transcription factor families. Nuclear receptors were uniquely and uniformly downregulated across all six tumor types, more than predicted by chance. These approaches also revealed that each tumor type had a specific NR expression profile but these were most similar between breast and prostate cancer. Some NRs were down-regulated in at least five tumor types (e.g. NR3C2/MR and NR5A2/LRH-1)) whereas others were uniquely down-regulated in one tumor (e.g. NR1B3/RARG). The downregulation was not driven by copy number variation or mutation and epigenetic mechanisms maybe responsible for the altered nuclear receptor expression. PMID:27200367

  1. Pan-Cancer Analyses of the Nuclear Receptor Superfamily

    Directory of Open Access Journals (Sweden)

    Mark D. Long


    Full Text Available Nuclear receptors (NR act as an integrated conduit for environmental and hormonal signals to govern genomic responses, which relate to cell fate decisions. We review how their integrated actions with each other, shared co-factors and other transcription factors are disrupted in cancer. Steroid hormone nuclear receptors are oncogenic drivers in breast and prostate cancer and blockade of signaling is a major therapeutic goal. By contrast to blockade of receptors, in other cancers enhanced receptor function is attractive, as illustrated initially with targeting of retinoic acid receptors in leukemia. In the post-genomic era large consortia, such as The Cancer Genome Atlas, have developed a remarkable volume of genomic data with which to examine multiple aspects of nuclear receptor status in a pan-cancer manner. Therefore to extend the review of NR function we have also undertaken bioinformatics analyses of NR expression in over 3000 tumors, spread across six different tumor types (bladder, breast, colon, head and neck, liver and prostate. Specifically, to ask how the NR expression was distorted (altered expression, mutation and CNV we have applied bootstrapping approaches to simulate data for comparison, and also compared these NR findings to 12 other transcription factor families. Nuclear receptors were uniquely and uniformly downregulated across all six tumor types, more than predicted by chance. These approaches also revealed that each tumor type had a specific NR expression profile but these were most similar between breast and prostate cancer. Some NRs were down-regulated in at least five tumor types (e.g., NR3C2/MR and NR5A2/LRH-1 whereas others were uniquely down-regulated in one tumor (e.g., NR1B3/RARG. The downregulation was not driven by copy number variation or mutation and epigenetic mechanisms maybe responsible for the altered nuclear receptor expression.

  2. Chemical engineering of a three-fingered toxin with anti-alpha7 neuronal acetylcholine receptor activity. (United States)

    Mourier, G; Servent, D; Zinn-Justin, S; Ménez, A


    Though it possesses four disulfide bonds the three-fingered fold is amenable to chemical synthesis, using a Fmoc-based method. Thus, we synthesized a three-fingered curaremimetic toxin from snake with high yield and showed that the synthetic and native toxins have the same structural and biological properties. Both were characterized by the same 2D NMR spectra, identical high binding affinity (K(d) = 22 +/- 5 pM) for the muscular acetylcholine receptor (AChR) and identical low affinity (K(d) = 2.0 +/- 0.4 microM) for alpha7 neuronal AchR. Then, we engineered an additional loop cyclized by a fifth disulfide bond at the tip of the central finger. This loop is normally present in longer snake toxins that bind with high affinity (K(d) = 1-5 nM) to alpha7 neuronal AchR. Not only did the chimera toxin still bind with the same high affinity to the muscular AchR but also it displayed a 20-fold higher affinity (K(d) = 100 nM) for the neuronal alpha7 AchR, as compared with the parental short-chain toxin. This result demonstrates that the engineered loop contributes, at least in part, to the high affinity of long-chain toxins for alpha7 neuronal receptors. That three-fingered proteins with four or five disulfide bonds are amenable to chemical synthesis opens new perspectives for engineering new activities on this fold.

  3. ADME studies and preliminary safety pharmacology of LDT5, a lead compound for the treatment of benign prostatic hyperplasia

    Directory of Open Access Journals (Sweden)

    F. Noël

    Full Text Available This study aimed to estimate the absorption, distribution, metabolism and excretion (ADME properties and safety of LDT5, a lead compound for oral treatment of benign prostatic hyperplasia that has previously been characterized as a multi-target antagonist of α1A-, α1D-adrenoceptors and 5-HT1A receptors. The preclinical characterization of this compound comprised the evaluation of its in vitro properties, including plasma, microsomal and hepatocytes stability, cytochrome P450 metabolism and inhibition, plasma protein binding, and permeability using MDCK-MDR1 cells. De-risking and preliminary safety pharmacology assays were performed through screening of 44 off-target receptors and in vivo tests in mice (rota-rod and single dose toxicity. LDT5 is stable in rat and human plasma, human liver microsomes and hepatocytes, but unstable in rat liver microsomes and hepatocytes (half-life of 11 min. LDT5 is highly permeable across the MDCK-MDR1 monolayer (Papp ∼32×10-6 cm/s, indicating good intestinal absorption and putative brain penetration. LDT5 is not extensively protein-bound and is a substrate of human CYP2D6 and CYP2C19 but not of CYP3A4 (half-life >60 min, and did not significantly influence the activities of any of the human cytochrome P450 isoforms screened. LDT5 was considered safe albeit new studies are necessary to rule out putative central adverse effects through D2, 5-HT1A and 5-HT2B receptors, after chronic use. This work highlights the drug-likeness properties of LDT5 and supports its further preclinical development.

  4. Flavivirus Entry Receptors: An Update

    Directory of Open Access Journals (Sweden)

    Manuel Perera-Lecoin


    Full Text Available Flaviviruses enter host cells by endocytosis initiated when the virus particles interact with cell surface receptors. The current model suggests that flaviviruses use at least two different sets of molecules for infectious entry: attachment factors that concentrate and/or recruit viruses on the cell surface and primary receptor(s that bind to virions and direct them to the endocytic pathway. Here, we present the currently available knowledge regarding the flavivirus receptors described so far with specific attention to C-type lectin receptors and the phosphatidylserine receptors, T-cell immunoglobulin and mucin domain (TIM and TYRO3, AXL and MER (TAM. Their role in flavivirus attachment and entry as well as their implication in the virus biology will be discussed in depth.

  5. GR-127935-sensitive mechanism mediating hypotension in anesthetized rats: are 5-HT5B receptors involved? (United States)

    Sánchez-Maldonado, Carolina; López-Sánchez, Pedro; Anguiano-Robledo, Liliana; Leopoldo, Marcello; Lacivita, Enza; Terrón, José A


    The 5-HT1B/1D receptor antagonist, GR-127935, inhibits hypotensive responses produced by the 5-HT1A, 5-HT1B/1D and 5-HT7 receptor agonist, and 5-HT5A/5B receptor ligand, 5-carboxamidotryptamine (5-CT), in rats. This work further characterized the above mechanism using more selective 5-HT1B and 5-HT1D receptor antagonists. Also, expression of 5-HT5A and 5-HT5B receptor mRNAs in blood vessels was searched by reverse transcription polymerase chain reaction. Decreases in diastolic blood pressure induced by 5-CT (0.001-10 μg/kg, intravenously) were analyzed in anesthetized rats that had received intravenous vehicle (1 mL/kg), SB-224289 (5-HT1B antagonist; 0.3 and 1.0 mg/kg), BRL15572 (5-HT1D antagonist; 0.3 and 1.0 mg/kg), SB-224289 + BRL15572 (0.3 mg/kg, each), or SB-224289 + BRL15572 (0.3 mg/kg, each) + GR-127935 (1 mg/kg). Because only the latter treatment inhibited 5-CT-induced hypotension, suggestive of a mechanism unrelated to 5-HT1B/1D receptors, the effects of antagonists/ligands at 5-HT5A (SB-699551, 1 mg/kg), 5-HT6 (SB-399885, 1 mg/kg), and 5-HT1B/1D/5A/5B/7 receptors (ergotamine, 0.1 mg/kg) on 5-CT-induced hypotension were tested. Interestingly, only ergotamine blocked 5-CT-induced responses; this effect closely paralleled that of SB-224289 + BRL-15572 + GR-127935. Neither did ergotamine nor GR-127935 inhibit hypotensive responses induced by the 5-HT7 receptor agonist, LP-44. Faint but clear bands corresponding to 5-HT5A and 5-HT5B receptor mRNAs in aorta and mesenteric arteries were detected. Results suggest that the GR-127935-sensitive mechanism mediating hypotension in rats is unrelated to 5-HT1B, 5-HT1D, 5-HT5A, 5-HT6, and 5-HT7 receptors. This mechanism, however, resembles putative 5-HT5B receptors.

  6. Angiotensin II receptors in testes

    Energy Technology Data Exchange (ETDEWEB)

    Millan, M.A.; Aguilera, G.


    Receptors for angiotensin II (AII) were identified and characterized in testes of rats and several primate species. Autoradiographic analysis of the binding of 125I-labeled (Sar1,Ile8)AII to rat, rhesus monkey, cebus monkey, and human testicular slide-mounted frozen sections indicated specific binding to Leydig cells in the interstitium. In rat collagenase-dispersed interstitial cells fractionated by Percoll gradient, AII receptor content was parallel to that of hCG receptors, confirming that the AII receptors are in the Leydig cells. In rat dispersed Leydig cells, binding was specific for AII and its analogs and of high affinity (Kd, 4.8 nM), with a receptor concentration of 15 fmol/10(6) cells. Studies of AII receptors in rat testes during development reveals the presence of high receptor density in newborn rats which decreases toward the adult age (4934 +/- 309, 1460 +/- 228, 772 +/- 169, and 82 +/- 12 fmol/mg protein at 5, 15, 20, and 30 days of age, respectively) with no change in affinity. At all ages receptors were located in the interstitium, and the decrease in binding was parallel to the decrease in the interstitial to tubular ratio observed with age. AII receptor properties in membrane-rich fractions from prepuberal testes were similar in the rat and rhesus monkey. Binding was time and temperature dependent, reaching a plateau at 60 min at 37 C, and was increased by divalent cations, EGTA, and dithiothreitol up to 0.5 mM. In membranes from prepuberal monkey testes, AII receptors were specific for AII analogs and of high affinity (Kd, 4.2 nM) with a receptor concentration of 7599 +/- 1342 fmol/mg protein. The presence of AII receptors in Leydig cells in rat and primate testes in conjunction with reports of the presence of other components of the renin-angiotensin system in the testes suggests that the peptide has a physiological role in testicular function.

  7. Uncompetitive antagonism of AMPA receptors

    DEFF Research Database (Denmark)

    Andersen, Trine F; Tikhonov, Denis B; Bølcho, Ulrik;


    Philanthotoxins are uncompetitive antagonists of Ca2+-permeable AMPA receptors presumed to bind to the pore-forming region, but a detailed molecular mechanism for this interaction is missing. Here a small library of novel philanthotoxins was designed and synthesized using a solid-phase strategy. ...... polyamine toxins antagonize the AMPA receptor ion channel and provide the basis for rational development of uncompetitive antagonists of AMPA receptors....

  8. Data of evolutionary structure change: 1AT1A-3GD5A [Confc[Archive

    Lifescience Database Archive (English)


  9. Coordinate induction of hepatic fatty acyl-CoA oxidase and P4504A1 in rat after activation of the peroxisome proliferator-activated receptor (PPAR) by sulphur-substituted fatty acid analogues. (United States)

    Demoz, A; Vaagenes, H; Aarsaether, N; Hvattum, E; Skorve, J; Göttlicher, M; Lillehaug, J R; Gibson, G G; Gustafsson, J A; Hood, S


    1. In the liver of rat fed a single dose of 3-thia fatty acids, 3-dithiahexadecanedioic acid (3-thiadicarboxylic acid) and tetradecylthioacetic acid, steady-state levels of P4504A1 and fatty acyl-CoA oxidase mRNAs increased in parallel. The increases were significant 8 h after administration, reaching a maximum after 12 h and decreased from 12 to 24 h after administration. 2. The corresponding enzyme activities of P4504A1 and fatty acyl-CoA oxidase were also induced in a parallel manner by the 3-thia fatty acids. The enzyme activities were significantly increased 12 h after administration and increased further after 24 h. This may reflect a possible effect of the 3-thia fatty acids not only on mRNA levels, but also on the translation and degradation rate of the two enzymes. 3. Repeated administration of 3-thia fatty acids resulted in an increase of the specific P4504A1 protein accompanied with an increased lauric acid hydroxylase activity. The correlation between induction of P4504A1 and fatty acyl-CoA oxidase mRNAs and their enzyme activities may reflect a coordinated rather than a causative induction mechanism, and that these genes respond to a common signal. This suggests that the increased P450 activity may not be responsible or be a prerequisite for fatty acyl-CoA oxidase induction. 4. Since the peroxisome proliferator-activated receptor (PPAR) plays a role in mediating the induction of fatty acyl-CoA oxidase, we analysed the activation of PPAR by fatty acids and sulphur-substituted analogues utilizing a chimera between the N-terminal and DNA-binding domain of the glucocorticoid receptor and the putative ligand-binding domain of PPAR. Arachidonic acid activated this chimeric receptor in Chinese hamster ovary cells. Inhibitors of P450 did not affect the activation of PPAR by arachidonic acid. Furthermore, dicarboxylic acids including 1,12-dodecanedioic acid or 1,16-hexadecanedioic acid only weakly activated the chimera. 3-Thidicarboxylic acid, however, was a

  10. Renal dopamine receptors and hypertension. (United States)

    Hussain, Tahir; Lokhandwala, Mustafa F


    Dopamine has been recognized as an important modulator of central as well as peripheral physiologic functions in both humans and animals. Dopamine receptors have been identified in a number of organs and tissues, which include several regions within the central nervous system, sympathetic ganglia and postganglionic nerve terminals, various vascular beds, the heart, the gastrointestinal tract, and the kidney. The peripheral dopamine receptors influence cardiovascular and renal function by decreasing afterload and vascular resistance and promoting sodium excretion. Within the kidney, dopamine receptors are present along the nephron, with highest density on proximal tubule epithelial cells. It has been reported that there is a defective dopamine receptor, especially D(1) receptor function, in the proximal tubule of various animal models of hypertension as well as in humans with essential hypertension. Recent reports have revealed the site of and the molecular mechanisms responsible for the defect in D(1) receptors in hypertension. Moreover, recent studies have also demonstrated that the disruption of various dopamine receptor subtypes and their function produces hypertension in rodents. In this review, we present evidence that dopamine and dopamine receptors play an important role in regulating renal sodium excretion and that defective renal dopamine production and/or dopamine receptor function may contribute to the development of various forms of hypertension.

  11. G蛋白偶联受体C型家族5A与肺癌%GPRC5A and lung cancer

    Institute of Scientific and Technical Information of China (English)

    金儿; 马胜林


    The G protein-coupled receptor family C,member 5,group A (GPRC5A) gene is known as retinoic acid-induced gene,which is mainly distributed in lung tissue.The expression of GPRC5A in lung cancer is significantly decreased compared with normal lung.GPRC5A leads to lung cancer through knockout mice,which is proven to be a suppressor gene of lung cancer.GPRC5A may be a novel biomarker for the diagnosis of lung cancer and a new target for the treatment of lung cancer.%G蛋白偶联受体C型家族5A(GPRC5A)是由维甲酸诱导的基因,主要分布在肺组织,在肺癌中的表达远低于癌旁正常组织,小鼠该基因敲除导致肺癌的发生,因此被证明是肺癌的抑癌基因,有望成为肺癌诊断新的标志物及治疗的新靶点.

  12. Hippocampal changes produced by overexpression of the human CHRNA5/A3/B4 gene cluster may underlie cognitive deficits rescued by nicotine in transgenic mice. (United States)

    Molas, Susanna; Gener, Thomas; Güell, Jofre; Martín, Mairena; Ballesteros-Yáñez, Inmaculada; Sanchez-Vives, Maria V; Dierssen, Mara


    Addiction involves long-lasting maladaptive changes including development of disruptive drug-stimuli associations. Nicotine-induced neuroplasticity underlies the development of tobacco addiction but also, in regions such as the hippocampus, the ability of this drug to enhance cognitive capabilities. Here, we propose that the genetic locus of susceptibility to nicotine addiction, the CHRNA5/A3/B4 gene cluster, encoding the α5, α3 and β4 subunits of the nicotinic acetylcholine receptors (nAChRs), may influence nicotine-induced neuroadaptations. We have used transgenic mice overexpressing the human cluster (TgCHRNA5/A3/B4) to investigate hippocampal structure and function in genetically susceptible individuals. TgCHRNA5/A3/B4 mice presented a marked reduction in the dendrite complexity of CA1 hippocampal pyramidal neurons along with an increased dendritic spine density. In addition, TgCHRNA5/A3/B4 exhibited increased VGLUT1/VGAT ratio in the CA1 region, suggesting an excitatory/inhibitory imbalance. These hippocampal alterations were accompanied by a significant impairment in short-term novelty recognition memory. Interestingly, chronic infusion of nicotine (3.25 mg/kg/d for 7 d) was able to rescue the reduced dendritic complexity, the excitatory/inhibitory imbalance and the cognitive impairment in TgCHRNA5/A3/B4. Our results suggest that chronic nicotine treatment may represent a compensatory strategy in individuals with altered expression of the CHRNA5/A3/B4 region.

  13. Activation of Nrf2 by the dengue virus causes an increase in CLEC5A, which enhances TNF-α production by mononuclear phagocytes. (United States)

    Cheng, Yi-Lin; Lin, Yee-Shin; Chen, Chia-Ling; Tsai, Tsung-Ting; Tsai, Cheng-Chieh; Wu, Yan-Wei; Ou, Yi-Dan; Chu, Yu-Yi; Wang, Ju-Ming; Yu, Chia-Yi; Lin, Chiou-Feng


    Infection by the dengue virus (DENV) threatens global public health due to its high prevalence and the lack of effective treatments. Host factors may contribute to the pathogenesis of DENV; herein, we investigated the role of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which is activated by DENV in mononuclear phagocytes. DENV infection selectively activates Nrf2 following nuclear translocation. Following endoplasmic reticular (ER) stress, protein kinase R-like ER kinase (PERK) facilitated Nrf2-mediated transcriptional activation of C-type lectin domain family 5, member A (CLEC5A) to increase CLEC5A expression. Signaling downstream of the Nrf2-CLEC5A interaction enhances Toll-like receptor 3 (TLR3)-independent tumor necrosis factor (TNF)-α production following DENV infection. Forced expression of the NS2B3 viral protein induces Nrf2 nuclear translocation/activation and CLEC5A expression which increases DENV-induced TNF-α production. Animal studies confirmed Nrf2-induced CLEC5A and TNF-α in brains of DENV-infected mice. These results demonstrate that DENV infection causes Nrf2-regulated TNF-α production by increasing levels of CLEC5A.

  14. Muscle Dysfunction in Androgen Deprivation: Role of Ryanodine Receptor (United States)


    TITLE AND SUBTITLE Muscle Dysfunction in Androgen Deprivation: Role of Ryanodine Receptor 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13-1...required for muscle contraction . RyR1 is a homotetrameric macromolecular protein complex that includes four RyR1 monomers (565kDa each), the RyR1... muscle physiology experiments). Under a microscope, the tibialis anterior (TA) muscle is cut with micro dissection scissors at the distal insertion

  15. GABAB receptors modulate NMDA receptor calcium signals in dendritic spines. (United States)

    Chalifoux, Jason R; Carter, Adam G


    Metabotropic GABA(B) receptors play a fundamental role in modulating the excitability of neurons and circuits throughout the brain. These receptors influence synaptic transmission by inhibiting presynaptic release or activating postsynaptic potassium channels. However, their ability to directly influence different types of postsynaptic glutamate receptors remains unresolved. Here we examine GABA(B) receptor modulation in layer 2/3 pyramidal neurons from the mouse prefrontal cortex. We use two-photon laser-scanning microscopy to study synaptic modulation at individual dendritic spines. Using two-photon optical quantal analysis, we first demonstrate robust presynaptic modulation of multivesicular release at single synapses. Using two-photon glutamate uncaging, we then reveal that GABA(B) receptors strongly inhibit NMDA receptor calcium signals. This postsynaptic modulation occurs via the PKA pathway and does not affect synaptic currents mediated by AMPA or NMDA receptors. This form of GABA(B) receptor modulation has widespread implications for the control of calcium-dependent neuronal function.

  16. Trace amine-associated receptors are olfactory receptors in vertebrates. (United States)

    Liberles, Stephen D


    The mammalian nose is a powerful chemosensor, capable of detecting and distinguishing a myriad of chemicals. Sensory neurons in the olfactory epithelium contain two types of chemosensory G protein-coupled receptors (GPCRs): odorant receptors (ORs), which are encoded by the largest gene family in mammals, and trace amine-associated receptors (TAARs), a smaller family of receptors distantly related to biogenic amine receptors. Do TAARs play a specialized role in olfaction distinct from that of ORs? Genes encoding TAARs are found in diverse vertebrates, from fish to mice to humans. Like OR genes, each Taar gene defines a unique population of canonical sensory neurons dispersed in a single zone of the olfactory epithelium. Ligands for mouse TAARs include a number of volatile amines, several of which are natural constituents of mouse urine, a rich source of rodent social cues. One chemical, 2-phenylethylamine, is reported to be enriched in the urine of stressed animals, and two others, trimethylamine and isoamylamine, are enriched in male versus female urine. Furthermore, isoamylamine has been proposed to be a pheromone that induces puberty acceleration in young female mice. These data raise the possibility that some TAARs are pheromone receptors in the nose, a hypothesis consistent with recent data suggesting that the olfactory epithelium contains dedicated pheromone receptors, separate from pheromone receptors in the vomeronasal organ. Future experiments will clarify the roles of TAARs in olfaction.

  17. Discoidin Domain Receptor 1 (United States)

    Song, Sunmi; Shackel, Nicholas A.; Wang, Xin M.; Ajami, Katerina; McCaughan, Geoffrey W.; Gorrell, Mark D.


    Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that binds and is activated by collagens. Transcriptional profiling of cirrhosis in human liver using a DNA array and quantitative PCR detected elevated mRNA expression of DDR1 compared with that in nondiseased liver. The present study characterized DDR1 expression in cirrhotic and nondiseased human liver and examined the cellular effects of DDR1 expression. mRNA expression of all five isoforms of DDR1 was detected in human liver, whereas DDR1a demonstrated differential expression in liver with hepatitis C virus and primary biliary cirrhosis compared with nondiseased liver. In addition, immunoblot analysis detected shed fragments of DDR1 more readily in cirrhotic liver than in nondiseased liver. Inasmuch as DDR1 is subject to protease-mediated cleavage after prolonged interaction with collagen, this differential expression may indicate more intense activation of DDR1 protein in cirrhotic compared with nondiseased liver. In situ hybridization and immunofluorescence localized intense DDR1 mRNA and protein expression to epithelial cells including hepatocytes at the portal-parenchymal interface and the luminal aspect of the biliary epithelium. Overexpression of DDR1a altered hepatocyte behavior including increased adhesion and less migration on extracelular matrix substrates. DDR1a regulated extracellular expression of matrix metalloproteinases 1 and 2. These data elucidate DDR1 function pertinent to cirrhosis and indicate the importance of epithelial cell–collagen interactions in chronic liver injury. PMID:21356365

  18. Leptin and its receptors. (United States)

    Wada, Nobuhiro; Hirako, Satoshi; Takenoya, Fumiko; Kageyama, Haruaki; Okabe, Mai; Shioda, Seiji


    Leptin is mainly produced in the white adipose tissue before being secreted into the blood and transported across the blood-brain barrier. Leptin binds to a specific receptor (LepR) that has numerous subtypes (LepRa, LepRb, LepRc, LepRd, LepRe, and LepRf). LepRb, in particular, is expressed in several brain nuclei, including the arcuate nucleus, the paraventricular nucleus, and the dorsomedial, lateral and ventromedial regions of the hypothalamus. LepRb is also co-expressed with several neuropeptides, including proopiomelanocortin, neuropeptide Y, galanin, galanin-like peptide, gonadotropin-releasing hormone, tyrosine hydroxylase and neuropeptide W. Functionally, LepRb induces activation of the JAK2/ERK, /STAT3, /STAT5 and IRS/PI3 kinase signaling cascades, which are important for the regulation of energy homeostasis and appetite in mammals. In this review, we discuss the structure, genetics and distribution of the leptin receptors, and their role in cell signaling mechanisms.

  19. Axonal GABAA receptors. (United States)

    Trigo, Federico F; Marty, Alain; Stell, Brandon M


    Type A GABA receptors (GABA(A)Rs) are well established as the main inhibitory receptors in the mature mammalian forebrain. In recent years, evidence has accumulated showing that GABA(A)Rs are prevalent not only in the somatodendritic compartment of CNS neurons, but also in their axonal compartment. Evidence for axonal GABA(A)Rs includes new immunohistochemical and immunogold data: direct recording from single axonal terminals; and effects of local applications of GABA(A)R modulators on action potential generation, on axonal calcium signalling, and on neurotransmitter release. Strikingly, whereas presynaptic GABA(A)Rs have long been considered inhibitory, the new studies in the mammalian brain mostly indicate an excitatory action. Depending on the neuron that is under study, axonal GABA(A)Rs can be activated by ambient GABA, by GABA spillover, or by an autocrine action, to increase either action potential firing and/or transmitter release. In certain neurons, the excitatory effects of axonal GABA(A)Rs persist into adulthood. Altogether, axonal GABA(A)Rs appear as potent neuronal modulators of the mammalian CNS.

  20. Possible Relevance of Receptor-Receptor Interactions between Viral- and Host-Coded Receptors for Viral-Induced Disease

    Directory of Open Access Journals (Sweden)

    Luigi F. Agnati


    Full Text Available It has been demonstrated that some viruses, such as the cytomegalovirus, code for G-protein coupled receptors not only to elude the immune system, but also to redirect cellular signaling in the receptor networks of the host cells. In view of the existence of receptor-receptor interactions, the hypothesis is introduced that these viral-coded receptors not only operate as constitutively active monomers, but also can affect other receptor function by interacting with receptors of the host cell. Furthermore, it is suggested that viruses could also insert not single receptors (monomers, but clusters of receptors (receptor mosaics, altering the cell metabolism in a profound way. The prevention of viral receptor-induced changes in host receptor networks may give rise to novel antiviral drugs that counteract viral-induced disease.

  1. Combating Drug Abuse by Targeting Toll-Like Receptor 4 (TLR) (United States)


    AWARD NUMBER: W81XWH-12-1-0345 PROJECT TITLE: Combating drug abuse by targeting toll-like receptor 4 (TLR) PRINCIPAL INVESTIGATOR: Dr. Linda...5a. CONTRACT NUMBER not applicable Combating drug abuse by targeting toll-like receptor 4 (TLR) 5b. GRANT NUMBER W81XWH-12-1-0345 5c. PROGRAM...naltrexone; drug abuse ; glial activation; therapeutic approach to treating drug abuse ; opioids; cocaine 16. SECURITY CLASSIFICATION OF: 17. LIMITATION

  2. Differential sensitivity of 5'UTR-NS5A recombinants of hepatitis C virus genotypes 1-6 to protease and NS5A inhibitors

    DEFF Research Database (Denmark)

    Li, Yi-Ping; Ramirez, Santseharay; Humes, Daryl


    BACKGROUND & AIMS: Hepatitis C virus (HCV) therapy will benefit from the preclinical evaluation of direct-acting antiviral (DAA) agents in infectious culture systems that test the effects on different virus genotypes. We developed HCV recombinants comprising the 5' untranslated region-NS5A (5-5A)...

  3. Coronavirus spike-receptor interactions

    NARCIS (Netherlands)

    Mou, H.


    Coronaviruses cause important diseases in humans and animals. Coronavirus infection starts with the virus binding with its spike proteins to molecules present on the surface of host cells that act as receptors. This spike-receptor interaction is highly specific and determines the virus’ cell, tissue

  4. Solvable Model of Spiral Wave Chimeras

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Laing, Carlo R.; Strogatz, Steven H.


    Spiral waves are ubiquitous in two-dimensional systems of chemical or biological oscillators coupled locally by diffusion. At the center of such spirals is a phase singularity, a topological defect where the oscillator amplitude drops to zero. But if the coupling is nonlocal, a new kind of spiral...

  5. Chimera multiscale simulation of complex flowing matter

    CERN Document Server

    Succi, Sauro


    We discuss a unified mesoscale framework for the simulation of complex states of flowing matter across scales of motion which requires no explicit coupling between different macro-meso-micro levels. The idea is illustrated through selected examples of complex flows at the micro and nanoscale.

  6. Patenting humans: clones, chimeras, and biological artifacts. (United States)

    Hurlbut, William B


    The momentum of advances in biology is evident in the history of patents on life forms. As we proceed forward with greater understanding and technological control of developmental biology there will be many new and challenging dilemmas related to patenting of human parts and partial trajectories of human development. These dilemmas are already evident in the current conflict over the moral status of the early human embryo. In this essay, recent evidence from embryological studies is considered and the unbroken continuity of organismal development initiated at fertilization is asserted as clear and reasonable grounds for moral standing. Within this frame of analysis, it is proposed that through a technique of Altered Nuclear Transfer, non-organismal entities might be created from which embryonic stem cells could be morally procured. Criteria for patenting of such non-organismal entities are considered.

  7. Real-Time Imaging of Interactions of Neutrophils with Cryptococcus neoformans Demonstrates a Crucial Role of Complement C5a-C5aR Signaling. (United States)

    Sun, Donglei; Zhang, Mingshun; Liu, Gongguan; Wu, Hui; Zhu, Xiaoping; Zhou, Hong; Shi, Meiqing


    Neutrophils have been shown to efficiently kill Cryptococcus neoformans, a causative agent of meningoencephalitis. Here, using live-cell imaging, we characterize the dynamic interactions of neutrophils with C. neoformans and the underlying mechanisms in real time. Neutrophils were directly seen to chase C. neoformans cells and then rapidly internalize them. Complement C5a-C5aR signaling guided neutrophils to migrate to the yeast cells, resulting in optimal phagocytosis and subsequent killing of the organisms. The addition of recombinant complement C5a enhanced neutrophil movement but did not induce chemotaxis, suggesting that the C5a gradient is crucial. Incubation with C. neoformans resulted in enhanced activation of Erk and p38 mitogen-activated protein (MAP) kinases (MAPKs) in neutrophils. Inhibition of the p38 MAPK pathway, but not the Erk pathway, significantly impaired neutrophil migration and its subsequent killing of C. neoformans. Deficiency of CD11b or blocking of CD11b did not affect the migration of neutrophils toward C. neoformans but almost completely abolished phagocytosis and killing of the organisms by neutrophils. C5a-C5aR signaling induced enhanced surface expression of CD11b. Interestingly, the original surface expression of CD11b was essential and sufficient for neutrophils to attach to C. neoformans but was unable to mediate phagocytosis. In contrast, the enhanced surface expression of CD11b induced by C5a-C5aR signaling was essential for neutrophil phagocytosis and subsequent killing of yeast cells. Collectively, this is the first report of the dynamic interactions of neutrophils with C. neoformans, demonstrating a crucial role of C5a-C5aR signaling in neutrophil killing of C. neoformans in real time.

  8. Dopamine Receptors and Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Shin Hisahara


    Full Text Available Parkinson's disease (PD is a progressive extrapyramidal motor disorder. Pathologically, this disease is characterized by the selective dopaminergic (DAergic neuronal degeneration in the substantia nigra. Correcting the DA deficiency in PD with levodopa (L-dopa significantly attenuates the motor symptoms; however, its effectiveness often declines, and L-dopa-related adverse effects emerge after long-term treatment. Nowadays, DA receptor agonists are useful medication even regarded as first choice to delay the starting of L-dopa therapy. In advanced stage of PD, they are also used as adjunct therapy together with L-dopa. DA receptor agonists act by stimulation of presynaptic and postsynaptic DA receptors. Despite the usefulness, they could be causative drugs for valvulopathy and nonmotor complication such as DA dysregulation syndrome (DDS. In this paper, physiological characteristics of DA receptor familyare discussed. We also discuss the validity, benefits, and specific adverse effects of pharmaceutical DA receptor agonist.

  9. Opioids and their peripheral receptors

    Directory of Open Access Journals (Sweden)

    Francesco Amato


    Full Text Available The inflammation of peripheral tissues leads the primary afferent neurons, in particular at the cell bodies level located in the DRG (dorsal root ganglia, to an increased synthesis of opioid receptors: determining an “up-regulation”. After that opioid receptors are transported at the level of the nociceptive terminals, they are incorporated into the neuronal membrane becoming functional receptors. The above receptor proteins bind to opioid produced by immune cells or the exogenous ones. This leads to a direct or indirect suppression of the Ca2+ currents induced by TRPV1 or the currents of the Na+, resulting in neuronal reduced excitability and in transmitted signals decrease. The observation that the immune system is able to modulate the pain by ligands that interact with the opioid receptors located on sensory neurons, may have broad implications for the development of innovative and safer pain drugs.

  10. Antagonistic action of pitrazepin on human and rat GABAA receptors (United States)

    Demuro, Angelo; Martinez-Torres, Ataulfo; Francesconi, Walter; Miledi, Ricardo


    Pitrazepin, 3-(piperazinyl-1)-9H-dibenz(c,f) triazolo(4,5-a)azepin is a piperazine antagonist of GABA in a variety of electrophysiological and in vitro binding studies involving GABA and glycine receptors. In the present study we have investigated the effects of pitrazepin, and the GABAA antagonist bicuculline, on membrane currents elicited by GABA in Xenopus oocytes injected with rat cerebral cortex mRNA or cDNAs encoding α1β2 or α1β2γ2S human GABAA receptor subunits.The three types of GABAA receptors expressed were reversibly antagonized by bicuculline and pitrazepin in a concentration-dependent manner. GABA dose-current response curves for the three types of receptors were shifted to the right, in a parallel manner, by increasing concentrations of pitrazepin.Schild analyses gave pA2 values of 6.42±0.62, n=4, 6.41±1.2, n=5 and 6.21±1.24, n=6, in oocytes expressing rat cerebral cortex, α1β2 or α1β2γ2S human GABAA receptors respectively (values are given as means±s.e.mean), and the Hill coefficients were all close to unity. All this is consistent with the notion that pitrazepin acts as a competitive antagonist of these GABAA receptors; and that their antagonism by pitrazepin is not strongly dependent on the subunit composition of the receptors here studied.Since pitrazepin has been reported to act also at the benzodiazepine binding site, we studied the effect of the benzodiazepine antagonist Ro 15-1788 (flumazenil) on the inhibition of α1β2γ2S receptors by pitrazepin. Co-application of Ro 15-1788 did not alter the inhibiting effect of pitrazepin. Moreover, pitrazepin did not antagonize the potentiation of GABA-currents by flunitrazepam. All this suggests that pitrazepin does not affect the GABA receptor-chloride channel by interacting with the benzodiazepine receptor site. PMID:10369456

  11. The evolution of vertebrate opioid receptors


    Stevens, Craig W.


    The proteins that mediate the analgesic and other effects of opioid drugs and endogenous opioid peptides are known as opioid receptors. Opioid receptors consist of a family of four closely-related proteins belonging to the large superfamily of G-protein coupled receptors. The three types of opioid receptors shown unequivocally to mediate analgesia in animal models are the mu (MOR), delta (DOR), and kappa (KOR) opioid receptor proteins. The role of the fourth member of the opioid receptor fami...

  12. Association of CYP17 and SRD5A2 gene polymorphisms with Prostate cancer risk among Iranian and Indian populations

    Directory of Open Access Journals (Sweden)

    kh onsory


    Full Text Available Aims and objectives: Prostate cancer is a complicated disease that genetics and environmental factors may be playing a promoting role in its progression. Polymorphism of genes such as steroid hormone receptors are having very important role in developing this disease. One such gene, CYP17 is playing role in hydroxylation and SRD5A2 gene, the predominant 5&alpha-reductase isozyme in prostate, catalyzes the conversion of testosterone into the more potent androgen, dihydrotestosterone (DHT, which is required for the normal growth and development of the prostate gland. The purpose of this study was to investigate association of CYP17 and SRD5A2 genes polymorphisms with prostate cancer risk. Materials and methods: PCR-RFLP analysis of CYP17 and SRD5A2 genes were performed on 100 prostate cancer patients admitted to the Department of Urology, Postgraduate Institute of Medical Science and Research (PGIMER, Chandigarh, India, and 150 patients from Imam Khomeini Hospital, Tehran, Iran, compared with equal number of matching controls for each group visiting same centers for other reason. The data was analyzed using the computer software SPSS for windows (version 19, using logistic regression. Results: In this case-control study, there was a significant increase with risk of prostate cancer association for individuals carrying one copy of CYP17 A2 allele in Iranian (OR= 2.10 95% CI, 1.03-4.27 P=0.041 and Indian populations (OR= 2.16 95% CI, 1.08-4.33 P=0.029. While the risk was decreased in individuals having two A2 alleles in both groups. Compared with men having the VV genotype of SRD5A2 gene, there was no significant association between the VL genotype and the risk of prostate cancer among Iranian (OR, 0.87 95% CI, 0.49 -1.56 P=0.661 and Indian (OR, 0.99 95% CI, 0.54 -1.81 P=0.989 patients. Also there was no difference in the occurrence of the genotype LL between prostate cancer patients and control groups in both studied populations therefore, there

  13. Effects of developmental stages of tetraploid embryos on mouse chimeras from embryonic stem cells%四倍体胚胎发育阶段对胚胎干细胞嵌合体小鼠制备的影响

    Institute of Scientific and Technical Information of China (English)

    吴兴龙; 张鹏; 赵虎; 王鹏博; 胡春超; 李相运


    目的 探讨四倍体胚胎发育阶段对胚胎干细胞(ES)嵌合体小鼠制备的影响.方法 通过2-细胞胚胎电融合法制备四倍体胚胎,采用显微注射方法将ES细胞分别注入1-细胞、4-细胞、囊胚3个发育阶段的四倍体胚胎中.所用ES细胞分别为杂交系B6D2F1×129/Sv和近交系C57BL/6J,经胚胎移植和剖腹产以获得ES小鼠.结果 实验表明,2-细胞胚胎电融合率为92.45%,4-细胞胚胎发育率为93.51%,囊胚发育率为90.42%.杂交ES细胞注射四倍体囊胚获得22只ES小鼠,效率显著高于近交系ES细胞以及其他发育阶段的四倍体胚胎,ES小鼠与B6D2F1×129/Sv杂交小鼠毛色一致且具有正常生殖能力.结论 四倍体胚胎的发育阶段显著影响ES小鼠的制备.%Objective To investigate the effects of developmental stages of tetraploid embryos on mouse chimeras from embryonic stem cells ( ES ).Methods Tetraploid embryo complementation and microinjection were utilized to produce ES mice that derived completely from ES cells.Tetraploid embryos were firstly prepared by electrofusion of 2-cell mouse embryos, and then embryonic stem ( ES ) cells with different genetic background ( hybrid or inbred ) were injected into tetraploid 1-cell, 4-cell, and blastocyst stage embryos.The injected embryos were transferred into uterine horns of pseudopregnant 2.5days female CDl mice.The CD1 mice were suhjected into cesarean sections after 16 days.Results Our data showed that 92.45% of 2-cell embryos were electrofused, 93.51% and 90.42% of the electrofused embryos developed to 4-cell and blastocyst stages, respectively.Blastocysts were injected with hybrid ES cells and 22 ES mice were obtained by Cesarean section.Blastocyst was more effective than 1-cell and 4-cell.ES mice had normal germline transmission capahility and the same coat color as the hybrid mice which hybrid ES cells were drived from.Conclusion The tetraploid embryo developmental stage is able to affect the ES mouse

  14. Synthesis of tetrazolo(1,5-a)quinoxalines with antimicrobial activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Sik; Kim, Tong Eun [Catholic University of Taegu, Gyongsan (Korea, Republic of); Kurasawa, Yoshihisa [Kitasato Univ., Tokyo (Japan)


    The 4-substituted tetrazolo(1,5-a)quinoxalines were synthesized from 4-chlorotetrazolo-(1,5-a)quinoxaline(8) or 4-hydrazinotetrazolo(1,5-a)quinoxaline(9). Refluxing of the tetrazolo(1,5-a)quinoxaline(12) in N,N-dimethylformamide gave the 1,2,4-triazolo(3,4-c)tetrazolo(1,5-a)quinoxaline(13), which was also obtained by the reaction of compound 9 with ethyl chloroformate in N,N-dimethylformamide. The reaction of compound 9 with isothiocyanates in ethanol provided the tetrazolo(1,5-a)quinoxalines(14), whose reaction with dimethyl acetylenedicarboxylate afforded the tetrazolo(1,5-a)quinoxalines(15). The tetrazolo(1,5-a)quinoxalines(18) were obtained by the reaction of compound 9 with alkyl (ethoxymethylene)cyanoacetates. Some of the compounds showed antibacterial, antifungal or algicidal activities against some strains.

  15. Data of evolutionary structure change: 1CLMA-2HF5A [Confc[Archive

    Lifescience Database Archive (English)


  16. Estrogen-related receptor β (ERRβ) - renaissance receptor or receptor renaissance? (United States)

    Divekar, Shailaja D; Tiek, Deanna M; Fernandez, Aileen; Riggins, Rebecca B


    Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα and ERRγ at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ, however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor.

  17. Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation

    Directory of Open Access Journals (Sweden)

    Halleskog Carina


    Thus, WNT-5A-induced and G protein-dependent signaling to ERK1/2 is important for the regulation of proinflammatory responses in mouse primary microglia cells. We show for the first time that WNT-5A/G protein signaling mediates physiologically important processes in primary mammalian cells with natural receptor and G protein stochiometry. Consequently, WNT-5A emerges as an important means of astrocyte-microglia communication and we, therefore, suggest WNT-5A as a new player in neuroinflammatory conditions, such as neurodegenerative disease, hypoxia, stroke, injury and infection.

  18. WNT5A modulates cell cycle progression and contributes to the chemoresistance in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Wei Wei; Hui-Hui Sun; Na Li; Hong-Yue Li; Xin Li; Qiang Li; Xiao-Hong Shen


    BACKGROUND: Although there are many studies on the mechanism of chemoresistance in cancers, studies on the relations between WNT5A and chemoresistance in pancreatic cancer are rare. The present study was to examine the role of WNT5A in the regulation of cell cycle progression and in chemoresistance in pancreatic cancer tissues and cell lines. METHODS: Fresh pancreatic cancer and paracarcinoma tissues were obtained from 32 patients. The expressions of WNT5A, AKT/p-AKT and Cyclin D1 were detected by immunohistochemistry, and the correlation between WNT5A expression and clinicopathological characteristics was analyzed. The relationship between WNT5A expression and gemcitabine resistance was studied in PANC-1 and MIAPaCa2 cell lines. The effect of WNT5A on the regulation of cell cycle and gemcitabine cytotoxicity were investigated. The associations among the expressions of p-AKT, Cyclin D1 and WNT5A were also analyzed in cell lines and the effect of WNT5A on restriction-point (R-point) progression was evaluated. RESULTS: WNT5A, p-AKT and Cyclin D1 were highly expressed in pancreatic cancer tissues, and the WNT5A expression was correlated with the TNM stages. In vitro, WNT5A expression was associated with gemcitabine chemoresistance. The percentage of cells was increased in G0/G1 phase and decreased in S phase after knockdown of WNT5A in PANC-1. WNT5A promoted Cyclin D1 expression through phosphorylation of AKT which consequently enhanced G1-S transition and gemcitabine resistance. Furthermore, WNT5A enhanced the cell cycle progression toward R-point through regulation of retinoblastoma protein (pRb) and pRb-E2F complex formation. CONCLUSIONS: WNT5A induced chemoresistance by regulation of G1-S transition in pancreatic cancer cells. WNT5A might serve as a predictor of gemcitabine response and as a potential target for tumor chemotherapy.

  19. Cytokine receptors and hematopoietic differentiation. (United States)

    Robb, L


    Colony-stimulating factors and other cytokines signal via their cognate receptors to regulate hematopoiesis. In many developmental systems, inductive signalling determines cell fate and, by analogy with this, it has been postulated that cytokines, signalling via their cognate receptors, may play an instructive role in lineage specification in hematopoiesis. An alternative to this instructive hypothesis is the stochastic or permissive hypothesis. The latter proposes that commitment to a particular hematopoietic lineage is an event that occurs independently of extrinsic signals. It predicts that the role of cytokines is to provide nonspecific survival and proliferation signals. In this review, we look at the role of cytokine receptor signalling in hematopoiesis and consider the evidence for both hypotheses. Data from experiments that genetically manipulate receptor gene expression in vitro or in vivo are reviewed. Experiments in which cytokine receptors were installed in multipotential cells showed that, in some cases, stimulation with the cognate ligand could lead to alterations in lineage output. The creation of genetically manipulated mouse strains demonstrated that cytokine receptors are required for expansion and survival of single lineages but did not reveal a role in lineage commitment. We conclude that hematopoietic differentiation involves mainly stochastic events, but that cytokine receptors also have some instructive role.

  20. Data of evolutionary structure change: 1LCTA-1BP5A [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1LCTA-1BP5A 1LCT 1BP5 A A RSVQWCAVSNPEATKCFQWQRNMRKV---RGPPVSCIKR...> 0 1LCT A 1LCT...A NMRKV---RGPPV ure>H...GPSV ure>HHH ure> ATOM 174 CA HIS A 25...pdbChain> 1BP5A PEPRK--PLEKA ure> -- HHH

  1. Interaction of Hepatitis C virus proteins with pattern recognition receptors

    Directory of Open Access Journals (Sweden)

    Imran Muhammad


    Full Text Available Abstract Hepatitis C virus (HCV is an important human pathogen that causes acute and chronic hepatitis, cirrhosis and hepatocellular carcinoma worldwide. This positive stranded RNA virus is extremely efficient in establishing persistent infection by escaping immune detection or hindering the host immune responses. Recent studies have discovered two important signaling pathways that activate the host innate immunity against viral infection. One of these pathways utilizes members of Toll-like receptor (TLR family and the other uses the RNA helicase retinoic acid inducible gene I (RIG-I as the receptors for intracellular viral double stranded RNA (dsRNA, and activation of transcription factors. In this review article, we summarize the interaction of HCV proteins with various host receptors/sensors through one of these two pathways or both, and how they exploit these interactions to escape from host defense mechanisms. For this purpose, we searched data from Pubmed and Google Scholar. We found that three HCV proteins; Core (C, non structural 3/4 A (NS3/4A and non structural 5A (NS5A have direct interactions with these two pathways. Core protein only in the monomeric form stimulates TLR2 pathway assisting the virus to evade from the innate immune system. NS3/4A disrupts TLR3 and RIG-1 signaling pathways by cleaving Toll/IL-1 receptor domain-containing adapter inducing IFN-beta (TRIF and Cardif, the two important adapter proteins of these signaling cascades respectively, thus halting the defense against HCV. NS5A downmodulates the expressions of NKG2D on natural killer cells (NK cells via TLR4 pathway and impairs the functional ability of these cells. TLRs and RIG-1 pathways have a central role in innate immunity and despite their opposing natures to HCV proteins, when exploited together, HCV as an ever developing virus against host immunity is able to accumulate these mechanisms for near unbeatable survival.

  2. Characterization of four nr5a genes and gene expression profiling for testicular steroidogenesis-related genes and their regulatory factors in response to bisphenol A in rare minnow Gobiocypris rarus. (United States)

    Zhang, Yingying; Yuan, Cong; Hu, Guojun; Li, Meng; Zheng, Yao; Gao, Jiancao; Yang, Yanping; Zhou, Ying; Wang, Zaizhao


    Bisphenol A (BPA) widely used in the manufacture of numerous products is ubiquitous in aquatic environment. To explore the mechanisms of BPA-mediated actions, male rare minnow Gobiocypris rarus were exposed to BPA at concentrations of 5, 15, and 50 μg/L for 14 and 35 days in the present study. Four subtypes of nr5a gene encoding important transcription factors for steroidogenesis were characterized, and tissue distribution analysis demonstrated distinct expression profiling of the four genes in G. rarus. BPA at environmentally relevant concentration (5 μg/L) caused increase of gonadosomatic index (GSI) of male fish. In response to BPA, no obvious changes on the testis development were observed. Modulation of vtg mRNA expression by BPA suggests estrogenic and/or anti-estrogenic effects of BPA were dependent on exposed duration (14 or 35 days). Gene expression profiling for testicular steroidogenesis-related genes, sexual steroid receptors, gonadotropin receptors, and transcription factors indicates differential regulation was dependent on exposure duration and dose of BPA. The correlation analysis at mRNA level demonstrates that the BPA-mediated actions on testicular steroidogenesis might involve sex steroid hormone receptor signaling, gonadotropin/gonadotropin receptor pathway, and transcription factors such as nuclear receptor subfamily 5, group A (Nr5a), fork head box protein L2 (Foxl2).

  3. Nuclear hormone receptors in podocytes

    Directory of Open Access Journals (Sweden)

    Khurana Simran


    Full Text Available Abstract Nuclear receptors are a family of ligand-activated, DNA sequence-specific transcription factors that regulate various aspects of animal development, cell proliferation, differentiation, and homeostasis. The physiological roles of nuclear receptors and their ligands have been intensively studied in cancer and metabolic syndrome. However, their role in kidney diseases is still evolving, despite their ligands being used clinically to treat renal diseases for decades. This review will discuss the progress of our understanding of the role of nuclear receptors and their ligands in kidney physiology with emphasis on their roles in treating glomerular disorders and podocyte injury repair responses.

  4. Diacylglycerol Acyltransferase-1 Localizes Hepatitis C Virus NS5A Protein to Lipid Droplets and Enhances NS5A Interaction with the Viral Capsid Core* (United States)

    Camus, Gregory; Herker, Eva; Modi, Ankit A.; Haas, Joel T.; Ramage, Holly R.; Farese, Robert V.; Ott, Melanie


    The triglyceride-synthesizing enzyme acyl CoA:diacylglycerol acyltransferase 1 (DGAT1) plays a critical role in hepatitis C virus (HCV) infection by recruiting the HCV capsid protein core onto the surface of cellular lipid droplets (LDs). Here we find a new interaction between the non-structural protein NS5A and DGAT1 and show that the trafficking of NS5A to LDs depends on DGAT1 activity. DGAT1 forms a complex with NS5A and core and facilitates the interaction between both viral proteins. A catalytically inactive mutant of DGAT1 (H426A) blocks the localization of NS5A, but not core, to LDs in a dominant-negative manner and impairs the release of infectious viral particles, underscoring the importance of DGAT1-mediated translocation of NS5A to LDs in viral particle production. We propose a model whereby DGAT1 serves as a cellular hub for HCV core and NS5A proteins, guiding both onto the surface of the same subset of LDs, those generated by DGAT1. These results highlight the critical role of DGAT1 as a host factor for HCV infection and as a potential drug target for antiviral therapy. PMID:23420847

  5. Quantitative receptor radioautography in the study of receptor-receptor interactions in the nucleus tractus solitarii

    Directory of Open Access Journals (Sweden)

    Fior-Chadi D.R.


    Full Text Available The nucleus tractus solitarii (NTS in the dorsomedial medulla comprises a wide range of neuropeptides and biogenic amines. Several of them are related to mechanisms of central blood pressure control. Angiotensin II (Ang II, neuropeptide Y (NPY and noradrenaline (NA are found in the NTS cells, as well as their receptors. Based on this observation we have evaluated the modulatory effect of these peptide receptors on a2-adrenoceptors in the NTS. Using quantitative receptor radioautography, we observed that NPY and Ang II receptors decreased the affinity of a2-adrenoceptors for their agonists in the NTS of the rat. Cardiovascular experiments agreed with the in vitro data. Coinjection of a threshold dose of Ang II or of the NPY agonists together with an ED50 dose of adrenergic agonists such as NA, adrenaline and clonidine counteracted the depressor effect produced by the a2-agonist in the NTS. The results provide evidence for the existence of an antagonistic interaction between Ang II at1 receptors and NPY receptor subtypes with the a2-adrenoceptors in the NTS. This receptor interaction may reduce the transduction over the a2-adrenoceptors which can be important in central cardiovascular regulation and in the development of hypertension

  6. Autoimmune NMDA receptor encephalitis. (United States)

    Lazar-Molnar, Eszter; Tebo, Anne E


    Anti-N-methyl-d-aspartate receptor (anti-NMDAR) encephalitis is a treatable autoimmune disease of the central nervous system (CNS) with prominent neurologic and psychiatric features at disease onset. The disease is associated with the production of autoantibodies to NMDAR, a protein involved in memory function and synaptic plasticity. Affected patients develop a multistage progressive illness with symptoms ranging from memory deficits, seizures and psychosis, to potentially lethal catatonia, and autonomic and breathing instability. The outcome can be much improved with accurate diagnosis and early treatment using adequate immunosuppressive therapy. However, since the neurological and psychiatric symptoms as well as the clinical examination results can be non-specific, the disease is probably under-recognized. Reliable and accurate clinical testing for the identification of NMDAR autoantibodies is crucial for diagnosis, timely treatment selection, and monitoring. Recently, a cell-based indirect immunofluorescent antibody test for the detection of IgG antibodies to NMDAR has become available for diagnostic use. This review highlights the progress and challenges of laboratory testing in the evaluation and management anti-NMDAR encephalitis, and perspectives for the future.

  7. Signal transduction by the formyl peptide receptor. Studies using chimeric receptors and site-directed mutagenesis define a novel domain for interaction with G-proteins. (United States)

    Amatruda, T T; Dragas-Graonic, S; Holmes, R; Perez, H D


    The binding of small peptide ligands to high affinity chemoattractant receptors on the surface of neutrophils and monocytes leads to activation of heterotrimeric G-proteins, stimulation of phosphatidylinositol-phospholipase C (PI-PLC), and subsequently to the inflammatory response. It was recently shown (Amatruda, T. T., Gerard, N. P., Gerard, C., and Simon, M. I. (1993) J. Biol. Chem. 268, 10139-10144) that the receptor for the chemoattractant peptide C5a specifically interacts with G alpha 16, a G-protein alpha subunit of the Gq class, to trigger ligand-dependent stimulation of PI-PLC in transfected cells. In order to further characterize this chemoattractant peptide signal transduction pathway, we transfected cDNAs encoding the formylmethionylleucylphenylalanine receptor (fMLPR) into COS cells and measured the production of inositol phosphates. Ligand-dependent activation of PI-PLC was seen in COS cells transfected with the fMLPR and G alpha 16 and stimulated with fMLP but not in cells transfected with receptor alone or with receptor plus G alpha q. Chimeric receptors in which the N-terminal extracellular domain, the second intracellular domain, or the intracellular C-terminal tail of the fMLP receptor was replaced with C5a receptor domains (Perez, H. D., Holmes, R., Vilander, L. R., Adams, R. R., Manzana, W., Jolley, D., and Andrews, W. H. (1993) J. Biol. Chem. 268, 2292-2295) were capable of ligand-dependent activation of PI-PLC when co-transfected with G alpha 16. A chimeric receptor exchanging the first intracellular domain of the fMLPR was constitutively activated, stimulating PI-PLC in the absence of ligand. Constitutive activation of PI-PLC, to a level 233% of that seen in cells transfected with wild-type fMLP receptors, was dependent on G alpha 16. Site-directed mutagenesis of the first intracellular domain of the fMLPR (amino acids 54-62) reveals this to be a domain necessary for ligand-dependent activation of G alpha 16. These results suggest that

  8. Putrescine is required for the expression of eif-5a in Trichomonas vaginalis. (United States)

    Carvajal-Gamez, Bertha Isabel; Arroyo, Rossana; Camacho-Nuez, Minerva; Lira, Rosalia; Martínez-Benitez, Máximo; Alvarez-Sánchez, María Elizbeth


    Recently, we found that Trichomonas vaginalis contains a eukaryotic translation initiation factor 5A (TveIF-5A) with unknown function in this parasite. eIF-5A is the only cellular protein dependent of polyamines to form a hypusine residue, an unusual basic amino acid that is post-translationally formed by modification of a single specific lysine residue in an eIF-5A precursor protein. The purpose of this study was to determine the effect of a putrescine analogue, 1,4-diamino-2-butanone (DAB), on tveif-5a mRNA and TveIF-5A protein expression. TveIF-5A protein expression was reduced by inhibition of putrescine biosynthesis, and tveif-5a mRNA levels were reduced ∼90%, as shown by western blot and immunofluorescence assays. Cycloheximide treatment reduced the amount of mature TveIF-5A protein at 4h and decreased the tveif-5a transcript level at 2h, according to western blot, RT-PCR and qRT-PCR analyses. Actinomycin D treatment showed that the tveif-5a mRNA had half-life of ∼2.5h in DAB-treated parasites. The half-life of tveif-5a mRNA was ∼4.5h under exogenous putrescine conditions. These results suggest that putrescine is required for tveif-5a mRNA stability, and it is necessary for the expression, stability and maturation of TveIF-5A protein.

  9. Nuclear Receptor Signaling Atlas (NURSA) (United States)

    U.S. Department of Health & Human Services — The Nuclear Receptor Signaling Atlas (NURSA) is designed to foster the development of a comprehensive understanding of the structure, function, and role in disease...

  10. Anthrax receptors position the spindle. (United States)

    Minc, Nicolas; Piel, Matthieu


    Spindle orientation plays a pivotal role in tissue morphogenesis. An asymmetric anthrax receptor cap is revealed to promote activation of a formin to orient the spindle along the planar cell polarity (PCP) axis in zebrafish dorsal epiblast cells.

  11. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1

    DEFF Research Database (Denmark)

    Morland, Cecilie; Lauritzen, Knut Huso; Puchades, Maja;


    We have proposed that lactate is a “volume transmitter” in the brain and underpinned this by showing that the lactate receptor, G-protein-coupled receptor 81 (GPR81, also known as HCA1 or HCAR1), which promotes lipid storage in adipocytes, is also active in the mammalian brain. This includes...... anion channels activated by depolarization. In addition to locally produced lactate, lactate produced by exercising muscle as well as exogenous HCAR1 agonists, e.g., from fruits and berries, might activate the receptor on cerebral blood vessels and brain cells....

  12. Receptor-targeted metalloradiopharmaceuticals. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Green, Mark A.


    Copper (II) and platinum (II) coordination complexes were prepared and characterized. These complexes were designed to afford structural homology with steroidal and non-steroidal estrogens for possible use as receptor-targeted radiopharmaceuticals. While weak affinity for the estrogen receptor was detectable, none would appear to have sufficient receptor-affinity for estrogen-receptor-targeted imaging or therapy.

  13. Receptor antibodies as novel therapeutics for diabetes

    DEFF Research Database (Denmark)

    Ussar, Siegfried; Vienberg, Sara Gry; Kahn, C Ronald


    Antibodies to receptors can block or mimic hormone action. Taking advantage of receptor isoforms, co-receptors, and other receptor modulating proteins, antibodies and other designer ligands can enhance tissue specificity and provide new approaches to the therapy of diabetes and other diseases....

  14. An Update on GABAρ Receptors


    Martínez-Delgado, Gustavo; Estrada-Mondragón, Argel; Miledi, Ricardo; Martínez-Torres, Ataúlfo


    The present review discusses the functional and molecular diversity of GABAρ receptors. These receptors were originally described in the mammalian retina, and their functional role in the visual pathway has been recently elucidated; however new studies on their distribution in the brain and spinal cord have revealed that they are more spread than originally thought, and thus it will be important to determine their physiological contribution to the GABAergic transmission in other areas of the ...

  15. Lysophospholipid receptors in drug discovery


    Kihara, Yasuyuki; Mizuno, Hirotaka; Chun, Jerold


    Lysophospholipids (LPs), including lysophosphatidic acid (LPA), sphingosine 1-phospate (S1P), lysophosphatidylinositol (LPI), and lysophosphatidylserine (LysoPS), are bioactive lipids that transduce signals through their specific cell-surface G protein-coupled receptors, LPA1–6, S1P1–5, LPI1, and LysoPS1–3, respectively. These LPs and their receptors have been implicated in both physiological and pathophysiological processes such as autoimmune diseases, neurodegenerative diseases, fibrosis, p...

  16. Chronic vasodilation increases renal medullary PDE5A and α-ENaC through independent renin-angiotensin-aldosterone system pathways. (United States)

    West, Crystal A; Shaw, Stefan; Sasser, Jennifer M; Fekete, Andrea; Alexander, Tyler; Cunningham, Mark W; Masilamani, Shyama M E; Baylis, Chris


    We have previously observed that many of the renal and hemodynamic adaptations seen in normal pregnancy can be induced in virgin female rats by chronic systemic vasodilation. Fourteen-day vasodilation with sodium nitrite or nifedipine (NIF) produced plasma volume expansion (PVE), hemodilution, and increased renal medullary phosphodiesterase 5A (PDE5A) protein. The present study examined the role of the renin-angiotensin-aldosterone system (RAAS) in this mechanism. Virgin females were treated for 14 days with NIF (10 mg·kg(-1)·day(-1) via diet), NIF with spironolactone [SPR; mineralocorticoid receptor (MR) blocker, 200-300 mg·kg(-1)·day(-1) via diet], NIF with losartan [LOS; angiotensin type 1 (AT1) receptor blocker, 20 mg·kg(-1)·day(-1) via diet], enalapril (ENAL; angiotensin-converting enzyme inhibitor, 62.5 mg/l via water), or vehicle (CON). Mean arterial pressure (MAP) was reduced 7.4 ± 0.5% with NIF, 6.33 ± 0.5% with NIF + SPR, 13.3 ± 0.9% with NIF + LOS, and 12.0 ± 0.4% with ENAL vs. baseline MAP. Compared with CON (3.6 ± 0.3%), plasma volume factored for body weight was increased by NIF (5.2 ± 0.4%) treatment but not by NIF + SPR (4.3 ± 0.3%), NIF + LOS (3.6 ± 0.1%), or ENAL (4.0 ± 0.3%). NIF increased PDE5A protein abundance in the renal inner medulla, and SPR did not prevent this increase (188 ± 16 and 204 ± 22% of CON, respectively). NIF increased the α-subunit of the epithelial sodium channel (α-ENaC) protein in renal outer (365 ± 44%) and inner (526 ± 83%) medulla, and SPR prevented these changes. There was no change in either PDE5A or α-ENaC abundance vs. CON in rats treated with NIF + LOS or ENAL. These data indicate that the PVE and renal medullary adaptations in response to chronic vasodilation result from RAAS signaling, with increases in PDE5A mediated through AT1 receptor and α-ENaC through the MR.

  17. A pro-inflammatory role of C5L2 in C5a-primed neutrophils for ANCA-induced activation.

    Directory of Open Access Journals (Sweden)

    Jian Hao

    Full Text Available BACKGROUND: The complement system is crucial for the development of antineutrophil cytoplasmic antibody (ANCA-associated vasculitis (AAV. In particular, C5a and its receptor on neutrophils, CD88, play a central role. The functional role of the second receptor of C5a, C5L2, remains unclear. In the current study, we investigated the role of C5L2 in C5a-primed neutrophils for ANCA-induced activation. METHODS: The effect of blocking C5L2 by anti-human C5L2 blocking antibody were tested on respiratory burst and degranulation of C5a-primed neutrophils activated with ANCA, as well as on membrane-bound proteinase 3 (mPR3 and concentration of myeloperoxidase (MPO in supernatant of C5a-primed neutrophils. An antagonist for CD88 was also employed. RESULTS: Blocking C5L2 resulted in a significantly decreased MPO concentration in the supernatant of C5a-primed neutrophils. mPR3 expression increased from 209.0±43.0 in untreated cells to 444.3±60.8 after C5a treatment (P<0.001, and decreased to 375.8±65.44, 342.2±54.3 and 313.7±43.6 by pre-incubating blocking C5L2 antibody at 2.5 µg/ml, 5 µg/ml or 10 µg/ml (compared with C5a-priming group, P<0.001, P<0.001, and P<0.001, respectively. In C5a-primed neutrophils, subsequently activating with MPO-ANCA-positive IgG, the MFI value was 425.8±160.6, which decreased to 292.8±141.2, 289.7±130.0 and 280.3±136.4 upon pre-incubation with mouse anti-human C5L2 blocking antibody at 2.5 µg/ml, 5 µg/ml or 10 µg/ml (compared with C5a-primed neutrophils, for MPO-ANCA-positive IgG-induced activation, P<0.05, P<0.05, and P<0.05, respectively. Blocking C5L2 also resulted in significantly decreased C5a-primed neutrophils for PR3-ANCA-positive IgG-induced activation. Moreover, the lactoferrin concentration in the supernant significantly decreased in pre-incubation with anti-human C5L2 blocking antibody, compared with C5a-primed neutrophils induced by PR3- or MPO-ANCA-positive IgG. CONCLUSIONS: C5L2 may be implicated in

  18. Estrogen receptors in breast carcinoma. (United States)

    Huaman, A


    On the basis of estrogen receptor assays, breast carcinomas are presently classified as estrogen-dependent tumors, which respond to endocrine therapy, and autonomous tumors, for which endocrine therapy is useless. This paper presents a short review of the biochemical principles of estrogen dependence, the procedures used to determine estrogen receptors, and the clinical applications of the findings of these assay procedures. Biobhemically, the estroogen dependence of normal breast cells is explained as a biochemical reaction occurring between the circulating estradiol and the breast cell, which occurs in 3 steps: 1) circulating estradiol penetrates the cellular membrane by passive diffusion, followed by 2) combining of estradiol with the estrogen-binding protein (estrophilin) and formation of an estrogen receptor complex which undergoes activation and translocation into the nucleus, to result in 3) the activated steroid receptor which combines with the nuclear charomatin and stimulates ribonucleic acid synthesis for the formation of estradiol binding proteins or estradiol receptors. The cytosol method of Wittliff et al. is described in brief and entails radioactive competitive analysis; the other available laboratory procedure is immunofluorescence of tumor sections. Quantification of estrogen receptor content can be used clinically to decide on ablative endocrine therapy, to determine the effectiveness of anti-estrogen administration, to determine the primary site of metastatic carcinoma, and as a screenng device.

  19. Nuclear Receptors, RXR, and the Big Bang. (United States)

    Evans, Ronald M; Mangelsdorf, David J


    Isolation of genes encoding the receptors for steroids, retinoids, vitamin D, and thyroid hormone and their structural and functional analysis revealed an evolutionarily conserved template for nuclear hormone receptors. This discovery sparked identification of numerous genes encoding related proteins, termed orphan receptors. Characterization of these orphan receptors and, in particular, of the retinoid X receptor (RXR) positioned nuclear receptors at the epicenter of the "Big Bang" of molecular endocrinology. This Review provides a personal perspective on nuclear receptors and explores their integrated and coordinated signaling networks that are essential for multicellular life, highlighting the RXR heterodimer and its associated ligands and transcriptional mechanism.

  20. Complement C3a and C5a modulate osteoclast formation and inflammatory response of osteoblasts in synergism with IL-1β. (United States)

    Ignatius, Anita; Schoengraf, Philipp; Kreja, Ludwika; Liedert, Astrid; Recknagel, Stefan; Kandert, Sebastian; Brenner, Rolf E; Schneider, Marion; Lambris, John D; Huber-Lang, Markus


    There is a tight interaction of the bone and the immune system. However, little is known about the relevance of the complement system, an important part of innate immunity and a crucial trigger for inflammation. The aim of this study was, therefore, to investigate the presence and function of complement in bone cells including osteoblasts, mesenchymal stem cells (MSC), and osteoclasts. qRT-PCR and immunostaining revealed that the central complement receptors C3aR and C5aR, complement C3 and C5, and membrane-bound regulatory proteins CD46, CD55, and CD59 were expressed in human MSC, osteoblasts, and osteoclasts. Furthermore, osteoblasts and particularly osteoclasts were able to activate complement by cleaving C5 to its active form C5a as measured by ELISA. Both C3a and C5a alone were unable to trigger the release of inflammatory cytokines interleukin (IL)-6 and IL-8 from osteoblasts. However, co-stimulation with the pro-inflammatory cytokine IL-1β significantly induced IL-6 and IL-8 expression as well as the expression of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin (OPG) indicating that complement may modulate the inflammatory response of osteoblastic cells in a pro-inflammatory environment as well as osteoblast-osteoclast interaction. While C3a and C5a did not affect osteogenic differentiation, osteoclastogenesis was significantly induced even in the absence of RANKL and macrophage-colony stimulating factor (M-CSF) suggesting that complement could directly regulate osteoclast formation. It can therefore be proposed that complement may enhance the inflammatory response of osteoblasts and increase osteoclast formation, particularly in a pro-inflammatory environment, for example, during bone healing or in inflammatory bone disorders.

  1. Prognostic Value of Estrogen Receptor alpha and Progesterone Receptor Conversion in Distant Breast Cancer Metastases

    NARCIS (Netherlands)

    Hoefnagel, Laurien D. C.; Moelans, Cathy B.; Meijer, S. L.; van Slooten, Henk-Jan; Wesseling, Pieter; Wesseling, Jelle; Westenend, Pieter J.; Bart, Joost; Seldenrijk, Cornelis A.; Nagtegaal, Iris D.; Oudejans, Joost; van der Valk, Paul; van Gils, Carla H.; van der Wall, Elsken; van Diest, Paul J.


    BACKGROUND: Changes in the receptor profile of primary breast cancers to their metastases (receptor conversion) have been described for the estrogen receptor alpha (ER alpha) and progesterone receptor (PR). The purpose of this study was to evaluate the impact of receptor conversion for ER alpha and

  2. Stat5a increases lactation of dairy cow mammary gland epithelial cells cultured in vitro. (United States)

    Liu, Xiao Fei; Li, Meng; Li, Qing Zhang; Lu, Li Min; Tong, Hui Li; Gao, Xue Jun


    Signal transducer and activator of transcription 5a (Stat5a) transduces signals of extracellular cytokines and growth factors to the nucleus of mammary gland epithelial cells and thereby regulates gene transcription during pregnancy, lactation, and weaning. However, its function on the milk production of dairy cows needs further investigation. In this experiment, the effects of Stat5a on lactation ability of dairy cow mammary gland epithelial cells (DCMECs) were analyzed. Eukaryotic expression vector pcDNA3.1+-stat5a-αS1 was constructed by inserting stat5a gene into the plasmid vector pcDNA3.1+ and replacing CMV promoter with α-S1-casein 5' flanking sequence. The recombinant vector was stably transfected into DCMECs after geneticin (G418) selection. The proliferation and viability of DCMECs, expression of β-casein and stat5a gene, and the content of lactose were detected. The results showed that stat5a gene in eukaryotic expression vector pcDNA3.1+-stat5a-αS1 was highly expressed in DCMECs and could increase the lactation ability of DCMECs. The associativity of Stat5a with nutrients on the lactation ability of DCMECs was also evaluated. Lysine (Lys), methionine (Met), sodium acetate, β-sodium hydroxybutyrate, and glucose all had more positive effects on the lactation function of DCMECs after pcDNA3.1+-stat5a-αS1 transfection. The proliferation and viability of DCMECs, expression of β-casein and stat5a gene, and contents of lactose and triglyceride were detected. The results revealed that nutrients could promote expression of Stat5a gene to increase lactation of DCMECs. These data help to clarify the function of stat5 gene on lactation and gene regulatory networks linking stat5a.

  3. The Genetic Variability of Prolactin and Signal Transducers and Activators of Transcription 5A (STAT5A Genes in Bali Cattle

    Directory of Open Access Journals (Sweden)

    K. A. Paramitasari


    Full Text Available The aim of this study was to identify the genetic variability of PRL and STAT5A genes in Bali cattle from Bali, West Nusa Tenggara (NTB, and South Sulawesi (SS using PCR-RFLP method. A total of 262 Bali cattle were identified using RsaI (PRL and AvaI (STAT5A restriction enzymes. PRL gene exon 3, PRL gene exon 4, and STAT5A gene exon 7 amplifications resulted fragments with the lengths of 156 bp, 294 bp, 215 bp, respectively. Genotyping of PRL gene both at exon 3 and 4 produced three genotypes in Bali population and two genotypes in NTB and SS population. For the PRL gene, frequencies of A allele (exon 3 and G allele (exon 4 were dominant to the B allele (exon 3 and A allele (exon 4 across all populations. The results showed that STAT5A|AvaI loci had monomorphic C allele. Heterozygosity values were found low at both exons 3 and 4 of PRL gene in all population. Sequence analysis results of PRL gene both for exons 3 and 4 showed that there was a mutation between adenine (A and guanine (G bases in the RsaI recognized site, whereas in STAT5A gene we can confirm the existence of AvaI restriction site (C|CCGAG.

  4. Activation of Relaxin Family Receptor 1 from different mammalian species by relaxin peptide and small molecule agonist ML290

    Directory of Open Access Journals (Sweden)

    Zaohua eHuang


    Full Text Available Relaxin peptide (RLN, which signals through the relaxin family peptide 1 (RXFP1 GPCR receptor, has shown therapeutic effects in an acute heart failure clinical trial. We have identified a small molecule agonist of human RXFP1, ML290; however, it does not activate the mouse receptor. To find a suitable animal model for ML290 testing and to gain mechanistic insights into the interaction of various ligands with RXFP1, we have cloned rhesus macaque, pig, rabbit, and guinea pig RXFP1s and analyzed their activation by RLN and ML290. HEK293T cells expressing macaque or pig RXFP1 responded to relaxin and ML290 treatment as measured by an increase of cAMP production. Guinea pig RXFP1 responded to relaxin but had very low response to ML290 treatment only at highest concentrations used. The rabbit RXFP1 amino acid sequence was the most divergent, with a number of unique substitutions within the ectodomain and the 7-transmembrane domain (7TM. Two splice variants of rabbit RXFP1 derived through alternative splicing of the forth exon were identified. In contrast to the other species, rabbit RXFP1s were activated by ML290, but not with human, pig, mouse, or rabbit relaxins. Using FLAG-tagged constructs, we have shown that both rabbit RXFP1 variants are expressed on the cell surface. No binding of human Eu-labeled relaxin to rabbit RXFP1 was detected, suggesting that in this species RXFP1 might be non-functional. We used chimeric rabbit-human and guinea pig-human constructs to identify regions important for RLN or ML290 receptor activation. Chimeras with the human ectodomain and rabbit 7TM domain were activated by RLN, whereas substitution of part of the guinea pig 7TM domain with the human sequence only partially restored ML290 activation, confirming the allosteric mode of action for the two ligands. Our data demonstrate that macaque and pig models can be used for ML290 testing.


    Directory of Open Access Journals (Sweden)

    M. M. Rogova


    Full Text Available Aim. To identify the most promising epitopes that simulate various sites β1-adrenergic and M2-cholinergic receptors, and to evaluate their possible contribution to the development and maintenance of cardiac arrhythmias, particularly idiopathic ventricular arrhythmia. Material and methods. Patients with ventricular arrhythmias without organic cardiovascular disease (the study group; n=70 were included in the study. The control group consisted of 20 healthy volunteers. Evaluation of levels of antibodies to antigenic determinants, modeling various sites β1-adrenergic and M2-cholinergic performed in all patients. Causal treatment with clarithromycin and valacyclovir performed in part of patients. Results. Antibodies to different peptide sequences of β1-adrenergic and M2-cholinergic receptors have been identified in 25% of main group patients. A direct correlation between the frequency of episodes of ventricular tachycardia and IgG levels to MRI-MRIV (p=0.02 revealed. Increase in titre of antibodies to β1-adrenoceptors, to a peptide sequence β8 (p=0.02, and lower titers of antibodies to the M2 acetylcholine receptorchimera MRI-MRIV IgM (p=0.06 and ARI-MRIV IgM (p=0.07 were observed when assessing the efficacy of the therapy in the causal dynamics in the group of "untreated" patients. IgG titer reduction of ARI-MRIV (p=0.02, which is 4 times out of 10 with reduction of ventricular ectopic activity , recorded after valacyclovir therapy. Clarithromycin therapy on the level of antibodies exerted no significant effect. Conclusion. Possible involvement of antibodies to β1-adrenoceptor and M2-cholinergic receptors in the development of idiopathic ventricular arrhythmias demonstrated. The relationship between the frequency of episodes of ventricular tachycardia and levels of antibody titers to M2-cholinergic receptors found. Attempt of causal treatment, depending on the possible mechanisms of the autoimmune process is executed. Further studies to

  6. Specific deletion of LDL receptor-related protein on macrophages has skewed in vivo effects on cytokine production by invariant natural killer T cells.

    Directory of Open Access Journals (Sweden)

    Roman Covarrubias

    Full Text Available Expression of molecules involved in lipid homeostasis such as the low density lipoprotein receptor (LDLr on antigen presenting cells (APCs has been shown to enhance invariant natural killer T (iNKT cell function. However, the contribution to iNKT cell activation by other lipoprotein receptors with shared structural and ligand binding properties to the LDLr has not been described. In this study, we investigated whether a structurally related receptor to the LDLr, known as LDL receptor-related protein (LRP, plays a role in iNKT cell activation. We found that, unlike the LDLr which is highly expressed on all immune cells, the LRP was preferentially expressed at high levels on F4/80+ macrophages (MΦ. We also show that CD169+ MΦs, known to present antigen to iNKT cells, exhibited increased expression of LRP compared to CD169- MΦs. To test the contribution of MΦ LRP to iNKT cell activation we used a mouse model of MΦ LRP conditional knockout (LRP-cKO. LRP-cKO MΦs pulsed with glycolipid alpha-galactosylceramide (αGC elicited normal IL-2 secretion by iNKT hybridoma and in vivo challenge of LRP-cKO mice led to normal IFN-γ, but blunted IL-4 response in both serum and intracellular expression by iNKT cells. Flow cytometric analyses show similar levels of MHC class-I like molecule CD1d on LRP-cKO MΦs and normal glycolipid uptake. Survey of the iNKT cell compartment in LRP-cKO mice revealed intact numbers and percentages and no homeostatic disruption as evidenced by the absence of programmed death-1 and Ly-49 surface receptors. Mixed bone marrow chimeras showed that the inability iNKT cells to make IL-4 is cell extrinsic and can be rescued in the presence of wild type APCs. Collectively, these data demonstrate that, although MΦ LRP may not be necessary for IFN-γ responses, it can contribute to iNKT cell activation by enhancing early IL-4 secretion.

  7. Six host range variants of the xenotropic/polytropic gammaretroviruses define determinants for entry in the XPR1 cell surface receptor

    Directory of Open Access Journals (Sweden)

    Kozak Christine A


    Full Text Available Abstract Background The evolutionary interactions between retroviruses and their receptors result in adaptive selection of restriction variants that can allow natural populations to evade retrovirus infection. The mouse xenotropic/polytropic (X/PMV gammaretroviruses rely on the XPR1 cell surface receptor for entry into host cells, and polymorphic variants of this receptor have been identified in different rodent species. Results We screened a panel of X/PMVs for infectivity on rodent cells carrying 6 different XPR1 receptor variants. The X/PMVs included 5 well-characterized laboratory and wild mouse virus isolates as well as a novel cytopathic XMV-related virus, termed Cz524, isolated from an Eastern European wild mouse-derived strain, and XMRV, a xenotropic-like virus isolated from human prostate cancer. The 7 viruses define 6 distinct tropisms. Cz524 and another wild mouse isolate, CasE#1, have unique species tropisms. Among the PMVs, one Friend isolate is restricted by rat cells. Among the XMVs, two isolates, XMRV and AKR6, differ from other XMVs in their PMV-like restriction in hamster cells. We generated a set of Xpr1 mutants and chimeras, and identified critical amino acids in two extracellular loops (ECLs that mediate entry of these different viruses, including 3 residues in ECL3 that are involved in PMV entry (E500, T507, and V508 and can also influence infectivity by AKR6 and Cz524. Conclusion We used a set of natural variants and mutants of Xpr1 to define 6 distinct host range variants among naturally occurring X/PMVs (2 XMV variants, 2 PMVs, 2 different wild mouse variants. We identified critical amino acids in XPR1 that mediate entry of these viruses. These gammaretroviruses and their XPR1 receptor are thus highly functionally polymorphic, a consequence of the evolutionary pressures that favor both host resistance and virus escape mutants. This variation accounts for multiple naturally occurring virus resistance phenotypes and

  8. Voltage-dependent regulation of CaV2.2 channels by Gq-coupled receptor is facilitated by membrane-localized β subunit. (United States)

    Keum, Dongil; Baek, Christina; Kim, Dong-Il; Kweon, Hae-Jin; Suh, Byung-Chang


    G protein-coupled receptors (GPCRs) signal through molecular messengers, such as Gβγ, Ca(2+), and phosphatidylinositol 4,5-bisphosphate (PIP2), to modulate N-type voltage-gated Ca(2+) (CaV2.2) channels, playing a crucial role in regulating synaptic transmission. However, the cellular pathways through which GqPCRs inhibit CaV2.2 channel current are not completely understood. Here, we report that the location of CaV β subunits is key to determining the voltage dependence of CaV2.2 channel modulation by GqPCRs. Application of the muscarinic agonist oxotremorine-M to tsA-201 cells expressing M1 receptors, together with CaV N-type α1B, α2δ1, and membrane-localized β2a subunits, shifted the current-voltage relationship for CaV2.2 activation 5 mV to the right and slowed current activation. Muscarinic suppression of CaV2.2 activity was relieved by strong depolarizing prepulses. Moreover, when the C terminus of β-adrenergic receptor kinase (which binds Gβγ) was coexpressed with N-type channels, inhibition of CaV2.2 current after M1 receptor activation was markedly reduced and delayed, whereas the delay between PIP2 hydrolysis and inhibition of CaV2.2 current was decreased. When the Gβγ-insensitive CaV2.2 α1C-1B chimera was expressed, voltage-dependent inhibition of calcium current was virtually abolished, suggesting that M1 receptors act through Gβγ to inhibit CaV2.2 channels bearing membrane-localized CaV β2a subunits. Expression of cytosolic β subunits such as β2b and β3, as well as the palmitoylation-negative mutant β2a(C3,4S), reduced the voltage dependence of M1 muscarinic inhibition of CaV2.2 channels, whereas it increased inhibition mediated by PIP2 depletion. Together, our results indicate that, with membrane-localized CaV β subunits, CaV2.2 channels are subject to Gβγ-mediated voltage-dependent inhibition, whereas cytosol-localized β subunits confer more effective PIP2-mediated voltage-independent regulation. Thus, the voltage dependence of

  9. Neurotrophins and their receptors in inflammation

    Institute of Scientific and Technical Information of China (English)



    The neurotrophin family has recently been in volved ininflammatory and remodelling processes occurring in chronic inflammatory diseases, in particular in asthma. Nerve growth fac-tor (NGF) is a high molecular weight peptide that belongs to the neurotrophin family. It is synthesized by various structural and inflammatory cells and activates two types of receptors, the TrkA (tropomyosin-receptor kinase A) receptor and the p75NTR receptor, in the death receptor family. NGF was first studied for

  10. Toll-like receptors in neonatal sepsis.

    LENUS (Irish Health Repository)

    O'Hare, Fiona M


    Toll-like receptors are vital transmembrane receptors that initiate the innate immune response to many micro-organisms. The discovery of these receptors has improved our understanding of host-pathogen interactions, and these receptors play an important role in the pathogenesis of multiple neonatal conditions such as sepsis and brain injury. Toll-like receptors, especially TLRs 2 and 4, are associated with necrotizing enterocolitis, periventricular leukomalacia and sepsis.

  11. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor. (United States)

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick; Negishi, Masahiko


    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)-forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally.

  12. WNT5A inhibits metastasis and alters splicing of Cd44 in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Wen Jiang

    Full Text Available Wnt5a is a non-canonical signaling Wnt. Low expression of WNT5A is correlated with poor prognosis in breast cancer patients. The highly invasive breast cancer cell lines, MDA-MB-231 and 4T1, express very low levels of WNT5A. To determine if enhanced expression of WNT5A would affect metastatic behavior, we generated WNT5A expressing cells from the 4T1 and MDA-MB-231 parental cell lines. WNT5A expressing cells demonstrated cobblestone morphology and reduced in vitro migration relative to controls. Cell growth was not altered. Metastasis to the lung via tail vein injection was reduced in the 4T1-WNT5A expressing cells relative to 4T1-vector controls. To determine the mechanism of WNT5A action on metastasis, we performed microarray and whole-transcriptome sequence analysis (RNA-seq to compare gene expression in 4T1-WNT5A and 4T1-vector cells. Analysis indicated highly significant alterations in expression of genes associated with cellular movement. Down-regulation of a subset of these genes, Mmp13, Nos2, Il1a, Cxcl2, and Lamb3, in WNT5A expressing cells was verified by semi-quantitative RT-PCR. Significant differences in transcript splicing were also detected in cell movement associated genes including Cd44. Cd44 is an adhesion molecule with a complex genome structure. Variable exon usage is associated with metastatic phenotype. Alternative spicing of Cd44 in WNT5A expressing cells was confirmed using RT-PCR. We conclude that WNT5A inhibits metastasis through down-regulation of multiple cell movement pathways by regulating transcript levels and splicing of key genes like Cd44.

  13. Genetic variants of CHRNA5-A3 and CHRNB3-A6 predict survival of patients with advanced non-small cell lung cancer. (United States)

    Wang, Yang; Peng, Xiaonu; Zhu, Lijun; Hu, Likuan; Song, Yipeng


    Nicotinic acetylcholine receptors (nAChRs) play a key role in carcinogenesis and progression of lung cancer; and polymorphisms in CHRNA5-A3 and CHRNB3-A6, two gene clusters encoding nAChR subunits, have been associated with lung cancer risk. In this study, we investigated whether variants in the two gene clusters were associated with prognosis of advanced non-small cell lung cancer (NSCLC). A total of 165 stage IIIB-IV NSCLC patients were enrolled in this study. Three polymorphisms (rs667282 and rs3743073 in CHRNA5-A3 and rs13280604 in CHRNB3-A6) were genotyped using the TaqMan method. Overall survival (OS) was estimated using the log-rank test and the Cox models. Our results showed that patients with CHRNA5-A3 rs667282 TT or TC genotypes had a significantly shorter OS than those carrying the CC genotype (Log-rank, P = 0.043). Furthermore, multivariate Cox regression analysis showed that rs667282 TT/TC genotypes are significantly associated with increased risk of overall deaths (adjusted hazard ratio, 1.7; 95% CI, 1.1-2.7). However, the similar results were not observed for other two polymorphisms. Furthermore, no evident association was found between these variants and clinicopathologic features of advanced NSCLC. Our present study suggested that rs667282 in CHRNA5-A3 may modify the prognosis of patients with advanced NSCLC.

  14. Spatial regulation of cell cohesion by Wnt5a during second heart field progenitor deployment. (United States)

    Li, Ding; Sinha, Tanvi; Ajima, Rieko; Seo, Hwa-Seon; Yamaguchi, Terry P; Wang, Jianbo


    Wnt5a, a non-canonical Wnt ligand critical for outflow tract (OFT) morphogenesis, is expressed specifically in second heart field (SHF) progenitors in the caudal splanchnic mesoderm (SpM) near the inflow tract (IFT). Using a conditional Wnt5a gain of function (GOF) allele and Islet1-Cre, we broadly over-expressed Wnt5a throughout the SHF lineage, including the entire SpM between the IFT and OFT. Wnt5a over-expression in Wnt5a null mutants can rescue the cell polarity and actin polymerization defects as well as severe SpM shortening, but fails to rescue OFT shortening. Moreover, Wnt5a over-expression in wild-type background is able to cause OFT shortening. We find that Wnt5a over-expression does not perturb SHF cell proliferation, apoptosis or differentiation, but affects the deployment of SHF cells by causing them to accumulate into a large bulge at the rostral SpM and fail to enter the OFT. Our immunostaining analyses suggest an inverse correlation between cell cohesion and Wnt5a level in the wild-type SpM. Ectopic Wnt5a expression in the rostral SpM of Wn5a-GOF mutants diminishes the upregulation of adherens junction; whereas loss of Wnt5a in Wnt5a null mutants causes premature increase in adherens junction level in the caudal SpM. Over-expression of mouse Wnt5a in Xenopus animal cap cells also reduces C-cadherin distribution on the plasma membrane without affecting its overall protein level, suggesting that Wnt5a may play an evolutionarily conserved role in controlling the cell surface level of cadherin to modulate cell cohesion during tissue morphogenesis. Collectively, our data indicate that restricted expression of Wnt5a in the caudal SpM is essential for normal OFT morphogenesis, and uncover a novel function of spatially regulated cell cohesion by Wnt5a in driving the deployment of SHF cells from the SpM into the OFT.

  15. The chimeric transcript RUNX1-GLRX5: a biomarker for good postoperative prognosis in Stage IA non-small-cell lung cancer. (United States)

    Ishikawa, Rie; Amano, Yosuke; Kawakami, Masanori; Sunohara, Mitsuhiro; Watanabe, Kousuke; Kage, Hidenori; Ohishi, Nobuya; Yatomi, Yutaka; Nakajima, Jun; Fukayama, Masashi; Nagase, Takahide; Takai, Daiya


    Stage IA non-small-cell lung cancer cases have been recognized as having a low risk of relapse; however, occasionally, relapse may occur. To predict clinical outcome in Stage IA non-small-cell lung cancer patients, we searched for chimeric transcripts that can be used as biomarkers and identified a novel chimeric transcript, RUNX1-GLRX5, comprising RUNX1, a transcription factor, and GLRX5. This chimera was detected in approximately half of the investigated Stage IA non-small-cell lung cancer patients (44/104 cases, 42.3%). Although there was no significant difference in the overall survival rate between RUNX1-GLRX5-positive and -negative cases (P = 0.088), a significantly lower relapse rate was observed in the RUNX1-GLRX5-positive cases (P = 0.039), indicating that this chimera can be used as a biomarker for good prognosis in Stage IA patients. Detection of the RUNX1-GLRX5 chimeric transcript may therefore be useful for the determination of a postoperative treatment plan for Stage IA non-small-cell lung cancer patients.

  16. The cytomegalovirus-encoded chemokine receptor US28 promotes intestinal neoplasia in transgenic mice

    NARCIS (Netherlands)

    Bongers, G.; Maussang, D.; Muniz, L.R.; Noriega, V.M.; Fraile-Ramos, A.; Barker, N.; Marchesi, F.; Thirunarayanan, N.; Vischer, H.F.; Qin, L.; Mayer, L.; Harpaz, N.; Leurs, R.; Furtado, G.C.; Clevers, H.; Tortorella, D.; Smit, M.J.; Lira, S.A.


    US28 is a constitutively active chemokine receptor encoded by CMV (also referred to as human herpesvirus 5), a highly prevalent human virus that infects a broad spectrum of cells, including intestinal epithelial cells (IECs). To study the role of US28 in vivo, we created transgenic mice (VS28 mice)

  17. The complement system and toll-like receptors as integrated players in the pathophysiology of atherosclerosis

    DEFF Research Database (Denmark)

    Hovland, Anders; Jonasson, Lena; Garred, Peter;


    of innate immunity. The complement system and toll-like receptors (TLRs), and the crosstalk between them, may be of particular interest both with respect to pathogenesis and as therapeutic targets in atherosclerosis. Animal studies indicate that inhibition of C3a and C5a reduces atherosclerosis. In humans...

  18. Role of DAX-1 (NR0B1) and steroidogenic factor-1 (NR5A1) in human adrenal function. (United States)

    El-Khairi, Ranna; Martinez-Aguayo, Alejandro; Ferraz-de-Souza, Bruno; Lin, Lin; Achermann, John C


    The nuclear receptor transcription factors DAX-1 (NR0B1) and SF-1 (NR5A1) regulate many aspects of adrenal and reproductive development and function. Disruption of the genes encoding these factors can be associated with pediatric adrenal disease. DAX-1 mutations are classically associated with X-linked adrenal hypoplasia congenita, hypogonadotropic hypogonadism and impaired spermatogenesis. However, other phenotypes are also being reported, such as isolated mineralocorticoid insufficiency, premature sexual development, primary adrenal insufficiency in a 46, XX patient and late-onset X-linked adrenal hypoplasia congenita and/or hypogonadotropic hypogonadism. SF-1 mutations have also been associated with primary adrenal insufficiency, together with 46, XY disorders of sex development. However it is emerging that SF-1 changes are a relatively rare cause of primary adrenal failure in humans, and most individuals with SF-1 mutations have a spectrum of 46, XY disorders of sex development phenotypes. These conditions range from 46, XY females with streak gonads and müllerian structures, through children with ambiguous genitalia and inguinal testes, to severe penoscrotal hypospadias with undescended testes. Therefore, the human gonad appears to be more sensitive than the adrenal gland to loss of SF-1 function. This review will focus on the expanding range of phenotypes associated with DAX-1 and SF-1 mutations.

  19. CLEC5A regulates Japanese encephalitis virus-induced neuroinflammation and lethality.

    Directory of Open Access Journals (Sweden)

    Szu-Ting Chen

    Full Text Available CLEC5A/MDL-1, a member of the myeloid C-type lectin family expressed on macrophages and neutrophils, is critical for dengue virus (DV-induced hemorrhagic fever and shock syndrome in Stat1⁻/⁻ mice and ConA-treated wild type mice. However, whether CLEC5A is involved in the pathogenesis of viral encephalitis has not yet been investigated. To investigate the role of CLEC5A to regulate JEV-induced neuroinflammation, antagonistic anti-CLEC5A mAb and CLEC5A-deficient mice were generated. We find that Japanese encephalitis virus (JEV directly interacts with CLEC5A and induces DAP12 phosphorylation in macrophages. In addition, JEV activates macrophages to secrete proinflammatory cytokines and chemokines, which are dramatically reduced in JEV-infected Clec5a⁻/⁻ macrophages. Although blockade of CLEC5A cannot inhibit JEV infection of neurons and astrocytes, anti-CLEC5A mAb inhibits JEV-induced proinflammatory cytokine release from microglia and prevents bystander damage to neuronal cells. Moreover, JEV causes blood-brain barrier (BBB disintegrity and lethality in STAT1-deficient (Stat1⁻/⁻ mice, whereas peripheral administration of anti-CLEC5A mAb reduces infiltration of virus-harboring leukocytes into the central nervous system (CNS, restores BBB integrity, attenuates neuroinflammation, and protects mice from JEV-induced lethality. Moreover, all surviving mice develop protective humoral and cellular immunity against JEV infection. These observations demonstrate the critical role of CLEC5A in the pathogenesis of Japanese encephalitis, and identify CLEC5A as a target for the development of new treatments to reduce virus-induced brain damage.

  20. Crystal Structures of the Nuclear Receptor, Liver Receptor Homolog 1, Bound to Synthetic Agonists. (United States)

    Mays, Suzanne G; Okafor, C Denise; Whitby, Richard J; Goswami, Devrishi; Stec, Józef; Flynn, Autumn R; Dugan, Michael C; Jui, Nathan T; Griffin, Patrick R; Ortlund, Eric A


    Liver receptor homolog 1 (NR5A2, LRH-1) is an orphan nuclear hormone receptor that regulates diverse biological processes, including metabolism, proliferation, and the resolution of endoplasmic reticulum stress. Although preclinical and cellular studies demonstrate that LRH-1 has great potential as a therapeutic target for metabolic diseases and cancer, development of LRH-1 modulators has been difficult. Recently, systematic modifications to one of the few known chemical scaffolds capable of activating LRH-1 failed to improve efficacy substantially. Moreover, mechanisms through which LRH-1 is activated by synthetic ligands are entirely unknown. Here, we use x-ray crystallography and other structural methods to explore conformational changes and receptor-ligand interactions associated with LRH-1 activation by a set of related agonists. Unlike phospholipid LRH-1 ligands, these agonists bind deep in the pocket and do not interact with residues near the mouth nor do they expand the pocket like phospholipids. Unexpectedly, two closely related agonists with similar efficacies (GSK8470 and RJW100) exhibit completely different binding modes. The dramatic repositioning is influenced by a differential ability to establish stable face-to-face π-π-stacking with the LRH-1 residue His-390, as well as by a novel polar interaction mediated by the RJW100 hydroxyl group. The differing binding modes result in distinct mechanisms of action for the two agonists. Finally, we identify a network of conserved water molecules near the ligand-binding site that are important for activation by both agonists. This work reveals a previously unappreciated complexity associated with LRH-1 agonist development and offers insights into rational design strategies.

  1. Ionotropic glutamate receptors & CNS disorders. (United States)

    Bowie, Derek


    Disorders of the central nervous system (CNS) are complex disease states that represent a major challenge for modern medicine. Although aetilogy is often unknown, it is established that multiple factors such as defects in genetics and/or epigenetics, the environment as well as imbalance in neurotransmitter receptor systems are all at play in determining an individual's susceptibility to disease. Gene therapy is currently not available and therefore, most conditions are treated with pharmacological agents that modify neurotransmitter receptor signaling. Here, I provide a review of ionotropic glutamate receptors (iGluRs) and the roles they fulfill in numerous CNS disorders. Specifically, I argue that our understanding of iGluRs has reached a critical turning point to permit, for the first time, a comprehensive re-evaluation of their role in the cause of disease. I illustrate this by highlighting how defects in AMPA receptor (AMPAR) trafficking are important to fragile X mental retardation and ectopic expression of kainate receptor (KAR) synapses contributes to the pathology of temporal lobe epilepsy. Finally, I discuss how parallel advances in studies of other neurotransmitter systems may allow pharmacologists to work towards a cure for many CNS disorders rather than developing drugs to treat their symptoms.

  2. Ror family receptor tyrosine kinases regulate the maintenance of neural progenitor cells in the developing neocortex. (United States)

    Endo, Mitsuharu; Doi, Ryosuke; Nishita, Michiru; Minami, Yasuhiro


    The Ror family receptor tyrosine kinases (RTKs), Ror1 and Ror2, have been shown to play crucial roles in developmental morphogenesis by acting as receptors or co-receptors to mediate Wnt5a-induced signaling. Although Ror1, Ror2 and Wnt5a are expressed in the developing brain, little is known about their roles in the neural development. Here we show that Ror1, Ror2 and their ligand Wnt5a are highly expressed in neocortical neural progenitor cells (NPCs). Small interfering RNA (siRNA)-mediated suppression of Ror1, Ror2 or Wnt5a in cultured NPCs isolated from embryonic neocortex results in the reduction of βIII-tubulin-positive neurons that are produced from NPCs possibly through the generation of T-box brain 2 (Tbr2)-positive intermediate progenitors. BrdU-labeling experiments further reveal that the proportion of proliferative and neurogenic NPCs, which are positive for neural progenitor cell marker (Pax6) but negative for glial cell marker (glial fibrillary acidic protein; GFAP), is reduced within a few days in culture following knockdown of these molecules, suggesting that Ror1, Ror2 and Wnt5a regulate neurogenesis through the maintenance of NPCs. Moreover, we show that Dishevelled 2 (Dvl2) is involved in Wnt5a-Ror1 and Wnt5a-Ror2 signaling in NPCs, and that suppressed expression of Dvl2 indeed reduces the proportion of proliferative and neurogenic NPCs. Interestingly, suppressed expression of either Ror1 or Ror2 in NPCs in the developing neocortex results in the precocious differentiation of NPCs into neurons, and their forced expression results in delayed differentiation. Collectively, these results indicate that Wnt5a-Ror1 and Wnt5a-Ror2 signaling pathways play roles in maintaining proliferative and neurogenic NPCs during neurogenesis of the developing neocortex.

  3. Cloning and expression analysis of eIF-5A gene in Apocynum venetum

    Directory of Open Access Journals (Sweden)

    Lei Wang


    Full Text Available To understand the effects of the eIF-5A gene in response to abiotic stress, the 909 bp full-length cDNA of eIF-5A, including a 480 bp open reading frame encoding 159 amino-acid (aa residues, was isolated from the leaf of herbal plant (Apocynum venetum by rapid-amplification of cDNA ends. The deduced molecular weight of the encoding protein was 17.48 kDa with a theoretical pI of 5.61 and predicted no signal peptide. Real-time polymerase chain reaction analysis revealed that AveIF-5A gene expression was induced by cold, salt and drought stress. To determine the biological function of this gene, recombinant plasmids expressing AveIF-5A and AveIF-5A1 (86–156 aa truncated polypeptide were used to transform Escherichia coli. The analysis of the growth curves of recombinant E. coli revealed that AveIF-5A and AveIF-5A1 improved the resistance of transformed E. coli to low-temperature, drought and salt stress. These results could provide experimental evidence of the function of the AveIF-5A gene as a valuable gene resource in plant resistance-breeding.

  4. Porcine reproductive and respiratory syndrome virus ORF5a protein is essential for virus viability. (United States)

    Sun, Lichang; Li, Yanhua; Liu, Runxia; Wang, Xiaomin; Gao, Fei; Lin, Tao; Huang, Ting; Yao, Huochun; Tong, Guangzhi; Fan, Hongjie; Wei, Zuzhang; Yuan, Shishan


    It has been shown that ORF5a protein in EAV is important but not essential for virus infectivity. In this study, we found that RNA changes in the overlapping region (1-104 nucleotide, nt) between ORF5 and ORF5a introduced by codon-optimized GP5 was lethal for virus viability, suggesting that the nt changes or amino acid (aa) mutations in the GP5 or ORF5a protein did not permit the production of infectious virus. Furthermore, inactivation of ORF5a expression in the context of type 1 (pSHE) and type 2 (pAJXM and pAPRRS) full-length PRRSV cDNA clones was lethal for the production of infectious virus, while viable PRRSV could be recovered by expressing ORF5a protein in trans, suggesting that ORF5a protein was essential for virus viability. Finally, ORF5a protein could be putatively extended to 63 aas by inactivation of the downstream stop codon candidates, thereby demonstrating that the C-terminus of ORF5a may be variable.

  5. Data of evolutionary structure change: 1JH5I-2AZ5A [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available ID> I 1JH5I LYTDK-----TYAMG ...>EE -----EEEEE> ATOM 9622 CA LEU I 59 -64.244 97.997...ain> 2AZ5A LFKGQGCPSTHVLLT >EEEE EE... 2AZ5A IAVSY----QTKVN ...>E ---- EEE > ATOM 526 CA ILE A 83 -19.844 60.232 51

  6. Purified Wnt-5a increases differentiation of midbrain dopaminergic cells and dishevelled phosphorylation. (United States)

    Schulte, Gunnar; Bryja, Vítezslav; Rawal, Nina; Castelo-Branco, Goncalo; Sousa, Kyle M; Arenas, Ernest


    The Wnt family of lipoproteins regulates several aspects of the development of the nervous system. Recently, we reported that Wnt-3a enhances the proliferation of midbrain dopaminergic precursors and that Wnt-5a promotes their differentiation into dopaminergic neurones. Here we report the purification of hemagglutinin-tagged Wnt-5a using a three-step purification method similar to that previously described for Wnt-3a. Haemagglutinin-tagged Wnt-5a was biologically active and induced the differentiation of immature primary midbrain precursors into tyrosine hydroxylase-positive dopaminergic neurones. Using a substantia nigra-derived dopaminergic cell line (SN4741), we found that Wnt-5a, unlike Wnt-3a, did not promote beta-catenin phosphorylation or stabilization. However, both Wnt-5a and Wnt-3a activated dishevelled, as assessed by a phosphorylation-dependent mobility shift. Moreover, the activity of Wnt-5a on dishevelled was blocked by pre-treatment with acyl protein thioesterase-1, indicating that palmitoylation of Wnt-5a is necessary for its function. Thus, our results suggest that Wnt-3a and Wnt-5a, respectively, activate canonical and non-canonical Wnt signalling pathways in ventral midbrain dopaminergic cells. Furthermore, we identify dishevelled as a key player in transducing both Wnt canonical and non-canonical signals in dopaminergic cells.

  7. Carbon-Carbon Bond Cleavage Reaction: Synthesis of Multisubstituted Pyrazolo[1,5-a]pyrimidines. (United States)

    Saikia, Pallabi; Gogoi, Sanjib; Boruah, Romesh C


    A new carbon-carbon bond cleavage reaction was developed for the efficient synthesis of multisubstituted pyrazolo[1,5-a]pyrimidines. This base induced reaction of 1,3,5-trisubstituted pentane-1,5-diones and substituted pyrazoles afforded good yields of the pyrazolo[1,5-a]pyrimidines.

  8. Hamster SRD5A3 lacks steroid 5α-reductase activity in vitro. (United States)

    Chávez, B; Ramos, L; García-Becerra, R; Vilchis, F


    According to current knowledge, two steroid 5α-reductases, designated type 1 (SRD5A1) and type 2 (SRD5A2), are present in all species examined to date. These isozymes play a central role in steroid hormone physiology by catalyzing the reduction of 3-keto-4-ene-steroids into more active 5α-reduced derivatives, including the conversion of testosterone (T) to dihydrotestosterone (DHT). A third 5α-reductase (SRD5A3, -type 3), which is overexpressed in hormone-refractory prostate cancer cells, has been identified; however, its enzymatic characteristics are practically unknown. Here, we isolated a cDNA encoding hamster Srd5a3 (hSrd5a3) and performed functional metabolic assays to investigate its biochemical properties. The cloned cDNA encodes a 330 amino acid protein that is 87% identical to the homologous protein in mice and 78% to that in humans. However, hSrd5a3 exhibits low sequence homology with its counterparts hSrd5a1 (19%) and hSrd5a2 (17%). A fusion protein consisting of hSrd5a3 and green fluorescent protein provided evidence for cytoplasmic localization in transfected mammalian cells. Real-time PCR analysis revealed that, Srd5a3 mRNA was present in nearly all hamster tissues, with high expression in the cerebellum, Harderian gland and testis. Functional assays expressing hSrd5a3 cDNA in HEK-293 cells revealed that this isozyme is unable to reduce T into DHT. Further expression assays confirmed that similar to testosterone, progesterone, androstenedione and corticosterone are not reduced by hSrd5a3 or human SRD5A3. Together, these results indicate that hSrd