WorldWideScience

Sample records for 51sc effective charges

  1. Space-Charge Effect

    CERN Document Server

    Chauvin, N

    2013-01-01

    First, this chapter introduces the expressions for the electric and magnetic space-charge internal fields and forces induced by high-intensity beams. Then, the root-mean-square equation with space charge is derived and discussed. In the third section, the one-dimensional Child-Langmuir law, which gives the maximum current density that can be extracted from an ion source, is exposed. Space-charge compensation can occur in the low-energy beam transport lines (located after the ion source). This phenomenon, which counteracts the spacecharge defocusing effect, is explained and its main parameters are presented. The fifth section presents an overview of the principal methods to perform beam dynamics numerical simulations. An example of a particles-in-cells code, SolMaxP, which takes into account space-charge compensation, is given. Finally, beam dynamics simulation results obtained with this code in the case of the IFMIF injector are presented.

  2. An improved charge pump with suppressed charge sharing effect

    Directory of Open Access Journals (Sweden)

    Na Bai

    2013-09-01

    Full Text Available A differential charge pump with reduced charge sharing effect is presented. The current-steering topology is adopted for fast switching. A replica charge pump is added to provide a current path for the complementary branch of the master charge pump in the current switching. Through the replica charge pump, the voltage at the complementary node of the master charge pump keeps stable during switching, and the dynamic charge sharing effect is avoided. Apply the charge pump to a 4.8 GHz band integer-N PLL, the measured reference spur is -49.7dBc with a 4-MHz reference frequency.

  3. Screening Effect in Charge Qubit

    Institute of Scientific and Technical Information of China (English)

    HUA Ming; XIAO Xiao; GAO Yi-Bo

    2011-01-01

    We study the influence of screening effect on quantum decoherence for charge qubit and the process of quantum information storage. When the flux produced by the circulating current in SQUID loop is considered, screening effect is formally characterized by a LC resonator. Using large-detuning condition and Fr(o)hlich transformation in the qubit-cavity-resonator system, we calculate the decoherence factor for charge qubit and the effective qubit-cavity Hamiltonian. The decoherence factor owns a factorized structure, it shows that screening effect is a resource of decoherence for charge qubit. The effective Hamiltonian shows that the screening effect results in a frequency shift for charge qubit and a modified qubit-cavity coupling constant induced by a LC resonator.

  4. Improving Charging-Breeding Simulations with Space-Charge Effects

    Science.gov (United States)

    Bilek, Ryan; Kwiatkowski, Ania; Steinbrügge, René

    2016-09-01

    Rare-isotope-beam facilities use Highly Charged Ions (HCI) for accelerators accelerating heavy ions and to improve measurement precision and resolving power of certain experiments. An Electron Beam Ion Trap (EBIT) is able to create HCI through successive electron impact, charge breeding trapped ions into higher charge states. CBSIM was created to calculate successive charge breeding with an EBIT. It was augmented by transferring it into an object-oriented programming language, including additional elements, improving ion-ion collision factors, and exploring the overlap of the electron beam with the ions. The calculation is enhanced with the effects of residual background gas by computing the space charge due to charge breeding. The program assimilates background species, ionizes and charge breeds them alongside the element being studied, and allows them to interact with the desired species through charge exchange, giving fairer overview of realistic charge breeding. Calculations of charge breeding will be shown for realistic experimental conditions. We reexamined the implementation of ionization energies, cross sections, and ion-ion interactions when charge breeding.

  5. Fractional Effective Charges and Misner-Wheeler Charge without Charge Effect in Metamaterials

    Directory of Open Access Journals (Sweden)

    Igor Smolyaninov

    2016-07-01

    Full Text Available Transformation optics enables engineering of the effective topology and dimensionality of the optical space in metamaterials. Nonlinear optics of such metamaterials may mimic Kaluza-Klein theories having one or more kinds of effective charges. As a result, novel photon blockade devices may be realized. Here we demonstrate that an electromagnetic wormhole may be designed, which connects two points of such an optical space and changes its effective topological connectivity. Electromagnetic field configurations, which exhibit fractional effective charges, appear as a result of such topology change. Moreover, such effects as Misner-Wheeler “charge without charge” may be replicated.

  6. Analyzing Affect of Image Charge in Space Charge Effect

    Institute of Scientific and Technical Information of China (English)

    ZhangXueying; XuHushan; JiaFei; LiWenfei

    2003-01-01

    There is an increasing requirement of high injection current and highly charged ion beams for accelerators at many laboratories, such as CERN, GSI, GANIL and IMP, with the development of super-conducting ECR source in recent.years. In this case, the space charge effect becomes a major concern when the beam current is as high as tens of mA. In fact, the faradic field induced by the image charges will be come into the metallic surfaces while the beams are transported in a vacuum tube or in between two plates. In order to ensure studying the space charge effect in reason, it is necessary to investigate the effect from such a field.

  7. Effect of Zn Adsorption on Charge of Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    SUNHAN-YUAN

    1993-01-01

    The variation in appa rent carge of two typical variable charge soils resulting from Zn adsorption were studied by KCl saturation and NH4NO3 replacement methods.Results showed that zinc were adsorbed specifically to those sites with negative charge.As in different pH ranges,the percantages of specific and electrostatic adsorptions of zine and the mechanisms of specific adsorption were different,the effects of Zn adsorption on apparent charge were varied and could be characterized as:when 1 mmol Zn2+ was adsorbed,a change about 1 mmol in the apparent charge was observed in the low pH range(1),1.4 to 1.5mmol in the moderate pH range(II) and 0.55 to 0.6mmol in the high pH range (III).These experimental data,in terms of soil charge,proved once more author's conclusion in the preceding paper(Sun,1993) that in accordance with the behaviors of Zn adsorption by the variable charge soils in relation to pH,three pH ranges with different adsorption mechanisms were delineated;that is,in Range I,specific adsorption was the predominant mechanism,in Ranges II and III,specific and electrostatic adsorptions co-existed,but their specific adsorption mechanisms were not identical.

  8. Phase behavior of charged colloids : many-body effects, charge renormalization and charge regulation

    NARCIS (Netherlands)

    Zoetekouw, Bastiaan

    2006-01-01

    The main topic of this thesis is Poisson–Boltzmann theory for suspensions of charged colloids in two of its approximations: cell-type approximations that explicitly take into account non-linear effects near the colloidal surfaces, such as charge renormalization, at the expense of neglecting any

  9. Fluctuation charge effects in ionization fronts

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, Manuel; Trueba, Jose L [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain); Baltanas, J P [Departamento de Fisica Aplicada II, Universidad de Sevilla, Av. Reina Mercedes 2, 41012 Sevilla (Spain)

    2008-05-21

    In this paper, we study the effects of charge fluctuations on the propagation of both negative and positive ionization fronts in streamer discharges. We show that fronts accelerate when random charge creation events are present. This effect might play a similar role to photoionization in order to make the front move faster.

  10. Solvation effects on like-charge attraction.

    Science.gov (United States)

    Ghanbarian, Shahzad; Rottler, Jörg

    2013-02-28

    We present results of molecular dynamics simulations of the electrostatic interaction between two parallel charged rods in the presence of divalent counterions. Such polyelectrolytes have been considered as a simple model for understanding electrostatic interactions in highly charged biomolecules such as DNA. Since there are correlations between the free charge carriers, the phenomenon of like charge attraction appears for specific parameters. We explore the role of solvation effects and the resulting deviations from Coulomb's law on the nanoscale on this peculiar phenomenon. The behavior of the force between the charged rods in a simulation with atomistic representation of water molecules is completely different from a model in which water is modeled as a continuum dielectric. By calculating counterion-rodion pair correlation functions, we find that the presence of water molecules changes the structure of the counterion cloud and results in both qualitative and quantitative changes of the force between highly charged polyelectrolytes.

  11. Charge-regularization effects on polyelectrolytes

    Science.gov (United States)

    Muthukumar, Murugappan

    2012-02-01

    When electrically charged macromolecules are dispersed in polar solvents, their effective net charge is generally different from their chemical charges, due to competition between counterion adsorption and the translational entropy of dissociated counterions. The effective charge changes significantly as the experimental conditions change such as variations in solvent quality, temperature, and the concentration of added small electrolytes. This charge-regularization effect leads to major difficulties in interpreting experimental data on polyelectrolyte solutions and challenges in understanding the various polyelectrolyte phenomena. Even the most fundamental issue of experimental determination of molar mass of charged macromolecules by light scattering method has been difficult so far due to this feature. We will present a theory of charge-regularization of flexible polyelectrolytes in solutions and discuss the consequences of charge-regularization on (a) experimental determination of molar mass of polyelectrolytes using scattering techniques, (b) coil-globule transition, (c) macrophase separation in polyelectrolyte solutions, (c) phase behavior in coacervate formation, and (d) volume phase transitions in polyelectrolyte gels.

  12. Charge Exchange Effect on Space-Charge-Limited Current Densities in Ion Diode

    Institute of Scientific and Technical Information of China (English)

    石磊

    2002-01-01

    The article theoretically studied the charge-exchange effects on space charge limited electron and ion current densities of non-relativistic one-dimensional slab ion diode, and compared with those of without charge exchange.

  13. Charging effects in thick insulating samples

    Energy Technology Data Exchange (ETDEWEB)

    Dias, J.F. E-mail: jfdias@if.ufrgs.br; Bulla, A.; Yoneama, M.-L

    2002-04-01

    In this paper we analyse the effects observed in X-ray spectra when thick insulating targets are irradiated with beams of light charged particles. Preliminary results show that the background yield due to charge buildup on mylar is larger for protons than for lithium ions, suggesting that particles with low energy loss tend to generate more background. Residual activity has been observed in several thick samples like resin, quartz and mylar. Two methods for suppressing the background due to charging effects have been studied. The first one was based on the use of a transverse magnetic field. The second one made use of a simple electric lamp of 6 V with its glass bulb removed. While the first method proved to be inefficient, the second one eliminated most of the background due to charge buildup in the sample.

  14. Charge multiplication effect in thin diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Skukan, N., E-mail: nskukan@irb.hr; Grilj, V.; Sudić, I.; Jakšić, M. [Division of Experimental Physics, Ruđer Bošković Institute, 10000 Zagreb (Croatia); Pomorski, M. [CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette F-91191 (France); Kada, W.; Kambayashi, Y.; Andoh, Y. [Division of Electronics and Informatics, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Makino, T.; Onoda, S.; Sato, S.; Ohshima, T.; Kamiya, T. [National Institutes for Quantum and Radiological Science and Technology, Takasaki, Gunma 370-1292 (Japan)

    2016-07-25

    Herein, we report on the enhanced sensitivity for the detection of charged particles in single crystal chemical vapour deposition (scCVD) diamond radiation detectors. The experimental results demonstrate charge multiplication in thin planar diamond membrane detectors, upon impact of 18 MeV O ions, under high electric field conditions. Avalanche multiplication is widely exploited in devices such as avalanche photo diodes, but has never before been reproducibly observed in intrinsic CVD diamond. Because enhanced sensitivity for charged particle detection is obtained for short charge drift lengths without dark counts, this effect could be further exploited in the development of sensors based on avalanche multiplication and radiation detectors with extreme radiation hardness.

  15. Effective Charge Carrier Utilization in Photocatalytic Conversions.

    Science.gov (United States)

    Zhang, Peng; Wang, Tuo; Chang, Xiaoxia; Gong, Jinlong

    2016-05-17

    Continuous efforts have been devoted to searching for sustainable energy resources to alleviate the upcoming energy crises. Among various types of new energy resources, solar energy has been considered as one of the most promising choices, since it is clean, sustainable, and safe. Moreover, solar energy is the most abundant renewable energy, with a total power of 173 000 terawatts striking Earth continuously. Conversion of solar energy into chemical energy, which could potentially provide continuous and flexible energy supplies, has been investigated extensively. However, the conversion efficiency is still relatively low since complicated physical, electrical, and chemical processes are involved. Therefore, carefully designed photocatalysts with a wide absorption range of solar illumination, a high conductivity for charge carriers, a small number of recombination centers, and fast surface reaction kinetics are required to achieve a high activity. This Account describes our recent efforts to enhance the utilization of charge carriers for semiconductor photocatalysts toward efficient solar-to-chemical energy conversion. During photocatalytic reactions, photogenerated electrons and holes are involved in complex processes to convert solar energy into chemical energy. The initial step is the generation of charge carriers in semiconductor photocatalysts, which could be enhanced by extending the light absorption range. Integration of plasmonic materials and introduction of self-dopants have been proved to be effective methods to improve the light absorption ability of photocatalysts to produce larger amounts of photogenerated charge carriers. Subsequently, the photogenerated electrons and holes migrate to the surface. Therefore, acceleration of the transport process can result in enhanced solar energy conversion efficiency. Different strategies such as morphology control and conductivity improvement have been demonstrated to achieve this goal. Fine-tuning of the

  16. Screening effect on nanostructure of charged gel

    DEFF Research Database (Denmark)

    Sugiyama, M; Annaka, M; Hino, M

    2004-01-01

    Charge screening effects on nanostructures of N-isopropylacrylamide-sodium acrylate (NIPA-SA) and -acrylic acid (NIPA-AAc) gels are investigated with small-angle neutron scattering. The NIPA-SA and NIPA-AAc gels with low water content exhibit microphase separations with different dimensions....... The dehydrated NIPA-SA gel also makes the microphase separation but the dehydrated NIPA-AAc gel does not. These results indicate that ionic circumstance around charged bases strongly affects the nanostructures both of the dehydrated gel and the gel with low water content. (C) 2004 Elsevier B. V. All rights...

  17. Ion specific effects on charged interfaces

    OpenAIRE

    Medda, Luca

    2013-01-01

    The physico-chemical phenomena occurring at charged interfaces are specifically affected by the type and the concentration of electrolytes. This has implications both in living and in inorganic systems. The discovery of the ‘ion specific effects’ dates back to Hofmeister (1888), who observed the specific effect of salts in promoting egg white proteins precipitation. Nowadays we are aware that ion specific effects are ubiquitous in all fields of science and technology where electrolytes play a...

  18. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mingtian; Li, Baohui, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071 (China); Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2015-05-28

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order

  19. Effective dynamics of a classical point charges

    CERN Document Server

    Polonyi, Janos

    2013-01-01

    The effective Lagrangian of a point charge is derived by eliminating the electromagnetic field within the framework of the classical closed time path formalism. The short distance singularity of the electromagnetic field is regulated by an UV cutoff. The Abraham-Lorentz force is recovered and its similarity to anomalies is underlined. The full cutoff-dependent linearized equation of motion is obtained, no runaway trajectories are found but the effective dynamics shows acausality if the cutoff is beyond the classical charge radius. The strength of the radiation reaction force displays a pole in its cutoff-dependence in a manner reminiscent of the Landau-pole of perturbative QED. Similarity between the dynamical breakdown of the time reversal invariance and dynamical symmetry breaking is pointed out.

  20. The role of effective charges in the electrophoresis of highly charged colloids.

    Science.gov (United States)

    Chatterji, Apratim; Horbach, Jürgen

    2010-12-15

    We study the variation of electrophoretic mobility μ of highly charged spherical colloidal macroions for varying surface charge density σ on the colloid using computer simulations of the primitive model for charged colloids. Hydrodynamic interactions between ions are incorporated by coupling the primitive model of charged colloids to the lattice Boltzmann model (LB) of the fluid. In the highly charged regime, the mobility μ of the colloid is known to decrease with the increase of bare charge Q of the colloid; the aim of this paper is to investigate the cause of this. We have identified that the two main factors contributing to the decrease of μ are counterion charge condensation on the highly charged colloid and an increase in effective friction of the macroion-counterion complex due to the condensed counterions. Thus the established O'Brien and White theory, which identified the dipolar force originating from distortion of the electric double layer as the cause of decreasing μ, seems to break down for the case of highly charged colloids with σ in the range of 30-400 µC cm (- 2). To arrive at our conclusions, we counted the number of counterions q0 moving along with the spherical macroion. We observe in our simulations that q0 increases with the increase of bare charge Q, such that the effective charge Qeff = Q - q0 remains approximately constant. Interestingly for our nanometer-sized charged colloid, we observe that, if surface charge density σ of the colloid is increased by decreasing the radius RM of the colloid but fixed bare charge Q, the effective charge Q - q0 decreases with the increase of σ. This behavior is qualitatively different when σ is increased by increasing Q keeping RM fixed. Our observations address a controversy about the effective charge of a strongly charged macroion: some studies claim that effective charge is independent of the bare charge (Alexander et al 1984 J. Chem. Phys. 80 5776; Trizac et al 2003 Langmuir 19 4027) whereas

  1. Effect of charge memory in organic composites

    Science.gov (United States)

    Belogorokhov, I. A.; Kotova, M. S.; Donskov, A. A.; Dronov, M. A.; Belogorokhova, L. I.

    2016-07-01

    The effect of charge memory in composites based on polymer molecules has been investigated. Resistive switchings in sandwich samples prepared by lamination from commercially available polymers (polystyrene and poly(2,3-dihydrothieno-1,4-dioxine)-poly(styrene sulphonate) are analyzed. It is shown that the characteristic switching times in the composite samples reach several nanoseconds and the number of switchings exceeds 106. Switchings are observed in electric fields much below the breakdown threshold, which indicates the absence of destructive processes in the polymer.

  2. Introduction to Space Charge Effects in Semiconductors

    CERN Document Server

    Böer, Karl W

    2010-01-01

    This book is the most comprehensive one to describe the basics of space-charge effects in semiconductors, starting from basic principles to advanced application in semiconducting devices. It uses detailed analyses of the transport, Poisson, and continuity equations to demonstrate the behavior of the solution curves of the complete set of field and current distributions, along with quantitative descriptions of the relevant band models of typical pn-junction and Schottky barrier devices. It emphasizes the relevance to actual devices and sets these results apart from more simple models of networks of diodes and resistors. The book is especially important for people interested in detail analysis of solar cells and their efficiencies.

  3. Universal Charge Diffusion and the Butterfly Effect

    CERN Document Server

    Blake, Mike

    2016-01-01

    We study charge diffusion in holographic scaling theories with a particle-hole symmetry. We show that these theories have a universal regime in which the diffusion constant is given by $D_c = C v_B^2/ (2 \\pi T)$ where $v_B$ is the velocity of the butterfly effect. The constant of proportionality, $C$, depends only on the scaling exponents of the infra-red theory. Our results suggest an unexpected connection between transport at strong coupling and quantum chaos.

  4. Effect of charge distribution on the electrostatic adsorption of Janus nanoparticles onto charged surface

    Science.gov (United States)

    Hu, D. M.; Cao, Q. Q.; Zuo, C. C.

    2017-03-01

    We carried out coarse-grained molecular dynamics simulations to study the electrostatic adsorption of Janus nanoparticles which consist of oppositely charged hemispheres onto charged surfaces. Films with different conformations were formed by Janus nanoparticles. The effects of charge distributions of Janus nanoparticles and the surface on the film structures and dynamic adsorption behavior were investigated in detail. When the surface is highly charged, Janus nanoparticles tend to form single particles or small clusters. In these cases, the surface charge distribution plays an important role in regulating the process of electrostatic adsorption. When the amount of surface charges is reduced, the effect of charge distribution of Janus nanoparticles becomes significant. The repulsive interactions between Janus nanoparticles determine the aggregation behavior of Janus nanoparticles as well as the shape of adsorption structures, which tends to separate Janus nanoparticles and results in a thin adsorption layer and small clusters. When the number of positive charges on the surface of Janus nanoparticle approaches that of negative charges, Janus nanoparticles aggregate into large clusters close to charged surface. The charge distribution of Janus nanoparticles becomes pronounced in the process of electrostatic adsorption.

  5. Effect of charge distribution on the electrostatic adsorption of Janus nanoparticles onto charged surface

    Directory of Open Access Journals (Sweden)

    D. M. Hu

    2017-03-01

    Full Text Available We carried out coarse-grained molecular dynamics simulations to study the electrostatic adsorption of Janus nanoparticles which consist of oppositely charged hemispheres onto charged surfaces. Films with different conformations were formed by Janus nanoparticles. The effects of charge distributions of Janus nanoparticles and the surface on the film structures and dynamic adsorption behavior were investigated in detail. When the surface is highly charged, Janus nanoparticles tend to form single particles or small clusters. In these cases, the surface charge distribution plays an important role in regulating the process of electrostatic adsorption. When the amount of surface charges is reduced, the effect of charge distribution of Janus nanoparticles becomes significant. The repulsive interactions between Janus nanoparticles determine the aggregation behavior of Janus nanoparticles as well as the shape of adsorption structures, which tends to separate Janus nanoparticles and results in a thin adsorption layer and small clusters. When the number of positive charges on the surface of Janus nanoparticle approaches that of negative charges, Janus nanoparticles aggregate into large clusters close to charged surface. The charge distribution of Janus nanoparticles becomes pronounced in the process of electrostatic adsorption.

  6. Charge conservation effects for high order fluctuations

    CERN Document Server

    Begun, Viktor

    2016-01-01

    The exact charge conservation significantly impacts multiplicity fluctuations. The result depends strongly on the part of the system charge carried by the particles of interest. Along with the expected suppression of fluctuations for large systems, charge conservation may lead to negative skewness or kurtosis for small systems.

  7. Discrete solvent effects on the effective interaction between charged colloids

    CERN Document Server

    Allahyarov, E

    2000-01-01

    Using computer simulations of two charged colloidal spheres with their counterions in a hard sphere solvent, we show that the granular nature of the solvent significantly influences the effective colloidal interaction. For divalent counterions, the total effective force can become attractive generated by counterion hydration, while for monovalent counterions the forces are repulsive and well-described by a solvent-induced colloidal charge renormalization. Both effects are not contained in the traditional "primitive" approaches but can be accounted for in a solvent-averaged primitive model.

  8. The Effect of Ketone Defects on the Charge Transport and Charge Recombination in Polyfluorenes

    NARCIS (Netherlands)

    Kuik, Martijn; Wetzelaer, Gert-Jan A. H.; Ladde, Jurre G.; Nicolai, Herman T.; Wildeman, Jurjen; Sweelssen, Jorgen; Blom, Paul W. M.; Sweelssen, Jörgen

    2011-01-01

    The effect of on-chain ketone defects on the charge transport of the polyfluorene derivative poly(9,9-dioctylfluorene) (PFO) is investigated. Using MoO3 as ohmic hole contact, the hole transport in a pristine PFO diode is observed to be limited by space-charge, whereas fluorenone contaminated PFO (P

  9. Physics of new methods of charged particle acceleration collective effects in dense charged particle ensembles

    CERN Document Server

    Bonch-Osmolovsky, A G

    1994-01-01

    This volume discusses the theory of new methods of charged particle acceleration and its physical and mathematical descriptions. It examines some collective effects in dense charged particle ensembles, and traces the history of the development of the field of accelerator physics.

  10. Effect of Charge Patterning on the Phase Behavior of Polymer Coacervates for Charge Driven Self Assembly

    Science.gov (United States)

    Radhakrishna, Mithun; Sing, Charles E.

    Oppositely charged polymers can undergo associative liquid-liquid phase separation when mixed under suitable conditions of ionic strength, temperature and pH to form what are known as `polymeric complex coacervates'. Polymer coacervates find use in diverse array of applications like microencapsulation, drug delivery, membrane filtration and underwater adhesives. The similarity between complex coacervate environments and those in biological systems has also found relevance in areas of bio-mimicry. Our previous works have demonstrated how local charge correlations and molecular connectivity can drastically affect the phase behavior of coacervates. The precise location of charges along the chain therefore dramatically influences the local charge correlations, which consequently influences the phase behavior of coacervates. We investigate the effect of charge patterning along the polymer chain on the phase behavior of coacervates in the framework of the Restricted Primitive Model using Gibbs Ensemble Monte Carlo simulations. Our results show that charge patterning dramatically changes the phase behavior of polymer coacervates, which contrasts with the predictions of the classical Voorn-Overbeek theory. This provides the basis for designing new materials through charge driven self assembly by controlling the positioning of the charged monomers along the chain.

  11. Effective interaction in asymmetric charged binary mixtures: the non-monotonic behaviour with the colloidal charge.

    Science.gov (United States)

    Peláez-Fernández, M; Callejas-Fernández, J; Moncho-Jordá, A

    2012-11-01

    In this work we study the effective force between charged spherical colloids induced by the presence of smaller charged spheres using Monte Carlo simulations. The analysis is performed for two size ratios, q = R(s)/R(b), two screened direct repulsions, κ, and two small particle packing fractions, Ø(s). We specially focus on the effect of the charge of the big colloids (Z(b)), and observe that the repulsion between big particles shows a non-monotonic behaviour: for sufficiently small charge, we find an anomalous regime where the total repulsion weakens by increasing the big colloid charge. For larger charges, the system recovers the usual behaviour and the big-big interaction becomes more repulsive increasing Z(b). This effect is linked to the existence of strong attractive depletion interactions caused by the small-big electrostatic repulsion. We have also calculated the effective force using the Ornstein-Zernike equation with the HNC closure. In general, this theory agrees with the simulation results, and is able to capture this non-monotonic behaviour.

  12. Study of the Charge Density Control Method Including the Space Charge Effect in the Proton Synchrotron

    Science.gov (United States)

    Kato, Shinichi; Harada, Hiroyuki; Hotchi, Hideaki; Okabe, Kota; Yamamoto, Kazami; Kinsho, Michikazu

    For high intensity proton accelerators, one of the beam loss sources is the incoherent tune spread caused by the space charge force. In the 3 GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex, beams are injected sequentially and shifted slightly from the central orbit in order to increase the beam size intentionally and suppress the charge density and incoherent tune spread. This injection method has been adopted and suppressed the beam loss. However, simulations clarified that beams did not spread as much as expected because of the space charge effect in the high current case. As simulation results of the optimized beam shift pattern when the space charge effect is considered, it was obtained that the incoherent tune spread could be suppressed to an extent that has not been achieved previously.

  13. Understanding the effect of space charge on instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Chao, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Chin, Y. H. [National Lab. for High Energy Physics (KEK), Ibaraki (Japan)

    2015-05-03

    The combined effect of space charge and wall impedance on transverse instabilities is an important consideration in the design and operation of high intensity hadron machines as well as an intrinsic academic interest. This study explores the combined effects of space charge and wall impedance using various simplified models in an attempt to produce a better understanding of their interplay.

  14. Effects of charged particles on human tumor cells

    Directory of Open Access Journals (Sweden)

    Kathryn D Held

    2016-02-01

    Full Text Available The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of Relative Biological Effectiveness (RBE for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions and importance of fractionation, including use of hypofractionation, with charged particles.

  15. Effects of electric charges on hydrophobic forces. II.

    Science.gov (United States)

    Bulone, D.; Martorana, V.; San Biagio, P. L.; Palma-Vittorelli, M. B.

    2000-11-01

    We study by molecular-dynamics simulations the effect of electric charges of either sign on hydrophobic interactions and on the dynamics of hydration water, using explicit water and very simplified solutes. Results show that the presence of a charged solute can disrupt the ``hydrophobic contact bond'' between two apolar solutes nearby, by forcing them towards a different configuration. As a consequence of different structural changes of the solvent caused by charges of opposite sign, the effect is markedly charge-sign-dependent. Analogous weaker effects appear to be induced by the presence of one additional apolar element. The dynamics of hydration water around each solute is also seen to be strongly influenced by the presence of other (charged or uncharged) nearby solutes. Comparison between our results on hydration water dynamics around charged solutes and available experimental data allows sorting out the effects of solute charge sign and size. Our results also offer a plain interpretation of the equivalence of the effects on water structure due to solute ions and to high pressures. These results reflect at a basic paradigmatic level the immensely more complex cases of well-known phenomena such as salting-in and salting-out, and of protein conformational changes caused, e.g., by the arrival of a charged or of an apolar group (phosphorilation or methylation). As it will be discussed, they help in the direction of Delbruck's desirable ``progress towards a radical physical explanation'' for this class of phenomena.

  16. Evidence of Space-Charge Effects in Thermal Poling

    DEFF Research Database (Denmark)

    Wu, X.; Arentoft, Jesper; Wong, D.

    1999-01-01

    ionization. Both the shielding electrical field due to charge migration and the ionization electrical field due to charge ionization are able to be frozen-in at room temperature acid lead to the residual linear electrooptic effects, The observations support that the mechanism of the induced electrooptic...

  17. The effect of conformal symmetry on charged wormholes

    CERN Document Server

    Kuhfittig, Peter K F

    2016-01-01

    This paper discusses the effect that conformal symmetry can have on a charged wormhole. The analysis yields a physical interpretation of the conformal factor in terms of the electric charge. The rate of change of the conformal factor determines much of the outcome, which ranges from having no solution to wormholes having either one or two throats.

  18. Charges for plastic bags : Motivational and behavioral effects

    NARCIS (Netherlands)

    Jakovcevic, Adriana; Steg, Linda; Mazzeo, Nadia; Caballero, Romina; Franco, Paul; Putrino, Natalia; Favara, Jesica

    2014-01-01

    Two field studies tested the effects of a charge for single-use plastic bags recently implemented in Buenos Aires City, Argentina. Study 1 showed a greater increase in consumers' own bag use after the charge was introduced in supermarkets where the policy was introduced, in comparison to control sup

  19. Charging of meteoroids: effect of thermionic emission

    Science.gov (United States)

    Delzanno, G. L.; Lapenta, G.; Rosenberg, M.

    2003-12-01

    In the present work we focus on the role of thermionic emission in the charging of a meteoroid. It has been shown [1] that the higher mobility of the plasma electrons (that would lead to negatively charged meteoroids) can be overcome by electron emission, thus reversing the meteoroid polarity. Moreover, recent work [2] has shown how electron emission can fundamentally affect the shielding potential around the dust. In particular, depending on the physical parameters of the system the shielding potential can develop an attractive potential well. The aim of the present work is two-fold. First, we will present a parametric study in order to understand the conditions for the formation, as well as the stability of the well. Furthermore, simulations will be presented with physical parameters corresponding to the ionosphere, thus extending our study to the case of meteoroids. [1] G. Sorasio, D. A. Mendis, and M. Rosenberg, "The role of thermionic emission in meteor physics," Planet. Space Sci. 49, 1257, 2001. [2] G.L. Delzanno, G. Lapenta, M. Rosenberg, "Attractive Potential among Thermionically Emitting Microparticles", submitted.

  20. Effect of thermal fluctuations on a charged dilatonic black Saturn

    Energy Technology Data Exchange (ETDEWEB)

    Pourhassan, Behnam, E-mail: b.pourhassan@du.ac.ir [School of Physics, Damghan University, Damghan (Iran, Islamic Republic of); Faizal, Mir, E-mail: f2mir@uwaterloo.ca [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB T1K 3M4 (Canada)

    2016-04-10

    In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  1. Effect of thermal fluctuations on a charged dilatonic black Saturn

    Directory of Open Access Journals (Sweden)

    Behnam Pourhassan

    2016-04-01

    Full Text Available In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  2. Ion charge neutralization effects in scanning electron microscopes.

    Science.gov (United States)

    Crawford, C K

    1980-01-01

    The use of low energy ion charge neutralization to stabilize surface potentials in scanning microscopes leads to the observation of new effects. Among the most important of these, are effects which result from the primary beam being scanned in a raster. A new theory which describes raster charge-up for highly insulating specimens is presented. It is shown that the required neutralizing ion current is a surprisingly strong function of the primary electron current, the raster parameters, specimen parameters, and magnification. Contrary to intuition, the required ion current is not linearly related to the primary electron current. Methods of adjusting parameters to achieve better ion charge neutralization are discussed.

  3. Effect of Thermal Fluctuations on a Charged Dilatonic Black Saturn

    CERN Document Server

    Pourhassan, Behnam

    2016-01-01

    In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  4. Study on space charge effects of the CSNS/RCS

    Institute of Scientific and Technical Information of China (English)

    XU Shou-Yan; WANG Sheng

    2011-01-01

    The Rapid Cycling Synchrotron (RCS) is a key component of the China Spallation Neutron Source (CSNS).The space charge effect is one of the most important issues in the CSNS/RCS,which limits the maximum beam intensity,as well as the maximum beam power.Space charge effects are the main source of emittance growth and beam loss in the RCS.Space charge effects have been studied by simulation for the CSNS/RCS.By optimizing the painting orbit,the optimized painting distribution was obtained.The space charge effects during the acceleration are studied and dangerous resonances,which may induce emittance growth and beam loss,are investigated.The results are an important reference for the design and commissioning of the CSNS/RCS.

  5. Simulation of space charge effects in resistive plate chambers

    CERN Document Server

    Lippmann, Christian

    2003-01-01

    Multigap resistive plate chambers with 0.3-mm gas gaps operated in avalanche mode at atmospheric pressure have reached timing accuracies below 50 ps (standard deviation) with efficiencies above 99% . The avalanches in high homogeneous electric fields of 100 kV/cm are strongly influenced by space charge effects which are the main topic of this paper. We extend a previously discussed Monte Carlo simulation model of avalanches in resistive plate chambers by the dynamic calculation of the electric field in the avalanches. We complete the previously presented results on time resolution and efficiency data with simulated charge spectra. The simulated data shows good agreement with measurements. The detailed simulation of the avalanche saturation due to the space charge fields explains the small observed charges, the shape of the spectra, and the linear increase of average charges with high voltage. (22 refs).

  6. Quantum Gravity Effects On Charged Micro Black Holes Thermodynamics

    CERN Document Server

    Abbasvandi, N; Radiman, Shahidan; Abdullah, W A T Wan

    2016-01-01

    The charged black hole thermodynamics is corrected in terms of the quantum gravity effects. Most of the quantum gravity theories support the idea that near the Planck scale, the standard Heisenberg uncertainty principle should be reformulated by the so-called Generalized Uncertainty Principle (GUP) which provides a perturbation framework to perform required modifications of the black hole quantities. In this paper, we consider the effects of the minimal length and maximal momentum as GUP type I and the minimal length, minimal momentum, and maximal momentum as GUP type II on thermodynamics of the charged TeV-scale black holes. We also generalized our study to the universe with the extra dimensions based on the ADD model. In this framework, the effect of the electrical charge on thermodynamics of the black hole and existence of the charged black hole remnants as a potential candidate for the dark matter particles are discussed.

  7. Dimensionality of charge transport in organic field-effect transistors

    Science.gov (United States)

    Sharma, A.; van Oost, F. W. A.; Kemerink, M.; Bobbert, P. A.

    2012-06-01

    Application of a gate bias to an organic field-effect transistor leads to accumulation of charges in the organic semiconductor within a thin region near the gate dielectric. An important question is whether the charge transport in this region can be considered two-dimensional, or whether the possibility of charge motion in the third dimension, perpendicular to the accumulation layer, plays a crucial role. In order to answer this question we have performed Monte Carlo simulations of charge transport in organic field-effect transistor structures with varying thickness of the organic layer, taking into account all effects of energetic disorder and Coulomb interactions. We show that with increasing thickness of the semiconductor layer the source-drain current monotonically increases for weak disorder, whereas for strong disorder the current first increases and then decreases. Similarly, for a fixed layer thickness the mobility may either increase or decrease with increasing gate bias. We explain these results by the enhanced effect of state filling on the current for strong disorder, which competes with the effects of Coulomb interactions and charge motion in the third dimension. Our conclusion is that apart from the situation of a single monolayer, charge transport in an organic semiconductor layer should be considered three-dimensional, even at high gate bias.

  8. Effect of radiative cooling on collapsing charged grains

    Indian Academy of Sciences (India)

    B P Pandey; Vinod Krishan; M Roy

    2001-01-01

    The effect of the radiative cooling of electrons on the gravitational collapse of cold dust grains with fluctuating electric charge is investigated. We find that the radiative cooling as well as the charge fluctuations, both, enhance the growth rate of the Jeans instability. However, the Jeans length, which is zero for cold grains and nonradiative plasma, becomes finite in the presence of radiative cooling of electrons and is further enhanced due to charge fluctuations of grains resulting in an increased threshold of the spatial scale for the Jeans instability.

  9. Effect of Wall Charge on Striation in Plasma Display Cells

    Institute of Scientific and Technical Information of China (English)

    HE Feng; OUYANG Jiting; CAO Jing; FENG Shuo; MIAO Jinsong; WANG Jianqi

    2007-01-01

    Different configurations and driving voltages have been employed to investigate the effect of the wall charge on the striations in macroscopic plasma display panel (PDP) cells.The experimental results show that a discharge channel near the dielectric layer is indispensable to striation occurring in the anode area during a discharge,while the pre-accumulated charge on the dielectric layer and the surface state are not important.The origin of the striation is related only to the physical process in the cell.The dielectric layer acts as a charge collector during a PDP discharge.

  10. Effective Charge on Polymer Colloids Obtained Using a Renormalization Model.

    Science.gov (United States)

    Quesada-Pérez; Callejas-Fernández; Hidalgo-Álvarez

    1998-10-01

    Static light scattering has been used to study the electrostatic interaction between colloidal particles. Experiments were carried out using a latex with a very small diameter, allowing structure determination at high particle concentration. The obtained effective charge characterizing this interaction is found to be smaller than the bare charge determined from titration. A renormalization model connecting both values has been used. The agreement between the renormalized charge and that obtained from scattering data seems to point out that this model operates well. Copyright 1998 Academic Press.

  11. Space Charge Effect in the Sheet and Solid Electron Beam

    Science.gov (United States)

    Song, Ho Young; Kim, Hyoung Suk; Ahn, Saeyoung

    1998-11-01

    We analyze the space charge effect of two different types of electron beam ; sheet and solid electron beam. Electron gun simulations are carried out using shadow and control grids for high and low perveance. Rectangular and cylindrical geometries are used for sheet and solid electron beam in planar and disk type cathode. The E-gun code is used to study the limiting current and space charge loading in each geometries.

  12. The effect of degassing on morphology and space charge

    OpenAIRE

    Chong, Y L; Chen, G; Ho, Y F F

    2004-01-01

    It is believed that space charge buildup in cross-linked polyethylene (XLPE) insulation is the main cause for premature failure of underground power cables. The space charge activities in XLPE depend on many factors such as additives, material treatment, ambient temperature, insulator/electrode interface, etc. Degassing is one of the material treatment process commonly employ in cable manufacturing to improve insulation performance. In this paper, investigation on the effect of degassing peri...

  13. Weak nonlinear surface-charging effects in electrolytic films.

    Science.gov (United States)

    Dean, D S; Horgan, R R

    2003-11-01

    A simple model of soap films with nonionic surfactants stabilized by added electrolyte is studied. The model exhibits charge regularization due to the incorporation of a physical mechanism responsible for the formation of a surface charge. We use a Gaussian field theory in the film but the full nonlinear surface terms which are then treated at a one-loop level by calculating the mean-field Poisson-Boltzmann solution and then the fluctuations about this solution. We carefully analyze the renormalization of the theory and apply it to a triple-layer model for a thin film with Stern layer of thickness h. For this model we give expressions for the surface charge sigma(L) and the disjoining pressure P(d)(L) and show their dependence on the parameters. The influence of image charges naturally arises in the formalism, and we show that predictions depend strongly on h because of their effects. In particular, we show that the surface charge vanishes as the film thickness L-->0. The fluctuation terms in this class of theories contribute a Casimir-like attraction across the film. Although this attraction is well known to be negligible compared with the mean-field component for model electrolytic films with no surface-charge regulation, in the model studied here these fluctuations also affect the surface-charge regulation leading to a fluctuation component in the disjoining pressure which has the same behavior as the mean-field component even for large film thickness.

  14. Effects of kinematic cuts on net-electric charge fluctuations

    CERN Document Server

    Karsch, Frithjof; Redlich, Krzysztof

    2015-01-01

    The effects of kinematic cuts on electric charge fluctuations in a gas of charged particles are discussed. We consider a very transparent example of an ideal pion gas with quantum statistics, which can be viewed as a multi-component gas of Boltzmann particles with different charges and masses. Cumulants of net-electric charge fluctuations $\\chi_n^Q$ are calculated in a static and expanding medium with flow parameters adjusted to the experimental data. We show that the transverse momentum cut, $p_{t_\\text{min}}\\leq p_t\\leq p_{t_\\text{max}}$, weakens the effects of Bose statistics, i.e. contributions of effectively multi-charged states to higher order moments. Consequently, cuts in $p_t$ modify the experimentally measured cumulants and their ratios. We discuss the influence of kinematic cuts on the ratio of mean and variance of electric charge fluctuations in a hadron resonance gas, in the light of recent data of the STAR and PHENIX Collaborations. We find that the different momentum cuts of $p_{t_\\text{min}}=0...

  15. Effect of charge on the mechanical properties of surfactant bilayers.

    Science.gov (United States)

    Bradbury, Robert; Nagao, Michihiro

    2016-11-23

    Charge effects on the mechanical properties of surfactant bilayers have been measured, for a system with a low ionic strength, using small-angle neutron scattering and neutron spin echo spectroscopy. We report that, not only does increasing the surface charge density lead to greater structural ordering and a stiffening of the membrane, which is consistent with classical theory of charge effects on membranes, but also that the relaxation rate of the membrane thickness fluctuations decreases without affecting the fluctuation amplitude. From the relaxation rate we demonstrate, using recent theory, that the viscosity of the surfactant membrane is increased with surface charge density, which suggests that the amount of charge controls the diffusion behavior of inclusions inside the membrane. The present results confirm that the thickness fluctuation relaxation rate and amplitude are tuned independently since the membrane viscosity is only influencing the relaxation rate. This work demonstrates that charge stabilization of lamellar bilayers is not merely affected by intermembrane interactions and structural ordering but that intramembrane dynamics also have a significant contribution.

  16. Large Seebeck effect by charge-mobility engineering

    Science.gov (United States)

    Sun, Peijie; Wei, Beipei; Zhang, Jiahao; Tomczak, Jan M.; Strydom, A. M.; Søndergaard, M.; Iversen, Bo B.; Steglich, Frank

    2015-06-01

    The Seebeck effect describes the generation of an electric potential in a conducting solid exposed to a temperature gradient. In most cases, it is dominated by an energy-dependent electronic density of states at the Fermi level, in line with the prevalent efforts towards superior thermoelectrics through the engineering of electronic structure. Here we demonstrate an alternative source for the Seebeck effect based on charge-carrier relaxation: a charge mobility that changes rapidly with temperature can result in a sizeable addition to the Seebeck coefficient. This new Seebeck source is demonstrated explicitly for Ni-doped CoSb3, where a marked mobility change occurs due to the crossover between two different charge-relaxation regimes. Our findings unveil the origin of pronounced features in the Seebeck coefficient of many other elusive materials characterized by a significant mobility mismatch. When utilized appropriately, this effect can also provide a novel route to the design of improved thermoelectric materials.

  17. Effect of Electrolytes on Surface Charge Characteristics of Red Soils

    Institute of Scientific and Technical Information of China (English)

    SHAOZONG-CHEN; HEQUN; 等

    1992-01-01

    The zero point of charge (ZPC) and the remaining charge σp at ZPC are two important parameters characterizing surface charge of red soils.Fourteen red soil samples of different soil type and parent material were treated with dithionite-citrate-dicarbonate (DCB) and Na2CO3 respectively.ZPC and σp of the samples in three indifferent electrolytes (NaCl,Na2SO4,and NaH2PO4) were determined.Kaolinite was used as reference.The results showed that ZPC of red soils was affected by the composition of parent materials and clay minerals and in significantly positive correlation with the content of total iron oxide (Fet),free iron oxide (Fed),amorphous iron oxide (Feo),aluminum oxide (Alo) and clay,but it was negatively correlated with the content of total silica (Sit).The σp of red soils was also markedly influenced by mineral components.Organic components were also contributing factor to the value of σp.The surface charges of red soils were evidently affected by the constitution of the electrolytes.Specific adsorption of anions in the electrolytes tended to make the ZPC of red soils shift to a higher pH value and to increase positive surface charges of the soils,thus leading to change of the σp value and decrease of the remaining net negative charges,even to the soils becoming net positive charge carriers.The effect of phosphate anion was greater than that of sulfate ion.

  18. Comparison of effective charges derived in two different boson mappings

    NARCIS (Netherlands)

    Pittel, S.; Scholten, O.

    1988-01-01

    Boson effective charges that arise in a mapping recently proposed by Heyde and Sau are contrasted with those that arise in the Otsuka-Arima-Iachello procedure. We identify the source of the differences and show that they have no observable consequences if the mappings are implemented consistently fo

  19. Electron cloud and space charge effects in the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2007-06-01

    The stable region of the Fermilab Booster beam in the complex coherent-tune-shift plane appears to have been shifted far away from the origin by its intense space charge making Landau damping appear impossible. Simulations reveal a substantial buildup of electron cloud in the whole Booster ramping cycle, both inside the unshielded combined-function magnets and the beam pipes joining the magnets, whenever the secondary-emission yield (SEY) is larger than {approx}1.6. The implication of the electron-cloud effects on the space charge and collective instabilities of the beam is investigated.

  20. Effects of Longitudinal Space Charge Wake at PAL-XFEL

    CERN Document Server

    Kim, E S; Huang, J Y; Park, S J

    2005-01-01

    Longitudinal space charge wake is an important source that can generate microbunching instability at accelerator systems for X-ray free-electron laser. We present investigation to minimize gain of energy modulation due to the longitudinal space charge wakes that are caused at RF photocathode gun, two bunch compressors and linac at the PAL-XFEL, which include optimization of parameters for two bunch compressors and consideration of a laser heater. These studies are performd by using integral equation and numerical simulation methods. Design studies of a system for the laser heater are presented. We also show simulation results on effects of interaction between electron beam and laser.

  1. Effect of Aperiodicity on the Charge Transfer Through DNA Molecules

    Science.gov (United States)

    Ghosh, Angsula; Chaudhuri, Puspitapallab

    The effect of aperiodicity on the charge transfer process through DNA molecules is investigated using a tight-binding model. Single-stranded aperiodic Fibonacci polyGC and polyAT sequences along with aperiodic Rudin-Shapiro poly(GCAT) sequences are used in the study. Based on the tight-binding model, molecular orbital calculations of the DNA chains are performed and ionization potentials compared, as this might be relevant to understanding the charge transfer process. Charges migrate through the sequences in a multistep hopping process. Results for current conduction through aperiodic sequences are compared with those for the corresponding periodic sequences. We find that dinucleotide aperiodic Fibonacci sequences decrease the current while tetranucleotide aperiodic Rudin-Shapiro sequences increase the current when compared with the corresponding periodic sequences. The conductance in all cases decays exponentially as the sequence length increases.

  2. Specific salt effects on thermophoresis of charged colloids.

    Science.gov (United States)

    Eslahian, Kyriakos A; Majee, Arghya; Maskos, Michael; Würger, Alois

    2014-03-28

    We study the Soret effect of charged polystyrene particles as a function of temperature and electrolyte composition. As a main result we find that the Soret coefficient is determined by charge effects, and that non-ionic contributions are small. In view of the well-known electric-double layer interactions, our thermal field-flow fractionation data lead us to the conclusion that the Soret effect originates to a large extent from diffusiophoresis in the salt gradient and from the electrolyte Seebeck effect, both of which show strong specific-ion effects. Moreover, we find that thermophoresis of polystyrene beads is fundamentally different from proteins and aqueous polymer solutions, which show a strong non-ionic contribution.

  3. Effective dynamics of an electrically charged string with a current

    Science.gov (United States)

    Kazinski, P. O.

    2005-08-01

    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations is found.

  4. Effective dynamics of an electrically charged string with a current

    CERN Document Server

    Kazinski, P O

    2005-01-01

    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations ...

  5. Nonlinear effects on electrophoresis of a charged dielectric nanoparticle in a charged hydrogel medium

    Science.gov (United States)

    Bhattacharyya, S.; De, Simanta

    2016-09-01

    The impact of the solid polarization of a charged dielectric particle in gel electrophoresis is studied without imposing a weak-field or a thin Debye length assumption. The electric polarization of a dielectric particle due to an external electric field creates a non-uniform surface charge density, which in turn creates a non-uniform Debye layer at the solid-gel interface. The solid polarization of the particle, the polarization of the double layer, and the electro-osmosis of mobile ions within the hydrogel medium create a nonlinear effect on the electrophoresis. We have incorporated those nonlinear effects by considering the electrokinetics governed by the Stokes-Brinkman-Nernst-Planck-Poisson equations. We have computed the governing nonlinear coupled set of equations numerically by adopting a finite volume based iterative algorithm. Our numerical method is tested for accuracy by comparing with several existing results on free-solution electrophoresis as well as results based on the Debye-Hückel approximation. Our computed result shows that the electrophoretic velocity decreases with the rise of the particle dielectric permittivity constant and attains a saturation limit at large values of permittivity. A significant impact of the solid polarization is found in gel electrophoresis compared to the free-solution electrophoresis.

  6. Effect of trapped charge accumulation on the retention of charge trapping memory

    Energy Technology Data Exchange (ETDEWEB)

    Jin Rui; Liu Xiaoyan; Du Gang; Kang Jinfeng; Han Ruqi, E-mail: xyliu@ime.pku.edu.cn [Institute of Microelectronics, Peking University, Beijing, 100871 (China)

    2010-12-15

    The accumulation process of trapped charges in a TANOS cell during P/E cycling is investigated via numerical simulation. The recombination process between trapped charges is an important issue on the retention of charge trapping memory. Our results show that accumulated trapped holes during P/E cycling can have an influence on retention, and the recombination mechanism between trapped charges should be taken into account when evaluating the retention capability of TANOS. (semiconductor devices)

  7. SEMICONDUCTOR DEVICES Effect of trapped charge accumulation on the retention of charge trapping memory

    Science.gov (United States)

    Rui, Jin; Xiaoyan, Liu; Gang, Du; Jinfeng, Kang; Ruqi, Han

    2010-12-01

    The accumulation process of trapped charges in a TANOS cell during P/E cycling is investigated via numerical simulation. The recombination process between trapped charges is an important issue on the retention of charge trapping memory. Our results show that accumulated trapped holes during P/E cycling can have an influence on retention, and the recombination mechanism between trapped charges should be taken into account when evaluating the retention capability of TANOS.

  8. Peltier effect in multilayered nanopillars under high density charge current

    Science.gov (United States)

    Gravier, L.; Fukushima, A.; Kubota, H.; Yamamoto, A.; Yuasa, S.

    2006-12-01

    From the basic equations of thermoelectricity, we model the thermal regimes that develop in multilayered nanopillar elements experiencing continuous charge currents. The energy conservation principle was applied to all layer-layer and layer-electrode junctions. The obtained set of equations was solved to derive the temperature of each junction. The contribution of the Peltier effect is included in an effective resistance. This model gives satisfactory fits to experimental data obtained on a series of reference nanopillar elements.

  9. Peltier effect in multilayered nanopillars under high density charge current

    Energy Technology Data Exchange (ETDEWEB)

    Gravier, L [Institut de Physique des Nanostructures, Ecole Polytechnique Federale de Lausanne (EPFL), EPFL-SB-IPN station 3, 1015 Lausanne (Switzerland); Fukushima, A [National Institute of Advances Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Kubota, H [National Institute of Advances Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Yamamoto, A [National Institute of Advances Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Yuasa, S [National Institute of Advances Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2006-12-21

    From the basic equations of thermoelectricity, we model the thermal regimes that develop in multilayered nanopillar elements experiencing continuous charge currents. The energy conservation principle was applied to all layer-layer and layer-electrode junctions. The obtained set of equations was solved to derive the temperature of each junction. The contribution of the Peltier effect is included in an effective resistance. This model gives satisfactory fits to experimental data obtained on a series of reference nanopillar elements.

  10. Amplified effect of surface charge on cell adhesion by nanostructures

    Science.gov (United States)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  11. Membrane Permeabilization Induced by Sphingosine: Effect of Negatively Charged Lipids

    Science.gov (United States)

    Jiménez-Rojo, Noemi; Sot, Jesús; Viguera, Ana R.; Collado, M. Isabel; Torrecillas, Alejandro; Gómez-Fernández, J.C.; Goñi, Félix M.; Alonso, Alicia

    2014-01-01

    Sphingosine [(2S, 3R, 4E)-2-amino-4-octadecen-1, 3-diol] is the most common sphingoid long chain base in sphingolipids. It is the precursor of important cell signaling molecules, such as ceramides. In the last decade it has been shown to act itself as a potent metabolic signaling molecule, by activating a number of protein kinases. Moreover, sphingosine has been found to permeabilize phospholipid bilayers, giving rise to vesicle leakage. The present contribution intends to analyze the mechanism by which this bioactive lipid induces vesicle contents release, and the effect of negatively charged bilayers in the release process. Fluorescence lifetime measurements and confocal fluorescence microscopy have been applied to observe the mechanism of sphingosine efflux from large and giant unilamellar vesicles; a graded-release efflux has been detected. Additionally, stopped-flow measurements have shown that the rate of vesicle permeabilization increases with sphingosine concentration. Because at the physiological pH sphingosine has a net positive charge, its interaction with negatively charged phospholipids (e.g., bilayers containing phosphatidic acid together with sphingomyelins, phosphatidylethanolamine, and cholesterol) gives rise to a release of vesicular contents, faster than with electrically neutral bilayers. Furthermore, phosphorous 31-NMR and x-ray data show the capacity of sphingosine to facilitate the formation of nonbilayer (cubic phase) intermediates in negatively charged membranes. The data might explain the pathogenesis of Niemann-Pick type C1 disease. PMID:24940775

  12. Spin and charge thermopower effects in the ferromagnetic graphene junction

    Science.gov (United States)

    Vahedi, Javad; Barimani, Fattaneh

    2016-08-01

    Using wave function matching approach and employing the Landauer-Buttiker formula, a ferromagnetic graphene junction with temperature gradient across the system is studied. We calculate the thermally induced charge and spin current as well as the thermoelectric voltage (Seebeck effect) in the linear and nonlinear regimes. Our calculation revealed that due to the electron-hole symmetry, the charge Seebeck coefficient is, for an undoped magnetic graphene, an odd function of chemical potential while the spin Seebeck coefficient is an even function regardless of the temperature gradient and junction length. We have also found with an accurate tuning external parameter, namely, the exchange filed and gate voltage, the temperature gradient across the junction drives a pure spin current without accompanying the charge current. Another important characteristic of thermoelectric transport, thermally induced current in the nonlinear regime, is examined. It would be our main finding that with increasing thermal gradient applied to the junction the spin and charge thermovoltages decrease and even become zero for non zero temperature bias.

  13. Analysis of beam envelope by transverse space charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Shin`ichi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-09-01

    It is important for high current accelerators to estimate the contribution of the space charge effect to keep the beam off its beak up. The application of an envelope equation is examined in previous report in which the beam is just coasting beam (non accelerating). The analysis of space charge effect is necessary for the comparison in coming accelerator test in PNC. In order to evaluate the beam behavior in high current, the beam dynamics and beam parameters which are input to the equation for the evaluation are developed and make it ready to estimate the beam transverse dynamics by the space charge. The estimate needs to have enough accuracy for advanced code calculation. After the preparation of the analytic expression of transverse motion, the non-linear differential equation of beam dynamics is solved by a numerical method on a personal computer. The beam envelope from the equation is estimated by means of the beam emittance, current and energy. The result from the analysis shows that the transverse beam broadening is scarecely small around the beam current value of PNC design. The contribution to the beam broadening of PNC linac comes from its beam emittance. The beam broadening in 100 MeV case is almost negligible in the view of transverse space charge effect. Therefore, the electron beam is stable up to 10 A order in PNC linac design. Of course, the problem for RF supply is out of consideration here. It is important to estimate other longitudinal effect such as beam bunch effect which is lasting unevaluated. (author)

  14. Plasma effect in Silicon Charge Couple Devices (CCDs)

    CERN Document Server

    Estrada, Juan; Blostein, J

    2011-01-01

    Plasma effect is observed in CCDs exposed to heavy ionizing alpha-particles with energies in the range 0.5 - 5.5 MeV. The results obtained for the size of the charge clusters reconstructed on the CCD pixels agrees with previous measurements in the high energy region (>3.5 MeV). The measurements were extended to lower energies using alpha-particles produced by (n,alpha) reactions of neutrons in a Boron-10 target. The effective linear charge density for the plasma column is measured as a function of energy. The results demonstrate the potential for high position resolution in the reconstruction of alpha particles, which opens an interesting possibility for using these detectors in neutron imaging applications.

  15. Plasma effect in silicon charge coupled devices (CCDs)

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, J., E-mail: estrada@fnal.gov [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Molina, J., E-mail: jmolina@ing.una.py [Facultad de Ingenieria, Universidad Nacional de Asuncion, Laboratorio de Mecanica y Energia, Campus de la UNA, San Lorenzo 2160 (Paraguay); Blostein, J.J., E-mail: jeronimo@cab.cnea.gov.ar [CONICET (Argentina); Centro Atomico Bariloche, Comision Nacional de Energia Atomica, Bariloche (Argentina); Fernandez, G., E-mail: fmoroni.guillermo@gmail.com [Universidad Nacional del Sur, Bahia Blanca (Argentina)

    2011-02-11

    Plasma effect is observed in CCDs exposed to heavy ionizing {alpha}-particles with energies in the range 0.5-5.5 MeV. The results obtained for the size of the charge clusters reconstructed on the CCD pixels agree with previous measurements in the high energy region ({>=}3.5 MeV). The measurements were extended to lower energies using {alpha}-particles produced by (n,{alpha}) reactions of neutrons in a {sup 10}B target. The effective linear charge density for the plasma column is measured as a function of energy. The results demonstrate the potential for high position resolution in the reconstruction of {alpha} particles, which opens an interesting possibility for using these detectors in neutron imaging applications.

  16. Universal Charge Diffusion and the Butterfly Effect in Holographic Theories

    Science.gov (United States)

    Blake, Mike

    2016-08-01

    We study charge diffusion in holographic scaling theories with a particle-hole symmetry. We show that these theories have a universal regime in which the diffusion constant is given by Dc=C vB2/(2 π T ), where vB is the velocity of the butterfly effect. The constant of proportionality C depends only on the scaling exponents of the infrared theory. Our results suggest an unexpected connection between transport at strong coupling and quantum chaos.

  17. Program NAJOCSC and space charge effect simulation in C01

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.Y.; Chabert, A.; Baron, E

    1999-03-10

    During the beam tests of the THI project at GANIL, it was found it difficult to increase the beam power above 2 kW at CSS2 extraction. The space charge effect (abbreviated as S.C. effect) in cyclotrons is suspected to play some role in the phenomenon, especially the longitudinal S.C. one and also the coupling between longitudinal and radial motions. The injector cyclotron C01 is studied, and the role played by the S.C. effect in this cyclotron in the THI case is investigated by a simulation method. (K.A.) 12 refs.

  18. The effect of polymer charge density and charge distribution on the formation of multilayers

    CERN Document Server

    Voigt, U; Tauer, K; Hahn, M; Jäger, W; Klitzing, K V

    2003-01-01

    Polyelectrolyte multilayers which are built up by alternating adsorption of polyanions and polycations from aqueous solutions at a solid interface are investigated by reflectometry and ellipsometry. Below a degree of charge of about 70% the adsorption stops after a certain number of dipping cycles and no multilayer formation occurs. This indicates an electrostatically driven adsorption process. Below a charge density of 70% an adsorption can take place if the charged segments are combined as a block of the polymer.

  19. Charge carrier coherence and Hall effect in organic semiconductors.

    Science.gov (United States)

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  20. Charge Transport in Hybrid Halide Perovskite Field-Effect Transistors

    Science.gov (United States)

    Jurchescu, Oana

    Hybrid organic-inorganic trihalide perovskite (HTP) materials exhibit a strong optical absorption, tunable band gap, long carrier lifetimes and fast charge carrier transport. These remarkable properties, coupled with their reduced complexity processing, make the HTPs promising contenders for large scale, low-cost thin film optoelectronic applications. But in spite of the remarkable demonstrations of high performance solar cells, light-emitting diodes and field-effect transistor devices, all of which took place in a very short time period, numerous questions related to the nature and dynamics of the charge carriers and their relation to device performance, stability and reliability still remain. This presentation describes the electrical properties of HTPs evaluated from field-effect transistor measurements. The electrostatic gating of provides an unique platform for the study of intrinsic charge transport in these materials, and, at the same time, expand the use of HTPs towards switching electronic devices, which have not been explored previously. We fabricated FETs on SiO2 and polymer dielectrics from spin coating, thermal evaporation and spray deposition and compare their properties. CH3NH3PbI3-xClx can reach balanced electron and hole mobilities of 10 cm2/Vs upon tuning the thin-film microstructure, injection and the defect density at the semiconductor/dielectric interface. The work was performed in collaboration with Yaochuan Mei (Wake Forest University), Chuang Zhang, and Z. Valy Vardeny (University of Utah). The work is supported by ONR Grant N00014-15-1-2943.

  1. 3D Simulations of Space Charge Effects in Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density ({approx} 10{sup 9} protons/cm{sup 3}) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  2. 3D Simulations of Space Charge Effects in Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density ({approx} 10{sup 9} protons/cm{sup 3}) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  3. Cost-effective electric vehicle charging infrastructure siting for Delhi

    Science.gov (United States)

    Sheppard, Colin J. R.; Gopal, Anand R.; Harris, Andrew; Jacobson, Arne

    2016-06-01

    Plug-in electric vehicles (PEVs) represent a substantial opportunity for governments to reduce emissions of both air pollutants and greenhouse gases. The Government of India has set a goal of deploying 6-7 million hybrid and PEVs on Indian roads by the year 2020. The uptake of PEVs will depend on, among other factors like high cost, how effectively range anxiety is mitigated through the deployment of adequate electric vehicle charging stations (EVCS) throughout a region. The Indian Government therefore views EVCS deployment as a central part of their electric mobility mission. The plug-in electric vehicle infrastructure (PEVI) model—an agent-based simulation modeling platform—was used to explore the cost-effective siting of EVCS throughout the National Capital Territory (NCT) of Delhi, India. At 1% penetration in the passenger car fleet, or ˜10 000 battery electric vehicles (BEVs), charging services can be provided to drivers for an investment of 4.4 M (or 440/BEV) by siting 2764 chargers throughout the NCT of Delhi with an emphasis on the more densely populated and frequented regions of the city. The majority of chargers sited by this analysis were low power, Level 1 chargers, which have the added benefit of being simpler to deploy than higher power alternatives. The amount of public infrastructure needed depends on the access that drivers have to EVCS at home, with 83% more charging capacity required to provide the same level of service to a population of drivers without home chargers compared to a scenario with home chargers. Results also depend on the battery capacity of the BEVs adopted, with approximately 60% more charging capacity needed to achieve the same level of service when vehicles are assumed to have 57 km versus 96 km of range.

  4. Effect of Size Polydispersity on Melting of Charged Colloidal Systems

    Institute of Scientific and Technical Information of China (English)

    陈勇

    2003-01-01

    We introduce simple prescriptions of the Yukawa potential to describe the effect of size polydispersity and macroion shielding effect in charged colloidal systems. The solid-liquid phase boundaries were presented with the Lindemann criterion based on molecular dynamics simulations. Compared with the Robbins-Kremer-Grest simulation results, a deviation of melting line is observed at small λ, which means large macroion screening length. This deviation of phase boundary is qualitatively consistent with the simulation result of the nonlinear Poisson-Boltzmann equation with full many-body interactions. It is found that this deviation of the solid-liquid phase behaviour is sensitive to the screening parameter.

  5. Magnetothermopower and Nernst effect in unconventional charge density waves

    Science.gov (United States)

    Dóra, Balázs; Maki, Kazumi; Ványolos, András; Virosztek, Attila

    2003-12-01

    Recently we have shown that the striking angular dependent magnetoresistance in the low-temperature phase (LTP) of α-(BEDT-TTF)2KHg(SCN)4 is consistently described in terms of unconventional charge density wave (UCDW). Here we investigate theoretically the thermoelectric power and the Nernst effect in unconventional density wave (UDW). The present results account consistently for the recent data of magnetothermopower in α-(BEDT-TTF)2KHg(SCN)4 obtained by Choi et al. [Phys. Rev. B 65, 205119 (2002)]. This confirms further our identification of LTP in this salt as UCDW. We propose also that the Nernst effect provides a clear signature of UDW.

  6. Proximity effects in cold gases of multiply charged atoms (Review)

    Science.gov (United States)

    Chikina, I.; Shikin, V.

    2016-07-01

    Possible proximity effects in gases of cold, multiply charged atoms are discussed. Here we deal with rarefied gases with densities nd of multiply charged (Z ≫ 1) atoms at low temperatures in the well-known Thomas-Fermi (TF) approximation, which can be used to evaluate the statistical properties of single atoms. In order to retain the advantages of the TF formalism, which is successful for symmetric problems, the external boundary conditions accounting for the finiteness of the density of atoms (donors), nd ≠ 0, are also symmetrized (using a spherical Wigner-Seitz cell) and formulated in a standard way that conserves the total charge within the cell. The model shows that at zero temperature in a rarefied gas of multiply charged atoms there is an effective long-range interaction Eproxi(nd), the sign of which depends on the properties of the outer shells of individual atoms. The long-range character of the interaction Eproxi is evaluated by comparing it with the properties of the well-known London dispersive attraction ELond(nd) interaction in gases. For the noble gases argon, krypton, and xenon Eproxi>0 and for the alkali and alkaline-earth elements Eproxi neutral complexes into charged fragments. This phenomenon appears consistently in the TF theory through the temperature dependence of the different versions of Eproxi. The anomaly in the thermal proximity effect shows up in the following way: for T ≠ 0 there is no equilibrium solution of TS statistics for single multiply charged atoms in a vacuum when the effect is present. Instability is suppressed in a Wigner-Seitz model under the assumption that there are no electron fluxes through the outer boundary R3 ∝ n-1d of a Wigner-Seitz cell. Eproxi corresponds to the definition of the correlation energy in a gas of interacting particles. This review is written so as to enable comparison of the results of the TF formalism with the standard assumptions of the correlation theory for classical plasmas. The classic

  7. Effect of sample preparation on charged impurities in graphene substrates

    Science.gov (United States)

    Burson, K. M.; Dean, C. R.; Watanabe, K.; Taniguchi, T.; Hone, J.; Kim, P.; Cullen, W. G.; Fuhrer, M. S.

    2013-03-01

    The mobility of graphene as fabricated on SiO2 has been found to vary widely depending on sample preparation conditions. Additionally, graphene mobility on SiO2 appears to be limited to ~20,000 cm2/Vs, likely due to charged impurities in the substrate. Here we present a study of the effect of fabrication procedures on substrate charged impurity density (nimp) utilizing ultrahigh-vacuum Kelvin probe force microscopy. We conclude that even minimal SEM exposure, as from e-beam lithography, induces an increased impurity density, while heating reduces the number of charges for sample substrates which already exhibit a higher impurity density. We measure both SiO2 and h-BN and find that all nimp values observed for SiO2 are higher than those observed for h-BN; this is consistent with the observed improvement in mobility for graphene devices fabricated on h-BN over those fabricated on SiO2 substrates. This work was supported by the US ONR MURI program, and the University of Maryland NSF-MRSEC under Grant No. DMR 05-20471.

  8. Bending elasticity of charged surfactant layers: the effect of mixing.

    Science.gov (United States)

    Bergström, L Magnus

    2006-08-01

    Expressions have been derived from which the spontaneous curvature (H(0)), bending rigidity (k(c)), and saddle-splay constant (k(c)) of mixed monolayers and bilayers may be calculated from molecular and solution properties as well as experimentally available quantities such as the macroscopic hydrophobic-hydrophilic interfacial tension. Three different cases of binary surfactant mixtures have been treated in detail: (i) mixtures of an ionic and a nonionic surfactant, (ii) mixtures of two oppositely charged surfactants, and (iii) mixtures of two ionic surfactants with identical headgroups but different tail volumes. It is demonstrated that k(c)H(0), k(c), and k(c) for mixtures of surfactants with flexible tails may be subdivided into one contribution that is due to bending properties of an infinitely thin surface as calculated from the Poisson-Boltzmann mean field theory and one contribution appearing as a result of the surfactant film having a finite thickness with the surface of charge located somewhat outside the hydrophobic-hydrophilic interface. As a matter of fact, the picture becomes completely different as finite layer thickness effects are taken into account, and as a result, the spontaneous curvature is extensively lowered whereas the bending rigidity is raised. Furthermore, an additional contribution to k(c) is present for surfactant mixtures but is absent for k(c)H(0) and k(c). This contribution appears as a consequence of the minimization of the free energy with respect to the composition of a surfactant layer that is open in the thermodynamic sense and must always be negative (i.e., k(c) is generally found to be brought down by the process of mixing two or more surfactants). The magnitude of the reduction of k(c) increases with increasing asymmetry between two surfactants with respect to headgroup charge number and tail volume. As a consequence, the bending rigidity assumes the lowest values for layers formed in mixtures of two oppositely charged

  9. Irradiation of graphene field effect transistors with highly charged ions

    Science.gov (United States)

    Ernst, P.; Kozubek, R.; Madauß, L.; Sonntag, J.; Lorke, A.; Schleberger, M.

    2016-09-01

    In this work, graphene field-effect transistors are used to detect defects due to irradiation with slow, highly charged ions. In order to avoid contamination effects, a dedicated ultra-high vacuum set up has been designed and installed for the in situ cleaning and electrical characterization of graphene field-effect transistors during irradiation. To investigate the electrical and structural modifications of irradiated graphene field-effect transistors, their transfer characteristics as well as the corresponding Raman spectra are analyzed as a function of ion fluence for two different charge states. The irradiation experiments show a decreasing mobility with increasing fluences. The mobility reduction scales with the potential energy of the ions. In comparison to Raman spectroscopy, the transport properties of graphene show an extremely high sensitivity with respect to ion irradiation: a significant drop of the mobility is observed already at fluences below 15 ions/μm2, which is more than one order of magnitude lower than what is required for Raman spectroscopy.

  10. The Gravitational Effects of a Celestial Body with Magnetic Charge and Moment

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The gravitational effects (precession of charge-less particles and deflection of light) in the gravitational field of a celestial body with magnetic charge and moment (CM)are investigated. We found that the magnetic charge always weakens the pure Schwarzschild effects, while the magnetic dipole moment deforms the effects in a more complicated way.

  11. Charging of heated colloidal particles using the electrolyte Seebeck effect.

    Science.gov (United States)

    Majee, Arghya; Würger, Alois

    2012-03-16

    We propose a novel actuation mechanism for colloids, which is based on the Seebeck effect of the electrolyte solution: Laser heating of a nonionic particle accumulates in its vicinity a net charge Q, which is proportional to the excess temperature at the particle surface. The corresponding long-range thermoelectric field E is proportional to 1/r(2) provides a tool for controlled interactions with nearby beads or with additional molecular solutes. An external field E(ext) drags the thermocharged particle at a velocity that depends on its size and absorption properties; the latter point could be particularly relevant for separating carbon nanotubes according to their electronic band structure.

  12. Space charge effects for multipactor in coaxial lines

    Energy Technology Data Exchange (ETDEWEB)

    Sorolla, E., E-mail: eden.sorolla@xlim.fr [XLIM, UMR 7252, Université de Limoges/CNRS, 123 Av. Albert Thomas, 87060 Limoges (France); Sounas, A.; Mattes, M. [Laboratoire d' Électromagnétisme et d' Acoustique (LEMA), École Polytechnique Fédérale de Lausanne, Station 11, CH-1015 Lausanne (Switzerland)

    2015-03-15

    Multipactor is a hazardous vacuum discharge produced by secondary electron emission within microwave devices of particle accelerators and telecommunication satellites. This work analyzes the dynamics of the multipactor discharge within a coaxial line for the mono-energetic electron emission model taking into account the space charge effects. The steady-state is predicted by the proposed model and an analytical expression for the maximum number of electrons released by the discharge presented. This could help to link simulations to experiments and define a multipactor onset criterion.

  13. Space-charge effects in high-energy photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Verna, Adriano, E-mail: adriano.verna@uniroma3.it [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); CNISM Unità di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Greco, Giorgia [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Lollobrigida, Valerio [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Scuola Dottorale in Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Offi, Francesco; Stefani, Giovanni [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); CNISM Unità di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy)

    2016-05-15

    Highlights: • N-body simulations of interacting photoelectrons in hard X-ray experiments. • Secondary electrons have a pivotal role in determining the energy broadening. • Space charge has negligible effects on the photoelectron momentum distribution. • A simple model provides the characteristic time for energy-broadening mechanism. • The feasibility of time-resolved high-energy experiments with FELs is discussed. - Abstract: Pump-and-probe photoelectron spectroscopy (PES) with femtosecond pulsed sources opens new perspectives in the investigation of the ultrafast dynamics of physical and chemical processes at the surfaces and interfaces of solids. Nevertheless, for very intense photon pulses a large number of photoelectrons are simultaneously emitted and their mutual Coulomb repulsion is sufficiently strong to significantly modify their trajectory and kinetic energy. This phenomenon, referred as space-charge effect, determines a broadening and shift in energy for the typical PES structures and a dramatic loss of energy resolution. In this article we examine the effects of space charge in PES with a particular focus on time-resolved hard X-ray (∼10 keV) experiments. The trajectory of the electrons photoemitted from pure Cu in a hard X-ray PES experiment has been reproduced through N-body simulations and the broadening of the photoemission core-level peaks has been monitored as a function of various parameters (photons per pulse, linear dimension of the photon spot, photon energy). The energy broadening results directly proportional to the number N of electrons emitted per pulse (mainly represented by secondary electrons) and inversely proportional to the linear dimension a of the photon spot on the sample surface, in agreement with the literature data about ultraviolet and soft X-ray experiments. The evolution in time of the energy broadening during the flight of the photoelectrons is also studied. Despite its detrimental consequences on the energy

  14. Luminescent tunable polydots: Charge effects in confined geometry

    Science.gov (United States)

    Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora; Grest, Gary S.

    2017-06-01

    Long-lived soft nanoparticles, formed by conjugated polymers, constitute a new class of far-from-equilibrium responsive structures for nano-medicine. Tethering ionizable groups to the polymers enables functionality. However concurrently, the ionic groups perturb the delicate balance of interactions that governs these particles. Using fully atomistic molecular dynamics simulations, this study probed the effects of charged groups tethered to poly para phenylene ethynylene substituted by alkyl groups on the polymer conformation and dynamics in confined geometry. We find that the ionizable groups affect the entire shape of the polydots and impact the conformation and dynamics of the polymer.

  15. Free charge localization and effective dielectric permittivity in oxides

    Science.gov (United States)

    Maglione, Mario

    2016-06-01

    This review will deal with several types of free charge localization in oxides and their consequences on the effective dielectric spectra of such materials. The first one is the polaronic localization at the unit cell scale on residual impurities in ferroelectric networks. The second one is the collective localization of free charge at macroscopic interfaces like surfaces, electrodes and grain boundaries in ceramics. Polarons have been observed in many oxide perovskites mostly when cations having several stable electronic configurations are present. In manganites, the density of such polarons is so high as to drive a net lattice of interacting polarons. On the other hand, in ferroelectric materials like BaTiO3 and LiNbO3, the density of polarons is usually very small but they can influence strongly the macroscopic conductivity. The contribution of such polarons to the dielectric spectra of ferroelectric materials is described. Even residual impurities as for example Iron can induce well-defined anomalies at very low temperatures. This is mostly resulting from the interaction between localized polarons and the highly polarizable ferroelectric network in which they are embedded. The case of such residual polarons in SrTiO3 will be described in more detail, emphasizing the quantum polaron state at liquid helium temperatures. Recently, several nonferroelectric oxides have been shown to display giant effective dielectric permittivity. It is first shown that the frequency/temperature behavior of such parameters is very similar in very different compounds (donor-doped BaTiO3, CaCu3Ti4O12, LuFe2O4, Li-doped NiO, etc.). This similarity calls for a common origin of the giant dielectric permittivity in these compounds. A space charge localization at macroscopic interfaces can be the key for such extremely high dielectric permittivity.

  16. Effects of reliability screens of MOS charge trapping

    Energy Technology Data Exchange (ETDEWEB)

    Shanneyfelt, M.R.; Winokur, P.S.; Fleetwood, D.M.; Schwank, J.R.; Reber, R.A. Jr.

    1995-09-01

    The effects of pre-irradiation elevated-temperature bias stresses on the radiation hardness of field-oxide transistors have been investigated as a function of stress temperature, time, and bias. Both the stress temperature and time are found to have a significant impact on radiation-induced charge buildup in these transistors. Specifically, an increase in either the stress temperature or time causes a much larger negative shift (towards depletion) in the I-V characteristics of the n-channel field-oxide transistors. This increased shift in the transistor I-V characteristics with stress temperature and time suggests that the mechanisms responsible for the stress effects are thermally activated. An activation energy of {approximately}0.38 eV was measured. The stress bias was found to have no impact on radiation-induced charge buildup in these transistors. The observed stress temperature, time, and bias dependencies appears to be consistent with the diffusion of molecular hydrogen during a given stress period. These results have important implications for the development of hardness assurance test methods.

  17. Hall effect in quantum critical charge-cluster glass.

    Science.gov (United States)

    Wu, Jie; Bollinger, Anthony T; Sun, Yujie; Božović, Ivan

    2016-04-19

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4(LSCO) samples doped near the quantum critical point atx∼ 0.06. Dramatic fluctuations in the Hall resistance appear belowTCG∼ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps,Δx∼ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.

  18. Non-equilibration of topological charge and its effects

    CERN Document Server

    Bernard, Claude

    2016-01-01

    In QCD simulations at small lattice spacings, the topological charge Q evolves very slowly and, if this quantity is not properly equilibrated, we could get incorrect results for physical quantities, or incorrect estimates of their errors. We use the known relation between the dependence of masses and decay constants on the QCD vacuum angle theta and the squared topological charge Q^2 together with chiral perturbation theory results for the dependence of masses and decay constants on theta to estimate the size of these effects and suggest strategies for dealing with them. For the partially quenched case, we sketch an alternative derivation of the known $\\chi$PT results of Aoki and Fukaya, using the nonperturbatively correct chiral theory worked out by Golterman, Sharpe and Singleton, and by Sharpe and Shoresh. With the MILC collaboration's ensembles of lattices with four flavors of HISQ dynamical quarks, we measure the $Q^2$ dependence of masses and decay constants and compare to the $\\chi$PT forms. The observ...

  19. Charge Transfer and Support Effects in Heterogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Hervier, Antoine [Univ. of California, Berkeley, CA (United States)

    2011-12-21

    the band bending at the interface, gives rise to a steady-state flow of hot holes to the surface. This leads to a decrease in turnover on the surface, an effect which is enhanced when a reverse bias is applied to the diode. Similar experiments were carried out for CO oxidation. On Pt/Si diodes, the reaction rate was found to increase when a forward bias was applied. When the diode was exposed to visible light and a reverse bias was applied, the rate was instead decreased. This implies that a flow of negative charges to the surface increases turnover, while positive charges decrease it. Charge flow in an oxide supported metal catalyst can be modified even without designing the catalyst as a solid state electronic device. This was done by doping stoichiometric and nonstoichiometric TiO2 films with F, and using the resulting oxides as supports for Pt films. In the case of stoichiometric TiO2, F was found to act as an n-type dopant, creating a population of filled electronic states just below the conduction band, and dramatically increasing the conductivity of the oxide film. The electrons in those states can transfer to surface O, activating it for reaction with CO, and leading to increased turnover for CO oxidation. This reinforces the hypothesis that CO oxidation is activated by a flow of negative charges to the surface. The same set of catalysts was used for methanol oxidation. The electronic properties of the TiO2 films again correlated with the turnover rates, but also with selectivity. With stoichiometric TiO2 as the support, F-doping caused an increase in selectivity toward the formation of partial oxidation products, formaldehyde and methyl formate, versus the total oxidation product, CO2. With non-stoichiometric TiO2, F-doping had the reverse effect. Ambient Pressure X-Ray Photoelectron Spectroscopy was used to investigate this F-doping effect in reaction conditions. In O2 alone, and in

  20. Charge Stripper Effects on Beam Optics in 180-degree Bending Section of RISP Linac

    CERN Document Server

    Jang, Ji-Ho; Song, Jeong Seog

    2016-01-01

    The RAON, a superconducting linear accelerator for RISP (Rare Isotope Science Project), will use a charge stripper in order to increase the charge states of the heavy ions for effective acceleration in the higher energy part of the linac. The charge stripper affects the beam qualities by scattering when the heavy ions go through the charge stripper. Moreover we have to select and accelerate proper charge states between 77+ and 81+ for uranium beam case in order to satisfy the beam power requirement at an IF (Inflight Fragmentation) target. This work focuses on the beam optics affected by the charge stripper in the 180-dgree bending section.

  1. Charge uncovering effects on flute instabilities in hot electron plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Spong, D.A.

    1985-01-01

    Recent measurements and concurrent theoretical equilibrium models of the ELMO Bumpy Torus (EBT) edge plasma region (as described by E. F. Jaeger et al. in Magnetic Well Depth in EBT and Sensitivity to Hot Electron Ring Geometry, ORNL/TM-9185 (1984)) have indicated that the hot electron ring beta ..beta../sub hot/ at the C-T transition may not always be sufficient to produce the local minimum in the magnetic field thought to be necessary for MHD stability. This has led to the examination of other mechanisms that could account for the observed stability of the T-mode. In this report, an effect known as charge uncovering, which depends not on the value of ..beta../sub hot/ but rather on the ratio n/sub hot//n/sub core/, is studied.

  2. Charge diffusion and the butterfly effect in striped holographic matter

    CERN Document Server

    Lucas, Andrew

    2016-01-01

    Recently, it has been proposed that the butterfly velocity - a speed at which quantum information propagates - may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength "hydrodynamic" disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.

  3. Charge diffusion and the butterfly effect in striped holographic matter

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Andrew [Department of Physics, Harvard University,Cambridge, MA 02138 (United States); Department of Physics, Stanford University,Stanford, CA 94305 (United States); Steinberg, Julia [Department of Physics, Harvard University,Cambridge, MA 02138 (United States)

    2016-10-26

    Recently, it has been proposed that the butterfly velocity — a speed at which quantum information propagates — may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength “hydrodynamic' disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.

  4. Surface charge effects in protein adsorption on nanodiamonds.

    Science.gov (United States)

    Aramesh, M; Shimoni, O; Ostrikov, K; Prawer, S; Cervenka, J

    2015-03-19

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.

  5. Charge Transfer and Support Effects in Heterogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Hervier, Antoine [Univ. of California, Berkeley, CA (United States)

    2011-12-21

    the band bending at the interface, gives rise to a steady-state flow of hot holes to the surface. This leads to a decrease in turnover on the surface, an effect which is enhanced when a reverse bias is applied to the diode. Similar experiments were carried out for CO oxidation. On Pt/Si diodes, the reaction rate was found to increase when a forward bias was applied. When the diode was exposed to visible light and a reverse bias was applied, the rate was instead decreased. This implies that a flow of negative charges to the surface increases turnover, while positive charges decrease it. Charge flow in an oxide supported metal catalyst can be modified even without designing the catalyst as a solid state electronic device. This was done by doping stoichiometric and nonstoichiometric TiO2 films with F, and using the resulting oxides as supports for Pt films. In the case of stoichiometric TiO2, F was found to act as an n-type dopant, creating a population of filled electronic states just below the conduction band, and dramatically increasing the conductivity of the oxide film. The electrons in those states can transfer to surface O, activating it for reaction with CO, and leading to increased turnover for CO oxidation. This reinforces the hypothesis that CO oxidation is activated by a flow of negative charges to the surface. The same set of catalysts was used for methanol oxidation. The electronic properties of the TiO2 films again correlated with the turnover rates, but also with selectivity. With stoichiometric TiO2 as the support, F-doping caused an increase in selectivity toward the formation of partial oxidation products, formaldehyde and methyl formate, versus the total oxidation product, CO2. With non-stoichiometric TiO2, F-doping had the reverse effect. Ambient Pressure X-Ray Photoelectron Spectroscopy was

  6. Natural Cutoffs effect on Charged Rotating TeV-Scale Black Hole Thermodynamics

    CERN Document Server

    Soleimani, M J; Gopir, G; Ibrahim, Zainol Abidin; Radiman, Shahidan; Abdullah, W A T Wan

    2015-01-01

    We study the thermodynamics of charged rotating black hole in large extra dimensions scenario where quantum gravity effects are taken into account. We consider the effects of minimal length, minimal momentum, and maximal momentum as natural cutoffs on the thermodynamics of charged rotating TeV-scale black holes. In this framework the effect of the angular momentum and charge on the thermodynamics of the black hole are discussed. We focus also on frame dragging and Sagnac effect of the micro black holes.

  7. Effects of charged sand on electromagnetic wave propagation and its scattering field

    Institute of Scientific and Technical Information of China (English)

    HE; Qinshu; ZHOU; Youhe; ZHENG; Xiaojing

    2006-01-01

    Based on the Rayleigh's scattering theory, the effects of sandstorms on the propagation of electromagnetic wave with different visibilities are presented by solving the scattering field of charged sand particles. Because of the electric charges on the sand surface, the theoretical attenuation will be large enough to match the measured value under certain conditions. And the results show that the effect of sand with electric charges all over its surface on electromagnetic wave attenuation is the same as that of sand without charge, which proves that electric charges distribute on partial surface of the sand in fact.

  8. The effect of the charging protocol on the cycle life of a Li-ion battery

    Science.gov (United States)

    Zhang, Sheng Shui

    The effect of the charging protocol on the cycle life of a commercial 18650 Li-ion cell was studied using three methods: (1) constant current (CC) charging, (2) constant power (CP) charging, and (3) multistage constant current (MCC) charging. The MCC-charging consists of two CC steps, which starts with a low current to charge the initial 10% capacity followed by a high current charging until the cell voltage reaches 4.2 V. Using these methods, respectively, the cell was charged to 4.2 V followed by a constant voltage (CV) charging until the current declined to 0.05 C. Results showed that the cycle life of the cell strongly depended on the charging protocol even if the same charging rate was used. Among these three methods, the CC-method was found to be more suitable for slow charging (0.5 C) while the CP-method was better for fast charging (1 C). Impedance analyses indicated that the capacity loss during cycling was mainly attributed to the increase of charge-transfer resistance as a result of the progressive growth of surface layers on the surface of two electrodes. Fast charging resulted in an accelerated capacity fading due to the loss of Li + ions and the related growth of a surface layer, which was associated with metallic lithium plating onto the anode and a high polarization at the electrolyte-electrode interface. Analyses of the cell electrochemistry showed that use of a reduced current to charge the initial 10% capacity and near the end of charge, respectively, was favorable for long cycle life.

  9. Effect of surface charge on hydrophobicity levels of insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Villa, V.M.; Ponce-Velez, M.A.; Valle-Jaime, E.; Fierro-Chavez, J.L. [Instituto de Investigaciones Electricas, Mor (Mexico). Unidad de Materiales Electricos

    1998-11-01

    A correlation between the hydrophobic characteristics and accumulation of static charge on several insulating surfaces (ceramic and non- ceramic) is studied. Although numerous experimental studies on the loss and recovery of hydrophobicity on insulator surfaces have been carried out, no efforts for establishing a correlation between such hydrophobic properties and the presence of surface charge have yet been made, especially when attention is paid to ceramic surfaces. This experiment consists of simultaneous measurements of surface charge decay and contact angle recovery against time on samples previously exposed to corona impingement; a comparison between charge decay and hydrophobicity recovery trends is then made. From the data obtained, a lowering of the original hydrophobicity level for each material as a consequence of surface charge accumulation is identified. The decay of surface charge and the corresponding recovery of the initial hydrophobic characteristics with time are observed. Loss and recovery of hydrophobicity resulting from surface charging and charge decay, respectively, are identified as mechanisms occurring not only on polymeric surfaces, but also on ceramic ones. From a number of laboratory studies it has been confirmed, and extensively reported by several researchers, that surface charging of insulators due to electrical activity (partial discharging) can be achieved. Based on the above, as well as on the results obtained from this experimental work, surface charging of insulators is a phenomenon which may occur under realistic operational conditions, and is therefore proposed as a factor responsible for the loss of the initial highly hydrophobic characteristics of polymeric insulators and coatings, in addition to other well established mechanisms. (author)

  10. Screening effects on structure and diffusion in confined charged colloids.

    Science.gov (United States)

    Kittner, Madeleine; Klapp, Sabine H L

    2007-04-21

    Using molecular dynamics computer simulations we investigate structural and dynamic (diffusion) properties of charged colloidal suspension confined to narrow slit pores with structureless, uncharged walls. The system is modeled on an effective level involving only the macroions, which interact via a combination of a soft-sphere and a screened Coulomb potential. The aim of our study is to identify the role of the range of the macroion-macroion interaction controlled by the inverse Debye screening length, kappa. We also compare to bulk properties at the same chemical potential as determined in parallel grand canonical Monte Carlo simulations. Our results reveal a significant influence of the interaction range which competes, however, with the influence of density. At liquidlike densities a decrease of range yields a decreasing mobility (and a corresponding enhancement of local structure) in the bulk system, whereas the reverse effect occurs in narrow slits with thickness of a few particle diameter. These differences can be traced back to the confinement-induced, and kappa-dependent, reduction of overall density compared to the bulk reservoir. We also show that an increase of kappa softens the oscillations in the normal pressure as function of the wall separation, which is consistent with experimental observations concerning the influence of addition of salt.

  11. Surface charge effects in protein adsorption on nanodiamonds

    Science.gov (United States)

    Aramesh, M.; Shimoni, O.; Ostrikov, K.; Prawer, S.; Cervenka, J.

    2015-03-01

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins

  12. Analytical estimation of effective charges at saturation in Poisson-Boltzmann cell models

    CERN Document Server

    Trizac, E; Bocquet, L

    2003-01-01

    We propose a simple approximation scheme for computing the effective charges of highly charged colloids (spherical or cylindrical with infinite length). Within non-linear Poisson-Boltzmann theory, we start from an expression for the effective charge in the infinite-dilution limit which is asymptotically valid for large salt concentrations; this result is then extended to finite colloidal concentration, approximating the salt partitioning effect which relates the salt content in the suspension to that of a dialysing reservoir. This leads to an analytical expression for the effective charge as a function of colloid volume fraction and salt concentration. These results compare favourably with the effective charges at saturation (i.e. in the limit of large bare charge) computed numerically following the standard prescription proposed by Alexander et al within the cell model.

  13. Two rods confined by positive plates: effective forces and charge distribution profiles

    Energy Technology Data Exchange (ETDEWEB)

    Odriozola, G; Jimenez-Angeles, F; Lozada-Cassou, M [Programa de IngenierIa Molecular, Instituto Mexicano del Petroleo, Lazaro Cardenas 152, 07730 Mexico, DF (Mexico)

    2006-09-13

    The effect of confinement on the interaction force between two negatively charged rods is studied through Monte Carlo simulations. Confinement is produced by two parallel, charged or uncharged plates. The system is immersed in a 0.1 M 1-1 restricted primitive model electrolyte. The effect on the rod-rod effective force by the plate charge distribution is analysed. A strong modification of the rod-rod effective force due to confinement is found, as compared to the bulk case. In particular, rod-rod attraction was found for plates having a charge equal to that of fully charged bilipid bilayers. In spite of the simplicity of the model, these results agree with some DNA-phospholipid experimental observations. On the other hand, for a model having the plate charges fixed on a grid, very long range, oscillatory rod-rod effective forces were obtained.

  14. Space Charge Effects and Limitations in the CERN Proton Synchrotron

    CERN Document Server

    Wasef, R; Damerau, H; Gilardoni, S; Hancock, S; Hernalsteens, C; Huschauer, A; Schmidt, F; Franchetti, G

    2013-01-01

    Space charge produces a large incoherent tune-spread which, in presence of betatronic resonances, could lead to beam losses and emittance growth. In the CERN Proton Synchrotron, at the current injection kinetic energy (1.4 GeV) and even at the future kinetic energy (2 GeV), space charge is one of the main limitations for high brightness beams and especially for the future High- Luminosity LHC beams. Several detailed studies and measurements have been carried out to improve the understanding of space charge limitations to determine the maximum acceptable tune spread and identify the most important resonances causing losses and emittance growth.

  15. Evidence for charge exchange effects in electronic excitations in Al by slow singly charged He ions

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, P., E-mail: Pierfrancesco.riccardi@fis.unical.it [Dipartimento di Fisica, Università della Calabria and INFN Gruppo collegato di Cosenza, Via P. Bucci cubo 31C, 87036 – Arcavacata di Rende, Cosenza (Italy); Sindona, A. [Dipartimento di Fisica, Università della Calabria and INFN Gruppo collegato di Cosenza, Via P. Bucci cubo 31C, 87036 – Arcavacata di Rende, Cosenza (Italy); Dukes, C.A. [Laboratory for Astrophysics and Surface Physics, Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2016-09-01

    We report on experiments of secondary electron emission in the interaction of helium ions with aluminum surfaces. Comparison between the electron emission induced by the impact of {sup 3}He{sup +} and {sup 4}He{sup +} on Al illustrates similarities and differences between the two projectiles. The intensity of emission shows the same dependence on velocity for the two isotopes, showing that KEE yields for helium ions impact on Al are dominated by direct excitation of valence electrons and not by electron promotion. Electron promotion and charge transfer processes are unambiguously identified by the observation of Auger electron emission from Al, at energies below the excitation threshold of Al–Al collisions, indicating energy losses for the projectiles higher than those commonly considered.

  16. Mechano-chemical effects in weakly charged porous media.

    Science.gov (United States)

    Zholkovskij, Emiliy K; Yaroshchuk, Andriy E; Koval'chuk, Volodymyr I; Bondarenko, Mykola P

    2015-08-01

    The paper is concerned with mechano-chemical effects, namely, osmosis and pressure-driven separation of ions that can be observed when a charged porous medium is placed between two electrolyte solutions. The study is focused on porous systems with low equilibrium interfacial potentials (about 30 mV or lower). At such low potentials, osmosis and pressure-driven separation of ions noticeably manifest themselves provided that the ions in the electrolyte solutions have different diffusion coefficients. The analysis is conducted by combining the irreversible thermodynamic approach and the linearized (in terms of the normalized equilibrium interfacial potential) version of the Standard Electrokinetic Model. Osmosis and the pressure-driven separation of ions are considered for an arbitrary mixed electrolyte solution and various porous space geometries. It is shown that the effects under consideration are proportional to a geometrical factor which, for all the considered geometries of porous space, can be expressed as a function of porosity and the Λ- parameter of porous medium normalized by the Debye length. For all the studied geometries, this function turns out to be weakly dependent on both the porosity and the geometry type. The latter allows for a rough evaluation of the geometrical factor from experimental data on electric conductivity and hydraulic permeability without previous knowledge of the porous space geometry. The obtained results are used to illustrate how the composition of electrolyte solution affects the mechano-chemical effects. For various examples of electrolyte solution compositions, the obtained results are capable of describing positive, negative and anomalous osmosis, positive and negative rejection of binary electrolytes, and pressure-driven separation of binary electrolyte mixtures.

  17. Hall effect in charged conducting ferroelectric domain walls.

    Science.gov (United States)

    Campbell, M P; McConville, J P V; McQuaid, R G P; Prabhakaran, D; Kumar, A; Gregg, J M

    2016-12-12

    Enhanced conductivity at specific domain walls in ferroelectrics is now an established phenomenon. Surprisingly, however, little is known about the most fundamental aspects of conduction. Carrier types, densities and mobilities have not been determined and transport mechanisms are still a matter of guesswork. Here we demonstrate that intermittent-contact atomic force microscopy (AFM) can detect the Hall effect in conducting domain walls. Studying YbMnO3 single crystals, we have confirmed that p-type conduction occurs in tail-to-tail charged domain walls. By calibration of the AFM signal, an upper estimate of ∼1 × 10(16) cm(-3) is calculated for the mobile carrier density in the wall, around four orders of magnitude below that required for complete screening of the polar discontinuity. A carrier mobility of∼50 cm(2)V(-1)s(-1) is calculated, about an order of magnitude below equivalent carrier mobilities in p-type silicon, but sufficiently high to preclude carrier-lattice coupling associated with small polarons.

  18. Intramolecular charge transfer effects on 3-aminobenzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Stalin, T. [Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, Tamil Nadu (India); Rajendiran, N. [Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, Tamil Nadu (India)], E-mail: drrajendiran@rediffmail.com

    2006-03-20

    Effect of solvents, buffer solutions of different pH and {beta}-cyclodextrin on the absorption and fluorescence spectra of 3-aminobenzoic acid (3ABA) have been investigated. The solid inclusion complex of 3ABA with {beta}-CD is discussed by UV-Vis, fluorimetry, semiempirical quantum calculations (AM1), FT-IR, {sup 1}H NMR and Scanning Electron Microscope (SEM). The thermodynamic parameters ({delta}H, {delta}G and {delta}S) of the inclusion process are also determined. The experimental results indicated that the inclusion processes is an exothermic and spontaneous. The large Stokes shift emission in solvents with 3ABA are correlated with different solvent polarity scales suggest that, 3ABA molecule is more polar in the S{sub 1} state. Solvent, {beta}-CD studies and excited state dipole moment values confirms that the presence of intramolecular charge transfer (ICT) in 3ABA. Acidity constants for different prototropic equilibria of 3ABA in the S{sub 0} and S{sub 1} states are calculated. {beta}-Cyclodextrin studies shows that 3ABA forms a 1:1 inclusion complex with {beta}-CD. {beta}-CD studies suggest COOH group present in non-polar part and amino group present in hydrophilic part of the {beta}-CD cavity. A mechanism is proposed to explain the inclusion process.

  19. Hall effect in charged conducting ferroelectric domain walls

    Science.gov (United States)

    Campbell, M. P.; McConville, J. P. V.; McQuaid, R. G. P.; Prabhakaran, D.; Kumar, A.; Gregg, J. M.

    2016-12-01

    Enhanced conductivity at specific domain walls in ferroelectrics is now an established phenomenon. Surprisingly, however, little is known about the most fundamental aspects of conduction. Carrier types, densities and mobilities have not been determined and transport mechanisms are still a matter of guesswork. Here we demonstrate that intermittent-contact atomic force microscopy (AFM) can detect the Hall effect in conducting domain walls. Studying YbMnO3 single crystals, we have confirmed that p-type conduction occurs in tail-to-tail charged domain walls. By calibration of the AFM signal, an upper estimate of ~1 × 1016 cm-3 is calculated for the mobile carrier density in the wall, around four orders of magnitude below that required for complete screening of the polar discontinuity. A carrier mobility of~50 cm2V-1s-1 is calculated, about an order of magnitude below equivalent carrier mobilities in p-type silicon, but sufficiently high to preclude carrier-lattice coupling associated with small polarons.

  20. Particles inside electrolytes with ion-specific interactions, their effective charge distributions, and effective interactions

    Science.gov (United States)

    Ding, Mingnan; Liang, Yihao; Xing, Xiangjun

    2016-10-01

    In this work, we explore the statistical physics of colloidal particles that interact with electrolytes via ion-specific interactions. Firstly we study particles interacting weakly with electrolyte using linear response theory. We find that the mean potential around a particle is linearly determined by the effective charge distribution of the particle, which depends both on the bare charge distribution and on ion-specific interactions. We also discuss the effective interaction between two such particles and show that, in the far field regime, it is bilinear in the effective charge distributions of two particles. We subsequently generalize the above results to the more complicated case where particles interact strongly with the electrolyte. Our results indicate that in order to understand the statistical physics of non-dilute electrolytes, both ion-specific interactions and ionic correlations have to be addressed in a single unified and consistent framework. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174196 and 91130012).

  1. Lithium-Ion Battery Failure: Effects of State of Charge and Packing Configuration

    Science.gov (United States)

    2016-08-22

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6180--16-9689 Lithium-Ion Battery Failure: Effects of State of Charge and Packing ...PAGES 17. LIMITATION OF ABSTRACT Lithium-Ion Battery Failure: Effects of State of Charge and Packing Configuration Neil S. Spinner,* Katherine M. Hinnant...geometries, abuse scenarios, and analysis techniques. In this report, different states of charge and packing configurations of a commercially available

  2. Cost-Effectiveness Comparison of Coupler Designs of Wireless Power Transfer for Electric Vehicle Dynamic Charging

    Directory of Open Access Journals (Sweden)

    Weitong Chen

    2016-11-01

    Full Text Available This paper presents a cost-effectiveness comparison of coupler designs for wireless power transfer (WPT, meant for electric vehicle (EV dynamic charging. The design comparison of three common types of couplers is first based on the raw material cost, output power, transfer efficiency, tolerance of horizontal offset, and flux density. Then, the optimal cost-effectiveness combination is selected for EV dynamic charging. The corresponding performances of the proposed charging system are compared and analyzed by both simulation and experimentation. The results verify the validity of the proposed dynamic charging system for EVs.

  3. Measurements of Charge Sharing Effects in Pixilated CZT/CdTe Detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl

    2007-01-01

    Te pixel detector samples. The results are used for the development of the large area X-ray and Gamma ray detector for the Atmosphere-Space Interactions Monitor (ASIM) planned for the ISS ESA Columbus module. Charge sharing measurements on detector samples with identical size and pixel geometry......In this paper, charge sharing and charge loss effects in pixilated CZT/CdTe detectors are investigated by measurements. We measured charge sharing effects function of the inter-pixel gap (with same pixel pitch), the photon energy and the detector bias voltage for a large numbers of CZT and Cd...

  4. ISS Charging Hazards and Low Earth Orbit Space Weather Effects

    Science.gov (United States)

    Minow, Joseph; Parker, L.; Coffey, V.; Wright K.; Koontz, S.; Edwards, D.

    2008-01-01

    Current collection by high voltage solar arrays on the International Space Station (ISS) drives the vehicle to negative floating potentials in the low Earth orbit daytime plasma environment. Pre-flight predictions of ISS floating potentials Phi greater than |-100 V| suggested a risk for degradation of dielectric thermal control coatings on surfaces in the U.S. sector due to arcing and an electrical shock hazard to astronauts during extravehicular activity (EVA). However, hazard studies conducted by the ISS program have demonstrated that the thermal control material degradation risk is effectively mitigated during the lifetime of the ISS vehicle by a sufficiently large ion collection area present on the vehicle to balance current collection by the solar arrays. To date, crew risk during EVA has been mitigated by operating one of two plasma contactors during EVA to control the vehicle potential within Phi less than or equal to |-40 V| with a backup process requiring reorientation of the solar arrays into a configuration which places the current collection surfaces into wake. This operation minimizes current collection by the solar arrays should the plasma contactors fail. This paper presents an analysis of F-region electron density and temperature variations at low and midlatitudes generated by space weather events to determine what range of conditions represent charging threats to ISS. We first use historical ionospheric plasma measurements from spacecraft operating at altitudes relevant to the 51.6 degree inclination ISS orbit to provide an extensive database of F-region plasma conditions over a variety of solar cycle conditions. Then, the statistical results from the historical data are compared to more recent in-situ measurements from the Floating Potential Measurement Unit (FPMU) operating on ISS in a campaign mode since its installation in August, 2006.

  5. Effects of charging and electric field on graphene functionalized with titanium.

    Science.gov (United States)

    Gürel, H Hakan; Ciraci, S

    2013-07-10

    Titanium atoms are adsorbed to graphene with a significant binding energy and render diverse functionalities to it. Carrying out first-principles calculations, we investigated the effects of charging and static electric field on the physical and chemical properties of graphene covered by Ti adatoms. When uniformly Ti covered graphene is charged positively, its antiferromagnetic ground state changes to ferromagnetic metal and attains a permanent magnetic moment. Static electric field applied perpendicularly causes charge transfer between Ti and graphene, and can induce metal-insulator transition. While each Ti adatom adsorbed to graphene atom can hold four hydrogen molecules with a weak binding, these molecules can be released by charging or applying electric field perpendicularly. Hence, it is demonstrated that charging and applied static electric field induce quasi-continuous and side specific modifications in the charge distribution and potential energy of adatoms absorbed to single-layer nanostructures, resulting in fundamentally crucial effects on their physical and chemical properties.

  6. Weak non-linear surface charging effects in electrolytic films

    OpenAIRE

    Dean, D. S.; Horgan, R. R.

    2002-01-01

    A simple model of soap films with nonionic surfactants stabilized by added electrolyte is studied. The model exhibits charge regularization due to the incorporation of a physical mechanism responsible for the formation of a surface charge. We use a Gaussian field theory in the film but the full non-linear surface terms which are then treated at a one-loop level by calculating the mean-field Poisson-Boltzmann solution and then the fluctuations about this solution. We carefully analyze the reno...

  7. Electric field confinement effect on charge transport in organic field-effect transistors

    NARCIS (Netherlands)

    Li, X.; Kadashchuk, A.; Fishchuk, I.I.; Smaal, W.T.T.; Gelinck, G.H.; Broer, D.J.; Genoe, J.; Heremans, P.; Bässler, H.

    2012-01-01

    While it is known that the charge-carrier mobility in organic semiconductors is only weakly dependent on the electric field at low fields, the experimental mobility in organic field-effect transistors using silylethynyl-substituted pentacene is found to be surprisingly field dependent at low source-

  8. Charging process of polyurethane based composites under electronic irradiation: Effects of cellulose fiber content

    Energy Technology Data Exchange (ETDEWEB)

    Hadjadj, Aomar; Jbara, Omar; Tara, Ahmed; Gilliot, Mickael [Laboratoire d' Ingénierie et Sciences des Matériaux (LISM EA 4695), Université de Reims Champagne-Ardenne, 51687 Reims cedex 2 (France); Dellis, Jean-Luc [Laboratoire de Physique de la Matière Condensée (LPMC EA 2081), Université de Picardie Jules Vernes, 80009 Amiens cedex 1 (France)

    2013-09-23

    The study deals with the charging effect of polyurethanes-based composites reinforced with cellulose fibers, under electronic beam irradiation in a scanning electron microscope. The results indicate that the leakage current and the trapped charge as well as the kinetics of charging process significantly change beyond a critical concentration of 10% cellulose fibers. These features are correlated with the cellulose concentration-dependence of the electrical properties, specifically resistivity and capacitance, of the composite.

  9. Charging process of polyurethane based composites under electronic irradiation: Effects of cellulose fiber content

    Science.gov (United States)

    Hadjadj, Aomar; Jbara, Omar; Tara, Ahmed; Gilliot, Mickael; Dellis, Jean-Luc

    2013-09-01

    The study deals with the charging effect of polyurethanes-based composites reinforced with cellulose fibers, under electronic beam irradiation in a scanning electron microscope. The results indicate that the leakage current and the trapped charge as well as the kinetics of charging process significantly change beyond a critical concentration of 10% cellulose fibers. These features are correlated with the cellulose concentration-dependence of the electrical properties, specifically resistivity and capacitance, of the composite.

  10. Charge Splitting In Situ Recorder (CSIR) for Real-Time Examination of Plasma Charging Effect in FinFET BEOL Processes.

    Science.gov (United States)

    Tsai, Yi-Pei; Hsieh, Ting-Huan; Lin, Chrong Jung; King, Ya-Chin

    2017-09-18

    A novel device for monitoring plasma-induced damage in the back-end-of-line (BEOL) process with charge splitting capability is first-time proposed and demonstrated. This novel charge splitting in situ recorder (CSIR) can independently trace the amount and polarity of plasma charging effects during the manufacturing process of advanced fin field-effect transistor (FinFET) circuits. Not only does it reveal the real-time and in situ plasma charging levels on the antennas, but it also separates positive and negative charging effect and provides two independent readings. As CMOS technologies push for finer metal lines in the future, the new charge separation scheme provides a powerful tool for BEOL process optimization and further device reliability improvements.

  11. Electrostatic Charge Effects on Pharmaceutical Aerosol Deposition in Human Nasal–Laryngeal Airways

    Directory of Open Access Journals (Sweden)

    Jinxiang Xi

    2014-01-01

    Full Text Available Electrostatic charging occurs in most aerosol generation processes and can significantly influence subsequent particle deposition rates and patterns in the respiratory tract through the image and space forces. The behavior of inhaled aerosols with charge is expected to be most affected in the upper airways, where particles come in close proximity to the narrow turbinate surface, and before charge dissipation occurs as a result of high humidity. The objective of this study was to quantitatively evaluate the deposition of charged aerosols in an MRI-based nasal–laryngeal airway model. Particle sizes of 5 nm–30 µm and charge levels ranging from neutralized to ten times the saturation limit were considered. A well-validated low Reynolds number (LRN k–ω turbulence model and a discrete Lagrangian tracking approach that accounted for electrostatic image force were employed to simulate the nasal airflow and aerosol dynamics. For ultrafine aerosols, electrostatic charge was observed to exert a discernible but insignificant effect. In contrast, remarkably enhanced depositions were observed for micrometer particles with charge, which could be one order of magnitude larger than no-charge depositions. The deposition hot spots shifted towards the anterior part of the upper airway as the charge level increased. Results of this study have important implications for evaluating nasal drug delivery devices and for assessing doses received from pollutants, which often carry a certain level of electric charges.

  12. The effect of dc poling duration on space charge relaxation in virgin XLPE cable peelings

    Energy Technology Data Exchange (ETDEWEB)

    Tzimas, Antonios; Rowland, Simon M [University of Manchester, School of Electrical and Electronic Engineering, Manchester, M60 1QD (United Kingdom); Dissado, Leonard A [University of Leicester, Department of Engineering, Leicester, LE1 7RH (United Kingdom); Fu, Mingli [AREVA T and D UK Limited, St Leonards Avenue, Stafford, ST17 4LX (United Kingdom); Nilsson, Ulf H, E-mail: Antonios.Tzimas@manchester.ac.u [Borealis AB, SE-444 86, Stenungsund (Sweden)

    2010-06-02

    The effect of dc poling time upon the time-dependent decay of space charge in insulation peelings of cross-linked polyethylene (XLPE) cable that had not previously experienced either electrical or thermal stressing is investigated. Two dc poling durations were used, 2 h and 26 h at an electric field of 50 kV mm{sup -1} and at ambient temperature. Space charge was measured in the two samples investigated both during space charge accumulation and throughout its subsequent decay. The results show that the length of dc poling plays an important role in the subsequent decay. Despite the fact that both samples have had the same amount of space charge by the end of both short and long poling durations the time dependence of the space charge decay is different. Most of the charge stored in the sample that had experienced the short time poling decays rapidly after voltage removal. On the other hand, the charge that is stored in the sample with the long dc poling duration decays slowly and its decay occurs in two stages. The data, which are analysed by means of the de-trapping theory of space charge decay, imply that the charge stored in the material has occupied energy states with different trap depth ranges. The two poling durations lead to different relative amounts of charge in each of the two trap depth ranges. Possible reasons for this are discussed.

  13. The effect of dc poling duration on space charge relaxation in virgin XLPE cable peelings

    Science.gov (United States)

    Tzimas, Antonios; Rowland, Simon M.; Dissado, Leonard A.; Fu, Mingli; Nilsson, Ulf H.

    2010-06-01

    The effect of dc poling time upon the time-dependent decay of space charge in insulation peelings of cross-linked polyethylene (XLPE) cable that had not previously experienced either electrical or thermal stressing is investigated. Two dc poling durations were used, 2 h and 26 h at an electric field of 50 kV mm-1 and at ambient temperature. Space charge was measured in the two samples investigated both during space charge accumulation and throughout its subsequent decay. The results show that the length of dc poling plays an important role in the subsequent decay. Despite the fact that both samples have had the same amount of space charge by the end of both short and long poling durations the time dependence of the space charge decay is different. Most of the charge stored in the sample that had experienced the short time poling decays rapidly after voltage removal. On the other hand, the charge that is stored in the sample with the long dc poling duration decays slowly and its decay occurs in two stages. The data, which are analysed by means of the de-trapping theory of space charge decay, imply that the charge stored in the material has occupied energy states with different trap depth ranges. The two poling durations lead to different relative amounts of charge in each of the two trap depth ranges. Possible reasons for this are discussed.

  14. Particle and substrate charge effects on colloidal self-assembly in a sessile drop.

    Science.gov (United States)

    Yan, Qingfeng; Gao, Li; Sharma, Vyom; Chiang, Yet-Ming; Wong, C C

    2008-10-21

    By direct video monitoring of dynamic colloidal self-assembly during solvent evaporation in a sessile drop, we investigated the effect of surface charge on the ordering of colloidal spheres. The in situ observations revealed that the interaction between charged colloidal spheres and substrates affects the mobility of colloidal spheres during convective self-assembly, playing an important role in the colloidal crystal growth process. Both ordered and disordered growth was observed depending on different chemical conditions mediated by surface charge and surfactant additions to the sessile drop system. These different self-assembly behaviors were explained by the Coulombic and hydrophobic interactions between surface-charged colloidal spheres and substrates.

  15. Direct Simulation Monte Carlo exploration of charge effects on aerosol evolution

    Science.gov (United States)

    Palsmeier, John F.

    Aerosols are potentially generated both during normal operations in a gas cooled Generation IV nuclear reactor and in all nuclear reactors during accident scenarios. These aerosols can become charged due to aerosol generation processes, radioactive decay of associated fission products, and ionizing atmospheres. Thus the role of charge on aerosol evolution, and hence on the nuclear source term, has been an issue of interest. There is a need for both measurements and modeling to quantify this role as these effects are not currently accounted for in nuclear reactor modeling and simulation codes. In this study the role of charge effects on the evolution of a spatially homogenous aerosol was explored via the application of the Direct Simulation Monte Carlo (DSMC) technique. The primary mechanisms explored were those of coagulation and electrostatic dispersion. This technique was first benchmarked by comparing the results obtained from both monodisperse and polydisperse DSMC evolution of charged aerosols with the results obtained by respectively deterministic and sectional techniques. This was followed by simulation of several polydisperse charged aerosols. Additional comparisons were made between the evolutions of charged and uncharged aerosols. The results obtained using DSMC in simple cases were comparable to those obtained from other techniques, without the limitations associated with more complex cases. Multicomponent aerosols of different component densities were also evaluated to determine the charge effects on their evolution. Charge effects can be significant and further explorations are warranted.

  16. Effect of dynamically charged helium on tensile properties of V-4Cr-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L. [Argonne National Lab., IL (United States)

    1995-04-01

    The objective of this work is to determine the effect of displacement damage and dynamically charged helium on tensile properties of V-4Cr-4Ti alloy irradiated to 18-31 dpa at 425-600{degree}C in the Dynamic Helium Charging Experiment (DHCE).

  17. Effect of frequency variation on electromagnetic pulse interaction with charges and plasma

    NARCIS (Netherlands)

    Khachatryan, A.G.; Goor, van F.A.; Verschuur, J.W.J.; Boller, K.-J.

    2005-01-01

    The effect of frequency variation (chirp) in an electromagnetic (EM) pulse on the pulse interaction with a charged particle and plasma is studied. Various types of chirp and pulse envelopes are considered. In vacuum, a charged particle receives a kick in the polarization direction after interaction

  18. Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria

    NARCIS (Netherlands)

    Gottenbos, B; Grijpma, DW; van der Mei, HC; Feijen, J; Busscher, HJ

    The infection of biomaterials is determined by an interplay of adhesion and surface growth of the infecting organisms. In this study, the antimicrobial effects on adhering bacteria of a positively charged poly(methacrylate) surface ( potential +12 mV) were compared with those of negatively charged

  19. Incoherent effect of space charge and electron cloud

    Science.gov (United States)

    Franchetti, G.; Hofmann, I.; Fischer, W.; Zimmermann, F.

    2009-12-01

    Trapping by resonances or scattering off resonances induced by space charge (SC) or electron cloud (EC) in conjunction with synchrotron motion can explain observations of slow beam loss and emittance growth, which are often accompanied by changes in the longitudinal beam profile. In this paper we review the recent progress in understanding and modeling of the underlying mechanisms, highlight the differences and similarities between space charge and electron cloud, and discuss simulation results in the light of experimental observations, e.g., at GSI, CERN, and BNL. In particular, we address the role of the pinched electrons and describe in detail the complexity of the electron pinch formation. We present simulation results within a dipole or in a field-free region of the beam pipe, which reveal the morphology and main features of this phenomenon, explain the physical origin of the complex electron structures like stripe in either field configuration, and discuss the dependence on some key parameters.

  20. Incoherent Effect of Space Charge and Electron Cloud

    CERN Document Server

    Franchetti, G; Fischer, W; Zimmermann, F

    2009-01-01

    Trapping by resonances or scattering off resonances induced by space charge (SC) or electron cloud (EC) in conjunction with synchrotron motion can explain observations of slow beam loss and emittance growth, which are often accompanied by changes in the longitudinal beam profile. In this paper we review the recent progress in understanding and modeling of the underlying mechanisms, highlight the differences and similarities between space charge and electron cloud, and discuss simulation results in the light of experimental observations, e.g., at GSI, CERN, and BNL. In particular, we address the role of the pinched electrons and describe in detail the complexity of the electron pinch formation. We present simulation results within a dipole or in a field-free region of the beam pipe, which reveal the morphology and main features of this phenomenon, explain the physical origin of the complex electron structures like stripe in either field configuration, and discuss the dependence on some key parameters.

  1. The charge memory effect in polystyrene-based composite structures

    Science.gov (United States)

    Belogorokhov, I. A.; Belogorokhova, L. I.; Kotova, M. S.; Dronov, M. A.

    2016-09-01

    It is shown that the addition of light-sensitive particles to a polystyrene matrix enables control over processes of resistive voltage switching in the composite material, which involve photoinduced transitions between states with different conductivities. This specific feature of polymeric composite materials based on polystyrene and heterocyclic rings can be accounted for in terms of the model of charge accumulation and that of conducting channels.

  2. Effect of Coulomb scattering from trapped charges on the mobility in an organic field-effect transistor

    Science.gov (United States)

    Sharma, A.; Janssen, N. M. A.; Mathijssen, S. G. J.; de Leeuw, D. M.; Kemerink, M.; Bobbert, P. A.

    2011-03-01

    We investigate the effect of Coulomb scattering from trapped charges on the mobility in the two-dimensional channel of an organic field-effect transistor. The number of trapped charges can be tuned by applying a prolonged gate bias. Surprisingly, after increasing the number of trapped charges to a level where strong Coulomb scattering is expected, the mobility has decreased only slightly. Simulations show that this can be explained by assuming that the trapped charges are located in the gate dielectric at a significant distance from the channel instead of in or very close to the channel. The effect of Coulomb scattering is then strongly reduced.

  3. Transverse Space-Charge Effects in Circular Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Sacherer, Frank James

    1968-10-30

    The particles in an accelerator interact with one another by electromagnetic forces and are held together by external focusing forces. Such a many-body system has a large number of transverse modes of oscillation (plasma oscillations) that can be excited at characteristic frequencies by errors in the external guide field. In Part I we examine one mode of oscillation in detail, namely the quadrupole mode that is excited in uniformly charged beams by gradient errors. We derive self-consistent equations of motion for the beam envelope and solve these equations for the case in which the space-charge force is much less than the external focusing force, i.e., for strong-focusing synchrotrons. We find that the resonance intensity is shifted from the value predicted by the usual transverse incoherent space-charge limit; moreover, because the space-charge force depends on the shape and size of the beam, the beam growth in always limited. For gradient errors of the magnitude normally present in strong-focusing synchrotrons, the increase in beam size is small provided the beam parameters are properly chosen; otherwise the growth may be large. Thus gradient errors need not impose a limit on the number of particles that can be accelerated. In Part II we examine the other modes of collective oscillation that are excited by machine imperfections. For simplicity we consider only one-dimensional beams that are confined by harmonic potentials, and only small-amplitude oscillations. The linearized Vlasov and Poisson equations are used to find the twofold infinity of normal modes and eigenfrequencies for the stationary distribution that has uniform charge density in real space. In practice, only the low-order modes (the dipole, quadrupole, sextupole, and one or two additional modes) will be serious, and the resonant conditions for these modes are located on a tune diagram. These results, which are valid for all beam intensities, are compared with the known eigenfrequencies for the

  4. High temperature thermocline TES - effect of system pre-charging on thermal stratification

    Science.gov (United States)

    Zavattoni, Simone A.; Barbato, Maurizio C.; Zanganeh, Giw; Pedretti, Andrea

    2016-05-01

    The purpose of this study is to evaluate, by means of a computational fluid dynamics approach, the effect of performing an initial charging, or pre-charging, on thermal stratification of an industrial-scale thermocline TES unit, based on a packed bed of river pebbles. The 1 GWhth TES unit under investigation is exploited to fulfill the energy requirement of a reference 80 MWe concentrating solar power plant which uses air as heat transfer fluid. Three different scenarios, characterized by 4 h, 6 h and 8 h of pre-charging, were compared with the reference case of TES system operating without pre-charging. For each of these four scenarios, a total of 30 consecutive charge/discharge cycles, of 12 h each, were simulated and the effect of TES pre-charging on thermal stratification was qualitatively evaluated, by means of a stratification efficiency, based on the second-law of thermodynamics. On the basis of the simulations results obtained, the effect of pre-charging, more pronounced during the first cycles, is not only relevant in reducing the time required by the TES to achieve a stable thermal stratification into the packed bed but also to improve the performance at startup when the system is charged for the first time.

  5. Effect of charge on the ferroelectric field effect in strongly correlated oxides

    Science.gov (United States)

    Chen, Xuegang; Xiao, Zhiyong; Zhang, Xiaozhe; Zhang, Le; Zhao, Weiwei; Xu, Xiaoshan; Hong, Xia

    We present a systematic study of the effect of charge on the ferroelectric field effect modulation of various strongly correlated oxide materials. We have fabricated high quality epitaxial heterostructures composed of a ferroelectric Pb(Zr,Ti)O3 (PZT) gate and a correlated oxide channel, including Sm0.5Nd0.5NiO3 (SNNO), La0.7Sr0.3MnO3 (LSMO), SNNO/LSMO bilayers, and NiCo2O4 (NCO). The Hall effect measurements reveal a carrier density of ~4 holes/u.c. (0.4 cm2V-1s-1) for SNNO to ~2 holes/u.c. (27 cm2V-1s-1) for NCO. We find the magnitude of the field effect is closely related to both the intrinsic carrier density and carrier mobility of the channel material. For devices employing the SNNO/LSMO bilayer channel, we believe the charge transfer between the two correlated oxides play an important role in the observed resistance modulation. The screening capacitor of the channel materials and the interfacial defect states also have significant impact on the retention characteristics of the field effect. Our study reveals the critical role of charge in determining the interfacial coupling between ferroelectric and magnetic oxides, and has important implications in developing ferroelectric-controlled Mott memory devices.

  6. Effective potentials for charge-helium and charge-singly-ionized helium interactions in a dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T.S.; Amirov, S.M.; Moldabekov, Zh.A. [Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty (Kazakhstan)

    2016-06-15

    The effective electron (proton)-He and electron (proton)-He{sup +} screened pair interaction potentials arising as a result of partial screening of the helium nucleus field by bound electrons, taking into account both screening by free charged particles and quantum diffraction effect in dense plasmas were derived. The impact of quantum effects on screening was analyzed. It was shown that plasma polarization around the atom leads to the additional repulsion (attraction) between the electron (proton) and the helium atom. The method of constructing the full electron (proton)-He and electron (proton)-He{sup +} screened pair interaction potentials as the sum of the derived potentials with the polarization potential and exchange potential is discussed. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. On Beam Matching and the Space-Charge Effect in protoDUNE-SP

    CERN Document Server

    Mandalia, Jesal Paresh

    2017-01-01

    In this project simulations using LArSoft have been analysed in particular looking at how the space-charge effect will affect the matching of particle tracks from the beam line monitor to the TPC and the TPC's performance measuring $\\frac{dE}{dx}$ in protoDUNE-SP. The analysis here provides some preliminary calibrations for protoDUNE-SP to account for the impact the space charge effect will have. Many areas of pion cross section analysis will be affected by the space charge effect so it is vital for a calibration to be developed.

  8. Schwinger Effect in (A)dS and Charged Black Hole

    CERN Document Server

    Kim, Sang Pyo

    2015-01-01

    In an (Anti-) de Sitter space and a charged black hole the Schwinger effect is either enhanced by the Hawking radiation or suppressed by the negative curvature. We use the contour integral method to calculate the production of charged pairs in the global (A)dS space. The charge emission from near-extremal black hole is found from the AdS geometry near the horizon and interpreted as the Schwinger effect in a Rindler space with the surface gravity for the acceleration as well as the Schwinger effect in AdS space.

  9. The effect of surface transport on water desalination by porous electrodes undergoing capacitive charging

    CERN Document Server

    Shocron, Amit N

    2016-01-01

    Capacitive deionization (CDI) is a technology in which water is desalinated by ion electrosorption into the electric double layers (EDLs) of charging porous electrodes. In recent years significant advances have been made in modeling the charge and salt dynamics in a CDI cell, but the possible effect of surface transport within diffuse EDLs on these dynamics has not been investigated. We here present theory which includes surface transport in describing the dynamics of a charging CDI cell. Through our numerical solution to the presented models, the possible effect of surface transport on the CDI process is elucidated. While at some model conditions surface transport enhances the rate of CDI cell charging, counter-intuitively this additional transport pathway is found to slow down cell charging at other model conditions.

  10. Measurement of charge with an active integrator in the presence of noise and pileup effects. A choice of parameters in the charge division method

    Energy Technology Data Exchange (ETDEWEB)

    Fanet, H.; Lugol, J.C. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Physique Nucleaire)

    1991-03-01

    In the presence of electronics noise and pileup effects it is possible to measure charge with an active integrator. The subject of this paper is to deal with the choice of measurement parameters. An application of position sensing with the charge division method is studied and results are compared to those obtained with POMME polarimeter electronics. (orig.).

  11. Charge Penetration Effects in Rare-Earth Crystal Fields.

    Science.gov (United States)

    1982-06-01

    Interactions, 3. Three-Parameter Theory of Crystal Fields, Harry Diamond Laboratories HDL-TR-1673 (June 1975). 2R. M. Sternheimer , Phys. Rev., 84 (1951...R. M. Sternheimer , Phys. Rev., 84 (1951), 244. (3) R. E. Watson and A. J. Freeman, Phys. Rev., 135 (1964), A1209. (4) D. Sengupta and J. 0. Artman...A RARE-EARTH ION INTO THE CHARGE DI! THE RESULTS ARE CAST INTO A FORM REMINISCENT OF THE STERNHEIMER SHIELDING FA( A PRIME NM(R TO THE NTH POWER) TO

  12. Dynamical image-charge effect in molecular tunnel junctions

    DEFF Research Database (Denmark)

    Jin, Chengjun; Thygesen, Kristian Sommer

    2014-01-01

    When an electron tunnels between two metal contacts it temporarily induces an image charge (IC) in the electrodes which acts back on the tunneling electron. It is usually assumed that the IC forms instantaneously such that a static model for the image potential applies. Here we investigate how th...... that the dynamical corrections can reduce the conductance by more than a factor of two when compared to static GW or density functional theory where the molecular energy levels have been shifted to match the exact quasiparticle levels....

  13. Space-charge effects in liquid argon ionization chambers

    Science.gov (United States)

    Rutherfoord, J. P.; Walker, R. B.

    2015-03-01

    We have uniformly irradiated liquid argon ionization chambers with betas from high-activity 90Sr sources. The radiation environment is similar to that in the liquid argon calorimeters which are part of the ATLAS detector installed at CERN's Large Hadron Collider (LHC). We measured the resulting ionization current over a wide range of applied potential for two different source activities and for three different chamber gaps. These studies provide operating experience at exceptionally high ionization rates. In particular they indicate a stability at the 0.1% level for these calorimeters over years of operation at the full LHC luminosity when operated in the normal mode at an electric field E = 1.0 kV / mm. We can operate these chambers in the normal mode or in the space-charge limited regime and thereby determine the transition point between the two. This transition point is parameterized by a positive argon ion mobility of μ+ = 0.08 ± 0.02mm2 / V s at a temperature of 88.0±0.5 K and at a pressure of 1.02±0.02 bar. In the space-charge limited regime the ionization currents are degraded and show signs of instability. At the highest electric fields in our study (6.7 kV/mm) the ionization current is still slowly rising with increasing electric field.

  14. Modelling the Effects of Parking Charge and Supply Policy Using System Dynamics Method

    National Research Council Canada - National Science Library

    Zhenyu Mei; Qifeng Lou; Wei Zhang; Lihui Zhang; Fei Shi

    2017-01-01

    .... This paper develops an evaluation model for parking policies using system dynamics. A quantitative study is conducted to examine the effects of parking charge and supply policy on traffic speed...

  15. Topological effects of charge transfer in telomere G-quadruplex: Mechanism on telomerase activation and inhibition

    CERN Document Server

    Wang, Xin

    2015-01-01

    We explore charge transfer in the telomere G-Quadruplex (TG4) DNA theoretically by the nonequilibrium Green's function method, and reveal the topological effect of charge transport in TG4 DNA. The consecutive TG4(CTG4) is semiconducting with 0.2 ~ 0.3eV energy gap. Charges transfers favorably in the consecutive TG4, but are trapped in the non-consecutive TG4 (NCTG4). The global conductance is inversely proportional to the local conductance for NCTG4. The topological structure transition from NCTG4 to CTG4 induces abruptly ~ 3nA charge current, which provide a microscopic clue to understand the telomerase activated or inhibited by TG4. Our findings reveal the fundamental property of charge transfer in TG4 and its relationship with the topological structure of TG4.

  16. Topological Effects of Charge Transfer in Telomere G-Quadruplex Mechanism on Telomerase Activation and Inhibition

    Science.gov (United States)

    Wang, Xin; Liang, Shi-Dong

    2013-02-01

    We explore the charge transfer in the telomere G-Quadruplex (TG4) DNA theoretically by the nonequilibrium Green's function method, and reveal the topological effect of the charge transport in TG4 DNA. The consecutive TG4 (CTG4) is semiconducting with 0.2 0.3 eV energy gap. Charges transfer favorably in the CTG4, but are trapped in the nonconsecutive TG4 (NCTG4). The global conductance is inversely proportional to the local conductance for NCTG4. The topological structure transition from NCTG4 to CTG4 induces abruptly 3nA charge current, which provide a microscopic clue to understand the telomerase activated or inhibited by TG4. Our findings reveal the fundamental property of charge transfer in TG4 and its relationship with the topological structure of TG4.

  17. Fouling control mechanisms of demineralized water backwash: Reduction of charge screening and calcium bridging effects

    KAUST Repository

    Li, Sheng

    2011-12-01

    This paper investigates the impact of the ionic environment on the charge of colloidal natural organic matter (NOM) and ultrafiltration (UF) membranes (charge screening effect) and the calcium adsorption/bridging on new and fouled membranes (calcium bridging effect) by measuring the zeta potentials of membranes and colloidal NOM. Fouling experiments were conducted with natural water to determine whether the reduction of the charge screening effect and/or calcium bridging effect by backwashing with demineralized water can explain the observed reduction in fouling. Results show that the charge of both membranes and NOM, as measured by the zeta potential, became more negative at a lower pH and a lower concentration of electrolytes, in particular, divalent electrolytes. In addition, calcium also adsorbed onto the membranes, and consequently bridged colloidal NOM and membranes via binding with functional groups. The charge screening effect could be eliminated by flushing NOM and membranes with demineralized water, since a cation-free environment was established. However, only a limited amount of the calcium bridging connection was removed with demineralized water backwashes, so the calcium bridging effect mostly could not be eliminated. As demineralized water backwash was found to be effective in fouling control, it can be concluded that the reduction of the charge screening is the dominant mechanism for this. © 2011 Elsevier Ltd.

  18. Multi-frequency inversion-charge pumping for charge separation and mobility analysis in high-k/InGaAs metal-oxide-semiconductor field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Djara, V.; Cherkaoui, K.; Negara, M. A.; Hurley, P. K., E-mail: paul.hurley@tyndall.ie [Tyndall National Institute, University College Cork, Dyke Parade, Cork (Ireland)

    2015-11-28

    An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g} measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.

  19. Charged kaon mass measurement using the Cherenkov effect

    Energy Technology Data Exchange (ETDEWEB)

    Graf, N., E-mail: ngraf@umail.iu.ed [Indiana University, Bloomington, IN 47403 (United States); Lebedev, A. [Harvard University, Cambridge, MA 02138 (United States); Abrams, R.J. [University of Michigan, Ann Arbor, MI 48109 (United States); Akgun, U.; Aydin, G. [University of Iowa, Iowa City, IA 52242 (United States); Baker, W. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Barnes, P.D. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Bergfeld, T. [University of South Carolina, Columbia, SC 29201 (United States); Beverly, L. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Bujak, A. [Purdue University, West Lafayette, IN 47907 (United States); Carey, D. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Dukes, C. [University of Virginia, Charlottesville, VA 22904 (United States); Duru, F. [University of Iowa, Iowa City, IA 52242 (United States); Feldman, G.J. [Harvard University, Cambridge, MA 02138 (United States); Godley, A. [University of South Carolina, Columbia, SC 29201 (United States); Guelmez, E.; Guenaydin, Y.O. [University of Iowa, Iowa City, IA 52242 (United States); Gustafson, H.R. [University of Michigan, Ann Arbor, MI 48109 (United States); Gutay, L. [Purdue University, West Lafayette, IN 47907 (United States); Hartouni, E. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2010-03-21

    The two most recent and precise measurements of the charged kaon mass use X-rays from kaonic atoms and report uncertainties of 14 and 22 ppm yet differ from each other by 122 ppm. We describe the possibility of an independent mass measurement using the measurement of Cherenkov light from a narrow-band beam of kaons, pions, and protons. This technique was demonstrated using data taken opportunistically by the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory which recorded beams of protons, kaons, and pions ranging in momentum from +37 to +63GeV/c. The measured value is 491.3+-1.7MeV/c{sup 2}, which is within 1.4sigma of the world average. An improvement of two orders of magnitude in precision would make this technique useful for resolving the ambiguity in the X-ray data and may be achievable in a dedicated experiment.

  20. Charged Kaon Mass Measurement using the Cherenkov Effect

    CERN Document Server

    Graf, N; Abrams, R J; Akgun, U; Aydin, G; Baker, W; Barnes, P D; Bergfeld, T; Beverly, L; Bujak, A; Carey, D; Dukes, C; Duru, F; Feldman, G J; Godley, A; Gülmez, E; Günaydın, Y O; Gustafson, H R; Gutay, L; Hartouni, E; Hanlet, P; Hansen, S; Heffner, M; Johnstone, C; Kaplan, D; Kamaev, O; Kilmer, J; Klay, J; Kostin, M; Lange, D; Ling, J; Longo, M J; Lu, L C; Materniak, C; Messier, M D; Meyer, H; Miller, D E; Mishra, S R; Nelson, K; Nigmanov, T; Norman, A; Onel, Y; Paley, J M; Park, H K; Penzo, A; Peterson, R J; Raja, R; Rajaram, D; Ratnikov, D; Rosenfeld, C; Rubin, H; Seun, S; Solomey, N; Soltz, R; Swallow, E; Schmitt, R; Subbarao, P; Torun, Y; Tope, T E; Wilson, K; Wright, D; Wu, K

    2009-01-01

    The two most recent and precise measurements of the charged kaon mass use X-rays from kaonic atoms and report uncertainties of 14 ppm and 22 ppm yet differ from each other by 122 ppm. We describe the possibility of an independent mass measurement using the measurement of Cherenkov light from a narrow-band beam of kaons, pions, and protons. This technique was demonstrated using data taken opportunistically by the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory which recorded beams of protons, kaons, and pions ranging in momentum from +37 GeV/c to +63 GeV/c. The measured value is 491.3 +/- 1.7 MeV/c^2, which is within 1.4 sigma of the world average. An improvement of two orders of magnitude in precision would make this technique useful for resolving the ambiguity in the X-ray data and may be achievable in a dedicated experiment.

  1. Self-interaction effects on charge-transfer collisions

    CERN Document Server

    Quashie, Edwin E; Andrade, Xavier; Correa, Alfredo A

    2016-01-01

    In this article, we investigate the role of the self-interaction error in the simulation of collisions using time-dependent density functional theory (TDDFT) and Ehrenfest dynamics. We compare many different approximations of the exchange and correlation potential, using as a test system the collision of $\\mathrm{H^+ + CH_4}$ at $30~\\mathrm{eV}$. We find that semi-local approximations, like PBE, and even hybrid functionals, like B3LYP, produce qualitatively incorrect predictions for the scattering of the proton. This discrepancy appears because the self-interaction error allows the electrons to jump too easily to the proton, leading to radically different forces with respect to the non-self-interacting case. From our results, we conclude that using a functional that is self-interaction free is essential to properly describe charge-transfer collisions between ions and molecules in TDDFT.

  2. Effects of dielectric charging on the output voltage of a capacitive accelerometer

    Science.gov (United States)

    Qu, Hao; Yu, Huijun; Zhou, Wu; Peng, Bei; Peng, Peng; He, Xiaoping

    2016-11-01

    Output voltage drifting observed in one typical capacitive microelectromechanical system (MEMS) accelerometer is discussed in this paper. Dielectric charging effect is located as one of the major determinants of this phenomenon through a combination of experimental and theoretical studies. A theoretical model for the electromechanical effects of the dielectric surface charges within the electrode gap is established to analyze the dielectric charge effect on the output voltage. Observations of output voltage drift against time are fitted to this model in order to estimate the possible dielectric layer thickness. Meanwhile, Auger electron spectroscopy is carried out to analyze the electrode surface material composition and confirms a mixture layer of dielectric SiO2 and Si with a thickness about 5 nm, which is very close to the model estimation. In addition, observation of time-varing output drift in the variable bias voltage experiment indicates the movement of dielectric charge can be controlled by the applied electric field.

  3. Quantitative evaluation of charge-reduction effect in cluster constituent ions passing through a foil

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, A., E-mail: chiba.atsuya@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292 (Japan); Saitoh, Y.; Narumi, K.; Yamada, K. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292 (Japan); Kaneko, T. [Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, kita-ku, Okayama-shi, Okayama 700-0005 (Japan)

    2013-11-15

    Swift cluster ions, which cause characteristic irradiation effects on a solid surface, have a possibility of establishing a new ion irradiation technique for high-sensitivity surface analysis and innovative surface modification. However, the mechanism of cluster irradiation effects has not been understood completely. We have focused on the charge reduction effect in some physical phenomena and performed a quantitative evaluation of the relationship between the charge state and the interatomic distance of the constituent ions moving in the solid. This technique is based on the refined analysis of the divergence angle of the constituent ions resulting from the foil-induced dissociation of the two-atomic molecular ion. The results derived from this analytical approach clearly showed the correlation between the average charge and the interatomic distance of the constituent ions and implied that the average charge of the constituent ions emerging from the foil varies according to the interatomic distance at the instant of cluster dissociation.

  4. Effect of design parameters on enhancement of hydrogen charging in metal hydride reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Y. [Mechanical Engineering Department, Nigde University, 51100 Nigde (Turkey)

    2009-03-15

    The effects of heat transfer mechanisms on the charging process in metal hydride reactors are studied under various charging pressures. Three different cylindrical reactors with the same base dimensions are designed and manufactured. The first one is a closed cylinder cooled with natural convection, the fins are manufactured around the second reactor and the third reactor is cooled with water circulating around the reactor. The temperatures of the reactor at several locations are measured during charging with a range of pressure of 1-10 bar. The third reactor shows the lowest temperature increase with the fastest charging time under all charging pressures investigated. The effective heat transfer coefficients of the reactors are also calculated according to the experimental results and they are found to be 5.5 {+-} 1 W m{sup -2} K{sup -1}, 35 {+-} 2 W m{sup -2} K{sup -1} and 113 {+-} 1 W m{sup -2} K{sup -1}, respectively. The experimental results showed that the charging of hydride reactors is mainly heat transfer dependent and the reactor with better cooling exhibits the fastest charging characteristics. (author)

  5. Effect of topological defects and Coulomb charge on the low energy quantum dynamics of gapped graphene

    CERN Document Server

    Chakraborty, Baishali; Sen, Siddhartha

    2012-01-01

    We study the combined effect of a conical topological defect and a Coulomb charge impurity on the dynamics of Dirac fermions in gapped graphene. Beyond a certain strength of the Coulomb charge, quantum instability sets in, which demarcates the boundary between sub and supercritical values of the charge. In the subcritical regime, for certain values of the system parameters, the allowed boundary conditions in gapped graphene cone can be classified in terms of a single real parameter. We show that the observables such as local density of states, scattering phase shifts and the bound state spectra are sensitive to the value of this real parameter, which is interesting from an empirical point of view. For a supercritical Coulomb charge, we analyze the system with a regularized potential as well as with a zigzag boundary condition and find the effect of the sample topology on the observable features of the system.

  6. Charged Kaon Mass Measurement using the Cherenkov Effect

    Energy Technology Data Exchange (ETDEWEB)

    Graf, N.; /Indiana U.; Lebedev, A.; /Harvard U., Phys. Dept.; Abrams, R.J.; /Michigan U.; Akgun, U.; Aydin, G.; /Iowa U.; Baker, W.; /Fermilab; Barnes, P.D., Jr.; /LLNL, Livermore; Bergfeld, T.; /South Carolina U.; Beverly, L.; /Fermilab; Bujak, A.; /Purdue U.; Carey, D.; /Fermilab /Virginia U. /Iowa U.

    2009-09-01

    The two most recent and precise measurements of the charged kaon mass use X-rays from kaonic atoms and report uncertainties of 14 ppm and 22 ppm yet differ from each other by 122 ppm. We describe the possibility of an independent mass measurement using the measurement of Cherenkov light from a narrow-band beam of kaons, pions, and protons. This technique was demonstrated using data taken opportunistically by the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory which recorded beams of protons, kaons, and pions ranging in momentum from +37 GeV/c to +63 GeV/c. The measured value is 491.3 {+-} 1.7 MeV/c{sup 2}, which is within 1.4{sigma} of the world average. An improvement of two orders of magnitude in precision would make this technique useful for resolving the ambiguity in the X-ray data and may be achievable in a dedicated experiment.

  7. Effective electrostatic interactions among charged thermo-responsive microgels immersed in a simple electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    González-Mozuelos, P. [Departamento de Física, Cinvestav del I. P. N., Av. Instituto Politécnico Nacional 2508, Mexico, Distrito Federal, C. P. 07360 (Mexico)

    2016-02-07

    This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact description of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short

  8. Effective electrostatic interactions among charged thermo-responsive microgels immersed in a simple electrolyte

    Science.gov (United States)

    González-Mozuelos, P.

    2016-02-01

    This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact description of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short

  9. EFFECT OF SPACE CHARGE ON STABILITY OF BEAM DISTRIBUTION IN THE SNS RING.

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV, A.V.; WEI, J.; GLUCKSTERN, R.L.

    2001-06-18

    In the Spallation Neutron Source (SNS) ring, multi-turn injection is employed to obtain a large transverse beam size which significantly reduces the space-charge tune shift of the accumulated beam. Careful choice of the painting scheme and bump function is required to obtain the desired beam profile together with low beam loss. In this paper we examine, both analytically and numerically, the effect of the space charge on the beam profile during multi-turn injection painting.

  10. A General Four-Fermion Effective Lagrangian for Dirac and Majorana Neutrino-Charged Matter Interactions

    CERN Document Server

    Mendy, J E B; Mendy, Jean El Bachir; Govaerts, Jan

    2002-01-01

    Given the most general Lorentz invariant four-fermion effective interaction possible for two neutrinos and two charged fermions, whether quarks or leptons, all possible 2-to-2 processes involving two neutrinos, whether Dirac or Majorana ones, and two charged fermions are considered. Explicit and convenient expressions are given for the associated differential cross-sections. Such a parametrization should help assess the sensitivity to physics beyond the Standard Model of neutrino beam experiments which are in the design stage at neutrino factories.

  11. Numerical Investigation of Effective Heat Conductivity of Fluid in Charging Process of Thermal Storage Tank

    OpenAIRE

    Taheri, H.; Schmidt, F. P.; Gabi, M.

    2015-01-01

    This paper presents a numerical case study of heat transfer mechanisms during the charging process of a stratified thermal storage tank applied in a specific adsorption heat pump cycle. The effective thermal conductivity of the heat transfer fluid during the charging process is analyzed through CFD simulations using Unsteady Reynolds-averaged Navier-Stokes equations (URANS). The aim of the study is to provide an equivalent thermal conductivity for a one-dimensional storage tank model to be us...

  12. Effect of Molecular Packing and Charge Delocalization on the Nonradiative Recombination of Charge-Transfer States in Organic Solar Cells

    KAUST Repository

    Chen, Xian Kai

    2016-09-05

    In organic solar cells, a major source of energy loss is attributed to nonradiative recombination from the interfacial charge transfer states to the ground state. By taking pentacene–C60 complexes as model donor–acceptor systems, a comprehensive theoretical understanding of how molecular packing and charge delocalization impact these nonradiative recombination rates at donor–acceptor interfaces is provided.

  13. Electrical charging effects on the sliding friction of a model nano-confined ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Capozza, R.; Vanossi, A. [International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy); CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy); Benassi, A. [CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy); Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Tosatti, E. [International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy); CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy); International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34014 Trieste (Italy)

    2015-10-14

    Recent measurements suggest the possibility to exploit ionic liquids (ILs) as smart lubricants for nano-contacts, tuning their tribological and rheological properties by charging the sliding interfaces. Following our earlier theoretical study of charging effects on nanoscale confinement and squeezout of a model IL, we present here molecular dynamics simulations of the frictional and lubrication properties of that model under charging conditions. First, we describe the case when two equally charged plates slide while being held together to a confinement distance of a few molecular layers. The shear sliding stress is found to rise strongly and discontinuously as the number of IL layers decreases stepwise. However, the shear stress shows, within each given number of layers, only a weak dependence upon the precise value of the normal load, a result in agreement with data extracted from recent experiments. We subsequently describe the case of opposite charging of the sliding plates and follow the shear stress when the charging is slowly and adiabatically reversed in the course of time, under fixed load. Despite the fixed load, the number and structure of the confined IL layers change with changing charge, and that in turn drives strong friction variations. The latter involves first of all charging-induced freezing of the IL film, followed by a discharging-induced melting, both made possible by the nanoscale confinement. Another mechanism for charging-induced frictional changes is a shift of the plane of maximum shear from mid-film to the plate-film interface, and vice versa. While these occurrences and results invariably depend upon the parameters of the model IL and upon its specific interaction with the plates, the present study helps identifying a variety of possible behavior, obtained under very simple assumptions, while connecting it to an underlying equilibrium thermodynamics picture.

  14. Removal of charged micropollutants from water by ion-exchange polymers -- effects of competing electrolytes.

    Science.gov (United States)

    Bäuerlein, Patrick S; Ter Laak, Thomas L; Hofman-Caris, Roberta C H M; de Voogt, Pim; Droge, Steven T J

    2012-10-15

    A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-).

  15. Electrical charging effects on the sliding friction of a model nano-confined ionic liquid

    Science.gov (United States)

    Capozza, R.; Benassi, A.; Vanossi, A.; Tosatti, E.

    2015-10-01

    Recent measurements suggest the possibility to exploit ionic liquids (ILs) as smart lubricants for nano-contacts, tuning their tribological and rheological properties by charging the sliding interfaces. Following our earlier theoretical study of charging effects on nanoscale confinement and squeezout of a model IL, we present here molecular dynamics simulations of the frictional and lubrication properties of that model under charging conditions. First, we describe the case when two equally charged plates slide while being held together to a confinement distance of a few molecular layers. The shear sliding stress is found to rise strongly and discontinuously as the number of IL layers decreases stepwise. However, the shear stress shows, within each given number of layers, only a weak dependence upon the precise value of the normal load, a result in agreement with data extracted from recent experiments. We subsequently describe the case of opposite charging of the sliding plates and follow the shear stress when the charging is slowly and adiabatically reversed in the course of time, under fixed load. Despite the fixed load, the number and structure of the confined IL layers change with changing charge, and that in turn drives strong friction variations. The latter involves first of all charging-induced freezing of the IL film, followed by a discharging-induced melting, both made possible by the nanoscale confinement. Another mechanism for charging-induced frictional changes is a shift of the plane of maximum shear from mid-film to the plate-film interface, and vice versa. While these occurrences and results invariably depend upon the parameters of the model IL and upon its specific interaction with the plates, the present study helps identifying a variety of possible behavior, obtained under very simple assumptions, while connecting it to an underlying equilibrium thermodynamics picture.

  16. Effect of hydrogen charging on the mechanical properties of medium strength aluminium alloys 2091 and 2014

    DEFF Research Database (Denmark)

    Bandopadhyay, A.; Ambat, Rajan; Dwarakadasa, E.S.

    1992-01-01

    Cathodic hydrogen charging in 3.5% NaCl solution altered the mechanical properties of 2091-T351 (Al-Cu-Li-Mg-Zr) determined by a slow (10(-3)/s) strain rate tensile testing technique. UTS and YS decreased in the caw of 2091-T351 and 2014-T6(Al-Cu-Mn-Si-Mg) with increase in charging current density....... Elongation showed a decrease with increase in charging current density for both the alloys. However, elongation occurring throughout the gauge length in uncharged specimens changed over to localized deformation, thus increasing the reduction in area in charged specimens. A transition in fracture mode from...... surface (brittle) to the core (ductile) was observed. The presence of hydrogen increased the hardness, mostly indicative of solution strengthening and it decreased with depth confirming the existence of hydrogen concentration gradient. The effects were similar in 2014-T6, but to a slightly smaller extent....

  17. EFFECT OF NaOH CHARGE ON FIBER CHARACTERISTICS OF P-RC APMP PULP

    Institute of Scientific and Technical Information of China (English)

    Fangong Kong; Jiachuan Chen; Guihua Yang; Zhaocheng Li; Huaiyu Zhan

    2004-01-01

    Fiber screen analysis, fiber quality analysis and SEM observation were used to investigate the effects of NaOH charge on fiber characteristics in Triploid Populus Tomentosa P-RC APMP pulping in this paper. The results showed that increasing NaOH charge in P-RC APMP process could reduce energy consumption and fines percent, increase the mean fiber length and long fiber percent and make the curl index and kink index of fiber ascend. The results from SEM observation illustrated that the fiber with high NaOH charge had higher softness degree, better cutting resistant ability and better inter-fiber bonding ability. With increasing of NaOH charge, the surface of handsheets became more and more smooth, and there were less and less gaps and holes on the paper surface.

  18. Importance of polaron effects for charge carrier mobility above and below pseudogap temperature in superconducting cuprates

    Indian Academy of Sciences (India)

    ORIFJON GANIEV

    2017-06-01

    Polaron effects and charge carrier mobility in high-$T_c$ cuprate superconductors (HTSCs) have been investigated theoretically. The appropriate Boltzmann transport equations under relaxation time approximation were used to calculate the mobility of polaronic charge carriers and bosonic Cooper pairs above and below the pseudogap (PG) temperature $T^\\ast$. It is shown that the scattering of polaronic charge carriers and bosonic Cooper pairs at acoustic and optical phonons are responsible for the charge carrier mobility above and below the PG temperature. We show that the energy scales of the binding energies of large polarons and polaronic Cooper pairs can be identified by PG cross-over temperature on the cuprate phase diagram.

  19. Relaxation of charge in monolayer graphene: Fast nonlinear diffusion versus Coulomb effects

    Science.gov (United States)

    Kolomeisky, Eugene B.; Straley, Joseph P.

    2017-01-01

    Pristine monolayer graphene exhibits very poor screening because the density of states vanishes at the Dirac point. As a result, charge relaxation is controlled by the effects of zero-point motion (rather than by the Coulomb interaction) over a wide range of parameters. Combined with the fact that graphene possesses finite intrinsic conductivity, this leads to a regime of relaxation described by a nonlinear diffusion equation with a diffusion coefficient that diverges at zero charge density. Some consequences of this fast diffusion are self-similar superdiffusive regimes of relaxation, the development of a charge depleted region at the interface between electron- and hole-rich regions, and finite extinction times for periodic charge profiles.

  20. The porous membrane with tunable performance for vanadium flow battery: The effect of charge

    Science.gov (United States)

    Zhao, Yuyue; Yuan, Zhizhang; Lu, Wenjing; Li, Xianfeng; Zhang, Huamin

    2017-02-01

    Porous membranes with different charge on the surface and internal pore walls are prepared via the solvent-responsive layer-by-layer (SR-LBL) method. The effect of charge on the transport properties of different ions through the membranes is investigated in detail. The charge property of prepared membranes is tuned by assembling different charged polyelectrolytes (PEs) on the pore walls and the surface of the porous membranes. The results show that in a vanadium flow battery (VFB), the PE layers assembled on the surfaces (including pore walls) are capable to construct excellent ion transport channels to increase proton conductivity and to tune the ion selectivity via Donnan exclusion effect. Compared with the porous membrane with negative charges (7 bilayers), a VFB single cell assembled with a positively charged membrane (7.5 bilayers) yields a higher coulombic efficiency (98%). The water and ion transfer behavior exhibits a similar tendency. In the negative half-cell, the amount of V3+ gradually increases as cycles proceed and the amount of V2+ stays at a low and stable level. In the positive half-cell, the amount of VO2+ decreases; while VO2+ is accumulated. The imbalance of vanadium ions at both sides induces the discharge capacity fade.

  1. Understanding the effects of electronic polarization and delocalization on charge-transport levels in oligoacene systems

    KAUST Repository

    Sutton, Christopher

    2017-06-13

    Electronic polarization and charge delocalization are important aspects that affect the charge-transport levels in organic materials. Here, using a quantum mechanical/ embedded-charge (QM/EC) approach based on a combination of the long-range corrected omega B97X-D exchange-correlation functional (QM) and charge model 5 (CM5) point-charge model (EC), we evaluate the vertical detachment energies and polarization energies of various sizes of crystalline and amorphous anionic oligoacene clusters. Our results indicate that QM/EC calculations yield vertical detachment energies and polarization energies that compare well with the experimental values obtained from ultraviolet photoemission spectroscopy measurements. In order to understand the effect of charge delocalization on the transport levels, we considered crystalline naphthalene systems with QM regions including one or five-molecules. The results for these systems show that the delocalization and polarization effects are additive; therefore, allowing for electron delocalization by increasing the size of the QM region leads to the additional stabilization of the transport levels. Published by AIP Publishing.

  2. A Procedure to Obtain the Effective Nuclear Charge from the Atomic Spectrum of Sodium

    Science.gov (United States)

    Sala*, O.; Araki, Koiti; Noda, L. K.

    1999-09-01

    The penetration of the valence electron orbitals of the alkali metals into their inner shells and its effect on the energy levels can be considered through two methods that take into account modifications of the hydrogen formula (one-electron system). One of them considers the quantum defect, modifying the quantum number n; the other considers the effective nuclear charge Z* replacing the nuclear charge Z. The method using the quantum defect is widely used because this quantity is practically constant for a given angular momentum quantum number l. However, the method using effective nuclear charge is more realistic because it explains many atomic and molecular properties - but the effective nuclear charge depends on l as well as on the principal quantum number n. This article describes a relatively simple graphical procedure to calculate the effective nuclear charges experienced by the sodium valence electron from its atomic spectrum. A relation of Z* with n for a given l is obtained and the Z* values for all states of the valence electron are found; the energy terms can also be determined. The calculations can be performed by using common spreadsheet software.

  3. Effects of the parametric interaction on the toplogical charge of acoustical vortices.

    Science.gov (United States)

    Marchiano, Régis; Thomas, Jean-Louis

    2008-06-01

    Acoustical vortices are one of the three kinds of phase singularity corresponding to screw dislocations of the wavefront. They are characterized by an helical phase winding up around their axis of propagation along which the phase is singular (undefined). This kind of waves possesses several interesting properties like robustness to wavefront distortion in heterogeneous media or non diffracting propagation due to their relation to Bessel beams. Here we are interested by their potential to transmit information and perform basic arithmetics. We experimentally show that parametric interaction has a double effect on such a beam. First of all, the classical effect of creation of frequencies corresponding to all linear combinations of the primary frequencies is recovered. This classical manifestation of the quadratic nonlinearity in fluids is not new but leads to interesting properties for the spatial information of acoustical vortices as it is possible to do some arithmetics with acoustical vortices. Indeed, it is observed that for a frequency generated by a linear combination of the primary frequencies, the topological charge (number of twists made by the wavefront for one wavelength) is obtained by the same linear combination applied to the topological charges of the primary frequencies. For instance, vortices with negative topological charge appear for a secondary beam at the frequency corresponding to the difference of two primary beams with a positive topological charge when the highest frequency corresponds to the lowest topological charge. This phenomenon is studied for frequencies without and with a common divisor. In the latter case, generated frequencies can be degenerated, i.e two different linear combinations give the same frequency. However there is no reason to have the same common divisor for the topological charge so that two waves at the same frequency but with two different charges are propagating colinearly. In this case, the topological charge can be

  4. Infrared light irradiation diminishes effective charge transfer in slow sodium channel gating system

    Science.gov (United States)

    Plakhova, Vera B.; Bagraev, Nikolai T.; Klyachkin, Leonid E.; Malyarenko, Anna M.; Romanov, Vladimir V.; Krylov, Boris V.

    2001-02-01

    Effects of infrared light irradiation (IR) on cultured dorsal root ganglia cells were studied by the whole-cell patch-clamp technique. The IR field is demonstrated to diminish the effective charge transfer in the activation system from 6.2 +-0.6 to 4.5 +-0.4 in units of electron charge per e-fold change in membrane potential. The effects was blocked with ouabain. Our data is the first indication that sodium pump might be the molecular sensor of infrared irradiation in animal kingdom.

  5. Comparative Analysis and Approximations of Space -Charge Formation in Langmuir Electrodes Including Temperature Effects.

    Science.gov (United States)

    Valdeblànquez, Eder

    2001-10-01

    Eder Valdeblànquez,Universidad del Zulia,Apartado 4011-A 526,Maracaibo,Venezuela. ABSTRACT: In this paper by space charge effect in Langmuir probes are compared for different kind of symmetries; plane, cylindrical and spherical. A detailed analysis is performed here including temperature effects, and therefore kinetic theory is used instead of fluid equations as other authors. The strongly non-linear equations obtained here have been solved first by numerical analysis and later by approximations using Bessel functions. The accuracy of each approximaton is also discussed. Space Charge effects are important in plane geometries than in the case of cylindrical or spherical symmetries.

  6. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.

    Science.gov (United States)

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    2015-05-07

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to

  7. Gravitational effect of centre mass with electric charge and a large number of magnetic monopoles

    Institute of Scientific and Technical Information of China (English)

    Gong Tian-Xi; Li Ai-Gen; Wang Yong-Jiu

    2005-01-01

    In this paper, using an elegant mathematical method advanced by us, we calculate the orbital effect in the gravitational field of the centre mass with electric charge and a large number of magnetic monopoles. Generalizing the effect in the Schwarzschild field, we obtain interesting results by discussing the parameters of the celestial body that provide a feasible experimental verification of the general relativity.

  8. Investigation of Laser Peening Effects on Hydrogen Charged Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Zaleski, Tania M. [San Jose State Univ., CA (United States)

    2008-10-30

    Hydrogen-rich environments such as fuel cell reactors can exhibit damage caused by hydrogen permeation in the form of corrosion cracking by lowering tensile strength and decreasing material ductility. Coatings and liners have been investigated, but there were few shot-peening or laser peening studies referenced in the literature with respect to preventing hydrogen embrittlement. The surface compressive residual stress induced by laser peening had shown success in preventing stress corrosion cracking (SCC) for stainless steels in power plants. The question arose if the residual stresses induced by laser peening could delay the effects of hydrogen in a material. This study investigated the effect of laser peening on hydrogen penetration into metal alloys. Three areas were studied: laser peening, hydrogenation, and hydrogen detection. This study demonstrated that laser peening does not reduce the hydrogen permeation into a stainless steel surface nor does it prevent hydrogen embrittlement. The effect of laser peening to reduce hydrogen-assisted fatigue was unclear.

  9. Effect of blood storage on erythrocyte/wall interactions: implications for surface charge and rigidity.

    Science.gov (United States)

    Godin, C; Caprani, A

    1997-01-01

    In this report, we study, under flow conditions, the interactions of stored erythrocytes with an artificial surface: a microelectrode whose charge density ranges from -15 to +27 microC/cm2. Interactions consist of red cells slowly circulating on the microelectrode and exerting a real contact with the electrode. Interaction is detected and measured by transient fluctuations of the electrolyte resistance obtained by impedance measurement of the microelectrode. Effects of aging induced by storage of whole blood at 4 degrees C show that the surface charge of erythrocytes rapidly decreases when blood is stored for more than 6 days under our experimental conditions. In comparison with trypsin-treated erythrocytes, an eight day storage induces a 60% decrease in the surface charge of red cells. After two weeks of storage, red cells are no longer negatively charged, presumably because of removal of sialic acid. Cells rigidity is significant after 6 days of storage and influences the electrical contact. Membrane rigidity increase could arise from the surface charge decrease. Finally the surface charge decrease could be importance in the use of stored blood.

  10. Effect of substrate bias on deposition behaviour of charged silicon nanoparticles in ICP-CVD process

    Science.gov (United States)

    Yoo, Seung-Wan; You, Shin-Jae; Kim, Jung-Hyung; Seong, Dae-Jin; Seo, Byong-Hoon; Hwang, Nong-Moon

    2017-01-01

    The effect of a substrate bias on the deposition behaviour of crystalline silicon films during inductively coupled plasma chemical vapour deposition (ICP-CVD) was analysed by consideration of non-classical crystallization, in which the building block is a nanoparticle rather than an individual atom or molecule. The coexistence of positively and negatively charged nanoparticles in the plasma and their role in Si film deposition are confirmed by applying bias voltages to the substrate, which is sufficiently small as not to affect the plasma potential. The sizes of positively and negatively charged nanoparticles captured on a carbon membrane and imaged using TEM are, respectively, 2.7-5.5 nm and 6-13 nm. The film deposited by positively charged nanoparticles has a typical columnar structure. In contrast, the film deposited by negatively charged nanoparticles has a structure like a powdery compact with the deposition rate about three times higher than that for positively charged nanoparticles. All the films exhibit crystallinity even though the substrate is at room temperature, which is attributed to the deposition of crystalline nanoparticles formed in the plasma. The film deposited by negatively charged nanoparticles has the highest crystalline fraction of 0.84.

  11. Effect of Conductive Inorganic Fillers on Space Charge Accumulation Characteristics in Cross-linked Polyethylene

    Science.gov (United States)

    Harada, Hiroshi; Hayashi, Nobuya; Tanaka, Yasuhiro; Maeno, Takashi; Mizuno, Takehiko; Takahashi, Tohru

    We have observed space charge profiles in cross-linked polyethylene (XLPE) under dc high electric field using the PEA (pulsed electro-acoustic) system to study the relationship between space charge behavior and dielectric breakdown. In our previous research work, we have found that a large amount of, so called, packet-like charge generates in low density polyethylene (LDPE) under high dc electric field of more than 100 kV/mm. The packet-like charge enhances the electric field locally in bulk of the sample, and then finally it leads a breakdown. On the other hand, a new type of XLPE which was made through adding conductive inorganic fillers, shows a good dc dielectric breakdown characteristic and high volume resistivity under dc stress. In this report, we tried to observe the space charge behavior under high dc electric field in this material. From the results, it is found that the charge injection is effectively suppressed by adding only a small amount of conductive inorganic fillers to XLPE.

  12. Charge transport in disordered organic host-guest systems: effects of carrier density and electric field

    Energy Technology Data Exchange (ETDEWEB)

    Yimer, Y Y; Bobbert, P A [Group Polymer Physics, Eindhoven Polymer Laboratories and Dutch Polymer Institute, 5600 MB Eindhoven (Netherlands); Coehoorn, R [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)], E-mail: Y.Y.Yimer@tue.nl

    2008-08-20

    We investigate charge transport in disordered organic host-guest systems with a bimodal Gaussian density of states (DOS). The energy difference between the two Gaussians defines the trap depth. By solving the Pauli master equation for the hopping of charge carriers on a regular lattice with site energies randomly drawn from the DOS, we obtain the dependence of the charge-carrier mobility on the relative guest concentration, the trap depth, the energetic disorder, the charge-carrier density and the electric field. At small and high guest concentrations, our work provides support for recent semi-analytical model results on the dependence of the mobility on the charge-carrier density at zero field. However, at the cross-over between the trap-limited and trap-to-trap hopping regimes, where the mobility attains a minimum, our results can almost be one order of magnitude larger than predicted semi-analytically. Furthermore, it is shown that field-induced detrapping can contribute strongly to the electric-field dependence of the mobility. A simple analytical expression is provided which describes the effect. This result can be used in continuum drift-diffusion models for charge transport in devices such as organic light-emitting diodes.

  13. Charge transport in disordered organic host guest systems: effects of carrier density and electric field

    Science.gov (United States)

    Yimer, Y. Y.; Bobbert, P. A.; Coehoorn, R.

    2008-08-01

    We investigate charge transport in disordered organic host-guest systems with a bimodal Gaussian density of states (DOS). The energy difference between the two Gaussians defines the trap depth. By solving the Pauli master equation for the hopping of charge carriers on a regular lattice with site energies randomly drawn from the DOS, we obtain the dependence of the charge-carrier mobility on the relative guest concentration, the trap depth, the energetic disorder, the charge-carrier density and the electric field. At small and high guest concentrations, our work provides support for recent semi-analytical model results on the dependence of the mobility on the charge-carrier density at zero field. However, at the cross-over between the trap-limited and trap-to-trap hopping regimes, where the mobility attains a minimum, our results can almost be one order of magnitude larger than predicted semi-analytically. Furthermore, it is shown that field-induced detrapping can contribute strongly to the electric-field dependence of the mobility. A simple analytical expression is provided which describes the effect. This result can be used in continuum drift-diffusion models for charge transport in devices such as organic light-emitting diodes.

  14. Stability of Positively Charged Nanoemulsion Formulation Containing Steroidal Drug for Effective Transdermal Application

    Directory of Open Access Journals (Sweden)

    Stephanie Da Costa

    2014-01-01

    Full Text Available This paper emphasizes the formation of a positively charged nanoemulsion system for steroid drugs (hydrocortisone. It is believed that positively charged nanoemulsion provides more effective penetration of the skin. Therefore in our study we focused on the incorporation of phytosphingosine which serves as a positively charged cosurfactant in the nanoemulsion system. Negatively charged nanoemulsions were formulated mainly for comparison. Freshly prepared formulations were formed with particle size less than 300 nm and showed good stability over time. The oil-in-water nanoemulsion also showed good viscosity, conductivity, and pH values. From TEM micrograph, particle size showed consistent results with the measurement using photon correlation spectroscopy. It was concluded that both positively and negatively charged nanoemulsions showed good stability and have great potential in transdermal delivery system. Though, further investigation of the drug release and drug penetration of both positively and negatively charged nanoemulsions will be studied to further prove the efficacy of nanoemulsion with hydrocortisone as a delivery system for dermal application.

  15. Analysing degradation effects in charge-redistribution SAR ADCs

    NARCIS (Netherlands)

    Khan, M.A.; Kerkhoff, Hans G.

    2013-01-01

    Aging-sensitive technology nodes that are resulting in performance degradations in their electronic system implementations require aging simulations in advance for a more dependable design. Simulating time-domain aging effects in these electronic systems, especially in complex analog and mixed-signa

  16. Analysing degradation effects in charge-redistribution SAR ADCs

    NARCIS (Netherlands)

    Khan, Muhammad Aamir; Kerkhoff, Hans G.

    2013-01-01

    Aging-sensitive technology nodes that are resulting in performance degradations in their electronic system implementations require aging simulations in advance for a more dependable design. Simulating time-domain aging effects in these electronic systems, especially in complex analog and mixed-signa

  17. Effective electrophoretic mobilities and charges of anti-VEGF proteins determined by capillary zone electrophoresis.

    Science.gov (United States)

    Li, S Kevin; Liddell, Mark R; Wen, He

    2011-06-01

    Macromolecules such as therapeutic proteins currently serve an important role in the treatment of eye diseases such as wet age-related macular degeneration and diabetic retinopathy. Particularly, bevacizumab and ranibizumab have been shown to be effective in the treatment of these diseases. Iontophoresis can be employed to enhance ocular delivery of these macromolecules, but the lack of information on the properties of these macromolecules has hindered its development. The objectives of the present study were to determine the effective electrophoretic mobilities and charges of bevacizumab, ranibizumab, and model compound polystyrene sulfonate (PSS) using capillary zone electrophoresis. Salicylate, lidocaine, and bovine serum albumin (BSA), which have known electrophoretic mobilities in the literature, were also studied to validate the present technique. The hydrodynamic radii and diffusion coefficients of BSA, bevacizumab, ranibizumab, and PSS were measured by dynamic light scattering. The effective charges were calculated using the Einstein relation between diffusion coefficient and electrophoretic mobility and the Henry equation. The results show that bevacizumab and ranibizumab have low electrophoretic mobilities and are net negatively charged in phosphate buffered saline (PBS) of pH 7.4 and 0.16M ionic strength. PSS has high negative charge but the electrophoretic mobility in PBS is lower than that expected from the polymer structure. The present study demonstrated that capillary electrophoresis could be used to characterize the mobility and charge properties of drug candidates in the development of iontophoretic drug delivery.

  18. Gate-Sensing Coherent Charge Oscillations in a Silicon Field-Effect Transistor.

    Science.gov (United States)

    Gonzalez-Zalba, M Fernando; Shevchenko, Sergey N; Barraud, Sylvain; Johansson, J Robert; Ferguson, Andrew J; Nori, Franco; Betz, Andreas C

    2016-03-09

    Quantum mechanical effects induced by the miniaturization of complementary metal-oxide-semiconductor (CMOS) technology hamper the performance and scalability prospects of field-effect transistors. However, those quantum effects, such as tunneling and coherence, can be harnessed to use existing CMOS technology for quantum information processing. Here, we report the observation of coherent charge oscillations in a double quantum dot formed in a silicon nanowire transistor detected via its dispersive interaction with a radio frequency resonant circuit coupled via the gate. Differential capacitance changes at the interdot charge transitions allow us to monitor the state of the system in the strong-driving regime where we observe the emergence of Landau-Zener-Stückelberg-Majorana interference on the phase response of the resonator. A theoretical analysis of the dispersive signal demonstrates that quantum and tunneling capacitance changes must be included to describe the qubit-resonator interaction. Furthermore, a Fourier analysis of the interference pattern reveals a charge coherence time, T2 ≈ 100 ps. Our results demonstrate charge coherent control and readout in a simple silicon transistor and open up the possibility to implement charge and spin qubits in existing CMOS technology.

  19. Effect of film nanostructure on in-plane charge transport in organic bulk heterojunction materials

    Science.gov (United States)

    Danielson, Eric; Ooi, Zi-En; Dodabalapur, Ananth

    2013-09-01

    Bulk heterojunction (BHJ) organic solar cells are a promising alternative energy technology, but a thorough understanding of charge transport behavior in BHJ materials is necessary in order to design devices with high power conversion efficiencies. Parameters such as carrier mobilities, carrier concentrations, and the recombination coefficient have traditionally been successfully measured using vertical structures similar to organic photovoltaic (OPV) cells. We have developed a lateral BHJ device which complements these vertical techniques by allowing spatially resolved measurement along the transport direction of charge carriers. This is essential for evaluating the effect of nanoscale structure and morphology on these important charge transport parameters. Nanomorphology in organic BHJ films has been controlled using a variety of methods, but the effect of these procedures has been infrequently correlated with the charge transport parameter of the BHJ material. Electron beam lithography has been used to create lateral device structures with many voltage probes at a sub-micron resolution throughout the device channel. By performing in-situ potentiometry, we can calculate both carrier mobilities and determine the effect of solvent choice and annealing procedure on the charge transport in BHJ system. Spin coated P3HT:PCBM films prepared from solutions in chloroform and o-xylene are characterized using this technique.

  20. Effect of surface charge on the dark current of InGaAs/InP avalanche photodiodes

    Science.gov (United States)

    Zeng, Q. Y.; Wang, W. J.; Wen, J.; Huang, L.; Liu, X. H.; Li, N.; Lu, W.

    2014-04-01

    The effects of surface charge on the dark current of the separate-absorption-grading-charge-multiplication InGaAs/InP avalanche photodiodes (APDs) are discussed using drift-diffusion simulation. The dark current increases exponentially with the increasing of surface charge density, and gets multiplied, thus influencing the performance of the APDs, especially in Geiger mode. The mechanism of the surface charge leakage current is discussed, and a floating guard ring structure is proposed to suppress the influence of surface charge effectively.

  1. History of the Shaped Charge Effect: The First 100 Years

    Science.gov (United States)

    1990-03-22

    transferred, inasmuch as 10 Part 1 both originators of the effect were in proximiy - southern Gernmany and Switzerland border each other. Dr. Mohaupt’s...Mistel ( Mistletoe ) referred to the parasitic mounting of the top aircraft on the host aircraft. In the tactical version, the bomber’s nose was replaced...16) in the patents (Ref. 32) issued in France in 1940 and in Australia in 1941, wherein the inventors (Mohaupt and his two associates) had claimed the

  2. The dust-acoustic mode in two-temperature electron plasmas with charging effects

    Indian Academy of Sciences (India)

    Zhong Xijuan; Chen Hui; Liu Nianhua; Liu Sanqiu

    2016-04-01

    Dust charging in an unmagnetized collisionless dusty plasma with two-temperature electrons was investigated based on the orbital motion limited theory, where the two-temperature electrons and ions are modelled by the Maxwellian distributions. Then by taking into account the effects of two-temperature electron and the associated charging fluctuations, the dispersion peculiarities of dust-acoustic waves are studied based on dust fluid dynamics. The present results show that the effect will introduce a dissipation on the mode, and the dispersion and the dissipation depend on the temperature ratio and number density ratio of hot and cold electrons.

  3. Mitigation of charged impurity effects in graphene field-effect transistors with polar organic molecules (Presentation Recording)

    Science.gov (United States)

    Worley, Barrett C.; Kim, Seohee; Akinwande, Deji; Rossky, Peter J.; Dodabalapur, Ananth

    2015-09-01

    Recent developments in monolayer graphene production allow its use as the active layer in field-effect transistor technology. Favorable electrical characteristics of monolayer graphene include high mobility, operating frequency, and good stability. These characteristics are governed by such key transport physical phenomena as electron-hole transport symmetry, Dirac point voltage, and charged impurity effects. Doping of graphene occurs during device fabrication, and is largely due to charged impurities located at or near the graphene/substrate interface. These impurities cause scattering of charge carriers, which lowers mobility. Such scattering is detrimental to graphene transistor performance, but our group has shown that coating with fluoropolymer thin films or exposure to polar organic vapors can restore favorable electrical characteristics to monolayer graphene. By partially neutralizing charged impurities and defects, we can improve the mobility by approximately a factor of 2, change the Dirac voltage by fairly large amounts, and reduce the residual carrier density significantly. We hypothesize that this phenomena results from screening of charged impurities by the polar molecules. To better understand such screening interactions, we performed computational chemistry experiments to observe interactions between polar organic molecules and monolayer graphene. The molecules interacted more strongly with defective graphene than with pristine graphene, and the electronic environment of graphene was altered. These computational observations correlate well with our experimental results to support our hypothesis that polar molecules can act to screen charged impurities on or near monolayer graphene. Such screening favorably mitigates charge scattering, improving graphene transistor performance.

  4. Effects of different blasting materials on charge generation and decay on titanium surface after sandblasting.

    Science.gov (United States)

    Guo, Cecilia Yan; Hong Tang, Alexander Tin; Hon Tsoi, James Kit; Matinlinna, Jukka Pekka

    2014-04-01

    It has been reported that sandblasting titanium with alumina (Al2O3) powder could generate a negative electric charge on titanium surface. This has been proven to promote osteoblast activities and possibly osseointegration. The purpose of this pilot study was to investigate the effects of different blasting materials, in terms of the grit sizes and electro-negativity, on the generation of a negative charge on the titanium surface. The aim was also to make use of these results to deduct the underlying mechanism of charge generation by sandblasting. Together 60 c.p. 2 titanium plates were machine-cut and polished for sandblasting, and divided into 6 groups with 10 plates in each. Every plate in the study groups was sandblasted with one of the following 6 powder materials: 110µm Al2O3 grits, 50µm Al2O3 grits, 150-300µm glass beads, 45-75µm glass beads, 250µm Al powder and 44µm Al powder. The static voltage on the surface of every titanium plate was measured immediately after sandblasting. The static voltages of the titanium plates were recorded and processed using statistical analysis. The results suggested that only sandblasting with 45-75µm glass beads generated a positive charge on titanium, while using all other blasting materials lead to a negative charge. Furthermore, blasting grits of the same powder material but of different sizes might lead to different amount and polarity of the charges. This triboelectric effect is likely to be the main mechanism for charge generation through sandblasting.

  5. Thermodynamics of R-charged Black Holes in AdS(5) From Effective Strings

    CERN Document Server

    Gubser, S S; Gubser, Steven S.; Heckman, Jonathan J.

    2004-01-01

    It is well known that the thermodynamics of certain near-extremal black holes in asymptotically flat space can be lifted to an effective string description created from the intersection of D-branes. In this paper we present evidence that the semiclassical thermodynamics of near-extremal R-charged black holes in AdS(5)xS(5) is described in a similar manner by effective strings created from the intersection of giant gravitons on the S(5). We also present a free fermion description of the supersymmetric limit of the one-charge black hole, and we give a crude catalog of the microstates of the two and three-charge black holes in terms of operators in the dual conformal field theory.

  6. Large tunable image-charge effects in single-molecule junctions.

    Science.gov (United States)

    Perrin, Mickael L; Verzijl, Christopher J O; Martin, Christian A; Shaikh, Ahson J; Eelkema, Rienk; van Esch, Jan H; van Ruitenbeek, Jan M; Thijssen, Joseph M; van der Zant, Herre S J; Dulić, Diana

    2013-04-01

    Metal/organic interfaces critically determine the characteristics of molecular electronic devices, because they influence the arrangement of the orbital levels that participate in charge transport. Studies on self-assembled monolayers show molecule-dependent energy-level shifts as well as transport-gap renormalization, two effects that suggest that electric-field polarization in the metal substrate induced by the formation of image charges plays a key role in the alignment of the molecular energy levels with respect to the metal's Fermi energy. Here, we provide direct experimental evidence for an electrode-induced gap renormalization in single-molecule junctions. We study charge transport through single porphyrin-type molecules using electrically gateable break junctions. In this set-up, the position of the occupied and unoccupied molecular energy levels can be followed in situ under simultaneous mechanical control. When increasing the electrode separation by just a few ångströms, we observe a substantial increase in the transport gap and level shifts as high as several hundreds of meV. Analysis of this large and tunable gap renormalization based on atomic charges obtained from density functional theory confirms and clarifies the dominant role of image-charge effects in single-molecule junctions.

  7. Probing inhibitory effects of nanocrystalline cellulose: inhibition versus surface charge

    Science.gov (United States)

    Male, Keith B.; Leung, Alfred C. W.; Montes, Johnny; Kamen, Amine; Luong, John H. T.

    2012-02-01

    NCC derived from different biomass sources was probed for its plausible cytotoxicity by electric cell-substrate impedance sensing (ECIS). Two different cell lines, Spodoptera frugiperda Sf9 insect cells and Chinese hamster lung fibroblast V79, were exposed to NCC and their spreading and viability were monitored and quantified by ECIS. Based on the 50%-inhibition concentration (ECIS50), none of the NCC produced was judged to have any significant cytotoxicity on these two cell lines. However, NCC derived from flax exhibited the most pronounced inhibition on Sf9 compared to hemp and cellulose powder. NCCs from flax and hemp pre-treated with pectate lyase were also less inhibitory than NCCs prepared from untreated flax and hemp. Results also suggested a correlation between the inhibitory effect and the carboxylic acid contents on the NCC.

  8. A charge density analysis on the proximity effect in dicyanoalkanes

    Science.gov (United States)

    López, José Luis; Mandado, Marcos; González Moa, María J.; Mosquera, Ricardo A.

    2006-05-01

    QTAIM atomic and bond properties of 21 linear alkyl dicyanoalkanes of formula NC(CH 2) nCN ( n = 0-20), and three larger molecules: C 32H 66, NC(CH 2) 30CH 3, and NC(CH 2) 30CN, indicate that cyano groups can be considered statistically equivalent to those of a large cyanoalkane when they are separated by at least 14 methylene groups. When n < 19 there is at least one methylene group in the dicyanoalkane that differs significantly from those of NC(CH 2) 30CH 3 or NC(CH 2) 30CN. Every cyano group produces an effect on the methylenes that is nearly independent of the position of the other one, hydrogens being more sensitive than carbons.

  9. Effective charges in nuclei in the vicinity of $^{100}SN$

    CERN Document Server

    Ekström, Andreas

    The shell structure of atomic nuclei far from the line of beta-stability and the properties of the nucleon-nucleon interaction in exotic isotopes are not well known. The development of radioactive ion beams (RIBs) puts certain unexplored regions of the nuclear chart within reach of detailed experimental investigations. The low-energy nuclear structure of the unstable isotopes 106,108,110Sn, 100,102,104Cd, and 106,108In have been studied using sub-barrier Coulomb excitation of postaccelerated RIBs. The experiments were carried out at the REX-ISOLDE facility at CERN. The deduced transition probabilities - B(E2) values - provide a detailed benchmark of modern models of the nucleon-nucleon interaction. The B(E2) values between the 0+ ground states and the first excited 2+ states in the Sn and Cd isotopes were compared with shell-model calculations. These are based on effective interactions derived from renormalized multi-meson and QCD-based nucleon-nucleon potentials. In order to reproduce the experimental result...

  10. Isotope effect in charge-transfer collisions of H with He{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Loreau, J.; Dalgarno, A. [Institute for Theoretical Atomic, Molecular and Optical Physics, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States); Ryabchenko, S. [Northern (Arctic) Federal University, 17 Severnaya Dvina Emb., 163002 Arkhangelsk (Russian Federation); Laboratoire de Chimie Quantique et Photophysique, Universite Libre de Bruxelles (ULB), CP160/09, 1050 Bruxelles (Belgium); Vaeck, N. [Laboratoire de Chimie Quantique et Photophysique, Universite Libre de Bruxelles (ULB), CP160/09, 1050 Bruxelles (Belgium)

    2011-11-15

    We present a theoretical study of the isotope effect arising from the replacement of H by T in the charge-transfer collision H(n=2) + He{sup +}(1s) at low energy. Using a quasimolecular approach and a time-dependent wave-packet method, we compute the cross sections for the reaction including the effects of the nonadiabatic radial and rotational couplings. For H(2s) + He{sup +}(1s) collisions, we find a strong isotope effect at energies below 1 eV/amu for both singlet and triplet states. We find a much smaller isotopic dependence of the cross section for H(2p) + He{sup +}(1s) collisions in triplet states, and no isotope effect in singlet states. We explain the isotope effect on the basis of the potential energy curves and the nonadiabatic couplings, and we evaluate the importance of the isotope effect on the charge-transfer rate coefficients.

  11. Predicting and rationalizing the effect of surface charge distribution and orientation on nano-wire based FET bio-sensors

    DEFF Research Database (Denmark)

    De Vico, L.; Iversen, L.; Sørensen, Martin Hedegård

    2011-01-01

    A single charge screening model of surface charge sensors in liquids (De Vico et al., Nanoscale, 2011, 3, 706-717) is extended to multiple charges to model the effect of the charge distributions of analyte proteins on FET sensor response. With this model we show that counter-intuitive signal...... changes (e.g. a positive signal change due to a net positive protein binding to a p-type conductor) can occur for certain combinations of charge distributions and Debye lengths. The new method is applied to interpret published experimental data on Streptavidin (Ishikawa et al., ACS Nano, 2009, 3, 3969...

  12. Effects of Confinement on Microstructure and Charge Transport in High Performance Semicrystalline Polymer Semiconductors

    KAUST Repository

    Himmelberger, Scott

    2012-11-23

    The film thickness of one of the most crystalline and highest performing polymer semiconductors, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene) (PBTTT), is varied in order to determine the effects of interfaces and confinement on the microstructure and performance in organic field effect transistors (OFETs). Crystalline texture and overall film crystallinity are found to depend strongly on film thickness and thermal processing. The angular distribution of crystallites narrows upon both a decrease in film thickness and thermal annealing. These changes in the film microstructure are paired with thin-film transistor characterization and shown to be directly correlated with variations in charge carrier mobility. Charge transport is shown to be governed by film crystallinity in films below 20 nm and by crystalline orientation for thicker films. An optimal thickness is found for PBTTT at which the mobility is maximized in unannealed films and where mobility reaches a plateau at its highest value for annealed films. The effects of confinement on the morphology and charge transport properties of poly(2,5-bis(3-tetradecylthiophen-2-yl) thieno[3,2-b]thiophene) (PBTTT) are studied using quantitative X-ray diffraction and field-effect transistor measurements. Polymer crystallinity is found to limit charge transport in the thinnest films while crystalline texture and intergrain connectivity modulate carrier mobility in thicker films. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. EFFECT OF ULTRASOUND ACTIVATION OF SHS-CHARGE ON THE FINAL PRODUCT

    Directory of Open Access Journals (Sweden)

    V. V. Klubovich

    2016-01-01

    Full Text Available The paper describes the effect of ultrasound activation of dolomite, which is used for producing refractory material by the SHS method, on the final product. X-ray investigation has demonstrated that ultrasound activation of the initial charge brings about changes in the phase composition of the synthesized product.

  14. Wide-bandwidth charge sensitivity with a radio-frequency field-effect transistor

    NARCIS (Netherlands)

    Nishiguchi, K.; Yamaguchi, H.; Fujiwara, A.; Van der Zant, H.S.J.; Steele, G.A.

    2013-01-01

    We demonstrate high-speed charge detection at room temperature with single-electron resolution by using a radio-frequency field-effect transistor (RF-FET). The RF-FET combines a nanometer-scale silicon FET with an impedance-matching circuit composed of an inductor and capacitor. Driving the RF-FET w

  15. Sorption of poly(vinyl alcohol) and its cationic derivative on silica oxide: effect of charge

    NARCIS (Netherlands)

    Liesiene, J.; Matulioniene, J.; Aniulyte, J.; Keizer, de A.

    2005-01-01

    Adsorption of poly(vinyl alcohol)-based cationic polyelectrolyte (DEAE-PVA) as well as unmodified poly(vinyl alcohol) (PVA) onto silica oxide surface was studied by means of reflectometry. The study was focused on the effect of charge of polymer segments on their adsorption on silica oxide. The resu

  16. Interplay between the orbital quantization and Pauli effect in a charge-density-wave organic conductor

    Science.gov (United States)

    Kartsovnik, Mark; Andres, Dieter; Grigoriev, Pavel; Biberacher, Werner; Müller, Harald

    2004-04-01

    The interlayer magnetoresistance of the low-dimensional organic metal α-(BEDT-TTF) 2KHg(SCN) 4 under pressure shows features which are likely associated with theoretically predicted field-induced charge-density-wave (FICDW) transitions. At ambient pressure, a magnetic field strongly tilted towards the conducting layers induces a series of hysteretic anomalies. We attribute these anomalies to a novel kind of FICDW originating from a superposition of the orbital quantization of the nesting vector and Pauli effect on the charge-density wave.

  17. Interplay between the orbital quantization and Pauli effect in a charge-density-wave organic conductor

    Energy Technology Data Exchange (ETDEWEB)

    Kartsovnik, Mark; Andres, Dieter; Grigoriev, Pavel; Biberacher, Werner; Mueller, Harald

    2004-04-30

    The interlayer magnetoresistance of the low-dimensional organic metal {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4} under pressure shows features which are likely associated with theoretically predicted field-induced charge-density-wave (FICDW) transitions. At ambient pressure, a magnetic field strongly tilted towards the conducting layers induces a series of hysteretic anomalies. We attribute these anomalies to a novel kind of FICDW originating from a superposition of the orbital quantization of the nesting vector and Pauli effect on the charge-density wave.

  18. An effective lagrangian description of charged Higgs decays H^+ -> Wg, WZ and Wh

    CERN Document Server

    Díaz-Cruz, J L; Toscano, J J

    2001-01-01

    Charged Higgs decays are discussed within an effective lagrangian extension of the two-higgs doublet model, assuming new physics appearing in the Higgs sector of this model. Low energy constrains are used to imposse bounds on certain dimension -six operators that describe the modified charged Higgs interactions. These bounds are used then to study the decays H^+ -> Wg, WZ and Wh, which can have branching ratios of order 10^-5, 10^-1 and O(1), respectively; thse modes are thus sensitive probes of the symmetries of the Higgs sector that could be tested at future colliders.

  19. CrossRef Space-charge effects in Penning ion traps

    CERN Document Server

    Porobić, T; Breitenfeldt, M; Couratin, C; Finlay, P; Knecht, A; Fabian, X; Friedag, P; Fléchard, X; Liénard, E; Ban, G; Zákoucký, D; Soti, G; Van Gorp, S; Weinheimer, Ch; Wursten, E; Severijns, N

    2015-01-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with View the MathML source using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  20. Charge-state distribution and Doppler effect in an expanding photoionized plasma.

    Science.gov (United States)

    Foord, M E; Heeter, R F; van Hoof, P A M; Thoe, R S; Bailey, J E; Cuneo, M E; Chung, H-K; Liedahl, D A; Fournier, K B; Chandler, G A; Jonauskas, V; Kisielius, R; Mix, L P; Ramsbottom, C; Springer, P T; Keenan, F P; Rose, S J; Goldstein, W H

    2004-07-30

    The charge state distributions of Fe, Na, and F are determined in a photoionized laboratory plasma using high resolution x-ray spectroscopy. Independent measurements of the density and radiation flux indicate unprecedented values for the ionization parameter xi=20-25 erg cm s(-1) under near steady-state conditions. Line opacities are well fitted by a curve-of-growth analysis which includes the effects of velocity gradients in a one-dimensional expanding plasma. First comparisons of the measured charge state distributions with x-ray photoionization models show reasonable agreement.

  1. Aberration of a negative ion beam caused by space charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Wada, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-02-15

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  2. Effect of Negatively Charged Ions on the Formation of Microarc Oxidation Coating on 2024 Aluminium Alloy

    Institute of Scientific and Technical Information of China (English)

    Wei Yang; Bailing Jiang; Aiying Wang; Huiying Shi

    2012-01-01

    The present study deals with the effect of negatively charged ions on the ceramic coating formation on 2024 aluminium alloy during microarc oxidation (MAO) process. On the basis of the experimental results, two steps (the formation of an incipient film without arc presence and the growth of a ceramic coating with arc discharge) of MAO process have been observed. For comparison, four different negatively charged ions studied. It is proved that negatively charged ions strongly participated in the formation of an incipient film with high impedance value at the first step. The growth of ceramic coating depends on the combination between AI of the substrate and O from the electrolyte, and the negatively charged ions are little consumed. As an anodic oxide coating is prepared on the sample surface instead of the incipient film, the first step occurs easily and the growth of ceramic coating is accelerated. Furthermore, the mechanism of negatively charged ions in the formation of the MAO coating has been proposed.

  3. Bactericidal Effects of Charged Silver Nanoparticles in Methicillin-resistant Staphylococcus aureus

    Science.gov (United States)

    Romero-Urbina, Dulce; Velazquez-Salazar, J. Jesus; Lara, Humberto H.; Arellano-Jimenez, Josefina; Larios, Eduardo; Yuan, Tony T.; Hwang, Yoon; Desilva, Mauris N.; Jose-Yacaman, Miguel

    2015-03-01

    The increased number of infections due to antibiotic-resistant bacteria is a major concern to society. The objective of this work is to determine the effect of positively charged AgNPs on methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus(MRSA) cell wall using advanced electron microscopy techniques. Positively charged AgNPs suspensions were synthesized via a microwave heating technique. The suspensions were then characterized by Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) showing AgNPs size range from 5 to 30 nm. MSSA and MRSA were treated with positively charged AgNPs concentrations ranging from 0.06 mM to 31 mM. The MIC50 studies showed that viability of MSSA and MRSA could be reduced by 50% at a positively charged AgNPs concentration of 0.12 mM supported by Scanning-TEM (STEM) images demonstrating bacteria cell wall disruption leading to lysis after treatment with AgNPs. The results provide insights into one mechanism in which positively charged AgNPs are able to reduce the viability of MSSA and MRSA. This research is supported by National Institute on Minority Health and Health Disparities (G12MD007591) from NIH, NSF-PREM Grant No. DMR-0934218, The Welch Foundation and NAMRU-SA work number G1009.

  4. Charge of interstellar dust in dense molecular clouds: Effect of cosmic rays

    CERN Document Server

    Ivlev, Alexei; Galli, Daniele; Caselli, Paola

    2015-01-01

    The local cosmic-ray (CR) spectra are calculated for typical characteristic regions of a cold dense molecular cloud, to investigate two so far neglected mechanisms of dust charging: collection of suprathermal CR electrons and protons by grains, and photoelectric emission from grains due to the UV radiation generated by CRs. The two mechanisms add to the conventional charging by ambient plasma, produced in the cloud by CRs. We show that the CR-induced photoemission can dramatically modify the charge distribution function for submicron grains. We demonstrate the importance of the obtained results for dust coagulation: While the charging by ambient plasma alone leads to a strong Coulomb repulsion between grains and inhibits their further coagulation, the combination with the photoemission provides optimum conditions for the growth of large dust aggregates in a certain region of the cloud, corresponding to the densities $n(\\mathrm{H_2})$ between $\\sim10^4$ cm$^{-3}$ and $\\sim10^6$ cm$^{-3}$. The charging effect o...

  5. Effects of Rotation and Relativistic Charge Flow on Pulsar Magnetospheric Structure

    CERN Document Server

    Muslimov, A G; Muslimov, Alex G.; Harding, Alice K.

    2005-01-01

    We propose an analytical 3-D model of the open field-line region of a neutron star (NS) magnetosphere. We construct an explicit analytic solution for arbitrary obliquity (angle between the rotation and magnetic axes) incorporating the effects of magnetospheric rotation, relativistic flow of charges (e.g. primary electron beam) along the open field lines, and E X B drift of these charges. Our solution employs the space-charge-limited longitudinal current calculated in the electrodynamic model of Muslimov & Tsygan (1992) and is valid up to very high altitudes nearly approaching the light cylinder. We assume that in the innermost magnetosphere, the NS magnetic field can be well represented by a static magnetic dipole configuration. At high altitudes the open magnetic field lines significantly deviate from those of a static dipole and tend to focus into a cylindrical bundle, swept back in the direction opposite to the rotation, and also bent towards the rotational equator. We briefly discuss some implications...

  6. STM visualisation of counterions and the effect of charges on self-assembled monolayers of macrocycles.

    Science.gov (United States)

    Kudernac, Tibor; Shabelina, Natalia; Mamdouh, Wael; Höger, Sigurd; De Feyter, Steven

    2011-01-01

    Despite their importance in self-assembly processes, the influence of charged counterions on the geometry of self-assembled organic monolayers and their direct localisation within the monolayers has been given little attention. Recently, various examples of self-assembled monolayers composed of charged molecules on surfaces have been reported, but no effort has been made to prove the presence of counterions within the monolayer. Here we show that visualisation and exact localisation of counterions within self-assembled monolayers can be achieved with scanning tunnelling microscopy (STM). The presence of charges on the studied shape-persistent macrocycles is shown to have a profound effect on the self-assembly process at the liquid-solid interface. Furthermore, preferential adsorption was observed for the uncharged analogue of the macrocycle on a surface.

  7. The effects of charge cloud size and digitisation on the SPAN anode

    Science.gov (United States)

    Breeveld, A. A.; Edgar, M. L.; Lapington, J. S.; Smith, Alan

    1992-10-01

    Microchannel plate (MCP) detectors are often used with charge division anode readouts, such as the spiral-anode (SPAN) anode, to provide high position resolution. This paper discusses the effect on image quality, of digitization (causing fixed patterning), electronic noise, pulse height distribution (PHD) and charge cloud size. The discussion is supported by experimental data obtained from a 1D SPAN anode. Results from a computer model of this detector, and from a charge cloud simulation model, are also included. The SPAN anode normally has three sinusoidal electrodes with phase differences of 120 deg. An alternative configuration is to use a phase difference of 90 deg. This paper compares the advantages and disadvantages of these arrangements.

  8. EFFECT OF NaOH CHARGE ON FIBER CHARACTERISTICS OF P-RC APMP PULP

    Institute of Scientific and Technical Information of China (English)

    FangongKong; JiachuanChen; GuihlmYang; EhaochengLi; HuaiyuZha~

    2004-01-01

    Fiber screen analysis, fiber quality analysis and SEMobservation were used to investigate the effects ofNaOH charge on fiber characteristics in TriploidPopulus Tomentosa P-RC APMP pulping in thispaper. The results showed that increasing NaOHcharge in P-RC APMP process could reduce energyconsumption and fines percent, increase the meanfiber length and long fiber percent and make the curlindex and kink index of fiber ascend. The resultsfrom SEM observation illustrated that the fiber withhigh NaOH charge had higher softness degree, bettercutting resistant ability and better inter-fiber bondingability. With increasing of NaOH charge, the surfaceof handsheets became more and more smooth, andthere were less and less gaps and holes on the papersurface.

  9. Two-Dimensional Transition Metal Dichalcogenides and Their Charge Carrier Mobilities in Field-Effect Transistors

    Science.gov (United States)

    Ahmed, Sohail; Yi, Jiabao

    2017-10-01

    Two-dimensional (2D) materials have attracted extensive interest due to their excellent electrical, thermal, mechanical, and optical properties. Graphene has been one of the most explored 2D materials. However, its zero band gap has limited its applications in electronic devices. Transition metal dichalcogenide (TMDC), another kind of 2D material, has a nonzero direct band gap (same charge carrier momentum in valence and conduction band) at monolayer state, promising for the efficient switching devices (e.g., field-effect transistors). This review mainly focuses on the recent advances in charge carrier mobility and the challenges to achieve high mobility in the electronic devices based on 2D-TMDC materials and also includes an introduction of 2D materials along with the synthesis techniques. Finally, this review describes the possible methodology and future prospective to enhance the charge carrier mobility for electronic devices.

  10. Space Charge Effects and Advanced Modelling for CERN Low Energy Machines

    CERN Document Server

    AUTHOR|(CDS)2088716; Rumolo, Giovanni

    The strong space charge regime of future operation of CERN’s circular particle accelerators is investigated and mitigation strategies are developed in the framework of the present thesis. The intensity upgrade of the injector chain of Large Hadron Collider (LHC) prepares the particle accelerators to meet the requirements of the High-Luminosity LHC project. Producing the specified characteristics of the future LHC beams imperatively relies on injecting brighter bunches into the Proton Synchrotron Booster (PSB), the downstream Proton Synchrotron (PS) and eventually the Super Proton Synchrotron (SPS). The increased brightness, i.e. bunch intensity per transverse emittance, entails stronger beam self-fields which can lead to harmful interaction with betatron resonances. Possible beam emittance growth and losses as a consequence thereof threaten to degrade the beam brightness. These space charge effects are partly mitigated by the upgrade of the PSB and PS injection energies. Nevertheless, the space charge tune ...

  11. Combined effects of space charge and energetic disorder on photocurrent efficiency loss of field-dependent organic photovoltaic devices

    Science.gov (United States)

    Yoon, Sangcheol; Park, Byoungchoo; Hwang, Inchan

    2015-11-01

    The loss of photocurrent efficiency by space-charge effects in organic solar cells with energetic disorder was investigated to account for how energetic disorder incorporates space-charge effects, utilizing a drift-diffusion model with field-dependent charge-pair dissociation and suppressed bimolecular recombination. Energetic disorder, which induces the Poole-Frenkel behavior of charge carrier mobility, is known to decrease the mobility of charge carriers and thus reduces photovoltaic performance. We found that even if the mobilities are the same in the absence of space-charge effects, the degree of energetic disorder can be an additional parameter affecting photocurrent efficiency when space-charge effects occur. Introducing the field-dependence parameter that reflects the energetic disorder, the behavior of efficiency loss with energetic disorder can differ depending on which charge carrier is subject to energetic disorder. While the energetic disorder that is applied to higher-mobility charge carriers decreases photocurrent efficiency further, the efficiency loss can be suppressed when energetic disorder is applied to lower-mobility charge carriers.

  12. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions

    Science.gov (United States)

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular counterion density profile with an algebraic divergence at the surfaces. This effect drives the system towards a state of lower thermal "disorder", one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which can be quite significant even with a small degree of surface charge disorder relative to the mean surface charge. The strong coupling, disorder-induced attraction is typically far more stronger than the van der Waals interaction between the surfaces, especially within a range of several nanometers for the inter-surface separation.

  13. Oxaliplatin neurotoxicity – no general ion channel surface-charge effect

    Directory of Open Access Journals (Sweden)

    Ehrsson Hans

    2009-01-01

    Full Text Available Abstract Background Oxaliplatin is a platinum-based chemotherapeutic drug. Neurotoxicity is the dose-limiting side effect. Previous investigations have reported that acute neurotoxicity could be mediated via voltage-gated ion channels. A possible mechanism for some of the effects is a modification of surface charges around the ion channel, either because of chelation of extracellular Ca2+, or because of binding of a charged biotransformation product of oxaliplatin to the channel. To elucidate the molecular mechanism, we investigated the effects of oxaliplatin and its chloride complex [Pt(dachoxCl]- on the voltage-gated Shaker K channel expressed in Xenopus oocytes. The recordings were made with the two-electrode and the cut-open oocyte voltage clamp techniques. Conclusion To our surprise, we did not see any effects on the current amplitudes, on the current time courses, or on the voltage dependence of the Shaker wild-type channel. Oxaliplatin is expected to bind to cysteines. Therefore, we explored if there could be a specific effect on single (E418C and double-cysteine (R362C/F416C mutated Shaker channels previously shown to be sensitive to cysteine-specific reagents. Neither of these channels were affected by oxaliplatin. The clear lack of effect on the Shaker K channel suggests that oxaliplatin or its monochloro complex has no general surface-charge effect on the channels, as has been suggested before, but rather a specific effect to the channels previously shown to be affected.

  14. Investigation of External Charges Effects on Piezoelectric ZnO Nanogenerator

    Directory of Open Access Journals (Sweden)

    Samira Fathi

    2016-06-01

    Full Text Available Piezopotential generation in semiconductive ZnO nanowire (NW, oriented along the c-axis [0001], is significantly affected by free charge carriers within the ZnO NW. In this paper, the effect of free carriers’ distribution in semiconductive ZnO nanowire is investigated, using a Finite Element Method (FEM. The mentioned effect leads to modification of the conduction band variation, carrier concentration profiles, and eventually, the magnitude and distribution of the piezoelectric potential. The impact of free charge carriers shows that the negative potential distributed at the tip of ZnO NW is decreased from V = – 270 mv for the donor concentration ND = 1 × 1015 C/m3 to the V = – 25 mV, in presence of the donor concentration of ND = 1 × 1018 C/m3. With selecting the appropriate electrical boundary conditions and applying the surface charges density at the top of the nanowire, the potential reduction is compensated. The electrostatic effect leads to a significant enhancement of the piezoelectric potential. The results are well shown the interplay of volume and surface charges and their influence on performance of nanogenerator, and so are crucial for designing of nanogenerators with high piezoelectric potential and good efficiency.

  15. [Effect of charged ultrafiltration membrane on natural organic matter removal and membrane fouling].

    Science.gov (United States)

    Hou, Juan; Shao, Jia-Hui; He, Yi-Liang

    2010-06-01

    With the deterioration of water pollution and stringency of water standards, ultrafiltration (UF) has become one of the best alternatives replacing conventional drinking water treatment technologies. However, UF is not very effectively to remove natural organic matter (NOM) due to the comparatively large pore size compared to the size of NOM. Fouling issue is another factor that restricts its widespread application. The rejection coefficient and flux decline during ultrafiltration of humic acid (HA) and raw water through neutral unmodified and negatively charge-modified regenerated cellulose (RC) membranes were investigated, and the analysis for membrane resistance was provided. The initial removal rate for HA is 59% and the flux decline is 32% on neutral unmodified RC membrane with MWCO of 100 x 10(3), while the initial removal rate for HA increases to 92% and the flux decline decreases to 25% on negatively charge-modified RC membrane. Compared to neutral unmodified RC membrane, the removal rate for NOM on negatively charge-modified RC membrane increases 20% and the flux decline decreases 12%. Results indicated that charged UF membrane could be an effective way for better removal of NOM and reduction of the membrane fouling due to the electrostatic interaction with the combination effect of membrane pore size.

  16. Effect of ion compensation of the beam space charge on gyrotron operation

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, A. P.; Glyavin, M. Yu. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Nusinovich, G. S. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742-3511 (United States)

    2015-04-15

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ion compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.

  17. Effect of surface mechanical finishes on charging ability of electron irradiated PMMA in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Rondot, Sebastien, E-mail: sebastien.rondot@univ-reims.fr [Groupe de Recherche en Sciences pour l' Ingenieur, EA4301, Faculte des Sciences, BP 1039, 51687 Reims Cedex 2 (France); Jbara, Omar [Groupe de Recherche en Sciences pour l' Ingenieur, EA4301, Faculte des Sciences, BP 1039, 51687 Reims Cedex 2 (France); Fakhfakh, Slim [LaMaCop, Faculte des Sciences de SFAX, Route Soukra Km 3, BP 1171, C.P 3000 Sfax (Tunisia); Belkorissat, Redouane; Patat, Jean Marc [Groupe de Recherche en Sciences pour l' Ingenieur, EA4301, Faculte des Sciences, BP 1039, 51687 Reims Cedex 2 (France)

    2011-10-01

    Charging of Polymethyl Methacrylate insulators (PMMA), in a scanning electron microscope (SEM) is studied owing to a time resolved current method. This method allows the evolution of trapped charge versus time and the charging time constant to be deduced. The effect of surface roughness change on the ability of PMMA to trapped charge is highlighted. The results show that the trapped charge at the steady state decreases when the roughness increases in the micrometer range while the time constant of charging increases with surface roughness. This behaviour is due to the increase of leakage current and/or enhanced secondary electron emission (SEE). On the one hand, surface mechanical finishes allows, the build up charge in insulators submitted to an electron bombardment to be lowered. On the other hand this treatment allows the secondary electron emission to be raised for some specific applications.

  18. Spreading of Electrolyte Drops on Charged Surfaces: Electric Double Layer Effects on Drop Dynamics

    Science.gov (United States)

    Bae, Kyeong; Sinha, Shayandev; Chen, Guang; Das, Siddhartha

    2015-11-01

    Drop spreading is one of the most fundamental topics of wetting. Here we study the spreading of electrolyte drops on charged surfaces. The electrolyte solution in contact with the charged solid triggers the formation of an electric double layer (EDL). We develop a theory to analyze how the EDL affects the drop spreading. The drop dynamics is studied by probing the EDL effects on the temporal evolution of the contact angle and the base radius (r). The EDL effects are found to hasten the spreading behaviour - this is commensurate to the EDL effects causing a ``philic'' tendency in the drops (i.e., drops attaining a contact angle smaller than its equilibrium value), as revealed by some of our recent papers. We also develop scaling laws to illustrate the manner in which the EDL effects make the r versus time (t) variation deviate from the well known r ~tn variation, thereby pinpointing the attainment of different EDL-mediated spreading regimes.

  19. Studies of the effect of charged hadrons on lead tungstate crystals

    CERN Document Server

    Nessi-Tedaldi, Francesca

    2008-01-01

    Scintillating crystals are used for calorimetry in several high-energy physics experiments. For some of them, performance has to be ensured in difficult operating conditions, like a high radiation environment, very large particle fluxes and high collision rates. Results are presented here from a thorough series of measurements concerning mainly the effect of charged hadrons on lead tungstate. It is also shown how these results can be used to predict the effect on crystals due to a given flux of particles.

  20. Infrared study of charge injection in organic field-effect transistors

    Science.gov (United States)

    Li, Zhiqiang

    2008-03-01

    We present a systematic infrared (IR) spectroscopic study of charge injection in organic field-effect transistors (FET). These experiments have revealed new unexpected aspects of both polymers and molecular crystals. IR spectromicroscopy was employed to image the charges in poly(3-hexylthiophene) (P3HT) FETs. The charge density profile in the conducting channel uncovers a density-dependent mobility in P3HT due to disorder effects. Our IR studies of single crystal rubrene based FETs show that charge transport in these devices at room temperature is governed by light quasiparticles in molecular orbital bands. This result is at variance with the common beliefs of polaron formation in molecular solids. The above experiments have demonstrated the unique potential of IR spectroscopy for investigating physical phenomena at the nanoscale occurring at the semiconductor-insulator interface in FET devices. This work is in collaboration with G. M. Wang, D. Moses, A. J. Heeger (UCSB), V. Podzorov, M.E. Gershenson (Rutgers), Z. Hao, M. C. Martin (ALS), N. Sai, A. D. Meyertholen, M. M. Fogler, M. Di Ventra and D. N. Basov (UCSD).

  1. Reducing Space Charge Effects in a Linear Ion Trap by Rhombic Ion Excitation and Ejection

    Science.gov (United States)

    Zhang, Xiaohua; Wang, Yuzhuo; Hu, Lili; Guo, Dan; Fang, Xiang; Zhou, Mingfei; Xu, Wei

    2016-07-01

    Space charge effects play important roles in ion trap operations, which typically limit the ion trapping capacity, dynamic range, mass accuracy, and resolving power of a quadrupole ion trap. In this study, a rhombic ion excitation and ejection method was proposed to minimize space charge effects in a linear ion trap. Instead of applying a single dipolar AC excitation signal, two dipolar AC excitation signals with the same frequency and amplitude but 90° phase difference were applied in the x- and y-directions of the linear ion trap, respectively. As a result, mass selective excited ions would circle around the ion cloud located at the center of the ion trap, rather than go through the ion cloud. In this work, excited ions were then axially ejected and detected, but this rhombic ion excitation method could also be applied to linear ion traps with ion radial ejection capabilities. Experiments show that space charge induced mass resolution degradation and mass shift could be alleviated with this method. For the experimental conditions in this work, space charge induced mass shift could be decreased by ~50%, and the mass resolving power could be improved by ~2 times at the same time.

  2. Two-dimensional analytical model of double-gate tunnel FETs with interface trapped charges including effects of channel mobile charge carriers

    Science.gov (United States)

    Xu, Huifang; Dai, Yuehua

    2017-02-01

    A two-dimensional analytical model of double-gate (DG) tunneling field-effect transistors (TFETs) with interface trapped charges is proposed in this paper. The influence of the channel mobile charges on the potential profile is also taken into account in order to improve the accuracy of the models. On the basis of potential profile, the electric field is derived and the expression for the drain current is obtained by integrating the BTBT generation rate. The model can be used to study the impact of interface trapped charges on the surface potential, the shortest tunneling length, the drain current and the threshold voltage for varying interface trapped charge densities, length of damaged region as well as the structural parameters of the DG TFET and can also be utilized to design the charge trapped memory devices based on TFET. The biggest advantage of this model is that it is more accurate, and in its expression there are no fitting parameters with small calculating amount. Very good agreements for both the potential, drain current and threshold voltage are observed between the model calculations and the simulated results. Project supported by the National Natural Science Foundation of China (No. 61376106), the University Natural Science Research Key Project of Anhui Province (No. KJ2016A169), and the Introduced Talents Project of Anhui Science and Technology University.

  3. Effect of Sulfate on Adsorption of Zinc and Cadmium by Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    ZHANGGANGYA; G.W.BRUMMER; 等

    1998-01-01

    SO42- and Zn2+ or Cd2+ were added to three variable charge soils in different sequences.In one sequence sulfate was added first ,and in the other,Zn2+ or Cd2+ first.The addition of sulfate to the system invariably caused an increase in adsorption of the heavy metal added,with the effect more remarkable whn the soil reacted with the sulfate prior to the metal.the shift in pH50 for both Zn and Cd adsorption was aslo comparatively larger in the first sequence of reactions .It was suggested that the increase in negative charge density and the resultant negative potential of the soil were the primary cause of the pronounced effect of sulfate on adsorption of Zn or Cd,and the formaiton of the ternary surface complex-S-SO4-M might also play a role in the effect.

  4. On Hierarchy, Charge Universality, and 4D Effective Theory in Randall-Sundrum Models

    CERN Document Server

    Benson, K

    2004-01-01

    We present a variant formulation of the Randall-Sundrum model which solves both the hierarchy and charge universality problems. We first critique the rationale for hierarchy solution and 4D effective interactions in the Randall-Sundrum model. We note its asymmetric treatment of matter and gravity in the warped braneworld background, leaving uncalibrated the particle scale; as well as its unconventional spatial attribution of integrated 4D effective gravity. Matter and massless gravitons both localize when branes form to warp spacetime; thus consistent accounting of induced 4D physics must track both particle and Planck scales through brane formation. We perform such self-consistent tracking in the warped Randall-Sundrum background, by treating matter as intrinsically extradimensional, on par with gravity, with a unified mass scale. We find this definite, self-consistent theory solves two major problems: the effective 4D theory shows robust hierarchy solution, and preserves charge universality. Our unified 5D ...

  5. Effect of trapped ions and nonequilibrium electron-energy distribution function on dust-particle charging in gas discharges.

    Science.gov (United States)

    Sukhinin, G I; Fedoseev, A V; Antipov, S N; Petrov, O F; Fortov, V E

    2009-03-01

    Dust-particles charging in a low-pressure glow discharge was investigated theoretically. The dust-particle charge was found on the basis of a developed self-consistent model taking into account the nonequilibrium character of electron distribution function and the formation of an ionic coat composed of bound or trapped ions around the dust particle. The dust-particle charge, the radial distributions of electron density, free and trapped ions densities, and the distribution of electrostatic potential were found. It was shown that the non-Maxwellian electron distribution function and collisional flux of trapped ions both reduce the dust-particle charge in comparison with that received with the help of the conventional orbital motion limited (OML) model. However, in rare collisional regimes in plasma when the collisional flux is negligible, the formation of ionic coat around a particle leads to a shielding of the proper charge of a dust particle. In low-pressure experiments, it is only possible to detect the effective charge of a dust particle that is equal to the difference between the proper charge of the particle and the charge of trapped ions. The calculated effective dust particle charge is in fairly good agreement with the experimental measurements of dust-particle charge dependence on gas pressure.

  6. Effects of the Coastal Park Environment Attributes on Its Admission Fee Charges

    Directory of Open Access Journals (Sweden)

    Wang Erda

    2016-01-01

    Full Text Available In this paper, we investigate the effect of those recognized nature-and-activity-based attributes on the level of park’s admission fee charges using a panel data of 29 coastal recreation parks in Dalian city of China. A total of seven different Hedonic pricing model specifications are used in the estimating process. The results indicate that a numerous attributes have statistically significant effects (α≤ 0.10 on the level of park admission fee charges. In terms of the economic valuation, the marine sightseeing results in the highest value of Marginal Willingness to Pay (MWTP of $6.4 as its quality rank improves to a designated higher level. As expected that the park congestion has a negative effect on the MWTP (-$0.47 and overall park’s rankings have a positive effect ($0.05 on park’s MWTP. However, many recreation activities accommodated by the park sites exhibit a relatively weak effect on the park entrance fee charges. One possible reason is perhaps owing to the single admission package fee policy adopted by the park management..

  7. Microscopic and macroscopic characterization of the charging effects in SiC/Si nanocrystals/SiC sandwiched structures.

    Science.gov (United States)

    Xu, Jie; Xu, Jun; Wang, Yuefei; Cao, Yunqing; Li, Wei; Yu, Linwei; Chen, Kunji

    2014-02-07

    Microscopic charge injection into the SiC/Si nanocrystals/SiC sandwiched structures through a biased conductive AFM tip is subsequently characterized by both electrostatic force microscopy and Kelvin probe force microscopy (KPFM). The charge injection and retention characteristics are found to be affected by not only the band offset at the Si nanocrystals/SiC interface but also the doping type of the Si substrate. On the other hand, capacitance-voltage (C-V) measurements investigate the macroscopic charging effect of the sandwiched structures with a thicker SiC capping layer, where the charges are injected from the Si substrates. The calculated macroscopic charging density is 3-4 times that of the microscopic one, and the possible reason is the underestimation of the microscopic charging density caused by the averaging effect and detection delay in the KPFM measurements.

  8. Selective effects of charge on G protein activation by FSH-receptor residues 551-555 and 650-653.

    Science.gov (United States)

    Grasso, P; Deziel, M R; Reichert, L E

    1995-01-01

    Two cytosolic regions of the rat testicular FSH receptor (FSHR), residues 533-555 and 645-653, have been identified as G protein-coupling domains. We localized the activity in these domains to their C-terminal sequences, residues 551-555 (KIAKR, net charge +3) and 650-653 (RKSH, net charge +3), and examined the effects of charge on G protein activation by the C-terminal peptides, using synthetic analogs containing additions, through alanine (A) linkages, of arginine (R, +), histidine (H, +) or both. RA-KIAKR (net charge +4) mimicked the effect of FSHR-(551-555) on guanine nucleotide exchange in rat testis membranes, but reduced its ability to inhibit FSH-stimulated estradiol biosynthesis in cultured rat Sertoli cells. Further increasing net charge by the addition of H (HARA-KIAKR, net charge +5) increased guanosine 5'-triphosphate (GTP) binding, but eliminated FSHR-(551-555) effects on FSH-stimulated steroidogenesis. HA-RKSH (net charge +4) significantly inhibited guanine nucleotide exchange in rat testis membranes, but stimulated basal and potentiated FSH-induced estradiol biosynthesis in cultured rat Sertoli cells. Addition of two H residues (HAHA-RKSH, net charge +5) restored GTP binding and further potentiated basal and FSH-stimulated steroidogenesis. These results suggest that positive charges in G protein-coupling domains of the FSHR play a role in modulating G protein activation and postbinding effects of FSH, such as steroidogenesis.

  9. Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Shirk; Jeffrey Wishart

    2015-04-01

    As part of the U.S. Department of Energy’s Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level 2 EVSE, while two were exclusively DC fast charged with a 50 kW charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, and at 10,000-mile intervals. Battery tests include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests. The on-road testing was carried out through 70,000 miles, at which point the final battery tests were performed. The data collected over 70,000 miles of driving, charging, and rest are analyzed, including the resulting thermal conditions and power and cycle demands placed upon the battery. Battery performance metrics including capacity, internal resistance, and power capability obtained from laboratory testing throughout the test program are analyzed. Results are compared within and between the two groups of vehicles. Specifically, the impacts on battery performance, as measured by laboratory testing, are explored as they relate to battery usage and variations in conditions encountered, with a primary focus on effects due to the differences between AC level 2 and DC fast charging. The contrast between battery performance degradation and the effect on vehicle performance is also explored.

  10. Signal modeling of charge sharing effect in simple pixelated CdZnTe detector

    Science.gov (United States)

    Kim, Jae Cheon; Kaye, William R.; He, Zhong

    2014-05-01

    In order to study the energy resolution degradation in 3D position-sensitive pixelated CdZnTe (CZT) detectors, a detailed detector system modeling package has been developed and used to analyze the detector performance. A 20 × 20 × 15 mm3 CZT crystal with an 11 × 11 simple-pixel anode array and a 1.72 mm pixel pitch was modeled. The VAS UM/TAT4 Application Specific Integrated Circuitry (ASIC) was used for signal read-out. Components of the simulation package include gamma-ray interactions with the CZT crystal, charge induction, electronic noise, pulse shaping, and ASIC triggering procedures. The charge induction model considers charge drift, trapping, diffusion, and sharing between pixels. This system model is used to determine the effects of electron cloud sharing, weighting potential non-uniformity, and weighting potential cross-talk which produce non-uniform signal responses for different gamma-ray interaction positions and ultimately degrade energy resolution. The effect of the decreased weighting potential underneath the gap between pixels on the total pulse amplitude of events has been studied. The transient signals induced by electron clouds collected near the gap between pixels may generate false signals, and the measured amplitude can be even greater than the photopeak. As the number of pixels that collect charge increases, the probability of side-neighbor events due to charge sharing significantly increases. If side-neighbor events are not corrected appropriately, the energy resolution of pixelated CZT detectors in multiple-pixel events degrades rapidly.

  11. Signal modeling of charge sharing effect in simple pixelated CdZnTe detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae C.; Kaye, William R.; He, Zhong [University of Michigan, Ann Arbor, MI (United States)

    2014-05-15

    In order to study the energy resolution degradation in 3D position-sensitive pixelated CdZnTe (CZT) detectors, a detailed detector system modeling package has been developed and used to analyze the detector performance. A 20 x 20 x 15 mm{sup 3} CZT crystal with an 11 x 11 simple-pixel anode array and a 1.72 mm pixel pitch was modeled. The VAS UM/TAT4 Application Specific Integrated Circuitry (ASIC) was used for signal read-out. Components of the simulation package include gamma-ray interactions with the CZT crystal, charge induction, electronic noise, pulse shaping, and ASIC triggering procedures. The charge induction model considers charge drift, trapping, diffusion, and sharing between pixels. This system model is used to determine the effects of electron cloud sharing, weighting potential non-uniformity, and weighting potential cross-talk which produce non-uniform signal responses for different gamma-ray interaction positions and ultimately degrade energy resolution. The effect of the decreased weighting potential underneath the gap between pixels on the total pulse amplitude of events has been studied. The transient signals induced by electron clouds collected near the gap between pixels may generate false signals, and the measured amplitude can be even greater than the photopeak. As the number of pixels that collect charge increases, the probability of side-neighbor events due to charge sharing significantly increases. If side-neighbor events are not corrected appropriately, the energy resolution of pixelated CZT detectors in multiple-pixel events degrades rapidly.

  12. DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer.

    Science.gov (United States)

    Bronder, Thomas S; Poghossian, Arshak; Scheja, Sabrina; Wu, Chunsheng; Keusgen, Michael; Mewes, Dieter; Schöning, Michael J

    2015-09-16

    Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event.

  13. The Effect of the Charge Fluctuation of Dust Particles on Ion-acoustic Wave Excited Through Ioniza tion Instability

    Institute of Scientific and Technical Information of China (English)

    华建军; 刘金远; 马腾才

    2002-01-01

    The effect of the charge fluctuation of dust particles on ion acoustic wave (IAW) excited through ionization instability was investigated. The hydrodynamic equations and linear time-dependent perturbation theory served as the starting point of theory, by which the dispersion relation and growth rate of the IAW were given. By comparing the results with the case of constant dust charges, it was found that the charge fluctuation of dust particles reduces the instability of the wave mode.

  14. Interactions of human hemoglobin with charged ligand-functionalized iron oxide nanoparticles and effect of counterions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Goutam, E-mail: ghoshg@yahoo.com [UGC-DAE Consortium for Scientific Research, Mumbai Centre (India); Panicker, Lata [Bhabha Atomic Research Centre, Solid State Physics Division (India)

    2014-12-15

    Human hemoglobin is an important metalloprotein. It has tetrameric structure with each subunit containing a ‘heme’ group which carries oxygen and carbon dioxide in blood. In this work, we have investigated the interactions of human hemoglobin (Hb) with charged ligand-functionalized iron oxide nanoparticles and the effect of counterions, in aqueous medium. Several techniques like DLS and ζ-potential measurements, UV–vis, fluorescence, and CD spectroscopy have been used to characterize the interaction. The nanoparticle size was measured to be in the range of 20–30 nm. Our results indicated the binding of Hb with both positively as well as negatively charged ligand-functionalized iron oxide nanoparticles in neutral aqueous medium which was driven by the electrostatic and the hydrophobic interactions. The electrostatic binding interaction was not seen in phosphate buffer at pH 7.4. We have also observed that the ‘heme’ groups of Hb remained unaffected on binding with charged nanoparticles, suggesting the utility of the charged ligand-functionalized nanoparticles in biomedical applications.

  15. Charge Effect on the Quantum Dots-Peptide Self-Assembly Using Fluorescence Coupled Capillary Electrophoresis.

    Science.gov (United States)

    Wang, Jianhao; Li, Jingyan; Teng, Yiwan; Bi, Yanhua; Hu, Wei; Li, Jinchen; Wang, Cheli; Qiu, Lin; Jiang, Pengju

    2016-04-01

    We present a molecular characterization of metal-affinity driven self-assembly between CdSe-ZnS quantum dots and a series of hexahistidine peptides with different charges. In particular, we uti- lized fluorescence coupled capillary electrophoresis to test the self-assembly process of quantum dots with peptides in solution. Four peptides with different charges can be efficiently separated by fluorescence coupled capillary electrophoresis. The migration time appeared to be influenced by the charges of the peptide. In addition, the kinetics of self-assembly process of quantum dots with one of the peptides manifested a bi-phasic kinetics followed by a saturating stage. This work revealed that there exist two types of binding sites on the surface of quantum dots for peptide 1: one type termed "high priority" binding site and a "low priority" site which is occupied after the first binding sites are fully occupied. The total self-assembly process finishes in solution within 80 s. Our work represents the systematic investigation of the details of self-assembly kinetics utilizing high-resolution fluorescence coupled capillary electrophoresis. The charge effect of peptide coating quantum dots provides a new way of preparing bioprobes.

  16. Effect of extreme temperatures on battery charging and performance of electric vehicles

    Science.gov (United States)

    Lindgren, Juuso; Lund, Peter D.

    2016-10-01

    Extreme temperatures pose several limitations to electric vehicle (EV) performance and charging. To investigate these effects, we combine a hybrid artificial neural network-empirical Li-ion battery model with a lumped capacitance EV thermal model to study how temperature will affect the performance of an EV fleet. We find that at -10 °C, the self-weighted mean battery charging power (SWMCP) decreases by 15% compared to standard 20 °C temperature. Active battery thermal management (BTM) during parking can improve SWMCP for individual vehicles, especially if vehicles are charged both at home and at workplace; the median SWMCP is increased by over 30%. Efficiency (km/kWh) of the vehicle fleet is maximized when ambient temperature is close to 20 °C. At low (-10 °C) and high (+40 °C) ambient temperatures, cabin preconditioning and BTM during parking can improve the median efficiency by 8% and 9%, respectively. At -10 °C, preconditioning and BTM during parking can also improve the fleet SOC by 3-6%-units, but this also introduces a "base" load of around 140 W per vehicle. Finally, we observe that the utility of the fleet can be increased by 5%-units by adding 3.6 kW chargers to workplaces, but further improved charging infrastructure would bring little additional benefit.

  17. Negative Resistance Effect and Charge Transfer Mechanisms in the lon Beam Deposited Diamond Like Carbon Superlattices

    Directory of Open Access Journals (Sweden)

    Andrius VASILIAUSKAS

    2011-03-01

    Full Text Available In the present study DLC:SiOx/DLC/DLC:SiOx/nSi and DLC:SiOx/DLC/DLC:SiOx/pSi structures were fabricated by ion beam deposition using a closed drift ion source. Current-voltage (I-V characteristics of the multilayer samples were measured at room temperature. The main charge transfer mechanisms were considered. Unstable negative resistance effect was observed for some DLC:SiOx/DLC/DLC:SiOx/nSi and DLC:SiOx/DLC/DLC:SiOx/pSi structures. In the case of the diamond like carbon superlattices fabricated on nSi it was observed only during the first measurement. In the case of the some DLC:SiOx/DLC/DLC:SiOx/pSi negative resistance "withstood" several measurements. Changes of the charge carrier mechanisms were observed along with the dissapear of the negative resistance peaks. It seems, that in such a case influence of the bulk related charge transfer mechanisms such as Poole-Frenkel emission increased, while the influence of the contact limited charge transfer mechanisms such as Schottky emission decreased. Observed results were be explained by current flow through the local microconducting channels and subsequent destruction of the localized current pathways as a result of the heating by flowing electric current.http://dx.doi.org/10.5755/j01.ms.17.1.240

  18. Opposite counter-ion effects on condensed bundles of highly charged supramolecular nanotubes in water.

    Science.gov (United States)

    Wei, Shenghui; Chen, Mingming; Wei, Chengsha; Huang, Ningdong; Li, Liangbin

    2016-07-20

    Although ion specificity in aqueous solutions is well known, its manifestation in unconventional strong electrostatic interactions remains implicit. Herein, the ionic effects in dense packing of highly charged polyelectrolytes are investigated in supramolecular nanotube prototypes. Distinctive behaviors of the orthorhombic arrays composed of supramolecular nanotubes in various aqueous solutions were observed by Small Angle X-ray Scattering (SAXS), depending on the counter-ions' size and affiliation to the surface -COO(-) groups. Bigger tetra-alkyl ammonium (TAA(+)) cations weakly bonding to -COO(-) will compress the orthorhombic arrays, while expansion is induced by smaller alkaline metal (M(+)) ions with strong affiliation to -COO(-). Careful analysis of the changes in the SAXS peaks with different counter/co-ion combinations indicates dissimilar mechanisms underlying the two explicit types of ionic effects. The pH measurements are in line with the ion specificity by SAXS and reveal the strong electrostatic character of the system. It is proposed that the small distances between the charged surfaces, in addition to the selective adsorption of counter-ions by the surface charge, bring out the observed distinctive ionic effects. Our results manifest the diverse mechanisms and critical roles of counter-ion effects in strong electrostatic interactions.

  19. The MicroBooNE Experiment and the Impact of Space Charge Effects

    CERN Document Server

    Mooney, Michael

    2015-01-01

    MicroBooNE is an experiment designed to both probe neutrino physics phenomena and develop the LArTPC (Liquid Argon Time Projection Chamber) detector technology. The MicroBooNE experiment, which began taking data this year, is the first large LArTPC detector in the U.S. This experiment is the beginning of a path of detectors (both on the surface and underground) envisioned for the U.S. SBL (Short-BaseLine) and LBL (Long-BaseLine) programs. In order to interpret the data from the experiments on the surface, the impact of space charge effects must be simulated and calibrated. The space charge effect is the build-up of slow-moving positive ions in a detector due to, for instance, ionization from cosmic rays, leading to a distortion of the electric field within the detector. This effect leads to a displacement in the reconstructed position of signal ionization electrons in LArTPC detectors. The LArTPC utilized in the MicroBooNE experiment is expected to be modestly impacted from the space charge effect, with the e...

  20. Modeling of etch profile evolution including wafer charging effects using self consistent ion fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, R.J.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

    1996-12-31

    As high density plasma reactors become more predominate in industry, the need has intensified for computer aided design tools which address both equipment issues such as ion flux uniformity onto the water and process issues such etch feature profile evolution. A hierarchy of models has been developed to address these issues with the goal of producing a comprehensive plasma processing design capability. The Hybrid Plasma Equipment Model (HPEM) produces ion and neutral densities, and electric fields in the reactor. The Plasma Chemistry Monte Carlo Model (PCMC) determines the angular and energy distributions of ion and neutral fluxes to the wafer using species source functions, time dependent bulk electric fields, and sheath potentials from the HPEM. These fluxes are then used by the Monte Carlo Feature Profile Model (MCFP) to determine the time evolution of etch feature profiles. Using this hierarchy, the effects of physical modifications of the reactor, such as changing wafer clamps or electrode structures, on etch profiles can be evaluated. The effects of wafer charging on feature evolution are examined by calculating the fields produced by the charge deposited by ions and electrons within the features. The effect of radial variations and nonuniformity in angular and energy distribution of the reactive fluxes on feature profiles and feature charging will be discussed for p-Si etching in inductively-coupled plasma (ICP) sustained in chlorine gas mixtures. The effects of over- and under-wafer topography on etch profiles will also be discussed.

  1. Effect of reduction of trap charge carrier density in organic field effect transistors by surface treatment of dielectric layer

    Energy Technology Data Exchange (ETDEWEB)

    Dagar, Janardan; Yadav, Vandana; Kumar Singh, Rajiv; Suman, C. K.; Srivastava, Ritu, E-mail: ritu@mail.nplindia.org [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, CSIR-Network of Institute for Solar Energy (NISE), Dr. K.S.Krishnan Road, New Delhi 110012 (India); Tyagi, Priyanka [Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, CSIR-Network of Institute for Solar Energy (NISE), Dr. K.S.Krishnan Road, New Delhi 110012 (India); Center for Applied Research in Electronics, Indian Institute of Technology Delhi, New Delhi 110016 (India)

    2013-12-14

    In this work, we have studied the effect of surface treatment of SiO{sub 2} dielectric layer on the reduction of the trap charge carrier density at dielectric/semiconducting interface by fabricating a metal–insulator–semiconductor (MIS) device using α, ω-dihexylcarbonylquaterthiophene as semiconducting layer. SiO{sub 2} dielectric layer has been treated with 1,1,1,3,3,3-hexamethyldisilazane (HMDS) to modify the chemical group acting as charge traps. Capacitance-voltage measurements have been performed on MIS devices fabricated on SiO{sub 2} and HMDS treated SiO{sub 2}. These data have been used for the calculation of trap charge carrier density and Debye length at the dielectric-semiconductor interface. The calculated trap charge carrier density has been found to reduce from (2.925 ± 0.049) × 10{sup 16} cm{sup −3} to (2.025 ± 0.061) × 10{sup 16} cm{sup −3} for the MIS device with HMDS treated SiO{sub 2} dielectric in comparison to that of untreated SiO{sub 2}. Next, the effect of reduction in trap charge carrier density has been studied on the performance of organic field effect transistors. The improvement in the device parameters like mobility, on/off ratio, and gate leakage current has been obtained with the effect of the surface treatment. The charge carrier mobility has been improved by a factor of 2 through this treatment. Further, the influence of the treatment was observed by atomic force microscope and Fourier transform infrared spectroscopy techniques.

  2. A Model of Charge Transfer Excitons: Diffusion, Spin Dynamics, and Magnetic Field Effects

    CERN Document Server

    Lee, Chee Kong; Willard, Adam P

    2016-01-01

    In this letter we explore how the microscopic dynamics of charge transfer (CT) excitons are influenced by the presence of an external magnetic field in disordered molecular semiconductors. This influence is driven by the dynamic interplay between the spin and spatial degrees of freedom of the electron-hole pair. To account for this interplay we have developed a numerical framework that combines a traditional model of quantum spin dynamics with a coarse-grained model of stochastic charge transport. This combination provides a general and efficient methodology for simulating the effects of magnetic field on CT state dynamics, therefore providing a basis for revealing the microscopic origin of experimentally observed magnetic field effects. We demonstrate that simulations carried out on our model are capable of reproducing experimental results as well as generating theoretical predictions related to the efficiency of organic electronic materials.

  3. Space charge effect on parametric resonances of ion cloud in a linear Paul trap

    CERN Document Server

    Mandal, P; De Munshi, D; Dutta, T; Mukherjee, M

    2013-01-01

    The effect of the presence of a finite number of ions on their parametric resonances inside a Paul trap has been investigated both experimentally and theoretically. The Coulomb coupling among the charged particles results in two distinct phenomena: one is the frequency shift of the trapped ion oscillators and second is the collective oscillation of the trapped ion cloud. We observe both in a linear trap configuration. It is found that the strength and the secular frequency of individual ion-oscillation decrease while the strength of the collective oscillation increases with increasing number of trapped ions. The observation has been modeled by considering the space charge potential as an effective dc potential inside the trap. It describes the observations well within the experimental uncertainties.

  4. Dielectric many-body effects in arrays of charged cylindrical macromolecules

    Science.gov (United States)

    Sinkovits, Daniel W.; Barros, Kipton; Dobnikar, Jure; Kandu&{Caron; C}, Matej; Naji, Ali; Podgornik, Rudolf; Luijten, Erik

    2012-02-01

    Nonuniform dielectric constants are a ubiquitous aspect of condensed-matter systems, but nevertheless widely ignored in simulations. Analytical work suggests that the polarization effects resulting from these inhomogeneities can produce many-body interactions that qualitatively alter the behavior of systems driven by electrostatic interactions, but such work relies on approximations. Recently, we have developed an algorithm that computes the fluctuating polarization charge at the interface between dielectric materials during a molecular dynamics simulation, without approximation. Here, we apply this approach to investigate arrays of charged cylindrical macromolecules in the presence of explicit counterions. We study the dielectric many-body effects as a function of separation, dielectric constant variation, and counterion valency. Our findings have implications for the aggregation of polyelectrolytes such as F-actin or DNA.

  5. Investigation of asymmetric alcohol dehydrogenase (ADH) reduction of acetophenone derivatives: effect of charge density.

    Science.gov (United States)

    Naik, Hemantkumar G; Yeniad, Bahar; Koning, Cor E; Heise, Andreas

    2012-07-01

    In an effort to study the effect of substituent groups of the substrate on the alcohol dehydrogenase (ADH) reductions of aryl-alkyl ketones, several derivatives of acetophenone have been evaluated against ADHs from Lactobacillus brevis (LB) and Thermoanaerobacter sp. (T). Interestingly, ketones with non-demanding (neutral) para-substituents were reduced to secondary alcohols by these enzymes in enantiomerically pure form whereas those with demanding (ionizable) substituents could not be reduced. The effect of substrate size, their solubility in the reaction medium, electron donating and withdrawing properties of the ligand and also the electronic charge density distribution on the substrate molecules have been studied and discussed in detail. From the results, it is observed that the electronic charge distribution in the substrate molecules is influencing the orientation of the substrate in the active site of the enzyme and hence the ability to reduce the substrate.

  6. The dependence of the nuclear charge form factor on short range correlations and surface fluctuation effects

    CERN Document Server

    Massen, S E; Grypeos, M E

    1995-01-01

    We investigate the effects of fluctuations of the nuclear surface on the harmonic oscillator elastic charge form factor of light nuclei, while simultaneously approximating the short-range correlations through a Jastrow correlation ~factor. Inclusion of surface-fluctuation effects within this description, by truncating the cluster expansion at the two-body part, is found to improve somewhat the fit to the elastic charge form-factor of ^{16}O and ^{40}Ca. However, the convergence of the cluster expansion is expected to deteriorate. An additional finding is that the surface-fluctuation correlations produce a drastic change in the asymptotic behavior of the point-proton form factor, which now falls off quite slowly (i.e. as const. \\cdot q^{-4}) at large values of the momentum transfer q.

  7. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors

    Science.gov (United States)

    Senanayak, Satyaprasad P.; Yang, Bingyan; Thomas, Tudor H.; Giesbrecht, Nadja; Huang, Wenchao; Gann, Eliot; Nair, Bhaskaran; Goedel, Karl; Guha, Suchi; Moya, Xavier; McNeill, Christopher R.; Docampo, Pablo; Sadhanala, Aditya; Friend, Richard H.; Sirringhaus, Henning

    2017-01-01

    Fundamental understanding of the charge transport physics of hybrid lead halide perovskite semiconductors is important for advancing their use in high-performance optoelectronics. We use field-effect transistors (FETs) to probe the charge transport mechanism in thin films of methylammonium lead iodide (MAPbI3). We show that through optimization of thin-film microstructure and source-drain contact modifications, it is possible to significantly minimize instability and hysteresis in FET characteristics and demonstrate an electron field-effect mobility (μFET) of 0.5 cm2/Vs at room temperature. Temperature-dependent transport studies revealed a negative coefficient of mobility with three different temperature regimes. On the basis of electrical and spectroscopic studies, we attribute the three different regimes to transport limited by ion migration due to point defects associated with grain boundaries, polarization disorder of the MA+ cations, and thermal vibrations of the lead halide inorganic cages. PMID:28138550

  8. Molecular dynamics investigation into the electric charge effect on the operation of ion-based carbon nanotube oscillators

    Science.gov (United States)

    Ansari, R.; Ajori, S.; Sadeghi, F.

    2015-10-01

    The fabrication of nanoscale oscillators working in the gigahertz (GHz) range and beyond has now become the focal center of interest to many researchers. Motivated by this issue, this paper proposes a new type of nano-oscillators with enhanced operating frequency in which both the inner core and outer shell are electrically charged. To this end, molecular dynamics (MD) simulations are performed to investigate the mechanical oscillatory behavior of ions, and in particular chloride ion, tunneling through electrically charged carbon nanotubes (CNTs). It is assumed that the electric charges with similar sign and magnitude are evenly distributed on two ends of nanotube. The interatomic interactions between carbon atoms and van der Waals (vdW) interactions between ion and nanotube are respectively modeled by Tersoff-Brenner and Lennard-Jones (LJ) potential functions, whereas the electrostatic interactions between ion and electric charges are modeled by Coulomb potential function. A comprehensive study is conducted to get an insight into the effects of different parameters such as sign and magnitude of electric charges, nanotube radius, nanotube length and initial conditions (initial separation distance and velocity) on the oscillatory behavior of chloride ion-charged CNT oscillators. It is shown that, the chloride ion frequency inside negatively charged CNTs is lower than that inside positively charged ones with the same magnitude of electric charge, while it is higher than that inside uncharged CNTs. It is further observed that, higher frequencies are generated at higher magnitudes of electric charges distributed on the nanotube.

  9. Effect of scalar field mass on gravitating charged scalar solitons and black holes in a cavity

    Science.gov (United States)

    Ponglertsakul, Supakchai; Winstanley, Elizabeth

    2017-01-01

    We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and scalar field.

  10. Charge Transport in Field-Effect Transistors based on Layered Materials and their Heterostructures

    Science.gov (United States)

    Kumar, Jatinder

    In the quest for energy efficiency and device miniaturization, the research in using atomically thin materials for device applications is gaining momentum. The electronic network in layered materials is different from 3D counterparts. It is due to the interlayer couplings and density of states because of their 2D nature. Therefore, understanding the charge transport in layered materials is fundamental to explore the vast opportunities these ultra-thin materials offer. Hence, the challenges targeted in the thesis are: (1) understanding the charge transport in layered materials based on electronic network of quantum and oxide capacitances, (2) studying thickness dependence, ranging from monolayer to bulk, of full range-characteristics of field-effect transistor (FET) based on layered materials, (3) investigating the total interface trap charges to achieve the ultimate subthreshold slope (SS) theoretically possible in FETs, (4) understanding the effect of the channel length on the performance of layered materials, (5) understanding the effect of substrate on performance of the TMDC FETs and studying if the interface of transition metal dichalcogenides (TMDCs)/hexagonalboron nitride (h-BN) can have less enough trap charges to observe ambipolar behavior, (6) Exploring optoelectronic properties in 2D heterostructures that includes understanding graphene/WS2 heterostructure and its optoelectronic applications by creating a p-n junction at the interface. The quality of materials and the interface are the issues for observing and extracting clean physics out of these layered materials and heterostructures. In this dissertation, we realized the use of quantum capacitance in layered materials, substrate effects and carrier transport in heterostructure.

  11. Longitudinal Space Charge Effects in the JLAB IR FEL SRF Linac

    CERN Document Server

    Hernandez-Garcia, Carlos; Behre, Chris; Benson, S V; Herman-Biallas, George; Boyce, James; Douglas, David; Dylla, Fred; Evans, Richard; Grippo, A; Gubeli, Joe; Hardy, David; Jordan, Kevin; Merminga, Lia; Neil, George; Preble, Joe; Shinn, Michelle D; Siggins, Tim; Walker, Richard; Williams, Gwyn; Yunn, Byung; Zhang, Shukui

    2004-01-01

    Observations of energy spread asymmetry when operating the Linac on either side of crest and longitudinal emittance growth have been confirmed by extending PARMELA simulations from the injector to the end of the first SRF Linac module. The asymmetry can be explained by the interaction of the accelerating electric field with that from longitudinal space charge effects within the electron bunch. This can be a major limitation to performance in FEL accelerators.

  12. Effect of scalar field mass on gravitating charged scalar solitons and black holes in a cavity

    CERN Document Server

    Ponglertsakul, Supakchai

    2016-01-01

    We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and scalar field.

  13. Moisture effect on the dielectric response and space charge behaviour of mineral oil impregnated paper insulation

    OpenAIRE

    Hao, Jian; Chen, George; Liao, R

    2011-01-01

    Oil-paper insulation system is widely used in power transformers and cables. Moisture is recognized to the ?enemy number one? for transformer insulation except for temperature [1]. Moisture is not only one of the most important factor which can accelerate the transformer paper insulation aging, but also has great effect on the dielectric properties of oil-paper insulation. In this paper, dielectric response and space charge behaviour of oil-paper insulation sample with three different moistur...

  14. pH and Salt Effects on the Associative Phase Separation of Oppositely Charged Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Prateek K. Jha

    2014-05-01

    Full Text Available The classical Voorn-Overbeek thermodynamic theory of complexation and phase separation of oppositely charged polyelectrolytes is generalized to account for the charge accessibility and hydrophobicity of polyions, size of salt ions, and pH variations. Theoretical predictions of the effects of pH and salt concentration are compared with published experimental data and experiments we performed, on systems containing poly(acrylic acid (PAA as the polyacid and poly(N,N-dimethylaminoethyl methacrylate (PDMAEMA or poly(diallyldimethyl ammonium chloride (PDADMAC as the polybase. In general, the critical salt concentration below which the mixture phase separates, increases with degree of ionization and with the hydrophobicity of polyelectrolytes. We find experimentally that as the pH is decreased below 7, and PAA monomers are neutralized, the critical salt concentration increases, while the reverse occurs when pH is raised above 7. We predict this asymmetry theoretically by introducing a large positive Flory parameter (= 0.75 for the interaction of neutral PAA monomers with water. This large positive Flory parameter is supported by molecular dynamics simulations, which show much weaker hydrogen bonding between neutral PAA and water than between charged PAA and water, while neutral and charged PDMAEMA show similar numbers of hydrogen bonds. This increased hydrophobicity of neutral PAA at reduced pH increases the tendency towards phase separation despite the reduction in charge interactions between the polyelectrolytes. Water content and volume of coacervate are found to be a strong function of the pH and salt concentration.

  15. Charge density and particle size effects on oligonucleotide and plasmid DNA binding to nanosized hydrotalcite.

    Science.gov (United States)

    Sanderson, Brian A; Sowersby, Drew S; Crosby, Sergio; Goss, Marcus; Lewis, L Kevin; Beall, Gary W

    2013-12-01

    Hydrotalcite (HT) and other layered double metal hydroxides are of great interest as gene delivery and timed release drug delivery systems and as enteric vehicles for biologically active molecules that are sensitive to gastric fluids. HT is a naturally occurring double metal hydroxide that can be synthesized as a nanomaterial consisting of a brucite structure with isomorphous substitution of aluminum ions. These positively charged nanoparticles exhibit plate-like morphology with very high aspect ratios. Biomolecules such as nucleic acids and proteins form strong associations with HT because they can associate with the positively charged layers. The binding of nucleic acids with HT and other nanomaterials is currently being investigated for potential use in gene therapy; however, the binding of specific nucleic acid forms, such as single- and double-stranded DNA, has been little explored. In addition, the effects of charge density and particle size on DNA adsorption has not been studied. In this paper, the binding of different forms of DNA to a series of HTs prepared at different temperatures and with different anion exchange capacities has been investigated. Experiments demonstrated that HTs synthesized at higher temperatures associate with both single- and double-stranded oligomers and circular plasmid DNA more tightly than HTs synthesized at room temperature, likely due to the hydrothermal conditions promoting larger particle sizes. HT with an anion exchange capacity of 300 meq/100 g demonstrated the highest binding of DNA, likely due to the closer match of charge densities between the HT and DNA. The details of the interaction of various forms of DNA with HT as a function of charge density, particle size, and concentration are discussed.

  16. Charge Transfer Dissociation (CTD) Mass Spectrometry of Peptide Cations: Study of Charge State Effects and Side-Chain Losses

    Science.gov (United States)

    Li, Pengfei; Jackson, Glen P.

    2017-01-01

    1+, 2+, and 3+ precursors of substance P and bradykinin were subjected to helium cation irradiation in a 3D ion trap mass spectrometer. Charge exchange with the helium cations produces a variety of fragment ions, the number and type of which are dependent on the charge state of the precursor ions. For 1+ peptide precursors, fragmentation is generally restricted to C-CO backbone bonds (a and x ions), whereas for 2+ and 3+ peptide precursors, all three backbone bonds (C-CO, C-N, and N-Cα) are cleaved. The type of backbone bond cleavage is indicative of possible dissociation channels involved in CTD process, including high-energy, kinetic-based, and ETD-like pathways. In addition to backbone cleavages, amino acid side-chain cleavages are observed in CTD, which are consistent with other high-energy and radical-mediated techniques. The unique dissociation pattern and supplementary information available from side-chain cleavages make CTD a potentially useful activation method for the structural study of gas-phase biomolecules.

  17. Long-range charge-density-wave proximity effect at cuprate/manganate interfaces

    Science.gov (United States)

    Frano, A.; Blanco-Canosa, S.; Schierle, E.; Lu, Y.; Wu, M.; Bluschke, M.; Minola, M.; Christiani, G.; Habermeier, H. U.; Logvenov, G.; Wang, Y.; van Aken, P. A.; Benckiser, E.; Weschke, E.; Le Tacon, M.; Keimer, B.

    2016-08-01

    The interplay between charge density waves (CDWs) and high-temperature superconductivity is currently under intense investigation. Experimental research on this issue is difficult because CDW formation in bulk copper oxides is strongly influenced by random disorder, and a long-range-ordered CDW state in high magnetic fields is difficult to access with spectroscopic and diffraction probes. Here we use resonant X-ray scattering in zero magnetic field to show that interfaces with the metallic ferromagnet La2/3Ca1/3MnO3 greatly enhance CDW formation in the optimally doped high-temperature superconductor YBa2Cu3O6+δ (δ ~ 1), and that this effect persists over several tens of nanometres. The wavevector of the incommensurate CDW serves as an internal calibration standard of the charge carrier concentration, which allows us to rule out any significant influence of oxygen non-stoichiometry, and to attribute the observed phenomenon to a genuine electronic proximity effect. Long-range proximity effects induced by heterointerfaces thus offer a powerful method to stabilize the charge-density-wave state in the cuprates and, more generally, to manipulate the interplay between different collective phenomena in metal oxides.

  18. Effective charges, the valence p-n interaction, and the IBM

    Energy Technology Data Exchange (ETDEWEB)

    Casten, R.F. (Brookhaven National Lab., Upton, NY (United States)); Wolf, A. (Brookhaven National Lab., Upton, NY (United States) Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev)

    1992-01-01

    There are three recent themes in nuclear structure that come together in an interesting and useful way via the concept of effective charges and the framework of the IBM. These three concepts are the importance of dynamical symmetries in describing nuclear structure and the benefits that accrue from their exploitation, secondly, the critical role of the p-n interaction in the onset and development of collectivity in nuclei, and, thirdly, the importance of the valence nucleons in determining structure and its evolution. We will illustrate this by showing that the interpretation of measured B(E2) values in the context of the dynamical symmetries of the IBM leads to new insights into the meaning of effective charges and offers new avenues to understand the role of the proton-neutron (p-n) interaction in modulating the nature of the valence space and the growth of collectivity. In particular, we will show that effective charges in valence models, such as the IBM, can be interpreted in terms of derivatives of the collectivity of the low lying levels, that is, as measures of the rate of change of collectivity as the proton and neutron numbers vary. This paper is based on recent work by the authors.

  19. Effective charges, the valence p-n interaction, and the IBM

    Energy Technology Data Exchange (ETDEWEB)

    Casten, R.F. [Brookhaven National Lab., Upton, NY (United States); Wolf, A. [Brookhaven National Lab., Upton, NY (United States)]|[Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1992-10-01

    There are three recent themes in nuclear structure that come together in an interesting and useful way via the concept of effective charges and the framework of the IBM. These three concepts are the importance of dynamical symmetries in describing nuclear structure and the benefits that accrue from their exploitation, secondly, the critical role of the p-n interaction in the onset and development of collectivity in nuclei, and, thirdly, the importance of the valence nucleons in determining structure and its evolution. We will illustrate this by showing that the interpretation of measured B(E2) values in the context of the dynamical symmetries of the IBM leads to new insights into the meaning of effective charges and offers new avenues to understand the role of the proton-neutron (p-n) interaction in modulating the nature of the valence space and the growth of collectivity. In particular, we will show that effective charges in valence models, such as the IBM, can be interpreted in terms of derivatives of the collectivity of the low lying levels, that is, as measures of the rate of change of collectivity as the proton and neutron numbers vary. This paper is based on recent work by the authors.

  20. Charged Molecules Modulate the Volume Exclusion Effects Exerted by Crowders on FtsZ Polymerization.

    Science.gov (United States)

    Monterroso, Begoña; Reija, Belén; Jiménez, Mercedes; Zorrilla, Silvia; Rivas, Germán

    2016-01-01

    We have studied the influence of protein crowders, either combined or individually, on the GTP-induced FtsZ cooperative assembly, crucial for the formation of the dynamic septal ring and, hence, for bacterial division. It was earlier demonstrated that high concentrations of inert polymers like Ficoll 70, used to mimic the crowded cellular interior, favor the assembly of FtsZ into bundles with slow depolymerization. We have found, by fluorescence anisotropy together with light scattering measurements, that the presence of protein crowders increases the tendency of FtsZ to polymerize at micromolar magnesium concentration, being the effect larger with ovomucoid, a negatively charged protein. Neutral polymers and a positively charged protein also diminished the critical concentration of assembly, the extent of the effect being compatible with that expected according to pure volume exclusion models. FtsZ polymerization was also observed to be strongly promoted by a negatively charged polymer, DNA, and by some unrelated polymers like PEGs at concentrations below the crowding regime. The influence of mixed crowders mimicking the heterogeneity of the intracellular environment on the tendency of FtsZ to assemble was also studied and nonadditive effects were found to prevail. Far from exactly reproducing the bacterial cytoplasm environment, this approach serves as a simplified model illustrating how its intrinsically crowded and heterogeneous nature may modulate FtsZ assembly into a functional Z-ring.

  1. Charged Molecules Modulate the Volume Exclusion Effects Exerted by Crowders on FtsZ Polymerization.

    Directory of Open Access Journals (Sweden)

    Begoña Monterroso

    Full Text Available We have studied the influence of protein crowders, either combined or individually, on the GTP-induced FtsZ cooperative assembly, crucial for the formation of the dynamic septal ring and, hence, for bacterial division. It was earlier demonstrated that high concentrations of inert polymers like Ficoll 70, used to mimic the crowded cellular interior, favor the assembly of FtsZ into bundles with slow depolymerization. We have found, by fluorescence anisotropy together with light scattering measurements, that the presence of protein crowders increases the tendency of FtsZ to polymerize at micromolar magnesium concentration, being the effect larger with ovomucoid, a negatively charged protein. Neutral polymers and a positively charged protein also diminished the critical concentration of assembly, the extent of the effect being compatible with that expected according to pure volume exclusion models. FtsZ polymerization was also observed to be strongly promoted by a negatively charged polymer, DNA, and by some unrelated polymers like PEGs at concentrations below the crowding regime. The influence of mixed crowders mimicking the heterogeneity of the intracellular environment on the tendency of FtsZ to assemble was also studied and nonadditive effects were found to prevail. Far from exactly reproducing the bacterial cytoplasm environment, this approach serves as a simplified model illustrating how its intrinsically crowded and heterogeneous nature may modulate FtsZ assembly into a functional Z-ring.

  2. Long-range charge-density-wave proximity effect at cuprate/manganate interfaces.

    Science.gov (United States)

    Frano, A; Blanco-Canosa, S; Schierle, E; Lu, Y; Wu, M; Bluschke, M; Minola, M; Christiani, G; Habermeier, H U; Logvenov, G; Wang, Y; van Aken, P A; Benckiser, E; Weschke, E; Le Tacon, M; Keimer, B

    2016-08-01

    The interplay between charge density waves (CDWs) and high-temperature superconductivity is currently under intense investigation. Experimental research on this issue is difficult because CDW formation in bulk copper oxides is strongly influenced by random disorder, and a long-range-ordered CDW state in high magnetic fields is difficult to access with spectroscopic and diffraction probes. Here we use resonant X-ray scattering in zero magnetic field to show that interfaces with the metallic ferromagnet La2/3Ca1/3MnO3 greatly enhance CDW formation in the optimally doped high-temperature superconductor YBa2Cu3O6+δ (δ ∼ 1), and that this effect persists over several tens of nanometres. The wavevector of the incommensurate CDW serves as an internal calibration standard of the charge carrier concentration, which allows us to rule out any significant influence of oxygen non-stoichiometry, and to attribute the observed phenomenon to a genuine electronic proximity effect. Long-range proximity effects induced by heterointerfaces thus offer a powerful method to stabilize the charge-density-wave state in the cuprates and, more generally, to manipulate the interplay between different collective phenomena in metal oxides.

  3. The effect of trapped charge on silicon nanowire pseudo-MOSFETs.

    Science.gov (United States)

    Nam, Incheol; Kim, Minsuk; Najam, Syed Faraz; Lee, Eunhong; Hwang, Sungwoo; Kim, Sangsig

    2013-09-01

    The effects of organic molecules grafted on top of silicon nanowires are modeled as the oxide trap charges (Qot) and interface trap charges (Qit). The device investigated here is a pseudo-MOSFET with a thick bottom oxide (200 nm) and only a thin native oxide (5 nm) on top. With Qot = -5.0 x 10(11) cm(-2) and the U-shaped distribution of interface trap density (Dit) as a function of trap energy (Et), the structures are reproduced through the conventional technology computer aided design (TCAD) simulation tool, and the channel is imaginarily divided into several sections (5 x 5 regions) to apply the localized traps. The electrical parameters are extracted from the each part to quantitatively compare their effectiveness. The local position of the grafted molecules, modeled by these charges, is shown to result in strong variations in the relative change in the threshold voltage and subthreshold swing. These variations are explained by the surface depletion and scattering near the edges of the etched device and the series resistance effect.

  4. Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states.

    Science.gov (United States)

    Iftikhar, Z; Jezouin, S; Anthore, A; Gennser, U; Parmentier, F D; Cavanna, A; Pierre, F

    2015-10-08

    Many-body correlations and macroscopic quantum behaviours are fascinating condensed matter problems. A powerful test-bed for the many-body concepts and methods is the Kondo effect, which entails the coupling of a quantum impurity to a continuum of states. It is central in highly correlated systems and can be explored with tunable nanostructures. Although Kondo physics is usually associated with the hybridization of itinerant electrons with microscopic magnetic moments, theory predicts that it can arise whenever degenerate quantum states are coupled to a continuum. Here we demonstrate the previously elusive 'charge' Kondo effect in a hybrid metal-semiconductor implementation of a single-electron transistor, with a quantum pseudospin of 1/2 constituted by two degenerate macroscopic charge states of a metallic island. In contrast to other Kondo nanostructures, each conduction channel connecting the island to an electrode constitutes a distinct and fully tunable Kondo channel, thereby providing unprecedented access to the two-channel Kondo effect and a clear path to multi-channel Kondo physics. Using a weakly coupled probe, we find the renormalization flow, as temperature is reduced, of two Kondo channels competing to screen the charge pseudospin. This provides a direct view of how the predicted quantum phase transition develops across the symmetric quantum critical point. Detuning the pseudospin away from degeneracy, we demonstrate, on a fully characterized device, quantitative agreement with the predictions for the finite-temperature crossover from quantum criticality.

  5. Deuterium isotope effects on 13C chemical shifts of negatively charged NH.N systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Pietrzak, Mariusz; Grech, Eugeniusz

    2013-01-01

    Deuterium isotope effects on 13C chemical shifts are investigated in anions of 1,8-bis(4-toluenesulphonamido)naphthalenes together with N,N-(naphthalene-1,8-diyl)bis(2,2,2-trifluoracetamide) all with bis(1,8-dimethylamino)napthaleneH+ as counter ion. These compounds represent both “static......” and equilibrium cases. NMR assignments of the former have been revised. The NH proton is deuteriated. The isotope effects on 13C chemical shifts are rather unusual in these strongly hydrogen bonded systems between a NH and a negatively charged nitrogen atom. The formal four-bond effects are found to be negative...

  6. Effects of Cylindrical Charge Geometry and Secondary Combustion Reactions on the Internal Blast Loading of Reinforced Concrete Structures

    Energy Technology Data Exchange (ETDEWEB)

    Price, Matthew A. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2005-05-01

    An understanding of the detonation phenomenon and airblast behavior for cylindrical high-explosive charges is essential in developing predictive capabilities for tests and scenarios involving these charge geometries. Internal tests on reinforced concrete structures allowed for the analysis of cylindrical charges and the effect of secondary reactions occurring in confined structures. The pressure profiles that occur close to a cylindrical explosive charge are strongly dependent on the length-to-diameter ratio (L/D) of the charge. This study presents a comparison of finite-element code models (i.e., AUTODYN) to empirical methods for predicting airblast behavior from cylindrical charges. Current finite element analysis (FEA) and blast prediction codes fail to account for the effects of secondary reactions (fireballs) that occur with underoxidized explosives. Theoretical models were developed for TNT and validated against literature. These models were then applied to PBX 9501 for predictions of the spherical fireball diameter and time duration. The following relationships for PBX 9501 were derived from this analysis (units of ft, lb, s). Comparison of centrally located equivalent weight charges using cylindrical and spherical geometries showed that the average impulse on the interior of the structure is ~3%–5% higher for the spherical charge. Circular regions of high impulse that occur along the axial direction of the cylindrical charge must be considered when analyzing structural response.

  7. Effects of Charge-Transfer Excitons on the Photophysics of Organic Semiconductors

    Science.gov (United States)

    Hestand, Nicholas J.

    The field of organic electronics has received considerable attention over the past several years due to the promise of novel electronic materials that are cheap, flexible and light weight. While some devices based on organic materials have already emerged on the market (e.g. organic light emitting diodes), a deeper understanding of the excited states within the condensed phase is necessary both to improve current commercial products and to develop new materials for applications that are currently in the commercial pipeline (e.g. organic photovoltaics, wearable displays, and field effect transistors). To this end, a model for pi-conjugated molecular aggregates and crystals is developed and analyzed. The model considers two types of electronic excitations, namely Frenkel and charge-transfer excitons, both of which play a prominent role in determining the nature of the excited states within tightly-packed organic systems. The former consist of an electron-hole pair bound to the same molecule while in the later the electron and hole are located on different molecules. The model also considers the important nuclear reorganization that occurs when the system switches between electronic states. This is achieved using a Holstein-style Hamiltonian that includes linear vibronic coupling of the electronic states to the nuclear motion associated with the high frequency vinyl-stretching and ring-breathing modes. Analysis of the model reveals spectroscopic signatures of charge-transfer mediated J- and H-aggregation in systems where the photophysical properties are determined primarily by charge-transfer interactions. Importantly, such signatures are found to be sensitive to the relative phase of the intermolecular electron and hole transfer integrals, and the relative energy of the Frenkel and charge-transfer states. When the charge-transfer integrals are in phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits J

  8. Effects of the Charge Ions Strength on the Swelling of Organic-Inorganic Nanogels

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qin; Lu, Xiangguo; Wang, Jing; Guo, Qi; Niu, Liwei [Northeast Petroleum University, Daqing (China)

    2016-07-15

    The swelling behavior and swelling mechanism of hydrogels can be greatly affected by the charge strength of ions in them. To investigate such effects, we prepared two gels: a carboxylic acid gel (CAG) and a poly (2-acrylamide–methyl propane sulfonic acid) gel (SAG) based on starchy polyacrylamide (PAM) nanocomposite gels, both with montmorillonite, which underwent in situ intercalation, and used them as probes in swelling experiments. The equilibrium swelling rates (ESRs) of the hydrogels in both salt water and acidic water strongly depended on the charge strength of the ions in the chains. SAG had a higher ESR than CAG at the same mole ratio of polymer/water, which is attributed to the greater electrostatic repulsion between the strong electrolyte ions of SAG. Both water salinity and hydrogen ion contact of the hydrogels weakened ESR with the enhancement of charge ionic strength. The downward trend of ESR with increasing concentration of salt or hydrogen ions became weaker in SAG compared to CAG, which is attributed to the shielding and deprotonation effects of the strong electrolyte ions. Regarding the swelling mechanism, the chain relaxation occurred in neutral and acidic solutions for SAG and in neutral and weak acidic solutions for CAG, but water diffusion dominated in strong acidic solutions for CAG, leading to different swelling behaviors.

  9. Exploring relativistic many-body recoil effects in highly charged ions.

    Science.gov (United States)

    Orts, R Soria; Harman, Z; López-Urrutia, J R Crespo; Artemyev, A N; Bruhns, H; Martínez, A J González; Jentschura, U D; Keitel, C H; Lapierre, A; Mironov, V; Shabaev, V M; Tawara, H; Tupitsyn, I I; Ullrich, J; Volotka, A V

    2006-09-08

    The relativistic recoil effect has been the object of experimental investigations using highly charged ions at the Heidelberg electron beam ion trap. Its scaling with the nuclear charge Z boosts its contribution to a measurable level in the magnetic-dipole (M1) transitions of B- and Be-like Ar ions. The isotope shifts of 36Ar versus 40Ar have been detected with sub-ppm accuracy, and the recoil effect contribution was extracted from the 1s(2)2s(2)2p 2P(1/2) - 2P(3/2) transition in Ar13+ and the 1s(2)2s2p 3P1-3P2 transition in Ar14+. The experimental isotope shifts of 0.00123(6) nm (Ar13+) and 0.00120(10) nm (Ar14+) are in agreement with our present predictions of 0.00123(5) nm (Ar13+) and 0.00122(5) nm (Ar14+) based on the total relativistic recoil operator, confirming that a thorough understanding of correlated relativistic electron dynamics is necessary even in a region of intermediate nuclear charges.

  10. Importance of temperature effect on the electrophoretic behavior of charge-regulated particles.

    Science.gov (United States)

    Hsu, Jyh-Ping; Tai, Yi-Hsuan; Yeh, Li-Hsien; Tseng, Shiojenn

    2012-01-10

    The Joule heating effect is inevitable in electrophoresis operations. To assess its influence on the performance of electrophoresis, we consider the case of a charge-regulated particle in a solution containing multiple ionic species at temperatures ranging from 298 to 308 K. Using an aqueous SiO(2) dispersion as an example, we show that an increase in the temperature leads to a decrease in both the dielectric constant and the viscosity of the liquid phase, and an increase in both the diffusivity of ions and the particle surface potential. For a particle having a constant surface potential, its electrophoretic mobility is most influenced by the variation in the liquid viscosity as the temperature varies, but for a charged-regulated particle both the liquid viscosity and the surface potential can play an important role. Depending upon the level of pH, the degree of increase in the mobility can be on the order of 40% for a 5 K increase in the temperature. The presence of double-layer polarization, which is significant when the surface potential is sufficiently high, has the effect of inhibiting that increase in the mobility. This implies that the influence of the temperature on the mobility of the particle is most significant when the pH is close to the point of zero charge.

  11. Arsenic removal from groundwater using iron electrocoagulation: effect of charge dosage rate.

    Science.gov (United States)

    Amrose, Susan; Gadgil, Ashok; Srinivasan, Venkat; Kowolik, Kristin; Muller, Marc; Huang, Jessica; Kostecki, Robert

    2013-01-01

    We demonstrate that electrocoagulation (EC) using iron electrodes can reduce arsenic below 10 μg/L in synthetic Bangladesh groundwater and in real groundwater from Bangladesh and Cambodia, while investigating the effect of operating parameters that are often overlooked, such as charge dosage rate. We measure arsenic removal performance over a larger range of current density than in any other single previous EC study (5000-fold: 0.02 - 100 mA/cm(2)) and over a wide range of charge dosage rates (0.060 - 18 Coulombs/L/min). We find that charge dosage rate has significant effects on both removal capacity (μg-As removed/Coulomb) and treatment time and is the appropriate parameter to maintain performance when scaling to different active areas and volumes. We estimate the operating costs of EC treatment in Bangladesh groundwater to be $0.22/m(3). Waste sludge (~80 - 120 mg/L), when tested with the Toxic Characteristic Leachate Protocol (TCLP), is characterized as non-hazardous. Although our focus is on developing a practical device, our results suggest that As[III] is mostly oxidized via a chemical pathway and does not rely on processes occurring at the anode. Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Environmental Science and Health, Part A, to view the free supplemental file.

  12. Structural and isospin effects on balance energy and transition energy via different nuclear charge radii parameterizations

    Science.gov (United States)

    Sangeeta; Kaur, Varinderjit

    2017-10-01

    The structural and isospin effects have been studied through isospin dependent and independent nuclear charge radii parameterizations on the collective flow within the framework of Isospin-dependent Quantum Molecular Dynamics (IQMD) model. The calculations have been carried out by using two approaches: (i) for the reaction series having fixed N / Z ratio and (ii) for the isobaric reaction series with different N / Z ratio. Our results indicate that there is a considerable effect of radii parameterizations on the excitation function of reduced flow (∂v1/∂Yred) and elliptical flow (v2). Both balance energy (Ebal) and transition energy (Etrans) are enhanced with increase in radii of reacting nuclei and found to follow a power law with nuclear charge radii. The exponent τ values show that the elliptical flow is more sensitive towards different nuclear charge radii as compared to reduced flow. Moreover, we observe that our theoretical calculation of Ebal and Etrans are in agreement with the experimental data provided by GSI, INDRA and FOPI collaborations.

  13. Effect of the charged Higgs bosons in the radiative leptonic decays of B- and D- mesons

    Science.gov (United States)

    Yang, Ji-Chong; Yang, Mao-Zhi

    2016-12-01

    In this work, we study the radiative leptonic decays of B- and D- mesons in the Standard Model (SM) and two-Higgs-doublet-model (2HDM) Type II. The results are obtained using the factorization procedure, and the contribution of the order O(ΛQCD/mQ) is included. The numerical results are calculated using the wave function obtained in relativistic potential model. As a result, the decay mode B → γτντ is found to be sensitive to the effect of the charged Higgs boson. Using the constraint on the free parameters of 2HDM given in previous works, we find the contribution of the charged Higgs boson in the decay mode B → γτντ can be as large as about 13%.

  14. Combined effect of salt concentration and pressure gradients across charged membranes

    DEFF Research Database (Denmark)

    Benavente, Juana; Jonsson, Gunnar Eigil

    2002-01-01

    The combined effect of both concentration and pressure differences on electrical potential (Deltaphi) for two ion-exchanger membranes, one positively charged (AE) and another negatively charged (CE), measured with the membranes in contact with NaCl solutions was studied. Results show a linear...... dependence between Deltaphi and pressure, independently if DeltaC and DeltaP have the same or opposite directions. The ratio of the streaming potential for cation/anion exchange membranes is r = (2.1+/-0.4). A "bipolar" membrane (BM) was obtained by joining together both ion-exchanger membranes. In order...... to correlate the behaviour of the BP membrane with that corresponding to each sublayer, the same kind of measurements was carried out for both opposite external conditions, this means, applying the pressure on the cation exchanger (CABM) or on the anion exchanger membrane (ACBM), respectively. From values...

  15. Charge-Transfer Effects in Ligand Exchange Reactions of Au25 Monolayer-Protected Clusters.

    Science.gov (United States)

    Carducci, Tessa M; Blackwell, Raymond E; Murray, Royce W

    2015-04-16

    Reported here are second-order rate constants of associative ligand exchanges of Au25L18 nanoparticles (L = phenylethanethiolate) of various charge states, measured by proton nuclear magnetic resonance at room temperature and below. Differences in second-order rate constants (M(-1) s(-1)) of ligand exchange (positive clusters ∼1.9 × 10(-5) versus negative ones ∼1.2 × 10(-4)) show that electron depletion retards ligand exchange. The ordering of rate constants between the ligands benzeneselenol > 4-bromobenzene thiol > benzenethiol reveals that exchange is accelerated by higher acidity and/or electron donation capability of the incoming ligand. Together, these observations indicate that partial charge transfer occurs between the nanoparticle and ligand during the exchange and that this is a rate-determining effect in the process.

  16. Central charge from adiabatic transport of cusp singularities in the quantum Hall effect

    Science.gov (United States)

    Can, Tankut

    2017-04-01

    We study quantum Hall (QH) states on a punctured Riemann sphere. We compute the Berry curvature under adiabatic motion in the moduli space in the large N limit. The Berry curvature is shown to be finite in the large N limit and controlled by the conformal dimension of the cusp singularity, a local property of the mean density. Utilizing exact sum rules obtained from a Ward identity, we show that for the Laughlin wave function, the dimension of a cusp singularity is given by the central charge, a robust geometric response coefficient in the QHE. Thus, adiabatic transport of curvature singularities can be used to determine the central charge of QH states. We also consider the effects of threaded fluxes and spin-deformed wave functions. Finally, we give a closed expression for all moments of the mean density in the integer QH state on a punctured disk.

  17. Central charge from adiabatic transport of cusp singularities in the quantum Hall effect

    CERN Document Server

    Can, Tankut

    2016-01-01

    We study quantum Hall (QH) states on a punctured Riemann sphere. We compute the Berry curvature under adiabatic motion in the moduli space in the large N limit. The Berry curvature is shown to be finite in the large N limit and controlled by the conformal dimension of the cusp singularity, a local property of the mean density. Utilizing exact sum rules obtained from a Ward identity, we show that for the Laughlin wave function, the dimension of a cusp singularity is given by the central charge, a robust geometric response coefficient in the QHE. Thus, adiabatic transport of curvature singularities can be used to determine the central charge of QH states. We also consider the effects of threaded fluxes and spin-deformed wave functions. Finally, we give a closed expression for all moments of the mean density in the integer QH state on a punctured disk.

  18. Non-Gaussian signatures and collective effects in charge noise affecting a dynamically decoupled qubit

    Science.gov (United States)

    Ramon, Guy

    2015-10-01

    The effects of a collection of classical two-level charge fluctuators on the coherence of a dynamically decoupled qubit are studied. Distinct dynamics is found at different qubit working positions. Exact analytical formulas are derived at pure dephasing and approximate solutions are found at the general working position, for weakly and strongly coupled fluctuators. Analysis of these solutions, combined with numerical simulations of the multiple random telegraph processes, reveal the scaling of the noise with the number of fluctuators and the number of control pulses, as well as dependence on other parameters of the qubit-fluctuators system. These results can be used to determine potential microscopic models for the charge environment by performing noise spectroscopy.

  19. Evidence of surface charge effects in T-branch nanojunctions using microsecond-pulse testing

    Energy Technology Data Exchange (ETDEWEB)

    Iniguez-de-la-Torre, I; Mateos, J; Gonzalez, T [Departamento de Fisica Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Roelens, Y; Gardes, C; Bollaert, S [Institut d' Electronique de Microelectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Universite de Lille 1, Avenue Poincare BP60069, 59652, Villeneuve d' Ascq CEDEX (France)

    2011-11-04

    The understanding of the influence of surface charge effects on the electrical properties of nanostructures is a key aspect for the forthcoming generations of electronic devices. In this paper, by using an ultrafast electrical pulse characterization technique, we report on the room-temperature time response of a T-branch nanojunction which allows us to identify the signature of surface states. Different pulse widths from 500 ns to 100 {mu}s were applied to the device. For a given pulse width, the stem voltage is measured and compared with the DC result. The output value in the stem is found to depend on the pulse width and to be related to the characteristic charging time of the interface states. As expected, the results show that the well-known nonlinear response of T-branch junctions is more pronounced for long pulses, beyond such a characteristic time.

  20. Generalized demonstration of Ramo's theorem with space charge and polarization effects

    Science.gov (United States)

    Hamel, Louis-André; Julien, Manuel

    2008-12-01

    Ramo's theorem provides a convenient way of simulating the currents induced through the electrodes of a radiation detector by the movement of charge carriers. The concept of weighting potential or of weighting field is the key ingredient in the calculation of the induced currents. A new demonstration of the theorem, based on energy balance, is provided that explicitly takes into account the effect of material polarization. It is shown that Ramo's theorem is valid in an arbitrary linear material and that polarization charges at interfaces between different materials or in the bulk of inhomogeneous materials must be included in calculating the weighting potentials. The use of our definition of weighting potential is also demonstrated for non-linear materials. The present proof is thus more generally valid than previous ones.

  1. Interplay of electronic and geometry shell effects in properties of neutral and charged Sr clusters

    DEFF Research Database (Denmark)

    Lyalin, Andrey; Solov'yov, Ilia; Solov'yov, Andrey V.

    2007-01-01

    that the size evolution of structural and electronic properties of strontium clusters is governed by an interplay of the electronic and geometry shell closures. Influence of the electronic shell effects on structural rearrangements can lead to violation of the icosahedral growth motif of strontium clusters......The optimized structure and electronic properties of neutral, singly, and doubly charged strontium clusters have been investigated using ab initio theoretical methods based on density-functional theory. We have systematically calculated the optimized geometries of neutral, singly, and doubly...... charged strontium clusters consisting of up to 14 atoms, average bonding distances, electronic shell closures, binding energies per atom, the gap between the highest occupied and the lowest unoccupied molecular orbitals, and spectra of the density of electronic states (DOS). It is demonstrated...

  2. Environment effect on spectral and charge distribution characteristics of some drugs of folate derivatives

    Science.gov (United States)

    Khadem Sadigh, M.; Zakerhamidi, M. S.; Seyed Ahmadian, S. M.; Johari-Ahar, M.; Zare Haghighi, L.

    2017-01-01

    Molecular surrounding media as an important factor can effect on the operation of wide variety of drugs. For more study in this paper, spectral properties of Methotrexate and Folinic acid have been studied in various solvents. Our results show that the photo-physical of solute molecules depend strongly on solute-solvent interactions and active groups in their chemical structures. In order to investigate the contribution of specific and nonspecific interactions on the various properties of drug molecules, the linear solvation energy relationships concept is used. Moreover, charge distribution characteristics of used samples with various resonance structures in solvent environments were calculated by means of solvatochromic method. The high value of dipole moments in excited state show that local intramolecular charge transfer can occur by excitation. These results about molecular interactions can be extended to biological systems and can indicate completely the behaviors of Methotrexate and Folinic acid in polar solvents such as water in body system.

  3. Screened test-charge - electron interaction including many-body effects in two and three dimensions

    Science.gov (United States)

    Gold, A.; Ghazali, A.

    1997-05-01

    Bound states of a negatively charged test particle and an electron are studied by incorporating many-body effects (exchange and correlation) in the screening function of an interacting electron gas via the local-field correction. Using a variational method and a matrix-diagonalization method we determine the energies and the wave functions of the ground state and the excited states as functions of the electron density for three-dimensional and two-dimensional systems. For high electron density no bound states are found. Below a critical density the number and the energy of the bound states increase with decreasing electron density. We also present results for bound-state energies of a positively charged test particle with an electron, and compare them with results obtained within the random-phase approximation where the local-field correction is ignored.

  4. Relationship between the adjuvant and cytotoxic effects of the positive charges and polymerization in liposomes.

    Science.gov (United States)

    Gasparri, Julieta; Speroni, Lucía; Chiaramoni, Nadia Silvia; del Valle Alonso, Silvia

    2011-06-01

    Vaccine development today encounters a main obstacle, which is the need for effective adjuvants suitable for clinical trials. Aluminum salts, discovered 70 years ago and, very recently, MF59, are the only types of adjuvants currently used in vaccines licensed by the U.S. Food and Drug Administration. Liposomes represent an alternative approach to vaccine adjuvants. In this article, we describe the inflammatory response and biological effect of polymerization and the addition of positive charges in liposome formulations. Nonpolymerized cationic (NP(+)) liposomes significantly reduce metabolism in Vero cells after 24 hours. Correspondingly, both NP(+) and polymerized cationic (P(+)) liposomes reduce cell viability following a 48-hour incubation. Similar results were obtained with cells from the peritoneal cavities of mice. Paradoxically, those liposomes that presented clearly cytostatic or cytotoxic effects in vitro stimulated metabolism and had a mitogenic effect in vivo. Finally, the adjuvant effect was tested by immunization in BALB/c mice. The major effect was obtained with NP(+) liposomes. Accordingly, we also demonstrated that NP(+) liposomes injected into the dermis produced an outstanding inflammatory reaction, showing the histopathological characteristics of an inoculation granuloma. Thus, positive charge would play an important role in the immunoadjuvant effect of liposomes by conferring them cytotoxic capacity.

  5. Ultrafast charge-transfer in organic photovoltaic interfaces: geometrical and functionalization effects.

    Science.gov (United States)

    Santos, Elton J G; Wang, W L

    2016-09-21

    Understanding the microscopic mechanisms of electronic excitation in organic photovoltaic cells is a challenging problem in the design of efficient devices capable of performing sunlight harvesting. Here we develop and apply an ab initio approach based on time-dependent density functional theory and Ehrenfest dynamics to investigate photoinduced charge transfer in small organic molecules. Our calculations include mixed quantum-classical dynamics with ions moving classically and electrons quantum mechanically, where no experimental external parameter other than the material geometry is required. We show that the behavior of photocarriers in zinc phthalocyanine (ZnPc) and C60 systems, an effective prototype system for organic solar cells, is sensitive to the atomic orientation of the donor and the acceptor units as well as the functionalization of covalent molecules at the interface. In particular, configurations with the ZnPc molecules facing on C60 facilitate charge transfer between substrate and molecules that occurs within 200 fs. In contrast, configurations where ZnPc is tilted above C60 present extremely low carrier injection efficiency even at longer times as an effect of the larger interfacial potential level offset and higher energetic barrier between the donor and acceptor molecules. An enhancement of charge injection into C60 at shorter times is observed as binding groups connect ZnPc and C60 in a dyad system. Our results demonstrate a promising way of designing and controlling photoinduced charge transfer on the atomic level in organic devices that would lead to efficient carrier separation and maximize device performance.

  6. Effect of surface charge convection and shape deformation on the dielectrophoretic motion of a liquid drop

    Science.gov (United States)

    Mandal, Shubhadeep; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-04-01

    The dielectrophoretic motion and shape deformation of a Newtonian liquid drop in an otherwise quiescent Newtonian liquid medium in the presence of an axisymmetric nonuniform dc electric field consisting of uniform and quadrupole components is investigated. The theory put forward by Feng [J. Q. Feng, Phys. Rev. E 54, 4438 (1996), 10.1103/PhysRevE.54.4438] is generalized by incorporating the following two nonlinear effects—surface charge convection and shape deformation—towards determining the drop velocity. This two-way coupled moving boundary problem is solved analytically by considering small values of electric Reynolds number (ratio of charge relaxation time scale to the convection time scale) and electric capillary number (ratio of electrical stress to the surface tension) under the framework of the leaky dielectric model. We focus on investigating the effects of charge convection and shape deformation for different drop-medium combinations. A perfectly conducting drop suspended in a leaky (or perfectly) dielectric medium always deforms to a prolate shape and this kind of shape deformation always augments the dielectrophoretic drop velocity. For a perfectly dielectric drop suspended in a perfectly dielectric medium, the shape deformation leads to either increase (for prolate shape) or decrease (for oblate shape) in the dielectrophoretic drop velocity. Both surface charge convection and shape deformation affect the drop motion for leaky dielectric drops. The combined effect of these can significantly increase or decrease the dielectrophoretic drop velocity depending on the electrohydrodynamic properties of both the liquids and the relative strength of the electric Reynolds number and electric capillary number. Finally, comparison with the existing experiments reveals better agreement with the present theory.

  7. Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588, South Korea and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States)

    2016-09-15

    The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.

  8. Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-09-01

    The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.

  9. Binding of chloroquine to ionic micelles: Effect of pH and micellar surface charge

    Energy Technology Data Exchange (ETDEWEB)

    Souza Santos, Marcela de, E-mail: marcelafarmausp77@gmail.com [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Perpétua Freire de Morais Del Lama, Maria, E-mail: mpemdel@fcfrp.usp.br [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Departamento de Química Analítica, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, s/n, Campinas, São Paulo 13083-970 (Brazil); Siuiti Ito, Amando, E-mail: amandosi@ffclrp.usp.br [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901 (Brazil); and others

    2014-03-15

    The pharmacological action of chloroquine relies on its ability to cross biological membranes in order to accumulate inside lysosomes. The present work aimed at understanding the basis for the interaction between different chloroquine species and ionic micelles of opposite charges, the latter used as a simple membrane model. The sensitivity of absorbance and fluorescence of chloroquine to changes in its local environment was used to probe its interaction with cetyltrimethylammonium micelles presenting bromide (CTAB) and sulfate (CTAS) as counterions, in addition to dodecyl sulfate micelles bearing sodium (SDS) and tetramethylammonium (TMADS) counterions. Counterion exchange was shown to have little effect on drug–micelle interaction. Chloroquine first dissociation constant (pKa{sub 1}) shifted to opposite directions when anionic and cationic micelles were compared. Chloroquine binding constants (K{sub b}) revealed that electrostatic forces mediate charged drug–micelle association, whereas hydrophobic interactions allowed neutral chloroquine to associate with anionic and cationic micelles. Fluorescence quenching studies indicated that monoprotonated chloroquine is inserted deeper into the micelle surface of anionic micelles than its neutral form, the latter being less exposed to the aqueous phase when associated with cationic over anionic assemblies. The findings provide further evidence that chloroquine–micelle interaction is driven by a tight interplay between the drug form and the micellar surface charge, which can have a major effect on the drug biological activity. -- Highlights: • Chloroquine (CQ) pKa{sub 1} increased for SDS micelles and decreased for CTAB micelles. • CQ is solubilized to the surface of both CTAB and SDS micelles. • Monoprotonated CQ is buried deeper into SDS micelles than neutral CQ. • Neutral CQ is less exposed to aqueous phase in CTAB over SDS micelles. • Local pH and micellar surface charge mediate interaction of CQ with

  10. Space charge effect measurements for a multi-channel ionization chamber used for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, Amgad

    2012-07-18

    In vivo coronary angiography is one of the techniques used to investigate the heart diseases, by using catheter to inject a contrast medium of a given absorption coefficient into the heart vessels. Taking X-ray images produced by X-ray tube or synchrotron radiation for visualizing the blood in the coronary arteries. As the synchrotron radiation generated by the relativistic charged particle at the bending magnets, which emits high intensity photons in comparison with the X-ray tube. The intensity of the synchrotron radiation is varies with time. However for medical imaging it's necessary to measure the incoming intensity with the integrated time. The thesis work includes building a Multi-channel ionization chamber which can be filled with noble gases N{sub 2}, Ar and Xe with controlled inner pressure up to 30 bar. This affects the better absorption efficiency in measuring the high intensity synchrotron beam fluctuation. The detector is a part of the experimental setup used in the k-edge digital subtraction angiography project, which will be used for correcting the angiography images taken by another detector at the same time. The Multi-channel ionization chamber calibration characteristics are measured using 2 kW X-ray tube with molybdenum anode with characteristic energy of 17.44 keV. According to the fast drift velocity of the electrons relative to the positive ions, the electrons will be collected faster at the anode and will induce current signals, while the positive ions is still drifting towards the cathode. However the accumulation of the slow ions inside the detector disturbs the homogeneous applied electric field and leads to what is known a space charge effect. In this work the space charge effect is measured with very high synchrotron photons intensity from EDR beam line at BESSYII. The strong attenuation in the measured amplitude signal occurs when operating the chamber in the recombination region. A plateau is observed at the amplitude signal when

  11. Effects of High Temperature and Thermal Cycling on the Performance of Perovskite Solar Cells: Acceleration of Charge Recombination and Deterioration of Charge Extraction

    KAUST Repository

    Sheikh, Arif D.

    2017-09-18

    In this work, we investigated the effects of high operating temperature and thermal cycling on the photovoltaic performance of perovskite solar cells (PSCs) with a typical mesostructured (m)-TiO2-CH3NH3PbI3-xClx-spiro-OMeTAD architecture. After carrying out temperature-dependent grazing incidence wide-angle X-ray scattering (GIWAXS), in-situ X-ray diffraction (XRD) and optical absorption experiments, thermal durability of PSCs was tested by subjecting the devices to repetitive heating to 70 °C and cooling to room temperature (20 °C). An unexpected regenerative effect was observed after the first thermal cycle; the average power conversion efficiency (PCE) increased by approximately 10 % in reference to the as-prepared device. This increase of PCE was attributed to the heating-induced improvement of crystallinity and p-doping in the hole-transporter, Spiro-OMeTAD, which promotes the efficient extraction of photo-generated carriers. However, further thermal cycles produced a detrimental effect on the photovoltaic performance of PSCs with short-circuit current and fill factor degrading faster than the open-circuit voltage. Similarly, the photovoltaic performance of PSCs degraded at high operation temperatures; both short-circuit current and open-circuit voltage decreased with increasing temperature, but the temperature-dependent trend of fill factor was opposite. Our impedance spectroscopy analysis revealed a monotonous increase of charge transfer resistance and a concurrent decrease of charge recombination resistance with increasing temperature, indicating high recombination of charge carriers. Our results revealed that both thermal cycling and high temperatures produce irreversible detrimental effects on the PSC performance due to the deteriorated interfacial photo-carrier extraction. The present findings suggest that development of robust charge transporters and proper interface engineering are critical for the deployment of perovskite photovoltaics in harsh

  12. Constraining the existence of magnetic monopoles by Dirac-dual electric charge renormalization effect under the Planck scale limit

    Science.gov (United States)

    Deng, Yanbin; Huang, Changyu; Huang, Yong-Chang

    2016-08-01

    It was suggested by dimensional analysis that there exists a limit called the Planck energy scale coming close to which the gravitational effects of physical processes would inflate and struggle for equal rights so as to spoil the validity of pure nongravitational physical theories that governed well below the Planck energy. Near the Planck scale, the Planck charges, Planck currents, or Planck parameters can be defined and assigned to physical quantities such as the single particle electric charge and magnetic charge as the ceiling value obeyed by the low energy ordinary physics. The Dirac electric-magnetic charge quantization relation as one form of electric-magnetic duality dictates that, the present low value electric charge corresponds to a huge magnetic charge value already passed the Planck limit so as to render theories of magnetic monopoles into the strong coupling regime, and vice versa, that small and tractable magnetic charge values correspond to huge electric charge values. It suggests that for theoretic models in which the renormalization group equation provides rapid growth for the running electric coupling constant, it is easier for the dual magnetic monopoles to emerge at lower energy scales. Allowing charges to vary with the Dirac electric-magnetic charge quantization relation while keeping values under the Planck limit informs that the magnetic charge value drops below the Planck ceiling value into the manageable region when the electric coupling constant grows to one fourth at a model dependent energy scale, and continues dropping toward half the value of the Planck magnetic charge as the electric coupling constant continues growing at the model dependent rate toward one near Planck energy scale.

  13. Current voltage characteristics of intrinsic Josephson junctions with charge-imbalance effect

    Science.gov (United States)

    Shukrinov, Yu. M.; Mahfouzi, F.

    2007-09-01

    The current-voltage characteristics (IVC) of intrinsic Josephson junctions are numerically calculated taking into account the quasiparticle charge-imbalance effect. We solve numerically the full set of the equations including second order differential equations for phase differences, kinetic equations and generalized Josephson relations for a stack of Josephson junctions. The boundary conditions due to the proximity effect are used. We obtain the branch structure of IVC and investigate it as a function of disequilibrium parameter at different values of coupling constant and McCumber parameter. An increase in the disequilibrium parameter essentially changes the character of IVC at large values of McCumber parameter.

  14. Current-voltage characteristics of intrinsic Josephson junctions with charge-imbalance effect

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu.M. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Physical Technical Institute, Dushanbe 734063 (Tajikistan)], E-mail: shukrinv@theor.jinr.ru; Mahfouzi, F. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of)

    2007-09-01

    The current-voltage characteristics (IVC) of intrinsic Josephson junctions are numerically calculated taking into account the quasiparticle charge-imbalance effect. We solve numerically the full set of the equations including second order differential equations for phase differences, kinetic equations and generalized Josephson relations for a stack of Josephson junctions. The boundary conditions due to the proximity effect are used. We obtain the branch structure of IVC and investigate it as a function of disequilibrium parameter at different values of coupling constant and McCumber parameter. An increase in the disequilibrium parameter essentially changes the character of IVC at large values of McCumber parameter.

  15. Collision states and scar effects in charged three-body problems

    CERN Document Server

    Vilela-Mendes, R

    1997-01-01

    Semiclassical methods form a bridge between classical systems and their quantum counterparts. An interesting phenomenon discovered in this connection is the scar effect, whereby energy eigenstates display enhancement structures resembling the path of unstable periodic orbits. This paper deals with collision states in charged three-body problems, in periodic media, which are scarred by unstable classical orbits. The scar effect has a potential for practical applications because orbits corresponding to zero measure classical configurations may be reached and stabilized by resonant excitation. It may be used, for example, to induce reactions that are favoured by unstable configurations.

  16. Spatial profile of charge storage in organic field-effect transistor nonvolatile memory using polymer electret

    Science.gov (United States)

    She, Xiao-Jian; Liu, Jie; Zhang, Jing-Yu; Gao, Xu; Wang, Sui-Dong

    2013-09-01

    Spatial profile of the charge storage in the pentacene-based field-effect transistor nonvolatile memories using poly(2-vinyl naphthalene) electret is probed. The electron trapping into the electret after programming can be space dependent with more electron storage in the region closer to the contacts, and reducing the channel length is an effective approach to improve the memory performance. The deficient electron supply in pentacene is proposed to be responsible for the inhomogeneous electron storage in the electret. The hole trapping into the electret after erasing is spatially homogeneous, arising from the sufficient hole accumulation in the pentacene channel.

  17. Interaction of solitary waves in magnetized warm dusty plasmas with dust charging effects

    Institute of Scientific and Technical Information of China (English)

    Xue Ju-Kui

    2006-01-01

    In consideration of adiabatic dust charge variation, the combined effect of the external magnetized field and the dust temperature on head-on collision of the three-dimensional dust acoustic solitary waves is investigated. By using the extended Poincaré-Lighthill-Kuo method, the phase shifts and the trajectories of two solitons after the collision are obtained. The effects of the magnitude and the obliqueness of the external magnetic field and the dust temperature on the solitary wave collisions are discussed in detail.

  18. Hydrogen binding effect on charged P2 ( = 1-7) clusters

    Indian Academy of Sciences (India)

    Zhicong Fang; Xiangjun Kuang

    2013-11-01

    An all-electron (AE) calculation of the hydrogen binding effect on charged phosphorus clusters has been performed under the framework of density functional theory (DFT). Compared with the P$^{\\pm}_{2n}$ ( = 1-7) clusters, the HP$^{\\pm}_{2n}$ ( = 1-7), cluster has shorter average P-P bond length, larger binding energy and HOMOLUMO gap (HLG), higher chemical hardness and frequency of P-P mode. After binding with one hydrogen atom, the electronic structure is changed from open electronic shell to closed electronic shell. Geometrical stability, chemical stability and electronic stability are strengthened. These stability enhancements may be simply understood considering the electron pairing effect.

  19. Effect of hydrogen on dynamic charge transport in amorphous oxide thin film transistors

    Science.gov (United States)

    Kim, Taeho; Nam, Yunyong; Hur, Ji-Hyun; Park, Sang-Hee Ko; Jeon, Sanghun

    2016-08-01

    Hydrogen in zinc oxide based semiconductors functions as a donor or a defect de-activator depending on its concentration, greatly affecting the device characteristics of oxide thin-film transistors (TFTs). Thus, controlling the hydrogen concentration in oxide semiconductors is very important for achieving high mobility and minimizing device instability. In this study, we investigated the charge transport dynamics of the amorphous semiconductor InGaZnO at various hydrogen concentrations as a function of the deposition temperature of the gate insulator. To examine the nature of dynamic charge trapping, we employed short-pulse current-voltage and transient current-time measurements. Among various examined oxide devices, that with a high hydrogen concentration exhibits the best performance characteristics, such as high saturation mobility (10.9 cm2 v-1 s-1), low subthreshold slope (0.12 V/dec), and negligible hysteresis, which stem from low defect densities and negligible transient charge trapping. Our finding indicates that hydrogen atoms effectively passivate the defects in subgap states of the bulk semiconductor, minimizing the mobility degradation and threshold voltage instability. This study indicates that hydrogen plays a useful role in TFTs by improving the device performance and stability.

  20. Steric effects in the dynamics of electrolytes at large applied voltages: I. Double-layer charging

    CERN Document Server

    Kilic, M S; Ajdari, A; Kilic, Mustafa Sabri; Bazant, Martin Z.; Ajdari, Armand

    2006-01-01

    The classical Poisson-Boltzmann (PB) theory of electrolytes assumes a dilute solution of point charges with mean-field electrostatic forces. Even for very dilute solutions, however, it predicts absurdly large ion concentrations (exceeding close packing) for surface potentials of only a few tenths of a volt, which are often exceeded, e.g. in microfluidic pumps and electrochemical sensors. Since the 1950s, several modifications of the PB equation have been proposed to account for the finite size of ions in equilibrium, but in this two-part series, we consider steric effects on diffuse charge dynamics (in the absence of electro-osmotic flow). In this first part, we review the literature and analyze two simple models for the charging of a thin double layer, which must form a condensed layer of close-packed ions near the surface at high voltage. A surprising prediction is that the differential capacitance typically varies non-monotonically with the applied voltage, and thus so does the response time of an electrol...

  1. Trapped-ion probing of light-induced charging effects on dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Harlander, M; Brownnutt, M; Haensel, W; Blatt, R, E-mail: max.harlander@uibk.ac.a [Institut fuer Experimentalphysik, Universitaet Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria)

    2010-09-15

    We use a string of confined {sup 40}Ca{sup +} ions to measure perturbations to a trapping potential which are caused by the light-induced charging of an antireflection-coated window and of insulating patches on the ion-trap electrodes. The electric fields induced at the ions' position are characterized as a function of distance to the dielectric and as a function of the incident optical power and wavelength. The measurement of the ion-string position is sensitive to as few as 40 elementary charges per {radical}(Hz) on the dielectric at distances of the order of millimetres, and perturbations are observed for illuminations with light of wavelengths as large as 729 nm. This has important implications for the future of miniaturized ion-trap experiments, notably with regard to the choice of electrode material and the optics that must be integrated in the vicinity of the ion. The method presented here can be readily applied to the investigation of charging effects beyond the context of ion-trap experiments.

  2. The effect of interface hopping on inelastic scattering of oppositely charged polarons in polymers

    Institute of Scientific and Technical Information of China (English)

    Di Bing; Wang Ya-Dong; Zhang Ya-Lin; An Zhong

    2013-01-01

    The inelastic scattering of oppositely charge polarons in polymer heterojunctions is believed to be of fundamental importance for the light-emitting and transport properties of conjugated polymers.Based on the tight-binding SSH model,and by using a nonadiabatic molecular dynamic method,we investigate the effects of interface hopping on inelastic scattering of oppositely charged polarons in a polymer heterojunction.It is found that the scattering processes of the charge and lattice defect depend sensitively on the hopping integrals at the polymer/polymer interface when the interface potential barrier and applied electric field strength are constant.In particular,at an intermediate electric field,when the interface hopping integral of the polymer/polymer heterojunction material is increased beyond a critical value,two polarons can combine to become a lattice deformation in one of the two polymer chains,with the electron and the hole bound together,i.e.,a self-trapped polaron-exciton.The yield of excitons then increases to a peak value.These results show that interface hopping is of fundamental importance and facilitates the formation of polaron-excitons.

  3. The effect of finite pore length on ion structure and charging

    Science.gov (United States)

    Breitsprecher, Konrad; Abele, Manuel; Kondrat, Svyatoslav; Holm, Christian

    2017-09-01

    Nanoporous supercapacitors play an important role in modern energy storage systems, and their modeling is essential to predict and optimize the charging behaviour. Two classes of models have been developed that consist of finite and infinitely long pores. Here, we show that although both types of models predict qualitatively consistent results, there are important differences emerging due to the finite pore length. In particular, we find that the ion density inside a finite pore is not constant, but increases linearly from the pore entrance to the pore end, where the ions form a strongly layered structure. This hinders a direct quantitative comparison between the two models. In addition, we show that although the ion density between the electrodes changes appreciably with the applied potential, this change has a minor effect on charging. Our simulations also reveal a complex charging behaviour, which is adsorption-driven at high voltages, but it is dominated either by co-ion desorption or by adsorption of both types of ions at low voltages, depending on the ion concentration.

  4. Doping effect on photoabsorption and charge-separation dynamics in light-harvesting organic molecule

    Directory of Open Access Journals (Sweden)

    Satoshi Ohmura

    2016-01-01

    Full Text Available Using ab-initio theoretical methods, we demonstrate possible enhancement of photo-conversion efficiency of an organic solar cell via intentional doping in molecular graphene-fullerene heterojunction [the hexabenzocoronene (HBC-triethylene glycol (TEG–C60 molecule]. Photoabsorption analysis indicates oxygen substitution into HBC leads to an extension of the spectra up to an infrared regime. A quantum-mechanical molecular dynamics simulation incorporating nonadiabatic electronic transitions reveals that a dissociated charge state (D+ and A- in the O-doped system is more stable than the pristine case due to the presence of an effective barrier by the TEG HOMO/LUMO level. We also find that oxygen doping in HBC enhances the intermolecular carrier mobility after charge separation. On the other hand, the pristine molecule undergoes rapid recombination between donor and acceptor charges at the interface. These analyses suggest that the graphene oxidation opens a new window in the application of organic super-molecules to solar cells.

  5. Doping effect on photoabsorption and charge-separation dynamics in light-harvesting organic molecule

    Energy Technology Data Exchange (ETDEWEB)

    Ohmura, Satoshi, E-mail: s.ohmura.m4@cc.it-hiroshima.ac.jp [Research Center for Condensed Matter Physics, Department of Civil Engineering and Urban Design, Hiroshima Institute of Technology, Hiroshima 731-5193 (Japan); Tsuruta, Kenji [Department of Electrical and Electronic Engineering, Okayama University, Okayama 700-8530 (Japan); Shimojo, Fuyuki [Department of Physics, Kumamoto University, Kumamoto 860-8555 Japan (Japan); Nakano, Aiichiro [Collaboratory for Advanced Computing and Simulations, Department of Computer Science, Department of Physics & Astronomy, Department of Chemical Engineering & Materials Science, Department of Biological Sciences, University of Southern California, CA90089-024 (United States)

    2016-01-15

    Using ab-initio theoretical methods, we demonstrate possible enhancement of photo-conversion efficiency of an organic solar cell via intentional doping in molecular graphene-fullerene heterojunction [the hexabenzocoronene (HBC)-triethylene glycol (TEG)–C{sub 60} molecule]. Photoabsorption analysis indicates oxygen substitution into HBC leads to an extension of the spectra up to an infrared regime. A quantum-mechanical molecular dynamics simulation incorporating nonadiabatic electronic transitions reveals that a dissociated charge state (D{sup +} and A{sup -}) in the O-doped system is more stable than the pristine case due to the presence of an effective barrier by the TEG HOMO/LUMO level. We also find that oxygen doping in HBC enhances the intermolecular carrier mobility after charge separation. On the other hand, the pristine molecule undergoes rapid recombination between donor and acceptor charges at the interface. These analyses suggest that the graphene oxidation opens a new window in the application of organic super-molecules to solar cells.

  6. Effect of Ionic Advection on Electroosmosis over Charge Surfaces: Beyond the Weak Field Limit

    CERN Document Server

    Ghosh, Uddipta

    2015-01-01

    The present study deals with the effect of ionic advection on electroosmotic flow over charge modulated surfaces in a generalized paradigm when the classically restrictive "weak field" limit may be relaxed. Going beyond the commonly portrayed weak field limit (i.e, the externally applied electric field is over-weighed by the surface-induced electrical potential, towards charge distribution in an electrified wall-adhering layer) for electroosmotic transport, we numerically solve the coupled full set of Poisson-Nernst-Planck (PNP) and Navier-Stokes equations, in a semi-infinite domain, bounded at the bottom by a charged wall. Further, in an effort to obtain deeper physical insight, we solve the simplified forms of the relevant governing equations for low surface potential in two separate asymptotic limits: (i) a regular perturbation solution for Low Ionic Peclet number (Pe), where Pe is employed as the gauge function and (ii) a matched asymptotic solution for O(1) Pe in the Thin Electric Double Layer (EDL) limi...

  7. Structure and dynamics of a dizinc metalloprotein: effect of charge transfer and polarization.

    Science.gov (United States)

    Li, Yong L; Mei, Ye; Zhang, Da W; Xie, Dai Q; Zhang, John Z H

    2011-08-25

    Structures and dynamics of a recently designed dizinc metalloprotein (DFsc) (J. Mol. Biol. 2003, 334, 1101) are studied by molecular dynamics simulation using a dynamically adapted polarized force field derived from fragment quantum calculation for protein in solvent. To properly describe the effect of charge transfer and polarization in the present approach, quantum chemistry calculation of the zinc-binding group is periodically performed (on-the-fly) to update the atomic charges of the zinc-binding group during the MD simulation. Comparison of the present result with those obtained from simulations under standard AMBER force field reveals that charge transfer and polarization are critical to maintaining the correct asymmetric metal coordination in the DFsc. Detailed analysis of the result also shows that dynamic fluctuation of the zinc-binding group facilitates solvent interaction with the zinc ions. In particular, the dynamic fluctuation of the zinc-zinc distance is shown to be an important feature of the catalytic function of the di-ion zinc-binding group. Our study demonstrates that the dynamically adapted polarization approach is computationally practical and can be used to study other metalloprotein systems.

  8. Surface charging of phosphors and its effects on cathodoluminescence at low electron energies

    Energy Technology Data Exchange (ETDEWEB)

    Seager, C.H.; Warren, W.L.; Tallant, D.R.

    1997-05-01

    Measurements of the threshold for secondary electron emission and shifts of the carbon Auger line position have been used to deduce the surface potential of several common phosphors during irradiation by electrons in the 0.5--5.0 keV range. All of the insulating phosphors display similar behavior: the surface potential is within {+-}1 V of zero at low electron energies. However, above 2--3 kV it becomes increasingly negative, reaching hundreds of volts within 1 keV of the turn-on energy. The electron energy at which this charging begins decreases dramatically after Coulomb aging at 17 {micro}A/cm{sup 2} for 30--60 min. Measurements using coincident electron beams at low and high electron energies to control the surface potential were made to investigate the dependence of the cathodoluminescence (CL) process on charging. Initially, the CL from the two beams is identical to the sum of the separate beam responses, but after Coulomb aging large deviations from this additivity are observed. These results indicate that charging has important, detrimental effects on CL efficiency after prolonged e-beam irradiation. Measurements of the electron energy dependence of the CL efficiency before and after Coulomb aging will also be presented, and the implications of these data on the physics of the low-voltage CL process will be discussed.

  9. Charging effect in Au nanoparticle memory device with biomolecule binding mechanism.

    Science.gov (United States)

    Jung, Sung Mok; Kim, Hyung-Jun; Kim, Bong-Jin; Yoon, Tae-Sik; Kim, Yong-Sang; Lee, Hyun Ho

    2011-07-01

    Organic memory device having gold nanoparticle (Au NPs) has been introduced in the structure of metal-pentacene-insulator-silicon (MPIS) capacitor device, where the Au NPs layer was formed by a new bonding method. Biomolecule binding mechanism between streptavidin and biotin was used as a strong binding method for the formation of monolayered Au NPs on polymeric dielectric of poly vinyl alcohol (PVA). The self-assembled Au NPs was functioned to show storages of charge in the MPIS device. The binding by streptavidin and biotin was confirmed by AFM and UV-VIS. The UV-VIS absorption of the Au NPs was varied at 515 nm and 525 nm depending on the coating of streptavidin. The AFM image showed no formation of multi-stacked layers of the streptavidin-capped Au NPs on biotin-NHS layer. Capacitance-voltage (C-V) performance of the memory device was measured to investigate the charging effect from Au NPs. In addition, charge retention by the Au NPs storage was tested to show 10,000 s in the C-V curve.

  10. Secondary charging effects due to icy dust particle impacts on rocket payloads

    Directory of Open Access Journals (Sweden)

    M. Kassa

    2012-03-01

    Full Text Available We report measurements of dust currents obtained with a small probe and a larger probe during the flight of the ECOMA-4 rocket through the summer polar mesosphere. The payload included two small dust probes behind a larger dust probe located centrally at the front. For certain phases of the payload rotation, the current registered by one of the small dust probes was up to 2 times the current measured with the larger probe, even though the effective collection area of the larger probe was 4 times that of the small one. We analyze the phase dependence of the currents and their difference with a model based on the assumption that the small probe was hit by charged dust fragments produced in collisions of mesospheric dust with the payload body. Our results confirm earlier findings that secondary charge production in the collision of a noctilucent cloud/Polar Summer Mesospheric Echo (NLC/PMSE dust particle with the payload body must be several orders of magnitude larger than might be expected from laboratory studies of collisions of pure ice particles with a variety of clean surfaces. An important consequence is that for some payload configurations, one should not assume that the current measured with a detector used to study mesospheric dust is simply proportional to the number density of ambient dust particles. The higher secondary charge production may be due to the NLC/PMSE particles containing multiple meteoric smoke particles.

  11. Secondary charging effects due to icy dust particle impacts on rocket payloads

    Science.gov (United States)

    Kassa, M.; Rapp, M.; Hartquist, T. W.; Havnes, O.

    2012-03-01

    We report measurements of dust currents obtained with a small probe and a larger probe during the flight of the ECOMA-4 rocket through the summer polar mesosphere. The payload included two small dust probes behind a larger dust probe located centrally at the front. For certain phases of the payload rotation, the current registered by one of the small dust probes was up to 2 times the current measured with the larger probe, even though the effective collection area of the larger probe was 4 times that of the small one. We analyze the phase dependence of the currents and their difference with a model based on the assumption that the small probe was hit by charged dust fragments produced in collisions of mesospheric dust with the payload body. Our results confirm earlier findings that secondary charge production in the collision of a noctilucent cloud/Polar Summer Mesospheric Echo (NLC/PMSE) dust particle with the payload body must be several orders of magnitude larger than might be expected from laboratory studies of collisions of pure ice particles with a variety of clean surfaces. An important consequence is that for some payload configurations, one should not assume that the current measured with a detector used to study mesospheric dust is simply proportional to the number density of ambient dust particles. The higher secondary charge production may be due to the NLC/PMSE particles containing multiple meteoric smoke particles.

  12. Effects of biased irradiation on charge trapping in HfO2 dielectric thin films

    Science.gov (United States)

    Mu, Yifei; Zhao, Ce Zhou; Lu, Qifeng; Zhao, Chun; Qi, Yanfei; Lam, Sang; Mitrovic, Ivona Z.; Taylor, Stephen; Chalker, Paul R.

    2017-09-01

    This paper reports the low-dose-rate radiation response of Al-HfO2/SiO2-Si MOS devices, in which the gate dielectric was formed by atomic layer deposition (ALD) with 5-nm equivalent oxide thickness. The degradation of the devices was characterized by a pulse capacitance-voltage (CV) and on-site radiation response technique under continuous gamma (γ) ray exposure at a relatively low dose rate of 0.116 rad (HfO2)/s. Compared with conventional CV measurements, the proposed measurements extract significant variations of flat-band voltage shift of the hafnium based MOS devices. The large flat-band voltage shift is mainly attributed to the radiation-induced oxide trapped charges, which are not readily compensated by bias-induced charges produced over the measurement timescales (for timescales less than 5 ms). A negative flat-band voltage shift up to -1.02 V was observed under a positive biased irradiation with the total dose up to 40 krad (HfO2) and with the electric field of 0.5 MV/cm. This is attributed to net positive charge generation in the HfO2 oxide layer. The generated charges are transported towards the HfO2/SiO2 interface, and then form effective trapped holes in the HfO2. Similarly, a positive flat-band voltage shift up to 1.1 V was observed from irradiation under negative bias with an electric field of -0.5 MV/cm. The positive shift is mainly due to the accumulation of trapped electrons. Analyses of the experimental results suggest that both hole and electron trapping can dominate the radiation response performance of the HfO2-based MOS devices depending upon the applied bias. It was also found there was no distinct border traps with irradiation in all cases.

  13. The effect of electrostatic charges on the removal of radioactive aerosols in the atmosphere by raindrops

    Science.gov (United States)

    Sow, M.; Lemaitre, P.

    2015-10-01

    In this article, we report results of self-charged water drop generated by hypodermic needle over charge values comparable to those reported in the literature during stormy rainfall. We also controllably charged aerosols particles by corona discharge and evaluate how it affects their collection efficiency. Electric charges on drops and aerosols are precisely monitored by high resolution electrometers. Our preliminary results tend to accredit the impact of electric charges in collection efficiency.

  14. Space Charge Layer Effect in Solid State Ion Conductors and Lithium Batteries: Principle and Perspective.

    Science.gov (United States)

    Chen, Cheng; Guo, Xiangxin

    2016-01-01

    The space charge layer (SCL) effects were initially developed to explain the anomalous conductivity enhancement in composite ionic conductors. They were further extended to qualitatively as well as quantitatively understand the interfacial phenomena in many other ionic-conducting systems. Especially in nanometre-scale systems, the SCL effects could be used to manipulate the conductivity and construct artificial conductors. Recently, existence of such effects either at the electrolyte/cathode interface or at the interfaces inside the composite electrode in all solid state lithium batteries (ASSLB) has attracted attention. Therefore, in this article, the principle of SCL on basis of defect chemistry is first presented. The SCL effects on the carrier transport and storage in typical conducting systems are reviewed. For ASSLB, the relevant effects reported so far are also reviewed. Finally, the perspective of interface engineer related to SCL in ASSLB is addressed.

  15. Effects of the Inductive Charging on the Electrification and Lightning Discharges in Thunderstorms

    Directory of Open Access Journals (Sweden)

    Zheng Shi

    2016-04-01

    Full Text Available A two-dimensional cloud model with electrification and lightning processes is used to investigate the role of inductive charge separation in thunderstorm clouds. For the same dynamic and microphysical evolution, four cases that the same non-inductive charging parameterization is combined with different inductive charging process are compared. Non-inductive charge separation alone is found to be sufficient to produce a dipolar charge structure. Intracloud (IC and positive cloud-to-ground (+CG flashes are initiated between a main negative charge region and an upper positive charge region. The inductive charging process between graupel and cloud droplets exhibits a normal tripole charge structure, consisting of a lower positive charge region under the main negative charge region. In the simulated tripole structure, negative cloud-to-ground (-CG flashes are initiated between the main negative and lower positive charge regions. In addition, inductive charge separation between the graupel and ice crystal is found to be capable of producing strong charge separation in a dipole charge structure. Tests with inductive graupel-ice crystals process produce more flashes than that in the other cases.

  16. Study of the correlation of charge separation of the chiral magnetic effect in Relativistic Heavy-ion Collisions

    CERN Document Server

    Feng, Sheng-Qin; Sun, Fei; Zhong, Yang; Yin, Zhong-Bao

    2016-01-01

    It was pointed out that the Chiral Magnetic Effect is a process of charge separation with respect to the reaction plane. There is one kind of phenomenon of gauge field configurations with nonzero topological charge, which can be a sphaleron in the QCD vacuum. At high temperatures, one expects that the sphaleron process is a dominant process. One finds that left-handed quarks will become right-handed quarks, and right-handed quarks will remain right-handed in a region with negative topological charge. The strong magnetic field produced in relativistic heavy-ion collisions interacts with the magnetic moment of the quarks and locates the spins of quarks with positive (negative) electric charge to be parallel (anti-parallel) to the field direction. The Chiral Separation Effect is a similar effect in which the occurrence of a vector charge, e.g. electric charge, causes a separation of chiralities. We calculate the chiral separation effects during RHIC and LHC energy regions by studying the detailed chiral charge s...

  17. Moving Space Charge Field Effects in Photoconductive Semiconductors and Their Applications.

    Science.gov (United States)

    Wang, Chen-Chia

    1995-01-01

    Internal electric space charge fields are formed inside photoconductive semiconductors when they are illuminated by an optical interference pattern. This Thesis focuses on the effects of such space charge fields formed inside semiconductor materials which contain both donors and deep level traps for photo-excited charge carriers. The photon energies are less than the band gap of the photoconductive semiconductor. The space charge field arises from the migration of photo-excited charges from the brighter to darker regions of the optical interference pattern where they become trapped. If the center frequencies of the two mutually coherent optical fields which form the interference pattern are unequal, the interference pattern and consequently the internal space charge field move with identical velocity. The moving space charge field results in a net photocurrent output from the material even when no external electric bias field is present. The short-circuit photocurrents contain a wealth of information about the material characteristics of the photoconductive semiconductor which, once known, can be used to deduce information about the optical frequency spectrum of the optical fields which form the interference pattern. An approximate but very accurate mathematical characterization of the short-circuit photocurrents and their properties are presented. These properties were verified by direct experimental measurements performed in the photoconductive semiconductors InP:Fe, GaAs, GaAs:Cr, CdTe:V, and CdTe:V:Mn. If the two interfering optical fields are plane waves with negligible linewidth, a DC short-circuit photocurrent results whose properties can be used to determine the sign of the pre-dominant species of photo-excited charge carriers, their mobility-lifetime products, and some information about donor and trap concentrations if the mobilities are known. All experiments were performed with laser diode pumped Nd:YAG unidirectional ring oscillator lasers whose optical

  18. Effects of Ions Charge-Mass Ratio on Energy and Energy Spread of Accelerated Ions in Laser Driven Plasma

    Institute of Scientific and Technical Information of China (English)

    SANG Hai-Bo; DENG Shi-Qiang; XIE Bai-Song

    2013-01-01

    Effects of ions charge-mass ratio on energy and energy spread of accelerated ions in laser driven plasma are investigated in detail by proposing a simple double-layer model for a foil target driven by an ultrastrong laser.The radiation pressure acceleration mechanism plays an important role on the studied problem.For the ions near the plasma mirror,i.e.electrons layer,the dependence of ions energy on their charge-mass ratio is derived theoretically.It is found that the larger the charge-mass ratio is,the higher the accelerated ions energy gets.For those ions far away from the layer,the dependence of energy and energy spread on ions charge-mass ratio are also obtained by numerical performance.It exhibits that,as ions charge-mass ratio increases,not only the accelerated ions energy but also the energy spread will become large.

  19. The effects of congestion charging on road traffic casualties: a causal analysis using difference-in-difference estimation.

    Science.gov (United States)

    Li, Haojie; Graham, Daniel J; Majumdar, Arnab

    2012-11-01

    This paper aims to identify the impacts of the London congestion charge on road casualties within the central London charging zone. It develops a full difference-in-difference (DID) model that is integrated with generalized linear models, such as Poisson and Negative Binomial regression models. Covariates are included in the model to adjust for factors that violate the parallel trend assumption, which is critical in the DID model. The lower Bayesian Information Criterion value suggests that the full difference-in-difference model performs well in evaluating the relationship between road accidents and the London congestion charge as well as other socio-economic factors. After adjusting for a time trend and regional effects, the results show that the introduction of the London congestion charge has a significant influence on the incidence of road casualties. The congestion charge reduces the total number of car accidents, but is associated with an increase in two wheeled vehicle accidents.

  20. Exploring effective interactions through transition charge density study of 70,72,74,76Ge nuclei

    Indian Academy of Sciences (India)

    A Shukla; P K Raina; P K Rath

    2005-02-01

    Transition charge densities (TCD) for $0^{+} → 2_{1}^{+}$ excitation have been calculated for 70, 72, 74, 76Ge nuclei within microscopic variational framework employing 23/2, 15/2, 21/2 and 19/2 valence space. The calculated TCDs for different monopole variants of Kuo interaction are compared with available experimental results. Other systematics like reduced transition probabilities (2) and static quadrupole moments (2) are also presented. It is observed that the transition density study acts as a sensitive probe for discriminating the response of different parts of effective interactions.

  1. Effect of adiabatic variation of dust charges on dust acoustic solitary waves in magnetized dusty plasmas

    Institute of Scientific and Technical Information of China (English)

    Duan Wen-Shan

    2004-01-01

    The effect of dust charging and the influence of its adiabatic variation on dust acoustic waves is investigated. By employing the reductive perturbation technique we derived a Zakharov-Kuznetsov (ZK) equation for small amplitude dust acoustic waves. We have analytically verified that there are only rarefactive solitary waves for this system. The instability region for one-dimensional solitary wave under transverse perturbations has also been obtained. The obliquely propagating solitary waves to the z-direction for the ZK equation are given in this paper as well.

  2. Anharmonic-potential-effective-charge approach for computing Raman cross sections of a gas

    Science.gov (United States)

    Kutteh, Ramzi; van Zandt, L. L.

    1993-05-01

    An anharmonic-potential-effective-charge approach for computing relative Raman intensities of a gas is developed. The equations of motion are set up and solved for the driven anharmonic molecular vibrations. An explicit expression for the differential polarizability tensor is derived and its properties discussed. This expression is then used within the context of Placzek's theory [Handbuch der Radiologie (Akademische Verlagsgesellschaft, Leipzig, 1934), Vol. VI] to compute the Raman cross section and depolarization ratio of a gas. The computation is carried out for the small molecules CO2, CS2, SO2, and CCl4; results are compared with experimental measurements and discussed.

  3. Chiral extrapolation of nucleon axial charge gA in effective field theory

    Science.gov (United States)

    Li, Hong-na; Wang, P.

    2016-12-01

    The extrapolation of nucleon axial charge gA is investigated within the framework of heavy baryon chiral effective field theory. The intermediate octet and decuplet baryons are included in the one loop calculation. Finite range regularization is applied to improve the convergence in the quark-mass expansion. The lattice data from three different groups are used for the extrapolation. At physical pion mass, the extrapolated gA are all smaller than the experimental value. Supported by National Natural Science Foundation of China (11475186) and Sino-German CRC 110 (NSFC 11621131001)

  4. The effect of interfacial layers on charge transport in organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Mbuyise, Xolani G.; Tonui, Patrick; Mola, Genene Tessema, E-mail: mola@ukzn.ac.za

    2016-09-01

    The effect of interfacial buffer layers in organic photovoltaic cell (OPV) whose active layer is composed of poly(3 hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend was studied. The electrical properties of OPV devices produced with and without interfacial layers are compared and discussed in terms of measured parameters of the cells. The charge transport properties showed significant difference on the mobility and activation factor between the two types of device structures. The life time measurements in the unprotected conditions are also presented and discussed.

  5. Excited state intramolecular charge transfer reaction in 4-(1-azetidinyl)benzonitrile: Solvent isotope effects

    Indian Academy of Sciences (India)

    Tuhin Pradhan; Piue Ghoshal; Ranjit Biswas

    2009-01-01

    Excited state intramolecular charge transfer reaction of 4-(1-azetidinyl) benzonitrile (P4C) in deuterated and normal methanol, ethanol and acetonitrile has been studied in order to investigate the solvent isotope effects on reaction rates and yields. These quantities (reaction rates and yields) along with several other properties such as quantum yield and radiative rates have been found to be insensitive to the solvent isotope substitution in all these solvents. The origin of the solvent isotope insensitivity of the reaction is discussed and correlated with the observed slowing down of the solvation dynamics upon isotope substitution.

  6. Positive and negative contribution to birefringence in a family of carbonates: A Born effective charges analysis

    Science.gov (United States)

    Jing, Qun; Yang, Guang; Hou, Juan; Sun, Maozhu; Cao, Haibin

    2016-12-01

    It is an important topic to investigate the birefringence and reveal the contribution from ions to birefringence because it plays an important role in nonlinear optical materials. In this paper, the birefringence of carbonates with coplanar CO3 groups were investigated using the first-principles method. The results show that the lead carbonates exhibit relative large birefringence. After detailed investigate the electronic structures, and Born effective charges, the authors find out that anisotropic electron distribution in the CO3 groups and Pb atoms give positive contribution, while the negative contribution was found from fluorine atoms, meanwhile the Ca, Mg, and Cd atoms give very small contribution to birefringence.

  7. Effect of charge at an amino acid of basic fibroblast growth factor on its mitogenic activity

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The amino acid at the 119th position of human basic fibroblast growth factor(hbFGF),lysine(K119),is a critical component for its mitogenic activity.However,little is known about the effects of the characteristics of this residue including charge on the mitogenic activity of hbFGF.Herein,this basic residue was replaced with neutral glutamine residue and acidic glutamic acid residue to construct mutants hbFGF~(K119Q) and hbFGF~(K119E),respectively.The mutants were produced by BL21(DE3)/pET3c expression sys...

  8. Temperature and Magnetic Field Effects on the Transport Controlled Charge State of a Single Quantum Dot

    Directory of Open Access Journals (Sweden)

    Moskalenko ES

    2010-01-01

    Full Text Available Abstract Individual InAs/GaAs quantum dots are studied by micro-photoluminescence. By varying the strength of an applied external magnetic field and/or the temperature, it is demonstrated that the charge state of a single quantum dot can be tuned. This tuning effect is shown to be related to the in-plane electron and hole transport, prior to capture into the quantum dot, since the photo-excited carriers are primarily generated in the barrier.

  9. Effect of the surface charge density on the creep of copper

    Science.gov (United States)

    Zhmakin, Yu. D.; Rybyanets, V. A.; Nevskii, S. A.; Gromov, V. E.

    2015-01-01

    The creep of polycrystalline copper under the action of high and low electric potentials is studied. At potentials of ±4 kV and ±5 V, the steady-state creep rate decreases, and the effect in the former case is weaker than in the latter by a factor of 2.5. This difference is caused by the fact that the charge density in the sample-capacitor bank system at the high electric potentials is lower than at the low potentials.

  10. Origins of charge noise in carbon nanotube field-effect transistor biosensors.

    Science.gov (United States)

    Sharf, Tal; Kevek, Joshua W; Deborde, Tristan; Wardini, Jenna L; Minot, Ethan D

    2012-12-12

    Determining the major noise sources in nanoscale field-effect transistor (nanoFET) biosensors is critical for improving bioelectronic interfaces. We use the carbon nanotube (CNT) FET biosensor platform to examine the noise generated by substrate interactions and surface adsorbates, both of which are present in current nanoFET biosensors. The charge noise model is used as a quantitative framework to show that insulating substrates and surface adsorbates are both significant contributors to the noise floor of CNT FET biosensors. Removing substrate interactions and surface adsorbates reduces the power spectral density of background voltage fluctuations by 19-fold.

  11. Off-shell behavior of relativistic NN effective interactions and charge symmetry breaking

    Science.gov (United States)

    Gersten, A.; Thomas, A. W.; Weyrauch, M.

    1990-04-01

    We examine in detail the suggestion of Iqbal et al. for calculating the class-four charge symmetry breaking amplitude in n-p scattering. By simplifying to a model problem, we show explicitly that the approximation scheme is unreliable if a phenomenological, effective nucleon-nucleon T matrix is used. Our results have wider implications for observables calculated in relativistic impulse approximation calculations. They reinforce the observation made in the literature that the procedure of fitting only positive energy matrix elements can lead to an NN interaction whose off-shell behavior is incorrect.

  12. Impact of electric field on Hofmeister effects in aggregation of negatively charged colloidal minerals

    Indian Academy of Sciences (India)

    Ying Tang; Hang Li; Hualing Zhu; Rui Tian; Xiaodan Gao

    2016-01-01

    In this study, the aggregation kinetics of negatively charged colloidal minerals in Na+, K+, NH+4 , Mg2+, Ca2+ and Cu2+ solutions were measured and Hofmeister effects therein were estimated through total average aggregation (TAA) rates and critical coagulation concentration (CCC). Hofmeister effects of TAA rates increased exponentially with the increase in electric field strength, which cannot be explained by the classical theories (i.e., ionic size, hydration and dispersion forces), indicating strong electric field at colloidal surface was an indispensable factor in studying Hofmeister effects. Meanwhile, Hofmeister series of CCC values Na+ > K+ > NH+4 > Mg2+ > Ca2+ > Cu2+ show fine correlation with the polarization of various cations, implying that onic polarization in strong electric field would be responsible for Hofmeister effects in aggregation of colloidal minerals, and the deduction was confirmed by the calculated results of electrostatic interactions between colloidal minerals.

  13. Charge Kondo effect in negative-U quantum dots with superconducting electrodes

    Science.gov (United States)

    Fang, Tie-Feng; Guo, Ai-Min; Lu, Han-Tao; Luo, Hong-Gang; Sun, Qing-Feng

    2017-08-01

    Recent experimental realization of superconducting quantum dot devices with intradot attraction U [Nature (London) 521, 196 (2015), 10.1038/nature14398; Phys. Rev. X 6, 041042 (2016), 10.1103/PhysRevX.6.041042] offers unique opportunities to study the charge Kondo effect in a superconducting environment. In such devices pseudospin flips are caused by two tunneling processes. One is the cotunneling of normal electrons which generates near-gap Kondo resonances in the single-electron spectral density. This negative-U charge Kondo effect is more robust than the conventional spin Kondo effect against the suppression by the superconductivity. The other tunneling is the mean-field Cooper-pair tunneling which produces a zero-energy bound state in the pair spectral density. Interesting crossover physics from the strongly-correlated Kondo screening to the mean-field polarization of local pseudospin is demonstrated. Due to the interplay of these two tunnelings, the supercurrent is suppressed for intermediate couplings, but it can increase to the unitary limits both in the strong and weak coupling regimes. We obtain the magnetic field-dependent supercurrent which is consistent with the key experimental findings.

  14. Hamiltonian and Lagrangian dynamics of charged particles including the effects of radiation damping

    Science.gov (United States)

    Qin, Hong; Burby, Joshua; Davidson, Ronald; Fisch, Nathaniel; Chung, Moses

    2015-11-01

    The effects of radiation damping (radiation reaction) on accelerating charged particles in modern high-intensity accelerators and high-intensity laser beams have becoming increasingly important. Especially for electron accelerators and storage rings, radiation damping is an effective mechanism and technique to achieve high beam luminosity. We develop Hamiltonian and Lagrangian descriptions of the classical dynamics of a charged particle including the effects of radiation damping in the general electromagnetic focusing channels encountered in accelerators. The direct connection between the classical Hamiltonian and Lagrangian theories and the more fundamental QED description of the synchrotron radiation process is also addressed. In addition to their theoretical importance, the classical Hamiltonian and Lagrangian theories of the radiation damping also enable us to numerically integrate the dynamics using advanced structure-preserving geometric algorithms. These theoretical developments can also be applied to runaway electrons and positrons generated during the disruption or startup of tokamak discharges. This research was supported by the U.S. Department of Energy (DE-AC02-09CH11466).

  15. Effective theory of a doubly charged singlet scalar: complementarity of neutrino physics and the LHC

    CERN Document Server

    King, Stephen F; Panizzi, Luca

    2014-01-01

    We consider a rather minimal extension of the Standard Model involving just one extra particle, namely a single $SU(2)_L$ singlet scalar $S^{++}$ and its antiparticle $S^{--}$. We propose a model independent effective operator, which yields an effective coupling of $S^{\\pm \\pm}$ to pairs of same sign weak gauge bosons, $W^{\\pm} W^{\\pm}$. We also allow tree-level couplings of $S^{\\pm \\pm}$ to pairs of same sign right-handed charged leptons $l^{\\pm}_Rl'^{\\pm}_R$ of the same or different flavour. We calculate explicitly the resulting two-loop diagrams in the effective theory responsible for neutrino mass and mixing. We propose sets of benchmark points for various $S^{\\pm \\pm}$ masses and couplings which can yield successful neutrino masses and mixing, consistent with limits on charged lepton flavour violation (LFV) and neutrinoless double beta decay. We discuss the prospects for $S^{\\pm \\pm}$ discovery at the LHC, for these benchmark points, including single and pair production and decay into same sign leptons p...

  16. The Effect of Thermal Annealing on Charge Transport in Organolead Halide Perovskite Microplate Field-Effect Transistors.

    Science.gov (United States)

    Li, Dehui; Cheng, Hung-Chieh; Wang, Yiliu; Zhao, Zipeng; Wang, Gongming; Wu, Hao; He, Qiyuan; Huang, Yu; Duan, Xiangfeng

    2017-01-01

    Transformation of unipolar n-type semiconductor behavior to ambipolar and finally to unipolar p-type behavior in CH3 NH3 PbI3 microplate field-effect transistors by thermal annealing is reported. The photoluminescence spectra essentially maintain the same features before and after the thermal annealing process, demonstrating that the charge transport measurement provides a sensitive way to probe low-concentration defects in perovskite materials.

  17. Metal nanoparticles in organic field-effect transistor: Transition from charge trapping to conduction mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keanchuan, E-mail: lee.kc@petronas.com.my [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Weis, Martin [Institute of Electronics and Photonics, Slovak University of Technology, Ilkovičova 3, Bratislava 81219 (Slovakia); Chen, Xiangyu; Taguchi, Dai; Manaka, Takaaki [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2014-03-03

    Self-assembled monolayers of metal nanoparticles (NPs) are envisioned for various devices and have been investigated for possible applications. However, organic envelope of NPs which is required for self-assembling must be often removed prior further device fabrication. Here, we report on effect of ozonolysis on monolayer of silver NPs (Ag NPs) with size of 8 nm and its impact on Ag NPs utilization in organic field-effect transistor. It was found that Ag NPs covered by organics serve like a traps and removal of insulating organics decreases number of traps and consequently increases Ag NPs monolayer conductivity. - Highlights: • Organic field-effect transistor (OFET) with nanoparticle (NP) film was fabricated • Electrical and optical properties of NP and OFET were studied upon UV irradiation • We report a transition from charge trapping to conduction mechanism of NPs in OFET.

  18. Charge effect of superparamagnetic iron oxide nanoparticles on their surface functionalization by photo-initiated chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Javanbakht, Taraneh [Ecole Polytechnique of Montreal, Department of Chemical Engineering (Canada); Laurent, Sophie; Stanicki, Dimitri [University of Mons, Laboratory of NMR and Molecular Imaging (Belgium); Raphael, Wendell; Tavares, Jason Robert, E-mail: jason.tavares@polymtl.ca [Ecole Polytechnique of Montreal, Department of Chemical Engineering (Canada)

    2015-12-15

    Diverse applications of superparamagnetic iron oxide nanoparticles (SPIONs) in the chemical and biomedical industry depend on their surface properties. In this paper, we investigate the effect of initial surface charge (bare, positively and negatively charged SPIONs) on the resulting physicochemical properties of the particles following treatment through photo-initiated chemical vapour deposition (PICVD). Transmission electron microscopy shows a nanometric polymer coating on the SPIONs and contact angle measurements with water demonstrate that their surface became non-polar following functionalization using PICVD. FTIR and XPS data confirm the change in the chemical composition of the treated SPIONs. Indeed, XPS data reveal an initial charge-dependent increase in the surface oxygen content in the case of treated SPIONs. The O/C percentage ratios of the bare SPIONs increase from 1.7 to 1.9 after PICVD treatment, and decrease from 1.7 to 0.7 in the case of negatively charged SPIONs. The ratio remains unchanged for positively charged SPIONs (1.7). This indicates that bare and negatively charged SPIONs showed opposite preference for the oxygen or carbon attachment to their surface during their surface treatment. These results reveal that both the surface charge and stereochemical effects have determinant roles in the polymeric coating of SPIONs with PICVD. Our findings suggest that this technique is appropriate for the treatment of nanoparticles.Graphical Abstract.

  19. The effect of surface charge on the boundary slip of various oleophilic/phobic surfaces immersed in liquids.

    Science.gov (United States)

    Li, Yifan; Bhushan, Bharat

    2015-10-14

    The reduction of fluid drag is an important issue in many fluid flow applications at the micro/nanoscale. Boundary slip is believed to affect fluid drag. Slip length has been measured on various surfaces with different degrees of hydrophobicity and oleophobicity immersed in various liquids of scientific interest. Surface charge has been found to affect slip length in water and electrolytes. However, there are no studies on the effect of surface charge on slip at solid-oil interfaces. This study focuses on the effect of surface charge on the boundary slip of superoleophilic, oleophilic, oleophobic, and superoleophobic surfaces immersed in deionized (DI) water and hexadecane and ethylene glycol, based on atomic force microscopy (AFM). The surface charge was changed by applying a positive electric field to the solid-liquid interface, and by using liquids with different pH values. The results show that slip length increases with an increase in applied positive electric field voltage. Slip length also increases with a decrease in the pH of the solutions. The change in slip length is dependent on the absolute value of the surface charge, and a larger surface charge density results in a smaller slip length. In addition, the surface charge density at different solid-liquid interfaces is related to the dielectric properties of the surface. The underlying mechanisms are analyzed.

  20. Charge neutral MoS2 field effect transistors through oxygen plasma treatment

    Science.gov (United States)

    Dhall, Rohan; Li, Zhen; Kosmowska, Ewa; Cronin, Stephen B.

    2016-11-01

    Lithographically fabricated MoS2 field effect transistors suffer from several critical imperfections, including low sub-threshold swings, large turn-on gate voltages (VT), and wide device-to-device variability. The large magnitude and variability of VT stems from unclean interfaces, trapped charges in the underlying substrate, and sulfur vacancies created during the mechanical exfoliation process. In this study, we demonstrate a simple and reliable oxygen plasma treatment, which mitigates the effects of unintentional doping created by surface defect sites, such as S vacancies, and surface contamination. This plasma treatment restores charge neutrality to the MoS2 and shifts the threshold turn-on voltage towards 0 V. Out of the 10 devices measured, all exhibit a shift of the FET turn-on voltage from an average of -18 V to -2 V. The oxygen plasma treatment passivates these defects, which reduces surface scattering, causing increased mobility and improved subthreshold swing. For as-prepared devices with low mobilities (˜0.01 cm2/V s), we observe up to a 190-fold increase in mobility after exposure to the oxygen plasma. Perhaps the most important aspect of this oxygen plasma treatment is that it reduces the device-to-device variability, which is a crucial factor in realizing any practical application of these devices.

  1. Enhanced charge storage by the electrocatalytic effect of anodic TiO2 nanotubes

    Science.gov (United States)

    Zhang, Guoge; Huang, Chuanjun; Zhou, Limin; Ye, Lin; Li, Wenfang; Huang, Haitao

    2011-10-01

    Ordered titania nanotube (TNT) arrays were fabricated by anodization of titanium with a very fast voltage ramp speed. Co(OH)2/TNT nanocomposite was synthesized by cathodic deposition using the as-anodized TNT as the substrate. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterize the morphology, crystalline structure and chemical state. The capacitive characteristics were investigated by cyclic voltammetry (CV), charge-discharge tests, and electrochemical impedance spectroscopy (EIS). Thanks to the electrocatalytic effect of the as-anodized TNTs on the reduction of Co(OH)2, the Co(OH)2/TNT composite electrode exhibits a significantly enhanced charge storage capacity (an increase of 73%) when compared with Co(OH)2/Ti (titanium as the deposition substrate). The occurrence of such an electrocatalytic effect is suggested to be related to the nano-sized TiO2 crystals (rutile) embedded in organized amorphous TNTs. Co(OH)2/TNT demonstrates enhanced specific energy, high rate capability and good cyclability, and can be a potential electrode of choice for supercapacitors.

  2. Enhanced charge storage by the electrocatalytic effect of anodic TiO₂ nanotubes.

    Science.gov (United States)

    Zhang, Guoge; Huang, Chuanjun; Zhou, Limin; Ye, Lin; Li, Wenfang; Huang, Haitao

    2011-10-05

    Ordered titania nanotube (TNT) arrays were fabricated by anodization of titanium with a very fast voltage ramp speed. Co(OH)(2)/TNT nanocomposite was synthesized by cathodic deposition using the as-anodized TNT as the substrate. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterize the morphology, crystalline structure and chemical state. The capacitive characteristics were investigated by cyclic voltammetry (CV), charge-discharge tests, and electrochemical impedance spectroscopy (EIS). Thanks to the electrocatalytic effect of the as-anodized TNTs on the reduction of Co(OH)(2), the Co(OH)(2)/TNT composite electrode exhibits a significantly enhanced charge storage capacity (an increase of 73%) when compared with Co(OH)(2)/Ti (titanium as the deposition substrate). The occurrence of such an electrocatalytic effect is suggested to be related to the nano-sized TiO(2) crystals (rutile) embedded in organized amorphous TNTs. Co(OH)(2)/TNT demonstrates enhanced specific energy, high rate capability and good cyclability, and can be a potential electrode of choice for supercapacitors.

  3. Photo-excited charge collection spectroscopy probing the traps in field-effect transistors

    CERN Document Server

    Im, Seongil; Kim, Jae Hoon

    2013-01-01

    Solid state field-effect devices such as organic and inorganic-channel thin-film transistors (TFTs) have been expected to promote advances in display and sensor electronics. The operational stabilities of such TFTs are thus important, strongly depending on the nature and density of charge traps present at the channel/dielectric interface or in the thin-film channel itself. This book contains how to characterize these traps, starting from the device physics of field-effect transistor (FET). Unlike conventional analysis techniques which are away from well-resolving spectral results, newly-introduced photo-excited charge-collection spectroscopy (PECCS) utilizes the photo-induced threshold voltage response from any type of working transistor devices with organic-, inorganic-, and even nano-channels, directly probing on the traps. So, our technique PECCS has been discussed through more than ten refereed-journal papers in the fields of device electronics, applied physics, applied chemistry, nano-devices and materia...

  4. Charge effect of a liposomal delivery system encapsulating simvastatin to treat experimental ischemic stroke in rats

    Directory of Open Access Journals (Sweden)

    Campos-Martorell M

    2016-06-01

    Full Text Available Mireia Campos-Martorell,1 Mary Cano-Sarabia,2 Alba Simats,1 Mar Hernández-Guillamon,1 Anna Rosell,1 Daniel Maspoch,2,3 Joan Montaner1,4 1Neurovascular Research Laboratory, Institut de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, 2Catalan Institute of Nanoscience and Nanotechnology (ICN2, CSIC and The Barcelona Institute of Science and Technology, Universitat Autònoma de Barcelona, Barcelona, 3Institució Catalana de Recerca i Estudis Avançats (ICREA, 4Neurovascular Unit, Department of Neurology, Universitat Autònoma de Barcelona, Hospital Vall d’Hebron, Barcelona, Spain Background and aims: Although the beneficial effects of statins on stroke have been widely demonstrated both in experimental studies and in clinical trials, the aim of this study is to prepare and characterize a new liposomal delivery system that encapsulates simvastatin to improve its delivery into the brain. Materials and methods: In order to select the optimal liposome lipid composition with the highest capacity to reach the brain, male Wistar rats were submitted to sham or transitory middle cerebral arterial occlusion (MCAOt surgery and treated (intravenous [IV] with fluorescent-labeled liposomes with different net surface charges. Ninety minutes after the administration of liposomes, the brain, blood, liver, lungs, spleen, and kidneys were evaluated ex vivo using the Xenogen IVIS® Spectrum imaging system to detect the load of fluorescent liposomes. In a second substudy, simvastatin was assessed upon reaching the brain, comparing free and encapsulated simvastatin (IV administration. For this purpose, simvastatin levels in brain homogenates from sham or MCAOt rats at 2 hours or 4 hours after receiving the treatment were detected through ultra-high-protein liquid chromatography. Results: Whereas positively charged liposomes were not detected in brain or plasma 90 minutes after their administration, neutral and negatively charged liposomes

  5. Effect of dust charge variation on dust—acoustic solitary waves in a magnetized two—ion—temperature dusty plasma

    Institute of Scientific and Technical Information of China (English)

    XueJu-Kui; LangHe

    2003-01-01

    The effect of dust charge variation on the dust-acoustic solitary structures is investigated in a warm magnetized two-ion-temperature dusty plasma consisting of a negatively and variably charged extremely massive dust fluid and ions of two different temperatures. It is shown that the dust charge variation as well as the presence of a second component of ions would modify the properties of the dust-acoustic solitary structures and may exite both dust-acoustic solitary holes (soliton waves with a density dip) and positive solitons (soliton waves with a density hump).

  6. Effect of dust charge variation on dust-acoustic solitary waves in a magnetized two-ion-temperature dusty plasma

    Institute of Scientific and Technical Information of China (English)

    薛具奎; 郎和

    2003-01-01

    The effect of dust charge variation on the dust-acoustic solitary structures is investigated in a warm magnetized two-ion-temperature dusty plasma consisting of a negatively and variably charged extremely massive dust fluid and ions of two different temperatures. It is shown that the dust charge variation as well as the presence of a second component of ions would modify the properties of the dust-acoustic solitary structures and may excite both dust-acoustic solitary holes (soliton waves with a density dip) and positive solitons (soliton waves with a density hump).

  7. A numerical analysis of the effects of a stratified pre-mixture on homogeneous charge compression ignition combustion

    Energy Technology Data Exchange (ETDEWEB)

    Jamsran, Narankhuu; Lim, Ock Taeck [University of Ulsan, Ulsan (Korea, Republic of)

    2012-06-15

    We investigated the efficacy of fuel stratification in a pre-mixture of dimethyl ether (DME) and n-butane, which have different autoignition characteristics, for reducing the pressure rise rate (PRR) of homogeneous charge compression ignition engines. A new chemical reaction model was created by mixing DME and n-butane and compared with existing chemical reaction models to verify the effects observed. The maximum PRR depended on the mixture ratio. When DME was charged with stratification and n-butane was charged with homogeneity, the maximum PRR was the lowest among all the mixtures studied. Calculations were performed using CHEMKIN and modified using SENKIN software.

  8. Investigations on CERN PSB Beam Dynamics with Strong Direct Space Charge Effects Using the PTC-Orbit Code

    CERN Document Server

    Forte, V; Carli, C; Martini, M; Metral, E; Mikulec, B; Schmidt, F; Molodozhentsev, A

    2013-01-01

    The CERN PS Booster (PSB) has the largest space charge tune spread in the LHC injector chain. As part of the LHC Injectors Upgrade (LIU) project, the machine will be upgraded. Space charge and resonances are serious is- sues for the good quality of the beam at injection energy. Consequently simulations are needed to track the beam in the machine taking into account space charge effects: PTC-ORBIT has been used as tracking code. This paper presents simulation results that are compared with mea-surements for machine performances evaluation and code- benchmarking purposes.

  9. Effect of charged line defects on conductivity in graphene: Numerical Kubo and analytical Boltzmann approaches

    DEFF Research Database (Denmark)

    Radchenko, T. M.; Shylau, A. A.; Zozoulenko, I. V.

    2013-01-01

    Charge carrier transport in single-layer graphene with one-dimensional charged defects is studied theoretically. Extended charged defects, considered an important factor for mobility degradation in chemically vapor-deposited graphene, are described by a self-consistent Thomas-Fermi potential. A n...

  10. Effects of Stress Activated Positive-Hole Charge Carriers on Radar Reflectance of Gabbro-Diorite

    Science.gov (United States)

    Williams, C.; Vanderbilt, V. C.; Dahlgren, R.; Cherukupally, A.; Freund, F. T.

    2011-12-01

    When load is applied to igneous or high-grade metamorphic rocks, trapped electron vacancy defects are activated and become mobile positive-hole charge carriers. These mobile charge carriers repel each other through Coulomb interactions and move outward from the stressed region. As large numbers of positive-holes reach the surface of the rock, this surface charge may cause an observable change in radar reflectance. In this experiment, a series of holes is drilled into a large gabbro-diorite boulder from the A.R. Wilson Quarry in Aromas, CA. Bustar, an expansive, non-explosive demolition agent, is poured into the holes while a 1.2 GHz radar system measures the amplitude of radar waves reflected from the rock's surface. Over the course of the experiment, the radar antenna is swept repeatedly across one face of the rock, pausing in one of twelve positions to collect data before moving to the next position. At the end of each sweep, the radar is calibrated against both a corner reflector and a flat-plate reflector. This sampling method is employed to detect and assign a cause to transient effects observed at any one location. An initial analysis of the radar data shows a high level of agreement between readings from the flat-plate and corner reflectors, supporting the use of flat-plate reflectors as a calibration source for this omnidirectional radar system. Fitting a trend to the amplitude of the wave reflected from the rock's surface is complicated by the presence of unexpected outliers and noise artifacts from the radar system itself. It appears that such a trend, if present, would likely indicate a change in amplitude of the reflected signal of less than 5 percent over the course of the experiment.

  11. Partial Dissolution of Charge Order Phase Observed in β-(BEDT-TTF)2PF6 Single Crystal Field Effect Transistor.

    Science.gov (United States)

    Sakai, Masatoshi; Moritoshi, Norifumi; Kuniyoshi, Shigekazu; Yamauchi, Hiroshi; Kudo, Kazuhiro; Masu, Hyuma

    2016-04-01

    The effect of an applied gate electric field on the charge-order phase in β-(BEDT-TTF)2PF6 single-crystal field-effect transistor structure was observed at around room temperature by technical improvement with respect to sample preparation and electrical measurements. A relatively slight but systematic increase of the electrical conductance induced by the applied gate electric field and its temperature dependence was observed at around the metal-insulator transition temperature (TMI). The temperature dependence of the modulated electrical conductance demonstrated that TMI was shifted toward the lower side by application of a gate electric field, which corresponds to partial dissolution of the charge-order phase. The thickness of the partially dissolved charge order region was estimated to be several score times larger than the charge accumulation region.

  12. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy

    Science.gov (United States)

    Wang, Jun-Ying; Chen, Jie; Yang, Jiang; Wang, Hao; Shen, Xiu; Sun, Yuan-Ming; Guo, Meili; Zhang, Xiao-Dong

    2016-01-01

    Gold nanoclusters (Au NCs) have exhibited great advantages in medical diagnostics and therapies due to their efficient renal clearance and high tumor uptake. The in vivo effects of the surface chemistry of Au NCs are important for the development of both nanobiological interfaces and potential clinical contrast reagents, but these properties are yet to be fully investigated. In this study, we prepared glutathione-protected Au NCs of a similar hydrodynamic size but with three different surface charges: positive, negative, and neutral. Their in vivo biodistribution, excretion, and toxicity were investigated over a 90-day period, and tumor uptake and potential application to radiation therapy were also evaluated. The results showed that the surface charge greatly influenced pharmacokinetics, particularly renal excretion and accumulation in kidney, liver, spleen, and testis. Negatively charged Au NCs displayed lower excretion and increased tumor uptake, indicating a potential for NC-based therapeutics, whereas positively charged clusters caused transient side effects on the peripheral blood system. PMID:27555769

  13. Simulations of the THz spectrum of liquid water incorporating the effects of intermolecular charge fluxes through hydrogen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Torii, Hajime, E-mail: torii.hajime@shizuoka.ac.jp [Department of Chemistry, Faculty of Education, and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Shizuoka 422-8529 (Japan)

    2015-12-31

    The intensity of the band at ∼200 cm{sup −1} (∼6 THz) in the Terahertz spectrum of liquid water mainly arises from the modulations of the extent of intermolecular charge transfer through hydrogen bonds, called intermolecular charge fluxes, occurring upon molecular translations along the O…H hydrogen bonds. To obtain reasonable spectral profiles from simulations, it is necessary to effectively incorporate the effects of those intermolecular charge fluxes, but apparently it is not possible by simple classical molecular dynamics simulations with fixed atomic partial charges even if they are amended by molecular induced dipoles due to intermolecular electrostatic interactions. The present paper shows how we can do reasonably correct spectral simulations, without resorting to fully ab initio molecular dynamics.

  14. A Physics-Based Charge-Control Model for InP DHBT Including Current-Blocking Effect

    Institute of Scientific and Technical Information of China (English)

    GE Ji; JIN Zhi; SU Yong-Bo; CHENG Wei; WANG Xian-Wai; CHEN Gao-Peng; LIU Xin-Yu

    2009-01-01

    We develop a physics-based charge-control InP double heterojunction bipolar transistor model including three important effects: current blocking, mobile-charge modulation of the base-collector capacitance and velocity-field modulation in the transit time. The bias-dependent base-collector depletion charge is obtained analytically, which takes into account the mobile-charge modulation. Then, a measurement based voltage-dependent transit time formulation is implemented. As a result, over a wide range of biases, the developed model shows good agreement between the modeled and measured S-parameters and cutoff frequency. Also, the model considering current blocking effect demonstrates more accurate prediction of the output characteristics than conventional vertical bipolar inter company results.

  15. Charge transfer reactions at interfaces between neutral gas and plasma: Dynamical effects and X-ray emission

    Science.gov (United States)

    Provornikova, E.; Izmodenov, V. V.; Lallement, R.

    2012-04-01

    Charge-transfer is the main process linking neutrals and charged particles in the interaction regions of neutral (or partly ionized) gas with a plasma. In this paper we illustrate the importance of charge-transfer with respect to the dynamics and the structure of neutral gas-plasma interfaces. We consider the following phenomena: (1) the heliospheric interface - region where the solar wind plasma interacts with the partly-ionized local interstellar medium (LISM) and (2) neutral interstellar clouds embedded in a hot, tenuous plasma such as the million degree gas that fills the so-called ``Local Bubble". In (1), we discuss several effects in the outer heliosphere caused by charge exchange of interstellar neutral atoms and plasma protons. In (2) we describe the role of charge exchange in the formation of a transition region between the cloud and the surrounding plasma based on a two-component model of the cloud-plasma interaction. In the model the cloud consists of relatively cold and dense atomic hydrogen gas, surrounded by hot, low density, fully ionized plasma. We discuss the structure of the cloud-plasma interface and the effect of charge exchange on the lifetime of interstellar clouds. Charge transfer between neutral atoms and minor ions in the plasma produces X-ray emission. Assuming standard abundances of minor ions in the hot gas surrounding the cold interstellar cloud, we estimate the X-ray emissivity consecutive to the charge transfer reactions. Our model shows that the charge-transfer X-ray emission from the neutral cloud-plasma interface may be comparable to the diffuse thermal X-ray emission from the million degree gas cavity itself.

  16. Antitumor effectiveness of different amounts of electrical charge in Ehrlich and fibrosarcoma Sa-37 tumors

    Directory of Open Access Journals (Sweden)

    González TR

    2004-11-01

    Full Text Available Abstract Background In vivo studies were conducted to quantify the effectiveness of low-level direct electric current for different amounts of electrical charge and the survival rate in fibrosarcoma Sa-37 and Ehrlich tumors, also the effect of direct electric in Ehrlich tumor was evaluate through the measurements of tumor volume and the peritumoral and tumoral findings. Methods BALB/c male mice, 7–8 week old and 20–22 g weight were used. Ehrlich and fibrosarcoma Sa-37 cell lines, growing in BALB/c mice. Solid and subcutaneous Ehrlich and fibrosarcoma Sa-37 tumors, located dorsolaterally in animals, were initiated by the inoculation of 5 × 106 and 1 × 105 viable tumor cells, respectively. For each type of tumor four groups (one control group and three treated groups consisting of 10 mice randomly divided were formed. When the tumors reached approximately 0.5 cm3, four platinum electrodes were inserted into their bases. The electric charge delivered to the tumors was varied in the range of 5.5 to 110 C/cm3 for a constant time of 45 minutes. An additional experiment was performed in BALB/c male mice bearing Ehrlich tumor to examine from a histolological point of view the effects of direct electric current. A control group and a treated group with 77 C/cm3 (27.0 C in 0.35 cm3 and 10 mA for 45 min were formed. In this experiment when the tumor volumes reached 0.35 cm3, two anodes and two cathodes were inserted into the base perpendicular to the tumor long axis. Results Significant tumor growth delay and survival rate were achieved after electrotherapy and both were dependent on direct electric current intensity, being more marked in fibrosarcoma Sa-37 tumor. Complete regressions for fibrosarcoma Sa-37 and Ehrlich tumors were observed for electrical charges of 80 and 92 C/cm3, respectively. Histopathological and peritumoral findings in Ehrlich tumor revealed in the treated group marked tumor necrosis, vascular congestion, peritumoral neutrophil

  17. EFFECTS OF COOLED EXTERNAL EXHAUST GAS RECIRCULATION ON DIESEL HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINE

    Institute of Scientific and Technical Information of China (English)

    SHI Lei; CUI Yi; DENG Kangyao

    2007-01-01

    The effects of cooled external exhaust gas recirculation (EGR) on the combustion and emission performance of diesel fuel homogeneous charge compression ignition (HCCI) are studied. Homogeneous mixture is formed by injecting fuel in-cylinder in the negative valve overlap (NVO) period. So, the HCCI combustion which has low NOx and smoke emission is achieved. Cooled external EGR can delay the start of combustion effectively, which is very useful for high cetane fuel (diesel) HCCI, because these fuels can easily self-ignition, which makes the start of combustion more early. External EGR can avoid the knock combustion of HCCI at high load which means that the EGR can expand the high load limit. HCCI maintains low smoke emission at various EGR rate and various load compared with conventional diesel engine because there is no fuel-rich area in cylinder.

  18. Effects of charge-carrying amino acids on the gelatinization and retrogradation properties of potato starch.

    Science.gov (United States)

    Chen, Wenting; Zhou, Hongxian; Yang, Hong; Cui, Min

    2015-01-15

    The objective of this study was to evaluate the effects of charge-carrying amino acids (lysine (Lys), arginine (Arg), aspartic acid (Asp) and glutamic acid (Glu)) on the gelatinization and retrogradation properties of potato starch. Acidic amino acids (Asp and Glu) showed a decreasing trend in swelling power and granule size of potato starch, but increased amylose leaching and gelatinization temperature. Alkaline amino acid (Arg) showed an increasing trend in swelling power and granule size of potato starch, but decreasing amylose leaching and gelatinization temperature. Lys had no effect on the swelling power of potato starch, except at a high content (0.2 mol/kg). Like other two acidic amino acids, Lys also increased gelatinization temperature. Moreover, the addition of alkaline amino acids (Arg) decreased syneresis value of potato starch but acidic amino acids (Asp and Glu) increased it. Compared to Arg, the syneresis of potato starch with Lys was similar to that of its native starch.

  19. Effects of acid concentration on intramolecular charge transfer reaction of 4-(azetidinyl) benzonitrile in solution

    Indian Academy of Sciences (India)

    Biswajit Guchhait; Tuhin Pradhan; Ranjit Biswas

    2014-01-01

    Effects of acid concentration on excited state intramolecular charge transfer reaction of 4-(azetidinyl) benzonitrile (P4C) in aprotic (acetonitrile and ethyl acetate) and protic (ethanol) solvents have been studied by means of steady state absorption and fluorescence, and time resolved fluorescence spectroscopic techniques. While absorption and fluorescence bands of P4C have been found to be shifted towards higher energy with increasing acid concentration in acetonitrile and ethyl acetate, no significant dependence has been observed in ethanolic solutions. Reaction rate becomes increasingly slower with acid concentration in acetonitrile and ethyl acetate. In contrast, acid in ethanolic solutions does not produce such an effect on reaction rate. Time-dependent density functional theory calculations have been performed to understand the observed spectroscopic results.

  20. Non-stationary Effects In Space-charge Dominated Electron Beams

    CERN Document Server

    Agafonov, A V; Tarakanov, V P

    2004-01-01

    Problems of non-linear dynamics of space charge dominated electron beams in plane and in coaxial electron guns are discussed from the point of view of non-stationary behaviour of beams. The results of computer simulations of beam formation are presented for several simple plane diode geometries and for the gun with large compression of annular beam. Emphasised is non-stationary behaviour combined with edge and hysteresis effects. Non-stationary effects in crossed electron and magnetic field are considered from the point of view a development of schemes of intense electron beam formation for compact accelerators and RF-devices. The results of computer simulation of beam formation inside coaxial guns are described under condition of secondary self-sustaining emission. Possibilities of electron storage and capture due to transient processes are discussed. Work supported by RFBR under grant 03-02-17301.

  1. The compensation of quadrupole errors and space charge effects by using trim quadrupoles

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The China Spallation Neutron Source (CSNS) accelerators consist of an H- linac and a proton Rapid Cycling Synchrotron (RCS). RCS is designed to accumulate and accelerate proton beam from 80 MeV to 1.6 GeV with a repetition rate of 25 Hz. The main dipole and quadruple magnet will operate in AC mode. Due to the adoption of the resonant power supplies, saturation errors of magnetic field cannot be compensated by power supplies. These saturation errors will disturb the linear optics parameters, such as tunes, beta function and dispersion function. The strong space charge effects will cause emittance growth. The compensation of these effects by using trim quadruples is studied, and the corresponding results are presented.

  2. Finite-size effects in quasi-one-dimensional conductors with a charge-density wave

    Energy Technology Data Exchange (ETDEWEB)

    Zaitsev-Zotov, Sergei V [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow (Russian Federation)

    2004-06-30

    Recent studies of finite-size effects in charge-density wave conductors are reviewed. Various manifestations of finite-size effects, including the transverse-size dependence of the nonlinear-conduction threshold field, the Peierls transition temperature, high-frequency conduction, and the relaxation rates of metastable states, are discussed. Resistivity jumps in thin samples, the smeared threshold field for nonlinear conduction, and threshold conduction above the Peierls transition temperature are considered, as are mesoscopic oscillations of the threshold field, one-dimensional conduction in thin crystals, absolute negative conductivity of quasi-one-dimensional conductors, the length dependence of the phase-slip voltage, and the Aharonov-Bohm oscillations in sliding CDWs. Problems yet to be solved are discussed. (reviews of topical problems)

  3. Triton charge radius to next-to-next-to-leading order in pionless effective field theory

    Science.gov (United States)

    Vanasse, Jared

    2017-02-01

    The triton point charge radius is calculated to next-to-next-to-leading order (NNLO) in pionless effective field theory ( EFT (π / )) , yielding a prediction of 1.14 ±0.19 fm (leading order), 1.59 ±0.08 fm (next-to leading order), and 1.62 ±0.03 fm (NNLO) in agreement with the current experimental extraction of 1.5978 ±0.040 fm [Angeli and Marinova, At. Data Nucl. Data Tables 99, 69 (2013)], 10.1016/j.adt.2011.12.006. The error at NNLO is due to cutoff variation (˜1 % ) within a reasonable range of calculated cutoffs and from a EFT (π / ) error estimate (˜1.5 % ). In addition new techniques are introduced to add perturbative corrections to bound- and scattering state calculations for short-range effective field theories, but with a focus on their use in EFT (π / ) .

  4. Electromagnetic corrections to leptonic decay rates of charged pseudoscalar mesons: finite-volume effects

    CERN Document Server

    Tantalo, N; Martinelli, G; Sachrajda, C T; Sanfilippo, F; Simula, S

    2016-01-01

    In Carrasco et al. we have recently proposed a method to calculate $O(e^2)$ electromagnetic corrections to leptonic decay widths of pseudoscalar mesons. The method is based on the observation that the infrared divergent contributions (that appear at intermediate stages of the calculation and that cancel in physical quantities thanks to the Bloch-Nordsieck mechanism) are universal, i.e. depend on the charge and the mass of the meson but not on its internal structure. In this talk we perform a detailed analysis of the finite-volume effects associated with our method. In particular we show that also the leading $1/L$ finite-volume effects are universal and perform an analytical calculation of the finite-volume leptonic decay rate for a point-like meson.

  5. Size Effect of a Negatively Charged Exciton in a Two-Dimensional Quantum Dot

    Institute of Scientific and Technical Information of China (English)

    LIU Chao; XIE Wen-Fang

    2009-01-01

    In this paper we study a negatively charged exciton (NCE), which is trapped by a two-dimensional (2D) parabolic potential.By using matrix diagonalization techniques, the correlation energies of the low-lying states with L = O, 1, and 2 are calculated as a function of confinement strength.We find that the size effects of different states are different.This phenomenon can be explained as a hidden symmetry, which is originated purely from symmetry.Based on symmetry, the features of the low-lying states are discussed in the influence of the 2D parabolic potential well.It is found that the confinement may cause accidental degeneracies between levels with different low-excited states.It is shown that the effect of quantum confinement on the binding energy of the heavy hole is stronger than that of a light hole.

  6. Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces

    Science.gov (United States)

    Otero, R.; Vázquez de Parga, A. L.; Gallego, J. M.

    2017-07-01

    reactivity of the adsorbates. The aim of this review is to start drawing general conclusions and developing new concepts which will help the scientific community to proceed more efficiently towards the understanding of organic/inorganic interfaces in the strong interaction limit, where charge-transfer effects must be taken into consideration.

  7. Effect of a cylindrical thin-shell of matter on the electrostatic self-force on a charge

    Energy Technology Data Exchange (ETDEWEB)

    Rubin de Celis, Emilio [Universidad de Buenos Aires y IFIBA, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2016-02-15

    The electrostatic self-force on a point charge in cylindrical thin-shell space-times is interpreted as the sum of a bulk field and a shell field. The bulk part corresponds to a field sourced by the test charge placed in a space-time without the shell. The shell field accounts for the discontinuity of the extrinsic curvature κ{sup p}{sub q}. An equivalent electric problem is stated, in which the effect of the shell of matter on the field is reconstructed with the electric potential produced by a non-gravitating charge distribution of total image charge Q, to interpret the shell field in both the interior and exterior regions of the space-time. The self-force on a point charge q in a locally flat geometry with a cylindrical thin-shell of matter is calculated. The charge is repelled from the shell if κ{sup p}{sub q} = κ < 0 (ordinarymatter) and attracted toward the shell if κ > 0 (exotic matter). The total image charge is zero for exterior problems, while for interior problems Q/q = κr{sub e}, with re the external radius of the shell. The procedure is general and can be applied to interpret self-forces in other space-times with shells, e.g., for locally flat wormholes we found Q{sub -+}{sup wh}/q = -1/(κ{sub wh}r{sub ±}). (orig.)

  8. Relationship between space charge and effective pore size of nanoporous electrode in electric double-layer capacitor

    Institute of Scientific and Technical Information of China (English)

    Daisuke Tashima; Masahisa Otsubo

    2011-01-01

    The space-charge distributions of electric double-layer capacitors (EDLCs),which are energy storage devices,were examined with the pulsed electroacoustic (PEA) method. It was found that the experimental results could be influenced by the reflection and penetration of sound waves when the space-charge distributions of EDLCs were measured with the PEA method. This is because EDLCs have a five-layer structure consisting of three materials (aluminum,cellulose,and activated carbon). We calculated the reflection wave components that influenced the charge density through the acoustic impedance and the relative permittivity of the materials. In this way,we found that the changes in the space-charge distributions of EDLCs and their charge characteristics corresponded closely. We determined that measuring the spacecharge distributions with the PEA method was effective for evaluating the charge accumulation of EDLCs.In this study,a polarized electrode was prepared for use in EDLCs. The ratio of the surface area to the average pore diameter of the polarized electrode was measured with the nitrogen adsorption method at 77 K. The relationship between the ratio of the surface area to the average pore size and the space-charge distributions of EDLCs is also discussed in this paper.

  9. Comparison of propofol and thiopental as anesthetic agents for electroconvulsive therapy: a randomized, blinded comparison of seizure duration, stimulus charge, clinical effect, and cognitive side effects

    DEFF Research Database (Denmark)

    Bauer, Jeanett; Hageman, Ida; Dam, Henrik;

    2009-01-01

    OBJECTIVES:: To compare propofol and thiopental as anesthetic agents for electroconvulsive therapy (ECT) with respect to seizure duration, stimulus charge, clinical effect, and cognitive side effects. METHODS:: Randomized, blinded study of 62 depressed patients treated with bilateral ECT. Algorithm...

  10. Effective medium theory of the space-charge region electrostatics of arrays of nanoscale junctions

    Science.gov (United States)

    Gurugubelli, Vijaya Kumar; Karmalkar, Shreepad

    2016-01-01

    We develop an Effective Medium Theory for the electrostatics of the Space-Charge Region (SCR) of Schottky and p-n junctions in arrays of nanofilms (NFs), nanowires (NWs), and nanotubes (NTs) in a dielectric ambient. The theory captures the effects of electric fields in both the semiconductor, i.e., NF/NW/NT, and the dielectric media of the array. It shows that the depletion width and the screening length characterizing the SCR tail in the array correspond to those in a bulk junction with an effective semiconductor medium, whose permittivity and doping are their weighted averages over the cross-sectional areas of the semiconductor and dielectric; the shapes of the cross-sections are immaterial. Further, the reverse bias 1 /C2 -V behavior of junctions in NF/NW/NT arrays is linear, as in bulk junctions, and is useful to extract from measurements the built-in potential, effective doping including the semiconductor-dielectric interface charge, and NF/NW/NT length. The theory is validated with numerical simulations, is useful for the experimentalist, and yields simple formulas for nano-device design which predict the following. In the limiting case of a single sheet-like NF, the junction depletion width variation with potential drop is linear rather than square-root (as in a bulk junction). In arrays of symmetric silicon p-n junctions in oxide dielectric where NF/NW thickness and separation are 5% and 100% of the bulk depletion width, respectively, the junction depletion width and the screening length are scaled up from their bulk values by the same factor of ˜2 for NF and ˜10 for NW array.

  11. The Space Charge Effect on the Discharge Current in Cross-Linked Polyethylene under High AC Voltages

    Science.gov (United States)

    Kwon, Yoon-Hyeok; Hwangbo, Seung; Lee, June-Ho; Yi, Dong-Young; Han, Min-Koo

    2003-12-01

    The space charge distributions in solid dielectrics have been usually investigated by means of the pulsed electroacoustic (PEA) method. However, most previous studies have been limited to the phenomenological analysis under DC voltages. In our study, the space charge distribution in cross-linked polyethylene (XLPE) has been measured using AC voltages by means of the modified PEA method. Simultaneously, the streamer discharges in an air gap have been measured in order to investigate the relationship between space charge and discharge current, and the relationship has been adapted to the case of dielectric barrier discharge. At high AC voltages, discharge current increases to the critical point, but no further increase is exhibited over the critical voltage and the discharge pattern is resolved by the space charge. This result indicates that the frequency effect and space charge characteristics of dielectric materials are preferred to the voltage effect in the adaptation to dielectric barrier discharge. The results well explain the space charge effect on partial discharge and the dielectric barrier discharge phenomenon.

  12. Experimental study on the effect of alternator speed to the car charging system

    Directory of Open Access Journals (Sweden)

    Mazlan Rozdman K.

    2017-01-01

    Full Text Available In this paper, we present our work, which is doing an energy audit on alternator’s current output and battery’s voltage based on alternator speed. Up until today, the demand for power in automobile is ever increasing. As technology advances, more and more electrical devices were produced and being installed in vehicles. To cope with the demand, alternator has been designed and modified so that it can produce enough power. This research is to study the effect of alternator speed to the charging system. The car used in this experiment is Proton Preve 1.6 Manual. In both ISO 8854 and SAE J 56, alternator testing and labelling standards indicate that the rated output an alternator is the amount of current that it is capable of producing at 6,000 RPM. Three different constant speed of engine which is 750 RPM as idle speed, 1500 RPM and 3000 RPM as cruise speed were taken as parameter. The speed of the alternator was measured using tachometer, digital multi-meter was used to measure battery’s voltage, and AC/DC Clamp was used to measure alternator current output. The result shows that the faster the alternator spin, the more power it can produce. And when there is more power, the faster the charging rate of the battery.

  13. Primary Phenomenon in the Network Formation of Endothelial Cells: Effect of Charge.

    Science.gov (United States)

    Arai, Shunto

    2015-12-07

    Blood vessels are essential organs that are involved in the supply of nutrients and oxygen and play an important role in regulating the body's internal environment, including pH, body temperature, and water homeostasis. Many studies have examined the formation of networks of endothelial cells. The results of these studies have revealed that vascular endothelial growth factor (VEGF) affects the interactions of these cells and modulates the network structure. Though almost all previous simulation studies have assumed that the chemoattractant VEGF is present before network formation, vascular endothelial cells secrete VEGF only after the cells bind to the substrate. This suggests VEGF is not essential for vasculogenesis especially at the early stage. Using a simple experiment, we find chain-like structures which last quite longer than it is expected, unless the energetically stable cluster should be compact. Using a purely physical model and simulation, we find that the hydrodynamic interaction retard the compaction of clusters and that the chains are stabilized through the effects of charge. The charge at the surface of the cells affect the interparticle potential, and the resulting repulsive forces prevent the chains from folding. The ions surrounding the cells may also be involved in this process.

  14. Calibration function for the Orbitrap FTMS accounting for the space charge effect.

    Science.gov (United States)

    Gorshkov, Mikhail V; Good, David M; Lyutvinskiy, Yaroslav; Yang, Hongqian; Zubarev, Roman A

    2010-11-01

    Ion storage in an electrostatic trap has been implemented with the introduction of the Orbitrap Fourier transform mass spectrometer (FTMS), which demonstrates performance similar to high-field ion cyclotron resonance MS. High mass spectral characteristics resulted in rapid acceptance of the Orbitrap FTMS for Life Sciences applications. The basics of Orbitrap operation are well documented; however, like in any ion trap MS technology, its performance is limited by interactions between the ion clouds. These interactions result in ion cloud couplings, systematic errors in measured masses, interference between ion clouds of different size yet with close m/z ratios, etc. In this work, we have characterized the space-charge effect on the measured frequency for the Orbitrap FTMS, looking for the possibility to achieve sub-ppm levels of mass measurement accuracy (MMA) for peptides in a wide range of total ion population. As a result of this characterization, we proposed an m/z calibration law for the Orbitrap FTMS that accounts for the total ion population present in the trap during a data acquisition event. Using this law, we were able to achieve a zero-space charge MMA limit of 80 ppb for the commercial Orbitrap FTMS system and sub-ppm level of MMA over a wide range of total ion populations with the automatic gain control values varying from 10 to 10(7).

  15. Hall-Effect Based Semi-Fast AC On-Board Charging Equipment for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Eva González-Romera

    2011-09-01

    Full Text Available The expected increase in the penetration of electric vehicles (EV and plug-in hybrid electric vehicles (PHEV will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V mode, and also in vehicle-to-grid (V2G mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.

  16. PEPTIDE SOLUBILITY, STRUCTURE AND CHARGE POSITION EFFECT ON ADSORPTION BY ALUMINIUM HYDROXIDE

    Directory of Open Access Journals (Sweden)

    Mary Trujillo

    2008-04-01

    Full Text Available Solubility, structure and position of charges in a peptide antigen sequence can be mentioned as being amongst the basic features of adsorption. In order to study their effect on adsorption, seven analogue series were synthesized from a MSP-1 peptide sequence by systematically replacing each one of the positions in the peptide sequence by aspartic acid, glutamic acid, serine, alanine, asparagine, glutamine or lysine. Such modifications in analogue peptide sequences showed a non-regular tendency regarding solubility and adsorption data. Aspartic acid and Glutamic acid analogue series showed great improvements in adsorption, especially in peptides where Lysine in position 6 and Arginine in position 13 were replaced. Solubility of position 5 analogue was greater than the position 6 analogue in Aspartic acid series; however, the position 6 analogue showed best adsorption results whilst the Aspartic acid in position 5 analogue showed no adsorption in the same conditions. Nuclear Magnetic Resonance structural analysis revealed differences in the -helical structureextension between these analogues. The Aspartic acid in position 6, located in the polar side of the helix, may allow this analogueto fit better onto the adsorption regions suggesting that the local electrostatic charge is responsible for this behavior.

  17. Simulations of charge summing and threshold dispersion effects in Medipix3

    CERN Document Server

    Pennicard, D; Llopart, X; Graafsma, H; Campbell, M

    2011-01-01

    A novel feature of the Medipix3 photon-counting pixel readout chip is inter-pixel communication. By summing together the signals from neighbouring pixels at a series of ``summing nodes{''}, and assigning each hit to the node with the highest signal, the chip can compensate for charge-sharing effects. However, previous experimental tests have demonstrated that the node-to-node variation in the detector's response is very large. Using computer simulations, it is shown that this variation is due to threshold dispersion, which results in many hits being assigned to whichever summing node in the vicinity has the lowest threshold level. A reduction in threshold variation would attenuate but not solve this issue. A new charge summing and hit assignment process is proposed, where the signals in individual pixels are used to determine the hit location, and then signals from neighbouring pixels are summed to determine whether the total photon energy is above threshold. In simulation, this new mode accurately assigns ea...

  18. Investigation of the dimensionality of charge transport in organic field effect transistors

    Science.gov (United States)

    Abdalla, Hassan; Fabiano, Simone; Kemerink, Martijn

    2017-02-01

    Ever since the first experimental investigations of organic field effect transistors (OFETs) the dimensionality of charge transport has alternately been described as two dimensional (2D) and three dimensional (3D). More recently, researchers have turned to an analytical analysis of the temperature-dependent transfer characteristics to classify the dimensionality as either 2D or 3D as well as to determine the disorder of the system, thereby greatly simplifying dimensionality investigations. We applied said analytical analysis to the experimental results of our OFETs comprising molecularly well-defined polymeric layers as the active material as well as to results obtained from kinetic Monte Carlo simulations and found that it was not able to correctly distinguish between 2D and 3D transports or give meaningful values for the disorder and should only be used for quasiquantitative and comparative analysis. We conclude to show that the dimensionality of charge transport in OFETs is a function of the interplay between transistor physics and morphology of the organic material.

  19. Charge Transfer in Light Effect Under Visible Radiation in an Ozoniser Discharge

    Directory of Open Access Journals (Sweden)

    S.V. Salvi

    2006-11-01

    Full Text Available Two fresh discharge vessels (1 and 2 of Siemen’s ozoniser type having the same height butdifferent surface-to-volume ratios have been fabricated by enclosing argon at 10 mm mercury.By immersing these in electrolytic solution and by subjecting these to a definite high 50 Hz acvoltage, the discharge count rates in dark (Cf D and under light (Cf L have been determinedusing a scaler held at different bias-voltages. The plot of the ratio (C1f / C2f D and (C1f / C2f Lof discharge counts versus pulse height (bias-voltage shows that this ratio for a constantpotential of 3.5 kV (rms is initially large in value, then rapidly decreases to a minimum. It is alsoobserved that more is the surface-to-volume ratio, more is the magnitude of net effect of irradiation.Further, the pulse height analysis shows that the charge carried by the pulses to the electrodes(charge transfer decreases under illumination. A possible mechanism to explain the net effectof the discharge current ratio in the light of pulse height measurements is discussed.

  20. The effect of charge mixture ratio and particle size on igniter plume heat transfer characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Evans, N.A.; Brezowski, C.F.

    1990-01-01

    Investigation of the heat transfer characteristics of igniter output plumes, first reported at the Fourteenth International Pyrotechnics Seminar in 1989, has continued, using two types of igniter to determine the effect of charge mixture ratio and fuel particle size on performance. While both of these igniters had the same metallic closure disc (scored Hastelloy with a capture cone), the bridgewire sensitizer (or ignition mixture) was barium styphnate for one type, and a particular blend of fine particle titanium/potassium perchlorate ( PB'') for the other type. The output mixture for both types was titanium/potassium perchlorate; two mixture ratios (33/67 and 41/59), and two titanium particle sizes (2 and 8 {mu}m) were used. The results show that, for both types of igniter, the coarse particle size titanium produced the best performance. The overall best performance was obtained from the igniter using the PB'' ignition mixture and an output charge of 41/59 titanium/potassium perchlorate. 2 refs., 6 figs., 1 tab.

  1. Dynamic Solvent Effect on Ultrafast Charge Recombination Kinetics in Excited Donor-Acceptor Complexes.

    Science.gov (United States)

    Mikhailova, Tatyana V; Mikhailova, Valentina A; Ivanov, Anatoly I

    2016-11-23

    Manifestation of the dynamic solvent effect (DSE) on the charge recombination (CR) kinetics of photoexcited donor-acceptor complexes in polar solvents has been investigated within the framework of the multichannel stochastic model. The model takes into account the reorganization of both the solvent and a number of intramolecular high-frequency vibration modes as well as their relaxation. The non-Markovian solvent dynamics is described in terms of two relaxation modes. The similarities and differences inherent to ultrafast charge transfer reactions occurring in the nonequilibrium and thermal regimes have been identified. The most important differences are as follows: (1) the DSE is strong in the area of weak exergonicity and is weak in the area of strong exergonicity for thermal reactions, whereas for the nonequilibrium reactions, the regions of strong and weak DSEs are reversed; (2) an increase in the electronic coupling value results in a decrease in the magnitude of DSE for nonequilibrium electron transfer and in its increase for the thermal reactions; and (3) the two-staged regime most clearly manifests if the reorganization energy of the relaxation modes noticeably exceeds the CR free-energy gap. With an increase in electronic coupling, the kinetics approaches the exponential regime because in the limit of strong electronic coupling, the reaction includes only single, nonequilibrium, stage.

  2. Nonlinear delta f Simulations of Collective Effects in Intense Charged Particle Beams

    CERN Document Server

    Hong Qi

    2003-01-01

    A nonlinear delta(f) particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code [H. Qin, R.C. Davidson, and W.W. Lee, Physical Review -- Special Topics on Accelerator and Beams 3 (2000) 084401; 3 (2000) 109901.], the nonlinear delta(f) method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next-generation accelerators and storage rings, such as the Spallation Neutron Source and heavy ion fusion drivers. A wide range of linear eigenmodes of high-intensity charged-particle beams can be systematically studied using the BEST code. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring experiment [R. Macek, ...

  3. Effects of high-pressure hydrogen charging on the structure of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzel, M. [Institute for Materials Science, Darmstadt University of Technology, Petersenstrasse 23, 64287 Darmstadt (Germany)]. E-mail: Markus.Hoelzel@frm2.tum.de; Danilkin, S.A. [Hahn-Meitner-Institut, SF2, Glienicker Str. 100, 14109 Berlin (Germany); Ehrenberg, H. [Institute for Materials Science, Darmstadt University of Technology, Petersenstrasse 23, 64287 Darmstadt (Germany); Toebbens, D.M. [Hahn-Meitner-Institut, SF2, Glienicker Str. 100, 14109 Berlin (Germany); Udovic, T.J. [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, MS 8562, Gaithersburg, MD 20899-8562 (United States); Fuess, H. [Institute for Materials Science, Darmstadt University of Technology, Petersenstrasse 23, 64287 Darmstadt (Germany); Wipf, H. [Darmstadt University of Technology, Institute for Solid State Physics, Hochschulstrasse 6, 64289 Darmstadt (Germany)

    2004-10-25

    The effects of high-pressure hydrogen and deuterium charging on the structure of AISI type 304 and AISI type 310 austenitic stainless steels have been investigated by neutron and X-ray diffraction. Rietveld analyses of the neutron diffraction data revealed that hydrogen atoms occupy exclusively the octahedral interstitial sites in both steels. No phase transformations have been observed in 310 stainless steel within the whole range of hydrogen-to-metal atomic ratios H/Me up to {approx} 1. In 304 stainless steel, the formation of {epsilon}-martensite was observed not only after hydrogenation at 3.0 GPa (H/Me = 0.56), but also after applying a pressure of 4.0 GPa without hydrogen. The results differ significantly from published studies on cathodically hydrogenated samples, where high amounts of {epsilon}-martensite were observed in both steels. High-pressure hydrogenation and cathodic hydrogen charging result in different phase transformation behaviour. The discrepancies can be explained by different hydrogen distributions resulting in quite different stress states.

  4. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.

    Science.gov (United States)

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.

  5. Molecular effect on equilibrium charge-state distributions. [of nitrogen ions injected through carbon foil

    Science.gov (United States)

    Wickholm, D.; Bickel, W. S.

    1976-01-01

    The paper describes an experiment consisting of the acceleration of N(+) and N2(+) ions to energies between 0.25 and 1.75 MeV and their injection through a thin carbon foil, whereupon they were charge-state analyzed with an electrostatic analyzer. A foil-covered electrically suppressed Faraday cup, connected to a stepping motor, moved in the plane of the dispersed beams. The Faraday cup current, which was proportional to the number of incident ions, was sent to a current digitizer and computer programmed as a multiscaler. The energy-dependent charge-state fractions, the mean charge and the distribution width were calculated. It was shown that for incident atoms, the charge state distribution appeared to be spread over more charge states, while for the incident molecules, there was a greater fraction of charge states near the mean charge.

  6. Analytical treatment of the nonlinear electron cloud effect and the combined effects with beam-beam and space charge nonlinear forces in storage rings

    Institute of Scientific and Technical Information of China (English)

    GAO Jie

    2009-01-01

    In this paper we treat first some nonlinear beam dynamics problems in storage rings, such as beam dynamic apertures due to magnetic multipoles, wiggles, beam-beam effects, nonlinear space charge effect, and then nonlinear electron cloud effect combined with beam-beam and space charge effects, analytically. This analytical treatment is applied to BEPC Ⅱ. The corresponding analytical expressions developed in this paper are useful both in understanding the physics behind these problems and also in making practical quick hand estimations.

  7. Charge Recombination, Transport Dynamics, and Interfacial Effects in Organic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Heeger, Alan [Univ. of California, Santa Barbara, CA (United States); Bazan, Guillermo [Univ. of California, Santa Barbara, CA (United States); Nguyen, Thuc-Quyen [Univ. of California, Santa Barbara, CA (United States); Wudl, Fred [Univ. of California, Santa Barbara, CA (United States)

    2015-02-12

    The need for renewable sources of energy is well known. Conversion of sunlight to electricity using solar cells is one of the most important opportunities for creating renewable energy sources. The research carried out under DE-FG02-08ER46535 focused on the science and technology of “Plastic” solar cells comprised of organic (i.e. carbon based) semiconductors. The Bulk Heterojunction concept involves a phase separated blend of two organic semiconductors each with dimensions in the nano-meter length scale --- one a material that functions as a donor for electrons and the other a material that functions as an acceptor for electrons. The nano-scale inter-penetrating network concept for “Plastic” solar cells was created at UC Santa Barbara. A simple measure of the impact of this concept can be obtained from a Google search which gives 244,000 “hits” for the Bulk Heterojunction solar cell. Research funded through this program focused on four major areas: 1. Interfacial effects in organic photovoltaics, 2. Charge transfer and photogeneration of mobile charge carriers in organic photovoltaics, 3. Transport and recombination of the photogenerated charge carriers in organic photovoltaics, 4. Synthesis of novel organic semiconducting polymers and semiconducting small molecules, including conjugated polyelectrolytes. Following the discovery of ultrafast charge transfer at UC Santa Barbara in 1992, the nano-organic (Bulk Heterojunction) concept was formulated. The need for a morphology comprising two interpenetrating bicontinuous networks was clear: one network to carry the photogenerated electrons (negative charge) to the cathode and one network to carry the photo-generated holes (positive charge) to the anode. This remarkable self-assembled network morphology has now been established using Transmission electron Microscopy (TEM) either in the Phase Contrast mode or via TEM-Tomography. The steps involved in delivering power from a solar cell to an external circuit

  8. Charge Recombination, Transport Dynamics, and Interfacial Effects in Organic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Heeger, Alan; Bazan, Guillermo; Nguyen, Thuc-Quyen; Wudl, Fred

    2015-02-27

    The need for renewable sources of energy is well known. Conversion of sunlight to electricity using solar cells is one of the most important opportunities for creating renewable energy sources. The research carried out under DE-FG02-08ER46535 focused on the science and technology of “Plastic” solar cells comprised of organic (i.e. carbon based) semiconductors. The Bulk Heterojunction concept involves a phase separated blend of two organic semiconductors each with dimensions in the nano-meter length scale --- one a material that functions as a donor for electrons and the other a material that functions as an acceptor for electrons. The nano-scale inter-penetrating network concept for “Plastic” solar cells was created at UC Santa Barbara. A simple measure of the impact of this concept can be obtained from a Google search which gives 244,000 “hits” for the Bulk Heterojunction solar cell. Research funded through this program focused on four major areas: 1. Interfacial effects in organic photovoltaics, 2. Charge transfer and photogeneration of mobile charge carriers in organic photovoltaics, 3. Transport and recombination of the photogenerated charge carriers in organic photovoltaics, 4. Synthesis of novel organic semiconducting polymers and semiconducting small molecules, including conjugated polyelectrolytes. Following the discovery of ultrafast charge transfer at UC Santa Barbara in 1992, the nano-organic (Bulk Heterojunction) concept was formulated. The need for a morphology comprising two interpenetrating bicontinuous networks was clear: one network to carry the photogenerated electrons (negative charge) to the cathode and one network to carry the photo-generated holes (positive charge) to the anode. This remarkable self-assembled network morphology has now been established using Transmission electron Microscopy (TEM) either in the Phase Contrast mode or via TEM-Tomography. The steps involved in delivering power from a solar cell to an external circuit

  9. Effect of paraelectrode processes on contraction of space charge in periodic-pulse lasers

    Science.gov (United States)

    Arytyunyan, R. V.; Baranov, V. Yu.; Borisov, V. M.; Vinokhodov, A. Yu.; Kiryukhin, Yu. B.

    1986-05-01

    A characteristic feature of periodic-pulse electric-discharge CO2-lasers and excimer lasers is contraction of the space charge as the pulse repetition rate increases. The emission energy per pulse decreases as a consequence, with the average laser power first ceasing to increase linearly beyond a certain corner repetition rate and then decreasing beyond a certain critical repetition rate. A study of this phenomenon was made, for the purpose of separating the effect of paracathode processes from the effect of gas dynamics and then evaluating the effect of the former alone. Paraelectrode perturbations were simulated by focusing the radiation from the an XeCl-laser on the cathode surface in an atmosphere of nonabsorbing gases. Laser pulses of up to approximately 0.5 J energy and of approximately 50 ns duration were focused within a spot of 1 mm(2) area on a cathode inside a discharge chamber, with the power density of incident radiation regulated by means of an attenuator. A space charge within a volume of 2.5x4.5x9 cm(3) was generated between this specially shaped cathode and a mesh anode with an approximately 50% optical transmission coefficient. The space charge in helium and in neon was photographed, and the time lag of a discharge pulse behind a contracting laser pulse was measured as a function of the laser pulse energy for these two gases, as well as for a He+C12 gas mixture. The general trend was found to be the same in each case, the time lag increasing with increasing energy first at a slower rate up to a critical energy level and then faster. It has been established that plasma does not build up on the cathode before the laser pulse energy reaches 30 mJ (for a 3 mm(2) surface area), while plasma glow begins as the laser pulse energy reaches 150 mJ. A contracted channel begins to form within the laser-cathode interaction space, with an attendant fast increase of the time lag owing to evaporation of the cathode metal.

  10. Experimental method to measure the effect of charge on bimolecular collision rates in electrolyte solutions.

    Science.gov (United States)

    Bales, Barney L; Cadman, Kathleen M; Peric, Mirna; Schwartz, Robert N; Peric, Miroslav

    2011-10-13

    A stable, monoprotic nitroxide spin probe is utilized as a model to study molecular collisions in aqueous electrolyte solutions. The rate constants of bimolecular collisions, K(col) for 2,2,5,5-tetramethylpyrrolidin-1-oxyl-3-carboxylic acid (CP) when it is uncharged (at low pH) and K(col)⁻ when it is charged (CP⁻; at high pH), are measured as functions of temperature and ionic strength. The ratio f* ≡ K(col)⁻/K(col) is a direct measure of the effect of charge on the collision rate. Neglecting the small differences in size and diffusion coefficients of CP and CP⁻, f* is the fractional change in collision rate due to Coulomb repulsion which was treated theoretically in Debye's classic paper [Trans. Electr. Chem. Soc. 1942, 82, 265]. K(col) and K(col)⁻ are determined from EPR spectral changes due to spin-spin interactions which are dominated by Heisenberg spin exchange under the conditions of these experiments. Values of f* vary linearly with values of κ · d in the range 0.4 < κ · d < 1.8, where κ and d are the inverse Debye screening length and the distance at closest approach, respectively. Values of d obtained in two independent ways, (1) from rotational correlation times measured by EPR and (2) by insisting that the experimental results be consistent with the Debye theory at infinite dilution, yield similar results. As the ionic strength is increased (κ increased), the screening effect reduces the effect of the Coulomb barrier more slowly than predicted by the Debye theory. While values of K(col) and K(col)⁻ vary substantially with T, approximately following the Stokes-Einstein-Smoluchowski equation, values of f* depend only slightly on temperature at a given value of κ · d, as is predicted by Debye's theory.

  11. Effects of Electrolyte Anions and pH on Adsortpion of Sulfate by Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    ZHANGGANGYA; G.M.BRUEMMER; 等

    1996-01-01

    The effects of three electrolyte anions,ionic strength and pH on the adsorption of sulfate by two variable charge soils,with different surface charge properties were studied.Under the conditions of the same pH and ionic strength the effect of electrolyte anions on the adsorption of sulfate was in the order of Cl->NO3->ClO4-,indicating the difference of the nature among these three anions.For ferralsol in the same concentration of chloride and perchloride solutions,the two sulfate adsorption-pH curves could intersect at certain pH value.When pH was higher than the intersecting point.more sulfate was adsorbed in the perchloride solution,while when it was lower than the intersecting point,more sulfate was adsorbed in the chloride solution.In different concentratioins of electrolyte solution,the curves of the amount of oxy-acid anion adsorbed,which changed with pH,could intersect at a certain pH,which is termed point of zero salt effect(PZSE) on adsortpion.The nature of electrolyte anions influenced obviously the appearace of PZSE for sulfate adsorption.For ferralsol the curves of adsorption converged to about pH 7 in NaCl solution seemed to intersect in NaNO3 solution and to have a typical PZSE for sulfate adsorption in NaClO4 solution,For Acrisol the three curves of adsorption were nearly parallel in NaCl and NaNO3 solutions and converged to pH 6.5 in NaClO4 solution.

  12. Compensation of the detector capacitance presented to charge-sensitive preamplifiers using the Miller effect

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Inyong, E-mail: iykwon@umich.edu [University of Michigan, Ann Arbor, MI (United States); Kang, Taehoon, E-mail: thnkang@umich.edu [University of Michigan, Ann Arbor, MI (United States); Wells, Byron T., E-mail: wells@galtresearch.com [Galt LLC, Ypsilanti, MI (United States); D’Aries, Lawrence J., E-mail: lawrence.j.daries.civ@mail.mil [Picatinny Arsenal, Rockaway Township, NJ (United States); Hammig, Mark D., E-mail: hammig@umich.edu [University of Michigan, Ann Arbor, MI (United States)

    2015-06-01

    This paper describes an integrated circuit design for a modified charge-sensitive amplifier (CSA) that compensates for the effect of capacitance presented by nuclear radiation detectors and other sensors. For applications that require large area semiconductor detectors or for those semiconductor sensors derived from high permittivity materials such as PbSe, the detector capacitance can degrade the system gain and bandwidth of a front-end preamplifier, resulting in extended rise times and attenuated output voltage signals during pulse formation. In order to suppress the effect of sensor capacitance, we applied a bootstrap technique into a traditional CSA. The technique exploits the Miller effect by reducing the effective voltage difference between the two sides of a radiation detector which minimizes the capacitance presented to the differential common-source amplifier. This new configuration is successfully designed to produce effective gain even at high detector capacitance. The entire circuit, including a core CSA with feedback components and a bootstrap amplifier, are implemented in a 0.18 μm CMOS process with a 3.3 V supply voltage. - Highlights: • A modified CSA was implemented for detector capacitance compensation. • Increasing detector capacitance degrades gain and rise time. • A bootstrap amplifier exploiting the Miller effect is described. • It allows using large area radiation sensors for high radiation-interaction rates. • Intensive noise analyses show that SNR is much better with the technique.

  13. Differences in Perceptions of Patient Safety Culture between Charge and Noncharge Nurses: Implications for Effectiveness Outcomes Research

    Directory of Open Access Journals (Sweden)

    Deleise Wilson

    2012-01-01

    Full Text Available The implementation of evidence-based practice guidelines can be influenced by nurses’ perceptions of the organizational safety culture. Shift-by-shift management of each nursing unit is designated to a subset of staff nurses (charge nurses, whom are often recruited as champions for change. The findings indicate that compared to charge nurses, noncharge nurses were more positive about overall perceptions of safety (=.05 and teamwork (<.05. Among charge nurses, significant differences were observed based on the number of years’ experience in charge: perception of teamwork within units [(3,365=3.52, <.01]; overall perceptions of safety, [(3,365=4.20, <.05]; safety grade for work area [(3,360=2.61, <.05]; number of events reported within the last month [(3,362=3.49, <.05]. These findings provide important insights to organizational contextual factors that may impact effectiveness outcomes research in the future.

  14. Analysis of the effects of constant-current Fowler-Nordheim-tunneling injection with charge trapping inside the potential barrier

    Science.gov (United States)

    Lopez-Villanueva, J. A.; Jimenez-Tejada, J. A.; Cartujo, P.; Bausells, J.; Carceller, J. E.

    1991-10-01

    Charge trapping and the generation of interface traps in thermally grown SiO2 and its interface with silicon, produced by Fowler-Nordheim tunneling injection at low temperatures from highly doped Si substrates, have been investigated. The results that can be obtained with the constant-current-injection method, when a moderate amount of charge is trapped inside the potential barrier, have been analyzed. This has afforded information about the position of the charge trapped in the oxide. No increase in the interface-trap density has been produced immediately after injection at 77 K, but, as the temperature is raised after injection, the growing of a peak of interface states has been observed. This phenomenon had been reported to be produced as a consequence of a previous hole trapping but, in this case, this intermediate stage of positive-charge building has not been observed. This effect is discussed, taking into account published models.

  15. Field effect of screened charges: electrical detection of peptides and proteins by a thin-film resistor.

    Science.gov (United States)

    Lud, Simon Q; Nikolaides, Michael G; Haase, Ilka; Fischer, Markus; Bausch, Andreas R

    2006-02-13

    For many biotechnological applications the label-free detection of biomolecular interactions is becoming of outstanding importance. In this Article we report the direct electrical detection of small peptides and proteins by their intrinsic charges using a biofunctionalized thin-film resistor. The label-free selective and quantitative detection of small peptides and proteins is achieved using hydrophobized silicon-on-insulator (SOI) substrates functionalized with lipid membranes that incorporate metal-chelating lipids. The response of the nanometer-thin conducting silicon film to electrolyte screening effects is taken into account to determine quantitatively the charges of peptides. It is even possible to detect peptides with a single charge and to distinguish single charge variations of the analytes even in physiological electrolyte solutions. As the device is based on standard semiconductor technologies, parallelization and miniaturization of the SOI-based biosensor is achievable by standard CMOS technologies and thus a promising basis for high-throughput screening or biotechnological applications.

  16. Effect of surfactant hydrophile-lipophile balance (HLB) value on mineral oxide charging in apolar media.

    Science.gov (United States)

    Gacek, Matthew Michael; Berg, John C

    2015-07-01

    The current work examines the role of surfactant hydrophile-lipophile balance (HLB) on the ability for surfactant reverse micelles to impart charge to particles dispersed in an apolar medium, a study motivated by a number of applications that seek to maximize particle charge in such systems. Previous investigations have shown that relative acid-base properties of the particles and surfactants, as well as surfactant concentration and trace water content, all play a major role in the particle charge obtained. However, the ability of a surfactant to stabilize charge in reverse micelles is also an important aspect of creating charge on a particle surface. It has been previously shown that surfactant HLB value is an important parameter in assessing the size of the polar core of the reverse micelles, thereby impacting the total charge that is generated in the bulk solution as determined by conductivity. In the current study, this theory is extended to investigate the impact on particle charging. To accomplish this, the electrophoretic mobility is determined for a series of mineral oxides dispersed in Isopar-L with either Span 20, Span 80, or Span 85. These three surfactants all have the same head group chemistry, but their HLB value ranges from 1.8 to 8.6. It is found that the maximum observed particle electrophoretic mobility does scale directly with the HLB of the accompanying surfactant. This indicates that there is a direct correlation between a surfactant's ability to stabilize charge and its ability to impart charge to a particle. However, the largest HLB surfactant, Span 20, also exhibited a large amount of charge screening or neutralization at larger surfactant concentrations. This highlights the competition between particle charging and micelle-micelle charging that remains one of the largest obstacles to maximizing particle charge in apolar systems.

  17. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge.

    Science.gov (United States)

    Bannunah, Azzah M; Vllasaliu, Driton; Lord, Jennie; Stolnik, Snjezana

    2014-12-01

    This study investigated the effect of nanoparticle size (50 and 100 nm) and surface charge on their interaction with Caco-2 monolayers as a model of the intestinal epithelium, including cell internalization pathways and the level of transepithelial transport. Initially, toxicity assays showed that cell viability and cell membrane integrity were dependent on the surface charge and applied mass, number, and total surface area of nanoparticles, as tested in two epithelial cell lines, colon carcinoma Caco-2 and airway Calu-3. This also identified suitable nanoparticle concentrations for subsequent cell uptake experiments. Nanoparticle application at doses below half maximal effective concentration (EC₅₀) revealed that the transport efficiency (ratio of transport to cell uptake) across Caco-2 cell monolayers is significantly higher for negatively charged nanoparticles compared to their positively charged counterparts (of similar size), despite the higher level of internalization of positively charged systems. Cell internalization pathways were hence probed using a panel of pharmacological inhibitors aiming to establish whether the discrepancy in transport efficiency is due to different uptake and transport pathways. Vesicular trans-monolayer transport for both positively and negatively charged nanoparticles was confirmed via inhibition of dynamin (by dynasore) and microtubule network (via nocodazole), which significantly reduced the transport of both nanoparticle systems. For positively charged nanoparticles a significant decrease in internalization and transport (46% and 37%, respectively) occurred in the presence of a clathrin pathway inhibitor (chlorpromazine), macropinocytosis inhibition (42%; achieved by 5-(N-ethyl-N-isopropyi)-amiloride), and under cholesterol depletion (38%; via methyl-β-cyclodextrin), but remained unaffected by the inhibition of lipid raft associated uptake (caveolae) by genistein. On the contrary, the most prominent reduction in

  18. The Casimir effect with quantized charged spinor matter in background magnetic field

    CERN Document Server

    Sitenko, Yu A

    2014-01-01

    We study the influence of a background uniform magnetic field and boundary conditions on the vacuum of a quantized charged spinor matter field confined between two parallel neutral plates; the magnetic field is directed orthogonally to the plates. The admissible set of boundary conditions at the plates is determined by the requirement that the Dirac hamiltonian operator be self-adjoint. It is shown that, in the case of a sufficiently strong magnetic field and a sufficiently large separation of the plates, the Casimir force is repulsive, being independent of the choice of a boundary condition, as well as of the distance between the plates. The detection of this effect seems to be feasible in a foreseen future.

  19. Temperature and strain rate effects on the piezoelectric charge production of PZT 95/5

    Science.gov (United States)

    Khan, Amnah S.; Proud, William G.

    2017-01-01

    To develop a better understanding of the piezoelectric ceramic lead zirconate titanate (PZT) 95/5, parameters including varying temperatures, porosities and strain rates have been studied. The effects on the charge output and fracture of poled PZT samples of different porosities have been investigated with compressive strain rates (10-4 - 10+3 s-1) using quasi-static loading equipment, drop-weight towers and Split Hopkinson Pressure Bars (SHPBs). The cylindrical specimens were of 4.4 mm diameter, thickness 0.8 - 4.4 mm, and density 7.3 - 8.3 g cm-3. The temperature range of -20 °C to +80 °C was achieved using purpose-built environmental chambers. The resulting stress-strain relationships are compared; all the samples ultimately displayed a brittle response at failure [1].

  20. Detailed numerical studies of space charge effects in an FEL RF gun

    CERN Document Server

    Cee, R R; Setzer, S; Weiland, T; Novokhatski, A

    2002-01-01

    The production of short bunches with low emittance is a key issue for the successful operation of an SASE-FEL as proposed by the TESLA collaboration (TESLA Technical design report, DESY 2001-011, Hamburg, 2001). In this paper we present the results of detailed MAFIA TS-2 (CST GmbH, Buedinger Strasse 2a, D-64289 Darmstadt) simulations for the FEL RF-gun revealing the main physical effects leading to emittance growth. The simulations prove that the transverse emittance growth can mainly be observed close to the cathode area. This is caused by the non-linear space charge forces acting inside the bunch during the injection process. For the application of an emittance compensation scheme (Nucl. Instr. and Meth. 285 (1989) 313) the slice emittance is of significant importance. Therefore, a wide range of parameters for the photo cathode laser has been investigated in order to find an appropriate operation point.

  1. On the effect of excited states in lattice calculations of the nucleon axial charge

    CERN Document Server

    Hansen, Maxwell T

    2016-01-01

    Excited-state contamination is one of the dominant uncertainties in lattice calculations of the nucleon axial-charge, $g_A$. Recently published results in leading-order chiral perturbation theory (ChPT) predict the excited-state contamination to be independent of the nucleon interpolator and positive. However, empirical results from numerical lattice calculations show negative contamination (downward curvature), indicating that present-day calculations are not in the regime where the leading-order ChPT predictions apply. In this paper we show that, under plausible assumptions, one can reproduce the behavior of lattice correlators by taking into account final-state $N \\pi$ interactions, in particular the effect of the Roper resonance, and by postulating a sign change in the infinite-volume $N \\to N \\pi$ axial-vector transition amplitude.

  2. Finite temperature Casimir effect for charged massless scalars in a magnetic field

    CERN Document Server

    Erdas, Andrea

    2013-01-01

    The zeta function regularization technique is used to study the finite temperature Casimir effect for a charged and massless scalar field confined between parallel plates and satisfying Dirichlet boundary conditions at the plates. A magnetic field perpendicular to the plates is included. Three equivalent expressions for the zeta function are obtained, which are exact to all orders in the magnetic field strength, temperature and plate distance. These expressions of the zeta function are used to calculate the Helmholtz free energy of the scalar field and the pressure on the plates, in the case of high temperature, small plate distance and strong magnetic field. In all cases, simple analytic expressions are obtained for the free energy and pressure which are accurate and valid for practically all values of temperature, plate distance and magnetic field.

  3. Effects of compression ratio on the combustion characteristics of a homogeneous charge compression ignition engine

    Institute of Scientific and Technical Information of China (English)

    SONG Ruizhi; HU Tiegang; ZHOU Longbao; LIU Shenghua; LI Wei

    2007-01-01

    The effects of homogeneous charge compression ignition (HCCI) engine compression ratio on its combustion characteristics were studied experimentally on a modified TY1100 single cylinder engine fueled with dimethyl ether.The results show that dimethyl ether (DME) HCCI engine can work stably and can realize zero nitrogen oxides (NOx)emission and smokeless combustion under the compression ratio of both 10.7 and 14.The combustion process has obvious two stage combustion characteristics at ε = 10.7(εrefers to compression ratio),and the combustion beginning point is decided by the compression temperature,which varies very little with the engine load;the combustion beginning point is closely related to the engine load (concentration of mixture) with the increase in the compression temperature,and it moves forward versus crank angle with the increase in the engine load at ε = 14;the combustion durations are shortened with the increase in the engine load under both compression ratios.

  4. Inverse-kinematics proton scattering on $^{50}$Ca: Determining effective charges using complementary probes

    CERN Document Server

    Riley, L A; Baugher, T R; Bazin, D; Bowry, M; Cottle, P D; DeVone, F G; Gade, A; Glowacki, M T; Kemper, K W; Lunderberg, E; McPherson, D M; Noji, S; Recchia, F; Sadler, B V; Scott, M; Weisshaar, D; Zegers, R G T

    2014-01-01

    We have performed measurements of the $0_\\mathrm{g.s.}^+ \\rightarrow 2_1^+$ excitations in the neutron-rich isotopes $^{48,50}$Ca via inelastic proton scattering on a liquid hydrogen target, using the GRETINA $\\gamma$-ray tracking array. A comparison of the present results with those from previous measurements of the lifetimes of the $2_1^+$ states provides us the ratio of the neutron and proton matrix elements for the $0_\\mathrm{g.s.}^+ \\rightarrow 2_1^+$ transitions. These results allow the determination of the ratio of the proton and neutron effective charges to be used in shell model calculations of neutron-rich isotopes in the vicinity of $^{48}$Ca.

  5. Systematic studies on the effect of linear lattice optics for space-charge limited beams

    CERN Document Server

    Fitterer, M; Molodozhentsev, A; Müller, A S

    2015-01-01

    The HL-LHC (High Luminosity LHC) project aims to an increase of the luminosity of the LHC by a factor of 10. In order to realize this ambitious goal, the LHC itself has to undergo a major upgrade accompanied by an extensive upgrade of the complete injector complex referred to as LHC injector upgrade (LIU). In the framework of the LIU project, a new rapid cycling synchrotron (RCS) as an alternative to the energy upgrade of the existing PS Booster has been proposed. Motivated by the optics studies conducted for this RCS, the more general question of the influence of the linear optics on the machine performance has been raised. In this paper, we want to investigate this question by comparing different lattices with the final aim of identifying lattice characteristics advantageous under strong space-charge effects.

  6. Magnetocaloric effect study of ferromagnetic-charge ordered core-shell type manganite nanostructures

    Science.gov (United States)

    Das, Kalipada; Das, I.

    2017-08-01

    In the present study we have presented the magnetic and magnetocaloric properties of ferromagnetic (La0.67Sr0.33MnO3)-charge ordered (Pr0.67Ca0.33MnO3) core-shell nanostructures. We have also compared the magnetocaloric properties of Pr0.67Ca0.33MnO3 (PCMO) nanoparticles. Our study indicates that in case of the core-shell nanostructures, the magnetocaloric properties markedly modifies compared to its parent compound PCMO, additionally the low field magnetocaloric effect enhanced. More specifically, the large value of magnetocaloric entropy change (- Δ S(T)) was observed in wider temperature range in core-shell nanostructure which may be important from application point of view.

  7. Space Charge effects and mitigation in the CERN PS Booster, in view of the Upgrade

    CERN Document Server

    Benedetto, Elena; Forte, Vincenzo; Schmidt, Frank

    2016-01-01

    The CERN PS Booster (PSB) is presently running with a space charge tune spread larger than 0.5 at injection. Since the High Luminosity LHC (HL-LHC) will require beams with twice the intensity and brightness of today, the LHC Injector Upgrade (LIU) Project is putting in place an upgrade program for all the injector chain and, in particular, it relies on the important assumption that the PS Booster can successfully produce these beams after the implementation of the 160 MeV H- injection from Linac4. This contribution describes the studies (measure-ments and simulations) that have been carried out to con- firm that the PSB can indeed perform as needed in terms of beam brightness for the future HL-LHC runs. The importance of the mitigation measures already in place, such as the correction of the half-integer line, and the effects of non-linear resonances on the beam are also discussed.

  8. Effect of Low-Molecular-Weight Organic Acids on Cl- Adsorption by Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    XU Ren-Kou; ANG Ma-Li; WANG Qiang-Sheng; JI Guo-Liang1

    2004-01-01

    Low-molecular-weight (LMW) organic acids exist widely in soils and have been implicated in many soil processes.The objective of the present paper was to evaluate effect of two LMW organic acids, citric acid and oxalic acid, on Cl- adsorption by three variable charge soils, a latosol, a lateritic red soil and a red soil, using a batch method. The results showed that the presence of citric acid and oxalic acid led to a decrease in Cl- adsorption with larger decreases for citric acid. Among the different soils Gl- adsorption in the lateritic red soil and the red soil was more affected by both the LMW organic acids than that in the latosol.

  9. Effect of the bound nucleon form factors on charged-current neutrino-nucleus scattering

    CERN Document Server

    Tsushima, K; Saitô, K; Kim, Hungchong

    2003-01-01

    We study the effect of bound nucleon form factors on charged-current neutrino-nucleus scattering. The bound nucleon form factors associated with the vector and axial-vector currents are calculated in the quark-meson coupling model. We compute the inclusive $^{12}$C($nu_mu,mu^-$)$X$ differential and total cross sections, which have been measured by the LSND collaboration at Los Alamos, using a relativistic Fermi gas model with the calculated bound nucleon form factors. It is shown that the bound nucleon form factors reduce the total cross section by about 8% relative to that calculated with the free nucleon form factors, where most of the conventional calculations overestimate the total cross section data by about 30% to 100%.

  10. Measurement and analyses of the mean effective ion charge in the centre of tokamak discharges

    Institute of Scientific and Technical Information of China (English)

    Zheng Yong-Zhen; Ding Xuan-Tong; Zhuo Yan

    2007-01-01

    There are two different definitions for specifying the mean effective ion charge Zeff in plasmas: a) from the Spizer electrical resistivity of the plasma and b) from bremsstrahlung radiation losses of the plasma. In this paper Zeff in the centre of tokamak ohmic discharges has been determined from information on sawtooth-relaxations of the steady state plasma, based on the analysis for the power balance of the plasma electrons in the plasma centre during the period of recovery after the sawtooth crashes. This method is found to supply reliable results for tokamak parameters. While its application requires some efforts in data analysis, it can provide a reliable determination of Zeff, independent of the information from bremsstrahlung radiation losses of the plasma.

  11. Effects of electrically charged dark matter on cosmic microwave background anisotropies

    CERN Document Server

    Kamada, Ayuki; Takahashi, Tomo; Yoshida, Naoki

    2016-01-01

    We examine the possibility that dark matter (DM) consists of charged massive particles (CHAMPs) in view of the cosmic microwave background (CMB) anisotropies. The evolution of cosmological perturbations of CHAMP with other components is followed in a self-consistent manner, without assuming that CHAMP and baryons are tightly coupled. We incorporate for the first time the "kinetic re-coupling" of the Coulomb scattering, which is characteristic of heavy CHAMPs. By a direct comparison of the predicted CMB temperature/polarization auto-correlations in CHAMP models and the observed spectra in the Planck mission, we show that CHAMPs leave sizable effects on CMB spectra if they are lighter than $10^{11}\\,{\\rm GeV}$. Our result can be applicable to any CHAMP as long as its lifetime is much longer than the cosmic time at the recombination ($\\sim 4 \\times 10^{5}\\, {\\rm yr}$). An application to millicharged particles is also discussed.

  12. Effect of intramolecular charge transfer on fluorescence and singlet oxygen production of phthalocyanine analogues.

    Science.gov (United States)

    Vachova, Lenka; Novakova, Veronika; Kopecky, Kamil; Miletin, Miroslav; Zimcik, Petr

    2012-10-14

    Intramolecular charge transfer (ICT) was studied on a series of magnesium, metal-free and zinc complexes of unsymmetrical tetrapyrazinoporphyrazines and tribenzopyrazinoporphyrazines bearing two dialkylamino substituents (donors) and six alkylsulfanyl or aryloxy substituents (non-donors). The dialkylamino substituents were responsible for ICT that deactivated excited states and led to considerable decrease of fluorescence and singlet oxygen quantum yields. Photophysical and photochemical properties were compared to corresponding macrocycles that do not bear any donor centers. The data showed high feasibility of ICT in the tetrapyrazinoporphyrazine macrocycle and significantly lower efficiency of this deactivation process in the tribenzopyrazinoporphyrazine type molecules. Considerable effect of non-donor peripheral substituents on ICT was also described. The results imply that tetrapyrazinoporphyrazines may be more suitable for development of new molecules investigated in applications based on ICT.

  13. Effect of uniaxial compression on traps of excitons and charge carriers in poly(9-vinylcarbazole) films

    Science.gov (United States)

    Skryshevski, Yu. A.

    2014-03-01

    The effect of uniaxial pressure (1 × 108 Pa) on the photoluminescence spectra and thermally stimulated luminescence curves of poly(9-vinylcarbazole) has been investigated in the temperature range of 5-295 K. The thermally stimulated luminescence curve of crystalline carbazole has been measured for comparison. The high-temperature wings of the thermally stimulated luminescence curves are approximated by a Gaussian function, the half-width of which characterizes the disorder of energy states of deep structural traps. It is concluded that the pressure inhibits conformational changes of polymer chains of poly(9-vinylcarbazole), which leads to the formation of sandwich-like excimers as well as to an ordering of the spatial arrangement of the side carbazolyl groups. As a result, the concentration of "excimer-forming" centers increases, whereas the degree of disorder of energy states of deep structural traps of charge carriers is reduced by almost half and remains unchanged after the depressurization.

  14. Magnetohydrodynamic effects on a charged colloidal sphere with arbitrary double-layer thickness.

    Science.gov (United States)

    Hsieh, Tzu H; Keh, Huan J

    2010-10-01

    An analytical study is presented for the magnetohydrodynamic (MHD) effects on a translating and rotating colloidal sphere in an arbitrary electrolyte solution prescribed with a general flow field and a uniform magnetic field at a steady state. The electric double layer surrounding the charged particle may have an arbitrary thickness relative to the particle radius. Through the use of a simple perturbation method, the Stokes equations modified with an electric force term, including the Lorentz force contribution, are dealt by using a generalized reciprocal theorem. Using the equilibrium double-layer potential distribution from solving the linearized Poisson-Boltzmann equation, we obtain closed-form formulas for the translational and angular velocities of the spherical particle induced by the MHD effects to the leading order. It is found that the MHD effects on the particle movement associated with the translation and rotation of the particle and the ambient fluid are monotonically increasing functions of κa, where κ is the Debye screening parameter and a is the particle radius. Any pure rotational Stokes flow of the electrolyte solution in the presence of the magnetic field exerts no MHD effect on the particle directly in the case of a very thick double layer (κa→0). The MHD effect caused by the pure straining flow of the electrolyte solution can drive the particle to rotate, but it makes no contribution to the translation of the particle.

  15. Effect of charge on the stability of single-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    LUO Ji; WU Jinlei

    2004-01-01

    By using density-functional-theory based DMol3 code, the structure optimizations are performed on a short charged single-walled carbon nanotube. Results show that the total energy of the nanotube exhibits a parabolic variation with respect to the amount of extra charge, and one negatively charged nanotube has the lowest total energy; thus the carbon nanotube has a positive electron affinity. When the charge is small, the variation of the atomic structure of the nanotube is also small, and neglecting the atomic structure variation leads to the qualitatively correct properties of the total energy and the energy of the highest occupied molecular orbital. When the extra charge is large, the end structure of the nanotube will be first affected and form into a trumpet shape. With the increasing of the extra charge, the nanotube end gradually becomes unstable, and this may lead to the ultimate destruction of the nanotube.

  16. The effect of calcium on the properties of charged phospholipid bilayers

    DEFF Research Database (Denmark)

    Pedersen, U.R.; Leidy, Chad; Westh, P.

    2006-01-01

    We have performed molecular dynamics simulations to investigate the structure and dynamics of charged bilayers as well as the distribution of counterions at the bilayer interface. For this, we have considered the negatively charged di-myristoyl-phosphatidyl-glycerol (DMPG) and di-myristoyl-phosph......We have performed molecular dynamics simulations to investigate the structure and dynamics of charged bilayers as well as the distribution of counterions at the bilayer interface. For this, we have considered the negatively charged di-myristoyl-phosphatidyl-glycerol (DMPG) and di...

  17. Potential of mean force between like-charged nanoparticles: Many-body effect

    CERN Document Server

    Zhang, Xi; Shi, Ya-Zhou; Zhu, Xiao-Long; Tan, Zhi-Jie

    2016-01-01

    Ion-mediated interaction is important for the properties of polyelectrolytes such as colloids and nucleic acids. The effective pair interactions between two polyelectrolytes have been investigated extensively, but the many-body effect for multiple polyelectrolytes still remains elusive. In this work, the many-body effect in potential of mean force (PMF) between like-charged nanoparticles in various salt solutions has been comprehensively examined by Monte Carlo simulation and the nonlinear Poisson-Boltzmann theory. Our calculations show that, at high 1:1 salt, the PMF is weakly repulsive and appears additive, while at low 1:1 salt, the additive assumption overestimates the repulsive many-body PMF. At low 2:2 salt, the pair PMF appears weakly repulsive while the many-body PMF can become attractive. In contrast, at high 2:2 salt, the pair PMF is apparently attractive while the many-body effect can cause a weaker attractive PMF than that from the additive assumption. Our microscopic analyses suggest that the elu...

  18. RADIATION-DAMPING EFFECTS IN THE BOUND-CONTINUUM TRANSITION。OF HIGHLY-CHARGED ATOMIC-IONS

    Institute of Scientific and Technical Information of China (English)

    1990-01-01

    In a system consisting of an electron and a highly-charged ion,interaction with the radiation field is important.This means radiation-damping effects must be accurately taken into account.The present work discusses the radiation-damping effect in the processes of photoionization,radiative recombination,and electron scattering.

  19. The Effect of Interfacial Geometry on Charge-Transfer States in the Phthalocyanine/Fullerene Organic Photovoltaic System.

    Science.gov (United States)

    Lee, Myeong H; Geva, Eitan; Dunietz, Barry D

    2016-05-19

    The dependence of charge-transfer states on interfacial geometry at the phthalocyanine/fullerene organic photovoltaic system is investigated. The effect of deviations from the equilibrium geometry of the donor-donor-acceptor trimer on the energies of and electronic coupling between different types of interfacial electronic excited states is calculated from first-principles. Deviations from the equilibrium geometry are found to destabilize the donor-to-donor charge transfer states and to weaken their coupling to the photoexcited donor-localized states, thereby reducing their ability to serve as charge traps. At the same time, we find that the energies of donor-to-acceptor charge transfer states and their coupling to the donor-localized photoexcited states are either less sensitive to the interfacial geometry or become more favorable due to modifications relative to the equilibrium geometry, thereby enhancing their ability to serve as gateway states for charge separation. Through these findings, we eludicate how interfacial geometry modifications can play a key role in achieving charge separation in this widely studied organic photovoltaic system.

  20. Effect of Lu2O3 on Charge/discharge Performances of Spherical Nickel Hydroxide at High Temperature

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Nickel-metal hydride (Ni/MH) batteries are one of promising batteries for electric vehicle applications, but at high temperature the charge efficiency of nickel electrode is very low. In order to improve the high-temperature-efficiency of nickel electrode, spherical nickel hydroxide mixed with various ratios of Lu2O3 was used as active material of pasted nickel electrodes. The results of charge/discharge experiments, cyclic voltammetric measurements and XRD characterizations have shown that after addition of Lu2O3, the oxygen evolution overpotential is elevated much, the charge efficiency of nickel electrode at high temperature is greatly improved and the content of β-NiOOH phase increases in charged electrodes. In addition, the mixed ratio of Lu2O3 has different effects on high temperature performances of nickel electrode at different charge/discharge currents, 3.5 % is the optimum mixed ratio, and the action of Lu2O3 on high temperature electrochemical behaviors is more apparent when nickel electrodes are charged at small current than large current.

  1. Invar effect accompanying charge order in La0.25Ca0.75MnO3

    Science.gov (United States)

    Trotsenko, V. G.; Mikheykin, A. S.; Shirokov, V. B.; Razumnaya, A. G.; El Marssi, M.; Gorshunov, B. P.; Bush, A. A.; Torgashev, V. I.

    2017-10-01

    To determine the role of the Jahn-Teller effect in the orbital and charge ordering of mixed crystals of the strongly correlated La1-xCaxMnO3 system, we have used the diffraction of synchrotron radiation and the subsequent Rietveld analysis of diffraction patterns in order to obtain structural data for La0.25Ca0.75MnO3 compound in the temperature range from 90 to 325 K with a step of ∼2 K. For the first time for this compound, an Invar effect was observed below the charge-order temperature. In the entire temperature range, atomic displacements were analyzed and correlations between charge ordering and deformational modes were made, on the basis of which the secondary role of the Jahn-Teller effect in observed structure distortions was established. A hypothesis of a spin crossover in the vicinity of the charge-ordering temperature is proposed that describes adequately both the obtained structural data and the results of measurements of the macroscopic magnetic and elastic properties of the studied compound as well as related materials with charge ordering.

  2. Observation and simulation of space-charge effects in a radio-frequency photoinjector using a transverse multibeamlet distribution

    Directory of Open Access Journals (Sweden)

    M. Rihaoui

    2009-12-01

    Full Text Available We report on an experimental study of space-charge effects in a radio-frequency (rf photoinjector. A 5 MeV electron bunch, consisting of a number of beamlets separated transversely, was generated in an rf photocathode gun and propagated in the succeeding drift space. The collective interaction of these beamlets was studied for different experimental conditions. The experiment allowed the exploration of space-charge effects and its comparison with 3D particle-in-cell simulations. Our observations also suggest the possible use of a multibeam configuration to tailor the transverse distribution of an electron beam.

  3. Electrostatic Screening and Charge Correlation Effects in Micellization of Ionic Surfactants

    KAUST Repository

    Jusufi, Arben

    2009-05-07

    We have used atomistic simulations to study the role of electrostatic screening and charge correlation effects in self-assembly processes of ionic surfactants into micelles. Specifically, we employed grand canonical Monte Carlo simulations to investigate the critical micelle concentration (cmc), aggregation number, and micellar shape in the presence of explicit sodium chloride (NaCl). The two systems investigated are cationic dodecyltrimethylammonium chloride (DTAC) and anionic sodium dodecyl sulfate (SDS) surfactants. Our explicit-salt results, obtained from a previously developed potential model with no further adjustment of its parameters, are in good agreement with experimental data for structural and thermodynamic micellar properties. We illustrate the importance of ion correlation effects by comparing these results with a Yukawa-type surfactant model that incorporates electrostatic screening implicitly. While the effect of salt on the cmc is well-reproduced even with the implicit Yukawa model, the aggregate size predictions deviate significantly from experimental observations at low salt concentrations. We attribute this discrepancy to the neglect of ion correlations in the implicit-salt model. At higher salt concentrations, we find reasonable agreement of the Yukawa model with experimental data. The crossover from low to high salt concentrations is reached when the electrostatic screening length becomes comparable to the headgroup size. © 2009 American Chemical Society.

  4. Spin and charge Nernst effect in a four-terminal quantum dot ring

    Science.gov (United States)

    Yang, Xi; Zheng, Jun; Li, Chun-Lei; Guo, Yong

    2015-02-01

    Based on the Keldysh nonequilibrium Green's function technique, we study the spin and charge Nernst effect in a four-terminal quantum dot (QD) ring device, in which the Rashba spin-orbit interaction (RSOI) is taken into the QDs and the magnetic field penetrates the ring. We find that only with the assistance of RSOI, can the pure spin Nernst effect occur by applying a thermal bias without any magnetic field or ferromagnetic materials in the system. Under certain RSOI and magnetic field strengths, spin-down or spin-up currents can be driven from terminal 2 or 4. The sign and the magnitude of the spin currents or voltages can be modulated by adjusting the RSOI-induced phase factor and the magnetic flux. Moreover, the magnitude of the Nernst effect can be remarkably enhanced by the intra-dot Coulomb blockade. The Nernst coefficient is predicted to be more than two times larger than the case of zero Coulomb interaction. Our results indicate that such a four-terminal QD ring may be used as a manipulative thermoelectric generator.

  5. Effects of defects and dephasing on charge and spin currents in two-dimensional topological insulators

    Science.gov (United States)

    Van Dyke, John S.; Morr, Dirk K.

    2017-01-01

    Using the nonequilibrium Keldysh Green's function formalism, we investigate the effect of defects on the electronic structure and transport properties of two-dimensional topological insulators (TI). We demonstrate how the spatial flow of charge changes between the topologically protected edge and bulk states and show that elastically and inelastically scattering defects that preserve the time-reversal symmetry of the TI lead to qualitatively different effects on the TI's local electronic structure and its transport properties. Moreover, we show that the recently predicted ability to create highly spin-polarized currents by breaking the time-reversal symmetry of the TI via magnetic defects [J. S. Van Dyke and D. K. Morr, Phys. Rev. B 93, 081401 (2016), 10.1103/PhysRevB.93.081401] is robust against the inclusion of a Rashba spin-orbit interaction and the effects of dephasing, and remains unaffected by changes over a wide range of the TI's parameters. We discuss how the sign of the induced spin currents changes under symmetry operations, such as reversal of bias and gate voltages, or spatial reflections. Finally, we show that the insight into the interplay between topology and symmetry of the magnetic defects can be employed for the creation of intriguing quantum phenomena, such as highly localized magnetic fields inside the TI.

  6. Positively charged biomaterials exert antimicrobial effects on gram-negative bacilli in rats

    NARCIS (Netherlands)

    Gottenbos, B; van der Mei, HC; Klatter, F; Grijpma, DW; Feijen, J; Nieuwenhuis, P; Busscher, HJ

    Biomaterial-centered infection is a much-dreaded complication associated with the use of biomedical implants. Although positively charged biomaterial surfaces stimulate bacterial adhesion, it has been suggested that surface growth of adhering Gram-negative bacilli is inhibited on positively charged

  7. Positively charged biomaterials exert antimicrobial effects on gram-negative bacilli in rats

    NARCIS (Netherlands)

    Gottenbos, B; van der Mei, HC; Klatter, F; Grijpma, DW; Feijen, J; Nieuwenhuis, P; Busscher, HJ

    2003-01-01

    Biomaterial-centered infection is a much-dreaded complication associated with the use of biomedical implants. Although positively charged biomaterial surfaces stimulate bacterial adhesion, it has been suggested that surface growth of adhering Gram-negative bacilli is inhibited on positively charged

  8. The Effect of National Culture on Auditor-in-Charge Involvement

    NARCIS (Netherlands)

    Bik, Olof; Hooghiemstra, Reggy

    2017-01-01

    Regulators and professional accounting bodies have identified auditor-in-charge involvement as one of the key indicators of audit quality. A potentially important, yet overlooked, issue is that auditor-in-charge involvement is affected by numerous contextual factors. In this study, we aim at advanci

  9. Size effect of lithium peroxide on charging performance of Li-O2 batteries.

    Science.gov (United States)

    Hu, Yuxiang; Han, Xiaopeng; Cheng, Fangyi; Zhao, Qing; Hu, Zhe; Chen, Jun

    2014-01-07

    We report herein that the particle size of Li2O2, which is the discharged product of a Li-O2 battery, remarkably influences the charging performance. As the particle size decreases, the average voltage of charge plateaus is lowered due to reduced electrode polarization and enhanced kinetics of the oxidation reaction of Li2O2.

  10. The Effect of National Culture on Auditor-in-Charge Involvement

    NARCIS (Netherlands)

    Bik, Olof; Hooghiemstra, Reginald

    2016-01-01

    Regulators and professional accounting bodies have identified auditor-in-charge involvement as one of the key indicators of audit quality. A potentially important, yet overlooked, issue is that auditor-in-charge involvement is affected by numerous contextual factors. In this study, we aim at advanci

  11. The effect of national culture on auditor-in-charge involvement

    NARCIS (Netherlands)

    Bik, O.P.G.; Hooghiemstra, R.

    2017-01-01

    Regulators and professional accounting bodies have identified auditor-in-charge involvement as one of the key indicators of audit quality. A potentially important, yet overlooked, issue is that auditor-in-charge involvement is affected by numerous contextual factors. In this study, we aim at

  12. Effect of Protein Charge on the Generation of Aggregation-Prone Conformers

    NARCIS (Netherlands)

    Broersen, K.; Weijers, M.; Groot, de J.; Hamer, R.J.; Jongh, de H.H.J.

    2007-01-01

    This study describes how charge modification affects aggregation of ovalbumin, thereby distinguishing the role of conformational and electrostatic stability in the process. Ovalbumin variants were engineered using chemical methylation or succinylation to obtain a range of protein net charge from -1

  13. Effect of protein charge on the generation of aggregation-prone conformers

    NARCIS (Netherlands)

    Broersen, K.; Weijers, M.; Groot, J.de; Hamer, R.J.; Jongh, H.H.J.de

    2007-01-01

    This study describes how charge modification affects aggregation of ovalbumin, thereby distinguishing the role of conformational and electrostatic stability in the process. Ovalbumin variants were engineered using chemical methylation or succinylation to obtain a range of protein net charge from -1

  14. Effect of Selected Organic Acids on Cadmium Sorption by Variable-and Permanent-Charge Soils

    Institute of Scientific and Technical Information of China (English)

    HU Hong-Qing; LIU Hua-Liang; HE Ji-Zheng; HUANG Qiao-Yun

    2007-01-01

    Batch equilibrium experiments were conducted to investigate cadmium (Cd) sorption by two permanent-charge soils, a yellow-cinnamon soil and a yellow-brown soil, and two variable-charge soils, a red soil and a latosol, with addition of selected organic acids (acetate, tartrate, and citrate). Results showed that with an increase in acetate concentrations from 0 to 3.0 mmol L-1, Cd sorption percentage by the yellow-cinnamon soil, the yellow-brown soil, and the latosol decreased. The sorption percentage of Cd by the yellow-cinnamon soil and generally the yellow-brown soil (permanent-charge soils)decreased with an increase in tartrate concentration, but increased at low tartrate concentrations for the red soil and the latosol. Curves of percentage of Cd sorption for citrate were similar to those for tartrate. For the variable-charge soils with tartrate and citrate, there were obvious peaks in Cd sorption percentage. These peaks, where organic acids had maximum influence, changed with soil type, and were at a higher organic acid concentration for the variable-charge soils than for the permanent charge soils. Addition of cadmium after tartrate adsorption resulted in higher sorption increase for the variable-charge soils than permanent-charge soils. When tartrate and Cd solution were added together, sorption of Cd decreased with tartrate concentration for the yellow-brown soil, but increased at low tartrate concentrations and then decreased with tartrate concentration for the red soil and the latosol.

  15. The two-nucleon electromagnetic charge operator in chiral effective field theory ($\\chi$EFT) up to one loop

    Energy Technology Data Exchange (ETDEWEB)

    S. Pastore,L. Girlanda,R. Schiavilla,M. Viviani,S. Pastore,L. Girlanda,R. Schiavilla,M. Viviani

    2011-08-01

    The electromagnetic charge operator in a two-nucleon system is derived in chiral effective field theory ($\\chi$EFT) up to order $e\\, Q$ (or N4LO), where $Q$ denotes the low-momentum scale and $e$ is the electric charge. The specific form of the N3LO and N4LO corrections from, respectively, one-pion-exchange and two-pion-exchange depends on the off-the-energy-shell prescriptions adopted for the non-static terms in the corresponding potentials. We show that different prescriptions lead to unitarily equivalent potentials and accompanying charge operators. Thus, provided a consistent set is adopted, predictions for physical observables will remain unaffected by the non-uniqueness associated with these off-the-energy-shell effects.

  16. The Effects of Space-Charge on the Dynamics of the Ion Booster in the Jefferson Lab EIC (JLEIC)

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, Alex [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Nissen, Edward [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-05-01

    Optimization of the booster synchrotron design to operate in the extreme space-charge dominated regime is proposed. This study is motivated by the ultra-high luminosity promised by the JLEIC accelerator complex, which poses several beam dynamics and lattice design challenges for its individual components. We examine the effects of space charge on the dynamics of the booster synchrotron for the proposed JLEIC electron ion collider. This booster will inject and accumulate protons and heavy ions at an energy of 280 MeV and then engage in a process of acceleration and electron cooling to bring it to its extraction energy of 8 GeV. This would then be sent into the ion collider ring part of JLEIC. In order to examine the effects of space charge on the dynamics of this process we use the software SYNERGIA.

  17. Space charge effect of the time-dependent ultrafast laser excited electron emission from a metal surface

    CERN Document Server

    Liu, Yangjie

    2013-01-01

    A model has been constructed to the study the transition of ultrafast laser excited electron emission from a metallic surface to the space charge limited (SCL) regime. By considering the time-dependent emission process by L. Wu et al. [Phys. Rev. B.78 224112 (2008)], we include the space charge effect which will affect the barrier at the emitting surface. At the high laser field, it is found that space charge effect cannot be ignored and the SCL current emission is reached. The threshold of the laser field to reach the SCL regime is determined. Our calculations agree well with particle-in-cell simulation results. This model is also compared with the classical short pulse SCL current model by A. Valfellset al. [Phys. Plasmas 9, 2377 (2002)].

  18. Effect of ion charges on the electric double layer capacitance of activated carbon in aqueous electrolyte systems

    Science.gov (United States)

    Icaza, Juan C.; Guduru, Ramesh K.

    2016-12-01

    Carbon based electrochemical double layer capacitors (EDLCs) are known for high power density, but their energy density is limited due to surface characteristics of the electrode materials as well as the size and charge of the ions used in the electrolyte. Therefore, considering the current demand for enhanced energy density devices, we investigated the use of multivalent electrolytes to increase the capacitance of activated carbon (AC) based EDLCs. As part of these studies, we examined the effect of the charge of the multivalent ions on the capacitive behavior of microporous AC electrodes and compared with the univalent Li+ system. We performed impedance and cyclic voltammetry measurements on AC electrodes in a symmetric two electrode configuration to determine the impedance and capacitance with respect to varying charge and concentration of the ions in the aqueous nitrate electrolytes. These studies clearly demonstrated an increased capacitance with Mg2+ and Al3+ implying the possible effects of ion mobility and electrolyte conductivity in addition to the multivalent charge. These preliminary observations clearly point to the importance of selection of electrolyte ions with more charge, conductivity, and suitable size with respect to the pore size of the electrodes in order to increase the capacitance of EDLCs.

  19. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Thilo; Jäger, Christof M. [Department of Chemistry and Pharmacy, Computer-Chemistry-Center and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen (Germany); Jordan, Meredith J. T. [School of Chemistry, University of Sydney, Sydney, NSW 2006 (Australia); Clark, Timothy, E-mail: tim.clark@fau.de [Department of Chemistry and Pharmacy, Computer-Chemistry-Center and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen (Germany); Centre for Molecular Design, University of Portsmouth, Portsmouth PO1 2DY (United Kingdom)

    2015-07-28

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.

  20. THE EFFECT OF CHARGE AND CHEMICAL STRUCTURE OF CATIONIC SURFACTANTS ON LASER TONER AGGLOMERATION UNDER ALKALINE PULPING CONDITIONS

    Directory of Open Access Journals (Sweden)

    Jie Jiang,

    2012-02-01

    Full Text Available Laboratory-scale agglomeration experiments followed by image analysis were used to evaluate the effectiveness of different cationic surfactants on the 1-octadecanol agglomeration of a negatively charged laser toner. Various types of surfactants with different geometric structures were investigated. It was found that this toner became agglomerated under neutral pulping conditions, but it did not agglomerate under alkaline conditions at all. A small amount of the cationic surfactant compensated for the agglomeration disruption caused by the negative surface charge of the toner and made this toner agglomerate very well. These cationic surfactants consist of a chemical structure of C12 to C18 saturated alkyl hydrophobic chains. The positive charge of these surfactants played the major role in alleviating agglomeration disruption. Additionally, an extra phenol group on these surfactants contributed only minor advantages for toner agglomeration in the presence of 1-octadecanol. The best co-agglomeration performance occurred within a very narrow range of similar total positive charge densities based on the total toner weight. It was also found that this positive charge effect could not be applied to the chemical compounds of high molecular weight polymeric materials.

  1. The effects of nanoparticles and organic additives with controlled dispersion on dielectric properties of polymers: Charge trapping and impact excitation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S. [Department of Material Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Wu, Ke; Ratcliff, Tyree; Lanzillo, Nicholas A.; Breneman, Curt [Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Bell, Michael; Oakes, Andrew; Benicewicz, Brian C. [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208 (United States)

    2016-08-07

    This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO{sub 2} and ZrO{sub 2} nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (∼10{sup 17} cm{sup −3}). The charge trapping is found to have the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO{sub 2} filled composites and is likely caused by impact excitation due to the low excitation energy of TiO{sub 2} compared to ZrO{sub 2}. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO{sub 2} may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO{sub 2} composites.

  2. The effects of nanoparticles and organic additives with controlled dispersion on dielectric properties of polymers: Charge trapping and impact excitation

    Science.gov (United States)

    Huang, Yanhui; Wu, Ke; Bell, Michael; Oakes, Andrew; Ratcliff, Tyree; Lanzillo, Nicholas A.; Breneman, Curt; Benicewicz, Brian C.; Schadler, Linda S.

    2016-08-01

    This work presents a comprehensive investigation into the effects of nanoparticles and organic additives on the dielectric properties of insulating polymers using reinforced silicone rubber as a model system. TiO2 and ZrO2 nanoparticles (d = 5 nm) were well dispersed into the polymer via a bimodal surface modification approach. Organic molecules with the potential of voltage stabilization were further grafted to the nanoparticle to ensure their dispersion. These extrinsic species were found to provide deep traps for charge carriers and exhibited effective charge trapping properties at a rather small concentration (˜1017 cm-3). The charge trapping is found to have the most significant effect on breakdown strength when the electrical stressing time is long enough that most charges are trapped in the deep states. To establish a quantitative correlation between the trap depth and the molecular properties, the electron affinity and ionization energy of each species were calculated by an ab initio method and were compared with the experimentally measured values. The correlation however remains elusive and is possibly complicated by the field effect and the electronic interactions between different species that are not considered in this computation. At high field, a super-linear increase of current density was observed for TiO2 filled composites and is likely caused by impact excitation due to the low excitation energy of TiO2 compared to ZrO2. It is reasoned that the hot charge carriers with energies greater than the excitation energy of TiO2 may excite an electron-hole pair upon collision with the NP, which later will be dissociated and contribute to free charge carriers. This mechanism can enhance the energy dissipation and may account for the retarded electrical degradation and breakdown of TiO2 composites.

  3. Magneto-photocurrent in organic photovoltaic cells; the effect of short-lived charge transfer states

    Science.gov (United States)

    Ehrenfreund, Eitan; Devir-Wolfman, A.; Khachatryan, B.; Gautam, B.; Tessler, N.; Vardeny, Z. V.

    2014-03-01

    The spin degrees of freedom are responsible for the magnetic field effects in organic devices at low magnetic fields. The MFE is formed via a variety of spin-mixing mechanisms, such as the hyperfine (typical strength: Bhf<0.003 T), triplet-polaron or triplet-triplet (Btrip<0.1 T) interactions, that limit the response by their respective strength. We report on magneto-photocurrent (MPC) response of bulk hetero-junction organic photovoltaic cells in an extended field range B =0.00005 - 8 Tesla, and found that spin mixing mechanisms are still operative even at the highest fields. In fact, the response MPC(B) can be divided into three main regions, each with a different sign: sharp response that increases with B up to B1 ~ 0.04 T; broad response that decreases with B in the range from B1 to B2 ~ 0.3-0.7 T; and even broader response that increases above B2; this response does not saturate even at 8.5 T. We attribute the latter MPC component to short-lived charge transfer excitons (CTE) where spin-mixing is caused by the difference of the donor/acceptor g factors; a mechanism that is increasingly more effective at high magnetic field. Supported by the US-Israel BSF.

  4. Instanton effects in ABJM theory with general R-charge assignments

    CERN Document Server

    Nosaka, Tomoki

    2015-01-01

    We study the large N expansion of the partition function of the quiver superconformal Chern-Simons theories deformed by two continuous parameters which correspond to general R-charge assignment to the matter fields. Though the deformation breaks the conformal symmetry, we find that the partition function shares various structures with the superconformal cases, such as the Airy function expression of the perturbative expansion in 1/N with the overall constant A(k) related to the constant map in the ABJM case through a simple rescaling of k. We also identify five kinds of the non-perturbative effects in 1/N which correspond to the membrane instantons. The instanton exponents and the singular structure of the coefficients depend on the continuous deformation parameters, in contrast to the superconformal case where all the parameters are integers associated with the orbifold action on the moduli space. This implies that the singularity of the instanton effects would be observable also in the gravity side.

  5. The effect of protons on the performance of swept-charge devices

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David R. [Imaging for Space and Terrestrial Applications Group, School of Engineering and Design, Brunel University, Uxbridge Middlesex UB8 3PH (United Kingdom)], E-mail: david.smith@brunel.ac.uk; Gow, Jason [Imaging for Space and Terrestrial Applications Group, School of Engineering and Design, Brunel University, Uxbridge Middlesex UB8 3PH (United Kingdom)

    2009-06-01

    The e2v technologies CCD54, or swept-charge device (SCD) has been extensively radiation tested for use in the Chandrayaan-1 X-ray Spectrometer (C1XS) instrument, to be launched as a part of the Indian Space Research Organisation (ISRO) Chandrayaan-1 payload in 2008. The principle use of the SCD is in X-ray fluorescence (XRF) applications, the device providing a relatively large collecting area of 1.1 cm{sup 2}, and achieving near Fano-limited spectroscopy at -15 deg. C, a temperature that is easily obtained using a thermoelectric cooler (TEC). This paper describes the structure and operation of the SCD and details the methodology and results obtained from two proton irradiation studies carried out in 2006 and 2008, respectively to quantify the effects of proton irradiation on the operational characteristics of the device. The analysis concentrates on the degradation of the measured FWHM of various elemental lines and quantifies the effects of proton fluence on the observed X-ray fluorescence spectra from mineralogical target samples.

  6. Charge injection in solution-processed organic field-effect transistors: physics, models and characterization methods.

    Science.gov (United States)

    Natali, Dario; Caironi, Mario

    2012-03-15

    A high-mobility organic semiconductor employed as the active material in a field-effect transistor does not guarantee per se that expectations of high performance are fulfilled. This is even truer if a downscaled, short channel is adopted. Only if contacts are able to provide the device with as much charge as it needs, with a negligible voltage drop across them, then high expectations can turn into high performances. It is a fact that this is not always the case in the field of organic electronics. In this review, we aim to offer a comprehensive overview on the subject of current injection in organic thin film transistors: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices. Finally, a survey of the most recent accomplishments in the field is given. Principles are described in general, but the technologies and survey emphasis is on solution processed transistors, because it is our opinion that scalable, roll-to-roll printing processing is one, if not the brightest, possible scenario for the future of organic electronics. With the exception of electrolyte-gated organic transistors, where impressively low width normalized resistances were reported (in the range of 10 Ω·cm), to date the lowest values reported for devices where the semiconductor is solution-processed and where the most common architectures are adopted, are ∼10 kΩ·cm for transistors with a field effect mobility in the 0.1-1 cm(2)/Vs range. Although these values represent the best case, they still pose a severe limitation for downscaling the channel lengths below a few micrometers, necessary for increasing the device switching speed. Moreover, techniques to lower contact resistances have been often developed on a case-by-case basis, depending on the materials, architecture and processing techniques. The lack of a standard strategy has hampered the progress of the

  7. Effect of Conjugation Length on Photoinduced Charge-Transfer in π-Conjugated Oligomer-Acceptor Dyads

    KAUST Repository

    Jiang, Junlin

    2017-05-25

    A series of -conjugated oligomer-acceptor dyads were synthesized that feature oligo(phenylene ethynylene) (OPE) conjugated backbones end-capped with a naphthalene diimide (NDI) acceptor. The OPE segments vary in length from 4 to 8 phenylene ethynene units (PEn-NDI, where n = 4, 6 and 8). Fluorescence and transient absorption spectroscopy reveals that intramolecular OPE NDI charge transfer dominates the deactivation of excited states of the PEn-NDI oligomers. Both charge separation (CS) and charge recombination (CR) are strongly exothermic (G0CS ~ -1.1 and G0CR ~ -2.0 eV), and the driving forces do not vary much across the series because the oxidation and reduction potentials and singlet energies of the OPEs do not vary much with their length. Bimolecular photoinduced charge transfer between model OPEs that do not contain the NDI acceptors with methyl viologen was studied, and the results reveal that the absorption of the cation radical state (OPE+•) remains approximately constant ( ~ 575 nm) regardless of oligomer length. This finding suggests that the cation radical (polaron) of the OPE is relatively localized, effectively occupying a confined segment of n 4 repeat units in the longer oligomers. Photoinduced intramolecular electron transfer dynamics in the PEn-NDI series was investigated by UV-visible femtosecond transient absorption spectroscopy with visible and mid-infrared probes. Charge separation occurs on the 1 – 10 ps timescale, with the rates decreasing slightly with increased oligomer length (βCS ~ 0.15 Å-1). The rate for charge-recombination decreases in the sequence PE4-NDI > PE6-NDI ~ PE8-NDI. The discontinuous distance dependence in the rate for charge recombination may be related to the spatial localization of the positive polaron state in the longer oligomers.

  8. Correlational analysis of Eu3+ charge transfer state using La effective charge in La-based mixed-anion host compounds

    Science.gov (United States)

    Yoshimatsu, Ryo; Okada, Masahiro; Ishigaki, Tadashi; Watanabe, Shinta; Honma, Tetsuo; Ohmi, Koutoku

    2017-03-01

    A prediction of the Eu3+ charge transfer state (E CT) was attempted in La-based mixed-anion host compounds. We paid attention to La3OF3S2:Eu, since it is expected to have a more covalent La site than La2O2S. The La effective charge (La EC) was proposed as the index factor of covalency and/or ionicity. The correlation between the experimental E CT and the calculated La EC was systematically analyzed for La2S3, LaFS, La2O2S, La2O3, LaOF, and LaF3 host materials, and good approximation was obtained using the single exponential function with a variable number of La ECs. According to the fitting curve, the E CT of La3OF3S2:Eu was predicted to be 5.8 and 2.1 eV for Eu3+ centers activated at ionic and covalent sites, respectively. To confirm the prediction accuracy, La3OF3S2:Eu phosphor powder samples were synthesized by solid-state reaction. From the photoluminescence excitation and absorption measurements, the E CT values of about 4.7 eV (ionic La site) and 2.4 eV (covalent La site) were obtained. Even though the energy difference between the predicted and experimental values is large for the higher E CT, La EC is the useful index factor for estimating E CT. In addition, it indicates that the estimation can be applied to phosphor materials having multication sites.

  9. Effect of interjunction coupling on superconducting current and charge correlations in intrinsic Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Hamdipour, M.; Kolahchi, M. R.

    2009-07-01

    Charge formations on superconducting layers and creation of the longitudinal plasma wave in the stack of intrinsic Josephson junctions change crucially the superconducting current through the stack. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers allows us to predict the additional features in the current-voltage characteristics. The charge autocorrelation functions clearly demonstrate the difference between harmonic and chaotic behavior in the breakpoint region. Use of the correlation functions gives us a powerful method for the analysis of the current-voltage characteristics of coupled Josephson junctions.

  10. Control of the spin to charge conversion using the inverse Rashba-Edelstein effect

    Energy Technology Data Exchange (ETDEWEB)

    Sangiao, S. [Service de Physique de l' Etat Condensé, CEA Saclay, DSM/IRAMIS/SPEC, bat 772, CNRS UMR 3680, F-91191 Gif-sur-Yvette (France); Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018 Zaragoza (Spain); Fundación ARAID, 50018 Zaragoza (Spain); De Teresa, J. M. [Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, Facultad de Ciencias, 50009 Zaragoza (Spain); Morellon, L.; Martinez-Velarte, M. C. [Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018 Zaragoza (Spain); Lucas, I. [Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018 Zaragoza (Spain); Fundación ARAID, 50018 Zaragoza (Spain); Viret, M., E-mail: michel.viret@cea.fr [Service de Physique de l' Etat Condensé, CEA Saclay, DSM/IRAMIS/SPEC, bat 772, CNRS UMR 3680, F-91191 Gif-sur-Yvette (France)

    2015-04-27

    We show here that using spin orbit coupling interactions at a metallic interface it is possible to control the sign of the spin to charge conversion in a spin pumping experiment. Using the intrinsic symmetry of the “Inverse Rashba Edelstein Effect” (IREE) in a Bi/Ag interface, the charge current changes sign when reversing the order of the Ag and Bi stacking. This confirms the IREE nature of the conversion of spin into charge in these interfaces and opens the way to tailoring the spin sensing voltage by an appropriate trilayer sequence.

  11. Methods to measure the charge of the quasiparticles in the fractional quantum Hall effect

    Science.gov (United States)

    Kivelson, S. A.; Pokrovsky, V. L.

    1989-07-01

    We propose various experimental circumstances in which the longitudinal resistance of a two-dimensional electron gas in a high transverse magnetic field depends in a simple and characteristic way on the charge of the quasiparticle excitations. We propose that experiments of this sort could be used to directly measure the charge of the quasiparticle excitations which carry the dissipative part of the current. While it has been persuasively argued by Laughlin that the Hall conductance itself measures the quasiparticle charge, the connection is indirect, since the Hall current is carried by the condensate, not by the quasiparticles.

  12. Effective Nanoparticle-based Gene Delivery by a Protease Triggered Charge Switch

    DEFF Research Database (Denmark)

    Gjetting, Torben; Jølck, Rasmus Irming; Andresen, Thomas Lars

    2014-01-01

    investigation in vivo including a PEG layer and a net negative charge that should ensure long-circulating properties before being activated by proteases in diseased tissue. Protease activation leads to detachment of PEG and a charge switching where the LNPs become positive due to the presence of glutamates...... in the cleaved peptide moiety. The cationic lipid DOTAP is used mainly to complex DNA and proton titratable DODAP is used to increase endosomal escape and enhance transfection efficiency. The idea of using a mixture of permanently charged and titratable cationic lipids shielded by a protease sensitive negatively...

  13. Effects of charge distribution on water filling process in carbon nanotube

    Institute of Scientific and Technical Information of China (English)

    MENG LingYi; LI QiKai; SHUAI ZhiGang

    2009-01-01

    Using umbrella sampling technique with molecular dynamics simulation, we investigated the nanoflu-idic transport of water in carbon nanotube (CNT). The simulations showed that a positive charge modi-fication to the carbon nanotube can slow down the water column growth process, while the negative charge modification to the carbon nanotube will, on the other hand, quicken the water column growth process. The free energy curves were obtained through the statistical process of water column growth under different charge distributions, and the results indicated that these free energy curves can be employed to explain the dynamical process of water column growth in the nanosized channels.

  14. Effects of charge distribution on water filling process in carbon nanotube

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Using umbrella sampling technique with molecular dynamics simulation,we investigated the nanoflu-idic transport of water in carbon nanotube(CNT).The simulations showed that a positive charge modi-fication to the carbon nanotube can slow down the water column growth process,while the negative charge modification to the carbon nanotube will,on the other hand,quicken the water column growth process.The free energy curves were obtained through the statistical process of water column growth under different charge distributions,and the results indicated that these free energy curves can be employed to explain the dynamical process of water column growth in the nanosized channels.

  15. Wake effects of a charged projectile flying above a magnetized metal film

    Science.gov (United States)

    Jafari, M. R.

    2017-03-01

    This research deals with covering of a metal film on the semi-infinite dielectric in the presence of a weak external magnetic field. A charged projectile has been considered flying above the thin film. The surface wave frequencies of the system were derived by means of the quantum hydrodynamic theory through the appropriate boundary conditions. The energy loss of charged particle in the present system was also investigated. It is found that the external magnetic field modifies the distribution of electron gas density as well as the energy loss of flying charged particle.

  16. Manipulation of charge carrier injection into organic field-effect transistors by self-assembled monolayers of alkanethiols

    NARCIS (Netherlands)

    Asadi, K.; Gholamrezaie, F.; Smits, E.C.P.; Blom, W.M.; Boer, B. de

    2007-01-01

    Charge carrier injection into two semiconducting polymers is investigated in field-effect transistors using gold source and drain electrodes that are modified by self-assembled monolayers of alkanethiols and perfluorinated alkanethiols. The presence of an interfacial dipole associated with the molec

  17. Effect of field-focusing and ion selectivity on the extended space charge developed at the microchannel-nanochannel interface.

    Science.gov (United States)

    Liel, Uri; Leibowitz, Neta; Schiffbauer, Jarrod; Park, Sinwook; Yossifon, Gilad

    2016-08-17

    We present results demonstrating the effect of varying microchannel depth and bulk conductivity on the space charge-mediated transition between classical, diffusion-limited current and over-limiting current in microchannel-nanochannel devices. The extended space charge layer develops at the depleted microchannel-nanochannel entrance when the limiting current is exceeded and is correlated with a distinctive maximum in the dc resistance. This maximum is shown to be affected by the microchannel depth, via field-focusing, and solution conductivity. In particular, we observe that upon their increase, the maximum becomes flatter and shifts to higher voltages.

  18. Measurement of the effective weak mixing angle by jet-charge asymmetry in hadronic decays of the Z boson

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Easo, S; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Marchesini, P A; Marian, G; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Migani, D; Mihul, A; Van Mil, A J W; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Moulik, T; Mount, R; Muanza, G S; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Nowak, H; Oh, Yu D; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pedace, M; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Rind, O; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Sakar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F; Zilizi, G

    1998-01-01

    The coupling of the Z boson to quarks is studied in a sample of about 3.5 million hadronic Z decays collected by the L3 experiment at LEP from 1991 to 1995. The forward-backward quark charge asymmet ry is measured by means of a jet charge technique. From the measured asymmetries, the effective weak mixing angle is determined to be \\begin{center} $\\STE = 0.2327 \\pm 0.0012(\\mbox{\\emph{stat.}} ) \\pm 0.0013(\\mbox{\\emph{syst.}}).$

  19. Effects of a More Accurate Polarizable Hamiltonian on Polymorph Free Energies Computed Efficiently by Reweighting Point-Charge Potentials.

    Science.gov (United States)

    Dybeck, Eric C; Schieber, Natalie P; Shirts, Michael R

    2016-08-09

    We examine the free energies of three benzene polymorphs as a function of temperature in the point-charge OPLS-AA and GROMOS54A7 potentials as well as the polarizable AMOEBA09 potential. For this system, using a polarizable Hamiltonian instead of the cheaper point-charge potentials is shown to have a significantly smaller effect on the stability at 250 K than on the lattice energy at 0 K. The benzene I polymorph is found to be the most stable crystal structure in all three potentials examined and at all temperatures examined. For each potential, we report the free energies over a range of temperatures and discuss the added value of using full free energy methods over the minimized lattice energy to determine the relative crystal stability at finite temperatures. The free energies in the polarizable Hamiltonian are efficiently calculated using samples collected in a cheaper point-charge potential. The polarizable free energies are estimated from the point-charge trajectories using Boltzmann reweighting with MBAR. The high configuration-space overlap necessary for efficient Boltzmann reweighting is achieved by designing point-charge potentials with intramolecular parameters matching those in the expensive polarizable Hamiltonian. Finally, we compare the computational cost of this indirect reweighted free energy estimate to the cost of simulating directly in the expensive polarizable Hamiltonian.

  20. Effect of screening by external charges on the atomic orbitals and photoinduced processes within the Hartree-Fock-Slater atom

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, Robert; Son, Sang-Kil [Center for Free-Electron Laser Science, DESY, 22607 Hamburg (Germany); Ziaja, Beata [Center for Free-Electron Laser Science, DESY, 22607 Hamburg (Germany); Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow (Poland); Santra, Robin [Center for Free-Electron Laser Science, DESY, 22607 Hamburg (Germany); Department of Physics, University of Hamburg, 20355 Hamburg (Germany)

    2013-07-01

    X-ray free-electron lasers (XFELs) are a promising tool for the structural determination of macro- and biomolecules, using coherent diffractive imaging. During imaging, the intense XFEL pulses also efficiently ionize the molecules, so it is important to estimate how the charged environment within the molecule modifies atomic properties, in comparison to the case of an isolated atom. Here, we apply the XATOM toolkit to obtain predictions on the modified ionization thresholds and rates of some photoinduced processes in carbon. The Hartree-Fock-Slater model is extended to include the electron screening and ion correlation effects, induced by external charges. With this extended model, we obtain predictions on modifications of orbital energies, photoabsorption cross sections, Auger decay rates, fluorescence emission rates, and atomic scattering factors as a function of the density and temperature of the surrounding charges. Our results have implications for the studies of dynamics within XFEL irradiated samples, in particular for those dedicated to coherent diffraction imaging.

  1. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer

    Directory of Open Access Journals (Sweden)

    M. Dell'Angela

    2015-03-01

    Full Text Available Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES have been studied at a free electron laser (FEL for an oxygen layer on Ru(0001. We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  2. The effect of laser contrast on generation of highly charged Fe ions by ultra-intense femtosecond laser pulses

    Science.gov (United States)

    Faenov, Anatoly Ya.; Alkhimova, Maria A.; Pikuz, Tatiana A.; Skobelev, Igor Yu.; Nishiuchi, Mamiko; Sakaki, Hironao; Pirozhkov, Alexander S.; Sagisaka, Akito; Dover, Nicholas P.; Kondo, Kotaro; Ogura, Koichi; Fukuda, Yuji; Kiriyama, Hiromitsu; Andreev, Alexander; Nishitani, Keita; Miyahara, Takumi; Watanabe, Yukinobu; Pikuz, Sergey A.; Kando, Masaki; Kodama, Ruosuke; Kondo, Kiminori

    2017-07-01

    Experimental studies on the formation of highly charged ions of medium-Z elements using femtosecond laser pulses with different contrast levels were carried out. Multiply charged Fe ions were generated by laser pulses with 35 fs duration and an intensity exceeding 1021 W/cm2. Using high-resolution X-ray spectroscopic methods, bulk electron temperature of the generated plasma has been identified. It is shown that the presence of a laser pre-pulse at a contrast level of 105-106 with respect to the main pulse drastically decreases the degree of Fe ionization. We conclude that an effective source of energetic, multiply charged moderate and high- Z ions based on femtosecond laser-plasma interactions can be created only using laser pulses of ultra-high contrast.

  3. Surface charges effects on the 2D conformation of supercoiled DNA

    CERN Document Server

    Schmatko, Tatiana; Maaloum, Mounir

    2012-01-01

    We have adsorbed plasmid PuC19 DNA on a supported bilayer. The mobility of the lipids within the bilayer ensured a 2D equilibrium of the DNA molecule. By varying the fraction of cationic lipids in the membrane, we have tuned the surface charge. Plasmids conformations were imaged by Atomic Force Microscopy (AFM).We performed two sets of experiments: deposition from salt free solution on charged bilayers and deposition from salty solutions on neutral bilayers. Plasmids can be seen as rings, completely opened structures, or tightly supercoiled plectonemes, depending on the experimental conditions. The plectonemic conformation is observed either on charged surfaces (in the absence of salt) or at 30 mM salt concentration on a neutral bilayer. We demonstrate the equivalence of surface screening by mobile interfacial charges and bulk screening from salt ions.

  4. Effect of Lattice Distortion on Charge Order in Manganites at Doping x = 0.5

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-Long; TIAN Guang-Shan; LIN Hai-Qing

    2005-01-01

    In the present paper, we continue our investigation on the antiferromagnetic origin of the charge order observed in the half-doped manganese. By introducing a Su-Schrieffer-Heeger (SSH) type of perturbation interaction to the double-exchange Hamiltonian, we calculate again its ground-state phase diagram at filling x = 0.5 by the unrestricted real-space Hartree-Fock approximation method. We find that, as the SSH electron-phonon interaction increases, the charge order parameter decreases to zero rapidly but the CE-type antiferromagnetic order becomes more stable. In other words, the charge order is much more fragile than the CE-type or the Neel-type antiferromagnetic orders under the electron-phonon perturbation. These results support the proposed theory in the recent publications that the charge order in these systems is induced by the antiferromagnetic correlations.

  5. Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles

    Science.gov (United States)

    Kralj, Slavko; Rojnik, Matija; Romih, Rok; Jagodič, Marko; Kos, Janko; Makovec, Darko

    2012-10-01

    We report on the nanoparticle uptake into MCF10A neoT and PC-3 cells using flow cytometry, confocal microscopy, SQUID magnetometry, and transmission electron microscopy. The aim was to evaluate the influence of the nanoparticles' surface charge on the uptake efficiency. The surface of the superparamagnetic, silica-coated, maghemite nanoparticles was modified using amino functionalization for the positive surface charge (CNPs), and carboxyl functionalization for the negative surface charge (ANPs). The CNPs and ANPs exhibited no significant cytotoxicity in concentrations up to 500 μg/cm3 in 24 h. The CNPs, bound to a plasma membrane, were intensely phagocytosed, while the ANPs entered cells through fluid-phase endocytosis in a lower internalization degree. The ANPs and CNPs were shown to be co-localized with a specific lysosomal marker, thus confirming their presence in lysosomes. We showed that tailoring the surface charge of the nanoparticles has a great impact on their internalization.

  6. Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kralj, Slavko, E-mail: slavko.kralj@ijs.si [Jozef Stefan Institute, Department for Materials Synthesis (Slovenia); Rojnik, Matija [University of Ljubljana, Faculty of Pharmacy (Slovenia); Romih, Rok [University of Ljubljana, Faculty of Medicine, Institute of Cell Biology (Slovenia); Jagodic, Marko [Institute of Mathematics, Physics and Mechanics (Slovenia); Kos, Janko [University of Ljubljana, Faculty of Pharmacy (Slovenia); Makovec, Darko [Jozef Stefan Institute, Department for Materials Synthesis (Slovenia)

    2012-10-15

    We report on the nanoparticle uptake into MCF10A neoT and PC-3 cells using flow cytometry, confocal microscopy, SQUID magnetometry, and transmission electron microscopy. The aim was to evaluate the influence of the nanoparticles' surface charge on the uptake efficiency. The surface of the superparamagnetic, silica-coated, maghemite nanoparticles was modified using amino functionalization for the positive surface charge (CNPs), and carboxyl functionalization for the negative surface charge (ANPs). The CNPs and ANPs exhibited no significant cytotoxicity in concentrations up to 500 {mu}g/cm{sup 3} in 24 h. The CNPs, bound to a plasma membrane, were intensely phagocytosed, while the ANPs entered cells through fluid-phase endocytosis in a lower internalization degree. The ANPs and CNPs were shown to be co-localized with a specific lysosomal marker, thus confirming their presence in lysosomes. We showed that tailoring the surface charge of the nanoparticles has a great impact on their internalization.

  7. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy.

    Science.gov (United States)

    Allen, Christopher; Borak, Thomas B; Tsujii, Hirohiko; Nickoloff, Jac A

    2011-06-03

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation.

  8. Calculations of current densities for neutral and doubly charged persubstituted benzenes using effective core potentials.

    Science.gov (United States)

    Rauhalahti, Markus; Taubert, Stefan; Sundholm, Dage; Liégeois, Vincent

    2017-03-08

    Magnetically induced current density susceptibilities and ring-current strengths have been calculated for neutral and doubly charged persubstituted benzenes C6X6 and C6X6(2+) with X = F, Cl, Br, I, At, SeH, SeMe, TeH, TeMe, and SbH2. The current densities have been calculated using the gauge-including magnetically induced current (GIMIC) method, which has been interfaced to the Gaussian electronic structure code rendering current density calculations using effective core potentials (ECP) feasible. Relativistic effects on the ring-current strengths have been assessed by employing ECP calculations of the current densities. Comparison of the ring-current strengths obtained in calculations on C6At6 and C6At6(2+) using relativistic and non-relativistic ECPs show that scalar relativistic effects have only a small influence on the ring-current strengths. Comparisons of the ring-current strengths and ring-current profiles show that the C6I6(2+), C6At6(2+), C6(SeH)6(2+), C6(SeMe)6(2+), C6(TeH)6(2+), C6(TeMe)6(2+), and C6(SbH2)6(2+) dications are doubly aromatic sustaining spatially separated ring currents in the carbon ring and in the exterior of the molecule. The C6I6(+) radical cation is also found to be doubly aromatic with a weaker ring current than obtained for the dication.

  9. Relativistic effects on the neutron charge form factor in the constituent quark model

    CERN Document Server

    Cardarelli, F

    1999-01-01

    The neutron charge form factor GEn(Q**2) is investigated within a constituent quark model formulated on the light-front. It is shown that, if the quark initial motion is neglected in the Melosh rotations, the Dirac neutron form factor F1n(Q**2) receives a relativistic correction which cancels exactly against the Foldy term in GEn(Q**2), as it has been recently argued by Isgur. Moreover, at the same level of approximation the ratio of the proton to neutron magnetic form factors GMp(Q**2)/GMn(Q**2) is still given by the naive SU(6)-symmetry expectation, -3/2. However, it is also shown that the full Melosh rotations break SU(6) symmetry, giving rise to GEn(Q**2) neq 0 and GMp(Q**2)/GMn(Q**2) neq -3/2 even when a SU(6)-symmetric canonical wave function is assumed. It turns out that relativistic effects alone cannot explain simultaneously the experimental data on GEn(Q**2) and GMp(Q**2)/GMn(Q**2).

  10. Carrier mobility in mesoscale heterogeneous organic materials: Effects of crystallinity and anisotropy on efficient charge transport

    Science.gov (United States)

    Kobayashi, Hajime; Shirasawa, Raku; Nakamoto, Mitsunori; Hattori, Shinnosuke; Tomiya, Shigetaka

    2017-07-01

    Charge transport in the mesoscale bulk heterojunctions (BHJs) of organic photovoltaic devices (OPVs) is studied using multiscale simulations in combination with molecular dynamics, the density functional theory, the molecular-level kinetic Monte Carlo (kMC) method, and the coarse-grained kMC method, which was developed to estimate mesoscale carrier mobility. The effects of the degree of crystallinity and the anisotropy of the conductivity of donors on hole mobility are studied for BHJ structures that consist of crystalline and amorphous pentacene grains that act as donors and amorphous C60 grains that act as acceptors. We find that the hole mobility varies dramatically with the degree of crystallinity of pentacene because it is largely restricted by a low-mobility amorphous region that occurs in the hole transport network. It was also found that the percolation threshold of crystalline pentacene is relatively high at approximately 0.6. This high percolation threshold is attributed to the 2D-like conductivity of crystalline pentacene, and the threshold is greatly improved to a value of approximately 0.3 using 3D-like conductive donors. We propose essential guidelines to show that it is critical to increase the degree of crystallinity and develop 3D conductive donors for efficient hole transport through percolative networks in the BHJs of OPVs.

  11. Forces in EDO-TTF: Theoretical study of isotope and charge effects on vibronic coupling

    Science.gov (United States)

    Tokunaga, Ken

    Isotope and charge effects on vibronic coupling constant (V) and energy gradient (g) of ethylenedioxy-tetrathiafulvalen (EDO-TTF) upon the electron injection into cation and electron removal from neutral molecule are investigated. It is found that normal modes which include C = C stretching motion generally have large V and g. For electron removal, three normal modes (v460, v470, and v480) have large Vi+ and gi+, and deuteration results in decrease of V46+ and increase of V47+. For electron injection, five normal modes (ν+42, ν+44, ν+45, ν+47, and ν+48) have large vi0 and gi0 deuteration results in increase of V045 and V048 and decrease of V047. From the analysis of vibronic coupling constants using vibronic coupling density (VCD), regional vibronic coupling constant (RVCC), and atomic vibronic coupling constant (AVCC), it is revealed that the change in normal mode vectors (d) due to the deuteration and electron removal (or injection) leads to the change in V.

  12. Effect of hydrogen charging on the mechanical properties of medium strength aluminium alloys 2091 and 2014

    DEFF Research Database (Denmark)

    Bandopadhyay, A.; Ambat, Rajan; Dwarakadasa, E.S.

    1992-01-01

    Cathodic hydrogen charging in 3.5% NaCl solution altered the mechanical properties of 2091-T351 (Al-Cu-Li-Mg-Zr) determined by a slow (10(-3)/s) strain rate tensile testing technique. UTS and YS decreased in the caw of 2091-T351 and 2014-T6(Al-Cu-Mn-Si-Mg) with increase in charging current density...

  13. Effects of local electric surface potential on holes charging process in uncapped germanium nanocrystal

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, Aude; El Hdiy, Abdelillah, E-mail: abdelillah.elhdiy@univ-reims.fr [Laboratoire de Recherche en Nanosciences, Bât. 6, case n 15, UFR Sciences, Université de Reims Champagne Ardenne, 51687 Reims Cedex 2 (France)

    2015-04-21

    The charging kinetics of holes are investigated in an uncapped Ge nanocrystal by the use of the nano-electron beam induced current technique. The charging process is studied under zero volt or under an appropriate electric field. The investigation is repeated many times on the same nanocrystal and on others in the same sample to attest of the reproducibility of the results. At 0 V, the cycles of charging kinetics are superimposed and are in a steady state, but an instantaneous local and negative surface potential, established in the nanocrystal at the beginning of the kinetics, slows down the holes charging process. Under an external field, the energy band bending accentuation affects the holes charging time constants. As a result, the holes charging cycles weakly affect the electrical performance of the thin oxide as is indicated by the value of the measured local resistivity of 6 × 10{sup 10}–10{sup 11} Ω cm, which is relatively lower than that of the thick thermal oxide.

  14. Effect of laundry surfactants on surface charge and colloidal stability of silver nanoparticles.

    Science.gov (United States)

    Skoglund, Sara; Lowe, Troy A; Hedberg, Jonas; Blomberg, Eva; Wallinder, Inger Odnevall; Wold, Susanna; Lundin, Maria

    2013-07-16

    The stability of silver nanoparticles (Ag NPs) potentially released from clothing during a laundry cycle and their interactions with laundry-relevant surfactants [anionic (LAS), cationic (DTAC), and nonionic (Berol)] have been investigated. Surface interactions between Ag NPs and surfactants influence their speciation and stability. In the absence of surfactants as well as in the presence of LAS, the negatively charged Ag NPs were stable in solution for more than 1 day. At low DTAC concentrations (≤1 mM), DTAC-Ag NP interactions resulted in charge neutralization and formation of agglomerates. The surface charge of the particles became positive at higher concentrations due to a bilayer type formation of DTAC that prevents from agglomeration due to repulsive electrostatic forces between the positively charged colloids. The adsorption of Berol was enhanced when above its critical micelle concentration (cmc). This resulted in a surface charge close to zero and subsequent agglomeration. Extended DLVO theory calculations were in compliance with observed findings. The stability of the Ag NPs was shown to depend on the charge and concentration of the adsorbed surfactants. Such knowledge is important as it may influence the subsequent transport of Ag NPs through different chemical transients and thus their potential bioavailability and toxicity.

  15. Effect of Specific Adsorption of Ions on Electrokinetic Properties of Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    ZHANGHONG; ZHANGXIAO-NIAN

    1991-01-01

    Studies were carried out by using electrophoretic method on the effects of the specific adsorption of the anions,such as SO42-,PO43-,and F- ions,the cations,such as Ca2+,Mn2+,Zn2+,and Cu2+,ions,and the anions and cations coexisting,such as Zn2+ and SO42= ions,on electrokinetic properties of the red soils as typical variable charge soils in China concerning variation in the specific ion species and concentrations,with an emphasis on the interaction between soil colloid surfaces and the ions in soil solutions.The results showed that the adsorption of specific ions led to a very pronounced decrease in zeta potentials of the soil colloids and a shift of the IEPs to lower values for specific anions,and an obvious increase in zeta potentials of the soil colloids and a shift of the IEPs to higher values for specific cations.Under circumstances of the specific anions and cations coexisting,for instance,Zn2+ and SO42- ions,the zeta potentials changed with values higher than the value for SO42- alone and lower than that for Zn2+ alone,and the IEP was between that for Zn2+ and that for SO42-.The adsorption of Zn2+ and Cu2+ ions resulted in a reversal of the zeta potentials,and appearance of two IEPs for Zn2+ and no IEP for Cu2+,exhibiting interesting special effects of these kinds of metal ions.The higher the concentrations of the ions,the greater the change of the electrokinetic properties.

  16. Magnetoresistance generated from charge-spin conversion by anomalous Hall effect in metallic ferromagnetic/nonmagnetic bilayers

    Science.gov (United States)

    Taniguchi, Tomohiro

    2016-11-01

    A theoretical formulation of magnetoresistance effect in a metallic ferromagnetic/nonmagnetic bilayer originated from the charge-spin conversion by the anomalous Hall effect is presented. Analytical expressions of the longitudinal and transverse resistivities in both nonmagnet and ferromagnet are obtained by solving the spin diffusion equation. The magnetoresistance generated from charge-spin conversion purely caused by the anomalous Hall effect in the ferromagnet is found to be proportional to the square of the spin polarizations in the ferromagnet and has fixed sign. We also find additional magnetoresistances in both nonmagnet and ferromagnet arising from the mixing of the spin Hall and anomalous Hall effects. The sign of this mixing resistance depends on those of the spin Hall angle in the nonmagnet and the spin polarizations of the ferromagnet.

  17. Neutron-skin effect in direct photon and charged hadron production in Pb+Pb collisions at the LHC

    CERN Document Server

    Helenius, Ilkka; Eskola, Kari J

    2016-01-01

    A well-established observation in nuclear physics is that in neutron-rich spherical nuclei the distribution of neutrons extends farther than the distribution of protons. In this work, we scrutinize the influence of this so called neutron-skin effect on the centrality dependence of high-$p_{\\rm T}$ direct photon and charged hadron production. We find that due to the estimated spatial dependence of the nuclear parton distribution functions, it will be demanding to unambiguously expose the neutron-skin effect with direct photons. However, when taking a ratio between the cross sections for negatively and positively charged high-$p_{\\rm T}$ hadrons, even centrality-dependent nuclear-PDF effects cancel making this observable a better handle on the neutron skin. Up to 20~\\% effects can be expected for the most peripheral collisions.

  18. Giant Nernst effect in the incommensurate charge density wave state of P4W12O44

    Science.gov (United States)

    Kolincio, Kamil K.; Daou, Ramzy; Pérez, Olivier; Guérin, Laurent; Fertey, Pierre; Pautrat, Alain

    2016-12-01

    We report the study of Nernst effect in quasi-low-dimensional tungsten bronze P4W12O44 showing a sequence of Peierls instabilities. We demonstrate that both condensation of the electronic carriers in the charge density wave state and the existence of high-mobility electrons and holes originating from the small pockets remaining in the incompletely nested Fermi surface give rise to a Nernst effect of a magnitude similar to that observed in heavy fermion compounds.

  19. Improving the spatial resolution in CZT detectors using charge sharing effect and transient signal analysis: Simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xiaoqing; Cheng, Zeng [Department of Electrical and Computer Engineering, McMaster University (Canada); Deen, M. Jamal, E-mail: jamal@mcmaster.ca [Department of Electrical and Computer Engineering, McMaster University (Canada); School of Biomedical Engineering, McMaster University (Canada); Peng, Hao, E-mail: penghao@mcmaster.ca [Department of Electrical and Computer Engineering, McMaster University (Canada); School of Biomedical Engineering, McMaster University (Canada); Department of Medical Physics, McMaster University, Ontario L8S 4K1, Hamilton (Canada)

    2016-02-01

    Cadmium Zinc Telluride (CZT) semiconductor detectors are capable of providing superior energy resolution and three-dimensional position information of gamma ray interactions in a large variety of fields, including nuclear physics, gamma-ray imaging and nuclear medicine. Some dedicated Positron Emission Tomography (PET) systems, for example, for breast cancer detection, require higher contrast recovery and more accurate event location compared with a whole-body PET system. The spatial resolution is currently limited by electrode pitch in CZT detectors. A straightforward approach to increase the spatial resolution is by decreasing the detector electrode pitch, but this leads to higher fabrication cost and a larger number of readout channels. In addition, inter-electrode charge spreading can negate any improvement in spatial resolution. In this work, we studied the feasibility of achieving sub-pitch spatial resolution in CZT detectors using two methods: charge sharing effect and transient signal analysis. We noted that their valid ranges of usage were complementary. The dependences of their corresponding valid ranges on electrode design, depth-of-interaction (DOI), voltage bias and signal triggering threshold were investigated. The implementation of these two methods in both pixelated and cross-strip configuration of CZT detectors were discussed. Our results show that the valid range of charge sharing effect increases as a function of DOI, but decreases with increasing gap width and bias voltage. For a CZT detector of 5 mm thickness, 100 µm gap and biased at 400 V, the valid range of charge sharing effect was found to be about 112.3 µm around the gap center. This result complements the valid range of the transient signal analysis within one electrode pitch. For a signal-to-noise ratio (SNR) of ~17 and preliminary measurements, the sub-pitch spatial resolution is expected to be ~30 µm and ~250 µm for the charge sharing and transient signal analysis methods

  20. Improving the spatial resolution in CZT detectors using charge sharing effect and transient signal analysis: Simulation study

    Science.gov (United States)

    Zheng, Xiaoqing; Cheng, Zeng; Deen, M. Jamal; Peng, Hao

    2016-02-01

    Cadmium Zinc Telluride (CZT) semiconductor detectors are capable of providing superior energy resolution and three-dimensional position information of gamma ray interactions in a large variety of fields, including nuclear physics, gamma-ray imaging and nuclear medicine. Some dedicated Positron Emission Tomography (PET) systems, for example, for breast cancer detection, require higher contrast recovery and more accurate event location compared with a whole-body PET system. The spatial resolution is currently limited by electrode pitch in CZT detectors. A straightforward approach to increase the spatial resolution is by decreasing the detector electrode pitch, but this leads to higher fabrication cost and a larger number of readout channels. In addition, inter-electrode charge spreading can negate any improvement in spatial resolution. In this work, we studied the feasibility of achieving sub-pitch spatial resolution in CZT detectors using two methods: charge sharing effect and transient signal analysis. We noted that their valid ranges of usage were complementary. The dependences of their corresponding valid ranges on electrode design, depth-of-interaction (DOI), voltage bias and signal triggering threshold were investigated. The implementation of these two methods in both pixelated and cross-strip configuration of CZT detectors were discussed. Our results show that the valid range of charge sharing effect increases as a function of DOI, but decreases with increasing gap width and bias voltage. For a CZT detector of 5 mm thickness, 100 μm gap and biased at 400 V, the valid range of charge sharing effect was found to be about 112.3 μm around the gap center. This result complements the valid range of the transient signal analysis within one electrode pitch. For a signal-to-noise ratio (SNR) of ~17 and preliminary measurements, the sub-pitch spatial resolution is expected to be ~30 μm and ~250 μm for the charge sharing and transient signal analysis methods