WorldWideScience

Sample records for 50-fold dose range

  1. Evaluation Of Microdosing Strategies For Studies In Preclinical Drug Development: Demonstration Of Linear Pharmacokinetics In Dogs Of A Nucleoside Analogue Over A 50-Fold Dose Range

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, P; Vogel, J S; Rose, M J; Ubick, E A; Brunner, J E; Wallace, M A; Adelsberger, J K; Baker, M P; Henderson, P T; Pearson, P G; Baillie, T A

    2004-04-22

    The technique of accelerator mass spectrometry (AMS) was validated successfully and utilized to study the pharmacokinetics and disposition in dogs of a preclinical drug candidate (Compound A), after oral and intravenous administration. The primary objective of this study was to examine whether Compound A displayed linear kinetics across sub-pharmacological (microdose) and pharmacological dose ranges in an animal model, prior to initiation of a human microdose study. The AMS-derived disposition properties of Compound A were comparable to data obtained via conventional techniques such as LC-MS/MS and liquid scintillation counting analyses. Thus, Compound A displayed multiphasic kinetics and possessed low plasma clearance (4.4 mL/min/kg), a long terminal elimination half-life (19.4 hr) and high oral bioavailability (82%). Currently there are no published comparisons of the kinetics of a pharmaceutical compound at pharmacological versus sub-pharmacological doses employing microdosing strategies. The present study thus provides the first description of the pharmacokinetics of a drug candidate assessed under these two dosing regimens. The data demonstrated that the pharmacokinetic properties of Compound A were similar following dosing at 0.02 mg/kg as at 1 mg/kg, indicating that in the case of Compound A, the kinetics of absorption, distribution and elimination in the dog appear to be linear across this 50-fold dose range. Moreover, the exceptional sensitivity of AMS provided a pharmacokinetic profile of Compound A, even following a microdose, which revealed aspects of the disposition of this agent that were inaccessible by conventional techniques. The applications of accelerator mass spectrometry (AMS) are broad ranging and vary from studying environmental and ecological issues such as the isotopic composition of the atmosphere, soil and water (Hughen et al., 2000; Beck et al., 2001; Keith-Roach et al., 2001; Mironov et al., 2002), to archaeology and volcanology

  2. Evaluation Of Microdosing Strategies For Studies In Preclinical Drug Development: Demonstration Of Linear Pharmacokinetics In Dogs Of A Nucleoside Analogue Over A 50-Fold Dose Range

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, P; Vogel, J S; Rose, M J; Ubick, E A; Brunner, J E; Wallace, M A; Adelsberger, J K; Baker, M P; Henderson, P T; Pearson, P G; Baillie, T A

    2004-04-22

    The technique of accelerator mass spectrometry (AMS) was validated successfully and utilized to study the pharmacokinetics and disposition in dogs of a preclinical drug candidate (Compound A), after oral and intravenous administration. The primary objective of this study was to examine whether Compound A displayed linear kinetics across sub-pharmacological (microdose) and pharmacological dose ranges in an animal model, prior to initiation of a human microdose study. The AMS-derived disposition properties of Compound A were comparable to data obtained via conventional techniques such as LC-MS/MS and liquid scintillation counting analyses. Thus, Compound A displayed multiphasic kinetics and possessed low plasma clearance (4.4 mL/min/kg), a long terminal elimination half-life (19.4 hr) and high oral bioavailability (82%). Currently there are no published comparisons of the kinetics of a pharmaceutical compound at pharmacological versus sub-pharmacological doses employing microdosing strategies. The present study thus provides the first description of the pharmacokinetics of a drug candidate assessed under these two dosing regimens. The data demonstrated that the pharmacokinetic properties of Compound A were similar following dosing at 0.02 mg/kg as at 1 mg/kg, indicating that in the case of Compound A, the kinetics of absorption, distribution and elimination in the dog appear to be linear across this 50-fold dose range. Moreover, the exceptional sensitivity of AMS provided a pharmacokinetic profile of Compound A, even following a microdose, which revealed aspects of the disposition of this agent that were inaccessible by conventional techniques. The applications of accelerator mass spectrometry (AMS) are broad ranging and vary from studying environmental and ecological issues such as the isotopic composition of the atmosphere, soil and water (Hughen et al., 2000; Beck et al., 2001; Keith-Roach et al., 2001; Mironov et al., 2002), to archaeology and volcanology

  3. Analytical probabilistic proton dose calculation and range uncertainties

    Science.gov (United States)

    Bangert, M.; Hennig, P.; Oelfke, U.

    2014-03-01

    We introduce the concept of analytical probabilistic modeling (APM) to calculate the mean and the standard deviation of intensity-modulated proton dose distributions under the influence of range uncertainties in closed form. For APM, range uncertainties are modeled with a multivariate Normal distribution p(z) over the radiological depths z. A pencil beam algorithm that parameterizes the proton depth dose d(z) with a weighted superposition of ten Gaussians is used. Hence, the integrals ∫ dz p(z) d(z) and ∫ dz p(z) d(z)2 required for the calculation of the expected value and standard deviation of the dose remain analytically tractable and can be efficiently evaluated. The means μk, widths δk, and weights ωk of the Gaussian components parameterizing the depth dose curves are found with least squares fits for all available proton ranges. We observe less than 0.3% average deviation of the Gaussian parameterizations from the original proton depth dose curves. Consequently, APM yields high accuracy estimates for the expected value and standard deviation of intensity-modulated proton dose distributions for two dimensional test cases. APM can accommodate arbitrary correlation models and account for the different nature of random and systematic errors in fractionated radiation therapy. Beneficial applications of APM in robust planning are feasible.

  4. Upgrading NASA/DOSE laser ranging system control computers

    Science.gov (United States)

    Ricklefs, Randall L.; Cheek, Jack; Seery, Paul J.; Emenheiser, Kenneth S.; Hanrahan, William P., III; Mcgarry, Jan F.

    1993-01-01

    Laser ranging systems now managed by the NASA Dynamics of the Solid Earth (DOSE) and operated by the Bendix Field Engineering Corporation, the University of Hawaii, and the University of Texas have produced a wealth on interdisciplinary scientific data over the last three decades. Despite upgrades to the most of the ranging station subsystems, the control computers remain a mix of 1970's vintage minicomputers. These encompass a wide range of vendors, operating systems, and languages, making hardware and software support increasingly difficult. Current technology allows replacement of controller computers at a relatively low cost while maintaining excellent processing power and a friendly operating environment. The new controller systems are now being designed using IBM-PC-compatible 80486-based microcomputers, a real-time Unix operating system (LynxOS), and X-windows/Motif IB, and serial interfaces have been chosen. This design supports minimizing short and long term costs by relying on proven standards for both hardware and software components. Currently, the project is in the design and prototyping stage with the first systems targeted for production in mid-1993.

  5. NOTE: Study of Gafchromic® EBT film response over a large dose range

    Science.gov (United States)

    Martišíková, Mária; Jäkel, Oliver

    2010-05-01

    Presently Gafchromic EBT films are widely used for relative dose verification in standard radiation therapy using high-energy photons, inclusive IMRT. The use of films for dosimetry in medical ion beams is more complicated due to the strongly inhomogeneous dose deposition by ions on microscopic level. Track structure models, presently used to describe dosimeter response as a function of the ion field properties, are based on input information which can be obtained from the film response in photon beams. We therefore studied the performance of Gafchromic EBT films, ancestors of currently available EBT2 films, in 60Co photon beams. The dose-response curve was measured from 7.5 × 10-2 Gy to 3 × 104 Gy. The dynamic range, linearity and dose rate dependence of this calibration curve were studied. A high saturation dose of 3 × 103 Gy, and thus a large dynamic range, was observed. No signs of supralinearity and bleaching due to radiation were found. No dependence of the response on the dose rate at high dose rates and high doses was found. All those properties justify the use of simplified models of the film response to ions. Furthermore, fits of the calibration data by predictions of different models for signal creation mechanism of dosimetric materials were performed. The best description was found for the recently published gamma-distributed single-hit model which takes into account different sizes of the active centres.

  6. Range shift and dose perturbation with high-density materials in proton beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Nichiporov, D., E-mail: nichipor@indiana.edu [Indiana University Integrated Science and Technology Hall, 2401 Milo B. Sampson La, Bloomington, IN 47408-1398 (United States); Moskvin, V. [Indiana University School of Medicine, 535 Barnhill Dr., RT 041, Indianapolis, IN 46202 (United States); Indiana University Health Proton Therapy Center, 2425 Milo B. Sampson La, Bloomington, IN 47408 (United States); Fanelli, L. [Indiana University Health Proton Therapy Center, 2425 Milo B. Sampson La, Bloomington, IN 47408 (United States); Das, I.J. [Indiana University School of Medicine, 535 Barnhill Dr., RT 041, Indianapolis, IN 46202 (United States); Indiana University Health Proton Therapy Center, 2425 Milo B. Sampson La, Bloomington, IN 47408 (United States)

    2011-11-15

    Radiotherapy with proton beams requires accurate knowledge of the proton range. When materials with high atomic numbers (Z) and densities (e.g. prostheses or implants) are present in the patient, they give rise to pronounced uncertainties in computed tomography data and to large errors in proton range and dose calculations. A modified analytical expression is proposed for the observed range shift in water in the presence of a high-density material of known thickness and density. The expression was verified experimentally in a clinical beam with various thicknesses and materials in a water phantom, at several beam ranges and at different depths. Measurements were also made behind the medium-to-water interface to evaluate dose perturbation using a thin window parallel plate ion chamber. Primary particle fluence variations due to the range shift were studied in a separate experiment. The measured range shift was in good agreement ({+-}0.3 mm) with the analytical expression for most of the materials studied. A small, but consistent dependence of range shift on the energy of impinging protons was found. Dose perturbation factor in water downstream of the material is less than +5% for thicknesses up to 8 g/cm{sup 2}. The proposed analytical expression can be used in clinical situations to determine the range shift in patient caused by an implanted material. Dose perturbation in the presence of an implant is due to the changes in primary particle fluence resulting from several physical processes.

  7. Diagnostic reference ranges and the American College of Radiology Dose Index Registry: the pediatric experience

    Energy Technology Data Exchange (ETDEWEB)

    Goske, Marilyn J. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States)

    2014-10-15

    CT scans are powerful tools used in the care of pediatric patients daily. Yet the increased use of CT warrants careful monitoring. This article defines diagnostic reference levels and how they can be used to guide practice. Once a facility has adapted its techniques and protocols to fall within diagnostic reference levels or target values, the facility can expand its quality-improvement efforts to include a new concept, diagnostic reference ranges (DRRs). DRRs take into account the subjective image quality of the examination and provide a minimum estimated patient dose, below which accurate interpretation of an image might be difficult, and an upper estimated dose, above which the patient dose may be higher than necessary. This paper also describes how the American College of Radiology Dose Index Registry can be used by a facility as a continuous quality improvement tool to monitor and manage appropriate patient dose. (orig.)

  8. Evaluation of dose according to the volume and respiratory range during SBRT in lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Deuk Hee [Dept. of Radiation Oncology, Busan Paik Hospital, Inje University, Busan (Korea, Republic of); Park, Eun Tae; Kim, Jung Hoon; Kang, Se Seik [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Busan (Korea, Republic of)

    2016-09-15

    Stereotactic body radiotherapy is effective technic in radiotherapy for low stage lung cancer. But lung cancer is affected by respiratory so accurately concentrate high dose to the target is very difficult. In this study, evaluated the target volume according to how to take the image. And evaluated the dose by photoluminescence glass dosimeter according to how to contour the volume and respiratory range. As a result, evaluated the 4D CT volume was 10.4 cm{sup 3} which was closest value of real size target. And in dose case is internal target volume dose was 10.82, 16.88, 21.90 Gy when prescribed dose was 10, 15, 20 Gy and it was the highest dose. Respiratory gated radiotherapy dose was more higher than internal target volume. But it made little difference by respiratory range. Therefore, when moving cancer treatment, acquiring image by 4D CT, contouring internal target volume and respiratory gated radiotherapy technic would be the best way.

  9. [Physical image properties of digital radiography systems in low dose range].

    Science.gov (United States)

    Kunitomo, Hiroshi; Ichikawa, Katsuhiro; Higashide, Ryo; Ohashi, Kazuya

    2012-01-01

    We measured physical image properties of a flat panel detector (FPD) system and a computed radiography (CR) system, targeting to a low dose range (reference dose: 2.58×10(-7) C/kg: to 1/20 dose). Input-output properties, pre-sampled modulation transfer functions (pre-sampled MTFs), and normalized noise power spectra for an FPD system equipped with a CsI scintillator (FPDcsi) and a CR system with an imaging plate coated with storage phosphor (CR) were measured at the low dose range for radiation quality of RQA3 (≍50 skV) and RQA5 (≍70 kV), and detective quantum efficiencies (DQEs) were calculated. In addition, in order to validate the DQE results, component fractions of Poisson and multiplicative and additive noise were analyzed using relative standard deviation analysis. The DQE values of FPDcsi were decreased with dose decrease, and contrarily to these, those of CR were increased. At the 1/10 and 1/20 doses for RQA3, the DQEs of FPDcsi and CR became almost the same. From the results of RSD analysis, it was proved that the main cause of DQE deterioration on FPDcsi are non-negligible additive (electronic) noise, and the DQE improvement on CR was caused by both of significant multiplicative (structure) noise and very low electronic noise. The DQE results were validated by comparing burger phantom images of each dose and radiation quality.

  10. Dynamic dose assessment by Large Eddy Simulation of the near-range atmospheric dispersion.

    Science.gov (United States)

    Vervecken, Lieven; Camps, Johan; Meyers, Johan

    2015-03-01

    In order to improve the simulation of the near-range atmospheric dispersion of radionuclides, computational fluid dynamics is becoming increasingly popular. In the current study, Large-Eddy Simulation is used to examine the time-evolution of the turbulent dispersion of radioactive gases in the atmospheric boundary layer, and it is coupled to a gamma dose rate model that is based on the point-kernel method with buildup factors. In this way, the variability of radiological dose rate from cloud shine due to instantaneous turbulent mixing processes can be evaluated. The steady release in an open field of (41)Ar and (133)Xe for 4 different release heights is studied, thus covering radionuclides that decay with a high-energy gamma and a low-energy gamma, respectively. Based on these simulations, the variability of dose rates at ground level for different averaging times in the dose measurements is analyzed. It is observed that turbulent variability in the wind field can lead to dose estimates that are underestimated by up to a factor of four when conventional long-term measurements are used to estimate the dose from short-term exposures.

  11. Fundamental investigations of natural and laboratory generated SAR dose response curves for quartz OSL in the high dose range

    DEFF Research Database (Denmark)

    Timar-Gabor, Alida; Constantin, Daniela; Buylaert, Jan-Pieter;

    2015-01-01

    SAR-OSL investigations on quartz from Romanian loess resulted in non concordant fine and coarse-grain ages for equivalent doses higher than ~100 Gy. The laboratory dose response for both grain sizes is well represented by a sum of two saturating exponential functions, fine and coarse grains chara...

  12. Fundamental investigations of natural and laboratory generated SAR dose response curves for quartz OSL in the high dose range

    DEFF Research Database (Denmark)

    Timar-Gabor, Alida; Constantin, Daniela; Buylaert, Jan-Pieter

    2015-01-01

    equivalent dose of 2000e2500 Gy were found to be below the saturation level of the laboratory dose response curve for both grain sizes; this also applied to the luminescence signals measured after >5000 Gy given on top of natural doses. © 2015 Elsevier Ltd. All rights reserved.......SAR-OSL investigations on quartz from Romanian loess resulted in non concordant fine and coarse-grain ages for equivalent doses higher than ~100 Gy. The laboratory dose response for both grain sizes is well represented by a sum of two saturating exponential functions, fine and coarse grains...... characterised by D01 and D02 values of ~140 and ~1400 Gy and ~65 and ~650 Gy respectively. Pulsed OSL experiments confirmed that this behaviour is almost certainly inherent to quartz and not caused by contamination with another mineral. Natural doseeresponse curves do not follow the same pattern and enter...

  13. Preclinical dose-ranging studies of a novel dry powder norovirus vaccine formulation.

    Science.gov (United States)

    Springer, Michael J; Ni, Yawei; Finger-Baker, Isaac; Ball, Jordan P; Hahn, Jessica; DiMarco, Ashley V; Kobs, Dean; Horne, Bobbi; Talton, James D; Cobb, Ronald R

    2016-03-14

    Norovirus is the primary cause of viral gastroenteritis in humans with multiple genotypes currently circulating worldwide. The development of a successful norovirus vaccine is contingent on its ability to induce both systemic and mucosal antibody responses against a wide range of norovirus genotypes. Norovirus virus-like particles (VLPs) are known to elicit systemic and mucosal immune responses when delivered intranasally. Incorporation of these VLPs into an intranasal powder vaccine offers the advantage of simplicity and induction of neutralizing systemic and mucosal antibodies. Nasal immunization, which provides the advantage of ease of administration and a mucosal delivery mechanism, faces the real issue of limited nasal residence time due to mucociliary clearance. Herein, we describe a novel dry powder (GelVac™) formulation of GI or GII.4 norovirus VLPs, two dominant circulating genotypes, to identify the optimal antigen dosages based on systemic and mucosal immune responses in guinea pigs. Systemic and mucosal immunogenicity of each of the VLPs was observed in a dose-dependent manner. In addition, a boosting effect was observed after the second dosing of each VLP antigen. With the GelVac™ formulation, a total antigen dose of ≥ 15 μg was determined to be the maximally immunogenic dose for both GI and GII.4 norovirus VLPs based on evaluation for 56 days. Taken together, these results indicate that norovirus VLPs could be used as potential vaccine candidates without using an immunostimulatory adjuvant and provide a basis for the development of a GelVac™ bivalent GI/GII.4 norovirus VLP vaccine.

  14. /sup 210/Po in marine organisms: a wide range of natural radiation dose domains

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, F.P.

    1988-01-01

    Marine biota is able to concentrate /sup 210/Po to high levels, as 10/sup 3/-10/sup 5/ relative to sea water concentration. /sup 210/Po concentrations in mixed zooplankton reaches 34-51 Bq.kg/sup -1/ (fresh wt), special groups such as copepods reaching even higher concentrations /similar to/ 90 Bq.kg/sup -1/, whereas gelatinous zooplankton display /similar to/ 1 Bq.kg/sup -1/. Epipelagic teleosts feeding on plankton displayed the highest concentrations found in fish muscle, 2-21 Bq.kg/sup -1/. Contrasting with this, demersal teleosts and elasmobranchs display lower /sup 210/Po concentrations, in the ranges 0.5-7 Bq.kg/sup -1/ and 0.2-1.7 Bq.kg/sup -1/, respectively. Much higher concentrations can, however, be measured in fish liver, gonad, bone and piloric caecca, and small mesopelagic fish can reach /similar to/ 800 Bq.kg/sup -1/ on a whole-body basis. Due to these /sup 210/Po activity concentrations, dose equivalent rates delivered to biological tissues in marine organisms can vary widely, from 0.4 mSv.y/sup -1/ in gelatinous plankton up to 5.6 x 10/sup 3/ mSv.y/sup -1/ in the gut wall of sardines. It is concluded that in organisms living in the same ocean layer a wide range of internal radiation doses exists and it is essentially sustained by /sup 210/Po food-chain transfer. (author).

  15. Optimal antiproteinuric dose of losartan in nondiabetic patients with nephrotic range proteinuria

    NARCIS (Netherlands)

    Laverman, GD; Henning, RH; de Jong, PE; Navis, G; de Zeeuw, D

    2001-01-01

    Although the antiproteinuric response to antihypertensive treatment is the main predictor of renoprotective efficacy in long-term renal disease, to date, dose-finding studies of anti hypertensives have been based only on blood pressure. We aimed to find the optimal antiproteinuric dose of the angiot

  16. The basic study of a bi-material range compensator for improving dose uniformity for proton therapy.

    Science.gov (United States)

    Takada, Yoshihisa; Himukai, Takeshi; Takizawa, Kenji; Terashita, Yohsuke; Kamimura, Satoshi; Matsuda, Hiroshi; Hotta, Kenji; Kohno, Ryosuke; Komori, Masataka; Kanai, Tatsuaki

    2008-10-01

    A range compensator (abbreviated as a RC hereafter) is used to form a conformal dose distribution for heavy-charged-particle therapy. However, it induces distortion of the dose distribution. The induced inhomogeneity may result in a calibration error of a monitor unit (MU) assigned to a transmission ionization chamber. By using a bi-material RC made from a low-Z material and a high-Z material instead of the regular RC, the dose inhomogeneity has been obviously reduced by equalizing the lateral dose distributions formed by pencil beams traversing elements of the RC with different base thicknesses at the same water-equivalent depth. We designed and manufactured a 4 x 4 matrix-shaped single-material RC and a bi-material RC with the same range losses at corresponding elements of the RCs. The bi-material RC is made from chemical wood (the main chemical component is an ABS resin) as a low-Z material and from brass as a high-Z material. Sixteen segments of the RC are designed so that the range-loss differences of the adjacent segments of the RC range from 0 to 50 mm in steps of 5 mm. We measured dose distributions in water formed by a 160 MeV proton beam traversing the single-material RC or the bi-material RC, using the HIMAC biology beam port. Large dips and bumps were observed in the dose distribution formed by the use of the single-material RC; the dose uniformity has been significantly improved in the target region by the use of the bi-material RC. The improvement has been obtained at the expense of blurring lateral penumbra. For clinical application of this method to a patient with large density inhomogeneity, a simple modification method of the original calculation model has been given.

  17. Radiolysis of aqueous solutions of ammonium bicarbonate over a large dose range

    DEFF Research Database (Denmark)

    Draganic, Z.D.; Negrón-Mendoza, A.; Sehested, K.;

    1991-01-01

    Oxygen-free aqueous solutions of 0.05 mol dm-3 ammonium and sodium bicarbonate were studied after receiving various doses of Co-60 gammas (0.01-400 kGy) or 0.5-20 Gy pulses of 10 Mev electrons. Formate and oxalate were found to be the main radiolytic products, in addition to trace amounts of form...

  18. Two Week Oral Dose Range-Finding Toxicity Study of WR269410 in Rats

    Science.gov (United States)

    1993-07-09

    male receiving 30.0 mg/kg/day, and in one high dose (18.0 mg/kg/day) female. Cyanosis characterized as blue feet was seen in treatment group 3...8.5 Change Test Article Vehicle Ŕ.5% Na+ carboxymethylcellulose /0.3% Tween 80" to ŕ% Methylcellulose/0.2% Tween 80". Reason: Better

  19. Personal dose equivalent conversion coefficients for neutron fluence over the energy range of 20 to 250 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Mclean, Thomas D [Los Alamos National Laboratory; Justus, Alan L [Los Alamos National Laboratory; Gadd, S Milan [Los Alamos National Laboratory; Olsher, Richard H [RP-2; Devine, Robert T [RP-2

    2009-01-01

    Monte Carlo simulations were performed to extend existing neutron personal dose equivalent fluence-to-dose conversion coefficients to an energy of 250 MeV. Presently, conversion coefficients, H(p,slab)(10,alpha)/Phi, are given by ICRP-74 and ICRU-57 for a range of angles of radiation incidence (alpha = 0, 15, 30, 45, 60 and 75 degrees ) in the energy range from thermal to 20 MeV. Standard practice has been to base operational dose quantity calculations <20 MeV on the kerma approximation, which assumes that charged particle secondaries are locally deposited, or at least that charged particle equilibrium exists within the tally cell volume. However, with increasing neutron energy the kerma approximation may no longer be valid for some energetic secondaries such as protons. The Los Alamos Monte Carlo radiation transport code MCNPX was used for all absorbed dose calculations. Transport models and collision-based energy deposition tallies were used for neutron energies >20 MeV. Both light and heavy ions (HIs) (carbon, nitrogen and oxygen recoil nuclei) were transported down to a lower energy limit (1 keV for light ions and 5 MeV for HIs). Track energy below the limit was assumed to be locally deposited. For neutron tracks <20 MeV, kerma factors were used to obtain absorbed dose. Results are presented for a discrete set of angles of incidence on an ICRU tissue slab phantom.

  20. Feasibility of radiation dose range capable to cause subacute course of radiation syndrome

    Directory of Open Access Journals (Sweden)

    Krasnyuk V.I.

    2013-12-01

    Full Text Available There had been analysed cases of radiation syndrome which clinical picture takes an intermediate place between the acute radiation syndrome (ARS and the chronic radiation syndrome (CRS, and differs from them because of a subacute. This variant of disease can develop as a result of the fractioned or prolonged radiation lasting from several days to several weeks. Development of primary reaction took place only in the extremely hard cases which ends with an early fatality. After the general radiation the marrow failure was characterized by directly expressed formation and restoration period, specific features of which were defined by the radiation duration, a total dose and dose derivative. The most typical outcomes of a subacute radiation syndrome are death from infectious complications in the period of an eruptive phase or leukosis development in the remote period.

  1. A Dose-Ranging Study of Behavioral and Pharmacological Treatment for Children with ADHD

    OpenAIRE

    Pelham, William E.; Burrows-MacLean, Lisa; Gnagy, Elizabeth M.; Fabiano, Gregory A.; Coles, Erika K.; Wymbs, Brian T.; Chacko, Anil; Walker, Kathryn S.; Wymbs, Frances; Garefino, Allison; Hoffman, Martin T.; Waxmonsky, James G.; Waschbusch, Daniel A.

    2014-01-01

    Placebo and 3 doses of methylphenidate (MPH) were crossed with 3 levels of behavioral modification (no behavioral modification, NBM; low-intensity behavioral modification, LBM; and high-intensity behavior modification, HBM) in the context of a summer treatment program (STP). Participants were 48 children with ADHD, aged 5–12. Behavior was examined in a variety of social settings (sports activities, art class, lunch) that are typical of elementary school, neighborhood, and after-school setting...

  2. Preliminary evaluation of second harmonic direct detection scheme for low-dose range in alanine/EPR dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Felipe [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto, SP (Brazil); Departamento de Fisica, Facultad de Ciencias Naturales, Exactas y Tecnologia, Universidad de Panama (Panama); Departamento de Salud Radiologica, Caja de Seguro Social (Panama); Graeff, Carlos F.O.; Baffa, Oswaldo [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto, SP (Brazil)]. E-mail: baffa@ffclrp.usp.br

    2002-04-21

    The usefulness of a direct detection scheme of the second harmonic (2h) overmodulated signal from irradiated alanine in EPR dosimetry was studied. For this purpose, a group of DL-alanine/paraffin cylindrical pellets was produced. The dosimeters were irradiated with a {sup 60}Co radiotherapy gamma source with doses of 0.05, 0.1, 0.5, 1 and 5 Gy. The EPR measurements were carried out in a VARIAN-E4 spectrometer operating in X-band with optimized parameters to obtain highest amplitude signals of both harmonics. The 2h signal was detected directly at twice the modulation frequency. In preliminary results, the 2h showed some advantages over the 1h such as better resolution for doses below 1 Gy, better repeatability results and better linear behaviour in the dose range indicated. (author)

  3. Software to compute and conduct sequential Bayesian phase I or II dose-ranging clinical trials with stopping rules.

    Science.gov (United States)

    Zohar, Sarah; Latouche, Aurelien; Taconnet, Mathieu; Chevret, Sylvie

    2003-10-01

    The aim of dose-ranging phase I (resp. phase II) clinical trials is to rapidly identify the maximum tolerated dose (MTD) (resp., minimal effective dose (MED)) of a new drug or combination. For the conduct and analysis of such trials, Bayesian approaches such as the Continual Reassessment Method (CRM) have been proposed, based on a sequential design and analysis up to a completed fixed sample size. To optimize sample sizes, Zohar and Chevret have proposed stopping rules (Stat. Med. 20 (2001) 2827), the computation of which is not provided by available softwares. We present in this paper a user-friendly software for the design and analysis of these Bayesian Phase I (resp. phase II) dose-ranging Clinical Trials (BPCT). It allows to carry out the CRM with stopping rules or not, from the planning of the trial, with choice of model parameterization based on its operating characteristics, up to the sequential conduct and analysis of the trial, with estimation at stopping of the MTD (resp. MED) of the new drug or combination.

  4. Clonidine as an adjunct to intravenous regional anesthesia: A randomized, double-blind, placebo-controlled dose ranging study

    Directory of Open Access Journals (Sweden)

    Clarence S Ivie

    2011-01-01

    Full Text Available Background : The addition of clonidine to lidocaine intravenous regional anesthesia (IVRA has been previously reported to improve postoperative analgesia in patients undergoing upper extremity surgery. Our objective was to perform a dose ranging study in order to determine the optimal dose of clonidine used with lidocaine in IVRA. Design & Setting : We performed a double-blinded randomized placebo-controlled study with 60 patients scheduled for elective endoscopic carpal tunnel release under IVRA with 50 ml lidocaine 0.5%. University-affiliated outpatient surgery center. Data collected in operating rooms, recovery room, and by telephone after discharge from surgery center. Materials & Methods : Sixty adult ASA I or II patients undergoing outpatient endoscopic carpal tunnel release under intravenous regional anesthesia.Patients were randomized into five study groups receiving different doses of clonidine in addition to 50 ml 0.5% lidocaine in their IVRA. Group A received 0 mcg/kg, group B 0.25 mcg/kg, group C 0.5 mcg/kg, group D 1.0 mcg/kg and group E 1.5 mcg/kg of clonidine.Intraoperative fentanyl, recovery room pain scores, time to first postsurgical analgesic, total number of acetaminophen/codeine tablets consumed postsurgery, incidence of sedation, hypotension and bradycardia. Results & Conclusions : There was no benefit from any dose of clonidine compared to placebo. There were no clonidine-related side effects seen within the dose range studied. In short duration minor hand surgery, the addition of clonidine to lidocaine-based intravenous regional anesthesia provides no measurable benefit.

  5. Analgesic dose range finding of lornoxicam compared to diclofenac. Crossover double blind study in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    O. Di Munno

    2011-09-01

    Full Text Available Objective: To evaluate the therapeutic action and safety of lornoxicam, a new non steroidal anti-inflammatory drug, in 2 oral daily dose regimens of 8 and 16 mg in comparison with oral diclofenac 150 mg/day in patients with rheumatoid arthritis. Methods: Double blind double-dummy cross-over, controlled trial. The two treatments were given for ten-day periods, separated by a three-day wash-out interval. Patients of both sexes with classical or definite rheumatoid arthritis according to the A.R.A. criteria were enrolled in the study. Results: Fourteen patients (12F, 2M were admitted, mean age 61.6 years ± 6.7 (±SD, duration of illness 12.7 years ± 11.9. Lornoxicam 8 and 16 mg/day showed a good therapeutic activity, comparable with diclofenac 150 mg/day. Two patients complained adverse events with diclofenac. Conclusions: Lornoxicam 16 mg/day was associated with a more sharp action and a better tolerability than diclofenac in rheumatoid arthritis. The twice a day dosage of lornoxicam revealed to be appropriate.

  6. The dual-dose imaging technique: a way to enhance the dynamic range of X-ray detectors

    CERN Document Server

    Matsinos, E; Matsinos, Evangelos; Kaissl, Wolfgang

    2006-01-01

    We describe a method aiming at increasing the dynamic range of X-ray detectors. Two X-ray exposures of an object are acquired at different dose levels and constitute the only input data. The values of the parameters which are needed to process these images are determined from information contained in the images themselves; the values of two parameters are extracted from the input data. The two input images are finally merged in such a way as to create one image containing useful information in all its entirety. This selective use of parts of each image allows both the contour of the irradiated object to be visible and the high-attenuation areas to retain their image quality corresponding to the information contained in the high-dose image. The benefits of the method are demonstrated with an example involving a head phantom.

  7. Achieving a Linear Dose Rate Response in Pulse-Mode Silicon Photodiode Scintillation Detectors Over a Wide Range of Excitations

    Science.gov (United States)

    Carroll, Lewis

    2014-02-01

    We are developing a new dose calibrator for nuclear pharmacies that can measure radioactivity in a vial or syringe without handling it directly or removing it from its transport shield “pig”. The calibrator's detector comprises twin opposing scintillating crystals coupled to Si photodiodes and current-amplifying trans-resistance amplifiers. Such a scheme is inherently linear with respect to dose rate over a wide range of radiation intensities, but accuracy at low activity levels may be impaired, beyond the effects of meager photon statistics, by baseline fluctuation and drift inevitably present in high-gain, current-mode photodiode amplifiers. The work described here is motivated by our desire to enhance accuracy at low excitations while maintaining linearity at high excitations. Thus, we are also evaluating a novel “pulse-mode” analog signal processing scheme that employs a linear threshold discriminator to virtually eliminate baseline fluctuation and drift. We will show the results of a side-by-side comparison of current-mode versus pulse-mode signal processing schemes, including perturbing factors affecting linearity and accuracy at very low and very high excitations. Bench testing over a wide range of excitations is done using a Poisson random pulse generator plus an LED light source to simulate excitations up to ˜106 detected counts per second without the need to handle and store large amounts of radioactive material.

  8. Construction of a cytogenetic dose-response curve for low-dose range gamma-irradiation in human peripheral blood lymphocytes using three-color FISH.

    Science.gov (United States)

    Suto, Yumiko; Akiyama, Miho; Noda, Takashi; Hirai, Momoki

    2015-12-01

    In order to estimate biological doses after low-dose ionizing radiation exposure, fluorescence in situ hybridization (FISH) using three differentially colored chromosome painting probes was employed to detect exchange-type chromosome aberrations. A reference dose response curve was constructed using blood samples from a female donor whose lymphocytes consistently exhibited a low frequency of cells at the second mitosis under routine culture conditions. Aberration yields were studied for a total of about 155 thousand metaphases obtained from seven dose-points of gamma irradiations (0, 50, 100, 150, 200, 250 and 300mGy). In situ hybridization was performed using commercially available painting probes for chromosomes 1, 2 and 4. With the aid of an automated image-capturing method, exchange-type aberrations involving painted chromosomes were detected with considerable accuracy and speed. The results on the exchange-type aberrations (dicentrics plus translocations) at the seven dose-points showed a good fit to the linear-quadratic model (y=0.0023+0.0015x+0.0819x(2), P=0.83). A blind test proved the reproducibility of the reference dose-response relationship. In the control experiments using blood samples from another donor, the estimated doses calculated on the basis of the present reference curve were proved to be in good agreement with the actual physical doses applied. The present dose-response curve may serve as a means to assess the individual differences in cytogenetical radio-sensitivities.

  9. Dose-response relationships for the onset of avoidance of sonar by free-ranging killer whales.

    Science.gov (United States)

    Miller, Patrick J O; Antunes, Ricardo N; Wensveen, Paul J; Samarra, Filipa I P; Alves, Ana Catarina; Tyack, Peter L; Kvadsheim, Petter H; Kleivane, Lars; Lam, Frans-Peter A; Ainslie, Michael A; Thomas, Len

    2014-02-01

    Eight experimentally controlled exposures to 1-2 kHz or 6-7 kHz sonar signals were conducted with four killer whale groups. The source level and proximity of the source were increased during each exposure in order to reveal response thresholds. Detailed inspection of movements during each exposure session revealed sustained changes in speed and travel direction judged to be avoidance responses during six of eight sessions. Following methods developed for Phase-I clinical trials in human medicine, response thresholds ranging from 94 to 164 dB re 1 μPa received sound pressure level (SPL) were fitted to Bayesian dose-response functions. Thresholds did not consistently differ by sonar frequency or whether a group had previously been exposed, with a mean SPL response threshold of 142 ± 15 dB (mean ± s.d.). High levels of between- and within-individual variability were identified, indicating that thresholds depended upon other undefined contextual variables. The dose-response functions indicate that some killer whales started to avoid sonar at received SPL below thresholds assumed by the U.S. Navy. The predicted extent of habitat over which avoidance reactions occur depends upon whether whales responded to proximity or received SPL of the sonar or both, but was large enough to raise concerns about biological consequences to the whales.

  10. First international comparison of primary absorbed dose to water standards in the medium-energy X-ray range

    Science.gov (United States)

    Büermann, Ludwig; Guerra, Antonio Stefano; Pimpinella, Maria; Pinto, Massimo; de Pooter, Jacco; de Prez, Leon; Jansen, Bartel; Denoziere, Marc; Rapp, Benjamin

    2016-01-01

    This report presents the results of the first international comparison of primary measurement standards of absorbed dose to water for the medium-energy X-ray range. Three of the participants (VSL, PTB, LNE-LNHB) used their existing water calorimeter based standards and one participant (ENEA) recently developed a new standard based on a water-graphite calorimeter. The participants calibrated three transfer chambers of the same type in terms of absorbed dose to water (NDw) and in addition in terms of air kerma (NK) using the CCRI radiation qualities in the range 100 kV to 250 kV. The additional NK values were intended to be used for a physical analysis of the ratios NDw/NK. All participants had previously participated in the BIPM.RI(I)-K3 key comparison of air kerma standards. Ratios of pairs of NMI's NK results of the current comparison were found to be consistent with the corresponding key comparison results within the expanded uncertainties of 0.6 % - 1 %. The NDw results were analysed in terms of the degrees of equivalence with the comparison reference values which were calculated for each beam quality as the weighted means of all results. The participant's results were consistent with the reference value within the expanded uncertainties. However, these expanded uncertainties varied significantly and ranged between about 1-1.8 % for the water calorimeter based standards and were estimated at 3.7 % for the water-graphite calorimeter. It was shown previously that the ratios NDw/NK for the type of ionization chamber used as transfer chamber in this comparison were very close (within less than 1 %) to the calculated values of (bar muen/ρ)w,ad, the mean values of the water-to-air ratio of the mass-energy-absorption coefficients at the depth d in water. Some of the participant's results deviated significantly from the expected behavior. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of

  11. 宽量程放射性剂量检测装置%A Radioactive Dose Detector with Wide Range

    Institute of Scientific and Technical Information of China (English)

    王俊华; 施一生; 张开明; 张飞

    2012-01-01

    设计了一种智能化、功耗低、量程宽、剂量线性好、使用便捷的微型建材放射性检测仪,硬件由89S51单片机、显示控制器、时钟电路、存储器、按键、探测电路及电源等组成.该装置达到高、低档自动转换,满足量程高、低端线性要求.该剂量仪成本低廉、准确度高、抗干扰能力强,而且性能稳定,达到了预期的设计目的,可方便地检测住宅放射性剂量是否安全,也可用于核辐射实验室、核工业等常规监测.%A micro intelligent building material radioactive detector was designed in the paper, which features low power consumption, wide range, and good dose linearity. The hardware of the detector is composed of an 89S51 MCU, a display controller, clock circuits, a memory unit, a keypad, and power detection circuit. It can not only be used in the nuclear industry, the routine monitoring of radioactive in laboratories, but also facilitates the detection of radioactive dose of indoor decoration and building materials.

  12. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yakun [Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Li, Xiang [Medical Physics Graduate Program, Department of Physics, Cleveland State University, Cleveland, Ohio 44115 (United States); Segars, W. Paul [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, and Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan, E-mail: samei@duke.edu [Medical Physics Graduate Program, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Departments of Physics, Biomedical Engineering, and Electrical and Computer Engineering, Duke University Medical Center, Durham, North Carolina 27705 (United States)

    2014-02-15

    Purpose: Given the radiation concerns inherent to the x-ray modalities, accurately estimating the radiation doses that patients receive during different imaging modalities is crucial. This study estimated organ doses, effective doses, and risk indices for the three clinical chest x-ray imaging techniques (chest radiography, tomosynthesis, and CT) using 59 anatomically variable voxelized phantoms and Monte Carlo simulation methods. Methods: A total of 59 computational anthropomorphic male and female extended cardiac-torso (XCAT) adult phantoms were used in this study. Organ doses and effective doses were estimated for a clinical radiography system with the capability of conducting chest radiography and tomosynthesis (Definium 8000, VolumeRAD, GE Healthcare) and a clinical CT system (LightSpeed VCT, GE Healthcare). A Monte Carlo dose simulation program (PENELOPE, version 2006, Universitat de Barcelona, Spain) was used to mimic these two clinical systems. The Duke University (Durham, NC) technique charts were used to determine the clinical techniques for the radiographic modalities. An exponential relationship between CTDI{sub vol} and patient diameter was used to determine the absolute dose values for CT. The simulations of the two clinical systems compute organ and tissue doses, which were then used to calculate effective dose and risk index. The calculation of the two dose metrics used the tissue weighting factors from ICRP Publication 103 and BEIR VII report. Results: The average effective dose of the chest posteroanterior examination was found to be 0.04 mSv, which was 1.3% that of the chest CT examination. The average effective dose of the chest tomosynthesis examination was found to be about ten times that of the chest posteroanterior examination and about 12% that of the chest CT examination. With increasing patient average chest diameter, both the effective dose and risk index for CT increased considerably in an exponential fashion, while these two dose

  13. Total Body Irradiation in the "Hematopoietic" Dose Range Induces Substantial Intestinal Injury in Non-Human Primates.

    Science.gov (United States)

    Wang, Junru; Shao, Lijian; Hendrickson, Howard P; Liu, Liya; Chang, Jianhui; Luo, Yi; Seng, John; Pouliot, Mylene; Authier, Simon; Zhou, Daohong; Allaben, William; Hauer-Jensen, Martin

    2015-11-01

    The non-human primate has been a useful model for studies of human acute radiation syndrome (ARS). However, to date structural changes in various parts of the intestine after total body irradiation (TBI) have not been systematically studied in this model. Here we report on our current study of TBI-induced intestinal structural injury in the non-human primate after doses typically associated with hematopoietic ARS. Twenty-four non-human primates were divided into three groups: sham-irradiated control group; and total body cobalt-60 (60Co) 6.7 Gy gamma-irradiated group; and total body 60Co 7.4 Gy gamma-irradiated group. After animals were euthanized at day 4, 7 and 12 postirradiation, sections of small intestine (duodenum, proximal jejunum, distal jejunum and ileum) were collected and fixed in 10% formalin. The intestinal mucosal surface length, villus height and crypt depths were assessed by computer-assisted image analysis. Plasma citrulline levels were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Total bone marrow cells were counted and hematopoietic stem/progenitor cells in bone marrow were analyzed by flow cytometer. Histopathologically, all segments exhibited conspicuous disappearance of plicae circulares and prominent atrophy of crypts and villi. Intestinal mucosal surface length was significantly decreased in all intestinal segments on day 4, 7 and 12 after irradiation (P 0.05). Crypt depth was also significantly reduced in all segments on day 4, 7 and 12 after irradiation (P irradiation, consistent with intestinal mucosal injury. Both 6.7 and 7.4 Gy TBI reduced total number of bone marrow cells. And further analysis showed that the number and function of CD45(+)CD34(+) hematopoietic stem/progenitors in bone marrow decreased significantly. In summary, TBI in the hematopoietic ARS dose range induces substantial intestinal injury in all segments of the small bowel. These findings underscore the importance of maintaining the

  14. The suitable dose range for the calibration of EBT2 film by the PDD method with a comparison of two curve fitting algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Liyun, E-mail: cliyun2000@gmail.com [Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung, Taiwan (China); Ho, Sheng-Yow [Department of Radiation Oncology, Chi Mei Medical Center, Liouying, Tainan, Taiwan (China); Lee, Tsair-Fwu [Medical Physics and Informatics Laboratory, Department of Electronics Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan (China); Yeh, Shyh-An [Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung, Taiwan (China); Department of Radiation Oncology, E-Da Hospital, Kaohsiung, Taiwan (China); Ding, Hueisch-Jy [Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung, Taiwan (China); Chen, Pang-Yu, E-mail: pangyuchen@yahoo.com.tw [Department of Radiation Oncology, Sinlau Christian Hospital, Tainan, Taiwan (China)

    2015-03-21

    EBT2 film is a convenient dosimetry quality-assurance (QA) tool with high 2D dosimetry resolution and a self-development property for use in verifications of radiation therapy treatment planning and special projects; however, the user will suffer from a relatively higher degree of uncertainty (more than ±6% by Hartmann et al. [29]), and the trouble of cutting one piece of film into small pieces and then reintegrating them each time. To prevent this tedious cutting work, and save calibration time and budget, a dose range analysis is presented in this study for EBT2 film calibration using the Percentage–Depth–Dose (PDD) method. Different combinations of the three dose ranges, 9–26 cGy, 33–97 cGy and 109–320 cGy, with two types of curve fitting algorithms, film pixel values and net optical densities converting into doses, were tested and compared. With the lowest error and acceptable inaccuracy of less than 3 cGy for the clinical dose range (9–320 cGy), a single film calibrated by the net optical density algorithm with the dose range 109–320 cGy was suggested for routine calibration.

  15. Calorimetry for dose measurement at electron accelerators in the 80-120 keV energy range

    DEFF Research Database (Denmark)

    Helt-Hansen, J.; Miller, A.; Duane, S.;

    2005-01-01

    Calorimeters for dose measurement at low-energy electron accelerator energies (80-120 keV) are described. Three calorimeters with different characteristics were designed and their dose response and measurement uncertainties were characterized. The heated air between the beam exit window and the c...

  16. A Broad Range of Dose Optima Achieve High-level, Long-term Gene Expression After Hydrodynamic Delivery of Sleeping Beauty Transposons Using Hyperactive SB100x Transposase

    Science.gov (United States)

    Podetz-Pedersen, Kelly M; Olson, Erik R; Somia, Nikunj V; Russell, Stephen J; McIvor, R Scott

    2016-01-01

    The Sleeping Beauty (SB) transposon system has been shown to enable long-term gene expression by integrating new sequences into host cell chromosomes. We found that the recently reported SB100x hyperactive transposase conferred a surprisingly high level of long-term expression after hydrodynamic delivery of luciferase-encoding reporter transposons in the mouse. We conducted dose-ranging studies to determine the effect of varying the amount of SB100x transposase-encoding plasmid (pCMV-SB100x) at a set dose of luciferase transposon and of varying the amount of transposon-encoding DNA at a set dose of pCMV-SB100x in hydrodynamically injected mice. Animals were immunosuppressed using cyclophosphamide in order to prevent an antiluciferase immune response. At a set dose of transposon DNA (25 µg), we observed a broad range of pCMV-SB100x doses (0.1–2.5 µg) conferring optimal levels of long-term expression (>1011 photons/second/cm2). At a fixed dose of 0.5 μg of pCMV-SB100x, maximal long-term luciferase expression (>1010 photons/second/cm2) was achieved at a transposon dose of 5–125 μg. We also found that in the linear range of transposon doses (100 ng), co-delivering the CMV-SB100x sequence on the same plasmid was less effective in achieving long-term expression than delivery on separate plasmids. These results show marked flexibility in the doses of SB transposon plus pCMV-SB100x that achieve maximal SB-mediated gene transfer efficiency and long-term gene expression after hydrodynamic DNA delivery to mouse liver. PMID:26784638

  17. SU-E-J-138: On the Ion Beam Range and Dose Verification in Hadron Therapy Using Sound Waves

    Energy Technology Data Exchange (ETDEWEB)

    Fourkal, E [Fox Chase Cancer Center, Philadelphia, PA (United States); Allegheny General Hospital, Pittsburgh, PA (United States); Veltchev, I [Fox Chase Cancer Center, Philadelphia, PA (United States); Gayou, O [Allegheny General Hospital, Pittsburgh, PA (United States); Nahirnyak, V [Bukovinian State Medical University, Chernivtsi (Ukraine)

    2015-06-15

    Purpose: Accurate range verification is of great importance to fully exploit the potential benefits of ion beam therapies. Current research efforts on this topic include the use of PET imaging of induced activity, detection of emerging prompt gamma rays or secondary particles. It has also been suggested recently to detect the ultrasound waves emitted through the ion energy absorption process. The energy absorbed in a medium is dissipated as heat, followed by thermal expansion that leads to generation of acoustic waves. By using an array of ultrasound transducers the precise spatial location of the Bragg peak can be obtained. The shape and intensity of the emitted ultrasound pulse depend on several variables including the absorbed energy and the pulse length. The main objective of this work is to understand how the ultrasound wave amplitude and shape depend on the initial ion energy and intensity. This would help guide future experiments in ionoacoustic imaging. Methods: The absorbed energy density for protons and carbon ions of different energy and field sizes were obtained using Fluka Monte Carlo code. Subsequently, the system of coupled equations for temperature and pressure is solved for different ion pulse intensities and lengths to obtain the pressure wave shape, amplitude and spectral distribution. Results: The proposed calculations show that the excited pressure wave amplitude is proportional to the absorbed energy density and for longer ion pulses inversely proportional to the ion pulse duration. It is also shown that the resulting ionoacoustic pressure distribution depends on both ion pulse duration and time between the pulses. Conclusion: The Bragg peak localization using ionoacoustic signal may eventually lead to the development of an alternative imaging method with sub-millimeter resolution. It may also open a way for in-vivo dose verification from the measured acoustic signal.

  18. Dose-ranging evaluation of intravitreal siRNA PF-04523655 for diabetic macular edema (the DEGAS study)

    DEFF Research Database (Denmark)

    Nguyen, Quan Dong; Schachar, Ronald A; Nduaka, Chudy I;

    2012-01-01

    To evaluate the safety and efficacy of three doses of PF-04523655, a 19-nucleotide methylated double stranded siRNA targeting the RTP801 gene, for the treatment of diabetic macular edema (DME) compared to focal/grid laser photocoagulation.......To evaluate the safety and efficacy of three doses of PF-04523655, a 19-nucleotide methylated double stranded siRNA targeting the RTP801 gene, for the treatment of diabetic macular edema (DME) compared to focal/grid laser photocoagulation....

  19. SU-E-J-146: A Research of PET-CT SUV Range for the Online Dose Verification in Carbon Ion Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L; Hu, W [Fudan University Shanghai Cancer Center, Shanghai, Shanghai (China); Moyers, M [Shanghai Proton and Heavy Ion Center, Colton, CA (China); Zhao, J [Shanghai Proton and Heavy Ion Center, Shanghai, Shanghai (China); Hsi, W [Shanghai Proton and Heavy Ion Center, Shanghai (China)

    2015-06-15

    Purpose: Positron-emitting isotope distributions can be used for the image fusion of the carbon ion planning CT and online target verification PETCT, after radiation in the same decay period,the relationship between the same target volume and the SUV value of different every single fraction dose can be found,then the range of SUV for the radiation target could be decided.So this online range also can provide reference for the correlation and consistency in planning target dose verification and evaluation for the clinical trial. Methods: The Rando head phantom can be used as real body,the 10cc cube volume target contouring is done,beam ISO Center depth is 7.6cm and the 90 degree fixed carbon ion beams should be delivered in single fraction effective dose of 2.5GyE,5GyE and 8GyE.After irradiation,390 seconds later the 30 minutes PET-CT scanning is performed,parameters are set to 50Kg virtual weight,0.05mCi activity.MIM Maestro is used for the image processing and fusion,five 16mm diameter SUV spheres have been chosen in the different direction in the target.The average SUV in target for different fraction dose can be found by software. Results: For 10cc volume target,390 seconds decay period,the Single fraction effective dose equal to 2.5Gy,Ethe SUV mean value is 3.42,the relative range is 1.72 to 6.83;Equal to 5GyE,SUV mean value is 9.946,the relative range is 7.016 to 12.54;Equal or above to 8GyE,SUV mean value is 20.496,the relative range is 11.16 to 34.73. Conclusion: Making an evaluation for accuracy of the dose distribution using the SUV range which is from the planning CT with after treatment online PET-CT fusion for the normal single fraction carbon ion treatment is available.Even to the plan which single fraction dose is above 2GyE,in the condition of other parameters all the same,the SUV range is linearly dependent with single fraction dose,so this method also can be used in the hyper-fraction treatment plan.

  20. SU-E-T-117: Dose to Organs Outside of CT Scan Range- Monte Carlo and Hybrid Phantom Approach

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, C; Jung, J [East Carolina University, Greenville, NC (United States); Lee, C [University of Michigan, Ann Arbor, MI (United States); Kim, J [University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Lee, C [National Cancer Institute, Rockville, MD (United States)

    2014-06-01

    Purpose: Epidemiological study of second cancer risk for cancer survivors often requires the dose to normal tissues located outside the anatomy covered by radiological imaging, which is usually limited to tumor and organs at risk. We have investigated the feasibility of using whole body computational human phantoms for estimating out-of-field organ doses for patients treated by Intensity Modulated Radiation Therapy (IMRT). Methods: Identical 7-field IMRT prostate plans were performed using X-ray Voxel Monte Carlo (XVMC), a radiotherapy-specific Monte Carlo transport code, on the computed tomography (CT) images of the torso of an adult male patient (175 cm height, 66 kg weight) and an adult male hybrid computational phantom with the equivalent body size. Dose to the liver, right lung, and left lung were calculated and compared. Results: Considerable differences are seen between the doses calculated by XVMC for the patient CT and the hybrid phantom. One major contributing factor is the treatment method, deep inspiration breath hold (DIBH), used for this patient. This leads to significant differences in the organ position relative to the treatment isocenter. The transverse distances from the treatment isocenter to the inferior border of the liver, left lung, and right lung are 19.5cm, 29.5cm, and 30.0cm, respectively for the patient CT, compared with 24.3cm, 36.6cm, and 39.1cm, respectively, for the hybrid phantom. When corrected for the distance, the mean doses calculated using the hybrid phantom are within 28% of those calculated using the patient CT. Conclusion: This study showed that mean dose to the organs located in the missing CT coverage can be reconstructed by using whole body computational human phantoms within reasonable dosimetric uncertainty, however appropriate corrections may be necessary if the patient is treated with a technique that will significantly deform the size or location of the organs relative to the hybrid phantom.

  1. Electrophysical properties of silicon layers implanted with erbium and oxygen ions over a wide dose range and heat treated with different temperature regimes

    CERN Document Server

    Aleksandrov, O V; Sobolev, N A; Nikolaev, Y A

    2002-01-01

    The electrophysical properties of silicon implanted with erbium and oxygen ions over a wide dose range have been studied. The electron mobility dependence on the electrically active center concentration has been obtained in erbium-doped silicon with a concentration varied over 9 x 10 sup 1 sup 5 - 8 x 10 sup 1 sup 6 cm sup - sup 3 range. In the concentration profiles of electrically active centers n(x) and erbium atoms C(x), irregularities related to some peculiarities of the Er segregation during solid phase epitaxial recrystallization were found. They are regarded as peculiar to erbium ion implantation doses higher than the amorphization thresholds. A linear increase of a maximum concentration of electrically active centers and practically constant effective coefficient k of their activation have been observed at the erbium ion implantation doses higher than the amorphization threshold. An increase in the electrically active center concentration gains saturation and k drops at the erbium concentration highe...

  2. The impact of uncertainties in the CT conversion algorithm when predicting proton beam ranges in patients from dose and PET-activity distributions.

    Science.gov (United States)

    España, Samuel; Paganetti, Harald

    2010-12-21

    The advantages of a finite range of proton beams can only be partly exploited in radiation therapy unless the range can be predicted in patient anatomy with proton-induced PET imaging aims at ∼2 mm accuracy in range verification. The latter is done using Monte Carlo predicted PET images. Monte Carlo methods are based on CT images to describe patient anatomy. The dose calculation algorithm and the CT resolution/artifacts might affect dose calculation accuracy. Additionally, when using Monte Carlo for PET range verification, the biological decay model and the cross sections for positron emitter production affect predicted PET images. The goal of this work is to study the effect of uncertainties in the CT conversion on the proton beam range predicted by Monte Carlo dose calculations and proton-induced PET signals. Conversion schemes to assign density and elemental composition based on a CT image of the patient define a unique Hounsfield unit (HU) to tissue parameters relationship. Uncertainties are introduced because there is no unique relationship between HU and tissue parameters. In this work, different conversion schemes based on a stoichiometric calibration method as well as different numbers of tissue bins were considered in three head and neck patients. For Monte Carlo dose calculation, the results show close to zero (proton dose distributions based on Monte Carlo calculation are only slightly affected by the uncertainty on density and elemental composition introduced by unique assignment to each HU if a stoichiometric calibration is used. Calculated PET images used for range verification are more sensitive to conversion uncertainties causing an intrinsic limitation due to CT conversion alone of at least 1 mm.

  3. Biological activity of two botulinum toxin type A complexes (Dysport and Botox) in volunteers: a double-blind, randomized, dose-ranging study.

    Science.gov (United States)

    Wohlfarth, K; Schwandt, I; Wegner, F; Jürgens, T; Gelbrich, G; Wagner, A; Bogdahn, U; Schulte-Mattler, W

    2008-12-01

    Despite extensive clinical experience and published data regarding botulinum toxin, questions remain about the clinical substitution of one botulinum toxin formulation for another. In the case of Dysport and Botox, dose-equivalence ratios ranging from 1:1 to 6:1 (Dysport:Botox) have been advocated. This dose-ranging, electroneurographic study investigated the dose equivalence, diffusion characteristics (spread) and safety of these two type-A toxins in 79 volunteers. Dysport and Botox caused significant and similar reductions in compound muscle action potential (CMAP) amplitude in the target muscle (extensor digitorum brevis, EDB) 2 weeks after injection, with effects persisting to the 12-week timepoint. For both products, the reduction in amplitude was increased with increasing doses and with increasing concentration. The effects of toxin on neighbouring muscles were much smaller and of a shorter duration than those on the target muscle, implying a modest spread of toxin. Unlike the target muscle, the effects were greater with the higher volume, suggesting this volume led to greater diffusion from the EDB. No adverse events were reported. Statistical modelling with CMAP amplitude data from the target muscle gave a bioequivalence of 1.57 units of Dysport:1 unit of Botox (95 % CI: 0.77-3.20 units). The data indicate that a dose-equivalence ratio of 3:1 was within the statistical error limits, but ratios over 3:1 are too high.

  4. Alanine-EPR dosimetry for measurements of ionizing radiation absorbed doses in the range 0.5-10 kGy

    CERN Document Server

    Peimel-Stuglik, Z

    2001-01-01

    The usefulness of two, easy accessible alanine dosimeters (ALANPOL from IChTJ and foil dosimeter from Gamma Service, Radeberg, Germany) to radiation dose measurement in the range of 0.5-10 kGy, were investigated. In both cases, the result of the test was positive. The foil dosemeter from Gamma Service is recommended for dose distribution measurements in fantoms or products, ALANPOL - for routine measurements. The EPR-alanine method based on the described dosimeters can be successfully used, among others, in the technology of radiation protection of food.

  5. A simple dose regimen of artesunate and amodiaquine based on arm span- or age range for childhood falciparum malaria: a preliminary evaluation.

    Science.gov (United States)

    Sowunmi, Akintunde; Akinrinola, Ibukun A; Gbotosho, Grace O; Okuboyejo, Titilope M; Happi, Christian T

    2012-08-01

    A dose regimen of artesunate and amodiaquine based on arm span- or age range (DRAAAS), derived from a study of 1674 children, was compared with standard dose regimen of the same drugs calculated according to body weight (SDRAA) in 68 malarious children. Children on DRAAAS received 0.8-1.0 of artesunate/kg and 0.9-1.2 times amodiaquine/kg compared with those receiving SDRAA. Parasite and fever clearance and fall in hematocrit in the first 3 days were similar; both regimens were well tolerated. DRAAAS is simple and is efficacious.

  6. Evaluation of GAFCHROMIC EBT2 dosimetry for the low dose range using a flat-bed scanner with the reflection mode.

    Science.gov (United States)

    Gotanda, Tatsuhiro; Katsuda, Toshizo; Akagawa, Takuya; Gotanda, Rumi; Tabuchi, Akihiko; Yamamoto, Kenyu; Kuwano, Tadao; Yatake, Hidetoshi; Yabunaka, Koichi; Takeda, Yoshihiro

    2013-03-01

    Recently developed radiochromic films can easily be used to measure absorbed doses because they do not need development processing and indicate a density change that depends on the absorbed dose. However, in GAFCHROMIC EBT2 dosimetry (GAF-EBT2) as a radiochromic film, the precision of the measurement was compromised, because of non-uniformity problems caused by image acquisition using a flat-bed scanner with a transmission mode. The purpose of this study was to improve the precision of the measurement using a flat-bed scanner with a reflection mode at the low absorbed dose dynamic range of GAF-EBT2. The calibration curves of the absorbed dose versus the film density for GAF-EBT2 were provided. X-rays were exposed in the range between ~0 and 120 mGy in increments of about 12 mGy. The results of the method using a flat-bed scanner with the transmission mode were compared with those of the method using the same scanner with the reflection mode. The results should that the determination coefficients (r (2) ) for the straight-line approximation of the calibration curve using the reflection mode were higher than 0.99, and the gradient using the reflection mode was about twice that of the one using the transmission mode. The non-uniformity error that is produced by a flat-bed scanner with the transmission mode setting could be almost eliminated by converting from the transmission mode to the reflection mode. In light of these findings, the method using a flat-bed scanner with the reflection mode (only using uniform white paper) improved the precision of the measurement for the low absorbed dose range.

  7. A simple dose regimen of artesunate and amodiaquine based on age or body weight range for uncomplicated falciparum malaria in children: comparison of therapeutic efficacy with standard dose regimen of artesunate and amodiaquine and artemether-lumefantrine.

    Science.gov (United States)

    Gbotosho, Grace O; Sowunmi, Akintunde; Okuboyejo, Titilope M; Happi, Christian T; Folarin, Onikepe O; Adewoye, Elsie O

    2012-07-01

    A new dose regimen of artesunate and amodiaquine (NDRAA) based on age or body weight range was compared with standard dose regimen of artesunate and amodiaquine (SDRAA) calculated according to body weight and with fixed-dose artesunate-amodiaquine (FDAA) and artemether-lumefantrine (AL) in 304 children afflicted by malaria aged 15 years or younger. In initial comparison (n = 208), children on NDRAA received 1-3 times amodiaquine per kilogram of body weight and 1-1.5 times of artesunate per kilogram of body weight compared with those receiving SDRAA. Parasite but not fever clearance was significantly faster in children who received NDRAA (19.4 ± 8.4 hours vs. 24.6 ± 15.5 hours, P = 0.003). Polymerase chain reaction-uncorrected cure rates on days 28-42 were also significantly higher in children who received NDRAA (P < 0.02 in all cases). Therapeutic responses in children younger than 5 years (n = 96) treated with NDRAA, FDAA, and AL were similar. Changes in hematocrit values and reported adverse events after commencing therapy were similar in those who received NDRAA and SDRAA. All drug regimens were well tolerated. NDRAA based on age or body weight range is simple, is therapeutically superior to SDRAA calculated according to body weight, and is as efficacious as AL in children younger than 5 years.

  8. Radiological dose assessment for residual radioactive material in soil at the clean slate sites 1, 2, and 3, Tonopah Test Range

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    A radiological dose assessment has been performed for Clean Slate Sites 1, 2, and 3 at the Tonopah Test Range, approximately 390 kilometers (240 miles) northwest of Las Vegas, Nevada. The assessment demonstrated that the calculated dose to hypothetical individuals who may reside or work on the Clean Slate sites, subsequent to remediation, does not exceed the limits established by the US Department of Energy for protection of members of the public and the environment. The sites became contaminated as a result of Project Roller Coaster experiments conducted in 1963 in support of the US Atomic Energy Commission (Shreve, 1964). Remediation of Clean Slate Sites 1, 2, and 3 is being performed to ensure that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works on a Clean Slate site should not exceed 100 millirems per year. The DOE residual radioactive material guideline (RESRAD) computer code was used to assess the dose. RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines (Yu et al., 1993a). In May and June of 1963, experiments were conducted at Clean Slate Sites 1, 2, and 3 to study the effectiveness of earth-covered structures for reducing the dispersion of nuclear weapons material as a result of nonnuclear explosions. The experiments required the detonation of various simulated weapons using conventional chemical explosives (Shreve, 1964). The residual radioactive contamination in the surface soil consists of weapons grade plutonium, depleted uranium, and their radioactive decay products.

  9. Safety, immunogenicity and dose ranging of a new Vi-CRM₁₉₇ conjugate vaccine against typhoid fever: randomized clinical testing in healthy adults.

    Directory of Open Access Journals (Sweden)

    Pierre van Damme

    Full Text Available BACKGROUND: Typhoid fever causes more than 21 million cases of disease and 200,000 deaths yearly worldwide, with more than 90% of the disease burden being reported from Asia. Epidemiological data show high disease incidence in young children and suggest that immunization programs should target children below two years of age: this is not possible with available vaccines. The Novartis Vaccines Institute for Global Health developed a conjugate vaccine (Vi-CRM₁₉₇ for infant vaccination concomitantly with EPI vaccines, either starting at 6 weeks with DTP or at 9 months with measles vaccine. We report the results from a Phase 1 and a Phase 2 dose ranging trial with Vi-CRM₁₉₇ in European adults. METHODOLOGY: Following randomized blinded comparison of single vaccination with either Vi-CRM₁₉₇ or licensed polysaccharide vaccines (both containing 25·0 µg of Vi antigen, a randomised observer blinded dose ranging trial was performed in the same center to compare three concentrations of Vi-CRM₁₉₇ (1·25 µg, 5·0 µg and 12·5 µg of Vi antigen with the polysaccharide vaccine. PRINCIPAL FINDINGS: All vaccines were well tolerated. Compared to the polysaccharide vaccine, Vi-CRM₁₉₇ induced a higher incidence of mild to moderate short lasting local pain. All Vi-CRM₁₉₇ formulations induced higher Vi antibody levels compared to licensed control, with clear dose response relationship. CONCLUSIONS: Vi-CRM₁₉₇ did not elicit safety concerns, was highly immunogenic and is therefore suitable for further clinical testing in endemic populations of South Asia. TRIAL REGISTRATION: ClinicalTrials.gov NCT01123941 NCT01193907.

  10. Dose-Ranging Effects of Canagliflozin, a Sodium-Glucose Cotransporter 2 Inhibitor, as Add-On to Metformin in Subjects With Type 2 Diabetes

    Science.gov (United States)

    Rosenstock, Julio; Aggarwal, Naresh; Polidori, David; Zhao, Yue; Arbit, Deborah; Usiskin, Keith; Capuano, George; Canovatchel, William

    2012-01-01

    OBJECTIVE To evaluate the effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, in type 2 diabetes mellitus inadequately controlled with metformin monotherapy. RESEARCH DESIGN AND METHODS This was a double-blind, placebo-controlled, parallel-group, multicenter, dose-ranging study in 451 subjects randomized to canagliflozin 50, 100, 200, or 300 mg once daily (QD) or 300 mg twice daily (BID), sitagliptin 100 mg QD, or placebo. Primary end point was change in A1C from baseline through week 12. Secondary end points included change in fasting plasma glucose (FPG), body weight, and overnight urinary glucose-to-creatinine ratio. Safety and tolerability were also assessed. RESULTS Canagliflozin was associated with significant reductions in A1C from baseline (7.6–8.0%) to week 12: −0.79, −0.76, −0.70, −0.92, and −0.95% for canagliflozin 50, 100, 200, 300 mg QD and 300 mg BID, respectively, versus −0.22% for placebo (all P < 0.001) and −0.74% for sitagliptin. FPG was reduced by −16 to −27 mg/dL, and body weight was reduced by −2.3 to −3.4%, with significant increases in urinary glucose-to-creatinine ratio. Adverse events were transient, mild to moderate, and balanced across arms except for a non–dose-dependent increase in symptomatic genital infections with canagliflozin (3–8%) versus placebo and sitagliptin (2%). Urinary tract infections were reported without dose dependency in 3–9% of canagliflozin, 6% of placebo, and 2% of sitagliptin arms. Overall incidence of hypoglycemia was low. CONCLUSIONS Canagliflozin added onto metformin significantly improved glycemic control in type 2 diabetes and was associated with low incidence of hypoglycemia and significant weight loss. The safety/tolerability profile of canagliflozin was favorable except for increased frequency of genital infections in females. PMID:22492586

  11. Effect of an extract of Ganoderma lucidum in men with lower urinary tract symptoms: a double-blind, placebo-controlled randomized and dose-ranging study

    Institute of Scientific and Technical Information of China (English)

    Masanori Noguchi; Kei Matsuoka; Tatsuyuki Kakuma; Katsnro Tomiyasu; Yoshiko Kurita; Hiroko Kukihara; Fumiko Konishi; Shoichiro Kumamoto; Kuniyoshi Shimizu; Ryuichiro Kondo

    2008-01-01

    Aim: To conduct a double-blind, placebo-controlled randomized and dose-ranging study to evaluate the safety and efficacy of the extract of Ganoderma lucidum (G. lucidum) in men with lower urinary tract symptoms (LUTS). Methods: We enrolled male volunteers (> 50 years) with an International Prostate Symptom Score (IPSS; questions 1-7)≥ 5 and a prostate-specific antigen (PSA) value < 4 ng/mL. Volunteers were randomized into groups of placebo (n = 12), G. lucidum of 0.6 mg (n = 12), 6 mg (n = 12) or 60 mg (n = 14), administered once daily. Efficacy was measured as a change from baseline in IPSS and the peak urine flow rate (Qmax). Prostate volume and residual urine were estimated by ultrasonography, and blood tests, including PSA levels, were measured at baseline and at the end of the treatment. Results: The overall administration was well tolerated, with no major adverse effects. Statistical significances in the magnitude of changes between the experimental groups were observed at weeks 4 and 8. No changes were observed with respect to Qmax, residual urine, prostate volume or PSA levels. Conclusion: The extract of G. lucidum was well tolerated and an improvement in IPSS was observed. The recommended dose of the extract of G. lucidum is 6 mg in men with LUTS. (Asian J Androl 2008 Jul; 10: 651-658)

  12. Creatine target engagement with brain bioenergetics: a dose-ranging phosphorus-31 magnetic resonance spectroscopy study of adolescent females with SSRI-resistant depression.

    Science.gov (United States)

    Kondo, Douglas G; Forrest, Lauren N; Shi, Xianfeng; Sung, Young-Hoon; Hellem, Tracy L; Huber, Rebekah S; Renshaw, Perry F

    2016-08-01

    Major depressive disorder (MDD) often begins during adolescence and is projected to become the leading cause of global disease burden by the year 2030. Yet, approximately 40 % of depressed adolescents fail to respond to standard antidepressant treatment with a selective serotonin reuptake inhibitor (SSRI). Converging evidence suggests that depression is related to brain mitochondrial dysfunction. Our previous studies of MDD in adult and adolescent females suggest that augmentation of SSRI pharmacotherapy with creatine monohydrate (CM) may improve MDD outcomes. Neuroimaging with phosphorus-31 magnetic resonance spectroscopy ((31)P-MRS) can measure the high-energy phosphorus metabolites in vivo that reflect mitochondrial function. These include phosphocreatine (PCr), a substrate for the creatine kinase reaction that produces adenosine triphosphate. As part of the National Institute of Mental Health's experimental medicine initiative, we conducted a placebo-controlled dose-ranging study of adjunctive CM for adolescent females with SSRI-resistant MDD. Participants were randomized to receive placebo or CM 2, 4 or 10 g daily for 8 weeks. Pre- and post-treatment (31)P-MRS scans were used to measure frontal lobe PCr, to assess CM's target engagement with cerebral energy metabolism. Mean frontal lobe PCr increased by 4.6, 4.1 and 9.1 % in the 2, 4 and 10 g groups, respectively; in the placebo group, PCr fell by 0.7 %. There was no group difference in adverse events, weight gain or serum creatinine. Regression analysis of PCr and depression scores across the entire sample showed that frontal lobe PCr was inversely correlated with depression scores (p = 0.02). These results suggest that CM achieves target engagement with brain bioenergetics and that the target is correlated with a clinical signal. Further study of CM as a treatment for adolescent females with SSRI-resistant MDD is warranted.

  13. Dose rate range extension of the calibration of dosemeters at LNMRI, Rio de Janeiro, Brazil; Expansao da faixa de taxas de dose para a calibracao de instrumentos de medir radiacao no LNMRI, Rio de Janeiro, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, T.S.; Carlos, M.T.; Ramos, M.M.O., E-mail: tschirn@ird.gov.b, E-mail: marcia@ird.gov.b, E-mail: mmoramos@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The present work has an objective the implantation of a experimental arrange for application of essays of instrument calibration for measurement of low dose rate, which measure rate less than 10 {mu}Sv/h

  14. Measurements of thermal- and slow-neutron dose distributions in ordinary concrete shield using a reactor neutron beam of different energy ranges

    Energy Technology Data Exchange (ETDEWEB)

    Megahid, R.M.; Makarious, A.S.; El-Kolaly, M.A.; Afifi, Y.A.

    1980-01-01

    Experimental studies on the distribution and attenuation of thermal and slow neutron doses in ordinary concrete shield have been carried-out. A collimated beam of reactor neutrons emitted from one of the horizontal channels of the ET-RR-1 reactor was used. Measurements were performed using, a direct beam, cadmium filtered beam and boron carbide filtered beam. The neutron doses were measured using thermolumin-escent Li/sub 2/B/sub 4/O/sub 7/ detectors. The measured data have been analyzed and a group of attenuation curves were given for beams of reactor neutrons of different energy. These curves show that cadmium and boron carbide filters tend to decrease the neutron doses specially at the beginning of penetration. The data were transformed to that which would be obtained using neutron sources of different geometries.

  15. The range of minimum provoking doses in hazelnut-allergic patients as determined by double-blind, placebo-controlled food challenges

    NARCIS (Netherlands)

    Wensing, M.; Penninks, A.H.; Hefle, S.L.; Akkerdaas, J.H.; Ree, R. van; Koppelman, S.J.; Bruijnzeel-Koomen, C.A.F.M.; Knulst, A.C.

    2002-01-01

    Background: The risk for allergic reactions depends on the sensitivity of individuals and the quantities of offending food ingested. The sensitivity varies among allergic individuals, as does the threshold dose of a food allergen capable of inducing an allergic reaction. Objective: This study aimed

  16. Estimated cardiovascular relative risk reduction from fixed-dose combination pill (polypill) treatment in a wide range of patients with a moderate risk of cardiovascular disease

    NARCIS (Netherlands)

    Lafeber, Melvin; Webster, Ruth; Visseren, Frank L J; Bots, Michiel L.; Grobbee, Diederick E.; Spiering, W.; Rodgers, Anthony

    2016-01-01

    Aims Recent data indicate that fixed-dose combination (FDC) pills, polypills, can produce sizeable risk factor reductions. There are very few published data on the consistency of the effects of a polypill in different patient populations. It is unclear for example whether the effects of the polypill

  17. Studies on γ-ray induced structural changes in Nd{sup 3+} doped lead alumino silicate glasses by means of thermoluminescence for dosimetric applications in high dose ranges

    Energy Technology Data Exchange (ETDEWEB)

    Sundara Rao, M. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, Guntur, A.P. (India); Gandhi, Y. [Department of Physics, Kakani Venkata Ratnam College, Nandigama 521 185, A.P. (India); Sanyal, Bhaskar [Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Bhargavi, K. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, Guntur, A.P. (India); Piasecki, M. [Institute of Physics, J. Dlugosz University, Ul. Armii Krajowej 13/15, 42-201 Czestochowa (Poland); Veeraiah, N., E-mail: nvr8@rediffmail.com [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, Guntur, A.P. (India)

    2014-12-15

    Graphical abstract: TL glow curves of PbO–SiO{sub 2}:Nd{sup 3+} glasses mixed with different concentrations of Al{sub 2}O{sub 3} exposed to γ-rays of dose 5.0 kGy. - Highlights: • TL studies of Nd{sup 3+} ions doped lead alumino silicate glasses were carried out. • Highest TL output was observed in the glasses mixed with 10 mol% of Al{sub 2}O{sub 3}. • Different mechanisms responsible for TL emission were discussed. • Near linearity of the dose response was observed in the dose range of 1.0–3.0 kGy. • These glasses may be useful as dosimeters in processing perishable food commodities. - Abstract: Thermoluminescence (TL) studies on PbO–Al{sub 2}O{sub 3}–SiO{sub 2}:Nd{sup 3+} glasses mixed with varying concentrations of Al{sub 2}O{sub 3} exposed to γ-rays of dose in the range 0–5.0 kGy were carried out. The TL emission exhibited a dosimetric peak at about 185 °C. The TL output under the glow peak increased with increasing Al{sub 2}O{sub 3} and also with the γ-ray dose. The mechanisms responsible for TL emission and enhancement of TL output with increase in the concentration of Al{sub 2}O{sub 3} were quantitatively discussed in terms of induced structural defects in the vicinity of Nd{sup 3+} ions due to interaction of γ-rays with the glass network in the scenario of varying concentration of Al{sub 2}O{sub 3}. The dose response of these glass samples exhibited linear behavior in the medium dose range viz., 1.0–3.0 kGy. Finally, it is concluded that the glass containing the highest concentration of Al{sub 2}O{sub 3} exhibits high TL output and such glasses are useful for dosimetry in the range 1.0–3.0 kGy and hence these glasses may be useful for dosimetry in such high range of doses required for commercial radiation processing of perishable food commodities to extend their shelf-lives.

  18. Doses of Quercetin in the Range of Serum Concentrations Exert Delipidating Effects in 3T3-L1 Preadipocytes by Acting on Different Stages of Adipogenesis, but Not in Mature Adipocytes

    Directory of Open Access Journals (Sweden)

    Itziar Eseberri

    2015-01-01

    Full Text Available Scope. To determine whether doses of quercetin in the range of serum concentrations exert any effect on triacylglycerol accumulation in maturing preadipocytes and mature adipocytes. The influence on the expression of adipogenic markers as well as on gene expression and activity of enzymes involved in triacylglycerol metabolism were assessed. Methods and Results. 3T3-L1 preadipocytes were treated during differentiation and mature adipocytes for 24 hours with low doses (0.1–10 µM of quercetin. Triacylglycerol content in both cell types and free fatty acid and glycerol in the incubation medium of mature adipocytes were measured spectrophotometrically. Gene and protein expression were assessed by RT-PCR and Western blot. LPL and FAS activities were quantified. During differentiation quercetin reduced triacylglycerol content at doses from 0.5 to 10 µM. 1 µM of quercetin reduced C/EBPβ gene expression, SREBP1 mature protein levels, and PPARγ gene expression. 10 µM of quercetin reduced LPL gene expression and PPARγ and SREBP1c expression. In mature adipocytes, only 10 µM of quercetin reduced triacylglycerol content. Lipogenic FAS expression and activity were reduced at this dose. Conclusion. Quercetin, in the range of serum concentrations, is able to inhibit adipogenesis, but higher doses, at least 10 µM, are needed to reduce fat accumulation in mature adipocytes.

  19. Barnidipine, a novel calcium antagonist for once-daily treatment of hypertension: a multicenter, double-blind, placebo-controlled, dose-ranging study. Dutch Barnidipine Multicenter Study Group.

    Science.gov (United States)

    Hart, W; Holwerda, N J

    1997-11-01

    The antihypertensive effects and tolerance of once-daily barnidipine, a novel dihydropyridine calcium antagonist, were evaluated. A total of 190 patients with a sitting diastolic blood pressure (DBP) of 95-114 mmHg were investigated in this multicenter, double-blind, placebo-controlled, dose-ranging study. After a 4-week single-blind placebo run-in period, patients were randomized to placebo or barnidipine (10 mg, 20 mg, or 30 mg modified release capsules) once daily for 6 weeks. Nonresponders (sitting DBP > or =90 mmHg and a decrease of barnidipine lowered blood pressure, with a trend toward a dose-response relationship over the dose range 10-30 mg. A dose increment of 10 mg in nonresponders resulted in additional reductions in blood pressure. At the end of the active treatment period, the responder rates were 41% and 57% for 10 mg and 20 mg barnidipine, respectively. Heart rate in both sitting and standing positions was not affected by barnidipine. Treatment with barnidipine was well tolerated, and the incidence of adverse events was dose related and consistent with vasodilatation. In conclusion, barnidipine (10-30 mg) administered once daily is well tolerated and reduces blood pressure in patients with mild to moderate hypertension.

  20. Passive dosing of triclosan in multi-generation tests with copepods - Stable exposure concentrations and effects at the low µg l-1 range

    DEFF Research Database (Denmark)

    Ribbenstedt, Anton; Mustajärvi, Lukas; Breitholtz, Magnus

    2016-01-01

    Ecotoxicity testing is a crucial component of chemical risk assessment. Still, due to methodological difficulties related to controlling exposure concentrations over time, data on long-term effects of organic chemicals at low concentrations are limited. The aim of the present study was therefore...... to test the applicability of passive dosing to maintain stable concentrations of the organochlorine bacteriocide triclosan in the water phase during a 6-week multi-generation population development test with the harpacticoid copepod Nitocra spinipes. Triclosan was loaded into silicone (1000 mg), which...... was used as passive dosing phase in the exposure vials. The distribution ratio for triclosan between silicone and water (Dsilicone-water ) was 10466 ± 1927. A population development test was conducted at three concentration levels of triclosan that were measured to be 3-5 µg L(-1) , 7-11 µg L(-1) and 16...

  1. Passive dosing of triclosan in multi-generation tests with copepods - Stable exposure concentrations and effects at the low µg l-1 range

    DEFF Research Database (Denmark)

    Ribbenstedt, Anton; Mustajärvi, Lukas; Breitholtz, Magnus;

    2016-01-01

    to test the applicability of passive dosing to maintain stable concentrations of the organochlorine bacteriocide triclosan in the water phase during a 6-week multi-generation population development test with the harpacticoid copepod Nitocra spinipes. Triclosan was loaded into silicone (1000 mg), which...... was used as passive dosing phase in the exposure vials. The distribution ratio for triclosan between silicone and water (Dsilicone-water ) was 10466 ± 1927. A population development test was conducted at three concentration levels of triclosan that were measured to be 3-5 µg L(-1) , 7-11 µg L(-1) and 16...... exerted on juvenile development. Progressively lower development index values in the populations exposed to increasing triclosan concentrations suggest developmental retardation. Our results further stress the need for chronic exposure during ecotoxicity testing in chemical risk assessment as even...

  2. SU-E-T-493: Analysis of the Impact of Range and Setup Uncertainties On the Dose to Brain Stem and Whole Brain in the Passively Scattered Proton Therapy Plans

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, N; Zhu, X; Zhang, X; Poenisch, F; Li, H; Wu, R; Lii, M; Umfleet, W; Gillin, M; Mahajan, A; Grosshans, D [MD Anderson Cancer Ctr., Houston, TX (United States)

    2014-06-01

    Purpose: To quantify the impact of range and setup uncertainties on various dosimetric indices that are used to assess normal tissue toxicities of patients receiving passive scattering proton beam therapy (PSPBT). Methods: Robust analysis of sample treatment plans of six brain cancer patients treated with PSPBT at our facility for whom the maximum brain stem dose exceeded 5800 CcGE were performed. The DVH of each plan was calculated in an Eclipse treatment planning system (TPS) version 11 applying ±3.5% range uncertainty and ±3 mm shift of the isocenter in x, y and z directions to account for setup uncertainties. Worst-case dose indices for brain stem and whole brain were compared to their values in the nominal plan to determine the average change in their values. For the brain stem, maximum dose to 1 cc of volume, dose to 10%, 50%, 90% of volume (D10, D50, D90) and volume receiving 6000, 5400, 5000, 4500, 4000 CcGE (V60, V54, V50, V45, V40) were evaluated. For the whole brain, maximum dose to 1 cc of volume, and volume receiving 5400, 5000, 4500, 4000, 3000 CcGE (V54, V50, V45, V40 and V30) were assessed. Results: The average change in the values of these indices in the worst scenario cases from the nominal plan were as follows. Brain stem; Maximum dose to 1 cc of volume: 1.1%, D10: 1.4%, D50: 8.0%, D90:73.3%, V60:116.9%, V54:27.7%, V50: 21.2%, V45:16.2%, V40:13.6%,Whole brain; Maximum dose to 1 cc of volume: 0.3%, V54:11.4%, V50: 13.0%, V45:13.6%, V40:14.1%, V30:13.5%. Conclusion: Large to modest changes in the dosiemtric indices for brain stem and whole brain compared to nominal plan due to range and set up uncertainties were observed. Such potential changes should be taken into account while using any dosimetric parameters for outcome evaluation of patients receiving proton therapy.

  3. Itolizumab in combination with methotrexate modulates active rheumatoid arthritis: safety and efficacy from a phase 2, randomized, open-label, parallel-group, dose-ranging study.

    Science.gov (United States)

    Chopra, Arvind; Chandrashekara, S; Iyer, Rajgopalan; Rajasekhar, Liza; Shetty, Naresh; Veeravalli, Sarathchandra Mouli; Ghosh, Alakendu; Merchant, Mrugank; Oak, Jyotsna; Londhey, Vikram; Barve, Abhijit; Ramakrishnan, M S; Montero, Enrique

    2016-04-01

    The objective of this study was to assess the safety and efficacy of itolizumab with methotrexate in active rheumatoid arthritis (RA) patients who had inadequate response to methotrexate. In this open-label, phase 2 study, 70 patients fulfilling American College of Rheumatology (ACR) criteria and negative for latent tuberculosis were randomized to four arms: 0.2, 0.4, or 0.8 mg/kg itolizumab weekly combined with oral methotrexate, and methotrexate alone (2:2:2:1). Patients were treated for 12 weeks, followed by 12 weeks of methotrexate alone during follow-up. Twelve weeks of itolizumab therapy was well tolerated. Forty-four patients reported adverse events (AEs); except for six severe AEs, all others were mild or moderate. Infusion-related reactions mainly occurred after the first infusion, and none were reported after the 11th infusion. No serum anti-itolizumab antibodies were detected. In the full analysis set, all itolizumab doses showed evidence of efficacy. At 12 weeks, 50 % of the patients achieved ACR20, and 58.3 % moderate or good 28-joint count Disease Activity Score (DAS-28) response; at week 24, these responses were seen in 22 and 31 patients. Significant improvements were seen in Short Form-36 Health Survey and Health Assessment Questionnaire Disability Index scores. Overall, itolizumab in combination with methotrexate was well tolerated and efficacious in RA for 12 weeks, with efficacy persisting for the entire 24-week evaluation period. (Clinical Trial Registry of India, http://ctri.nic.in/Clinicaltrials/login.php , CTRI/2008/091/000295).

  4. Characterization of Dose in a TC of 64-Detectors used in pediatrics. Evaluation of the effects of the Over beaming and Over ranging; Caracterizacion de dosis en un TC de 64 detectores utilizado en pediatria. Evaluacion de los efectos del Overbeaming y Overranging

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Castanon, P.; Roch Gonzalez, M.; Rodriguez Martin, G.; Espana Lopez, M. L.; Giner Sala, M.

    2013-07-01

    The objective of this study is to evaluate the contribution of effects over beaming and over ranging dose received by the patient in a TC multislice with 64 detectors, installed at a children's hospital, for the different acquisition modes available, in order to assess the adequacy of the protocols pre-set for Pediatrics and more accurately assess the received dose. (Author)

  5. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  6. AVE5026, a new hemisynthetic ultra-low-molecular-weight heparin for the prevention of venous thromboembolism in patients after total knee replacement surgery--TREK: a dose-ranging study

    DEFF Research Database (Denmark)

    Lassen, M R; Dahl, O E; Mismetti, P

    2009-01-01

    BACKGROUND: AVE5026 is a new hemisynthetic ultra-low-molecular-weight heparin, with a novel anti-thrombotic profile resulting from high anti-factor (F)Xa activity and residual anti-FIIa activity. AVE5026 is in clinical development for venous thromboembolism (VTE) prevention, a frequent complication......-daily doses of AVE5026 (5, 10, 20, 40, or 60 mg) or enoxaparin 40 mg in the calibrator arm. The primary efficacy end point was VTE until post-operative day 11, defined as deep vein thrombosis (DVT) detected by bilateral venography, symptomatic DVT, non-fatal pulmonary embolism (PE) and VTE-related death......: The safety and efficacy results of this study suggest that a AVE5026 dose of between 20 and 40 mg presents an adequate benefit-to-risk ratio....

  7. Dose rate mapping of VMAT treatments

    Science.gov (United States)

    Podesta, Mark; Antoniu Popescu, I.; Verhaegen, Frank

    2016-06-01

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min-1 and 12 Gy min-1 but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.

  8. Radiation dose in neurological computed tomographic scanning

    Energy Technology Data Exchange (ETDEWEB)

    Whitmore, R.C.; Bushong, S.C.; Archer, B.A.; Glaze, S.A.

    1979-07-01

    Patient dose and dose distribution during neurologicl computed tomography examinations were determined with five different computed tomography scanners. Maximum intracranial doses ranged from 1.17 to 2.67 rads. Doses to the lens of the eye ranged from 0.23 to 2.81 rads. These levels are considered and compared with patient doses reported for other computed tomography studies and for conventional tomographic examinations. In general, patient dose during computer tomographic examinations is less than one quarter of that during conventional tomography of the head.

  9. 钙化积分扫描缩短冠脉CTA扫描范围及降低辐射量的作用%Effect of calcium scoring scan in reducing scan range and radiation dose in retrospectively ECG-gated CT coronary angiography

    Institute of Scientific and Technical Information of China (English)

    付维东; 龚建平; 宦坚; 张伟; 张博; 乔方

    2012-01-01

    Objective:To find out a way of reducing scan range in retrospectively ECG-gated CT coronary angiography in order to reduce the radiation dose. Methods: Forty consecutive patients were analyzed retrospectively. The scan range of CT coronary angiography derived respectively from the scout view and from the axial images of calcium scoring were compared. The former was assumed to be determined from 1cm under the trachea carina to 2cm under the inferior margin of the heart. The latter was performed by identifying the left anterior descending coronary artery and posterior descending coronary artery and adding lcm cranially and caudally. Effective radiation doses were calculated for CT coronary angiography using both scout view-derived and calcium scoring-derived scan range. Results: The calcium scoring-derived range was (10. 40+.0. 60)cm; while the scout view-derived range was (12. 5 ± 0. 94)cm which was significantly larger than that of using the calcium scoring-derived scan (t = 17. 31,P<0. 01). The average difference between them was (2. 09±0. 76)cm, corresponding to a radiation dose reduction of (1. 67 ±0. 72)mSv. After offsetting the dose given for the calcium scoring scan,the savings in radiation exposure when using a calcium scoring-derived instead of a scout view-derived scan range for CT coronary angiography -including the radiation dose of the calcium scoring scan and the test bolus scan- was (1. 25 + 0. 72)mSv (t=10. 92.P<0. 01) ,which accounted for a dose reduction of 9. 20%. Conclusion:Using the images from calcium scoring instead of the scout view to determine the scan range of contrast-unenhanced CT coronary angiography can effectively decrease the scan range and reduce the radiation dose significantly.%目的:探讨使用钙化积分扫描缩短增强扫描范围以降低后门控冠状动脉CTA检查辐射量的临床应用价值.方法:40例患者行冠脉钙化积分及冠脉CTA检查,其增强扫描的实际扫描范围根据钙化积分扫描图

  10. A randomized, dose-ranging assessment of the immunogenicity and safety of a booster dose of a combined diphtheria-tetanus-whole cell pertussis-hepatitis B-inactivated poliovirus-Hemophilus influenzae type b (DTPw-HBV-IPV/Hib) vaccine vs. co-administration of DTPw-HBV/Hib and IPV vaccines in 12 to 24 months old Filipino toddlers.

    Science.gov (United States)

    Quiambao, Beatriz; Van Der Meeren, Olivier; Kolhe, Devayani; Gatchalian, Salvacion

    2012-03-01

    As progress toward global poliovirus eradication continues, more and more countries are moving away from use of oral poliovirus vaccines (OPV) to inactivated poliovirus vaccines (IPV) in national vaccination schedules. Reduction of antigen dose in IPV could increase manufacturing capacity and facilitate the change from OPV to IPV. Combination vaccines reduce the number of injections required to complete vaccination, thus playing an important role in maintaining high vaccine coverage with good public acceptability. Three formulations of a combined, candidate hexavalent diphtheria-tetanus-whole cell pertussis-hepatitis B-inactivated poliovirus-Hemophilus influenzae type b conjugate vaccine (DTPw-HBV-IPV/Hib, GlaxoSmithKline Biologicals) differing only in IPV antigen content (full-dose, half-dose and one-third dose as compared with available stand-alone IPV vaccines), were evaluated when administered to healthy toddlers. Controls received separately administered licensed DTPw-HBV/Hib and IPV vaccines. Immunogenicity was assessed before and one month after vaccination. Safety and reactogenicity data were assessed for 30 d after vaccination. A total of 312 Filipino children were vaccinated in their second year of life. Each DTPw-HBV-IPV/Hib formulation was non-inferior to control in terms of pre-defined criteria for IPV immunogenicity. Post-vaccination GMTs against each poliovirus type were increased between 4.2- and 37.9-fold over pre-vaccination titers. Non-inferiority to other vaccine antigens was also demonstrated. The safety profile of the 3 DTPw-HBV-IPV/Hib formulations resembled licensed DTPw-HBV/Hib Kft and IPV in terms of the frequency and intensity of adverse reactions after vaccination. Further investigation of DTPw-HBV-IPV/Hib containing reduced quantity of IPV antigen for primary vaccination in infants is warranted. This study is registered at www.clinicaltrials.gov NCT number: NCT01106092.

  11. A randomized, dose-ranging assessment of the immunogenicity and safety of a booster dose of a combined diphtheria-tetanus-whole cell pertussis-hepatitis B-inactivated poliovirus-Hemophilus influenzae type b (DTPw-HBV-IPV/Hib) vaccine vs. co-administration of DTPw-HBV/Hib and IPV vaccines in 12 to 24 months old Filipino toddlers

    OpenAIRE

    Quiambao, Beatriz; Van Der Meeren, Olivier; Kolhe, Devayani; Gatchalian, Salvacion

    2012-01-01

    As progress toward global poliovirus eradication continues, more and more countries are moving away from use of oral poliovirus vaccines (OPV) to inactivated poliovirus vaccines (IPV) in national vaccination schedules. Reduction of antigen dose in IPV could increase manufacturing capacity and facilitate the change from OPV to IPV. Combination vaccines reduce the number of injections required to complete vaccination, thus playing an important role in maintaining high vaccine coverage with good...

  12. Dose rate mapping of VMAT treatments.

    Science.gov (United States)

    Podesta, Mark; Popescu, I Antoniu; Verhaegen, Frank

    2016-06-01

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min(-1) and 12 Gy min(-1) but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min(-1). Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.

  13. Organ Doses and Effective Doses in Pediatric Radiography: Patient-Dose Survey in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Kiljunen, T.; Tietaevaeinen, A.; Parviainen, T.; Viitala, A.; Kortesniemi, M. (Radiation Practices Regulation, Radiation and Nuclear Safety Authority, Helsinki (Finland))

    2009-01-15

    Background: Use of the effective dose in diagnostic radiology permits the radiation exposure of diverse diagnostic procedures to be quantified. Fundamental knowledge of patient doses enhances the implementation of the 'as low as reasonably achievable' (ALARA) principle. Purpose: To provide comparative information on pediatric examination protocols and patient doses in skull, sinus, chest, abdominal, and pelvic radiography examinations. Material and Methods: 24 Finnish hospitals were asked to register pediatric examination data, including patient information and examination parameters and specifications. The total number of examinations in the study was 1916 (1426 chest, 228 sinus, 96 abdominal, 94 skull, and 72 pelvic examinations). Entrance surface dose (ESD) and dose-area products (DAP) were calculated retrospectively or DAP meters were used. Organ doses and effective doses were determined using a Monte Carlo program (PCXMC). Results: There was considerable variation in examination protocols between different hospitals, indicating large variations in patient doses. Mean effective doses of different age groups ranged from 5 muSv to 14 muSv in skull and sinus examinations, from 25 muSv to 483 muSv in abdominal examinations, and from 6 muSv to 48 muSv in chest examinations. Conclusion: In chest and sinus examinations, the amount of data was extensive, allowing national pediatric diagnostic reference levels to be defined. Parameter selection in pediatric examination protocols should be harmonized in order to reduce patient doses and improve optimization

  14. 大交角近景影像的仿射不变特征匹配方法研究%Method of affine invariant feature matching for large-angle and dose-range images

    Institute of Scientific and Technical Information of China (English)

    梁艳; 盛业华; 杨林

    2013-01-01

    针对近景数字摄影测量中大交角影像的匹配问题,本文提出了一种仿射不变特征提取与匹配方法.该方法集成Hessain-Affine和MSER特征检测算法提取一定数量的仿射不变特征区域,并将提取的椭圆形特征区域归一化处理为圆形区域,再用SIFT特征描述算子对特征区域进行描述,然后进行基于距离的粗匹配,最后在核线约束下进行精匹配.实验表明,本文的方法在对大交角近景图像进行匹配时,可以得到相对多数量的匹配对和较高的正确匹配率,具有很好的稳定性和鲁棒性.%To solve such problem for matching the large-angle and close-range images of digital photogrammetry, the affine invariant feature extraction and matching method was proposed in the paper. The method integrated Hessain-Affine and MSER algorithms to extract certain number of affine invariant regions, normalized irregular feature areas into circle areas, and described them with SIFT descriptor, then roughly matched based on the distance, finally, in order to improve the accuracy of matching, fine matching on the epi-polar constraint was carried out. The experiments showed that this method could get the relatively large amount of matched point pairs and higher matching auuracy rate with good stability and robustness in matching the large-angle and close-range images.

  15. Simplified Warfarin Dose-response Pharmacodynamic Models

    OpenAIRE

    Kim, Seongho; Gaweda, Adam E.; Wu, Dongfeng; Li, Lang; Shesh N Rai; Brier, Michael E.

    2015-01-01

    Warfarin is a frequently used oral anticoagulant for long-term prevention and treatment of thromboembolic events. Due to its narrow therapeutic range and large inter-individual dose-response variability, it is highly desirable to personalize warfarin dosing. However, the complexity of the conventional kinetic-pharmacodynamic (K-PD) models hampers the development of the personalized dose management. To avert this challenge, we propose simplified PD models for warfarin dose-response relationshi...

  16. Methotrexate Dosing Regimen for Plaque-type Psoriasis: A Systematic Review of the Use of Test-dose, Start-dose, Dosing Scheme, Dose Adjustments, Maximum Dose and Folic Acid Supplementation.

    Science.gov (United States)

    Menting, Stef P; Dekker, Paul M; Limpens, Jacqueline; Hooft, Lotty; Spuls, Phyllis I

    2016-01-01

    There is a range of methotrexate dosing regimens for psoriasis. This review summarizes the evidence for test-dose, start-dose, dosing scheme, dose adjustments, maximum dose and use of folic acid. A literature search for randomized controlled trials and guidelines was performed. Twenty-three randomized controlled trials (29 treatment groups) and 10 guidelines were included. Two treatment groups used a test-dose, 5 guidelines recommend it. The methotrexate start-dose in randomized controlled trials varied from 5 to 25 mg/week, most commonly being either 7.5 mg or 15 mg. Guidelines vary from 5 to 15 mg/week. Methotrexate was administered as a single dose or in a Weinstein schedule in 15 and 11 treatment-groups, respectively; both recommended equally in guidelines. A fixed dose (n = 18), predefined dose (n = 3), or dose adjusted on clinical improvement (n = 8) was used, the last also being recommended in guidelines. Ten treatment groups used folic acid; in 2 it was allowed, in 14 not mentioned, and in 3 no folic acid was used. Most guidelines recommend the use of folic acid. Authors' suggestions for methotrexate dosing are given.

  17. Dose-Finding when the Target Dose Is on a Plateau of a Dose-Response Curve: Comparison of Fully Sequential Designs

    OpenAIRE

    Ivanova, Anastasia; Xiao, Changfu

    2013-01-01

    Consider the problem of estimating a dose with a certain response rate. Many multistage dose-finding designs for this problem were originally developed for oncology studies where the mean dose-response is strictly increasing in dose. In non-oncology Phase II dose-finding studies the dose-response curve often plateaus in the range of interest and there are several doses with the mean response equal to the target. In this case it is usually of interest to find the lowest of these doses since hi...

  18. Dose banding as an alternative to body surface area-based dosing of chemotherapeutic agents

    NARCIS (Netherlands)

    E. Chatelut (Etienne); M.L. White-Koning (M.); A.H.J. Mathijssen (Ron); F. Puisset (F.); S.D. Baker (Sharyn); A. Sparreboom (Alex)

    2012-01-01

    textabstractBackground: Dose banding is a recently suggested dosing method that uses predefined ranges (bands) of body surface area (BSA) to calculate each patients dose by using a single BSA-value per band. Thus, drugs with sufficient long-term stability can be prepared in advance. The main advanta

  19. Acoustic dose and acoustic dose-rate.

    Science.gov (United States)

    Duck, Francis

    2009-10-01

    Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force. Energy transfer from the wave to the medium by means of acoustic cavitation is considered, and an approach is proposed in principle that could allow cavitation to be included within the proposed definitions of acoustic dose and acoustic dose-rate.

  20. Dose and Dose-Rate Effectiveness Factor (DDREF); Der Dosis- und Dosisleistungs-Effektivitaetsfaktor (DDREF)

    Energy Technology Data Exchange (ETDEWEB)

    Breckow, Joachim [Fachhochschule Giessen-Friedberg, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2016-08-01

    For practical radiation protection purposes it is supposed that stochastic radiation effects a determined by a proportional dose relation (LNT). Radiobiological and radiation epidemiological studies indicated that in the low dose range a dependence on dose rates might exist. This would trigger an overestimation of radiation risks based on the LNT model. OCRP had recommended a concept to combine all effects in a single factor DDREF (dose and dose-Rate effectiveness factor). There is still too low information on cellular mechanisms of low dose irradiation including possible repair and other processes. The Strahlenschutzkommission cannot identify a sufficient scientific justification for DDREF and recommends an adaption to the actual state of science.

  1. Estimating thyroid dose in pediatric CT exams from surface dose measurement

    Science.gov (United States)

    Al-Senan, Rani; Mueller, Deborah L.; Hatab, Mustapha R.

    2012-07-01

    The purpose of this study was to investigate the possibility of estimating pediatric thyroid doses from CT using surface neck doses. Optically stimulated luminescence dosimeters were used to measure the neck surface dose of 25 children ranging in ages between one and three years old. The neck circumference for each child was measured. The relationship between obtained surface doses and thyroid dose was studied using acrylic phantoms of various sizes and with holes of different depths. The ratios of hole-to-surface doses were used to convert patients' surface dose to thyroid dose. ImPACT software was utilized to calculate thyroid dose after applying the appropriate age correction factors. A paired t-test was performed to compare thyroid doses from our approach and ImPACT. The ratio of thyroid to surface dose was found to be 1.1. Thyroid doses ranged from 20 to 80 mGy. Comparison showed no statistical significance (p = 0.18). In addition, the average of surface dose variation along the z-axis in helical scans was studied and found to range between 5% (in 10 cm diameter phantom/24 mm collimation/pitch 1.0) and 8% (in 16 cm diameter phantom/12 mm collimation/pitch 0.7). We conclude that surface dose is an acceptable predictor for pediatric thyroid dose from CT. The uncertainty due to surface dose variability may be reduced if narrower collimation is used with a pitch factor close to 1.0. Also, the results did not show any effect of thyroid depth on the measured dose.

  2. Benchmark Dose Modeling

    Science.gov (United States)

    Finite doses are employed in experimental toxicology studies. Under the traditional methodology, the point of departure (POD) value for low dose extrapolation is identified as one of these doses. Dose spacing necessarily precludes a more accurate description of the POD value. ...

  3. Weldon Spring historical dose estimate

    Energy Technology Data Exchange (ETDEWEB)

    Meshkov, N.; Benioff, P.; Wang, J.; Yuan, Y.

    1986-07-01

    This study was conducted to determine the estimated radiation doses that individuals in five nearby population groups and the general population in the surrounding area may have received as a consequence of activities at a uranium processing plant in Weldon Spring, Missouri. The study is retrospective and encompasses plant operations (1957-1966), cleanup (1967-1969), and maintenance (1969-1982). The dose estimates for members of the nearby population groups are as follows. Of the three periods considered, the largest doses to the general population in the surrounding area would have occurred during the plant operations period (1957-1966). Dose estimates for the cleanup (1967-1969) and maintenance (1969-1982) periods are negligible in comparison. Based on the monitoring data, if there was a person residing continually in a dwelling 1.2 km (0.75 mi) north of the plant, this person is estimated to have received an average of about 96 mrem/yr (ranging from 50 to 160 mrem/yr) above background during plant operations, whereas the dose to a nearby resident during later years is estimated to have been about 0.4 mrem/yr during cleanup and about 0.2 mrem/yr during the maintenance period. These values may be compared with the background dose in Missouri of 120 mrem/yr.

  4. Expanding the linear dynamic range for quantitative liquid chromatography-high resolution mass spectrometry utilizing natural isotopologue signals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hanghui, E-mail: Hanghui.Liu@senomyx.com [Senomyx Inc. 4767 Nexus Centre Dr., San Diego, CA 92121 (United States); Lam, Lily; Yan, Lin; Chi, Bert [Senomyx Inc. 4767 Nexus Centre Dr., San Diego, CA 92121 (United States); Dasgupta, Purnendu K., E-mail: Dasgupta@uta.edu [Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019-0065 (United States)

    2014-11-19

    Highlights: • Less abundant isotopologue ions were utilized to decrease detector saturation. • A 25–50 fold increase in the upper limit of dynamic range was demonstrated. • Linear dynamic range was expanded without compromising mass resolution. - Abstract: The linear dynamic range (LDR) for quantitative liquid chromatography–mass spectrometry can be extended until ionization saturation is reached by using a number of target isotopologue ions in addition to the normally used target ion that provides the highest sensitivity. Less abundant isotopologue ions extend the LDR: the lower ion abundance decreases the probability of ion detector saturation. Effectively the sensitivity decreases and the upper limit of the LDR increases. We show in this paper that the technique is particularly powerful with a high resolution time of flight mass spectrometer because the data for all ions are automatically acquired, and we demonstrated this for four small organic molecules; the upper limits of LDRs increased by 25–50 times.

  5. Dose Effects of Ion Beam Exposure on Deinococcus Radiodurans: Survival and Dose Response

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To explore the survival and dose response of organism for different radiation sources is of great importance in the research of radiobiology. In this study, the survival-dose response of Deinococcus radiodurans (E.coli, as the control) for ultra-violet (UV), γ-rays radiation and ion beam exposure was investigated. The shoulder type of survival curves were found for both UV and γ-ray ionizing radiation, but the saddle type of survival curves were shown for H+ 、 N+( 20keV and 30keV) and Ar+ beam exposure. This dose effect of the survival initially decreased withthe increase in dose and then increased in the high dose range and finally decreased again in thehigher dose range. Our experimental results suggest that D. radiodurans, which is considerablyradio-resistant to UV and x-ray and γ-ray ionizing radiation, do not resist ion beam exposure.

  6. [Absorbed doses in dental radiology].

    Science.gov (United States)

    Bianchi, S D; Roccuzzo, M; Albrito, F; Ragona, R; Anglesio, S

    1996-01-01

    The growing use of dento-maxillo-facial radiographic examinations has been accompanied by the publication of a large number of studies on dosimetry. A thorough review of the literature is presented in this article. Most studies were carried out on tissue equivalent skull phantoms, while only a few were in vivo. The aim of the present study was to evaluate in vivo absorbed doses during Orthopantomography (OPT). Full Mouth Periapical Examination (FMPE) and Intraoral Tube Panoramic Radiography (ITPR). Measurements were made on 30 patients, reproducing clinical conditions, in 46 anatomical sites, with 24 intra- and 22 extra-oral thermoluminiscent dosimeters (TLDS). The highest doses were measured, in orthopantomography, at the right mandibular angle (1899 mu Gy) in FMPE on the right naso-labial fold (5640 mu Gy and in ITPR on the palatal surface of the left second upper molar (1936 mu Gy). Intraoral doses ranged from 21 mu Gy, in orthopantomography, to 4494 mu Gy in FMPE. Standard errors ranged from 142% in ITPR to 5% in orthopantomography. The highest rate of standard errors was found in FMPE and ITPR. The data collected in this trial are in agreement with others in major literature reports. Disagreements are probably due to different exam acquisition and data collections. Such differences, presented comparison in several sites, justify lower doses in FMPE and ITPR. Advantages and disadvantages of in vivo dosimetry of the maxillary region are discussed, the former being a close resemblance to clinical conditions of examination and the latter the impossibility of collecting values in depth of tissues. Finally, both ITPR and FMPE required lower doses than expected, and can be therefore reconsidered relative to their radiation risk.

  7. Failure-probability driven dose painting

    Energy Technology Data Exchange (ETDEWEB)

    Vogelius, Ivan R.; Håkansson, Katrin; Due, Anne K.; Aznar, Marianne C.; Kristensen, Claus A.; Rasmussen, Jacob; Specht, Lena [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Copenhagen 2100 (Denmark); Berthelsen, Anne K. [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen 2100 (Denmark); Bentzen, Søren M. [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark and Departments of Human Oncology and Medical Physics, University of Wisconsin, Madison, Wisconsin 53792 (United States)

    2013-08-15

    Purpose: To demonstrate a data-driven dose-painting strategy based on the spatial distribution of recurrences in previously treated patients. The result is a quantitative way to define a dose prescription function, optimizing the predicted local control at constant treatment intensity. A dose planning study using the optimized dose prescription in 20 patients is performed.Methods: Patients treated at our center have five tumor subvolumes from the center of the tumor (PET positive volume) and out delineated. The spatial distribution of 48 failures in patients with complete clinical response after (chemo)radiation is used to derive a model for tumor control probability (TCP). The total TCP is fixed to the clinically observed 70% actuarial TCP at five years. Additionally, the authors match the distribution of failures between the five subvolumes to the observed distribution. The steepness of the dose–response is extracted from the literature and the authors assume 30% and 20% risk of subclinical involvement in the elective volumes. The result is a five-compartment dose response model matching the observed distribution of failures. The model is used to optimize the distribution of dose in individual patients, while keeping the treatment intensity constant and the maximum prescribed dose below 85 Gy.Results: The vast majority of failures occur centrally despite the small volumes of the central regions. Thus, optimizing the dose prescription yields higher doses to the central target volumes and lower doses to the elective volumes. The dose planning study shows that the modified prescription is clinically feasible. The optimized TCP is 89% (range: 82%–91%) as compared to the observed TCP of 70%.Conclusions: The observed distribution of locoregional failures was used to derive an objective, data-driven dose prescription function. The optimized dose is predicted to result in a substantial increase in local control without increasing the predicted risk of toxicity.

  8. Dose evaluation from multiple detector outputs using convex optimisation.

    Science.gov (United States)

    Hashimoto, Makoto; Iimoto, Takeshi; Kosako, Toshiso

    2011-07-01

    A dose evaluation using multiple radiation detectors can be improved by the convex optimisation method. It enables flexible dose evaluation corresponding to the actual radiation energy spectrum. An application to the neutron ambient dose equivalent evaluation is investigated using a mixed-gas proportional counter. The convex derives the certain neutron ambient dose with certain width corresponding to the true neutron energy spectrum. The range of the evaluated dose is comparable to the error of conventional neutron dose measurement equipments. An application to the neutron individual dose equivalent measurement is also investigated. Convexes of particular dosemeter combinations evaluate the individual dose equivalent better than the dose evaluation of a single dosemeter. The combinations of dosemeters with high orthogonality of their response characteristics tend to provide a good suitability for dose evaluation.

  9. The transit dose component of high dose rate brachytherapy: Direct measurements and clinical implications

    Energy Technology Data Exchange (ETDEWEB)

    Bastin, K.T.; Podgorsak, M.B.; Thomadsen, B.R. (Univ. of Wisconsin Hospitals and Clinics, Madison, WI (United States))

    1993-07-15

    The purpose was to measure the transit dose produced by a moving high dose rate brachytherapy source and assess its clinical significance. The doses produced from source movement during Ir-192 HDR afterloading were measured using calibrated thermoluminescent dosimeter rods. Transit doses at distances of 0.5-4.0 cm from an endobronchial applicator were measured using a Lucite phantom accommodating 1 x 1 x 6 mm thermoluminescent rods. Surface transit dose measurements were made using esophageal and endobronchial catheters, a gynecologic tandem, and an interstitial needle. No difference was detected in thermoluminescent dosimeter rod responses to 4 MV and Ir-192 spectra (427 nC/Gy) in a range of dose between 2 and 300 cGy. The transit dose at 0.5 cm from an endobronchial catheter was 0.31 cGy/(Curie-fraction) and followed an inverse square fall-off with increasing distance. Surface transit doses ranged from 0.38 cGy/(Curie-fraction) for an esophageal catheter to 1.03 cGy/(Curie-fraction) for an endobronchial catheter. Source velocity is dependent on the interdwell distance and varies between 220-452 mm/sec. A numeric algorithm was developed to calculate total transit dose, and was based on a dynamic point approximation for the moving high dose rate source. This algorithm reliably predicted the empirical transit doses and demonstrated that total transit dose is dependent on source velocity, number of fractions, and source activity. Surface transit doses are dependent on applicator diameter and wall material and thickness. Total transit doses within or outside the desired treatment volume are typically <100 cGy, but may exceed 200 cGy when using a large number of fractions with a high activity source. 9 refs., 8 figs., 1 tab.

  10. Biological dose estimation for accidental supra-high dose gamma-ray exposure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y., E-mail: yingchen29@yahoo.com.cn [Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850 (China); Yan, X.K. [Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850 (China); Department of Radiation Safety, Beijing Institute of Nuclear and Chemical Safety, 14 Guan-cun, Dongcheng District, Beijing 100077 (China); Du, J.; Wang, Z.D.; Zhang, X.Q.; Zeng, F.G.; Zhou, P.K. [Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850 (China)

    2011-09-15

    To correctly estimate the biological dose of victims accidentally exposed to a very high dose of {sup 60}Co gamma-ray, a new dose-effect curve of chromosomal dicentrics/multicentrics and rings in the supra-high dose range was established. Peripheral blood from two healthy men was irradiated in vitro with doses of {sup 60}Co gamma-rays ranging from 6 to 22 Gy at a dose rate of 2.0 Gy/min. Lymphocytes were concentrated, cultured and harvested at 52 h, 68 h and 72 h. The numbers of dic + r were counted. The dose-effect curves were established and validated using comparisons with doses from the Tokai-mura accident and were then applied to two victims of supra-high dose exposure accident. The results indicated that there were no significant differences in chromosome aberration frequency among the different culture times from 52 h to 72 h. The 6-22 Gy dose-effect curve was fitted to a linear quadratic model Y = -2.269 + 0.776D - 7.868 x l0{sup -3}D{sup 2}. Using this mathematic model, the dose estimates were similar to data from Tokai-mura which were estimated by PCC ring. Whole body average doses of 9.7 Gy and 18.1 Gy for two victims in the Jining accident were satisfactorily given. We established and successfully applied a new dose-effect curve of chromosomal dicentrics plus ring (dic + r) after 6-22 Gy {gamma}-irradiation from a supra-high dose {sup 60}Co gamma-ray accident.

  11. Dose finding when the target dose is on a plateau of a dose-response curve: comparison of fully sequential designs.

    Science.gov (United States)

    Ivanova, Anastasia; Xiao, Changfu

    2013-01-01

    Consider the problem of estimating a dose with a certain response rate. Many multistage dose-finding designs for this problem were originally developed for oncology studies where the mean dose-response is strictly increasing in dose. In non-oncology phase II dose-finding studies, the dose-response curve often plateaus in the range of interest, and there are several doses with the mean response equal to the target. In this case, it is usually of interest to find the lowest of these doses because higher doses might have higher adverse event rates. It is often desirable to compare the response rate at the estimated target dose with a placebo and/or active control. We investigate which of the several known dose-finding methods developed for oncology phase I trials is the most suitable when the dose-response curve plateaus. Some of the designs tend to spread the allocation among the doses on the plateau. Others, such as the continual reassessment method and the t-statistic design, concentrate allocation at one of the doses with the t-statistic design selecting the lowest dose on the plateau more frequently.

  12. Patient radiation dose in conventional and xerographic cephalography

    Energy Technology Data Exchange (ETDEWEB)

    Copley, R.L.; Glaze, S.A.; Bushong, S.C.; West, D.C.

    1979-11-01

    A comparison of the radiation doses for xeroradiographic and conventional film screen cephalography was made. Alderson tissue-equivalent phantoms were used for patient simulation. An optimum technique in terms of patient dose and image quality indicated that the dose for the Xerox process ranged from five to eleven times greater than that for the conventional process for entrance and exit exposures, respectively. This dose, however, falls within an acceptable range for other dental and medical radiation doses. It is recommended that conventional cephalography be used for routine purposes and that xeroradiography be reserved for situations requiring the increased image quality that the process affords.

  13. Dose assessment in pediatric computerized tomography; Avaliacao de doses em tomografia computadorizada pediatrica

    Energy Technology Data Exchange (ETDEWEB)

    Vilarinho, Luisa Maria Auredine Lima

    2004-07-01

    The objective of this work was the evaluation of radiation doses in paediatric computed tomography scans, considering the high doses usually involved and the absence of any previous evaluation in Brazil. Dose values were determined for skull and abdomen examinations, for different age ranges, by using the radiographic techniques routinely used in the clinical centers investigated. Measurements were done using pencil shape ionization chambers inserted in polymethylmethacrylate (PMMA) phantoms. These were compact phantoms of different diameters were specially designed and constructed for this work, which simulate different age ranges. Comparison of results with published values showed that doses were lower than the diagnostic reference levels established to adults exams by the European Commission. Nevertheless, doses in paediatric phantoms were higher than those obtained in adult phantoms. The paediatric dose values obtained in Hospitals A and B were lower than the reference level (DRL) adopted by SHIMPTON for different age ranges. In the range 0 - 0.5 year (neonatal), the values of DLP in Hospital B were 94 por cent superior to the DRL For the 10 years old children the values of CTDI{sub w} obtained were inferior in 89 por cent for skull and 83 por cent for abdomen examinations, compared to the values published by SHRIMPTON and WALL. Our measured CTDI{sub w} values were inferior to the values presented for SHRIMPTON and HUDA, for all the age ranges and types of examinations. It was observed that the normalized dose descriptors values in children in the neonatal range were always superior to the values of doses for the adult patient. In abdomen examinations, the difference was approximately 90% for the effective dose (E) and of 57%.for CTDI{sub w} . (author)

  14. Surface dose in intracavitary orthovoltage radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Podgorsak, M.B.; Schreiner, L.J.; Podgorsak, E.B. (Department of Physics, McGill University, Montreal, PQ (Canada) Department of Radiation Oncology, McGill University, Montreal, PQ (Canada))

    1990-07-01

    Radiotherapy with orthovoltage techniques is often the prime treatment for localized superficial malignancies. Surface doses and depth doses measured with cylindrical and end-window Farmer chambers are presented for various orthovoltage x-ray beams in the range from 80 to 300 kVp, both for open beams and beams collimated with commercial intracavitary leaded-glass cones. For radiation fields collimated by a diaphragm positioned at a distance from the patient surface (open beams) there is a small skin-sparing effect. On the other hand, the surface doses with commercial leaded-glass intracavitary cones can exhibit a fivefold increase compared to the open-beam dose maxima. Beyond a depth of {similar to}0.2 mm in a tissue-equivalent phantom, the doses measured for open beams and beams collimated with intracavitary cones are essentially identical. The increase in the surface dose observed with intracavitary cones is attributed to photoelectrons and recoil electrons produced in the cones. The high surface doses are measured by thin-wall parallel-plate ionization chambers but cannot be measured with cylindrical Farmer chambers since these chambers have wall thicknesses too large for the transmission of electrons produced in the cone. Since cylindrical Farmer chambers are typically used for calibration of radiation output, the high surface doses produced by the intracavitary cones may be overlooked; they can, however, be reduced to open-beam values by simple modifications to the cones.

  15. Dose and dose rate effects of irradiation on blood count and cytokine assay in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joong Sun [Research center, Dongnam institute of radiological and Medical Sciences (DIRAMS), Busan (Korea, Republic of)

    2013-11-15

    The possible role of exposure to radiation as a risk factor for human health has been of increasing public concern in the series of explosions at earthquake damaged nuclear reactors on the Japan. Current events throughout the world underscore the growing threat of different forms of accidental exposure to radiation including nuclear accidents, atomic weapons use and testing, and the side effects of cancer therapy. A large range of dose rates of ionizing radiations could be encountered in accidental radiation situations. Nevertheless, most of the studies related to radiation effects have only examined a high dose rate. In this study, we investigated the blood count and the cytokine levels in the serum of mice exposed to a high or low dose rate of radiation. In this study, the precise molecular mechanism underlying the low dose rate of radiation remains unclear, but differential hematopoietic effects of radiation exposed at a high dose rate versus low dose rate were observed using the number of peripheral blood count and serum cytokines. These data suggest that chronic low dose rate exposure caused a stimulation of heamatopoietic system occurrence, unlike those observed after higher dose rate exposure. Our data suggest that the dose rate, rather than the total dose, may be more critical in causing damage to the cellular hematopoietic compartments of the body.

  16. Controllable dose; Dosis controlable

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez R, J.T.; Anaya M, R.A. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)]. E-mail: jtar@nuclear.inin.mx

    2004-07-01

    With the purpose of eliminating the controversy about the lineal hypothesis without threshold which found the systems of dose limitation of the recommendations of ICRP 26 and 60, at the end of last decade R. Clarke president of the ICRP proposed the concept of Controllable Dose: as the dose or dose sum that an individual receives from a particular source which can be reasonably controllable by means of any means; said concept proposes a change in the philosophy of the radiological protection of its concern by social approaches to an individual focus. In this work a panorama of the foundations is presented, convenient and inconveniences that this proposal has loosened in the international community of the radiological protection, with the purpose of to familiarize to our Mexican community in radiological protection with these new concepts. (Author)

  17. Minnesota Pheasant Range

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset delineates the spatial range of wild pheasant populations in Minnesota as of 2002 by dividing the MN state boundary into 2 units: pheasant range and...

  18. SU-E-T-374: Evaluation and Verification of Dose Calculation Accuracy with Different Dose Grid Sizes for Intracranial Stereotactic Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Han, C; Schultheiss, T [City of Hope National Medical Center, Duarte, CA (United States)

    2015-06-15

    Purpose: In this study, we aim to evaluate the effect of dose grid size on the accuracy of calculated dose for small lesions in intracranial stereotactic radiosurgery (SRS), and to verify dose calculation accuracy with radiochromic film dosimetry. Methods: 15 intracranial lesions from previous SRS patients were retrospectively selected for this study. The planning target volume (PTV) ranged from 0.17 to 2.3 cm{sup 3}. A commercial treatment planning system was used to generate SRS plans using the volumetric modulated arc therapy (VMAT) technique using two arc fields. Two convolution-superposition-based dose calculation algorithms (Anisotropic Analytical Algorithm and Acuros XB algorithm) were used to calculate volume dose distribution with dose grid size ranging from 1 mm to 3 mm with 0.5 mm step size. First, while the plan monitor units (MU) were kept constant, PTV dose variations were analyzed. Second, with 95% of the PTV covered by the prescription dose, variations of the plan MUs as a function of dose grid size were analyzed. Radiochomic films were used to compare the delivered dose and profile with the calculated dose distribution with different dose grid sizes. Results: The dose to the PTV, in terms of the mean dose, maximum, and minimum dose, showed steady decrease with increasing dose grid size using both algorithms. With 95% of the PTV covered by the prescription dose, the total MU increased with increasing dose grid size in most of the plans. Radiochromic film measurements showed better agreement with dose distributions calculated with 1-mm dose grid size. Conclusion: Dose grid size has significant impact on calculated dose distribution in intracranial SRS treatment planning with small target volumes. Using the default dose grid size could lead to under-estimation of delivered dose. A small dose grid size should be used to ensure calculation accuracy and agreement with QA measurements.

  19. A CONCEPTUAL FRAMEWORK FOR MANAGING RADIATION DOSE TO PATIENTS IN DIAGNOSTIC RADIOLOGY USING REFERENCE DOSE LEVELS.

    Science.gov (United States)

    Almén, Anja; Båth, Magnus

    2016-06-01

    The overall aim of the present work was to develop a conceptual framework for managing radiation dose in diagnostic radiology with the intention to support optimisation. An optimisation process was first derived. The framework for managing radiation dose, based on the derived optimisation process, was then outlined. The outset of the optimisation process is four stages: providing equipment, establishing methodology, performing examinations and ensuring quality. The optimisation process comprises a series of activities and actions at these stages. The current system of diagnostic reference levels is an activity in the last stage, ensuring quality. The system becomes a reactive activity only to a certain extent engaging the core activity in the radiology department, performing examinations. Three reference dose levels-possible, expected and established-were assigned to the three stages in the optimisation process, excluding ensuring quality. A reasonably achievable dose range is also derived, indicating an acceptable deviation from the established dose level. A reasonable radiation dose for a single patient is within this range. The suggested framework for managing radiation dose should be regarded as one part of the optimisation process. The optimisation process constitutes a variety of complementary activities, where managing radiation dose is only one part. This emphasises the need to take a holistic approach integrating the optimisation process in different clinical activities.

  20. Tau ranging revisited

    Science.gov (United States)

    Tausworthe, R. C.

    1987-01-01

    It is shown that a ranging receiver with a sufficient and reasonable number of correlators is competitive with the current sequential component ranging system by some 1.5 to 2.5 dB. The optimum transmitter code, the optimum receiver, and a near-maximum-lilelihood range-estimation algorithm are presented.

  1. A comprehensive study on the relationship between image quality and imaging dose in low-dose cone beam CT

    CERN Document Server

    Yan, Hao; Jia, Xun; Jiang, Steve B

    2011-01-01

    While compressed sensing (CS) based reconstructions have been developed for low-dose CBCT, a clear understanding on the relationship between the image quality and imaging dose at low dose levels is needed. In this paper, we qualitatively investigate this subject in a comprehensive manner with extensive experimental and simulation studies. The basic idea is to plot image quality and imaging dose together as functions of number of projections and mAs per projection over the whole clinically relevant range. A clear understanding on the tradeoff between image quality and dose can be achieved and optimal low-dose CBCT scan protocols can be developed for various imaging tasks in IGRT. Main findings of this work include: 1) Under the CS framework, image quality has little degradation over a large dose range, and the degradation becomes evident when the dose < 100 total mAs. A dose < 40 total mAs leads to a dramatic image degradation. Optimal low-dose CBCT scan protocols likely fall in the dose range of 40-100 ...

  2. Dose response biology: the case of resveratrol.

    Science.gov (United States)

    Calabrese, Edward J; Mattson, Mark P; Calabrese, Vittorio

    2010-12-01

    Resveratrol often displays hormesis-like biphasic dose responses. This occurs in a broad range of biological models and for numerous endpoints of biomedical interest and public health concern. Recognition of the widespread occurrence of the hormetic nature of many of the responses of resveratrol is important on multiple levels. It can help optimize study design protocols by investigators, create a dose-response framework for better addressing dose-related biological complexities and assist in the development of public health and medical guidance with respect to considerations for what is an optimal dose not just for an agent such as resveratrol, but also for the plethora of agents that also act via hormetic mechanisms.

  3. Utirik Atoll Dose Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Robison, W.L.; Conrado, C.L.; Bogen, K.T

    1999-10-06

    On March 1, 1954, radioactive fallout from the nuclear test at Bikini Atoll code-named BRAVO was deposited on Utirik Atoll which lies about 187 km (300 miles) east of Bikini Atoll. The residents of Utirik were evacuated three days after the fallout started and returned to their atoll in May 1954. In this report we provide a final dose assessment for current conditions at the atoll based on extensive data generated from samples collected in 1993 and 1994. The estimated population average maximum annual effective dose using a diet including imported foods is 0.037 mSv y{sup -1} (3.7 mrem y{sup -1}). The 95% confidence limits are within a factor of three of their population average value. The population average integrated effective dose over 30-, 50-, and 70-y is 0.84 mSv (84, mrem), 1.2 mSv (120 mrem), and 1.4 mSv (140 mrem), respectively. The 95% confidence limits on the population-average value post 1998, i.e., the 30-, 50-, and 70-y integral doses, are within a factor of two of the mean value and are independent of time, t, for t > 5 y. Cesium-137 ({sup 137}Cs) is the radionuclide that contributes most of this dose, mostly through the terrestrial food chain and secondarily from external gamma exposure. The dose from weapons-related radionuclides is very low and of no consequence to the health of the population. The annual background doses in the U. S. and Europe are 3.0 mSv (300 mrem), and 2.4 mSv (240 mrem), respectively. The annual background dose in the Marshall Islands is estimated to be 1.4 mSv (140 mrem). The total estimated combined Marshall Islands background dose plus the weapons-related dose is about 1.5 mSv y{sup -1} (150 mrem y{sup -1}) which can be directly compared to the annual background effective dose of 3.0 mSv y{sup -1} (300 mrem y{sup -1}) for the U. S. and 2.4 mSv y{sup -1} (240 mrem y{sup -1}) for Europe. Moreover, the doses listed in this report are based only on the radiological decay of {sup 137}Cs (30.1 y half-life) and other

  4. Assessment of internal doses

    CERN Document Server

    Rahola, T; Falk, R; Isaksson, M; Skuterud, L

    2002-01-01

    There is a definite need for training in dose calculation. Our first course was successful and was followed by a second, both courses were fully booked. An example of new tools for software products for bioassay analysis and internal dose assessment is the Integrated Modules for Bioassay Analysis (IMBA) were demonstrated at the second course. This suite of quality assured code modules have been adopted in the UK as the standard for regulatory assessment purposes. The intercomparison measurements are an important part of the Quality Assurance work. In what is known as the sup O utside workers ' directive it is stated that the internal dose measurements shall be included in the European Unions supervision system for radiation protection. The emergency preparedness regarding internal contamination was much improved by the training with and calibration of handheld instruments from participants' laboratories. More improvement will be gained with the handbook giving practical instructions on what to do in case of e...

  5. Substring Range Reporting

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li

    2011-01-01

    We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. – We give efficient reductions for each of the above problems...... to a new problem, which we call substring range reporting. Hence, we unify the previous work by showing that we may restrict our attention to a single problem rather than studying each of the above problems individually. – We show how to solve substring range reporting with optimal query time and little...... range reporting are based on a novel combination of suffix trees and range reporting data structures. The reductions are simple and general and may apply to other combinations of string indexing with range reporting....

  6. Dose Reduction Techniques

    Energy Technology Data Exchange (ETDEWEB)

    WAGGONER, L.O.

    2000-05-16

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

  7. Central Makran Range, Pakistan

    Science.gov (United States)

    1981-01-01

    A spectacular view of the Makran Range of Pakistan (27.0N, 65.5E) looking north with the Arabian Sea and the city of Karachi in the foreground. In the center, the Indian sub-continent moving slowly north into the Asian continent has caused the folded sedimentary Makran Range to bend from east-west to north-south as well as the uplift forming The Great Himalaya Range and the high Tibetan Plateau to the north.

  8. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.

    1977-01-01

    of many polymeric systems in industrial radiation processing. The result is that errors due to energy dependence of response of the radiation sensor are effectively reduced, since the spectral sensitivity of the dose meter matches that of the polymer of interest, over a wide range of photon and electron...... in polymeric solutions can be cast into flexible free-standing thin films of uniform thickness and reproducible response to ultraviolet and ionizing radiation. The increase in optical density versus energy deposited by radiation is linear over a wide range of doses and is for practical purposes independent......Thin radiochromic dye films are useful for measuring large radiation absorbed doses (105–108 rads) and for high-resolution imaging of dose patterns produced by penetrating radiation beams passing through non-homogeneous media. Certain types of amino-substituted triarylmethane cyanides dissolved...

  9. Dryden Aeronautical Test Range

    Data.gov (United States)

    Federal Laboratory Consortium — Recently redesignated to honor Dr. Hugh L. Dryden, NASA's Dryden Aeronautical Test Range (DATR) supports aerospace flight research and technology integration, space...

  10. Compact Antenna Range

    Data.gov (United States)

    Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...

  11. Laser Range Sensors

    Directory of Open Access Journals (Sweden)

    K.C. Bahuguna

    2007-11-01

    Full Text Available This paper presents the design aspects of laser range finders and proximity sensors being developed at IRDE for different applications. The principle used in most of the laser range finders is pulse echo or time-of-flight measurement. Optical triangulation is used in proximity sensors while techniques like phase detection and interferometry are employed in instruments for surveying and motion controllers where high accuracy is desired. Most of the laser range finders are designed for ranging non-cooperative targets.

  12. Baculovirus Host-Range

    Institute of Scientific and Technical Information of China (English)

    Suzanne M. Thiem; Xiao-Wen Cheng

    2009-01-01

    Baculoviruses are used as microbial insecticides, protein expression vectors, epitope display platforms, and most recently as vectors for gene therapy. Understanding the mechanisms that control baculovirus host-range and tissue tropisms are important for assessing their safety and for improving their properties for these biotechnology applications. In the past two decades some progress has been made and several baculovirus genes that influence host-range have been identified. Despite this progress, our understanding of the underlying mechanisms that restrict baculovirus host-range is still limited. Here we review what is currently known about baculovirus genes that influence virus host-range.

  13. Doses metrics and patient age in CT.

    Science.gov (United States)

    Huda, Walter; Tipnis, Sameer V

    2016-03-01

    The aim of this study was to investigate how effective dose and size-specific dose estimate (SSDE) change with patient age (size) for routine head and abdominal/pelvic CT examinations. Heads and abdomens of patients were modelled as a mass-equivalent cylinder of water corresponding to the patient 'effective diameter'. Head CT scans were performed at CTDIvol(S) of 40 mGy, and abdominal CT scans were performed at CTDIvol(L) of 10 mGy. Values of SSDE were obtained using conversion factors in AAPM Task Group Report 204. Age-specific scan lengths for head and abdominal CT scans obtained from the authors' clinical practice were used to estimate the dose-length product for each CT examination. Effective doses were calculated from previously published age- and sex-specific E/DLP conversion factors, based on ICRP 103 organ-weighting factors. For head CT examinations, the scan length increased from 15 cm in a newborn to 20 cm in adults, and for an abdominal/pelvic CT, the scan length increased from 20 cm in a newborn to 45 cm in adults. For head CT scans, SSDE ranged from 37.2 mGy in adults to 48.8 mGy in a newborn, an increase of 31 %. The corresponding head CT effective doses range from 1.4 mSv in adults to 5.2 mSv in a newborn, an increase of 270 %. For abdomen CT scans, SSDE ranged from 13.7 mGy in adults to 23.0 mGy in a newborn, an increase of 68 %. The corresponding abdominal CT effective doses ranged from 6.3 mSv in adults to 15.4 mSv in a newborn, an increase of 140 %. SSDE increases much less than effective dose in paediatric patients compared with adults because it does not account for scan length or scattered radiation. Size- and age-specific effective doses better quantify the total radiation received by patients in CT by explicitly accounting for all organ doses, as well as their relative radio sensitivity.

  14. Substring Range Reporting

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li

    2011-01-01

    to a new problem, which we call substring range reporting. Hence, we unify the previous work by showing that we may restrict our attention to a single problem rather than studying each of the above problems individually. – We show how to solve substring range reporting with optimal query time and little...

  15. Range Selection and Median

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund; Larsen, Kasper Green

    2011-01-01

    Range selection is the problem of preprocessing an input array A of n unique integers, such that given a query (i; j; k), one can report the k'th smallest integer in the subarray A[i];A[i+1]; : : : ;A[j]. In this paper we consider static data structures in the word-RAM for range selection and sev...

  16. On Range of Skill

    DEFF Research Database (Denmark)

    Hansen, Thomas Dueholm; Miltersen, Peter Bro; Sørensen, Troels Bjerre

    2008-01-01

    size (and doubly exponential in its depth). We also provide techniques that yield concrete bounds for unbalanced game trees and apply these to estimate the Range of Skill of Tic-Tac-Toe and Heads-Up Limit Texas Hold'em Poker. In particular, we show that the Range of Skill of Tic-Tac-Toe is more than...

  17. Home range and travels

    Science.gov (United States)

    Stickel, L.F.; King, John A.

    1968-01-01

    The concept of home range was expressed by Seton (1909) in the term 'home region,' which Burr (1940, 1943) clarified with a definition of home range and exemplified in a definitive study of Peromyscus in the field. Burt pointed out the ever-changing characteristics of home-range area and the consequent absence of boundaries in the usual sense--a finding verified by investigators thereafter. In the studies summarized in this paper, sizes of home ranges of Peromyscus varied within two magnitudes, approximately from 0.1 acre to ten acres, in 34 studies conducted in a variety of habitats from the seaside dunes of Florida to the Alaskan forests. Variation in sizes of home ranges was correlated with both environmental and physiological factors; with habitat it was conspicuous, both in the same and different regions. Food supply also was related to size of home range, both seasonally and in relation to habitat. Home ranges generally were smallest in winter and largest in spring, at the onset of the breeding season. Activity and size also were affected by changes in weather. Activity was least when temperatures were low and nights were bright. Effects of rainfall were variable. Sizes varied according to sex and age; young mice remained in the parents' range until they approached maturity, when they began to travel more widely. Adult males commonly had larger home ranges than females, although there were a number of exceptions. An inverse relationship between population density and size of home range was shown in several studies and probably is the usual relationship. A basic need for activity and exploration also appeared to influence size of home range. Behavior within the home range was discussed in terms of travel patterns, travels in relation to home sites and refuges, territory, and stability of size of home range. Travels within the home range consisted of repeated use of well-worn trails to sites of food, shelter, and refuge, plus more random exploratory travels

  18. Dose Reduction Techniques

    CERN Document Server

    Waggoner, L O

    2000-01-01

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the sm...

  19. Evaluation of the cell death mechanisms activated by the radiopharmaceutical {sup 177}Lu-DOTA-anti-CD20 in a dose range of 1 to 5 Gy; Evaluacion de los mecanismos de muerte celular activados por el radiofarmaco {sup 177}Lu-DOTA-anti-CD20 en un intervalo de dosis de 1 a 5 Gy

    Energy Technology Data Exchange (ETDEWEB)

    Azorin V, E.P.; Rojas C, E. L.; Martinez V, B. E.; Ramos B, J. C.; Jimenez M, N. P.; Ferro F, G., E-mail: erica.azorin@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-10-15

    The radio immunotherapy with anti-CD20 antibodies significantly increases the remission rate of patients with B-cell lymphomas over expressing the CD20. The radiolabeled antibodies directed to surface antigens allow delivering scaled doses of radiation to specific targets thus limiting the dose to healthy tissue. The anti-CD20 causes cell death by two major pathways; activating the immune system to destroy malignant cells and inducing the activation of cell death pathways. The {sup 177}Lu is a beta particle emitter (max. 0.497 MeV) with a maximum reach on soft tissue of 0.7 mm and a half-life of 6.7 days. Several clinical studies have established a maximum tolerated dose (45 m Ci/m{sup 2}) for {sup 177}Lu-DOTA-rituximab, which shows a favorable clinical response without hematological toxicity. However, the molecular mechanisms of action by synergistic effect of anti-CD20 and radionuclide have not been studied. In this work was evaluated; by flow cytometry, the activation kinetics of the cell death mechanisms induced by the treatment with {sup 177}Lu-DOTA-Anti-CD20 in non-Hodgkin (Raji) lymphoma cells. The absorbed radiation dose delivered to the cell nucleus was calculated by Monte Carlo simulation, considering the contribution of the beta emissions of the radiopharmaceutical present in the cell membrane and surrounding environment, as well as crossfire. This work shows that the application of radiation doses of 1 to 5 Gy of the radiopharmaceutical {sup 177}Lu-DOTA-anti-CD20, are sufficient to induce cell death by apoptosis and arrest of the cell cycle. The combination of these factors (continuous delivery of radiation, activation of repair mechanisms and increased radio sensitivity) causes the acute activation of the apoptotic program resulting in significant cell death after 96 h of treatment. The temporal analysis of cell death suggests the early activation of apoptosis that is counteracted by the activation of repair processes caused by sustained irradiation

  20. Occupational dose constraints in interventional cardiology procedures: the DIMOND approach

    Energy Technology Data Exchange (ETDEWEB)

    Tsapaki, Virginia [Medical Physics Department, Konstantopoulio Agia Olga Hospital, Athens (Greece); Kottou, Sophia [Medical Physics Department, Athens University, Medical School, Athens (Greece); Vano, Eliseo [Medical Physics Service and Radiology Department, San Carlos University Hospital and Complutense University, Madrid (Spain); Komppa, Tuomo [Stuk, Radiation and Nuclear Safety Authority, Helsinki (Finland); Padovani, Renato [Servizio di Fisica Medica, Ospedale S Maria della Misericordia, Udine (Italy); Dowling, Annita [Medical Physics and Bioengineering Department, St James' s Hospital and Haughton Institute, Dublin (Ireland); Molfetas, Michael [Medical Physics Department, ' Evangelismos' Hospital, Athens (Greece); Neofotistou, Vassiliki [Medical Physics Department, Regional Athens General Hospital ' G Gennimatas' , Athens (Greece)

    2004-03-21

    Radiation fields involved in angiographic suites are most uneven with intensity and gradient varying widely with projection geometry. The European Commission DIMOND III project addressed among others, the issues regarding optimization of staff doses with an attempt to propose preliminary occupational dose constraints. Two thermoluminescent dosemeters (TLD) were used to assess operators' extremity doses (left shoulder and left foot) during 20 coronary angiographies (CAs) and 20 percutaneous transluminal coronary angioplasties (PTCAs) in five European centres. X-ray equipment, radiation protection measures used and the dose delivered to the patient in terms of dose-area product (DAP) were recorded so as to subsequently associate them with operator's dose. The range of staff doses noted for the same TLD position, centre and procedure type emphasizes the importance of protective measures and technical characteristics of x-ray equipment. Correlation of patient's DAP with staff shoulder dose is moderate whereas correlation of patient's DAP with staff foot dose is poor in both CA and PTCA. Therefore, it is difficult to predict operator's dose from patient's DAP mainly due to the different use of protective measures. A preliminary occupational dose constraint value was defined by calculating cardiologists' annual effective dose and found to be 0.6 mSv.

  1. Correlation radio range finder

    Directory of Open Access Journals (Sweden)

    A. Sorochan

    2012-10-01

    Full Text Available In work widely known methods of range measuring are short characterized. The basic attention is given features of signal processing in a correlation method of range measuring. The signal with angular modulation with one-voice-frequency fluctuation is used as a probing signal. The absence of Doppler effect on the formation of the correlation integral, the frequency instability of the transmitter, the phase change on reflection from the target is presented. It is noticed that the result of signal processing in the range measuring instrument is reduced to formation on an exit one-voice-frequency harmonious fluctuation equal to modulating frequency that provides high characteristics of a radio range finder.

  2. Light Detection And Ranging

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — LiDAR (Light Detection and Ranging) discrete-return point cloud data are available in the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format....

  3. Range_Extent_15

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The GIS layer "Range_extent_15" is a simple polyline representing the geographic distribution of the southern sea otter (Enhydra lutris nereis) in mainland...

  4. Towards optimal range medians

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Gfeller, Beat; Jørgensen, Allan Grønlund

    2011-01-01

    where the time per query is reduced to O(log n / log log n). We also give efficient dynamic variants of both data structures, achieving O(log2 n) query time using O(nlog n) space in the comparison model and O((log n/loglog n)2) query time using O(nlog n/log log n) space in the RAM model, and show...... that in the cell-probe model, any data structure which supports updates in O(logO(1)n) time must have Ω(log n/loglog n) query time. Our approach naturally generalizes to higher-dimensional range median problems, where element positions and query ranges are multidimensional - it reduces a range median query...... to a logarithmic number of range counting queries....

  5. Atlantic Test Range (ATR)

    Data.gov (United States)

    Federal Laboratory Consortium — ATR controls fully-instrumented and integrated test ranges that provide full-service support for cradle-to-grave testing. Airspace and surface target areas are used...

  6. Antenna Pattern Range (APR)

    Data.gov (United States)

    Federal Laboratory Consortium — TheAntenna Pattern Range (APR)features a non-metallic arch with a trolley to move the transmit antenna from the horizon to zenith. At the center of the ground plane,...

  7. Substring Range Reporting

    OpenAIRE

    Bille, Philip; Gørtz, Inge Li

    2011-01-01

    We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. {itemize} We give efficient reductions for each of the above problems to a new problem, which we call \\emph{substring range reporting}. Hence, we unify the previous work by showing that we may restrict our attention to a single problem rather than studying each of...

  8. Verification of cell irradiation dose deposition using a radiochromic film

    Energy Technology Data Exchange (ETDEWEB)

    Tomic, N [Department of Radiation Oncology, Jewish General Hospital, McGill University, Montreal, Quebec (Canada); Gosselin, M [Department of Radiation Oncology, Jewish General Hospital, McGill University, Montreal, Quebec (Canada); Wan, Jonathan F [Radiation Oncology Department, McGill University Health Centre, Montreal, Quebec (Canada); Saragovi, Uri [Department of Pharmacology, McGill University, Montreal, Quebec (Canada); Podgorsak, E B [Medical Physics Department, McGill University Health Center, Montreal, Quebec (Canada); Evans, M [Medical Physics Department, McGill University Health Center, Montreal, Quebec (Canada); Devic, S [Medical Physics Department, McGill University Health Center, Montreal, Quebec (Canada)

    2007-06-07

    We describe a technique for the MTT assay that irradiates all cells at once by a combination of couch movement and a step-and-shoot irradiation technique on a linear accelerator with 6 MV and 18 MV photon beams. In two experimental setups, we obtained maximum to minimum dose ranges of 10 for the constant MU/bin (monitor units per bin) setup and 20 for the variable MU/bin technique. The irradiation technique described is dose rate independent and it can be used on any teletherapy irradiation machine. We also employed radiochromic film dosimetry to verify dose delivered in each of the wells within the dish. It is shown that for the lowest doses, relative dose variation within wells reaches a value of 6%. We also demonstrated that the radiochromic film positioned below the 96-well plate does not underestimate dose deposited within each compartment by more than 2% due to the vertical dose gradient.

  9. Verification of cell irradiation dose deposition using a radiochromic film

    Science.gov (United States)

    Tomic, N.; Gosselin, M.; Wan, Jonathan F.; Saragovi, Uri; Podgorsak, E. B.; Evans, M.; Devic, S.

    2007-06-01

    We describe a technique for the MTT assay that irradiates all cells at once by a combination of couch movement and a step-and-shoot irradiation technique on a linear accelerator with 6 MV and 18 MV photon beams. In two experimental setups, we obtained maximum to minimum dose ranges of 10 for the constant MU/bin (monitor units per bin) setup and 20 for the variable MU/bin technique. The irradiation technique described is dose rate independent and it can be used on any teletherapy irradiation machine. We also employed radiochromic film dosimetry to verify dose delivered in each of the wells within the dish. It is shown that for the lowest doses, relative dose variation within wells reaches a value of 6%. We also demonstrated that the radiochromic film positioned below the 96-well plate does not underestimate dose deposited within each compartment by more than 2% due to the vertical dose gradient.

  10. Occupational dose reduction developments and data collected at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B.J.; Baum, J.W.

    1984-01-01

    Occupational dose reduction developments and data collected at nuclear power plants have been described. Written descriptions of repetitive high dose jobs, their collective dose equivalent ranges and list of dose reduction techniques will aid in reducing collective dose equivalents from these dose-reduction targets. Knowing which components contribute to high maintenance or repair dose will aid in reducing routine maintenance collective dose equivalents. The radwaste dose reduction improvements will aid in reducing radwaste operations collective dose equivalent and reduce the number of radwaste workers who exceed their administrative dose limits. The identification and rating of managers' and workers' ALARA incentives will provide the basis for recommendations to improve dose reduction incentives. Lastly, the identification and rating of the key components of an ALARA program will aid in

  11. Optimizing lithium dosing in hemodialysis

    DEFF Research Database (Denmark)

    Bjarnason, N H; Munkner, R; Kampmann, J P

    2006-01-01

    We studied a 62-year-old female hemodialysis patient during initiation and maintenance of lithium carbonate therapy. Three different methods were applied to estimate the regimen: a scenario based on volume of distribution (V(d)), a scenario based on glomerular filtration rate (GFR), and a scenario...... estimates. Furthermore, the maintenance dose estimated from the central compartment (V1) led to plasma concentrations within the therapeutic range. Thus, a regimen where 12.2 mmol lithium was given after each hemodialysis session resulted in stable between-dialysis plasma lithium concentrations...... in this patient with no residual kidney function. We did not observe adverse effects related to this regimen, which was monitored from 18 days to 8 months of therapy, and the patient experienced relief from her severe depressive disorder. In conclusion, dialysis patients may be treated with lithium administrated...

  12. Uncertainties on lung doses from inhaled plutonium.

    Science.gov (United States)

    Puncher, Matthew; Birchall, Alan; Bull, Richard K

    2011-10-01

    In a recent epidemiological study, Bayesian uncertainties on lung doses have been calculated to determine lung cancer risk from occupational exposures to plutonium. These calculations used a revised version of the Human Respiratory Tract Model (HRTM) published by the ICRP. In addition to the Bayesian analyses, which give probability distributions of doses, point estimates of doses (single estimates without uncertainty) were also provided for that study using the existing HRTM as it is described in ICRP Publication 66; these are to be used in a preliminary analysis of risk. To infer the differences between the point estimates and Bayesian uncertainty analyses, this paper applies the methodology to former workers of the United Kingdom Atomic Energy Authority (UKAEA), who constituted a subset of the study cohort. The resulting probability distributions of lung doses are compared with the point estimates obtained for each worker. It is shown that mean posterior lung doses are around two- to fourfold higher than point estimates and that uncertainties on doses vary over a wide range, greater than two orders of magnitude for some lung tissues. In addition, we demonstrate that uncertainties on the parameter values, rather than the model structure, are largely responsible for these effects. Of these it appears to be the parameters describing absorption from the lungs to blood that have the greatest impact on estimates of lung doses from urine bioassay. Therefore, accurate determination of the chemical form of inhaled plutonium and the absorption parameter values for these materials is important for obtaining reliable estimates of lung doses and hence risk from occupational exposures to plutonium.

  13. Growth control of Saccharomyces cerevisiae through dose of oxygen atoms

    Science.gov (United States)

    Hashizume, Hiroshi; Ohta, Takayuki; Hori, Masaru; Ito, Masafumi

    2015-08-01

    To investigate the dose-dependent effects of neutral oxygen radicals on the proliferation as well as the inactivation of microorganisms, we treated suspensions of budding yeast cells with oxygen radicals using an atmospheric-pressure oxygen radical source, varying the fluxes of O(3Pj) from 1.3 × 1016 to 2.3 × 1017 cm-2 s-1. Proliferation was promoted at doses of O(3Pj) ranging from 6 × 1016 to 2 × 1017 cm-3, and suppressed at doses ranging from 3 × 1017 to 1 × 1018 cm-3; cells were inactivated by O(3Pj) doses exceeding 1 × 1018 cm-3, even when the flux was varied over the above flux range. These results showed that the growth of cells was regulated primarily in response to the total dose of O(3Pj).

  14. Dose estimates from the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Lange, R.; Dickerson, M.H.; Gudiksen, P.H.

    1987-11-01

    The Lawrence Livermore National Laboratory Atmospheric Release Advisory Capability (ARAC) responded to the Chernobyl nuclear reactor accident in the Soviet Union by utilizing long-range atmospheric dispersion modeling to estimate the amount of radioactivity released (source term) and the radiation dose distribution due to exposure to the radioactive cloud over Europe and the Northern Hemisphere. In later assessments, after the release of data on the accident by the Soviet Union, the ARAC team used their mesoscale to regional scale model to focus in on the radiation dose distribution within the Soviet Union and the vicinity of the Chernobyl plant. 22 refs., 5 figs., 5 tabs.

  15. Entrance surface dose according to dose calculation: Head and wrist

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Ho Jin [Dept. Radiology, Chonnam National University Hospital, Gwangju (Korea, Republic of); Han, Jae Bok; Song, Jong Nam; Choi, Nam Gil [Dept. of Radiological Science, Dongshin University, Naju (Korea, Republic of)

    2016-09-15

    This study were compared with the direct measurement and indirect dose methods through various dose calculation in head and wrist. And, the modified equation was proposed considering equipment type, setting conditions, tube voltage, inherent filter, added filter and its accompanied back scatter factor. As a result, it decreased the error of the direct measurement than the existing dose calculation. Accordingly, diagnostic radiography patient dose comparison would become easier and radiographic exposure control and evaluation will become more efficient. The study findings are expected to be useful in patients' effective dose rate evaluation and dose reduction.

  16. Doses from radiation exposure

    CERN Document Server

    Menzel, H G

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection's (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP's 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effecti...

  17. First dose in man

    DEFF Research Database (Denmark)

    2011-01-01

    Du er blevet ansat som læge i et lægemiddelfirma med ansvar for planlægning og sikkerhed i fase 1 forsøg. Firmaet har udviklet tre dopamin D2-receptor antagonister til behandling af skizofreni. Lægemidlerne har undergået et omfattende farmakologisk, toksikologisk og farmaceutisk afprøvningsprogra...... fase 1 forsøg alias »First dose in man«....

  18. A mathematical approach to optimal selection of dose values in the additive dose method of ERP dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, R.B.; Haskell, E.H.; Kenner, G.H. [Utah Univ., Salt Lake City, UT (United States)

    1996-01-01

    Additive dose methods commonly used in electron paramagnetic resonance (EPR) dosimetry are time consuming and labor intensive. We have developed a mathematical approach for determining optimal spacing of applied doses and the number of spectra which should be taken at each dose level. Expected uncertainitites in the data points are assumed to be normally distributed with a fixed standard deviation and linearity of dose response is also assumed. The optimum spacing and number of points necessary for the minimal error can be estimated, as can the likely error in the resulting estimate. When low doses are being estimated for tooth enamel samples the optimal spacing is shown to be a concentration of points near the zero dose value with fewer spectra taken at a single high dose value within the range of known linearity. Optimization of the analytical process results in increased accuracy and sample throughput.

  19. Estimation of the Dose and Dose Rate Effectiveness Factor

    Science.gov (United States)

    Chappell, L.; Cucinotta, F. A.

    2013-01-01

    Current models to estimate radiation risk use the Life Span Study (LSS) cohort that received high doses and high dose rates of radiation. Transferring risks from these high dose rates to the low doses and dose rates received by astronauts in space is a source of uncertainty in our risk calculations. The solid cancer models recommended by BEIR VII [1], UNSCEAR [2], and Preston et al [3] is fitted adequately by a linear dose response model, which implies that low doses and dose rates would be estimated the same as high doses and dose rates. However animal and cell experiments imply there should be curvature in the dose response curve for tumor induction. Furthermore animal experiments that directly compare acute to chronic exposures show lower increases in tumor induction than acute exposures. A dose and dose rate effectiveness factor (DDREF) has been estimated and applied to transfer risks from the high doses and dose rates of the LSS cohort to low doses and dose rates such as from missions in space. The BEIR VII committee [1] combined DDREF estimates using the LSS cohort and animal experiments using Bayesian methods for their recommendation for a DDREF value of 1.5 with uncertainty. We reexamined the animal data considered by BEIR VII and included more animal data and human chromosome aberration data to improve the estimate for DDREF. Several experiments chosen by BEIR VII were deemed inappropriate for application to human risk models of solid cancer risk. Animal tumor experiments performed by Ullrich et al [4], Alpen et al [5], and Grahn et al [6] were analyzed to estimate the DDREF. Human chromosome aberration experiments performed on a sample of astronauts within NASA were also available to estimate the DDREF. The LSS cohort results reported by BEIR VII were combined with the new radiobiology results using Bayesian methods.

  20. Absorbed dose and dose rate using the Varian OBI 1.3 and 1.4 CBCT system.

    Science.gov (United States)

    Palm, Asa; Nilsson, Elisabeth; Herrnsdorf, Lars

    2010-01-28

    According to published data, the absorbed dose used for a CBCT image acquisition with Varian OBI v1.3 can be as high as 100 mGy. In 2008 Varian released a new OBI version (v1.4), which promised to reduce the imaging dose. In this study, absorbed doses used for CBCT image acquisitions with the default irradiation techniques of Varian OBI v1.3 and v1.4 are measured. TLDs are used to derive dose distributions at three planes inside an anthropomorphic phantom. In addition, point doses and dose profiles inside a 'stack' of three CTDI body phantoms are measured using a new solid state detector, the CT Dose Profiler. With the CT Dose Profiler, the individual pulses from the X-ray tube are also studied. To verify the absorbed dose measured with the CT Dose Profiler, it is compared to TLD. The image quality is evaluated using a Catphan phantom. For OBI v1.3, doses measured in transverse planes of the Alderson phantom range between 64 mGy and 144 mGy. The average dose is around 100 mGy. For OBI v1.4, doses measured in transverse planes of the Alderson phantom range between 1 mGy and 51 mGy. Mean doses range between 3-35 mGy depending on CBCT mode. CT Dose Profiler data agree with TLD measurements in a CTDI phantom within the uncertainty of the TLD measurements (estimated SD +/- 10%). Instantaneous dose rate at the periphery of the phantom can be higher than 20 mGy/s, which is 10 times the dose rate at the center. The spatial resolution in v1.4 is not as high as in v1.3. In conclusion, measurements show that the imaging doses for default modes in Varian OBI v1.4 CBCT system are significantly lower than in v1.3. The CT Dose Profiler is proven fast and accurate for CBCT applications.

  1. Range Information Propagation Transform

    Institute of Scientific and Technical Information of China (English)

    陈向荣; 朱志刚; 等

    1998-01-01

    A novel method of model-based object recognition is presented in this paper.Its novelty stems from the fact that the gray level image captured by a camera is merged with sparse range information in an active manner.By using a projective transform, which is determined by the sparse range data,festures(e.g.edge points)related to a single planar surface patch of figure in the scene can be assignew with their corresponding range values respectively.As a result,the shape of the very planar patch or figure can be recovered and various kinds of description in the Euclidean space can be calculated.Based on these descriptions values,the hypothesis about the identification of the object and its pose in space can be obtained with a high probability of success,and a high efficiency of hypothesis-verification process can be expected.Another advantage of this method is that the edge detection process can be navigated to the proper location hinted by the sparse range image.In consequence edge features can be extracted even in the regions with low contrast.In this paper the principle of range information propagation transform(RIPT)is explained,and some implementation issues,such as the algorithms using calibrated or uncalibrated gray level image for object recognition,are discussed.The preliminary experimental results are presented to indicate the effectiveness and efficiency of the proposed method.

  2. Absorbed dose evaluations in retrospective dosimetry: Methodological developments using quartz

    DEFF Research Database (Denmark)

    Bailiff, I.K.; Bøtter-Jensen, L.; Correcher, V.

    2000-01-01

    Dose evaluation procedures based on luminescence techniques were applied to 50 quartz samples extracted from bricks that had been obtained from populated or partly populated settlements in Russia and Ukraine downwind of the Chernobyl NPP. Determinations of accrued dose in the range similar to 30-...

  3. Substring Range Reporting

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li

    2014-01-01

    We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. We give efficient reductions for each of the above problems...... to a new problem, which we call substring range reporting. Hence, we unify the previous work by showing that we may restrict our attention to a single problem rather than studying each of the above problems individually. We show how to solve substring range reporting with optimal query time and little...... space. Combined with our reductions this leads to significantly improved time-space trade-offs for the above problems. In particular, for each problem we obtain the first solutions with optimal time query and O(nlog O(1) n) space, where n is the length of the indexed string. We show that our techniques...

  4. Reconfigurable laser ranging instrument

    Science.gov (United States)

    Schneiter, John

    1994-03-01

    This paper describes the design and operation of a fast, flexible, non-contact, eye-safe laser ranging instrument useful in a variety of industrial metrology situations, such as in-process machining control and part inspection. The system has variable computer-controlled standoff and depth of field, and can obtain 3-D images of surfaces within a range of from 1.5 ft to almost 10 ft from the final optical element. The minimum depth of field is about 3.5 in. at 1.5 ft and about 26 in. at the far range. The largest depth of field for which useful data are available is about 41 in. Resolution, with appropriate averaging, is about one part in 4000 of the depth of field, which implies a best case resolution for this prototype of 0.00075 in. System flexibility is achieved by computer controlled relative positioning of optical components.

  5. Himalayan Mountain Range, India

    Science.gov (United States)

    1981-01-01

    Snow is present the year round in most of the high Himalaya Mountain Range (33.0N, 76.5E). In this view taken at the onset of winter, the continuous snow line can be seen for hundreds of miles along the south face of the range in the Indian states of Punjab and Kashmir. The snow line is at about 12,000 ft. altitude but the deep Cenab River gorge is easily delineated as a break along the south edge of the snow covered mountains. '

  6. Brachytherapy source characterization for improved dose calculations using primary and scatter dose separation.

    Science.gov (United States)

    Russell, Kellie R; Tedgren, Asa K Carlsson; Ahnesjö, Anders

    2005-09-01

    In brachytherapy, tissue heterogeneities, source shielding, and finite patient/phantom extensions affect both the primary and scatter dose distributions. The primary dose is, due to the short range of secondary electrons, dependent only on the distribution of material located on the ray line between the source and dose deposition site. The scatter dose depends on both the direct irradiation pattern and the distribution of material in a large volume surrounding the point of interest, i.e., a much larger volume must be included in calculations to integrate many small dose contributions. It is therefore of interest to consider different methods for the primary and the scatter dose calculation to improve calculation accuracy with limited computer resources. The algorithms in present clinical use ignore these effects causing systematic dose errors in brachytherapy treatment planning. In this work we review a primary and scatter dose separation formalism (PSS) for brachytherapy source characterization to support separate calculation of the primary and scatter dose contributions. We show how the resulting source characterization data can be used to drive more accurate dose calculations using collapsed cone superposition for scatter dose calculations. Two types of source characterization data paths are used: a direct Monte Carlo simulation in water phantoms with subsequent parameterization of the results, and an alternative data path built on processing of AAPM TG43 formatted data to provide similar parameter sets. The latter path is motivated of the large amounts of data already existing in the TG43 format. We demonstrate the PSS methods using both data paths for a clinical 192Ir source. Results are shown for two geometries: a finite but homogeneous water phantom, and a half-slab consisting of water and air. The dose distributions are compared to results from full Monte Carlo simulations and we show significant improvement in scatter dose calculations when the collapsed

  7. Impact of surface curvature on dose delivery in intraoperative high-dose-rate brachytherapy.

    Science.gov (United States)

    Oh, Moonseong; Wang, Zhou; Malhotra, Harish K; Jaggernauth, Wainwright; Podgorsak, Matthew B

    2009-01-01

    In intraoperative high-dose-rate (IOHDR) brachytherapy, a 2-dimensional (2D) geometry is typically used for treatment planning. The assumption of planar geometry may cause serious errors in dose delivery for target surfaces that are, in reality, curved. A study to evaluate the magnitude of these errors in clinical practice was undertaken. Cylindrical phantoms with 6 radii (range: 1.35-12.5 cm) were used to simulate curved treatment geometries. Treatment plans were developed for various planar geometries and were delivered to the cylindrical phantoms using catheters inserted into Freiburg applicators of varying dimension. Dose distributions were measured using radiographic film. In comparison to the treatment plan (for a planar geometry), the doses delivered to prescription points were higher on the concave side of the geometry, up to 15% for the phantom with the smallest radius. On the convex side of the applicator, delivered doses were up to 10% lower for small treated areas (5 catheters). Our measurements have shown inaccuracy in dose delivery when the original planar treatment plan is delivered with a curved applicator. Dose delivery errors arising from the use of planar treatment plans with curved applicators may be significant.

  8. Electric vehicles: Driving range

    Science.gov (United States)

    Kempton, Willett

    2016-09-01

    For uptake of electric vehicles to increase, consumers' driving-range needs must be fulfilled. Analysis of the driving patterns of personal vehicles in the US now shows that today's electric vehicles can meet all travel needs on almost 90% of days from a single overnight charge.

  9. LONG RANGE HEALTH PLANNING

    Directory of Open Access Journals (Sweden)

    ST. Motameni

    1974-03-01

    Full Text Available In the past, health planning in Iran has been carried out in the context of short-range economic plans. Although this mechanism has helped a great deal in the achievement of certain health plans however, the said scheme has been short in meeting the health objectives on a comprehensive basis. Most often, the heath programs have lost their values to the priority and cost effectiveness of economic plans. A brief review of heath planning in the past shows that the second development plan has been devoted to the establishment of new hospitals on a scattered pattern. The development of a coordinated hospital and health center system has been accepted and partly implemented during the third plan period. In the fourth plan the whole direction has changed towards the de­velopment of private hospitals on profit making basis, and now the fifth plan calls for the regionalized hospital system. Thus, one can say that the past twenty years have been spent to the experimentation of different schemes with­out a real long-range goal. In the past decade the World Health Organization has ventured in the development of health planning principles, but most of the efforts have been devoted to the short-range planning. The long-range health planning is not only a new look to the prin­ciples of planning, but a thorough examination of the time factor in health planning.

  10. Online Sorted Range Reporting

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Fagerberg, Rolf; Greve, Mark

    2009-01-01

    We study the following one-dimensional range reporting problem: On an arrayA of n elements, support queries that given two indices i ≤ j and an integerk report the k smallest elements in the subarray A[i..j] in sorted order. We present a data structure in the RAM model supporting such queries in ...

  11. Agriculture, forest, and range

    Science.gov (United States)

    1975-01-01

    The findings and recommendations of the panel for developing a satellite remote-sensing global information system in the next decade are reported. User requirements were identified in five categories: (1) cultivated crops, (2) land resources, (3)water resources, (4)forest management, and (5) range management. The benefits from the applications of satellite data are discussed.

  12. Characterization of infectious dose and lethal dose of two strains of infectious hematopoietic necrosis virus (IHNV)

    Science.gov (United States)

    McKenney, Douglas; Kurath, Gael; Wargo, Andrew

    2016-01-01

    The ability to infect a host is a key trait of a virus, and differences in infectivity could put one virus at an evolutionary advantage over another. In this study we have quantified the infectivity of two strains of infectious hematopoietic necrosis virus (IHNV) that are known to differ in fitness and virulence. By exposing juvenile rainbow trout (Oncorhynchus mykiss) hosts to a wide range of virus doses, we were able to calculate the infectious dose in terms of ID50 values for the two genotypes. Lethal dose experiments were also conducted to confirm the virulence difference between the two virus genotypes, using a range of virus doses and holding fish either in isolation or in batch so as to calculate LD50values. We found that infectivity is positively correlated with virulence, with the more virulent genotype having higher infectivity. Additionally, infectivity increases more steeply over a short range of doses compared to virulence, which has a shallower increase. We also examined the data using models of virion interaction and found no evidence to suggest that virions have either an antagonistic or a synergistic effect on each other, supporting the independent action hypothesis in the process of IHNV infection of rainbow trout.

  13. Dose distributions around selectron applicators

    Energy Technology Data Exchange (ETDEWEB)

    Pla, C.; Evans, M.D.; Podgorsak, E.B.

    1987-11-01

    Measured and calculated dose distributions around selectron applicators, loaded with /sup 60/Co high dose rate pellets, are presented. The effect of the stopping screw, spacers, pellets themselves and the applicator wall on the dose distribution is discussed. The measured dose distribution is in almost perfect agreement with the calculated distribution in planes perpendicular to the applicator axis and containing a source. On the applicator axis directly below the applicator the measured dose amounts to about 75% of the calculated value, when only the stopping screw attenuates the beam from a pellet. When the beam is attenuated by spacers in addition to the stopping screw, the discrepancy between the calculated and measured dose may exceed 50%. Clinically relevant source geometries are also discussed. It is shown that for most regions around the applicator the method of a simple addition of dose contributions from individual point sources is an acceptable approximation for the calculation of dose distributions around the selectron applicators.

  14. Evaluating dose response from flexible dose clinical trials

    Directory of Open Access Journals (Sweden)

    Baron David

    2008-01-01

    Full Text Available Abstract Background The true dose effect in flexible-dose clinical trials may be obscured and even reversed because dose and outcome are related. Methods To evaluate dose effect in response on primary efficacy scales from 2 randomized, double-blind, flexible-dose trials of patients with bipolar mania who received olanzapine (N = 234, 5–20 mg/day, or patients with schizophrenia who received olanzapine (N = 172, 10–20 mg/day, we used marginal structural models, inverse probability of treatment weighting (MSM, IPTW methodology. Dose profiles for mean changes from baseline were evaluated using weighted MSM with a repeated measures model. To adjust for selection bias due to non-random dose assignment and dropouts, patient-specific time-dependent weights were determined as products of (i stable weights based on inverse probability of receiving the sequence of dose assignments that was actually received by a patient up to given time multiplied by (ii stable weights based on inverse probability of patient remaining on treatment by that time. Results were compared with those by unweighted analyses. Results While the observed difference in efficacy scores for dose groups for the unweighted analysis strongly favored lower doses, the weighted analyses showed no strong dose effects and, in some cases, reversed the apparent "negative dose effect." Conclusion While naïve comparison of groups by last or modal dose in a flexible-dose trial may result in severely biased efficacy analyses, the MSM with IPTW estimators approach may be a valuable method of removing these biases and evaluating potential dose effect, which may prove useful for planning confirmatory trials.

  15. Dose-response-a challenge for allelopathy?

    Science.gov (United States)

    Belz, Regina G; Hurle, Karl; Duke, Stephen O

    2005-04-01

    The response of an organism to a chemical depends, among other things, on the dose. Nonlinear dose-response relationships occur across a broad range of research fields, and are a well established tool to describe the basic mechanisms of phytotoxicity. The responses of plants to allelochemicals as biosynthesized phytotoxins, relate as well to nonlinearity and, thus, allelopathic effects can be adequately quantified by nonlinear mathematical modeling. The current paper applies the concept of nonlinearity to assorted aspects of allelopathy within several bioassays and reveals their analysis by nonlinear regression models. Procedures for a valid comparison of effective doses between different allelopathic interactions are presented for both, inhibitory and stimulatory effects. The dose-response applications measure and compare the responses produced by pure allelochemicals [scopoletin (7-hydroxy-6-methoxy-2H-1-benzopyran-2-one); DIBOA (2,4-dihydroxy-2H-1,4-benzoxaxin-3(4H)-one); BOA (benzoxazolin-2(3H)-one); MBOA (6-methoxy-benzoxazolin-2(3H)-one)], involved in allelopathy of grain crops, to demonstrate how some general principles of dose responses also relate to allelopathy. Hereupon, dose-response applications with living donor plants demonstrate the validity of these principles for density-dependent phytotoxicity of allelochemicals produced and released by living plants (Avena sativa L., Secale cereale L., Triticum L. spp.), and reveal the use of such experiments for initial considerations about basic principles of allelopathy. Results confirm that nonlinearity applies to allelopathy, and the study of allelopathic effects in dose-response experiments allows for new and challenging insights into allelopathic interactions.

  16. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M.; McMakin, A.H. (comps.)

    1992-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  17. ORANGE: RANGE OF BENEFITS

    OpenAIRE

    Parle Milind; Chaturvedi Dev

    2012-01-01

    No wonder that oranges are one of the most popular fruits in the world. Orange (citrus sinensis) is well known for its nutritional and medicinal properties throughout the world. From times immemorial, whole Orange plant including ripe and unripe fruits, juice, orange peels, leaves and flowers are used as a traditional medicine. Citrus sinensis belongs to the family Rutaceae. The fruit is a fleshy, indehiscent, berry that ranges widely in size from 4 cm to 12 cm. The major medicinal proper...

  18. Effective dose and dose to crystalline lens during angiographic procedures; Dose effective et dose au cristallin lors de procedures angiographiques

    Energy Technology Data Exchange (ETDEWEB)

    Pages, J. [QUARAD and Radiology Dept., Vvije Universiteit Brussel (Belgium)

    1998-07-01

    The highest radiation doses levels received by radiologists are observed during interventional procedures. Doses to forehead and neck received by a radiologist executing angiographic examinations at the department of radiology at the academic hospital (AZ-VUB) have been measured for a group of 34 examinations. The doses to crystalline lens and the effective doses for a period of one year have been estimated. For the crystalline lens the maximum dose approaches the ICRP limit, that indicates the necessity for the radiologist to use leaded glasses. (N.C.)

  19. Quantification of Proton Dose Calculation Accuracy in the Lung

    Energy Technology Data Exchange (ETDEWEB)

    Grassberger, Clemens, E-mail: Grassberger.Clemens@mgh.harvard.edu [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Center for Proton Radiotherapy, Paul Scherrer Institute, Villigen (Switzerland); Daartz, Juliane; Dowdell, Stephen; Ruggieri, Thomas; Sharp, Greg; Paganetti, Harald [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States)

    2014-06-01

    Purpose: To quantify the accuracy of a clinical proton treatment planning system (TPS) as well as Monte Carlo (MC)–based dose calculation through measurements and to assess the clinical impact in a cohort of patients with tumors located in the lung. Methods and Materials: A lung phantom and ion chamber array were used to measure the dose to a plane through a tumor embedded in the lung, and to determine the distal fall-off of the proton beam. Results were compared with TPS and MC calculations. Dose distributions in 19 patients (54 fields total) were simulated using MC and compared to the TPS algorithm. Results: MC increased dose calculation accuracy in lung tissue compared with the TPS and reproduced dose measurements in the target to within ±2%. The average difference between measured and predicted dose in a plane through the center of the target was 5.6% for the TPS and 1.6% for MC. MC recalculations in patients showed a mean dose to the clinical target volume on average 3.4% lower than the TPS, exceeding 5% for small fields. For large tumors, MC also predicted consistently higher V5 and V10 to the normal lung, because of a wider lateral penumbra, which was also observed experimentally. Critical structures located distal to the target could show large deviations, although this effect was highly patient specific. Range measurements showed that MC can reduce range uncertainty by a factor of ∼2: the average (maximum) difference to the measured range was 3.9 mm (7.5 mm) for MC and 7 mm (17 mm) for the TPS in lung tissue. Conclusion: Integration of Monte Carlo dose calculation techniques into the clinic would improve treatment quality in proton therapy for lung cancer by avoiding systematic overestimation of target dose and underestimation of dose to normal lung. In addition, the ability to confidently reduce range margins would benefit all patients by potentially lowering toxicity.

  20. Errors and Uncertainties in Dose Reconstruction for Radiation Effects Research

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.

    2008-04-14

    Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers. For such studies to be credible, significant effort must be put into applying the best science to reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more and more sophisticated dose reconstruction methods have been developed as studies progressed. For the example of the Japanese bomb survivors, the dose surrogate “distance from the hypocenter” was replaced by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it has become increasingly clear that an equal level of effort must be expended on the quantitative assessment of uncertainty in such doses, and to reducing and managing uncertainty. In this context, this paper reviews difficulties in terminology, explores the nature of Berkson and classical uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of effort for DOSES-2008.

  1. Monocular visual ranging

    Science.gov (United States)

    Witus, Gary; Hunt, Shawn

    2008-04-01

    The vision system of a mobile robot for checkpoint and perimeter security inspection performs multiple functions: providing surveillance video, providing high resolution still images, and providing video for semi-autonomous visual navigation. Mid-priced commercial digital cameras support the primary inspection functions. Semi-autonomous visual navigation is a tertiary function whose purpose is to reduce the burden of teleoperation and free the security personnel for their primary functions. Approaches to robot visual navigation require some form of depth perception for speed control to prevent the robot from colliding with objects. In this paper present the initial results of an exploration of the capabilities and limitations of using a single monocular commercial digital camera for depth perception. Our approach combines complementary methods in alternating stationary and moving behaviors. When the platform is stationary, it computes a range image from differential blur in the image stack collected at multiple focus settings. When the robot is moving, it extracts an estimate of range from the camera auto-focus function, and combines this with an estimate derived from angular expansion of a constellation of visual tracking points.

  2. Peripheral doses of cranial pediatric IMRT performed with attenuator blocks; Doses perifericas de IMRT cranial pediatrica realizada com blocos atenuadores

    Energy Technology Data Exchange (ETDEWEB)

    Soboll, Danyel Scheidegger; Schitz, Ivette; Schelin, Hugo Reuters, E-mail: soboll@utfpr.edu.b, E-mail: iveteschitz@yahoo.com.b, E-mail: schelin@utfpr.edu.b [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Silva, Ricardo Goulart da, E-mail: ricardo.goulart@ymail.co [Hospital Angelina Caron, Campina Grande do Sul, PR (Brazil); Viamonte, Alfredo, E-mail: aviamonte@inca.gov.b [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil)

    2011-10-26

    This paper presents values of peripheral doses measured at six vital points of simulator objects which represent the ages of 2, 5 and 10 years old, submitted to a cranial IMRT procedure that applied compensator blocks interposed to 6 MV beams. The found values indicate that there is independence of dose with position of measurements and age of the patient, as the peripheral dose at the points nearest and the 2 year old simulator object where larger. The doses in thyroid reached the range of 1.4 to 2.9% of the dose prescribed in the isocenter, indicating that the peripheral doses for IMRT that employ compensator blocks can be greater than for the IMRT produced with sliding window technique

  3. Dose assessment of an accidental exposure at the IPNS

    Energy Technology Data Exchange (ETDEWEB)

    Campos Torres, M.M.

    1995-02-01

    Seven different methods were used to estimate the dose rate to a female worker who was accidentally exposed in the neutron PHOENIX beamline at the IPNS. Theoretical and measured entrance dose ranged from 550 mrem/min to 2850 mrem/min. Theoretical estimates were based on a Monte Carlo simulation of a spectrum provided by IPNS (Crawford Spectrum). Dose measurements were made with TLDs on phantoms and with ionization chambers in a water phantom. Estimates of the whole body total effective dose equivalent (TEDE) rate ranged from 5.2 mrem/min to 840 mrem/min. Assumed and measured quality factors ranged from 2.6 to 11.8. Cytogenetic analyses of blood samples detected no positive exposure. The recommended TEDE rate was 158 mrem/min. The TEDE was 750 mrem.

  4. Dose assessment of an accidental exposure at IPNS

    Energy Technology Data Exchange (ETDEWEB)

    Torres, M.M.C.

    1996-05-01

    Seven different methods were used to estimate the dose rate to a female worker who was accidentally exposed in the neutron PHOENIX beamline at the IPNS. Theoretical and measured entrance dose rates ranged from 550 mrem/min to 2,850 mrem/min. Theoretical estimates were based on a Monte Carlo simulation of a spectrum provided by IPNS (Crawford Spectrum). Dose measurements were made with TLDs on phantoms and with ionization chambers in a water phantom. Estimates of the whole body total effective dose equivalent (TEDE) rate ranged from 5.2 mrem/min to 840 mrem/min. Assumed and measured quality factors ranged from 2.6 to 11.8. Cytogenic analyses of blood samples detected no positive exposure. The recommended TEDE rate was 158 mrem/min. The TEDE was 750 mrem.

  5. Low Dose Ionizing Radiation Modulates Immune Function

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Gregory A. [Loma Linda Univ., CA (United States)

    2016-01-12

    In order to examine the effects of low dose ionizing radiation on the immune system we chose to examine an amplified adaptive cellular immunity response. This response is Type IV delayed-type hypersensitivity also called contact hypersensitivity. The agent fluorescein isothiocyanate (FITC) is a low molecular weight, lipophilic, reactive, fluorescent molecule that can be applied to the skin where it (hapten) reacts with proteins (carriers) to become a complete antigen. Exposure to FITC leads to sensitization which is easily measured as a hypersensitivity inflammatory reaction following a subsequent exposure to the ear. Ear swelling, eosinophil infiltration, immunoglobulin E production and cytokine secretion patterns characteristic of a “Th2 polarized” immune response are the components of the reaction. The reaction requires successful implementation of antigen processing and presentation by antigen presenting Langerhans cells, communication with naïve T lymphocytes in draining lymph nodes, expansion of activated T cell clones, migration of activated T cells to the circulation, and recruitment of memory T cells, macrophages and eosinophils to the site of the secondary challenge. Using this model our approach was to quantify system function rather than relying only on indirect biomarkers of cell. We measured the FITC-induced hypersensitivity reaction over a range of doses from 2 cGy to 2 Gy. Irradiations were performed during key events or prior to key events to deplete critical cell populations. In addition to quantifying the final inflammatory response, we assessed cell populations in peripheral blood and spleen, cytokine signatures, IgE levels and expression of genes associated with key processes in sensitization and elicitation/recall. We hypothesized that ionizing radiation would produce a biphasic effect on immune system function resulting in an enhancement at low doses and a depression at higher doses and suggested that this transition would occur in the

  6. Effects of dose and dose protraction on embryotoxicity of 14.1 MeV neutron irradiation in rats

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, D.A.; Buck, S.J. [Alfred I. duPont Institute, Wilmington, DE (United States)]|[Thomas Jefferson Univ., Philadelphia, PA (United States); Solomon, H.M. [SmithKline and Beecham Pharmaceuticals, King of Prussia, PA (United States); Gorson, R.O. [Thomas Jefferson Univ., Philadelphia, PA (United States); Mills, R.E. [Brookhaven National Lab., Upton, NY (United States); Brent, R.L. [Alfred I. duPont Institute, Wilmington, DE (United States)]|[Thomas Jefferson Univ., Philadelphia, PA (United States)

    1994-06-01

    The embryotoxic effects of neutron radiation on rodent embryos are documented, but there is disagreement about the dose-response relationship and the impact of protracting the dose. Pregnant rats were exposed to total absorbed doses of 0.15 to 1.50 Gy 14.1 MeV neutrons on day 9.5 after conception, coincident with the most sensitive stage of embryonic development for the induction of major congenital malformations. In general terms, the incidence of embryotoxic effects increased with increasing total absorbed dose. However, the dose-response relationship differed depending on the parameter of embryotoxicity chosen, namely, intrauterine death, malformations or very low body weight. In a second study, embryos were exposed to a single embryotoxic absorbed dose (0.75 Gy) administered at a range of dose rates, from 0.10 to 0.50 Gy/h. The results offer no evidence that protraction of this selected dose significantly increased or decreased the incidence or pattern of embryotoxicity of the neutron exposure used in this study. The results do not support the hypothesis of a linear dose-response relationship for the effects of prenatal neutron irradiation that contribute to embryotoxicity for total absorbed doses of 0.15 to 1.50 Gy. 23 refs., 8 tabs.

  7. ORANGE: RANGE OF BENEFITS

    Directory of Open Access Journals (Sweden)

    Parle Milind

    2012-07-01

    Full Text Available No wonder that oranges are one of the most popular fruits in the world. Orange (citrus sinensis is well known for its nutritional and medicinal properties throughout the world. From times immemorial, whole Orange plant including ripe and unripe fruits, juice, orange peels, leaves and flowers are used as a traditional medicine. Citrus sinensis belongs to the family Rutaceae. The fruit is a fleshy, indehiscent, berry that ranges widely in size from 4 cm to 12 cm. The major medicinal properties of orange include anti-bacterial, anti-fungal, anti- diabetic, cardio- protective, anti-cancer, anti-arthritic, anti-inflammatory, anti-oxidant, anti-Tubercular, anti-asthmatic and anti-hypertensive. Phytochemically, whole plant contains limonene, citral, neohesperidin, naringin, rutin, rhamnose, eriocitrin, and vitamin-C. In the present review article, a humble attempt is made to compile all the strange facts available about this tasty fruit.

  8. PABLM. Accumulated Environment Radiation Dose

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Kennedy, W.E.Jr.; Soldat, J.K. [Pacific Northwest Lab., Richland, WA (United States)

    1981-04-01

    PABLM calculates internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides after the releases have ended. Radioactive decay is considered during the release, after deposition, and during holdup of food after harvest. The radiation dose models consider exposure to radionuclides deposited on the ground or crops from contaminated air or irrigation water, radionuclides in contaminated drinking water, aquatic foods raised in contaminated water, and radionuclides in bodies of water and sediments where people might fish, boat, or swim. For vegetation, the radiation dose model considers both direct deposition and uptake through roots. Doses may be calculated for either a maximum-exposed individual or for a population group. The program is designed to calculate accumulated radiation doses from the chronic ingestion of food products that contain radionuclides and doses from the external exposure to radionuclides in the environment. A first-year committed dose is calculated as well as an integrated dose for a selected number of years.

  9. Out-of-field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators.

    Science.gov (United States)

    Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F

    2016-07-08

    Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases.

  10. Maximum embryo absorbed dose from intravenous urography: interhospital variations

    Energy Technology Data Exchange (ETDEWEB)

    Damilakis, J.; Perisinakis, K. [University of Crete (Greece). Dept. of Medical Physics; Koukourakis, M. [University of Crete (Greece). Dept. of Radiology; Gourtsoyiannis, N. [University Hospital of Iraklion, Crete (Greece). Dept. of Radiotherapy

    1997-12-01

    The purpose of this study was to determine the maximum embryo dose during intravenous urography (IVU) examinations, when inadvertent irradiation of a pregnant woman occurs, and to investigate the variation of doses received from different institutions. Doses at average embryo depth from IVU examinations have been measured in four institutions using a Rando phantom and thermoluminescent crystals. In order to estimate the maximum range of embryo doses, radiologists were asked to carry out the examinations with the same technique as in female patients with acute ureteral obstruction. The range of doses estimated at embryo depth for the institutions participating in this study was 5.77 to 35.2 mGy. The considerable interhospital variation found in dose can be explained by different equipment and techniques used. A simple method of estimating embryo dose from pelvic radiographs reported previously was found to be also applicable to IVU examinations. Absorbed dose at 6 cm, the average embryo depth, was found significantly less than 50 mGy. (Author).

  11. Dose from slow negative muons.

    Science.gov (United States)

    Siiskonen, T

    2008-01-01

    Conversion coefficients from fluence to ambient dose equivalent, from fluence to maximum dose equivalent and quality factors for slow negative muons are examined in detail. Negative muons, when stopped, produce energetic photons, electrons and a variety of high-LET particles. Contribution from each particle type to the dose equivalent is calculated. The results show that for the high-LET particles the details of energy spectra and decay yields are important for accurate dose estimates. For slow negative muons the ambient dose equivalent does not always yield a conservative estimate for the protection quantities. Especially, the skin equivalent dose is strongly underestimated if the radiation-weighting factor of unity for slow muons is used. Comparisons to earlier studies are presented.

  12. The nasal distribution of metered dose inhalers.

    Science.gov (United States)

    Newman, S P; Morén, P F; Clarke, S W

    1987-02-01

    The intranasal distribution of aerosol from a metered dose inhaler has been assessed using a radiotracer technique. Inhalers were prepared by adding 99Tcm-labelled Teflon particles (simulating the drug particles) to chlorofluorocarbon propellants, and scans of the head (and chest) taken with a gamma camera. Ten healthy subjects (age range 19-29 years) each performed two radioaerosol studies with the inhaler held in two different ways: either in a single position (vial pointing upwards) or in two positions (vial pointing upwards and then tilted by 30 degrees in the sagittal plane). The vast majority of the dose (82.5 +/- 2.8 (mean +/- SEM) per cent and 80.7 +/- 3.1 per cent respectively for one-position and two-position studies) was deposited on a single localized area in the anterior one-third of the nose, the initial distribution pattern being identical for each study. No significant radioaerosol was detected in the lungs. Only 18.0 +/- 4.7 per cent and 15.4 +/- 4.1 per cent of the dose had been removed by mucociliary action after 30 minutes, and it is probable that the remainder had not penetrated initially beyond the vestibule. Since the deposition pattern was highly localized and more than half the dose probably failed to reach the turbinates it is possible that the overall effect of nasal MDIs is suboptimal for the treatment of generalized nasal disorders.

  13. Radiation doses to neonates requiring intensive care

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, A. (Weston Park Hospital, Sheffield (UK)); Dellagrammaticas, H.D. (Sheffield Univ. (UK))

    1983-06-01

    Radiological investigations have become accepted as an important part of the range of facilities required to support severely ill newborn babies. Since the infants are so small, many of the examinations are virtually ''whole-body'' irradiations and it was thought that the total doses received might be appreciable. A group of such babies admitted to the Neonatal Intensive Care Unit in Sheffield over a six-month period have been studied. X-ray exposure factors used for each examination have been noted and total skin, gonad and bone marrow doses calculated, supplemented by measurements on phantoms. It is concluded that in most cases doses received are of the same order as those received over the same period from natural background radiation and probably less than those received from prenatal obstetric radiography, so that the additional risks from the diagnostic exposure are small. The highest doses are received in CT scans and barium examinations and it is recommended that the need for these should be carefully considered.

  14. Dose response problems in carcinogenesis.

    Science.gov (United States)

    Crump, K S

    1979-03-01

    The estimation of risks from exposure to carcinogens is an important problem from the viewpoint of protection of human health. It also poses some very difficult dose-response problems. Two dose-response models may fit experimental data about equally well and yet predict responses that differ by many orders of magnitude at low doses. Mechanisms of carcinogenesis are not sufficiently understood so that the shape of the dose-response curve at low doses can be satisfactorily predicted. Mathematical theories of carcinogenesis and statistical procedures can be of use with dose-reponse problems such as this and, in addition, can lead to a better understanding of the mechanisms of carcinogenesis. In this paper, mathematical dose-response models of carcinogenesis are considered as well as various proposed dose-response procedures for estimating carcinogenic risks at low doses. Areas are suggested in which further work may be useful. These areas include experimental design problems, statistical procedures for use with time-to-occurrence data, and mathematical models that incorporate such biological features as pharmacokinetics of carcinogens, synergistic effects, DNA repair, susceptible subpopulations, and immune reactions.

  15. Dosimetric accuracy of tomotherapy dose calculation in thorax lesions

    Directory of Open Access Journals (Sweden)

    Mangili Paola

    2011-02-01

    Full Text Available Abstract Background To analyse limits and capabilities in dose calculation of collapsed-cone-convolution (CCC algorithm implemented in helical tomotherapy (HT treatment planning system for thorax lesions. Methods The agreement between measured and calculated dose was verified both in homogeneous (Cheese Phantom and in a custom-made inhomogeneous phantom. The inhomogeneous phantom was employed to mimic a patient's thorax region with lung density encountered in extreme cases and acrylic inserts of various dimensions and positions inside the lung cavity. For both phantoms, different lung treatment plans (single or multiple metastases and targets in the mediastinum using HT technique were simulated and verified. Point and planar dose measurements, both with radiographic extended-dose-range (EDR2 and radiochromic external-beam-therapy (EBT2 films, were performed. Absolute point dose measurements, dose profile comparisons and quantitative analysis of gamma function distributions were analyzed. Results An excellent agreement between measured and calculated dose distributions was found in homogeneous media, both for point and planar dose measurements. Absolute dose deviations Conclusions Very acceptable accuracy was found for complex lung treatment plans calculated with CCC algorithm implemented in the tomotherapy TPS even in the heterogeneous phantom with very low lung-density.

  16. Dose energy dependence in proton imaging

    Energy Technology Data Exchange (ETDEWEB)

    Denyak, V.V., E-mail: denyak@gmail.com [National Science Centre Kharkov Institute of Physics and Technology, Kharkov 61108 (Ukraine); Federal University of Technology - Parana, Curitiba 80230-901 (Brazil); Paschuk, S.A.; Schelin, H.R.; Rocha, R.L.; Setti, J.A.P.; Klock, M.C.L.; Evseev, I.G. [Federal University of Technology - Parana, Curitiba 80230-901 (Brazil); Yevseyeva, O.I. [Polytechnic Institute of the Rio de Janeiro State University, Nova Friburgo 28610-970 (Brazil)

    2011-10-01

    In the earliest works dedicated to proton radiography and proton computed tomography it was shown that the advantage of image creation using proton beams appears when the energy is chosen as small as possible, but enough to pass the object. This phenomenon is based on the great sensitivity of the energy flux of the proton beam in relation to the length and density of the object at the end of the proton range. However, this fact was proved experimentally only with thin detectors, such as photographic films, which detect only part of the exit energy of protons. Another method which is based on the measurement of total exit energy of protons contains two effects that act in opposite ways: the necessary irradiation dose increases when the energy of the proton is reduced. In this work, the dependence of the irradiation dose on proton initial energy was studied using analytical formulas and computer simulations. The investigation shows that the irradiation dose depends slightly on the proton energy beyond the region at the end of the proton range and increases sharply in it.

  17. Limitations of analytical dose calculations for small field proton radiosurgery

    Science.gov (United States)

    Geng, Changran; Daartz, Juliane; Lam-Tin-Cheung, Kimberley; Bussiere, Marc; Shih, Helen A.; Paganetti, Harald; Schuemann, Jan

    2017-01-01

    The purpose of the work was to evaluate the dosimetric uncertainties of an analytical dose calculation engine and the impact on treatment plans using small fields in intracranial proton stereotactic radiosurgery (PSRS) for a gantry based double scattering system. 50 patients were evaluated including 10 patients for each of 5 diagnostic indications of: arteriovenous malformation (AVM), acoustic neuroma (AN), meningioma (MGM), metastasis (METS), and pituitary adenoma (PIT). Treatment plans followed standard prescription and optimization procedures for PSRS. We performed comparisons between delivered dose distributions, determined by Monte Carlo (MC) simulations, and those calculated with the analytical dose calculation algorithm (ADC) used in our current treatment planning system in terms of dose volume histogram parameters and beam range distributions. Results show that the difference in the dose to 95% of the target (D95) is within 6% when applying measured field size output corrections for AN, MGM, and PIT. However, for AVM and METS, the differences can be as great as 10% and 12%, respectively. Normalizing the MC dose to the ADC dose based on the dose of voxels in a central area of the target reduces the difference of the D95 to within 6% for all sites. The generally applied margin to cover uncertainties in range (3.5% of the prescribed range  +  1 mm) is not sufficient to cover the range uncertainty for ADC in all cases, especially for patients with high tissue heterogeneity. The root mean square of the R90 difference, the difference in the position of distal falloff to 90% of the prescribed dose, is affected by several factors, especially the patient geometry heterogeneity, modulation and field diameter. In conclusion, implementation of Monte Carlo dose calculation techniques into the clinic can reduce the uncertainty of the target dose for proton stereotactic radiosurgery. If MC is not available for treatment planning, using MC dose distributions to

  18. An example of problems in dose reconstruction from doses formed by electromagnetic irradiation by different energy sources.

    Science.gov (United States)

    Kirillov, Vladimir; Kuchuro, Joseph; Tolstik, Sergey; Leonova, Tatyana

    2010-02-01

    Dose reconstruction for citizens of Belarus affected by the Chernobyl accident showed an unexpectedly wide range of doses. Using the EPR tooth enamel dosimetry method, it has been demonstrated that when the tooth enamel dose was formed due to x-rays with effective energy of 34 keV and the additional irradiation of enamel samples was performed by gamma radiation with mean energy of 1,250 keV, it led to a considerable increase in the reconstructed absorbed dose as compared with the applied. In the case when the dose was formed due to gamma radiation and the additional irradiation was performed by x-rays, it led to a considerable decrease in the reconstructed dose as compared with the applied. When the dose formation and the additional irradiation were carried out from external sources of electromagnetic radiation of equal energy, the reconstructed dose value was close to that of the applied. The obtained data show that for adequate reconstruction of individual absorbed doses by the EPR tooth enamel spectra, it is necessary to take into account the contribution from diagnostic x-ray examination of the teeth, jaw, and skull of some individuals who were exposed to a combined effect of the external gamma radiation and x-rays.

  19. Evaluation of skin dose in tomographic radiographs of temporomandibular joint; Avaliacao da dose pele em radiografias tomograficas da articulacao tempromandibular

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, S.B.; Chaves, F.C.; Rocha, F.E.F.C. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Clinica e Odontologia Preventiva; Khoury, H.J. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear]. E-mail: khoury@elogica.com.br

    2001-07-01

    The aim of this study was to evaluate the skin entrance dose, in patients with temporomandibular joint (TMJ) dysfunctions submitted to computerized tomography. For this purpose, in a private medical establishment, in the city of Recife-Pe/Br, 40 patients were evaluated, in according to radiation doses received in eyes, thyroid and TMJ regions. The value found for eye region range from 0.004 to 0.125 mGy, for thyroid range from 0.002 to 0.113 mGy and for TMJ range from 0.112 to 0.541 mGy.

  20. Comparison of low dose with standard dose abdominal/pelvic multidetector CT in patients with stage 1 testicular cancer under surveillance

    Energy Technology Data Exchange (ETDEWEB)

    O' Malley, Martin E. [Joint Department of Medical Imaging, Toronto, ON (Canada); Chung, Peter; Warde, Padraig [Princess Margaret Hospital, Department of Radiation Oncology, Toronto, ON (Canada); Haider, Masoom; Jhaveri, Kartik; Khalili, Korosh [Princess Margaret Hospital, Joint Department of Medical Imaging, Toronto, ON (Canada); Jang, Hyun-Jung [Toronto General Hospital, Joint Department of Medical Imaging, Toronto, ON (Canada); Panzarella, Tony [Princess Margaret Hospital, Department of Biostatistics, Toronto, ON (Canada)

    2010-07-15

    To compare the image quality and acceptability of a low dose with those of standard dose abdominal/pelvic multidetector CT in patients with stage 1 testicular cancer managed by surveillance. One hundred patients (median age 31 years; range 19-83 years), 79 with seminoma and 21 with non-seminoma, underwent abdominal/pelvic imaging with low and standard dose protocols on 64-slice multidetector CT. Three reviewers independently evaluated images for noise and diagnostic quality on a 5-point scale and for diagnostic acceptability. On average, each reader scored noise and diagnostic quality of standard dose images significantly better than corresponding low dose images (p < 0.0001). One reader found all CT examinations acceptable; two readers each found 1/100 (1%) low dose examinations unacceptable. Median and mean dose-length product for low and standard dose protocols were 416.0 and 452.2 (range 122.9-913.4) and 931.9 and 999.8 (range 283.8-1,987.7) mGy cm, respectively. The low dose protocol provided diagnostically acceptable images for at least 99% of patients and achieved mean dose reduction of 55% compared with the standard dose protocol. (orig.)

  1. Usability of tartaric acid in dose measurements: an ESR study

    Science.gov (United States)

    Korkmaz, Güney; Polat, Mustafa; Korkmaz, Mustafa

    2010-03-01

    Unirradiated tartaric acid samples do not exhibit any ESR signal. However, the ESR spectra of irradiated samples contain many resonance signals. The dose-responce curves of the resonance signals, denoted as I 1, I 2, I 3 and I 4 in the present study, were found to increase linearly with the applied radiation dose in the range of 0.04-25 kGy. Adjusting the microvawe power and modulation amplitudes of 1.0 mW and 1.0 mT, respectively, was found to increase the sensitivity of tartaric acid. From the dose-response curves and room temperature decay data, it was concluded that the I 3 resonance signal of tartaric acid can be used for dose measurements at intermediate (0.04-0.4 kGy) and high dose (0.5-25 kGy) levels.

  2. Topographic Effects on Ambient Dose Equivalent Rates from Radiocesium Fallout

    CERN Document Server

    Malins, Alex; Machida, Masahiko; Saito, Kimiaki

    2015-01-01

    Land topography can affect air radiation dose rates by locating radiation sources closer to, or further, from detector locations when compared to perfectly flat terrain. Hills and slopes can also shield against the propagation of gamma rays. To understand the possible magnitude of topographic effects on air dose rates, this study presents calculations for ambient dose equivalent rates at a range of heights above the ground for varying land topographies. The geometries considered were angled ground at the intersection of two planar surfaces, which is a model for slopes neighboring flat land, and a simple conical geometry, representing settings from hilltops to valley bottoms. In each case the radiation source was radioactive cesium fallout, and the slope angle was varied systematically to determine the effect of topography on the air dose rate. Under the assumption of homogeneous fallout across the land surface, and for these geometries and detector locations, the dose rates at high altitudes are more strongly...

  3. Microscopic dose to lung from inhaled alpha emitters in humans

    Energy Technology Data Exchange (ETDEWEB)

    Diel, Joseph; Belosokhov, Maxim; Romanov, Sergey [Southern Urals Biophysics Institute, Ozersk, Chelyabinsk Region (Russian Federation); Guilmette, Raymond [Los Alamos National Laboratory, MS G761, RP-2, Los Alamos, NM 87545 (United States)

    2007-07-01

    Because of the short range of alpha particles in tissue, the degree of uniformity of irradiation of the lung varies greatly depending on the form of the inhaled material. Animal studies have shown that the degree of dose uniformity influences the risk of lung cancer. This study investigates the radiation dose distribution of plutonium in human lung. Numerical maps of tissue configuration and target cell locations are obtained from histological sections of human lung tissue stained to enhance the identification of putative cell types for parenchymal lung cancers, i.e. alveolar type II cells and Clara cells. Monte Carlo simulations are used to obtain dose distribution around individual particles, and these distributions are used to compute dose distribution in volumes of lung tissue. Lung dose is characterised both by the degree of non-uniformity of irradiation and the relative degree of irradiation of all tissue versus the special cells of interest. (authors)

  4. An efficient dose-compensation method for proximity effect correction

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ying; Han Weihua; Yang Xiang; Zhang Yang; Yang Fuhua [Research Center of Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Zhang Renping, E-mail: wangying@semi.ac.c [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2010-08-15

    A novel simple dose-compensation method is developed for proximity effect correction in electron-beam lithography. The sizes of exposed patterns depend on dose factors while other exposure parameters (including accelerate voltage, resist thickness, exposing step size, substrate material, and so on) remain constant. This method is based on two reasonable assumptions in the evaluation of the compensated dose factor: one is that the relation between dose factors and circle-diameters is linear in the range under consideration; the other is that the compensated dose factor is only affected by the nearest neighbors for simplicity. Four-layer-hexagon photonic crystal structures were fabricated as test patterns to demonstrate this method. Compared to the uncorrected structures, the homogeneity of the corrected hole-size in photonic crystal structures was clearly improved. (semiconductor technology)

  5. Is There a Dose-Response Relationship for Heart Disease With Low-Dose Radiation Therapy?

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eugene [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Corbett, James R. [Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Moran, Jean M. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Griffith, Kent A. [Department of Biostatistics, University of Michigan, Ann Arbor, Michigan (United States); Marsh, Robin B.; Feng, Mary; Jagsi, Reshma; Kessler, Marc L. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Ficaro, Edward C. [Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Pierce, Lori J., E-mail: ljpierce@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2013-03-15

    Purpose: To quantify cardiac radiation therapy (RT) exposure using sensitive measures of cardiac dysfunction; and to correlate dysfunction with heart doses, in the setting of adjuvant RT for left-sided breast cancer. Methods and Materials: On a randomized trial, 32 women with node-positive left-sided breast cancer underwent pre-RT stress single photon emission computed tomography (SPECT-CT) myocardial perfusion scans. Patients received RT to the breast/chest wall and regional lymph nodes to doses of 50 to 52.2 Gy. Repeat SPECT-CT scans were performed 1 year after RT. Perfusion defects (PD), summed stress defects scores (SSS), and ejection fractions (EF) were evaluated. Doses to the heart and coronary arteries were quantified. Results: The mean difference in pre- and post-RT PD was −0.38% ± 3.20% (P=.68), with no clinically significant defects. To assess for subclinical effects, PD were also examined using a 1.5-SD below the normal mean threshold, with a mean difference of 2.53% ± 12.57% (P=.38). The mean differences in SSS and EF before and after RT were 0.78% ± 2.50% (P=.08) and 1.75% ± 7.29% (P=.39), respectively. The average heart Dmean and D95 were 2.82 Gy (range, 1.11-6.06 Gy) and 0.90 Gy (range, 0.13-2.17 Gy), respectively. The average Dmean and D95 to the left anterior descending artery were 7.22 Gy (range, 2.58-18.05 Gy) and 3.22 Gy (range, 1.23-6.86 Gy), respectively. No correlations were found between cardiac doses and changes in PD, SSS, and EF. Conclusions: Using sensitive measures of cardiac function, no clinically significant defects were found after RT, with the average heart Dmean <5 Gy. Although a dose response may exist for measures of cardiac dysfunction at higher doses, no correlation was found in the present study for low doses delivered to cardiac structures and perfusion, SSS, or EF.

  6. Dose calculations for intakes of ore dust

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, R.S

    1998-08-01

    This report describes a methodology for calculating the committed effective dose for mixtures of radionuclides, such as those which occur in natural radioactive ores and dusts. The formulae are derived from first principles, with the use of reasonable assumptions concerning the nature and behaviour of the radionuclide mixtures. The calculations are complicated because these `ores` contain a range of particle sizes, have different degrees of solubility in blood and other body fluids, and also have different biokinetic clearance characteristics from the organs and tissues in the body. The naturally occurring radionuclides also tend to occur in series, i.e. one is produced by the radioactive decay of another `parent` radionuclide. The formulae derived here can be used, in conjunction with a model such as LUDEP, for calculating total dose resulting from inhalation and/or ingestion of a mixture of radionuclides, and also for deriving annual limits on intake and derived air concentrations for these mixtures. 15 refs., 14 tabs., 3 figs.

  7. Thyroid dose distribution in dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Bristow, R.G.; Wood, R.E.; Clark, G.M. (Ontario Cancer Institute, Toronto (Canada))

    1989-10-01

    The anatomic position and proven radiosensitivity of the thyroid gland make it an organ of concern in dental radiography. A calibrated thermoluminescent dosimetry system was used to investigate the absorbed dose (microGy) to the thyroid gland resultant from a minimum irradiated volume, intraoral full-mouth radiography technique with the use of rectangular collimation with a lead-backed image receptor, and conventional panoramic radiography performed with front and rear lead aprons. Use of the minimum irradiated volume technique resulted in a significantly decreased absorbed dose over the entire thyroid region ranging from 100% to 350% (p less than 0.05). Because this intraoral technique results in radiographs with greater image quality and also exposes the thyroid gland to less radiation than the panoramic, this technique may be an alternative to the panoramic procedure.

  8. The importance of carcinogen dose in chemoprevention studies: quantitative interrelationships between, dibenzo[a,l]pyrene dose, chlorophyllin dose, target organ DNA adduct biomarkers and final tumor outcome.

    Science.gov (United States)

    Pratt, M Margaret; Reddy, Ashok P; Hendricks, Jerry D; Pereira, Cliff; Kensler, Thomas W; Bailey, George S

    2007-03-01

    Chlorophyllin (CHL) is a potent antimutagen in vitro, an effective anti-carcinogen in several animal models, and significantly reduced urinary biomarkers of aflatoxin B(1) (AFB(1)) exposure in a human population. Here we report an expanded analysis of CHL chemoprevention using the potent environmental hydrocarbon dibenzo[a,l]pyrene (DBP). A dose-dose matrix design employed over 12 000 rainbow trout to evaluate the interrelationships among dietary carcinogen dose, anti-carcinogen dose, carcinogen-DNA adduct levels at exposure and eventual tumor outcome in two target organs. Included was an evaluation of the pharmaceutical CHL preparation (Derifil), used previously in a study of individuals chronically exposed to AFB(1). CHL was pre-, co- and post-fed at doses of 0-6000 p.p.m. and co-fed with DBP at doses of 0-371.5 p.p.m. for 4 weeks. This protocol generated a total of 21 dose-dose treatment groups, each evaluated with three or more replicates of 100 animals. The DBP-only treatment produced dose-responsive increases in liver and stomach DBP-DNA adducts, whereas increasing CHL co-treatment doses produced successive inhibition in liver (49-83%) and stomach (47-75%) adduct levels at each DBP dose examined. The remaining 8711 trout were necropsied, 10 months later. DBP treatment alone produced a logit incidence versus log [DBP] dose-response curve in stomach that was linear; CHL co-treatment provided dose-dependent tumor inhibition which ranged from 30 to 68% and was predictable from the adduct response. The Derifil CHL preparation was also found to effectively reduce DNA adduction and final tumor incidence in stomach (as well as liver), with a potency compatible with its total chlorin content. Liver tumor incidence in the DBP-only groups appeared to plateau near 60%. At DBP doses of doses generally reduced tumor incidence and multiplicity consistent with early DNA adducts as biomarkers. At 225 p.p.m. DBP, however, very high CHL doses were

  9. From total empiricism to a rational design of metronomic chemotherapy phase I dosing trials.

    Science.gov (United States)

    Lam, Thomas; Hetherington, John W; Greenman, John; Maraveyas, Anthony

    2006-02-01

    'Metronomic chemotherapy' represents a novel anti-angiogenic strategy whereby low-dose chemotherapy is utilized in a continuous fashion in order to target tumor endothelium. There are many potential advantages of this strategy and clinical trials are already underway. However, although the scheduling of metronomic chemotherapy is relatively unequivocal, metronomic dosing principles are at present poorly defined. Arbitrarily, 10-33% of the maximum tolerated dose comprises 'the dose range'. We argue that this is too empirical and propose a set of phase I metronomic chemotherapy dosing strategies based on a principled approach which may help to reduce the problem of empiricism in dosing for metronomic chemotherapy trials.

  10. Design of an integrating type neutron dose monitor.

    Science.gov (United States)

    Yamanishi, Hirokuni

    2011-07-01

    It is intended that deuterium-deuterium reaction experiments will be performed for the next phase of the large helical device (LHD) at National Institute for Fusion Science (NIFS), Toki, Japan. To protect workers against radiation, the characteristics of the radiation field at the LHD workplace should be evaluated. The neutron fluence at the workplace was calculated by means of the radiation transportation code. Since the neutron energy distribution at the workplace has a wide energy range, from thermal to fast neutrons, a neutron dose monitor had to be especially designed. The author designed an integrating type neutron dose monitor for this purpose. Since this monitor has good responses for dose evaluation in every energy range, it should be able to evaluate the dose at the LHD workplace accurately.

  11. High-dose Helical Tomotherapy With Concurrent Full-dose Chemotherapy for Locally Advanced Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jee Suk [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Wang, Michael L.C. [Department of Radiation Oncology, National Cancer Centre (Singapore); Koom, Woong Sub; Yoon, Hong In; Chung, Yoonsun [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Song, Si Young [Department of Internal Medicine, Yonsei University College of Medicine, Seoul (Korea, Republic of); Seong, Jinsil, E-mail: jsseong@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2012-08-01

    Purpose: To improve poor therapeutic outcome of current practice of chemoradiotherapy (CRT), high-dose helical tomotherapy (HT) with concurrent full-dose chemotherapy has been performed on patients with locally advanced pancreatic cancer (LAPC), and the results were analyzed. Methods and Materials: We retrospectively reviewed 39 patients with LAPC treated with radiotherapy using HT (median, 58.4 Gy; range, 50.8-59.9 Gy) and concomitant chemotherapy between 2006 and 2009. Radiotherapy was directed to the primary tumor with a 0.5-cm margin without prophylactic nodal coverage. Twenty-nine patients (79%) received full-dose (1000 mg/m{sup 2}) gemcitabine-based chemotherapy during HT. After completion of CRT, maintenance chemotherapy was administered to 37 patients (95%). Results: The median follow-up was 15.5 months (range, 3.4-43.9) for the entire cohort, and 22.5 months (range, 12.0-43.9) for the surviving patients. The 1- and 2-year local progression-free survival rates were 82.1% and 77.3%, respectively. Eight patients (21%) were converted to resectable status, including 1 with a pathological complete response. The median overall survival and progression-free survival were 21.2 and 14.0 months, respectively. Acute toxicities were acceptable with no gastrointestinal (GI) toxicity higher than Grade 3. Severe late GI toxicity ({>=}Grade 3) occurred in 10 patients (26%); 1 treatment-related death from GI bleeding was observed. Conclusion: High-dose helical tomotherapy with concurrent full-dose chemotherapy resulted in improved local control and long-term survival in patients with LAPC. Future studies are needed to widen the therapeutic window by minimizing late GI toxicity.

  12. Evolution of radon dose evaluation

    Directory of Open Access Journals (Sweden)

    Fujimoto Kenzo

    2004-01-01

    Full Text Available The historical change of radon dose evaluation is reviewed based on the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR reports. Since 1955, radon has been recognized as one of the important sources of exposure of the general public. However, it was not really understood that radon is the largest dose contributor until 1977 when a new concept of effective dose equivalent was introduced by International Commission on Radiological Protection. In 1982, the dose concept was also adapted by UNSCEAR and evaluated per caput dose from natural radiation. Many researches have been carried out since then. However, lots of questions have remained open in radon problems, such as the radiation weighting factor of 20 for alpha rays and the large discrepancy of risk estimation among dosimetric and epidemiological approaches.

  13. Application of combined TLD and CR-39 PNTD method for measurement of total dose and dose equivalent on ISS

    Energy Technology Data Exchange (ETDEWEB)

    Benton, E.R. [Eril Research, Inc., Stillwater, Oklahoma (United States); Deme, S.; Apathy, I. [KFKI Atomic Energy Research Institute, Budapest (Hungary)

    2006-07-01

    To date, no single passive detector has been found that measures dose equivalent from ionizing radiation exposure in low-Earth orbit. We have developed the I.S.S. Passive Dosimetry System (P.D.S.), utilizing a combination of TLD in the form of the self-contained Pille TLD system and stacks of CR-39 plastic nuclear track detector (P.N.T.D.) oriented in three mutually orthogonal directions, to measure total dose and dose equivalent aboard the International Space Station (I.S.S.). The Pille TLD system, consisting on an on board reader and a large number of Ca{sub 2}SO{sub 4}:Dy TLD cells, is used to measure absorbed dose. The Pille TLD cells are read out and annealed by the I.S.S. crew on orbit, such that dose information for any time period or condition, e.g. for E.V.A. or following a solar particle event, is immediately available. Near-tissue equivalent CR-39 P.N.T.D. provides Let spectrum, dose, and dose equivalent from charged particles of LET{sub {infinity}}H{sub 2}O {>=} 10 keV/{mu}m, including the secondaries produced in interactions with high-energy neutrons. Dose information from CR-39 P.N.T.D. is used to correct the absorbed dose component {>=} 10 keV/{mu}m measured in TLD to obtain total dose. Dose equivalent from CR-39 P.N.T.D. is combined with the dose component <10 keV/{mu}m measured in TLD to obtain total dose equivalent. Dose rates ranging from 165 to 250 {mu}Gy/day and dose equivalent rates ranging from 340 to 450 {mu}Sv/day were measured aboard I.S.S. during the Expedition 2 mission in 2001. Results from the P.D.S. are consistent with those from other passive detectors tested as part of the ground-based I.C.C.H.I.B.A.N. intercomparison of space radiation dosimeters. (authors)

  14. Mutations induced in Tradescantia by small doses of X-rays and neutrons - Analysis of dose-response curves.

    Science.gov (United States)

    Sparrow, A. H.; Underbrink, A. G.; Rossi, H. H.

    1972-01-01

    Dose-response curves for pink somatic mutations in Tradescantia stamen hairs were analyzed after neutron and X-ray irradiation with doses ranging from a fraction of a rad to the region of saturation. The dose-effect relation for neutrons indicates a linear dependence from 0.01 to 8 rads; between 0.25 and 5 rads, a linear dependence is indicated for X-rays also. As a consequence the relative biological effectiveness reaches a constant value (about 50) at low doses. The observations are in good agreement with the predictions of the theory of dual radiation action and support its interpretation of the effects of radiation on higher organisms. The doubling dose of X-rays was found to be nearly 1 rad.

  15. Plastic film materials for dosimetry of very large absorbed doses

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Miller, Arne; Abdel-Rahim, F.

    1985-01-01

    Most plastic films have limited response ranges for dosimetry because of radiation-induced brittleness, degradation, or saturation of the signal used for analysis (e.g. spectrophotometry) at high doses. There are, however, a few types of thin plastic films showing linearity of response even up...... to doses as high as 2 × 106 Gy (200 Mrad) without severe loss of mechanical properties. Among many candidate film types tested, those showing such resistance to radiation damage and continued response at such high doses are polyethylene terephthalate, high-density polyethylene, dyed polyvinylchloride...

  16. Student's music exposure: Full-day personal dose measurements.

    Science.gov (United States)

    Washnik, Nilesh Jeevandas; Phillips, Susan L; Teglas, Sandra

    2016-01-01

    Previous studies have shown that collegiate level music students are exposed to potentially hazardous sound levels. Compared to professional musicians, collegiate level music students typically do not perform as frequently, but they are exposed to intense sounds during practice and rehearsal sessions. The purpose of the study was to determine the full-day exposure dose including individual practice and ensemble rehearsals for collegiate student musicians. Sixty-seven college students of classical music were recruited representing 17 primary instruments. Of these students, 57 completed 2 days of noise dose measurements using Cirrus doseBadge programed according to the National Institute for Occupational Safety and Health criterion. Sound exposure was measured for 2 days from morning to evening, ranging from 7 to 9 h. Twenty-eight out of 57 (49%) student musicians exceeded a 100% daily noise dose on at least 1 day of the two measurement days. Eleven student musicians (19%) exceeded 100% daily noise dose on both days. Fourteen students exceeded 100% dose during large ensemble rehearsals and eight students exceeded 100% dose during individual practice sessions. Approximately, half of the student musicians exceeded 100% noise dose on a typical college schedule. This finding indicates that a large proportion of collegiate student musicians are at risk of developing noise-induced hearing loss due to hazardous sound levels. Considering the current finding, there is a need to conduct hearing conservation programs in all music schools, and to educate student musicians about the use and importance of hearing protection devices for their hearing.

  17. Effective dose estimation to patients and staff during urethrography procedures

    Energy Technology Data Exchange (ETDEWEB)

    Sulieman, A. [Prince Sattam bin Abdulaziz University, College of Applied Medical Sciences, Radiology and Medical Imaging Department, P. O- Box 422, Alkharj 11942 (Saudi Arabia); Barakat, H. [Neelain University, College of Science and Technology, Medical Physics Department, Khartoum (Sudan); Alkhorayef, M.; Babikir, E. [King Saud University, College of Applied Sciences, Radiological Sciences Department, P. O. Box 10219, Riyadh 11433 (Saudi Arabia); Dalton, A.; Bradley, D. [University of Surrey, Centre for Nuclear and Radiation Physics, Department of Physics, Surrey, GU2 7XH Guildford (United Kingdom)

    2015-10-15

    Medical-related radiation is the largest source of controllable radiation exposure to humans and it accounts for more than 95% of radiation exposure from man-made sources. Few data were available worldwide regarding patient and staff dose during urological ascending urethrography (ASU) procedure. The purposes of this study are to measure patient and staff entrance surface air kerma dose (ESAK) during ASU procedure and evaluate the effective doses. A total of 243 patients and 145 staff (Urologist) were examined in three Hospitals in Khartoum state. ESAKs were measured for patient and staff using thermoluminescent detectors (TLDs). Effective doses (E) were calculated using published conversion factors and methods recommended by the national Radiological Protection Board (NRPB). The mean ESAK dose for patients and staff dose were 7.79±6.7 mGy and 0.161±0.30 mGy per procedures respectively. The mean and range of the effective dose was 1.21 mSv per procedure. The radiation dose in this study is comparable with previous studies except Hospital C. It is obvious that high patient and staff exposure is due to the lack of experience and protective equipment s. Interventional procedures remain operator dependent; therefore continuous training is crucial. (Author)

  18. Surface dose with grids in electron beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, K.-H.; Huang, C.-Y.; Lin, J.-P.; Chu, T.-C. E-mail: tcchu@mx.nthu.edu.tw

    2002-03-01

    This investigation attempts to solve the problem of the lack of skin-sparing effect in electron radiation therapy and to increase the tolerance of skin to radiation using the grid technique. Electron grid therapy involves the mounting of a Cerrobend grid in the electron cone. Film dosimetry was employed to measure the relative surface dose and the percentage depth dose profile of electron grid portals. Various grid hole diameters (d=0.45, 1.0, 1.5 cm) and grid hole spacings (s=0.4, 0.2 cm) were considered for electron beams from 6 to 14 MeV. Experimental results indicate that the electron grid technique can reduce the relative surface dose in electron radiation therapy. Degradations of the relative surface dose depend on the percentage of open area in the grid portal. A proper grid design allows the surface dose to be reduced and the range of nonhomogeneous doses to be limited to a depth at which the target volume can receive a homogeneous dose. The grid technique can lower the surface dose in electron radiation therapy.

  19. Doses of Nearby Nature Simultaneously Associated with Multiple Health Benefits

    Directory of Open Access Journals (Sweden)

    Daniel T. C. Cox

    2017-02-01

    Full Text Available Exposure to nature provides a wide range of health benefits. A significant proportion of these are delivered close to home, because this offers an immediate and easily accessible opportunity for people to experience nature. However, there is limited information to guide recommendations on its management and appropriate use. We apply a nature dose-response framework to quantify the simultaneous association between exposure to nearby nature and multiple health benefits. We surveyed ca. 1000 respondents in Southern England, UK, to determine relationships between (a nature dose type, that is the frequency and duration (time spent in private green space and intensity (quantity of neighbourhood vegetation cover of nature exposure and (b health outcomes, including mental, physical and social health, physical behaviour and nature orientation. We then modelled dose-response relationships between dose type and self-reported depression. We demonstrate positive relationships between nature dose and mental and social health, increased physical activity and nature orientation. Dose-response analysis showed that lower levels of depression were associated with minimum thresholds of weekly nature dose. Nearby nature is associated with quantifiable health benefits, with potential for lowering the human and financial costs of ill health. Dose-response analysis has the potential to guide minimum and optimum recommendations on the management and use of nearby nature for preventative healthcare.

  20. Radiation dose estimates for radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E. [Oak Ridge Inst. of Science and Education, TN (United States). Radiation Internal Dose Information Center

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms.

  1. Dose Response for Chromosome Aberrations in Human Lymphocytes and Fibroblasts after Exposure to Very Low Doses of High LET Radiation

    Science.gov (United States)

    Hada, M.; George, Kerry; Cucinotta, Francis A.

    2011-01-01

    The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivors with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (1-20 cGy) of 170 MeV/u Si-28- ions or 600 MeV/u Fe-56-ions. Chromosomes were analyzed using the whole chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving greater than 2 breaks in 2 or more chromosomes). The curves for doses above 10 cGy were fitted with linear or linear-quadratic functions. For Si-28- ions no dose response was observed in the 2-10 cGy dose range, suggesting a non-target effect in this range.

  2. Effects of low doses; Effet des faibles doses

    Energy Technology Data Exchange (ETDEWEB)

    Le Guen, B. [Electricite de France (EDF-LAM-SCAST), 93 - Saint-Denis (France)

    2001-07-01

    Actually, even though it is comfortable for the risk management, the hypothesis of the dose-effect relationship linearity is not confirmed for any model. In particular, in the area of low dose rate delivered by low let emitters. this hypothesis is debated at the light of recent observations, notably these ones relative to the mechanisms leading to genetic instability and induction eventuality of DNA repair. The problem of strong let emitters is still to solve. (N.C.)

  3. Derivation of Human Lethal Doses

    Science.gov (United States)

    2006-01-19

    Hardman, JG; Limbird, LE; Goodman Gilman , A, (editors). (2001) Goodman and Gilman’s The Pharmacological Basis of Therapeutics. New York, NY: McGraw... Goodman and Gilman’s N/A No LDLo, MLD, or lethal dose for humans; no LD50 for rat or mouse NIOSH N/A No LDLo, MLD, or lethal dose for humans; no LD50...Basis of Therapeutics– Goodman and Gilman’s N/A No LDLo, MLD, or lethal dose for humans; no LD50 for rat or mouse NIOSH N/A No LDLo, MLD, or lethal

  4. Dose-to-medium vs. dose-to-water: Dosimetric evaluation of dose reporting modes in Acuros XB for prostate, lung and breast cancer

    Directory of Open Access Journals (Sweden)

    Suresh Rana

    2014-12-01

    Full Text Available Purpose: Acuros XB (AXB dose calculation algorithm is available for external beam photon dose calculations in Eclipse treatment planning system (TPS. The AXB can report the absorbed dose in two modes: dose-to-water (Dw and dose-to-medium (Dm. The main purpose of this study was to compare the dosimetric results of the AXB_Dm with that of AXB_Dw on real patient treatment plans. Methods: Four groups of patients (prostate cancer, stereotactic body radiation therapy (SBRT lung cancer, left breast cancer, and right breast cancer were selected for this study, and each group consisted of 5 cases. The treatment plans of all cases were generated in the Eclipse TPS. For each case, treatment plans were computed using AXB_Dw and AXB_Dm for identical beam arrangements. Dosimetric evaluation was done by comparing various dosimetric parameters in the AXB_Dw plans with that of AXB_Dm plans for the corresponding patient case. Results: For the prostate cancer, the mean planning target volume (PTV dose in the AXB_Dw plans was higher by up to 1.0%, but the mean PTV dose was within ±0.3% for the SBRT lung cancer. The analysis of organs at risk (OAR results in the prostate cancer showed that AXB_Dw plans consistently produced higher values for the bladder and femoral heads but not for the rectum. In the case of SBRT lung cancer, a clear trend was seen for the heart mean dose and spinal cord maximum dose, with AXB_Dw plans producing higher values than the AXB_Dm plans. However, the difference in the lung doses between the AXB_Dm and AXB_Dw plans did not always produce a clear trend, with difference ranged from -1.4% to 2.9%. For both the left and right breast cancer, the AXB_Dm plans produced higher maximum dose to the PTV for all cases. The evaluation of the maximum dose to the skin showed higher values in the AXB_Dm plans for all 5 left breast cancer cases, whereas only 2 cases had higher maximum dose to the skin in the AXB_Dm plans for the right breast cancer

  5. Utilisation of PACS to monitor patient CT doses.

    Science.gov (United States)

    AlSuwaidi, J S; Bayoumi, M; Al Shibli, N; Sulaiman, H; Urrahman, T; AlYarah, M

    2011-09-01

    In the past 5 y, the number of computed tomography (CT) studies has doubled at Dubai Health Authority hospitals. This situation, along with patient's overdoses reported internationally, has prompted action to establish a system to manage patient doses incurred due to medical imaging practices. In this work, the authors aim to homogenise dose reporting to monitor radiation dose levels and facilitate the establishment of local and national dose reference levels. The two hospitals enrolled in this study are equipped with three CT systems (two 4 slices and one 64 slices). Through the Picture Archive and Communication Systems (PACS) tracking system, it is mandatory to fill CT patient doses in radiology information system (RIS). Dose length product (mGy cm) was recorded for 2502 adult and 178 paediatric patients. All patients' dosimetry data were collected from the RIS by Cogonos statistical software. The PACS data were reviewed to exclude incomplete data. Average and range of effective doses for adult and paediatric patients were calculated using an appropriate weighting factor. Individual accumulated effective doses for adult and paediatric patients were calculated for 4s-scanner-1 only. Adult average effective doses for the head (1482 exams) were 1.23 ± 0.58, 2.84 ± 0.83 and 2.98 ± 1.103 mSv, the chest (545 exams) were 5.39 ± 1.63, 21.85 ± 5.63 and 18.19 ± 3.22 mSv and for the abdomen and pelvis (1183 exams) were 10.85 ± 4.26, 25.66 ± 8.83 and 26.46 ± 13.75 mSv for 4s-scanner-1, 4s-scanner-2 and 64 s, respectively. The paediatric average effective dose for the head (127 exams) was 1.77 ± 0.82 mSv, for the chest (22 exams) was 3.3 ± 1.29 mSv and for the abdomen and pelvis (27 exams) was 6.16 ± 2.64 mSv. Results of individual accumulated effective doses for adult and paediatric patients were presented. PACS dose reporting facilitated dosimetry clinical auditing. Effective doses obtained in this work demonstrated that the results of one scanner were within

  6. Ultraviolet radiation therapy and UVR dose models

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, David Robert, E-mail: davidrobert.grimes@oncology.ox.ac.uk [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland and Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ (United Kingdom)

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  7. Dose assessment of aircrew using passive detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hajek, M.; Berge, T.; Schoener, W.; Summerer, L.; Vana, N

    2002-07-01

    Radiation exposure of aircrew is a serious concern which has been given special emphasis in the European Council directive 96/29/Euratom. The cosmic ray induced neutron component can contribute more than 50% to the biologically relevant dose at aviation altitudes. Various computational approaches to route dose assessment, e.g. CARI, are in use nowadays and are compared with experimental data. Measurements of aircrew exposure usually involve extensive instrumentation in order to cover the whole particle spectrum and energy range present inside aircraft. Due to their small size and easy handling, thermoluminescence dosemeters represent an appropriate alternative. Previous measurements onboard aircraft applying the high-temperature ratio method with LiF:Mg,Ti dosemeters for the determination of an 'averaged' linear energy transfer of mixed radiation fields demonstrate the ability of this method to evaluate the dose equivalent, according to the Q(LET{sub (}) relationship proposed by the ICRP. Measurements with CaF{sub 2}:Tm dosemeters are currently in progress and are discussed here. (author)

  8. Low dose metoprolol in acute myocardial infarction.

    Science.gov (United States)

    Kumar, K P; Krishnaswami, S; Prasad, N K; Rath, P C; Jose, J

    1989-01-01

    A study of the effects of low dose Metoprolol was undertaken in 37 patients with acute myocardial infarction. These patients were randomly divided into three groups depending on the dose of the drug per kg body weight. Group I, consisting of 18 patients, received 0.36 to 0.65 mg per kg per day, Group II (10 patients) received 0.66 to 0.99 mg/kg/day, and Group III (9 patients) 1 to 1.81 mg/kg/day. To assess the degree of beta blockade achieved, the parameters that were evaluated were the fall in blood pressure and heart rate. There was a fall in systolic blood pressure which ranged from 7 to 17%, and fall in heart rate of 6.6 to 12.8% in the 3 groups over the 48-hour study period. These observations were compared with the results obtained from the Goteberg Metoprolol trial and Metoprolol in acute myocardial infarction (MIAMI) trials wherein 200 mg of Metoprolol per day were used. Our preliminary observations suggest that Indian patients may not need such a high dose, and Metoprolol at 50-100 mg per day would probably be sufficient to get the desired effect.

  9. Three dimensional biological dose distribution of antiprotons

    Energy Technology Data Exchange (ETDEWEB)

    Tegami, Sara; Boll, Rebecca; Sellner, Stefan [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Welsch, Carsten P. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Cockcroft Institute, University of Liverpool (United Kingdom); Holzscheiter, Michael H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); University of New Mexico, Albuquerque (United States)

    2010-07-01

    The goal of external beam cancer therapy is to destroy the tumour while sparing the healthy tissue around it. In hadron therapy, the dose profile of heavy charged particles satisfies this request, because most of the energy is deposited at the end of the particle path, in the Bragg peak. Antiprotons are even more promising, thanks to the extra energy released by annihilation when captured in a normal atom at the end of range. The aim of the AD-4/ACE experiment at CERN is to determine the increase in biological dose near the Bragg peak due to densely ionizing particles emanating from the annihilation of antiprotons. Initial experiments showed the damage to cells inflicted at the end of the beam for identical damage at the skin level to be four times higher for antiprotons than for protons. The radiation field in a spread-out Bragg peak produced with antiprotons is highly mixed and for proper dose planning knowledge of linear energy transfer (LET) and relative biological efficiency (RBE) at any point in the target is needed. We are studying a number of detection methods for their response to mixed radiation fields with the goal to obtain a direct measurement of the 3D LET distribution and report on first results.

  10. Description of dose response curve

    OpenAIRE

    Al-Samarai, Firas

    2011-01-01

    The book included several methods to estimate LD50, in addition to explain how to use several programs to estimate LD50. Moreover the book illustrate the description of the dose response curves. Firas Al-Samarai

  11. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M.; McMakin, A.H. (comps.)

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.

  12. Microfluidic thrombosis under multiple shear rates and antiplatelet therapy doses.

    Directory of Open Access Journals (Sweden)

    Melissa Li

    Full Text Available The mainstay of treatment for thrombosis, the formation of occlusive platelet aggregates that often lead to heart attack and stroke, is antiplatelet therapy. Antiplatelet therapy dosing and resistance are poorly understood, leading to potential incorrect and ineffective dosing. Shear rate is also suspected to play a major role in thrombosis, but instrumentation to measure its influence has been limited by flow conditions, agonist use, and non-systematic and/or non-quantitative studies. In this work we measured occlusion times and thrombus detachment for a range of initial shear rates (500, 1500, 4000, and 10000 s(-1 and therapy concentrations (0-2.4 µM for eptifibatide, 0-2 mM for acetyl-salicylic acid (ASA, 3.5-40 Units/L for heparin using a microfluidic device. We also measured complete blood counts (CBC and platelet activity using whole blood impedance aggregometry. Effects of shear rate and dose were analyzed using general linear models, logistic regressions, and Cox proportional hazards models. Shear rates have significant effects on thrombosis/dose-response curves for all tested therapies. ASA has little effect on high shear occlusion times, even at very high doses (up to 20 times the recommended dose. Under ASA therapy, thrombi formed at high shear rates were 4 times more prone to detachment compared to those formed under control conditions. Eptifibatide reduced occlusion when controlling for shear rate and its efficacy increased with dose concentration. In contrast, the hazard of occlusion from ASA was several orders of magnitude higher than that of eptifibatide. Our results show similar dose efficacy to our low shear measurements using whole blood aggregometry. This quantitative and statistically validated study of the effects of a wide range of shear rate and antiplatelet therapy doses on occlusive thrombosis contributes to more accurate understanding of thrombosis and to models for optimizing patient treatment.

  13. Concept of proton radiography using energy resolved dose measurement

    Science.gov (United States)

    Bentefour, El H.; Schnuerer, Roland; Lu, Hsiao-Ming

    2016-08-01

    Energy resolved dosimetry offers a potential path to single detector based proton imaging using scanned proton beams. This is because energy resolved dose functions encrypt the radiological depth at which the measurements are made. When a set of predetermined proton beams ‘proton imaging field’ are used to deliver a well determined dose distribution in a specific volume, then, at any given depth x of this volume, the behavior of the dose against the energies of the proton imaging field is unique and characterizes the depth x. This concept applies directly to proton therapy scanning delivery methods (pencil beam scanning and uniform scanning) and it can be extended to the proton therapy passive delivery methods (single and double scattering) if the delivery of the irradiation is time-controlled with a known time-energy relationship. To derive the water equivalent path length (WEPL) from the energy resolved dose measurement, one may proceed in two different ways. A first method is by matching the measured energy resolved dose function to a pre-established calibration database of the behavior of the energy resolved dose in water, measured over the entire range of radiological depths with at least 1 mm spatial resolution. This calibration database can also be made specific to the patient if computed using the patient x-CT data. A second method to determine the WEPL is by using the empirical relationships between the WEPL and the integral dose or the depth at 80% of the proximal fall off of the energy resolved dose functions in water. In this note, we establish the evidence of the fundamental relationship between the energy resolved dose and the WEPL at the depth of the measurement. Then, we illustrate this relationship with experimental data and discuss its imaging dynamic range for 230 MeV protons.

  14. Concept of proton radiography using energy resolved dose measurement.

    Science.gov (United States)

    Bentefour, El H; Schnuerer, Roland; Lu, Hsiao-Ming

    2016-08-21

    Energy resolved dosimetry offers a potential path to single detector based proton imaging using scanned proton beams. This is because energy resolved dose functions encrypt the radiological depth at which the measurements are made. When a set of predetermined proton beams 'proton imaging field' are used to deliver a well determined dose distribution in a specific volume, then, at any given depth x of this volume, the behavior of the dose against the energies of the proton imaging field is unique and characterizes the depth x. This concept applies directly to proton therapy scanning delivery methods (pencil beam scanning and uniform scanning) and it can be extended to the proton therapy passive delivery methods (single and double scattering) if the delivery of the irradiation is time-controlled with a known time-energy relationship. To derive the water equivalent path length (WEPL) from the energy resolved dose measurement, one may proceed in two different ways. A first method is by matching the measured energy resolved dose function to a pre-established calibration database of the behavior of the energy resolved dose in water, measured over the entire range of radiological depths with at least 1 mm spatial resolution. This calibration database can also be made specific to the patient if computed using the patient x-CT data. A second method to determine the WEPL is by using the empirical relationships between the WEPL and the integral dose or the depth at 80% of the proximal fall off of the energy resolved dose functions in water. In this note, we establish the evidence of the fundamental relationship between the energy resolved dose and the WEPL at the depth of the measurement. Then, we illustrate this relationship with experimental data and discuss its imaging dynamic range for 230 MeV protons.

  15. Dose variation during solar minimum

    Energy Technology Data Exchange (ETDEWEB)

    Gussenhoven, M.S.; Mullen, E.G.; Brautigam, D.H. (Phillips Lab., Geophysics Directorate, Hanscom Air Force Base, MA (US)); Holeman, E. (Boston Univ., MA (United States). Dept. of Physics)

    1991-12-01

    In this paper, the authors use direct measurement of dose to show the variation in inner and outer radiation belt populations at low altitude from 1984 to 1987. This period includes the recent solar minimum that occurred in September 1986. The dose is measured behind four thicknesses of aluminum shielding and for two thresholds of energy deposition, designated HILET and LOLET. The authors calculate an average dose per day for each month of satellite operation. The authors find that the average proton (HILET) dose per day (obtained primarily in the inner belt) increased systematically from 1984 to 1987, and has a high anticorrelation with sunspot number when offset by 13 months. The average LOLET dose per day behind the thinnest shielding is produced almost entirely by outer zone electrons and varies greatly over the period of interest. If any trend can be discerned over the 4 year period it is a decreasing one. For shielding of 1.55 gm/cm{sup 2} (227 mil) Al or more, the LOLET dose is complicated by contributions from {gt} 100 MeV protons and bremsstrahlung.

  16. Dose assessments for SFR 1

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Avila, Rodolfo; Ekstroem, Per-Anders; Cruz, Idalmis de la (Facilia AB, Bromma (Sweden))

    2008-06-15

    Following a review by the Swedish regulatory authorities of the safety analysis of the SFR 1 disposal facility for low and intermediate level waste, SKB has prepared an updated safety analysis, SAR-08. This report presents estimations of annual doses to the most exposed groups from potential radionuclide releases from the SFR 1 repository for a number of calculation cases, selected using a systematic approach for identifying relevant scenarios for the safety analysis. The dose estimates can be used for demonstrating that the long term safety of the repository is in compliance with the regulatory requirements. In particular, the mean values of the annual doses can be used to estimate the expected risks to the most exposed individuals, which can then be compared with the regulatory risk criteria for human health. The conversion from doses to risks is performed in the main report. For one scenario however, where the effects of an earthquake taking place close to the repository are analysed, risk calculations are presented in this report. In addition, prediction of concentrations of radionuclides in environmental media, such as water and soil, are compared with concentration limits suggested by the Erica-project as a base for estimating potential effects on the environment. The assessment of the impact on non-human biota showed that the potential impact is negligible. Committed collective dose for an integration period of 10,000 years for releases occurring during the first thousand years after closure are also calculated. The collective dose commitment was estimated to be 8 manSv. The dose calculations were carried out for a period of 100,000 years, which was sufficient to observe peak doses in all scenarios considered. Releases to the landscape and to a well were considered. The peaks of the mean annual doses from releases to the landscape are associated with C-14 releases to a future lake around year 5,000 AD. In the case of releases to a well, the peak annual doses

  17. Dose profile study in head CT scans using radiochromic films

    Energy Technology Data Exchange (ETDEWEB)

    Ladino G, A. M.; Prata M, A., E-mail: amlgphys@gmail.com [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    Diagnostic images of computed tomography generate higher doses than other methods of diagnostic radiology using X-ray beam attenuation. Clinical applications of CT have been increased by technological advances, what leads to a wide variety of scanner in the Brazilian technological pool. It has been difficult to implement dose reduction strategies because of the lack of proper guidance on computed tomography examinations. However, CT scanners allow adjusting acquisition parameter according to the patients physical profile and diagnostic application for which the scan is intended. The knowledge of the dose distribution is important because changes in image acquisition parameters may provide dose reduction. In this study, it was used a cylindrical head phantom in PMMA with 5 openings, what allows dose measurement in 5 regions. In a GE CT scanner, Discovery model of 64 channels, the central slice of the head phantom was irradiated and the absorbed doses were measured using a pencil ionization chamber. Radiochromic film strips were placed in the peripheral and in the central region of the head phantom and was performed a scan of 10 cm in the phantom central region. The scan was performed using the head scanning protocol of the radiobiology service, with a voltage of 120 kV. After scanning, the radiochromic film strips were digitalized and their digital images were used to have the dose longitudinal profiles. The dose values recorded have variation in a range of 18.66 to 23.57 mGy. In the results it was compared the dose index values obtained by the pencil chamber measurement to the dose longitudinal profiles recorded by the film strips. (Author)

  18. Energetic dose: Beyond fire and flint?

    Science.gov (United States)

    Linder, G.; Rattner, B.; Cohen, J.

    2000-01-01

    Nutritional and bioenergetic interactions influence exposure to environmental chemicals and may affect the risk realized when wildlife are exposed in the field. Here, food-chain analysis focuses on prairie voles (Microtus ochrogaster) and the evaluation of chemical risks associated with paraquat following 10-d dietary exposures. Reproductive effects were measured in 60-d trials that followed exposures to paraquat-tainted feed: control (untainted feed); 21 mg paraquat/kg feed; 63 mg paraquat/kg feed; and feed-restricted control (untainted feed restricted to 60% baseline consumption). Reproductive success was evaluated in control and treated breeding pairs, and a preliminary bioenergetics analysis was completed in parallel to derive exposure dose. Although reproductive performance differed among groups, feed-restriction appeared to be the dominant treatment effect observed in these 10-d feeding exposure/limited reproductive trials. Exposure dose ranged from 3.70-3.76 to 9.41-11.51 mg parquat/kg BW/day at 21 and 63 mg paraquat/kg feed stock exposures, respectively. Energetic doses as ug paraquat/kcal yielded preliminary estimates of energetic costs associated with paraquat exposure, and were similar within treatments for both sexes, ranging from 4.2-5.5 and 13.1-15.0 ug paraquat/kcal for voles exposed to 21 mg/kg feed stock and 63 mg/kg feed stock, respectively. Given the increasing likelihood that environmental chemicals will be found in wildlife habitat at 'acceptable levels', the critical role that wildlife nutrition plays in evaluating ecological risks should be fully integrated into the assessment process. Tools applied to the analysis of risk must gain higher resolution than the relatively crude methods we currently bring to the process.

  19. Testicular Doses in Image-Guided Radiotherapy of Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Deng Jun, E-mail: jun.deng@yale.edu [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States); Chen Zhe; Yu, James B.; Roberts, Kenneth B.; Peschel, Richard E.; Nath, Ravinder [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States)

    2012-01-01

    Purpose: To investigate testicular doses contributed by kilovoltage cone-beam computed tomography (kVCBCT) during image-guided radiotherapy (IGRT) of prostate cancer. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose distributions from kVCBCT on 3 prostate cancer patients. Absorbed doses to various organs were compared between intensity-modulated radiotherapy (IMRT) treatments and kVCBCT scans. The impact of CBCT scanning mode, kilovoltage peak energy (kVp), and CBCT field span on dose deposition to testes and other organs was investigated. Results: In comparison with one 10-MV IMRT treatment, a 125-kV half-fan CBCT scan delivered 3.4, 3.8, 4.1, and 5.7 cGy to the prostate, rectum, bladder, and femoral heads, respectively, accounting for 1.7%, 3.2%, 3.2%, and 8.4% of megavoltage photon dose contributions. However, the testes received 2.9 cGy from the same CBCT scan, a threefold increase as compared with 0.7 cGy received during IMRT. With the same kVp, full-fan mode deposited much less dose to organs than half-fan mode, ranging from 9% less for prostate to 69% less for testes, except for rectum, where full-fan mode delivered 34% more dose. As photon beam energy increased from 60 to 125 kV, kVCBCT-contributed doses increased exponentially for all organs, irrespective of scanning mode. Reducing CBCT field span from 30 to 10 cm in the superior-inferior direction cut testicular doses from 5.7 to 0.2 cGy in half-fan mode and from 1.5 to 0.1 cGy in full-fan mode. Conclusions: Compared with IMRT, kVCBCT-contributed doses to the prostate, rectum, bladder, and femoral heads are clinically insignificant, whereas dose to the testes is threefold more. Full-fan CBCT usually deposits much less dose to organs (except for rectum) than half-fan mode in prostate patients. Kilovoltage CBCT-contributed doses increase exponentially with photon beam energy. Reducing CBCT field significantly cuts doses to testes and other organs.

  20. Dose assessments for SFR 1

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Avila, Rodolfo; Ekstroem, Per-Anders; Cruz, Idalmis de la (Facilia AB, Bromma (Sweden))

    2008-06-15

    Following a review by the Swedish regulatory authorities of the safety analysis of the SFR 1 disposal facility for low and intermediate level waste, SKB has prepared an updated safety analysis, SAR-08. This report presents estimations of annual doses to the most exposed groups from potential radionuclide releases from the SFR 1 repository for a number of calculation cases, selected using a systematic approach for identifying relevant scenarios for the safety analysis. The dose estimates can be used for demonstrating that the long term safety of the repository is in compliance with the regulatory requirements. In particular, the mean values of the annual doses can be used to estimate the expected risks to the most exposed individuals, which can then be compared with the regulatory risk criteria for human health. The conversion from doses to risks is performed in the main report. For one scenario however, where the effects of an earthquake taking place close to the repository are analysed, risk calculations are presented in this report. In addition, prediction of concentrations of radionuclides in environmental media, such as water and soil, are compared with concentration limits suggested by the Erica-project as a base for estimating potential effects on the environment. The assessment of the impact on non-human biota showed that the potential impact is negligible. Committed collective dose for an integration period of 10,000 years for releases occurring during the first thousand years after closure are also calculated. The collective dose commitment was estimated to be 8 manSv. The dose calculations were carried out for a period of 100,000 years, which was sufficient to observe peak doses in all scenarios considered. Releases to the landscape and to a well were considered. The peaks of the mean annual doses from releases to the landscape are associated with C-14 releases to a future lake around year 5,000 AD. In the case of releases to a well, the peak annual doses

  1. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Gabriela de Amorim; Squair, Peterson Lima; Pinto, Fausto Carvalho; Belo, Luiz Claudio Meira; Grossi, Pablo Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: gas@cdtn.br, e-mail: pls@cdtn.br, e-mail: fcp@cdtn.br, e-mail: lcmb@cdtn.br, e-mail: pabloag@cdtn.br

    2009-07-01

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  2. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    CERN Document Server

    Sakamoto, Y; Sato, O; Tanaka, S I; Tsuda, S; Yamaguchi, Y; Yoshizawa, N

    2003-01-01

    In the International Commission on Radiological Protection (ICRP) 1990 Recommendations, radiation weighting factors were introduced in the place of quality factors, the tissue weighting factors were revised, and effective doses and equivalent doses of each tissues and organs were defined as the protection quantities. Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of theses data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality fact...

  3. Application of ALARP to extremity doses for hospital workers

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C J; Whitby, M [Health Physics Service, Divisional Offices (West), Western Infirmary, Glasgow G11 6NT (United Kingdom)

    2003-12-01

    The implementation of ALARP for hospital workers is considered in relation to extremity doses. Criteria are proposed which could provide guidance in determining strategies for both implementing radiation protection measures and dose monitoring for the extremities. Two groups of hospital workers have been studied, namely interventional radiologists/cardiologists, and radionuclide staff preparing and administering radiopharmaceuticals. The radiology procedures can give high doses to both the hands and legs. Those to the legs can be reduced by the use of lead rubber shields. Study of the distribution of dose across radiologists' hands has identified the ring position on the little finger as the appropriate position for dose monitoring. The variations in dose across the hands of radionuclide workers are greater, with the tip likely to receive the highest dose. The protection strategy will need to be determined for each department, because of the wide range in techniques used in handling radiopharmaceuticals. It is hoped that the criteria could aid balanced decision-making about the appropriate protection strategy and ensure that protection measures are in place where they are required, but avoid their introduction where they are unnecessary.

  4. Patient Doses in Paediatric Fluoroscopic Examinations in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Servomaa, A.; Komppa, T.; Heikkila, M.; Parviainen, T

    2000-07-01

    Dose-area products (DAP) in paediatric fluoroscopic examinations were measured at paediatric clinics in three university hospitals. The purpose was to provide supplementary data for development of reference doses, and for determination of relations between patient size and dose, in examinations involving both radiography and fluoroscopy for paediatric patients of various ages. The number of paediatric patients was 217. The most common fluoroscopic examinations were: micturating cystourethrography (MCU), 103 patients; barium enema (anography), 39 patients; barium meal and follow, 20 patients; and oesophagus, nine patients. Data on the patients and examination techniques, and the dose-area products are reported for various examinations and age groups. In the MCU examinations the mean DAP values were 560 mGy.cm{sup 2} for the age group of 0 years: 910 mGy.cm{sup 2} for the age group of 1-4 years; 880 mGy.cm{sup 2} for the age group of 5-9 years; and 4600 mGy.cm{sup 2} for the age group of 10-15 years. The radiation doses to which paediatric patients are exposed in fluoroscopic examinations vary over a large scale, even within narrow age bands, and comparisons between the doses are difficult because of wide ranges in patient size. This indicates the need for developing a method for taking account of the effects of patients size before deriving reference doses. (author)

  5. Dedicated breast CT: effect of adaptive filtration on dose distribution

    CERN Document Server

    Shikhaliev, Polad M

    2016-01-01

    Purpose: The purpose of the work was experimental investigations of the breast dose distributions with adaptive filtration. Adaptive filtration reduces detector dynamic range and improves image quality. The adaptive filter with predetermined shape is placed at the x-ray beam such that the x-ray intensity at the detector surface is flat. However, adaptive filter alters the mean dose to the breast, as well as volume distribution of the dose. Methods: The dose was measured using a 14 cm diameter cylindrical acrylic breast phantom. An acrylic adaptive filter was fabricated to match the 14 cm diameter of the phantom. The dose was measured using ion chamber inserted into holes distributed along the radius of the phantom from the center to the edge. The radial distribution of dose was measured and fitted by an analytical function and the volume distribution and mean value of dose was calculated. The measurements were performed at 40, 60, 90, and 120 kVp tube voltages and 6.6 mGy air kerma. Results: The adaptive filt...

  6. Australian per caput dose from diagnostic imaging and nuclear medicine.

    Science.gov (United States)

    Hayton, A; Wallace, A; Marks, P; Edmonds, K; Tingey, D; Johnston, P

    2013-10-01

    The largest man-made contributor to the ionising radiation dose to the Australian population is from diagnostic imaging and nuclear medicine. The last estimation of this dose was made in 2004 (1.3 mSv), this paper describes a recent re-evaluation of this dose to reflect the changes in imaging trends and technology. The estimation was calculated by summing the dose from five modalities, computed tomography (CT), general radiography/fluoroscopy, interventional procedures, mammography and nuclear medicine. Estimates were made using Australian frequency data and dose data from a range of Australian and international sources of average effective dose values. The ionising radiation dose to the Australian population in 2010 from diagnostic imaging and nuclear medicine is estimated to be 1.7 mSv (1.11 mSv CT, 0.30 mSv general radiography/fluoroscopy, 0.17 mSv interventional procedures, 0.03 mSv mammography and 0.10 mSv nuclear medicine). This exceeds the estimate of 1.5 mSv per person from natural background and cosmic radiation.

  7. Radiological dose assessment for vault storage concepts

    Energy Technology Data Exchange (ETDEWEB)

    Richard, R.F.

    1997-02-25

    This radiological dose assessment presents neutron and photon dose rates in support of project W-460. Dose rates are provided for a single 3013 container, the ``infloor`` storage vault concept, and the ``cubicle`` storage vault concept.

  8. Dose Response of Alanine Detectors Irradiated with Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo

    2011-01-01

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type, when irradiated with ion beams. The purpose of this study is to investigate the response behaviour of the alanine detector in clinical carbon ion beams and compare the results with model predictions....... Methods: Alanine detectors have been irradiated with carbon ions with an energy range of 89-400 MeV/u. The relative effectiveness of alanine has been measured in this regime. Pristine and spread out Bragg peak depth-dose curves have been measured with alanine dosimeters. The track-structure based alanine......-dose curves deviate from predictions in the peak region, most pronounced at the distal edge of the peak. Conclusions: The used model and its implementation show a good overall agreement for quasi mono energetic measurements. Deviations in depth-dose measurements are mainly attributed to uncertainties...

  9. Fast reconstruction of low dose proton CT by sinogram interpolation

    Science.gov (United States)

    Hansen, David C.; Sangild Sørensen, Thomas; Rit, Simon

    2016-08-01

    Proton computed tomography (CT) has been demonstrated as a promising image modality in particle therapy planning. It can reduce errors in particle range calculations and consequently improve dose calculations. Obtaining a high imaging resolution has traditionally required computationally expensive iterative reconstruction techniques to account for the multiple scattering of the protons. Recently, techniques for direct reconstruction have been developed, but these require a higher imaging dose than the iterative methods. No previous work has compared the image quality of the direct and the iterative methods. In this article, we extend the methodology for direct reconstruction to be applicable for low imaging doses and compare the obtained results with three state-of-the-art iterative algorithms. We find that the direct method yields comparable resolution and image quality to the iterative methods, even at 1 mSv dose levels, while yielding a twentyfold speedup in reconstruction time over previously published iterative algorithms.

  10. Imaging and Measuring Electron Beam Dose Distributions Using Holographic Interferometry

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images and measur......Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images...... and measurements of absorbed dose distributions were achieved in liquids of various densities and thermal properties and in water layers thinner than the electron range and with backings of materials of various densities and atomic numbers. The lowest detectable dose in some liquids was of the order of a few k...

  11. Low-dose computed tomography to diagnose fetal bone dysplasias.

    Science.gov (United States)

    Montoya Filardi, A; Guasp Vizcaíno, M; Gómez Fernández-Montes, J; Llorens Salvador, R

    We present a case of cleidocranial dysplasia diagnosed by low-dose fetal computed tomography (CT) in the 25th week of gestation. Severe bone dysplasia was suspected because of the fetus' low percentile in long bones length and the appearance of craniosynostosis on sonography. CT found no abnormalities incompatible with life. The effective dose was 5 mSv, within the recommended range for this type of examination. Low-dose fetal CT is a new technique that makes precision study of the bony structures possible from the second trimester of pregnancy. In Spain, abortion is legal even after the 22nd week of gestation in cases of severe fetal malformations. Therefore, in cases in which severe bone dysplasia is suspected, radiologists must know the strategies for reducing the dose of radiation while maintaining sufficient diagnostic quality, and they must also know which bony structures to evaluate.

  12. Growth control of Saccharomyces cerevisiae through dose of oxygen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Hiroshi, E-mail: hashizume@plasma.engg.nagoya-u.ac.jp [Plasma Medical Science Global Innovation Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Department of Electrical and Electronic Engineering, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502 (Japan); Ohta, Takayuki; Ito, Masafumi [Department of Electrical and Electronic Engineering, Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502 (Japan); Hori, Masaru [Plasma Medical Science Global Innovation Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2015-08-31

    To investigate the dose-dependent effects of neutral oxygen radicals on the proliferation as well as the inactivation of microorganisms, we treated suspensions of budding yeast cells with oxygen radicals using an atmospheric-pressure oxygen radical source, varying the fluxes of O({sup 3}P{sub j}) from 1.3 × 10{sup 16} to 2.3 × 10{sup 17 }cm{sup −2} s{sup −1}. Proliferation was promoted at doses of O({sup 3}P{sub j}) ranging from 6 × 10{sup 16} to 2 × 10{sup 17 }cm{sup −3}, and suppressed at doses ranging from 3 × 10{sup 17} to 1 × 10{sup 18 }cm{sup −3}; cells were inactivated by O({sup 3}P{sub j}) doses exceeding 1 × 10{sup 18 }cm{sup −3}, even when the flux was varied over the above flux range. These results showed that the growth of cells was regulated primarily in response to the total dose of O({sup 3}P{sub j})

  13. Influence of dose calculation algorithms on the predicted dose distribution and NTCP values for NSCLC patients

    DEFF Research Database (Denmark)

    Nielsen, Tine B; Wieslander, Elinore; Fogliata, Antonella;

    2011-01-01

    To investigate differences in calculated doses and normal tissue complication probability (NTCP) values between different dose algorithms.......To investigate differences in calculated doses and normal tissue complication probability (NTCP) values between different dose algorithms....

  14. Gastrointestinal Dose-Histogram Effects in the Context of Dose-Volume–Constrained Prostate Radiation Therapy: Analysis of Data From the RADAR Prostate Radiation Therapy Trial

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Martin A., E-mail: Martin.Ebert@health.wa.gov.au [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia (Australia); School of Physics, University of Western Australia, Perth, Western Australia (Australia); Foo, Kerwyn [Sydney Medical School, University of Sydney, Sydney, New South Wales (Australia); Haworth, Annette [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria (Australia); Gulliford, Sarah L. [Joint Department of Physics, Institute of Cancer Research and Royal Marsden National Health Service Foundation Trust, Sutton, Surrey (United Kingdom); Kennedy, Angel [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia (Australia); Joseph, David J. [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia (Australia); School of Surgery, University of Western Australia, Perth, Western Australia (Australia); Denham, James W. [School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales (Australia)

    2015-03-01

    Purpose: To use a high-quality multicenter trial dataset to determine dose-volume effects for gastrointestinal (GI) toxicity following radiation therapy for prostate carcinoma. Influential dose-volume histogram regions were to be determined as functions of dose, anatomical location, toxicity, and clinical endpoint. Methods and Materials: Planning datasets for 754 participants in the TROG 03.04 RADAR trial were available, with Late Effects of Normal Tissues (LENT) Subjective, Objective, Management, and Analytic (SOMA) toxicity assessment to a median of 72 months. A rank sum method was used to define dose-volume cut-points as near-continuous functions of dose to 3 GI anatomical regions, together with a comprehensive assessment of significance. Univariate and multivariate ordinal regression was used to assess the importance of cut-points at each dose. Results: Dose ranges providing significant cut-points tended to be consistent with those showing significant univariate regression odds-ratios (representing the probability of a unitary increase in toxicity grade per percent relative volume). Ranges of significant cut-points for rectal bleeding validated previously published results. Separation of the lower GI anatomy into complete anorectum, rectum, and anal canal showed the impact of mid-low doses to the anal canal on urgency and tenesmus, completeness of evacuation and stool frequency, and mid-high doses to the anorectum on bleeding and stool frequency. Derived multivariate models emphasized the importance of the high-dose region of the anorectum and rectum for rectal bleeding and mid- to low-dose regions for diarrhea and urgency and tenesmus, and low-to-mid doses to the anal canal for stool frequency, diarrhea, evacuation, and bleeding. Conclusions: Results confirm anatomical dependence of specific GI toxicities. They provide an atlas summarizing dose-histogram effects and derived constraints as functions of anatomical region, dose, toxicity, and endpoint for

  15. The cytokinesis-blocked micronucleus assay: dose-response calibration curve, background frequency in the population and dose estimation.

    Science.gov (United States)

    Rastkhah, E; Zakeri, F; Ghoranneviss, M; Rajabpour, M R; Farshidpour, M R; Mianji, F; Bayat, M

    2016-03-01

    An in vitro study of the dose responses of human peripheral blood lymphocytes was conducted with the aim of creating calibrated dose-response curves for biodosimetry measuring up to 4 Gy (0.25-4 Gy) of gamma radiation. The cytokinesis-blocked micronucleus (CBMN) assay was employed to obtain the frequencies of micronuclei (MN) per binucleated cell in blood samples from 16 healthy donors (eight males and eight females) in two age ranges of 20-34 and 35-50 years. The data were used to construct the calibration curves for men and women in two age groups, separately. An increase in micronuclei yield with the dose in a linear-quadratic way was observed in all groups. To verify the applicability of the constructed calibration curve, MN yields were measured in peripheral blood lymphocytes of two real overexposed subjects and three irradiated samples with unknown dose, and the results were compared with dose values obtained from measuring dicentric chromosomes. The comparison of the results obtained by the two techniques indicated a good agreement between dose estimates. The average baseline frequency of MN for the 130 healthy non-exposed donors (77 men and 55 women, 20-60 years old divided into four age groups) ranged from 6 to 21 micronuclei per 1000 binucleated cells. Baseline MN frequencies were higher for women and for the older age group. The results presented in this study point out that the CBMN assay is a reliable, easier and valuable alternative method for biological dosimetry.

  16. Effect of γ-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    Science.gov (United States)

    Jha, Pradeep K.; Jha, Rakhi; Gupta, B. L.; Guha, Sujoy K.

    2010-05-01

    Functional necessity to use a particular range of dose rate and total dose of γ-initiated polymerization to manufacture a novel polymeric hydrogel RISUG ® (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG ®. The results of randomized experiment indicated that a range of 18-24 Gy/min γ-dose rate and 2.0-2.4 kGy γ-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  17. Effect of gamma-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Pradeep K. [School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302 (India); Department of Management Science, U.P. Technical University, Lucknow 226021 (India); Jha, Rakhi [School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302 (India); Toxicology Laboratory, Department of Zoology, Ch. C.S. University, Meerut 200005 (India); Gupta, B.L. [CH3/56 Kendriya Vihar, Kharghar, Sector-11, Navi Mumbai-410 210 (India); Guha, Sujoy K., E-mail: guha_sk@yahoo.co [School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302 (India)

    2010-05-15

    Functional necessity to use a particular range of dose rate and total dose of gamma-initiated polymerization to manufacture a novel polymeric hydrogel RISUG (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG. The results of randomized experiment indicated that a range of 18-24 Gy/min gamma-dose rate and 2.0-2.4 kGy gamma-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  18. Life span of C57 mice as influenced by radiation dose, dose rate, and age at exposure

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, J.F.; Thomas, R.G.; Tietjen, G.L.

    1982-10-01

    This study was designed to measure the life shortening of C57BL/6J male mice as a result of exposure to five external doses from /sup 60/Co gamma radiation delivered at six different dose rates. Total doses ranged from 20 to 1620 rad at exposure rates ranging from 0.7 to 36,000 R/day. The ages of the mice at exposure were newborn, 2, 6, or 15 months. Two replications were completed. Although death was the primary endpoint, we did perform gross necropsies. The life span findings are variable, but we found no consistent shortening compared to control life spans. Therefore, we cannot logically extrapolate life shortening to lower doses, from the data we have obtained. In general, the younger the animals were at the beginning of exposure, the longer their life spans were compared to those of controls. This relationship weakened at the higher doses and dose rates, as mice in these categories tended not to have significantly different life spans from controls. Using life span as a criterion, we find this study suggests that some threshold dosage may exist beyond which effects of external irradiation may be manifested. Up to this threshold, there is no shortening effect on life span compared to that of control mice. Our results are in general agreement with the results of other researchers investigating human and other animal life span effects on irradiation.

  19. Cytogenetic dose-response in vitro for biological dosimetry after exposure to high doses of gamma-rays.

    Science.gov (United States)

    Vinnikov, Volodymyr A; Maznyk, Nataliya A

    2013-04-01

    The dose response for dicentrics plus centric rings and total unstable chromosome-type aberrations was studied in the first mitoses of cultured human peripheral blood lymphocytes irradiated in vitro to doses of ∼2, 4, 6, 8, 10, 16 and 20 Gy of acute (60)Со gamma-rays. A dose-dependent increase of aberration yield was accompanied by a tendency to the underdispersion of dicentrics and centric rings among cells distributions compared with Poisson statistics at doses ≥6 Gy. The formal fitting of the data to a linear-quadratic model resulted in an equation with the linear and quadratic coefficients ranged 0.098-0.129×cell(-1)×Gy(-1) and 0.039-0.034×cell(-1)×Gy(-2), respectively, depending on the fitting method. The actual radiation-induced aberration yield was markedly lower than expected from a calibration curve, generated earlier within a lower dose range. Interlaboratory variations in reported dicentric yields induced by medium-to-high radiation doses in vitro are discussed.

  20. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M. (comp.)

    1990-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates). The Source Terms Task develops estimates of radioactive emissions from Hanford facilities since 1944. The Environmental Transport Task reconstructs the movement of radioactive materials from the areas of release to populations. The Environmental Monitoring Data Task assembles, evaluates, and reports historical environmental monitoring data. The Demographics, Agriculture, Food Habits Task develops the data needed to identify the populations that could have been affected by the releases. In addition to population and demographic data, the food and water resources and consumption patterns for populations are estimated because they provide a primary pathway for the intake of radionuclides. The Environmental Pathways and Dose Estimates Task use the information produced by the other tasks to estimate the radiation doses populations could have received from Hanford radiation. Project progress is documented in this monthly report, which is available to the public. 3 figs., 3 tabs.

  1. Paediatric dose measurement in a full-body digital radiography unit

    Energy Technology Data Exchange (ETDEWEB)

    Maree, Gert J.; Hering, Egbert R. [Groote Schuur Hospital and University of Cape Town, Division of Medical Physics, Cape Town (South Africa); Irving, Benjamin J. [University of Cape Town, MRC/UCT Medical Imaging Research Unit, Department of Human Biology, Cape Town, Western Cape (South Africa)

    2007-10-15

    Ionizing radiation has a detrimental effect on the human body, particularly in children. Thus it is important to minimize the dose. Linear slit-scanning X-ray units offer the possibility of dose reductions. In order to further develop linear slit-scanning radiography, the dose needs to be accurately calculated for various examinations. To measure the entrance dose (free-in-air) and calculate the effective doses for various radiological examinations in children on Lodox Statscan and Shimadzu radiography units. Entrance doses (free-in-air) were measured using a dose meter and ionization chamber on the Statscan and Shimadzu units at two South African hospitals. The entrance doses were measured for a number of common examinations and were used to compute the effective dose using a Monte Carlo program. The standard deviation of the entrance doses was in the range 0-0.6%. The effective dose from the Statscan unit was well below that from the Shimadzu unit as well as that found in other radiological studies from around the world in children. The one exception was chest examination where the dose was similar to that in other studies worldwide due to the use of Chest AP projection compared to Chest PA used in the comparitive studies. Linear slit-scanning systems help reduce the dose in radiological examinations in children. (orig.)

  2. Performance standard for dose Calibrator

    CERN Document Server

    Darmawati, S

    2002-01-01

    Dose calibrator is an instrument used in hospitals to determine the activity of radionuclide for nuclear medicine purposes. International Electrotechnical Commission (IEC) has published IEC 1303:1994 standard that can be used as guidance to test the performance of the instrument. This paper briefly describes content of the document,as well as explains the assessment that had been carried out to test the instrument accuracy in Indonesia through intercomparison measurement.Its is suggested that hospitals acquire a medical physicist to perform the test for its dose calibrator. The need for performance standard in the form of Indonesia Standard is also touched.

  3. Ranging Behaviour of Commercial Free-Range Laying Hens.

    Science.gov (United States)

    Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan

    2016-04-26

    In this study, the range use and behaviour of laying hens in commercial free-range flocks was explored. Six flocks were each visited on four separate days and data collected from their outdoor area (divided into zones based on distance from shed and available resources). These were: apron (0-10 m from shed normally without cover or other enrichments); enriched belt (10-50 m from shed where resources such as manmade cover, saplings and dust baths were provided); and outer range (beyond 50 m from shed with no cover and mainly grass pasture). Data collection consisted of counting the number of hens in each zone and recording behaviour, feather condition and nearest neighbour distance (NND) of 20 birds per zone on each visit day. In addition, we used techniques derived from ecological surveys to establish four transects perpendicular to the shed, running through the apron, enriched belt and outer range. Number of hens in each 10 m × 10 m quadrat was recorded four times per day as was the temperature and relative humidity of the outer range. On average, 12.5% of hens were found outside. Of these, 5.4% were found in the apron; 4.3% in the enriched zone; and 2.8% were in the outer range. This pattern was supported by data from quadrats, where the density of hens sharply dropped with increasing distance from shed. Consequently, NND was greatest in the outer range, least in the apron and intermediate in the enriched belt. Hens sampled in outer range and enriched belts had better feather condition than those from the apron. Standing, ground pecking, walking and foraging were the most commonly recorded activities with standing and pecking most likely to occur in the apron, and walking and foraging more common in the outer range. Use of the outer range declined with lower temperatures and increasing relative humidity, though use of apron and enriched belt was not affected by variation in these measures. These data support previous findings that outer range areas tend to be

  4. Pediatric patient doses in interventional cardiology procedures; Doses em paciente pediatrico em procedimentos de cardiologia intervencionista

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, R.B.; Murata, C.H.; Moreira, A.C., E-mail: rbitelli2012@gmail.com, E-mail: camila.murata@gmail.com, E-mail: antonio.xray@gmail.com [Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP (Brazil). Escola Pulista de Medicina; Khoury, H.J.; Borras, C., E-mail: hjkhoury@gmail.com, E-mail: cariborras@starpower.net [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Engenharia Nuclear; Silva, M.S.R da, E-mail: msrochas2003@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil)

    2014-07-01

    The radiation doses from interventional procedures is relevant when treating children because of their greater radiosensitivity compared with adults. The purposes of this paper were to estimate the dose received by 18 pediatric patients who underwent cardiac interventional procedures and to correlate the maximum entrance surface air kerma (Ke,max), estimated with radiochromic films, with the cumulative air kerma values displayed at the end of procedures. This study was performed in children up to 6 years. The study was performed in two hospitals, one located in Recife and the other one in São Paulo. The x-ray imaging systems used were Phillips Allura 12 model with image intensifier system and a Phillips Allura FD10 flat panel system. To estimate the Ke,max on the patient’s skin radiochromic films(Gafchromic XR-RV2) were used. These values were estimated from the maximum optical density measured on film using a calibration curve. The results showed cumulative air kerma values ranging from 78.3- 500.0mGy, with a mean value of 242,3 mGy. The resulting Ke,max values ranged from 20.0-461.8 mGy, with a mean value of 208,8 mGy. The Ke,max values were correlated with the displayed cumulative air kerma values. The correlation factor R² was 0.78, meaning that the value displayed in the equipment’s console can be useful for monitoring the skin absorbed dose throughout the procedure. The routine fluoroscopy time records is not able by itself alert the physician about the risk of dose exceeding the threshold of adverse reactions, which can vary from an early erythema to serious harmful skin damage. (author)

  5. Secure High Dynamic Range Images

    OpenAIRE

    Med Amine Touil; Noureddine Ellouze

    2016-01-01

    In this paper, a tone mapping algorithm is proposed to produce LDR (Limited Dynamic Range) images from HDR (High Dynamic Range) images. In the approach, non-linear functions are applied to compress the dynamic range of HDR images. Security tools will be then applied to the resulting LDR images and their effectiveness will be tested on the reconstructed HDR images. Three specific examples of security tools are described in more details: integrity verification using hash function to compute loc...

  6. Stereoscopic High Dynamic Range Video

    OpenAIRE

    Rüfenacht, Dominic

    2011-01-01

    Stereoscopic video content is usually being created by using two or more cameras which are recording the same scene. Traditionally, those cameras have the exact same intrinsic camera parameters. In this project, the exposure times of the cameras differ, allowing to record different parts of the dynamic range of the scene. Image processing techniques are then used to enhance the dynamic range of the captured data. A pipeline for the recording, processing, and displaying of high dynamic range (...

  7. Cascade Mountain Range in Oregon

    Science.gov (United States)

    Sherrod, David R.

    2016-01-01

    The Cascade mountain system extends from northern California to central British Columbia. In Oregon, it comprises the Cascade Range, which is 260 miles long and, at greatest breadth, 90 miles wide (fig. 1). Oregon’s Cascade Range covers roughly 17,000 square miles, or about 17 percent of the state, an area larger than each of the smallest nine of the fifty United States. The range is bounded on the east by U.S. Highways 97 and 197. On the west it reaches nearly to Interstate 5, forming the eastern margin of the Willamette Valley and, farther south, abutting the Coast Ranges

  8. Osprey Range - CWHR [ds601

    Data.gov (United States)

    California Department of Resources — Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for...

  9. Minimal doses of hydroxyurea for sickle cell disease

    Directory of Open Access Journals (Sweden)

    C.S.P. Lima

    1997-08-01

    Full Text Available The use of hydroxyurea (HU can improve the clinical course of sickle cell disease. However, several features of HU treatment remain unclear, including the predictability of drug response and determination of adequate doses, considering positive responses and minimal side effects. In order to identify adequate doses of HU for treatment of sickle cell disease, 10 patients, 8 with sickle cell anemia and 2 with Sß thalassemia (8SS, 2Sß, were studied for a period of 6 to 19 months in an open label dose escalation trial (10 to 20 mg kg-1 day-1. Hemoglobin (Hb, fetal hemoglobin (Hb F and mean corpuscular volume (MCV values and reticulocyte, neutrophil and platelet counts were performed every two weeks during the increase of the HU dose and every 4 weeks when the maximum HU dose was established. Reduction in the number of vasoocclusive episodes was also considered in order to evaluate the efficiency of the treatment. The final Hb and Hb F concentrations, and MCV values were significantly higher than the initial values, while the final reticulocyte and neutrophil counts were significantly lower. There was an improvement in the concentration of Hb (range: 0.7-2.0 g/dl at 15 mg HU kg-1 day-1, but this concentration did not increase significantly when the HU dose was raised to 20 mg kg-1 day-1. The concentration of Hb F increased significantly (range: 1.0-18.1% when 15 mg HU was used, and continued to increase when the dose was raised to 20 mg kg-1 day-1. The final MCV values increased 11-28 fl (femtoliters. However, reticulocyte (range: 51-205 x 109/l and neutrophil counts (range: 9.5-1.3 x 109/l obtained at this dose were significantly lower than those obtained with 15 mg kg-1 day-1. All patients reported a decrease in frequency or severity of vasoocclusive episodes. These results suggest that a hydroxyurea dose of 15 mg kg-1 day-1 seems to be adequate for treatment of sickle cell disease in view of the minimal side effects observed and the improvement

  10. Kilovoltage Imaging Doses in the Radiotherapy of Pediatric Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Deng Jun, E-mail: jun.deng@yale.edu [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States); Chen Zhe; Roberts, Kenneth B.; Nath, Ravinder [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States)

    2012-04-01

    Purpose: To investigate doses induced by kilovoltage cone-beam computed tomography (kVCBCT) to pediatric cancer patients undergoing radiotherapy, as well as strategies for dose reduction. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose deposition due to kVCBCT on 4 pediatric cancer patients. Absorbed doses to various organs were analyzed for both half-fan and full-fan modes. Clinical conditions, such as distance from organ at risk (OAR) to CBCT field border, kV peak energy, and testicular shielding, were studied. Results: The mean doses induced by one CBCT scan operated at 125 kV in half-fan mode to testes, liver, kidneys, femoral heads, spinal cord, brain, eyes, lens, and optical nerves were 2.9, 4.7, 7.7, 10.5, 8.8, 7.6, 7.7, 7.8, and 7.2 cGy, respectively. Increasing the distances from OARs to CBCT field border greatly reduced the doses to OARs, ranging from 33% reduction for spinal cord to 2300% reduction for testes. As photon beam energy increased from 60 to 125 kV, the dose increase due to kVCBCT ranged from 170% for lens to 460% for brain and spinal cord. A testicular shielding made of 1-cm cerrobend could reduce CBCT doses down to 31%, 51%, 68%, and 82%, respectively, for 60, 80, 100, and 125 kV when the testes lay within the CBCT field. Conclusions: Generally speaking, kVCBCT deposits much larger doses to critical structures in children than in adults, usually by a factor of 2 to 3. Increasing the distances from OARs to CBCT field border greatly reduces doses to OARs. Depending on OARs, kVCBCT-induced doses increase linearly or exponentially with photon beam energy. Testicular shielding works more efficiently at lower kV energies. On the basis of our study, it is essential to choose an appropriate scanning protocol when kVCBCT is applied to pediatric cancer patients routinely.

  11. Patient-specific dose calculations for pediatric CT of the chest, abdomen and pelvis

    Energy Technology Data Exchange (ETDEWEB)

    Kost, Susan D.; Carver, Diana E.; Stabin, Michael G. [Vanderbilt University, Physics and Astronomy Department, Nashville, TN (United States); Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, TN (United States); Fraser, Nicholas D.; Pickens, David R.; Price, Ronald R.; Hernanz-Schulman, Marta [Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, TN (United States)

    2015-11-15

    Organ dose is essential for accurate estimates of patient dose from CT. To determine organ doses from a broad range of pediatric patients undergoing diagnostic chest-abdomen-pelvis CT and investigate how these relate to patient size. We used a previously validated Monte Carlo simulation model of a Philips Brilliance 64 multi-detector CT scanner (Philips Healthcare, Best, The Netherlands) to calculate organ doses for 40 pediatric patients (M:F = 21:19; range 0.6-17 years). Organ volumes and positions were determined from the images using standard segmentation techniques. Non-linear regression was performed to determine the relationship between volume CT dose index (CTDI{sub vol})-normalized organ doses and abdominopelvic diameter. We then compared results with values obtained from independent studies. We found that CTDI{sub vol}-normalized organ dose correlated strongly with exponentially decreasing abdominopelvic diameter (R{sup 2} > 0.8 for most organs). A similar relationship was determined for effective dose when normalized by dose-length product (R{sup 2} = 0.95). Our results agreed with previous studies within 12% using similar scan parameters (e.g., bowtie filter size, beam collimation); however results varied up to 25% when compared to studies using different bowtie filters. Our study determined that organ doses can be estimated from measurements of patient size, namely body diameter, and CTDI{sub vol} prior to CT examination. This information provides an improved method for patient dose estimation. (orig.)

  12. Effect of statistical fluctuation in Monte Carlo based photon beam dose calculation on gamma index evaluation.

    Science.gov (United States)

    Graves, Yan Jiang; Jia, Xun; Jiang, Steve B

    2013-03-21

    The γ-index test has been commonly adopted to quantify the degree of agreement between a reference dose distribution and an evaluation dose distribution. Monte Carlo (MC) simulation has been widely used for the radiotherapy dose calculation for both clinical and research purposes. The goal of this work is to investigate both theoretically and experimentally the impact of the MC statistical fluctuation on the γ-index test when the fluctuation exists in the reference, the evaluation, or both dose distributions. To the first order approximation, we theoretically demonstrated in a simplified model that the statistical fluctuation tends to overestimate γ-index values when existing in the reference dose distribution and underestimate γ-index values when existing in the evaluation dose distribution given the original γ-index is relatively large for the statistical fluctuation. Our numerical experiments using realistic clinical photon radiation therapy cases have shown that (1) when performing a γ-index test between an MC reference dose and a non-MC evaluation dose, the average γ-index is overestimated and the gamma passing rate decreases with the increase of the statistical noise level in the reference dose; (2) when performing a γ-index test between a non-MC reference dose and an MC evaluation dose, the average γ-index is underestimated when they are within the clinically relevant range and the gamma passing rate increases with the increase of the statistical noise level in the evaluation dose; (3) when performing a γ-index test between an MC reference dose and an MC evaluation dose, the gamma passing rate is overestimated due to the statistical noise in the evaluation dose and underestimated due to the statistical noise in the reference dose. We conclude that the γ-index test should be used with caution when comparing dose distributions computed with MC simulation.

  13. Peak Dose Assessment for Proposed DOE-PPPO Authorized Limits

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, Delis [Oak Ridge Institute for Science and Education, Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program

    2012-06-01

    The Oak Ridge Institute for Science and Education (ORISE), a U.S. Department of Energy (DOE) prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct a peak dose assessment in support of the Authorized Limits Request for Solid Waste Disposal at Landfill C-746-U at the Paducah Gaseous Diffusion Plant (DOE-PPPO 2011a). The peak doses were calculated based on the DOE-PPPO Proposed Single Radionuclides Soil Guidelines and the DOE-PPPO Proposed Authorized Limits (AL) Volumetric Concentrations available in DOE-PPPO 2011a. This work is provided as an appendix to the Dose Modeling Evaluations and Technical Support Document for the Authorized Limits Request for the C-746-U Landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (ORISE 2012). The receptors evaluated in ORISE 2012 were selected by the DOE-PPPO for the additional peak dose evaluations. These receptors included a Landfill Worker, Trespasser, Resident Farmer (onsite), Resident Gardener, Recreational User, Outdoor Worker and an Offsite Resident Farmer. The RESRAD (Version 6.5) and RESRAD-OFFSITE (Version 2.5) computer codes were used for the peak dose assessments. Deterministic peak dose assessments were performed for all the receptors and a probabilistic dose assessment was performed only for the Offsite Resident Farmer at the request of the DOE-PPPO. In a deterministic analysis, a single input value results in a single output value. In other words, a deterministic analysis uses single parameter values for every variable in the code. By contrast, a probabilistic approach assigns parameter ranges to certain variables, and the code randomly selects the values for each variable from the parameter range each time it calculates the dose (NRC 2006). The receptor scenarios, computer codes and parameter input files were previously used in ORISE 2012. A few modifications were made to the parameter input files as appropriate for this effort. Some of these changes

  14. Specification of absorbed dose to water using model-based dose calculation algorithms for treatment planning in brachytherapy.

    Science.gov (United States)

    Tedgren, Åsa Carlsson; Carlsson, Gudrun Alm

    2013-04-21

    Model-based dose calculation algorithms (MBDCAs), recently introduced in treatment planning systems (TPS) for brachytherapy, calculate tissue absorbed doses. In the TPS framework, doses have hereto been reported as dose to water and water may still be preferred as a dose specification medium. Dose to tissue medium Dmed then needs to be converted into dose to water in tissue Dw,med. Methods to calculate absorbed dose to differently sized water compartments/cavities inside tissue, infinitesimal (used for definition of absorbed dose), small, large or intermediate, are reviewed. Burlin theory is applied to estimate photon energies at which cavity sizes in the range 1 nm-10 mm can be considered small or large. Photon and electron energy spectra are calculated at 1 cm distance from the central axis in cylindrical phantoms of bone, muscle and adipose tissue for 20, 50, 300 keV photons and photons from (125)I, (169)Yb and (192)Ir sources; ratios of mass-collision-stopping powers and mass energy absorption coefficients are calculated as applicable to convert Dmed into Dw,med for small and large cavities. Results show that 1-10 nm sized cavities are small at all investigated photon energies; 100 µm cavities are large only at photon energies <20 keV. A choice of an appropriate conversion coefficient Dw, med/Dmed is discussed in terms of the cavity size in relation to the size of important cellular targets. Free radicals from DNA bound water of nanometre dimensions contribute to DNA damage and cell killing and may be the most important water compartment in cells implying use of ratios of mass-collision-stopping powers for converting Dmed into Dw,med.

  15. Extended range chemical sensing apparatus

    Science.gov (United States)

    Hughes, Robert C.; Schubert, W. Kent

    1994-01-01

    An apparatus for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy.

  16. PN ranging/telemetry transmission

    Science.gov (United States)

    Deerkoski, L. F.

    1977-01-01

    System can transmit range-indicating pseudonoise (PN) codes and simultaneously transmit auxiliary information as binary data at a rate at least on order of pseudonoise chipping rate. PN code is modulated by data stream with relatively low bit rate. Data stream with high bit rate can be transmitted in same frequency band as PN ranging code.

  17. High dynamic range subjective testing

    Science.gov (United States)

    Allan, Brahim; Nilsson, Mike

    2016-09-01

    This paper describes of a set of subjective tests that the authors have carried out to assess the end user perception of video encoded with High Dynamic Range technology when viewed in a typical home environment. Viewers scored individual single clips of content, presented in High Definition (HD) and Ultra High Definition (UHD), in Standard Dynamic Range (SDR), and in High Dynamic Range (HDR) using both the Perceptual Quantizer (PQ) and Hybrid Log Gamma (HLG) transfer characteristics, and presented in SDR as the backwards compatible rendering of the HLG representation. The quality of SDR HD was improved by approximately equal amounts by either increasing the dynamic range or increasing the resolution to UHD. A further smaller increase in quality was observed in the Mean Opinion Scores of the viewers by increasing both the dynamic range and the resolution, but this was not quite statistically significant.

  18. Improved Range Searching Lower Bounds

    DEFF Research Database (Denmark)

    Larsen, Kasper Green; Nguyen, Huy L.

    2012-01-01

    and Rosenberg's theorem), are also hard for dynamic range searching in the group model. This theorem allows us to reuse decades of research on range reporting lower bounds to immediately obtain a range of new group model lower bounds. Amongst others, this includes an improved lower bound for the fundamental...... problem of dynamic d-dimensional orthogonal range searching, stating that tqtu = Ω((lg n/lg lg n)d-1). Here tq denotes the query time and tu the update time of the data structure. This is an improvement of a lg1-δn factor over the recent lower bound of Larsen [FOCS'11], where δ>0 is a small constant......Table of Contents -------------------------------------------------------------------------------- In this paper we present a number of improved lower bounds for range searching in the pointer machine and the group model. In the pointer machine, we prove lower bounds for the approximate simplex...

  19. Risperidone Dosing in Children and Adolescents with Autistic Disorder: A Double-Blind, Placebo-Controlled Study

    Science.gov (United States)

    Kent, Justine M.; Kushner, Stuart; Ning, Xiaoping; Karcher, Keith; Ness, Seth; Aman, Michael; Singh, Jaskaran; Hough, David

    2013-01-01

    Efficacy and safety of 2 risperidone doses were evaluated in children and adolescents with autism. Patients (N = 96; 5-17 years), received risperidone (low-dose: 0.125 mg/day [20 to 45 kg] or high-dose: 1.25 mg/day [20 to 45 kg]) or placebo. Mean baseline (range 27-29) to endpoint change…

  20. Foraging optimally for home ranges

    Science.gov (United States)

    Mitchell, Michael S.; Powell, Roger A.

    2012-01-01

    Economic models predict behavior of animals based on the presumption that natural selection has shaped behaviors important to an animal's fitness to maximize benefits over costs. Economic analyses have shown that territories of animals are structured by trade-offs between benefits gained from resources and costs of defending them. Intuitively, home ranges should be similarly structured, but trade-offs are difficult to assess because there are no costs of defense, thus economic models of home-range behavior are rare. We present economic models that predict how home ranges can be efficient with respect to spatially distributed resources, discounted for travel costs, under 2 strategies of optimization, resource maximization and area minimization. We show how constraints such as competitors can influence structure of homes ranges through resource depression, ultimately structuring density of animals within a population and their distribution on a landscape. We present simulations based on these models to show how they can be generally predictive of home-range behavior and the mechanisms that structure the spatial distribution of animals. We also show how contiguous home ranges estimated statistically from location data can be misleading for animals that optimize home ranges on landscapes with patchily distributed resources. We conclude with a summary of how we applied our models to nonterritorial black bears (Ursus americanus) living in the mountains of North Carolina, where we found their home ranges were best predicted by an area-minimization strategy constrained by intraspecific competition within a social hierarchy. Economic models can provide strong inference about home-range behavior and the resources that structure home ranges by offering falsifiable, a priori hypotheses that can be tested with field observations.

  1. High dynamic range images for enhancing low dynamic range content

    OpenAIRE

    Banterle, Francesco; Dellepiane, Matteo; Scopigno, Roberto

    2011-01-01

    This poster presents a practical system for enhancing the quality of Low Dynamic Range (LDR) videos using High Dynamic Range (HDR) background images. Our technique relies on the assumption that the HDR information is static in the video footage. This assumption can be valid in many scenarios where moving subjects are the main focus of the footage and do not have to interact with moving light sources or highly reflective objects. Another valid scenario is teleconferencing via webcams, where th...

  2. Responses to low doses of ionizing radiation in biological systems.

    Science.gov (United States)

    Feinendegen, Ludwig E; Pollycove, Myron; Sondhaus, Charles A

    2004-07-01

    Biological tissues operate through cells that act together within signaling networks. These assure coordinated cell function in the face of constant exposure to an array of potentially toxic agents, externally from the environment and endogenously from metabolism. Living tissues are indeed complex adaptive systems.To examine tissue effects specific for low-dose radiation, (1) absorbed dose in tissue is replaced by the sum of the energies deposited by each track event, or hit, in a cell-equivalent tissue micromass (1 ng) in all micromasses exposed, that is, by the mean energy delivered by all microdose hits in the exposed micromasses, with cell dose expressing the total energy per micromass from multiple microdoses; and (2) tissue effects are related to cell damage and protective cellular responses per average microdose hit from a given radiation quality for all such hits in the exposed micromasses.The probability of immediate DNA damage per low-linear-energy-transfer (LET) average micro-dose hit is extremely small, increasing over a certain dose range in proportion to the number of hits. Delayed temporary adaptive protection (AP) involves (a) induced detoxification of reactive oxygen species, (b) enhanced rate of DNA repair, (c) induced removal of damaged cells by apoptosis followed by normal cell replacement and by cell differentiation, and (d) stimulated immune response, all with corresponding changes in gene expression. These AP categories may last from less than a day to weeks and be tested by cell responses against renewed irradiation. They operate physiologically against nonradiogenic, largely endogenous DNA damage, which occurs abundantly and continually. Background radiation damage caused by rare microdose hits per micromass is many orders of magnitude less frequent. Except for apoptosis, AP increasingly fails above about 200 mGy of low-LET radiation, corresponding to about 200 microdose hits per exposed micromass. This ratio appears to exceed approximately

  3. Radiation dose to patient and personnel during extracorporeal shock wave lithotripsy

    Energy Technology Data Exchange (ETDEWEB)

    Bush, W.H.; Jones, D.; Gibbons, R.P.

    1987-10-01

    Radiation dose to the patient and personnel was determined during extracorporeal shock wave lithotripsy treatment of 60 patients. Surface radiation dose to the patient's back from the fluoroscopy unit on the side with the kidney stone averaged 10 rem (100 mSv.) per case, although the range was wide (1 to 30 rem). The surface dose from the opposing biplane x-ray unit was less, averaging 5.5 rem (55 mSv.) per case but again with a wide range (0.1 to 21 rem). Exit dose at the lower abdomen averaged 13 mrem. (0.13 mSv.) per case and estimated female gonad dose averaged 100 mrem. (1.2 mSv.). Radiation dose to personnel working in the extracorporeal shock wave lithotripsy suite averaged less than 2 mrem. (0.02 mSv.) per case, making it a procedure that is safe in regard to radiation exposure.

  4. Required accuracy and dose thresholds in individual monitoring

    DEFF Research Database (Denmark)

    Christensen, P.; Griffith, R.V.

    1994-01-01

    The paper follows the approach given in recent revisions of CEC and IAEA recommendations on requirements in individual monitoring for external radiations. The ICRP requirements on overall accuracy for individual monitoring, as given in ICRP Publication 35 (1982), form the basis for the specificat......The paper follows the approach given in recent revisions of CEC and IAEA recommendations on requirements in individual monitoring for external radiations. The ICRP requirements on overall accuracy for individual monitoring, as given in ICRP Publication 35 (1982), form the basis...... this uncertainty factor, a value of 21% can be evaluated for the allowable maximum overall standard deviation for dose measurements at dose levels near the annual dose limits increasing to 45% for dose levels at the lower end of the dose range required to be monitored. A method is described for evaluating...... the overall standard deviation of the dosimetry system by combining random and systematic uncertainties in quadrature, and procedures are also given for determining each individual uncertainty connected to the dose measurement. In particular, attention is paid to the evaluation of the combined uncertainty due...

  5. Radiation doses to aquatic organisms from natural radionuclides.

    Science.gov (United States)

    Brown, J E; Jones, S R; Saxén, R; Thørring, H; Vives i Batlle, J

    2004-12-01

    A framework for protection of the environment is likely to require a methodology for assessing dose rates arising from naturally occurring radionuclides. This paper addresses this issue for European aquatic environments through a process of (a) data collation, mainly with respect to levels of radioactivity in water sediments and aquatic flora and fauna, (b) the use of suitable distribution coefficients, concentration factors and global data where data gaps are present and (c) the utilisation of a reference organism approach whereby a finite number of suitable geometries are selected to allow dose per unit concentration factors to be derived and subsequent absorbed dose calculations (weighted or unweighted) to be made. The majority of the calculated absorbed dose, for both marine and freshwater organisms, arises from internally incorporated alpha emitters, with 210Po and 226Ra being the major contributors. Calculated doses are somewhat higher for freshwater compared to marine organisms, and the range of doses is also much greater. This reflects both the much greater variability of radionuclide concentrations in freshwater as compared to seawater, and also variability or uncertainty in concentration factor values. This work has revealed a number of substantial gaps in published empirical data especially for European aquatic environments.

  6. Remote Afterloading High Dose Rate Brachytherapy AMC EXPERIANCES

    Energy Technology Data Exchange (ETDEWEB)

    Park, Su Gyong; Chang, Hye Sook; Choi, Eun Kyong; Yi, Byong Yong [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    1992-12-15

    Remote afterloading high dose rate brachytherapy(HDRB) is a new technology and needs new biological principle for time and dose schedule. Here, authors attempt to evaluate the technique and clinical outcome in 116 patients, 590 procedures performed at Asan Medical Center for 3 years. From Sep. 1985 to Aug 1992, 471 procedures of intracavitary radiation in 55 patients of cervical cancer and 26 of nasopharyngeal cancer, 79 intraluminal radiation in 12 of esophageal cancer, 11 of endobronchial cancer and 1 Klatskin tumor and 40 interstitial brachytherapy in 4 of breast cancer, 1 sarcoma and 1 urethral cancer were performed. Median follow-up was 7 months with range 1-31 months. All procedures except interstitial were performed under the local anesthesia and they were all well tolerated and completed the planned therapy except 6 patients. 53/58 patients with cervical cancer and 22/26 patients with nasopharynx cancer achieved CR. Among 15 patients with palliative therapy, 80% achieves palliation. We will describe the details of the technique and results in the text. To evaluate biologic effects of HDRB and optimal time/dose/fractionation schedule, we need longer follow-up. But authors feel that HDRB with proper fractionation schedule may yield superior results compared to the low dose rate brachytherapy considering the advantages of HDRB in safety factor for operator, better control of radiation dose and volume and patients comfort over the low dose brachytherapy.

  7. Dose rate effects on the thermoluminescence kinetics properties of MWCVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Gastelum, S.; Chernov, V.; Melendrez, R.; Soto-Puebla, D.; Pedroza-Montero, M.; Barboza-Flores, M. [Centro de Investigacion en Fisica, Universidad de Sonora, AP 5-088 Hermosillo, Sonora 83190 (Mexico); Cruz-Zaragoza, E. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, AP 70-543 Mexico D.F. (Mexico); Favalli, A. [European Commission, Joint Research Centre, Institute for the Protection and the Security of the Citizen, TP800,Via E. Fermi, 21020 Ispra (Italy)

    2007-09-15

    Dose rate effects are important in thermoluminescent (TL) dosimeter applications because a certain absorbed dose given at different dose rates may result in a different TL yield. The present work reports about the dose rate effects on TL glow curves and kinetics properties of microwave plasma assisted chemical vapor deposition (MWCVD) diamond films grown on (100) silicon. The diamond films were exposed to {gamma} radiation at 20.67, 43.4 and 81.11 Gy min{sup -1} dose rates in the range of 0.05-10 kGy. The films showed a linear dose behavior up to 2 kGy and reached saturation for higher doses. The TL intensity varied as a function of dose rate and the samples had a maximum TL response for relatively lower dose rates. A single first order kinetics TL peak was typical for low doses while at higher doses two first order kinetics peaks were necessary to fit the glow curves. The results indicate that dose rate effects may be significant in dosimetric applications of MWCVD diamond. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Laser ranging ground station development

    Science.gov (United States)

    Faller, J. E.

    1973-01-01

    The employment of ground to conduct radar range measurements of the lunar distance is discussed. The advantages of additional ground stations for this purpose are analyzed. The goals which are desirable for any new type of ranging station are: (1) full time availability of the station for laser ranging, (2) optimization for signal strength, (3) automation to the greatest extent possible, (4) the capability for blind pointing, (5) reasonable initial and modest operational costs, and (6) transportability to enhance the value of the station for geophysical purposes.

  9. Dynamic Range Majority Data Structures

    OpenAIRE

    Elmasry, Amr; HE, MENG; Munro, J. Ian; Nicholson, Patrick K.

    2011-01-01

    Given a set $P$ of coloured points on the real line, we study the problem of answering range $\\alpha$-majority (or "heavy hitter") queries on $P$. More specifically, for a query range $Q$, we want to return each colour that is assigned to more than an $\\alpha$-fraction of the points contained in $Q$. We present a new data structure for answering range $\\alpha$-majority queries on a dynamic set of points, where $\\alpha \\in (0,1)$. Our data structure uses O(n) space, supports queries in $O((\\lg...

  10. Secure High Dynamic Range Images

    Directory of Open Access Journals (Sweden)

    Med Amine Touil

    2016-04-01

    Full Text Available In this paper, a tone mapping algorithm is proposed to produce LDR (Limited Dynamic Range images from HDR (High Dynamic Range images. In the approach, non-linear functions are applied to compress the dynamic range of HDR images. Security tools will be then applied to the resulting LDR images and their effectiveness will be tested on the reconstructed HDR images. Three specific examples of security tools are described in more details: integrity verification using hash function to compute local digital signatures, encryption for confidentiality, and scrambling technique.

  11. Estimation of eye absorbed doses in head & neck radiotherapy practices using thermoluminescent detectors

    Directory of Open Access Journals (Sweden)

    Gh Bagheri

    2011-09-01

    Full Text Available  Determination of eye absorbed dose during head & neck radiotherapy is essential to estimate the risk of cataract. Dose measurements were made in 20 head & neck cancer patients undergoing 60Co radiotherapy using LiF(MCP thermoluminescent dosimeters. Head & neck cancer radiotherapy was delivered by fields using SAD & SSD techniques. For each patient, 3 TLD chips were placed on each eye. Head & neck dose was about 700-6000 cGy in 8-28 equal fractions. The range of eye dose is estimated to be (3.49-639.1 mGy with a mean of maximum dose (98.114 mGy, which is about 3 % of head & neck dose. Maximum eye dose was observed for distsnces of about 3 cm from edge of the field to eye.

  12. Measurement of radiation dose to ovaries from CT of the head and trunk

    Energy Technology Data Exchange (ETDEWEB)

    Al-Habdhan, M.A.M.; Kinsara, A.R. [King Abdul Aziz Univ., Nuclear Engineering Dept., Jeddah (Saudi Arabia)

    2001-07-01

    With the rise in concern about doses received by patients over recent years, there has been a growing requirement for information on typical doses and the range of dose received during Computerized Tomography (CT). This study was performed for the assessment of radiation dose to the ovaries from various CT protocols for head and trunk imaging. Thermo luminescent dosimeters (TLD) were used for the dosimetry measurement in an anthropomorphic Rando Alderson phantom. The wanted (obligatory) and unwanted (non-useful) radiation doses delivered to the ovaries during CT examinations of head, facial bone, orbits, abdomen, chest, pelvis, neck, nasopharynx, cervical spine, lumber spine and sacroiliac joint were assessed. The results are compared with the corresponding values published in the literature. A comparison of the received dose from CT examinations and general radiography examinations by the ovaries was made. It is found that relatively high doses of unwanted radiation are delivered with computerized tomography. (author)

  13. Polyvinyl butyral films containing leuco-malachite green as low-dose dosimeters

    Science.gov (United States)

    Mai, Hoang Hoa; Solomon, H. M.; Taguchi, M.; Kojima, T.

    2008-04-01

    Thin films containing leuco-malachite green (LMG) dye in polyvinyl butyral (PVB) have been developed for dose measurements of a few hundreds Gy level. The film shows significant color change in the visible range, and the sensitivity of the film to absorbed dose was enhanced by addition of chloride-containing compounds, such as chloral hydrate or 2,2,2-trichloroethanol. The film is suitable as dosimeters for dose measurements, e.g. in food irradiation and environmental protection.

  14. Polyvinyl butyral films containing leuco-malachite green as low-dose dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Hoang Hoa Mai [Institute for Nuclear Science Technique, Vietnam Atomic Energy Commission (VAEC), 59 Ly Thuong Kiet, Hanoi (Viet Nam); Solomon, H.M. [Philippine Nuclear Research Institute (PNRI), Commonwealth Avenue, Diliman Quezon City (Philippines); Taguchi, M. [Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki-shi. Gunma 370-1292 (Japan); Kojima, T. [Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki-shi. Gunma 370-1292 (Japan)], E-mail: kojima.takuji@jaea.go.jp

    2008-04-15

    Thin films containing leuco-malachite green (LMG) dye in polyvinyl butyral (PVB) have been developed for dose measurements of a few hundreds Gy level. The film shows significant color change in the visible range, and the sensitivity of the film to absorbed dose was enhanced by addition of chloride-containing compounds, such as chloral hydrate or 2,2,2-trichloroethanol. The film is suitable as dosimeters for dose measurements, e.g. in food irradiation and environmental protection.

  15. Clinical and economic consequences of pharmacogenetic-guided dosing of warfarin

    OpenAIRE

    2010-01-01

    textabstractPatients using warfarin for oral anticoagulant therapy need to be frequently monitored because of warfarins narrow therapeutic range and the large variation in dose requirements among patients. Patients receiving the wrong dose have an increased risk of bleeding or thromboembolic events. The required dose is influenced by environmental factors, such as gender, age, diet and concomitant medication, as well as genetic factors. Pharmacogenetic testing prior to warfarin initiation mig...

  16. Cellular and molecular aspects of the anti-inflammatory effects of low-dose radiation therapy

    OpenAIRE

    Large, Martin

    2015-01-01

    For decades an anti-inflammatory and analgesic effect of low-dose X-irradiation (LD-RT) has clinically been well established in the treatment of a plethora of benign diseases and chronic degenerative disorders with empirically identified single doses < 1 Gy to be most effective. Although considerable progress has been achieved in the understanding of immune modulatory effects of ionising radiation, especially in the low-dose range, the underlying molecular mechanisms are currently not fully r...

  17. Phase I Study of Continuous Weekly Dosing of Dimethylamino Benzoylphenylurea (BPU) in Patients with Solid Tumours

    OpenAIRE

    Messersmith, Wells A.; Rudek, Michelle A.; Baker, Sharyn D.; Zhao, Ming; Collins, Connie; Colevas, A. Dimitrios; Donehower, Ross C.; Carducci, Michael A.; Wolff, Antonio C.

    2006-01-01

    A phase I study of Dimethylamino Benzoylphenylurea (BPU), a tubulin inhibitor, was performed using a weekly continuous schedule. Patients with refractory solid tumours received oral BPU once weekly without interruption at doses ranging from 5 to 320mg using an accelerated titration design. Nineteen subjects received 54 cycles of BPU. Early pharmacokinetic findings of decreased clearance with increasing dose and plasma accumulation led to the expansion of the 320mg dose level. Two subjects the...

  18. Co-administration of morphine and gabapentin leads to dose dependent synergistic effects in a rat model of postoperative pain

    DEFF Research Database (Denmark)

    Papathanasiou, Theodoros; Juul, Rasmus Vestergaard; Heegaard, Anne-Marie;

    2016-01-01

    dose combinations and investigate whether co-administration leads to synergistic effects in a preclinical model of postoperative pain. The pharmacodynamic effects of morphine (1, 3 and 7 mg/kg), gabapentin (10, 30 and 100 mg/kg) or their combination (9 combinations in total) were evaluated in the rat...... ranged between 26 and 58 % for the synergistic doses. The finding of dose-dependent synergistic effects highlights that choosing the right dose-dose combination is of importance in postoperative pain therapy. Our results indicate benefit of high doses of gabapentin as adjuvant to morphine...

  19. Student's music exposure: Full-day personal dose measurements

    Science.gov (United States)

    Washnik, Nilesh Jeevandas; Phillips, Susan L.; Teglas, Sandra

    2016-01-01

    Previous studies have shown that collegiate level music students are exposed to potentially hazardous sound levels. Compared to professional musicians, collegiate level music students typically do not perform as frequently, but they are exposed to intense sounds during practice and rehearsal sessions. The purpose of the study was to determine the full-day exposure dose including individual practice and ensemble rehearsals for collegiate student musicians. Sixty-seven college students of classical music were recruited representing 17 primary instruments. Of these students, 57 completed 2 days of noise dose measurements using Cirrus doseBadge programed according to the National Institute for Occupational Safety and Health criterion. Sound exposure was measured for 2 days from morning to evening, ranging from 7 to 9 h. Twenty-eight out of 57 (49%) student musicians exceeded a 100% daily noise dose on at least 1 day of the two measurement days. Eleven student musicians (19%) exceeded 100% daily noise dose on both days. Fourteen students exceeded 100% dose during large ensemble rehearsals and eight students exceeded 100% dose during individual practice sessions. Approximately, half of the student musicians exceeded 100% noise dose on a typical college schedule. This finding indicates that a large proportion of collegiate student musicians are at risk of developing noise-induced hearing loss due to hazardous sound levels. Considering the current finding, there is a need to conduct hearing conservation programs in all music schools, and to educate student musicians about the use and importance of hearing protection devices for their hearing. PMID:26960787

  20. Age- and gender-specific estimates of cumulative CT dose over 5 years using real radiation dose tracking data in children

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunsol; Goo, Hyun Woo; Lee, Jae-Yeong [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of)

    2015-08-15

    It is necessary to develop a mechanism to estimate and analyze cumulative radiation risks from multiple CT exams in various clinical scenarios in children. To identify major contributors to high cumulative CT dose estimates using actual dose-length product values collected for 5 years in children. Between August 2006 and July 2011 we reviewed 26,937 CT exams in 13,803 children. Among them, we included 931 children (median age 3.5 years, age range 0 days-15 years; M:F = 533:398) who had 5,339 CT exams. Each child underwent at least three CT scans and had accessible radiation dose reports. Dose-length product values were automatically extracted from DICOM files and we used recently updated conversion factors for age, gender, anatomical region and tube voltage to estimate CT radiation dose. We tracked the calculated CT dose estimates to obtain a 5-year cumulative value for each child. The study population was divided into three groups according to the cumulative CT dose estimates: high, ≥30 mSv; moderate, 10-30 mSv; and low, <10 mSv. We reviewed clinical data and CT protocols to identify major contributors to high and moderate cumulative CT dose estimates. Median cumulative CT dose estimate was 5.4 mSv (range 0.5-71.1 mSv), and median number of CT scans was 4 (range 3-36). High cumulative CT dose estimates were most common in children with malignant tumors (57.9%, 11/19). High frequency of CT scans was attributed to high cumulative CT dose estimates in children with ventriculoperitoneal shunt (35 in 1 child) and malignant tumors (range 18-49). Moreover, high-dose CT protocols, such as multiphase abdomen CT (median 4.7 mSv) contributed to high cumulative CT dose estimates even in children with a low number of CT scans. Disease group, number of CT scans, and high-dose CT protocols are major contributors to higher cumulative CT dose estimates in children. (orig.)

  1. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding

    Science.gov (United States)

    George, K.; Willingham, V.; Wu, H.; Gridley, D.; Nelson, G.; Cucinotta, F. A.

    2002-01-01

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  2. The Kenai National Moose Range

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes the geological history, early settlement, game resources, early conservation interests, and establishment of Kenai National Moose Range.

  3. Kenai National Moose Range Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This book presents a summary of the history, wildlife, recreational opportunities, economic uses, and future plans for Kenai National Moose Range.

  4. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  5. Experimentally studied dynamic dose interplay does not meaningfully affect target dose in VMAT SBRT lung treatments

    Energy Technology Data Exchange (ETDEWEB)

    Stambaugh, Cassandra [Department of Physics, University of South Florida, Tampa, Florida 33612 (United States); Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Dilling, Thomas; Stevens, Craig; Latifi, Kujtim; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States)

    2013-09-15

    Purpose: The effects of respiratory motion on the tumor dose can be divided into the gradient and interplay effects. While the interplay effect is likely to average out over a large number of fractions, it may play a role in hypofractionated [stereotactic body radiation therapy (SBRT)] treatments. This subject has been extensively studied for intensity modulated radiation therapy but less so for volumetric modulated arc therapy (VMAT), particularly in application to hypofractionated regimens. Also, no experimental study has provided full four-dimensional (4D) dose reconstruction in this scenario. The authors demonstrate how a recently described motion perturbation method, with full 4D dose reconstruction, is applied to describe the gradient and interplay effects during VMAT lung SBRT treatments.Methods: VMAT dose delivered to a moving target in a patient can be reconstructed by applying perturbations to the treatment planning system-calculated static 3D dose. Ten SBRT patients treated with 6 MV VMAT beams in five fractions were selected. The target motion (motion kernel) was approximated by 3D rigid body translation, with the tumor centroids defined on the ten phases of the 4DCT. The motion was assumed to be periodic, with the period T being an average from the empirical 4DCT respiratory trace. The real observed tumor motion (total displacement ≤8 mm) was evaluated first. Then, the motion range was artificially increased to 2 or 3 cm. Finally, T was increased to 60 s. While not realistic, making T comparable to the delivery time elucidates if the interplay effect can be observed. For a single fraction, the authors quantified the interplay effect as the maximum difference in the target dosimetric indices, most importantly the near-minimum dose (D{sub 99%}), between all possible starting phases. For the three- and five-fractions, statistical simulations were performed when substantial interplay was found.Results: For the motion amplitudes and periods obtained from

  6. An ultra-high dose of electron radiation response of Germanium Flat Fiber and TLD-100

    Science.gov (United States)

    Alawiah, A.; Amin, Y. M.; Abdul-Rashid, H. A.; Abdullah, W. S. Wan; Maah, M. J.; Bradley, D. A.

    2017-01-01

    The thermoluminescence (TL) response of Germanium Flat Fiber (GFF) and TLD-100 irradiated with 2.5 MeV electrons for the doses up to 1 MGy were studied and compared. The aim was to evaluate the TL supralinearity response at an ultra-high dose (UHD) range and to investigate the change in kinetic parameters of the glow peaks, as the doses increases up to 1 MGy. It is found that the critical dose limit (CDL) of GFF is 5 times higher as compared to TLD-100. CDL is determined by the dose at the maximum supralinearity, f(D)max. It is also found that annealing the TLD-100 and GFF with temperature more than 400 °C is required to reset it back to its original condition, following radiation doses up to 1 MGy. It is also noticed the strange behavior of Peak 4 (TLD-100), which tends to be invisible at the lower dose (<10 kGy) and starts to be appeared at the critical dose limit of 10 kGy. This result might be an important clue to understand the behavior of TLD-100 at extremely high dose range. For both samples, it is observed that the TL intensity is not saturated within the UHD range studied.

  7. Tolerance doses for treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Lyman, J.T.

    1985-10-01

    Data for the tolerance of normal tissues or organs to (low-LET) radiation has been compiled from a number of sources which are referenced at the end of this document. This tolerance dose data are ostensibly for uniform irradiation of all or part of an organ, and are for either 5% (TD/sub 5/) or 50% (TD/sub 50/) complication probability. The ''size'' of the irradiated organ is variously stated in terms of the absolute volume or the fraction of the organ volume irradiated, or the area or the length of the treatment field. The accuracy of these data is questionable. Much of the data represents doses that one or several experienced therapists have estimated could be safely given rather than quantitative analyses of clinical observations. Because these data have been obtained from multiple sources with possible different criteria for the definition of a complication, there are sometimes different values for what is apparently the same endpoint. The data from some sources shows a tendancy to be quantized in 5 Gy increments. This reflects the size of possible round off errors. It is believed that all these data have been accumulated without the benefit of 3-D dose distributions and therefore the estimates of the size of the volume and/or the uniformity of the irradiation may be less accurate than is now possible. 19 refs., 4 figs.

  8. Dose Estimation in Radiation Cytogenetics

    Science.gov (United States)

    Ainsbury, Elizabeth; Lloyd, David

    2009-04-01

    Throughout the radiation cytogenetics community, a core group of methods exists to produce an estimate of radiation dose from an observed yield of DNA damage in blood. Mathematical and statistical analysis is extremely important for accurate assessment of data and results, and a number of classical statistical methods are commonly employed. However, the large number of statistical techniques, and the complexity of the methods, can lead to errors in data analysis and misinterpretation of results. Cytogenetics dose estimation software has been developed to simplify mathematical and statistical analysis of cytogenetic data. ``Dose Estimate'' is a collection of mathematical and statistical methods based on the cytogenetics methods and programs written by Alan Edwards, David Papworth, and others. Details of the biological and mathematical techniques used in the software will be presented, including maximum likelihood estimation of yield curve coefficients for the dicentric or translocation assays. Proposals for increasing the sophistication of the software through implementation of recently published Bayesian analysis techniques for cytogenetics will also be outlined.

  9. PET/CT-guided Interventions: Personnel Radiation Dose

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, E. Ronan, E-mail: ronan@ronanryan.com; Thornton, Raymond; Sofocleous, Constantinos T.; Erinjeri, Joseph P. [Memorial Sloan-Kettering Cancer Center, Department of Radiology (United States); Hsu, Meier [Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics (United States); Quinn, Brian; Dauer, Lawrence T. [Memorial Sloan-Kettering Cancer Center, Department of Medical Physics (United States); Solomon, Stephen B. [Memorial Sloan-Kettering Cancer Center, Department of Radiology (United States)

    2013-08-01

    PurposeTo quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures.MethodsIn this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound).ResultsThe median effective dose was 0.02 (range 0-0.13) mSv for the primary operator, 0.01 (range 0-0.05) mSv for the nurse anesthetist, and 0.02 (range 0-0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0-0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06).ConclusionThe operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient.

  10. Construction of a self- luminescent cyanobacterial bioreporter that detects a broad range of bioavailable heavy metals in aquatic environments

    Directory of Open Access Journals (Sweden)

    Keila eMartin-Betancor

    2015-03-01

    Full Text Available A self-luminescent bioreporter strain of the unicellular cyanobacterium Synechococcus sp. PCC 7942 was constructed by fusing the promoter region of the smt locus (encoding the transcriptional repressor SmtB and the metallothionein SmtA to luxCDABE from Photorhabdus luminescens; the sensor smtB gene controlling the expression of smtA was cloned in the same vector. The bioreporter performance was tested with a range of heavy metals and was shown to respond linearly to divalent Zn, Cd, Cu, Co, Hg and monovalent Ag. Chemical modelling was used to link bioreporter response with metal speciation and bioavailability. Limits of Detection (LODs, Maximum Permissive Concentrations (MPCs and dynamic ranges for each metal were calculated in terms of free ion concentrations. The ranges of detection varied from 11 to 72 pM for Hg2+ (the ion to which the bioreporter was most sensitive to 1.54-5.35 µM for Cd2+ with an order of decreasing sensitivity as follows: Hg2+ >> Cu2+ >> Ag+ > Co2+ ≥ Zn2+ > Cd2+. However, the maximum induction factor reached 75-fold in the case of Zn2+ and 56-fold in the case of Cd2+, implying that Zn2+ is the preferred metal in vivo for the SmtB sensor, followed by Cd2+, Ag+ and Cu2+ (around 45-50-fold induction, Hg2+ (30-fold and finally Co2+ (20-fold. The bioreporter performance was tested in real environmental samples with different water matrix complexity artificially contaminated with increasing concentrations of Zn, Cd, Ag and Cu, confirming its validity as a sensor of free heavy metal cations bioavailability in aquatic environments.

  11. History of dose specification in Brachytherapy: From Threshold Erythema Dose to Computational Dosimetry

    Science.gov (United States)

    Williamson, Jeffrey F.

    2006-09-01

    This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as a means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.

  12. Mean dose to lymphocytes during radiotherapy treatments

    Energy Technology Data Exchange (ETDEWEB)

    Brandan, M.E.; Perez-Pastenes, M.A. [Instituto de Fisica (Mexico); Ostrosky-Wegman, P.; Gonsebatt, M.E. [Instituto de Investigaciones Biomedicas (Mexico); Diaz-Perches, R. [Hospital General de Mexico (Mexico)

    1994-10-01

    Using a probabilistic model with parameters from four radiotherapy protocols used in Mexican hospitals for the treatment of cervical cancer, the authors have calculated the distribution of dose to cells in peripheral blood of patients. Values of the mean dose to the lymphocytes during and after a {sup 60}Co treatment are compared to estimates from an in vivo chromosome aberration study performed on five patients. Calculations indicate that the mean dose to the circulating blood is about 2% of the tumor dose, while the mean dose to recirculating lymphocytes may reach up to 7% of the tumor dose. Differences up to a factor of two in the dose to the blood are predicted for different protocols delivering equal tumor doses. The data suggest mean doses higher than the predictions of the model. 10 refs., 3 figs., 2 tabs.

  13. Clinical and economic consequences of pharmacogenetic-guided dosing of warfarin

    NARCIS (Netherlands)

    T.I. Verhoef (Talitha); T. Schalekamp (Talitha); W.K. Redekop (Ken); A.C. de Boer (Anthonius); A-H. Maitland-van der Zee (Anke-Hilse)

    2010-01-01

    textabstractPatients using warfarin for oral anticoagulant therapy need to be frequently monitored because of warfarins narrow therapeutic range and the large variation in dose requirements among patients. Patients receiving the wrong dose have an increased risk of bleeding or thromboembolic events.

  14. Optical range and range rate estimation for teleoperator systems

    Science.gov (United States)

    Shields, N. L., Jr.; Kirkpatrick, M., III; Malone, T. B.; Huggins, C. T.

    1974-01-01

    Range and range rate are crucial parameters which must be available to the operator during remote controlled orbital docking operations. A method was developed for the estimation of both these parameters using an aided television system. An experiment was performed to determine the human operator's capability to measure displayed image size using a fixed reticle or movable cursor as the television aid. The movable cursor was found to yield mean image size estimation errors on the order of 2.3 per cent of the correct value. This error rate was significantly lower than that for the fixed reticle. Performance using the movable cursor was found to be less sensitive to signal-to-noise ratio variation than was that for the fixed reticle. The mean image size estimation errors for the movable cursor correspond to an error of approximately 2.25 per cent in range suggesting that the system has some merit. Determining the accuracy of range rate estimation using a rate controlled cursor will require further experimentation.

  15. Low doses controversy; La controverse des faibles doses

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 -le Vesinet (France); Carde, C. [EDF, 75 - Paris (France)

    1997-12-31

    In this article is studied the question of low dose irradiation. From this question, the risk assessment and how it is perceived in public opinion is studied. Then, it is more generally, the question of public opinion and the information made by the media which is discussed. Different events and how they were related in press are reviewed: leukemia around La Hague, human guinea-pigs for plutonium, Chernobyl consequences, survivors from Hiroshima, nuclear nomads ( for temporary workers and their bad medical surveillance ), radioactive effluents releases from La Hague, Valduc or Cattenom. (N.C.).

  16. Organ doses for reference adult male and female undergoing computed tomography estimated by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel; Fisher, Ryan; Tien, Chris; Simon, Steven L.; Bouville, Andre; Bolch, Wesley E. [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20852 (United States); Department of Nuclear Engineering, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611 (United States); Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20852 (United States); Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida 32611 (United States)

    2011-03-15

    Purpose: To develop a computed tomography (CT) organ dose estimation method designed to readily provide organ doses in a reference adult male and female for different scan ranges to investigate the degree to which existing commercial programs can reasonably match organ doses defined in these more anatomically realistic adult hybrid phantomsMethods: The x-ray fan beam in the SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code MCNPX2.6. The simulated CT scanner model was validated through comparison with experimentally measured lateral free-in-air dose profiles and computed tomography dose index (CTDI) values. The reference adult male and female hybrid phantoms were coupled with the established CT scanner model following arm removal to simulate clinical head and other body region scans. A set of organ dose matrices were calculated for a series of consecutive axial scans ranging from the top of the head to the bottom of the phantoms with a beam thickness of 10 mm and the tube potentials of 80, 100, and 120 kVp. The organ doses for head, chest, and abdomen/pelvis examinations were calculated based on the organ dose matrices and compared to those obtained from two commercial programs, CT-EXPO and CTDOSIMETRY. Organ dose calculations were repeated for an adult stylized phantom by using the same simulation method used for the adult hybrid phantom. Results: Comparisons of both lateral free-in-air dose profiles and CTDI values through experimental measurement with the Monte Carlo simulations showed good agreement to within 9%. Organ doses for head, chest, and abdomen/pelvis scans reported in the commercial programs exceeded those from the Monte Carlo calculations in both the hybrid and stylized phantoms in this study, sometimes by orders of magnitude. Conclusions: The organ dose estimation method and dose matrices established in this study readily provides organ doses for a reference adult male and female for different

  17. Site-specific dose-response relationships for cancer induction from the combined Japanese A-bomb and Hodgkin cohorts for doses relevant to radiotherapy

    Directory of Open Access Journals (Sweden)

    Sumila Marcin

    2011-07-01

    Full Text Available Abstract Background and Purpose Most information on the dose-response of radiation-induced cancer is derived from data on the A-bomb survivors. Since, for radiation protection purposes, the dose span of main interest is between zero and one Gy, the analysis of the A-bomb survivors is usually focused on this range. However, estimates of cancer risk for doses larger than one Gy are becoming more important for radiotherapy patients. Therefore in this work, emphasis is placed on doses relevant for radiotherapy with respect to radiation induced solid cancer. Materials and methods For various organs and tissues the analysis of cancer induction was extended by an attempted combination of the linear-no-threshold model from the A-bomb survivors in the low dose range and the cancer risk data of patients receiving radiotherapy for Hodgkin's disease in the high dose range. The data were fitted using organ equivalent dose (OED calculated for a group of different dose-response models including a linear model, a model including fractionation, a bell-shaped model and a plateau-dose-response relationship. Results The quality of the applied fits shows that the linear model fits best colon, cervix and skin. All other organs are best fitted by the model including fractionation indicating that the repopulation/repair ability of tissue is neither 0 nor 100% but somewhere in between. Bone and soft tissue sarcoma were fitted well by all the models. In the low dose range beyond 1 Gy sarcoma risk is negligible. For increasing dose, sarcoma risk increases rapidly and reaches a plateau at around 30 Gy. Conclusions In this work OED for various organs was calculated for a linear, a bell-shaped, a plateau and a mixture between a bell-shaped and plateau dose-response relationship for typical treatment plans of Hodgkin's disease patients. The model parameters (α and R were obtained by a fit of the dose-response relationships to these OED data and to the A-bomb survivors. For

  18. Two separate dose-dependent effects of paroxetine

    DEFF Research Database (Denmark)

    Nielsen, Anette Green; Pedersen, Rasmus Steen; Noehr-Jensen, Lene;

    2010-01-01

    PURPOSE: To investigate paroxetine's putative dose-dependent impact on pupil reaction and inhibition of the O-demethylation of tramadol. METHODS: Twelve healthy CYP2D6 extensive metabolizers participated in this double-blinded randomized five-way placebo controlled cross-over study; they received...... placebo, 10, 20, 30, and 50 mg paroxetine as single oral doses at bedtime. Next morning the pupil was measured followed by oral intake of 50 mg of tramadol, and urine was collected for 8 h. Three hours after ingestion of tramadol a second measurement of the pupil was performed. Enantioselective urine...... concentrations of (+/-)-tramadol and (+/-)-O-desmethyltramadol (M1) were determined. RESULTS: With placebo, the median maximum pupil diameter was 6.43 mm (range 5.45-7.75 mm) before tramadol and 6.22 mm (4.35-7.65 mm) after 50 mg of tramadol (P = 0.4935). Paroxetine resulted in a statistically significant, dose...

  19. Dose volume analysis in brachytherapy and stereotactic radiosurgery

    CERN Document Server

    Tozer-Loft, S M

    2000-01-01

    compared with a range of figures of merit which express different aspects of the quality of each dose distributions. The results are analysed in an attempt to answer the question: What are the important features of the dose distribution (conformality, uniformity, etc) which show a definite relationship with the outcome of the treatment? Initial results show positively that, when Gamma Knife radiosurgery is used to treat acoustic neuroma, some measures of conformality seem to have a surprising, but significant association with outcome. A brief introduction to three branches of radiotherapy is given: interstitial brachytherapy, external beam megavoltage radiotherapy, and stereotactic radiosurgery. The current interest in issues around conformity, uniformity and optimisation is explained in the light of technical developments in these fields. A novel method of displaying dose-volume information, which mathematically suppresses the inverse-square law, as first suggested by L.L. Anderson for use in brachytherapy i...

  20. SU-E-T-86: A Systematic Method for GammaKnife SRS Fetal Dose Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Geneser, S; Paulsson, A; Sneed, P; Braunstein, S; Ma, L [UCSF Comprehensive Cancer Center, San Francisco, CA (United States)

    2015-06-15

    Purpose: Estimating fetal dose is critical to the decision-making process when radiation treatment is indicated during pregnancy. Fetal doses less than 5cGy confer no measurable non-cancer developmental risks but can produce a threefold increase in developing childhood cancer. In this study, we estimate fetal dose for a patient receiving Gamma Knife stereotactic radiosurgery (GKSRS) treatment and develop a method to estimate dose directly from plan details. Methods: A patient underwent GKSRS on a Perfexion unit for eight brain metastases (two infratentorial and one brainstem). Dose measurements were performed using a CC13, head phantom, and solid water. Superficial doses to the thyroid, sternum, and pelvis were measured using MOSFETs during treatment. Because the fetal dose was too low to accurately measure, we obtained measurements proximally to the isocenter, fitted to an exponential function, and extrapolated dose to the fundus of the uterus, uterine midpoint, and pubic synthesis for both the preliminary and delivered plans. Results: The R-squared fit for the delivered doses was 0.995. The estimated fetal doses for the 72 minute preliminary and 138 minute delivered plans range from 0.0014 to 0.028cGy and 0.07 to 0.38cGy, respectively. MOSFET readings during treatment were just above background for the thyroid and negligible for all inferior positions. The method for estimating fetal dose from plan shot information was within 0.2cGy of the measured values at 14cm cranial to the fetal location. Conclusion: Estimated fetal doses for both the preliminary and delivered plan were well below the 5cGy recommended limit. Due to Pefexion shielding, internal dose is primarily governed by attenuation and drops off exponentially. This is the first work that reports fetal dose for a GK Perfexion unit. Although multiple lesions were treated and the duration of treatment was long, the estimated fetal dose remained very low.

  1. Applications of Neutron Bubble Dosimeters for Neutron Dose Monitoring in Mixed n-γ Fields

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Bubble dosimeter is a promising technology in the field of neutron dosimetry. It provides real-time monitoring of neutron dose, stable energy response over wide range of neutron energy, and a very low

  2. Single-dose rasburicase 6 mg in the management of tumor lysis syndrome in adults.

    Science.gov (United States)

    McDonnell, Anne M; Lenz, Kristi L; Frei-Lahr, Debra A; Hayslip, John; Hall, Philip D

    2006-06-01

    Rasburicase is currently approved at a dosage of 0.15-0.2 mg/kg once/day for 5 days in pediatric patients with cancer to lower plasma uric acid concentrations and manage tumor lysis syndrome (TLS). Information on rasburicase dosing in adults is limited, with some data on using rasburicase as a single dose instead of multiple daily doses. Therefore, we evaluated the efficacy of a single dose of rasburicase for preventing or managing TLS in adults. We collected retrospective data for 11 adults with hematologic malignancies who received a single 6-mg dose of rasburicase. All patients received intravenous hydration with urinary alkalinization and allopurinol; however, due to adverse reactions, two patients received short courses of allopurinol. Only patients at high risk for TLS (e.g., large tumor burden, increasing uric acid concentration) or those with TLS received rasburicase. The single dose of rasburicase 6 mg resulted in a median 0.0773-mg/kg dose (range 0.0232-0.1361 mg/kg). The single 6-mg dose rapidly lowered uric acid concentrations in 10 of the 11 patients. The median uric acid concentration of 11.7 mg/dl (range 7.4-17.4 mg/dl) declined to 2.0 mg/dl (range 0.5-15.4 mg/dl) within a day after rasburicase administration (p=0.022). In these 10 patients, uric acid concentrations remained low despite subsequent chemotherapy, and none required additional rasburicase doses. The only patient who did not respond to the single 6-mg rasburicase dose was a morbidly obese man (259 kg, body mass index 87 kg/m2) who subsequently responded to an additional dose of rasburicase 12 mg. These results warrant further investigation of a single 6-mg dose of rasburicase in adults with TLS or at high-risk for developing TLS.

  3. Using rule-based shot dose assignment in model-based MPC applications

    Science.gov (United States)

    Bork, Ingo; Buck, Peter; Wang, Lin; Müller, Uwe

    2014-10-01

    Shrinking feature sizes and the need for tighter CD (Critical Dimension) control require the introduction of new technologies in mask making processes. One of those methods is the dose assignment of individual shots on VSB (Variable Shaped Beam) mask writers to compensate CD non-linearity effects and improve dose edge slope. Using increased dose levels only for most critical features, generally only for the smallest CDs on a mask, the change in mask write time is minimal while the increase in image quality can be significant. This paper describes a method combining rule-based shot dose assignment with model-based shot size correction. This combination proves to be very efficient in correcting mask linearity errors while also improving dose edge slope of small features. Shot dose assignment is based on tables assigning certain dose levels to a range of feature sizes. The dose to feature size assignment is derived from mask measurements in such a way that shape corrections are kept to a minimum. For example, if a 50nm drawn line on mask results in a 45nm chrome line using nominal dose, a dose level is chosen which is closest to getting the line back on target. Since CD non-linearity is different for lines, line-ends and contacts, different tables are generated for the different shape categories. The actual dose assignment is done via DRC rules in a pre-processing step before executing the shape correction in the MPC engine. Dose assignment to line ends can be restricted to critical line/space dimensions since it might not be required for all line ends. In addition, adding dose assignment to a wide range of line ends might increase shot count which is undesirable. The dose assignment algorithm is very flexible and can be adjusted based on the type of layer and the best balance between accuracy and shot count. These methods can be optimized for the number of dose levels available for specific mask writers. The MPC engine now needs to be able to handle different dose

  4. Evaluation of the breast plan using the TLD and MOSFET for the skin dose

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Myeong; Kim, Young Bum; Bak, Sang Yun; Lee, Sang Rok; Jeong, Se Young [Dept. of Radiation Oncology, Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2015-12-15

    close attention. Using the treatment planning of dose fluence is good to compensate the lack of dose, but It increases the dose of the selective range rather than the overall dose. Therefore, choosing the radiotherapy technique is desirable in the lights of the age and performance of the patient.

  5. Radiation dose and image quality for paediatric interventional cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Vano, E [Radiology Department, Medicine School, Complutense University and San Carlos University Hospital, 28040 Madrid (Spain); Ubeda, C [Clinical Sciences Department, Faculty of the Science of Health, Tarapaca University, 18 de Septiembre 2222, Arica (Chile); Leyton, F [Institute of Public Health of Chile, Marathon 1000, Nunoa, Santiago (Chile); Miranda, P [Hemodynamic Department, Cardiovascular Service, Luis Calvo Mackenna Hospital, Avenida Antonio Varas 360, Providencia, Santiago (Chile)], E-mail: eliseov@med.ucm.es

    2008-08-07

    Radiation dose and image quality for paediatric protocols in a biplane x-ray system used for interventional cardiology have been evaluated. Entrance surface air kerma (ESAK) and image quality using a test object and polymethyl methacrylate (PMMA) phantoms have been measured for the typical paediatric patient thicknesses (4-20 cm of PMMA). Images from fluoroscopy (low, medium and high) and cine modes have been archived in digital imaging and communications in medicine (DICOM) format. Signal-to-noise ratio (SNR), figure of merit (FOM), contrast (CO), contrast-to-noise ratio (CNR) and high contrast spatial resolution (HCSR) have been computed from the images. Data on dose transferred to the DICOM header have been used to test the values of the dosimetric display at the interventional reference point. ESAK for fluoroscopy modes ranges from 0.15 to 36.60 {mu}Gy/frame when moving from 4 to 20 cm PMMA. For cine, these values range from 2.80 to 161.10 {mu}Gy/frame. SNR, FOM, CO, CNR and HCSR are improved for high fluoroscopy and cine modes and maintained roughly constant for the different thicknesses. Cumulative dose at the interventional reference point resulted 25-45% higher than the skin dose for the vertical C-arm (depending of the phantom thickness). ESAK and numerical image quality parameters allow the verification of the proper setting of the x-ray system. Knowing the increases in dose per frame when increasing phantom thicknesses together with the image quality parameters will help cardiologists in the good management of patient dose and allow them to select the best imaging acquisition mode during clinical procedures.

  6. Radiation dose and image quality for paediatric interventional cardiology

    Science.gov (United States)

    Vano, E.; Ubeda, C.; Leyton, F.; Miranda, P.

    2008-08-01

    Radiation dose and image quality for paediatric protocols in a biplane x-ray system used for interventional cardiology have been evaluated. Entrance surface air kerma (ESAK) and image quality using a test object and polymethyl methacrylate (PMMA) phantoms have been measured for the typical paediatric patient thicknesses (4-20 cm of PMMA). Images from fluoroscopy (low, medium and high) and cine modes have been archived in digital imaging and communications in medicine (DICOM) format. Signal-to-noise ratio (SNR), figure of merit (FOM), contrast (CO), contrast-to-noise ratio (CNR) and high contrast spatial resolution (HCSR) have been computed from the images. Data on dose transferred to the DICOM header have been used to test the values of the dosimetric display at the interventional reference point. ESAK for fluoroscopy modes ranges from 0.15 to 36.60 µGy/frame when moving from 4 to 20 cm PMMA. For cine, these values range from 2.80 to 161.10 µGy/frame. SNR, FOM, CO, CNR and HCSR are improved for high fluoroscopy and cine modes and maintained roughly constant for the different thicknesses. Cumulative dose at the interventional reference point resulted 25-45% higher than the skin dose for the vertical C-arm (depending of the phantom thickness). ESAK and numerical image quality parameters allow the verification of the proper setting of the x-ray system. Knowing the increases in dose per frame when increasing phantom thicknesses together with the image quality parameters will help cardiologists in the good management of patient dose and allow them to select the best imaging acquisition mode during clinical procedures.

  7. Comparison of out-of-field photon doses in 6 MV IMRT and neutron doses in proton therapy for adult and pediatric patients

    Science.gov (United States)

    Athar, Basit S.; Bednarz, Bryan; Seco, Joao; Hancox, Cindy; Paganetti, Harald

    2010-05-01

    The purpose of this study was to assess lateral out-of-field doses in 6 MV IMRT (intensity modulated radiation therapy) and compare them with secondary neutron equivalent dose contributions in proton therapy. We simulated out-of-field photon doses to various organs as a function of distance, patient's age, gender and treatment volumes based on 3, 6, 9 cm field diameters in the head and neck and spine region. The out-of-field photon doses to organs near the field edge were found to be in the range of 2, 5 and 10 mSv Gy-1 for 3 cm, 6 cm and 9 cm diameter IMRT fields, respectively, within 5 cm of the field edge. Statistical uncertainties calculated in organ doses vary from 0.2% to 40% depending on the organ location and the organ volume. Next, a comparison was made with previously calculated neutron equivalent doses from proton therapy using identical field arrangements. For example, out-of-field doses for IMRT to lung and uterus (organs close to the 3 cm diameter spinal field) were computed to be 0.63 and 0.62 mSv Gy-1, respectively. These numbers are found to be a factor of 2 smaller than the corresponding out-of-field doses for proton therapy, which were estimated to be 1.6 and 1.7 mSv Gy-1 (RBE), respectively. However, as the distance to the field edge increases beyond approximately 25 cm the neutron equivalent dose from proton therapy was found to be a factor of 2-3 smaller than the out-of-field photon dose from IMRT. We have also analyzed the neutron equivalent doses from an ideal scanned proton therapy (assuming not significant amount of absorbers in the treatment head). Out-of-field doses were found to be an order of magnitude smaller compared to out-of-field doses in IMRT or passive scattered proton therapy. In conclusion, there seem to be three geometrical areas when comparing the out-of-target dose from IMRT and (passive scattered) proton treatments. Close to the target (in-field, not analyzed here) protons offer a distinct advantage due to the lower

  8. Truthful approximations to range voting

    DEFF Research Database (Denmark)

    Filos-Ratsika, Aris; Miltersen, Peter Bro

    We consider the fundamental mechanism design problem of approximate social welfare maximization under general cardinal preferences on a finite number of alternatives and without money. The well-known range voting scheme can be thought of as a non-truthful mechanism for exact social welfare...

  9. The Dynamic Range of LZ

    CERN Document Server

    Yin, Jun

    2015-01-01

    The electronics of the LZ experiment, the 7-tonne dark matter detector to be installed at the Sanford Underground Research Facility (SURF), is designed to permit studies of physics where the energies deposited range from 1 keV of nuclear-recoil energy up to 3,000 keV of electron-recoil energy. The system is designed to provide a 70% efficiency for events that produce three photoelectrons in the photomultiplier tubes (PMTs). This corresponds approximately to the lowest energy threshold achievable in such a detector, and drives the noise specifications for the front end. The upper limit of the LZ dynamic range is defined by the electroluminescence (S2) signals. The low-energy channels of the LZ amplifiers provide the dynamic range required for the tritium and krypton calibrations. The high-energy channels provide the dynamic range required to measure the activated Xe lines. S2 signals induced by alpha particles from radon decay will saturate one or more channels of the top PMT array but techniques are being dev...

  10. Mobile Lunar Laser Ranging Station

    Science.gov (United States)

    Intellect, 1977

    1977-01-01

    Harlan Smith, chairman of the University of Texas's Astronomy Department, discusses a mobile lunar laser ranging station which could help determine the exact rates of movement between continents and help geophysicists understand earthquakes. He also discusses its application for studying fundamental concepts of cosmology and physics. (Editor/RK)

  11. Dose determination with nitro blue tetrazolium containing radiochromic dye films by measuring absorbed and reflected light

    DEFF Research Database (Denmark)

    Kovács, A.; Baranyai, M.; Wojnárovits, L.

    2000-01-01

    Tetrazolium salts as heterocyclic organic compounds are known to form highly coloured, water insoluble formazans by reduction, which can be utilized in radiation processing dosimetry. Radiochromic films containing nitro blue tetrazolium dissolved in a polymer matrix were found suitable for dose...... determination in a wide dose range both by absorbance and reflectance measurements. The concept of measuring reflected light from dose labels has been discussed earlier and emerged recently due to the requirement of introducing semiquantitative label dose indicators for quarantine control. The usefulness...

  12. Slope of the dose-response curve: usefulness in assessing bronchial responses to inhaled histamine.

    OpenAIRE

    Cockcroft, D. W.; Berscheid, B A

    1983-01-01

    The value of determining the slope of the histamine dose-response curve, in addition to the histamine provocation concentration producing a 20% reduction in FEV1 (PC20-FEV1), was assessed by analysis of histamine dose-response curves in 40 patients selected as having a wide range of increased non-specific bronchial responsiveness to inhaled histamine. The histamine dose-response curves were found to be fit the linear curve (dose v response, mean r2 = 0.97) better than the logarithmic curve (l...

  13. Establishment and validation of a dose-effect curve for {gamma}-rays by cytogenetic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Barquinero, Joan F.; Caballin, Maria Rosa [Unitat d`Antropologia, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Ciencies, Universitat Autonoma de Barcelona, Bellaterra (Spain); Barrios, Leonardo; Ribas, Montserrat [Unitat de Biologia Cel.lular, Departament de Biologia Cel.lular i Fisiologia, Facultat de Ciencies, Universitat Autonoma de Barcelona, Bellaterra (Spain); Miro, Rosa [Institut de Biologia Fondamental `Vicent Villar Palasi`, Universitat Autonoma de Barcelona, Barcelona (Spain); Egozcue, Josep [Servei d`Oncologia, Hospital de la Santa Crue i Sant Pau, Universitat Autonome de Barcelona, Barcelona (Spain)

    1995-01-01

    A dose-effect curve obtained by analysis of dicentric chromosomes after irradiation of peripheral blood samples, from one donor, at 11 different doses of {gamma}-rays is presented. For the elaboration of this curve, more than 18,000 first division metaphases have been analyzed. The results fit very well to the linear-quadratic model. To validate the curve, samples from six individuals (three controls and three occupationally exposed persons) were irradiated at 2 Gy. The results obtained, when compared with the curve, showed that in all cases the 95% confidence interval included the 2 Gy dose, with estimated dose ranges from 1.82 to 2.19 Gy.

  14. Dose-mapping distribution around MNSR

    CERN Document Server

    Jamal, M H

    2002-01-01

    The aim of this study is to establish the dose-rate map through the determination of radiological dose-rate levels in reactor hall, adjacent rooms, and outside the MNSR facility. Controlling dose rate to reactor operating personnel , dose map was established. The map covers time and distances in the reactor hall, during reactor operation at nominal power. Different measurement of dose rates in other areas of the reactor buildings was established. The maximum dose rate, during normal operation of the MNSR was 40 and 21 Sv/hr on the top of the reactor and near the pool fence, respectively. Whereas, gamma and neutron doses have not exceeded natural background in all rooms adjacent to the reactor hall or nearly buildings. The relation between the dose rate for gamma rays and neutron flux at the top of cover of reactor pool was studied as well. It was found that this relation is linear.

  15. Organ doses from computerized tomography examinations

    Energy Technology Data Exchange (ETDEWEB)

    Janeczek, J.

    1995-12-31

    Estimates of mean organs doses from five typical computerized tomography (CT) examinations were obtained. Measurements were done using Rando-Alderson anthropomorphic phantom and thermoluminescent dosemeters (TLD). Radiation dose distributions within a phantom has been measured for each examination and results were used for organ dose calculation. Doses to organs specified by ICPR 60 Recommendations were measured for five CT scanners (CT/T8800, CT 9800, CT MAX - made by General Electric; CT 1200 SX - made by Picker; SOMATOM 2 - made by Siemens). Dose distributions from scattered radiation were measured and indicate that scattered radiation dose to thyroid and eye lens can be reduced by proper examination limits setting. The lowest mean organ doses were obtained from CT/T8800 scanner. More advanced scanners using high intensity continuous radiation were giving higher organ doses. (author). 23 refs, 6 figs, 13 tabs.

  16. Determining organ doses from computed tomography scanners using cadaveric subjects

    Science.gov (United States)

    Griglock, Thomas M.

    The use of computed tomographic (CT) imaging has increased greatly since its inception in 1972. Technological advances have increased both the applicability of CT exams for common health problems as well as the radiation doses used to perform these exams. The increased radiation exposures have garnered much attention in the media and government agencies, and have brought about numerous attempts to quantify the amount of radiation received by patients. While the overwhelming majority of these attempts have focused on creating models of the human body (physical or computational), this research project sought to directly measure the radiation inside an actual human being. Three female cadaveric subjects of varying sizes were used to represent live patients. Optically-stimulated luminescent (OSL) dosimeters were used to measure the radiation doses. A dosimeter placement system was developed, tested, and optimized to allow accurate and reproducible placement of the dosimeters within the cadaveric subjects. A broad-beam, 320-slice, volumetric CT scanner was utilized to perform all CT exams, including five torso exams, four cardiac exams, and three organ perfusion exams. Organ doses ranged in magnitude from less than 1 to over 120 mGy, with the largest doses measured for perfusion imaging. A methodology has been developed that allows fast and accurate measurement of actual organ doses resulting from CT exams. The measurements made with this methodology represent the first time CT organ doses have been directly measured within a human body. These measurements are of great importance because they allow comparison to the doses measured using previous methods, and can be used to more accurately assess the risks from CT imaging.

  17. Accurate skin dose measurements using radiochromic film in clinical applications.

    Science.gov (United States)

    Devic, S; Seuntjens, J; Abdel-Rahman, W; Evans, M; Olivares, M; Podgorsak, E B; Vuong, Té; Soares, Christopher G

    2006-04-01

    Megavoltage x-ray beams exhibit the well-known phenomena of dose buildup within the first few millimeters of the incident phantom surface, or the skin. Results of the surface dose measurements, however, depend vastly on the measurement technique employed. Our goal in this study was to determine a correction procedure in order to obtain an accurate skin dose estimate at the clinically relevant depth based on radiochromic film measurements. To illustrate this correction, we have used as a reference point a depth of 70 micron. We used the new GAFCHROMIC dosimetry films (HS, XR-T, and EBT) that have effective points of measurement at depths slightly larger than 70 micron. In addition to films, we also used an Attix parallel-plate chamber and a home-built extrapolation chamber to cover tissue-equivalent depths in the range from 4 micron to 1 mm of water-equivalent depth. Our measurements suggest that within the first millimeter of the skin region, the PDD for a 6 MV photon beam and field size of 10 x 10 cm2 increases from 14% to 43%. For the three GAFCHROMIC dosimetry film models, the 6 MV beam entrance skin dose measurement corrections due to their effective point of measurement are as follows: 15% for the EBT, 15% for the HS, and 16% for the XR-T model GAFCHROMIC films. The correction factors for the exit skin dose due to the build-down region are negligible. There is a small field size dependence for the entrance skin dose correction factor when using the EBT GAFCHROMIC film model. Finally, a procedure that uses EBT model GAFCHROMIC film for an accurate measurement of the skin dose in a parallel-opposed pair 6 MV photon beam arrangement is described.

  18. Pb low doses induced genotoxicity in Lactuca sativa plants.

    Science.gov (United States)

    Silva, S; Silva, P; Oliveira, H; Gaivão, I; Matos, M; Pinto-Carnide, O; Santos, C

    2017-03-01

    Soil and water contamination by lead (Pb) remains a topic of great concern, particularly regarding crop production. The admissible Pb values in irrigation water in several countries range from ≈0.1 to ≈5 mg L(-1). In order to evaluate putative effects of Pb within legal doses on crops growth, we exposed Lactuca sativa seeds and seedlings to increasing doses of Pb(NO3)2 up to 20 mg L(-1). The OECD parameter seed germination and seedling/plant growth were not affected by any of the Pb-concentrations used. However, for doses higher than 5 mg L(-1) significant DNA damage was detected: Comet assay detected DNA fragmentation at ≥ 5 mg L(-1) and presence of micronuclei (MN) were detected for 20 mg L(-1). Also, cell cycle impairment was observed for doses as low as 0.05 mg L(-1) and 0.5 mg L(-1) (mostly G2 arrest). Our data show that for the low doses of Pb used, the OECD endpoints were not able to detect toxicity, while more sensitive endpoints (related with DNA damage and mitotic/interphase disorders) identified genotoxic and cytostatic effects. Furthermore, the nature of the genotoxic effect was dependent on the concentration. Finally, we recommend that MN test and the comet assay should be included as sensitive endpoints in (eco)toxicological assays.

  19. Problems in evaluating radiation dose via terrestrial and aquatic pathways.

    Science.gov (United States)

    Vaughan, B E; Soldat, J K; Schreckhise, R G; Watson, E C; McKenzie, D H

    1981-12-01

    This review is concerned with exposure risk and the environmental pathways models used for predictive assessment of radiation dose. Exposure factors, the adequacy of available data, and the model subcomponents are critically reviewed from the standpoint of absolute error propagation. Although the models are inherently capable of better absolute accuracy, a calculated dose is usually overestimated by from two to six orders of magnitude, in practice. The principal reason for so large an error lies in using "generic" concentration ratios in situations where site specific data are needed. Major opinion of the model makers suggests a number midway between these extremes, with only a small likelihood of ever underestimating the radiation dose. Detailed evaluations are made of source considerations influencing dose (i.e., physical and chemical status of released material); dispersal mechanisms (atmospheric, hydrologic and biotic vector transport); mobilization and uptake mechanisms (i.e., chemical and other factors affecting the biological availability of radioelements); and critical pathways. Examples are shown of confounding in food-chain pathways, due to uncritical application of concentration ratios. Current thoughts of replacing the critical pathways approach to calculating dose with comprehensive model calculations are also shown to be ill-advised, given present limitations in the comprehensive data base. The pathways models may also require improved parametrization, as they are not at present structured adequately to lend themselves to validation. The extremely wide errors associated with predicting exposure stand in striking contrast to the error range associated with the extrapolation of animal effects data to the human being.

  20. Multifocal Electroretinography after High Dose Chloroquine Therapy for Malaria

    Directory of Open Access Journals (Sweden)

    Aline Correa de Carvalho

    2013-01-01

    Full Text Available Purpose: To investigate changes in multifocal electroretinography (mfERG parameters associated with high dose chloroquine therapy for treatment of malaria in the Amazonia region of Brazil. Methods: Forty-eight subjects who had received chloroquine treatment for single or multiple malaria infections with a cumulative dose ranging from 1,050 to 27,000mg were included. The control group consisted of 37 healthy aged-matched subjects. Data was collected on amplitude and implicit time of the N1, P1 and N2 waves in the central macular hexagon (R1 and in five concentric rings at different retinal eccentricities (R2-R6. Results: No significant difference was observed in any mfERG parameter between chloroquine treated patients and control subjects. A comparison with previous data obtained from patients with rheumatologic disorders in the same region of Brazil who had received larger cumulative doses of chloroquine and had displayed mfERG changes, indicated that retinal toxicity seems to be dependent on cumulative dose. Conclusion: Lack of mfERG changes in the current study suggests that intensive high dose chloroquine therapy for treatment of malaria is not associated with retinal toxicity.

  1. Harderian Gland Tumorigenesis: Low-Dose and LET Response.

    Science.gov (United States)

    Chang, Polly Y; Cucinotta, Francis A; Bjornstad, Kathleen A; Bakke, James; Rosen, Chris J; Du, Nicholas; Fairchild, David G; Cacao, Eliedonna; Blakely, Eleanor A

    2016-05-01

    Increased cancer risk remains a primary concern for travel into deep space and may preclude manned missions to Mars due to large uncertainties that currently exist in estimating cancer risk from the spectrum of radiations found in space with the very limited available human epidemiological radiation-induced cancer data. Existing data on human risk of cancer from X-ray and gamma-ray exposure must be scaled to the many types and fluences of radiations found in space using radiation quality factors and dose-rate modification factors, and assuming linearity of response since the shapes of the dose responses at low doses below 100 mSv are unknown. The goal of this work was to reduce uncertainties in the relative biological effect (RBE) and linear energy transfer (LET) relationship for space-relevant doses of charged-particle radiation-induced carcinogenesis. The historical data from the studies of Fry et al. and Alpen et al. for Harderian gland (HG) tumors in the female CB6F1 strain of mouse represent the most complete set of experimental observations, including dose dependence, available on a specific radiation-induced tumor in an experimental animal using heavy ion beams that are found in the cosmic radiation spectrum. However, these data lack complete information on low-dose responses below 0.1 Gy, and for chronic low-dose-rate exposures, and there are gaps in the LET region between 25 and 190 keV/μm. In this study, we used the historical HG tumorigenesis data as reference, and obtained HG tumor data for 260 MeV/u silicon (LET ∼70 keV/μm) and 1,000 MeV/u titanium (LET ∼100 keV/μm) to fill existing gaps of data in this LET range to improve our understanding of the dose-response curve at low doses, to test for deviations from linearity and to provide RBE estimates. Animals were also exposed to five daily fractions of 0.026 or 0.052 Gy of 1,000 MeV/u titanium ions to simulate chronic exposure, and HG tumorigenesis from this fractionated study were compared to the

  2. Multiple anatomy optimization of accumulated dose

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, W. Tyler, E-mail: watkinswt@virginia.edu; Siebers, Jeffrey V. [Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia 22908 and Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Moore, Joseph A. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland 21231 and Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Gordon, James [Henry Ford Health System, Detroit, Michigan 48202 and Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Hugo, Geoffrey D. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2014-11-01

    Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dose variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated.

  3. Hanford Environmental Dose Reconstruction Project. Monthly report

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M.; McMakin, A.H. [comps.

    1992-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates.

  4. Dosimetric systems of high dose, dose rate and dose uniformity in food and medical products; Sistemas dosimetricos de altas dosis, tasa de dosis y uniformidad de dosis en alimentos y producto medico

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, J.; Vivanco, M.; Castro, E., E-mail: jvargas@ipen.gob.pe [Instituto Peruano de Energia Nuclear, Av. Canada 1470, San Borja, Lima (Peru)

    2014-08-15

    In the Instituto Peruano de Energia Nuclear (IPEN) we use the chemical dosimetry Astm-E-1026 Fricke as a standard dosimetric system of reference and different routine dosimetric systems of high doses, according to the applied doses to obtain the desired effects in the treated products and the doses range determined for each type of dosimeter. Fricke dosimetry is a chemical dosimeter in aqueous solution indicating the absorbed dose by means an increase in absorbance at a specific wavelength. A calibrated spectrophotometer with controlled temperature is used to measure absorbance. The adsorbed dose range should cover from 20 to 400 Gy, the Fricke solution is extremely sensitive to organic impurities, to traces of metal ions, in preparing chemical products of reactive grade must be used and the water purity is very important. Using the referential standard dosimetric system Fricke, was determined to March 5, 2013, using the referential standard dosimetric system Astm-1026 Fricke, were irradiated in triplicate Fricke dosimeters, to 5 irradiation times (20; 30; 40; 50 and 60 seconds) and by linear regression, the dose rate of 5.400648 kGy /h was determined in the central point of the irradiation chamber (irradiator Gamma cell 220 Excel), applying the decay formula, was compared with the obtained results by manufacturers by means the same dosimetric system in the year of its manufacture, being this to the date 5.44691 kGy /h, with an error rate of 0.85. After considering that the dosimetric solution responds to the results, we proceeded to the irradiation of a sample of 200 g of cereal instant food, 2 dosimeters were placed at the lateral ends of the central position to maximum dose and 2 dosimeters in upper and lower ends as minimum dose, they were applied same irradiation times; for statistical analysis, the maximum dose rate was 6.1006 kGy /h and the minimum dose rate of 5.2185 kGy /h; with a dose uniformity of 1.16. In medical material of micro pulverized bone for

  5. Occupational eye dose in interventional cardiology procedures.

    Science.gov (United States)

    Haga, Yoshihiro; Chida, Koichi; Kaga, Yuji; Sota, Masahiro; Meguro, Taiichiro; Zuguchi, Masayuki

    2017-04-03

    It is important to measure the radiation dose [3-mm dose equivalent, Hp(3)] in the eye. This study was to determine the current occupational radiation eye dose of staff conducting interventional cardiology procedures, using a novel direct eye dosimeter. We measured the occupational eye dose [Hp(3)] in physicians and nurses in a catheterization laboratory for 6-months. The eye doses [Hp(3)] of 12 physicians (9 with Pb glasses, 3 without), and 11 nurses were recorded using a novel direct eye dosimeter, the DOSIRIS(TM). We placed dosimeters above and under the glasses. We also estimated the eye dose [0.07-mm dose equivalent] using a neck personal dosimeter. The eye doses among interventional staff ranked in the following order: physicians without Pb glasses > physicians with Pb glasses > nurses. The shielding effect of the glasses (0.07-mm Pb) in a clinical setting was approximately 60%. In physicians who do not wear Pb glasses, the eye dose may exceed the new regulatory limit for IR staff. We found good correlations between the neck dosimeter dose and eye dosimeter dose (inside or outside glasses, R(2) = 0.93 and R(2) = 0.86, respectively) in physicians. We recommend that interventional physicians use an eye dosimeter for correct evaluation of the lens dose.

  6. Chemical Dosing and First-Order Kinetics

    Science.gov (United States)

    Hladky, Paul W.

    2011-01-01

    College students encounter a variety of first-order phenomena in their mathematics and science courses. Introductory chemistry textbooks that discuss first-order processes, usually in conjunction with chemical kinetics or radioactive decay, stop at single, discrete dose events. Although single-dose situations are important, multiple-dose events,…

  7. Failure-probability driven dose painting

    DEFF Research Database (Denmark)

    Vogelius, Ivan R; Håkansson, Katrin; Due, Anne K;

    2013-01-01

    To demonstrate a data-driven dose-painting strategy based on the spatial distribution of recurrences in previously treated patients. The result is a quantitative way to define a dose prescription function, optimizing the predicted local control at constant treatment intensity. A dose planning stu...

  8. A dose monitoring system for dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chena; Lee, Sam Sun; Kim, Jo Eun; Huh, Kyung Hoe; Yi, Woo Jin; Heo, Min Suk; Choi, Soon Chul [Dept. of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Symkhampha, Khanthaly [Dept. of Oral and Maxillofacial Radiology, Department of Basic Science, Faculty of Dentistry, University of Health Sciences, Vientiane (Lao People' s Democratic Republic); Lee, Woo Jin [Dept. of Interdisciplinary Program in Radiation, Applied Life Sciences Major, College of Medicine, BK21, and Dental Research Institute, Seoul National University, Seoul (Korea, Republic of); Yeom, Heon Young [School of Computer Science Engineering, Seoul National University, Seoul (Korea, Republic of)

    2016-06-15

    The current study investigates the feasibility of a platform for a nationwide dose monitoring system for dental radiography. The essential elements for an unerring system are also assessed. An intraoral radiographic machine with 14 X-ray generators and five sensors, 45 panoramic radiographic machines, and 23 cone-beam computed tomography (CBCT) models used in Korean dental clinics were surveyed to investigate the type of dose report. A main server for storing the dose data from each radiographic machine was prepared. The dose report transfer pathways from the radiographic machine to the main sever were constructed. An effective dose calculation method was created based on the machine specifications and the exposure parameters of three intraoral radiographic machines, five panoramic radiographic machines, and four CBCTs. A viewing system was developed for both dentists and patients to view the calculated effective dose. Each procedure and the main server were integrated into one system. The dose data from each type of radiographic machine was successfully transferred to the main server and converted into an effective dose. The effective dose stored in the main server is automatically connected to a viewing program for dentist and patient access. A patient radiation dose monitoring system is feasible for dental clinics. Future research in cooperation with clinicians, industry, and radiologists is needed to ensure format convertibility for an efficient dose monitoring system to monitor unexpected radiation dose.

  9. Optimised low-dose multidetector CT protocol for children with cranial deformity

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, Jose Luis [Complejo Hospitalario Universitario de Vigo, Department of Radiology, Vigo, Pontevedra (Spain); Pombar, Miguel Angel [Complejo Hospitalario Universitario de Santiago, Department of Radiophysics, Santiago de Compostela, La Coruna (Spain); Pumar, Jose Manuel [Complejo Hospitalario Universitario de Santiago, Department of Radiology, Santiago de Compostela, La Coruna (Spain); Campo, Victor Miguel del [Complejo Hospitalario Universitario de Vigo, Department of Public Health, Vigo, Pontevedra (Spain)

    2013-08-15

    To present an optimised low-dose multidetector computed tomography (MDCT) protocol for the study of children with cranial deformity. Ninety-one consecutive MDCT studies were performed in 80 children. Studies were performed with either our standard head CT protocol (group 1, n = 20) or a low-dose cranial deformity protocol (groups 2 and 3). Group 2 (n = 38), initial, and group 3 (n = 33), final and more optimised. All studies were performed in the same 64-MDCT equipment. Cranial deformity protocol was gradationally optimised decreasing kVp, limiting mA range, using automatic exposure control (AEC) and increasing the noise index (NI). Image quality was assessed. Dose indicators such us CT dose index volume (CTDIvol), dose-length product (DLP) and effective dose (E) were used. The optimised low-dose protocol reached the following values: 80 kVp, mA range: 50-150 and NI = 23. We achieved a maximum dose reduction of 10-22 times in the 1- to 12-month-old cranium in regard to the 2004 European guidelines for MDCT. A low-dose MDCT protocol that may be used as the first diagnostic imaging option in clinically selected patients with skull abnormalities. (orig.)

  10. Evaluation of dose-volume metrics for microbeam radiation therapy dose distributions in head phantoms of various sizes using Monte Carlo simulations

    Science.gov (United States)

    Anderson, Danielle; Siegbahn, E. Albert; Fallone, B. Gino; Serduc, Raphael; Warkentin, Brad

    2012-05-01

    This work evaluates four dose-volume metrics applied to microbeam radiation therapy (MRT) using simulated dosimetric data as input. We seek to improve upon the most frequently used MRT metric, the peak-to-valley dose ratio (PVDR), by analyzing MRT dose distributions from a more volumetric perspective. Monte Carlo simulations were used to calculate dose distributions in three cubic head phantoms: a 2 cm mouse head, an 8 cm cat head and a 16 cm dog head. The dose distribution was calculated for a 4 × 4 mm2 microbeam array in each phantom, as well as a 16 × 16 mm2 array in the 8 cm cat head, and a 32 × 32 mm2 array in the 16 cm dog head. Microbeam widths of 25, 50 and 75 µm and center-to-center spacings of 100, 200 and 400 µm were considered. The metrics calculated for each simulation were the conventional PVDR, the peak-to-mean valley dose ratio (PMVDR), the mean dose and the percentage volume below a threshold dose. The PVDR ranged between 3 and 230 for the 2 cm mouse phantom, and between 2 and 186 for the 16 cm dog phantom depending on geometry. The corresponding ranges for the PMVDR were much smaller, being 2-49 (mouse) and 2-46 (dog), and showed a slightly weaker dependence on phantom size and array size. The ratio of the PMVDR to the PVDR varied from 0.21 to 0.79 for the different collimation configurations, indicating a difference between the geometric dependence on outcome that would be predicted by these two metrics. For unidirectional irradiation, the mean lesion dose was 102%, 79% and 42% of the mean skin dose for the 2 cm mouse, 8 cm cat and 16 cm dog head phantoms, respectively. However, the mean lesion dose recovered to 83% of the mean skin dose in the 16 cm dog phantom in intersecting cross-firing regions. The percentage volume below a 10% dose threshold was highly dependent on geometry, with ranges for the different collimation configurations of 2-87% and 33-96% for the 2 cm mouse and 16 cm dog heads, respectively. The results of this study

  11. Short-range communication system

    Science.gov (United States)

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2012-01-01

    A short-range communication system includes an antenna, a transmitter, and a receiver. The antenna is an electrical conductor formed as a planar coil with rings thereof being uniformly spaced. The transmitter is spaced apart from the plane of the coil by a gap. An amplitude-modulated and asynchronous signal indicative of a data stream of known peak amplitude is transmitted into the gap. The receiver detects the coil's resonance and decodes same to recover the data stream.

  12. Convolution-based estimation of organ dose in tube current modulated CT

    Science.gov (United States)

    Tian, Xiaoyu; Segars, W. Paul; Dixon, Robert L.; Samei, Ehsan

    2016-05-01

    Estimating organ dose for clinical patients requires accurate modeling of the patient anatomy and the dose field of the CT exam. The modeling of patient anatomy can be achieved using a library of representative computational phantoms (Samei et al 2014 Pediatr. Radiol. 44 460-7). The modeling of the dose field can be challenging for CT exams performed with a tube current modulation (TCM) technique. The purpose of this work was to effectively model the dose field for TCM exams using a convolution-based method. A framework was further proposed for prospective and retrospective organ dose estimation in clinical practice. The study included 60 adult patients (age range: 18-70 years, weight range: 60-180 kg). Patient-specific computational phantoms were generated based on patient CT image datasets. A previously validated Monte Carlo simulation program was used to model a clinical CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). A practical strategy was developed to achieve real-time organ dose estimation for a given clinical patient. CTDIvol-normalized organ dose coefficients ({{h}\\text{Organ}} ) under constant tube current were estimated and modeled as a function of patient size. Each clinical patient in the library was optimally matched to another computational phantom to obtain a representation of organ location/distribution. The patient organ distribution was convolved with a dose distribution profile to generate {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} values that quantified the regional dose field for each organ. The organ dose was estimated by multiplying {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} with the organ dose coefficients ({{h}\\text{Organ}} ). To validate the accuracy of this dose estimation technique, the organ dose of the original clinical patient was estimated using Monte Carlo program with TCM profiles explicitly modeled. The

  13. Polycarbonate-based benzo-δ-sultam films for high-dose dosimetry in radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Feizi, Shazad [University of Tehran, Tehran (India). School of Chemistry; Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Application Research School; Ziaie, Farhood [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Application Research School; Ghandi, Mehdi [University of Tehran, Tehran (India). School of Chemistry

    2015-05-01

    In this work characteristics of the polycarbonate films with 20 μm in thickness containing different weight percentage of Benzo-δ-sultam were studied for use as a high dose dosimetry system in radiation processing facilities. The sensitivity of the dosimeters and the linearity of dose-response curves were investigated under {sup 60}Co γ-rays in a dose range of 0-100 kGy, and obtained results were compared with the commercial CTA and FWT film dosimeters. The results show that the absorbance at 348 nm depends linearly on the dose in the investigated dose range. The effects of pre-irradiation (shelf-life) and post-irradiation storage in dark and in indirect sunlight are also discussed. The results show that the dosimeters characteristics are stable within 1% at 25 C, 3 months after the irradiation.

  14. Phase I study of continuous weekly dosing of dimethylamino benzoylphenylurea (BPU) in patients with solid tumours.

    Science.gov (United States)

    Messersmith, Wells A; Rudek, Michelle A; Baker, Sharyn D; Zhao, Ming; Collins, Connie; Colevas, A Dimitrios; Donehower, Ross C; Carducci, Michael A; Wolff, Antonio C

    2007-01-01

    A phase I study of dimethylamino benzoylphenylurea (BPU), a tubulin inhibitor, was performed using a weekly continuous schedule. Patients with refractory solid tumours received oral BPU once weekly without interruption at doses ranging from 5 to 320mg using an accelerated titration design. Nineteen subjects received 54 cycles of BPU. Early pharmacokinetic findings of decreased clearance with increasing dose and plasma accumulation led to the expansion of the 320mg dose level. Two subjects then developed late haematologic dose-limiting toxicities (DLTs) that were associated with the highest plasma exposure to BPU and metabolites. Study enrollment resumed at dose 150mg with real-time pharmacokinetic monitoring. Seven additional subjects (6 evaluable) were treated for a median of 2 cycles (range 1.5-4) without further myelotoxicity. A long half-life and accumulation of BPU and active metabolites were observed, recommending against a continuous administration. Weekly oral BPU therapy should be further tested using an interrupted schedule.

  15. Novel route for rapid sol-gel synthesis of hydroxyapatite, avoiding ageing and using fast drying with a 50-fold to 200-fold reduction in process time.

    Science.gov (United States)

    Ben-Arfa, Basam A E; Salvado, Isabel M Miranda; Ferreira, José M F; Pullar, Robert C

    2017-01-01

    We have developed an innovative, rapid sol-gel method of producing hydroxyapatite nanopowders that avoids the conventional lengthy ageing and drying processes (over a week), being 200 times quicker in comparison to conventional aqueous sol-gel preparation, and 50 times quicker than ethanol based sol-gel synthesis. Two different sets of experimental conditions, in terms of pH value (5.5 and 7.5), synthesis temperature (45 and 90°C), drying temperature (60 and 80°C) and calcination temperature (400 and 700°C) were explored. The products were characterised by X-ray diffraction (XRD) Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and specific surface area (SSA) measurements. Pure hydroxyapatite (Ca10(PO4)6(OH)2, HAp) was obtained for the powders synthesised at pH7.5 and calcined at 400°C, while biphasic mixtures of HAp/β-tricalcium phosphate (β-Ca3(PO4)2, TCP) were produced at pH5.5 and (pH7.5 at elevated temperature). The novel rapid drying was up to 200 times faster than conventional drying, only needing 1h with no prior ageing step, and favoured the formation of smaller/finer nanopowders, while producing pure HAp or phase mixtures virtually identical to those obtained from the slow conventional drying method, despite the absence of a slow ageing process. The products of this novel rapid process were actually shown to have smaller crystallite sizes and larger SSA, which should result in increased bioactivity.

  16. Dynamic Range Majority Data Structures

    CERN Document Server

    He, Meng; Nicholson, Patrick K

    2011-01-01

    Given a set $P$ of coloured points on the real line, we study the problem of answering range $\\alpha$-majority (or "heavy hitter") queries on $P$. More specifically, for a query range $Q$, we want to return each colour that is assigned to more than an $\\alpha$-fraction of the points contained in $Q$. We present a new data structure for answering range $\\alpha$-majority queries on a dynamic set of points, where $\\alpha \\in (0,1)$. Our data structure uses O(n) space, supports queries in $O((\\lg n) / \\alpha)$ time, and updates in $O((\\lg n) / \\alpha)$ amortized time. If the coordinates of the points are integers, then the query time can be improved to $O(\\lg n / (\\alpha \\lg \\lg n) + (\\lg(1/\\alpha))/\\alpha))$. For constant values of $\\alpha$, this improved query time matches an existing lower bound, for any data structure with polylogarithmic update time. We also generalize our data structure to handle sets of points in d-dimensions, for $d \\ge 2$, as well as dynamic arrays, in which each entry is a colour.

  17. Dynamic range majority data structures

    DEFF Research Database (Denmark)

    Elmasry, Amr Ahmed Abd Elmoneim; He, Meng; Munro, J. Ian

    2011-01-01

    data structure for answering range α-majority queries on a dynamic set of points, where α ε (0,1). Our data structure uses O(n) space, supports queries in O((lg n)/α) time, and updates in O((lg n)/α) amortized time. If the coordinates of the points are integers, then the query time can be improved to O......Given a set P of n coloured points on the real line, we study the problem of answering range α-majority (or "heavy hitter") queries on P. More specifically, for a query range Q, we want to return each colour that is assigned to more than an α-fraction of the points contained in Q. We present a new......((lg n/(α lglg n)). For constant values of α, this improved query time matches an existing lower bound, for any data structure with polylogarithmic update time. We also generalize our data structure to handle sets of points in d-dimensions, for d ≥ 2, as well as dynamic arrays, in which each entry...

  18. Irradiation dose and temperature dependence of fracture toughness in high dose HT9 steel from the fuel duct of FFTF

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Thak Sang; Toloczko, Mychailo B.; Saleh, Tarik A.; Maloy, Stuart A.

    2013-01-14

    To expand the knowledge base for fast reactor core materials, fracture toughness has been evaluated for high dose HT9 steel using miniature disk compact tension (DCT) specimens. The HT9 steel DCT specimens were machined from the ACO-3 fuel duct of the Fast Flux Test Facility (FFTF), which achieved high doses in the range of 3–148 dpa at 378–504 C. The static fracture resistance (J-R) tests have been performed in a servohydraulic testing machine in vacuum at selected temperatures including room temperature, 200 C, and each irradiation temperature. Brittle fracture with a low toughness less than 50 MPa pm occurred in room temperature tests when irradiation temperature was below 400 C, while ductile fracture with stable crack growth was observed when irradiation temperature was higher. No fracture toughness less than 100 MPa pm was measured when the irradiation temperature was above 430 C. It was shown that the influence of irradiation temperature was dominant in fracture toughness while the irradiation dose has only limited influence over the wide dose range 3–148 dpa. A slow decrease of fracture toughness with test temperature above room temperature was observed for the nonirradiated and high temperature (>430 *C) irradiation cases, which indicates that the ductile–brittle transition temperatures (DBTTs) in those conditions are lower than room temperature. A comparison with the collection of existing data confirmed the dominance of irradiation temperature in the fracture toughness of HT9 steels.

  19. Dependence of pentobarbital kinetics upon the dose of the drug and its pharmacodynamic effects.

    Science.gov (United States)

    Kozlowski, K H; Szaykowski, A; Danysz, A

    1977-01-01

    Pentobarbital (PB), at dose range of 20--50 mg/kg, displays in rabbits non-linear, dose-dependent kinetics. Pharmacokinetics parameters of drug elimination depend largely upon the dose, while the distribution phase is dose-independent. The rate of disappearance of PB from the central compartment (plasma) decreases with the increase of the dose. The analysis of pharmacodynamic parameters has shown that this dose-dependent retardation of PB elimination is probably caused by an impairment of metabolic processes, resulting from disturbance of the circulatory system. A close correlation has been found between the hypotensive effect of PB and the elimination constant, k13, and also between the hypotensive effect and beta.Vd(extrap), a coefficient proportional to the rate of metabolism of PB [23, 29]. The results indicate the necessity of considering the changes in the functional state of the organism, related to the action of a drug, in pharmacokinetic studies.

  20. Clinical and economic consequences of pharmacogenetic-guided dosing of warfarin.

    Science.gov (United States)

    Verhoef, Talitha I; Schalekamp, Tom; Redekop, William K; de Boer, Anthonius; Maitland-van der Zee, Anke-Hilse

    2010-08-01

    Patients using warfarin for oral anticoagulant therapy need to be frequently monitored because of warfarin's narrow therapeutic range and the large variation in dose requirements among patients. Patients receiving the wrong dose have an increased risk of bleeding or thromboembolic events. The required dose is influenced by environmental factors, such as gender, age, diet and concomitant medication, as well as genetic factors. Pharmacogenetic testing prior to warfarin initiation might improve dosing accuracy and, therefore, safety and efficacy of warfarin treatment. Meckley et al. studied the clinical consequences and costs of genotyping before warfarin treatment. The results of their study suggest that pharmacogenetic-guided dosing of patients initiating warfarin could improve health (quality-adjusted life-years) but at a high cost per quality-adjusted life-year gained. Owing to the inevitable assumptions that have to be made in all cost-effectiveness models, great uncertainty remains regarding the cost-effectiveness of pharmacogenetic-guided warfarin dosing.

  1. Doxylamine pharmacokinetics following single dose oral administration in children ages 2-17 years.

    Science.gov (United States)

    Balan, Guhan; Thompson, Gary A; Gibb, Roger; Li, Lijuan; Hull, David; Seeck, Molly

    2013-11-01

    To characterize doxylamine pharmacokinetics in children. This study was conducted in 41 subjects, ages 2-17 years. Doxylamine succinate doses based on age/weight ranged from 3.125 to 12.5 mg. A single oral dose was administered with 2 to 4 oz. of water or decaffeinated beverages ∼2 hours after a light breakfast. Plasma samples were obtained before and for 72 hours after dosing and analyzed for doxylamine using HPLC MS/MS. Pharmacokinetic parameters were estimated using non-compartmental methods and relationships with age were assessed using linear regression. Over the fourfold dose range, Cmax was similar while AUC increased only 60%, although not statistically significant (P-value = 0.0517). As expected due to increasing body size, CLo and Vz /F increased with age. Due to a similar increase with age for Clo and Vz /F, no age-related differences in t1/2,z were observed (∼16 hours). Allometric scaling indicated no maturation related changes in CLo ; although Vz /F remained age-dependent, the predicted range decreased ∼70%. Overall, the single doses were well tolerated. Somnolence was the most common reported AE with no apparent differences in incidence noted with age. An age/weight dosing nomogram utilizing a fourfold range of doses achieves similar Cmax , whereas AUC increases only 60%.

  2. Combined scintillation detector for gamma dose rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Viererbl, L.; Novakova, O.; Jursova, L. (Tesla, Premysleni (Czechoslovakia). Vyzkumny Ustav Pristroju Jaderne Techniky)

    1990-01-01

    The specifications are described of a newly developed scintillation detector, essentially consisting of a plastic scintillator completed with inorganic scintillators ZnS(Ag) and NaI(Tl). The gamma dose rate is derived from the photomultiplier anode current. The composition and sizes of the scintillators and the capsule are selected so as to minimise the energy dependence errors and directional dependence errors of the detector response over a wide range of energies and/or angles. (author).

  3. Dosimetric impact of Acuros XB dose calculation algorithm in prostate cancer treatment using RapidArc

    Directory of Open Access Journals (Sweden)

    Suresh Rana

    2013-01-01

    Full Text Available Purpose: The purpose of this study is to assess the dosimetric impact of Acuros XB dose calculation algorithm (AXB, in comparisons with Anisotropic Analytical Algorithm (AAA calculations in prostate cancer treatment using RapidArc. Materials and Methods: A computed tomography (CT dataset of low-risk prostate cancer patients treated at Arizona Center for Cancer Care was selected and contoured for prostate, seminal vesicles, and organs at risk (OARs(rectum, bladder, and femur heads. Plans were created for 6 MV photon beam using RapidArc technique in Eclipse treatment planning system. Dose calculations were performed with AAA and AXB for same number of monitor units and identical beam setup. Mean and maximum doses to planning target volume (PTV and OARs were analyzed. Additionally, minimum dose to PTV and V100 was analyzed. Finally, point-dose difference between planar dose distributions of AAA and AXB plans was investigated. Results: The highest dose difference was up to 0.43% (range: 0.05−0.43%, P> 0.05 for PTV and 1.98% (range: 0.22−1.98%, P> 0.05 for OARs with AAA predicting higher dose than AXB. The V100 values of AAA plans (95 % and AXB plans (range: 93.1−97.9 % had an average difference of 0.89±1.47% with no statistical significance (P = 0.25411. The point-dose difference analysis showed that AAA predicted higher dose than AXB at significantly higher percentage (in average 94.15 of total evaluated points. Conclusion: The dosimetric results of this study suggest that the AXB can perform the dose computation comparable to AAA in RapidArc prostate cancer treatment plans that are generated by a partial single-arc technique.

  4. SU-E-T-577: Obliquity Factor and Surface Dose in Proton Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Das, I; Andersen, A [Indiana University- School of Medicine, Indianapolis, IN (United States); Coutinho, L [Procure Proton Therapy Center, Somerset, NJ (United States)

    2015-06-15

    Purpose: The advantage of lower skin dose in proton beam may be diminished creating radiation related sequalae usually seen with photon and electron beams. This study evaluates the surface dose as a complex function of beam parameters but more importantly the effect of beam angle. Methods: Surface dose in proton beam depends on the beam energy, source to surface distance, the air gap between snout and surface, field size, material thickness in front of surface, atomic number of the medium, beam angle and type of nozzle (ie double scattering, (DS), uniform scanning (US) or pencil beam scanning (PBS). Obliquity factor (OF) is defined as ratio of surface dose in 0° to beam angle Θ. Measurements were made in water phantom at various beam angles using very small microdiamond that has shown favorable beam characteristics for high, medium and low proton energy. Depth dose measurements were performed in the central axis of the beam in each respective gantry angle. Results: It is observed that surface dose is energy dependent but more predominantly on the SOBP. It is found that as SSD increases, surface dose decreases. In general, SSD, and air gap has limited impact in clinical proton range. High energy has higher surface dose and so the beam angle. The OF rises with beam angle. Compared to OF of 1.0 at 0° beam angle, the value is 1.5, 1.6, 1,7 for small, medium and large range respectively for 60 degree angle. Conclusion: It is advised that just like range and SOBP, surface dose should be clearly understood and a method to reduce the surface dose should be employed. Obliquity factor is a critical parameter that should be accounted in proton beam therapy and a perpendicular beam should be used to reduce surface dose.

  5. Supplementary comparison CCRI(I)-S2 of standards for absorbed dose to water in {sup 60}Co gamma radiation at radiation processing dose levels

    Energy Technology Data Exchange (ETDEWEB)

    Burns, D.T.; Allisy-Roberts, P.J. [Bureau International des Poids et Mesures, Pavillon de Breteuil, F-92312 Sevres cedex (France); Desrosiers, M.F. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Sharpe, P.H.G. [National Physical Laboratory, Teddington, Middlesex (United Kingdom); Pimpinella, M. [Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, Rome (Italy); Lourenco, V. [CEA Saclay, LIST, Laboratoire National Henri Becquerel, Gif-sur-Yvette (France); Zhang, Y.L. [National Institute of Metrology, Beijing (China); Miller, A. [Riso High Dose reference Laboratory, Riso DTU, Roskilde (Denmark); Generalova, V. [Institute for Physical-Technical and Radiotechnical Measurements, Moscow (Russian Federation); Sochor, V. [Czech Metrology Institute, Brno (Czech Republic)

    2011-06-15

    Eight national standards for absorbed dose to water in {sup 60}Co gamma radiation at the dose levels used in radiation processing have been compared over the range from 1 kGy to 30 kGy using the alanine dosimeters of the NIST and the NPL as the transfer dosimeters. The comparison was organized by the Bureau International des Poids et Mesures, who also participated at the lowest dose level using their radiotherapy-level standard for the same quantity. The national standards are in general agreement within the standard uncertainties, which are in the range from 1 to 2 parts in 10{sup 2}. Evidence of a dose rate effect is presented and discussed briefly. (authors)

  6. A Novel Simple Phantom for Verifying the Dose of Radiation Therapy

    Directory of Open Access Journals (Sweden)

    J. H. Lee

    2015-01-01

    Full Text Available A standard protocol of dosimetric measurements is used by the organizations responsible for verifying that the doses delivered in radiation-therapy institutions are within authorized limits. This study evaluated a self-designed simple auditing phantom for use in verifying the dose of radiation therapy; the phantom design, dose audit system, and clinical tests are described. Thermoluminescent dosimeters (TLDs were used as postal dosimeters, and mailable phantoms were produced for use in postal audits. Correction factors are important for converting TLD readout values from phantoms into the absorbed dose in water. The phantom scatter correction factor was used to quantify the difference in the scattered dose between a solid water phantom and homemade phantoms; its value ranged from 1.084 to 1.031. The energy-dependence correction factor was used to compare the TLD readout of the unit dose irradiated by audit beam energies with 60Co in the solid water phantom; its value was 0.99 to 1.01. The setup-condition factor was used to correct for differences in dose-output calibration conditions. Clinical tests of the device calibrating the dose output revealed that the dose deviation was within 3%. Therefore, our homemade phantoms and dosimetric system can be applied for accurately verifying the doses applied in radiation-therapy institutions.

  7. Effects of high dose rate gamma radiation on survival and reproduction of Biomphalaria glabrata

    Energy Technology Data Exchange (ETDEWEB)

    Cantinha, Rebeca S.; Nakano, Eliana [Instituto Butantan, Sao Paulo, SP (Brazil). Lab. de Parasitologia], e-mail: rebecanuclear@gmail.com, e-mail: eliananakano@butantan.gov.br; Borrely, Sueli I. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes], e-mail: sborrely@ipen.br; Amaral, Ademir; Melo, Ana M.M.A. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia (GERAR)], e-mail: amaral@ufpe.br; Silva, Luanna R.S. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia. Lab. de Radiobiologia], e-mail: amdemelo@hotmail.com, e-mail: luannaribeiro_lua@hotmail.com

    2009-07-01

    Ionizing radiations are known as mutagenic agents, causing lethality and infertility. This characteristic has motivated its application on animal biological control. In this context, the freshwater snail Biomphalaria glabrata can be considered an excellent experimental model to study effects of ionizing radiations on lethality and reproduction. This work was designed to evaluate effects of {sup 60}Co gamma radiation at high dose rate (10.04 kGy/h) on B. glabrata. For this purpose, adult snails were selected and exposed to doses ranging from 20 to 100 Gy, with 10 Gy intervals; one group was kept as control. There was not effect of dose rate in the lethality of gamma radiation; the value of 64,3 Gy of LD{sub 50} obtained in our study was similar to that obtained by other authors with low dose rates. Nevertheless, our data suggest that there was a dose rate effect in the reproduction. On all dose levels, radiation improved the production of embryos for all exposed individuals. However, viability indexes were below 6% and, even 65 days after irradiation, fertility was not recovered. These results are not in agreement with other studies using low dose rates. Lethality was obtained in all groups irradiated, and the highest doses presented percentiles of dead animals above 50%. The results demonstrated that doses of 20 and 30 Gy were ideal for population control of B. glabrata. Further studies are needed; nevertheless, this research evidenced great potential of high dose rate gamma radiation on B. glabrata reproductive control. (author)

  8. SU-E-T-481: In Vivo and Post Mortem Animal Irradiation: Measured Vs. Calculated Doses

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, P [Univ New Mexico Radiology Dept., Albuquerque, NM (United States); Heintz, B [Texas Oncology, PA, Southlake, TX (United States); Sandoval, D [University of New Mexico, Albuquerque, NM (United States); Weber, W; Melo, D; Guilmette, R [Lovelace Respiratory Research Institute, Albuquerque, NM (United States)

    2015-06-15

    Purpose: Computerized radiation therapy treatment planning is performed on almost all patients today. However it is seldom used for laboratory irradiations. The first objective is to assess whether modern radiation therapy treatment planning (RTP) systems accurately predict the subject dose by comparing in vivo and decedent dose measurements to calculated doses. The other objective is determine the importance of using a RTP system for laboratory irradiations. Methods: 5 MOSFET radiation dosimeters were placed enterically in each subject (2 sedated Rhesus Macaques) to measure the absorbed dose at 5 levels (carina, lung, heart, liver and rectum) during whole body irradiation. The subjects were treated with large opposed lateral fields and extended distances to cover the entire subject using a Varian 600C linac. CT simulation was performed ante-mortem (AM) and post-mortem (PM). To compare AM and PM doses, calculation points were placed at the location of each dosimeter in the treatment plan. The measured results were compared to the results using Varian Eclipse and Prowess Panther RTP systems. Results: The Varian and Prowess treatment planning system agreed to within in +1.5% for both subjects. However there were significant differences between the measured and calculated doses. For both animals the calculated central axis dose was higher than prescribed by 3–5%. This was caused in part by inaccurate measurement of animal thickness at the time of irradiation. For one subject the doses ranged from 4% to 7% high and the other subject the doses ranged 7% to 14% high when compared to the RTP doses. Conclusions: Our results suggest that using proper CT RTP system can more accurately deliver the prescribed dose to laboratory subjects. It also shows that there is significant dose variation in such subjects when inhomogeneities are not considered in the planning process.

  9. The Dose Makes The Cooperation

    CERN Document Server

    Cetin, Uzay

    2016-01-01

    Explaining cooperation is one of the greatest challenges for basic scientific research. We proposed an agent-based model to study co-evolution of memory and cooperation. In our model, reciprocal agents with limited memory size play Prisoner's Dilemma Game iteratively. The characteristic of the environment, whether it is threatening or not, is embedded in the payoff matrix. Our findings are as follows. (i) Memory plays a critical role in the protection of cooperation. (ii) In the absence of threat, subsequent generations loose their memory and are consequently invaded by defectors. (iii) In contrast, the presence of an appropriate level of threat triggers the emergence of a self-protection mechanism for cooperation within subsequent generations. On the evolutionary level, memory size acts like an immune response of the population against aggressive defection. (iv) Even more extreme threat results again in defection. Our findings boil down to the following: The dose of the threat makes the cooperation.

  10. Thoracic x-ray in pediatrics: entrance doses evaluation in the skin of the patients; Raios X de torax em pediatria: avaliacao de doses de entrada na pele dos pacientes

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Eliane; Borges, Jose C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear; Mota, Helvecio C.; Briquet, Claudia [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil); Rosa, Luis Antonio [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)

    1998-07-01

    The doses received by children in diagnostic radiology are an important concern on radiological protection due to the potential risk involved, however there is few information about the doses involved in the pediatric exams. This work evaluates the entrance skin doses in children chest examination (ESD), using thermoluminescent dosimeters. The doses presented a range from 0,01 mGy to 0,67 mGy. It was observed that for some age groups the evaluated doses were above the values recommended by European Community. (author)

  11. Extended-range tiltable micromirror

    Science.gov (United States)

    Allen, James J.; Wiens, Gloria J.; Bronson, Jessica R.

    2009-05-05

    A tiltable micromirror device is disclosed in which a micromirror is suspended by a progressive linkage with an electrostatic actuator (e.g. a vertical comb actuator or a capacitive plate electrostatic actuator) being located beneath the micromirror. The progressive linkage includes a pair of torsion springs which are connected together to operate similar to a four-bar linkage with spring joints. The progressive linkage provides a non-linear spring constant which can allow the micromirror to be tilted at any angle within its range substantially free from any electrostatic instability or hysteretic behavior.

  12. The Dynamic Range of LZ

    OpenAIRE

    Yin, Jun

    2015-01-01

    The electronics of the LZ experiment, the 7-tonne dark matter detector to be installed at the Sanford Underground Research Facility (SURF), is designed to permit studies of physics where the energies deposited range from 1 keV of nuclear-recoil energy up to 3,000 keV of electron-recoil energy. The system is designed to provide a 70% efficiency for events that produce three photoelectrons in the photomultiplier tubes (PMTs). This corresponds approximately to the lowest energy threshold achieva...

  13. An end-to-end assessment of range uncertainty in proton therapy using animal tissues

    Science.gov (United States)

    Zheng, Yuanshui; Kang, Yixiu; Zeidan, Omar; Schreuder, Niek

    2016-11-01

    Accurate assessment of range uncertainty is critical in proton therapy. However, there is a lack of data and consensus on how to evaluate the appropriate amount of uncertainty. The purpose of this study is to quantify the range uncertainty in various treatment conditions in proton therapy, using transmission measurements through various animal tissues. Animal tissues, including a pig head, beef steak, and lamb leg, were used in this study. For each tissue, an end-to-end test closely imitating patient treatments was performed. This included CT scan simulation, treatment planning, image-guided alignment, and beam delivery. Radio-chromic films were placed at various depths in the distal dose falloff region to measure depth dose. Comparisons between measured and calculated doses were used to evaluate range differences. The dose difference at the distal falloff between measurement and calculation depends on tissue type and treatment conditions. The estimated range difference was up to 5, 6 and 4 mm for the pig head, beef steak, and lamb leg irradiation, respectively. Our study shows that the TPS was able to calculate proton range within about 1.5% plus 1.5 mm. Accurate assessment of range uncertainty in treatment planning would allow better optimization of proton beam treatment, thus fully achieving proton beams’ superior dose advantage over conventional photon-based radiation therapy.

  14. Relationship of dose rate and total dose to responses of continuously irradiated beagles

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, T E; Norris, W P; Tolle, D V; Seed, T M; Poole, C M; Lombard, L S; Doyle, D E

    1978-01-01

    Young-adult beagles were exposed continuously (22 hours/day) to /sup 60/Co ..gamma.. rays in a specially constructed facility. The exposure rates were either 5, 10, 17, or 35 R/day, and the exposures were terminated at either 600, 1400, 2000, or 4000 R. A total of 354 dogs were irradiated; 221 are still alive as long-term survivors, some after more than 2000 days. The data on survival of these dogs, coupled with data from similar preliminary experiments, allow an estimate of the LD/sub 50/ for ..gamma..-ray exposures given at a number of exposure rates. They also allow comparison of the relative importance of dose rate and total dose, and the interaction of these two variables, in the early and late effects after protracted irradiation. The LD/sub 50/ for the beagle increases from 258 rad delivered at 15 R/minute to approximately 3000 rad at 10 R/day. Over this entire range, the LD/sub 50/ is dependent upon hematopoietic damage. At 5 R/day and less, no meaningful LD/sub 50/ can be determined; there is nearly normal continued hematopoietic function, survival is prolonged, and the dogs manifest varied individual responses in other organ systems. Although the experiment is not complete, interim data allow several important conclusions. Terminated exposures, while not as effective as radiation continued until death, can produce myelogenous leukemia at the same exposure rate, 10 R/day. More importantly, at the same total accumulated dose, lower exposure rates are more damaging than higher rates on the basis of the rate and degree of hematological recovery that occurs after termination of irradiation. Thus, the rate of hematologic depression, the nadir of the depression, and the rate of recovery are dependent upon exposure rate; the latter is inversely related and the former two are directly related to exposure rate.

  15. Evaluation of average glandular dose in mammography services in 10 cities of Colombia; Avaliacao de dose glandular media em servicos de mamografia de 10 cidades de Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Alejo-Martinez, H.; Salazar-Hurtado, E.; Puerto-Jimenez, D. [Grupo de Prevencion Temprana Del Cancer, Instituto Nacional de Cancerologia, Bogota D.C. (Colombia)

    2016-07-01

    The objective of this study was to conduct an assessment of dose in 60 mammography services that have screening programs for breast cancer in 10 cities of Colombia. The third quartile of the average glandular dose was 2,29 mGy, range between 1,0 and 5,6 mGy, for the phantom equivalent to a standard breast. This study included mammography units with conventional and digital technology. (author)

  16. Fluence to Effective Dose and Effective Dose Equivalent Conversion Coefficients foe Photons from 50 KeV to 10 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A. [Istituto Nazionale di Fisica Nucleare, Milan (Italy); Pelliccioni, M. [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati; Pillon, M. [Associazione EUROATOM-ENEA sulla Fusione, Frascati. Rome (Italy)

    1996-07-01

    Effective dose equivalent and effective dose per unit photon fluence have been calculated by the FLUKA code for various geometrical conditions of irradiation of an anthropomorphic phantom placed in a vacuum. Calculations have been performed for monoenergetic photons of energy ranging from 50 keV to 10 GeV. The agreement with the results of other authors, when existing, is generally very satisfactory.

  17. Live Fire Range Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-08-01

    The Central Training Academy (CTA) is a DOE Headquarters Organization located in Albuquerque, New Mexico, with the mission to effectively and efficiently educate and train personnel involved in the protection of vital national security interests of DOE. The CTA Live Fire Range (LFR), where most of the firearms and tactical training occurs, is a complex separate from the main campus. The purpose of the proposed action is to expand the LFR to allow more options of implementing required training. The Department of Energy has prepared this Environmental Assessment (EA) for the proposed construction and operation of an expanded Live Fire Range Facility at the Central Training Academy in Albuquerque, New Mexico. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  18. Range Imaging without Moving Parts

    Science.gov (United States)

    Blair, J. Bryan; Scott, V. Stanley, III; Ramos-Izquierdo, Luis

    2008-01-01

    Range-imaging instruments of a type now under development are intended to generate the equivalent of three-dimensional images from measurements of the round-trip times of flight of laser pulses along known directions. These instruments could also provide information on characteristics of targets, including roughnesses and reflectivities of surfaces and optical densities of such semi-solid objects as trees and clouds. Unlike in prior range-imaging instruments based on times of flight along known directions, there would be no moving parts; aiming of the laser beams along the known directions would not be accomplished by mechanical scanning of mirrors, prisms, or other optical components. Instead, aiming would be accomplished by using solid-state devices to switch input and output beams along different fiber-optic paths. Because of the lack of moving parts, these instruments could be extraordinarily reliable, rugged, and long-lasting. An instrument of this type would include an optical transmitter that would send out a laser pulse along a chosen direction to a target. An optical receiver coaligned with the transmitter would measure the temporally varying intensity of laser light reflected from the target to determine the distance and surface characteristics of the target. The transmitter would be a combination of devices for generating precise directional laser illumination. It would include a pulsed laser, the output of which would be coupled into a fiber-optic cable with a fan-out and solid-state optical switches that would enable switching of the laser beam onto one or more optical fibers terminated at known locations in an array on a face at the focal plane of a telescope. The array would be imaged by the telescope onto the target space. The receiver optical system could share the aforementioned telescope with the transmitter or could include a separate telescope aimed in the same direction as that of the transmitting telescope. In either case, light reflected

  19. Influence of nuclear interactions in polyethylene range compensators for carbon-ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Nobuyuki, E-mail: nkanemat@nirs.go.jp; Koba, Yusuke; Ogata, Risa [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Himukai, Takeshi [Ion Beam Therapy Center, SAGA HIMAT Foundation, 415 Harakoga-machi, Tosu, Saga 841-0071 (Japan)

    2014-07-15

    Purpose: A recent study revealed that polyethylene (PE) would cause extra carbon-ion attenuation per range shift by 0.45%/cm due to compositional differences in nuclear interactions. The present study aims to assess the influence of PE range compensators on tumor dose in carbon-ion radiotherapy. Methods: Carbon-ion radiation was modeled to be composed of primary carbon ions and secondary particles, for each of which the dose and the relative biological effectiveness (RBE) were estimated at a tumor depth in the middle of spread-out Bragg peak. Assuming exponential behavior for attenuation and yield of these components with depth, the PE effect on dose was calculated for clinical carbon-ion beams and was partly tested by experiment. The two-component model was integrated into a treatment-planning system and the PE effect was estimated in two clinical cases. Results: The attenuation per range shift by PE was 0.1%–0.3%/cm in dose and 0.2%–0.4%/cm in RBE-weighted dose, depending on energy and range-modulation width. This translates into reduction of RBE-weighted dose by up to 3% in extreme cases. In the treatment-planning study, however, the effect on RBE-weighted dose to tumor was typically within 1% reduction. Conclusions: The extra attenuation of primary carbon ions in PE was partly compensated by increased secondary particles for tumor dose. In practical situations, the PE range compensators would normally cause only marginal errors as compared to intrinsic uncertainties in treatment planning, patient setup, beam delivery, and clinical response.

  20. Amphotericin B for cryptococcal meningitis in HIV positive patients: Low dose versus high dose

    Directory of Open Access Journals (Sweden)

    Rajeshwari S

    2007-01-01

    Full Text Available Aim: To compare the safety and efficacy of low dose vs high dose of amphotericin B in cryptococcal meningitis associated with HIV infection. Materials and Methods: Retrospective data of patients admitted with clinical diagnosis with or without microbiological evidence of cryptococcal meningitis was collected from Jan 2000-Mar 2006. Patients′ details were collected in a proforma which included patient′s age, weight, signs and symptoms of disease and microbiological report (blood and CSF analysis. Data also included coexisting disease; concomitant medications taken along with amphotericin B. Adverse drug reactions which occurred during the period of treatment were recorded. Patients were grouped as low dose group and high dose group depending on the dose of amphotericin B given for the treatment of cryptococcal meningitis. Patients who received amphotericin B at doses of 0.33 to 0.64 mg/kg body weight per day were categorized under low dose group and patients who received amphotericin B at doses of 0.7 to 1.1 mg/kg/day were categorized under high dose group. All data were pooled and analyzed between the groups using chi square test. Result: Total number of patients included in the study were 38, 26 in the low dose group and 12 in the high dose group. In the low dose group, 20 were males and six were females, in the high dose group eight were males and four were females. The commonest underlying diseases were tuberculosis (17 in low dose group, nine in high dose group, Pneumocystis carinii (jeroveci pneumonia (16 in low dose group, seven in high dose group and oral candidiasis (eight in low dose group, seven in high dose group, Toxoplasmosis (three in low dose group, one in high dose group, hypertension (1 in group A and diabetes mellitus (1 in group B. Concomitant medication received along with amphotericin B for coexisting diseases in both the groups were antitubercular therapy, cotrimoxazole, antiviral therapy and premedications such as

  1. Intensity Modulated Radiation Therapy With Dose Painting to Treat Rhabdomyosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Joanna C.; Dharmarajan, Kavita V. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wexler, Leonard H. [Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); La Quaglia, Michael P. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Happersett, Laura [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wolden, Suzanne L., E-mail: woldens@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2012-11-01

    Purpose: To examine local control and patterns of failure in rhabdomyosarcoma patients treated with intensity modulated radiation therapy (RT) with dose painting (DP-IMRT). Patients and Methods: A total of 41 patients underwent DP-IMRT with chemotherapy for definitive treatment. Nineteen also underwent surgery with or without intraoperative RT. Fifty-six percent had alveolar histologic features. The median interval from beginning chemotherapy to RT was 17 weeks (range, 4-25). Very young children who underwent second-look procedures with or without intraoperative RT received reduced doses of 24-36 Gy in 1.4-1.8-Gy fractions. Young adults received 50.4 Gy to the primary tumor and lower doses of 36 Gy in 1.8-Gy fractions to at-risk lymph node chains. Results: With 22 months of median follow-up, the actuarial local control rate was 90%. Patients aged {<=}7 years who received reduced overall and fractional doses had 100% local control, and young adults had 79% (P=.07) local control. Three local failures were identified in young adults whose primary target volumes had received 50.4 Gy in 1.8-Gy fractions. Conclusions: DP-IMRT with lower fractional and cumulative doses is feasible for very young children after second-look procedures with or without intraoperative RT. DP-IMRT is also feasible in adolescents and young adults with aggressive disease who would benefit from prophylactic RT to high-risk lymph node chains, although dose escalation might be warranted for improved local control. With limited follow-up, it appears that DP-IMRT produces local control rates comparable to those of sequential IMRT in patients with rhabdomyosarcoma.

  2. Patient Dosimetry in Arteriography of the Lower Limbs. Part II: Dose Conversion Coefficients, Organ Doses and Effective Dose

    Energy Technology Data Exchange (ETDEWEB)

    Kicken, P.J.H.; Zankl, M.; Kemerink, G.J

    1999-07-01

    X ray projection data (see Part I) and GSF phantoms ADAM and EVA were used as input for the GSF Monte Carlo transport code to calculate hitherto unavailable dose conversion coefficients (DCCs) for common projections in arteriography of the lower limbs. These DCCs served to estimate organ equivalent doses and effective dose in a study of 455 patients. The effective dose caused by percutaneous needle puncture arteriography of one leg was on average 1 mSv, by Seldinger catherisation for arteriography of both legs 4 mSv, and by intravenous digital subtraction arteriography (DSA) 5 mSv. For needle puncture and Seldinger arteriography the effective dose attributable to fluoroscopy was about 50% for male and 60% for female patients. The contribution of DSA was between 15 and 35%, that of cut films between 17 to 28%, depending on gender and procedure. The effective dose in intravenous arteriography was mainly due to DSA (91-93%). (author)

  3. Assessing dose rate distributions in VMAT plans

    Science.gov (United States)

    Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2016-04-01

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within  ±0.4 s and doses  ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional

  4. Dose assessment for sheep exposed to fallout from nuclear test Nancy

    Energy Technology Data Exchange (ETDEWEB)

    Sasser, L.B.; Soldat, J.K.; Kennedy, W.E. Jr.; Murphy, D.W.

    1982-10-01

    Radiation doses were estimated for sheep wintering on Nevada ranges during the testing at the Nevada Test Site of the nuclear weapon Nancy on March 24, 1953. Exposure pathways considered were inhalation of radionuclides from both cloud passage and resuspension, external exposure of the total body and skin, and ingestion of contaminated forage and soil. Physiological, metabolic, and dosimetric data needed for these calculations were obtained from data appropriate for the sheep. Dose rate and radionuclide deposition values for shot Nancy were used. Radionuclide deposition and retention on the desert vegetation were obtained from data collected during several nuclear tests at the Nevada Test Site. Existing dosimetric computer programs, whose libraries were modified to include the sheep data, and specially developed models were used to estimate the dose commitment for the sheep. The total-body dose for reference sheep located within the 40-mR/hr (H+12) isopleth from all modes of exposure was estimated to be 2.6 rad. Ingestion of fallout on edible vegetation contributed the majority of the dose, whereas inhalation of radionuclides and consumption of contaminated soil from the ground contributed little to the internal doses. The dose to the thyroid of ewes from radioiodine and other radionuclides reaching the thyroid was approximately 400 rad. The calculated uniform dose to the reticulo-rumen was 4 rad; however, if fallout particles were assumed to concentrate in the ventral rumen, a localized dose of 200 rad could have been received by the rumen wall. Estimated dose to the bare skin of ewes was 120 rad. The dose to the fetal thyroid from radioiodine ingested by a pregnant ewe grazing at a location where the dose rate was 40 mR/hr (H+12) was estimated to be 700 rad, or approximately twice the dose to the maternal thyroid.

  5. Wide Range SET Pulse Measurement

    Science.gov (United States)

    Shuler, Robert L.; Chen, Li

    2012-01-01

    A method for measuring a wide range of SET pulses is demonstrated. Use of dynamic logic, faster than ordinary CMOS, allows capture of short pulses. A weighted binning of SET lengths allows measurement of a wide range of pulse lengths with compact circuitry. A pulse-length-conservative pulse combiner tree routes SETs from combinational logic to the measurement circuit, allowing SET measurements in circuits that cannot easily be arranged in long chains. The method is applied to add-multiplex combinational logic, and to an array of NFET routing switches, at .35 micron. Pulses are captured in a chain of Domino Logic AND gates. Propagation through the chain is frozen on the trailing edge by dropping low the second "enable" input to the AND gates. Capacitive loading is increased in the latter stages to create an approximately logarithmic weighted binning, so that a broad range of pulse lengths can be captured with a 10 stage capture chain. Simulations show pulses can be captured which are 1/5th the length of those typically captured with leading edge triggered latch methods, and less than the length of those captured with a trailing edge latch method. After capture, the pulse pattern is transferred to an SEU protected shift register for readout. 64 instances of each of two types of logic are used as targets. One is a full adder with a 4 to 1 mux on its inputs. The other is a 4 x 4 NFET routing matrix. The outputs are passed through buffered XNOR comparators to identify pulses, which are merged in a buffered not-nand (OR) tree designed to avoid pulse absorption as much as possible. The output from each of the two test circuits are input into separate pulse measurement circuits. Test inputs were provided so that the circuit could be bench tested and calibrated. A third SET measurement circuit with no inputs was used to judge the contribution from direct hits on the measurement circuit. Heavy ions were used with an LET range from 12 to 176. At LET of 21 and below, the very

  6. Understanding Synthesis Imaging Dynamic Range

    CERN Document Server

    Braun, Robert

    2012-01-01

    We develop a general framework for quantifying the many different contributions to the noise budget of an image made with an array of dishes or aperture array stations. Each noise contribution is associated with a relevant correlation timescale and frequency bandwidth so that the net impact in a complete observation can be assessed. All quantities are parameterised as function of observing frequency and the visibility baseline length. We apply the resulting noise budget analysis to a wide range of existing and planned telescope systems that will operate between about 100 MHz and 5 GHz to ascertain their imaging performance and limitations. We conclude that imaging performance is adversely impacted in several respects by small dimensions of the dishes or aperture array stations. It will be more challenging to achieve thermal noise limited performance using 15m class dishes rather than the 25m dishes of current arrays. Some of the performance risks are mitigated by the deployment of phased array feeds and more ...

  7. Smart Materials for Ranging Systems

    CERN Document Server

    Franse, Jaap; Sirenko, Valentyna

    2006-01-01

    The problem of determining the location of an object (usually called ranging) attracts at present much attention in different areas of applications, among them in ecological and safety devices. Electromagnetic waves along with sound waves are widely used for these purposes. Different aspects of materials with specific magnetic, electric and elastic properties are considered in view of potential application in the design and manufacturing of smart materials. Progress is reported in the fabrication and understanding of in-situ formation and characterization of solid state structures with specified properties. Attention is paid to the observation and study of the mobility of magnetic structures and of the kinetics of magnetic ordering transitions. Looking from a different perspective, one of the outcomes of the ARW is the emphasis on the important role that collective phenomena (like spin waves in systems with a magnetically ordered ground state, or critical currents in superconductors) could play at the design ...

  8. SU-E-T-75: A Simple Technique for Proton Beam Range Verification

    Energy Technology Data Exchange (ETDEWEB)

    Burgdorf, B; Kassaee, A; Garver, E [University of Pennsylvania, Philadelphia, PA (United States)

    2015-06-15

    Purpose: To develop a measurement-based technique to verify the range of proton beams for quality assurance (QA). Methods: We developed a simple technique to verify the proton beam range with in-house fabricated devices. Two separate devices were fabricated; a clear acrylic rectangular cuboid and a solid polyvinyl chloride (PVC) step wedge. For efficiency in our clinic, we used the rectangular cuboid for double scattering (DS) beams and the step wedge for pencil beam scanning (PBS) beams. These devices were added to our QA phantom to measure dose points along the distal fall-off region (between 80% and 20%) in addition to dose at mid-SOBP (spread out Bragg peak) using a two-dimensional parallel plate chamber array (MatriXX™, IBA Dosimetry, Schwarzenbruck, Germany). This method relies on the fact that the slope of the distal fall-off is linear and does not vary with small changes in energy. Using a multi-layer ionization chamber (Zebra™, IBA Dosimetry), percent depth dose (PDD) curves were measured for our standard daily QA beams. The range (energy) for each beam was then varied (i.e. ±2mm and ±5mm) and additional PDD curves were measured. The distal fall-off of all PDD curves was fit to a linear equation. The distal fall-off measured dose for a particular beam was used in our linear equation to determine the beam range. Results: The linear fit of the fall-off region for the PDD curves, when varying the range by a few millimeters for a specific QA beam, yielded identical slopes. The calculated range based on measured point dose(s) in the fall-off region using the slope resulted in agreement of ±1mm of the expected beam range. Conclusion: We developed a simple technique for accurately verifying the beam range for proton therapy QA programs.

  9. Premature chromosome condensation (PCC) assay for dose assessment in mass casualty accidents.

    Science.gov (United States)

    Lindholm, Carita; Stricklin, Daniela; Jaworska, Alicja; Koivistoinen, Armi; Paile, Wendla; Arvidsson, Eva; Deperas-Standylo, Joanna; Wojcik, Andrzej

    2010-01-01

    The study was undertaken to establish a dose calibration curve for a practical PCC ring assay and to apply it in a simulated mass casualty accident. The PCC assay was validated against the conventional dicentric assay. A linear relationship was established for PCC rings after (60)Co gamma irradiation with doses up to 20 Gy. In the simulated accident experiment, 62 blood samples were analyzed with both the PCC ring assay and the conventional dicentric assay, applying a triage approach. Samples received various uniform and non-uniform (10-40% partial-body) irradiations up to doses of 13 Gy. The results indicated that both assays yielded good dose estimates for the whole-body exposure scenario, although in the lower-dose range (0-6 Gy) dicentric scoring resulted in more accurate whole-body estimates, whereas PCC rings were better in the high-dose range (>6 Gy). Neither assay was successful in identifying partial-body exposures, most likely due to the low numbers of cells scored in the triage mode. In conclusion, the study confirmed that the PCC ring assay is suitable for use as a biodosimeter after whole-body exposure to high doses of radiation. However, there are limitations for its use in the triage of people exposed to high, partial-body doses.

  10. Population dose commitments due to radioactive releases from nuclear power plant sites in 1984

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.A.

    1988-01-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1984. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 56 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 110 person-rem to a low of 0.002 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 5 person-rem. The total population dose for all sites was estimated at 280 person-rem for the 100 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 6 x 10/sup -6/ mrem to a high of 0.04 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.

  11. Energy dependence of polymer gels in the orthovoltage energy range

    Directory of Open Access Journals (Sweden)

    Yvonne Roed

    2014-03-01

    Full Text Available Purpose: Ortho-voltage energies are often used for treatment of patients’ superficial lesions, and also for small- animal irradiations. Polymer-Gel dosimeters such as MAGAT (Methacrylic acid Gel and THPC are finding increasing use for 3-dimensional verification of radiation doses in a given treatment geometry. For mega-voltage beams, energy dependence of MAGAT has been quoted as nearly energy-independent. In the kilo-voltage range, there is hardly any literature to shade light on its energy dependence.Methods: MAGAT was used to measure depth-dose for 250 kVp beam. Comparison with ion-chamber data showed a discrepancy increasing significantly with depth. An over-response as much as 25% was observed at a depth of 6 cm.Results and Conclusion: Investigation concluded that 6 cm water in the beam resulted in a half-value-layer (HVL change from 1.05 to 1.32 mm Cu. This amounts to an effective-energy change from 81.3 to 89.5 keV. Response measurements of MAGAT at these two energies explained the observed discrepancy in depth-dose measurements. Dose-calibration curves of MAGAT for (i 250 kVp beam, and (ii 250 kVp beam through 6 cm of water column are presented showing significant energy dependence.-------------------Cite this article as: Roed Y, Tailor R, Pinksy L, Ibbott G. Energy dependence of polymer gels in the orthovoltage energy range. Int J Cancer Ther Oncol 2014; 2(2:020232. DOI: 10.14319/ijcto.0202.32 

  12. CT patterns of fungal pulmonary infections of the lung: Comparison of standard-dose and simulated low-dose CT

    Energy Technology Data Exchange (ETDEWEB)

    Christe, Andreas, E-mail: andreas.christe@insel.ch [Department of Radiology, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94305 (United States); University Institute of Diagnostic, Interventional and Pediatric Radiology, University Hospital Bern, Inselspital, Freiburgstrasse 10, 3010 Bern (Switzerland); Lin, Margaret C., E-mail: mc_lin@hotmail.com [Department of Radiology, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94305 (United States); Yen, Andrew C., E-mail: acyen@ucsd.edu [Department of Radiology, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94305 (United States); Hallett, Rich L., E-mail: xraydoc97@yahoo.com [Department of Radiology, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94305 (United States); Roychoudhury, Kingshuk, E-mail: kingshuk@statucc.ie [Statistics Department, University College Cork, Cork (Ireland); Schmitzberger, Florian, E-mail: florians@stanford.edu [Department of Radiology, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94305 (United States); Fleischmann, Dominik, E-mail: d.fleischmann@stanford.edu [Department of Radiology, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94305 (United States); Leung, Ann N., E-mail: aleung@stanford.edu [Department of Radiology, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94305 (United States); Rubin, Geoffry D., E-mail: grubin@stanford.edu [Department of Radiology, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94305 (United States); Vock, Peter, E-mail: peter.vock@insel.ch [University Institute of Diagnostic, Interventional and Pediatric Radiology, University Hospital Bern, Inselspital, Freiburgstrasse 10, 3010 Bern (Switzerland); Roos, Justus E., E-mail: justus.roos@stanford.edu [Department of Radiology, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94305 (United States)

    2012-10-15

    Purpose: To assess the effect of radiation dose reduction on the appearance and visual quantification of specific CT patterns of fungal infection in immuno-compromised patients. Materials and methods: Raw data of thoracic CT scans (64 × 0.75 mm, 120 kVp, 300 reference mAs) from 41 consecutive patients with clinical suspicion of pulmonary fungal infection were collected. In 32 patients fungal infection could be proven (median age of 55.5 years, range 35–83). A total of 267 cuboids showing CT patterns of fungal infection and 27 cubes having no disease were reconstructed at the original and 6 simulated tube currents of 100, 40, 30, 20, 10, and 5 reference mAs. Eight specific fungal CT patterns were analyzed by three radiologists: 76 ground glass opacities, 42 ground glass nodules, 51 mixed, part solid, part ground glass nodules, 36 solid nodules, 5 lobulated nodules, 6 spiculated nodules, 14 cavitary nodules, and 37 foci of air-space disease. The standard of reference was a consensus subjective interpretation by experts whom were not readers in the study. Results: The mean sensitivity and standard deviation for detecting pathological cuboids/disease using standard dose CT was 0.91 ± 0.07. Decreasing dose did not affect sensitivity significantly until the lowest dose level of 5 mAs (0.87 ± 0.10, p = 0.012). Nodular pattern discrimination was impaired below the dose level of 30 reference mAs: specificity for fungal ‘mixed nodules’ decreased significantly at 20, 10 and 5 reference mAs (p < 0.05). At lower dose levels, classification drifted from ‘solid’ to ‘mixed nodule’, although no lesion was missed. Conclusion: Our simulation data suggest that tube current levels can be reduced from 300 to 30 reference mAs without impairing the diagnostic information of specific CT patterns of pulmonary fungal infections.

  13. Survey of pediatric MDCT radiation dose from university hospitals in Thailand. A preliminary for national dose survey

    Energy Technology Data Exchange (ETDEWEB)

    Kritsaneepaiboon, Supika [Dept. of Radiology, Faculty of Medicine, Prince of Songkla Univ., Hat Yai (Thailand)], e-mail: supikak@yahoo.com; Trinavarat, Panruethai [Dept. of Radiology, Faculty of Medicine, Chulalongkorn Univ., Bangkok (Thailand); Visrutaratna, Pannee [Dept. of Radiology, Faculty of Medicine, Chiang Mai Univ., Chiang Mai (Thailand)

    2012-09-15

    Background: Increasing pediatric CT usage worldwide needs the optimization of CT protocol examination. Although there are previous published dose reference level (DRL) values, the local DRLs should be established to guide for clinical practice and monitor the CT radiation. Purpose: To determine the multidetector CT (MDCT) radiation dose in children in three university hospitals in Thailand in four age groups using the CT dose index (CTDI) and dose length product (DLP). Material and Methods: A retrospective review of CT dosimetry in pediatric patients (<15 years of age) who had undergone head, chest, and abdominal MDCT in three major university hospitals in Thailand was performed. Volume CTDI (CTDIvol) and DLP were recorded, categorized into four age groups: <1 year, 1- < 5 years, 5- <10 years, and 10- <15 years in each scanner. Range, mean, and third quartile values were compared with the national reference dose levels for CT in pediatric patients from the UK and Switzerland according to International Commission on Radiological Protection (ICRP) recommendation. Results: Per age group, the third quartile values for brain, chest, and abdominal CTs were, respectively, in terms of CTDIvol: 25, 30, 40, and 45 mGy; 4.5, 5.7, 10, and 15.6 mGy; 8.5, 9, 14, and 17 mGy; and in terms of DLP: 400, 570, 610, and 800 mGy cm; 80, 140, 305, and 470 mGy cm; and 190, 275, 560,765 mGy cm. Conclusion: This preliminary national dose survey for pediatric CT in Thailand found that the majority of CTDIvol and DLP values in brain, chest, and abdominal CTs were still below the diagnostic reference levels (DRLs) from the UK and Switzerland regarding to ICRP recommendation.

  14. A Regional Dose and Image Quality Survey for Chest, Abdomen and Pelvis Radiographs in Paediatrics

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, M.; Morant, J.J.; Geleijns, K.; Calzado, A

    2000-07-01

    A dosimetric survey in paediatric radiology is currently being carried out, aiming at the assessment of patient dose and image quality for chest, abdomen and pelvis radiographs in some age categories at five hospitals in the Tarragona area. Entrance surface dose measurements were performed using homogeneous PMMA phantoms. Effective doses were assessed through the application of published conversion factors. The range of entrance doses averaged by sites was 75-729 {mu}Gy for pelvis radiographs of children aged 5 months, 813-1600 {mu}Gy for pelvis radiographs of children aged 5 years, 94-250 {mu}Gy for chest radiographs of children aged 5 years and 980-2300 {mu}Gy for abdomen radiographs of children aged 5 years. The reference dose values given in the European Guidelines on Quality Criteria for Diagnostic Radiographic Images in Paediatrics were exceeded at two or more hospitals for all projections. The range of average effective dose for the analysed examinations was 14-245 {mu}Sv. The maximum ratios of effective dose by sites varied between 2.2 and 11 for the analysed projections. By examination type, average values in the range 100 to 245 {mu}Sv were estimated for 5 year pelvis and abdomen examinations. (author)

  15. Assessment of the skin dose for aircrew.

    Science.gov (United States)

    Meier, Matthias M; Matthiä, Daniel

    2017-03-02

    Epidemiological studies are a useful instrument for investigating the influence of environmental factors on human health. In this context, the determination and quantification of the corresponding exposure is a demanding challenge. With regard to the investigation of the potential health effects in aircrew due to cosmic radiation, their occupational exposure at aviation altitudes is usually assessed in terms of the radiation protection quantity effective dose, which is stored in and available from official dose registers in many countries. However, when biological effects on a particular organ are investigated, knowledge of the corresponding exposure of that particular organ is necessary. In this study, we investigate the differences between the skin dose and the effective dose for the exposure of aircrew to cosmic radiation using a mathematical model for the radiation field at aviation altitudes. Furthermore, we present a method to deduce skin dose values from the officially registered effective doses.

  16. Environmental standards for ionizing radiation: theoretical basis for dose-response curves.

    Science.gov (United States)

    Upton, A C

    1983-10-01

    The types of injury attributable to ionizing radiation are subdivided, for purposes of risk assessment and radiological protection, into two broad categories: stochastic effects and nonstochastic effects. Stochastic effects are viewed as probablistic phenomena, varying in frequency but not severity as a function of the dose, without any threshold; nonstochastic effects are viewed as deterministic phenomena, varying in both frequency and severity as a function of the dose, with clinical thresholds. Included among stochastic effects are heritable effects (mutations and chromosome aberrations) and carcinogenic effects. Both types of effects are envisioned as unicellular phenomena which can result from nonlethal injury of individual cells, without the necessity of damage to other cells. For the induction of mutations and chromosome aberrations in the low-to-intermediate dose range, the dose-response curve with high-linear energy transfer (LET) radiation generally conforms to a linear nonthreshold relationship and varies relatively little with the dose rate. In contrast, the curve with low-LET radiation generally conforms to a linear-quadratic relationship, rising less steeply than the curve with high-LET radiation and increasing in slope with increasing dose and dose rate. The dose-response curve for carcinogenic effects varies widely from one type of neoplasm to another in the intermediate-to-high dose range, in part because of differences in the way large doses of radiation can affect the promotion and progression of different neoplasms. Information about dose-response relations for low-level irradiation is fragmentary but consistent, in general, with the hypothesis that the neoplastic transformation may result from mutation, chromosome aberration or genetic recombination in a single susceptible cell.

  17. Patient dose and image quality from mega-voltage cone beam computed tomography imaging.

    Science.gov (United States)

    Gayou, Olivier; Parda, David S; Johnson, Mark; Miften, Moyed

    2007-02-01

    The evolution of ever more conformal radiation delivery techniques makes the subject of accurate localization of increasing importance in radiotherapy. Several systems can be utilized including kilo-voltage and mega-voltage cone-beam computed tomography (MV-CBCT), CT on rail or helical tomography. One of the attractive aspects of mega-voltage cone-beam CT is that it uses the therapy beam along with an electronic portal imaging device to image the patient prior to the delivery of treatment. However, the use of a photon beam energy in the mega-voltage range for volumetric imaging degrades the image quality and increases the patient radiation dose. To optimize image quality and patient dose in MV-CBCT imaging procedures, a series of dose measurements in cylindrical and anthropomorphic phantoms using an ionization chamber, radiographic films, and thermoluminescent dosimeters was performed. Furthermore, the dependence of the contrast to noise ratio and spatial resolution of the image upon the dose delivered for a 20-cm-diam cylindrical phantom was evaluated. Depending on the anatomical site and patient thickness, we found that the minimum dose deposited in the irradiated volume was 5-9 cGy and the maximum dose was between 9 and 17 cGy for our clinical MV-CBCT imaging protocols. Results also demonstrated that for high contrast areas such as bony anatomy, low doses are sufficient for image registration and visualization of the three-dimensional boundaries between soft tissue and bony structures. However, as the difference in tissue density decreased, the dose required to identify soft tissue boundaries increased. Finally, the dose delivered by MV-CBCT was simulated using a treatment planning system (TPS), thereby allowing the incorporation of MV-CBCT dose in the treatment planning process. The TPS-calculated doses agreed well with measurements for a wide range of imaging protocols.

  18. Measurement of eye lens dose for Varian On-Board Imaging with different cone-beam computed tomography acquisition techniques.

    Science.gov (United States)

    Deshpande, Sudesh; Dhote, Deepak; Thakur, Kalpna; Pawar, Amol; Kumar, Rajesh; Kumar, Munish; Kulkarni, M S; Sharma, S D; Kannan, V

    2016-01-01

    The objective of this work was to measure patient eye lens dose for different cone-beam computed tomography (CBCT) acquisition protocols of Varian's On-Board Imaging (OBI) system using optically stimulated luminescence dosimeter (OSLD) and to study the variation in eye lens dose with patient geometry and distance of isocenter to the eye lens. During the experimental measurements, OSLD was placed on the patient between the eyebrows of both eyes in line of nose during CBCT image acquisition to measure eye lens doses. The eye lens dose measurements were carried out for three different cone-beam acquisition protocols (standard dose head, low-dose head [LDH], and high-quality head [HQH]) of Varian OBI. Measured doses were correlated with patient geometry and distance between isocenter and eye lens. Measured eye lens doses for standard head and HQH protocols were in the range of 1.8-3.2 mGy and 4.5-9.9 mGy, respectively. However, the measured eye lens dose for the LDH protocol was in the range of 0.3-0.7 mGy. The measured data indicate that eye lens dose to patient depends on the selected imaging protocol. It was also observed that eye lens dose does not depend on patient geometry but strongly depends on distance between eye lens and treatment field isocenter. However, undoubted advantages of imaging system should not be counterbalanced by inappropriate selection of imaging protocol, especially for very intense imaging protocol.

  19. Measurement of effective dose for paediatric scoliotic patients

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chih-I. [School of Medical Radiation Sciences, University of Sydney, Lidcombe NSW 1825 (Australia); McLean, Donald [School of Medical Radiation Sciences, University of Sydney, Lidcombe NSW 1825 (Australia)]. E-mail: rdmc@imag.wsahs.nsw.gov.au; Robinson, John [School of Medical Radiation Sciences, University of Sydney, Lidcombe NSW 1825 (Australia)

    2005-05-01

    Purpose: Paediatric radiation dose from scoliosis X-ray examinations is of concern because of its routine nature. Few studies have calculated effective dose which is the primary indicator of radiation risk. This study reports on the use of a new flexible Monte Carlo software package PCXMC14 for such calculation from documented radiographic and patient data. Method: Patient and radiographic data were collected from 54 patient examinations for both postero-anterior (PA) and lateral X-ray projections. A spreadsheet mainly based on radiographic calibration was used to process the raw data and compute entrance air kerma for input in the PCXMC program. A partitioning model was developed to more accurately estimate the effect of an aluminium wedge filter. Results: Results showed the effective dose ranged from 81 to 123 {mu}Sv for the PA projection and 124 to 207 {mu}Sv for the lateral projection, with patient weights varying from 20 to 70 kg. Conclusions: This study demonstrates the usefulness of the PCXMC program to evaluate the effective dose in paediatric scoliosis radiography.

  20. Evaluation of Rectal Dose During High-Dose-Rate Intracavitary Brachytherapy for Cervical Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Sha, Rajib Lochan [Department of Radiation Physics, Indo-American Cancer Institute and Research Centre, Hyderabad (India); Department of Physics, Osmania University, Hyderabad (India); Reddy, Palreddy Yadagiri [Department of Physics, Osmania University, Hyderabad (India); Rao, Ramakrishna [Department of Radiation Physics, MNJ Institute of Oncology and Regional Cancer Center, Hyderabad (India); Muralidhar, Kanaparthy R. [Department of Radiation Physics, Indo-American Cancer Institute and Research Centre, Hyderabad (India); Kudchadker, Rajat J., E-mail: rkudchad@mdanderson.org [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2011-01-01

    High-dose-rate intracavitary brachytherapy (HDR-ICBT) for carcinoma of the uterine cervix often results in high doses being delivered to surrounding organs at risk (OARs) such as the rectum and bladder. Therefore, it is important to accurately determine and closely monitor the dose delivered to these OARs. In this study, we measured the dose delivered to the rectum by intracavitary applications and compared this measured dose to the International Commission on Radiation Units and Measurements rectal reference point dose calculated by the treatment planning system (TPS). To measure the dose, we inserted a miniature (0.1 cm{sup 3}) ionization chamber into the rectum of 86 patients undergoing radiation therapy for cervical carcinoma. The response of the miniature chamber modified by 3 thin lead marker rings for identification purposes during imaging was also characterized. The difference between the TPS-calculated maximum dose and the measured dose was <5% in 52 patients, 5-10% in 26 patients, and 10-14% in 8 patients. The TPS-calculated maximum dose was typically higher than the measured dose. Our study indicates that it is possible to measure the rectal dose for cervical carcinoma patients undergoing HDR-ICBT. We also conclude that the dose delivered to the rectum can be reasonably predicted by the TPS-calculated dose.

  1. Dose mapping for documentation of radiation sterilization

    DEFF Research Database (Denmark)

    Miller, A.

    1999-01-01

    The radiation sterilization standards EN 552 and ISO 11137 require that dose mapping in real or simulated product be carried in connection with the process qualification. This paper reviews the recommendations given in the standards and discusses the difficulties and limitations of practical dose...... mapping. The paper further gives recommendations for effective dose mapping including traceable dosimetry, documented procedures for placement of dosimeters, and evaluation of measurement uncertainties. (C) 1999 Elsevier Science Ltd. All rights reserved....

  2. Hanford Environmental Dose Reconstruction Project monthly report

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M. (comp.)

    1991-10-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doeses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates.

  3. Dynamic Planar Range Maxima Queries

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Tsakalidis, Konstantinos

    2011-01-01

    We consider the dynamic two-dimensional maxima query problem. Let P be a set of n points in the plane. A point is maximal if it is not dominated by any other point in P. We describe two data structures that support the reporting of the t maximal points that dominate a given query point, and allow...... for insertions and deletions of points in P. In the pointer machine model we present a linear space data structure with O(logn + t) worst case query time and O(logn) worst case update time. This is the first dynamic data structure for the planar maxima dominance query problem that achieves these bounds...... in the worst case. The data structure also supports the more general query of reporting the maximal points among the points that lie in a given 3-sided orthogonal range unbounded from above in the same complexity. We can support 4-sided queries in O(log^2 n + t) worst case time, and O(log^2 n) worst case...

  4. Benchmarking analytical calculations of proton doses in heterogeneous matter.

    Science.gov (United States)

    Ciangaru, George; Polf, Jerimy C; Bues, Martin; Smith, Alfred R

    2005-12-01

    A proton dose computational algorithm, performing an analytical superposition of infinitely narrow proton beamlets (ASPB) is introduced. The algorithm uses the standard pencil beam technique of laterally distributing the central axis broad beam doses according to the Moliere scattering theory extended to slablike varying density media. The purpose of this study was to determine the accuracy of our computational tool by comparing it with experimental and Monte Carlo (MC) simulation data as benchmarks. In the tests, parallel wide beams of protons were scattered in water phantoms containing embedded air and bone materials with simple geometrical forms and spatial dimensions of a few centimeters. For homogeneous water and bone phantoms, the proton doses we calculated with the ASPB algorithm were found very comparable to experimental and MC data. For layered bone slab inhomogeneity in water, the comparison between our analytical calculation and the MC simulation showed reasonable agreement, even when the inhomogeneity was placed at the Bragg peak depth. There also was reasonable agreement for the parallelepiped bone block inhomogeneity placed at various depths, except for cases in which the bone was located in the region of the Bragg peak, when discrepancies were as large as more than 10%. When the inhomogeneity was in the form of abutting air-bone slabs, discrepancies of as much as 8% occurred in the lateral dose profiles on the air cavity side of the phantom. Additionally, the analytical depth-dose calculations disagreed with the MC calculations within 3% of the Bragg peak dose, at the entry and midway depths in the phantom. The distal depth-dose 20%-80% fall-off widths and ranges calculated with our algorithm and the MC simulation were generally within 0.1 cm of agreement. The analytical lateral-dose profile calculations showed smaller (by less than 0.1 cm) 20%-80% penumbra widths and shorter fall-off tails than did those calculated by the MC simulations. Overall

  5. Hanford Environmental Dose Reconstruction Project monthly report

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M. (comp.)

    1990-12-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have been have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. 3 figs., 3 tabs.

  6. Antiproton radiotherapy: peripheral dose from secondary neutrons

    DEFF Research Database (Denmark)

    Fahimian, Benjamin P.; DeMarco, John J.; Keyes, Roy

    2009-01-01

    is the normal tissue dose resulting from secondary neutrons produced in the annihilation of antiprotons on the nucleons of the target atoms. Here we present the first organ specific Monte Carlo calculations of normal tissue equivalent neutron dose in antiproton therapy through the use of a segmented CT......-based human phantom. The MCNPX Monte Carlo code was employed to quantify the peripheral dose for a cylindrical spread out Bragg peak representing a treatment volume of 1 cm diameter and 1 cm length in the frontal lobe of a segmented whole-body phantom of a 38 year old male. The secondary neutron organ dose...

  7. Hanford Environmental Dose Reconstruction Project Monthly Report

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M. (comp.)

    1991-07-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. 2 figs., 2 tabs.

  8. Pharmacogenomic dosing of warfarin: ready or not?

    Science.gov (United States)

    Lackner, Thomas E

    2008-08-01

    Warfarin is a medication with a narrow therapeutic index, nonlinear intrapatient pharmacokinetics, and high interpatient variability in its dose-response relationship. These characteristics create great difficulty in determining an appropriate dose; sub- or supratherapeutic doses can increase the risk of bleeding and venous thromboembolism complications. Algorithms based on nongenetic factors of patient age, gender, body weight, diseases, diet, smoking, and medication traditionally have been used to determine warfarin dose requirements. However, these formulas account for less than 20% of the variability in warfarin response. Following completion of the Human Genome Project, several genetic variants of CYP2C9 and VKORC1 have been identified that account for a greater proportion of the variability in patient response to warfarin than is explained by nongenetic factors. Moreover, algorithms that analyze both patient genetic and nongenetic factors, i.e., pharmacogenomics, in warfarin response account for 55% to 60% of the variability. This raises the prospect of enhancing the ability to predict warfarin dose requirements and, thereby, improving its safety, effectiveness, and therapy efficiency. This review evaluates the impact of combining genetic and nongenetic factors in accounting for the variability in warfarin response and the prospect that pharmacogenomic algorithms will improve warfarin dosing early in therapy, possibly achieving a more rapid attainment of the therapeutic dose, improving safety, and increasing effectiveness. The most comprehensive and widely available pharmacogenomic algorithms for estimating warfarin dose requirements when initiating therapy, www.WarfarinDosing.org, is reviewed.

  9. Hanford Environmental Dose Reconstruction Project Monthly Report

    Energy Technology Data Exchange (ETDEWEB)

    Finch, S.M. (comp.)

    1990-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics; agriculture; food habits; and environmental pathways and dose estimates. 3 figs.

  10. SU-E-T-154: Calculation of Tissue Dose Point Kernels Using GATE Monte Carlo Simulation Toolkit to Compare with Water Dose Point Kernel

    Energy Technology Data Exchange (ETDEWEB)

    Khazaee, M [shahid beheshti university, Tehran, Tehran (Iran, Islamic Republic of); Asl, A Kamali [Shahid Beheshti University, Tehran, Iran., Tehran, Tehran (Iran, Islamic Republic of); Geramifar, P [Shariati Hospital, Tehran, Iran., Tehran, Tehran (Iran, Islamic Republic of)

    2015-06-15

    Purpose: the objective of this study was to assess utilizing water dose point kernel (DPK)instead of tissue dose point kernels in convolution algorithms.to the best of our knowledge, in providing 3D distribution of absorbed dose from a 3D distribution of the activity, the human body is considered equivalent to water. as a Result tissue variations are not considered in patient specific dosimetry. Methods: In this study Gate v7.0 was used to calculate tissue dose point kernel. the beta emitter radionuclides which have taken into consideration in this simulation include Y-90, Lu-177 and P-32 which are commonly used in nuclear medicine. the comparison has been performed for dose point kernels of adipose, bone, breast, heart, intestine, kidney, liver, lung and spleen versus water dose point kernel. Results: In order to validate the simulation the Result of 90Y DPK in water were compared with published results of Papadimitroulas et al (Med. Phys., 2012). The results represented that the mean differences between water DPK and other soft tissues DPKs range between 0.6 % and 1.96% for 90Y, except for lung and bone, where the observed discrepancies are 6.3% and 12.19% respectively. The range of DPK difference for 32P is between 1.74% for breast and 18.85% for bone. For 177Lu, the highest difference belongs to bone which is equal to 16.91%. For other soft tissues the least discrepancy is observed in kidney with 1.68%. Conclusion: In all tissues except for lung and bone, the results of GATE for dose point kernel were comparable to water dose point kernel which demonstrates the appropriateness of applying water dose point kernel instead of soft tissues in the field of nuclear medicine.

  11. The evaluation of dose of TSEI with TLD and diode detector of the uterine cervix cancer

    Energy Technology Data Exchange (ETDEWEB)

    Je, Young Wan; Na, Keyung Su; Yoon, Il Kyu; Park, Heung Deuk [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2005-03-15

    To evaluate radiation dose and accuracy with TLD and diode detector when treat total skin with electron beam. Using Stanford Technique, we treated patient with Mycosis Fungoides. 6 MeV electron beam of LINAC was used and the SSD was 300 cm. Also, acrylic speller(0.8 cm) was used. The patient position was 6 types and the gantry angle was 64, 90 and 116 degree. The patient's skin dose and the output were detected 5 to 6 times with TLD and diode. The deviations of dose detected with TLD from tumor dose were CA + 6%, thigh + 8%, umbilicus + 4%, calf - 8%, vertex - 74.4%, deep axillae - 10.2%, anus and testis - 87%, sole - 86% and nails shielded with 4 mm lead + 4%. The deviations of dose detected with diode were - 4.5% {approx} + 5% at the patient center and - 1.1% {approx} + 1% at the speller. The deviation of total skin dose was + 8% {approx} - 8% and that deviation was within the acceptable range({+-}10%). The boost dose was irradiated for the low dose areas(vertex, anus, sole). The electron beam output detected at the sootier was stable. It is thought that the deviation of dose at patient center detected with diode was induced by detection point and patient position.

  12. Effective dose estimation in whole-body multislice CT in paediatric trauma patients

    Energy Technology Data Exchange (ETDEWEB)

    Munk, Robin D.; Saueressig, Ulrich; Kotter, Elmar; Langer, Mathias; Bley, Thorsten A. [University Hospital, Department of Radiology, Freiburg im Breisgau (Germany); Strohm, Peter C.; Zwingmann, Joern; Suedkamp, Norbert P. [University Hospital, Department of Orthopaedic and Trauma Surgery, Freiburg im Breisgau (Germany); Uhl, Markus [University Hospital, Department of Radiology, Section of Paediatric Radiology, Freiburg im Breisgau (Germany)

    2009-03-15

    The number of multislice CT (MSCT) scans performed in polytraumatized children has increased rapidly. There is growing concern regarding the radiation dose in MSCT and its long-term consequences, especially in children. To determine the effective dose to polytraumatized children who undergo whole-body MSCT. A total of 51 traumatized children aged 0-16 years underwent a polytrauma protocol CT scan between November 2004 and August 2006 at our institution. The effective dose was calculated retrospectively by a computer program (CT-Expo 1.5, Hannover, Germany). The mean effective dose was 20.8 mSv (range 8.6-48.9 mSv, SD{+-}7.9 mSv). There was no statistically significant difference in the effective dose between male and female patients. Whole-body MSCT is a superior diagnostic tool in polytraumatized children with 20.8 mSv per patient being a justified mean effective dose. In a potentially life-threatening situation whole-body MSCT provides the clinicians with relevant information to initiate life-saving therapy. Radiologists should use special paediatric protocols that include dose-saving mechanisms to keep the effective dose as low as possible. Further studies are needed to examine and advance dose-saving strategies in MSCT, especially in children. (orig.)

  13. Evaluation of dose distributions in gamma chamber using glass plate detector

    Directory of Open Access Journals (Sweden)

    Narayan Pradeep

    2008-01-01

    Full Text Available A commercial glass plate of thickness 1.75 mm has been utilized for evaluation of dose distributions inside the irradiation volume of gamma chamber using optical densitometry technique. The glass plate showed linear response in the dose range 0.10 Kilo Gray (kGy to 10 kGy of cobalt-60 gamma radiation with optical sensitivity 0.04 Optical Density (OD /kGy. The change in the optical density at each identified spatial dose matrix on the glass plate in relation to the position in the irradiation volume has been presented as dose distributions inside the gamma chamber. The optical density changes have been graphically plotted in the form of surface diagram of color washes for different percentage dose rate levels as isodose distributions in gamma chamber. The variation in dose distribution inside the gamma chamber unit, GC 900, BRIT India make, using this technique has been observed within ± 15%. This technique can be used for routine quality assurances and dose distribution validation of any gamma chamber during commissioning and source replacement. The application of commercial glass plate for dose mapping in gamma chambers has been found very promising due to its wider dose linearity, quick measurement, and lesser expertise requirement in application of the technique.

  14. Clinical application of glass dosimeter for in vivo dose measurements of total body irradiation treatment technique

    Energy Technology Data Exchange (ETDEWEB)

    Rah, Jeong-Eun; Hwang, Ui-Jung; Jeong, Hojin; Lee, Sang-Yeob; Lee, Doo-Hyun; Shin, Dong Ho; Yoon, Myonggeun; Lee, Se Byeong [Proton Therapy Center, National Cancer Center, 809 Madu-dong, Ilsan-gu, Goyang-si, Gyeonggi-do, 410-769 (Korea, Republic of); Lee, Rena [Department of Radiation Oncology, Mokdong Hospital, Ewha Womans University College of Medicine (Korea, Republic of); Park, Sung Yong, E-mail: cool_park@ncc.re.k [Proton Therapy Center, National Cancer Center, 809 Madu-dong, Ilsan-gu, Goyang-si, Gyeonggi-do, 410-769 (Korea, Republic of)

    2011-01-15

    The commercially available glass dosimeter (model GD-301) was investigated for its dosimetric characteristics, in order to evaluate its use for in vivo dosimetry. We specifically assessed overall precision of dosimetric dose data in patients who received treatment with the total body irradiation (TBI). Uniformity obtained in this study was within 1.2% (1 SD). The dose-response was linear in the range of 0.5-10 Gy with R of 0.999. Dose rate, SSD, field size, angular and energy dependence were found to be within 3.0%. In vivo skin dosimetry for TBI was performed for 3 patients. For all patients, the glass dosimeter was exposed and measured dose recorded for one fraction in addition to conventional used TLD and MOSFET. Overall uncertainty of the glass dosimeter for in vivo dose measurement was estimated at 2.4% (68.3% confidence level). The measured doses of the glass dosimeter were well within {+-}5.0% of the prescription dose at all sites expect mediastinum of one patient, for which it is within {+-}5.7%. Agreement of measured doses between glass dosimeter and TLD, MOSFET was within {+-}6.3% and {+-}6.6%, respectively. Results show that the glass dosimeter can be used as an accurate and reproducible dosimeter for TBI treatment skin dose measurements. The glass dosimeter is a practical alternative to TLD or MOSFET as an in vivo dosimeter.

  15. Evaluation of exposure dose to patients undergoing catheter ablation procedures - a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Seguchi, S. [Nagoya University, Graduate School of Medicine, Nagoya (Japan); Nagoya Daini Red Cross Hospital, Division of Radiology, Department of Medical Technology, Nagoya (Japan); Aoyama, T.; Koyama, S.; Kawaura, C. [Nagoya University, Graduate School of Medicine, Nagoya (Japan); Fujii, K. [Nagoya University, Graduate School of Medicine, Nagoya (Japan); National Institute of Radiological Sciences, Section of Radiological Protection, Chiba (Japan)

    2008-11-15

    The aim of this study was to evaluate entrance skin dose (ESD), organ dose and effective dose to patients undergoing catheter ablation for cardiac arrhythmias, based on the dosimetry in an anthropomorphic phantom. ESD values associated with mean fluoroscopy time and digital cine frames were in a range of 0.12-0.30 Gy in right anterior oblique (RAO) and 0.05-0.40 Gy in left anterior oblique (LAO) projection, the values which were less than a threshold dose of 2 Gy for the onset of skin injury. Organs that received high doses in ablation procedures were lung, followed by bone surface, esophagus, liver and red bone marrow. Doses for lung were 24.8-122.7 mGy, and effective doses were 7.9-34.8 mSv for mean fluoroscopy time of 23.4-92.3 min and digital cine frames of 263-511. Conversion coefficients of dose-area product (DAP) to ESD were 8.7 mGy/(Gy.cm{sup 2}) in RAO and 7.4 mGy/(Gy.cm{sup 2}) in LAO projection. The coefficients of DAP to the effective dose were 0.37 mSv/(Gy.cm{sup 2}) in RAO, and 0.41 mSv/(Gy.cm{sup 2}) in LAO projection. These coefficients enabled us to estimate patient exposure in real time by using monitored values of DAP. (orig.)

  16. Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications

    Energy Technology Data Exchange (ETDEWEB)

    Loubele, M. [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 7, 3000 Leuven (Belgium); Department of Periodontology, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Katholieke Universiteit Leuven, Kapucijnenvoer 7, 3000 Leuven (Belgium); ESAT-PSI, Centre for the Processing of Speech and Images. Department of Electrotechnical Engineering, Group Science, Engineering and Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10 - bus 2440 Belgium (Belgium)], E-mail: Miet.Loubele@uzleuven.be; Bogaerts, R. [Department of Experimental Radiotherapy, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Herestraat 49 - bus 7003, 3000 Leuven (Belgium)], E-mail: Ria.Bogaerts@med.kuleuven.be; Van Dijck, E. [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 7, 3000 Leuven (Belgium); Pauwels, R. [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 7, 3000 Leuven (Belgium)], E-mail: ruben.pauwels@med.kuleuven.be; Vanheusden, S. [Oral Imaging Centre, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, Katholieke Universiteit Leuven, Kapucijnenvoer 7, 3000 Leuven (Belgium); Suetens, P. [ESAT-PSI, Centre for the Processing of Speech and Images. Department of Electrotechnical Engineering, Group Science, Engineering and Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10 - bus 2440 Belgium (Belgium)], E-mail: Paul.Suetens@esat.kuleuven.be; Marchal, G. [Department of Radiology, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Herestraat 49 - bus 7003, 3000 Leuven (Belgium)], E-mail: Guy.Marchal@uzleuven.be (and others)

    2009-09-15

    Objectives: To compare the effective dose levels of cone beam computed tomography (CBCT) for maxillofacial applications with those of multi-slice computed tomography (MSCT). Study design: The effective doses of 3 CBCT scanners were estimated (Accuitomo 3D, i-CAT, and NewTom 3G) and compared to the dose levels for corresponding image acquisition protocols for 3 MSCT scanners (Somatom VolumeZoom 4, Somatom Sensation 16 and Mx8000 IDT). The effective dose was calculated using thermoluminescent dosimeters (TLDs), placed in a Rando Alderson phantom, and expressed according to the ICRP 103 (2007) guidelines (including a separate tissue weighting factor for the salivary glands, as opposed to former ICRP guidelines). Results: Effective dose values ranged from 13 to 82 {mu}Sv for CBCT and from 474 to 1160 {mu}Sv for MSCT. CBCT dose levels were the lowest for the Accuitomo 3D, and highest for the i-CAT. Conclusions: Dose levels for CBCT imaging remained far below those of clinical MSCT protocols, even when a mandibular protocol was applied for the latter, resulting in a smaller field of view compared to various CBCT protocols. Considering this wide dose span, it is of outmost importance to justify the selection of each of the aforementioned techniques, and to optimise the radiation dose while achieving a sufficient image quality. When comparing these results to previous dosimetric studies, a conversion needs to be made using the latest ICRP recommendations.

  17. Preconditioning is hormesis part I: Documentation, dose-response features and mechanistic foundations.

    Science.gov (United States)

    Calabrese, Edward J

    2016-08-01

    This article provides the first extensive documentation of the dose response features of pre- and postconditioning. Pre- and postconditioning studies with rigorous study designs, using multiple doses/concentrations along with refined dose/concentration spacing strategies, often display hormetic dose/concentration response relationships with considerable generality across biological model, inducing (i.e., conditioning) agent, challenging dose treatment, endpoint, and mechanism. Pre- and postconditioning hormesis dose/concentration-response relationships are reported for 154 diverse conditioning agents, affecting more than 550 dose/concentration responses, across a broad range of biological models and endpoints. The quantitative features of the pre- and postconditioning-induced protective responses are modest, typically being 30-60% greater than control values at maximum, findings that are consistent with a large body (>10,000) of hormetic dose/concentration responses not related to pre- and postconditioning. Regardless of the biological model, inducing agent, endpoint or mechanism, the quantitative features of hormetic dose/concentration responses are similar, suggesting that the magnitude of response is a measure of biological plasticity. This paper also provides the first documentation that hormetic effects account for preconditioning induced early (1-3h) and delayed (12-72h) windows of protection. These findings indicate that pre- and postconditioning are specific types of hormesis.

  18. Applicability of OSL pre-dose phenomenon of quartz in the estimation of equivalent dose

    Energy Technology Data Exchange (ETDEWEB)

    Koul, D.K., E-mail: dkkoul@barc.gov.i [Astrophysical Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Chougaonkar, M.P. [Environmental Assessment Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Polymeris, G.S. [Archaeometry Laboratory, Cultural and Educational Technology Institute, R.C. ' Athena' , Tsimiski 58, GR-67100, Xanthi (Greece)

    2010-01-15

    The feasibility of utilizing the pre-dosed OSL signal in the estimation of the equivalent dose has been investigated. The results based on (i) the behavior of growth curve, (ii) dose recovery tests and (iii) non-bleachability of reservoir centres, R-centres, suggests that (i) the pre-dosed OSL does not seem to work satisfactorily in dose estimation unlike the pre-dosed 110 deg. C TL emission and (ii) it may not be applicable in case of bleached specimen.

  19. Radiation-induced hypopituitarism is dose-dependent

    Energy Technology Data Exchange (ETDEWEB)

    Littley, M.D.; Shalet, S.M.; Beardwell, C.G.; Robinson, E.L.; Sutton, M.L. (Christie Hospital and Holt Radium Inst., Manchester (UK) Withington Hospital, Manchester (UK))

    1989-09-01

    Radiation-induced hypopituitarism has been studies prospectively for up to 12 years in 251 adult patients treated for pituitary disease with external radiotherapy, ranging in dose from 20 Gy in eight fractions over 11 days to 45 Gy in 15 fractions over 21 days. Ten further patients were studied 2-4 years after whole-body irradiation for haematological malignancies using 12 Gy in six fractions over 3 days and seven patients were studied 3-11 years after whole-brain radiotherapy for a primary brain tumour (30 Gy, eight fractions, 11 days). Five years after treatment, patients who received 20 Gy had an incidence of TSH deficiency of 9% and in patients treated with 35-37 Gy, 40 Gy and 42-45 Gy, the incidence of TSH deficiency increased significantly with increasing dose. A similar relationship was observed for both ACTH and gonadotrophin deficiencies when the 20 Gy group was compared to patients treated with 35-45 Gy. Growth hormone deficiency was universal by 5 years over the dose range 35-45 Gy. In seven patients who were treated with 30 Gy in eight fractions over 11 days, deficiencies were observed at a similar frequency to the 40 Gy group (15 fractions, 21 days). No evidence of pituitary dysfunction was detected in the ten patients who received 12 Gy (six fractions, 3 days). (author).

  20. Irrigation in dose assessments models

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla; Barkefors, Catarina [Studsvik RadWaste AB, Nykoeping (Sweden)

    2004-05-01

    SKB has carried out several safety analyses for repositories for radioactive waste, one of which was SR 97, a multi-site study concerned with a future deep bedrock repository for high-level waste. In case of future releases due to unforeseen failure of the protective multiple barrier system, radionuclides may be transported with groundwater and may reach the biosphere. Assessments of doses have to be carried out with a long-term perspective. Specific models are therefore employed to estimate consequences to man. It has been determined that the main pathway for nuclides from groundwater or surface water to soil is via irrigation. Irrigation may cause contamination of crops directly by e.g. interception or rain-splash, and indirectly via root-uptake from contaminated soil. The exposed people are in many safety assessments assumed to be self-sufficient, i.e. their food is produced locally where the concentration of radionuclides may be the highest. Irrigation therefore plays an important role when estimating consequences. The present study is therefore concerned with a more extensive analysis of the role of irrigation for possible future doses to people living in the area surrounding a repository. Current irrigation practices in Sweden are summarised, showing that vegetables and potatoes are the most common crops for irrigation. In general, however, irrigation is not so common in Sweden. The irrigation model used in the latest assessments is described. A sensitivity analysis is performed showing that, as expected, interception of irrigation water and retention on vegetation surfaces are important parameters. The parameters used to describe this are discussed. A summary is also given how irrigation is proposed to be handled in the international BIOMASS (BIOsphere Modelling and ASSessment) project and in models like TAME and BIOTRAC. Similarities and differences are pointed out. Some numerical results are presented showing that surface contamination in general gives the

  1. Range-Finding Risk Assessment of Inhalation Exposure to Nanodiamonds in a Laboratory Environment

    Directory of Open Access Journals (Sweden)

    Antti J. Koivisto

    2014-05-01

    Full Text Available This study considers fundamental methods in occupational risk assessment of exposure to airborne engineered nanomaterials. We discuss characterization of particle emissions, exposure assessment, hazard assessment with in vitro studies, and risk range characterization using calculated inhaled doses and dose-response translated to humans from in vitro studies. Here, the methods were utilized to assess workers’ risk range of inhalation exposure to nanodiamonds (NDs during handling and sieving of ND powder. NDs were agglomerated to over 500 nm particles, and mean exposure levels of different work tasks varied from 0.24 to 4.96 µg·m−3 (0.08 to 0.74 cm−3. In vitro-experiments suggested that ND exposure may cause a risk for activation of inflammatory cascade. However, risk range characterization based on in vitro dose-response was not performed because accurate assessment of delivered (settled dose on the cells was not possible. Comparison of ND exposure with common pollutants revealed that ND exposure was below 5 μg·m−3, which is one of the proposed exposure limits for diesel particulate matter, and the workers’ calculated dose of NDs during the measurement day was 74 ng which corresponded to 0.02% of the modeled daily (24 h dose of submicrometer urban air particles.

  2. Effect of dose rate and multiple fractions per day on radiation-induced lung damage in mice

    Energy Technology Data Exchange (ETDEWEB)

    Collis, C.H.; Down, J.D. (Institute of Cancer Research, Sutton (UK). Surrey Branch)

    1984-11-01

    Acute single and fractionated exposures were carried out at a fixed dose rate, 1 Gy min/sup -1/, and exposure times therefore ranged from 10 to 28 min. For low dose-rate continuous irradiation, the overall treatment time (2, 4 or 8 h) was kept constant and the various test doses obtained by varying the dose rate. Rates ranged from 11.7 to 18.3 cGy min/sup -1/ for the 2-h exposure, from 6.7 to 11.7 cGy min/sup -1/ for the 4-h exposure, and from 3.7 to 6.7 cGy min/sup -1/ for the 8-h exposure. Results confirmed (a) the marked dose-sparing effect of fractionation even over short time intervals, and (b) that still greater sparing is obtained by low dose-rate irradiation.

  3. Formation of radical cations and dose response of alpha-terthiophene-cellulose triacetate films irradiated by electrons and gamma rays

    CERN Document Server

    Emmi, S S; Ceroni, P; D'Angelantonio, M; Lavalle, M; Fuochi, P G; Kovács, A

    2002-01-01

    The radiation-induced UV-vis spectrum of alpha-terthiophene radical cation in solid is reported. The radical cation initiates an oligomerization in the CTA matrix producing permanently coloured conjugated polarons. The specific net absorbance at 465 nm is linearly related with dose up to 2x10 sup sup 6 sup sup G y, for electrons and gamma irradiation. The decrease of the UV typical absorption (355 nm) and of four IR bands of alpha-terthiophene is linear with dose, as well. Although sensitivity is influenced by dose rate, it turned out that a linear relationship holds between sensitivity and log dose rate, in the range from 2 to 10 sup sup 5 Gy, min. These findings suggest a potential application of the system for dosimetric purposes over a wide range of dose and dose rate.

  4. Implications of Intercellular Signaling for Radiation Therapy: A Theoretical Dose-Planning Study

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, Stephen J., E-mail: stephen.mcmahon@qub.ac.uk [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); McGarry, Conor K. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland (United Kingdom); Butterworth, Karl T. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); O' Sullivan, Joe M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland (United Kingdom); Hounsell, Alan R. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland (United Kingdom); Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom)

    2013-12-01

    Purpose: Recent in vitro results have shown significant contributions to cell killing from signaling effects at doses that are typically used in radiation therapy. This study investigates whether these in vitro observations can be reconciled with in vivo knowledge and how signaling may have an impact on future developments in radiation therapy. Methods and Materials: Prostate cancer treatment plans were generated for a series of 10 patients using 3-dimensional conformal therapy, intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy techniques. These plans were evaluated using mathematical models of survival following modulated radiation exposures that were developed from in vitro observations and incorporate the effects of intercellular signaling. The impact on dose–volume histograms and mean doses were evaluated by converting these survival levels into “signaling-adjusted doses” for comparison. Results: Inclusion of intercellular communication leads to significant differences between the signalling-adjusted and physical doses across a large volume. Organs in low-dose regions near target volumes see the largest increases, with mean signaling-adjusted bladder doses increasing from 23 to 33 Gy in IMRT plans. By contrast, in high-dose regions, there is a small decrease in signaling-adjusted dose due to reduced contributions from neighboring cells, with planning target volume mean doses falling from 74 to 71 Gy in IMRT. Overall, however, the dose distributions remain broadly similar, and comparisons between the treatment modalities are largely unchanged whether physical or signaling-adjusted dose is compared. Conclusions: Although incorporating cellular signaling significantly affects cell killing in low-dose regions and suggests a different interpretation for many phenomena, their effect in high-dose regions for typical planning techniques is comparatively small. This indicates that the significant signaling effects observed in vitro

  5. PABLM: a computer program to calculate accumulated radiation doses from radionuclides in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1980-03-01

    A computer program, PABLM, was written to facilitate the calculation of internal radiation doses to man from radionuclides in food products and external radiation doses from radionuclides in the environment. This report contains details of mathematical models used and calculational procedures required to run the computer program. Radiation doses from radionuclides in the environment may be calculated from deposition on the soil or plants during an atmospheric or liquid release, or from exposure to residual radionuclides in the environment after the releases have ended. Radioactive decay is considered during the release of radionuclides, after they are deposited on the plants or ground, and during holdup of food after harvest. The radiation dose models consider several exposure pathways. Doses may be calculated for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous chronic exposure. A first-year committed dose is calculated as well as an integrated dose for a selected number of years. The equations for calculating internal radiation doses are derived from those given by the International Commission on Radiological Protection (ICRP) for body burdens and MPC's of each radionuclide. The radiation doses from external exposure to contaminated water and soil are calculated using the basic assumption that the contaminated medium is large enough to be considered an infinite volume or plane relative to the range of the emitted radiations. The equations for calculations of the radiation dose from external exposure to shoreline sediments include a correction for the finite width of the contaminated beach.

  6. Validation of dose-response curve of CRCN-NE - Regional Center for Nuclear Sciences from Northeast Brazil for {sup 60}Co: preliminary results; Validacao da curva dose-resposta do CRCN-NE para {sup 60}Co: resultados preliminares

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, Julyanne C.G.; Mendes, Mariana E.; Hwang, Suy F.; Lima, Fabiana F. [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Santos, Neide, E-mail: july_cgm@yahoo.com.br [Universidade Federal de Pernambuco (CCB/UFPE), Recife, PE (Brazil). Departamento de Genetica

    2014-07-01

    The cytogenetic study has the chromosomal alterations as biomarkers in absorbed dose estimation by the body of individuals involved in exposure to ionizing radiation by interpreting a dose response calibration curve. Since the development of the technique to the analysis of data, you can see protocol characteristics, leading the International Atomic Energy Agency indicate that any laboratory with intention to carry out biological dosimetry establish their own calibration curves. The Biological Dosimetry Laboratory of the Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN), Brazil, recently established the calibration curve related to gamma radiation ({sup 60}Co). Thus, this work aimed to start the validation of this calibration curve from samples of three different blood donors which were irradiated with an absorbed known single dose of 1 Gy. Samples were exposed to {sup 60}Co source (Glaucoma 220) located in the Department of Nuclear Energy (DEN/UFPE). After fixation with methanol and acetic acid and 5% Giemsa staining, the frequency of chromosomal alterations (dicentric chromosomes, acentric rings and fragments) were established from reading of 500 metaphases per sample and doses were estimated using Dose Estimate program. The results showed that, using the dose-response curve calibration for dicentrics, the dose absorbed estimated for the three individuals ranged from 0.891 - 1,089Gy, taking into account the range of confidence of 95%. By using the dose-response curve for dicentrics added to rings and for the same interval of confidence the doses ranged from 0,849 - 1,081Gy. Thus, the estimative encompassed known absorbed dose the three individuals in confidence interval of 95%. These preliminary results seems to demonstrate that dicentric dose-response curves and dicentrics plus rings established by CRCN-NE / CNEN are valid for dose estimation in exposed individuals. This validation will continue with samples from different individuals at different doses.

  7. The real-life number of neonatal doses of Bacille Calmette-Guérin vaccine in a 20-dose vial

    Science.gov (United States)

    Schaltz-Buchholzer, Frederik; Frankel, Hannah Nørtoft; Benn, Christine Stabell

    2017-01-01

    ABSTRACT Background: Reducing vaccine wastage is important. Bacille Calmette-Guérin (BCG) vaccine is produced in vials of 20 infant doses. The reconstituted vaccine is discarded after 4–6 hours. Therefore, to reduce vaccine wastage, a 20-dose vial of BCG is often only opened if at least 10–12 infants are present, jeopardising BCG vaccination coverage and timely vaccination. We observed that nurses were not able to withdraw 20 doses from the vials and aimed to quantify how many doses could be obtained from these vials by experienced nurses under real-life circumstances. Methods: At the maternity ward of the national hospital in Guinea-Bissau, since 2002 the same two nurses have been vaccinating all eligible children with BCG before discharge. During a month in 2015, within a randomised trial comparing BCG-Denmark and BCG-Russia, we registered how many doses the nurses were able to withdraw from the two types of vaccine vials. Results: The median number of doses which it was possible to withdraw from the vials was 13 (range 11–17): 13 (11–16) for BCG-Denmark (based on 39 vials) and 15 (12–17) for BCG-Russia (based on 29 vials). Conclusions: In real life, experienced nurses could only obtain 13–15 doses from the 20-dose vials. Thus, vaccine wastage is much lower than assumed. Adjusting practice to the real-life number of doses would immediately suggest vials should be opened if 7 rather than 10 infants are present. As other studies have indicated that BCG may have beneficial non-specific effects on overall mortality, the potential gain by opening a 20-dose vial even for one child may be considerable. PMID:28169606

  8. Prospective ECG triggering versus low-dose retrospective ECG-gated 128-channel CT coronary angiography: comparison of image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Q.; Yin, Y.; Hua, X.; Zhu, R.; Hua, J. [Department of Radiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Xu, J., E-mail: xujianr@hotmail.co [Department of Radiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China)

    2010-10-15

    Aim: To evaluate image quality and radiation dose for 128-detector prospective electrocardiogram (ECG)-gated computed tomography coronary angiography (CTCA) compared with a low-dose retrospective ECG-gated imaging protocol. Materials and methods: Thirty-one and 47 patients suspected of having coronary artery disease were enrolled into groups examined using prospective and low-dose retrospective ECG-gated CT protocols respectively. All examinations were performed on a 128-detector CT system (Definition AS, Siemens Healthcare, Forchheim, Germany). Prospective CTCA was performed using following parameters: tube voltage 100 kV; tube current 205 mAs; centre of acquisition window 70% of the RR interval. The tube current for low-dose retrospective ECG-gated CTCA was full dose during 40-70% of the RR interval and partial dose for the rest of RR interval. The pitch varied between 0.2 and 0.5 depending on heart rate and patient size. Image quality of coronary arteries was evaluated using a four-point grading scale. The signal-to-noise ratios (SNRs) of enhanced arteries and myocardium were also measured, corresponding contrast-to-noise ratios (CNRs) were calculated, and the radiation doses received were recorded. Results: There was a significant difference in the image quality scores between the retrospective and prospective gating protocols (Chi-square = 15.331, p = 0.009). There was no significant difference between the SNRs of the contrasted artery and myocardium in these two groups, but the CNRs were increased in the prospective group. The mean radiation dose of prospective gating group was 2.71 {+-} 0.67 mSv (range, 1.67-3.59 mSv), which was significantly lower than that of the retrospective group (p < 0.001). Conclusion: Prospective CT angiography can achieve lower radiation dose than that of low-dose retrospective CT angiography, with preserved image quality.

  9. Predictions of Radionuclide Dose Rates from Sellafield Discharges using a Compartmental Model

    Energy Technology Data Exchange (ETDEWEB)

    McCubbin, D.; Leonard, K.S.; Gurbutt, P.A.; Round, G.D

    1998-07-01

    A multi-compartmental model (MIRMAID) of the Irish Sea has been used to predict radionuclide dose rates to the public, via seafood consumption pathways. Radionuclides originate from the authorised discharge of low level liquid effluent from the BNF plc nuclear reprocessing plant at Sellafield. The model has been used to predict combined annual doses, the contribution of dose from individual radionuclides and to discriminate dose between present day and historic discharges. An assessment has been carried out to determine the sensitivity of the predictions to changes in various model parameters. The predicted dose to the critical group from seafood consumption in 1995 ranged from 37-96 {mu}Sv of which the majority originated from current discharges. The contribution from {sup 99}Tc was predicted to have increased from 0.2% in 1993 up to 20% in 1995. The predicted contribution of Pu and Am from historic discharges is underestimated in the model. (author)

  10. IMRT in a pregnant patient: how to reduce the fetal dose?

    DEFF Research Database (Denmark)

    Josipovic, Mirjana; Nyström, Håkan; Kjaer-Kristoffersen, Flemming

    2008-01-01

    was the greatest contributor to the peripheral dose. Therefore, the shielding used for the IMRT treatment of our patient could also be used when shielding in conventional radiotherapy. It is important for a radiation therapy department to be prepared for treatment of a pregnant patient to shield the fetus......The purpose of our study was to find a solution for fetal dose reduction during head-and-neck intensity modulated radiation therapy (IMRT) of a pregnant patient. The first step was optimization of the IMRT treatment plan with as few monitor units (MUs) as possible, while maintaining an acceptable...... peripheral dose was divided into leakage, and internal and collimator scatter, to find the degree to which each component influences the peripheral dose to build an appropriate shield. Collimator scatter was the greatest contributor to the peripheral dose throughout the range of the growing fetus. A shield...

  11. Design of a total-dose radiation hardened monolithic CMOS DC-DC boost converter

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhi; Yu Hongbo; Liu Youbao [Xi' an Institute of Microelectronics Technology, Xi' an 710054 (China); Ning Hongying, E-mail: liuzhi6048@126.com [Xi' an University of Technology, Xi' an 710048 (China)

    2011-07-15

    This paper presents the design and implementation of a monolithic CMOS DC-DC boost converter that is hardened for total dose radiation. In order to improve its radiation tolerant abilities, circuit-level and device-level RHBD (radiation-hardening by design) techniques were employed. Adaptive slope compensation was used to improve the inherent instability. The H-gate MOS transistors, annular gate MOS transistors and guard rings were applied to reduce the impact of total ionizing dose. A boost converter was fabricated by a standard commercial 0.35 {mu}m CMOS process. The hardened design converter can work properly in a wide range of total dose radiation environments, with increasing total dose radiation. The efficiency is not as strongly affected by the total dose radiation and so does the leakage performance. (semiconductor integrated circuits)

  12. SEMICONDUCTOR TECHNOLOGY: An efficient dose-compensation method for proximity effect correction

    Science.gov (United States)

    Ying, Wang; Weihua, Han; Xiang, Yang; Renping, Zhang; Yang, Zhang; Fuhua, Yang

    2010-08-01

    A novel simple dose-compensation method is developed for proximity effect correction in electron-beam lithography. The sizes of exposed patterns depend on dose factors while other exposure parameters (including accelerate voltage, resist thickness, exposing step size, substrate material, and so on) remain constant. This method is based on two reasonable assumptions in the evaluation of the compensated dose factor: one is that the relation between dose factors and circle-diameters is linear in the range under consideration; the other is that the compensated dose factor is only affected by the nearest neighbors for simplicity. Four-layer-hexagon photonic crystal structures were fabricated as test patterns to demonstrate this method. Compared to the uncorrected structures, the homogeneity of the corrected hole-size in photonic crystal structures was clearly improved.

  13. Loss of reirradiation tolerance in the kidney with increasing time after single or fractionated partial tolerance doses

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, F.A.; Oussoren, Y.; Tinteren, H. van (Nederlands Kanker Inst. ' Antoni van Leeuwenhoekhuis' , Amsterdam (Netherlands)); Bentzen, S.M. (Danish Cancer Society, Aarhus (Denmark). Dept. of Experimental Clinical Oncology)

    1994-08-01

    The aim was to determine the influence of initial dose and dose per fractionation on retreatment tolerance of the kidney. Mouse kidney was bilaterally irradiated with various single or fractionated X-ray doses equivalent to about 12-70% of a defined response dose. The mice were retreated with a range of single dose after 2 or 26 weeks. The development of functional kidney damage was followed by monthly testing of clearance of [sup 51]CrEDTA until the animals expressed overt renal dysfunction (maximum follow-up 70 weeks after retreatment). Doses required to give a 50% incidence of damage (RD[sub 50]) were compared for animals that had received previous single dose or fractionated irradiations, or that were previously unirradiated. Multivariate analysis of time to expression of renal damage (latency) was also done using the Cox Proportional Hazards model. (author).

  14. Gemcitabine radiosensitization after high-dose samarium for osteoblastic osteosarcoma.

    Science.gov (United States)

    Anderson, Peter M; Wiseman, Gregory A; Erlandson, Linda; Rodriguez, Vilmarie; Trotz, Barbara; Dubansky, Stephen A; Albritton, Karen

    2005-10-01

    Osteoblastic metastases and osteosarcoma can avidly concentrate bone-seeking radiopharmaceuticals. We sought to increase effectiveness of high-dose (153)Samarium ethylenediaminetetramethylenephosphonate (153Sm-EDTMP, Quadramet) on osteosarcomas using a radiosensitizer, gemcitabine. Fourteen patients with osteoblastic lesions were treated with 30 mCi/kg 153Sm-EDTMP. Gemcitabine was administered 1 day after samarium infusion. Residual total body radioactivity was within the safe range of 1 year, there have been no durable responses. Thus, although high-dose 153Sm-EDTMP + gemcitabine has moderate palliative activity (improved pain; radiologic responses) in this poor-risk population, additional measures of local and systemic control are required for durable control of relapsed osteosarcoma with osteoblastic lesions. The strategy of radioactive drug binding to a target followed by a radiosensitizer may provide synergy and improved response rate.

  15. HMX: Analysis of Dosing Formulations Used in Acute, Sub-Acute and Sub-Chronic Toxicity Studies.

    Science.gov (United States)

    1985-07-31

    finding studies were prepared in 0.5% low viscosity carboxymethylcellulose (CMC). Aliquots for analysis were removed at intervals during the dosing of each...diets prepared for toxicity studies by reverse phase HPLC. Dietary preparations were stable for at least 21 days when stored in ambient conditions in...the dark. Almost all the dosing solutions and diets prepared for a range of studies were shown to contain dose to the desired concentrations of HMX

  16. Dosimetric and Clinical Analysis of Spatial Distribution of the Radiation Dose in Gamma Knife Radiosurgery for Vestibular Schwannoma

    Energy Technology Data Exchange (ETDEWEB)

    Massager, Nicolas, E-mail: nmassage@ulb.ac.be [Gamma Knife Center, Hospital Erasme, Brussels (Belgium); Neurosurgery-Department, Hospital Erasme, Brussels (Belgium); Lonneville, Sarah [Gamma Knife Center, Hospital Erasme, Brussels (Belgium); Neurosurgery-Department, Hospital Erasme, Brussels (Belgium); Delbrouck, Carine [Gamma Knife Center, Hospital Erasme, Brussels (Belgium); ENT-Department, Hospital Erasme, Brussels (Belgium); Benmebarek, Nadir [Gamma Knife Center, Hospital Erasme, Brussels (Belgium); Neurosurgery-Department, Hospital Erasme, Brussels (Belgium); Desmedt, Francoise [Gamma Knife Center, Hospital Erasme, Brussels (Belgium); Radiophysics, Bordet Institute, Brussels (Belgium); Devriendt, Daniel [Gamma Knife Center, Hospital Erasme, Brussels (Belgium); Radiotherapy, Bordet Institute, Brussels (Belgium)

    2011-11-15

    Objectives: We investigated variations in the distribution of radiation dose inside (dose inhomogeneity) and outside (dose falloff) the target volume during Gamma Knife (GK) irradiation of vestibular schwannoma (VS). We analyzed the relationship between some parameters of dose distribution and the clinical and radiological outcome of patients. Methods and Materials: Data from dose plans of 203 patients treated for a vestibular schwannoma by GK C using same prescription dose (12 Gy at the 50% isodose) were collected. Four different dosimetric indexes were defined and calculated retrospectively in all plannings on the basis of dose-volume histograms: Paddick conformity index (PI), gradient index (GI), homogeneity index (HI), and unit isocenter (UI). The different measures related to distribution of the radiation dose were compared with hearing and tumor outcome of 203 patients with clinical and radiological follow-up of minimum 2 years. Results: Mean, median, SD, and ranges of the four indexes of dose distribution analyzed were calculated; large variations were found between dose plans. We found a high correlation between the target volume and PI, GI, and UI. No significant association was found between the indexes of dose distribution calculated in this study and tumor control, tumor volume shrinkage, hearing worsening, loss of functional hearing, or complete hearing loss at last follow-up. Conclusions: Parameters of distribution of the radiation dose during GK radiosurgery for VS can be highly variable between dose plans. The tumor and hearing outcome of patients treated is not significantly related to these global indexes of dose distribution inside and around target volume. In GK radiosurgery for VS, the outcome seems more to be influenced by local radiation dose delivered to specific structures or volumes than by global dose gradients.

  17. Simple benchmark for complex dose finding studies.

    Science.gov (United States)

    Cheung, Ying Kuen

    2014-06-01

    While a general goal of early phase clinical studies is to identify an acceptable dose for further investigation, modern dose finding studies and designs are highly specific to individual clinical settings. In addition, as outcome-adaptive dose finding methods often involve complex algorithms, it is crucial to have diagnostic tools to evaluate the plausibility of a method's simulated performance and the adequacy of the algorithm. In this article, we propose a simple technique that provides an upper limit, or a benchmark, of accuracy for dose finding methods for a given design objective. The proposed benchmark is nonparametric optimal in the sense of O'Quigley et al. (2002, Biostatistics 3, 51-56), and is demonstrated by examples to be a practical accuracy upper bound for model-based dose finding methods. We illustrate the implementation of the technique in the context of phase I trials that consider multiple toxicities and phase I/II trials where dosing decisions are based on both toxicity and efficacy, and apply the benchmark to several clinical examples considered in the literature. By comparing the operating characteristics of a dose finding method to that of the benchmark, we can form quick initial assessments of whether the method is adequately calibrated and evaluate its sensitivity to the dose-outcome relationships.

  18. An updated dose assessment for Rongelap Island

    Energy Technology Data Exchange (ETDEWEB)

    Robison, W.L.; Conrado, C.L.; Bogen, K.T.

    1994-07-01

    We have updated the radiological dose assessment for Rongelap Island at Rongelap Atoll using data generated from field trips to the atoll during 1986 through 1993. The data base used for this dose assessment is ten fold greater than that available for the 1982 assessment. Details of each data base are presented along with details about the methods used to calculate the dose from each exposure pathway. The doses are calculated for a resettlement date of January 1, 1995. The maximum annual effective dose is 0.26 mSv y{sup {minus}1} (26 mrem y{sup {minus}1}). The estimated 30-, 50-, and 70-y integral effective doses are 0.0059 Sv (0.59 rem), 0.0082 Sv (0.82 rem), and 0.0097 Sv (0.97 rem), respectively. More than 95% of these estimated doses are due to 137-Cesium ({sup 137}Cs). About 1.5% of the estimated dose is contributed by 90-Strontium ({sup 90}Sr), and about the same amount each by 239+240-Plutonium ({sup 239+240}PU), and 241-Americium ({sup 241}Am).

  19. Low doses effects and gamma radiations low dose rates; Les effets des faibles doses et des faibles debits de doses de rayons gamma

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D. [Institut Curie, CNRS UMR 2027, 75 - Paris (France)

    1999-07-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  20. Cytarabine dose for acute myeloid leukemia

    NARCIS (Netherlands)

    B. Löwenberg (Bob); T. Pabst (Thomas); E. Vellenga (Edo); W. van Putten; H.C. Schouten (Harry); C. Graux (Carlos); A. Ferrant (Augustin); P. Sonneveld (Pieter); B.J. Biemond (Bart); A. Gratwohl (Alois); G.E. de Greef (Georgine); L.F. Verdonck (Leo); M.R. Schaafsma (Martijn); M. Gregor (Michael); M. Theobald; U. Schanz (Urs); J. Maertens (Johan); G.J. Ossenkoppele (Gert)

    2011-01-01

    textabstractBACKGROUND: Cytarabine (ara-C) is an important drug in the treatment of acute myeloid leukemia (AML). High-dose cytarabine (2000 to 3000 mg per square meter of body-surface area) is toxic but results in higher rates of relapse-free survival than does the conventional dose of 100 to 400 m

  1. Cytarabine Dose for Acute Myeloid Leukemia

    NARCIS (Netherlands)

    Lowenberg, Bob; Pabst, Thomas; Vellenga, Edo; van Putten, Wim; Schouten, Harry C.; Graux, Carlos; Ferrant, Augustin; Sonneveld, Pieter; Biemond, Bart J.; Gratwohl, Alois; de Greef, Georgine E.; Verdonck, Leo F.; Schaafsma, Martijn R.; Gregor, Michael; Theobald, Matthias; Schanz, Urs; Maertens, Johan; Ossenkoppele, Gert J.

    2011-01-01

    BACKGROUND Cytarabine (ara-C) is an important drug in the treatment of acute myeloid leukemia (AML). High-dose cytarabine (2000 to 3000 mg per square meter of body-surface area) is toxic but results in higher rates of relapse-free survival than does the conventional dose of 100 to 400 mg per square

  2. Dose optimisation in single plane interstitial brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Hellebust, Taran Paulsen; Honoré, Henriette Benedicte;

    2006-01-01

    BACKGROUND AND PURPOSE: Brachytherapy dose distributions can be optimised       by modulation of source dwell times. In this study dose optimisation in       single planar interstitial implants was evaluated in order to quantify the       potential benefit in patients. MATERIAL AND METHODS: In 14...

  3. Dose equivalent measurements in mixed and time varying radiation fields around high-energy accelerators

    CERN Document Server

    Mayer, S

    2003-01-01

    Measurements of ambient dose equivalent in stray radiation fields behind the shielding of high-energy accelerators are a challenging task. Several radiation components (photons, neutrons, charged particles, muons, etc.), spanning a wide range of energies, contribute to the total dose equivalent. The radiation fields are produced by beam losses interacting with structural material during the acceleration or at the ejection to experimental areas or other accelerators. The particle beam is usually not continuous but separated in "bunches" or pulses, which further complicates dose measurements at high-energy accelerators. An ideal dosimeter for operational radiation protection should measure dose equivalent for any composition of radiation components in the entire energy range even when the field is strongly pulsed. The objective of this work was to find out if an ionisation chamber operated as a "recombination chamber" and a TEPC instrument using the variance-covariance method ("Sievert Instrument") are capable ...

  4. HIGH DOSE FRACTION RADIOTHERAPY FOR MUCOSAL MALIGNANT MELANOMA OF THE HEAD AND NECK

    Institute of Scientific and Technical Information of China (English)

    Liu Xiuying; Li Huiling; Zheng Tianrong; Lin Xiangsong

    1998-01-01

    Objective:To evatuate the results of high dose fraction radiotherapy for mucosal malignant melanoma of the head and neck (HNMM). Methods: From 1984-1994, 35 patients with HNMM were enrolled in this study. Among them, 27 cases localized to the nasal cavity or para-nasal sinus, 8 to the oral cavity. All patients received high dose fraction radiotherapy (6--8 Gy/fraction)with the total dose ranged from 40 to 60 Gy. Results: The minimum follow-up was 2 years (ranged 2-7 years). The overall 3- and 5-year survival rate was 45.7% and 24%,respectively. Conclusion: High dose fraction radiotherapy is effective for local control of HNMM.

  5. Measurement of neutron dose equivalent to proton therapy patients outside of the proton radiation field

    CERN Document Server

    Yan, X; Köhler, A; Newhauser, W D

    2002-01-01

    Measurements of neutron dose equivalent values and neutron spectral fluences close to but outside of the therapeutic proton radiation field are presented. The neutron spectral fluences were determined at five locations with Bonner sphere measurements and established by unfolding techniques. More than 50 additional neutron dose equivalent values were measured with LiI and BF sub 3 thermal neutron detectors surrounded by a 25 cm polyethylene moderating sphere. For a large-field treatment, typical values of neutron dose equivalent per therapeutic proton absorbed dose, H/D, at 50 cm distance from isocenter, range from 1 mSv/Gy (at 0 deg.with respect to the proton beam axis) to 5 mSv/Gy (at 90 deg.). Experiments reveal that H/D varies significantly with the treatment technique, e.g., patient orientation, proton beam energy, and range-modulation. The relative uncertainty in H/D values is approximately 40% (one standard deviation).

  6. Time-Dependent Neutron and Photon Dose-Field Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, Hasani Omar [Georgia Inst. of Technology, Atlanta, GA (United States)

    2005-08-01

    A unique tool is developed that allows the user to model physical representations of complicated glovebox facilities in two dimensions and determine neutral-particle flux and ambient dose-equivalent fields throughout that geometry. The Pandemonium code, originally designed to determine flux and dose-rates only, is improved to include realistic glovebox geometries, time-dependent source and detector positions, time-dependent shielding thickness calculations, time-integrated doses, a representative criticality accident scenario based on time-dependent reactor kinetics, and more rigorous photon treatment. A primary benefit of this work has been an extensive analysis and improvement of the photon model that is not limited to the application described in this thesis. The photon model has been extended in energy range to 10 MeV to include photons from fission and new photon buildup factors have been included that account for the effects of photon buildup at slant-path thicknesses as a function of angle, where the mean free path thickness has been preserved. The overall system of codes is user-friendly and it is directly applicable to facilities such as the plutonium facility at Los Alamos National Laboratory, where high-intensity neutron and photon emitters are regularly used. The codes may be used to determine a priori doses for given work scenarios in an effort to supply dose information to process models which will in turn assist decision makers on ensuring as low as reasonably achievable (ALARA) compliance. In addition, coupling the computational results of these tools with the process model visualization tools will help to increase worker safety and radiological safety awareness.

  7. Dose volume analysis in brachytherapy and stereotactic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Tozer-Loft, S.M

    2000-12-01

    A brief introduction to three branches of radiotherapy is given: interstitial brachytherapy, external beam megavoltage radiotherapy, and stereotactic radiosurgery. The current interest in issues around conformity, uniformity and optimisation is explained in the light of technical developments in these fields. A novel method of displaying dose-volume information, which mathematically suppresses the inverse-square law, as first suggested by L.L. Anderson for use in brachytherapy is explained in detail, and some improvements proposed. These 'natural' histograms are extended to show the effects of real point sources which do not exactly follow the inverse-square law, and to demonstrate the in-target dose-volume distribution, previously unpublished. The histograms are used as a way of mathematically analysing the properties of theoretical mono-energetic radionuclides, and for demonstrating the dosimetric properties of a potential new brachytherapy source (Ytterbium-169). A new modification of the Anderson formalism is then described for producing Anderson Inverse-Square Shifted (AISS) histograms for the Gamma Knife, which are shown to be useful for demonstrating the quality of stereotactic radiosurgery dose distributions. A study is performed analysing the results of Gamma Knife treatments on 44 patients suffering from a benign brain tumour (acoustic neuroma). Follow-up data is used to estimate the volume shrinkage or growth of each tumour, and this measure of outcome is compared with a range of figures of merit which express different aspects of the quality of each dose distributions. The results are analysed in an attempt to answer the question: What are the important features of the dose distribution (conformality, uniformity, etc) which show a definite relationship with the outcome of the treatment? Initial results show positively that, when Gamma Knife radiosurgery is used to treat acoustic neuroma, some measures of conformality seem to have a surprising

  8. Influence of the dose rate in the PVDF degradation processes

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Adriana S.M.; Pereira, Claubia, E-mail: adriananuclear@yahoo.com.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Gual, Maritza R., E-mail: maritzargual@gmail.com [Instituto Superior de Tecnologias y Ciencias Aplicadas (InsTEC), Departamento de Ingenieria Nuclear, La Habana (Cuba); Faria, Luiz O., E-mail: farialo@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Modification in polymeric structure of plastic material can be brought either by conventional chemical means or by exposure to ionization radiation from gamma radioactive sources or highly accelerated electrons. The prominent drawbacks of chemical cross-linking typically involve the generation by products such as peroxide degradation. Radiation cross-linking technologies include: application in cable and wire, application in rubber tyres, radiation vulcanization of rubber latex, polymer recycling, hydrogels etc. The degradation of PVDF polymer exposed to gamma irradiation in oxygen atmosphere in high dose rate has been studied and compared to obtained under smaller dose rates. The samples were irradiated with a Co-60 source at constant dose rate (12 kGy/h and 2,592 kGy/h), with doses ranging from 100 kGy to 3,000 kGy. Different dose rate determine the prevalence of the processes being evaluated in this work by thermal measurements and infrared spectroscopy. It is shown that the degradation processes involve chain scissions and crosslink formation. The formation of oxidation products was shown at the surface of the irradiated film. The FTIR data revealed absorption bands at 1730 and 1853 cm{sup -1} which were attributed to the stretch of C=O bonds, at 1715 and 1754 cm{sup -1} which were attributed to the C=C stretching and at 3518, 3585 and 3673 cm{sup -1} which were associated with NH stretch of NH{sub 2} and OH. Thermogravimetric studies reveal that the irradiation induced the increasing residues and decrease of the temperature of the decomposition start. (author)

  9. Doses of Coronary Study in 64 Channel Multi-Detector Computed Tomography : Reduced Radiation Dose According to Varity of Examnination Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moon Chan [Dept. of Diagnostic Radiology, Samsung Medical Center, Seoul (Korea, Republic of)

    2009-09-15

    To compare radiation dose for coronary CT angiography (CTA) obtained with 6 examination protocols such as a retrospectively ECG gated helical scan, a prospectively ECG gated sequential scan, low kVp technique, and cardiac dose modulation technique. Coronary CTA was performed by using 6 current clinical protocols to evaluate effective dose and organ dose in primary beam area with anthropomorphic female phantom and glass dosimetric system in 64 channel multi-detector CT. After acquiring topograms of frontal and lateral projection with 80 kVp and 10 mA, main coronary scan was done with 0.35 sec tube rotation time, 40 mm collimation (0.625 mm x 64 ea), small scan field of view (32 cm diameter), 105 mm scan length. Heart beat rate of phantom was maintained 60 bpm in ECG gating. In constant mAs technique 120 kVp, 600 mA was used, and 100 kVp for low kVp technique. In a retrospectively ECG gated helical CT technique 0.22 pitch was used, peak mA (600 mA) was adopted in range of 40-80% of R-R interval and 120 mA (80% reduction) in others with cardiac dose modulation. And 210 mAs was used without cardiac dose modulation. In a prospectively ECG gated sequential CT technique data were acquired at 75% R-R interval (middle diastolic phase in cardiac cycle), and 120 msec additional padding of the tube-on time was used. For effective dose calculation region specific conversion factor of dose length product in thorax was used, which was recommended by EUR 16262. The mean effective dose for conventional coronary CTA without cardiac dose modulation in a retrospectively ECG gated helical scan was 17.8 mSv, and mean organ dose of heart was 103.8 mGy. With low kVp and cardiac dose modulation the mean effective dose showed 54.5% reduction, and heart dose showed 52.3% reduction, compared with that of conventional coronary CTA. And at the sequential scan(SnapShot pulse mode) under prospective ECG gating the mean effective dose was 4.9 mSv, this represents an 72.5% reduction compared with

  10. Terrestrial gamma radiation dose measurement and health hazard along river Alaknanda and Ganges in India

    Directory of Open Access Journals (Sweden)

    Prerna Sharma

    2014-10-01

    Full Text Available Direct measurement of absorbed dose rate in air due to exposure from outdoor terrestrial γ radiation and assessment of consequent public health hazard continues to be of environmental and public concern. Present study was aimed to establish a baseline data of annual effective dose and to assess the associated health risk from outdoor terrestrial γ radiation along the river Alaknanda and Ganges of India. Terrestrial γ radiation exposure doses (excluding cosmic radiation were measured using a Plastic Scintillation Counter. Absorbed dose rates in air were measured at eight designated locations from Nandprayag to Allahabad along the river. From the average absorbed dose rates, annual effective dose (AED and excess life time cancer risks (ELCR were calculated by standard method. Results showed that absorbed dose rates in air ranged between 81.33 ± 2.34 nSv.h−1 and 144 ± 5.77 nSv.h−1 and calculated AED ranged between 0.10 ± 0.012 mSv.y−1 to 0.18 ± 0.007 mSv.y−1 at the designated locations along these rivers. Calculated ELCR were found in the range of 0.375 × 10−3 to 0.662 × 10−3. Present study measured the outdoor γ radiation levels along the rivers. The calculated annual effective doses and life time cancer risk were found higher than the world average value at higher altitudes. But the measured doses and calculated risks at plains were close to that of reported average values.

  11. Whatever happened to cassette-dosing pharmacokinetics?

    Science.gov (United States)

    Manitpisitkul, Prasarn; White, Ronald E

    2004-08-01

    Cassette dosing is a procedure that is used for rapidly assessing the pharmacokinetics of a series of discovery drug candidates by dosing a mixture of compounds rather than a single compound. Cassette dosing has advantages and disadvantages associated with its use, which leads to controversy about how and if it should be used. To assess the current practices of the pharmaceutical industry regarding cassette dosing, a survey of several pharmaceutical companies was conducted. Analysis of the survey revealed that opinion on this subject is divided within the pharmaceutical industry. In addition, it was determined that approximately only a half of those companies that perform in vivo pharmacokinetic screening use cassette dosing for this purpose.

  12. Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures

    Energy Technology Data Exchange (ETDEWEB)

    Safari, M. J.; Wong, J. H. D.; Ng, K. H., E-mail: ngkh@um.edu.my [Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia and University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Jong, W. L. [Clinical Oncology Unit, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Cutajar, D. L.; Rosenfeld, A. B. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2015-05-15

    Purpose: The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. Methods: The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualities were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. Results: The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (±1%), field size (±1%), frame rate (±3%), or beam energy (±5%). The detector angular dependence was within ±5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ±3%. Conclusions: The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.

  13. [Calculation of the first dose of amikacine: evaluation of the current dosage recommendations].

    Science.gov (United States)

    Jean-Bart, E; Debeurme, G; Ducher, M; Bourguignon, L

    2013-01-01

    Aminoglycosides, including amikacin, are antibiotics with major interest in the management of sepsis, but with a high potential toxicity. The French national recommendations revised in 2011 recommend a dose of amikacin ranging from 15 to 30 mg/kg. The objective was to assess if such a dose interval allows reaching the efficiency target concentrations of 64 mg/L without exceeding the toxic threshold of 2.5mg/L. From a cohort of 100 patients treated with amikacin, the individual pharmacokinetic parameters were estimated using pharmacokinetic software (MM-USCPACK). Peak and residual concentrations obtained after simulated doses ranging from 15 to 30 mg/kg were estimated and compared with the effective and toxic thresholds. The optimum dose to achieve precisely the efficiency target was calculated for each patient. Patients studied had a mean age of 79 years, mean weight of 58 kg, and mean creatinine clearance of 45 mL/min. The dose of 30 mg/kg allows the achievement of an effective peak in 98.7% of patients, but led to a potentially toxic through for 72.4% of them. The optimal dose was at mean of 1264 mg, significantly different than doses calculated with weight (P<0.0001). A weak correlation was found between weight and the optimal dose. A fixed dose of 30 mg/kg seems to be effective for most patients, but often excessive and leads to a toxic residual to 72% of patients, whereas 15 mg/kg was insufficient for most patients. The low correlation between optimal dose and patient weight shows that weight does not explain fully the interindividual variability.

  14. SU-E-T-238: Monte Carlo Estimation of Cerenkov Dose for Photo-Dynamic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, O; Price, R; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States); Eldib, A [Fox Chase Cancer Center, Philadelphia, PA (United States); University Cairo (Egypt); Mora, G [de Lisboa, Codex, Lisboa (Portugal)

    2014-06-01

    Purpose: Estimation of Cerenkov dose from high-energy megavoltage photon and electron beams in tissue and its impact on the radiosensitization using Protoporphyrine IX (PpIX) for tumor targeting enhancement in radiotherapy. Methods: The GEPTS Monte Carlo code is used to generate dose distributions from 18MV Varian photon beam and generic high-energy (45-MV) photon and (45-MeV) electron beams in a voxel-based tissueequivalent phantom. In addition to calculating the ionization dose, the code scores Cerenkov energy released in the wavelength range 375–425 nm corresponding to the pick of the PpIX absorption spectrum (Fig. 1) using the Frank-Tamm formula. Results: The simulations shows that the produced Cerenkov dose suitable for activating PpIX is 4000 to 5500 times lower than the overall radiation dose for all considered beams (18MV, 45 MV and 45 MeV). These results were contradictory to the recent experimental studies by Axelsson et al. (Med. Phys. 38 (2011) p 4127), where Cerenkov dose was reported to be only two orders of magnitude lower than the radiation dose. Note that our simulation results can be corroborated by a simple model where the Frank and Tamm formula is applied for electrons with 2 MeV/cm stopping power generating Cerenkov photons in the 375–425 nm range and assuming these photons have less than 1mm penetration in tissue. Conclusion: The Cerenkov dose generated by high-energy photon and electron beams may produce minimal clinical effect in comparison with the photon fluence (or dose) commonly used for photo-dynamic therapy. At the present time, it is unclear whether Cerenkov radiation is a significant contributor to the recently observed tumor regression for patients receiving radiotherapy and PpIX versus patients receiving radiotherapy only. The ongoing study will include animal experimentation and investigation of dose rate effects on PpIX response.

  15. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico.

    Science.gov (United States)

    Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia

    2015-09-30

    Determining ionizing radiation in a geographic area serves to assess its effects on a population's health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h(-1). At the same sites, 48 soil samples were taken to obtain the activity concentrations of (226)Ra, (232)Th and (40)K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h(-1). Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg(-1), for (226)Ra, (232)Th and (40)K, respectively. From the analysis, the spatial distribution of (232)Th, (226)Ra and (40)K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize.

  16. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico

    Directory of Open Access Journals (Sweden)

    Sergio Luevano-Gurrola

    2015-09-01

    Full Text Available Determining ionizing radiation in a geographic area serves to assess its effects on a population’s health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h−1. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226Ra, 232Th and 40K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h−1. Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg−1, for 226Ra, 232Th and 40K, respectively. From the analysis, the spatial distribution of 232Th, 226Ra and 40K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize.

  17. Assessment of individual dose utilization vs. physician prescribing recommendations for recombinant activated factor VII (rFVIIa) in paediatric and adult patients with congenital haemophilia and alloantibody inhibitors (CHwI): the Dosing Observational Study in Hemophilia (DOSE).

    Science.gov (United States)

    Gruppo, R A; Kessler, C M; Neufeld, E J; Cooper, D L

    2013-07-01

    Recent data from the Dosing Observational Study in Hemophilia diary study has described home treatment with recombinant activated factor VII (rFVIIa) in congenital haemophilia with inhibitors (CHwI). The current analysis compares prescribed and patient/caregiver-reported rFVIIa administration in paediatric and adult CHwI patients in this study. Patients with ≥ 4 bleeding episodes within a 3-month period prescribed rFVIIa as first-line therapy for bleeding episodes were eligible. Patients/caregivers completed a diary for ≥ 90 days or until the patient experienced four bleeds. Initial, total and mean rFVIIa doses reported for each bleeding episode were calculated and compared with the physician-prescribed doses. Of 52 enrolled patients (25 children; 27 adults), 39 (75%) completed the study. Children and adults had similar mean durations of bleeding episodes. Both patient groups were administered higher initial rFVIIa doses for joint bleeds than prescribed: median (range) 215.2 (74.1-400.0) mcg kg(-1) vs. 200.0 (61.0-270.0) mcg kg(-1) for children, and 231.3 (59.3-379.7) mcg kg(-1) vs. 123.0 (81.0-289.0) mcg kg(-1) for adults. The median infused dose for joint bleeds was higher in adults than children (175.2 vs. 148.0 mcg kg(-1) ), but children received significantly more doses per joint bleed than adults (median 6.5 vs. 3.0). The median total dose per joint bleed was higher in children than adults (1248.7 vs. 441.6). For children and adults, both initial and additional doses administered for bleeds were higher than prescribed. Children received higher total doses per bleed due to an increased number of infusions per bleed.

  18. The impact of the EMA change in definition of "dose" on the BCS dose-solubility ratio: a review of the biowaiver monographs.

    Science.gov (United States)

    Sediq, Ahmad; Kubbinga, Marlies; Langguth, Peter; Dressman, Jennifer

    2014-01-01

    The Biopharmaceutics Classification System (BCS) defines the solubility characteristics of an active pharmaceutical substance based on its dose-solubility ratio: for highly soluble drugs this ratio is less than 250 mL over a defined pH range. Prior to the revision of the European Medicines Agency (EMA, formerly EMEA) guideline in 2010, the "dose" in this ratio was consistently defined by the US FDA, the EMA, and the WHO biowaiver guidelines as the highest dosage strength. However, in the revised EMA guideline, the dose is defined as the highest single dose administered according to the Summary of Product Characteristics. The new EMA criterion for highly soluble may be closer to the actual conditions of use, but it is not in line with the dose that would be used in the in vivo bioequivalence study. This paper evaluates the impact on the BCS classification of the active pharmaceutical ingredients of the published biowaiver monographs and discusses the consequences of the possible change in classification on biowaiver recommendations. Using the current definition of dose by the EMA, the biowaiver recommendations for metoclopramide hydrochloride and verapamil hydrochloride are no longer valid according to EMA criteria. For prednisolone and prednisone, a reevaluation of the biowaiver recommendation, taking into account the usual dosing levels, seems appropriate.

  19. A COMPARISON OF PROGRESSION OF CHRONIC RENAL FAILURE: LOW DOSE VS STANDARD DOSE KETOACIDS

    Directory of Open Access Journals (Sweden)

    Jin-Bor Chen

    2012-06-01

    Conclusions: The 6-month observation study showed low dose ketoacid analogues combined with LPD had a beneficial effect to slow down renal function deterioration in CKD stage 4,5. However, the slope of 1/Cr levels in low dose ketoacid analogues was less than that in standard dose ketoacid analogues.

  20. Optimizing dose prescription in stereotactic body radiotherapy for lung tumours using Monte Carlo dose calculation

    NARCIS (Netherlands)

    Widder, Joachim; Hollander, Miranda; Ubbels, Jan F.; Bolt, Rene A.; Langendijk, Johannes A.

    2010-01-01

    Purpose: To define a method of dose prescription employing Monte Carlo (MC) dose calculation in stereotactic body radiotherapy (SBRT) for lung tumours aiming at a dose as low as possible outside of the PTV. Methods and materials: Six typical T1 lung tumours - three small, three large - were construc

  1. Antimicrobial Doses in Continuous Renal Replacement Therapy: A Comparison of Dosing Strategies

    Directory of Open Access Journals (Sweden)

    Anna P. Kempke

    2016-01-01

    Full Text Available Purpose. Drug dose recommendations are not well defined in patients undergoing continuous renal replacement therapy (CRRT due to limited published data. Several guidelines and pharmacokinetic equations have been proposed as tools for CRRT drug dosing. Dose recommendations derived from these methods have yet to be compared or prospectively evaluated. Methods. A literature search of PubMed, Micromedex, and Embase was conducted for 40 drugs commonly used in the ICU to gather pharmacokinetic data acquired from patients with acute and chronic kidney disease as well as healthy volunteers. These data and that obtained from drug package inserts were gathered for use in three published CRRT drug dosing equations. Doses calculated for a model patient using each method were compared to doses suggested in a commonly used dosing text. Results. Full pharmacokinetic data was available for 18, 31, and 40 agents using acute kidney injury, end stage renal disease, and normal patient data, respectively. On average, calculated doses differed by 30% or more from the doses recommended by the renal dosing text for >50% of the medications. Conclusion. Wide variability in dose recommendations for patients undergoing CRRT exists when these equations are used. Alternate, validated dosing methods need to be developed for this at-risk patient population.

  2. Antimicrobial Doses in Continuous Renal Replacement Therapy: A Comparison of Dosing Strategies.

    Science.gov (United States)

    Kempke, Anna P; Leino, Abbie S; Daneshvar, Farzad; Lee, John Andrew; Mueller, Bruce A

    2016-01-01

    Purpose. Drug dose recommendations are not well defined in patients undergoing continuous renal replacement therapy (CRRT) due to limited published data. Several guidelines and pharmacokinetic equations have been proposed as tools for CRRT drug dosing. Dose recommendations derived from these methods have yet to be compared or prospectively evaluated. Methods. A literature search of PubMed, Micromedex, and Embase was conducted for 40 drugs commonly used in the ICU to gather pharmacokinetic data acquired from patients with acute and chronic kidney disease as well as healthy volunteers. These data and that obtained from drug package inserts were gathered for use in three published CRRT drug dosing equations. Doses calculated for a model patient using each method were compared to doses suggested in a commonly used dosing text. Results. Full pharmacokinetic data was available for 18, 31, and 40 agents using acute kidney injury, end stage renal disease, and normal patient data, respectively. On average, calculated doses differed by 30% or more from the doses recommended by the renal dosing text for >50% of the medications. Conclusion. Wide variability in dose recommendations for patients undergoing CRRT exists when these equations are used. Alternate, validated dosing methods need to be developed for this at-risk patient population.

  3. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships

    DEFF Research Database (Denmark)

    Garnier-Laplace, Jacqueline; Beaugelin-Seiller, Karine; Della-Vedova, Claire;

    2015-01-01

    We reconstructed the radiological dose for birds observed at 300 census sites in the 50-km northwest area affected by the accident at the Fukushima Daiichi nuclear power plant over 2011-2014. Substituting the ambient dose rate measured at the census points (from 0.16 to 31 μGy h(-1)) with the dose...

  4. Radiation-Induced Color Centers in LiF for Dosimetry at High Absorbed Dose Rates

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Ellis, S. C.

    1980-01-01

    Color centers formed by irradiation of optically clear crystals of pure LiF may be analyzed spectrophotometrically for dosimetry in the absorbed dose range from 102 to 107 Gy. Routine monitoring of intense electron beams is an important application. Both 6LiF and 7LiF forms are commercially avail...... available, and when used with filters as albedo dosimeters in pairs, they provide discrimination of neutron and gamma-ray doses....

  5. Measurement of gold nanofilm dose enhancement using unlaminated radiochromic film

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, Joseph T., E-mail: rakowski@karmanos.org; Snyder, Michael G.; Hillman, Yair [Department of Radiation Oncology, School of Medicine, Wayne State University, Detroit, Michigan 48201 (United States); Laha, Suvra S.; Lawes, Gavin [Department of Physics, Wayne State University, Detroit, Michigan 48201 (United States); Buczek, Matthew G. [Department of Radiation Oncology, School of Medicine, Wayne State University, Detroit, Michigan 48201 and MidMichigan Health, Midland, Michigan 48670 (United States); Tucker, Mark A. [Department of Radiation Oncology, School of Medicine, Wayne State University, Detroit, Michigan 48201 and Missouri Cancer Associates, Columbia, Missouri 65202 (United States); Liu, Fangchao; Mao, Guangzhao [Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48201 (United States)

    2015-10-15

    Purpose: Bombarding high-Z material with x-ray radiation releases Auger electrons and Coster–Kronig electrons, along with deeper penetrating fluorescent x-rays and photoelectrons. The Auger and Coster–Kronig electron penetration distance is on the order of nanometers to micrometers in water or tissue, creating a large dose enhancement accompanied by a RBE greater than 1 at the cellular level. The authors’ aim is to measure the gold nanofilm dose enhancement factor (DEF) at the cellular level with unlaminated radiochromic film via primary 50 kVp tungsten x-ray spectrum interaction, similar to an electronic brachytherapy spectrum. Methods: Unlaminated Gafchromic{sup ®} EBT2 film and Monte Carlo modeling were combined to derive DEF models. Gold film of thickness 23.1 ±  4.3 nm and surface roughness of 1.2 ± 0.2 nm was placed in contact with unlaminated radiochromic film in a downstream orientation and exposed to a 50 kVp tungsten bremsstrahlung, mean energy 19.2 keV. Film response correction factors were derived by Monte Carlo modeling of electron energy deposition in the film’s active layer, and by measuring film energy dependence from 4.5 keV to 50 kVp. Results: The measured DEF within a 13.6 μm thick water layer was 0.29 with a mean dose of 94 ± 9.4 cGy from Au emissions and 324 ± 32.4 cGy from the 50 kVp primary beam. Monte Carlo derived correction factors allowed determination of Au contributed dose in shallower depths at 0.25 μm intervals. Maximum DEF of 18.31 was found in the first 0.25 μm water depth. Conclusions: Dose enhancement from Au nanofilm can be measured at the cellular level using unlaminated radiochromic film. Complementing the measured dose value with Monte Carlo calculations allows estimation of dose enhancement at depth increments within the cellular range.

  6. Doses due to extra-vehicular activity on space stations

    Energy Technology Data Exchange (ETDEWEB)

    Deme, S.; Apathy, I.; Feher, I. [KFKI Atomic Energy Research Institute, Budapest (Hungary); Akatov, Y.; Arkhanguelski, V. [Institute of Biomedical Problems, State Scientific Center, Moscow (Russian Federation); Reitz, G. [DLR Institute of Aerospace Medicine, Cologne, Linder Hohe (Germany)

    2006-07-01

    One of the many risks of long duration space flight is the dose from cosmic radiation, especially during periods of intensive solar activity. At such times, particularly during extra-vehicular activity (E.V.A.), when the astronauts are not protected by the wall of the spacecraft, cosmic radiation is a potentially serious health threat. Accurate dose measurement becomes increasingly important during the assembly of large space objects. Passive integrating detector systems such as thermoluminescent dosimeters (TLDs) are commonly used for dosimetric mapping and personal dosimetry on space vehicles. K.F.K.I. Atomic Energy Research Institute has developed and manufactured a series of thermoluminescent dosimeter systems, called Pille, for measuring cosmic radiation doses in the 3 {mu}Gy to 10 Gy range, consisting of a set of CaSO{sub 4}:Dy bulb dosimeters and a small, compact, TLD reader suitable for on-board evaluation of the dosimeters. Such a system offers a solution for E.V.A. dosimetry as well. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations, on the Space Shuttle, and most recently on several segments of the International Space Station (I.S.S.). The Pille system was used to make the first measurements of the radiation exposure of cosmonauts during E.V.A.. Such E.V.A. measurements were carried out twice (on June 12 and 16, 1987) by Y. Romanenko, the commander of the second crew of Mir. During the E.V.A. one of the dosimeters was fixed in a pocket on the outer surface of the left leg of his space-suit; a second dosimeter was located inside the station for reference measurements. The advanced TLD system Pille 96 was used during the Nasa-4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the exposure of two of the astronauts during their E.V.A. activities. The extra doses of two E.V.A. during the Euromir 95 and one E.V.A. during the Nasa4 experiment

  7. Dose reduction using a dynamic, piecewise-linear attenuator

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Scott S., E-mail: sshsieh@stanford.edu [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Fleischmann, Dominik [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Pelc, Norbert J. [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States)

    2014-02-15

    Purpose: The authors recently proposed a dynamic, prepatient x-ray attenuator capable of producing a piecewise-linear attenuation profile customized to each patient and viewing angle. This attenuator was intended to reduce scatter-to-primary ratio (SPR), dynamic range, and dose by redistributing flux. In this work the authors tested the ability of the attenuator to reduce dose and SPR in simulations. Methods: The authors selected four clinical applications, including routine full field-of-view scans of the thorax and abdomen, and targeted reconstruction tasks for an abdominal aortic aneurysm and the pancreas. Raw data were estimated by forward projection of the image volume datasets. The dynamic attenuator was controlled to reduce dose while maintaining peak variance by solving a convex optimization problem, assuminga priori knowledge of the patient anatomy. In targeted reconstruction tasks, the noise in specific regions was given increased weighting. A system with a standard attenuator (or “bowtie filter”) was used as a reference, and used either convex optimized tube current modulation (TCM) or a standard TCM heuristic. The noise of the scan was determined analytically while the dose was estimated using Monte Carlo simulations. Scatter was also estimated using Monte Carlo simulations. The sensitivity of the dynamic attenuator to patient centering was also examined by shifting the abdomen in 2 cm intervals. Results: Compared to a reference system with optimized TCM, use of the dynamic attenuator reduced dose by about 30% in routine scans and 50% in targeted scans. Compared to the TCM heuristics which are typically used withouta priori knowledge, the dose reduction is about 50% for routine scans. The dynamic attenuator gives the ability to redistribute noise and variance and produces more uniform noise profiles than systems with a conventional bowtie filter. The SPR was also modestly reduced by 10% in the thorax and 24% in the abdomen. Imaging with the dynamic

  8. A dose-effect correlation for radioiodine ablation in differentiated thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Flux, Glenn D.; Chittenden, Sarah J.; Buckley, Susan; Hindorf, Cecilia [Royal Marsden NHS Foundation Trust, Department of Physics, Sutton, Surrey (United Kingdom); Haq, Masud; Newbold, Kate; Harmer, Clive L. [Royal Marsden NHS Foundation Trust, Thyroid Unit, Sutton, Surrey (United Kingdom)

    2010-02-15

    The aim of this study was to determine the range of absorbed doses delivered to thyroid remnants, blood, and red marrow from fixed administrations of radioiodine and to ascertain whether the success of ablation is more dependent on these absorbed doses than on the administered activity. Twenty-three patients received 3,000 MBq radioiodine following near-total thyroidectomy. The maximum absorbed dose to remnants was calculated from subsequent single photon emission tomography scans. Absorbed doses delivered to blood and red marrow were calculated from blood samples and from whole-body retention measurements. The protein bound iodine (PBI) was also calculated. Maximum absorbed doses to thyroid remnants ranged from 7 to 570 Gy. Eighteen of the 23 patients had a successful ablation. A significant difference was seen between the absorbed doses delivered to thyroid remnants, blood, and red marrow for those patients that had a successful ablation compared to those with a failed ablation (p = 0.030, p = 0.043 and p = 0.048, respectively). The difference between the PBI values acquired at day 1 and day 6 were also indicative of response (p = 0.074). A successful ablation is strongly dependent on the absorbed dose to the thyroid remnant. Dosimetry-based personalized treatment can prevent both sub-optimal administrations, which entails further radioiodine therapy, and excessive administration of radioactivity, which increases the potential for radiation toxicity. (orig.)

  9. Nanoparticle location and material dependent dose enhancement in X-ray radiation therapy.

    Science.gov (United States)

    Hossain, Mainul; Su, Ming

    2012-11-01

    Nanoparticles of high atomic number (Z) materials can act as radiosensitizers to enhance radiation dose delivered to tumors. An analytical approach is used to calculate dose enhancements to tumor endothelial cells and their nuclei for a series of nanoparticles (bismuth, gold and platinum) located at different locations relative to nuclei by considering contributions from both photoelectrons and Auger electrons. The ratio of the dose delivered to cells with and without the nanoparticles is known as the dose enhancement factor (DEF). DEFs depend on material composition, size and location of nanoparticles with respect to the cell and the nucleus. Energy of irradiating X-ray beam affects X-ray absorption by nanoparticles and plays an important role in dose enhancements. For diagnostic X-ray sources, bismuth nanoparticles provide higher dose enhancements than gold and platinum nanoparticles for a given nanoparticle size, concentration and location. The highest DEFs are achieved for nanoparticles located closest to the nucleus where energy depositions from short range Auger electrons are maximum. With nanoparticles ranging in diameter between 2-400 nm, the dose enhancement increases with decrease in particle size. The results are useful in finding optimized conditions for nanoparticle enhanced X-ray radiation therapy of cancer.

  10. Bone marrow dose in chest radiography: the posteroanterior vs. anteroposterior projection

    Energy Technology Data Exchange (ETDEWEB)

    Archer, B.R.; Whitmore, R.C.; North, L.B.; Bushong, S.C.

    1979-10-01

    The dose to active bone marrow resulting from anteroposterior (AP) and posteroanterior (PA) chest examinations was estimated using an Alderson Rando phantom and extruded lithium fluoride dosimeters. The AP projections resulted in a mean marrow dose range of 1.9 to 2.6 mrad (0.019 to 0.026 mGy) as compared to doses for PA projections of 3.4 to 3.8 mrad (0.034 to 0.038 mGy) for optimally diagnostic exposures taken at 70, 90, and 120 kVp.

  11. A fourier analysis on the maximum acceptable grid size for discrete proton beam dose calculation.

    Science.gov (United States)

    Li, Haisen S; Romeijn, H Edwin; Dempsey, James F

    2006-09-01

    orientation of the beam with respect to the dose grid was also investigated. The maximum acceptable dose grid size depends on the gradient of dose profile and in turn the range of proton beam. In the case that only the phantom scattering was considered and that the beam was aligned with the dose grid, grid sizes from 0.4 to 6.8 mm were required for proton beams with ranges from 2 to 30 cm for 2% error limit at the Bragg peak point. A near linear relation between the maximum acceptable grid size and beam range was observed. For this analysis model, the resolution requirement was not significantly related to the orientation of the beam with respect to the grid.

  12. Irradiation dose and temperature dependence of fracture toughness in high dose HT9 steel from the fuel duct of FFTF

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Thak Sang, E-mail: byunts@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Toloczko, Mychailo B. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Saleh, Tarik A.; Maloy, Stuart A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-01-15

    To expand the knowledge base for fast reactor core materials, fracture toughness has been evaluated for high dose HT9 steel using miniature disk compact tension (DCT) specimens. The HT9 steel DCT specimens were machined from the ACO-3 fuel duct of the Fast Flux Test Facility (FFTF), which achieved high doses in the range of 3-148 dpa at 378-504 Degree-Sign C. The static fracture resistance (J-R) tests have been performed in a servohydraulic testing machine in vacuum at selected temperatures including room temperature, 200 Degree-Sign C, and each irradiation temperature. Brittle fracture with a low toughness less than 50 MPa {radical}m occurred in room temperature tests when irradiation temperature was below 400 Degree-Sign C, while ductile fracture with stable crack growth was observed when irradiation temperature was higher. No fracture toughness less than 100 MPa {radical}m was measured when the irradiation temperature was above 430 Degree-Sign C. It was shown that the influence of irradiation temperature was dominant in fracture toughness while the irradiation dose has only limited influence over the wide dose range 3-148 dpa. A slow decrease of fracture toughness with test temperature above room temperature was observed for the nonirradiated and high temperature (>430 Degree-Sign C) irradiation cases, which indicates that the ductile-brittle transition temperatures (DBTTs) in those conditions are lower than room temperature. A comparison with the collection of existing data confirmed the dominance of irradiation temperature in the fracture toughness of HT9 steels.

  13. Accounting for range uncertainties in the optimization of intensity modulated proton therapy.

    Science.gov (United States)

    Unkelbach, Jan; Chan, Timothy C Y; Bortfeld, Thomas

    2007-05-21

    Treatment plans optimized for intensity modulated proton therapy (IMPT) may be sensitive to range variations. The dose distribution may deteriorate substantially when the actual range of a pencil beam does not match the assumed range. We present two treatment planning concepts for IMPT which incorporate range uncertainties into the optimization. The first method is a probabilistic approach. The range of a pencil beam is assumed to be a random variable, which makes the delivered dose and the value of the objective function a random variable too. We then propose to optimize the expectation value of the objective function. The second approach is a robust formulation that applies methods developed in the field of robust linear programming. This approach optimizes the worst case dose distribution that may occur, assuming that the ranges of the pencil beams may vary within some interval. Both methods yield treatment plans that are considerably less sensitive to range variations compared to conventional treatment plans optimized without accounting for range uncertainties. In addition, both approaches--although conceptually different--yield very similar results on a qualitative level.

  14. DMLC tracking and gating can improve dose coverage for prostate VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Colvill, E. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, NSW 2006 (Australia); Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia); School of Physics, University of Sydney, NSW 2006 (Australia); Poulsen, P. R. [Department of Oncology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark and Institute of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Booth, J. T. [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065, Australia and School of Physics, University of Sydney, NSW 2006 (Australia); O’Brien, R. T.; Keall, P. J., E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, NSW 2006 (Australia); Ng, J. A. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, NSW 2006, Australia and School of Physics, University of Sydney, NSW 2006 (Australia)

    2014-09-15

    Purpose: To assess and compare the dosimetric impact of dynamic multileaf collimator (DMLC) tracking and gating as motion correction strategies to account for intrafraction motion during conventionally fractionated prostate radiotherapy. Methods: A dose reconstruction method was used to retrospectively assess the dose distributions delivered without motion correction during volumetric modulated arc therapy fractions for 20 fractions of five prostate cancer patients who received conventionally fractionated radiotherapy. These delivered dose distributions were compared with the dose distributions which would have been delivered had DMLC tracking or gating motion correction strategies been implemented. The delivered dose distributions were constructed by incorporating the observed prostate motion with the patient's original treatment plan to simulate the treatment delivery. The DMLC tracking dose distributions were constructed using the same dose reconstruction method with the addition of MLC positions from Linac log files obtained during DMLC tracking simulations with the observed prostate motions input to the DMLC tracking software. The gating dose distributions were constructed by altering the prostate motion to simulate the application of a gating threshold of 3 mm for 5 s. Results: The delivered dose distributions showed that dosimetric effects of intrafraction prostate motion could be substantial for some fractions, with an estimated dose decrease of more than 19% and 34% from the planned CTVD{sub 99%} and PTV D{sub 95%} values, respectively, for one fraction. Evaluation of dose distributions for DMLC tracking and gating deliveries showed that both interventions were effective in improving the CTV D{sub 99%} for all of the selected fractions to within 4% of planned value for all fractions. For the delivered dose distributions the difference in rectum V{sub 65%} for the individual fractions from planned ranged from −44% to 101% and for the bladder V{sub 65

  15. Measurements of the dose delivered during CT exams using AAPM Task Group Report No. 111.

    Science.gov (United States)

    Descamps, Caroline; Gonzalez, Mercedes; Garrigo, Edgardo; Germanier, Alejandro; Venencia, Daniel

    2012-11-08

    The computed tomography dose index (CTDI) measured with a 10 cm long pencil ionization chamber placed in a 14 cm long PMMA phantom is typically used to evaluate the doses delivered during CT procedure. For the new generation of CT scanners, the efficiency of this methodology is low because it excludes the contribution of radiation scattered beyond the 100 mm range of integration along z. The AAPM TG111 Report proposes a new measurement modality using a small volume ionization chamber positioned in a phantom long enough to establish dose equilibrium at the location of the chamber. In this work, the AAPM report was implemented. The minimum scanning length needed to obtain cumulative dose equilibrium was evaluated. The equilibrium dose was determined and compared to CTDI values informed by the CT scanner, and the dose values were confirmed with TLD measurements. The difference between doses measured with TLD and with the ionization chamber (IC) was below 1% and the repeatability of the measurements' setup was 0.4%. The measurements showed that the scanning lengths needed to reach the cumulated dose equilibrium were 450 mm and 380 mm for the central and peripheral axes, respectively, which justifies the phantom length. For the studied clinical protocols, the doses measured were about 30% higher than those informed by the CT scanner. For the new generation of CT systems with wider longitudinal detector size or cone-beam technology, the current CTDI measurements may no longer be adequate, and the informed CTDI tends to undervalue the dose delivered. It is therefore important to evaluate CT radiation doses following the AAPM TG111 methodology.

  16. On-line MR imaging for dose validation of abdominal radiotherapy

    Science.gov (United States)

    Glitzner, M.; Crijns, S. P. M.; de Senneville, B. Denis; Kontaxis, C.; Prins, F. M.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2015-11-01

    For quality assurance and adaptive radiotherapy, validation of the actual delivered dose is crucial. Intrafractional anatomy changes cannot be captured satisfactorily during treatment with hitherto available imaging modalitites. Consequently, dose calculations are based on the assumption of static anatomy throughout the treatment. However, intra- and interfraction anatomy is dynamic and changes can be significant. In this paper, we investigate the use of an MR-linac as a dose tracking modality for the validation of treatments in abdominal targets where both respiratory and long-term peristaltic and drift motion occur. The on-line MR imaging capability of the modality provides the means to perform respiratory gating of both delivery and acquisition yielding a model-free respiratory motion management under free breathing conditions. In parallel to the treatment, the volumetric patient anatomy was captured and used to calculate the applied dose. Subsequently, the individual doses were warped back to the planning grid to obtain the actual dose accumulated over the entire treatment duration. Ultimately, the planned dose was validated by comparison with the accumulated dose. Representative for a site subject to breathing modulation, two kidney cases (25 Gy target dose) demonstrated the working principle on volunteer data and simulated delivery. The proposed workflow successfully showed its ability to track local dosimetric changes. Integration of the on-line anatomy information could reveal local dose variations  -2.3-1.5 Gy in the target volume of a volunteer dataset. In the adjacent organs at risk, high local dose errors ranging from  -2.5 to 1.9 Gy could be traced back.

  17. Diagnostic accuracy at several reduced radiation dose levels for CT imaging in the diagnosis of appendicitis

    Science.gov (United States)

    Zhang, Di; Khatonabadi, Maryam; Kim, Hyun; Jude, Matilda; Zaragoza, Edward; Lee, Margaret; Patel, Maitraya; Poon, Cheryce; Douek, Michael; Andrews-Tang, Denise; Doepke, Laura; McNitt-Gray, Shawn; Cagnon, Chris; DeMarco, John; McNitt-Gray, Michael

    2012-03-01

    Purpose: While several studies have investigated the tradeoffs between radiation dose and image quality (noise) in CT imaging, the purpose of this study was to take this analysis a step further by investigating the tradeoffs between patient radiation dose (including organ dose) and diagnostic accuracy in diagnosis of appendicitis using CT. Methods: This study was IRB approved and utilized data from 20 patients who underwent clinical CT exams for indications of appendicitis. Medical record review established true diagnosis of appendicitis, with 10 positives and 10 negatives. A validated software tool used raw projection data from each scan to create simulated images at lower dose levels (70%, 50%, 30%, 20% of original). An observer study was performed with 6 radiologists reviewing each case at each dose level in random order over several sessions. Readers assessed image quality and provided confidence in their diagnosis of appendicitis, each on a 5 point scale. Liver doses at each case and each dose level were estimated using Monte Carlo simulation based methods. Results: Overall diagnostic accuracy varies across dose levels: 92%, 93%, 91%, 90% and 90% across the 100%, 70%, 50%, 30% and 20% dose levels respectively. And it is 93%, 95%, 88%, 90% and 90% across the 13.5-22mGy, 9.6-13.5mGy, 6.4-9.6mGy, 4-6.4mGy, and 2-4mGy liver dose ranges respectively. Only 4 out of 600 observations were rated "unacceptable" for image quality. Conclusion: The results from this pilot study indicate that the diagnostic accuracy does not change dramatically even at significantly reduced radiation dose.

  18. Acute cognitive effects of high doses of dextromethorphan relative to triazolam in humans

    Science.gov (United States)

    Carter, Lawrence P.; Reissig, Chad J.; Johnson, Matthew W.; Klinedinst, Margaret A.; Griffiths, Roland R.

    2012-01-01

    BACKGROUND Although concerns surrounding high-dose dextromethorphan (DXM) abuse have recently increased, few studies have examined the acute cognitive effects of high doses of DXM. The aim of this study was to compare the cognitive effects of DXM with those of triazolam and placebo. METHODS Single, acute, oral doses of DXM (100, 200, 300, 400, 500, 600, 700, 800 mg/70 kg), triazolam (0.25, 0.5 mg /70 kg), and placebo were administered p.o. to twelve healthy volunteers with histories of hallucinogen use, under double-blind conditions, using an ascending dose run-up design. Effects on cognitive performance were examined at baseline and after drug administration for up to 6 hours. RESULTS Both triazolam and DXM produced acute impairments in attention, working memory, episodic memory, and metacognition. Impairments observed following doses of 100-300 mg/70 kg DXM were generally smaller in magnitude than those observed after 0.5 mg/70 kg triazolam. Doses of DXM that impaired performance to the same extent as triazolam were in excess of 10-30 times the therapeutic dose of DXM. CONCLUSION The magnitude of the doses required for these effects and the absence of effects on some tasks within the 100-300 mg/70 kg dose range of DXM, speak to the relatively broad therapeutic window of over-the-counter DXM preparations when used appropriately. However, the administration of supratherapeutic doses of DXM resulted in acute cognitive impairments on all tasks that were examined. These findings are likely relevant to cases of high-dose DXM abuse. PMID:22989498

  19. Effective dose in the manufacturing process of rutile covered welding electrodes.

    Science.gov (United States)

    Herranz, M; Rozas, S; Pérez, C; Idoeta, R; Núñez-Lagos, R; Legarda, F

    2013-03-01

    Shielded metal arc welding using covered electrodes is the most common welding process. Sometimes the covering contains naturally occurring radioactive materials (NORMs). In Spain the most used electrodes are those covered with rutile mixed with other materials. Rutile contains some detectable natural radionuclides, so it can be considered a NORM. This paper mainly focuses on the use of MCNP (Monte Carlo N-Particle Transport Code) as a predictive tool to obtain doses in a factory which produces this type of electrode and assess the radiological impact in a specific facility after estimating the internal dose.To do this, in the facility, areas of highest radiation and positions of workers were identified, radioactive content of rutile and rutile covered electrodes was measured, and, considering a worst possible scenario, external dose at working points has been calculated using MCNP. This procedure has been validated comparing the results obtained with those from a pressurised ionisation chamber and TLD dosimeters. The internal dose has been calculated using DCAL (dose and risk calculation). The doses range between 8.8 and 394 μSv yr(-1), always lower than the effective dose limit for the public, 1 mSv yr(-1). The highest dose corresponds to the mixing area.

  20. The analysis of dose-response curve from bioassays with quantal response: Deterministic or statistical approaches?

    Science.gov (United States)

    Mougabure-Cueto, G; Sfara, V

    2016-04-25

    Dose-response relations can be obtained from systems at any structural level of biological matter, from the molecular to the organismic level. There are two types of approaches for analyzing dose-response curves: a deterministic approach, based on the law of mass action, and a statistical approach, based on the assumed probabilities distribution of phenotypic characters. Models based on the law of mass action have been proposed to analyze dose-response relations across the entire range of biological systems. The purpose of this paper is to discuss the principles that determine the dose-response relations. Dose-response curves of simple systems are the result of chemical interactions between reacting molecules, and therefore are supported by the law of mass action. In consequence, the shape of these curves is perfectly sustained by physicochemical features. However, dose-response curves of bioassays with quantal response are not explained by the simple collision of molecules but by phenotypic variations among individuals and can be interpreted as individual tolerances. The expression of tolerance is the result of many genetic and environmental factors and thus can be considered a random variable. In consequence, the shape of its associated dose-response curve has no physicochemical bearings; instead, they are originated from random biological variations. Due to the randomness of tolerance there is no reason to use deterministic equations for its analysis; on the contrary, statistical models are the appropriate tools for analyzing these dose-response relations.

  1. Dose estimation derived from the exposure to radon, thoron and their progeny in the indoor environment

    Science.gov (United States)

    Ramola, R. C.; Prasad, Mukesh; Kandari, Tushar; Pant, Preeti; Bossew, Peter; Mishra, Rosaline; Tokonami, S.

    2016-08-01

    The annual exposure to indoor radon, thoron and their progeny imparts a major contribution to inhalation doses received by the public. In this study, we report results of time integrated passive measurements of indoor radon, thoron and their progeny concentrations that were carried out in Garhwal Himalaya with the aim of investigating significant health risk to the dwellers in the region. The measurements were performed using recently developed LR-115 detector based techniques. The experimentally determined values of radon, thoron and their progeny concentrations were used to estimate total annual inhalation dose and annual effective doses. The equilibrium factors for radon and thoron were also determined from the observed data. The estimated value of total annual inhalation dose was found to be 1.8 ± 0.7 mSv/y. The estimated values of the annual effective dose were found to be 1.2 ± 0.5 mSv/y and 0.5 ± 0.3 mSv/y, respectively. The estimated values of radiation doses suggest no important health risk due to exposure of radon, thoron and progeny in the study area. The contribution of indoor thoron and its progeny to total inhalation dose ranges between 13–52% with mean value of 30%. Thus thoron cannot be neglected when assessing radiation doses.

  2. Population dose commitments due to radioactive releases from nuclear power plant sites in 1987

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.A. (Pacific Northwest Lab., Richland, WA (USA))

    1990-08-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1987. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 70 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for reach of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The site average individual dose commitment from all pathways ranged from a low of 2 {times} 10{sup {minus}6} mrem to a high of 0.009 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. However, licensee calculation of doses to the maximally exposed individual at some sites indicated values of up to approximately 100 times average individual doses (on the order of a few millirem per year). 2 refs., 2 figs., 7 tabs.

  3. Total and secondary gamma doses in ilmenite-limonite concrete biological shields

    Energy Technology Data Exchange (ETDEWEB)

    Makarious, A.S. (AEA, Cairo (Egypt). Reactor and Neutron Physics Dept.); El-Kolaly, M.A. (AEA, Cairo (Egypt). Radiation Protection Dept.); Bashter, I.I. (Zagazig Univ. (Egypt). Physics Dept.); Kansouh, W.A. (AEA, Cairo (Egypt). Nuclear Research Centre)

    1991-10-01

    The attenuation and distribution of total gamma ray doses in a bulk shield of ilmenite-limonite concrete of density 2.9 g cm{sup -3} have been measured. Direct, cadmium filtered and B{sub 4}C filtered collimated reactor beam emitted from one of the horizontal channels of the ET-RR-1 reactor have been utilized in the present work. The distribution of the secondary gamma ray doses generated from the interaction of reactor neutrons of definite energy ranges has also been obtained for ilmenite-limonite concrete. The gamma doses were measured using {sup 7}LiF Teflon disc TL dosimeters. A semiempirical formula was derived to calculate total gamma dose distributions for bare, cadmium filtered and B{sub 4}C filtered reactor beams at different thickness along the beam axis in ordinary concrete, with density 2.3 g cm{sup -3}, using the corresponding measured value in ilmenite-limonite concrete. Good agreement has been achieved between the values of the total gamma doses and those calculated using the derived empirical formula. Isodose curves were constructed for both the total gamma-ray doses and the secondary gamma-ray doses shields together with the corresponding values for ordinary concrete shields. The thickness of ilmenite-limonite concrete required to attenuate the total gamma dose intensity to a certain factor is approximately 94% of the thickness when the shield is made of ordinary concrete. (orig./HP).

  4. Iterative reconstruction techniques for computed tomography part 2: initial results in dose reduction and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Willemink, Martin J.; Leiner, Tim; Jong, Pim A. de; Nievelstein, Rutger A.J.; Schilham, Arnold M.R. [Utrecht University Medical Center, Department of Radiology, P.O. Box 85500, Utrecht (Netherlands); Heer, Linda M. de [Cardiothoracic Surgery, Utrecht (Netherlands); Budde, Ricardo P.J. [Utrecht University Medical Center, Department of Radiology, P.O. Box 85500, Utrecht (Netherlands); Gelre Hospital, Department of Radiology, Apeldoorn (Netherlands)

    2013-06-15

    To present the results of a systematic literature search aimed at determining to what extent the radiation dose can be reduced with iterative reconstruction (IR) for cardiopulmonary and body imaging with computed tomography (CT) in the clinical setting and what the effects on image quality are with IR versus filtered back-projection (FBP) and to provide recommendations for future research on IR. We searched Medline and Embase from January 2006 to January 2012 and included original research papers concerning IR for CT. The systematic search yielded 380 articles. Forty-nine relevant studies were included. These studies concerned: the chest(n = 26), abdomen(n = 16), both chest and abdomen(n = 1), head(n = 4), spine(n = 1), and no specific area (n = 1). IR reduced noise and artefacts, and it improved subjective and objective image quality compared to FBP at the same dose. Conversely, low-dose IR and normal-dose FBP showed similar noise, artefacts, and subjective and objective image quality. Reported dose reductions ranged from 23 to 76 % compared to locally used default FBP settings. However, IR has not yet been investigated for ultra-low-dose acquisitions with clinical diagnosis and accuracy as endpoints. Benefits of IR include improved subjective and objective image quality as well as radiation dose reduction while preserving image quality. Future studies need to address the value of IR in ultra-low-dose CT with clinically relevant endpoints. (orig.)

  5. Dose estimation derived from the exposure to radon, thoron and their progeny in the indoor environment

    Science.gov (United States)

    Ramola, R. C.; Prasad, Mukesh; Kandari, Tushar; Pant, Preeti; Bossew, Peter; Mishra, Rosaline; Tokonami, S.

    2016-01-01

    The annual exposure to indoor radon, thoron and their progeny imparts a major contribution to inhalation doses received by the public. In this study, we report results of time integrated passive measurements of indoor radon, thoron and their progeny concentrations that were carried out in Garhwal Himalaya with the aim of investigating significant health risk to the dwellers in the region. The measurements were performed using recently developed LR-115 detector based techniques. The experimentally determined values of radon, thoron and their progeny concentrations were used to estimate total annual inhalation dose and annual effective doses. The equilibrium factors for radon and thoron were also determined from the observed data. The estimated value of total annual inhalation dose was found to be 1.8 ± 0.7 mSv/y. The estimated values of the annual effective dose were found to be 1.2 ± 0.5 mSv/y and 0.5 ± 0.3 mSv/y, respectively. The estimated values of radiation doses suggest no important health risk due to exposure of radon, thoron and progeny in the study area. The contribution of indoor thoron and its progeny to total inhalation dose ranges between 13–52% with mean value of 30%. Thus thoron cannot be neglected when assessing radiation doses. PMID:27499492

  6. Radiation doses from computed tomography in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, J.E.M.; Tingey, D.R.C

    1997-11-01

    Recent surveys in various countries have shown that computed tomography (CT) is a significant and growing contributor to the radiation dose from diagnostic radiology. Australia, with 332 CT scanners (18 per million people), is well endowed with CT equipment compared to European countries (6 to 13 per million people). Only Japan, with 8500 units (78 per million people), has a significantly higher proportion of CT scanners. In view of this, a survey of CT facilities, frequency of examinations, techniques and patient doses has been performed in Australia. It is estimated that there are 1 million CT examinations in Australia each year, resulting in a collective effective dose of 7000 Sv and a per caput dose of 0.39 mSv. This per caput dose is much larger than found in earlier studies in the UK and New Zealand but is less than 0.48 mSv in Japan. Using the ICRP risk factors, radiation doses from CT could be inducing about 280 fatal cancers per year in Australia. CT is therefore a significant, if not the major, single contributor to radiation doses and possible risk from diagnostic radiology. (authors) 28 refs., 11 tabs., 10 figs.

  7. LOW DOSE MAGNESIUM SULPHATE REGIME FOR ECLAMPSIA

    Directory of Open Access Journals (Sweden)

    Bangal V

    2009-09-01

    Full Text Available Pre- eclampsia is one of the commonest medical complications seen during pregnancy. It contributes significantly to maternal and perinatal morbidity and mortality. Dr.J.A.Pritchard in 1955, introduced magnesium sulphate for control of convulsions in eclampsia and is used worldwide. Considering the low body mass index of indian women, a low dose magnesium sulphate regime has been introduced by some authors. Present study was carried out at tertiary care centre in rural area. Fifty cases of eclampsia were randomly selected to find out the efficacy of low dose magnesium sulphate regime to control eclamptic convulsions. Maternal and perinatal outcome and magnesium toxicity were analyzed. It was observed that 86% cases responded to initial intravenous dose of 4 grams of 20% magnesium sulphate . Eight percent cases, who got recurrence of convulsion, were controlled by additional 2 grams of 20% magnesium sulphate. Six percent cases required shifting to standard Pritchard regime, as they did not respond to low dose magnesium sulphate regime. The average total dose of magnesium sulphate required for control of convulsions was 20 grams ie. 54.4% less than that of standard Pritchard regime. The maternal and perinatal morbidity and mortality in the present study werecomparable to those of standard Pritcha