Sample records for 5-methyluracil


    Directory of Open Access Journals (Sweden)

    Elena Welchinska


    Full Text Available The synthesis was performed using 5-methyluracil mono-and bis-derivatives with the halogen-containing pharmacophore groups in the composition of molecules; their physiochemical and biological properties were studied. These reactions are a typical example of substitution reactions on heteroatom N(1 of uracil molecule using as the second component the reaction of halothane—the known inhaled anesthetic.  The reactions were carried out in a solvent system: benzene-dimethyl formamide and diethyl ether, under conditions of phase transfer catalysis DB-18-crown-6-complex (alkaline medium, by heating from 2 to 11 hours, followed by purification, and drying of the resulting products.  The structure of the synthesized compounds was confirmed by elemental analysis, IR and 1HNMR spectra.  The purity was controlled by the methods of thin-layer and gas-liquid chromatography. Chromatography, IR and 1HNMR spectra of the final products were identified in comparison with the chromatograms, IR and 1HNMR spectra of the initial compounds. Variation of the reaction conditions and changes in methods of synthesis enabled to receive the synthesized compounds of high purity and to increase their practical output up to 43-80%.  Molecular complex of Bacterial lectin and 5-methyluracil bis-derivative was obtained.  The toxicity and anti-tumor activity of some of the synthesized compounds were investigated. We have found that the new molecular complex of Bacterial lectin and 5-methyluracil bis-derivative has high anti-tumor activity in Limphosarcoma Plissa—62.8% (activity criterion >50%, which allows us to consider the synthesized compound as a physiologically active compound with the prospect for further study as a potential vehicle for anti-tumoral treatment in patients. 

  2. Fluorogenic Labeling of 5-Formylpyrimidine Nucleotides in DNA and RNA. (United States)

    Samanta, Biswajit; Seikowski, Jan; Höbartner, Claudia


    5-Formylcytosine (5fC) and 5-formyluracil (5fU) are natural nucleobase modifications that are generated by oxidative modification of 5-methylcytosine and thymine (or 5-methyluracil). Herein, we describe chemoselective labeling of 5-formylpyrimidine nucleotides in DNA and RNA by fluorogenic aldol-type condensation reactions with 2,3,3-trimethylindole derivatives. Mild and specific reaction conditions were developed for 5fU and 5fC to produce hemicyanine-like chromophores with distinct photophysical properties. Residue-specific detection was established by fluorescence readout as well as primer-extension assays. The reactions were optimized on DNA oligonucleotides and were equally suitable for the modification of 5fU- and 5fC-modified RNA. This direct labeling approach of 5-formylpyrimidines is expected to help in elucidating the occurrence, enzymatic transformations, and functional roles of these epigenetic/epitranscriptomic nucleobase modifications in DNA and RNA. PMID:26679556

  3. [Chemical constituents from endophyte Chaetomium globosum in Imperata cylindrical]. (United States)

    Shen, Li; Zhu, Li; Wei, Zhong-qi; Li, Xiao-wen; Li, Ming; Song, Yong-chun


    Isolation and purification of chemical constituents from solid culture of endophyte Chaetomium globosum in Imperata cylindrical was performed through silica gel column chromatography, gel filtration over Sephadex LH-20 and preparative HPLC. Nine compounds were obtained and their structures were determined as chaetoglobosin F(1), chaetoglobosin Fex(2), chaetoglobosin E(3) cytoglobosin A(4), penochalasin C(S), isochaetoglobosin D (6), N-benzoylphenylalaninyl-N-benzoyphenylalaninate(7), uracil(8) and 5-methyluracil(9), respectively, based on HR-MS and NMR data and comparison with literatures. Compound 7 was isolated from Chaeeomium sp. for the first time. In vitro cytotoxicity of compounds was evaluated using MTT mothed and 1,3,4 and 5 showed inhibition activity to the human cervical carcinoma cell HeLa with IC50 values of 99.43, 23.77, 97.92, 86.25 micromol x L(-1), while positive cotolocisnin Ad apno1ch alse IC50 24.33 micromol x L(-1). PMID:27141677