WorldWideScience

Sample records for 5-hydroxytrytamine 2c receptor

  1. Selective 5-Hydroxytrytamine 2C Receptor Agonists Derived from the Lead Compound Tranylcypromine – Identification of Drugs with Antidepressant-Like Action

    Science.gov (United States)

    Cho, Sung Jin; Jensen, Niels H.; Kurome, Toru; Kadari, Sudhakar; Manzano, Michael L.; Malberg, Jessica E.; Caldarone, Barbara; Roth, Bryan L.; Kozikowski, Alan P.

    2009-01-01

    We report here the design, synthesis, and pharmacological properties of a series of compounds related to tranylcypromine (9), which itself was discovered as a lead compound in a high-throughput screening campaign. Starting from 9, which shows modest activity as a 5-HT2C agonist, a series of 1-aminomethyl-2-phenylcyclopropanes was investigated as 5-HT2C agonists through iterative structural modifications. Key pharmacophore feature of this new class of ligands is a 2-aminomethyl-trans-cyclopropyl side chain attached to a substituted benzene ring. Among the tested compounds, several were potent and efficacious 5-HT2C receptor agonists with selectivity over both 5-HT2A and 5-HT2B receptors in functional assays. The most promising compound is 37 with 120- and 14-fold selectivity over 5-HT2A and 5-HT2B, respectively (EC50 = 585, 65, and 4.8 nM at the 2A, 2B, and 2C subtypes, respectively). In animal studies, compound 37 (10–60 mg/kg) decreased immobility time in the mouse forced swim test. PMID:19284718

  2. Design and Discovery of Functionally Selective Serotonin 2C (5-HT2C) Receptor Agonists.

    Science.gov (United States)

    Cheng, Jianjun; McCorvy, John D; Giguere, Patrick M; Zhu, Hu; Kenakin, Terry; Roth, Bryan L; Kozikowski, Alan P

    2016-11-10

    On the basis of the structural similarity of our previous 5-HT2C agonists with the melatonin receptor agonist tasimelteon and the putative biological cross-talk between serotonergic and melatonergic systems, a series of new (2,3-dihydro)benzofuran-based compounds were designed and synthesized. The compounds were evaluated for their selectivity toward 5-HT2A, 5-HT2B, and 5-HT2C receptors in the calcium flux assay with the ultimate goal to generate selective 5-HT2C agonists. Selected compounds were studied for their functional selectivity by comparing their transduction efficiency at the G protein signaling pathway versus β-arrestin recruitment. The most functionally selective compound (+)-7e produced weak β-arrestin recruitment and also demonstrated less receptor desensitization compared to serotonin in both calcium flux and phosphoinositide (PI) hydrolysis assays. We report for the first time that selective 5-HT2C agonists possessing weak β-arrestin recruitment can produce distinct receptor desensitization properties.

  3. Serotonin2C receptors and drug addiction: focus on cocaine.

    Science.gov (United States)

    Devroye, Céline; Filip, Malgorzata; Przegaliński, Edmund; McCreary, Andrew C; Spampinato, Umberto

    2013-10-01

    This review provides an overview of the role of central serotonin2C (5-HT2C) receptors in drug addiction, specifically focusing on their impact on the neurochemical and behavioral effects of cocaine, one of the most worldwide abused drug. First, we described the neurochemical and electrophysiological mechanisms underlying the interaction between 5-HT2C receptors and the mesocorticolimbic dopaminergic network, in keeping with the key role of this system in drug abuse and dependence. Thereafter, we focused on the role of 5-HT2C receptors in the effects of cocaine in various preclinical behavioral models used in drug addiction research, such as locomotor hyperactivity, locomotor sensitization, drug discrimination, and self-administration, to end with an overview of the neurochemical mechanisms underlying the interactions between 5-HT2C receptors, mesocorticolimbic dopamine system, and cocaine. On their whole, the presented data provide compelling preclinical evidence that 5-HT2C receptor agonists may have efficacy in the treatment of cocaine abuse and dependence, thereby underlying the need for additional clinical studies to ascertain whether preclinical data translate to the human.

  4. Therapeutic Potential of 5-HT2C Receptor Ligands

    Directory of Open Access Journals (Sweden)

    Nanna H. Jensen

    2010-01-01

    Full Text Available Serotonin 2C receptors are G protein-coupled receptors expressed by GABAergic, glutamatergic, and dopaminergic neurons. Anatomically, they are present in various brain regions, including cortical areas, hippocampus, ventral midbrain, striatum, nucleus accumbens, hypothalamus, and amygdala. A large body of evidence supports a critical role of serotonin 2C receptors in mediating the interaction between serotonergic and dopaminergic systems, which is at the basis of their proposed involvement in the regulation of mood, affective behavior, and memory. In addition, their expression in specific neuronal populations in the hypothalamus would be critical for their role in the regulation of feeding behavior. Modulation of these receptors has therefore been proposed to be of interest in the search for novel pharmacological strategies for the treatment of various pathological conditions, including schizophrenia and mood disorders, as well as obesity. More precisely, blockade of serotonin 2C receptors has been suggested to provide antidepressant and anxiolytic benefit, while stimulation of these receptors may offer therapeutic benefit for the treatment of psychotic symptoms in schizophrenia and obesity. In addition, modulation of serotonin 2C receptors may offer cognitive-enhancing potential, albeit still a matter of debate. In the present review, the most compelling evidence from the literature is presented and tentative hypotheses with respect to existing controversies are outlined.

  5. We Need 2C but Not 2B: Developing Serotonin 2C (5-HT2C) Receptor Agonists for the Treatment of CNS Disorders.

    Science.gov (United States)

    Cheng, Jianjun; Kozikowski, Alan P

    2015-12-01

    The serotonin 2C (5-HT2C ) receptor has been identified as a potential drug target for the treatment of a variety of central nervous system (CNS) disorders, such as obesity, substance abuse, and schizophrenia. In this Viewpoint article, recent progress in developing selective 5-HT2C agonists for use in treating these disorders is summarized, including the work of our group. Challenges in this field and the possible future directions are described. Homology modeling as a method to predict the binding modes of 5-HT2C ligands to the receptor is also discussed. Compared to known ligands, the improved pharmacological profiles of the 2-phenylcyclopropylmethylamine-based 5-HT2C agonists make them preferred candidates for further studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Serotonin 2c receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis

    Science.gov (United States)

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor a...

  7. Impact of RNA editing on functions of the serotonin 2C receptor in vivo

    Directory of Open Access Journals (Sweden)

    Uade B Olaghere Da Silva

    2010-03-01

    Full Text Available Transcripts encoding 5-HT2C receptors are modified posttranscriptionally by RNA editing, generating up to 24 protein isoforms. In recombinant cells, the fully edited isoform, 5-HT2C-VGV, exhibits blunted G-protein coupling and reduced constitutive activity. The present studies examine the signal transduction properties of 5-HT2C-VGV receptors in brain to determine the in vivo consequences of altered editing. Using mice solely expressing the 5-HT2C-VGV receptor (VGV/Y, we demonstrate reduced G-protein coupling efficiency and high-affinity agonist binding of brain 5-HT2C-VGV receptors. However, enhanced behavioral sensitivity to a 5-HT2C receptor agonist was also seen in mice expressing 5-HT2C-VGV receptors, an unexpected finding given the blunted G-protein coupling. In addition, mice expressing 5-HT2C-VGV receptors had greater sensitivity to a 5-HT2C inverse agonist/antagonist enhancement of dopamine turnover relative to wild-type mice. These behavioral and biochemical results are most likely explained by increases in 5-HT2C receptor binding sites in the brains of mice solely expressing -5HT2C-VGV receptors. We conclude that 5-HT2C-VGV receptor signaling in brain is blunted, but this deficiency is masked by a marked increase in 5HT2C receptor binding site density in mice solely expressing the VGV isoform. These findings suggest that RNA editing may regulate the density of 5-HT2C receptor binding sites in brain. We further caution that the pattern of 5-HT2C receptor RNA isoforms may not reflect the pattern of protein isoforms, and hence the inferred overall function of the receptor.

  8. THE NUCLEOTIDE RECEPTORS ON MOUSE C2C12 MYOTUBES

    NARCIS (Netherlands)

    HENNING, RH; NELEMANS, A; VANDENAKKER, J; DENHERTOG, A

    1992-01-01

    1 The response of C2C12 mouse myotubes to stimulation with adenosine triphosphate (ATP) and other nucleotides was studied by measuring changes in membrane potential. 2 A transient hyperpolarization followed by a slowly declining depolarization of the cells was observed in the presence of ATP (10-mu-

  9. THE NUCLEOTIDE RECEPTORS ON MOUSE C2C12 MYOTUBES

    NARCIS (Netherlands)

    HENNING, RH; NELEMANS, A; VANDENAKKER, J; DENHERTOG, A

    1 The response of C2C12 mouse myotubes to stimulation with adenosine triphosphate (ATP) and other nucleotides was studied by measuring changes in membrane potential. 2 A transient hyperpolarization followed by a slowly declining depolarization of the cells was observed in the presence of ATP

  10. Dynamic 5-HT2C receptor editing in a mouse model of obesity.

    Directory of Open Access Journals (Sweden)

    Harriët Schellekens

    Full Text Available The central serotonergic signalling system has been shown to play an important role in appetite control and the regulation of food intake. Serotonin exerts its anorectic effects mainly through the 5-HT(1B, 5-HT(2C and 5-HT(6 receptors and these are therefore receiving increasing attention as principal pharmacotherapeutic targets for the treatment of obesity. The 5-HT(2C receptor has the distinctive ability to be modified by posttranscriptional RNA editing on 5 nucleotide positions (A, B, C, D, E, having an overall decreased receptor function. Recently, it has been shown that feeding behaviour and fat mass are altered when the 5-HT(2C receptor RNA is fully edited, suggesting a potential role for 5-HT(2C editing in obesity. The present studies investigate the expression of serotonin receptors involved in central regulation of food intake, appetite and energy expenditure, with particular focus on the level of 5-HT(2C receptor editing. Using a leptin-deficient mouse model of obesity (ob/ob, we show increased hypothalamic 5-HT(1A receptor expression as well as increased hippocampal 5-HT(1A, 5-HT(1B, and 5-HT(6 receptor mRNA expression in obese mice compared to lean control mice. An increase in full-length 5-HT(2C expression, depending on time of day, as well as differences in 5-HT(2C receptor editing were found, independent of changes in total 5-HT(2C receptor mRNA expression. This suggests that a dynamic regulation exists of the appetite-suppressing effects of the 5-HT(2C receptor in both the hypothalamus and the hippocampus in the ob/ob mice model of obesity. The differential 5-HT(1A, 5-HT(1B and 5-HT(6 receptor expression and altered 5-HT(2C receptor editing profile reported here is poised to have important consequences for the development of novel anti-obesity therapies.

  11. Synergistic Impairment of Glucose Homeostasis in ob/ob Mice Lacking Functional Serotonin 2C Receptors

    OpenAIRE

    Wade, Jennifer M.; Juneja, Punita; Mackay, Adrienne W.; Graham, James; Havel, Peter J.; Tecott, Laurence H.; Goulding, Evan H.

    2007-01-01

    To investigate how serotonin and leptin interact in the regulation of energy balance and glucose homeostasis, we generated a genetic mouse model, the OB2C mouse, which lacks functional serotonin 2C receptors and the adipocyte hormone leptin. The OB2C mice exhibited a dramatic diabetes phenotype, evidenced by a synergistic increase in serum glucose levels and water intake. The severity of the animals’ diabetes phenotype would not have been predicted from the phenotypic characterization of mice...

  12. Estradiol increases the anorexia associated with increased 5-HT2C receptor activation in ovariectomized rats

    OpenAIRE

    Rivera, Heidi M.; Santollo, Jessica; Nikonova, Larissa V.; Eckel, Lisa A.

    2011-01-01

    Estradiol’s inhibitory effect on food intake is mediated, in part, by its ability to increase the activity of meal-related signals, including serotonin (5-HT), which hasten satiation. The important role that postsynaptic 5-HT2C receptors play in mediating 5-HT’s anorexigenic effect prompted us to investigate whether a regimen of acute estradiol treatment increases the anorexia associated with increased 5-HT2C receptor activation in ovariectomized (OVX) rats. We demonstrated that intraperitone...

  13. Oligonucleotide-induced alternative splicing of serotonin 2C receptor reduces food intake.

    Science.gov (United States)

    Zhang, Zhaiyi; Shen, Manli; Gresch, Paul J; Ghamari-Langroudi, Masoud; Rabchevsky, Alexander G; Emeson, Ronald B; Stamm, Stefan

    2016-08-01

    The serotonin 2C receptor regulates food uptake, and its activity is regulated by alternative pre-mRNA splicing. Alternative exon skipping is predicted to generate a truncated receptor protein isoform, whose existence was confirmed with a new antiserum. The truncated receptor sequesters the full-length receptor in intracellular membranes. We developed an oligonucleotide that promotes exon inclusion, which increases the ratio of the full-length to truncated receptor protein. Decreasing the amount of truncated receptor results in the accumulation of full-length, constitutively active receptor at the cell surface. After injection into the third ventricle of mice, the oligonucleotide accumulates in the arcuate nucleus, where it changes alternative splicing of the serotonin 2C receptor and increases pro-opiomelanocortin expression. Oligonucleotide injection reduced food intake in both wild-type and ob/ob mice. Unexpectedly, the oligonucleotide crossed the blood-brain barrier and its systemic delivery reduced food intake in wild-type mice. The physiological effect of the oligonucleotide suggests that a truncated splice variant regulates the activity of the serotonin 2C receptor, indicating that therapies aimed to change pre-mRNA processing could be useful to treat hyperphagia, characteristic for disorders like Prader-Willi syndrome.

  14. Decreased serotonin2C receptor responses in male patients with schizophrenia.

    Science.gov (United States)

    Lee, Myung Ae; Jayathilake, Karuna; Sim, Min Young; Meltzer, Herbert Y

    2015-03-30

    Serotonin (5-HT)2C receptors in brain affect psychosis, reward, substance abuse, anxiety, other behaviors, appetite, body temperature, and other physiological measures. They also have been implicated in antipsychotic drug efficacy and side effects. We previously reported that the hyperthermia following administration of MK-212, a predominantly 5-HT(2C) receptor agonist, was diminished in a small sample of patients with schizophrenia (SCH), suggesting decreased 5-HT(2C) receptor responsiveness. We have now studied the responses to oral MK-212 and placebo in a larger sample of unmedicated male SCH (n = 69) and normal controls (CON) (n = 33), and assessed the influence of comorbid substance abuse (SA) on oral body temperature, behavioral responses, etc. The placebo-adjusted oral body temperature response to MK-212 was significantly lower in SCH compared to CON and not significantly different between the SCH with or without SA. Some behavioral responses to MK-212, e.g. self-rated feelings of increased anxiety, depression and decreased calmness, or good overall feeling, were significantly lower in the SCH patients compared to CON. These results add to the evidence for diminished 5-HT(2C) receptor responsiveness in SCH patients compared to CON and are consistent with reported association of HTR(2C) polymorphisms, leading to decreased expression or function of the HTR(2C) in patients with SCH.

  15. Regulation of adipogenesis by nucelar receptor PPARγ is modulated by the histone demethylase JMJD2C

    Directory of Open Access Journals (Sweden)

    Lizcano Fernando

    2011-01-01

    Full Text Available A potential strategy to combat obesity and its associated complications involves modifying gene expression in adipose cells to reduce lipid accumulation. The nuclear receptor Peroxisome Proliferator-activated receptor gamma (PPARγ is the master regulator of adipose cell differentiation and its functional activation is currently used as a therapeutic approach for Diabetes Mellitus type 2. However, total activation of PPARγ induces undesirable secondary effects that might be set with a partial activation. A group of proteins that produce histone demethylation has been shown to modify the transcriptional activity of nuclear receptors. Here we describe the repressive action of the jumonji domain containing 2C/lysine demethylase 4 C (JMJD2C/KDM4C on PPARγ transcriptional activation. JMJD2C significantly reduced the rosiglitazone stimulated PPARγ activation. This effect was mainly observed in experiments performed using the Tudor domains that may interact with histone deacetylase class 1 (HDAC and this interaction probably reduces the mediated activation of PPARγ. Trichostatin A, a HDAC inhibitor, reduces the repressive effect of JMJD2C. When JMJD2C was over-expressed in 3T3-L1 cells, a reduction of differentiation was observed with the Tudor domain. In summary, we herein describe JMJD2C-mediated reduction of PPARgamma transcriptional activation as well as preadipocyte differentiation. This novel action of JMJD2C might have an important role in new therapeutic approaches to treat obesity and its complications.

  16. Estradiol increases the anorexia associated with increased 5-HT(2C) receptor activation in ovariectomized rats.

    Science.gov (United States)

    Rivera, Heidi M; Santollo, Jessica; Nikonova, Larissa V; Eckel, Lisa A

    2012-01-18

    Estradiol's inhibitory effect on food intake is mediated, in part, by its ability to increase the activity of meal-related signals, including serotonin (5-HT), which hastens satiation. The important role that postsynaptic 5-HT(2C) receptors play in mediating 5-HT's anorexigenic effect prompted us to investigate whether a regimen of acute estradiol treatment increases the anorexia associated with increased 5-HT(2C) receptor activation in ovariectomized (OVX) rats. We demonstrated that intraperitoneal and intracerebroventricular (i.c.v.) administration of low doses of the 5-HT(2C) receptor agonist meta-chlorophenylpiperazine (mCPP) decreased 1-h dark-phase food intake in estradiol-treated, but not oil-treated, OVX rats. During a longer feeding test, we demonstrated that i.c.v. administration of mCPP decreased 22-h food intake in oil-treated and, to a greater extent, estradiol-treated OVX rats. In a second study, we demonstrated that estradiol increased 5-HT(2C) receptor protein content in the caudal brainstem, but not hypothalamus, of OVX rats. We conclude that a physiologically-relevant regimen of acute estradiol treatment increases sensitivity to mCPP's anorexigenic effect. Our demonstration that this same regimen of estradiol treatment increases 5-HT(2C) receptor protein content in the caudal hindbrain of OVX rats provides a possible mechanism to explain our behavioral findings.

  17. Functional aspects of dexamethasone upregulated nicotinic acetylcholine receptors in C2C12 myotubes

    NARCIS (Netherlands)

    Maestrone, E; Lagostena, L; Henning, RH; DenHertog, A; Nobile, M

    1995-01-01

    Three days of treatment with the glucocorticoid dexamethasone (1 nM-mu M) induced a concentration-dependent up-regulation of muscle nicotinic acetylcholine receptor (nAChR) in C2C12 mouse myotubes (EC(50)=10+/-7.3 nM), as assessed by [H-3]alpha-BuTx binding. The maximum increase in binding amounted

  18. Activation of serotonin 2C receptors in dopamine neurons inhibits binge-like eating in mice

    Science.gov (United States)

    Neural networks that regulate binge eating remain to be identified, and effective treatments for binge eating are limited. We combined neuroanatomic, pharmacologic, electrophysiological, Cre-lox, and chemogenetic approaches to investigate the functions of 5-hydroxytryptamine (5-HT) 2C receptor (5-HT...

  19. Evidence that the anorexia induced by lipopolysaccharide is mediated by the 5-HT2C receptor.

    Science.gov (United States)

    von Meyenburg, Claudia; Langhans, Wolfgang; Hrupka, Brian J

    2003-01-01

    Rats consistently reduce their food intake following injections of bacterial lipopolysaccharides (LPS). Because inhibition of serotonergic (5-HT) activity by 8-OH-DPAT (5-HT(1A) activation) attenuates LPS-induced anorexia, we conducted a series of studies to examine whether other 5-HT-receptors are involved in the mediation of peripheral LPS-induced anorexia. In all experiments, rats were injected with LPS (100 microg/kg body weight [BW] ip) at lights out (hour 0). Antagonists were administered peripherally at hour 4, shortly after the onset of anorexia, which presumably follows the enhanced cytokine production after LPS. Food intake was then recorded during the subsequent 2 h or longer. 5-HT receptor antagonists cyanopindolol and SB 224289 (5-HT(1B)), ketanserin (5-HT(2A)), RS-102221 (5-HT(2C)), and metoclopramide (5-HT(3)) failed to attenuate LPS-induced anorexia. In contrast, both ritanserin (5-HT(2A/C)-receptor antagonist) (0.5 mg/kg BW) and SB 242084 (5-HT(2C)) (0.3 mg/kg BW) attenuated LPS-induced anorexia at doses that did not alter food intake in non-LPS-treated rats (all Panorexia following peripheral LPS administration is mediated through an enhanced 5-HT-ergic activity and the 5-HT(2C) receptor.

  20. Identification of a cys-ser substitution in the 5-HT{sub 2C} (HTR2C) receptor gene and allelic association to violent behavior and alcoholism

    Energy Technology Data Exchange (ETDEWEB)

    Lappalainen, J.; Ozaki, N.; Goldman, D. [National Institute on Alcohol Abuse and Alcoholism, Rockville, MD (United States)] [and others

    1994-09-01

    Several lines of evidence suggest that brain serotonergic functions, including behavioral and neurochemical responses to 5-HT{sub 2C} agonist, are abnormal in some individuals with alcoholism and aggressive behaviors. The aim of the present study was to identify coding sequence variants in the human 5-HT{sub 2C} receptor gene which may cause abnormal or variant function of this receptor. Using SSCP analysis, a non-conservative cys-ser substitution was found in the 5-HT{sub 2C} receptor (designated 5-HT{sub 2Ccys} and 5-HT{sub 2Cser}). The polymorphism was typed in CEPH families to genetically map the gene. To test for association of the variant to alcoholism, violent behavior and serotonin function, the 5-HT{sub 2C} genotypes of 151 non-related Finnish male alcoholic violent offenders and impulsive fire setters and 127 Finnish psychiatrically interviewed healthy male volunteers were determined. CSF 5-HIAA concentrations were available for 74 alcoholic violent offenders and 25 healthy volunteers. Linkage analysis placed the 5-HT{sub 2C} gene on Xq21, a region that has been previously shown to contain genes for several mental retardation syndromes. The 5-HT{sub 2Ccys}/5-HT{sub 2Cser} genotype frequencies in alcoholic violent offenders and controls differed significantly (0.90/0.10 and 0.82/0.18, respectively, P=0.048). The association was found to be strongest in the violent offenders who did not fulfill the criteria for antisocial personality disorder (5-HT{sub 2Ccys}/5-HT{sub 2Cser} 0.93/0.07, p=0.021). No association was found between CSF 5-HIAA concentrations and 5-HT{sub 2C} genotype. These results implicate a 5-HT{sub 2C} receptor amino acid substitution in predisposition to alcohol abuse and violent behavior in a subgroup of alcoholics.

  1. Multiple interactions between the alpha2C- and beta1-adrenergic receptors influence heart failure survival

    Directory of Open Access Journals (Sweden)

    Case Karen L

    2008-10-01

    Full Text Available Abstract Background Persistent stimulation of cardiac β1-adrenergic receptors by endogenous norepinephrine promotes heart failure progression. Polymorphisms of this gene are known to alter receptor function or expression, as are polymorphisms of the α2C-adrenergic receptor, which regulates norepinephrine release from cardiac presynaptic nerves. The purpose of this study was to investigate possible synergistic effects of polymorphisms of these two intronless genes (ADRB1 and ADRA2C, respectively on the risk of death/transplant in heart failure patients. Methods Sixteen sequence variations in ADRA2C and 17 sequence variations in ADRB1 were genotyped in a longitudinal study of 655 white heart failure patients. Eleven sequence variations in each gene were polymorphic in the heart failure cohort. Cox proportional hazards modeling was used to identify polymorphisms and potential intra- or intergenic interactions that influenced risk of death or cardiac transplant. A leave-one-out cross-validation method was utilized for internal validation. Results Three polymorphisms in ADRA2C and five polymorphisms in ADRB1 were involved in eight cross-validated epistatic interactions identifying several two-locus genotype classes with significant relative risks ranging from 3.02 to 9.23. There was no evidence of intragenic epistasis. Combining high risk genotype classes across epistatic pairs to take into account linkage disequilibrium, the relative risk of death or transplant was 3.35 (1.82, 6.18 relative to all other genotype classes. Conclusion Multiple polymorphisms act synergistically between the ADRA2C and ADRB1 genes to increase risk of death or cardiac transplant in heart failure patients.

  2. Support for 5-HT2C receptor functional selectivity in vivo utilizing structurally diverse, selective 5-HT2C receptor ligands and the 2,5-dimethoxy-4-iodoamphetamine elicited head-twitch response model.

    Science.gov (United States)

    Canal, Clinton E; Booth, Raymond G; Morgan, Drake

    2013-07-01

    There are seemingly conflicting data in the literature regarding the role of serotonin (5-HT) 5-HT2C receptors in the mouse head-twitch response (HTR) elicited by the hallucinogenic 5-HT2A/2B/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI). Namely, both 5-HT2C receptor agonists and antagonists, regarding 5-HT2C receptor-mediated Gq-phospholipase C (PLC) signaling, reportedly attenuate the HTR response. The present experiments tested the hypothesis that both classes of 5-HT2C receptor compounds could attenuate the DOI-elicited-HTR in a single strain of mice, C57Bl/6J. The expected results were considered in accordance with ligand functional selectivity. Commercially-available 5-HT2C agonists (CP 809101, Ro 60-0175, WAY 161503, mCPP, and 1-methylpsilocin), novel 4-phenyl-2-N,N-dimethyl-aminotetralin (PAT)-type 5-HT2C agonists (with 5-HT2A/2B antagonist activity), and antagonists selective for 5-HT2A (M100907), 5-HT2C (SB-242084), and 5-HT2B/2C (SB-206553) receptors attenuated the DOI-elicited-HTR. In contrast, there were differential effects on locomotion across classes of compounds. The 5-HT2C agonists and M100907 decreased locomotion, SB-242084 increased locomotion, SB-206553 resulted in dose-dependent biphasic effects on locomotion, and the PATs did not alter locomotion. In vitro molecular pharmacology studies showed that 5-HT2C agonists potent for attenuating the DOI-elicited-HTR also reduced the efficacy of DOI to activate mouse 5-HT2C receptor-mediated PLC signaling in HEK cells. Although there were differences in affinities of a few compounds at mouse compared to human 5-HT2A or 5-HT2C receptors, all compounds tested retained their selectivity for either receptor, regardless of receptor species. Results indicate that 5-HT2C receptor agonists and antagonists attenuate the DOI-elicited-HTR in C57Bl/6J mice, and suggest that structurally diverse 5-HT2C ligands result in different 5-HT2C receptor signaling outcomes compared to DOI.

  3. Medial parabrachial nucleus neurons modulate d-fenfluramine-induced anorexia through 5HT2C receptors.

    Science.gov (United States)

    Trifunovic, Radmila; Reilly, Steve

    2006-01-05

    We previously reported that lesions of the medial parabrachial nucleus (PBN) enhanced d-fenfluramine (DFEN)-induced anorexia; a finding that suggests these lesions may potentiate the release of serotonin (5HT) or increase the postsynaptic action of 5HT. In the present study, we used SB 206553 (a 5HT2B/2C receptor antagonist) or m-CPP (a 5HT2C/1B receptor agonist) in a standard behavioral procedure (deprivation-induced feeding) to further explore the role of the medial PBN in drug-induced anorexia. In Experiment 1, DFEN (0 or 1.0 mg/kg) was given alone or in combination with SB 206553 (2.0 or 5.0 mg/kg). In Experiment 2, we investigated the food-suppressive effects of m-CPP (0.5, 1.0 or 2.0 mg/kg). The results of Experiment 1 show that SB 206553, while having no influence on the performance of control subjects, attenuated (2.0 mg/kg) or abolished (5 mg/kg) the potentiating effect of the lesions on DFEN-induced anorexia. In Experiment 2, m-CPP induced a suppression of food intake in nonlesioned animals that was significantly potentiated in rats with medial PBN lesions. These results are consistent with the hypothesis that medial PBN neurons mediate anorexia through 5HT2C receptors.

  4. Pharmacological and genetic interventions in serotonin (5-HT)(2C) receptors to alter drug abuse and dependence processes

    NARCIS (Netherlands)

    Filip, Malgorzata; Spampinato, Umberto; McCreary, Andrew C.; Przegalinski, Edmund

    2012-01-01

    The present review provides an overview on serotonin (5-hydroxytryptamine; 5-HT)(2C) receptors and their relationship to drug dependence. We have focused our discussion on the impact of 5-HT2C receptors on the effects of different classes of addictive drugs, illustrated by reference to data using ph

  5. Human alpha 2-adrenergic receptor subtype distribution: widespread and subtype-selective expression of alpha 2C10, alpha 2C4, and alpha 2C2 mRNA in multiple tissues.

    Science.gov (United States)

    Eason, M G; Liggett, S B

    1993-07-01

    At present, molecular cloning and pharmacological studies have delineated three human alpha 2-adrenergic receptor (alpha 2AR) subtypes, alpha 2C10, alpha 2C4, and alpha 2C2. Assignment of the alpha 2AR subtypes to specific functions has been limited by an unclear definition of tissue alpha 2AR expression outside of the central nervous system. It has been suggested that alpha 2C4 expression is confined to the brain, that alpha 2C2 expression is only in the liver and kidney, and that there is nearly ubiquitous expression of alpha 2C10. However, this is based on studies of a limited number of rat tissues or on studies using non-species-specific approaches. Therefore, to define alpha 2C10, alpha 2C4, and alpha 2C2 tissue expression, we used reverse transcription of total RNA isolated from 20 human tissues, followed by amplification of alpha 2AR cDNA using the polymerase chain reaction. This technique provided two advantages: high sensitivity and, with the use of subtype-specific oligonucleotide primers and probes, differentiation between the alpha 2AR subtypes. The tissues studied were aorta, vena cava, heart (epicardium and endocardium), lung, skeletal muscle, liver, pancreas (head and tail), fat (perinephric and subcutaneous), kidney (cortex and medulla), prostate, stomach, ileum, jejunum, colon, adrenal gland, and spleen. We found that the majority of these tissues expressed alpha 2C10, with the exceptions being the head of the pancreas, subcutaneous fat, colon, and spleen. In marked distinction to other studies, however, we found a prolific expression of the alpha 2C4 and alpha 2C2 subtypes. Expression of alpha 2C4 was found in all tissues with the exception of liver, fat, stomach, and colon, and a virtually ubiquitous expression of alpha 2C2 was found, with the exception of epicardium. Of all tissues studied, only colon and subcutaneous fat expressed a single alpha 2AR subtype, which was alpha 2C2. Thus, the alpha 2AR subtypes do not have a confined expression but

  6. Role of 5-HT2C receptor gene variants in antipsychotic-induced weight gain

    Directory of Open Access Journals (Sweden)

    Brandl EJ

    2011-08-01

    Full Text Available Tessa JM Wallace, Clement C Zai, Eva J Brandl, Daniel J MüllerNeurogenetics Section, Center for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, CanadaAbstract: Antipsychotic-induced weight gain is a serious side effect of antipsychotic medication that can lead to increased morbidity, mortality, and non-compliance in patients. Numerous single nucleotide polymorphisms have been studied for association with antipsychotic-induced weight gain in an attempt to find genetic predictors of this side effect. An ability to predict this side effect could lead to personalized treatment plans for predisposed individuals, which could significantly decrease the prevalence and severity of weight gain. Variations in the serotonin receptor 2c gene (HTR2C have emerged as promising candidates for prediction of antipsychotic-induced weight gain. Specifically, the well-studied -759C/T promoter polymorphism has been associated with weight gain in diverse populations, although some studies have reported no association. This discrepancy is likely due to heterogeneity in study design with respect to ethnicity, treatment duration, and other variables. Notably, the association between HTR2C and antipsychotic-induced weight gain appears strongest in short-term studies on patients with limited or no previous antipsychotic treatment. Other, less extensively studied promoter polymorphisms (-697C/G, -997G/A, and -1165A/G have also emerged as potential predictors of antipsychotic-induced weight gain. Conversely, the well-studied intronic polymorphism Cys23Ser does not appear to be associated. With further research on both HTR2C and other genetic and environmental predictors of antipsychotic-induced weight gain, a predictive test could one day be created to screen patients and provide preventative or alternative treatment for those who are predisposed to this serious side effect.Keywords: HTR2C, pharmacogenomics, promoter polymorphism

  7. The time course of serotonin 2C receptor expression after spinal transection of rats

    DEFF Research Database (Denmark)

    Ren, Li-Qun; Wienecke, Jacob; Chen, Meng

    2013-01-01

    -IR analysis was confined to the ventral horn motoneuron somata (including a proportion of proximal dendrites) a significant increase was not detected until 45 day post-operation. 5-HT2CR upregulation in the spinal gray matter is confirmed with Western blot in the rats 60 days post-operation. The time course......In the spinal cord 5-HT systems modulate the spinal network via various 5-HT receptors. 5-HT2A and 2C receptors are likely the most important 5-HT receptors for enhancing the motoneuron excitability by facilitating the persistent inward current, and thus play an important role for the pathogenesis...... after transection (with an average ~1.3-fold higher than in sham-operated group) but did not reach a significant level until at 21 days (~1.4-fold). The increase sustained thereafter and a plateau level was reached at 45 days (~1.7-fold higher), a value similar as that at 60 days. When 5-HT2CR...

  8. Lorcaserin: a selective serotonin receptor (5-HT2C agonist for the treatment of obesity

    Directory of Open Access Journals (Sweden)

    Bhaven C. Kataria

    2012-02-01

    Full Text Available Lorcaserin is a selective serotonin receptor (5-HT2C agonist that recently received the U.S. Food and Drug Administration (FDA approval for chronic weight management. The efficacy of this drug in reducing body weight and improving metabolic parameters of obese patients has been demonstrated in three phase-3 clinical trials. The available evidence indicates that this drug does not show heart valve abnormalities, and the treatment improves the risk factors for type 2 diabetes and cardiovascular diseases. However, the drug's manufacturer will be required to conduct postmarketing studies, including a long-term cardiovascular outcomes trial to assess the effect of Lorcaserin on the risk for major adverse cardiac events such as heart attack and stroke. [Int J Basic Clin Pharmacol 2012; 1(1.000: 45-47

  9. Optimization of 2-phenylcyclopropylmethylamines as selective serotonin 2C receptor agonists and their evaluation as potential antipsychotic agents.

    Science.gov (United States)

    Cheng, Jianjun; Giguère, Patrick M; Onajole, Oluseye K; Lv, Wei; Gaisin, Arsen; Gunosewoyo, Hendra; Schmerberg, Claire M; Pogorelov, Vladimir M; Rodriguiz, Ramona M; Vistoli, Giulio; Wetsel, William C; Roth, Bryan L; Kozikowski, Alan P

    2015-02-26

    The discovery of a new series of compounds that are potent, selective 5-HT2C receptor agonists is described herein as we continue our efforts to optimize the 2-phenylcyclopropylmethylamine scaffold. Modifications focused on the alkoxyl substituent present on the aromatic ring led to the identification of improved ligands with better potency at the 5-HT2C receptor and excellent selectivity against the 5-HT2A and 5-HT2B receptors. ADMET studies coupled with a behavioral test using the amphetamine-induced hyperactivity model identified four compounds possessing drug-like profiles and having antipsychotic properties. Compound (+)-16b, which displayed an EC50 of 4.2 nM at 5-HT2C, no activity at 5-HT2B, and an 89-fold selectivity against 5-HT2A, is one of the most potent and selective 5-HT2C agonists reported to date. The likely binding mode of this series of compounds to the 5-HT2C receptor was also investigated in a modeling study, using optimized models incorporating the structures of β2-adrenergic receptor and 5-HT2B receptor.

  10. Agonist-directed signaling of serotonin 5-HT2C receptors: differences between serotonin and lysergic acid diethylamide (LSD).

    Science.gov (United States)

    Backstrom, J R; Chang, M S; Chu, H; Niswender, C M; Sanders-Bush, E

    1999-08-01

    For more than 40 years the hallucinogen lysergic acid diethylamide (LSD) has been known to modify serotonin neurotransmission. With the advent of molecular and cellular techniques, we are beginning to understand the complexity of LSD's actions at the serotonin 5-HT2 family of receptors. Here, we discuss evidence that signaling of LSD at 5-HT2C receptors differs from the endogenous agonist serotonin. In addition, RNA editing of the 5-HT2C receptor dramatically alters the ability of LSD to stimulate phosphatidylinositol signaling. These findings provide a unique opportunity to understand the mechanism(s) of partial agonism.

  11. Receptor reserve analysis of the human alpha(2C)-adrenoceptor using.

    Science.gov (United States)

    Umland, S P; Wan, Y; Shah, H; Billah, M; Egan, R W; Hey, J A

    2001-01-12

    Here we determine for norepinephrine, (5-bromo-6-(2-imidazolin-2-ylamino)quinoxaline) (UK14,304), 5,6,7,8-tetrahydro-6-(2-propenyl)-4H-thiazolo[4,5-d]azepin-2-amine dihydrochloride (BHT-920), (2-[3-hydroxy-2,6-dimethyl-4-t-butylbenzyl]-2-imidazoline) (oxymetazoline), and ((R)-3-Hydroxy-alpha-[(methylamino)methyl]-benzenemethanol hydrochloride) (phenylephrine), affinities using a radiolabeled agonist and antagonist, and potency and efficacy values in membrane [(35)S]guanosine-5'-O-(3-thiotriphosphate) ([(35)S]GTP gamma S) binding and cAMP cellular inhibition assays, in Chinese hamster ovary cells (CHO-K1) expressing the human alpha(2c)-adrenoceptor. These cells express a high ratio of receptor to G-protein because each agonist, but not several antagonists, displaced [(3)H]UK14,304 with higher affinity than [(3)H]rauwolscine. The rank order of potency of high affinity K(i) and EC(50) in both functional assays was norepinephrine > or =UK14,304>BHT-920>oxymetazoline>phenylephrine. The receptor reserve of G-protein activation and cAMP responses was measured with the irreversible antagonist, benextramine; K(A) values of norepinephrine or UK14,304 were similar (289, 271 or 150, 163 nM, respectively). A 20-fold greater receptor occupancy was required for agonist-induced half-maximal [(35)S]GTP gamma S binding compared to cAMP inhibition, indicating significant signal amplification in cells. Therefore, the G-protein activation assay is better at distinguishing full and partial agonists.

  12. Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors.

    Science.gov (United States)

    Smith, R L; Canton, H; Barrett, R J; Sanders-Bush, E

    1998-11-01

    Extensive behavioral and biochemical evidence suggests an agonist role at the 5-HT2A receptor, and perhaps the 5-HT2C receptor, in the mechanism of action of hallucinogenic drugs. However the published in vitro pharmacological properties of N,N-dimethyltryptamine (DMT), an hallucinogenic tryptamine analog, are not consistent with this hypothesis. We, therefore, undertook an extensive investigation into the properties of DMT at 5-HT2A and 5-HT2C receptors. In fibroblasts transfected with the 5-HT2A receptor or the 5-HT2C receptor, DMT activated the major intracellular signaling pathway (phosphoinositide hydrolysis) to an extent comparable to that produced by serotonin. Because drug efficacy changes with receptor density and cellular microenvironment, we also examined the properties of DMT in native preparations using a behavioral and biochemical approach. Rats were trained to discriminate an antagonist ketanserin from an agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in a two-lever choice paradigm. Pharmacological studies showed that responding on the DOI and ketanserin lever reflected agonist and antagonist activity at 5-HT2A receptors, and hence, was a suitable model for evaluating the in vivo functional properties of DMT. Like other 5-HT2A receptor agonists, DMT substituted fully for DOI. Intact choroid plexus was used to evaluate the agonist properties at endogenous 5-HT2C receptors; DMT was a partial agonist at 5-HT2C receptors in this native preparation. Thus, we conclude that DMT behaves as an agonist at both 5-HT2A and 5-HT2A receptors. One difference was evident in that the 5-HT2C, but not the 5-HT2A, receptor showed a profound desensitization to DMT over time. This difference is interesting in light of the recent report that the hallucinogenic activity of DMT does not tolerate in humans and suggests the 5-HT2C receptor plays a less prominent role in the action of DMT.

  13. Evaluation of the abuse potential of lorcaserin, a serotonin 2C (5-HT2C) receptor agonist, in recreational polydrug users.

    Science.gov (United States)

    Shram, M J; Schoedel, K A; Bartlett, C; Shazer, R L; Anderson, C M; Sellers, E M

    2011-05-01

    Lorcaserin is a selective and potent serotonin 2C receptor subtype (5-HT(2C)) agonist under development for the treatment of obesity. This study assessed the drug's abuse potential on the basis of its pharmacological profile. For this purpose, a double-blind, double-dummy, placebo-controlled, randomized seven-way crossover study with single oral doses of lorcaserin (20, 40, and 60 mg), zolpidem (15 and 30 mg), ketamine (100 mg), and placebo was conducted in recreational polydrug users (N = 35). Subjective and objective measures were assessed up to 24 h after the dose. We found that zolpidem and ketamine had significantly higher peak scores relative to placebo on the primary measures as well as on most of the secondary measures. The subjective effects of a 20-mg dose of lorcaserin were similar to those of placebo, whereas supratherapeutic doses of lorcaserin were associated with significant levels of dislike by users as compared with placebo, zolpidem, and ketamine. Perceptual effects were minimal after administration of lorcaserin and significantly lower than after administration of either ketamine or zolpidem. The findings suggest that, at supratherapeutic doses, lorcaserin is associated with distinct, primarily negative, subjective effects and has low abuse potential.

  14. Impact of serotonin 2C receptor null mutation on physiology and behavior associated with nigrostriatal dopamine pathway function.

    Science.gov (United States)

    Abdallah, Luna; Bonasera, Stephen J; Hopf, F Woodward; O'Dell, Laura; Giorgetti, Marco; Jongsma, Minke; Carra, Scott; Pierucci, Massimo; Di Giovanni, Giuseppe; Esposito, Ennio; Parsons, Loren H; Bonci, Antonello; Tecott, Laurence H

    2009-06-24

    The impact of serotonergic neurotransmission on brain dopaminergic pathways has substantial relevance to many neuropsychiatric disorders. A particularly prominent role has been ascribed to the inhibitory effects of serotonin 2C receptor (5-HT(2C)R) activation on physiology and behavior mediated by the mesolimbic dopaminergic pathway, particularly in the terminal region of the nucleus accumbens. The influence of this receptor subtype on functions mediated by the nigrostriatal dopaminergic pathway is less clear. Here we report that a null mutation eliminating expression of 5-HT(2C)Rs produces marked alterations in the activity and functional output of this pathway. 5-HT(2C)R mutant mice displayed increased activity of substantia nigra pars compacta (SNc) dopaminergic neurons, elevated baseline extracellular dopamine concentrations in the dorsal striatum (DSt), alterations in grooming behavior, and enhanced sensitivity to the stereotypic behavioral effects of d-amphetamine and GBR 12909. These psychostimulant responses occurred in the absence of phenotypic differences in drug-induced extracellular dopamine concentration, suggesting a phenotypic alteration in behavioral responses to released dopamine. This was further suggested by enhanced behavioral responses of mutant mice to the D(1) receptor agonist SKF 81297. Differences in DSt D(1) or D(2) receptor expression were not found, nor were differences in medium spiny neuron firing patterns or intrinsic membrane properties following dopamine stimulation. We conclude that 5-HT(2C)Rs regulate nigrostriatal dopaminergic activity and function both at SNc dopaminergic neurons and at a locus downstream of the DSt.

  15. Distinct regions within the GluN2C subunit regulate the surface delivery of NMDA receptors

    Directory of Open Access Journals (Sweden)

    Katarina eLichnerova

    2014-11-01

    Full Text Available N-methyl-D-aspartate (NMDA receptors mediate fast excitatory synaptic transmission in the mammalian central nervous system. The activation of NMDA receptors plays a key role in brain development, synaptic plasticity, and memory formation, and is a major contributor to many neuropsychiatric disorders. Here, we investigated the mechanisms that underlie the trafficking of GluN1/GluN2C receptors. Using an approach combining molecular biology, microscopy, and electrophysiology in mammalian cell lines and cultured cerebellar granule cells, we found that the surface delivery of GluN2C-containing receptors is reduced compared to GluN2A- and GluN2B-containing receptors. Furthermore, we identified three distinct regions within the N-terminus, M3 transmembrane domain, and C-terminus of GluN2C subunits that are required for proper intracellular processing and surface delivery of NMDA receptors. These results shed new light on the regulation of NMDA receptor trafficking, and these findings can be exploited to develop new strategies for treating some forms of neuropsychiatric disorders.

  16. Peroxisome proliferator-activated receptor alpha, PPARα, directly regulates transcription of cytochrome P450 CYP2C8.

    Science.gov (United States)

    Thomas, Maria; Winter, Stefan; Klumpp, Britta; Turpeinen, Miia; Klein, Kathrin; Schwab, Matthias; Zanger, Ulrich M

    2015-01-01

    The cytochrome P450, CYP2C8, metabolizes more than 60 clinically used drugs as well as endogenous substances including retinoic acid and arachidonic acid. However, predictive factors for interindividual variability in the efficacy and toxicity of CYP2C8 drug substrates are essentially lacking. Recently we demonstrated that peroxisome proliferator-activated receptor alpha (PPARα), a nuclear receptor primarily involved in control of lipid and energy homeostasis directly regulates the transcription of CYP3A4. Here we investigated the potential regulation of CYP2C8 by PPARα. Two linked intronic SNPs in PPARα (rs4253728, rs4823613) previously associated with hepatic CYP3A4 status showed significant association with CYP2C8 protein level in human liver samples (N = 150). Furthermore, siRNA-mediated knock-down of PPARα in HepaRG human hepatocyte cells resulted in up to ∼60 and ∼50% downregulation of CYP2C8 mRNA and activity, while treatment with the PPARα agonist WY14,643 lead to an induction by >150 and >100%, respectively. Using chromatin immunoprecipitation scanning assay we identified a specific upstream gene region that is occupied in vivo by PPARα. Electromobility shift assay demonstrated direct binding of PPARα to a DR-1 motif located at positions -2762/-2775 bp upstream of the CYP2C8 transcription start site. We further validated the functional activity of this element using luciferase reporter gene assays in HuH7 cells. Moreover, based on our previous studies we demonstrated that WNT/β-catenin acts as a functional inhibitor of PPARα-mediated inducibility of CYP2C8 expression. In conclusion, our data suggest direct involvement of PPARα in both constitutive and inducible regulation of CYP2C8 expression in human liver, which is further modulated by WNT/β-catenin pathway. PPARA gene polymorphism could have a modest influence on CYP2C8 phenotype.

  17. Peroxisome proliferator-activated receptor alpha, PPARα, directly regulates transcription of cytochrome P450 CYP2C8

    Directory of Open Access Journals (Sweden)

    Maria eThomas

    2015-11-01

    Full Text Available The cytochrome P450, CYP2C8, metabolises more than 60 clinically used drugs as well as endogenous substances including retinoic acid and arachidonic acid. However predictive factors for interindividual variability in the efficacy and toxicity of CYP2C8 drug substrates are essentially lacking. Recently we demonstrated that peroxisome proliferator-activated receptor alpha (PPARα, a nuclear receptor primarily involved in control of lipid and energy homeostasis directly regulates the transcription of CYP3A4. Here we investigated the potential regulation of CYP2C8 by PPARα. Two linked intronic SNPs in PPARα (rs4253728, rs4823613 previously associated with hepatic CYP3A4 status showed significant association with CYP2C8 protein level in human liver samples (N=150. Furthermore, siRNA-mediated knock-down of PPARα in HepaRG human hepatocyte cells resulted in up to ~60% and ~50% downregulation of CYP2C8 mRNA and activity, while treatment with the PPARα agonist WY14,643 lead to an induction by >150% and >100%, respectively. Using chromatin immunoprecipitation scanning assay we identified a specific upstream gene region that is occupied in vivo by PPARα. Electromobility shift assay demonstrated direct binding of PPARα to a DR-1 motif located at positions -2762/-2775bp upstream of the CYP2C8 transcription start site. We further validated the functional activity of this element using luciferase reporter gene assays in HuH7 cells. Moreover, based on our previous studies we demonstrated that WNT/β-catenin acts as a functional inhibitor of PPARα-mediated inducibility of CYP2C8 expression. In conclusion, our data suggest direct involvement of PPARα in both constitutive and inducible regulation of CYP2C8 expression in human liver, which is further modulated by WNT/ β-catenin pathway. PPARA gene polymorphism could have a modest influence on CYP2C8 phenotype.

  18. The nuclear hormone receptor gene Nr2c1 (Tr2) is a critical regulator of early retina cell patterning.

    Science.gov (United States)

    Olivares, Ana Maria; Han, Yinan; Soto, David; Flattery, Kyle; Marini, Joseph; Molemma, Nissa; Haider, Ali; Escher, Pascal; DeAngelis, Margaret M; Haider, Neena B

    2017-09-01

    Nuclear hormone receptors play a major role in the development of many tissues. This study uncovers a novel role for testicular receptor 2 (Tr2, Nr2c1) in defining the early phase of retinal development and regulating normal retinal cell patterning and topography. The mammalian retina undergoes an overlapping yet biphasic period of development to generate all seven retinal cell types. We discovered that Nr2c1 expression coincides with development of the early retinal cells. Loss of Nr2c1 causes a severe vision deficit and impacts early, but not late retina cell types. Retinal cone cell topography is disrupted with an increase in displaced amacrine cells. Additionally, genetic background significantly impacts phenotypic outcome of cone photoreceptor cells but not amacrine cells. Chromatin-IP experiments reveal NR2C1 regulates early cell transcription factors that regulate retinal progenitor cells during development, including amacrine (Satb2) and cone photoreceptor regulators thyroid and retinoic acid receptors. This study supports a role for Nr2c1 in defining the biphasic period of retinal development and specifically influencing the early phase of retinal cell fate. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Serotonin 2C receptor activates a distinct population of arcuate pro-opiomelanocortin neurons via TRPC channels

    Science.gov (United States)

    Serotonin 2C receptors (5-HT2CRs) expressed by pro-opiomelanocortin (POMC) neurons of hypothalamic arcuate nucleus regulate food intake, energy homeostasis ,and glucose metabolism. However, the cellular mechanisms underlying the effects of 5-HT to regulate POMC neuronal activity via 5-HT2CRs have no...

  20. Role of melatonin, serotonin 2B, and serotonin 2C receptors in modulating the firing activity of rat dopamine neurons.

    Science.gov (United States)

    Chenu, Franck; Shim, Stacey; El Mansari, Mostafa; Blier, Pierre

    2014-02-01

    Melatonin has been widely used for the management of insomnia, but is devoid of antidepressant effect in the clinic. In contrast, agomelatine which is a potent melatonin receptor agonist is an effective antidepressant. It is, however, a potent serotonin 2B (5-HT(2B)) and serotonin 2C (5-HT(2C)) receptor antagonist as well. The present study was aimed at investigating the in vivo effects of repeated administration of melatonin (40 mg/kg/day), the 5-HT(2C) receptor antagonist SB 242084 (0.5 mg/kg/day), the selective 5-HT(2B) receptor antagonist LY 266097 (0.6 mg/kg/day) and their combination on ventral tegmental area (VTA) dopamine (DA), locus coeruleus (LC) norepinephrine (NE), and dorsal raphe nucleus (DRN) serotonin (5-HT) firing activity. Administration of melatonin twice daily increased the number of spontaneously active DA neurons but left the firing of NE neurons unaltered. Long-term administration of melatonin and SB 242084, by themselves, had no effect on the firing rate and burst parameters of 5-HT and DA neurons. Their combination, however, enhanced only the number of spontaneously active DA neurons, while leaving the firing of 5-HT neurons unchanged. The addition of LY 266097, which by itself is devoid of effect, to the previous regimen increased for DA neurons the number of bursts per minute and the percentage of spikes occurring in bursts. In conclusion, the combination of melatonin receptor activation as well as 5-HT(2C) receptor blockade resulted in a disinhibition of DA neurons. When 5-HT(2B) receptors were also blocked, the firing and the bursting activity of DA neurons were both enhanced, thus reproducing the effect of agomelatine.

  1. Development of an improved IP(1) assay for the characterization of 5-HT(2C) receptor ligands.

    Science.gov (United States)

    Zhang, Jean Y; Kowal, Dianne M; Nawoschik, Stanley P; Dunlop, John; Pausch, Mark H; Peri, Ravikumar

    2010-02-01

    The 5-hydroxytryptamine 2C (5-HT(2C)) receptor is a member of the serotonin 5-HT(2) subfamily of G-protein-coupled receptors signaling predominantly via the phospholipase C (PLC) pathway. Stimulation of phosphoinositide (PI) hydrolysis upon 5-HT(2C) receptor activation is traditionally assessed by measuring inositol monophosphate (IP(1)) using time-consuming and labor-intensive anion exchange radioactive assays. In this study, we have developed and optimized a cellular IP(1) assay using homogeneous time-resolved fluorescence (HTRF), a fluorescence resonance energy transfer (FRET)-based technology (Cisbio; Gif sur Yvette, France). The measurement is simple to carry out without the cumbersome steps associated with radioactive assays and may therefore be used as an alternative tool to evaluate PI hydrolysis activated by 5-HT(2C) agonists. In Chinese hamster ovary (CHO) cells stably expressing 5-HT(2C) receptors, characterization of 5-HT(2C) agonists with the HTRF platform revealed a rank order of potency (EC(50), nM) comparable to that from intracellular calcium mobilization studies measured by the fluorometric imaging plate reader (FLIPR). A similar rank order of potency was seen with conventional radioactive PI assay with the exception of 5-HT. Lastly, the new assay data correlated better with agonist-induced calcium responses in FLIPR (R(2) = 0.78) than with values determined by radioactive IP(1) method (R(2) = 0.64). Our study shows that the HTRF FRET-based assay detects IP(1) with good sensitivity and may be streamlined for high-throughput (HTS) applications.

  2. Urocortin1-induced anorexia is regulated by activation of the serotonin 2C receptor in the brain.

    Science.gov (United States)

    Harada, Yumi; Takayama, Kiyoshige; Ro, Shoki; Ochiai, Mitsuko; Noguchi, Masamichi; Iizuka, Seiichi; Hattori, Tomohisa; Yakabi, Koji

    2014-01-01

    This study was conducted to determine the mechanisms by which serotonin (5-hydroxytryptamine, 5-HT) receptors are involved in the suppression of food intake in a rat stress model and to observe the degree of activation in the areas of the brain involved in feeding. In the stress model, male Sprague-Dawley rats (8 weeks old) were given intracerebroventricular injections of urocortin (UCN) 1. To determine the role of the 5-HT2c receptor (5-HT2cR) in the decreased food intake in UCN1-treated rats, specific 5-HT2cR or 5-HT2b receptor (5-HT2bR) antagonists were administered. Food intake was markedly reduced in UCN1-injected rats compared with phosphate buffered saline treated control rats. Intraperitoneal administration of a 5-HT2cR antagonist, but not a 5-HT2bR antagonist, significantly inhibited the decreased food intake. To assess the involvement of neural activation, we tracked the expression of c-fos mRNA as a neuronal activation marker. Expression of the c-fos mRNA in the arcuate nucleus, ventromedial hypothalamic nucleus (VMH) and rostral ventrolateral medulla (RVLM) in UNC1-injected rats showed significantly higher expression than in the PBS-injected rats. Increased c-fos mRNA was also observed in the paraventricular nucleus (PVN), the nucleus of the solitary tract (NTS), and the amygdala (AMG) after injection of UCN1. Increased 5-HT2cR protein expression was also observed in several areas. However, increased coexpression of 5-HT2cR and c-fos was observed in the PVN, VMH, NTS, RVLM and AMG. Whereas, pro-opiomelanocortin mRNA expression was not changed. In an UNC1-induced stress model, 5-HT2cR expression and activation was found in brain areas involved in feeding control.

  3. Regulation of adipogenesis by nuclear receptor PPARγ is modulated by the histone demethylase JMJD2C

    National Research Council Canada - National Science Library

    Lizcano, Fernando; Romero, Carolina; Vargas, Diana

    2011-01-01

    .... The nuclear receptor Peroxisome Proliferator-activated receptor gamma (PPARγ) is the master regulator of adipose cell differentiation and its functional activation is currently used as a therapeutic approach for Diabetes Mellitus type 2...

  4. Regulation of adipogenesis by nucelar receptor PPARγ is modulated by the histone demethylase JMJD2C

    National Research Council Canada - National Science Library

    Fernando, Lizcano; Carolina, Romero; Vargas, Diana

    2011-01-01

    .... The nuclear receptor Peroxisome Proliferator-activated receptor gamma (PPARγ) is the master regulator of adipose cell differentiation and its functional activation is currently used as a therapeutic approach for Diabetes Mellitus type 2...

  5. Involvement of 5-HT(2A/2B/2C) receptors on memory formation: simple agonism, antagonism, or inverse agonism?

    Science.gov (United States)

    Meneses, Alfredo

    2002-12-01

    1. The 5-HT2 receptors subdivision into the 5-HT(2A/2B/2C) subtypes along with the advent of the selective antagonists has allowed a more detailed investigation on the role and therapeutic significance of these subtypes in cognitive functions. The present study further analyzed the 5-HT2 receptors role on memory consolidation. 2. The SB-200646 (a selective 5-HT(2B/2C) receptor antagonist) and LY215840 (a nonselective 5-HT(2/7) receptor antagonist) posttraining administration had no effect on an autoshaped memory consolidation. However, both drugs significantly and differentially antagonized the memory impairments induced by 1-(3-chlorophenyl)piperazine (mCPP), 1-naphtyl-piperazine (1-NP), mesulergine, or N-(3-trifluoromethylphenyl) piperazine (TFMPP). 3. In contrast, SB-200646 failed to modify the facilitatory procognitive effect produced by (+/-)-2.5-dimethoxy-4-iodoamphetamine (DOI) or ketanserin, which were sensitive to MDL100907 (a selective 5-HT2A receptor antagonist) and to a LY215840 high dose. 4. Finally, SB-200646 reversed the learning deficit induced by dizocilpine, but not that by scopolamine: while SB-200646 and MDL100907 coadministration reversed memory deficits induced by both drugs. 5. It is suggested that 5-HT(2B/2C) receptors might be involved on memory formation probably mediating a suppressive or constraining action. Whether the drug-induced memory impairments in this study are explained by simple agonism, antagonism, or inverse agonism at 5-HT2 receptors remains unclear at this time. 6. Notably, the 5-HT2 receptor subtypes blockade may provide some benefit to reverse poor memory consolidation conditions associated with decreasedcholinergic, glutamatergic, and/or serotonergic neurotransmission.

  6. Gene structure and expression of serotonin receptor HTR2C in hypothalamic samples from infanticidal and control sows

    Directory of Open Access Journals (Sweden)

    Quilter Claire R

    2012-04-01

    Full Text Available Abstract Background The serotonin pathways have been implicated in behavioural phenotypes in a number of species, including human, rat, mouse, dog and chicken. Components of the pathways, including the receptors, are major targets for drugs used to treat a variety of physiological and psychiatric conditions in humans. In our previous studies we have identified genetic loci potentially contributing to maternal infanticide in pigs, which includes a locus on the porcine X chromosome long arm. The serotonin receptor HTR2C maps to this region, and is therefore an attractive candidate for further study based on its function and its position in the genome. Results In this paper we describe the structure of the major transcripts produced from the porcine HTR2C locus using cDNA prepared from porcine hypothalamic and pooled total brain samples. We have confirmed conservation of sites altered by RNA editing in other mammalian species, and identified polymorphisms in the gene sequence. Finally, we have analysed expression and editing of HTR2C in hypothalamus samples from infanticidal and control animals. Conclusions The results confirm that although the expression of the long transcriptional variant of HTR2C is raised in infanticidal animals, the overall patterns of editing in the hypothalamus are similar between the two states. Sequences associated with the cDNA and genomic structures of HTR2C reported in this paper are deposited in GenBank under accession numbers FR720593, FR720594 and FR744452.

  7. Control of sensory neuron excitability by serotonin involves 5HT2C receptors and Ca(2+)-activated chloride channels.

    Science.gov (United States)

    Salzer, Isabella; Gantumur, Enkhbileg; Yousuf, Arsalan; Boehm, Stefan

    2016-11-01

    Serotonin (5HT) is a constituent of the so-called "inflammatory soup" that sensitizes nociceptors during inflammation. Nevertheless, receptors and signaling mechanisms that mediate an excitation of dorsal root ganglion (DRG) neurons by 5HT remained controversial. Therefore, capsaicin-sensitive nociceptive neurons dissociated from rat DRGs were used to investigate effects of 5HT on membrane excitability and currents through ligand- as well as voltage-gated ion channels. In 58% of the neurons tested, 5HT increased action potential firing, an effect that was abolished by the 5HT2 receptor antagonist ritanserin, but not by the 5HT3 antagonist tropisetron. Unlike other algogenic mediators, such as PGE2 and bradykinin, 5HT did not affect currents through TTX-resistant Na(+) channels or Kv7 K(+) channels. In all neurons investigated, 5HT potentiated capsaicin-evoked currents through TRPV1 channels, an effect that was attenuated by antagonists at 5HT2A (4 F 4 PP), 5HT2B (SB 204741), as well as 5HT2C (RS 102221) receptors. 5HT triggered slowly arising inward Cl(-) currents in 53% of the neurons. This effect was antagonized by the 5HT2C receptor blocker only, and the current was prevented by an inhibitor of Ca(2+)-activated chloride channels (CaCC). The 5HT-induced increase in action potential firing was also abolished by this CaCC blocker and by the TRPV1 inhibitor capsazepine. Amongst the subtype selective 5HT2 antagonists, only RS 102221 (5HT2C-selectively) counteracted the rise in action potential firing elicited by 5HT. These results show that 5HT excites DRG neurons mainly via 5HT2C receptors which concomitantly mediate a sensitization of TRPV1 channels and an opening of CaCCs.

  8. Efectos de antagonistas selectivos y no selectivos a receptores 5-HT2C sobre la estructura de la conducta alimentaria en ratas

    OpenAIRE

    Juan Manuel Mancilla-Díaz; Rodrigo Erick Escartín-Pérez; Verónica Elsa López-Alonso; Melissa Rito-Domingo

    2008-01-01

    Se ha establecido que los receptores 5-HT2C están involucrados en la ingesta de alimentos. Sin embargo, el rol de antagonistas selectivos y no selectivos a receptores 5-HT2C aún no es claro. En el presente estudio se examinó el efecto de la serotonina (5-HT) sobre los patrones conductuales de alimentación de ratas pretratadas con RS-102221 (antagonista selectivo a receptores 5-HT2C) o ciproheptadina (antagonista a receptores 5-HT2C/2A). Los fármacos fueron administrados dentro del núcleo para...

  9. [Association between serotonin receptor 2C gene Cys23Ser polymorphism and social behavior in schizophrenia patients and healthy individuals].

    Science.gov (United States)

    Alfimova, M V; Golimbet, V E; Korovaitseva, G I; Abramova, L I; Kaleda, V G

    2015-02-01

    The purpose of this work was to search for associations between the serotonin receptor 2C gene (HTR2C) and the peculiarities of social behavior and social cognition in schizophrenia. To do this, patients with schizophrenia spectrum disorders and healthy control subjects were genotyped for the Cys23Ser HTR2C marker and underwent psychological examination, including assessment of Machiavellianism, recognition of emotions in facial expression, and theory of mind. In addition, we estimated the trait anxiety level as a potential factor affecting the relationship between the gene HTR2C and social behavior. We found a significant association between the Ser allele and a reduction of estimates on the Mach-LV Machiavellianism scale in the total sample of patients (n = 182) and control subjects (n = 189), which did not reach the confidence level in either of the groups. A tendency towards a HTR2C gene influence on the trait anxiety level was also revealed. The association between HTR2C and Machiavellianism was retained if the anxiety level was taken into account. The results suggest a pleiotropic effect of HTR2Con anxiety and Machiavellianism.

  10. Decreased Incentive Motivation Following Knockout or Acute Blockade of the Serotonin Transporter: Role of the 5-HT2C Receptor.

    Science.gov (United States)

    Browne, Caleb J; Fletcher, Paul J

    2016-09-01

    Acute pharmacological elevation of serotonin (5-hydroxytryptamine; 5-HT) activity decreases operant responding for primary reinforcers, suggesting that 5-HT reduces incentive motivation. The mechanism by which 5-HT alters incentive motivation is unknown, but parallel evidence that 5-HT2C receptor agonists also reduce responding for primary reinforcers implicates this receptor as a potential candidate. These experiments examined whether chronic and acute disruptions of serotonin transporter (SERT) activity altered incentive motivation, and whether the 5-HT2C receptor mediated the effects of elevated 5-HT on behavior. To assess incentive motivation, we measured responding for three different reinforcers: a primary reinforcer (saccharin), a conditioned reinforcer (CRf), and an unconditioned sensory reinforcer (USRf). In the chronic condition, responding was compared between SERT knockout (SERT-KO) mice and their wild-type littermates. In the acute condition, responding was examined in wild-type mice following treatment with 10 or 20 mg/kg citalopram, or its vehicle. The ability of the selective 5-HT2C antagonist SB 242084 to prevent the effects of SERT-KO and citalopram on responding was subsequently examined. Both SERT-KO and citalopram reduced responding for saccharin, a CRf, and a USRf. Treatment with SB 242084 enhanced responding for a CRf and a USRf in SERT-KO mice and blocked the effects of citalopram on CRf and USRf responding. However, SB 242084 was unable to prevent the effects of SERT-KO or citalopram on responding for saccharin. These results support a powerful inhibitory function for 5-HT in the control of incentive motivation, and indicate that the 5-HT2C receptor mediates these effects of 5-HT in a reinforcer-dependent manner.

  11. Inhibition of serotonin transporters by cocaine and meprylcaine through 5-TH2C receptor stimulation facilitates their seizure activities.

    Science.gov (United States)

    Morita, Katsuya; Hamamoto, Masahiro; Arai, Shigeaki; Kitayama, Shigeo; Irifune, Masahiro; Kawahara, Michio; Kihira, Kenji; Dohi, Toshihiro

    2005-09-28

    The present study examined whether the inhibition of serotonin transporters (SERT) contributes to cocaine- and other local anesthetics-induced convulsions, and which subtypes of 5-HT receptor are involved in the convulsions. For this purpose, cocaine, meprylcaine and lidocaine, all of which have different effects on SERT, were used as convulsants and the effects of serotonin reuptake inhibitors (SSRIs), specific agonists and antagonists for 5-HT receptor subtypes were evaluated in mice. Administration of SSRI, zimelidine, citalopram and fluoxetine, 5-HT(2A,2C) receptor agonist, R(-)-DOI and the 5-HT2C receptor agonists, mCPP, and MK212 resulted in a marked increase in incidence of convulsions and a reduction in the threshold of lidocaine-induced convulsions, while the 5-HT2B receptor agonist, BW723C86, had little influence. On the other hand, SSRI did not affect the measured parameters in meprylcaine- and cocaine-induced convulsions. R(-)-DOI, mCPP, and MK212 reduced the threshold of meprylcaine or cocaine with less extent than the reduction of lidocaine threshold. Incidence of cocaine- and meprylcaine-induced convulsions was significantly reduced by 5-HT(2A,2B,2C) antagonist, LY-53857, and 5-HT2C antagonist, RS 102221. The threshold of cocaine and meprylcaine was significantly increased by both antagonists. 5-HT2A antagonists MDL 11,939 and ketanserin, and 5-HT2B antagonist SB 204741 except at high doses had little effect on cocaine- and meprylcaine-induced convulsions. None of these antagonists altered the parameters of lidocaine-induced convulsions. Pretreatment with fluoxetine but not citalopram increased the plasma concentration of lidocaine. These results suggest that the increase of serotonergic neuronal activity through 5-HT2C receptor stimulation was responsible for increased activity of local anesthetics-induced convulsions and support the involvement of this mechanism in cocaine- and meprylcaine- but not in lidocaine-induced convulsions through their

  12. Regulation of adipogenesis by nuclear receptor PPARγ is modulated by the histone demethylase JMJD2C

    OpenAIRE

    Lizcano Fernando; Romero Carolina; Diana Vargas

    2011-01-01

    A potential strategy to combat obesity and its associated complications involves modifying gene expression in adipose cells to reduce lipid accumulation. The nuclear receptor Peroxisome Proliferator-activated receptor gamma (PPARγ) is the master regulator of adipose cell differentiation and its functional activation is currently used as a therapeutic approach for Diabetes Mellitus type 2. However, total activation of PPARγ induces undesirable secondary effects that might be set with...

  13. 4-Bromo-2,5-dimethoxyphenethylamine (2C-B) and structurally related phenylethylamines are potent 5-HT2A receptor antagonists in Xenopus laevis oocytes

    Science.gov (United States)

    Villalobos, Claudio A; Bull, Paulina; Sáez, Patricio; Cassels, Bruce K; Huidobro-Toro, J Pablo

    2004-01-01

    We recently described that several 2-(2,5-dimethoxy-4-substituted phenyl)ethylamines (PEAs), including 4-I=2C-I, 4-Br=2C-B, and 4-CH3=2C-D analogs, are partial agonists at 5-HT2C receptors, and show low or even negligible intrinsic efficacy at 5-HT2A receptors. These results raised the proposal that these drugs may act as 5-HT2 antagonists. To test this hypothesis, Xenopus laevis oocytes were microinjected with the rat clones for 5-HT2A or 5-HT2C receptors. The above-mentioned PEAs and its 4-H analog (2C-H) blocked the 5-HT-induced currents at 5-HT2A, but not at the 5-HT2C receptor, revealing 5-HT2 receptor subtype selectivity. The 5-HT2A receptor antagonism required a 2-min preincubation to attain maximum inhibition. All PEAs tested shifted the 5-HT concentration–response curves to the right and downward. Their potencies varied with the nature of the C(4) substituent; the relative rank order of their 5-HT2A receptor antagonist potency was 2C-I>2C-B>2C-D>2C-H. The present results demonstrate that in X. laevis oocytes, a series of 2,5-dimethoxy-4-substituted PEAs blocked the 5-HT2A but not the 5-HT2C receptor-mediated responses. As an alternative hypothesis, we suggest that the psychostimulant activity of the PEAs may not be exclusively associated with partial or full 5-HT2A receptor agonism. PMID:15006903

  14. Genetic and pharmacological evidence that 5-HT2C receptor activation, but not inhibition, affects motivation to feed under a progressive ratio schedule of reinforcement.

    Science.gov (United States)

    Fletcher, Paul J; Sinyard, Judy; Higgins, Guy A

    2010-11-01

    Previous work showed that 5-HT(2C) receptor agonists reduce cocaine self-administration on a progressive ratio (PR) schedule of reinforcement, whereas a 5-HT(2C) receptor antagonist enhances responding for cocaine. The present experiments examined the effects of Ro60-0175 (5-HT(2C) agonist) and SB242084 (5-HT(2C) receptor antagonist) in rats on responding for food on a PR schedule; responding was also determined in mice lacking functional 5-HT(2C) receptors. In food-restricted rats, lever pressing reinforced by regular food pellets or sucrose pellets was reduced by Ro60-0175. This effect was blocked by SB242084, and was absent in mice lacking functional 5-HT(2C) receptors. A number of studies examined the effects of SB242084 on responding for food under a variety of conditions. These included manipulation of food type (regular pellets versus sucrose pellets), nutritional status of the animals (food restriction versus no restriction), and rate of progression of the increase in ratio requirements on the PR schedule. In all cases there was no evidence of enhanced responding for food by SB242084. Mice lacking functional 5-HT(2C) receptors did not differ from wildtype mice in responding for food in either food-restricted or non-restricted states. The effects of Ro60-0175 are consistent with its effects on food consumption and motivation to self-administer cocaine. Unlike their effects on cocaine self-administration, pharmacological blockade of 5-HT(2C) receptors, and genetic disruption of 5-HT(2C) receptor function do not alter the motivation to respond for food. Because the 5-HT(2C) receptor exerts a modulatory effect on dopamine function, the differential effects of reduced 5-HT(2C) receptor mediated transmission on responding for food versus cocaine may relate to a differential role of this neurotransmitter in mediating these two behaviours.

  15. The 5-HT2C receptor gene Cys23Ser polymorphism influences the intravaginal ejaculation latency time in Dutch Caucasian men with lifelong premature ejaculation

    NARCIS (Netherlands)

    Janssen, Paddy Kc; Schaik, Ron van; Olivier, Berend; Waldinger, Marcel D

    2014-01-01

    It has been postulated that the persistent short intravaginal ejaculation latency time (IELT) of men with lifelong premature ejaculation (LPE) is related to 5-hydroxytryptamine (HT)2C receptor functioning. The aim of this study was to investigate the relationship of Cys23Ser 5-HT2C receptor gene pol

  16. Responsiveness of 5-HT2C receptors in repeatedly diazepam-injected rats: a behavioral and neurochemical study.

    Science.gov (United States)

    Khan, Asma; Haleem, Darakhshan J

    2008-01-01

    The role of 5-hydroxytryptamine (serotonin; 5-HT)2C receptors in anxiety and the anxiolytic effects of drugs is well documented. In view of the withdrawal anxiety associated with repeated diazepam intake, the present study concerns the efficacy of 5-HT2C receptors in rats treated with diazepam. Results show that diazepam injections at a dose of 2 mg/kg daily for two weeks increased weekly food intake and growth rate. Anxiolytic effects of the drug monitored in a light/dark activity box were not significant after single administration. One week and two weeks of administration elicited anxiolytic effects, which were smaller after two weeks of administration as compared to one week, suggesting the development of tolerance to the anxiolytic profile of diazepam. Moreover, three days' withdrawal from repeated administration elicited anxiogenic behavior in the light/dark activity box. The behavioral and neurochemical effects of 1-(m-chlorophenyl)piperazine (m-CPP) (3 mg/kg), a 5-HT2C agonist, were monitored following withdrawal (three days) from two weeks of diazepam administration. Results showed that hypophagic as well as anxiogenic-like effects of m-CPP were not different from repeated saline or repeated diazepam-injected animals. Administration of m-CPP increased 5-HT metabolism in repeated saline as well as repeated diazepam-injected animals. However, m-CPP-induced increases in 5-HT metabolism were greater in repeated diazepam-injected animals. Results are discussed in the context of the role of 5-HT2C receptors in the precipitation of withdrawal anxiety.

  17. Identification, expression, and pharmacology of a Cys{sub 23}-Ser{sub 23} substitution in the human 5-HT{sub 2C} receptor gene (HTR2C)

    Energy Technology Data Exchange (ETDEWEB)

    Lappalainen, J.; Ozaki, N.; Goldman, D. [National Institute on Alcohol Abuse and Alcoholism, Rockville, MD (United States)] [and others

    1995-05-20

    The function of brain serotonin-2C (5-HT{sub 2C}) receptors, including behavioral and neurochemical responses to 5-HT{sub 2C} agonist challenge, has been suggested to be abnormal in individuals with neuropsychiatric disorders. Thus, it is important to identify polymorphisms and functional variants within this gene. Using SSCP analysis, the authors identified a Cys{sub 23}-Ser{sub 23} substitution (designated 5-HT{sub 2Ccys} and 5-HT{sub 2Cser}) in the first hydrophobic region of the human 5-HT{sub 2C} receptor. Allele frequencies in unrelated Caucasians were 0.13 and 0.87 for 5-HT{sub 2Cser} and 5-HT{sub 2Ccys}, respectively. DNAs from informative CEPH families were typed for this polymorphism and analyzed with respect to 20 linked markers on the X chromosome. Linkage analysis placed the 5-HT{sub 2C} receptor gene (HTR2C) on Xq24. To evaluate whether this amino acid substitution causes a variant function of this receptor, recombinant human 5-HT{sub 2Ccys} and 5-HT{sub 2Cser} receptors were expressed in Xenopus oocytes and tested for responses to 5-HT using electrophysiological techniques. Concentration-response curves for 5-HT were not significantly different in oocytes expressing either form of the receptor, suggesting that the 5-HT{sub 2Ccys} and 5-HT{sub 2Cser} receptor proteins may not differ in their responses to serotonin under baseline physiological conditions. 43 refs., 3 figs., 1 tab.

  18. Selective androgen receptor modulator, YK11, regulates myogenic differentiation of C2C12 myoblasts by follistatin expression.

    Science.gov (United States)

    Kanno, Yuichiro; Ota, Rumi; Someya, Kousuke; Kusakabe, Taichi; Kato, Keisuke; Inouye, Yoshio

    2013-01-01

    The myogenic differentiation of C2C12 myoblast cells is induced by the novel androgen receptor (AR) partial agonist, (17α,20E)-17,20-[(1-methoxyethylidene)bis-(oxy)]-3-oxo-19-norpregna-4,20-diene-21-carboxylic acid methyl ester (YK11), as well as by dihydrotestosterone (DHT). YK11 is a selective androgen receptor modulator (SARM), which activates AR without the N/C interaction. In this study, we further investigated the mechanism by which YK11 induces myogenic differentiation of C2C12 cells. The induction of key myogenic regulatory factors (MRFs), such as myogenic differentiation factor (MyoD), myogenic factor 5 (Myf5) and myogenin, was more significant in the presence of YK11 than in the presence of DHT. YK11 treatment of C2C12 cells, but not DHT, induced the expression of follistatin (Fst), and the YK11-mediated myogenic differentiation was reversed by anti-Fst antibody. These results suggest that the induction of Fst is important for the anabolic effect of YK11.

  19. Splicing factors control C. elegans behavioural learning in a single neuron by producing DAF-2c receptor

    Science.gov (United States)

    Tomioka, Masahiro; Naito, Yasuki; Kuroyanagi, Hidehito; Iino, Yuichi

    2016-01-01

    Alternative splicing generates protein diversity essential for neuronal properties. However, the precise mechanisms underlying this process and its relevance to physiological and behavioural functions are poorly understood. To address these issues, we focused on a cassette exon of the Caenorhabditis elegans insulin receptor gene daf-2, whose proper variant expression in the taste receptor neuron ASER is critical for taste-avoidance learning. We show that inclusion of daf-2 exon 11.5 is restricted to specific neuron types, including ASER, and is controlled by a combinatorial action of evolutionarily conserved alternative splicing factors, RBFOX, CELF and PTB families of proteins. Mutations of these factors cause a learning defect, and this defect is relieved by DAF-2c (exon 11.5+) isoform expression only in a single neuron ASER. Our results provide evidence that alternative splicing regulation of a single critical gene in a single critical neuron is essential for learning ability in an organism. PMID:27198602

  20. Role of the intracellular domain of the human type I interferon receptor 2 chain (IFNAR2c) in interferon signaling. Expression of IFNAR2c truncation mutants in U5A cells.

    Science.gov (United States)

    Russell-Harde, D; Wagner, T C; Rani, M R; Vogel, D; Colamonici, O; Ransohoff, R M; Majchrzak, B; Fish, E; Perez, H D; Croze, E

    2000-08-01

    A human cell line (U5A) lacking the type I interferon (IFN) receptor chain 2 (IFNAR2c) was used to determine the role of the IFNAR2c cytoplasmic domain in regulating IFN-dependent STAT activation, interferon-stimulated gene factor 3 (ISGF3) and c-sis-inducible factor (SIF) complex formation, gene expression, and antiproliferative effects. A panel of U5A cells expressing truncation mutants of IFNAR2c on their cell surface were generated for study. Janus kinase (JAK) activation was detected in all mutant cell lines; however, STAT1 and STAT2 activation was observed only in U5A cells expressing full-length IFNAR2c and IFNAR2c truncated at residue 462 (R2.462). IFNAR2c mutants truncated at residues 417 (R2. 417) and 346 (R2.346) or IFNAR2c mutant lacking tyrosine residues in its cytoplasmic domain (R2.Y-F) render the receptor inactive. A similar pattern was observed for IFN-inducible STAT activation, STAT complex formation, and STAT-DNA binding. Consistent with these data, IFN-inducible gene expression was ablated in U5A, R2.Y-F, R2.417, and R2.346 cell lines. The implications are that tyrosine phosphorylation and the 462-417 region of IFNAR2c are independently obligatory for receptor activation. In addition, the distal 53 amino acids of the intracellular domain of IFNAR2c are not required for IFN-receptor mediated STAT activation, ISFG3 or SIF complex formation, induction of gene expression, and inhibition of thymidine incorporation. These data demonstrate for the first time that both tyrosine phosphorylation and a specific domain of IFNAR2c are required in human cells for IFN-dependent coupling of JAK activation to STAT phosphorylation, gene induction, and antiproliferative effects. In addition, human and murine cells appear to require different regions of the cytoplasmic domain of IFNAR2c for regulation of IFN responses.

  1. A short history of the 5-HT2C receptor: from the choroid plexus to depression, obesity and addiction treatment.

    Science.gov (United States)

    Palacios, Jose M; Pazos, Angel; Hoyer, Daniel

    2017-03-07

    This paper is a personal account on the discovery and characterization of the 5-HT2C receptor (first known as the 5-HT1C receptor) over 30 years ago and how it translated into a number of unsuspected features for a G protein-coupled receptor (GPCR) and a diversity of clinical applications. The 5-HT2C receptor is one of the most intriguing members of the GPCR superfamily. Initially referred to as 5-HT1CR, the 5-HT2CR was discovered while studying the pharmacological features and the distribution of [(3)H]mesulergine-labelled sites, primarily in the brain using radioligand binding and slice autoradiography. Mesulergine (SDZ CU-085), was, at the time, best defined as a ligand with serotonergic and dopaminergic properties. Autoradiographic studies showed remarkably strong [(3)H]mesulergine-labelling to the rat choroid plexus. [(3)H]mesulergine-labelled sites had pharmacological properties different from, at the time, known or purported 5-HT receptors. In spite of similarities with 5-HT2 binding, the new binding site was called 5-HT1C because of its very high affinity for 5-HT itself. Within the following 10 years, the 5-HT1CR (later named 5-HT2C) was extensively characterised pharmacologically, anatomically and functionally: it was one of the first 5-HT receptors to be sequenced and cloned. The 5-HT2CR is a GPCR, with a very complex gene structure. It constitutes a rarity in the GPCR family: many 5-HT2CR variants exist, especially in humans, due to RNA editing, in addition to a few 5-HT2CR splice variants. Intense research led to therapeutically active 5-HT2C receptor ligands, both antagonists (or inverse agonists) and agonists: keeping in mind that a number of antidepressants and antipsychotics are 5-HT2CR antagonists/inverse agonists. Agomelatine, a 5-HT2CR antagonist is registered for the treatment of major depression. The agonist Lorcaserin is registered for the treatment of aspects of obesity and has further potential in addiction, especially nicotine/ smoking

  2. Arecoline inhibits and destabilizes agrin-induced acetylcholine receptor cluster formation in C2C12 myotubes.

    Science.gov (United States)

    Chang, Yung-Fu; Liu, Ting-Yuan; Liu, Shao-Tung

    2013-10-01

    Areca nut (Areca catechu) is chewed as a medical and psychoactive food by roughly 10% of the world population. Areca nut chewing may lead to low birth weight, premature delivery and impaired muscle development. Our previous study showed that arecoline, a major alkaloid in the areca nut, inhibited the myogenic differentiation of C2C12 myoblastic cells. The clustering of acetylcholine receptors (AChRs) in the postsynaptic membrane at the neuromuscular junction (NMJ) by agrin, a signaling protein released by motor neurons, is critical for the development of functional muscles. Here, we further investigate whether arecoline affects the AChR clustering using cultured C2C12 myotubes. Rhodamine-conjugated α-bungarotoxin was used to detect the presence of AChR clusters. Our results showed that arecoline inhibited the formation of agrin-induced AChR clusters and destabilized agrin-induced or spontaneous AChR cluster formation. In addition, arecoline inhibited the expression of myogenin in C2C12 myotubes. These results shed light on the important role of arecoline on the detrimental effect of areca nut to muscle development. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Dopamine-induced hypophagia is mediated by D1 and 5HT-2c receptors in chicken.

    Science.gov (United States)

    Zendehdel, Morteza; Hasani, Keyvan; Babapour, Vahab; Mortezaei, Sepideh Seyedali; Khoshbakht, Yalda; Hassanpour, Shahin

    2014-03-01

    The present study was designed to examine the effects of intracerebroventricular (ICV) injection of Dopamine (10, 20 and 40 nmol), L-DOPA (dopamine precursor; 62.5, 125 and 250 nmol), 6-OHDA (dopamine inhibitor; 75, 150 and 300 nmol), SCH 23390 (D1 antagonist; 2.5, 5 and 10 nmol), AMI-193 (D2 antagonist; 2.5, 5 and 10 nmol), NGB2904 (D3 antagonist; 3.2, 6.4 and 12.8 nmol), L-741 T742 (D4 antagonist;1.5, 3 and 6 nmol) on food intake in FD3 chickens. At following, birds were ICV injected using 8-OH-DPAT (5-HT1A agonist; 15.25 nmol) and SB242084 (5-HT2C antagonist;1.5 μg) prior dopamine (40 nmol) injection. Cumulative food intake was determined until 3 h post-injection. According to the results, dopamine significantly decreased food intake in chickens (p dopamine on food intake was decreased by SCH 23390 pretreatment (P dopamine. In addition, hypophagic effect of dopamine was attenuated by SB242084 (P dopamine decrease food intake via D1 receptor and there is an interaction between dopaminergic and serotonergic systems via 5-HT2C receptor in chickens.

  4. Delineation of the complement receptor type 2-C3d complex by site-directed mutagenesis and molecular docking.

    Science.gov (United States)

    Shaw, Craig D; Storek, Michael J; Young, Kendra A; Kovacs, James M; Thurman, Joshua M; Holers, V Michael; Hannan, Jonathan P

    2010-12-10

    The interactions between the complement receptor type 2 (CR2) and the C3 complement fragments C3d, C3dg, and iC3b are essential for the initiation of a normal immune response. A crystal-derived structure of the two N-terminal short consensus repeat (SCR1-2) domains of CR2 in complex with C3d has previously been elucidated. However, a number of biochemical and biophysical studies targeting both CR2 and C3d appear to be in conflict with these structural data. Previous mutagenesis and heteronuclear NMR spectroscopy studies directed toward the C3d-binding site on CR2 have indicated that the CR2-C3d cocrystal structure may represent an encounter/intermediate or nonphysiological complex. With regard to the CR2-binding site on C3d, mutagenesis studies by Isenman and coworkers [Isenman, D. E., Leung, E., Mackay, J. D., Bagby, S. & van den Elsen, J. M. H. (2010). Mutational analyses reveal that the staphylococcal immune evasion molecule Sbi and complement receptor 2 (CR2) share overlapping contact residues on C3d: Implications for the controversy regarding the CR2/C3d cocrystal structure. J. Immunol. 184, 1946-1955] have implicated an electronegative "concave" surface on C3d in the binding process. This surface is discrete from the CR2-C3d interface identified in the crystal structure. We generated a total of 18 mutations targeting the two (X-ray crystallographic- and mutagenesis-based) proposed CR2 SCR1-2 binding sites on C3d. Using ELISA analyses, we were able to assess binding of mutant forms of C3d to CR2. Mutations directed toward the concave surface of C3d result in substantially compromised CR2 binding. By contrast, targeting the CR2-C3d interface identified in the cocrystal structure and the surrounding area results in significantly lower levels of disruption in binding. Molecular modeling approaches used to investigate disparities between the biochemical data and the X-ray structure of the CR2-C3d cocrystal result in highest-scoring solutions in which CR2 SCR1-2 is

  5. Chronic escitalopram treatment caused dissociative adaptation in serotonin (5-HT) 2C receptor antagonist-induced effects in REM sleep, wake and theta wave activity.

    Science.gov (United States)

    Kostyalik, Diána; Kátai, Zita; Vas, Szilvia; Pap, Dorottya; Petschner, Péter; Molnár, Eszter; Gyertyán, István; Kalmár, Lajos; Tóthfalusi, László; Bagdy, Gyorgy

    2014-03-01

    Several multi-target drugs used in treating psychiatric disorders, such as antidepressants (e.g. agomelatine, trazodone, nefazodone, amitriptyline, mirtazapine, mianserin, fluoxetine) or most atypical antipsychotics, have 5-hydroxytryptamine 2C (5-HT2C) receptor-blocking property. Adaptive changes in 5-HT2C receptor-mediated functions are suggested to contribute to therapeutic effects of selective serotonin reuptake inhibitor (SSRI) antidepressants after weeks of treatment, at least in part. Beyond the mediation of anxiety and other functions, 5-HT2C receptors are involved in sleep regulation. Anxiety-related adaptive changes caused by antidepressants have been studied extensively, although sleep- and electroencephalography (EEG)-related functional studies are still lacking. The aim of this study was to investigate the effects of chronic SSRI treatment on 5-HT2C receptor antagonist-induced functions in different vigilance stages and on quantitative EEG (Q-EEG) spectra. Rats were treated with a single dose of the selective 5-HT2C receptor antagonist SB-242084 (1 mg/kg, i.p.) or vehicle at the beginning of passive phase following a 20-day-long SSRI (escitalopram; 10 mg/kg/day, osmotic minipump) or VEHICLE pretreatment. Fronto-parietal electroencephalogram, electromyogram and motility were recorded during the first 3 h of passive phase. We found that the chronic escitalopram pretreatment attenuated the SB-242084-caused suppression in rapid eye movement sleep (REMS). On the contrary, the 5-HT2C receptor antagonist-induced elevations in passive wake and theta (5-9 Hz) power density during active wake and REMS were not affected by the SSRI. In conclusion, attenuation in certain, but not all vigilance- and Q-EEG-related functions induced by the 5-HT2C receptor antagonist, suggests dissociation in 5-HT2C receptor adaptation.

  6. Evidence for a role of 5-HT2C receptors in the motor aspects of performance, but not the efficacy of food reinforcers, in a progressive ratio schedule

    NARCIS (Netherlands)

    Bezzina, G.; Body, S.; Cheung, T.H.; Hampson, C.L.; Bradshaw, C.M.; Glennon, J.C.; Szabadi, E.

    2015-01-01

    RATIONALE: 5-Hydroxytryptamine2C (5-HT2C) receptor agonists reduce the breakpoint in progressive ratio schedules of reinforcement, an effect that has been attributed to a decrease of the efficacy of positive reinforcers. However, a reduction of the breakpoint may also reflect motor impairment. Mathe

  7. Serotonin increases ERK1/2 phosphorylation in astrocytes by stimulation of 5-HT2B and 5-HT2C receptors.

    Science.gov (United States)

    Li, Baoman; Zhang, Shiquen; Li, Min; Hertz, Leif; Peng, Liang

    2010-11-01

    We have previously shown that fluoxetine causes ERK(1/2) phosphorylation in cultured mouse astrocytes mediated exclusively by stimulation of 5-HT(2B) receptors (Li et al., 2008b). This raises the question whether this is also the case for serotonin (5-HT) itself. In the present study serotonin was found to induce ERK(1/2) phosphorylation by stimulation of 5-HT(2B) receptors with high affinity (EC(50): 20-30 pM), and by stimulation of 5-HT(2C) receptor with low affinity (EC(50): 1 microM or higher). ERK(1/2) phosphorylation induced by stimulation of either 5-HT(2B) or 5-HT(2C) receptors was mediated by epidermal growth factor (EGF) receptor transactivation (Peng et al., this issue), shown by the inhibitory effect of AG1478, an inhibitor of the EGF receptor tyrosine kinase, and GM6001, an inhibitor of Zn-dependent metalloproteinases, and thus of 5-HT(2B) receptor-mediated EGF receptor agonist release. It is discussed that the high potency of the 5-HT(2B)-mediated effect is consistent with literature data for binding affinity of serotonin to cloned human 5-HT(2B) receptors and with observations of low extracellular concentrations of serotonin in brain, which would allow a demonstrated moderate and modality-dependent increase in specific brain areas to activate 5-HT(2B) receptors. In contrast the relevance of the observed 5-HT(2C) receptors on astrocytes is questioned.

  8. Role of 5-HT1B, 5-HT2A and 5-HT2C receptors in learning.

    Science.gov (United States)

    Meneses, A; Hong, E

    1997-08-01

    The effects of post-training (i.p.) injection of TFMPP, mCPP, DOI or 1-NP in the autoshaping learning task was explored. Furthermore, the post-training effects of these agonists after treatment with the antagonists (+/-)-pindolol, (+/-)-propranolol, NAN-190, ketanserin, ritanserin, mesulergine, MDL-72222 or p-chloroamphetamine (5-HT depleter) were studied. Rats were individually trained with a lever-press response (conditioned response; CR) on the autoshaping task and tested 24 h later. The results showed that the injection of TFMPP (1-10 mg/kg), mCPP (1-10 mg/kg), 1-NP (0.1-1.0 mg/kg) or mesulergine (0.4 mg/kg) decreased the rate of CR, while DOI (0.01-0.1 mg/kg) and ritanserin (0.5 mg/kg) and ketanserin (0.001-0.1 mg/kg) increased it. However, the effect induced by TFMPP was reversed by (+/-)-pindolol, ketanserin, ritanserin and PCA; the mCPP-induced effect was antagonized by (+/-)-propranolol, ketanserin, ritanserin and MDL-72222; and the effect produced by 1-NP was reversed by ketanserin, ritanserin and PCA. In addition, the increment in CR provoked by DOI was enhanced by ketanserin, and reversed by ritanserin, mesulergine and PCA. These findings suggest that TFMPP, 1-NP and DOI exerted their effects via stimulation of presynaptic 5-HT receptors. The effects of mCPP most probably reflect activation of postsynaptic receptors. The present data suggest that both 5-HT1B and 5-HT2A-2C receptors play a significant role in the consolidation of learning.

  9. Weight Loss After RYGB Is Independent of and Complementary to Serotonin 2C Receptor Signaling in Male Mice

    Science.gov (United States)

    Carmody, Jill S.; Ahmad, Nadia N.; Machineni, Sriram; Lajoie, Scott

    2015-01-01

    Roux-en-Y gastric bypass (RYGB) typically leads to substantial, long-term weight loss (WL) and diabetes remission, although there is a wide variation in response to RYGB among individual patients. Defining the pathways through which RYGB works should aid in the development of less invasive anti-obesity treatments, whereas identifying weight-regulatory pathways unengaged by RYGB could facilitate the development of therapies that complement the beneficial effects of surgery. Activation of serotonin 2C receptors (5-HT2CR) by serotonergic drugs causes WL in humans and animal models. 5-HT2CR are located on neurons that activate the melanocortin-4 receptors, which are essential for WL after RYGB. We therefore sought to determine whether 5-HT2CR signaling is also essential for metabolic effects of RYGB or whether it is a potentially complementary pathway, the activation of which could extend the benefits of RYGB. Diet-induced obese male mice deficient for the 5-HT2CR and their wild-type littermates underwent RYGB or sham operation. Both groups lost similar amounts of weight after RYGB, demonstrating that the improved metabolic phenotype after RYGB is 5-HT2CR independent. Consistent with this hypothesis, wild-type RYGB-treated mice lost additional weight after the administration of the serotonergic drugs fenfluramine and meta-chlorophenylpiperazine but not the nonserotonergic agent topiramate. The fact that RYGB does not depend on 5-HT2CR signaling suggests that there are important WL mechanisms not fully engaged by surgery that could potentially be harnessed for medical treatment. These results suggest a rational basis for designing medical-surgical combination therapies to optimize clinical outcomes by exploiting complementary physiological mechanisms of action. PMID:26066076

  10. Weight Loss After RYGB Is Independent of and Complementary to Serotonin 2C Receptor Signaling in Male Mice.

    Science.gov (United States)

    Carmody, Jill S; Ahmad, Nadia N; Machineni, Sriram; Lajoie, Scott; Kaplan, Lee M

    2015-09-01

    Roux-en-Y gastric bypass (RYGB) typically leads to substantial, long-term weight loss (WL) and diabetes remission, although there is a wide variation in response to RYGB among individual patients. Defining the pathways through which RYGB works should aid in the development of less invasive anti-obesity treatments, whereas identifying weight-regulatory pathways unengaged by RYGB could facilitate the development of therapies that complement the beneficial effects of surgery. Activation of serotonin 2C receptors (5-HT2CR) by serotonergic drugs causes WL in humans and animal models. 5-HT2CR are located on neurons that activate the melanocortin-4 receptors, which are essential for WL after RYGB. We therefore sought to determine whether 5-HT2CR signaling is also essential for metabolic effects of RYGB or whether it is a potentially complementary pathway, the activation of which could extend the benefits of RYGB. Diet-induced obese male mice deficient for the 5-HT2CR and their wild-type littermates underwent RYGB or sham operation. Both groups lost similar amounts of weight after RYGB, demonstrating that the improved metabolic phenotype after RYGB is 5-HT2CR independent. Consistent with this hypothesis, wild-type RYGB-treated mice lost additional weight after the administration of the serotonergic drugs fenfluramine and meta-chlorophenylpiperazine but not the nonserotonergic agent topiramate. The fact that RYGB does not depend on 5-HT2CR signaling suggests that there are important WL mechanisms not fully engaged by surgery that could potentially be harnessed for medical treatment. These results suggest a rational basis for designing medical-surgical combination therapies to optimize clinical outcomes by exploiting complementary physiological mechanisms of action.

  11. Enhanced food anticipatory activity associated with enhanced activation of extrahypothalamic neural pathways in serotonin2C receptor null mutant mice.

    Directory of Open Access Journals (Sweden)

    Jennifer L Hsu

    Full Text Available The ability to entrain circadian rhythms to food availability is important for survival. Food-entrained circadian rhythms are characterized by increased locomotor activity in anticipation of food availability (food anticipatory activity. However, the molecular components and neural circuitry underlying the regulation of food anticipatory activity remain unclear. Here we show that serotonin(2C receptor (5-HT2CR null mutant mice subjected to a daytime restricted feeding schedule exhibit enhanced food anticipatory activity compared to wild-type littermates, without phenotypic differences in the impact of restricted feeding on food consumption, body weight loss, or blood glucose levels. Moreover, we show that the enhanced food anticipatory activity in 5-HT2CR null mutant mice develops independent of external light cues and persists during two days of total food deprivation, indicating that food anticipatory activity in 5-HT2CR null mutant mice reflects the locomotor output of a food-entrainable oscillator. Whereas restricted feeding induces c-fos expression to a similar extent in hypothalamic nuclei of wild-type and null mutant animals, it produces enhanced expression in the nucleus accumbens and other extrahypothalamic regions of null mutant mice relative to wild-type subjects. These data suggest that 5-HT2CRs gate food anticipatory activity through mechanisms involving extrahypothalamic neural pathways.

  12. The 5-HT2C receptor gene Cys23Ser polymorphism influences the intravaginal ejaculation latency time in Dutch Caucasian men with lifelong premature ejaculation

    Directory of Open Access Journals (Sweden)

    Paddy KC Janssen

    2014-08-01

    Full Text Available It has been postulated that the persistent short intravaginal ejaculation latency time (IELT of men with lifelong premature ejaculation (LPE is related to 5-hydroxytryptamine (HT2C receptor functioning. The aim of this study was to investigate the relationship of Cys23Ser 5-HT2C receptor gene polymorphism and the duration of IELT in men with LPE. Therefore, a prospective study was conducted in 64 Dutch Caucasian men with LPE. Baseline IELT during coitus was assessed by stopwatch over a 1-month period. All men were genotyped for Cys23Ser 5-HT2C receptor gene polymorphism. Allele frequencies and genotypes of Cys and Ser variants of 5-HT2C receptor gene polymorphism were determined. Association between Cys/Cys and Ser/Ser genotypes and the natural logarithm of the IELT in men with LPE were investigated. As a result, the geometric mean, median and natural mean IELT were 25.2, 27.0, 33.9 s, respectively. Of all men, 20.0%, 10.8%, 23.1% and 41.5% ejaculated within 10, 10-20, 20-30 and 30-60 s after vaginal penetration. Of the 64 men, the Cys/Cys and Ser/Ser genotype frequency for the Cys23Ser polymorphism of the 5-HT2C receptor gene was 81% and 19%, respectively. The geometric mean IELT of the wildtypes (Cys/Cys is significantly lower (22.6 s; 95% CI 18.3-27.8 s than in male homozygous mutants (Ser/Ser (40.4 s; 95% CI 20.3-80.4 s (P = 0.03. It is concluded that Cys23Ser 5-HT2C receptor gene polymorphism is associated with the IELT in men with LPE. Men with Cys/Cys genotype have shorter IELTs than men with Ser/Ser genotypes.

  13. The 5-HT2C receptor gene Cys23Ser polymorphism influences the intravaginal ejaculation latency time in Dutch Caucasian men with lifelong premature ejaculation.

    Science.gov (United States)

    Janssen, Paddy Kc; Schaik, Ron van; Olivier, Berend; Waldinger, Marcel D

    2014-01-01

    It has been postulated that the persistent short intravaginal ejaculation latency time (IELT) of men with lifelong premature ejaculation (LPE) is related to 5-hydroxytryptamine (HT)2C receptor functioning. The aim of this study was to investigate the relationship of Cys23Ser 5-HT2C receptor gene polymorphism and the duration of IELT in men with LPE. Therefore, a prospective study was conducted in 64 Dutch Caucasian men with LPE. Baseline IELT during coitus was assessed by stopwatch over a 1-month period. All men were genotyped for Cys23Ser 5-HT2C receptor gene polymorphism. Allele frequencies and genotypes of Cys and Ser variants of 5-HT2C receptor gene polymorphism were determined. Association between Cys/Cys and Ser/Ser genotypes and the natural logarithm of the IELT in men with LPE were investigated. As a result, the geometric mean, median and natural mean IELT were 25.2, 27.0, 33.9 s, respectively. Of all men, 20.0%, 10.8%, 23.1% and 41.5% ejaculated within 10, 10-20, 20-30 and 30-60 s after vaginal penetration. Of the 64 men, the Cys/Cys and Ser/Ser genotype frequency for the Cys23Ser polymorphism of the 5-HT2C receptor gene was 81% and 19%, respectively. The geometric mean IELT of the wildtypes (Cys/Cys) is significantly lower (22.6 s; 95% CI 18.3-27.8 s) than in male homozygous mutants (Ser/Ser) (40.4 s; 95% CI 20.3-80.4 s) (P = 0.03). It is concluded that Cys23Ser 5-HT2C receptor gene polymorphism is associated with the IELT in men with LPE. Men with Cys/Cys genotype have shorter IELTs than men with Ser/Ser genotypes.

  14. Discovery of N-Substituted (2-Phenylcyclopropyl)methylamines as Functionally Selective Serotonin 2C Receptor Agonists for Potential Use as Antipsychotic Medications.

    Science.gov (United States)

    Zhang, Guiping; Cheng, Jianjun; McCorvy, John D; Lorello, Paul J; Caldarone, Barbara J; Roth, Bryan L; Kozikowski, Alan P

    2017-07-27

    A series of N-substituted (2-phenylcyclopropyl)methylamines were designed and synthesized, with the aim of finding serotonin 2C (5-HT2C)-selective agonists with a preference for Gq signaling. A number of these compounds exhibit 5-HT2C selectivity with a preference for Gq-mediated signaling compared with β-arrestin recruitment. Furthermore, the N-methyl compound (+)-15a, which displayed an EC50 of 23 nM in the calcium flux assay while showing no β-arrestin recruitment activity, is the most functionally selective 5-HT2C agonist reported to date. The N-benzyl compound (+)-19, which showed an EC50 of 24 nM at the 5-HT2C receptor, is fully selective over the 5-HT2B receptor. In an amphetamine-induced hyperactivity model, compound (+)-19 showed significant antipsychotic-drug-like activity. These novel compounds shed light on the role of functional selectivity at the 5-HT2C receptor with respect to antipsychotic activity.

  15. Distribution of serotonin 2A and 2C receptor mRNA expression in the cervical ventral horn and phrenic motoneurons following spinal cord hemisection.

    Science.gov (United States)

    Basura, G J; Zhou, S Y; Walker, P D; Goshgarian, H G

    2001-06-01

    Cervical spinal cord injury leads to a disruption of bulbospinal innervation from medullary respiratory centers to phrenic motoneurons. Animal models utilizing cervical hemisection result in inhibition of ipsilateral phrenic nerve activity, leading to paralysis of the hemidiaphragm. We have previously demonstrated a role for serotonin (5-HT) as one potential modulator of respiratory recovery following cervical hemisection, a mechanism that likely occurs via 5-HT2A and/or 5-HT2C receptors. The present study was designed to specifically examine if 5-HT2A and/or 5-HT2C receptors are colocalized with phrenic motoneurons in both intact and spinal-hemisected rats. Adult female rats (250-350 g; n = 6 per group) received a left cervical (C2) hemisection and were injected with the fluorescent retrograde neuronal tracer Fluorogold into the left hemidiaphragm. Twenty-four hours later, animals were killed and spinal cords processed for in situ hybridization and immunohistochemistry. Using (35)S-labeled cRNA probes, cervical spinal cords were probed for 5-HT2A and 5-HT2C receptor mRNA expression and double-labeled using an antibody to Fluorogold to detect phrenic motoneurons. Expression of both 5-HT2A and 5-HT2C receptor mRNA was detected in motoneurons of the cervical ventral horn. Despite positive expression of both 5-HT2A and 5-HT2C receptor mRNA-hybridization signal over phrenic motoneurons, only 5-HT2A silver grains achieved a signal-to-noise ratio representative of colocalization. 5-HT2A mRNA levels in identified phrenic motoneurons were not significantly altered following cervical hemisection compared to sham-operated controls. Selective colocalization of 5-HT2A receptor mRNA with phrenic motoneurons may have implications for recently observed 5-HT2A receptor-mediated regulation of respiratory activity and/or recovery in both intact and injury-compromised states.

  16. Expression of hippocampal serotonin receptors 5-HT2C and 5-HT5A in a rat model of diet-induced obesity supplemented with tryptophan.

    Science.gov (United States)

    Lopez-Esparza, Sarahi; Berumen, Laura C; Padilla, Karla; Miledi, Ricardo; García-Alcocer, Guadalupe

    2015-05-01

    Food intake regulation is a complex mechanism that involves endogenous substances and central nervous system structures like hypothalamus or even hippocampus. The neurotransmitter serotonin is distinguished as food intake mediator; within its multiples receptors, the 5-HT2C type is characterized by its inhibitory appetite action but there is no information about 5-HT5A receptors involvement in obesity disease. It is also unknown if there are any changes in the receptors expression in rats hippocampus with induced obesity during development through a high energy diet (HED) supplemented with tryptophan (W). To appreciate the receptors expression pattern in the hippocampus, obesity was induced to young Sprague Dawley rats through a HED and supplemented with W. Immunocytochemical and western blot techniques were used to study the receptor distribution and quantify the protein expression. The rats with HED diet developed obesity until week 13 of treatment. The 5-HT2C receptor expression decreased in CA1, CA2, CA3 and DG of HED group; and also in CA2, CA3 and DG for HEDW group. The 5-HT5A receptor expression only decreased in DG for HED group. Variations of the two serotonin receptors subtypes support their potential role in obesity.

  17. 5-HT2A/5-HT2C receptor pharmacology and intrinsic clearance of N-benzylphenethylamines modified at the primary site of metabolism

    DEFF Research Database (Denmark)

    Leth-Petersen, Sebastian; Petersen, Ida Nymann; Jensen, Anders A

    2016-01-01

    The toxic hallucinogen 25B-NBOMe is very rapidly degraded by human liver microsomes and has low oral bioavailability. Herein we report on the synthesis, microsomal stability and 5-HT2A/5-HT2C receptor profile of novel analogs of 25B-NBOMe modified at the primary site of metabolism. Although micro...

  18. The Activating NKG2C Receptor Is Significantly Reduced in NK Cells after Allogeneic Stem Cell Transplantation in Patients with Severe Graft-versus-Host Disease

    Directory of Open Access Journals (Sweden)

    Lambros Kordelas

    2016-10-01

    Full Text Available Natural killer (NK cells play a central role in the innate immune system. In allogeneic stem cell transplantation (alloSCT, alloreactive NK cells derived by the graft are discussed to mediate the elimination of leukemic cells and dendritic cells in the patient and thereby to reduce the risk for leukemic relapses and graft-versus-host reactions. The alloreactivity of NK cells is determined by various receptors including the activating CD94/NKG2C and the inhibitory CD94/NKG2A receptors, which both recognize the non-classical human leukocyte antigen E (HLA-E. Here we analyze the contribution of these receptors to NK cell alloreactivity in 26 patients over the course of the first year after alloSCT due to acute myeloid leukemia, myelodysplastic syndrome and T cell Non-Hodgkin-Lymphoma. Our results show that NK cells expressing the activating CD94/NKG2C receptor are significantly reduced in patients after alloSCT with severe acute and chronic graft-versus-host disease (GvHD. Moreover, the ratio of CD94/NKG2C to CD94/NKG2A was reduced in patients with severe acute and chronic GvHD after receiving an HLA-mismatched graft. Collectively, these results provide evidence for the first time that CD94/NKG2C is involved in GvHD prevention.

  19. Limited participation of 5-HT1A and 5-HT2A/2C receptors in the clozapine-induced Fos-protein expression in rat forebrain regions

    NARCIS (Netherlands)

    Sebens, JB; Kuipers, SD; Koch, T; Ter Horst, GJ; Korf, J

    2000-01-01

    Through the development of tolerance following long-term clozapine treatment, we investigated whether 5-HT1A and 5-HT2A/2C receptors participate in the clozapine-induced Fos-protein expression in the rat forebrain. Tolerance exists when the acutely increased Fos responses to a challenge dose of the

  20. S32006, a novel 5-HT(2C) receptor antagonist displaying broad-based antidepressant and anxiolytic properties in rodent models

    NARCIS (Netherlands)

    Dekeyne, Anne; la Cour, Clotilde Mannoury; Gobert, Alain; Brocco, Mauricette; Lejeune, Francoise; Serres, Florence; Sharp, Trevor; Daszuta, Annie; Soumier, Amelie; Papp, Mariusz; Rivet, Jean-Michel; Flik, Gunnar; Cremers, Thomas I.; Muller, Olivier; Lavielle, Gilbert; Millan, Mark J.

    2008-01-01

    Rationale Serotonin (5-HT)(2C) receptors are implicated in the control of mood, and their blockade is of potential interest for the management of anxiodepressive states. Objectives Herein, we characterized the in vitro and in vivo pharmacological profile of the novel benzourea derivative, S32006. Ma

  1. The Activating NKG2C Receptor Is Significantly Reduced in NK Cells after Allogeneic Stem Cell Transplantation in Patients with Severe Graft-versus-Host Disease

    Science.gov (United States)

    Kordelas, Lambros; Steckel, Nina-Kristin; Horn, Peter A.; Beelen, Dietrich W.; Rebmann, Vera

    2016-01-01

    Natural killer (NK) cells play a central role in the innate immune system. In allogeneic stem cell transplantation (alloSCT), alloreactive NK cells derived by the graft are discussed to mediate the elimination of leukemic cells and dendritic cells in the patient and thereby to reduce the risk for leukemic relapses and graft-versus-host reactions. The alloreactivity of NK cells is determined by various receptors including the activating CD94/NKG2C and the inhibitory CD94/NKG2A receptors, which both recognize the non-classical human leukocyte antigen E (HLA-E). Here we analyze the contribution of these receptors to NK cell alloreactivity in 26 patients over the course of the first year after alloSCT due to acute myeloid leukemia, myelodysplastic syndrome and T cell Non-Hodgkin-Lymphoma. Our results show that NK cells expressing the activating CD94/NKG2C receptor are significantly reduced in patients after alloSCT with severe acute and chronic graft-versus-host disease (GvHD). Moreover, the ratio of CD94/NKG2C to CD94/NKG2A was reduced in patients with severe acute and chronic GvHD after receiving an HLA-mismatched graft. Collectively, these results provide evidence for the first time that CD94/NKG2C is involved in GvHD prevention. PMID:27801784

  2. The role of RNA editing of the serotonin 2C receptor in a rat model of oro-facial neuropathic pain.

    Science.gov (United States)

    Nakae, Aya; Nakai, Kunihiro; Tanaka, Tatsuya; Hagihira, Saotoshi; Shibata, Masahiko; Ueda, Koichi; Masimo, Takashi

    2008-05-01

    We examined whether infraorbital nerve injury affected the RNA editing efficiency of the serotonin (5HT) 2C receptor in the cervical spinal cord, in association with increased pain thresholds, and whether a 5HT reuptake inhibitor (fluvoxamine; Depromel, Meiji Seika, Tokyo, Japan) altered this editing. Accordingly, we injured rats with an infraorbital nerve loose ligation and examined the pain thresholds, mRNA and mRNA editing of the 5HT2C receptor. We evaluated changes in mRNA editing and 5HT2C mRNA expression using cloning along with sequence analysis and quantitative reverse transcription-polymerase chain reaction to compare samples taken at post-injury day 28 from spinal cord sites, including the trigeminal nucleus caudalis, in naive, sham and injured rats (groups of each type had also received fluvoxamine). 5HT2C receptor expression was maintained post-injury. The RNA editing efficiency was statistically significantly lower at molecular sites A and B in ipsilateral spinal cord samples from injured rats than in bilateral samples from naive and sham rats, and in contralateral samples from injured rats. After injury, the proportional presence of two receptor isoforms changed, i.e. statistically significantly less VNV and significantly more INV and ISV. The proportions reverted after fluvoxamine administration. The post-injury change might be evidence of a functional adaptation mechanism that increases the expression of 5HT2C mRNA isoforms that encode receptors that are more sensitive to 5HT. This would activate the brainstem-spinal descending 5HT systems and, in effect, suppress nociceptive signals from primary afferent neurons to the spinal trigeminal nucleus caudalis.

  3. Serotonin 5-HT2C receptor-independent expression of hypothalamic NOR1, a novel modulator of food intake and energy balance, in mice

    Energy Technology Data Exchange (ETDEWEB)

    Nonogaki, Katsunori, E-mail: knonogaki-tky@umin.ac.jp [Center of Excellence, Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine (Japan); Department of Lifestyle Medicine, Biomedical Engineering Center, Tohoku University (Japan); Kaji, Takao [Department of Lifestyle Medicine, Biomedical Engineering Center, Tohoku University (Japan); Ohba, Yukie; Sumii, Makiko [Center of Excellence, Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine (Japan); Wakameda, Mamoru; Tamari, Tomohiro [Charles River Laboratories Japan, Inc. (Japan)

    2009-08-21

    NOR1, Nur77 and Nurr1 are orphan nuclear receptors and members of the NR4A subfamily. Here, we report that the expression of hypothalamic NOR1 was remarkably decreased in mildly obese {beta}-endorphin-deficient mice and obese db/db mice with the leptin receptor mutation, compared with age-matched wild-type mice, whereas there were no genotypic differences in the expression of hypothalamic Nur77 or Nurr1 in these animals. The injection of NOR1 siRNA oligonucleotide into the third cerebral ventricle significantly suppressed food intake and body weight in mice. On the other hand, the decreases in hypothalamic NOR1 expression were not found in non-obese 5-HT2C receptor-deficient mice. Moreover, systemic administration of m-chlorophenylpiperazine (mCPP), a 5-HT2C/1B receptor agonist, had no effect on hypothalamic NOR1 expression, while suppressing food intake in {beta}-endorphin-deficient mice. These findings suggest that 5-HT2C receptor-independent proopiomelanocortin-derived peptides regulate the expression of hypothalamic NOR1, which is a novel modulator of feeding behavior and energy balance.

  4. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Weiwei; Wei, Wei; Yu, Shigang; Han, Haiyin; Shi, Xiaoli [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Sun, Wenxing [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); College of Public Health, Nantong University, Nantong 226019 (China); Gao, Ying [College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 (China); Zhang, Lifan [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Chen, Jie, E-mail: jiechen@njau.edu.cn [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China)

    2016-03-25

    Obesity is a well-established risk factor to health for its relationship with insulin resistance, diabetes and metabolic syndrome. Myocyte-adipocyte crosstalk model plays a significant role in studying the interaction of muscle and adipose development. Previous related studies mainly focus on the effects of adipocytes on the myocytes activity, however, the influence of myotubes on the preadipocytes development remains unclear. The present study was carried out to settle this issue. Firstly, the co-culture experiment showed that the proliferation, cell cycle, and differentiation of 3T3-L1 preadipocytes were arrested, and the apoptosis was induced, by differentiated C2C12 myotubes. Next, the sensitivity of 3T3-L1 preadipocytes to glucocorticoids (GCs), which was well known as cell proliferation, differentiation, apoptosis factor, was decreased after co-cultured with C2C12 myotubes. What's more, our results showed that C2C12 myotubes suppressed the mRNA and protein expression of glucocorticoid receptor (GR) in 3T3-L1 preadipocytes, indicating the potential mechanism of GCs sensitivity reduction. Taken together, we conclude that C2C12 myotubes inhibited 3T3-L1 preadipocytes proliferation and differentiation by reducing the expression of GR. These data suggest that decreasing GR by administration of myokines may be a promising therapy for treating patients with obesity or diabetes. - Highlights: • C2C12 myotubes inhibited proliferation and differentiation of 3T3-L1 preadipocytes. • C2C12 myotubes arrested cell cycle of 3T3-L1 preadipocytes. • C2C12 myotubes induced apoptosis of 3T3-L1 preadipocytes. • C2C12 inhibit 3T3-L1 cells by reducing the expression of glucocorticoid receptor gene.

  5. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp [Department of Integrative Physiology and Bio-System Control, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Haniu, Hisao [Department of Orthopedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Matsuda, Yoshikazu [Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Ina-machi, Saitama 362-0806 (Japan)

    2013-04-12

    Highlights: •Alkyl-LPA specifically interacts with PPARγ. •Alkyl-LPA treatments induces lipid accumulation in C2C12 cells. •Alkyl-LPA enhanced glucose uptake in C2C12 cells. •Alkyl-LPA-treated C2C12 cells express increased amounts of GLUT4 mRNA. •Alkyl-LPA is a novel therapeutic agent that can be used for the treatment of obesity and diabetes. -- Abstract: Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA–PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance.

  6. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    Science.gov (United States)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  7. Behavioral Effects of a Novel Benzofuranyl-Piperazine Serotonin-2C Receptor Agonist Suggest a Potential Therapeutic Application in the Treatment of Obsessive–Compulsive Disorder

    Directory of Open Access Journals (Sweden)

    Michelle M. Rodriguez

    2017-05-01

    Full Text Available Selective serotonin reuptake inhibitors (SSRIs are the only effective pharmacological treatments for obsessive–compulsive disorder (OCD. Nonetheless, their generally limited efficacy, side-effects, and delayed onset of action require improved medications for this highly prevalent disorder. Preclinical and clinical findings have suggested serotonin2C (5-HT2C receptors as a potential drug target. Data in rats and mice are presented here on the effects of a novel 5-HT2C receptor agonist ((3S-3-Methyl-1-[4-(trifluoromethyl-7-benzofuranyl]-piperazine (CPD 1 with high potency and full efficacy at 5-HT2C receptors and less potency and partial agonism at 5-HT2A and 5-HT2B receptors. Effects of CPD 1 on consummatory (schedule-induced polydipsia in rats and non-consummatory behaviors (marble-burying and nestlet-shredding in mice that are repetitive and non-habituating were studied. We also evaluated the effects of CPD 1 in rats with isoproterenol- and deprivation-induced drinking in rats to compare with the polydipsia studies. The SSRIs, fluoxetine, and chlomipramine decreased the high rates of drinking in rats engendered by a schedule of intermittent food delivery (schedule-induced polydipsia. The effects of fluoxetine, but not of d-amphetamine, were prevented by the selective 5-HT2C receptor antagonist SB242084. The 5-HT2C receptor agonists Ro 60-0175 and CPD 1 also decreased drinking, but unlike the SSRIs and Ro 60-0175, CPD 1 dose-dependently decreased excessive drinking without affecting lever press responses that produced food. The effects of CPD 1 were prevented by SB242084. CPD 1 also suppressed drinking induced by isoproterenol and by water deprivation without affecting normative drinking behavior. CPD 1, like fluoxetine, also suppressed marble-burying and nestlet-shredding in mice at doses that did not affect rotarod performance or locomotor activity. The behavioral specificity of effects of CPD 1 against repetitive and excessive behaviors

  8. Polymorphisms of serotonin receptor 2A and 2C genes and COMT in relation to obesity and type 2 diabetes

    DEFF Research Database (Denmark)

    Kring, Sofia I I; Werge, Thomas; Holst, Claus

    2009-01-01

    BACKGROUND: Candidate genes of psychological importance include 5HT2A, 5HT2C, and COMT, implicated in the serotonin, noradrenaline and dopamine pathways, which also may be involved in regulation of energy balance. We investigated the associations of single nucleotide polymorphisms (SNPs) of these......BACKGROUND: Candidate genes of psychological importance include 5HT2A, 5HT2C, and COMT, implicated in the serotonin, noradrenaline and dopamine pathways, which also may be involved in regulation of energy balance. We investigated the associations of single nucleotide polymorphisms (SNPs...

  9. Maternal aggression in Wistar rats: effect of 5-HT2A/2C receptor agonist and antagonist microinjected into the dorsal periaqueductal gray matter and medial septum

    Directory of Open Access Journals (Sweden)

    Almeida R.M.M. de

    2005-01-01

    Full Text Available The objective of the present study was to assess the role of the 5-HT2A/2C receptor at two specific brain sites, i.e., the dorsal periaqueductal gray matter (DPAG and the medial septal (MS area, in maternal aggressive behavior after the microinjection of either a 5-HT2A/2C receptor agonist or antagonist. Female Wistar rats were microinjected on the 7th postpartum day with the selective agonist alpha-methyl-5-hydroxytryptamine maleate (5-HT2A/2C or the antagonist 5-HT2A/2C, ketanserin. The agonist was injected into the DPAG at 0.2 (N = 9, 0.5 (N = 10, and 1.0 µg/0.2 µl (N = 9, and the antagonist was injected at 1.0 µg/0.2 µl (N = 9. The agonist was injected into the medial septal area (MS at 0.2 (N = 9, 0.5 (N = 7, and 1.0 µg/0.2 µl (N = 6 and the antagonist was injected at 1.0 µg/0.2 µl (N = 5. For the control, saline was injected into the DPAG (N = 7 and the MS (N = 12. Both areas are related to aggressive behavior and contain a high density of 5-HT receptors. Non-aggressive behaviors such as horizontal locomotion (walking and social investigation and aggressive behaviors such as lateral threat (aggressive posture, attacks (frontal and lateral, and biting the intruder were analyzed when a male intruder was placed into the female resident's cage. For each brain area studied, the frequency of the behaviors was compared among the various treatments by analysis of variance. The results showed a decrease in maternal aggressive behavior (number of bites directed at the intruder after microinjection of the agonist at 0.2 and 1.0 µg/0.2 µl (1.6 ± 0.7 and 0.9 ± 0.3 into the DPAG compared to the saline group (5.5 ± 1.1. There was no dose-response relationship with the agonist. The present findings suggest that the 5-HT2A/2C receptor agonist has an inhibitory effect on maternal aggressive behavior when microinjected into the DPAG and no effect when microinjected into the MS. Ketanserin (1.0 µg/0.2 µl decreased locomotion when microinjected

  10. Selective 5-hydroxytryptamine 2C receptor agonists derived from the lead compound tranylcypromine: identification of drugs with antidepressant-like action.

    Science.gov (United States)

    Cho, Sung Jin; Jensen, Niels H; Kurome, Toru; Kadari, Sudhakar; Manzano, Michael L; Malberg, Jessica E; Caldarone, Barbara; Roth, Bryan L; Kozikowski, Alan P

    2009-04-09

    We report here the design, synthesis, and pharmacological properties of a series of compounds related to tranylcypromine (9), which itself was discovered as a lead compound in a high-throughput screening campaign. Starting from 9, which shows modest activity as a 5-HT(2C) agonist, a series of 1-aminomethyl-2-phenylcyclopropanes was investigated as 5-HT(2C) agonists through iterative structural modifications. Key pharmacophore feature of this new class of ligands is a 2-aminomethyl-trans-cyclopropyl side chain attached to a substituted benzene ring. Among the tested compounds, several were potent and efficacious 5-HT(2C) receptor agonists with selectivity over both 5-HT(2A) and 5-HT(2B) receptors in functional assays. The most promising compound is 37, with 120- and 14-fold selectivity over 5-HT(2A) and 5-HT(2B), respectively (EC(50) = 585, 65, and 4.8 nM at the 2A, 2B, and 2C subtypes, respectively). In animal studies, compound 37 (10-60 mg/kg) decreased immobility time in the mouse forced swim test.

  11. m-CPP, a 5-HT2C receptor agonist that modifies the perfusion pressure of the hindquarter vascular bed of anesthetized rat.

    Science.gov (United States)

    Calama, E; Morán, A; Ortiz de Urbina, A V; Martín, M L; San Román, L

    2005-02-01

    In the present work we studied the actions of the intra-arterial administration of meta-chlorophenylpiperazine (m-CPP - a 5-HT(2C) receptor agonist) in the hindquarters of the anesthetized rat. The lowest doses used (0.001, 0.01, 0.1, 0.25 and 0.5 microg/kg) induced vasodilatation whereas the highest doses produced vasoconstriction (1, 6.25, 12.5 and 25 microg/kg). Both vasodilatation and vasoconstriction were inhibited by the 5-HT(1,2 )receptor antagonist methiothepin, whereas the 5-HT(2 )receptor antagonist ritanserin blocked only the vasoconstrictor responses. 1-[4-(1-Adamantanecarboxamido)butyl]-4-(2-methoxyphenyl)piperazine (a 5-HT(1A) receptor antagonist) and ICI 118,551 (a beta(2)-receptor antagonist) failed to modify the vasodilator responses of m-CPP. Both BRL 15572 (a 5-HT(1D) receptor antagonist) and GR 55562 (a 5-HT(1B) receptor antagonist) only partially inhibited this action. Our data reveal that m-CPP induces the 5-HT(1 )and/or non-specific vasodilator effect and 5-HT(2) vasoconstrictor effects in the hindquarter vascular bed of the rat.

  12. Meta-chlorophenylpiperazine induced changes in locomotor activity are mediated by 5-HT1 as well as 5-HT2C receptors in mice.

    Science.gov (United States)

    Gleason, S D; Shannon, H E

    1998-01-12

    1-(Meta-chloro)phenylpiperazine (m-CPP) is a 5-HT receptor agonist which has been purported to be relatively selective for the 5-HT2C receptor. In particular, the hypolocomotion produced by m-CPP has been suggested to be mediated by 5-HT2C receptors. m-CPP binds with high affinity to 5-HT1 as well as 5-HT2 receptors, thus effects of m-CPP on locomotor activity may be due to the physiologic summation of the actions of m-CPP at 5-HT1 as well as 5-HT2 receptors. The present study investigated the effects of m-CPP alone and in the presence of the 5-HT2 receptor antagonist 6-methyl-1-(-methyethyl)-ergoline-8beta-carboxylic acid 2-hydroxy-1-methylpropyl ester maleate (LY53857), the 5-HT1A receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]-ethyl]-N-(2pyridinyl)c yclohexanecarboxamide trihydrochloride (WAY 100,635), and the 5-HT(1B/1D) receptor antagonist 2'-methyl-4'-(5-methyl-[1,2,4]oxadiazol-3-yl)-biphenyl-4-corbox ylic acid [4-methoxy-3-(4-methyl-piperazin-1-yl)-phenyl]amide (GR 127935) on locomotor activity. Administration of m-CPP alone (0.3-10 mg/kg) produced a dose-related decrease in locomotor activity. The 5-HT(1B/1D) receptor antagonist GR 127935 (3.0 mg/kg) in combination with m-CPP produced a slight leftward shift of the dose-response curve of m-CPP. The 5-HT1A receptor antagonist WAY 100,635 (1.0 mg/kg) in combination with m-CPP did not alter the m-CPP dose-response curve. The non-selective 5-HT2 receptor antagonist LY53857 (1.0 mg/kg) in combination with m-CPP unmasked a hyperlocomotion produced by m-CPP. Furthermore, the hyperlocomotion produced by m-CPP in the presence of LY53857 (1.0 mg/kg) was blocked by both the 5-HT(1B/1D) receptor antagonist GR 127935 (3.0 mg/kg) and the 5-HT1A receptor antagonist WAY 100,635 (1.0 mg/kg). The present results demonstrate that the hyperlocomotion seen with the combination of m-CPP and LY53857 is mediated by 5-HT1 receptors. Taken together the data indicate that m-CPP affects locomotor activity by the

  13. 5-Hydroxytryptamine potentiates neurogenic contractions of rat isolated urinary bladder through both 5-HT(7) and 5-HT(2C) receptors.

    Science.gov (United States)

    Rekik, Moèz; Lluel, Philippe; Palea, Stefano

    2011-01-10

    Serotonin (5-HT) enhances the neurogenic contractile response induced by electrical field stimulation (EFS) in the rat isolated urinary bladder. The aim of this study was to functionally characterize the receptors involved in this effect by using a range of 5-HT receptor subtype selective agonists and antagonists. 5-HT produced a concentration-dependent potentiation of contractile responses to EFS with a pEC(50) value of 6.86±0.24. SB-269970 (0.01, 0.1 and 1μM), a selective 5-HT(7) receptor antagonist, caused a concentration-dependent rightward shift of the 5-HT-induced response. The pA(2) value was 8.16 with a slope of 0.46±0.08. Neither ketanserine nor SB-204741, 5-HT(2A) and 5-HT(2B) receptors antagonists, respectively, affected the concentration-response curve to 5-HT. However, 5-HT response was antagonized by the selective 5-HT(2C) receptor antagonist SB-242084 (0.1 and 1μM). In the presence of 1μM of both antagonists SB-269970 and SB-242084, 5-HT response was almost fully inhibited. 5-CT, a 5-HT(7) receptor agonist, induced a biphasic concentration-dependent potentiation of neurogenic contractions. SB-269970 concentration-dependently antagonized the first phase of 5-CT response with a pA(2) value of 8.77 and a slope not significantly different from unity (0.91±0.11) that suggests a competitive antagonism. WAY-161503, a 5-HT(2C) receptor agonist (0.01-10μM), induced a concentration-dependent potentiation of contractile response to EFS while DOI (a selective 5-HT(2A) agonist) had no effect. SB-242084 (0.1 and 1μM) antagonized the effect of WAY-161503 in a concentration-dependent manner. The current results demonstrate that 5-HT potentiates neurogenic contractions of rat isolated detrusor muscle through both 5-HT(7) and 5-HT(2c) receptors.

  14. Activation of 5-HT(2C) receptors in the dorsal periaqueductal gray increases antinociception in mice exposed to the elevated plus-maze.

    Science.gov (United States)

    Baptista, Daniela; Nunes-de-Souza, Ricardo Luiz; Canto-de-Souza, Azair

    2012-11-01

    Several findings have pointed to the role of the dorsal periaqueductal gray (dPAG) serotonin 5-HT(1A) and 5-HT(2A-C) receptor subtypes in the modulation of defensive behavior in animals exposed to the elevated plus-maze (EPM). Besides displaying anxiety-like behavior, rodents also exhibit antinociception in the EPM. This study investigated the effects of intra-dPAG injections of 5-HT(1A) and 5-HT(2B/2C) receptor ligands on EPM-induced antinociception in mice. Male Swiss mice received 0.1 μl intra-dPAG injections of vehicle, 5.6 and 10 nmol of 8-OHDPAT, a 5-HT(1A) receptor agonist (Experiment 1), or 0.01, 0.03 and 0.1 nmol of mCPP, a 5-HT(2B/2C) receptor agonist (Experiment 2). Five minutes later, each mouse received an intraperitoneal injection of 0.6% acetic acid (0.1 ml/10 g body weight; nociceptive stimulus) and was individually confined in the open (OA) or enclosed (EA) arms of the EPM for 5 min, during which the number of abdominal writhes induced by the acetic acid was recorded. While intra-dPAG injection of 8-OHDPAT did not change open-arm antinociception (OAA), mCPP (0.01 nmol) enhanced it. Combined injections of ketanserin (10 nmol/0.1 μl), a 5-HT(2A/2C) receptor antagonist, and 0.01 nmol of mCPP (Experiment 3), selectively and completely blocked the OAA enhancement induced by mCPP. Although intra-dPAG injection of mCPP (0.01 nmol) also produced antinociception in EA-confined mice (Experiment 2), this effect was not confirmed in Experiment 3. Moreover, no other compound changed the nociceptive response in EA-confined animals. These results suggest that the 5-HT(2C) receptors located within the PAG play a role in this type of environmentally induced pain inhibition in mice.

  15. Polymorphisms of serotonin receptor 2A and 2C genes and COMT in relation to obesity and type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Sofia I I Kring

    Full Text Available BACKGROUND: Candidate genes of psychological importance include 5HT2A, 5HT2C, and COMT, implicated in the serotonin, noradrenaline and dopamine pathways, which also may be involved in regulation of energy balance. We investigated the associations of single nucleotide polymorphisms (SNPs of these genes with obesity and metabolic traits. METHODOLOGY/PRINCIPAL FINDINGS: In a population of 166 200 young men examined at the draft boards, obese men (n = 726, BMI> or =31.0 kg/m(2 and a randomly selected group (n = 831 were re-examined at two surveys at mean ages 46 and 49 years (S-46, S-49. Anthropometric, physiological and biochemical measures were available. Logistic regression analyses were used to assess age-adjusted odds ratios. No significant associations were observed of 5HT2A rs6311, 5HT2C rs3813929 and COMT rs4680 with obesity, except that COMT rs4680 GG-genotype was associated with fat-BMI (OR = 1.08, CI = 1.01-1.16. The SNPs were associated with a number of physiological variables; most importantly 5HT2C rs3813929 T-allele was associated with glucose (OR = 4.56, CI = 1.13-18.4 and acute insulin response (OR = 0.65, CI = 0.44-0.94 in S-49. COMT rs4680 GG-genotype was associated with glucose (OR = 1.04, CI = 1.00-1.09. Except for an association between 5HT2A rs6311 and total-cholesterol at both surveys, significant in S-46 (OR = 2.66, CI = 1.11-6.40, no significant associations were observed for the other phenotypes. Significant associations were obtained when combined genotype of 5HT2C rs3813929 and COMT rs4680 were examined in relation to BMI (OR = 1.12, CI = 1.03-1.21, fat-BMI (OR = 1.22, CI = 1.08-1.38, waist (OR = 1.13, CI = 1.04-1.22, and cholesterol (OR = 5.60, CI = 0.99-31.4. Analyses of impaired glucose tolerance (IGT and type 2 diabetes (T2D revealed, a 12.3% increased frequency of 5HT2C rs3813929 T-allele and an 11.6% increased frequency of COMT rs4680 GG-genotype in individuals with IGT or T2D (chi(2, p = 0.05 and p = 0

  16. Pregnane X receptors regulate CYP2C8 and P-glycoprotein to impact on the resistance of NSCLC cells to Taxol.

    Science.gov (United States)

    Chen, Yan; Huang, Wandan; Chen, Feiyu; Hu, Guoping; Li, Fenglei; Li, Jianhua; Xuan, Aiguo

    2016-12-01

    Cytochrome P450 2C8 (CYP2C8) is one of the enzymes that primarily participate in producing metabolisms of medications and P-glycoprotein (P-gp) has been regarded as one of the important molecules in chemotherapeutically induced multidrug resistance (MDR). In addition, the pregnane X receptor (PXR) is involved in regulating both CYP2C8 and P-gp. We aim to research the effect of PXR on Taxol-resistant non-small-cell lung cancer (NSCLC cells) via regulating CYP2C8 and P-gp. NSCLC cells were treated with SR12813, LY335979, or PXR siRNA. Cell counting kit (CCK-8) assay was used to detect cell vitality. Colony formation assay was used to observe cell proliferation. Western blotting, real-time polymerase chain reaction (RT-PCR), and immunofluorescence staining were conducted to analyze the expressions of PXR, CYP2C8, and P-gp. Taxol and its metabolic products were detected by high-performance liquid chromatography (HPLC). The expression of PXR in A549 cell line was higher than that in other cell lines. The accumulation of PXR was observed in the nucleus after cells were treated with SR12813. Besides, SR12813 induced higher expressions of CYP2C8 and P-gp proteins. We also discovered that pretreatment with SR12813 reversed the inhibition of cell viability and proliferation after the Taxol treatment in comparison to the SR12813 untreated group. Furthermore, the hydroxylation products of Taxol analyzed by HPLC were increased in comparison to the SR12813 untreated group, indicating that high expressions of CYP2C8 and P-gp enhanced the resistance of A549 cells to Taxol. For cells treated with PXR siRNA, cell viability, cell proliferation, and Taxol metabolites were significantly reduced after the Taxol treatment in comparison to the siRNA-negative group. The cell viability, cell proliferation, and Taxol metabolites were regulated by the expressions of PXR, P-gp, and CYP2C8. That is, PXR expression has an important effect on the resistance of NSCLC cells to Taxol via

  17. Polymorphisms of serotonin receptor 2A and 2C genes and COMT in relation to obesity and type 2 diabetes

    DEFF Research Database (Denmark)

    Kring, Sofia I I; Werge, Thomas; Holst, Claus

    2009-01-01

    BACKGROUND: Candidate genes of psychological importance include 5HT2A, 5HT2C, and COMT, implicated in the serotonin, noradrenaline and dopamine pathways, which also may be involved in regulation of energy balance. We investigated the associations of single nucleotide polymorphisms (SNPs......) of these genes with obesity and metabolic traits. METHODOLOGY/PRINCIPAL FINDINGS: In a population of 166 200 young men examined at the draft boards, obese men (n = 726, BMI> or =31.0 kg/m(2)) and a randomly selected group (n = 831) were re-examined at two surveys at mean ages 46 and 49 years (S-46, S-49...

  18. Serotonin 2A and 2C receptor biosynthesis in the rodent striatum during postnatal development: mRNA expression and functional linkage to neuropeptide gene regulation.

    Science.gov (United States)

    Basura, G J; Walker, P D

    2000-11-01

    The present study was designed to determine if there are region-specific differences in serotonin (5-HT) neurotransmission and 5-HT receptor expression that may limit the stimulatory effects of the 5-HT releaser p-chloroamphetamine (pCA) on striatal neuropeptide gene expression to the posterior striatum (P-STR) during postnatal maturation. Sprague-Dawley rat brains from postnatal days (PND) 1-35 were processed for 5-HT(2A) and 5-HT(2C) receptor mRNA expression by in situ hybridization and monoamine analysis by HPLC. Within the P-STR, 5-HT(2A) receptor mRNA expression reached young adult (PND 35) levels by PND 3, while levels in the A-STR were significantly less (range: 1.43 +/- 0.219-6. 36 +/- 0.478) than P-STR (5.36 +/- 0.854-12.11 +/- 1.08) at each respective age throughout the time course. 5-HT(2C) receptor mRNA expression reached young adult levels at PND 7 in the A-STR and by PND 3 in the P-STR. At each PND age 5-HT(2C) receptor mRNA levels within the P-STR were significantly less (6.23 +/- 1.02-12.32 +/- 0.427) than the A-STR (7.31 +/- 1.65-26.84 +/- 2.24). 5-HT content increased across the developmental time course within the P-STR (5.01 +/- 0.327-15.7 +/- 1.03 ng/mg protein) and A-STR (2.97 +/- 0. 223-11.2 +/- 0.701 ng/mg protein). Four hours following injection (i. p.) of pCA (10 mg/kg), preprotachykinin (PPT) mRNA levels increased 89% in the P-STR but not the anterior (A-STR) striatum of the 3-week-old rat, which were prevented by preinjection (30 min, i.p.) of the 5-HT(2) receptor antagonist ritanserin (1 mg/kg). Together, these data suggest that faster maturity of 5-HT(2A) receptor expression in the P-STR may be sufficient to convey the region-specific acute stimulatory effects of pCA on PPT mRNA transcription in the developing rodent striatum. These results provide further evidence that the influence of 5-HT on neuropeptide gene expression is far stronger in caudal vs. rostral striatal regions during postnatal development.

  19. 5-HT(2C) serotonin receptor blockade prevents tau protein hyperphosphorylation and corrects the defect in hippocampal synaptic plasticity caused by a combination of environmental stressors in mice.

    Science.gov (United States)

    Busceti, Carla Letizia; Di Pietro, Paola; Riozzi, Barbara; Traficante, Anna; Biagioni, Francesca; Nisticò, Robert; Fornai, Francesco; Battaglia, Giuseppe; Nicoletti, Ferdinando; Bruno, Valeria

    2015-09-01

    Exposure to multimodal sensory stressors is an everyday occurrence and sometimes becomes very intense, such as during rave parties or other recreational events. A growing body of evidence suggests that strong environmental stressors might cause neuronal dysfunction on their own in addition to their synergistic action with illicit drugs. Mice were exposed to a combination of physical and sensory stressors that are reminiscent of those encountered in a rave party. However, this is not a model of rave because it lacks the rewarding properties of rave. A 14-h exposure to environmental stressors caused an impairment of hippocampal long-term potentiation (LTP) and spatial memory, and an enhanced phosphorylation of tau protein in the CA1 and CA3 regions. These effects were transient and critically depended on the activation of 5-HT2C serotonin receptors, which are highly expressed in the CA1 region. Acute systemic injection of the selective 5-HT2C antagonist, RS-102,221 (2 mg/kg, i.p., 2 min prior the onset of stress), prevented tau hyperphosphorylation and also corrected the defects in hippocampal LTP and spatial memory. These findings suggest that passive exposure to a combination of physical and sensory stressors causes a reversible hippocampal dysfunction, which might compromise mechanisms of synaptic plasticity and spatial memory for a few days. Drugs that block 5-HT2C receptors might protect the hippocampus against the detrimental effect of environmental stressors.

  20. Serotonin2C receptor stimulation inhibits cocaine-induced Fos expression and DARPP-32 phosphorylation in the rat striatum independently of dopamine outflow.

    Science.gov (United States)

    Devroye, Céline; Cathala, Adeline; Maitre, Marlène; Piazza, Pier Vincenzo; Abrous, Djoher Nora; Revest, Jean-Michel; Spampinato, Umberto

    2015-02-01

    The serotonin(2C) receptor (5-HT(2C)R) is known to control dopamine (DA) neuron function by modulating DA neuronal firing and DA exocytosis at terminals. Recent studies assessing the influence of 5-HT(2C)Rs on cocaine-induced neurochemical and behavioral responses have shown that 5-HT2CRs can also modulate mesoaccumbens DA pathway activity at post-synaptic level, by controlling DA transmission in the nucleus accumbens (NAc), independently of DA release itself. A similar mechanism has been proposed to occur at the level of the nigrostriatal DA system. Here, using in vivo microdialysis in freely moving rats and molecular approaches, we assessed this hypothesis by studying the influence of the 5-HT(2C)R agonist Ro 60-0175 on cocaine-induced responses in the striatum. The intraperitoneal (i.p.) administration of 1 mg/kg Ro 60-0175 had no effect on the increase in striatal DA outflow induced by cocaine (15 mg/kg, i.p.). Conversely, Ro 60-0175 inhibited cocaine-induced Fos immunoreactivity and phosphorylation of the DA and c-AMP regulated phosphoprotein of Mr 32 kDa (DARPP-32) at threonine 75 residue in the striatum. Finally, the suppressant effect of Ro 60-0175 on cocaine-induced DARPP-32 phosphorylation was reversed by the selective 5-HT(2C)R antagonist SB 242084 (0.5 mg/kg, i.p.). In keeping with the key role of DARPP-32 in DA neurotransmission, our results demonstrate that 5-HT(2C)Rs are capable of modulating nigrostriatal DA pathway activity at post-synaptic level, by specifically controlling DA signaling in the striatum.

  1. Serotonin 5-HT2C receptor-mediated inhibition of the M-current in hypothalamic POMC neurons

    OpenAIRE

    Roepke, T. A.; Smith, A W; Rønnekleiv, O. K.; Kelly, M. J.

    2012-01-01

    Hypothalamic proopiomelanocortin (POMC) neurons are controlled by many central signals, including serotonin. Serotonin increases POMC activity and reduces feeding behavior via serotonion [5-hydroxytryptamine (5-HT)] receptors by modulating K+ currents. A potential K+ current is the M-current, a noninactivating, subthreshold outward K+ current. Previously, we found that M-current activity was highly reduced in fasted vs. fed states in neuropeptide Y neurons. Because POMC neurons also respond t...

  2. Prelimbic cortex 5-HT1A and 5-HT2C receptors are involved in the hypophagic effects caused by fluoxetine in fasted rats.

    Science.gov (United States)

    Stanquini, Laura A; Resstel, Leonardo B M; Corrêa, Fernando M A; Joca, Sâmia R L; Scopinho, América A

    2015-09-01

    The regulation of food intake involves a complex interplay between the central nervous system and the activity of organs involved in energy homeostasis. Besides the hypothalamus, recognized as the center of this regulation, other structures are involved, especially limbic regions such as the ventral medial prefrontal cortex (vMPFC). Monoamines, such as serotonin (5-HT), play an important role in appetite regulation. However, the effect in the vMPFC of the selective serotonin reuptake inhibitor (SSRI), fluoxetine, on food intake has not been studied. The aim of the present study was to study the effects on food intake of fed and fasted rats evoked by fluoxetine injection into the prelimbic cortex (PL), a sub-region of the vMPFC, or given systemically, and which 5-HT receptors in the PL are involved in fluoxetine responses. Fluoxetine was injected into the PL or given systemically in male Wistar rats. Independent groups of rats were pretreated with intra-PL antagonists of 5-HT receptors: 5-HT1A (WAY100635), 5-HT2C (SB242084) or 5-HT1B (SB216641). Fluoxetine (0.1; 1; 3; 10nmol/200nL) injected into the PL induced a dose-dependent hypophagic effect in fasted rats. This effect was reversed by prior local treatment with WAY100635 (1; 10nmol) or SB242084 (1; 10nmol), but not with SB216641 (0.2; 2.5; 10nmol). Systemic fluoxetine induced a hypophagic effect, which was blocked by intra-PL 5-HT2C antagonist (10nmol) administration. Our findings suggest that PL 5-HT neurotransmission modulates the central control of food intake and 5-HT1A and 5-HT2C receptors in the PL could be potential targets for the action of fluoxetine.

  3. The inhibitory effect of combination treatment with leptin and cannabinoid CB1 receptor agonist on food intake and body weight gain is mediated by serotonin 1B and 2C receptors.

    Science.gov (United States)

    Wierucka-Rybak, M; Wolak, M; Juszczak, M; Drobnik, J; Bojanowska, E

    2016-06-01

    Previous studies reported that the co-injection of leptin and cannabinoid CB1 receptor antagonists reduces food intake and body weight in rats, and this effect is more profound than that induced by these compounds individually. Additionally, serotonin mediates the effects of numerous anorectic drugs. To investigate whether serotonin interacts with leptin and endocannabinoids to affect food intake and body weight, we administered 5-hydroxytryptamine(HT)1B and 5-hydroxytryptamine(HT)2C serotonin receptor antagonists (3 mg/kg GR 127935 and 0.5 mg/kg SB 242084, respectively) to male Wistar rats treated simultaneously with leptin (100 μg/kg) and the CB1 receptor inverse agonist AM 251 (1 mg/kg) for 3 days. In accordance with previous findings, the co-injection of leptin and AM 251, but not the individual injection of each drug, resulted in a significant decrease in food intake and body weight gain. Blockade of the 5-HT1B and 5-HT2C receptors completely abolished the leptin- and AM 251-induced anorectic and body-weight-reducing effects. These results suggest that serotonin mediates the leptin- and AM 251-dependent regulation of feeding behavior in rats via the 5-HT1B and 5-HT2C receptors.

  4. Evidence for a role of the 5-HT2C receptor in central lipopolysaccharide-, interleukin-1 beta-, and leptin-induced anorexia.

    Science.gov (United States)

    von Meyenburg, Claudia; Langhans, Wolfgang; Hrupka, Brian J

    2003-03-01

    We examined the role of serotonin (5-HT) and the 5-HT(1A) and 5-HT(2C) receptors in the anorectic effects of centrally administered lipopolysaccharide (LPS), interleukin-1 beta (IL-1 beta), and leptin. Food intake was measured in rats after intracerebroventricular (ICV) injections of LPS (20 ng), IL-1 beta (10 ng), or leptin (1 microg) at lights out, followed by intraperitoneal (IP) injections of either the 5-HT(1A) autoreceptor agonist 8-hydroxy-2-(di-n-propylamino)tetraline (8-OH-DPAT) (125 microg/kg) or the 5-HT(2C) receptor antagonist SB 242084 (0.3 mg/kg) at the onset of anorexia. SB 242084 significantly attenuated the food intake reduction caused by all compounds (all Panorexia (Panorexia. Rats were injected intraperitoneally with either LPS (100 microg/kg) or IL-1 beta (2 microg/kg) at lights out, and 8-OH-DPAT (4 nmol) was administered directly into the median raphe nucleus at the onset of anorexia. Median raphe injections of 8-OH-DPAT significantly attenuated both IL-1 beta- and LPS-induced anorexia (both Panorexia. Our results also suggest that the midbrain raphe nuclei play a role in mediating the anorectic response to peripheral LPS and IL-1 beta.

  5. Transcriptional Regulation of CYP3A4/2B6/2C9 Mediated via Nuclear Receptor PXR by Helicid and Its Metabolites

    Directory of Open Access Journals (Sweden)

    Qun Chen

    2015-01-01

    Full Text Available Objective. This study aims at establishing and validating an in vitro system to screen drug inducers of CYPs mediated via hPXR, as well as studying transcriptional regulation of CYPs mediated via hPXR by helicid and its two metabolites. Methods. Cloning the nuclear receptor hPXR and the promoters of CYP3A4, CYP2B6, CYP2C9, and inserting the trans-element to the upstream of firefly luciferase reporter gene of the pGL4.17 vectors, then cotransfecting the report vectors and hPXR expression plasmid to HepG2 cell line. After 24 hours, the transfected cells were treated with helicid (0.004, 0.04, and 0.4 μmol/L and its metabolite I and metabolite II (0.0004, 0.004, and 0.04 μmol/L for 48 h, while rifampin (10 μmol/L was included as the positive control and 0.1% DMSO as the negative control group. Cells were lysized and luciferase activity was determined using a dual luciferase reporter assay kit. Results. Helicid and its metabolites did not significantly increase promoter activities of CYP3A4, CYP2B6, and CYP2C9 in HepG2 cells transfected with PXR expression plasmid (P>0.05. Conclusion. PXR-expressed CYP3A4, CYP2B6, and CYP2C9 dual luciferase reporter gene platforms were successfully established, and helicid and its metabolites I, II do not significantly induce the transcription of CYP3A4, CYP2B6, and CYP2C9.

  6. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats

    Directory of Open Access Journals (Sweden)

    Malgorzata S. Martin-Gronert

    2016-04-01

    Full Text Available Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC peptides within the arcuate nucleus of the hypothalamus (ARC. We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus of in utero growth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist.

  7. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats

    Science.gov (United States)

    Martin-Gronert, Malgorzata S.; Stocker, Claire J.; Wargent, Edward T.; Cripps, Roselle L.; Garfield, Alastair S.; Jovanovic, Zorica; D'Agostino, Giuseppe; Yeo, Giles S. H.; Cawthorne, Michael A.; Arch, Jonathan R. S.; Heisler, Lora K.; Ozanne, Susan E.

    2016-01-01

    ABSTRACT Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus of in utero growth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist. PMID:26769798

  8. Electrophysiological evidence for the presence of NR2C subunits of N-methyl-D-aspartate receptors in rat neurons of the nucleus tractus solitarius

    Directory of Open Access Journals (Sweden)

    V. Baptista

    2005-01-01

    Full Text Available The nucleus tractus solitarius (NTS plays an important role in the control of autonomic reflex functions. Glutamate, acting on N-methyl-D-aspartate (NMDA and non-NMDA ionotropic receptors, is the major neurotransmitter in this nucleus, and the relative contribution of each receptor to signal transmission is unclear. We have examined NMDA excitatory postsynaptic currents (NMDA-EPSCs in the subpostremal NTS using the whole cell patch clamp technique on a transverse brainstem slice preparation. The NMDA-EPSCs were evoked by stimulation of the solitary tract over a range of membrane potentials. The NMDA-EPSCs, isolated pharmacologically, presented the characteristic outward rectification and were completely blocked by 50 µM DL-2-amino-5-phosphonopentanoic acid. The I-V relationship of the NMDA response shows that current, with a mean (± SEM amplitude of -41.2 ± 5.5 pA, is present even at a holding potential of -60 mV, suggesting that the NMDA receptors are weakly blocked by extracellular Mg2+ at near resting membrane potentials. This weak block can also be inferred from the value of 0.67 ± 0.17 for parameter delta obtained from a fit of the Woodhull equation to the I-V relationship. The maximal inward current measured on the I-V relationship was at -38.7 ± 4.2 mV. The decay phase of the NMDA currents was fitted with one exponential function with a decay time constant of 239 ± 51 and 418 ± 80 ms at a holding potential of -60 and +50 mV, respectively, which became slower with depolarization (e-fold per 145 mV. The biophysical properties of the NMDA receptors observed in the present study suggest that these receptors in the NTS contain NR2C subunits and may contribute to the synaptic signal integration.

  9. 5-HT7 receptor signaling: improved therapeutic strategy in gut disorders

    Directory of Open Access Journals (Sweden)

    Janice J Kim

    2014-12-01

    Full Text Available Serotonin (5-hydroxytrytamine; 5-HT is most commonly known for its role as a neurotransmitter in the central nervous system. However, the majority of the body’s 5-HT is produced in the gut by enterochromaffin (EC cells. Alterations in 5-HT signaling have been associated with various gut disorders including inflammatory bowel disease (IBD, irritable bowel syndrome (IBS and enteric infections. Recently, our studies have identified a key role for 5-HT in the pathogenesis of experimental colitis. 5-HT7 receptors are expressed in the gut and very recently, we have shown evidence of 5-HT7 receptor expression on intestinal immune cells and demonstrated a key role for 5-HT7 receptors in generation of experimental colitis. This review summarizes the key findings of these studies and provides a comprehensive overview of our current knowledge of the 5-HT7 receptor in terms of its pathophysiological relevance and therapeutic potential in intestinal inflammatory conditions, such as IBD.

  10. Characterization of [(11)C]Cimbi-36 as an agonist PET radioligand for the 5-HT(2A) and 5-HT(2C) receptors in the nonhuman primate brain

    DEFF Research Database (Denmark)

    Finnema, Sjoerd J; Stepanov, Vladimir; Ettrup, Anders

    2014-01-01

    a more meaningful assessment of available receptors than antagonist radioligands. In the current study we characterized [(11)C]Cimbi-36 receptor binding in the primate brain. On five experimental days, a total of 14 PET measurements were conducted in three female rhesus monkeys. On each day, PET...... agonist radioligand suitable for examination of 5-HT2A receptors in the cortical regions and of 5-HT2C receptors in the choroid plexus of the primate brain....

  11. The role of dopamine D-3, 5-HT2(A) and 5-HT2(C) receptor variants as pharmacogenetic determinants in tardive dyskinesia in African-Caribbean patients under chronic antipsychotic treatment Curacao extrapyramidal syndromes study IX

    NARCIS (Netherlands)

    Wilffert, B.; Al Hadithy, A. F. Y.; Sing, V. J.; Matroos, G.; Hoek, H. W.; van Os, J.; Bruggeman, R.; Brouwers, J. R. B. J.; van Harten, P. N.

    2009-01-01

    Tardive dyskinesia (TD) is associated with polymorphisms of the dopamine D-3, serotonin 2A and 2C receptors (DRD3, HTR2A and HTR2C, respectively). This study investigated the possible relationship between TD and the polymorphisms Ser9Gly (DRD3), 102T>C (HTR2A), -1438G>A(HTR2A) and Cys23Ser (HTR2C) i

  12. The role of dopamine D3, 5-HT2A and 5-HT2C receptor variants as pharmacogenetic determinants in tardive dyskinesia in African-Caribbean patients under chronic antipsychotic treatment

    NARCIS (Netherlands)

    Wilffert, B.; Al Hadithy, A.F.; Sing, V.J.; Matroos, G.; Hoek, H.W.; van Os, J.; Bruggeman, R.; Brouwers, J.R.; van Harten, P.N.

    2009-01-01

    Abstract Tardive dyskinesia (TD) is associated with polymorphisms of the dopamine D3, serotonin 2A and 2C receptors (DRD3, HTR2A and HTR2C, respectively). This study investigated the possible relationship between TD and the polymorphisms Ser9Gly (DRD3), 102T>C (HTR2A), -1438G>A(HTR2A) and Cys23Ser (

  13. EPO-receptor is present in mouse C2C12 and human primary skeletal muscle cells but EPO does not influence myogenesis.

    Science.gov (United States)

    Lamon, Séverine; Zacharewicz, Evelyn; Stephens, Andrew N; Russell, Aaron P

    2014-01-01

    Abstract The role and regulation of the pleiotropic cytokine erythropoietin (EPO) in skeletal muscle are controversial. EPO exerts its effects by binding its specific receptor (EPO-R), which activates intracellular signaling and gene transcription in response to internal and external stress signals. EPO is suggested to play a direct role in myogenesis via the EPO-R, but several studies have questioned the effect of EPO treatment in muscle in vitro and in vivo. The lack of certainty surrounding the use of nonspecific EPO-R antibodies contributes to the ambiguity of the field. Our study demonstrates that the EPO-R gene and protein are expressed at each stage of mouse C2C12 and human skeletal muscle cell proliferation and differentiation and validates a specific antibody for the detection of the EPO-R protein. However, in our experimental conditions, EPO treatment had no effect on mouse C2C12 and human muscle cell proliferation, differentiation, protein synthesis or EPO-R expression. While an increase in Akt and MAPK phosphorylation was observed, we demonstrate that this effect resulted from the stress caused by changing medium and not from EPO treatment. We therefore suggest that skeletal muscle EPO-R might be present in a nonfunctional form, or too lowly expressed to play a role in muscle cell function.

  14. Effects of a Cannabinoid1 receptor antagonist and Serotonin2C receptor agonist alone and in combination on motivation for palatable food: a dose-addition analysis study in mice.

    Science.gov (United States)

    Ward, Sara Jane; Lefever, Timothy W; Jackson, Cavario; Tallarida, Ronald J; Walker, Ellen A

    2008-05-01

    The cannabinoid and serotonin systems modulate feeding behavior in humans and laboratory animals. The present study assessed whether a cannabinoid (CB)(1) receptor antagonist and a serotonin (5-HT)(2C) receptor agonist alone and in combination attenuate motivation for the liquid nutritional drink Ensure as measured by a progressive ratio (PR) schedule of reinforcement in male C57BL/6 mice. Pretreatment (15 min i.p.) with either the CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR141716) (SR; Rimonabant or Acomplia) or the 5-HT(2C) receptor agonist m-chlorophenylpiperazine (mCPP) dose-dependently decreased the maximum ratio completed under the PR schedule (break point) in mice. ED(25) values for SR and mCPP to decrease break point were determined, and the relative potency of each drug alone was quantified. Fixed dose-ratio pairs of SR/mCPP based on their relative potency were then administered. Dose-addition analysis comparing the experimentally determined potency for SR/mCPP combinations with their predicted additive potency revealed that SR/mCPP combinations in 1:1 and 2:1 ratios based on relative potency produced significant synergistic attenuation of break point for Ensure. The ED(25) values for decreasing break point were consistently lower than ED(25) values for decreasing response rate, and synergistic effects of SR/mCPP combinations on break point were seen independent of synergistic effects on response rate. These results indicate that cannabinoid CB(1) and serotonin 5-HT(2C) receptors are involved in motivated feeding behavior in mice and that these compounds can synergistically modulate motivation for palatable food with the synergy dependent upon the ratio of SR/mCPP in the combination.

  15. 5-HT_(2c)受体基因Cys23Ser多态性与偏头痛关系的临床研究%SEROTONIN 2C RECEPTOR GENE Cys23Ser POLYMORPHISM AND MIGRAINE

    Institute of Scientific and Technical Information of China (English)

    刘艳; 于生元

    2010-01-01

    目的:探讨中国人群中5-HT_(2C)受体基因Cys23Ser多态性与偏头痛之间的关系.方法:选择84例无先兆偏头痛、37例有先兆偏头痛患者作研究,以120例健康人作对照.采用多聚酶链式反应-限制性片段长度多态性技术检测所研究对象的5-HT_(2C)受体基因Cys23Ser多态性.结果:偏头痛组患者中并未发现该多态性,仅在1个正常女性个体发现5-HT_(2C)受体基因Cys23Ser多态性,经检验差异无统计学意义(P=1.000).结论:本研究提示5-HT_(2C)受体基因Cys23Ser多态性可能与中国人的偏头痛关系不大.

  16. Angiotensin II reduces cardiac AdipoR1 expression through AT1 receptor/ROS/ERK1/2/c-Myc pathway.

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available Adiponectin, an abundant adipose tissue-derived protein, exerts protective effect against cardiovascular disease. Adiponectin receptors (AdipoR1 and AdipoR2 mediate the beneficial effects of adiponectin on the cardiovascular system. However, the alteration of AdipoRs in cardiac remodeling is not fully elucidated. Here, we investigated the effect of angiotensin II (AngII on cardiac AdipoRs expression and explored the possible molecular mechanism. AngII infusion into rats induced cardiac hypertrophy, reduced AdipoR1 but not AdipoR2 expression, and attenuated the phosphorylations of adenosine monophosphate-activated protein kinase and acetyl coenzyme A carboxylase, and those effects were all reversed by losartan, an AngII type 1 (AT1 receptor blocker. AngII reduced expression of AdipoR1 mRNA and protein in cultured neonatal rat cardiomyocytes, which was abolished by losartan, but not by PD123319, an AT2 receptor antagonist. The antioxidants including reactive oxygen species (ROS scavenger NAC, NADPH oxidase inhibitor apocynin, Nox2 inhibitor peptide gp91 ds-tat, and mitochondrial electron transport chain complex I inhibitor rotenone attenuated AngII-induced production of ROS and phosphorylation of extracellular signal-regulated kinase (ERK 1/2. AngII-reduced AdipoR1 expression was reversed by pretreatment with NAC, apocynin, gp91 ds-tat, rotenone, and an ERK1/2 inhibitor PD98059. Chromatin immunoprecipitation assay demonstrated that AngII provoked the recruitment of c-Myc onto the promoter region of AdipoR1, which was attenuated by PD98059. Moreover, AngII-induced DNA binding activity of c-Myc was inhibited by losartan, NAC, apocynin, gp91 ds-tat, rotenone, and PD98059. c-Myc small interfering RNA abolished the inhibitory effect of AngII on AdipoR1 expression. Our results suggest that AngII inhibits cardiac AdipoR1 expression in vivo and in vitro and AT1 receptor/ROS/ERK1/2/c-Myc pathway is required for the downregulation of AdipoR1 induced by AngII.

  17. Folate receptor alpha is associated with cervical carcinogenesis and regulates cervical cancer cells growth by activating ERK1/2/c-Fos/c-Jun.

    Science.gov (United States)

    Liu, Chunliang; Ding, Ling; Bai, Lixia; Chen, Xiao; Kang, Huijie; Hou, Lifang; Wang, Jintao

    2017-09-30

    Folate receptor alpha (FRα) is over-expressed in numerous epithelial malignancies, however, the association between FRα and cervical cancer remains unclear. The purpose of this study was to explore the effects of FRα on cervical cancer and its regulation of the ERK signaling pathway. In this case-control study, moderate/strong expression of FRα, phosphorylated ERK1/2 (p-ERK1/2), p-c-Fos, and p-c-Jun proteins was increased with the progressive severity of cervix lesions (P c-Fos, and p-c-Jun proteins was positively correlated with those of FRα protein in cervical squamous cell carcinoma (SCC) group (P c-Fos, and p-c-Jun proteins. The results suggest that FRα is associated with the progression of cervical cancer and regulates cervical cancer cells growth through phosphorylating ERK1/2, c-Fos, and c-Jun, which are key factors of the ERK signaling pathway. Therefore, FRα may be an effective target for early detection and therapy of cervical cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Blockade of stress-induced increase of glutamate release in the rat prefrontal/frontal cortex by agomelatine involves synergy between melatonergic and 5-HT2C receptor-dependent pathways

    Directory of Open Access Journals (Sweden)

    Racagni Giorgio

    2010-06-01

    Full Text Available Abstract Background Agomelatine is a melatonergic receptor agonist and a 5HT2C receptor antagonist that has shown antidepressant efficacy. In order to analyze separately the effect of the two receptorial components, rats were chronically treated with agomelatine, melatonin (endogenous melatonergic agonist, or S32006 (5-HT2C antagonist, and then subjected to acute footshock-stress. Results Only chronic agomelatine, but not melatonin or S32006, completely prevented the stress-induced increase of glutamate release in the rat prefrontal/frontal cortex. Conclusions These results suggest a potential synergy between melatonergic and serotonergic pathways in the action of agomelatine.

  19. A candidate gene study of serotonergic pathway genes and pain relief during treatment with escitalopram in patients with neuropathic pain shows significant association to serotonin receptor2C (HTR2C)

    DEFF Research Database (Denmark)

    Brasch-Andersen, Charlotte; Møller, Malik U; Christiansen, Lene

    2011-01-01

    the association between polymorphisms in genes involved in the serotonergic pathway and the effect of escitalopram on peripheral neuropathic pain. METHODS: We genotyped 34 participants from a placebo-controlled trial of escitalopram in peripheral neuropathic pain for polymorphisms in five genes: the serotonin.......047), with 75% carrying the C allele being responders. The same tendency was seen in women. Similarly, carriership of the C allele at rs6318 was associated with better pain relief during treatment with escitalopram [odds ratio (OR) 15.5, p = 0.014)] Furthermore, there was a tendency of better relief...... with increasing number of short alleles for the 5-HTTLPR polymorphism of the serotonin transporter (OR 5.7, p = 0.057). None of the other polymorphisms showed a significant association with treatment response to escitalopram. CONCLUSION: This study indicates that variation in the HTR2C gene is associated...

  20. Pannexin channels mediate the acquisition of myogenic commitment in C2C12 reserve cells promoted by P2 receptor activation

    Science.gov (United States)

    Riquelme, Manuel A.; Cea, Luis A.; Vega, José L.; Puebla, Carlos; Vargas, Aníbal A.; Shoji, Kenji F.; Subiabre, Mario; Sáez, Juan C.

    2015-01-01

    The acquisition of myoblast commitment to the myogenic linage requires rises in intracellular free Ca2+ concentration ([Ca2+]i). Putative cell membrane pathways involved in these [Ca2+]i increments are P2 receptors (P2Rs) as well as connexin (Cx) and/or pannexin (Panx) hemichannels and channels (Cx HChs and Panx Chs), respectively, which are known to permeate Ca2+. Reserve cells (RCs) are uncommitted myoblasts obtained from differentiated C2C12 cell cultures, which acquire commitment upon replating. Regarding these cells, we found that extracellular ATP increases the [Ca2+]i via P2Rs. Moreover, ATP increases the plasma membrane permeability to small molecules and a non-selective membrane current, both of which were inhibited by Cx HCh/Panx1Ch blockers. However, RCs exposed to divalent cation-free saline solution, which is known to activate Cx HChs (but not Panx Chs), did not enhance membrane permeability, thus ruling out the possible involvement of Cx HChs. Moreover, ATP-induced membrane permeability was inhibited with blockers of P2Rs that activate Panx Chs. In addition, exogenous ATP induced the expression of myogenic commitment and increased MyoD levels, which was prevented by the inhibition of P2Rs or knockdown of Panx1 Chs. Similarly, increases in MyoD levels induced by ATP released by RCs were inhibited by Panx Ch/Cx HCh blockers. Myogenic commitment acquisition thus requires a feed-forward mechanism mediated by extracellular ATP, P2Rs, and Panx Chs. PMID:26000275

  1. Pannexin Channels Mediate the Acquisition of Myogenic Commitment in C2C12 Reserve Cells Promoted by P2 Receptor Activation

    Directory of Open Access Journals (Sweden)

    Manuel Antonio Riquelme

    2015-05-01

    Full Text Available The acquisition of myoblast commitment to the myogenic linage requires rises in intracellular free Ca2+ concentration ([Ca2+]i. Putative cell membrane pathways involved in these [Ca2+]i increments are P2 receptors (P2Rs as well as connexin (Cx and/or pannexin (Panx hemichannels and channels (Cx HChs and Panx Chs, respectively, which are known to permeate Ca2+. Reserve cells (RCs are uncommitted myoblasts obtained from differentiated C2C12 cell cultures, which acquire commitment upon replating. Regarding these cells, we found that extracellular ATP increases the [Ca2+]i via P2Rs. Moreover, ATP increases the plasma membrane permeability to small molecules and a non-selective membrane current, both of which were inhibited by Cx HCh/Panx1Ch blockers. However, RCs exposed to divalent cation-free saline solution, which is known to activate Cx HChs (but not Panx Chs, did not enhance membrane permeability, thus ruling out the possible involvement of Cx HChs. Moreover, ATP-induced membrane permeability was inhibited with blockers of P2Rs that activate Panx Chs. In addition, exogenous ATP induced the expression of myogenic commitment and increased MyoD levels, which was prevented by the inhibition of P2Rs or knockdown of Panx1 Chs. Similarly, increases in MyoD levels induced by ATP released by RCs were inhibited by Panx Ch/Cx HCh blockers. Myogenic commitment acquisition thus requires a feed-forward mechanism mediated by extracellular ATP, P2Rs and Panx Chs.

  2. Serotonin-2C receptors in the basolateral nucleus of the amygdala mediate the anxiogenic effect of acute imipramine and fluoxetine administration.

    Science.gov (United States)

    Vicente, Maria Adrielle; Zangrossi, Helio

    2012-04-01

    A growing body of evidence indicates that facilitation of serotonin-2C receptor (5-HT2CR)-mediated neurotransmission in the basolateral nucleus of the amygdala (BLA) is involved in anxiety generation. We investigated here whether BLA 5-HT2CRs exert a differential role in the regulation of defensive behaviours related to generalized anxiety (inhibitory avoidance) and panic (escape) disorders. We also evaluated whether activation of BLA 5-HT2CRs accounts for the anxiogenic effect caused by acute systemic administration of the antidepressants imipramine and fluoxetine. Male Wistar rats were tested in the elevated T-maze after intra-BLA injection of the endogenous agonist 5-HT, the 5-HT2CR agonist MK-212 or the 5-HT2CR antagonist SB-242084. This test allows the measurement of inhibitory avoidance acquisition and escape expression. We also investigated whether intra-BLA administration of SB-242084 interferes with the acute anxiogenic effect caused by imipramine and fluoxetine in the Vogel conflict test, and imipramine in the elevated T-maze. While intra-BLA administration of 5-HT and MK-212 facilitated inhibitory avoidance acquisition, suggesting an anxiogenic effect, SB-242084 had the opposite effect. None of these drugs affected escape performance. Intra-BLA injection of a sub-effective dose of SB-242084 fully blocked the anxiogenic effect caused either by the local microinjection of 5-HT or the systemic administration of imipramine and fluoxetine. Our findings indicate that 5-HT2CRs in BLA are selectively involved in the regulation of defensive behaviours associated with generalized anxiety, but not panic. The results also provide the first direct evidence that activation of BLA 5-HT2CRs accounts for the short-term aversive effect of antidepressants.

  3. Activation of serotonin 5-HT2C receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in morphine-dependent mice

    Science.gov (United States)

    Zhang, Gongliang; Wu, Xian; Zhang, Yong-Mei; Liu, Huan; Jiang, Qin; Pang, Gang; Tao, Xinrong; Dong, Liuyi; Stackman, Robert W.

    2015-01-01

    Opioid abuse and dependence have evolved into an international epidemic as a significant clinical and social problem with devastating consequences. Repeated exposure to the opioid, for example morphine, can induce profound, long-lasting behavioral sensitization and physical dependence, which are thought to reflect neuroplasticity in neural circuitry. Central serotonin (5-HT) neurotransmission participates in the development of dependence on and the expression of withdrawal from morphine. Serotonin 5-HT2C receptor (5-HT2CR) agonists suppress psychostimulant nicotine or cocaine-induced behavioral sensitization and drug-seeking behavior; however, the impact of 5-HT2CR agonists on behaviors relevant to opioid abuse and dependence has not been reported. In the present study, the effects of 5-HT2CR activation on the behavioral sensitization and naloxone-precipitated withdrawal symptoms were examined in mice underwent repeated exposure to morphine. Male mice received morphine (10 mg/kg, s.c.) to develop behavioral sensitization. Lorcaserin, a 5-HT2CR agonist, prevented the induction and expression, but not the development, of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. Pretreatment of lorcaserin, or the positive control clonidine (an alpha 2-adrenoceptor agonist), ameliorated the naloxone-precipitated withdrawal symptoms. SB 242084, a selective 5-HT2CR antagonist, prevented the lorcaserin-mediated suppression of behavioral sensitization and withdrawal. Chronic morphine treatment was associated with an increase in the expression of 5-HT2CR protein in the ventral tegmental area, locus coeruleus and nucleus accumbens. These findings suggest that 5-HT2CR can modulate behavioral sensitization and withdrawal in morphine-dependent mice, and the activation of 5-HT2CR may represent a new avenue for the treatment of opioid addiction. PMID:26432939

  4. Food intake inhibition in rainbow trout induced by activation of serotonin 5-HT2C receptors is associated with increases in POMC, CART and CRF mRNA abundance in hypothalamus.

    Science.gov (United States)

    Pérez-Maceira, Jorge J; Otero-Rodiño, Cristina; Mancebo, María J; Soengas, José L; Aldegunde, Manuel

    2016-04-01

    In rainbow trout, the food intake inhibition induced by serotonin occurs through 5-HT2C and 5-HT1A receptors, though the mechanisms involved are still unknown. Therefore, we assessed if a direct stimulation of 5-HT2C and 5-HT1A serotonin receptors (resulting in decreased food intake in rainbow trout), affects gene expression of neuropeptides involved in the control of food intake, such as pro-opiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), corticotrophin releasing factor (CRF), and agouti-related peptide (AgRP). In a first set of experiments, the injection of the 5-HT2C receptor agonists MK212 (60 μg kg(-1) icv) and WAY 161503 (1 mg kg(-1) ip), and of the 5-HT1A receptor agonist 8-OH-DPAT (1 mg kg(-1) ip and 30 μg kg(-1) icv) induced food intake inhibition. In a second set of experiments, we observed that the injection of MK212 or WAY 161503 (1 and 3 mg kg(-1)) significantly increased hypothalamic POMC mRNA abundance. CART mRNA abundance in hypothalamus was enhanced by treatment with MK212 and unaffected by WAY 161503. The administration of the 5-HT1A receptor agonist 8-OH-DPAT did not induce any significant variation in the hypothalamic POMC or CART mRNA levels. CRF mRNA abundance was only affected by MK212 that increased hypothalamic values. Finally, hypothalamic AgRP mRNA abundance was only evaluated with the agonist 5-HT2C MK212 resulting in no significant effects. The results show that the reduction in food intake mediated by 5-HT2C receptors is associated with increases in hypothalamic POMC, CART and CRF mRNA abundance.

  5. The contribution of serotonin 5-HT2C and melanocortin-4 receptors to the satiety signaling of glucagon-like peptide 1 and liraglutide, a glucagon-like peptide 1 receptor agonist, in mice.

    Science.gov (United States)

    Nonogaki, Katsunori; Suzuki, Marina; Sanuki, Marin; Wakameda, Mamoru; Tamari, Tomohiro

    2011-07-29

    Glucagon-like peptide 1 (GLP-1), an insulinotropic gastrointestinal peptide produced mainly from intestinal endocrine L-cells, and liraglutide, a GLP-1 receptor (GLP-1R) agonist, induce satiety. The serotonin 5-HT2C receptor (5-HT2CR) and melanoroctin-4 receptor (MC4R) are involved in the regulation of food intake. Here we show that systemic administration of GLP-1 (50 and 200μg/kg)-induced anorexia was blunted in mice with a 5HT2CR null mutation, and was attenuated in mice with a heterozygous MC4R mutation. On the other hand, systemic administration of liraglutide (50 and 100μg/kg) suppressed food intake in mice lacking 5-HT2CR, mice with a heterozygous mutation of MC4R and wild-type mice matched for age. Moreover, once-daily consecutive intraperitoneal administration of liraglutide (100μg/kg) over 3days significantly suppressed daily food intake and body weight in mice with a heterozygous mutation of MC4R as well as wild-type mice. These findings suggest that GLP-1 and liraglutide induce anorexia via different central pathways.

  6. 5-HT2C receptors in the basolateral amygdala and dorsal striatum are a novel target for the anxiolytic and antidepressant effects of exercise.

    Directory of Open Access Journals (Sweden)

    Benjamin N Greenwood

    Full Text Available Physical activity reduces the incidence and severity of psychiatric disorders such as anxiety and depression. Similarly, voluntary wheel running produces anxiolytic- and antidepressant-like effects in rodent models. The specific neurobiological mechanisms underlying the beneficial properties of exercise, however, remain unclear. One relevant pharmacological target in the treatment of psychiatric disorders is the 5-HT(2C receptor (5-HT(2CR. Consistent with data demonstrating the anxiogenic consequences of 5-HT(2CR activation in humans and rodents, we have previously reported that site-specific administration of the selective 5-HT(2CR agonist CP-809101 in the lateral/basolateral amygdala (BLA increases shock-elicited fear while administration of CP-809101 in the dorsal striatum (DS interferes with shuttle box escape learning. These findings suggest that activation of 5-HT(2CR in discrete brain regions contributes to specific anxiety- and depression-like behaviors and may indicate potential brain sites involved in the anxiolytic and antidepressant effects of exercise. The current studies tested the hypothesis that voluntary wheel running reduces the behavioral consequences of 5-HT(2CR activation in the BLA and DS, specifically enhanced shock-elicited fear and interference with shuttle box escape learning. After 6 weeks of voluntary wheel running or sedentary conditions, the selective 5-HT(2CR agonist CP-809101 was microinjected into either the BLA or the DS of adult Fischer 344 rats, and shock-elicited fear and shuttle box escape learning was assessed. Additionally, in-situ hybridization was used to determine if 6 weeks of voluntary exercise changed levels of 5-HT(2CR mRNA. We found that voluntary wheel running reduced the behavioral effects of CP-809101 and reduced levels of 5-HT(2CR mRNA in both the BLA and the DS. The current data indicate that expression of 5-HT(2CR mRNA in discrete brain sites is sensitive to physical activity status of the

  7. Dissociable effects of 5-HT2C receptor antagonism and genetic inactivation on perseverance and learned non-reward in an egocentric spatial reversal task.

    Directory of Open Access Journals (Sweden)

    Simon R O Nilsson

    Full Text Available Cognitive flexibility can be assessed in reversal learning tests, which are sensitive to modulation of 5-HT2C receptor (5-HT2CR function. Successful performance in these tests depends on at least two dissociable cognitive mechanisms which may separately dissipate associations of previous positive and negative valence. The first is opposed by perseverance and the second by learned non-reward. The current experiments explored the effect of reducing function of the 5-HT2CR on the cognitive mechanisms underlying egocentric reversal learning in the mouse. Experiment 1 used the 5-HT2CR antagonist SB242084 (0.5 mg/kg in a between-groups serial design and Experiment 2 used 5-HT2CR KO mice in a repeated measures design. Animals initially learned to discriminate between two egocentric turning directions, only one of which was food rewarded (denoted CS+, CS-, in a T- or Y-maze configuration. This was followed by three conditions; (1 Full reversal, where contingencies reversed; (2 Perseverance, where the previous CS+ became CS- and the previous CS- was replaced by a novel CS+; (3 Learned non-reward, where the previous CS- became CS+ and the previous CS+ was replaced by a novel CS-. SB242084 reduced perseverance, observed as a decrease in trials and incorrect responses to criterion, but increased learned non-reward, observed as an increase in trials to criterion. In contrast, 5-HT2CR KO mice showed increased perseverance. 5-HT2CR KO mice also showed retarded egocentric discrimination learning. Neither manipulation of 5-HT2CR function affected performance in the full reversal test. These results are unlikely to be accounted for by increased novelty attraction, as SB242084 failed to affect performance in an unrewarded novelty task. In conclusion, acute 5-HT2CR antagonism and constitutive loss of the 5-HT2CR have opposing effects on perseverance in egocentric reversal learning in mice. It is likely that this difference reflects the broader impact of 5HT2CR loss

  8. Gene expression and mRNA editing of serotonin receptor 2C in brains of HPRT gene knock-out mice, an animal model of Lesch-Nyhan disease

    Science.gov (United States)

    Bertelli, Matteo; Alushi, Brunilda; Veicsteinas, Arsenio; Jinnah, H.A.; Micheli, Vanna

    2016-01-01

    Lesch-Nyhan disease (LND), a genetic disorder associated with motor and psychiatric disturbance and self-injurious behaviour (SIB) is caused by a complete deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT). The connection between enzyme deficiency and neurological involvement is still unclear. Evidence exists for a role of basal ganglia dysfunction with decreased dopamine and excess serotonin striatal content. In this study, we investigate the role of serotonin receptor 2C (HTR2C) in the brains of HPRT gene knock-out mice, a model of LND. HTR2C expression is analyzed by real-time polymerase chain reaction (PCR) using SYBR-green detection methods. The percentage of edited HTR2C mRNA was determined by direct sequencing of amplification products of the region containing the editing sites. We found a 55% increase in the expression of HTR2C gene but no significant difference in mRNA editing levels between knock-out and control mice. The above alteration found in HPRT-deficient mice is similar to those found in other animal models used to study aggressive and self-injurious behaviour. PMID:19473847

  9. Expression of mRNAs encoding for 5-HT2C,5-HT3,5-HT6 and 5-HT7 receptor subtypes in rat spinal cord%大鼠脊髓内5-HT2C,5-HT3,5-HT6和5-HT7受体亚型mRNAs的表达

    Institute of Scientific and Technical Information of China (English)

    武胜昔; 王亚云; 刘翔宇; 王文; 李云庆

    2003-01-01

    Objective:To examine the expression of mRNAs encoding for serotonin (5-HT) 5-HT2c, 5-HT3, 5-HT6and 5-HT7 receptor subtypes within different segments of the rat spinal cord. Methods: Reverse transcriptase-polymerasechain reaction (RT-PCR) technique was used. Results: Strong expression of 5-HT2C receptor mRNA was observed inboth dorsal horn (DH) and ventral horn (VH) of the cervical, thoracic, lumbar and sacral segments of the spinal cord.The 5-HT3 receptor mRNA was present at high expression level in the DH and at slightly lower expression level in the Vhof all spinal cord segments. In contrast, the VH generally contained higher expression level of 5-HT6 receptor subtype mR-NA when compared to the DH. Similar to 5-HT3 receptor, the 5-HT7 receptor mRNA was also found at high expressionlevel in the DH. The differences in the expression level among these 5-HT receptor subtypes at the same level of the spinalcord or the same receptor subtype in different segments of the spinal cord were also observed. Conclusion: Four serotoninreceptor subtypes show a distinct expression pattern in the spinal cord. The present results indicate that these 5-HT recep-tor subtypes might have different physiological roles at the spinal level and provide further evidence for 5-HT receptor un-derlying the mechanism of nociception and movement.%目的:观察5-HT2C,5-HT3,5-HT6和5-HT7受体亚型mRNAs在大鼠脊髓不同节段的表达.方法:反转录PCR方法.结果:5-HT2C受体亚型mRNA在颈、胸、腰、骶段脊髓的背角(DH)和前角(VH)均有较强的表达;5-HT3受体mRNA在各节段脊髓DH的表达水平较高,而在VH则较低;与5-HT3受体亚型相反,5-HT6受体亚型mR-NA在脊髓VH的表达水平高于DH;5-HT7受体mRNA在脊髓的表达则与5-HT3受体相似,在各节段的DH均有较高水平的表达.不同的受体亚型在脊髓同一节段以及同一受体亚型在不同脊髓节段的表达水平存在差异.结论:本研究结果表明,上述四种5-HT受体亚

  10. Involvement of ERK1/2, cPLA2 and NF-κB in microglia suppression by cannabinoid receptor agonists and antagonists.

    Science.gov (United States)

    Ribeiro, Rachel; Wen, Jie; Li, Shihe; Zhang, Yumin

    2013-01-01

    Cannabinoids have been consistently shown to suppress microglia activation and the release of cytotoxic factors including nitric oxide, superoxide and proinflammatory cytokines. However, the underlying molecular mechanisms and whether the action of cannabinoids is coupled to the activation of cannabinoid type 1 (CB1) and type 2 (CB2) receptors are still poorly defined. In this study we observed that the CB1 and CB2 receptor non-selective or selective agonists dramatically attenuate iNOS induction and ROS generation in LPS-activated microglia. These effects are due to their reduction of phosphorylation of extracellular signal regulated kinase 1/2 (ERK1/2), cytosolic phospholipase A (cPLA) and activation of NF-κB. Surprisingly, instead of reversing the effect of the respective CB1 and CB2 receptor agonists, the antagonists also suppress iNOS induction and ROS generation in activated microglia by similar mechanisms. Taken together, these results indicate that both cannabinoid receptor agonists and antagonists might suppress microglia activation by CB1 and CB2 receptor independent mechanisms, and provide a new insight into the mechanisms of microglia inhibition by cannabinoids.

  11. The role of dopamine D3, 5-HT2A and 5-HT2C receptor variants as pharmacogenetic determinants in tardive dyskinesia in African-Caribbean patients under chronic antipsychotic treatment: Curacao extrapyramidal syndromes study IX.

    Science.gov (United States)

    Wilffert, B; Al Hadithy, A F Y; Sing, V J; Matroos, G; Hoek, H W; van Os, J; Bruggeman, R; Brouwers, J R B J; van Harten, P N

    2009-08-01

    Tardive dyskinesia (TD) is associated with polymorphisms of the dopamine D(3), serotonin 2A and 2C receptors (DRD3, HTR2A and HTR2C, respectively). This study investigated the possible relationship between TD and the polymorphisms Ser9Gly (DRD3), 102T>C (HTR2A), -1438G>A(HTR2A) and Cys23Ser (HTR2C) in African-Caribbean inpatients. One hundred and twenty-six patients under chronic antipsychotic treatment were genotyped. The assessment of TD was carried out with the abnormal involuntary movement scale (AIMS). The relationships between the carriership of the least frequent alleles and the respective orofaciolingual dyskinesia (TDof) (sum of the items 1-4 of the AIMS), limb-truncal dyskinesia (TDlt) (sum of items 5-7 of the AIMS) and TD (sum of items 1-7 of the AIMS) were analyzed with ANCOVA, comparing means with age as a covariate and stratification for carriers and non-carriers of the mutations. In addition, we conducted pre-planned t-tests to compare AIMS values of carriers of the combinations of alleles versus the corresponding non-carriers. In the study population, females with 9Ser carriership exhibited higher AIMS values than non-carriers. Male subjects with 9Ser carriership in combination with 23Ser or -1438A carriership exhibited higher AIMS values. In male patients also, the combination of 23Ser and -1438A carriership increased TD. The study clearly shows that the African-Caribbean population differs from the Caucasian population with regard to the association of TD with the polymorphisms studied and suggests that the association of TD with the studied polymorphisms of the 5-HT(2C) and probably of the 5-HT(2A) receptor are the result of a changed susceptibility of the patients, independent of the action of the antipsychotics on these receptors.

  12. Stimulation of 5-HT1A, 5-HT1B, 5-HT2A/2C, 5-HT3 and 5-HT4 receptors or 5-HT uptake inhibition: short- and long-term memory.

    Science.gov (United States)

    Meneses, Alfredo

    2007-11-22

    In order to determine whether short- (STM) and long-term memory (LTM) function in serial or parallel manner, serotonin (5-hydroxtryptamine, 5-HT) receptor agonists were tested in autoshaping task. Results show that control-vehicle animals were modestly but significantly mastering the autoshaping task as illustrated by memory scores between STM and LTM. Thus, post-training administration of 8-OHDPAT (agonist for 5-HT(1A/7) receptors) only at 0.250 and 0.500 mg/kg impaired both STM and LTM. CGS12066 (agonist for 5-HT(1B)) produced biphasic affects, at 5.0 mg/kg impaired STM but at 1.0 and 10.0 mg/kg, respectively, improved or impaired LTM. DOI (agonist for 5-HT(2A/2C) receptors) dose-dependently impaired STM and, at 10.0 mg/kg only impaired LTM. Both, STM and LTM were impaired by either mCPP (mainly agonist for 5-HT(2C) receptors) or mesulergine (mainly antagonist for 5-HT(2C) receptors) lower dose. The 5-HT(3) agonist mCPBG at 1.0 impaired STM and its higher dose impaired both STM and LTM. RS67333 (partial agonist for 5-HT(4) receptors), at 5.0 and 10.0 mg/kg facilitated both STM and LTM. The higher dose of fluoxetine (a 5-HT uptake inhibitor) improved both STM and LTM. Using as head-pokes during CS as an indirect measure of food-intake showed that of 30 memory changes, 21 of these were unrelated to the former. While some STM or LTM impairments can be attributed to decrements in food-intake, but not memory changes (either increase or decreases) produced by 8-OHDPAT, CGS12066, RS67333 or fluoxetine. Except for animals treated with DOI, mCPBG or fluoxetine, other groups treated with 5-HT agonists 6 h following autoshaping training showed similar LTM and unmodified CS-head-pokes scores.

  13. Strain-dependent effects of diazepam and the 5-HT2B/2C receptor antagonist SB 206553 in spontaneously hypertensive and Lewis rats tested in the elevated plus-maze

    Directory of Open Access Journals (Sweden)

    Takahashi R.N.

    2001-01-01

    Full Text Available The 5-HT2B/2C receptor antagonist SB 206553 exerts anxiolytic effects in rat models of anxiety. However, these effects have been reported for standard rat strains, thus raising the issue of SB 206553 effects in rat strains displaying different levels of anxiety. Herein, the effects of SB 206553 in a 5-min elevated plus-maze test of anxiety were compared to those of the reference anxiolytic, diazepam, in two rat strains respectively displaying high (Lewis rats and low (spontaneously hypertensive rats, SHR anxiety. Diazepam (0.37, 0.75, or 1.5 mg/kg; 30 min before testing increased in a dose-dependent manner the behavioral measures in SHR, but not in Lewis rats. On the other hand, SB 206553 (1.25, 2.5, or 5 mg/kg; 30 min before testing failed to alter the anxiety parameters in both strains, whereas it increased closed arm entries in Lewis rats, suggesting that it elicited hyperactivity in the latter strain. Accordingly, the hypolocomotor effect of the nonselective 5-HT2B/2C receptor agonist m-chlorophenylpiperazine (1.5 mg/kg ip 20 min before a 15-min exposure to an activity cage was prevented by the 1.25 and 2.5 mg/kg doses of SB 206553 in Lewis rats and SHR, respectively. Compared with SHR, Lewis rats may display a lower response to benzodiazepine-mediated effects and a more efficient control of locomotor activity by 5-HT2B/2C receptors.

  14. Prophylactic Melatonin Attenuates Isoflurane-Induced Cognitive Impairment in Aged Rats through Hippocampal Melatonin Receptor 2 - cAMP Response Element Binding Signalling.

    Science.gov (United States)

    Liu, Yajie; Ni, Cheng; Li, Zhengqian; Yang, Ning; Zhou, Yang; Rong, Xiaoying; Qian, Min; Chui, Dehua; Guo, Xiangyang

    2017-03-01

    Melatonin exerts many physiological effects via melatonin receptors, among which the melatonin-2 receptor (MT2 ) plays a critical role in circadian rhythm disorders, Alzheimer's disease and other neurological disorders. A melatonin replacement strategy has been tested previously, and MT2 was a critical target during the process. cAMP response element binding (CREB) is an essential transcription factor for memory formation and could be involved in MT2 signalling. Therefore, the present study was designed to investigate the effects of prophylactic melatonin on inhaled anaesthetic isoflurane-induced cognitive impairment, and to determine whether the protective effects of melatonin are dependent on MT2 and downstream CREB signalling in the hippocampus of aged rats. The results showed that prophylactic melatonin attenuated isoflurane-induced decreases in plasma/hippocampal melatonin levels and cognitive impairment in aged rats. Furthermore, 4P-PDOT, a selective MT2 antagonist, blocked the protective effects of melatonin on isoflurane-induced decreases in both hippocampal MT2 expression and downstream CREB phosphorylation. And 4P-PDOT blocked the attenuation of melatonin on isoflurane-induced memory impairment. Collectively, the results suggest that the protective effects of prophylactic melatonin are dependent on hippocampal MT2 -CREB signalling, which could be a potential therapeutic target for anaesthetic-induced cognitive impairment.

  15. The role of 5-HT2A, 5-HT 2C and mGlu2 receptors in the behavioral effects of tryptamine hallucinogens N,N-dimethyltryptamine and N,N-diisopropyltryptamine in rats and mice.

    Science.gov (United States)

    Carbonaro, Theresa M; Eshleman, Amy J; Forster, Michael J; Cheng, Kejun; Rice, Kenner C; Gatch, Michael B

    2015-01-01

    Serotonin 5-HT2A and 5-HT2C receptors are thought to be the primary pharmacological mechanisms for serotonin-mediated hallucinogenic drugs, but recently there has been interest in metabotropic glutamate (mGluR2) receptors as contributors to the mechanism of hallucinogens. The present study assesses the role of these 5-HT and glutamate receptors as molecular targets for two tryptamine hallucinogens, N,N-dimethyltryptamine (DMT) and N,N-diisopropyltryptamine (DiPT). Drug discrimination, head twitch, and radioligand binding assays were used. A 5-HT2AR inverse agonist (MDL100907), 5-HT2CR antagonist (SB242084), and mGluR2/3 agonist (LY379268) were tested for their ability to attenuate the discriminative stimulus effects of DMT and DiPT; an mGluR2/3 antagonist (LY341495) was tested for potentiation. MDL100907 was used to attenuate head twitches induced by DMT and DiPT. Radioligand binding studies and inosital-1-phosphate (IP-1) accumulation were performed at the 5-HT2CR for DiPT. MDL100907 fully blocked the discriminative stimulus effects of DMT, but only partially blocked DiPT. SB242084 partially attenuated the discriminative stimulus effects of DiPT, but produced minimal attenuation of DMT's effects. LY379268 produced potent, but only partial blockade of the discriminative stimulus effects of DMT. LY341495 facilitated DMT- and DiPT-like effects. Both compounds elicited head twitches (DiPT>DMT) which were blocked by MDL1000907. DiPT was a low-potency full agonist at 5-HT2CR in vitro. The 5-HT2AR likely plays a major role in mediating the effects of both compounds. 5-HT2C and mGluR2 receptors likely modulate the discriminative stimulus effects of both compounds to some degree.

  16. Association between peroxisome proliferator-activated receptor-γcoactivator-1α gene polymorphisms and type 2 diabetes in southern Chinese population: role of altered interaction with myocyte enhancer factor 2C

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shao-ling; LU Wen-sheng; YAN Li; WU Mu-chao; XU Ming-tong; CHEN Li-hong; CHENG Hua

    2007-01-01

    Background Some single nucleotide polymorphisms (SNPs) in the peroxisome proliferator-activated receptor-Y coactivator (PGC)-1α gene have been reported to be associated with type 2 diabetes in different populations, and studies on Chinese patients yielded controversial results. The objective of this case-control study was to explore the relationship between SNPs of PGC-1a and type 2 diabetes in the southern Chinese population and to determine whether the common variants: Gly482Ser and Thr394Thr, in the PGC-1α gene have any impacts on interaction with myocyte enhancer factor (MEF) 2C.Methods The SNPs in all exons of the PGC-1α gene was investigated in 50 type 2 diabetic patients using polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) and direct sequencing. Thereafter, 263 type 2diabetic patients and 282 healthy controls were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). A bacterial two-hybrid system and site-directed mutagenesis were used to investigate whether Gly482Ser and Thr394Thr variants in the PGC-1α gene alter the interaction with MEF2C.Results Three frequent SNPs (Thr394Thr, Gly482Ser and Thr528Thr) were found in exons of the PGC-1α gene. Only the Gly482Ser variant had a different distribution between diabetic patients and healthy subjects, with the 482Ser allele more frequent in patients than in controls (40.1% vs 29.3%, P<0.01). Even in controls, the 482Ser(A) carriers were more likely to have higher levels of total cholesterol and low-density lipoprotein cholesterol than the 482Gly(G) carriers. The 394A-482G-528A haplotype was associated with protection from diabetes, while the 394A-482A-528A was associated with the susceptibility to diabetes. The bacterial two-hybrid system and site-directed mutagenesis revealed that the 482Ser variant was less efficient than the 482Gly variant to interact with MEF2C, whereas the 394Thr (A) had a synergic effect on the interaction between

  17. Boehmeria nivea Stimulates Glucose Uptake by Activating Peroxisome Proliferator-Activated Receptor Gamma in C2C12 Cells and Improves Glucose Intolerance in Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Sung Hee Kim

    2013-01-01

    Full Text Available We examined the antidiabetic property of Boehmeria nivea (L. Gaud. Ethanolic extract of Boehmeria nivea (L. Gaud. (EBN increased the uptake of 2-[N-(nitrobenz-2-oxa-1,3-diazol-4-ylamino]-2-deoxy-d-glucose in C2C12 myotubes. To examine the mechanisms underlying EBN-mediated increase in glucose uptake, we examined the transcriptional activity and expression of peroxisome proliferator-activated receptor gamma (PPAR-γ, a pivotal target for glucose metabolism in C2C12 myotubes. We found that the EBN increased both the transcriptional activity and mRNA expression levels of PPAR-γ. In addition, we measured phosphorylation and expression levels of other targets of glucose metabolism, such as AMP-activated protein kinase (AMPK and protein kinase B (Akt/PKB. We found that EBN did not alter the phosphorylation or expression levels of these proteins in a time- or dose-dependent manner, which suggested that EBN stimulates glucose uptake through a PPAR-γ-dependent mechanism. Further, we investigated the antidiabetic property of EBN using mice fed a high-fat diet (HFD. Administration of 0.5% EBN reduced the HFD-induced increase in body weight, total cholesterol level, and fatty liver and improved the impaired fasting glucose level, blood insulin content, and glucose intolerance. These results suggest that EBN had an antidiabetic effect in cell culture and animal systems and may be useful for preventing diabetes.

  18. Extending David Horrobin's membrane phospholipid theory of schizophrenia: overactivity of cytosolic phospholipase A(2) in the brain is caused by overdrive of coupled serotonergic 5HT(2A/2C) receptors in response to stress.

    Science.gov (United States)

    Eggers, Arnold E

    2012-12-01

    David Horrobin's membrane phospholipid theory of schizophrenia has held up well over time because his therapeutic prediction that dietary supplementation with eicosapentaenoic acid (EPA) would have a therapeutic effect has been partially verified and undergoes continued testing. In the final version of his theory, he hypothesized that there was hyperactivity of phosphoslipase A(2) (PLA(2)) or a related enzyme but did not explain how the hyperactivity came about. It is known that serotonergic 5HT(2A/2C) receptors are coupled to PLA(2), which hydrolyzes both arachidonic acid (AA) and EPA from diacylglycerides at the sn-2 position. In this paper, Horrobin's theory is combined with a previously published theory of chronic stress in which it was hypothesized that a disinhibited dorsal raphe nucleus, the principal nucleus of the serotonergic system, can organize the neuropathology of diseases such as migraine, hypertension, and the metabolic syndrome. The new or combined theory is that schizophrenia is a disease of chronic stress in which a disinhibited DRN causes widespread serotonergic overdrive in the cerebral cortex. This in turn causes overdrive of cPLA(2) and both central and peripheral depletion of AA and EPA. Because EPA is present in smaller amounts, it falls below threshold for maintaining an intracellular balance between AA-derived and EPA-derived second messenger cascades, which leads to abnormal patterns of neuronal firing. There are two causes of neuronal dysfunction: the disinhibited DRN and EPA depletion. Schizophrenia is statistically associated with metabolic syndrome, hypertension, and migraine because they form a cluster of diseases with similar pathophysiology. The theory provides an explanation for both the central and peripheral phospholipid abnormalities in schizophrenia. It also explains the role of stress in schizophrenia, elevated serum PLA(2) activity in schizophrenia, the relationship between untreated schizophrenia and metabolic syndrome

  19. Studies on the role of 5-HT2A and 5-HT2C receptor antagonist and effects of co-administration of Fluoxetines in regulating generalized seizures in albino rats

    Directory of Open Access Journals (Sweden)

    Vasant R Chavan

    2010-07-01

    Full Text Available Introduction: Epilepsy is due to imbalance between inhibitory & excitatory neurotransmitter release at synaptic level in brain such as GABA, Serotonin, Glutamate and nor epinephrine. Recently there are few reports suggesting that, 5-HT1A receptor antagonist with co-administration of fluoxetine has shown anticonvulsant activity. The present study is undertaken to evaluate the action of 5-HT2A/2C mediated anticonvulsant action of Trazodone in MES (Maximum Electro Shock model in albino rats. Materials & Methods: Fifty albino rats of 200-250 gms of either sex were divided into five groups each of 10 rats(n=10, Group–I received distil water 0.5ml oral, Group –II- received sodium valproate - 200mg/kg bw intra peritoneal(i.p.acted as positive control, Group –III- received Trazodone 54mg/bw, orally Group- IV- received sub-anticonvulsant dose of Fluoxetine 6mg/kg/bw i.p. Group- V- received Trazodone 54mg/kg/bw and Fluoxetine 6mg/kg bw. Subsequently all groups were subjected for MES. The results were analyzed by calculating the mean duration of convulsions & absence of HLE and comparison was done by student‘t’ test. Results: The present study revealed that sodium valproate showed 100% protection against MES as compared to negative control,(P<0.05. Trazodone showed 40% protection against MES& decrease in the duration of convulsions by 60%, and Fluoxitine sub-anticonvulsive dose combined with Trazodone 54 mg /kg b.w. has shown 90% protection against MES. The results are parallel to standard drug sodium valproate. Conclusion: Trazodone has exerted anticonvulsant activity, by enhancing 5-HT&NE extra cellular level in brain, and probably potentiated the action of sub anticonvulsive dose of fluoxetine in combination. However, further investigative studies are needed to confirm the potention of trazodone action.

  20. 5-HT7 receptor signaling: improved therapeutic strategy in gut disorders

    OpenAIRE

    Janice J Kim; Khan, Waliul I.

    2014-01-01

    Serotonin (5-hydroxytrytamine; 5-HT) is most commonly known for its role as a neurotransmitter in the central nervous system. However, the majority of the body’s 5-HT is produced in the gut by enterochromaffin (EC) cells. Alterations in 5-HT signaling have been associated with various gut disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and enteric infections. Recently, our studies have identified a key role for 5-HT in the pathogenesis of experimental coli...

  1. Design, Synthesis, and Pharmacological Characterization of N- and O-Substituted 5,6,7,8-Tetrahydro-4H-isoxazolo[4,5-d]azepin-3-ol Analogues: Novel 5-HT2A/5-HT2C Receptor Agonists with Pro-Cognitive Properties

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Plath, Niels; Pedersen, Martin Holst Friborg

    2013-01-01

    to be selective for the two receptors. Administration of 3d substantially improved the cognitive performance of mice in a place recognition Y-maze model, an effect fully reversible by coadministration of the selective 5-HT2C antagonist SB242084. In conclusion, as novel bioavailable cognitive enhancers that most...

  2. A critical review of both the synthesis approach and the receptor profile of the 8-chloro-1-(2',4'-dichlorophenyl)-N-piperidin-1-yl-1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole-3-carboxamide and analogue derivatives.

    Science.gov (United States)

    Lazzari, Paolo; Distinto, Rita; Manca, Ilaria; Baillie, Gemma; Murineddu, Gabriele; Pira, Marilena; Falzoi, Matteo; Sani, Monica; Morales, Paula; Ross, Ruth; Zanda, Matteo; Jagerovic, Nadine; Pinna, Gérard Aimè

    2016-10-04

    8-Chloro-1-(2',4'-dichlorophenyl)-N-piperidin-1-yl-1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole-3-carboxamide 9a was discovered as potent and selective CB1 antagonist by part of our group few years ago. In particular it was reported to have an affinity towards the CB1 cannabinoid receptor (CB1R), expressed as Ki, of 0.00035 nM. Nevertheless significantly divergent data were reported for the same compound from other laboratories. To unequivocally define the receptor profile of 9a, we have critically reviewed both its synthesis approach and binding data. Here we report that, in contrast to our previously reported data, 9a showed a Ki value for CB1R in the order of nanomolar rather than of fentomolar range. The new determined receptor profile of 9a was also ascertained for analogue derivatives 9b-i, as well as for 12. Moreover, the structural features of the synthesized compounds necessary for CB1R were investigated. Amongst the novel series, effects on CB1R intrinsic activity was highlighted due to the substituents at the position 3 of the pyrazole ring of the 1,4,5,6-tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole scaffold. Although the cannabinoid receptor profile of 9a was reviewed in this work, the relevance of this compound in CB1R antagonist based drug discovery is confirmed.

  3. Cholinergic cells in the nucleus basalis of mice express the N-methyl-D-aspartate-receptor subunit NR2C and its replacement by the NR2B subunit enhances frontal and amygdaloid acetylcholine levels

    NARCIS (Netherlands)

    De Souza Silva, M. A.; Dolga, Amalia; Pieri, I.; Marchetti, L.; Eisel, U. L. M.; Huston, J. P.; Dere, E.

    2006-01-01

    It is known that glutamatergic and cholinergic systems interact functionally at the level of the cholinergic basal forebrain. The N-methyl-D-aspartate receptor (NMDA-R) is a multiprotein complex composed of NR1, NR2 and/or NR3 subunits. The subunit composition of NMDA-R of cholinergic cells in the n

  4. Ti2C80 is more likely a titanium carbide endohedral metallofullerene (Ti2C2)@C78.

    Science.gov (United States)

    Tan, Kai; Lu, Xin

    2005-09-21

    We show by means of density functional calculations that the previously synthesized metallofullerene Ti2C80 does not take the form of Ti2@C80, but is a titanium carbide endohedral metallofullerene, Ti2C2@C78, that has a C78(6-)(D3h) cage which follows faithfully the stable closed-shell electronic rule.

  5. 5-Hydroxytryptamine2A/2C receptors of nucleus raphe magnus and gigantocellularis/paragigantocellularis pars α reticular nuclei modulate the unconditioned fear-induced antinociception evoked by electrical stimulation of deep layers of the superior colliculus and dorsal periaqueductal grey matter.

    Science.gov (United States)

    de Oliveira, Ricardo; de Oliveira, Rithiele Cristina; Falconi-Sobrinho, Luiz Luciano; da Silva Soares, Raimundo; Coimbra, Norberto Cysne

    2017-01-01

    The electrical stimulation of the dorsolateral columns of the periaquedutal grey matter (dlPAG) or deep layers of the superior colliculus (dlSC) evokes defensive behaviours followed by an antinociceptive response. Monoaminergic brainstem reticular nuclei are suggested to comprise the endogenous pain modulatory system. The aim of the present work was to investigate the role played by 5-HT2 subfamily of serotonergic receptors of the nucleus raphe magnus (NRM) and the gigantocellularis/paragigantocellularis pars α reticular nuclei (Gi/PGiα) in the elaboration of instinctive fear-induced antinociception elicited by electrical stimulation of dlPAG or of dlSC. The nociceptive thresholds were measured by the tail-flick test in Wistar rats. The 5-HT2A/2C-serotonergic receptors antagonist ritanserin was microinjected at different concentrations (0.05, 0.5 and 5.0μg/0.2μL) either in Gi/PGiα or in NRM. The blockade of 5-HT2 receptors in both Gi/PGiα and NRM decreased the innate fear-induced antinociception elicited by electrical stimulation of the dlSC or the dlPAG. These findings indicate that serotonin is involved in the hypo-algesia induced by unconditioned fear-induced behavioural responses and the 5-HT2A/2C-serotonergic receptor subfamily in neurons situated in the Gi/PGiα complex and NRM are critically recruited in pain modulation during the panic-like emotional behaviour.

  6. Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell precursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors

    Science.gov (United States)

    Zuurbier, Linda; Gutierrez, Alejandro; Mullighan, Charles G.; Canté-Barrett, Kirsten; Gevaert, A. Olivier; de Rooi, Johan; Li, Yunlei; Smits, Willem K.; Buijs-Gladdines, Jessica G.C.A.M.; Sonneveld, Edwin; Look, A. Thomas; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.

    2014-01-01

    Three distinct immature T-cell acute lymphoblastic leukemia entities have been described including cases that express an early T-cell precursor immunophenotype or expression profile, immature MEF2C-dysregulated T-cell acute lymphoblastic leukemia cluster cases based on gene expression analysis (immature cluster) and cases that retain non-rearranged TRG@ loci. Early T-cell precursor acute lymphoblastic leukemia cases exclusively overlap with immature cluster samples based on the expression of early T-cell precursor acute lymphoblastic leukemia signature genes, indicating that both are featuring a single disease entity. Patients lacking TRG@ rearrangements represent only 40% of immature cluster cases, but no further evidence was found to suggest that cases with absence of bi-allelic TRG@ deletions reflect a distinct and even more immature disease entity. Immature cluster/early T-cell precursor acute lymphoblastic leukemia cases are strongly enriched for genes expressed in hematopoietic stem cells as well as genes expressed in normal early thymocyte progenitor or double negative-2A T-cell subsets. Identification of early T-cell precursor acute lymphoblastic leukemia cases solely by defined immunophenotypic criteria strongly underestimates the number of cases that have a corresponding gene signature. However, early T-cell precursor acute lymphoblastic leukemia samples correlate best with a CD1 negative, CD4 and CD8 double negative immunophenotype with expression of CD34 and/or myeloid markers CD13 or CD33. Unlike various other studies, immature cluster/early T-cell precursor acute lymphoblastic leukemia patients treated on the COALL-97 protocol did not have an overall inferior outcome, and demonstrated equal sensitivity levels to most conventional therapeutic drugs compared to other pediatric T-cell acute lymphoblastic leukemia patients. PMID:23975177

  7. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M.H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric (Van Andel); (Scripps); (NWU); (Purdue); (UCR); (Chinese Aca. Sci.); (NU Singapore)

    2014-10-02

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.

  8. A Cistanches Herba Fraction/β-Sitosterol Causes a Redox-Sensitive Induction of Mitochondrial Uncoupling and Activation of Adenosine Monophosphate-Dependent Protein Kinase/Peroxisome Proliferator-Activated Receptor γ Coactivator-1 in C2C12 Myotubes: A Possible Mechanism Underlying the Weight Reduction Effect

    Directory of Open Access Journals (Sweden)

    Hoi Shan Wong

    2015-01-01

    Full Text Available Previous studies have demonstrated that HCF1, a semipurified fraction of Cistanches Herba, causes weight reduction in normal diet- and high fat diet-fed mice. The weight reduction was associated with the induction of mitochondrial uncoupling and changes in metabolic enzyme activities in mouse skeletal muscle. To further investigate the biochemical mechanism underlying the HCF1-induced weight reduction, the effect of HCF1 and its active component, β-sitosterol (BSS, on C2C12 myotubes was examined. Incubation with HCF1/BSS caused a transient increase in mitochondrial membrane potential (MMP, possibly by fluidizing the mitochondrial inner membrane. The increase in MMP was paralleled to an increase in mitochondrial reactive oxygen species (ROS production. Mitochondrial ROS, in turn, triggered a redox-sensitive induction of mitochondrial uncoupling by uncoupling protein 3 (UCP3. Biochemical analysis indicated that HCF1 was capable of activating an adenosine monophosphate-dependent protein kinase/peroxisome proliferator-activated receptor γ coactivator-1 pathway and thereby increased the expression of cytochrome c oxidase and UCP3. Animal studies using mitochondrial recoupler also confirmed the role of mitochondrial uncoupling in the HCF1-induced weight reduction. In conclusion, a HCF1/BSS causes the redox-sensitive induction of mitochondrial uncoupling and activation of AMPK/PGC-1 in C2C12 myotubes, with resultant reductions in body weight and adiposity by increased energy consumption.

  9. Augmentative effect of tetrandrine on pentobarbital hypnosis mediated by 5-HT1A and 5-HT2A/2C receptors in mice%5-HT1A和5-HT2A/2C受体在粉防己碱增强戊巴比妥钠睡眠中的介导作用

    Institute of Scientific and Technical Information of China (English)

    杜楠; 王黎恩; 师晓荣; 崔翔宇; 崔素颖; 张帆; 张永鹤

    2008-01-01

    前期研究表明粉防己碱增强戊巴比妥钠诱导的催眠作用与5-HT系统相关.本研究采用戊巴比妥钠(45 mg/kg,协)诱导的小鼠翻正反射消失和恢复实验方法,对粉防己碱与不同5-HT受体在增强戊巴比妥钠诱导睡眠中的相互作用进行了探讨.结果表明粉防己碱分别与选择性5-HT1A受体拮抗剂p-MPPI(1 mg/kg,i.p.),选择性5-HT2A/2C受体拮抗剂ketanserin(1.5mg/kg,i.p.)合用可以显著增强戊巴比妥钠诱导的催眠作用.选择性5-HT1A受体激动剂8-OH-DPAT(0.1 mg/kg,s.c.)或5-HT2A/2C受体激动剂DOI(0.2 mg/kg.i.p.)能够显著减少戊巴比妥钠诱导的小鼠睡眠时间,而粉防己碱(60 mg/kg,i.p.)可以显著拮抗这种睡眠抑制作用.此结果提示,粉防己碱增强戊巴比妥钠诱导的催眠作用可能与5-HT1A受体和5-HT2A/2C受体有关.%It has been reported that augmentative effect of tetrandrine on pentobarbital hypnosis in mice may be related to sero-tonergic system. The present study was undertaken to investigate the interaction of tetrandrine and different 5-HT receptors on pentobarbital-induced sleep by using the loss-of-righting reflex method. The results showed that augmentative effect of tetrandrine on pentobarbital hypnosis in mice were potentiated by the p-MPPI (5-HT1A receptor antagonist) (1 mg/kg, i.p.) and ketanserin (5-HT2A/2C receptor antagonist) (1.5 mg/kg, i.p.), respectively. Pretreatment with either 8-OH-DPAT (5-HT1A receptor agonist)(0.1 mg/kg, s.c.) or DOI (5-HT2A/2C receptor agonist) (0.2 mg/kg, i.p.) significantly decreased pentobarbital-induced sleep time,and tetrandrine (60 mg/kg, i.g.) significantly reversed this effect. These results suggest that both the 5-HTtA and 5-HT2A/2C subfamily may be involved in the potentiating mechanism of tetrandrine's effects on pentobarbital hypnosis.

  10. GENETIC POLYMORPHISM OF CYTOCHROMES P450 2C9 AND 2C19 IN SLOVENIAN POPULATION

    Directory of Open Access Journals (Sweden)

    Darja Herman

    2003-06-01

    Full Text Available Background. Cytochrome P450 2C9 (CYP2C9 and 2C19 (CYP2C19 participate in metabolism of many clinically important drugs. Genetic polymorphisms of the CYP2C9 and CYP2C19 genes are described which may affect drug treatment. The aim of this study was to determine the frequencies of polymorphic CYP2C9 and CYP2C19 alleles in Slovenian population in order to estimate the proportion of the population that might experience adverse drug reaction.Methods. The polymorphism of CYP2C9 and CYP2C19 was analysed by a genotyping technique, based on polymerase chain reaction (PCR followed by restriction enzyme analysis. DNA samples from 129 unrelated healthy subjects were obtained from the Blood Transfusion Centre of Slovenia and University Children’s Hospital in Ljubljana.Results. In the analysed group of samples one-third of individuals carried at least one of the defective CYP2C9 alleles while among them 3.2% of individuals had both alleles affected. The frequencies of CYP2C9*2 and CYP2C9*3 were 0.122 and 0.063, respectively. Almost one-third of Slovenian individuals analysed carried at least one of the CYP2C19 polymorphic allele. The frequencies of CYP2C19*2 and CYP2C19*3 were 0.159 and 0.004, respectively.Conclusions. The results of our study indicate that approximately one-third of the patients from Slovenian population may require either adjustments of dose or increased monitoring when initiating treatment with CYP2C9 and CYP2C19 substrates having a narrow therapeutic index. High risk of adverse drug reaction may be expected in 1–3% of eventual patients.

  11. 传统抗精神病药物所致迟发性运动障碍的药理遗传学初步研究%Pharmacogenetic assessment of antipsychotic-induced tardive dyskinesia: contribution of 5-hydroxytryptamine 2C receptor gene and of a combination of dopamine D3 variant allele (Gly) and MnSOD wild allele (Val)

    Institute of Scientific and Technical Information of China (English)

    张珺; 侯钢; 张晓斌; 姚辉; 沙维伟; 张心保

    2003-01-01

    目的进一步探讨多巴胺D2、D3受体(dopamine D2,D3 receptor, DRD2,DRD3)功能基因多态性与迟发性运动障碍(tardive dyskinesia, TD)的相关性及各候选基因,同时包括五羟色胺2C受体(5-hydroxytryptamine 2C receptor, HTR2C)和锰超氧化物歧化酶(manganese superoxide dismutase, MnSOD)基因的相互作用对TD发生的影响.方法使用异常不自主运动量表(abnormal involuntary movement scale, AIMS)评定精神分裂症(schizophrenia, SCH)患者有无TD及其严重程度,并采用简明精神病评定量表评定患者精神症状;应用聚合酶链反应-限制性片段长度多态性技术分析TD组和非TD组各候选基因等位基因和(或)基因型分布频率及其结合分布频率,并分析对AIMS总分值的影响.结果各候选基因在SCH患者组以及TD和非TD组基因型分布均符合Hardy-Weinberg平衡定律;TD组HTR2C基因-697C(突变型)等位基因频率高于非TD组,差异有显著性(P0.05);仅DRD3突变型(Gly)和MnSOD野生型(Val)结合分布频率高于其它结合型,差异有显著性(P0.05).结论 HTR2C基因启动区-697G→C单碱基置换可能是中国汉族男性SCH患者TD发生的易感因素;而SCH患者若同时携带DRD3基因9Gly突变型和MnSOD基因-9Val 野生型等位基因可能增加了TD的易感性.

  12. Developing 2 C-compatible investment criteria

    Energy Technology Data Exchange (ETDEWEB)

    Roeser, Frauke [NewClimate - Institute for Climate Policy and Global Sustainability gGmbH, Bonn (Germany); Weischer, Lutz [Germanwatch e.V., Koeln (Germany); Thomae, Jakob [2degrees Investing Initiative, New York, NY (United States); Hoehne, Niklas; Hagemann, Markus; El Alaoui, Alexander; Bals, Christoph; Eckstein, David; Kreft, Soenke; Rosse, Morten

    2015-11-30

    This report studies the development of criteria for assessing the compatibility of financial investments with the international goal to limit global temperature increase to below 2 C above pre-industrial levels. The findings are intended as a starting point and a key input for a longer term process to develop consensus-based 2 C investing criteria. The focus here is placed on investments in projects and physical assets, in particular of development and climate finance organisations. In order to limit global temperature increase to 2 C, global greenhouse gas (GHG) emissions will have to be reduced significantly, eventually to zero, during the course of this century. This requires shifting capital from high to low carbon investments as well as significant capital mobilisation for investments in 2 C-compatible infrastructure. Given the long lifetime of physical assets, and the urgency of decarbonisation over the coming decades, this needs to begin today. Public financial institutions can play a prominent role in contributing to aligning investment flows with the 2 C limit, as well as in closing the current infrastructure investment gap, responding to their explicit or implicit climate mandates and leadership role in the finance sector. The majority of international financial institutions integrate climate considerations into their finance decisions to some degree, and are familiar with different types of criteria, including positive and negative lists, qualitative and quantitative benchmarks, and the use of shadow carbon pricing. However, current approaches do not link to the 2 C limit. 2 C investment criteria are therefore needed to guide investors in this regard. Such criteria may also support other purposes, including an understanding of climate risks and improved reporting and accountability.

  13. ACTIVATION OF THE PHOSPHOLIPASE-C PATHWAY BY ATP IS MEDIATED EXCLUSIVELY THROUGH NUCLEOTIDE TYPE P2-PURINOCEPTORS IN C2C12 MYOTUBES

    NARCIS (Netherlands)

    HENNING, RH; DUIN, M; DENHERTOG, A; NELEMANS, A

    1993-01-01

    1 The presence of a nucleotide receptor and a discrete ATP-sensitive receptor on C2C12 myotubes has been shown by electrophysiological experiments. In this study, the ATP-sensitive receptors of C2C12 myotubes were further characterized by measuring the formation of inositol(1,4,5)trisphosphate

  14. ACTIVATION OF THE PHOSPHOLIPASE-C PATHWAY BY ATP IS MEDIATED EXCLUSIVELY THROUGH NUCLEOTIDE TYPE P2-PURINOCEPTORS IN C2C12 MYOTUBES

    NARCIS (Netherlands)

    HENNING, RH; DUIN, M; DENHERTOG, A; NELEMANS, A

    1993-01-01

    1 The presence of a nucleotide receptor and a discrete ATP-sensitive receptor on C2C12 myotubes has been shown by electrophysiological experiments. In this study, the ATP-sensitive receptors of C2C12 myotubes were further characterized by measuring the formation of inositol(1,4,5)trisphosphate (Ins(

  15. Investigation of the CYP2C9 induction profile in human hepatocytes by combining experimental and modelling approaches.

    Science.gov (United States)

    Belic, Ales; Temesvári, Manna; Kohalmy, Krisztina; Vrzal, Radim; Dvorak, Zdenek; Rozman, Damjana; Monostory, Katalin

    2009-12-01

    The goal of the present review is to characterise the induction profile of CYP2C9, a member of the cytochrome P450 superfamily. Since the mechanism of CYP2C9 induction is fairly complex, with parallel processes triggered by various inducers, an evaluation of the experimental results is often a great challenge. At least three nuclear receptors, the glucocrticoid receptor (GR), the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), are known to mediate the CYP2C9 gene induction in man. However, mathematical modelling and simulation can provide an appropriate tool for the interpretation of CYP2C9 regulatory mechanisms. As an example, we present modelling and simulation approaches of the CYP2C9 gene expression in human hepatocytes treated with well-known CYP2C9 inducers: the steroid hormone precursor dehydroepiandrosterone (DHEA) and the synthetic glucocorticoid dexamethasone (DXM). The results of the analysis suggest that in addition to the potent function of GR and the further involvement of PXR and CAR activated by DXM or DHEA, an additional factor might play a role in CYP2C9 regulation by DHEA. The novel potential candidate for DHEA action in CYP2C9 induction is likely to be the estrogen receptor. Additionally, the balance of DHEA sulphation-desulphation processes should also be considered in any description of DHEA-induced CYP2C9 profiles.

  16. LM-2C Series Launch Vehicles

    Institute of Scientific and Technical Information of China (English)

    XueFuxing

    2004-01-01

    On December 30, 2003, a LM-2C/SM launch vehicle was launched from Xichang Satellite Launch Center (XSLC), successfully sending TC-1 satellite into orbit. The satellite is the first one of the two scientific satellites known as Double Star. The operation orbit of the satellite is the highest compared with China's other satellites ever launched.

  17. 5-HT2C受体亚型参与易化大鼠内嗅区-海马通路的突触传递:平面微电极阵列记录技术研究%Facilitation of synaptic transmission and connections of entorhinal-hippocampal pathway by 5-HT2C receptor subtype: multi-electrode array recordings

    Institute of Scientific and Technical Information of China (English)

    许燕; 金建慧; 王燕; 王蕊蕊; 李震; 陈军

    2012-01-01

    Using 64-channels (8 × 8) multi-electrode array technique (MED-64 system), the modulatory actions of 5-hydroxytryptam-ine (5-HT) 2C receptor subtype on the entorhinal (EC)-hippocampal synaptic transmission and connections were studied. One of freshly dissociated acute hippocampal slices of rats which was placed on the MED-64 probe, was subject to constant perfusion with oxygenated artificial cerebrospinal fluid (ACSF, 95% O2 and 5% CO2). Two hours after ACSF incubation, simultaneous multi-site electrophysiological recordings were performed. One electrode was selected to be used for perforant path (PP) stimulation, and the remaining 63 electrodes were used for recordings of network field excitatory postsynaptic potentials (fEPSPs) within both CA1 and dentate gyms (DG) that have been previously proved to be mediated by glutamate non-NMDA receptors. After stability of network fEPSPs was achieved, (±)-l(2, 5-Dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI, an agonist of 5-HT2C receptor subtype), or SB242084 (6-Chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-lH-indole-l-carboxyamide dihy-drochloride hydrate) (a selective antagonist of 5-HT2C receptor subtype) was applied for 10 min perfusion, respectively. Two-dimensional current source density (2D-CSD) analysis was also transformed by bilinear interpolation at each point of the 64 electrodes for spatial imaging of the fEPSP network responses. Based upon the polarities of fEPSP and 2D-CSD imaging, it was clearly shown that synaptic activations were evoked to occur within the molecular layer of DG and pyramidal cell layer of CA1 by the PP stimulation in which negative-going field potentials and current sink (blue) could be recorded. While, positive-going field potentials and current source (yellow) were mainly localized within the granule cell layer and hilus of DG and alveus of CA1, reflecting spread of electrical signals derived from depolarized region toward CA3 area or subiculum

  18. Far infrared transmittance of Sc2@C84 and Er2@C82

    NARCIS (Netherlands)

    Grannan, S.M.; Birmingham, J.T.; Richards, P.L.; Bethune, D.S.; Vries, M.S. de; Loosdrecht, P.H.M. van; Dorn, H.C.; Burbank, P.; Bailey, J.; Stevenson, S.

    1997-01-01

    We have measured the far infrared transmittance of Sc2@C84 and Er2@C82 at 1.5 K between 30 and 200 cm-1. Both materials are observed to have a large primary absorption feature centered at 95 cm-1 with a width of approximately 50 cm-1, as well as a number of secondary absorption features which are di

  19. Histamine H3 receptor inhibited electrically evoked cytoplasmic calcium in differentiated skeletal C2C12 myoblasts%组胺 H3受体降低电激发收缩的小鼠成肌细胞胞浆中钙离子浓度

    Institute of Scientific and Technical Information of China (English)

    齐麟; 冯晓; 陈燕; 薛瑞; 张凤; 王素云; 孙素珂; 建国

    2015-01-01

    目的:探讨组胺H3受体(H3R)在小鼠成肌细胞C2C12成肌分化过程及分化后的横纹肌细胞中的表达和可能发挥的作用。方法:诱导C2C12细胞成肌分化,测量H3R和分化晚期标志物肌球蛋白重链mRNA和蛋白的表达;分化过程中加入H3R拮抗剂ciproxifan,测量分化早期标志物desmin、中期标志物myogenin和肌球蛋白重链mRNA的表达。 Fluo-4结合剂标记分化后的横纹肌胞内钙离子,测量双极交流电200 mA刺激下,H3R激动剂甲基组胺(RMeHA)对胞浆中钙离子浓度的影响。结果:H3R和肌球蛋白重链在成肌分化过程中表达量逐渐增加。 Ciproxifan在成肌分化过程中对3种分化标志物mRNA的表达与对照组相比无差异( P>0.05)。 RMeHA在浓度10 nmol/L~100μmol/L刺激细胞5~20 min,可呈钟形降低因交流电引起的肌浆钙离子浓度的升高( P<0.05),其中RMeHA 100 nmol/L在10 min和20 min对电刺激细胞中Ca2+的抑制百分率最高。相同浓度的RMeHA在20 min和10 min时对Ca2+的抑制率比其在5 min时高(P<0.05)。结论:H3R可能在成肌分化过程中的作用不大,而在分化成熟细胞中可以降低电刺激引起的胞浆钙离子浓度的升高。%AIM:To explore the expression and possible function of histamine H3 receptor (H3R) in striated myogenesis and the differentiated C2C12 cells.METHODS: H3R and myogenesis late marker myosin heavy chain (MHC) were detected at mRNA and protein levels during C2C12 myogenesis.H3R antagonist ciproxifan was added and the expression of the myogenesis early marker desmin, intermediate markers myogenin and MHC was detected.Differentia-ted myoblasts were loaded with Fluo-4 calcium indicator dye and the effect of R-( a)-methylhistamine ( RMeHA) on the cy-toplasmic calcium concentration was determined under the 200 mA electrical stimulation.RESULTS: The expression of H3R and MHC was increased during myogenesis

  20. Surface reconstruction of W2C(0001)

    Science.gov (United States)

    Aizawa, Takashi; Hishita, Shunichi; Tanaka, Takaho; Otani, Shigeki

    2011-08-01

    A single crystal surface of ditungsten carbide, W2C(0001) was investigated using low-energy (LEED) and high-energy electron diffraction, Auger electron spectroscopy, x-ray photoelectron spectroscopy (XPS), and high-resolution electron energy loss spectroscopy (HREELS). A new reconstruction, \\sqrt {13} \\times \\sqrt {13} {R}+/- 13.9^{\\circ } , was found as a clean surface structure after annealing the W2C at > 1900 K. The surface carbon content is shown as larger than that in the bulk. Our preliminary results showed that the same structure is realized also on WC(0001). The same surface periodicity is described for an Mo2C(0001) LEED pattern in the literature. This reconstruction phase is presumably common on the (0001) surface of hexagonal group-6 transition-metal carbides. In the off-specular HREELS, an atomic vibration of 44.8 meV (361 cm - 1) appeared within the gap energy region of the bulk phonon bands, which was assigned to a surface carbon vibration perpendicular to the surface. One possible explanation of the low vibrational frequency is very low adsorption height of the surface carbon atoms.

  1. Elevated CYP2C19 expression is associated with depressive symptoms and hippocampal homeostasis impairment.

    Science.gov (United States)

    Jukić, M M; Opel, N; Ström, J; Carrillo-Roa, T; Miksys, S; Novalen, M; Renblom, A; Sim, S C; Peñas-Lledó, E M; Courtet, P; Llerena, A; Baune, B T; de Quervain, D J; Papassotiropoulos, A; Tyndale, R F; Binder, E B; Dannlowski, U; Ingelman-Sundberg, M

    2016-11-29

    The polymorphic CYP2C19 enzyme metabolizes psychoactive compounds and is expressed in the adult liver and fetal brain. Previously, we demonstrated that the absence of CYP2C19 is associated with lower levels of depressive symptoms in 1472 Swedes. Conversely, transgenic mice carrying the human CYP2C19 gene (2C19TG) have shown an anxious phenotype and decrease in hippocampal volume and adult neurogenesis. The aims of this study were to: (1) examine whether the 2C19TG findings could be translated to humans, (2) evaluate the usefulness of the 2C19TG strain as a tool for preclinical screening of new antidepressants and (3) provide an insight into the molecular underpinnings of the 2C19TG phenotype. In humans, we found that the absence of CYP2C19 was associated with a bilateral hippocampal volume increase in two independent healthy cohorts (N=386 and 1032) and a lower prevalence of major depressive disorder and depression severity in African-Americans (N=3848). Moreover, genetically determined high CYP2C19 enzymatic capacity was associated with higher suicidality in depressed suicide attempters (N=209). 2C19TG mice showed high stress sensitivity, impaired hippocampal Bdnf homeostasis in stress, and more despair-like behavior in the forced swim test (FST). After the treatment with citalopram and 5-HT1A receptor agonist 8OH-DPAT, the reduction in immobility time in the FST was more pronounced in 2C19TG mice compared with WTs. Conversely, in the 2C19TG hippocampus, metabolic turnover of serotonin was reduced, whereas ERK1/2 and GSK3β phosphorylation was increased. Altogether, this study indicates that elevated CYP2C19 expression is associated with depressive symptoms, reduced hippocampal volume and impairment of hippocampal serotonin and BDNF homeostasis.Molecular Psychiatry advance online publication, 29 November 2016; doi:10.1038/mp.2016.204.

  2. SAR of psilocybin analogs: discovery of a selective 5-HT 2C agonist.

    Science.gov (United States)

    Sard, Howard; Kumaran, Govindaraj; Morency, Cynthia; Roth, Bryan L; Toth, Beth Ann; He, Ping; Shuster, Louis

    2005-10-15

    An SAR study of psilocybin and psilocin derivatives reveals that 1-methylpsilocin is a selective agonist at the h5-HT(2C) receptor. The corresponding phosphate derivative, 1-methylpsilocybin, shows efficacy in an animal model for obsessive-compulsive disorder, as does 4-fluoro-N,N-dimethyltryptamine. These results suggest a new area for development of novel 5-HT(2C) agonists with applications for drug discovery.

  3. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  4. Experimental Electronic Structure of Be_2C

    Science.gov (United States)

    Tsuei, K.-D.; Tzeng, C.-T.; Lo, W.-S.; Yuh, J.-Y.; Chu, R.-Y.

    1998-03-01

    The insulating Be_2C thin films have been successfully prepared on a Be surface. LEED pattern shows that the films have (100) orientation along the surface normal. We have used angle-resolved photoemission to map out the occupied bulk band dispersion along Γ-X direction. The band gap edges at X point are 6.5 and 11.7 eV below the valence band maximum which is located at Γ point. These values are in good agreement with theoretical calculations. [1,2] In addition two surface states are observed. One is 0.5 eV above VBM. The other is located at 9.5 eV below VBM in the middle of the band gap at X point. The unoccupied bulk electronic structure is measured using C 1s near edge x-ray absorption spectroscopy. The spectrum is similar in shape to an energy loss spectrum [3] and p-PDOS from the calculation, [2] while the relative peak positions are different. [1] J.L. Corkill and M.L. Cohen, Phy. Rev. B 48, 17138 (1993). [2] C.H. Lee, W.R. Lambrecht, and B. Segall, Phys. Rev. B 51, 10392 (1995). [3] M.M. Disko, J.C.H. Spence, O.F. Sankey, and D. Saldin, Phys. Rev. B 33, 5642 (1986).

  5. Interferon signaling is dependent on specific tyrosines located within the intracellular domain of IFNAR2c. Expression of IFNAR2c tyrosine mutants in U5A cells.

    Science.gov (United States)

    Wagner, T Charis; Velichko, Sharlene; Vogel, David; Rani, M R Sandhya; Leung, Stewart; Ransohoff, Richard M; Stark, George R; Perez, H Daniel; Croze, Ed

    2002-01-11

    Type I interferons (IFNs) are cytokines that play a central role in mediating antiviral, antiproliferative, and immunomodulatory activities in virtually all cells. These activities are entirely dependent on the interaction of IFNs with their particular cell surface receptor. In this report, we identify two specific tyrosine residues located within the cytoplasmic domain of IFNAR2c that are obligatory for IFN-dependent signaling. Various IFNAR2c tyrosine mutants were expressed in a human lung fibroscarcoma cell line lacking IFNAR2c (U5A). Stable clones expressing these mutants were analyzed for their ability to induce STAT1 and STAT2 activation, ISGF3 transcriptional complex formation, gene expression, and cell growth regulation in response to stimulation with type I IFNs. The replacement of all seven cytoplasmic tyrosine residues of IFNAR2c with phenylalanine resulted in a receptor unable to respond to IFN stimulation. Substitution of single tyrosines at amino acid residue 269, 316, 318, 337, or 512 with phenylalanine had no effect on IFN-dependent signaling, suggesting that no single tyrosine is essential for IFN receptor-mediated signaling. In addition, IFNAR2c retaining five proximal tyrosines residues (269, 306, 316, 318, and 337) or either two distal tyrosine residues (411 or 512) continued to be responsive to IFN stimulation. Surprisingly, the presence of only a single tyrosine at either position 337 or 512 was sufficient to restore a complete IFN response. These results indicate that IFN-dependent signaling proceeds through the redundant usage of two tyrosine residues in the cytoplasmic domain of IFNAR2c.

  6. Association between HTR2C gene polymorphisms and the metabolic syndrome in patients Using Antipsychotics: A Replication Study

    NARCIS (Netherlands)

    Risselada, Arne; Vehof, Jelle; Bruggeman, Richard; Wilffert, Bob; Cohen, Dan; Al Hadithy, Asmar; Arends, Johan; Mulder, Hans

    2010-01-01

    Background: In two previous studies we investigated the association between the rs1414334 C/G and 759 C/T polymorphisms in the HTR2C gene, coding for the 5HT2c-receptor, and prevalence of the metabolic syndrome in a schizophrenic population. In both studies we found an association between the varian

  7. Association between HTR2C polymorphisms and the metabolic syndrome in patients using antipsychotics : a replication study

    NARCIS (Netherlands)

    Risselada, A.; Vehof, J.; Bruggeman, R.; Wilffert, B.; Cohen, D.; Al Hadithy, A. F.; Arends, J.; Mulder, H.

    2010-01-01

    Background: In two previous studies we investigated the possible association between the rs1414334 C/G and 759 C/T polymorphisms in the gene that encodes the 5HT2c receptor (HTR2c) and prevalence of the metabolic syndrome in a schizophrenic population [1,2]. In both studies we found an association b

  8. Association between HTR2C polymorphisms and the metabolic syndrome in patients using antipsychotics: A replication study

    NARCIS (Netherlands)

    Risselada, A.; Vehof, J.; Bruggeman, R.; Wilffert, B.; Cohen, D.; Al Hadithy, A.F.; Arends, J.; Mulder, H.

    2010-01-01

    Background: In two previous studies we investigated the possible association between the rs1414334 C/G and 759 C/T polymorphisms in the gene that encodes the 5HT2c receptor (HTR2c) and prevalence of the metabolic syndrome in a schizophrenic population [1,2]. In both studies we found an association b

  9. Association between HTR2C polymorphisms and the metabolic syndrome in patients using antipsychotics : a replication study

    NARCIS (Netherlands)

    Risselada, A.; Vehof, J.; Bruggeman, R.; Wilffert, B.; Cohen, D.; Al Hadithy, A. F.; Arends, J.; Mulder, H.

    2010-01-01

    Background: In two previous studies we investigated the possible association between the rs1414334 C/G and 759 C/T polymorphisms in the gene that encodes the 5HT2c receptor (HTR2c) and prevalence of the metabolic syndrome in a schizophrenic population [1,2]. In both studies we found an association b

  10. Association between HTR2C polymorphisms and the metabolic syndrome in patients using antipsychotics: A replication study

    NARCIS (Netherlands)

    Risselada, A.; Vehof, J.; Bruggeman, R.; Wilffert, B.; Cohen, D.; Al Hadithy, A.F.; Arends, J.; Mulder, H.

    2010-01-01

    Background: In two previous studies we investigated the possible association between the rs1414334 C/G and 759 C/T polymorphisms in the gene that encodes the 5HT2c receptor (HTR2c) and prevalence of the metabolic syndrome in a schizophrenic population [1,2]. In both studies we found an association b

  11. Association between HTR2C gene polymorphisms and the metabolic syndrome in patients Using Antipsychotics: A Replication Study

    NARCIS (Netherlands)

    Risselada, Arne; Vehof, Jelle; Bruggeman, Richard; Wilffert, Bob; Cohen, Dan; Al Hadithy, Asmar; Arends, Johan; Mulder, Hans

    2010-01-01

    Background: In two previous studies we investigated the association between the rs1414334 C/G and 759 C/T polymorphisms in the HTR2C gene, coding for the 5HT2c-receptor, and prevalence of the metabolic syndrome in a schizophrenic population. In both studies we found an association between the varian

  12. Fenofibrate Inhibits Cytochrome P450 Epoxygenase 2C Activity to Suppress Pathological Ocular Angiogenesis

    Directory of Open Access Journals (Sweden)

    Yan Gong

    2016-11-01

    Full Text Available Neovascular eye diseases including retinopathy of prematurity, diabetic retinopathy and age-related-macular-degeneration are major causes of blindness. Fenofibrate treatment in type 2 diabetes patients reduces progression of diabetic retinopathy independent of its peroxisome proliferator-activated receptor (PPARα agonist lipid lowering effect. The mechanism is unknown. Fenofibrate binds to and inhibits cytochrome P450 epoxygenase (CYP2C with higher affinity than to PPARα. CYP2C metabolizes ω-3 long-chain polyunsaturated fatty acids (LCPUFAs. While ω-3 LCPUFA products from other metabolizing pathways decrease retinal and choroidal neovascularization, CYP2C products of both ω-3 and ω-6 LCPUFAs promote angiogenesis. We hypothesized that fenofibrate inhibits retinopathy by reducing CYP2C ω-3 LCPUFA (and ω-6 LCPUFA pro-angiogenic metabolites. Fenofibrate reduced retinal and choroidal neovascularization in PPARα-/-mice and augmented ω-3 LCPUFA protection via CYP2C inhibition. Fenofibrate suppressed retinal and choroidal neovascularization in mice overexpressing human CYP2C8 in endothelial cells and reduced plasma levels of the pro-angiogenic ω-3 LCPUFA CYP2C8 product, 19,20-epoxydocosapentaenoic acid. 19,20-epoxydocosapentaenoic acid reversed fenofibrate-induced suppression of angiogenesis ex vivo and suppression of endothelial cell functions in vitro. In summary fenofibrate suppressed retinal and choroidal neovascularization via CYP2C inhibition as well as by acting as an agonist of PPARα. Fenofibrate augmented the overall protective effects of ω-3 LCPUFAs on neovascular eye diseases.

  13. Polyclonal Expansion of NKG2C+ NK Cells in TAP-deficient Patients

    Directory of Open Access Journals (Sweden)

    vivien eBeziat

    2015-10-01

    Full Text Available Adaptive natural killer (NK cell responses to human cytomegalovirus (CMV infection are characterized by the expansion of NKG2C+ NK cells expressing self-specific inhibitory killer-cell immunoglobulin-like receptors (KIRs. Here, we set out to study the HLA class I-dependency of such NKG2C+ NK cell expansions. We demonstrate expansion of NKG2C+ NK cells in patients with transporter associated with antigen presentation (TAP-deficiency, whom express less than 10% of normal HLA class I levels. In contrast to normal individuals, expanded NKG2C+ NK cell populations in TAP-deficient patients display a polyclonal KIR-profile and remain hyporesponsive to HLA class I-negative target cells. Nonetheless, agonistic stimulation of NKG2C on NK cells from TAP-deficient patients yielded significant responses in terms of degranulation and cytokine production. Thus, while interactions with self-HLA class I molecules likely shape the KIR-repertoire of expanding NKG2C+ NK cells during adaptive NK cell responses in normal individuals, they are not a prerequisite for NKG2C+ NK cell expansions to occur. Thus, the emergence of NKG2C-responsive adaptive NK cells in TAP-deficient patients may contribute to anti-viral immunity and potentially explain these patients’ low incidence of severe viral infections.

  14. Polyclonal Expansion of NKG2C+ NK Cells in TAP-Deficient Patients

    Science.gov (United States)

    Béziat, Vivien; Sleiman, Marwan; Goodridge, Jodie P.; Kaarbø, Mari; Liu, Lisa L.; Rollag, Halvor; Ljunggren, Hans-Gustaf; Zimmer, Jacques; Malmberg, Karl-Johan

    2015-01-01

    Adaptive natural killer (NK) cell responses to human cytomegalovirus infection are characterized by the expansion of NKG2C+ NK cells expressing self-specific inhibitory killer-cell immunoglobulin-like receptors (KIRs). Here, we set out to study the HLA class I dependency of such NKG2C+ NK cell expansions. We demonstrate the expansion of NKG2C+ NK cells in patients with transporter associated with antigen presentation (TAP) deficiency, who express less than 10% of normal HLA class I levels. In contrast to normal individuals, expanded NKG2C+ NK cell populations in TAP-deficient patients display a polyclonal KIR profile and remain hyporesponsive to HLA class I-negative target cells. Nonetheless, agonistic stimulation of NKG2C on NK cells from TAP-deficient patients yielded significant responses in terms of degranulation and cytokine production. Thus, while interactions with self-HLA class I molecules likely shape the KIR repertoire of expanding NKG2C+ NK cells during adaptive NK cell responses in normal individuals, they are not a prerequisite for NKG2C+ NK cell expansions to occur. The emergence of NKG2C-responsive adaptive NK cells in TAP-deficient patients may contribute to antiviral immunity and potentially explain these patients’ low incidence of severe viral infections. PMID:26500647

  15. Isolation and characterization of canine parvovirus type 2C (CPV-2C) from symptomatic puppies.

    Science.gov (United States)

    Puentes, R; Eliopulos, N; Pérez, R; Franco, G; Sosa, K; Bianchi, P; Furtado, A; Hübner, S O; Esteves, P A

    2012-07-01

    Canine parvovirus type 2 (CPV-2) is a leading cause of diarrhea in puppies in several parts of the world. In this study CPV-2 was detected and recovered from puppies showing clinical disease from Montevideo, Uruguay. Samples were processed and used to infect CRFK and MDCK cells in order to isolate the virus. Out of twelve, two samples were positive for CPV-2. A genomic region of 583 bp was amplified and the molecular characterization was performed by sequencing, phylogenetic analysis and Restriction Fragment Length Polymorphism (RFLP). Two isolated viruses (UY1 and UY2) were CPV-2c-like viruses. The comparison between the cytophatic effect (CPE) of CPV-2 (vaccinal virus) and CPV-2c (isolated virus) on primary canine cells cultures and on CRFK line cells, demonstrated that CPV-2c is less citopathogenic in CRFK than in primary cultures. Our study represents the first report on isolation and characterization of canine parvovirus type 2c (CPV-2c) in cell cultures from South American dogs.

  16. Isolation and characterization of canine parvovirus type 2c (CPV-2c from symptomatic puppies

    Directory of Open Access Journals (Sweden)

    R Puentes

    2012-09-01

    Full Text Available Canine parvovirus type 2 (CPV-2 is a leading cause of diarrhea in puppies in several parts of the world. In this study CPV-2 was detected and recovered from puppies showing clinical disease from Montevideo, Uruguay. Samples were processed and used to infect CRFK and MDCK cells in order to isolate the virus. Out of twelve, two samples were positive for CPV-2. A genomic region of 583 bp was amplified and the molecular characterization was performed by sequencing, phylogenetic analysis and Restriction Fragment Length Polymorphism (RFLP. Two isolated viruses (UY1 and UY2 were CPV-2c-like viruses. The comparison between the cytophatic effect (CPE of CPV-2 (vaccinal virus and CPV-2c (isolated virus on primary canine cells cultures and on CRFK line cells, demonstrated that CPV-2c is less citopathogenic in CRFK than in primary cultures. Our study represents the first report on isolation and characterization of canine parvovirus type 2c (CPV-2c in cell cultures from South American dogs.

  17. TFAP2C controls hormone response in breast cancer cells through multiple pathways of estrogen signaling.

    Science.gov (United States)

    Woodfield, George W; Horan, Annamarie D; Chen, Yizhen; Weigel, Ronald J

    2007-09-15

    Breast cancers expressing estrogen receptor-alpha (ERalpha) are associated with a favorable biology and are more likely to respond to hormonal therapy. In addition to ERalpha, other pathways of estrogen response have been identified including ERbeta and GPR30, a membrane receptor for estrogen, and the key mechanisms regulating expression of ERs and hormone response remain controversial. Herein, we show that TFAP2C is the key regulator of hormone responsiveness in breast carcinoma cells through the control of multiple pathways of estrogen signaling. TFAP2C regulates the expression of ERalpha directly by binding to the ERalpha promoter and indirectly via regulation of FoxM1. In so doing, TFAP2C controls the expression of ERalpha target genes, including pS2, MYB, and RERG. Furthermore, TFAP2C controlled the expression of GPR30. In distinct contrast, TFAP2A, a related factor expressed in breast cancer, was not involved in estrogen-mediated pathways but regulated expression of genes controlling cell cycle arrest and apoptosis including p21(CIP1) and IGFBP-3. Knockdown of TFAP2C abrogated the mitogenic response to estrogen exposure and decreased hormone-responsive tumor growth of breast cancer xenografts. We conclude that TFAP2C is a central control gene of hormone response and is a novel therapeutic target in the design of new drug treatments for breast cancer.

  18. Synthesis and structure-activity relationships of N-benzyl phenethylamines as 5-HT2A/2C agonists

    DEFF Research Database (Denmark)

    Hansen, Martin; Phonekeo, Karina; Paine, James S

    2014-01-01

    N-benzyl substitution of 5-HT2A receptor agonists of the phenethylamine structural class of psychedelics (such as 4-bromo-2,5-dimethoxyphenethylamine, often referred to as 2C-B) confer a significant increase in binding affinity as well as functional activity of the receptor. We have prepared...

  19. Analysis list: Tfap2c [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Tfap2c Breast,Pluripotent stem cell + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Tfap2...c.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Tfap2c.5.tsv http://dbarchiv...e.biosciencedbc.jp/kyushu-u/mm9/target/Tfap2c.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Tfap2...c.Breast.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Tfap2c.Pluripo

  20. Submillimeter spectroscopy of H$_2$C$^{17}$O and a revisit of the rotational spectra of H$_2$C$^{18}$O and H$_2$C$^{16}$O

    CERN Document Server

    Müller, Holger S P

    2016-01-01

    The rotational spectrum of the formaldehyde isotopologue H2C(17)O was investigated between 0.56 and 1.50 THz using a sample of natural isotopic composition. In addition, transition frequencies were determined for H2C(18)O and H2C(16)O between 1.37 and 1.50 THz. The data were combined with critically evaluated literature data to derive improved sets of spectroscopic parameters which include (17)O or H nuclear hyperfine structure parameters.

  1. GUCY2C: at the intersection of obesity and cancer

    OpenAIRE

    Kim, Gilbert W.; Lin, Jieru E.; Waldman, Scott A.

    2013-01-01

    Guanylyl cyclase C (GUCY2C) has canonical centrality in defense of key intestinal homeostatic mechanisms, encompassing fluid and electrolyte balance, epithelial dynamics, antitumorigenesis, and intestinal barrier function. Recent discoveries expand the homeostatic role of GUCY2C to reveal a novel gut-brain endocrine axis regulating appetite, anchored by hypothalamic GUCY2C which is responsive to intestine-derived uroguanylin. Thus, GUCY2C may represent a new target for anti-obesity pharmacoth...

  2. Analysis list: TFAP2C [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available TFAP2C Breast,Epidermis,Uterus + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/TFA...P2C.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/TFAP2C.5.tsv http://dbarchive....biosciencedbc.jp/kyushu-u/hg19/target/TFAP2C.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/TFA...P2C.Breast.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/TFAP2C.Epider...mis.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/TFAP2C.Uterus.tsv http://dbarchive.biosciencedb

  3. Analysis list: Kmt2c [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Kmt2c Embryonic fibroblast,Liver,Muscle + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Kmt...2c.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2c.5.tsv http://dbarch...ive.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2c.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Kmt...2c.Embryonic_fibroblast.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Kmt...2c.Liver.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Kmt2c.Muscle.tsv http://dbarchive.biosci

  4. The association between HTR2C gene polymorphisms and the metabolic syndrome in patients with schizophrenia.

    Science.gov (United States)

    Mulder, Hans; Franke, Barbara; van der-Beek van der, Annemarie Aart; Arends, Johan; Wilmink, Frederik W; Scheffer, Hans; Egberts, Antoine C G

    2007-08-01

    The use of antipsychotics is associated with metabolic side effects, which put patients with schizophrenia or related disorders at risk for cardiovascular morbidity. The high interindividual variability in antipsychotic-induced metabolic abnormalities suggests that genetic makeup is a possible determinant. In this cross-sectional study, we investigated whether genotypes of the HTR2C receptor are associated with the metabolic syndrome in patients using antipsychotics. Patients were identified from a schizophrenia disease management program. In this program, patients' blood pressure, triglycerides, high-density lipoprotein-cholesterol, and waist circumference are measured regularly during follow-up. The primary end point of our study was the prevalence of the metabolic syndrome as classified by a modified version of the National Cholesterol Education Program's Adult Treatment Panel III. Primary determinants were polymorphisms in the HTR2C receptor gene (HTR2C:c.1-142948[GT]n, rs3813928 [-997 G/A], rs3813929 [-759 C/T], rs518147 [-697 G/C], and rs1414334 [C > G]). The included patients (n = 112) mainly (>80%) used atypical antipsychotics (clozapine, olanzapine, and risperidone). Carriership of the variant alleles of the HTR2C polymorphisms rs518147, rs1414334, and HTR2C:c.1-142948(GT)n was associated with an increased risk of the metabolic syndrome (adjusted odds ratio [OR], 2.62 [95% confidence interval {CI}, 1.00-6.85]; OR, 4.09 [95% CI, 1.41-11.89]; and OR, 3.12 [95% CI, 1.13-8.16]), respectively. Our findings suggest that HTR2C genotypes are associated with antincreased risk of metabolic syndrome in patients taking antipsychotics.

  5. Molecular dynamic simulation of the self-assembly of DAP12-NKG2C activating immunoreceptor complex.

    Directory of Open Access Journals (Sweden)

    Peng Wei

    Full Text Available The DAP12-NKG2C activating immunoreceptor complex is one of the multisubunit transmembrane protein complexes in which ligand-binding receptor chains assemble with dimeric signal-transducing modules through non-covalent associations in their transmembrane (TM domains. In this work, both coarse grained and atomistic molecular dynamic simulation methods were applied to investigate the self-assembly dynamics of the transmembrane domains of the DAP12-NKG2C activating immunoreceptor complex. Through simulating the dynamics of DAP12-NKG2C TM heterotrimer and point mutations, we demonstrated that a five-polar-residue motif including: 2 Asps and 2 Thrs in DAP12 dimer, as well as 1 Lys in NKG2C TM plays an important role in the assembly structure of the DAP12-NKG2C TM heterotrimer. Furthermore, we provided clear evidences to exclude the possibility that another NKG2C could stably associate with the DAP12-NKG2C heterotrimer. Based on the simulation results, we proposed a revised model for the self-assembly of DAP12-NKG2C activating immunoreceptor complex, along with a plausible explanation for the association of only one NKG2C with a DAP12 dimer.

  6. Main: 1I2C [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 1I2C シロイヌナズナ Arabidopsis Arabidopsis thaliana (L.) Heynh. Udp-Sulfoquinovose Syntha... AAM47379.1; -.|PIR; T05311; T05311.|PDB; 1I24; X-ray; A=74-477.|PDB; 1I2B; X-ray; A=74-477.|PDB; 1I2C; X-ra...FCVQAAVGHPLTVYGKGGQTRGYLDIRDTVQCVEIAIANPAKAGEFRVFNQFTEQFSVNELASLVTKAGSKLGLDVKKMTVPNPRVEAEEHYYNAKHTKLMELGLEPHYLSDSLLDSLLNFAVQFKDRVDTKQIMPSVSWKKIGVKTKSMTT arabi_1I2C.jpg ...

  7. NOAA-CIRES 20th Century Reanalysis (V2c)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 20th Century Reanalysis version 2c (20CRV2c)is an effort led by PSD and the CIRES at the University of Colorado to produce a reanalysis dataset spanning the...

  8. 5-羟色胺2C受体基因启动子区多态性与迟发性运动障碍的关联分析%Association of a polymorphism in the promoter region of the serotonin 2C receptor gene with tardive dyskinesia in schizophrenic patients

    Institute of Scientific and Technical Information of China (English)

    张晓斌; 张志珺; 侯钢; 姚辉; 沙维伟; 张心保

    2002-01-01

    目的探讨5-羟色胺2C(5-HT2C)受体基因启动区-759C/T和-697G/C单碱基置换多态性与精神分裂症伴迟发性运动障碍(TD)的相关性.方法先用异常不自主运动量表(AIMS)评定精神分裂症男性患者有无TD及其严重程度,再对42例符合TD(AIMS总分≥3分)者和与TD组严格相匹配的50例非TD者,采用简明精神病评定量表(BPRS)评定精神症状,并应用聚合酶链反应-限制性片段长度多态性方法分析5-HT2C受体基因的分布频率.结果 (1)TD组的-697C(突变型)半合子型频率(38%)高于非TD组(18%;χ2=4.7,P=0.03,OR=2.8).TD组-759T(突变型)半合子型频率和-759T/-697C突变型单倍体频率虽高于非TD组,但差异均无显著性(χ2值分别为2.9和4.9,P=0.09).(2)TD组的AIMS和BPRS评分分别为(6.5±1.8)分和(51.2±7.8)分,非TD组分别为0分和(50.0±7.3)分,差异无显著性(P>0.05).结论 5-HT2C受体基因启动控制区的-697G/T单碱基置换突变可能是精神分裂症患者发生TD的易感因素之一.

  9. Menthol reduces the anticoagulant effect of warfarin by inducing cytochrome P450 2C expression.

    Science.gov (United States)

    Hoshino, Motohiro; Ikarashi, Nobutomo; Tsukui, Makoto; Kurokawa, Asako; Naito, Rina; Suzuki, Midori; Yokobori, Kohsuke; Ochiai, Takumi; Ishii, Makoto; Kusunoki, Yoshiki; Kon, Risako; Ochiai, Wataru; Wakui, Nobuyuki; Machida, Yoshiaki; Sugiyama, Kiyoshi

    2014-06-02

    Recently, it was reported that the anticoagulant effect of warfarin was reduced when patients receiving warfarin also took menthol. The purpose of this study is to reveal the mechanism of this reduced anticoagulant effect of warfarin from the pharmacokinetic point of view. Warfarin was orally administered to mice 24h after the administration of menthol for 2 days, and the plasma warfarin concentration was measured. In the menthol administration group, the area under the blood concentration time curve of warfarin was decreased by approximately 25%, while total clearance was increased to 1.3-fold compared to the control group. The hepatic cytochrome P450 (CYP) 2C protein expression level in the menthol administration group was significantly increased compared to that in the control group. An increase in the nuclear translocation of constitutive androstane receptor (CAR) was also observed. The addition of menthol to human hepatic cells, HepaRG cells, caused an increase in the mRNA expression level of CYP2C9. The results of this study revealed that menthol causes an increase in CYP2C expression levels in the liver, which leads to an enhancement of warfarin metabolism, resulting in a decreased anticoagulant effect of warfarin. It was also suggested that menthol acted directly on the liver and increased the expression level of CYP2C by enhancing the nuclear translocation of CAR.

  10. Dephosphorylation of Centrins by Protein Phosphatase 2C and

    Directory of Open Access Journals (Sweden)

    Marie-Christin Thissen

    2009-01-01

    Full Text Available In the present study, we identified protein phosphatases dephosphorylating centrins previously phosphorylated by protein kinase CK2. The following phosphatases known to be present in the retina were tested: PP1, PP2A, PP2B, PP2C, PP5, and alkaline phosphatase. PP2C and were capable of dephosphorylating P-Thr138-centrin1 most efficiently. PP2C was inactive and the other retinal phosphatases also had much less or no effect. Similar results were observed for centrins 2 and 4. Centrin3 was not a substrate for CK2. The results suggest PP2C and to play a significant role in regulating the phosphorylation status of centrins in vivo.

  11. The interstellar chemistry of H2C3O isomers

    Science.gov (United States)

    Loison, Jean-Christophe; Agúndez, Marcelino; Marcelino, Núria; Wakelam, Valentine; Hickson, Kevin M.; Cernicharo, José; Gerin, Maryvonne; Roueff, Evelyne; Guélin, Michel

    2016-01-01

    We present the detection of two H2C3O isomers, propynal and cyclopropenone, toward various starless cores and molecular clouds, together with upper limits for the third isomer propadienone. We review the processes controlling the abundances of H2C3O isomers in interstellar media showing that the reactions involved are gas-phase ones. We show that the abundances of these species are controlled by kinetic rather than thermodynamic effects. PMID:27013768

  12. Evaluation of P2-C2 bias estimation

    Science.gov (United States)

    Santos, M. C.; van der Bree, R.; van der Marel, H.; Verhagen, S.; Garcia, C. A.

    2010-12-01

    The availability of the second civilian code C2 created a new issue to be considered: the bias relating P2 and C2 signals. Such an issue is important when merging C2-capable and legacy receivers and when processing data collected by a C2-capable receiver with satellite clock values generated using a legacy receiver network. The P2-C2 bias is essentially a consequence from the fact that receiver and satellite hardware delays for C2 measurements may not be necessarily the same of those for P2. Knowing this bias makes possible the use of C2 as an observable for positioning using IGS clock products. We are using the PPP-based approach for P2-C2 bias estimation developed at the University of New Brunswick. For that purpose, we use GAPS, the GPS Analysis and Positioning Software. We also determine P2-C2 bias directly from the code observations. This poster presents and discusses the evaluation of P2-C2 values estimated from a sub-set of the IGS L2C Test Network. The values are applied to observations collected by C2-capable receivers in the point positioning mode. Coordinate repeatability indicate an improvement of up to 50% when using the P2-C2 bias.

  13. Character algebras of decorated SL_2(C)-local systems

    CERN Document Server

    Muller, Greg

    2011-01-01

    Let S be a path-connected, locally-compact CW-complex, and let M be a subcomplex with finitely-many components. A `decorated SL_2(C)-local system' is an SL_2(C)-local system on S, together with a choice of `decoration' at each component of M (a section of the stalk of an associated vector bundle). We study the (decorated SL_2(C)-)character algebra of (S,M), those functions on the space of decorated SL_2(C)-local systems on (S,M) which are regular with respect to the monodromy. The character algebra is presented explicitly. The character algebra is then shown to correspond to the algebra spanned by collections of oriented curves in S modulo simple graphical rules. As an intermediate step, we obtain an invariant-theory result of independent interest: a presentation of the algebra of SL_2(C)-invariant functions on End(V)^m + V^n, where V is the tautological representation of SL_2(C).

  14. GDF11 does not improve the palmitate induced insulin resistance in C2C12.

    Science.gov (United States)

    Jing, Y-Y; Li, D; Wu, F; Gong, L-L; Li, R

    2017-04-01

    GDF11 (Growth Differentiation factor 11) has been reported to rejuvenate skeletal muscle, heart and brain in aged mice, and the aged skeletal muscle is closely related to insulin resistance. We wondered whether GDF11 has an effect on skeletal muscle insulin resistance. High fat diet induced obese mice with insulin resistance were established in vivo. Palmitate-induced insulin resistance in C2C12 myotubes was established in vitro. The mRNA expression of GDF11, GLUT4, IRS-1 (insulin receptor substrate-1) and PGC-1α (peroxisome proliferator-activated receptor-gamma coactivator 1) were tested by reverse transcriptase-polymerase chain reaction (RT-PCR). The protein level of GDF11 and PGC-1α were detected by Western blot. The glucose uptake was measured by 2NBDG uptake assay. In high fat diet induced obese mice, both serum level of GDF11 and the expression of GDF11 in skeletal muscle decreased. Similarly, the expression of GDF11 also reduced in palmitate-treated C2C12 myotubes. In vitro, the glucose uptake and the expression of GLUT4, IRS-1 and PGC-1α significantly decreased after palmitate intervention, but GDF11 treatment did not reverse the reduction of glucose uptake and the expression of GLUT4, IRS-1 and PGC-1α in C2C12 myotubes. We firstly confirmed that the expression of GDF11 decreased both in the skeletal muscle of obese mice and palmitate-treated myotubes, but supplementation GDF11 does not ameliorate the palmitate-induced insulin resistance in C2C12 myotubes.

  15. Rational Drug Design Leading to the Identification of a Potent 5-HT(2C) Agonist Lacking 5-HT(2B) Activity.

    Science.gov (United States)

    Chen, Gang; Cho, Sung Jin; Huang, Xi-Ping; Jensen, Niels H; Svennebring, Andreas; Sassano, Maria F; Roth, Bryan L; Kozikowski, Alan P

    2011-12-08

    The 5-HT(2C) receptor is an attractive drug target in the quest for new therapeutics to treat a variety of human disorders. We have previously undertaken a structural optimization campaign that has led to some potent and moderately selective 5-HT(2C) receptor agonists. After expanding our structure-function library, we were able to combine our datasets so as to allow the design of compounds of improved selectivity and potency. We disclose herein the structural optimization of our previously reported 5-HT(2B)/5-HT(2C) agonists, which has led to the identification of a highly selective 5-HT(2C) agonist, (+)-trans-[2-(2-cyclopropylmethoxyphenyl)cyclopropyl]methylamine hydrochloride, with an EC(50) of 55 nM and no detectable agonism at the 5-HT(2B) receptor.

  16. Implementation of I 2C Master Bus Protocol on FPGA

    Directory of Open Access Journals (Sweden)

    Regu Archana

    2014-10-01

    Full Text Available The focus of this paper is on I 2C (Inter-Integrated Circuit protocol interface between Master Bus protocol and slave. Here we are interfacing between micro-controller and DS1307. I 2C bus protocol sends 8 bit data from micro-controller to DS1307. This module was designed in VHDL and simulated and synthesized using Xilinx ISE Design Suite 14.2. I 2C and optimized for area and power. This concept is widely applicable from any high speed device or low speed device to any low speed device or high speed device. This module acts as a slave for the DS1307 at the same time acts like a master for the micro-controller device which can be considered as a slave. . It can be used to interface low speed peripherals like motherboard, embedded system, mobile phones, set top boxes, DVD, PDA’s or other electronic devices.

  17. The GSTM2 C-Terminal Domain Depresses Contractility and Ca2+ Transients in Neonatal Rat Ventricular Cardiomyocytes

    Science.gov (United States)

    Hewawasam, Ruwani P.; Liu, Dan; Casarotto, Marco G.; Board, Philip G.; Dulhunty, Angela F.

    2016-01-01

    The cardiac ryanodine receptor (RyR2) is an intracellular ion channel that regulates Ca2+ release from the sarcoplasmic reticulum (SR) during excitation–contraction coupling in the heart. The glutathione transferases (GSTs) are a family of phase II detoxification enzymes with additional functions including the selective inhibition of RyR2, with therapeutic implications. The C-terminal half of GSTM2 (GSTM2C) is essential for RyR2 inhibition, and mutations F157A and Y160A within GSTM2C prevent the inhibitory action. Our objective in this investigation was to determine whether GSTM2C can enter cultured rat neonatal ventricular cardiomyocytes and influence contractility. We show that oregon green-tagged GSTM2C (at 1 μM) is internalized into the myocytes and it reduces spontaneous contraction frequency and myocyte shortening. Field stimulation of myocytes evoked contraction in the same percentage of myocytes treated either with media alone or media plus 15 μM GSTM2C. Myocyte shortening during contraction was significantly reduced by exposure to 15 μM GSTM2C, but not 5 and 10 μM GSTM2C and was unaffected by exposure to 15 μM of the mutants Y160A or F157A. The amplitude of the Ca2+ transient in the 15 μM GSTM2C - treated myocytes was significantly decreased, the rise time was significantly longer and the decay time was significantly shorter than in control myocytes. The Ca2+ transient was not altered by exposure to Y160A or F157A. The results are consistent with GSTM2C entering the myocytes and inhibiting RyR2, in a manner that indicates a possible therapeutic potential for treatment of arrhythmia in the neonatal heart. PMID:27612301

  18. Thermoelectric performance of functionalized Sc2C MXenes

    KAUST Repository

    Kumar, S.

    2016-07-05

    Functionalization of the MXene Sc2C, which has the rare property to realize semiconducting states for various functionalizations including O, F, and OH, is studied with respect to the electronic and thermal behavior. The lowest lattice thermal conductivity is obtained for OH functionalization and an additional 30% decrease can be achieved by confining the phonon mean free path to 100 nm. Despite a relatively low Seebeck coefficient, Sc2C(OH)2 is a candidate for intermediate-temperature thermoelectric applications due to compensation by a high electrical conductivity and very low lattice thermal conductivity.

  19. Risk Analysis and Consumer Protection in B2C Transactions

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-zheng; SHI Qi-liang; Gary Millar; Ruhul A. Sarker

    2005-01-01

    Recent studies have shown that the perceived lack of security is a major obstacle to the wider acceptance of e-commerce. To overcome this barrier, businesses need to implement comprehensive consumer protection systems that protect consumers during every stage of the purchasing process. This paper used the consumer behaviour model as the basis for analysing risks in Bussiness-to-Consumer (B2C) transactions. Four categories of risks were identified: information, agreement, payment and delivery risk. By combining these risk categories with the three dimensions of management, technology and legislation, a comprehensive B2C consumer protection framework is developed.

  20. Investigation of encephalopathy caused by Shiga toxin 2c-producing Escherichia coli infection in mice.

    Directory of Open Access Journals (Sweden)

    Muhammad Yunus Amran

    Full Text Available A large outbreak of Shiga toxin (Stx-producing enteroaggregative Escherichia coli (EAEC O104:H4 occurred in northern Germany. From this outbreak, at least 900 patients developed hemolytic uremic syndrome (HUS, resulting in more than 50 deaths. Thirty percent of the HUS patients showed encephalopathy. We previously established a mouse model with encephalopathy associated with blood brain barrier (BBB damage after oral infection with the Shiga toxin (Stx 2c-producing Escherichia coli O157: H- strain E32511 (E32511. In this model, we detected high expression of the Stx receptor synthase enzyme, glycosphingolipid globotriaosylceramide (Gb3 synthase, in endothelial cells (ECs and neurons in the reticular formation of the medulla oblongata by in situ hybridization. Caspase-3 was activated in neurons in the reticular formation of the medulla oblongata and the anterior horn of the spinal cord. Astrocytes (ASTs were activated in the medulla oblongata and spinal cord, and a decrease in aquaporin 4 around the ECs suggested that BBB integrity was compromised directly by Stx2c or through the activation of ASTs. We also report the effectiveness of azithromycin (AZM in our model. Moreover, AZM strongly inhibited the release of Stx2c from E32511 in vitro.

  1. Investigation of Encephalopathy Caused by Shiga Toxin 2c-Producing Escherichia coli Infection in Mice

    Science.gov (United States)

    Amran, Muhammad Yunus; Fujii, Jun; Suzuki, Satoshi O.; Kolling, Glynis L.; Villanueva, Sharon Y. A. M.; Kainuma, Mosaburo; Kobayashi, Hideyuki; Kameyama, Hideko; Yoshida, Shin-ichi

    2013-01-01

    A large outbreak of Shiga toxin (Stx)-producing enteroaggregative Escherichia coli (EAEC) O104:H4 occurred in northern Germany. From this outbreak, at least 900 patients developed hemolytic uremic syndrome (HUS), resulting in more than 50 deaths. Thirty percent of the HUS patients showed encephalopathy. We previously established a mouse model with encephalopathy associated with blood brain barrier (BBB) damage after oral infection with the Shiga toxin (Stx) 2c-producing Escherichia coli O157: H- strain E32511 (E32511). In this model, we detected high expression of the Stx receptor synthase enzyme, glycosphingolipid globotriaosylceramide (Gb3) synthase, in endothelial cells (ECs) and neurons in the reticular formation of the medulla oblongata by in situ hybridization. Caspase-3 was activated in neurons in the reticular formation of the medulla oblongata and the anterior horn of the spinal cord. Astrocytes (ASTs) were activated in the medulla oblongata and spinal cord, and a decrease in aquaporin 4 around the ECs suggested that BBB integrity was compromised directly by Stx2c or through the activation of ASTs. We also report the effectiveness of azithromycin (AZM) in our model. Moreover, AZM strongly inhibited the release of Stx2c from E32511 in vitro. PMID:23516588

  2. Proteasome inhibition compromises direct retention of cytochrome P450 2C2 in the endoplasmic reticulum.

    Science.gov (United States)

    Szczesna-Skorupa, Elzbieta; Kemper, Byron

    2008-10-15

    To determine whether protein degradation plays a role in the endoplasmic reticulum (ER) retention of cytochromes P450, the effects of proteasomal inhibitors on the expression and distribution of green fluorescent protein chimeras of CYP2C2 and related proteins was examined. In transfected cells, expression levels of chimeras of full-length CYP2C2 and its cytosolic domain, but not its N-terminal transmembrane sequence, were increased by proteasomal inhibition. Redistribution of all three chimeras from the reticular ER into a perinuclear compartment and, in a subset of cells, also to the cell surface was observed after proteasomal inhibition. Redistribution was blocked by the microtubular inhibitor, nocodazole, suggesting that redistribution to the cell surface followed the conventional vesicular transport pathway. Similar redistributions were detected for BAP31, a CYP2C2 binding chaperone; CYP2E1 and CYP3A4, which are also degraded by the proteasomal pathway; and for cytochrome P450 reductase, which does not undergo proteasomal degradation; but not for the ER membrane proteins, sec61 and calnexin. Redistribution does not result from saturation of an ER retention "receptor" since in some cases protein levels were unaffected. Proteasomal inhibition may, therefore, alter ER retention by affecting a protein critical for ER retention, either directly, or indirectly by affecting the composition of the ER membranes.

  3. The strong selective sweep candidate gene ADRA2C does not explain domestication related changes in the stress response of chickens.

    Science.gov (United States)

    Elfwing, Magnus; Fallahshahroudi, Amir; Lindgren, Isa; Jensen, Per; Altimiras, Jordi

    2014-01-01

    Analysis of selective sweeps to pinpoint causative genomic regions involved in chicken domestication has revealed a strong selective sweep on chromosome 4 in layer chickens. The autoregulatory α-adrenergic receptor 2C (ADRA2C) gene is the closest to the selective sweep and was proposed as an important gene in the domestication of layer chickens. The ADRA2C promoter region was also hypermethylated in comparison to the non-selected ancestor of all domesticated chicken breeds, the Red Junglefowl, further supporting its relevance. In mice the receptor is involved in the fight-or-flight response as it modulates epinephrine release from the adrenals. To investigate the involvement of ADRA2C in chicken domestication, we measured gene expression in the adrenals and radiolabeled receptor ligand in three brain regions comparing the domestic White Leghorn strain with the wild ancestor Red Junglefowl. In adrenals ADRA2C was twofold greater expressed than the related receptor gene ADRA2A, indicating that ADRA2C is the predominant modulator of epinephrine release but no strain differences were measured. In hypothalamus and amygdala, regions associated with the stress response, and in striatum, receptor binding pIC50 values ranged between 8.1-8.4, and the level was not influenced by the genotyped allele. Because chicken strains differ in morphology, physiology and behavior, differences attributed to a single gene may be lost in the noise caused by the heterogeneous genetic background. Therefore an F10 advanced intercross strain between White Leghorn and Red Junglefowl was used to investigate effects of ADRA2C alleles on fear related behaviors and fecundity. We did not find compelling genotype effects in open field, tonic immobility, aerial predator, associative learning or fecundity. Therefore we conclude that ADRA2C is probably not involved in the domestication of the stress response in chicken, and the strong selective sweep is probably caused by selection of some unknown

  4. Theoretical Investigations of La2C2 Cluster

    Institute of Scientific and Technical Information of China (English)

    武志坚; 周誓红; 张思远

    2003-01-01

    Possible structures of La2C2 were studied and proposed by use of density functional theory. All proposed isomers are planar. The results indicate that the structure with the lowest symmetry (C1) is the most stable. Linear isomers are not favored.

  5. LM-2C Sent Yaogan 13 into Space

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Yaogan 13 remote sensing satellite was launched into orbit from the Taiyuan Satellite Launch Center on November 30 on a LM-2C launch vehicle.Developed by SAST,the satellite will be used for scientific experiments,land survey,crop yield assessment and disaster monitoring.

  6. E-2C Loads Calibration in DFRC Flight Loads Lab

    Science.gov (United States)

    Schuster, Lawrence S.

    2008-01-01

    Objectives: a) Safely and efficiently perform structural load tests on NAVAIR E-2C aircraft to calibrate strain gage instrumentation installed by NAVAIR; b) Collect load test data and derive loads equations for use in NAVAIR flight tests; and c) Assist flight test team with use of loads equations measurements at PAX River.

  7. Units in Z_2(C_2 × D_infinity

    Directory of Open Access Journals (Sweden)

    Kanchan Joshi

    2012-12-01

    Full Text Available In this paper we consider the group algebra R(C_2 ×D_infinity. It is shown that R(C_2 ×D_infinity can be represented by a 4 × 4 block circulant matrix. It is also shown that U(Z_2(C_2 × D_infinity isinfinitely generated

  8. Insights into the influence of 5-HT2c aminoacidic variants with the inhibitory action of serotonin inverse agonists and antagonists.

    Science.gov (United States)

    Galeazzi, Roberta; Massaccesi, Luca; Piva, Francesco; Principato, Giovanni; Laudadio, Emilioano

    2014-03-01

    Specific modulation of serotonin 5-HT(2C) G protein-coupled receptors may be therapeutic for obesity and neuropsychiatric disorders. The different efficacy of drugs targeting these receptors are due to the presence of genetic variants in population and this variability is still hard to predict. Therefore, in order to administer the more suitable drug, taking into account patient genotype, it is necessary to know the molecular effects of its gene nucleotide variations. In this work, starting from an accurate 3D model of 5-HT(2C), we focus on the prediction of the possible effect of some single nucleotide polymorphisms (SNPs) producing amino acidic changes in proximity of the 5-HT(2C) ligand binding site. Particularly we chose a set of 5-HT(2C) inverse agonists and antagonists which have high inhibitory activity. After prediction of the structures of the receptor-ligand complexes using molecular docking tools, we performed full atom molecular dynamics simulations in explicit lipid bilayer monitoring the interactions between ligands and trans-membrane helices of the receptor, trying to infer relations with their biological activity. Serotonin, as the natural ligand was chosen as reference compound to advance a hypothesis able to explain the receptor inhibition mechanism. Indeed we observed a different behavior between the antagonists and inverse agonist with respect to serotonin or unbounded receptor, which could be responsible, even if not directly, of receptor's inactivation. Furthermore, we analyzed five aminoacidic variants of 5HT(2C) receptor observing alterations in the interactions between ligands and receptor which give rise to changes of free energy values for every complex considered.

  9. Obesity-Induced Colorectal Cancer Is Driven by Caloric Silencing of the Guanylin-GUCY2C Paracrine Signaling Axis.

    Science.gov (United States)

    Lin, Jieru E; Colon-Gonzalez, Francheska; Blomain, Erik; Kim, Gilbert W; Aing, Amanda; Stoecker, Brian; Rock, Justin; Snook, Adam E; Zhan, Tingting; Hyslop, Terry M; Tomczak, Michal; Blumberg, Richard S; Waldman, Scott A

    2016-01-15

    Obesity is a well-known risk factor for colorectal cancer but precisely how it influences risks of malignancy remains unclear. During colon cancer development in humans or animals, attenuation of the colonic cell surface receptor guanylyl cyclase C (GUCY2C) that occurs due to loss of its paracrine hormone ligand guanylin contributes universally to malignant progression. In this study, we explored a link between obesity and GUCY2C silencing in colorectal cancer. Using genetically engineered mice on different diets, we found that diet-induced obesity caused a loss of guanylin expression in the colon with subsequent GUCY2C silencing, epithelial dysfunction, and tumorigenesis. Mechanistic investigations revealed that obesity reversibly silenced guanylin expression through calorie-dependent induction of endoplasmic reticulum stress and the unfolded protein response in intestinal epithelial cells. In transgenic mice, enforcing specific expression of guanylin in intestinal epithelial cells restored GUCY2C signaling, eliminating intestinal tumors associated with a high calorie diet. Our findings show how caloric suppression of the guanylin-GUCY2C signaling axis links obesity to negation of a universal tumor suppressor pathway in colorectal cancer, suggesting an opportunity to prevent colorectal cancer in obese patients through hormone replacement with the FDA-approved oral GUCY2C ligand linaclotide. ©2016 American Association for Cancer Research.

  10. Recombinant myostatin reduces highly expressed microRNAs in differentiating C2C12 cells

    Directory of Open Access Journals (Sweden)

    Zachary A. Graham

    2017-03-01

    Full Text Available Myostatin is small glycopeptide that is produced and secreted by skeletal muscle. It is a potent negative regulator of muscle growth that has been associated with conditions of frailty. In C2C12 cells, myostatin limits cell differentiation. Myostatin acts through activin receptor IIB, activin receptor-like kinase (ALK and Smad transcription factors. microRNAs (miRNA are short, 22 base pair nucleotides that bind to the 3′ UTR of target mRNA to repress translation or reduce mRNA stability. In the present study, expression in differentiating C2C12 cells of the myomiRs miR-1 and 133a were down-regulated following treatment with 1 µg of recombinant myostatin at 1 d post-induction of differentiation while all myomiRs (miR-1, 133a/b and 206 were upregulated by SB431542, a potent ALK4/5/7 inhibitor which reduces Smad2 signaling, at 1 d and all, with the exception of miR-206, were upregulated by SB431542 at 3 d. The expression of the muscle-enriched miR-486 was greater following treatment with SB431542 but not altered by myostatin. Other highly expressed miRNAs in skeletal muscle, miR-23a/b and 145, were altered only at 1 d post-induction of differentiation. miR-27b responded differently to treatments at 1 d, where it was upregulated, as compared to 3 d, where it was downregulated. Neither myostatin nor SB431542 altered cell size or cell morphology. The data indicate that myostatin represses myomiR expression in differentiating C2C12 cells and that inhibition of Smad signaling with SB431542 can result in large changes in highly expressed miRNAs in differentiating myoblasts.

  11. High-throughput screening assays for the assessment of CYP2C9*1, CYP2C9*2, and CYP2C9*3 metabolism using fluorogenic Vivid substrates.

    Science.gov (United States)

    Marks, Bryan D; Thompson, David V; Goossens, Tony A; Trubetskoy, Olga V

    2004-08-01

    CYP2C9 is a genetically polymorphic human cytochrome P450 isozyme involved in the oxidative metabolism of many drugs, including nonsteroidal anti-inflammatory compounds. Individuals genotyped heterozygous or homozygous for CYP2C9 allelic variants have demonstrated altered metabolism of some drugs primarily metabolized by CYP2C9. The ability to expand screening of CYP2C9 allelic variants to a larger set of drugs and pharmaceutical agents would contribute to a better understanding of the significance of CYP2C9 polymorphisms in the population and to predictions of possible outcomes. The authors report the development of an in vitro fluorescence-based assay employing recombinant CYP2C9 variants (CYP2C9*1, CYP2C9*2, and CYP2C9*3) and fluorogenic Vivid(R) CYP2C9 substrates to explore the effects of CYP2C9 polymorphisms on drug metabolism, using drugs primarily metabolized by CYP2C9. Several chemically diverse fluorogenic substrates (Vivid(R) CYP2C9 blue, green, and red substrates) were used as prototypic probes to obtain in vitro CYP2C9 metabolic rates and kinetic parameters, such as apparent K(m), V(max), and V(max)/K(m) ratios for each allelic variant. In addition, a diverse panel of drugs was screened as assay modifiers with CYP2C9*1, CYP2C9*2, CYP2C9*3, and the fluorogenic Vivid(R) CYP2C9 substrates. The inhibitory potential of this large group of chemically diverse drugs and compounds has been assessed on the basis of their ability to compete with Vivid(R) CYP2C9 substrates in fluorescent reporter assays, thus providing a sensitive and quick assessment of polymorphism-dependent changes in CYP2C9 metabolism.

  12. Cobalt triggers necrotic cell death and atrophy in skeletal C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rovetta, Francesca [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy); Stacchiotti, Alessandra [Institute of Human Anatomy, Department of Clinical and Experimental Sciences, University of Brescia, Brescia I-25123 (Italy); Faggi, Fiorella [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy); Catalani, Simona; Apostoli, Pietro [Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia I-25123 (Italy); Fanzani, Alessandro, E-mail: fanzani@med.unibs.it [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy); Aleo, Maria Francesca, E-mail: aleo@med.unibs.it [Unit of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia I-25123 (Italy); Interuniversity Institute of Myology (IIM) (Italy)

    2013-09-01

    Severe poisoning has recently been diagnosed in humans having hip implants composed of cobalt–chrome alloys due to the release of particulate wear debris on polyethylene and ceramic implants which stimulates macrophagic infiltration and destroys bone and soft tissue, leading to neurological, sensorial and muscular impairments. Consistent with this premise, in this study, we focused on the mechanisms underlying the toxicity of Co(II) ions on skeletal muscle using mouse skeletal C2C12 myotubes as an in vitro model. As detected using propidium iodide incorporation, increasing CoCl{sub 2} doses (from 5 to 200 μM) affected the viability of C2C12 myotubes, mainly by cell necrosis, which was attenuated by necrostatin-1, an inhibitor of the necroptotic branch of the death domain receptor signaling pathway. On the other hand, apoptosis was hardly detectable as supported by the lack of caspase-3 and -8 activation, the latter resulting in only faint activation after exposure to higher CoCl{sub 2} doses for prolonged time points. Furthermore, CoCl{sub 2} treatment resulted in atrophy of the C2C12 myotubes which was characterized by the increased expression of HSP25 and GRP94 stress proteins and other typical 'pro-atrophic molecular hallmarks, such as early activation of the NF-kB pathway and down-regulation of AKT phosphorylation, followed by the activation of the proteasome and autophagy systems. Overall, these results suggested that cobalt may impact skeletal muscle homeostasis as an inducer of cell necrosis and myofiber atrophy. - Highlights: • The effects of cobalt on muscle myofibers in vitro were investigated. • Cobalt treatment mainly causes cell necrosis in skeletal C2C12 myotubes. • Cobalt impacts the PI3K/AKT and NFkB pathways and induces cell stress markers. • Cobalt induces atrophy of C2C12 myotubes through the activation of proteasome and autophagy systems. • Co treatment triggers NF-kB and PI3K/AKT pathways in C2C12 myotubes.

  13. A generalized stoichiometric model of C3, C2, C2+C4, and C4 photosynthetic metabolism.

    Science.gov (United States)

    Bellasio, Chandra

    2017-01-01

    The goal of suppressing photorespiration in crops to maximize assimilation and yield is stimulating considerable interest among researchers looking to bioengineer carbon-concentrating mechanisms into C3 plants. However, detailed quantification of the biochemical activities in the bundle sheath is lacking. This work presents a general stoichiometric model for C3, C2, C2+C4, and C4 assimilation (SMA) in which energetics, metabolite traffic, and the different decarboxylating enzymes (NAD-dependent malic enzyme, NADP-dependent malic enzyme, or phosphoenolpyruvate carboxykinase) are explicitly included. The SMA can be used to refine experimental data analysis or formulate hypothetical scenarios, and is coded in a freely available Microsoft Excel workbook. The theoretical underpinnings and general model behaviour are analysed with a range of simulations, including (i) an analysis of C3, C2, C2+C4, and C4 in operational conditions; (ii) manipulating photorespiration in a C3 plant; (iii) progressively upregulating a C2 shuttle in C3 photosynthesis; (iv) progressively upregulating a C4 cycle in C2 photosynthesis; and (v) manipulating processes that are hypothesized to respond to transient environmental inputs. Results quantify the functional trade-offs, such as the electron transport needed to meet ATP/NADPH demand, as well as metabolite traffic, inherent to different subtypes. The SMA refines our understanding of the stoichiometry of photosynthesis, which is of paramount importance for basic and applied research. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Predicting drug metabolism by cytochrome P450 2C9

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Olsen, Lars

    2012-01-01

    By the use of knowledge gained through modeling of drug metabolism mediated by the cytochrome P450 2D6 and 3A4 isoforms, we constructed a 2D-based model for site-of-metabolism prediction for the cytochrome P450 2C9 isoform. The similarities and differences between the models for the 2C9 and 2D6...... isoforms are discussed through structural knowledge from the X-ray crystal structures and trends in experimental data. The final model was validated on an independent test set, resulting in an area under the curve value of 0.92, and a site of metabolism was found among the top two ranked atoms for 77...

  15. Online Trading C2C Operators Fight for Number One

    Institute of Scientific and Technical Information of China (English)

    DAVID HENDRICKSON

    2006-01-01

    @@ Whether shopping casually or searching for some obscure, hard to find item, more and more Chinese are logging online and turning to customer-to-customer (C2C) network operators for their trading needs rather than bother with the hassles of conventional buying and selling. Proof is in the numbers. A leading technology, new media, and telecom watchdog, Analysys International reports that China's C2C market users more than doubled in 2005 to 37.87 million, while the sector's total transaction value increased from 4.16 billion yuan in 2004, to 13.9billion yuan (US$1.74 billion). Supplanted by a web surfing pool of 100 million and counting, they are trends that Analysys and other industry groups expect will continue in China for some time, fundamentally transforming how the country's independent traders do business.

  16. Robotic Range Clearance Competition (R2C2)

    Science.gov (United States)

    2011-10-01

    Paddock. Meals—Breakfast, Lunch and Dinner will be available in the mess tent (See Schedule, Section 2.1). Snacks – Snack foods and bottled water...ROBOTIC RANGE CLEARANCE COMPETITION (R2C2) Final Report DISTRIBUTION A: AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE Air...other person or corporation; or convey any rights or permission to manufacture , use, or sell any patented invention that may relate to them. This

  17. Field emission from Mo2C coated carbon nanosheets

    Science.gov (United States)

    Bagge-Hansen, M.; Outlaw, R. A.; Miraldo, P.; Zhu, M. Y.; Hou, K.; Theodore, N. D.; Zhao, X.; Manos, D. M.

    2008-01-01

    Carbon nanosheets have recently evolved into useful edge emitters with high emission current densities, low threshold electric fields, and long lifetimes. In addition to further improvement in these characteristics, good stability and repeatability are also essential for these materials to be suitable for high vacuum applications such as microwave tubes and flat panel displays. Since the work function of graphite, carbon nanotubes, and amorphous carbon is relatively high, 4.6-4.8eV, selective thin film coatings may offer significant advantages. Carbides are a good film choice for their corrosive resistance, chemical stability, and substantially lower work function. Approximately 3 ML (monolayer) (˜1nm) of molybdenum were deposited on carbon nanosheets by physical vapor deposition and the carbide (Mo2C) formed by heating to >200°C at 1×10-8Torr. The carbide stoichiometry was confirmed in situ by the characteristic Auger triple peak at 272eV. A stoichiometric Mo2C calibration sample was used to acquire the Auger electron spectroscopy asymmetric ratio of 0.7 and this was used to determine the carbide growth as a function of temperature (from room temperature to 1000°C). Field emission currents of up to 400μA were compared with uncoated CNS at a given electric field. The Mo2C/CNS cathodes were shown to have greater than a factor of 100 increase in current and greater than 2V/μm decrease in threshold. The Fowler-Nordheim plots were exceptionally linear and quite repeatable (correlation coefficient R2=0.999+). Using the slope and vertical intercept, an emission area for the 0.07cm2 Mo2C/CNS dot sample was determined to be ˜3×10-9cm2 and the field enhancement factor was found to be β ˜530.

  18. Optical characterization of polished Mo2C foil.

    Science.gov (United States)

    Grimes, Jacob; Geerts, W.; Bandyopadhyay, A.; Gutierrez; Radican, K.; Rivera, N.; Holland, P.; Givens, J.; Oyama, Ted

    2003-03-01

    Mo_2C has been in use by industry for a number of years, however its optical properties are previously uncharacterized with no reports of experimentally obtained values for the refraction index(n) and extinction coefficient(k). Toward the goal of identifying the values for these properties several tests are performed on a Molybdenum foil carburized in a stream of 20 molar CH4 in H2 at 1373K. The surface of the sample is polished to an optically flat finish using several diamond disks in an Allied High Tech polisher. X-ray data shows that the remaining surface material is Mo_2C. Ψ and Δ are measured with a Variable Angle Spectroscopic Ellipsometer from 190 to 1700nm. Then n, k, and reflectance are calculated using FilmWizard. The spectra for refraction, extinction, and reflectance of Mo_2C differ greatly from those reported for Mo. Generally they exhibit a quasi-linear character increasing with wavelength with structures in the red and blue parts of the spectra.

  19. Influence of serotonergic transmission and postsynaptic 5-HT2C action on the feeding behavior of Coturnix japonica (Galliformes: Aves

    Directory of Open Access Journals (Sweden)

    P. L. Cedraz-Mercez

    Full Text Available We investigated the role of 5-HT2C receptors and serotonergic transmission in the feeding behavior control of quails. Administration of serotonin releaser, fenfluramine (FEN and 5-HT2C agonists, mCPP and MK212, 1.0 and 3.3 mg/Kg induced significant inhibition of food intake in previously fasted fowls (0.71 ± 0.18 g and 0.47 ± 0.2 g; 0.49 ± 0.22 g and 0.48 ± 0.29 g; 0.82 ± 0.13 g and 0.71 ± 0.16 g, respectively. Control groups ranged from 2.89 ± 0.21 g to 2.97 ± 0.22 g, 60 min after reintroduction of food, P < 0.0001. Similar results were obtained with normally fed quails. Both serotonin releaser and 5-HT2C agonists, in a 3.3 mg/Kg dose, induced hypophagy (FEN, 0.78 ± 0.08 g; mCPP, 0.89 ± 0.07 g; MK212, 1.25 ± 0.17 g vs. controls, 2.05 ± 0.12 g, 120 min after food was presented, P < 0.0001 to P < 0.01. Previous administration of 5-HT2C antagonist, LY53857 (5.0 mg/Kg blocked the hypophagic response induced by 5-HT2C agonists 60 min after food was reintroduced. Current data show a modulatory role of serotonin release and postsynaptic 5-HT2C receptors in the feeding behavior of quails.

  20. Liver-specific cytochrome P450 CYP2C22 is a direct target of retinoic acid and a retinoic acid-metabolizing enzyme in rat liver.

    Science.gov (United States)

    Qian, Linxi; Zolfaghari, Reza; Ross, A Catharine

    2010-07-01

    Several cytochrome P450 (CYP) enzymes catalyze the C4-hydroxylation of retinoic acid (RA), a potent inducer of cell differentiation and an agent in the treatment of several diseases. Here, we have characterized CYP2C22, a member of the rat CYP2C family with homology to human CYP2C8 and CYP2C9. CYP2C22 was expressed nearly exclusively in hepatocytes, where it was one of the more abundant mRNAs transcripts. In H-4-II-E rat hepatoma cells, CYP2C22 mRNA was upregulated by all-trans (at)-RA, and Am580, a nonmetabolizable analog of at-RA. In comparison, in primary human hepatocytes, at-RA increased CYP2C9 but not CYP2C8 mRNA. Analysis of the CYP2C22 promoter region revealed a RA response element (5'-GGTTCA-(n)5-AGGTCA-3') in the distal flanking region, which bound the nuclear hormone receptors RAR and RXR and which was required for transcriptional activation response of this promoter to RA in CYP2C22-luciferase-transfected RA-treated HepG2 cells. The cDNA-expressed CYP2C22 protein metabolized [3H]at-RA to more polar metabolites. While long-chain polyunsaturated fatty acids competed, 9-cis-RA was a stronger competitor. Our studies demonstrate that CYP2C22 is a high-abundance, retinoid-inducible, hepatic P450 with the potential to metabolize at-RA, providing additional insight into the role of the CYP2C gene family in retinoid homeostasis.

  1. Similar substrate specificity of cynomolgus monkey cytochrome P450 2C19 to reported human P450 2C counterpart enzymes by evaluation of 89 drug clearances.

    Science.gov (United States)

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2015-12-01

    Cynomolgus monkeys are used widely in preclinical studies as non-human primate species. The amino acid sequence of cynomolgus monkey cytochrome P450 (P450 or CYP) 2C19 is reportedly highly correlated to that of human CYP2C19 (92%) and CYP2C9 (93%). In the present study, 89 commercially available compounds were screened to find potential substrates for cynomolgus monkey CYP2C19. Of 89 drugs, 34 were metabolically depleted by cynomolgus monkey CYP2C19 with relatively high rates. Among them, 30 compounds have been reported as substrates or inhibitors of, either or both, human CYP2C19 and CYP2C9. Several compounds, including loratadine, showed high selectivity to cynomolgus monkey CYP2C19, and all of these have been reported as human CYP2C19 and/or CYP2C9 substrates. In addition, cynomolgus monkey CYP2C19 formed the same loratadine metabolite as human CYP2C19, descarboethoxyloratadine. These results suggest that cynomolgus monkey CYP2C19 is generally similar to human CYP2C19 and CYP2C9 in its substrate recognition functionality.

  2. High TFAP2C/low CD44 expression is associated with an increased rate of pathologic complete response following neoadjuvant chemotherapy in breast cancer.

    Science.gov (United States)

    Spanheimer, Philip M; Askeland, Ryan W; Kulak, Mikhail V; Wu, Tong; Weigel, Ronald J

    2013-09-01

    In luminal breast cancer cell lines, TFAP2C regulates expression of key genes in the estrogen receptor-associated cluster and represses basal-associated genes including CD44. We examined the effect of TFAP2C overexpression in a basal cell line and characterized the expression of TFAP2C and CD44 in breast cancer specimens to determine if expression was associated with clinical response. MDA-MB-231 breast cancer cells were treated with a TFAP2C-containing plasmid and evaluated for effects on CD44 expression. Pretreatment biopsy cores from patients receiving neoadjuvant chemotherapy for breast cancer were evaluated for TFAP2A, p53, TFAP2C, and CD44 expression by immunohistochemistry. Overexpression of TFAP2C in MDA-MB-231 cells resulted in decreased expression of CD44 mRNA and protein, P 80%, P = 0.02. In tumors that stained high for TFAP2C (≥80%) and low for CD44 (≤80%), 4 of 7 (57%) achieved pCR, compared with 0 of 16 in all other groups (P = 0.004). TFAP2C repressed CD44 expression in basal-derived breast cancer. In primary breast cancer specimens, high TFAP2C and low CD44 expression were associated with pCR after neoadjuvant chemotherapy and could be predictive of tumors that have improved response to neoadjuvant chemotherapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Global structure search and physical properties of Os2C

    Science.gov (United States)

    Hong, Feng; Lu, Jian; Gao, Heng; Ren, Wei; Xu, Run; Xu, Fei; Ma, Zhongquan; Yan, Yanfa

    2016-09-01

    The crystal structures of Os2C were extensively investigated using the structure search method from the first-principles calculations. In contrast to the P6 3 /mmc phase previously proposed as the ground state at ambient pressure, an energetically favorable structure with space group P-6m2 was found more stable at ambient condition. The structural stabilities of the new phase are confirmed by the phonon dispersion and elastic constants. Further calculations indicate that the newly predicted P-6m2 phase is ultra-incompressible with a high bulk modulus of 387 GPa and has a larger ideal shear strength than the P6 3 /mmc phase.

  4. Interactions between CYP2C9 and CYP2C19 in reconstituted binary systems influence their catalytic activity: possible rationale for the inability of CYP2C19 to catalyze methoxychlor demethylation in human liver microsomes.

    Science.gov (United States)

    Hazai, Eszter; Kupfer, David

    2005-01-01

    Previous studies in our laboratory showed that among cDNA-expressed human cytochrome P450 (P450) supersomes, CYP2C19 was the most active in methoxychlor-O-demethylation. However, based on the lack of inhibition of methoxychlor-O-demethylation by monoclonal anti-CYP2C19 antibodies in human liver microsomes (HLM), CYP2C19 did not seem to catalyze that reaction in HLM. By contrast, CYP2C9, much less active than CYP2C19 in supersomes, was the most active in HLM. The current study examines whether the lack of methoxychlor-O-demethylation by CYP2C19 in HLM was due to CYP2C19 exhibiting inferior competition for the NADPH-cytochrome P450 reductase (CPR) versus CYP2C9 and explores the interactions between CYP2C9 and CYP2C19 in a singular and binary complex of a reconstituted system. When reconstituted with CPR, cytochrome b(5), and lipid, purified CYP2C19 and CYP2C9 catalyzed methoxychlor-O-demethylation. However, whereas equimolar CPR to CYP2C9 supported maximal rates of methoxychlor demethylation and diclofenac hydroxylation, the rate of methoxychlor demethylation by CYP2C19 was not fully saturated, even with a 9-fold molar excess of CPR over CYP2C19. This behavior of CYP2C19 was also observed with S-mephenytoin as the substrate. When a binary reconstitution system was prepared by mixing CYP2C9 and CYP2C19 enzymes, methoxychlor-O-demethylation and S-mephenytoin hydroxylation by CYP2C19 were dramatically inhibited. Inhibition depended on the amount of CPR and substrate used. By contrast, in the incubation containing CYP2C9, diclofenac hydroxylation was activated by the presence of CYP2C19. These results show that interactions among P450 enzymes can modulate their catalytic rates, which depend on the substrate undergoing metabolism.

  5. The 2 C scenario - A sustainable world energy perspective

    Energy Technology Data Exchange (ETDEWEB)

    Krewitt, Wolfram; Simon, Sonja [German Aerospace Center (DLR), Institute of Technical Thermodynamics, Department of Systems Analysis and Technology Assessment, Pfaffenwaldring 38-40, 70565 Stuttgart (Germany); Graus, Wina [Ecofys, Kanaalweg 16G, 3526 KL Utrecht (Netherlands); Teske, Sven [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands); Zervos, Arthouros; Schaefer, Oliver [European Renewable Energy Council, 63-65, rue d' Arlon, 1040 Brussels (Belgium)

    2007-10-15

    A target-oriented scenario of future energy demand and supply is developed in a backcasting process. The main target is to reduce global CO{sub 2} emissions to around 10 Gt/a in 2050, thus limiting global average temperature increase to 2 C and preventing dangerous anthropogenic interference with the climate system. A 10-region energy system model is used for simulating global energy supply strategies. A review of sector and region-specific energy efficiency measures resulted in the specification of a global energy demand scenario incorporating strong energy efficiency measures. The corresponding supply scenario has been developed in an iterative process in close cooperation with stakeholders and regional counterparts from academia, NGOs and the renewable energy industry. The 2 C scenario shows that renewable energy could provide as much as half of the world's energy needs by 2050. Developing countries can virtually stabilise their CO{sub 2} emissions, while at the same time increasing energy consumption through economic growth. OECD countries will be able to reduce their emissions by up to 80%. (author)

  6. NCEP/DOE Reanalysis II in HDF-EOS5, for GSSTF2c, 1x1 deg Daily grid V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF2c) Dataset recently produced through a MEaSURES funded project led by Dr....

  7. Vortex lattice transitions in YNi2B2C

    Indian Academy of Sciences (India)

    S J Levett; C D Dewhurst; D McK Paul

    2002-05-01

    We have performed extensive small-angle neutron scattering (SANS) diffraction studies of the vortex lattice in single crystal YNi2B2C for $B||c$. High-resolution SANS, combined with a field-oscillation vortex lattice preparation technique, allows us to separate Bragg scattered intensities from two orthogonal domains and accurately determine the unit cell angle, . The data suggest that upon increasing field there is a finite transition width where both low- and high-field distorted hexagonal vortex lattice phases, mutually rotated by 45°, coexist. The smooth variation of diffracted intensity from each phase through the transition corresponds to a redistribution of populations between the two types of domains.

  8. A rare Cervical Nerve Root, C2-C3 Schwannoma

    Directory of Open Access Journals (Sweden)

    Nilesh Chordia

    2014-04-01

    Full Text Available Schwannomas, neurilemmomas or neurinomas are benign nerve sheath tumors deriving from Schwann cells that occur in the head and neck region in 25-45% of cases 1 .About 10% of schwannoma that occur in the head and neck region generally originate from the vagus or sympathetic nervous system, those arising from C2 nerve root are extremely rare. 2 Preoperative imaging studies such as magnetic resonance imaging (MRI and computed tomography (CT are used to distinguish its location and origin. The treatment of schwannoma is surgical resection, with several surgical modalities have been introduced to preserve the neurological function. We present a rare case of Cervical nerve (C2-C3 root schwannoma of 70 years old male who presented with lateral neck swelling with no neurological deficit ,swelling which also had intervertebral part was removed successfully through neck incision with no post-operative neurological symptoms

  9. Exactly solvable models of scattering with SL(2, C) symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Levay, P. [School of Physics, University of Melbourne, Parkville (Australia); Department of Theoretical Physics, Institute of Physics, Technical University, Budapest (Hungary)

    2002-08-02

    Using the theory of induced representations two exactly solvable models of non-relativistic scattering with SL(2, C) symmetry are presented. The first describes the scattering of a charged particle moving on the Poincare upper half space H under the influence of an SU(2) non-Abelian gauge potential with isospin s. The second deals with a one-dimensional coupled-channel scattering problem for a charged particle in a matrix-valued scalar potential containing Morse-like interaction terms. The coupled channel wavefunctions and the corresponding scattering matrices are calculated. A detailed description of the underlying geometric structures is also given and a generalization for restricting the motion to fundamental domains of H (three manifolds of constant negative sectional curvature) is outlined. Such models provide an interesting generalization to the known ones of multichannel scattering, quantum chaos and chaotic cosmology. (author)

  10. Inhibitory effects of curcumin on activity of cytochrome P450 2C9 enzyme in human and 2C11 in rat liver microsomes.

    Science.gov (United States)

    Wang, Zhe; Sun, Wei; Huang, Cheng-Ke; Wang, Li; Xia, Meng-Ming; Cui, Xiao; Hu, Guo-Xin; Wang, Zeng-Shou

    2015-04-01

    Cytochrome P450 2C9 (CYP2C9), one of the most important phase I drug metabolizing enzymes, could catalyze the reactions that convert diclofenanc into diclofenac 4'-hydroxylation. Evaluation of the inhibitory effects of compounds on CYP2C9 is clinically important because inhibition of CYP2C9 could result in serious drug-drug interactions. The objective of this work was to investigate the effects of curcumin on CYP2C9 in human and cytochrome P450 2C11 (CYP2C11) in rat liver microsomes. The results showed that curcumin inhibited CYP2C9 activity (10 µmol L(-1) diclofenac) with half-maximal inhibition or a half-maximal inhibitory concentration (IC50) of 15.25 µmol L(-1) and Ki = 4.473 µmol L(-1) in human liver microsomes. Curcumin's mode of action on CYP2C9 activity was noncompetitive for the substrate diclofenanc and uncompetitive for the cofactor NADPH. In contrast to its potent inhibition of CYP2C9 in human, diclofenanc had lesser effects on CYP2C11 in rat, with an IC50 ≥100 µmol L(-1). The observations imply that curcumin has the inhibitory effects on CYP2C9 activity in human. These in vitro findings suggest that more attention should be paid to special clinical caution when intake of curcumin combined with other drugs in treatment.

  11. Preparation and characterization of Pt–CeO{sub 2}/C and Pt–TiO{sub 2}/C electrocatalysts with improved electrocatalytic activity for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hameed, R.M. Abdel [Chemistry Department, Faculty of Science, Cairo University, Giza (Egypt); Amin, R.S. [Chemical Engineering Department, National Research Center, Dokki, Giza (Egypt); El-Khatib, K.M., E-mail: Kamelced@hotmail.com [Chemical Engineering Department, National Research Center, Dokki, Giza (Egypt); Fetohi, Amani E. [Chemical Engineering Department, National Research Center, Dokki, Giza (Egypt)

    2016-03-30

    Graphical abstract: - Highlights: • Adding TiO{sub 2} or CeO{sub 2} to Pt/C reduced its Pt particle size. • Methanol oxidation current density decreased as Pt–CeO{sub 2}/C > Pt–TiO{sub 2}/C > Pt/C. • Decreased R{sub ct} values were observed at Pt–TiO{sub 2}/C and Pt–CeO{sub 2}/C. - Abstract: Pt–TiO{sub 2}/C and Pt–CeO{sub 2}/C electrocatalysts were synthesized by solid state reaction of TiO{sub 2}/C and CeO{sub 2}/C powders using intermittent microwave heating, followed by chemical reduction of platinum ions using mixed reducing agents of ethylene glycol and sodium borohydride. The crystal structure, surface morphology and chemical composition of prepared electrocatalysts were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX). The phase angle values of different Pt diffraction planes in Pt–TiO{sub 2}/C and Pt–CeO{sub 2}/C were shifted in the positive direction relative to those in Pt/C. Pt particles with diameter values of 3.06 and 2.78 nm were formed in Pt–TiO{sub 2}/C and Pt–CeO{sub 2}/C, respectively. The electrochemical performance of prepared electrocatalysts was examined using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Pt–CeO{sub 2}/C showed an enhanced oxidation current density when compared to Pt/C. Long time oxidation test at Pt–TiO{sub 2}/C and Pt–CeO{sub 2}/C revealed their improved stability. Lower charge transfer resistance values were estimated at Pt–metal oxide/C electrocatalysts.

  12. Study on Cytochrome P450 2C19 (CYP2C19) Genetic Polymorphism in Qinghai Sala Population%青海撒拉族人群CYP2C19基因多态性研究

    Institute of Scientific and Technical Information of China (English)

    李永芳; 杨梅; 寇毅英

    2012-01-01

    目的 调查青海撒拉族健康人群中CYP2C19基因型及等位基因的分布特征.方法 采用聚合酶链式反应与限制性内切酶片段长度多态性技术(PCR-RFLP),对99例健康撒拉族人群CYP2C19基因多态性进行分析.结果 撒拉族人群的CYP2C19*1、CYP2C19*2和CYP2C19*3 3种等位基因的发生频率分别为56.6%、29.8%和13.6%;CYP2C19*1/*1、CYP2C19* 1/*2、CYP2C19*1/*3、CYP2C19* 2/*2和CYP2C19*2/*3基因型出现频率分别为30.3%、36.4%、16.2%、6.1%和11.1%,CYP2C19* 3/*3的纯合子基因型在本试验中未发现.结论 青海撒拉族人群CYP2C19基因分布明显不同于维族、黎族、傣族、白族、畲族、回族和爱尔兰人,而相似于土族、独龙族、苗族、藏族和汉族.%OBJECTIVE To identify the genotype and allele distribution feature of cytochrome P450 2C19(CYP2C19)in Qinghai Sala population. METHODS The CYP2C19 genotypes of 99 healthy Sala population were detected by polymerase chain reaction-restriction fragment length polymorphism ( PCR-RFLP) technology. RESULTS In Qinghai Sala population, CYP2C19 * 1, CYP2C19 * 2 and CYP2C19 * 3 allele frequencies were 56. 6% ,29. 8% and 13. 6% , respectively; CYP2C19 * 1/ * 1, CYP2C19 * 1/ * 2, CYP2C19 * 1/ * 3, CYP2C19 * 2/ * 2 and CYP2C19 * 2/ * 3 genotype frequencies were 30. 3% , 36.4% , 16. 2% , 6. 1 % and 11. 1 % , respectively ;CYP2C19 * 3 / * 3 homozygous genotype was not found in this study. CONCLUSION The genotype distribution of CYP2C19 in Qinghai Sala population is significantly different to Uigu,Lj,Bai,Dai,She,Hui and Iran population,but similar to Tu.Dulong, Miao, Zang and Han population.

  13. Preparation and characterization of Pt-CeO2/C and Pt-TiO2/C electrocatalysts with improved electrocatalytic activity for methanol oxidation

    Science.gov (United States)

    Hameed, R. M. Abdel; Amin, R. S.; El-Khatib, K. M.; Fetohi, Amani E.

    2016-03-01

    Pt-TiO2/C and Pt-CeO2/C electrocatalysts were synthesized by solid state reaction of TiO2/C and CeO2/C powders using intermittent microwave heating, followed by chemical reduction of platinum ions using mixed reducing agents of ethylene glycol and sodium borohydride. The crystal structure, surface morphology and chemical composition of prepared electrocatalysts were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX). The phase angle values of different Pt diffraction planes in Pt-TiO2/C and Pt-CeO2/C were shifted in the positive direction relative to those in Pt/C. Pt particles with diameter values of 3.06 and 2.78 nm were formed in Pt-TiO2/C and Pt-CeO2/C, respectively. The electrochemical performance of prepared electrocatalysts was examined using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Pt-CeO2/C showed an enhanced oxidation current density when compared to Pt/C. Long time oxidation test at Pt-TiO2/C and Pt-CeO2/C revealed their improved stability. Lower charge transfer resistance values were estimated at Pt-metal oxide/C electrocatalysts.

  14. Structural and functional insights into CYP2C8.3:A genetic polymorph of cytochrome P450 2C8

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The cytochrome P450 (CYP) superfamily plays a key role in the oxidative metabolism of a wide range of exogenous chemicals. CYP2C8 is the principal enzyme responsible for the metabolism of the anti-cancer drug paclitaxel in the human liver, and carries out the oxidative metabolism of at least 5% of clinical drugs. Polymorphisms in CYP2C8 have been closely implicated in individualized medication. CYP2C8.3, a common polymorph of CYP2C8 with dual amino acid substitutions R139K and K399R, is found primarily in Caucasians. In this study, CYP2C8.3 and its wild type (WT) CYP2C8 were expressed in E. coli, and their purified proteins were characterized by UV-visible spectroscopy, mass spectrometry, and circular dichroism. Their thermal stability, substrate binding ability, and metabolic activity against paclitaxel were investigated. The electron transfer kinetics during paclitaxel metabolism by WT CYP2C8 or CYP2C8.3 was studied by stopped-flow kinetics. The results revealed that mutations in CYP2C8.3 did not greatly influence the heme active site or protein thermal stability and paclitaxel binding ability, but the metabolic activity against paclitaxel was significantly depressed to just 11% of that of WT CYP2C8. Electron transfer from CYP reductase to CYP2C8.3 was found to be significantly slower than that to WT CYP2C8 during catalysis, and this might be the main reason for the depressed metabolic activity. Since the polymorph CYP2C8.3 is defective in catalyzing substrates of CYP2C8 in vitro, it might be expected to have important clinical and pathophysiological consequences in homozygous individuals, and this study provides valuable information in this aspect.

  15. C-2-C market relations and word of mouth

    Directory of Open Access Journals (Sweden)

    Grubor Aleksandar

    2015-01-01

    Full Text Available Most market research focuses on business-to-business and business- to-consumer interactions to explain the structure and dynamics of the market. Meanwhile, negligible effort has been invested in researching consumer-to-consumer interaction and its impact on companies’ behaviour and purchase decision-making, which determines business performance. The greatest challenge for marketers at the beginning of the 21st century is this third relationship dimension, consumer-to-consumer interaction: how consumers influence each other’s attitudes, expectations, perceptions, preferences, satisfaction, loyalty, and purchasing decisions, and, importantly, the possibility of incorporating consumers into businesses’ marketing programmes. Despite the existence of a multitude of media and different forms of communication between businesses and the market, such as newspapers, periodicals, billboards, television etc., a considerable portion of information is communicated to consumers informally, mostly in the form of word-of-mouth. The information received by consumers through this communication form - from family and similar individuals -is very often accepted as more reliable and certain than information transmitted through formal communication channels. What is often neglected when studying the phenomenon of word-of-mouth communication is the fact that its efficiency and effect also depend on the type and character of the interaction between the consumers themselves. This paper aims to investigate the extent to which the nature of customer to-customer (C2C interaction influences the effect of word-of-mouth communication.

  16. Phonon linewidths in YNi2B2C

    Indian Academy of Sciences (India)

    L Pintschovius; F Weber; W Reichardt; A Kreyssig; R Heid; D Reznik; O Stockert; K Hradil

    2008-10-01

    Phonons in a metal interact with conduction electrons which give rise to a finite linewidth. In the normal state, this leads to a Lorentzian shape of the phonon line. Density functional theory is able to predict the phonon linewidths as a function of wave vector for each branch of the phonon dispersion. An experimental verification of such predictions is feasible only for compounds with very strong electron–phonon coupling. YN2B2C was chosen as a test example because it is a conventional superconductor with a fairly high c (15.2 K). Inelastic neutron scattering experiments did largely confirm the theoretical predictions. Moreover, they revealed a strong temperature dependence of the linewidths of some phonons with particularly strong electron–phonon coupling which can as yet only qualitatively be accounted for by theory. For such phonons, marked changes of the phonon frequencies and linewidths were observed from room temperature down to 15 K. Further changes were observed on entering into the superconducting state. These changes can, however, not be described simply by a change of the phonon linewidth.

  17. Establishment of a transgenic cell line stably expressing human cytochrome P450 2C18 and identification of a CYP2C18 clone with exon 5 missing

    Institute of Scientific and Technical Information of China (English)

    Jian Zhu-Ge; Ying-Nian Yu; Yu-Li Qian; Xin Li

    2002-01-01

    AIM: The human cytochrome P-450 2C18(CYP2C18) hasbeen characterized. However, the protein has not beenpurified from liver and very little is known regarding thespecific substrate of CYP2C18. In order to study its enzymaticactivity for drug metabolism, the CYP2C18cDNA was clonedand a stable CHL cell line expressing recombinant CYP 2C18was established.METHODS: The human CYP2C18cDNA was amplified withreverse transcription-polymerase chain reaction (RT-PCR)from total RNAs extracted from human liver and cloned intopGEM-T vector. The cDNA segment was identified by DNAsequencing and subcloned into a mammalian expressionvector pREP9. A transgenic cell line was established bytransfecting the recombinant plasmid of pREPg-CYP2C18toChinese hamster lung (CHL) cell. The enzyme activity ofCYP2C18 catalyzing oxidation of tolbutamide tohydroxytolbutamide in postmitochondrial supernant(Sg)fraction of the cell was determined by high performanceliquid chromatography(HPLC).RESULTS: The amino acid sequence predicted from thecloned cDNA segment was identical to that of reported byRomkes et al(GenBank accession number: M61856,J05326).The S9 fraction of the established cell line metabolizestolbutamide to hydroxytolbutamide. Tolbutamide hydroxylaseactivity was found to be 0.509±0.052 μmol.min-1.g-1 S9protein or 8.82±0.90 mol.min-1.mol-1 CYP, but wasundetectable in parental CHL cell. In addition, we haveidentified a CYP2C18cDNA clone with exon 5 missing.CONCLUSION: The cDNA of human CYP2C18 wassuccessfully cloned and a cell line, CHL-CYP2C18, efficientlyexpressing the protein of CYP2C18, was established. Aspliced variant of CYP2C18 with exon 5 missing was identifiedin the cloning process.

  18. Enumeration of NKG2C+ natural killer cells early following allogeneic stem cell transplant recipients does not allow prediction of the occurrence of cytomegalovirus DNAemia.

    Science.gov (United States)

    Giménez, Estela; Solano, Carlos; Amat, Paula; de la Cámara, Rafael; Nieto, José; López, Javier; Garcia-Noblejas, Ana; Navarro, David

    2015-09-01

    The role of Natural killer (NK) cells in the control of cytomegalovirus (CMV) infection in allogeneic stem cell transplant recipients has not been precisely characterized. The current study is aimed at investigating the potential role of NK cells expressing the activating receptor NKG2C in affording protection against the development of CMV DNAemia in patients exhibiting detectable CMV-specific CD8(+) T-cell responses early following transplantation. A total of 61 nonconsecutive patients were included in the study. Peripheral levels of CD56(bright) CD16(-/low) and CD56(dim) CD16(+) NKG2C(+) NK cells and CMV pp65/IE-1-specific IFN-γ-producing CD8(+) T-cells were enumerated by flow cytometry at days +30 and +60 after transplant. Neither the absolute number of NKG2C(+) NK cells, nor that of CD56(bright) CD16(-/low) and CD56(dim) CD16(+) NKG2C(+) NK-cell subsets at day 30 differed significantly between patients with or without subsequent CMV DNAemia. No significant correlation was found between levels of both NKG2C(+) NK-cell populations and the peak CMV DNA load within subsequent episodes of CMV DNAemia. The data indicate that enumeration of NKG2C(+) NK cells early after transplant is unlikely to be helpful in identifying those patients at highest risk of developing CMV DNAemia. Moreover, the data do not support a direct implication of NKG2C(+) NK cells in preventing the development of CMV DNAemia.

  19. Basic Data Report for Drillhole SNL-2 (C-2948)

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Dennis W. [Washington Regulatory and Environmental Services (United States)

    2005-01-19

    SNL-2 was drilled in the northwest quarter of Section 12, T22S, R30E, in eastern Eddy County, New Mexico (Figure 2-1). It is located 574 ft from the north line (fnl) and 859 ft from the west line (fwl) of the section (Figure 2-2). This location places the drillhole east of the Livingston Ridge escarpment among oil wells of the Cabin Lake field. SNL-2 will be used to test hydraulic properties and to monitor ground water levels of the Culebra Dolomite Member of the Permian Rustler Formation. SNL-2 was permitted by the New Mexico State Engineer as C-2948. [Official correspondence regarding permitting and regulatory information must reference this permit number.] In the plan describing the integrated groundwater hydrology program (Sandia National Laboratories, 2003), SNL-2 is also codesignated WTS-1 because the location also satisfies needs for long-term monitoring of water quality and movement in the Culebra Dolomite for RCRA permitting; this program is under the management of Washington TRU Solutions LLC (WTS). In the event that additional wells are established on the SNL-2 drillpad to monitor other hydrological units (e.g., the Magenta Dolomite Member of the Permian Rustler Formation), the current drillhole will likely be referred to as SNL-2C because it is completed in the Culebra. Most drillholes at WIPP have been described after completion to provide an account of the geology, hydrology, or other basic data acquired during drilling and immediate completion of the drillhole. In addition, the basic data report provides an account of the drilling procedures and activities that may be helpful to later interpretations of data or for further work in the drillhole, including test activities and eventual plugging and abandoning activities. The basic data report also provides a convenient means of reporting information about administrative activities necessary to drill the hole.

  20. FCGR2C polymorphisms associate with HIV-1 vaccine protection in RV144 trial

    Science.gov (United States)

    Li, Shuying S.; Gilbert, Peter B.; Tomaras, Georgia D.; Kijak, Gustavo; Ferrari, Guido; Thomas, Rasmi; Pyo, Chul-Woo; Zolla-Pazner, Susan; Montefiori, David; Liao, Hua-Xin; Nabel, Gary; Pinter, Abraham; Evans, David T.; Gottardo, Raphael; Dai, James Y.; Janes, Holly; Morris, Daryl; Fong, Youyi; Edlefsen, Paul T.; Li, Fusheng; Frahm, Nicole; Alpert, Michael D.; Prentice, Heather; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Robb, Merlin L.; O’Connell, Robert J.; Haynes, Barton F.; Michael, Nelson L.; Kim, Jerome H.; McElrath, M. Juliana; Geraghty, Daniel E.

    2014-01-01

    The phase III RV144 HIV-1 vaccine trial estimated vaccine efficacy (VE) to be 31.2%. This trial demonstrated that the presence of HIV-1–specific IgG-binding Abs to envelope (Env) V1V2 inversely correlated with infection risk, while the presence of Env-specific plasma IgA Abs directly correlated with risk of HIV-1 infection. Moreover, Ab-dependent cellular cytotoxicity responses inversely correlated with risk of infection in vaccine recipients with low IgA; therefore, we hypothesized that vaccine-induced Fc receptor–mediated (FcR-mediated) Ab function is indicative of vaccine protection. We sequenced exons and surrounding areas of FcR-encoding genes and found one FCGR2C tag SNP (rs114945036) that associated with VE against HIV-1 subtype CRF01_AE, with lysine at position 169 (169K) in the V2 loop (CRF01_AE 169K). Individuals carrying CC in this SNP had an estimated VE of 15%, while individuals carrying CT or TT exhibited a VE of 91%. Furthermore, the rs114945036 SNP was highly associated with 3 other FCGR2C SNPs (rs138747765, rs78603008, and rs373013207). Env-specific IgG and IgG3 Abs, IgG avidity, and neutralizing Abs inversely correlated with CRF01_AE 169K HIV-1 infection risk in the CT- or TT-carrying vaccine recipients only. These data suggest a potent role of Fc-γ receptors and Fc-mediated Ab function in conferring protection from transmission risk in the RV144 VE trial. PMID:25105367

  1. Changes at the CYP2C locus and disruption of CYP2C8/9 linkage disequilibrium in patients with essential tremor.

    Science.gov (United States)

    Martínez, Carmen; García-Martín, Elena; Alonso-Navarro, Hortensia; Jiménez-Jiménez, Félix Javier; Benito-León, Julián; García-Ferrer, Isabel; Vázquez-Torres, Pilar; Puertas, Inmaculada; Zurdo, José M; López-Alburquerque, Tomás; Agúndez, José A G

    2007-01-01

    To identify low-penetrance genes related to sporadic essential tremor (ET) at the CYP2C locus, located in chromosome 10 q23.33. Leukocytary DNA from 200 ET patients and a control group of 300 unrelated healthy individuals with known CYP2C19 genotypes was studied for common CYP2C8 and CYP2C9 allelic variants by using amplification-restriction analyses. Patients with ET showed the following differences compared with healthy subjects: a 1.6-fold reduction in the frequency for CYP2C8*3 (p=0.006), a 1.35-fold reduction of CYP2C9*2 (p=0.05) and a 1.52-fold reduction in the frequency for CYP2C9*3 (p=0.07). The frequency for patients with ET carrying at least one defective allele was 1.33-fold reduced as compared with healthy subjects (p=0.002). In addition, a disruption of the CYP2C8*3/CYP2C9*2 linkage disequilibrium was observed in ET patients, with a 2.1-fold reduction in the percentage for carriers of the haplotype CYP2C8*3 plus CYP2C9*2 in ET patients (p=0.0001). These findings were independent of gender, age, age of onset, or clinical symptoms. These results suggest that alterations at the CYP2C gene locus are associated with the risk for ET.

  2. Genetic Polymorphism of Cytochrome p450 (2C19) Enzyme in Iranian Turkman Ethnic Group.

    Science.gov (United States)

    Tabari, Robabeh Ghiyas; Marjani, Abdoljalal; Ataby, Ogholdondy Agh; Mansourian, Azad Reza; Samai, Nader Mansour

    2013-07-01

    Different findings indicate that CYP2C plays a clinical role in determining interindividual and interethnic differences in drug effectiveness. The ethnic differences in the frequency of CYP2C19 mutant alleles continue to be a significant study topic. The aim of the present study was to assess the frequency of allelic variants of CYP2C19 in Turkman ethnic groups and compare them with the frequencies in other ethnic populations. The study group included 140 unrelated healthy ethnic Turkman subject referred to the Health Center. Genotyping of CYP2C19 alleles (CYP2C19*1, CYP2C19*2, and CYP2C19*3 alleles) was carried out by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism technique. The allele frequency of CYP2C19*1, CYP2C19*2 and CYP2C19*3 were 56.43%, 23.57% and 20%, respectively. The result also showed that 39.7% of subjects expressed the CYP2C19*1/*1 genotype. While 42.1%, 9.3%, 9.3% and 1.4% expressed CYP2C19*1/*2, CYP2C19*1/*3, CYP2C19*2/*2 and CYP2C19*3/*3 genotypes, respectively. The genotype CYP2C19*2/*3 was not expressed in this study population. The findings suggested that 10% of subjects were poor metabolizers by expressing CYP2C19*2/*2 and CYP2C19*3/*3 genotypes. Fifty one percent of subjects were intermediate metabolizers having CYP2C19*1/*2, CYP2C19*2/*3 and CYP2C19*1/*3 genotypes and 37.86% were found to be extensive metabolizers expressing CYP2C19*1/*1 genotype. The frequency of intermediate metabolizers genotype was high (51%) in Turkman ethnic groups. This study showed that the determined allelic variants of CYP2C19 (CYP2C19*2 and CYP2C19*3 mutations) in Turkman ethnic group are comparable to other populations. These findings could be useful for the clinicians in different country to determine optimal dosage and effectiveness of drugs metabolized by this polymorphic enzyme.

  3. Facile fabrication of transparent TiO2-C@TiO2-C free-standing film for visible-light photocatalytic application

    Science.gov (United States)

    Hu, Luyang; Zhang, Yumin; Zhang, Shanmei; Li, Benxia

    2017-02-01

    A transparent TiO2-C@TiO2-C free-standing film has been synthesized by two-step hydrothermal method and subsequent thermal annealing. The chemical composition and morphological features of the TiO2-C@TiO2-C film are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and N2 adsorption-desorption measurement. The results indicate that the flower-like micro/nanostructure TiO2-C particle layers are intimately inhered to porous TiO2-C fibers. The fibers in film are interconnected each other to form a three-dimensional reticulate microstructure, and exhibit intense visible light absorption and high adsorptivity of dye molecules. The interaction between TiO2 and its surface carbon layer in TiO2-C particle promotes the generation of Ti-O-C bonds, which leads to effective charge transfer. Under visible-light irradiation, TiO2-C@TiO2-C film presents enhanced photocatalytic activity for degradation of methylene blue. This work may provide a new viewpoint for designing transparent photocatalytic film for promising applications in heterogeneous photocatalysis.

  4. 23. Establishment of two transgenic cells stable expression of human cytochrome P450 2C

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: To clone the human cytochrome P450 2C9 (CYP2C9) and CYP2C18 cDNA and establish two transgenic CHL cell line stable expressing human CYP2C9 and CYP2C18. METHODS:Extracting total RNA from human liver tissue, the human CYP2C9 and CYP2C18 cDNA was amplified with reverse transcription polymerase chain reaction (RT-PCR), and cloned into cloning vector pGEM-T. The cDNA segment was identified by DNA sequencing and subcloned into a mammalian expression vector pREP9. Two transgenic cell line were established by transfecting the recombinant vectors of pREP9-CYP2C9 and pREP9-CYP2C18 to Chinese hamster lung cell CHL. The enzyme activity of CYP2C9 and CYP2C18 catalyze tolbutamide to 4-hydroxy tolbutamide in S9 protein of the cells were determinated by HPLC. RESULTS: The sequence of the two cDNA segments cloned, which were 1540 bp and 1671 bp in length, were identical to those reported by Romkes et al(GenBank accession number: M61855, M61856, J05326) in coding amino acids. The S9 fraction of the established cell lines can metabolize tolbutamide to 4-hydroxy tolbutamide, the tolbutamide-4-hydroxylase activity was found to be 0.465±0.109 and 0.509±0.052 nmol*min-1*(mg S9 protein)-1 (n=3), but was not detectable in parental CHL cell. CONCLUSION: The cDNA of CYP2C9 and CYP2C18 were successfolly cloned and cell lines of CHL-CYP2C9 and CHL-CYP2C18 which efficiently expressed the protein of CYP2C9 and CYP2C18 were established.

  5. Enhanced tolerance to low temperature in tobacco by over-expression of a new maize protein phosphatase 2C, ZmPP2C2.

    Science.gov (United States)

    Hu, Xiaoli; Liu, Lixia; Xiao, Beilei; Li, Dapeng; Xing, Xin; Kong, Xiangpei; Li, Dequan

    2010-10-15

    Low temperature is one of the most common environmental stresses affecting plant growth and agricultural production. Serine/threonine protein phosphatases 2C (PP2Cs) have been suggested to play an important role in stress signaling. To identify potential new member of the PP2C proteins in maize and investigate its functions for stress responses, the ZmPP2C2 gene, encoding a new PP2C protein from maize roots, was cloned by RT-PCR and RACE-PCR. Its constitutive expression in roots, stems and leaves of maize seedlings was detected by RNA gel blot, and its regulation in response to cold stress was also examined. To further evaluate its function in the cold stress response, we over-expressed the ZmPP2C2 gene in tobacco under the control of the Cauliflower Mosaic Virus (CaMV) 35S promoter, and assessed a series of physiological changes in wild type and transgenic plants under low temperatures. Compared with wild type tobacco under cold stress, plants that over-expressed ZmPP2C2 displayed higher germination speed and rate, higher antioxidant enzyme (SOD, POD, CAT) activities, with lower cold-induced electrolyte leakage and malondialdehyde (MDA) contents. These results show that over-expression of ZmPP2C2 in tobacco enhanced tolerance to cold stress, suggesting that this new gene, ZmPP2C2, may act as a positive regulator of cold resistance in plants.

  6. Frequencies of two CYP2C19 defective alleles (CYP2C19*2, and *3 among Iranian population in Mazandaran Province

    Directory of Open Access Journals (Sweden)

    Naghi Shahabi-Majd

    2013-02-01

    Conclusion: The result of the present study showed that the two inactive alleles of CYP2C19 accounted for 9.0% of CYP2C19 alleles in our sample versus 8.8 - 40.1% reported in other populations. The frequencies of the studied alleles resulted significant differences between our sample and African and Eastern Asian populations.

  7. Synthesis of furo[3,2-c ]- and pyrano[ 3,2-c ] quinolines by lanthanide triflate catalyzed imino-Diels-Alder reaction

    Institute of Scientific and Technical Information of China (English)

    MA, Yun(马云); QIAN, Chang-Tao(钱长涛); SUN, Jie(孙杰); XIE, Mei-Hua(谢美华)

    2000-01-01

    Imino Diels-Alder reaction of imines witth 2,3-dihydrofuran or 3,4-dihydro-2H-pyran proceeded smothly in the presence of a catalytic amount (0.5 mol %) of ytterbium triflate to afford furo[3,2-c]- and pyrano[3,2-c] quinolines conveniently in high yield.

  8. Session 6: Decomposition of NO over {beta}-Mo{sub 2}C and {beta}-Mo{sub 2}C/Al{sub 2}O{sub 3} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Shengfu, Ji; Chengyue, Li [Beijing University of Chemical Technology, Key Lab. of Science and Technology of Controllable Chemical Reactions, Ministry of Education (China); Shengfu, Ji; Jiaxin, Wang; Jian, Yang; Shuben, Li [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou (China)

    2004-07-01

    In this study, for the first time it has been found that the the bulk {beta}-Mo{sub 2}C and an alumina-supported {beta}-Mo{sub 2}C catalysts are very active for the direct NO decomposition at low temperature. The obtained experimental results are presented. (authors)

  9. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F10 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...

  10. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F15 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...

  11. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F13 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...

  12. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F11 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...

  13. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F08 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...

  14. Data of evolutionary structure change: 1ACLA-2C0QA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ACLA-2C0QA 1ACL 2C0Q A A -----SELLVNTKSGKVMGTRVPVLSSHISAFLGIPFAE...AFGGDPMSVTLFGESAGAASVGMHILSLPSRSLFHRAVLQSGTPNGPWATVSAGEARRRATLLARLVGC---NDTELIACLRTRPAQDLVDHEWHVLPQESIFRFSFV.../ss_2> 0 1ACL A 1ACLA SPRPK-STTVM 1ACL A 1ACLA

  15. Data of evolutionary structure change: 1ACLA-2C0QB [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ACLA-2C0QB 1ACL 2C0Q A B --SELLVNTKSGKVMGTRVPVLSSHISAFLGIPFAEPPV...PMSVTLFGESAGAASVGMHILSLPSRSLFHRAVLQSGTPNGPWATVSAGEARRRATLLARLVGC---NDTELIACLRTRPAQDLVDHEWHVLPQESIFRFSFVPVVDG.../alignment> 0 1ACL A 1ACL.../line> LEU CA 297 1ACL A 1ACL

  16. Data of evolutionary structure change: 1ACLA-2C0PA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ACLA-2C0PA 1ACL 2C0P A A -----SELLVNTKSGKVMGTRVPVLSSHISAFLGIPFAE...AFGGDPMSVTLFGESAGAASVGMHILSLPSRSLFHRAVLQSGTPNGPWATVSAGEARRRATLLARLVGC---NDTELIACLRTRPAQDLVDHEWHVLPQESIFRFSFV...IHHHH - 0 1ACL ...A 1ACLA SPRPK-STTVM 1ACL A 1ACLA

  17. Data of evolutionary structure change: 1ACLA-2C0PB [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ACLA-2C0PB 1ACL 2C0P A B --SELLVNTKSGKVMGTRVPVLSSHISAFLGIPFAEPPV...PMSVTLFGESAGAASVGMHILSLPSRSLFHRAVLQSGTPNGPWATVSAGEARRRATLLARLVGC---NDTELIACLRTRPAQDLVDHEWHVLPQESIFRFSFVPVVDG... 0 1ACL AGLU CA 218 LEU CA 292 1ACL A 1ACLA RNLNCNLNSDEEL

  18. Genetic polymorphisms of CYP2C9%药物代谢酶CYP2C9基因多态性

    Institute of Scientific and Technical Information of China (English)

    李树春; 王桂萍

    2011-01-01

    Human cytochrome P450 2C9 (CYP2C9) accounts for -20% of hepatic total cytochrome P450 content and metabolizes~15% clinical drugs, especially the drugs with a narrow therapeutic index. CYP2C9 is highly polymorphism. Many results have shown that the genetic polymorphisms of CYP2C9 have close relationship with drug metabolism and adverse drug reaction. According to CYP2C9 enzyme activity, CYP2C9 could be classified as extensive metabolizers, intermedia metabolizers and poor metabolizers. The relationship between genetic polymorphisms and phenotypes, have become the prevalent research topics in the area of pharmacogenetics. In this paper, we reviewed the genetic polymorphisms of CYP2C9 in four areas: the mechanism, metabolic phenotype, drug metabolism and disease susceptibility.%细胞色素氧化酶P450 2C9(CYP2C9)是人类肝脏中一类重要的药物代谢酶,负责约15%临床上常用药物(特别是一些治疗安全范围较窄的药物)的代谢.CYP2C9基因具有高度多态性,研究表明该多态性与药物代谢和药物不良反应的产生关系密切.根据CYP2C9突变基因对CYP2C9酶活性的影响结果,一般可将CYP2C9的代谢表型划分为泛代谢型、中间代谢型和弱代谢型.近年来对该基因多态性及其与表型关系的研究再次成为遗传药理学研究的热点.本文从发生机制、代谢表型、药物代谢以及疾病的易感性等四个方面对CYP2C9基因多态性进行综述.

  19. Vortex phase diagram studies in the weakly pinned single crystals of YNi2B2C and LuNi2B2C

    Indian Academy of Sciences (India)

    D Jaiswal-Nagar; D Pal; M R Eskildsen; P C Canfield; H Takeya; S Ramakrishnan; A K Grover

    2006-01-01

    We present a study of magnetization measurements performed on the single crystals of YNi2B2C and LuNi2B2C. For both the compounds, we find flux jumps in magnetisation values in the respective field regions, where the structural transitions in the flux line lattice symmetry have been reported in these systems via the small angle neutron scattering experiments. The magnetisation hysteresis loops and the AC susceptibility measurements show pronounced peak effect as well as second magnetisation peak anomaly for both YNi2B2C and LuNi2B2C. Based on these results, a vortex phase diagram has been constructed for YNi2B2C for $H \\Arrowvert c$ depicting different glassy phases of the vortex matter.

  20. The Roots of Atractylodes macrocephala Koidzumi Enhanced Glucose and Lipid Metabolism in C2C12 Myotubes via Mitochondrial Regulation

    Directory of Open Access Journals (Sweden)

    Mi Young Song

    2015-01-01

    Full Text Available The root of Atractylodes macrocephala Koidzumi (Atractylodis Rhizoma Alba, ARA is a Traditional Korean Medicine and has been commonly used for weight control. Mitochondrial dysfunction appears to be a key contributor to insulin resistance, and therefore mitochondrial targeting drugs represent an important potential strategy for the treatment of insulin resistance and obesity. In this study, the authors investigated the regulatory effects of ARA on mitochondrial function with respect to the stimulation of glucose and lipid metabolism in C2C12 myotubes. After differentiating C2C12 myotubes, cells were treated with or without different concentrations (0.2, 0.5, and 1.0 mg/mL of ARA extract. ARA extract significantly increased the expression of peroxisome proliferator-activated receptor coactivator 1 alpha (PGC1α and the downregulations of its targets, nuclear respiratory factor-1 (NRF-1, transcription factor A (TFAM, and total ATP content in C2C12 myotubes. ARA extract also increased the expressions of PGC1α activator and of the metabolic sensors, AMP-activated protein kinase (AMPK, and acetyl-CoA carboxylase and sirtuin (SIRT 1. Furthermore, it significantly increased glucose uptake by enhancing glucose consumption and subsequently decreased FFA contents and increased carnitine palmitoyltransferase (CPT 1b expression. Our study indicates that ARA has a potential for stimulating mitochondrial function and energy metabolism in muscle.

  1. Insulin sensitizing effects of oligomannuronate-chromium (III complexes in C2C12 skeletal muscle cells.

    Directory of Open Access Journals (Sweden)

    Cui Hao

    Full Text Available BACKGROUND: It was known that the insulin resistance in skeletal muscle is a major pathogenic factor in diabetes mellitus. Therefore prevention of metabolic disorder caused by insulin resistance and improvement of insulin sensitivity are very important for the therapy of type 2 diabetes. In the present study, we investigated the ability of marine oligosaccharides oligomannuronate and its chromium (III complexes from brown alga to enhance insulin sensitivity in C2C12 skeletal muscle cells. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated that oligomannuronate, especially its chromium (III complexes, enhanced insulin-stimulated glucose uptake and increased the mRNA expression of glucose transporter 4 (GLUT4 and insulin receptor (IR after their internalization into C2C12 skeletal muscle cells. Additionally, oligosaccharides treatment also significantly enhanced the phosphorylation of proteins involved in both AMP activated protein kinase (AMPK/acetyl-CoA carboxylase (ACC and phosphoinositide 3-kinase (PI3K/protein kinase B (Akt signaling pathways in C2C12 cells, indicating that the oligosaccharides activated both the insulin signal pathway and AMPK pathways as their mode of action. Moreover, oligosaccharides distributed to the mitochondria after internalization into C2C12 cells and increased the expression of transcriptional regulator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α, carnitine palmitoyl transferase-1 (CPT-1, and phosphorylated acetyl-CoA carboxylase (p-ACC, which suggested that the actions of these oligosaccharides might be associated with mitochondria through increasing energy expenditure. All of these effects of marine oligosaccharides were comparable to that of the established anti-diabetic drug, metformin. In addition, the treatment with oligosaccharides showed less toxicity than that of metformin. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that oligomannuonate and its chromium (III complexes improved

  2. Efficacy of piroxicam for postoperative pain after lower third molar surgery associated with CYP2C8*3 and CYP2C9

    Directory of Open Access Journals (Sweden)

    Calvo AM

    2017-07-01

    Full Text Available Adriana Maria Calvo, Paulo Zupelari-Gonçalves, Thiago José Dionísio, Daniel Thomas Brozoski, Flávio Augusto Faria, Carlos Ferreira Santos Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Brazil Objective: Nonsteroidal anti-inflammatory drugs (NSAIDs are metabolized by the cytochrome P450 enzymes (CYPs, predominantly CYP2C8 and CYP2C9. The aim of this study was to evaluate the possible association of polymorphisms in the CYP2C8*3 and CYP2C9 genes with the clinical efficacy of oral piroxicam (20 mg daily for 4 days after lower third molar surgeries with regard to postoperative pain, swelling, trismus, adverse reactions, need for rescue medication and the volunteer’s overall satisfaction. Materials and methods: For this purpose, 102 volunteers were genotyped for CYP2C8*3 and CYP2C9 polymorphisms. Briefly, genomic DNA was isolated from saliva collected from volunteers subjected to invasive lower third molar surgeries, and the preoperative, intraoperative and postoperative parameters were collected and analyzed. Results: An equal amount of piroxicam sufficiently managed postoperative pain and inflammatory symptoms, with visual analog pain scores typically <40 mm for all genotypes investigated. Furthermore, only two out of 102 volunteers heterozygous for CYP2C8*3 and CYP2C9*3 reported adverse side effects. Conclusion: In general, slow metabolizers of piroxicam, who were volunteers with mutant alleles, were indifferent from normal metabolizers with the wild-type alleles and therefore did not require specialized piroxicam doses to manage postoperative pain and inflammation. Keywords: piroxicam, lower third molar surgery, P450, CYP2C8, CYP2C9, pharmacogenetics 

  3. Molecular genetic analyses of human NKG2C (KLRC2) gene deletion

    NARCIS (Netherlands)

    Miyashita, R; Tsuchiya, N; Hikami, K; Kuroki, K; Fukazawa, T; Bijl, M; Kallenberg, CGM; Hashimoto, H; Yabe, T; Tokunaga, K

    Human NKG2A, NKG2C and NKG2E genes are located on 12p13 in the NK gene complex. We recently identified deletion of NKG2C in a Japanese population. This study was performed to identify the breakpoint, and to examine the association of NKG2C deletion with susceptibility to rheumatoid arthritis and

  4. File list: Oth.Brs.50.TFAP2C.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.50.TFAP2C.AllCell hg19 TFs and others TFAP2C Breast SRX128102,SRX128099,SRX...128100,SRX018833,SRX128101,SRX028632,SRX028633,SRX673728,SRX673727 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Brs.50.TFAP2C.AllCell.bed ...

  5. Identification of an RNA element for specific coordination of A-to-I RNA editing on HTR2C pre-mRNA.

    Science.gov (United States)

    Fukuda, Masatora; Oyama, Yui; Nishitarumizu, Azusa; Omura, Miki; Nose, Kanako; Deshimaru, Masanobu

    2015-10-01

    Adenosine-to-Inosine (A-to-I) RNA editing is an intracellular mechanism in which inosine is specifically substituted against adenosine by the action of adenosine deaminases acting on RNA (ADARs). Serotonin 2C receptor (HTR2C) is encoded through combinatorial A-to-I RNA editing at recoding sites (A - E site) on its pre-mRNA. Although the efficiency of RNA editing at particular sites is known to be critical for modulating the serotonin signaling, the mechanistic details of site-specific editing on HTR2C pre-mRNA are not fully understood. Toward complete understanding of this mechanism, we discovered an RNA element, which coordinates site-specific RNA editing on HTR2C pre-mRNA by an in vitro editing assay and secondary structural analysis of mutant HTR2C RNA fragments. Our results showed that HTR2C pre-mRNA forms a characteristic structure, which was restricted by the internal loop and Watson-Crick base-pair interaction on site E, for intrinsic editing. We suggest that the internal loop would contribute toward adjusting the relative distance and/or geometry between the editing sites and the scaffold for ADAR.

  6. Pressure-induced phase transition and electronic properties of MgB2C2

    Science.gov (United States)

    Zheng, Baobing

    2017-05-01

    Two thermodynamically stable new high-pressure phases of MgB2C2 with P-3m1 and I4 cm structure were uncovered through first principles crystal structure search based on unbiased evolutionary simulations. Compared with oC80-MgB2C2 and oP10-MgB2C2 phases, the theoretically predicted hP5-MgB2C2 and tI20-MgB2C2 phases show an intriguing three-dimensional (3D) sp3 B-C bonded network, instead of original 2D sp2 B-C layers, which has been confirmed with the analysis of their structures and partial densities of states. The phase transitions of oC80-MgB2C2 → oP10-MgB2C2, oP10-MgB2C2 → hP5-MgB2C2, and hP5-MgB2C2 → tI20-MgB2C2 occur at 4.6 GPa, 18.9 GPa, and 247.5 GPa, respectively, which have been determined according to the examination of enthalpy differences curves. Electronic band structure calculations suggest that the oC80-MgB2C2, oP10-MgB2C2 and hP5-MgB2C2 phases are indirect band gap semiconductor, while the tI20-MgB2C2 phase changes to direct band gap semiconductor.

  7. Identification and mechanism of ABA receptor antagonism

    Energy Technology Data Exchange (ETDEWEB)

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric (NU Sinapore); (Van Andel); (UCR)

    2010-11-11

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.

  8. Reduced Toxicity of Shiga Toxin (Stx Type 2c in Mice Compared to Stx2d Is Associated with Instability of Stx2c Holotoxin

    Directory of Open Access Journals (Sweden)

    Joshua C. Bunger

    2015-06-01

    Full Text Available Shiga toxin (Stx is an AB5 ribotoxin made by Stx-producing Escherichia coli (STEC. These organisms cause diarrhea, hemorrhagic colitis and the hemolytic uremic syndrome. STEC make two types of Stxs, Stx1 and/or Stx2. Stx2 has one prototype (a and six subtypes (b–g, but only STEC that make Stx2a, and/or Stx2c, or Stx2d are associated with severe disease. However, Stx2c is about 10-fold less toxic than Stx2d in vivo despite only two amino acid differences in the A subunit at positions 291 and 297. We made mutations at these two sites to create intermediate toxins between Stx2c and Stx2d, and determined the 50% cytotoxic dose on Vero cells before and after heat treatment, and the 50% lethal dose in mice of the toxins. We found that serine 291 was associated with increased toxicity in vivo and that either amino acid change from that in Stx2c to that in Stx2d increased heat stability. We also assessed the secondary structure of Stx2c and Stx2d by circular dichroism (CD spectroscopy. The CD studies suggest that Stx2c has a less-ordered secondary structure than Stx2d. We conclude that both amino acids at positions 291 and 297 in Stx2c contribute to its decreased stability and in vivo toxicity compared to Stx2d.

  9. Genetic variability of CYP2C9*2 and CYP2C9*3 in seven indigenous groups from Mexico.

    Science.gov (United States)

    Sánchez-Pozos, Katy; Rivera-Santiago, Carolina; García-Rodríguez, María Helena; Ortiz-López, María Guadalupe; Peña-Espinoza, Barbara Itzel; Granados-Silvestre, María de Los Ángeles; Llerena, Adrian; Menjívar, Marta

    2016-10-28

    CYP2C9 is one of the major drug metabolizing enzymes, however, little is known about polymorphisms in CYP2C9 gene and pharmacological implications in Mexican indigenous populations. Thus, frequencies of CYP2C9*2 and CYP2C9*3 alleles were evaluated in indigenous groups located in northwest (Cora), center (Mazahua and Teenek), south (Chatino and Mixteco) and southeast (Chontal and Maya) regions Mexico. Allelic discrimination was performed by real-time PCR. CYP2C9*2 allele was found only in Chontal and Maya groups, despite the low contribution of Caucasian component in these populations. CYP2C9*3 allele was present in all populations except in Mazahua, showing a wide genetic variability in the studied populations. Interestingly, we found significant differences between indigenous groups in CYP2C9*3 allele, even in groups located at the same region and belonging to the same linguistic family. These results contribute to laying the pharmacogenetic bases in Mexico, in addition to improving treatment, taking into account the genetic interethnic differences.

  10. First detection of canine parvovirus type 2c in Brazil Detecção de parvovírus canino tipo 2c no Brasil

    OpenAIRE

    André Felipe Streck; Carine Kunzler Souza; Karla Rathje Gonçalves; Luciana Zang; Luciane Dubina Pinto; Cláudio Wageck Canal

    2009-01-01

    The presence of canine parvovirus type 2 (CPV-2), 2a and 2b has been described in Brazil, however, the type 2c had not been reported until now. In the current study, seven out of nine samples from dogs with diarrhea were characterized as CPV-2c, indicating that this virus is already circulating in the Brazilian canine population.No Brasil, a presença do parvovírus canino do tipo 2 (CPV-2), 2a e 2b já havia sido descrita, contudo, ainda não havia sido verificada a presença do tipo 2c. No prese...

  11. Genetic Polymorphism of Cytochrome p450 (2C9) Enzyme in Iranian Baluch Ethnic Group.

    Science.gov (United States)

    Tabari, Mojdeh Ghiyas; Naseri, Fatemeh; Ataby, Maryam Agh; Marjani, Abdoljalal

    2015-01-01

    The aim of the present study is to assess and compare the frequencies of the cytochrome P450 CYP2C9 variations in the Baluch ethnic group (n=110) with other ethnic groups. The allele frequencies of CYP2C9*1, CYP2C9*2 and CYP2C9*3 were 80.90%, 11.82% and 7.27%, respectively. 70.90%, 11.82%, 8.18%, 4.55%, 2.73% and 1.82% of subjects were with CYP2C9*1/*1, CYP2C9*1/*2, CYP2C9*1/*3, CYP2C9*2/*2, CYP2C9*2/*3 and CYP2C9*3/*3 genotypes, respectively. Different mutants may effect on prediction of drug dose requirements in different ethnic groups. Thus, CYP2C9 variants to be determined for findings high risk groups use optimal dosage of drugs metabolized by this polymorphic enzyme.

  12. Docosahexaenoyl ethanolamide improves glucose uptake and alters endocannabinoid system gene expression in proliferating and differentiating C2C12 myoblasts

    Directory of Open Access Journals (Sweden)

    Jeffrey eKim

    2014-03-01

    Full Text Available Skeletal muscle is a major storage site for glycogen and a focus for understanding insulin resistance and type-2-diabetes. New evidence indicates that overactivation of the peripheral endocannabinoid system (ECS in skeletal muscle diminishes insulin sensitivity. Specific n-6 and n-3 polyunsaturated fatty acids (PUFA are precursors for the biosynthesis of ligands that bind to and activate the cannabinoid receptors. The function of the ECS and action of PUFA in skeletal muscle glucose uptake was investigated in proliferating and differentiated C2C12 myoblasts treated with either 25µM of arachidonate (AA or docosahexaenoate (DHA, 25µM of EC [anandamide (AEA, 2-arachidonoylglycerol (2-AG, docosahexaenoylethanolamide (DHEA], 1µM of CB1 antagonist NESS0327, and CB2 antagonist AM630. Compared to the BSA vehicle control cell cultures in both proliferating and differentiated myoblasts those treated with DHEA, the EC derived from the n-3 PUFA DHA, had higher 24 h glucose uptake, while AEA and 2-AG, the EC derived from the n-6 PUFA AA, had lower basal glucose uptake. Adenylyl cyclase mRNA was higher in myoblasts treated with DHA in both proliferating and differentiated states while those treated with AEA or 2-AG were lower compared to the control cell cultures. Western blot and qPCR analysis showed higher expression of the cannabinoid receptors in differentiated myoblasts treated with DHA while the opposite was observed with AA. These findings indicate a compensatory effect of DHA and DHEA compared to AA-derived ligands on the ECS and associated ECS gene expression and higher glucose uptake in myoblasts.Key Words: endocannabinoid system •C2C12 myoblasts cannabinoid receptors glucose uptake gene expression DHEA • polyunsaturated fatty acids

  13. Genotype and allele frequency of CYP2C19*17 in a healthy Iranian population.

    Science.gov (United States)

    Payan, Maryam; Tajik, Nader; Rouini, Mohammad Reza; Ghahremani, Mohammad Hossein

    2015-01-01

    Cytochrome P450 2C19 (CYP2C19) is important in metabolism of wide range of drugs. CYP2C19*17 is a novel variant allele which increases gene transcription and therefore results in ultra-rapid metabolizer phenotype (URM). Distribution of this variant allele has not been well studied worldwide. The aim of present study was to investigate allele and genotype frequencies of CYP2C19*17 in a healthy Iranian population and compare them with other ethnic groups. One hundred eighty healthy unrelated Iranian volunteer took part in this study and were genotyped for CYP2C19 *2, *3, *17 (-3402) by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and CYP2C19*17 (-806) by a nested-PCR assays. The distribution of CYP2C19*17 polymorphism in Iranian population was then compared with other ethnic groups. The CYP2C19*17 allele frequency was 21.6% in Iranian population. Among studied subjects 5.5% were homozygous for CYP2C19*17 and phenotyped as ultra-rapid metabolizers; 28.8% were genotyped as CYP2C19*1*17 (extensive metabolizers) and 3.3% as CYP2C19*2*17 (intermediate metabolizers). The CYP2C19*17 genetic distribution in Iranian population is similar to Middle East or European countries. The high frequency of CYP2C19*17 in Iranian population highlights the importance of this new variant allele in metabolism of CYP2C19 substrates. Thus, future association studies are required to reveal clinical consequence of this genetic polymorphism in carrier individuals.

  14. Interaction of 2C T cells with a hybrid Ld molecule bearing an alpha 3 domain derived from the class IB molecule, Qa-2.

    Science.gov (United States)

    Ungchusri, T; Kettman, J R; Forman, J

    1997-07-01

    The CD8 co-receptor interacts with nonpolymorphic residues on class I molecules. LQ3, a laboratory engineered Ld molecule bearing an alpha 3 domain derived from Q7 (Qa-2), interacts poorly with anti-Ld CD8-dependent T cells. 2C TCR transgenic mice bear a receptor specific for the p2Ca peptide bound to Ld. The authors show that although this peptide interacts with LQ3, LQ3 APC fail to activate splenic 2C CD8 T cells in vitro in the absence of IL-2, while control Ld APC do. The authors have used this receptor ligand pair to examine negative selection within the thymus of (B6 x C3H.Ld)F1 versus (B6 x C3H.LQ3)F1 radiation chimeras repopulated with 2C bone marrow cells. While positive selection occurs normally in (B6 x C3H)F1 chimeras, animals expressing either Ld or LQ3 fail to generate 2C CD8+ cells. Thus, either CD8 is not required for negative selection of this TCR or a weak interaction of CD8 with LQ3 is sufficient. TSA-1, a developmentally regulated marker, was used to follow the process of negative selection. The results show that deletion of 2C T cells does not occur until thymocytes reach the double positive (DP) stage. Furthermore, the authors noted a small population of DP TSA-1hi cells remains, while DP TSA-1int and TSA-1lo cells are absent. These data support the notion that thymocytes either reach a particular stage of development or locate in an appropriate intrathymic compartment before they undergo negative selection.

  15. First detection of canine parvovirus type 2c in Brazil Detecção de parvovírus canino tipo 2c no Brasil

    Directory of Open Access Journals (Sweden)

    André Felipe Streck

    2009-09-01

    Full Text Available The presence of canine parvovirus type 2 (CPV-2, 2a and 2b has been described in Brazil, however, the type 2c had not been reported until now. In the current study, seven out of nine samples from dogs with diarrhea were characterized as CPV-2c, indicating that this virus is already circulating in the Brazilian canine population.No Brasil, a presença do parvovírus canino do tipo 2 (CPV-2, 2a e 2b já havia sido descrita, contudo, ainda não havia sido verificada a presença do tipo 2c. No presente trabalho, sete de nove amostras de cães com diarréia foram caracterizadas como CPV-2c, indicando que este vírus já está circulando na população canina no Brasil.

  16. Establishment of a functional cell line expressing both subunits of H1a and H2c of human hepatocyte surface molecule ASGPR.

    Science.gov (United States)

    Hu, Bin; Yang, Yan; Liu, Jia; Ma, Zhiyong; Huang, Hongping; Liu, Shenpei; Yu, Yuan; Hao, Youhua; Wang, Baoju; Lu, Mengji; Yang, Dongliang

    2010-10-01

    To better understand the effect of a new split variant of human asialoglycoprotein receptor (ASGPR H1b) on ASGPR ligands' binding ability, we established a functional cell line which expresses ASGPR. The full lengths of ASGPRH1a and H2c fragments from human liver were amplified by reverse transcript PCR (RT-PCR) and inserted into eukaryotic expression vector pIRES2EGFP, pCDNA3.1 (Zeo+) respectively. The recombinants were co-transfected into HeLa cells. After selection by using Neocin and Zeocin, a stably transfected cell line was established, which was designated 4-1-6. The transcription and expression of ASGPRH1a and H2c in 4-1-6 were confirmed by RT-PCR, Western blotting and immunofluorescence. The endocytosis function of the artificial "ASGPR" on the surface of 4-1-6 was tested by FACS. It was found that the cell line 4-1-6 could bind ASGPR natural ligand molecular asialo-orosomucoid (ASOR). After the eukaryotic plasmid H1b/pCDNA3.1 (neo) was transfected into cell line 4-1-6, H1b did not down-regulate the ligand binding ability of ASGPR. The eukaryotic expression plasmid H1b/pcDNA3.1 (neo) and H2c/pcDNA3.1 (neo) were co-transfected transiently into Hela cell. Neither single H1b nor H1b and H2c could bind ASOR. In conclusion, a functional cell line of human asialoglycoprotein receptor (ASGPR) which expresses both H1a and H2c stably was established. The new split variant H1b has no effect on ASGPR binding to ASOR. ASGPRH1b alone can't bind to ASOR, it yet can't form functional complex with ASGPRH2c.

  17. Therapeutic Potential of Selectively Targeting the α2C-Adrenoceptor in Cognition, Depression, and Schizophrenia—New Developments and Future Perspective

    Directory of Open Access Journals (Sweden)

    Madeleine Monique Uys

    2017-08-01

    Full Text Available α2A- and α2C-adrenoceptors (ARs are the primary α2-AR subtypes involved in central nervous system (CNS function. These receptors are implicated in the pathophysiology of psychiatric illness, particularly those associated with affective, psychotic, and cognitive symptoms. Indeed, non-selective α2-AR blockade is proposed to contribute toward antidepressant (e.g., mirtazapine and atypical antipsychotic (e.g., clozapine drug action. Both α2C- and α2A-AR share autoreceptor functions to exert negative feedback control on noradrenaline (NA release, with α2C-AR heteroreceptors regulating non-noradrenergic transmission (e.g., serotonin, dopamine. While the α2A-AR is widely distributed throughout the CNS, α2C-AR expression is more restricted, suggesting the possibility of significant differences in how these two receptor subtypes modulate regional neurotransmission. However, the α2C-AR plays a more prominent role during states of low endogenous NA activity, while the α2A-AR is relatively more engaged during states of high noradrenergic tone. Although augmentation of conventional antidepressant and antipsychotic therapy with non-selective α2-AR antagonists may improve therapeutic outcome, animal studies report distinct yet often opposing roles for the α2A- and α2C-ARs on behavioral markers of mood and cognition, implying that non-selective α2-AR antagonism may compromise therapeutic utility both in terms of efficacy and side-effect liability. Recently, several highly selective α2C-AR antagonists have been identified that have allowed deeper investigation into the function and utility of the α2C-AR. ORM-13070 is a useful positron emission tomography ligand, ORM-10921 has demonstrated antipsychotic, antidepressant, and pro-cognitive actions in animals, while ORM-12741 is in clinical development for the treatment of cognitive dysfunction and neuropsychiatric symptoms in Alzheimer’s disease. This review will emphasize the importance and

  18. Permanent uncoupling of male-specific CYP2C11 transcription/translation by perinatal glutamate

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Sarmistha; Das, Rajat Kumar; Giffear, Kelly A.; Shapiro, Bernard H., E-mail: shapirob@vet.upenn.edu

    2015-04-01

    Perinatal exposure of rats and mice to the typically reported 4 mg/g bd wt dose of monosodium glutamate (MSG) results in a complete block in GH secretion as well as obesity, growth retardation and a profound suppression of several cytochrome P450s, including CYP2C11, the predominant male-specific isoform — all irreversible effects. In contrast, we have found that a lower dose of the food additive, 2 mg/g bd wt on alternate days for the first 9 days of life results in a transient neonatal depletion of plasma GH, a subsequent permanent overexpression of CYP2C11 as well as subnormal (mini) GH pulse amplitudes in an otherwise normal adult masculine episodic GH profile. The overexpressed CYP2C11 was characterized by a 250% increase in mRNA, but only a 40 to 50% increase in CYP2C11 protein and its catalytic activity. Using freshly isolated hepatocytes as well as primary cultures exposed to the masculine-like episodic GH profile, we observed normal induction, activation, nuclear translocation and binding to the CYP2C11 promoter of the GH-dependent signal transducers required for CYP2C11 transcription. The disproportionately lower expression levels of CYP2C11 protein were associated with dramatically high expression levels of an aberrant, presumably nontranslated CYP2C11 mRNA, a 200% increase in CYP2C11 ubiquitination and a 70–80% decline in miRNAs associated, at normal levels, with a suppression of CYP2C expression. Whereas the GH-responsiveness of CYP2C7 and CYP2C6 as well as albumin was normal in the MSG-derived hepatocytes, the abnormal expression of CYP2C11 was permanent and irreversible. - Highlights: • A “low” neonatal dose of MSG causes an immediate but transient growth hormone depletion. • Adult circulating growth hormone contains mini pulses in an otherwise male profile. • CYP2C11 is permanently overexpressed > 250%; CYP2C6, 2C7 and albumin remain normal. • The bulk of the overexpressed CYP2C11 mRNA consists of an intron-retained form. • SOCS2

  19. File list: Oth.ALL.05.TFAP2C.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.TFAP2C.AllCell hg19 TFs and others TFAP2C All cell types SRX673727,SRX67...3728,SRX150450,SRX190406,SRX018833,SRX128099,SRX128102,SRX028632,SRX128100,SRX028633,SRX128101 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.05.TFAP2C.AllCell.bed ...

  20. Frequency of CYP2C9 alleles in Koreans and their effects on Iosartan pharmacokinetics

    Institute of Scientific and Technical Information of China (English)

    Jung-woo BAE; Byung-sung KANG; Hye-in LEE; Yun-jeong LEE; Hyun-joo PARK; Ji-hey HA; Hee-jung SHIN; Young-hoon KIM; Han-sung NA; Myeon-woo CHUNG; Soon-young HAN; Chang-ik CHOI; Seung-hee KIM; Choon-gon JANG; Seok-yong LEE; Mi-jeong KIM; Da-hee OH; Seul-ki KEUM; Jung-in PARK; Bo-hye KIM; Hye-kyoung BANG; Sung-gon OH

    2011-01-01

    Aim:CYP2C9 enzyme metabolizes numerous clinically important drugs.The aim of this study is to investigate the frequencies of CYP2C9 genotypes and the effects of selected alleles on Iosartan pharmacokinetics in a large sample of the Korean population.Methods:The CYP2C9 gene was genotyped in 1796 healthy Korean subjects.CYP2C9 alleles (CYP2C9*1,*2,*3,and *13 alleles)were measured using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay and direct sequencing assay.The enzymatic activity of each CYP2C9 genotype was evaluated using losartan as the substrate.Results:The frequencies of CYP2C9*1,*3,and *13 allele were 0.952 (95% confidence interval 0.945-0.959),0.044 (95% CI 0.037-0.051),and 0.005 (95% CI 0.003-0.007),respectively.The frequencies of the CYP2C9*1/*1,*1/*3,*1/*13,and *3/*3 genotypes were 0.904 (95% CI 0.890-0.918),0.085 (95% CI 0.072-0.098),0.009 (95% CI 0.005-0.013),and 0.001 (95% CI 0.000-0.002),respectively.In the pharmacokinetics studies,the AUC0-∞ of losartan in CYP2C9*3/*3 subject was 1.42-fold larger than that in CYP2C9*1/*1 subjects,and the AUC0-∞ of E-3174,a more active metaboiite of Iosartan,in CYP2C9*3/*3 subject was only 12% of that in CYP2C9*1/*1 subjects.Conclusion:The results confirmed the frequencies of CYP2C9 genotypes in a large cohort of Koreans,and detected the CYP2C9*3/*3 genotype.CYP2C9*3/*3 subjects metabolized much less losartan into E-3174 than CYP2C9*1/*1 subjects.

  1. Metabolism of R- and S-Warfarin by CYP2C19 into Four Hydroxywarfarins

    Science.gov (United States)

    Kim, So-Young; Kang, Ji-Yeon; Hartman, Jessica H.; Park, Sun-Ha; Jones, Drew R.; Yun, Chul-Ho; Boysen, Gunnar; Miller, Grover P.

    2013-01-01

    Coumadin (R/S-warfarin) is a highly efficacious and widely used anticoagulant; however, its highly variable metabolism remains an important contributor to uncertainties in therapeutic responses. Pharmacogenetic studies report conflicting findings on the clinical relevance of CYP2C19. A resolution to this controversy is impeded by a lack of detail on the potential role of CYP2C19 in warfarin metabolism. Consequently, we assessed the efficiency of CYP2C19 metabolism of R- and S-warfarin and explored possible contributions in the liver using in vitro methods. Recombinant CYP2C19 metabolized R- and S-warfarin mainly to 6-, 7-, and 8-hydroxywarfarin, while 4′-hydroxywarfarin was a minor metabolite. Overall R-warfarin metabolism was slightly more efficient than that for S-warfarin. Metabolic pathways that produce R-6-, 7-, and 8-hydroxywarfarin in human liver microsomal reactions correlated strongly with CYP2C19 S-mephenytoin hydroxylase activity. Similarly, CYP1A2 activity toward phenacetin correlated with formation of R-6 and 7-hydroxywarfarin such that R-8-hydroxywarfarin seems unique to CYP2C19 and possibly a biomarker. In following, CYP2C19 likely impacts R-warfarin metabolism and patient response to therapy. Intriguingly, CYP2C19 may contribute to S-warfarin metabolism in patients, especially when CYP2C9 activity is compromised due to drug interactions or genetic polymorphisms. PMID:23331088

  2. Conessine Interferes with Oxidative Stress-Induced C2C12 Myoblast Cell Death through Inhibition of Autophagic Flux.

    Directory of Open Access Journals (Sweden)

    Hyunju Kim

    Full Text Available Conessine, a steroidal alkaloid isolated from Holarrhena floribunda, has anti-malarial activity and interacts with the histamine H3 receptor. However, the cellular effects of conessine are poorly understood. Accordingly, we evaluated the involvement of conessine in the regulation of autophagy. We searched natural compounds that modulate autophagy, and conessine was identified as an inhibitor of autophagic flux. Conessine treatment induced the formation of autophagosomes, and p62, an autophagic adapter, accumulated in the autophagosomes. Reactive oxygen species such as hydrogen peroxide (H2O2 result in muscle cell death by inducing excessive autophagic flux. Treatment with conessine inhibited H2O2-induced autophagic flux in C2C12 myoblast cells and also interfered with cell death. Our results indicate that conessine has the potential effect to inhibit muscle cell death by interfering with autophagic flux.

  3. Conessine Interferes with Oxidative Stress-Induced C2C12 Myoblast Cell Death through Inhibition of Autophagic Flux

    Science.gov (United States)

    Kim, Hyunju; Lee, Kang Il; Jang, Minsu; Namkoong, Sim; Park, Rackhyun; Ju, Hyunwoo; Choi, Inho; Oh, Won Keun

    2016-01-01

    Conessine, a steroidal alkaloid isolated from Holarrhena floribunda, has anti-malarial activity and interacts with the histamine H3 receptor. However, the cellular effects of conessine are poorly understood. Accordingly, we evaluated the involvement of conessine in the regulation of autophagy. We searched natural compounds that modulate autophagy, and conessine was identified as an inhibitor of autophagic flux. Conessine treatment induced the formation of autophagosomes, and p62, an autophagic adapter, accumulated in the autophagosomes. Reactive oxygen species such as hydrogen peroxide (H2O2) result in muscle cell death by inducing excessive autophagic flux. Treatment with conessine inhibited H2O2-induced autophagic flux in C2C12 myoblast cells and also interfered with cell death. Our results indicate that conessine has the potential effect to inhibit muscle cell death by interfering with autophagic flux. PMID:27257813

  4. Mechanical stimulation of C2C12 cells increases m-calpain expression, focal adhesion plaque protein degradation

    DEFF Research Database (Denmark)

    Grossi, Alberto; Karlsson, Anders H; Lawson, Moira Ann

    2008-01-01

    reorganization due to the activity of the ubiquitous proteolytic enzymes, calpains, has been reported. Whether there is a link between stretch- or load-induced signaling and calpain expression and activation is not known. Using a magnetic bead stimulation assay and C2C12 mouse myoblasts cell population, we have...... demonstrated that mechanical stimulation via laminin receptors leads to an increase in m-calpain expression, but no increase in the expression of other calpain isoforms. Our study revealed that after a short period of stimulation, m-calpain relocates into focal adhesion complexes and is followed by a breakdown...... of specific focal adhesion proteins previously identified as substrates for this enzyme. We show that stimulation also leads to an increase in calpain activity in these cells. These data support the pivotal role for m-calpain in the control of muscle precursor cell differentiation and thus strengthen the idea...

  5. Interaction between DRD2 C957T polymorphism and an acute psychosocial stressor on reward-related behavioral impulsivity.

    Science.gov (United States)

    White, Melanie J; Lawford, Bruce R; Morris, C Phillip; Young, Ross McD

    2009-05-01

    The dopamine D2 receptor (DRD2) C957T polymorphism CC genotype is associated with decreased striatal binding of DRD2 and executive function and working memory impairments in healthy adults. We investigated the relationships between C957T and acute stress with behavioral phenotypes of impulsivity in 72 young adults randomly allocated to either an acute psychosocial stress or relaxation induction condition. Homozygotes for 957C showed increased reward responsiveness after stress induction. They were also quicker when making immediate choices on the delay discounting task when stressed, compared with homozygotes who were not stressed. No effects were found for response inhibition, a dimension of impulsivity not related to extrinsic rewards. These data suggest that C957T is associated with a reward-related impulsivity endophenotype in response to acute psychosocial stress. Future studies should examine whether the greater sensitivity of 957C homozygotes to the effects of stress is mediated through dopamine release.

  6. CYP2C9 polymorphism in patients with epilepsy: genotypic frequency analyzes andphenytoin adverse reactions correlation

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Twardowschy

    2011-04-01

    Full Text Available OBJECTIVE: CYP2C9 is a major enzyme in human drug metabolism and the polymorphism observed in the corresponding gene may affect therapeutic outcome during treatment. The distribution of variant CYP2C9 alleles and prevalence of phenytoin adverse reactions were hereby investigated in a population of patients diagnosed with epilepsy. METHOD: Allele-specific PCR analysis was carried out in order to determine frequencies of the two most common variant alleles, CYP2C9*2 and CYP2C9*3 in genomic DNA isolated from 100 epileptic patients. We also analyzed the frequency of phenytoin adverse reactions among those different genotypes groups. The data was presented as mean±standard deviation. RESULTS: The mean age at enrollment was 39.6±10.3 years (range, 17-72 years and duration of epilepsy was 26.5±11.9 years (range 3-48 years. The mean age at epilepsy onset was 13.1±12.4 years (range, 1 month-62 years. Frequencies of CYP2C9*1 (84%, CYP2C9*2 (9% and CYP2C9*3 (7% were similar to other published reports. Phenytoin adverse reactions were usually mild and occurred in 15% patients, without correlation with the CYP2C9 polymorphism (p=0.34. CONCLUSION: Our findings indicate an overall similar distribution of the CYP2C9 alleles in a population of patients diagnosed with epilepsy in the South of Brazil, compared to other samples. This sample of phenytoin users showed no drug related adverse reactions and CYP2C9 allele type correlation. The role of CYP2C9 polymorphism influence on phenytoin adverse reaction remains to be determined since some literature evidence and our data found negative results.

  7. Protein O-fucosyltransferase 1 expression impacts myogenic C2C12 cell commitment via the Notch signaling pathway.

    Science.gov (United States)

    Der Vartanian, Audrey; Audfray, Aymeric; Al Jaam, Bilal; Janot, Mathilde; Legardinier, Sébastien; Maftah, Abderrahman; Germot, Agnès

    2015-01-01

    The Notch signaling pathway plays a crucial role in skeletal muscle regeneration in mammals by controlling the transition of satellite cells from quiescence to an activated state, their proliferation, and their commitment toward myotubes or self-renewal. O-fucosylation on Notch receptor epidermal growth factor (EGF)-like repeats is catalyzed by the protein O-fucosyltransferase 1 (Pofut1) and primarily controls Notch interaction with its ligands. To approach the role of O-fucosylation in myogenesis, we analyzed a murine myoblastic C2C12 cell line downregulated for Pofut1 expression by short hairpin RNA (shRNA) inhibition during the time course of differentiation. Knockdown of Pofut1 affected the signaling pathway activation by a reduction of the amount of cleaved Notch intracellular domain and a decrease in downstream Notch target gene expression. Depletion in Pax7(+)/MyoD(-) cells and earlier myogenic program entrance were observed, leading to an increase in myotube quantity with a small number of nuclei, reflecting fusion defects. The rescue of Pofut1 expression in knockdown cells restored Notch signaling activation and a normal course in C2C12 differentiation. Our results establish the critical role of Pofut1 on Notch pathway activation during myogenic differentiation.

  8. A genetic variant of HTR2C may play a role in the manifestation of Tourette syndrome.

    Science.gov (United States)

    Dehning, Sandra; Müller, Norbert; Matz, Judith; Bender, Andreas; Kerle, Irina; Benninghoff, Jens; Musil, Richard; Spellmann, Ilja; Bondy, Brigitta; Möller, Hans-Juergen; Riedel, Michael; Zill, Peter

    2010-02-01

    Gilles de la Tourette syndrome (GTS) (MIM 137580) is a complex neuropsychiatric disorder probably originating from a disturbed interplay of several neurotransmitter systems in the prefrontal-limbic-basal ganglia loop. Polygenetic multifactorial inheritance has been postulated; nevertheless, no confirmed susceptible genes have been identified yet. As neuroimaging studies allude to dopaminergic and serotonergic dysfunction in GTS and serotonin as an important factor for dopamine release, genotyping of common polymorphisms in the serotonergic receptor (HTR1A: C-1019G; HTR2A: T102C, His452Tyr, A-1438G; HTR2C: C-759T, G-697C) and transporter genes (SLC6A4) was carried out in 87 patients with GTS, compared with 311 matched controls. We found a nominally significant association between both polymorphisms in the HTR2C and the GTS, which was more pronounced in male patients. Analysis of the further serotonergic polymorphisms did not reveal any significant result. A modified function of these promoter polymorphisms may contribute to the complex interplay of serotonin and dopamine and then to the manifestation of GTS.

  9. Association of polymorphisms of CYP2C9, CYP2C19, and ABCB1, and activity of P-glycoprotein with response to anti-epileptic drugs

    Directory of Open Access Journals (Sweden)

    S R Taur

    2014-01-01

    Full Text Available Background and Objective: Epilepsy, the most common neurological disorder, has treatment failure rate of 20 to 25%. Inter-individual variability in drug response can be attributed to genetic polymorphism in genes encoding different drug metabolizing enzymes, drug transporters (P-gp, and enzymes involved in sodium channel biosynthesis. The present study attempted to evaluate association of polymorphisms of CYP2C9, CYP2C19, and ABCB1, and P-gp activity with treatment response in patients with epilepsy. Materials and Methods: Patients with epilepsy on phenytoin and/or phenobarbital and/or carbamazepine were categorized into responders and non-responders as per the International League Against Epilepsy. Plasma drug concentration was estimated by high-performance liquid chromatography. P-gp activity was measured by flow cytometry using rhodamine efflux. The polymerase chain reaction (PCR-RFLP was used to study polymorphisms of ABCB1 (C3435T, CYP2C9 (416 C > T, and 1061 A > T, and CYP2C19 (681 G > A and 636 G > A. Results: Of total 117 patients enrolled in this study, genotype data was available for 115 patients. P-gp activity was higher in non-responders (n = 68 compared to responders (n = 47 (P T and 1061 A > T in CYP2C9 or 681 G > A and 636 G > A in CYP2C19 was observed with response phenotype in genotypic analysis. Significant genotypic (odds ratio, OR = 4.5; 95% CI, 1.04 to 20.99 and allelic association (OR = 1.73; 95% CI, 1.02 to 2.95 was observed with ABCB1 C3435T and response phenotype. Conclusions: The response to antiepileptics seems to be modulated by C3435T in ABCB1 or P-gp activity. At present, role of other genetic factors in treatment responsiveness in epilepsy appears limited, warranting analysis in a larger cohort.

  10. Draft genome sequence of the antagonistic rhizosphere bacterium Serratia plymuthica strain PRI-2C.

    Science.gov (United States)

    Garbeva, P; van Elsas, J D; de Boer, W

    2012-08-01

    Serratia plymuthica strain PRI-2C is a rhizosphere bacterial strain with antagonistic activity against different plant pathogens. Here we present the 5.39-Mb (G+C content, 55.67%) draft genome sequence of S. plymuthica strain PRI-2C with the aim of providing insight into the genomic basis of its antagonistic activity.

  11. Structural and electronic studies of metal carbide clusterfullerene Sc2C2@Cs-C72

    Science.gov (United States)

    Feng, Yongqiang; Wang, Taishan; Wu, Jingyi; Feng, Lai; Xiang, Junfeng; Ma, Yihan; Zhang, Zhuxia; Jiang, Li; Shu, Chunying; Wang, Chunru

    2013-07-01

    We present a metal carbide clusterfullerene Sc2C2@Cs(10528)-C72, whose structure has been baffling for many years. A motional endohedral Sc2C2 cluster, special molecule geometry and electronic structure were found in Sc2C2@Cs(10528)-C72. The paramagnetic Sc2C2@Cs-C72 anion radical was successfully prepared by a chemical reduction method and hyperfine couplings in the ESR spectrum were observed.We present a metal carbide clusterfullerene Sc2C2@Cs(10528)-C72, whose structure has been baffling for many years. A motional endohedral Sc2C2 cluster, special molecule geometry and electronic structure were found in Sc2C2@Cs(10528)-C72. The paramagnetic Sc2C2@Cs-C72 anion radical was successfully prepared by a chemical reduction method and hyperfine couplings in the ESR spectrum were observed. Electronic supplementary information (ESI) available: Experimental details, HPLC chromatogram, and DFT calculations. CCDC 917712. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3nr01739g

  12. Genotype of cytochrome-450 2C9 in patients with tuberculosis

    Directory of Open Access Journals (Sweden)

    Kresyun V.I.

    2013-06-01

    Full Text Available The aim of present work was to investigate CYP2С9 polymorphism in the south of Ukraine in TB-patients and comparing with the same data of control group by the example of Odessa region. Gene CYP2С9 polymorphism was studied with the help of PCR (polymerase chain reaction and endonuclease analysis. The blood samples were obtained from patients with new cases of pulmonary TB from Odessa regional antituberculous dispensary and healthy donors in Odessa district station of blood transfusion in the year 2010-12. According to genotype of CYP2C9 of 55 TB-patients, 67,3% persons were the carriers of homozygote wild gene CYP2C9*1/*1, 21,8 and 3,6% - heterozygote genes CYP2C9*1/*2 and CYP2C9*1/*3. Only 7,2% individuals belonged to carriers of slow metabolizers genotype - CYP2C9*2/*2, *2/*3, *3/*3. In general, the mutated alleles CYP2C9*2 and CYP2C9*3 in TB-males were observed by 1,8 times more frequently than among healthy donors of the same gender. TB-patients older than 30 years more frequently had mutated allele CYP2C9*2, almost by 3 times than individuals from control group.

  13. Acute Effects of the Novel Psychoactive Drug 2C-B on Emotions

    Directory of Open Access Journals (Sweden)

    Débora González

    2015-01-01

    Full Text Available Background. 2C-B (Nexus is one of the most widespread novel psychoactive substances. There is limited information about its pharmacological properties, and few studies in humans concern its acute and chronic effects. 2C-B has been classified as a stimulant, hallucinogen, entactogen, and/or empathogen. Objectives. To evaluate the emotional, subjective, and cardiovascular effects of 2C-B. Methods. Twenty healthy recreational 2C-B users (12 women self-administered a 20 mg dose of 2C-B. Evaluations included emotional (IAPS, FERT, and speech, subjective (visual analog scales, ARCI, VESSPA, HRS, and POMS questionnaires, and cardiovascular effects (blood pressure and heart rate. Results. Positive subjective effects predominated with a reduction of anger under the influence of 2C-B. It did, however, increase reactivity to negative emotional stimuli and decrease the ability to recognize expressions of happiness. Augmented emotionality in speech could be appreciated by others. 2C-B induced euphoria and well-being, changes in perceptions, and slight hallucinogenic states. Mild sympathetic actions were observed. Conclusions. The specific profile that 2C-B exerts on emotions suggests its classification as an entactogen with psychedelic properties.

  14. Data of evolutionary structure change: 1MRUA-2C3KA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1MRUA-2C3KA 1MRU 2C3K A A TPSHLSDRYELGEILGFGGMSEVHLARDLRLHRDVAVKV...HHHHHHHHHHHHH HHHH -----HHHH -- 0 1MRU... A 1MRUA GDSVD-ARSDV 1MRU A 1MRU...ILE CA 362 ASP CA 288 SER CA 245 1MRU

  15. Data of evolutionary structure change: 1MRUB-2C3KA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1MRUB-2C3KA 1MRU 2C3K B A MTTPSHLSDRYELGEILGFGGMSEVHLARDLRLHRDVAV...HH ---HHHHHHHHHHHHHH -------HHHH HHHH -- 0 1MRU... B 1MRUB GDSVD-A.../rmsd> 3.5074009895324707 1 1MRU... B 1MRUB

  16. Data of evolutionary structure change: 1CRLA-2C0PA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1CRLA-2C0PA 1CRL 2C0P A A ------APTATLANGDTITGLNAI----INEAFLGIPFA...VYDGRFLAQV---EG--AVLVSMNYRVGTFGFLALPGS-REAPGNVGLLDQRLALQWVQENIAAFGGDPMSVTLFGESAGAASVGMHILS--------LPSRSLFHRA...DTPEALINTGDFQDLQVLVGVVKDEGSYFLVYGVPGFSKDNESLISRAQFLAGVRIGVPQASDLAAEAVVLHYT-----------DWLHPEDPTHLRDAMSAVVGDHNVVCPVAQLAGRLA...ment> 0 1CRL A 1CRLA...>LEU CA 304 1CRL A 1CRLA

  17. La2@C72 : Metal-Mediated Stabilization of a Carbon Cage

    NARCIS (Netherlands)

    Stevenson, S.; Burbank, P.; Harich, K.; Dorn, H.C.; Loosdrecht, P.H.M. van; Vries, M.S. de; Salem, J.R.; Kiang, C.-H.; Johnson, R.D.; Bethune, D.S.

    1998-01-01

    In this study, we report production, isolation, and characterization for the relatively small endohedral metallofullerene, La2@C72. As described, La2@C72 is readily isolated from conventional electric-arc-generated carbon/metal soot. This new species was purified by HPLC chromatography and

  18. 40 CFR Table 2c to Subpart E of... - Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Reactivity Factors for Aromatic Hydrocarbon Solvent Mixtures 2C Table 2C to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL... Hydrocarbon Solvent Mixtures Bin Boiling range (degrees F) Criteria Reactivityfactor 21 280-290...

  19. First-Principle Calculations of Hardness and Melting Point of Mo2C

    Institute of Scientific and Technical Information of China (English)

    X.R.Wang; M.F.Yan; H.T.Chen

    2009-01-01

    This paper has constructed two kinds of atomic and electronic models for hexagonal β-Mo2C and orthorhombic α-Mo2C.The optimized lattice parameters, elastic constant matrixes and overlap population for Mo2C crystal cells have been obtained to realize the characterization of the hardness and melting point of the two structures by the first-principles plane wave pseudo potential method based on the density functional theory. The results reveal that the calculated lattice parameters of the Mo2C crystal cells agree with the experimental and other calculated data.The calculated melting point/hardness are 2715 K/11.38 GPa for β-Mo2C and 2699 K/10.57~12.67 GPa for α-Mo2C, respectively.The calculated results from the density of states (DOS)demonstrate that the hybridization effect between Mo-3d and C-2p states in α-Mo2C crystal cell is much stronger than that in β-Mo2C one.

  20. Hydrogenation of Benzene over Mo2C/Al2O3 Catalyst

    Institute of Scientific and Technical Information of China (English)

    Zhang Jing; Wu Weicheng

    2008-01-01

    The process of benzene hydrogenation over Mo2C catalyst has been studied.Mo2C was the active phase in benzene hydrogenation.The major problem with the metal carbides was their poor stability due to deactivation by carbon deposition.

  1. Crystal Structures and Mechanical Properties of Ca2C at High Pressure

    Directory of Open Access Journals (Sweden)

    Qun Wei

    2016-07-01

    Full Text Available Recently, a new high-pressure semiconductor phase of Ca2C (space group Pnma was successfully synthesized, it has a low-pressure metallic phase (space group C2/m. In this paper, a systematic investigation of the pressure-induced phase transition of Ca2C is studied on the basis of first-principles calculations. The calculated enthalpy reveals that the phase transition which transforms from C2/m-Ca2C to Pnma-Ca2C occurs at 7.8 GPa, and it is a first-order phase transition with a volume drop of 26.7%. The calculated elastic constants show that C2/m-Ca2C is mechanically unstable above 6.4 GPa, indicating that the structural phase transition is due to mechanical instability. Both of the two phases exhibit the elastic anisotropy. The semiconductivity of Pnma-Ca2C and the metallicity of C2/m-Ca2C have been demonstrated by the electronic band structure calculations. The quasi-direct band gap of Pnma-Ca2C at 0 GPa is 0.86 eV. Furthermore, the detailed analysis of the total and partial density of states is performed to show the specific contribution to the Fermi level.

  2. Cytoprotective Effect of Hispidin against Palmitate-Induced Lipotoxicity in C2C12 Myotubes

    Directory of Open Access Journals (Sweden)

    Jun Myoung Park

    2015-03-01

    Full Text Available It is well known that Phellinus linteus, which produces hispidin and its derivatives, possesses antioxidant activities. In this study, we investigated whether hispidin has protective effects on palmitate-induced oxidative stress in C2C12 skeletal muscle cells. Our results showed that palmitate treatment in C2C12 myotubes increased ROS generation and cell death as compared with the control. However, pretreatment of hispidin for 8 h improved the survival of C2C12 myotubes against palmitate-induced oxidative stress via inhibition of intracellular ROS production. Hispidin also inhibited palmitate-induced apoptotic nuclear condensation in C2C12 myotubes. In addition, we found that hispidin can suppress cleavage of caspase-3, expression of Bax, and NF-κB translocation. Therefore, these results suggest that hispidin is capable of protecting C2C12 myotubes against palmitate-induced oxidative stress.

  3. Relative Copy Number Variations of CYP2C19 in South Indian Population

    Directory of Open Access Journals (Sweden)

    Anichavezhi Devendran

    2012-01-01

    Full Text Available CYP2C19 is a polymorphic enzyme involved in the metabolism of clinically important drugs. Genotype-phenotype association studies of CYP2C19 have reported wide ranges in the metabolic ratios of its substrates. These discrepancies could be attributed to the variations in the promoter region and this aspect has been reported recently. The observations in the recent reports on the influence of promoter region variants on the metabolism of CYP2C19 substrates might also have been influenced by the copy number variations of CYP2C19. In this paper, we describe copy number variations of CYP2C19 using real-time polymerase chain reaction by comparative Ct method. No copy number variations were observed in the south Indian population indicating the observed discrepancies in genotype-phenotype association studies might be due to the regulatory region polymorphisms as reported earlier.

  4. High specific surface area Mo2C nanoparticles as an efficient electrocatalyst for hydrogen evolution

    Science.gov (United States)

    Tang, Chaoyun; Sun, Aokui; Xu, Yushuai; Wu, Zhuangzhi; Wang, Dezhi

    2015-11-01

    Mo2C nanoparticles with high specific surface area (120 m2 g-1) are successfully synthesized using a typical and low-cost monosaccharide of glucose via a facile calcination and subsequent reduction process. The HER functions of the obtained Mo2C nanoparticles are investigated and the effect of reduction time in hydrogen is also discussed. It is found that η-MoC can be obtained at 800 °C with a reduction time of 10 min, but the formation of β-Mo2C phase requires more than 20 min. Moreover, the β-Mo2C obtained with a reduction time of 20 min exhibits the best HER activity with a small Tafel slope of 55 mV dec-1 and a large current density of 60 mA cm-2 at -200 mV, which is among the best records over Mo2C-based HER catalysts.

  5. The alpha2C-adrenoceptor modulates GABA release in mouse striatum.

    Science.gov (United States)

    Zhang, Weilie; Ordway, Gregory A

    2003-04-10

    The alpha(2C)-adrenoceptor occurs in high density in the striatum relative to other brain regions, but its biological role in striatal physiology is perplexing because of the paucity of noradrenergic terminals in this region. In this study, mice with a targeted inactivation of the alpha(2C)-adrenoceptor gene (alpha(2C)-KO mice), and genetically related mice (WT mice), were used to study the potential role of the striatal alpha(2C)-adrenoceptor in modulating GABA release. Perfused brain slices were pre-loaded with [(3)H]GABA and were stimulated electrically. In WT mice, the alpha(2)-adrenoceptor agonist, UK14304 (brimonidine), significantly enhanced [(3)H]GABA release from striatal slices, while the alpha(2)-adrenoceptor antagonist, RX821002, alone evoked a significant decrease in [(3)H]GABA release. In alpha(2C)-KO mice, the effect of RX821002 was absent, while UK14304 retained its ability to enhance [(3)H]GABA release. Pharmacological depletion of monoamines in WT mice also abolished the effect of RX821002 on [(3)H]GABA release. In hippocampal slices, RX821002-induced reduction in [(3)H]GABA release was present in WT and alpha(2C)-KO mice. In the presence of tetrodotoxin, RX821002 increased [(3)H]GABA release in striatal slices from both WT and alpha(2C)-KO mice. Together, these data imply that alpha(2A)- and alpha(2C)-adrenoceptors are located on different neurons in the striatum, that alpha(2C)-adrenoceptor-mediated effects on striatal GABA release are mediated by an endogenous catecholamine that could be dopamine, and that the alpha(2C)-adrenoceptor effect of RX821002 does not occur at the GABAergic terminal.

  6. Neutron diffraction studies of magnetic ordering in superconducting ErNi2B2C and TmNi2B2C in an applied magnetic field

    DEFF Research Database (Denmark)

    Toft, Katrine Nørgaard

    along [110], the magnetic structure rotates a small angle of 0.5 degrees away from the symmetrydirection. TmNi2B2C: A magnetic field applied in the [100] direction suppresses the zero field magnetic structure QF = (0.094,0.094,0) (TN = 1.6 K), in favor of the Fermi surface nesting structure QN = (0......The field-induced magnetic structures of ErNi2B2C and TmNi2B2C in are especially interesting because the field suppresses the superconducting order parameter and therefore the magnetic properties can be studied while varying the strength ofsuperconductivity. ErNi2B2C: For magnetic fields along all...... three symmetry directions, the observed magnetic structures have a period corresponding to the Fermi surface nesting structure. The phase diagrams present all the observed magnetic structures.Two results remain unresolved: 1. When applying the magnetic field along [010], the minority domain (QNB = (0,Q...

  7. Role of cytochrome P450 2C8*3 (CYP2C8*3) in paclitaxel metabolism and paclitaxel-induced neurotoxicity

    DEFF Research Database (Denmark)

    Lee, Mi-Young; Apellániz-Ruiz, María; Johansson, Inger

    2015-01-01

    AIM: The CYP2C8*3 allele has been suggested as a risk factor for paclitaxel-induced neuropathy but the data hitherto published are conflicting. MATERIALS & METHODS: In total 435 patients were investigated with respect to maximum neuropathy grade and accumulated paclitaxel dose. The enzymatic prop...

  8. Structural and functional characterization of the coxsackievirus B3 CRE(2C): role of CRE(2C) in negative- and positive-strand RNA synthesis.

    NARCIS (Netherlands)

    Ooij, M.J. van; Vogt, D.A.; Paul, A.; Castro, C.; Kuijpers, J.M.; Kuppeveld, F.J.M. van; Cameron, C.E.; Wimmer, E.; Andino, R.; Melchers, W.J.G.

    2006-01-01

    A stem-loop element located within the 2C-coding region of the coxsackievirus B3 (CVB3) genome has been proposed to function as a cis-acting replication element (CRE). It is shown here that disruption of this structure indeed interfered with viral RNA replication in vivo and abolished uridylylation

  9. Cytochrome P450 2C24: expression, tissue distribution, high-throughput assay, and pharmacological inhibition

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2012-04-01

    Full Text Available Cytochrome P450 (CYP-mediated epoxidation of arachidonic acid (AA contributes to important biological functions, including the pain-relieving responses produced by analgesic drugs. However, the relevant epoxygenase(s remain unidentified. Presently, we describe the tissue distribution, high-throughput assay, and pharmacological characteristics of the rat epoxygenase CYP2C24. Following cloning from male rat liver, recombinant baculovirus containing the C-terminal His-tagged cDNA was constructed and used to express the protein in Spodoptera frugiperda (Sf9 cells. Enzymatic activity was detected with membranes, NADPH regenerating system and CYP reductase, and optimized for high throughput screening by use of the Vivid Blue© BOMCC fluorescence substrate. Quantitative real-time PCR identified CYP2C24 m-RNA in liver, kidney, heart, lung, gonad and brain. Screening of CYP2C24 activity against a panel of inhibitors showed a very strong correlation with activity against the human homologue CYP2C19. In agreement with recent findings on CYP2C19, the epoxygenase blockers PPOH and MS-PPOH inhibited CYP2C24 only weakly, confirming that these drugs are not universal epoxygenase inhibitors. Finally, comparisons of the CYP2C24 inhibitor profile with anti-analgesic activity suggests that this isoform does not contribute to brain analgesic drug action. The present methods and pharmacological data will aid in study of the biological significance of this CYP isoform.

  10. The role of CYP2C9 genetic polymorphism in carvedilol O-desmethylation in vitro.

    Science.gov (United States)

    Pan, Pei-Pei; Weng, Qing-Hua; Zhou, Chen-Jian; Wei, Yan-Li; Wang, Li; Dai, Da-Peng; Cai, Jian-Ping; Hu, Guo-Xin

    2016-02-01

    We aimed at investigating the role of CYP2C9 in carvedilol O-desmethylation and identifying the effect of 35 CYP2C9 allelic variants we found in Chinese Han population on the in vitro metabolism of carvedilol. Recombinant CYP2C9 and CYP2D6 microsomes of the wild type were used to test and verify the enzymes involved in carvedilol O-desmethylation. Recombinant CYP2C9 microsomes of distinguished genotypes were used to characterize the corresponding enzyme activity toward carvedilol. 2-100 μM carvedilol was incubated for 30 min at 37 °C. The products were detected using high-performance liquid chromatography. CYP2C9 plays a certain role in carvedilol metabolism. Compared with wild-type CYP2C9*1, the intrinsic clearance (V max/K m) values of all variants toward carvedilol O-desmethylation were significantly altered. The variants exhibited significantly decreased values (from 30 to 99.8 %) due to increased K m and/or decreased V max values. We conclude that recombinant system could be used to investigate the enzymes involved in drug metabolism and these findings complement the database where CYP2C9 polymorphism interacts with biotransformation of exogenous substances like drugs and toxins.

  11. In silico description of differential enantioselectivity in methoxychlor O-demethylation by CYP2C enzymes.

    Science.gov (United States)

    Bikádi, Zsolt; Hazai, Eszter

    2008-09-01

    Methoxychlor undergoes metabolism by cytochrome P450 (CYP) enzymes forming a chiral mono-phenolic derivative (Mono-OH-M) as main metabolite. In the current study, members of the CYP2C family were examined for their chiral preference in Mono-OH-M formation. CYP2C9 and CYP2C19 possessed high enantioselectivity favoring the formation of S-Mono-OH-M; CYP2C3 showed no enantioselectivity, whereas CYP2C5 slightly favored the formation of R-Mono-OH-M. Molecular modeling calculations were utilized in order to explain the observed differences in chiral preference of CYP2C enzymes. Molecular docking calculations could describe neither the existence of chiral preference in metabolism, nor the enantiomer which is preferentially formed. Molecular dynamic calculations were also carried out and were found to be useful for accurate description of chiral preference in biotransformation of methoxychlor by CYP2C enzymes. An in silico model capable of predicting chiral preference in cytochrome P450 enzymes in general can be developed based on the analysis of the stability and rigidity parameters of interacting partners during molecular dynamic simulation.

  12. MEF2C mediates the effect of microRNA-214 on inhibiting cardiomyocyte hypertrophy

    Institute of Scientific and Technical Information of China (English)

    TANG Chun-mei; ZHU Jie-ning; ZHU Wen-si; LIN Qiu-xiong; HU Zhi-qin; FU Yong-heng; ZHANG Meng-zhen; SHAN Zhi-xin

    2016-01-01

    AIM:To investigate the effect of miR-214 on cardiomyocyte hypertrophy and the expression of the potential target genes . METHODS:A cell model of hypertrophy was established based on angiotensin-Ⅱ( Ang-Ⅱ)-induced neonatal mouse ventricular car-diomyocytes (NMVCs).Dual luciferase reporter assay was performed to verify the interaction between miR-214 and the 3’ UTR of MEF2C.The expression of MEF2C and hypertrophy-related genes at mRNA and protein levels was determined by RT-qPCR and Wes-tern blotting, respectively.RESULTS:The expression of ANP, ACTA1,β-MHC and miR-214 was markedly increased in Ang-Ⅱ-in-duced hypertrophic cardiomyocytes .Dual luciferase reporter assay revealed that miR-214 interacted with the 3’ UTR of MEF2C, and miR-214 was verified to inhibit MEF2C expression at the transcriptional level .The protein expression of MEF2C was markedly in-creased in the hypertrophic cardiomyocytes .Moreover, miR-214 mimic, in parallel to MEF2C siRNA, inhibited the expression of hy-pertrophy-related genes in Ang-Ⅱ-induced NMVCs.CONCLUSION:MEF2C is a target gene of miR-214, which mediates the effect of miR-214 on attenuating cardiomyocyte hypertrophy .

  13. Spatial segregation of BMP/Smad signaling affects osteoblast differentiation in C2C12 cells.

    Directory of Open Access Journals (Sweden)

    Eva Heining

    Full Text Available BACKGROUND: Bone morphogenetic proteins (BMPs are involved in a plethora of cellular processes in embryonic development and adult tissue homeostasis. Signaling specificity is achieved by dynamic processes involving BMP receptor oligomerization and endocytosis. This allows for spatiotemporal control of Smad dependent and non-Smad pathways. In this study, we investigate the spatiotemporal regulation within the BMP-induced Smad transcriptional pathway. METHODOLOGY/PRINCIPAL FINDINGS: Here we discriminate between Smad signaling events that are dynamin-dependent (i.e., require an intact endocytic pathway and dynamin-independent. Inhibition of dynamin-dependent endocytosis in fluorescence microscopy and fractionation studies revealed a delay in Smad1/5/8 phosphorylation and nuclear translocation after BMP-2 stimulation of C2C12 cells. Using whole genome microarray and qPCR analysis, we identified two classes of BMP-2 induced genes that are differentially affected by inhibition of endocytosis. Thus, BMP-2 induced gene expression of Id1, Id3, Dlx2 and Hey1 is endocytosis-dependent, whereas BMP-2 induced expression of Id2, Dlx3, Zbtb2 and Krt16 is endocytosis-independent. Furthermore, we demonstrate that short term inhibition of endocytosis interferes with osteoblast differentiation as measured by alkaline phosphatase (ALP production and qPCR analysis of osteoblast marker gene expression. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that dynamin-dependent endocytosis is crucial for the concise spatial activation of the BMP-2 induced signaling cascade. Inhibition of endocytic processes during BMP-2 stimulation leads to altered Smad1/5/8 signaling kinetics and results in differential target gene expression. We show that interfering with the BMP-2 induced transcriptional network by endocytosis inhibition results in an attenuation of osteoblast differentiation. This implies that selective sensitivity of gene expression to endocytosis provides an

  14. Growth hormone-regulated periportal expression of CYP2C7 in rat liver.

    Science.gov (United States)

    Oinonen, T; Ronis, M; Wigell, T; Tohmo, K; Badger, T; Lindros, K O

    2000-03-01

    Most drug- and steroid-metabolizing cytochrome P450 (CYP) enzymes are expressed in the mammalian liver in a characteristic zonated pattern, with high expression in the downstream perivenous (centrilobular) region. Here, we report that CYP2C7, a member of the rat CYP2 family, is expressed preferentially in the opposite, periportal region. CYP2C7 mRNA, as detected by reverse transcription-polymerase chain reaction, was detected almost exclusively in cell lysates obtained from the periportal region, indicating a very steep acinar gradient. The amount of immunoreactive CYP2C7 protein in periportal cell lysates was also higher than in samples from the perivenous region. This gradient was reversed by hypophysectomy, which markedly and selectively reduced the periportal CYP2C7 protein content. Subsequent growth hormone infusion by osmotic minipumps restored the zonation by selectively increasing the amount of periportal CYP2C7 protein. Although hypophysectomy suppressed CYP2C7 mRNA and growth hormone counteracted it, regulation at this level did not appear to occur in a zone-specific fashion. This indicates that growth hormone-mediated zonal regulation of CYP2C7 protein has additional translational or posttranslational components. Ethanol treatment, which has been shown to affect growth hormone levels, significantly induced CYP2C7 mRNA, but not zone specifically. Our results demonstrate that growth hormone up-regulates the CYP2C7 gene by enhancing the expression of the protein specifically in the periportal liver region. Growth hormone may up-regulate other periportally expressed liver genes in a similar fashion.

  15. Strategies for purifying variants of human rhinovirus 14 2C protein.

    Science.gov (United States)

    Sára, Tomáš; Konrat, Robert; Skern, Tim

    2014-03-01

    The positive strand RNA genome of picornaviruses, including human rhinovirus (HRV), poliovirus (PV) and foot-and-mouth disease virus, is translated immediately into a polyprotein that is cleaved by virally encoded proteinases into 10-13 mature proteins. These include the four proteins required to assemble the viral particle as well as 3D(pol) (the viral RNA polymerase) and 2C, an ATPase and putative helicase. 2C is a protein which is responsible, together with 2B and 3A, for anchoring the replication complexes to membranous structures in the infected cell on which RNA replication takes place. Additionally, expression of 2C and its precursor 2BC in mammalian cells leads to vesicle formation observed in infected cells. 2C is encoded by all picornaviruses; nevertheless, its exact role in viral replication remains unclear. A contributing factor is the absence of structural data for this hydrophobic protein the generation of which has been hampered by an inability to produce soluble and stable material. Here, we compare 2C from several genera and show that the 2C protein has considerable heterogeneity. Using protein structure meta-analysis, we developed models of HRV14 2C that should be useful for mutational analysis. Based on these analyses, we expressed and purified two domains of HRV14 2C using three different protocols and examined the folding by thermal denaturation or (1)H NMR. Both domains were concentrated sufficiently to allow crystal screens or NMR pilot experiments to be performed. This work provides a platform to explore 2C proteins from all picornaviral genera to generate candidates for structural analysis.

  16. Weight Loss After RYGB Is Independent of and Complementary to Serotonin 2C Receptor Signaling in Male Mice

    OpenAIRE

    Carmody, Jill S.; Ahmad, Nadia N.; Machineni, Sriram; Lajoie, Scott; Kaplan, Lee M.

    2015-01-01

    Roux-en-Y gastric bypass (RYGB) typically leads to substantial, long-term weight loss (WL) and diabetes remission, although there is a wide variation in response to RYGB among individual patients. Defining the pathways through which RYGB works should aid in the development of less invasive anti-obesity treatments, whereas identifying weight-regulatory pathways unengaged by RYGB could facilitate the development of therapies that complement the beneficial effects of surgery. Activation of serot...

  17. Tumor Radiation Therapy Creates Therapeutic Vaccine Responses to the Colorectal Cancer Antigen GUCY2C

    Energy Technology Data Exchange (ETDEWEB)

    Witek, Matthew [Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Blomain, Erik S.; Magee, Michael S.; Xiang, Bo; Waldman, Scott A. [Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Snook, Adam E., E-mail: adam.snook@jefferson.edu [Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania (United States)

    2014-04-01

    Purpose: Radiation therapy (RT) is thought to produce clinical responses in cancer patients, not only through direct toxicity to cancer cells and supporting tumor stroma cells, but also through activation of immunologic effectors. More recently, RT has potentiated the local and systemic effects of cancer immunotherapy (IT). However, combination regimens that maximize immunologic and clinical efficacy remain undefined. Methods and Materials: We evaluated the impact of local RT on adenoviral-mediated vaccination against the colorectal cancer antigen GUCY2C (Ad5-GUCY2C) in a murine subcutaneous tumor model using mouse CT26 colon cancer cells (CT26-GUCY2C). Immune responses were assessed by ELISpot, and clinical responses were assessed by tumor size and incidence. Results: The specific sequence of tumor-directed RT preceding Ad5-GUCY2C IT transformed inactive therapeutic Ad5-GUCY2C vaccination into a curative vaccine. GUCY2C-specific T cell responses were amplified (P<.05), tumor eradication was maximized (P<.01), and tumor volumes were minimized (P<.001) in mice whose tumors were irradiated before, compared with after, Ad5-GUCY2C vaccination. The immunologic and antitumor efficacy of Ad5-GUCY2C was amplified comparably by unfractionated (8 Gy × 1), or biologically equivalent doses of fractionated (3.5 Gy × 3), RT. The antitumor effects of sequential RT and IT (RT-IT) depended on expression of GUCY2C by tumor cells and the adenoviral vaccine vector, and tumor volumes were inversely related to the magnitude of GUCY2C-specific T cell responses. Moreover, mice cured of CT26-GUCY2C tumors by RT-IT showed long-lasting antigen-dependent protection, resisting tumors formed by GUCY2C-expressing 4T1 breast cancer cells inoculated 50 days after CT26 cells. Conclusions: Optimal sequencing of RT and IT amplifies antigen-specific local and systemic immune responses, revealing novel acute and long-term therapeutic antitumor protection. These observations underscore the importance

  18. High energy factorization predictions for the charm structure function $F_{2}^{c}$ at HERA

    CERN Document Server

    Munier, S

    1998-01-01

    High energy factorization predictions for F2^c are derived using BFKL descriptions of the proton structure function F2 at HERA. The model parameters are fixed by a fit of F2 at small x. Two different approaches of the non perturbative proton input are shown to correspond to the factorization at the gluon or quark level, respectively. The predictions for F2^c are in agreement with the data within the present error bars. However, the photon wave-function formulation (factorization at quark level) predicts significantly higher F2^c than both gluon factorization and a next-leading order DGLAP model.

  19. Clinically significant CYP2C inhibition by noscapine but not by glucosamine.

    Science.gov (United States)

    Rosenborg, S; Stenberg, M; Otto, S; Ostervall, J; Masquelier, M; Yue, Q-Y; Bertilsson, L; Eliasson, E

    2010-09-01

    Noscapine and glucosamine reportedly interact with warfarin. We investigated the effects of these drugs on various cytochrome P450 (CYP) activity markers. Twelve healthy subjects were phenotyped at baseline and during separate treatments with noscapine and glucosamine. Whereas glucosamine had no significant effect on CYP activity, noscapine caused marked inhibition of CYP2C9 (4.9-fold increase in urinary losartan/E3174 ratio) and CYP2C19 (3.6-fold increase in the plasma omeprazole/5-hydroxyomeprazole ratio). Noscapine-dependent inhibition of CYP2C9 may explain the interaction with warfarin.

  20. Electrochemical Synthesis of Mo2C Catalytical Coatings for the Water-Gas Shift Reaction

    Science.gov (United States)

    Kuznetsov, Sergey A.; Dubrovskiy, Anton R.; Rebrov, Evgeny V.; Schouten, Jaap C.

    2007-11-01

    The electroreduction of CO32- ions on a molybdenum cathode in a NaCl-KCl-Li2CO3 melt was studied by cyclic voltammetry. The electrochemical synthesis of Mo2C on molybdenum substrates has been performed at 1123 K for 7 h with a cathodic current density of 5 mA cm-2. If molybdenum carbide is present as a thin (ca. 500 nm) film on a molybdenum substrate (Mo2C/Mo), its catalytic activity in the water gas-shift reaction is enhanced by at least an order of magnitude compared to that of the bulk Mo2C phase.

  1. ABA Receptors: Past, Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jianjun [Harvard University; Yang, Xiaohan [ORNL; Weston, David [ORNL; Chen, Jay [ORNL

    2011-01-01

    Abscisic acid (ABA) is the key plant stress hormone. Consistent with the earlier studies in support of the presence of both membrane- and cytoplasm-localized ABA receptors, recent studies have identified multiple ABA receptors located in various subcellular locations. These include a chloroplast envelope-localized receptor (the H subunit of Chloroplast Mg2+-chelatase/ABA Receptor), two plasma membrane-localized receptors (G-protein Coupled Receptor 2 and GPCR-type G proteins), and one cytosol/nucleus-localized Pyrabactin Resistant (PYR)/PYR-Like (PYL)/Regulatory Component of ABA Receptor 1 (RCAR). Although the downstream molecular events for most of the identified ABA receptors are currently unknown, one of them, PYR/PYL/RACR was found to directly bind and regulate the activity of a long-known central regulator of ABA signaling, the A-group protein phosphatase 2C (PP2C). Together with the Sucrose Non-fermentation Kinase Subfamily 2 (SnRK2s) protein kinases, a central signaling complex (ABA-PYR-PP2Cs-SnRK2s) that is responsible for ABA signal perception and transduction is supported by abundant genetic, physiological, biochemical and structural evidence. The identification of multiple ABA receptors has advanced our understanding of ABA signal perception and transduction while adding an extra layer of complexity.

  2. Abscisic Acid Receptors: Past, Present and Future

    Institute of Scientific and Technical Information of China (English)

    Jianjun Guo; Xiaohan Yang; David J. Weston; Jin-Gui Chen

    2011-01-01

    Abscisic acid (ABA) is the key plant stress hormone. Consistent with the earlier studies in support of the presence of both membrane- and cytoplasm-localized ABA receptors, recent studies have identified multiple ABA receptors located in various subcellular locations. These include a chloroplast envelope-localized receptor (the H subunit of Chloroplast Mg2+-chelatase/ABA Receptor), two plasma membrane-localized receptors (G-protein Coupled Receptor 2 and GPCR-type G proteins),and one cytosol/nucleus-localized Pyrabactin Resistant (PYR)/PYR-Like (PYL)/Regulatory Component of ABA Receptor 1 (RCAR). Although the downstream molecular events for most of the identified ABA receptors are currently unknown, one of them, PYR/PYL/RCAR was found to directly bind and regulate the activity of a long-known central regulator of ABA signaling, the A-group protein phosphatase 2C (PP2C). Together with the Sucrose Non-fermentation Kinase Subfamily 2 (SnRK2s) protein kinases, a central signaling complex (ABA-PYR-PP2Cs-SnRK2s) that is responsible for ABA signal perception and transduction is supported by abundant genetic, physiological, biochemical and structural evidence. The identification of multiple ABA receptors has advanced our understanding of ABA signal perception and transduction while adding an extra layer of complexity.

  3. CYP2C9 genotype does not affect risk of tobacco-related cancer in the general population

    DEFF Research Database (Denmark)

    Kaur-Knudsen, Diljit; Nordestgaard, B.G.; Bojesen, S.E.

    2010-01-01

    Background: CYP2C9 enzymes are important in the metabolism of procarcinogenic chemicals such as polycyclic aromatic hydrocarbons (PAHs) found in tobacco smoke. Two functional variants in the CYP2C9 gene (CYP2C9*2 and CYP2C9*3) are known to be associated with decreased enzyme activity towards tolb...

  4. Somatostatin receptors

    DEFF Research Database (Denmark)

    Møller, Lars Neisig; Stidsen, Carsten Enggaard; Hartmann, Bolette

    2003-01-01

    therefore been acknowledged to be a third endogenous ligand at SRIF receptors. This review goes through mechanisms of signal transduction, pharmacology, and anatomical distribution of SRIF receptors. Structurally, SRIF receptors belong to the superfamily of G protein-coupled (GPC) receptors, sharing....... The generation of knock-out (KO) mice, intended as a means to define the contributions made by individual receptor subtypes, necessarily marks but an approximation. Furthermore, we must now take into account the stunning complexity of receptor co-operation indicated by the observation of receptor homo......-peptides, receptor agonists and antagonists. Relatively long half lives, as compared to those of the endogenous ligands, have been paramount from the outset. Motivated by theoretical puzzles or the shortcomings of present-day diagnostics and therapy, investigators have also aimed to produce subtype...

  5. Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress.

    Science.gov (United States)

    Sun, Liang; Wang, Yan-Ping; Chen, Pei; Ren, Jie; Ji, Kai; Li, Qian; Li, Ping; Dai, Sheng-Jie; Leng, Ping

    2011-11-01

    In order to characterize the potential transcriptional regulation of core components of abscisic acid (ABA) signal transduction in tomato fruit development and drought stress, eight SlPYL (ABA receptor), seven SlPP2C (type 2C protein phosphatase), and eight SlSnRK2 (subfamily 2 of SNF1-related kinases) full-length cDNA sequences were isolated from the tomato nucleotide database of NCBI GenBank. All SlPYL, SlPP2C, and SlSnRK2 genes obtained are homologous to Arabidopsis AtPYL, AtPP2C, and AtSnRK2 genes, respectively. Based on phylogenetic analysis, SlPYLs and SlSnRK2s were clustered into three subfamilies/subclasses, and all SlPP2Cs belonged to PP2C group A. Within the SlPYL gene family, SlPYL1, SlPYL2, SlPYL3, and SlPYL6 were the major genes involved in the regulation of fruit development. Among them, SlPYL1 and SlPYL2 were expressed at high levels throughout the process of fruit development and ripening; SlPYL3 was strongly expressed at the immature green (IM) and mature green (MG) stages, while SlPYL6 was expressed strongly at the IM and red ripe (RR) stages. Within the SlPP2C gene family, the expression of SlPP2C, SlPP2C3, and SlPP2C4 increased after the MG stage; SlPP2C1 and SlPP2C5 peaked at the B3 stage, while SlPP2C2 and SlPP2C6 changed little during fruit development. Within the SlSnRK2 gene family, the expression of SlSnRK2.2, SlSnRK2.3, SlSnRK2.4, and SlSnRK2C was higher than that of other members during fruit development. Additionally, most SlPYL genes were down-regulated, while most SlPP2C and SlSnRK2 genes were up-regulated by dehydration in tomato leaf.

  6. Graphene-Based Patterning and Differentiation of C2C12 Myoblasts

    DEFF Research Database (Denmark)

    Bajaj, Piyush; Rivera, Jose A; Marchwiany, Daniel

    2014-01-01

    This study aims at generating highly aligned functional myotubes using graphene as the underlying scaffold. Graphene not only supports the growth of C2C12 muscle cells but also enhances its differentiation and leads to spontaneous patterning of myotubes....

  7. Northwestern Hawaiian Islands (NWHI) photo-quadrat monitoring data table : Site number MID P2c

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This spreadsheet summarizes the number of corals photographed along a 26-meter transect line at Underwater Site P2-C at Midway Atoll in the Northwestern Hawaiian...

  8. Possible coexistence of superconductivity and magnetic order in NdPt2B2C

    Indian Academy of Sciences (India)

    S K Dhar; A D Chinchure; E Alleno; C Godart; L C Gupta; R Nagarajan

    2002-05-01

    Coexistence of superconductivity and magnetic order has been one of the exciting aspects of the quaternary borocarbide superconductors. So far, RNi2B2C (R=Tm, Er, Ho and Dy) are the only known magnetic superconductors in this family. Here, we present our resistivity, magnetization and heat capacity studies on NdPt2B2C (nominal composition, NdPt1.5Au0.6B2C and NdPt2.1B2.4C1.2). We find superconductivity in both samples with c,onset∼ 3 K. Bulk magnetic order is found to occur below 1.7 K. We suggest that NdPt2B2C is a possible magnetic superconductor.

  9. Surface Turbulent Fluxes, 1x1 deg Yearly Climatology, Set1 and NCEP V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c Dataset recently produced through a MEaSURES funded project led by Dr. Chung-Lin Shie...

  10. Surface Turbulent Fluxes, 1x1 deg Seasonal Climatology, Set1 and NCEP V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  11. Ultra-rapid processing of refractory carbides; 20 s synthesis of molybdenum carbide, Mo2C.

    Science.gov (United States)

    Vallance, Simon R; Kingman, Sam; Gregory, Duncan H

    2007-02-21

    The microwave synthesis of molybdenum carbide, Mo(2)C, from carbon and either molybdenum metal or the trioxide has been achieved on unprecedented timescales; Ex- and in-situ characterisation reveals key information as to how the reaction proceeds.

  12. Detection of ATP2C1 Gene Mutation in Familial Benign Chronic Pemphigus

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The ATP2C1 gene mutation in one case of familial benign chronic pemphigus was investigated.One patient was diagnosed as familial benign chronic pemphigus by pathology, ultrastructral examination and clinical features. Genomic DNA was extracted from blood samples. Mutation of ATP2C1 gene was detected by polymerase chain reaction (PCR) and DNA sequencing. The results showed that deletion mutation was detected in ATP2C1 gene in this patient, which was 2374delTTTG. No mutation was found in the family members and normal individuals. It was concluded that the 2374delTTTG mutation in ATP2C1 gene was the specific mutation for the clinical phenotype for this patient and was a de novo mutation.

  13. Classification of gradient space of dimension 8 by a reducible sl(2,C)action

    Institute of Scientific and Technical Information of China (English)

    YAU; Stephen; S.-T.

    2009-01-01

    This paper deals with a reducible sl(2,C)action on the formal power series ring.The purpose of this paper is to confirm a special case of the Yau conjecture:Suppose that sl(2,C)acts on the formal power series ring via(1.1).Then I(f)=(li 1 )⊕(il2 )⊕···⊕(lis)modulo some one dimensional sl(2,C)representations where(i)is an irreducible sl(2,C)representation of i dimension and{li1 ,li2 ,...,lis }{ll1,ll2,...,lr}.Unlike classical invariant theory which deals only with irreducible action and 1-dimensional representations,we treat the reducible action and higher dimensional representations successively.

  14. Engineering Macaca fascicularis cytochrome P450 2C20 to reduce animal testing for new drugs.

    Science.gov (United States)

    Rua, Francesco; Sadeghi, Sheila J; Castrignanò, Silvia; Di Nardo, Giovanna; Gilardi, Gianfranco

    2012-12-01

    In order to develop in vitro methods as an alternative to P450 animal testing in the drug discovery process, two main requisites are necessary: 1) gathering of data on animal homologues of the human P450 enzymes, currently very limited, and 2) bypassing the requirement for both the P450 reductase and the expensive cofactor NADPH. In this work, P450 2C20 from Macaca fascicularis, homologue of the human P450 2C8 has been taken as a model system to develop such an alternative in vitro method by two different approaches. In the first approach called "molecular Lego", a soluble self-sufficient chimera was generated by fusing the P450 2C20 domain with the reductase domain of cytochrome P450 BM3 from Bacillus megaterium (P450 2C20/BMR). In the second approach, the need for the redox partner and also NADPH were both obviated by the direct immobilization of the P450 2C20 on glassy carbon and gold electrodes. Both systems were then compared to those obtained from the reconstituted P450 2C20 monooxygenase in presence of the human P450 reductase and NADPH using paclitaxel and amodiaquine, two typical drug substrates of the human P450 2C8. The K(M) values calculated for the 2C20 and 2C20/BMR in solution and for 2C20 immobilized on electrodes modified with gold nanoparticles were 1.9 ± 0.2, 5.9 ± 2.3, 3.0 ± 0.5 μM for paclitaxel and 1.2 ± 0.2, 1.6±0.2 and 1.4 ± 0.2 μM for amodiaquine, respectively. The data obtained not only show that the engineering of M. fascicularis did not affect its catalytic properties but also are consistent with K(M) values measured for the microsomal human P450 2C8 and therefore show the feasibility of developing alternative in vitro animal tests. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Mechanical Stimulation of C2C12 Cells Increases m-Calpain Expression and Activity, Focal Adhesion Plaque Degradation and Cell Fusion

    DEFF Research Database (Denmark)

    Grossi, Alberto; Lawson, Moira Ann; Karlsson, Anders H

    Abstract Mechanical Stimulation of C2C12 Cells Increases m-calpain Expression and Activity, Focal Adhesion Plaque Degradation and Cell Fusion A. Grossi, A. H. Karlsson, M. A. Lawson; Department of Dairy and Food Science, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark...... to the activity of ubiquitous proteolytic enzymes known as calpains has been reported. Whether there is a link between stretch- or load induced signaling and calpain expression and activation is not known. Using a magnetic bead stimulation assay and C2C12 mouse myoblasts cell population, we have demonstrated...... that mechanical stimulation via laminin receptors leads to an increase in m-calpain expression, but no increase in the expression of other calpain isoforms. Our study revealed that after a short period of stimulation, m-calpain relocates into focal adhesion complexes and is followed by a breakdown of specific...

  16. Neutron scattering study of Na2C60 in the pressure-temperature plane

    Science.gov (United States)

    Yildirim, T.; Neumann, D. A.; Trevino, S. F.; Fischer, J. E.

    1999-10-01

    Na2C60 is the only known fulleride with divalent C60 and orientational order (Pa3¯ symmetry). We investigated the phase behavior of Na2C60 for 0200 K and P>1 kbar, the structure is transformed into a low-symmetry distorted phase. Here the peaks at low Q are significantly broadened while the high Q peaks are almost completely smeared out. This transformation is reversible; releasing pressure above 200 K recovers the cubic Pa3¯ structure.

  17. Synthesis and Performance of Tungsten Disulfide/Carbon (WS2/C) Composite as Anode Material

    Science.gov (United States)

    Yuan, Zhengyong; Jiang, Qiang; Feng, Chuanqi; Chen, Xiao; Guo, Zaiping

    2017-09-01

    The precursors of an amorphous WS2/C composite were synthesized by a simple hydrothermal method using Na2WO4·2H2O and CH3CSNH2 as raw materials, polyethylene glycol as dispersant, and glucose as the carbon source. The as-synthesized precursors were further annealed at a low temperature in flowing argon to obtain the final materials (WS2/C composite). The structure and morphology of the WS2/C composite were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy. The electrochemical properties were tested by galvanostatic charge/discharge testing and alternating current (AC) impedance measurements. The results show that the as-prepared amorphous WS2/C composite features both high specific capacity and good cycling performance at room temperature within the potential window from 3.0 V to 0.01 V (versus Li+/Li) at current density of 100 mAg-1. The achieved initial discharge capacity was 1080 mAhg-1, and 786 mAhg-1 was retained after 170 cycles. Furthermore, the amorphous WS2/C composite exhibited a lower charge/discharge plateau than bare WS2, which is more beneficial for use as an anode. The cyclic voltammetry and AC impedance testing further confirmed the change in the plateau and the decrease in the charge transfer resistance in the WS2/C composite. The chemical formation process and the electrochemical mechanism of the WS2/C composite are also presented. The amorphous WS2/C composite can be used as a new anode material for future applications.

  18. Optical and structural characterization of the Co/Mo2C/Y system

    Science.gov (United States)

    Yuan, Yanyan; Le Guen, Karine; André, Jean-Michel; Wang, Zhanshan; Zhu, Jingtao; Mény, Christian; Jonnard, Philippe

    2014-10-01

    We study the thermal behaviour of a tri-layer multilayer, designed by inserting a third material, yttrium, into the previously studied Co/Mo2C system. The system is designed to work at near-normal incidence at the wavelength of 14.1 nm. The theoretical reflectivity of Co-based multilayer (Co/Mo2C/Y system) is improved up to 54% after the addition of yttrium. Two types of multilayers with different orders of yttrium layer are deposited: Co/Mo2C/Y and Co/Y/Mo2C. The samples are annealed up to 600 °C. The multilayers were characterized using hard x-ray and extreme ultraviolet reflectivity, nuclear magnetic resonance (NMR) spectroscopy and x-ray diffraction (XRD). The results show that the reflectivity of the Co/Mo2C/Y multilayer is 27.5% at near normal incidence around 14.6 nm for as-deposited sample, and then it decreases gradually after annealing up to 600 °C. A significant period compression is observed from 300 °C annealing and above. The Co/Y/Mo2C multilayer shows low reflectivity, less than 2.5%. NMR spectra reveal that the pure Co layers are completely mixed with other elements since there is no signal from ferromagnetic Co in the annealing samples of the Co/Mo2C/Y multilayer and all Co/Y/Mo2C samples. Based on the NMR and XRD results, we fit the EUV data for both multilayers with two different models in one period taking into account the formation of the interfacial compounds.

  19. M2C Precipitate in Isothermal Tempering of High Co-Ni Alloy Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The ultra-strength alloy steel with high content of Co and Ni is typical tempering martensite steel, and the secondary hardening is accomplished by the precipitation of fine scale alloy carbides with black-white contrast until peak-hardening. The crystal structure of precipitates was well determined as M2C with hexagonal by micro-beam diffraction. Observing in HREM, M2C carbides were shown coherent with the ferrite matrix completely and have their own structure.

  20. An ANFIS-based on B2C electronic commerce transaction

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Juan, E-mail: linjuanliucaihong@qq.com [Department of Mathematics and Computer Science, Fuqing Branch of Fujian Normal University, Fuqing 350300 (China); Liu, Chenlian, E-mail: chenglian.liu@gmail.com [School of Mathematics and Computer Science, Long Yan University, Longyan 364012 (China); Guo, Yongning, E-mail: guoyn@163.com [Fuqing Branch of Fujian Normal University, Fuqing 350300 (China)

    2014-10-06

    The purpose of this study is to use an adaptive-network-based fuzzy inference system to model a fuzzy logic-based system (FIS) for supporting decision-making process in B2C electronic commerce transaction. Firstly we introduce FIS in B2C electronic commerce transaction and ANFIS. Then we use ANFIS to model FIS with different membership functions(MF). Lastly we give a conclusion.

  1. An ANFIS-based on B2C electronic commerce transaction

    Science.gov (United States)

    Lin, Juan; Liu, Chenlian; Guo, Yongning

    2014-10-01

    The purpose of this study is to use an adaptive-network-based fuzzy inference system to model a fuzzy logic-based system (FIS) for supporting decision-making process in B2C electronic commerce transaction. Firstly we introduce FIS in B2C electronic commerce transaction and ANFIS. Then we use ANFIS to model FIS with different membership functions(MF). Lastly we give a conclusion.

  2. Phylodynamics of hepatitis C virus subtype 2c in the province of Cordoba, Argentina.

    Directory of Open Access Journals (Sweden)

    Viviana E Ré

    Full Text Available The Hepatitis C Virus Genotype 2 subtype 2c (HCV-2c is detected as a low prevalence subtype in many countries, except in Southern Europe and Western Africa. The current epidemiology of HCV in Argentina, a low-prevalence country, shows the expected low prevalence for this subtype. However, this subtype is the most prevalent in the central province of Córdoba. Cruz del Eje (CdE, a small rural city of this province, shows a prevalence for HCV infections of 5%, being 90% of the samples classified as HCV-2c. In other locations of Córdoba Province (OLC with lower prevalence for HCV, HCV-2c was recorded in about 50% of the samples. The phylogenetic analysis of samples from Córdoba Province consistently conformed a monophyletic group with HCV-2c sequences from all the countries where HCV-2c has been sequenced. The phylogeographic analysis showed an overall association between geographical traits and phylogeny, being these associations significant (α = 0.05 for Italy, France, Argentina (places other than Córdoba, Martinique, CdE and OLC. The coalescence analysis for samples from CdE, OLC and France yielded a Time for the Most Common Recent Ancestor of about 140 years, whereas its demographic reconstruction showed a "lag" phase in the viral population until 1880 and then an exponential growth until 1940. These results were also obtained when each geographical area was analyzed separately, suggesting that HCV-2c came into Córdoba province during the migration process, mainly from Europe, which is compatible with the history of Argentina of the early 20th century. This also suggests that the spread of HCV-2c occurred in Europe and South America almost simultaneously, possibly as a result of the advances in medicine technology of the first half of the 20th century.

  3. Heat and charge transport in YNi{sub 2}B{sub 2}C and HoNi{sub 2}B{sub 2}C single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M; Gladun, A; Kreyssig, A [Institut fuer Festkoerperphysik, Technische Universitaet Dresden, D-01062 Dresden (Germany); Wosnitza, J [Hochfeld-Magnetlabor Dresden (HLD), Forschungszentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Petzold, V; Rosner, H [Max-Planck-Institut fuer Chemische Physik fester Stoffe, D-01187 Dresden (Germany); Behr, G; Souptel, D; Mueller, K-H; Drechsler, S-L; Fuchs, G [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung Dresden (IFW), D-01171 Dresden (Germany)], E-mail: M.Schneider@ifw-dresden.de, E-mail: G.Fuchs@ifw-dresden.de

    2008-04-30

    For a systematic investigation of the heat- and charge-transport properties of YNi{sub 2}B{sub 2}C and HoNi{sub 2}B{sub 2}C, single-crystal measurements of the electrical resistivity, the thermal conductivity, and the thermoelectric power were performed on the same samples. For HoNi{sub 2}B{sub 2}C, a local maximum of the Lorenz number at 20 K is evidently connected with the occurrence of magnetic fluctuations well above the ordering temperature. For the in-plane thermal conductivity, a kink near the superconducting transition was observed, consistent with an anisotropic gap or a multiband description. For both investigated borocarbides, the electrical resistance is isotropic. In contrast, the thermal conductivity shows a pronounced anisotropy. The thermoelectric power exhibits a minor anisotropy and can be well described by electron-diffusion and phonon-drag contributions over a wide temperature range. Based on an analysis of full-potential local-orbital calculations, a strong influence of the boron z position on the thermoelectric power has been revealed.

  4. New polymorphisms in human MEF2C gene as potential modifier of hypertrophic cardiomyopathy.

    Science.gov (United States)

    Alonso-Montes, Cristina; Naves-Diaz, Manuel; Fernandez-Martin, Jose Luis; Rodriguez-Reguero, Julian; Moris, Cesar; Coto, Eliecer; Cannata-Andia, Jorge B; Rodriguez, Isabel

    2012-09-01

    Hypertrophic cardiomyopathy is caused by mutations in genes encoding sarcomeric proteins. Its variable phenotype suggests the existence of modifier genes. Myocyte enhancer factor (MEF) 2C could be important in this process given its role as transcriptional regulator of several cardiac genes. Any variant affecting MEF2C expression and/or function may impact on hypertrophic cardiomyopathy clinical manifestations. In this candidate gene approach, we screened 209 Caucasian hypertrophic cardiomyopathy patients and 313 healthy controls for genetic variants in MEF2C gene by single-strand conformation polymorphism analysis and direct sequencing. Functional analyses were performed with transient transfections of luciferase reporter constructions. Three new variants in non-coding exon 1 were found both in patients and controls with similar frequencies. One-way ANOVA analyses showed a greater left ventricular outflow tract obstruction (p = 0.011) in patients with 10C+10C genotype of the c.-450C(8_10) variant. Moreover, one patient was heterozygous for two rare variants simultaneously. This patient presented thicker left ventricular wall than her relatives carrying the same sarcomeric mutation. In vitro assays additionally showed a slightly increased transcriptional activity for both rare MEF2C alleles. In conclusion, our data suggest that 15 bp-deletion and C-insertion in the 5'UTR region of MEF2C could affect hypertrophic cardiomyopathy, potentially by affecting expression of MEF2C and therefore, the expression of their target cardiac proteins that are implicated in the hypertrophic process.

  5. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Hidalgo, Cecilia [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Lavandero, Sergio, E-mail: slavander@uchile.cl [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile)

    2009-10-09

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal {alpha}-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  6. A new 2D monolayer BiXene, M2C (M = Mo, Tc, Os).

    Science.gov (United States)

    Sun, Weiwei; Li, Yunguo; Wang, Baotian; Jiang, Xue; Katsnelson, Mikhail I; Korzhavyi, Pavel; Eriksson, Olle; Di Marco, Igor

    2016-08-25

    The existence of BiXenes, a new family of 2D monolayers, is hereby predicted. Theoretically, BiXenes have 1H symmetry (P6[combining macron]m2) and can be formed from the 4d/5d binary carbides. As the name suggests, they are close relatives of MXenes, which instead have 1T symmetry (P3[combining macron]m1). The newly found BiXenes, as well as some new MXenes, are shown to have formation energies close to that of germanene, which suggests that these materials should be possible to be synthesised. Among them, we illustrate that 1H-Tc2C and 1T-Mo2C are dynamically stable at 0 K, while 1H-Mo2C, 1T-Tc2C, 1H-Os2C, and 1T-Rh2C are likely to be stabilised via strain or temperature. In addition, the nature of the chemical bonding is analysed, emphasizing that the covalency between the transition metal ions and carbon is much stronger in BiXenes than in MXenes. The emergence of BiXenes can not only open up a new era of conducting 2D monolayers, but also provide good candidates for carrier materials aimed at energy storage and spintronic devices that have already been unveiled in MXenes.

  7. Evidence for conventional superconducting behavior in noncentrosymmetric Mo3Al2C

    Science.gov (United States)

    Bonalde, I.; Kim, H.; Prozorov, R.; Rojas, C.; Rogl, P.; Bauer, E.

    2011-10-01

    We report on measurements of the magnetic penetration depth of polycrystalline samples of nonmagnetic Mo3Al2C (Tc=9 K) without inversion symmetry. Two previous specific-heat measurements in this compound found different anomalous peaks in the low-temperature limit. One of these peaks was attributed to the superconducting transition at 3 K of the impurity phase Mo2C. We argue here that the second anomalous peak may be caused by the superconducting transition of SiC:Al at 1.45 K, another impurity phase possibly present in Mo3Al2C samples. The temperature-independent behavior of the penetration depth observed below 0.5 K is taken as firm evidence for the presence of a nodeless superconducting gap in Mo3Al2C. Numerical calculations using the BCS expression for the penetration depth give qualitative support for an isotropic energy gap in Mo3Al2C. The present results suggest that Mo3Al2C is a conventional s-wave superconductor, although two-gap or anisotropic-gap superconductivity cannot be ruled out.

  8. Nickel and potassium co-modified β-Mo2C catalyst for CO conversion

    Institute of Scientific and Technical Information of China (English)

    Minglin Xiang; Juan Zou; Debao Li; Wenhuai Li; Yuhan Sun; Xichun She

    2009-01-01

    Nickel and potassium co-medified β-Mo2C catalysts were prepared and used for CO hydrogenation reaction. The major products over β-Mo2C were C1-C4 hydrocarbons, only few alcohols were obtained. Addition of potassium resulted in remarkable selectivity shift from hydrocarbons to alcohols at the expense of CO conversion over β-Mo2C. Moreover, it was found that potassium enhanced the ability of chain propagation with a higher C2+OH production. Modified by nickel, β-Mo-2C showed a relatively high CO conversion, however, the products were similar to those of pure β-Mo2C. When co-modified by nickel and potassium,β-Mo2C exhibited high activity and selectivity towards mixed alcohols synthesis, and also the whole chain propagation to produce alcohols especially for the stage of C1OH to C2OH was remarkably enhanced. It was concluded that the Ni and K had, to some extent, synergistic effect on CO conversion.

  9. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo{sub 2}C) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ke [Catalysis Center for Energy Innovation, Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 (United States); Yu, Weiting [Chemical Engineering, Columbia University, New York, NY 10027 (United States); Chen, Jingguang G., E-mail: jgchen@columbia.edu [Chemical Engineering, Columbia University, New York, NY 10027 (United States)

    2014-12-30

    Highlights: • Mo{sub 2}C surface can deoxygenate propanal and 1-propanol to produce propene through a similar intermediate (propoxide or η{sup 2}(C,O)-propanal). • Mo{sub 2}C surface can deoxygenate furfural and furfuryl alcohol to make 2-methylfuran through a 2-methylfuran-like intermediate. • The presence of furan ring modifies the selectivity between deoxygenation and hydrogenation/dehydrogenation pathways. - Abstract: The selective deoxygenation of aldehydes and alcohols without cleaving the C-C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo{sub 2}C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η{sup 2}(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo{sub 2}C, as well as the effect of the furan ring on the selective deoxygenation of the C=O and C-OH bonds.

  10. CONTRIBUCION AL PROBLEMA DE MODELACION DE RECEPTORES INSERTOS EN MEMBRANA. DESARROLLO DE MODELOS DE RECEPTORES DE SEROTONINA USANDO NUEVOS METODOS EN MODELACION MOLECULAR

    OpenAIRE

    ZAPATA TORRES, GERALD AMILCAR

    2002-01-01

    En esta tesis, los receptores serotoninérgicos 5-HT2A y 5-HT2c fueron escogidos como modelos de la familia más amplia de receptores insertos en membranas y acoplados a proteínasG con el propósito de estudiar las interacciones ligando-receptor. Utilizando 183p.

  11. Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jakab Stephen

    2008-11-01

    Full Text Available Abstract Background The protein phosphatase 2Cs (PP2Cs from various organisms have been implicated to act as negative modulators of protein kinase pathways involved in diverse environmental stress responses and developmental processes. A genome-wide overview of the PP2C gene family in plants is not yet available. Results A comprehensive computational analysis identified 80 and 78 PP2C genes in Arabidopsis thaliana (AtPP2Cs and Oryza sativa (OsPP2Cs, respectively, which denotes the PP2C gene family as one of the largest families identified in plants. Phylogenic analysis divided PP2Cs in Arabidopsis and rice into 13 and 11 subfamilies, respectively, which are supported by the analyses of gene structures and protein motifs. Comparative analysis between the PP2C genes in Arabidopsis and rice identified common and lineage-specific subfamilies and potential 'gene birth-and-death' events. Gene duplication analysis reveals that whole genome and chromosomal segment duplications mainly contributed to the expansion of both OsPP2Cs and AtPP2Cs, but tandem or local duplication occurred less frequently in Arabidopsis than rice. Some protein motifs are widespread among the PP2C proteins, whereas some other motifs are specific to only one or two subfamilies. Expression pattern analysis suggests that 1 most PP2C genes play functional roles in multiple tissues in both species, 2 the induced expression of most genes in subfamily A by diverse stimuli indicates their primary role in stress tolerance, especially ABA response, and 3 the expression pattern of subfamily D members suggests that they may constitute positive regulators in ABA-mediated signaling pathways. The analyses of putative upstream regulatory elements by two approaches further support the functions of subfamily A in ABA signaling, and provide insights into the shared and different transcriptional regulation machineries in dicots and monocots. Conclusion This comparative genome-wide overview of the PP

  12. Dehydroepiandrosterone activates AMP kinase and regulates GLUT4 and PGC-1α expression in C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yokokawa, Takumi [Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto (Japan); Sato, Koji [Graduate School of Sport & Health Science, Ritsumeikan University, Shiga (Japan); Iwanaka, Nobumasa [The Graduate School of Science and Engineering, Ritsumeikan University, Shiga (Japan); Honda, Hiroki [Graduate School of Sport & Health Science, Ritsumeikan University, Shiga (Japan); Higashida, Kazuhiko [Faculty of Sport Science, Waseda University, Saitama (Japan); Iemitsu, Motoyuki [Graduate School of Sport & Health Science, Ritsumeikan University, Shiga (Japan); Hayashi, Tatsuya [Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto (Japan); Hashimoto, Takeshi, E-mail: thashimo@fc.ritsumei.ac.jp [Graduate School of Sport & Health Science, Ritsumeikan University, Shiga (Japan)

    2015-07-17

    Exercise and caloric restriction (CR) have been reported to have anti-ageing, anti-obesity, and health-promoting effects. Both interventions increase the level of dehydroepiandrosterone (DHEA) in muscle and blood, suggesting that DHEA might partially mediate these effects. In addition, it is thought that either 5′-adenosine monophosphate-activated protein kinase (AMPK) or peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mediates the beneficial effects of exercise and CR. However, the effects of DHEA on AMPK activity and PGC-1α expression remain unclear. Therefore, we explored whether DHEA in myotubes acts as an activator of AMPK and increases PGC-1α. DHEA exposure increased glucose uptake but not the phosphorylation levels of Akt and PKCζ/λ in C2C12 myotubes. In contrast, the phosphorylation levels of AMPK were elevated by DHEA exposure. Finally, we found that DHEA induced the expression of the genes PGC-1α and GLUT4. Our current results might reveal a previously unrecognized physiological role of DHEA; the activation of AMPK and the induction of PGC-1α by DHEA might mediate its anti-obesity and health-promoting effects in living organisms. - Highlights: • We assessed whether dehydroepiandrosterone (DHEA) activates AMPK and PGC-1α. • DHEA exposure increased glucose uptake in C2C12 myotubes. • The phosphorylation levels of AMPK were elevated by DHEA exposure. • DHEA induced the expression of the genes PGC-1α and GLUT4. • AMPK might mediate the anti-obesity and health-promoting effects of DHEA.

  13. Photoelectron spectroscopy of the hydroxymethoxide anion, H2C(OH)O-

    Science.gov (United States)

    Oliveira, Allan M.; Lehman, Julia H.; McCoy, Anne B.; Lineberger, W. Carl

    2016-09-01

    We report the negative ion photoelectron spectroscopy of the hydroxymethoxide anion, H2C(OH)O-. The photoelectron spectra show that 3.49 eV photodetachment produces two distinct electronic states of the neutral hydroxymethoxy radical (H2C(OH)Oṡ). The H2C(OH)Oṡ ground state (X ˜ 2A) photoelectron spectrum exhibits a vibrational progression consisting primarily of the OCO symmetric and asymmetric stretches, the OCO bend, as well as combination bands involving these modes with other, lower frequency modes. A high-resolution photoelectron spectrum aids in the assignment of several vibrational frequencies of the neutral H2C(OH)Oṡ radical, including an experimental determination of the H2C(OH)Oṡ 2ν12 overtone of the H-OCO torsional vibration as 220(10) cm-1. The electron affinity of H2C(OH)Oṡ is determined to be 2.220(2) eV. The low-lying A ˜ 2A excited state is also observed, with a spectrum that peaks ˜0.8 eV above the X ˜ 2A state origin. The A ˜ 2A state photoelectron spectrum is a broad, partially resolved band. Quantum chemical calculations and photoelectron simulations aid in the interpretation of the photoelectron spectra. In addition, the gas phase acidity of methanediol is calculated to be 366(2) kcal mol-1, which results in an OH bond dissociation energy, D0(H2C(OH)O-H), of 104(2) kcal mol-1, using the experimentally determined electron affinity of the hydroxymethoxy radical.

  14. Humanized monoclonal antibody 2C9-cIgG has enhanced efficacy for yellow fever prophylaxis and therapy in an immunocompetent animal model.

    Science.gov (United States)

    Julander, Justin G; Thibodeaux, Brett A; Morrey, John D; Roehrig, John T; Blair, Carol D

    2014-03-01

    Yellow fever virus (YFV) causes significant human disease and mortality in tropical regions of South and Central America and Africa, despite the availability of an effective vaccine. No specific therapy for YF is available. We previously showed that the humanized monoclonal antibody (MAb) 2C9-cIgG provided prophylactic and therapeutic protection from mortality in interferon receptor-deficient strain AG129 mice challenged with YF 17D-204 vaccine. In this study we tested the prophylactic and therapeutic efficacy of this MAb against virulent YFV infection in an immunocompetent hamster model. Intraperitoneal (ip) administration of a single dose of MAb 2C9-cIgG 24h prior to YFV challenge resulted in significantly improved survival rates in animals treated with 380 or 38 μg of MAb compared to untreated animals. Treatment with the higher dose also resulted in significantly improved weight gain and reductions in serum alanine aminotransferase (ALT) and virus titers in serum and liver. Prophylactic treatment with 2C9-cIgG 24h prior to virus challenge prevented the development of a virus-neutralizing antibody (vnAb) response in hamsters. Administration of a single ip dose of 380 μg of 2C9-cIgG as late as 72 h post-YFV challenge also resulted in significant improvement in survival rates. Hamsters treated at 4-72 h post-virus challenge developed a robust vnAb response. Enhanced survival and improvement of various disease parameters in the hamster model when MAb 2C9-cIgG is administered up to 3 days after virus challenge demonstrate the clinical potential of specific antibody therapy for YF.

  15. Overexpression of a novel Arabidopsis PP2C isoform, AtPP2CF1, enhances plant biomass production by increasing inflorescence stem growth

    Science.gov (United States)

    Sugimoto, Hiroki; Kondo, Satoshi; Tanaka, Tomoko; Imamura, Chie; Muramoto, Nobuhiko; Hattori, Etsuko; Ogawa, Ken’ichi; Mitsukawa, Norihiro; Ohto, Chikara

    2014-01-01

    In contrast to mammals, higher plants have evolved to express diverse protein phosphatase 2Cs (PP2Cs). Of all Arabidopsis thaliana PP2Cs, members of PP2C subfamily A, including ABI1, have been shown to be key negative regulators of abscisic acid (ABA) signalling pathways, which regulate plant growth and development as well as tolerance to adverse environmental conditions. However, little is known about the enzymatic and signalling roles of other PP2C subfamilies. Here, we report a novel Arabidopsis subfamily E PP2C gene, At3g05640, designated AtPP2CF1. AtPP2CF1 was dramatically expressed in response to exogenous ABA and was expressed in vascular tissues and guard cells, similar to most subfamily A PP2C genes. In vitro enzymatic activity assays showed that AtPP2CF1 possessed functional PP2C activity. However, yeast two-hybrid analysis revealed that AtPP2CF1 did not interact with PYR/PYL/RCAR receptors or three SnRK2 kinases, which are ABI1-interacting proteins. This was supported by homology-based structural modelling demonstrating that the putative active- and substrate-binding site of AtPP2CF1 differed from that of ABI1. Furthermore, while overexpression of ABI1 in plants induced an ABA-insensitive phenotype, Arabidopsis plants overexpressing AtPP2CF1 (AtPP2CF1oe) were weakly hypersensitive to ABA during seed germination and drought stress. Unexpectedly, AtPP2CF1oe plants also exhibited increased biomass yield, mainly due to accelerated growth of inflorescence stems through the activation of cell proliferation and expansion. Our results provide new insights into the physiological significance of AtPP2CF1 as a candidate gene for plant growth production and for potential application in the sustainable supply of plant biomass. PMID:25038254

  16. CYP2C19 polymorphisms in acute coronary syndrome patients undergoing clopidogrel therapy in Zhengzhou population.

    Science.gov (United States)

    Guo, Y M; Zhao, Z C; Zhang, L; Li, H Z; Li, Z; Sun, H L

    2016-05-25

    The goal of this study was to explore the polymorphisms of CYP2C19 (CYP2C19*2, CYP2C19*3) in patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI) on clopidogrel therapy in Zhengzhou city for guidance on clinical medication and reduction in the incidence of thromboembolic events. Two hundred and thirty-four ACS patients undergoing PCI were included in the study, including 171 males (average age = 64.13 ± 12 years) and 63 females (average age = 67.86 ± 10.20 years). Pyrosequencing analysis detected CYP2C19*2/*3 genotypes, which were divided into wild-type homozygous C/C, mutant heterozygous C/T, and mutant homozygous T/T. This study further explored the relationship between CYP2C19 polymorphisms and clopidogrel resistance in ACS patients. Gene frequencies of C/C, C/T, and T/T for CYP2C19*2 were 39.74, 50, and 10.26%, respectively, while the frequencies of C/C, C/T, and T/T for CYP2C19*3 were 94.02, 5.55, and 0.43%, respectively. According to platelet aggregation analysis, 203 cases normally responded to clopidogrel (86.8%) and 31 cases were clopidogrel resistant (13.2%). There was a correlation between gender and genotype distribution but none between age and genotype. In addition, patients with clopidogrel resistance were treated with ticagrelor antiplatelet therapy instead of clopidogrel, and only 1 case in all patients suffered thrombotic events during a 3-12 month follow-up. In conclusion, CYP2C19*2/*3 polymorphisms may be associated with clopidogrel resistance. Wild-type homozygote and single mutant heterozygote of CYP2C19*2/*3 can be given a normal dose of clopidogrel, while carriers with single mutant homozygote or double mutant heterozygote require ticagrelor antiplatelet therapy as an alternative.

  17. Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution

    Science.gov (United States)

    Gong, Qiufang; Wang, Yu; Hu, Qi; Zhou, Jigang; Feng, Renfei; Duchesne, Paul N.; Zhang, Peng; Chen, Fengjiao; Han, Na; Li, Yafei; Jin, Chuanhong; Li, Yanguang; Lee, Shuit-Tong

    2016-01-01

    Earlier research has been primarily focused on WC as one of the most promising earth-abundant electrocatalysts for hydrogen evolution reaction (HER), whereas the other compound in this carbide family—W2C—has received far less attention. Our theoretical calculations suggest that such a focus is misplaced and W2C is potentially more HER-active than WC. Nevertheless, the preparation of phase pure and sintering-free W2C nanostructures represents a formidable challenge. Here we develop an improved carburization method and successfully prepare ultrasmall and phase-pure W2C nanoparticles. When evaluated for HER electrocatalysis, W2C nanoparticles exhibit a small onset overpotential of 50 mV, a Tafel slope of 45 mV dec−1 and outstanding long-term cycling stability, which are dramatically improved over all existing WC-based materials. In addition, the integration of W2C nanoparticles with p-type Si nanowires enables highly active and sustainable solar-driven hydrogen production. Our results highlight the great potential of this traditionally non-popular material in HER electrocatalysis. PMID:27752046

  18. Re-engineering of CYP2C9 to probe acid-base substrate selectivity.

    Science.gov (United States)

    Tai, Guoying; Dickmann, Leslie J; Matovic, Nicholas; DeVoss, James J; Gillam, Elizabeth M J; Rettie, Allan E

    2008-10-01

    A common feature of many CYP2C9 ligands is their weak acidity. As revealed by crystallography, the structural basis for this behavior involves a charge-pairing interaction between an anionic moiety on the substrate and an active site R108 residue. In the present study we attempted to re-engineer CYP2C9 to better accept basic ligands by charge reversal at this key residue. We expressed and purified the R108E and R108E/D293N mutants and compared their ability with that of native CYP2C9 to interact with (S)-warfarin, diclofenac, pyrene, propranolol, and ibuprofen amine. As expected, the R108E mutant maintained all the native enzyme's pyrene 1-hydroxylation activity, but catalytic activity toward diclofenac and (S)-warfarin was abrogated. In contrast, the double mutant displayed much less selectivity in its behavior toward these control ligands. Neither of the mutants displayed significant enhancement of propranolol metabolism, and all three preparations exhibited a type II (inhibitor) rather than type I (substrate) spectrum with ibuprofen amine, although binding became progressively weaker with the single and double mutants. Collectively, these data underscore the importance of the amino acid at position 108 in the acid substrate selectivity of CYP2C9, highlight the accommodating nature of the CYP2C9 active site, and provide a cautionary note regarding facile re-engineering of these complex cytochrome P450 active sites.

  19. HDAC5 controls MEF2C-driven sclerostin expression in osteocytes.

    Science.gov (United States)

    Wein, Marc N; Spatz, Jordan; Nishimori, Shigeki; Doench, John; Root, David; Babij, Philip; Nagano, Kenichi; Baron, Roland; Brooks, Daniel; Bouxsein, Mary; Pajevic, Paola Divieti; Kronenberg, Henry M

    2015-03-01

    Osteocytes secrete paracrine factors that regulate the balance between bone formation and destruction. Among these molecules, sclerostin (encoded by the gene SOST) inhibits osteoblastic bone formation and is an osteoporosis drug target. The molecular mechanisms underlying SOST expression remain largely unexplored. Here, we report that histone deacetylase 5 (HDAC5) negatively regulates sclerostin levels in osteocytes in vitro and in vivo. HDAC5 shRNA increases, whereas HDAC5 overexpression decreases SOST expression in the novel murine Ocy454 osteocytic cell line. HDAC5 knockout mice show increased levels of SOST mRNA, more sclerostin-positive osteocytes, decreased Wnt activity, low trabecular bone density, and reduced bone formation by osteoblasts. In osteocytes, HDAC5 binds and inhibits the function of MEF2C, a crucial transcription factor for SOST expression. Using chromatin immunoprecipitation, we have mapped endogenous MEF2C binding in the SOST gene to a distal intergenic enhancer 45 kB downstream from the transcription start site. HDAC5 deficiency increases SOST enhancer MEF2C chromatin association and H3K27 acetylation and decreases recruitment of corepressors NCoR and HDAC3. HDAC5 associates with and regulates the transcriptional activity of this enhancer, suggesting direct regulation of SOST gene expression by HDAC5 in osteocytes. Finally, increased sclerostin production achieved by HDAC5 shRNA is abrogated by simultaneous knockdown of MEF2C, indicating that MEF2C is a major target of HDAC5 in osteocytes.

  20. Preparation of the flexible ZrO{sub 2}/C composite nanofibrous film via electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xin; Song, Lixin; Xie, Xueyao; Zhou, Yangyang; Guan, Yingli; Xiong, Jie [Zhejiang Sci-Tech University, College of Materials and Textiles, Hangzhou (China); Zhejiang Sci-Tech University, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Hangzhou (China)

    2016-07-15

    The flexible ZrO{sub 2}/C composite nanofibrous film was fabricated by electrospinning and thermal treatment. Field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffractometer, and Fourier transform infrared spectra were used to characterize the morphology and microstructure of the ZrO{sub 2}/C composite nanofibrous film. The ZrO{sub 2}/C nanofibers exhibited rough surface and had the average diameter of about 230 ± 35 nm. And the ZrO{sub 2} nanoparticles were incorporated in carbon matrix and in tetragonal and monoclinic. The flexural property of the ZrO{sub 2}/C composite nanofibrous film was investigated in detail. The results showed that the flexural property of the nanofibrous film was greatly improved with addition of the ZrO{sub 2} nanoparticles. Besides, with the increase of the contents of ZrO{sub 2} nanoparticles, the flexural modulus of the nanofibrous film decreased, reached a lowest value, and then increased. The lowest flexural modulus of the ZrO{sub 2}/C composite nanofibrous film in precursor concentration of 7.0 wt% was 8.55 ± 0.06 MPa. (orig.)

  1. Quantifying the reliability of image replication studies: the image intraclass correlation coefficient (I2C2).

    Science.gov (United States)

    Shou, H; Eloyan, A; Lee, S; Zipunnikov, V; Crainiceanu, A N; Nebel, N B; Caffo, B; Lindquist, M A; Crainiceanu, C M

    2013-12-01

    This article proposes the image intraclass correlation (I2C2) coefficient as a global measure of reliability for imaging studies. The I2C2 generalizes the classic intraclass correlation (ICC) coefficient to the case when the data of interest are images, thereby providing a measure that is both intuitive and convenient. Drawing a connection with classical measurement error models for replication experiments, the I2C2 can be computed quickly, even in high-dimensional imaging studies. A nonparametric bootstrap procedure is introduced to quantify the variability of the I2C2 estimator. Furthermore, a Monte Carlo permutation is utilized to test reproducibility versus a zero I2C2, representing complete lack of reproducibility. Methodologies are applied to three replication studies arising from different brain imaging modalities and settings: regional analysis of volumes in normalized space imaging for characterizing brain morphology, seed-voxel brain activation maps based on resting-state functional magnetic resonance imaging (fMRI), and fractional anisotropy in an area surrounding the corpus callosum via diffusion tensor imaging. Notably, resting-state fMRI brain activation maps are found to have low reliability, ranging from .2 to .4. Software and data are available to provide easy access to the proposed methods.

  2. Notch pathway activation contributes to inhibition of C2C12 myoblast differentiation by ethanol.

    Directory of Open Access Journals (Sweden)

    Michelle A Arya

    Full Text Available The loss of muscle mass in alcoholic myopathy may reflect alcohol inhibition of myogenic cell differentiation into myotubes. Here, using a high content imaging system we show that ethanol inhibits C2C12 myoblast differentiation by reducing myogenic fusion, creating smaller and less complex myotubes compared with controls. Ethanol administration during C2C12 differentiation reduced MyoD and myogenin expression, and microarray analysis identified ethanol activation of the Notch signaling pathway target genes Hes1 and Hey1. A reporter plasmid regulated by the Hes1 proximal promoter was activated by alcohol treatment in C2C12 cells. Treatment of differentiating C2C12 cells with a gamma secretase inhibitor (GSI abrogated induction of Hes1. On a morphological level GSI treatment completely rescued myogenic fusion defects and partially restored other myotube parameters in response to alcohol. We conclude that alcohol inhibits C2C12 myoblast differentiation and the inhibition of myogenic fusion is mediated by Notch pathway activation.

  3. Canine parvovirus type 2c infection in a kitten associated with intracranial abscess and convulsions.

    Science.gov (United States)

    Decaro, Nicola; Desario, Costantina; Amorisco, Francesca; Losurdo, Michele; Colaianni, Maria Loredana; Greco, Maria Fiorella; Buonavoglia, Canio

    2011-04-01

    A case of canine parvovirus type 2c (CPV-2c) infection in a 3-month-old feral kitten with a cerebral abscess and neurological disease is reported. The cat displayed ataxia and convulsions together with signs of gastroenteritis and profound alteration of the total and differential white blood cell counts. A parvovirus strain was detected by a TaqMan assay in the blood and faeces of the affected kitten, which was characterised as CPV by means of molecular assays but did not react with any of the CPV type-specific probes. By sequence and phylogenetic analyses of the VP2-protein gene, the CPV-2c strain displayed a non-coding mutation in the probe-binding region. Although the role of CPV-2c in this particular case is unclear, it is possible that it predisposed the kitten to the clinical signs seen. Continuous surveillance is needed to monitor future spreading of this CPV-2c mutant, and any associated clinical signs, in the dog and cat population.

  4. Lrrc75b is a novel negative regulator of C2C12 myogenic differentiation

    Science.gov (United States)

    Zhong, Yuechun; Zou, Liyi; Wang, Zonggui; Pan, Yaqiong; Dai, Zhong; Liu, Xinguang; Cui, Liao; Zuo, Changqing

    2016-01-01

    Many transcription factors and signaling molecules involved in the guidance of myogenic differentiation have been investigated in previous studies. However, the precise molecular mechanisms of myogenic differentiation remain largely unknown. In the present study, by performing a meta-analysis of C2C12 myogenic differentiation microarray data, we found that leucine-rich repeat-containing 75B (Lrrc75b), also known as AI646023, a molecule of unknown biological function, was downregulated during C2C12 myogenic differentiation. The knockdown of Lrrc75b using specific siRNA in C2C12 myoblasts markedly enhanced the expression of muscle-specific myogenin and increased myoblast fusion and the myotube diameter. By contrast, the adenovirus-mediated overexpression of Lrrc75b in C2C12 cells markedly inhibited myoblast differentiation accompanied by a decrease in myogenin expression. In addition, the phosphorylation of extracellular signal-regulated kinase 1/2 (Erk1/2) was suppressed in the cells in which Lrrc75b was silenced. Taken together, our results demonstrate that Lrrc75b is a novel suppressor of C2C12 myogenic differentiation by modulating myogenin and Erk1/2 signaling. PMID:27633041

  5. Mo2C Nanoparticles Dispersed on Hierarchical Carbon Microflowers for Efficient Electrocatalytic Hydrogen Evolution.

    Science.gov (United States)

    Huang, Yang; Gong, Qiufang; Song, Xuening; Feng, Kun; Nie, Kaiqi; Zhao, Feipeng; Wang, Yeyun; Zeng, Min; Zhong, Jun; Li, Yanguang

    2016-12-27

    The development of nonprecious metal based electrocatalysts for hydrogen evolution reaction (HER) has received increasing attention over recent years. Previous studies have established Mo2C as a promising candidate. Nevertheless, its preparation requires high reaction temperature, which more than often causes particle sintering and results in low surface areas. In this study, we show supporting Mo2C nanoparticles on the three-dimensional scaffold as a possible solution to this challenge and develop a facile two-step preparation method for ∼3 nm Mo2C nanoparticles uniformly dispersed on carbon microflowers (Mo2C/NCF) via the self-polymerization of dopamine. The resulting hybrid material possesses large surface areas and a fully open and accessible structure with hierarchical order at different levels. MoO4(2-) was found to play an important role in inducing the formation of this morphology presumably via its strong chelating interaction with the catechol groups of dopamine. Our electrochemical evaluation demonstrates that Mo2C/NCF exhibits excellent HER electrocatalytic performance with low onset overpotentials, small Tafel slopes, and excellent cycling stability in both acidic and alkaline solutions.

  6. Controlled growth of ultrathin Mo2C superconducting crystals on liquid Cu surface

    Science.gov (United States)

    Geng, Dechao; Zhao, Xiaoxu; Li, Linjun; Song, Peng; Tian, Bingbing; Liu, Wei; Chen, Jianyi; Shi, Dong; Lin, Ming; Zhou, Wu; Loh, Kian Ping

    2017-03-01

    Exhibiting thickness-dependent change in the critical temperature (T c) for the onset of superconductivity, Mo2C has emerged as an important new member in the family of two-dimensional atomic crystals. Controllable growth in terms of morphology and thickness is necessary to elucidate its intrinsic properties at the 2D limit. Here we demonstrate the chemical vapor deposition of ultrathin Mo2C crystals on liquid Cu surface where the morphology of the crystals can be controlled by tuning the carbon supersaturation. A unique staggered carbon vacancy ordering is discovered in Mo2C crystals having particular geometries. Thickness engineering of the crystal can be achieved by controlling the thickness of the Cu catalyst layer, which affords a facile route to grow ultrathin 2D samples. Ultrathin Mo2C crystals so obtained, have been characterized using aberration corrected scanning transmission electron microscopy annular dark field imaging, where the co-existence of both AA and AB stacking modes is observed. The high crystallinity of the Mo2C crystals synthesized in this work is attested by its characteristic sharp superconducting transition.

  7. Liver-specific deletion of Ppp2cα enhances glucose metabolism and insulin sensitivity.

    Science.gov (United States)

    Xian, Li; Hou, Siyuan; Huang, Zan; Tang, An; Shi, Peiliang; Wang, Qinghua; Song, Anying; Jiang, Shujun; Lin, Zhaoyu; Guo, Shiying; Gao, Xiang

    2015-04-01

    Protein phosphatase 2A (PP2A) is a key negative regulator of phosphatidylinositol 3-kinase/Akt pathway. Previous study showed that, in the liver, the catalytic subunit of PP2A (PP2Ac) is closely associated with insulin resistance syndrome, which is characterized by glucose intolerance and dyslipidemia. Here we studied the role of liver PP2Ac in glucose metabolism and evaluated whether PP2Ac is a suitable therapeutic target for treating insulin resistance syndrome. Liver-specific Ppp2cα knockout mice (Ppp2cα(loxp/loxp): Alb) exhibited improved glucose homeostasis compared with littermate controls in both normal and high-fat diet conditions, despite no significant changes in body weight and liver weight under chow diet. Ppp2cα(loxp/loxp): Alb mice showed enhanced glycogen deposition, serum triglyceride, cholesterol, low density lipoprotein and high density lipoprotein, activated insulin signaling, decreased expressions of gluconeogenic genes G6P and PEPCK, and lower liver triglyceride. Liver-specific Ppp2cα knockout mice showed enhanced glucose homeostasis and increased insulin sensitivity by activation of insulin signaling through Akt. These findings suggest that inhibition of hepatic Ppp2cα may be a useful strategy for the treatment of insulin resistance syndrome.

  8. Methane Activation by Tantalum Carbide Cluster Anions Ta2C4().

    Science.gov (United States)

    Li, Hai-Fang; Zhao, Yan-Xia; Yuan, Zhen; Liu, Qing-Yu; Li, Zi-Yu; Li, Xiao-Na; Ning, Chuan-Gang; He, Sheng-Gui

    2017-02-02

    Methane activation by transition metals is of fundamental interest and practical importance, as this process is extensively involved in the natural gas conversion to fuels and value-added chemicals. While single-metal centers have been well recognized as active sites for methane activation, the active center composed of two or more metal atoms is rarely addressed and the detailed reaction mechanism remains unclear. Here, by using state-of-the-art time-of-flight mass spectrometry, cryogenic anion photoelectron imaging spectroscopy, and quantum-chemical calculations, the cooperation of the two Ta atoms in a dinuclear carbide cluster Ta2C4(-) for methane activation has been identified. The C-H bond activation takes place predominantly around one Ta atom in the initial stage of the reaction and the second Ta atom accepts the delivered H atom from the C-H bond cleavage. The well-resolved vibrational spectra of the cryogenically cooled anions agree well with theoretical simulations, allowing the clear characterization of the structure of Ta2C4(-) cluster. The reactivity comparison between Ta2C4(-) cluster and the carbon-less analogues (Ta2C3(-) and Ta2C2(-)) demonstrated that the cooperative effect of the two metal atoms can be well tuned by the carbon ligands in terms of methane activation and transformation.

  9. Structural analysis of CYP2C9 and CYP2C5 and an evaluation of commonly used molecular modeling techniques

    DEFF Research Database (Denmark)

    Afzelius, Lovisa; Raubacher, Florian; Karlén, Anders;

    2004-01-01

    This work had two separate aims: to evaluate different modeling techniques and to make a detailed structural characterization of CYP2C9. To achieve these goals, the consensus principal component analysis (CPCA) technique and distance measurements were used to explore available crystal structures...... by the CPCA. Advantages and drawbacks are presented for the different modeling techniques. Despite the varying modeling success, the models give insight and understanding by the mutual forming and discarding of hypotheses. This is a dynamic process since the crystal structures are improving with time and...

  10. Molecular mechanisms of genetic variation and transcriptional regulation of CYP2C19

    Directory of Open Access Journals (Sweden)

    Nuala Ann Helsby

    2012-10-01

    Full Text Available Inherited variation in the function of the drug metabolising enzyme CYP2C19 was first observed 40 years ago. The SNP variants which underpin loss of CYP2C19 function have been elucidated and extensively studied in healthy populations. However, there has been relatively meagre translation of this information into the clinic. The presence of genotype-phenotype discordance in certain patients suggests that changes in the regulation of this gene, as well as loss of function SNPs, could play a role in deficient activity of this enzyme. Knowledge of the molecular mechanisms which control transcription of this gene, reviewed in this article, may aid the challenge of delivering CYP2C19 pharmacogenetics into clinical use.

  11. Transport properties of carbide superconductor La{sub 2}C{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S. [Dept. of Physics, Pohang University of Science and Technology, Pohang (Korea, Republic of); Kremer, R. K. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Korea, Republic of)

    2013-03-15

    We investigate the electrical and thermal transport properties of a sesquicarbide superconductor La{sub 2}C{sub 3}, including electrical resistivity, thermoelectric power, and thermal conductivity. The electrical resistivity exhibits a typical metallic character with a saturation behavior at high temperatures. The thermoelectric power shows a metallic behavior with pronounced phonon-drag effect, comparable with pure metals. The broad peak of the thermal conductivity is observed in the superconducting state, which is rapidly suppressed by magnetic fields. These observations suggest that the electron-phonon scattering is significant in La{sub 2}C{sub 3}, which is relevant with the relatively high-T{sub c} in La{sub 2}C{sub 3} through strong electron-phonon coupling with low frequency phonon modes.

  12. Magnetic properties of Y1- xGdxCo2B2C series of borocarbides

    Science.gov (United States)

    Bud'ko, S. L.; Giordanengo, B.; Sulpice, A.; Fontes, M. B.; Baggio-Saitovitch, E. M.

    1995-04-01

    Magnetic properties of Y1- xGdxCo2B2C series of compounds were studied. Two magnetically ordered phases were observed for 0.7 ≤ x ≤ 1. Change of the magnetic ordering temperatures T 1 and T 2 with the Gd concentration is argued to be related to the dilution of magnetic Gd by nonmagnetic Y and to the reduction of the distance between ( Y1- xGdx) C planes. However, significant contribution to the changes in T 1 between pure GdNi2B2C and GdCo2B2C samples is suggested to be due to the different 3 d band filling in these compounds.

  13. Catalytic performance of Fe modified K/Mo2C catalyst for CO hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Minglin Xiang; Dudu Wu; Juan Zou; Debao Li; Yuhan Sun; Xichun She

    2011-01-01

    Fe modified and un-modified K/Mo2C were prepared and investigated as catalysts for CO hydrogenation reaction.Compared with K/Mo2C catalyst,the addition of Fe increased the production of alcohols,especially the C2+OH.Meanwhile,considerable amounts of C5+ hydrocarbons and C=2-C=4 were formed,whereas methane selectivity greatly decreased.Also,the activity and selectivity of the catalyst were readily affected by the reaction pressure and temperature employed.According to the XPS results,Mo4+ might be responsible for the production of alcohols,whereas the low valence state of Mo species such as Moo and/or Mo2+ might be account for the high activity and selectivity toward hydrocarbons.

  14. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) surfaces

    Science.gov (United States)

    Xiong, Ke; Yu, Weiting; Chen, Jingguang G.

    2014-12-01

    The selective deoxygenation of aldehydes and alcohols without cleaving the Csbnd C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η2(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo2C, as well as the effect of the furan ring on the selective deoxygenation of the Cdbnd O and Csbnd OH bonds.

  15. CO Hydrogenation over Transition Metals (Fe, Co, or Ni Modified K/Mo2C Catalysts

    Directory of Open Access Journals (Sweden)

    Minglin Xiang

    2013-01-01

    Full Text Available Transition metals (Fe, Co, or Ni modified K/Mo2C catalysts were prepared and investigated as catalysts for CO hydrogenation. The addition of Fe, Co, or Ni to K/Mo2C catalyst led to a sharp increase in both the activity and selectivity of C2+OH, but the promotion effects were quite different and followed the sequence: Ni > Co > Fe for the activity and Fe > Co > Ni for the alcohol selectivity. For the products distributions, it also displayed some differences; Co promoter showed much higher C5+ hydrocarbon selectivity than Fe or Ni promoter, but Fe or Co promoter gave lower methane selectivity than Ni promoter, and Fe promoter showed the highest C2=-C4= selectivity.

  16. Empirical Study of Consumers' Purchase Intentions in C2C Electronic Commerce

    Institute of Scientific and Technical Information of China (English)

    HE Dehua; LU Yaobin; ZHOU Deyi

    2008-01-01

    Electronic commerce is becoming increasingly important in business, but lack of intention to purchase has become a main barrier in the development of electronic commerce. Thus, effective measures are needed to promote consumers' intentions to purchase in online consumer to consumer (C2C) stores. This paper postulates that five factors, the perceived ease of use of the website, perceived usefulness of the website, vendor competence, introduction and recommendations of third parties, and vendors' attitude toward customers, influence consumers' intentions to purchase in online C2C stores and this intention directly leads to their action to purchase from online C2C stores. The structural equation modeling (SEM) method was used to analyze empirical data, supporting these hypotheses except for the effect of vendor competence.

  17. CYP2C19 genotype predicts steady state escitalopram concentration in GENDEP.

    Science.gov (United States)

    Huezo-Diaz, Patricia; Perroud, Nader; Spencer, Edgar P; Smith, Rebecca; Sim, Sarah; Virding, Susanne; Uher, Rudolf; Gunasinghe, Cerisse; Gray, Jo; Campbell, Desmond; Hauser, Joanna; Maier, Wolfgang; Marusic, Andrej; Rietschel, Marcella; Perez, Jorge; Giovannini, Caterina; Mors, Ole; Mendlewicz, Julien; McGuffin, Peter; Farmer, Anne E; Ingelman-Sundberg, Magnus; Craig, Ian W; Aitchison, Katherine J

    2012-03-01

    In vitro work shows CYP2C19 and CYP2D6 contribute to the metabolism of escitalopram to its primary metabolite, N-desmethylescitalopram. We report the effect of CYP2C19 and CYP2D6 genotypes on steady state morning concentrations of escitalopram and N-desmethylescitalopram and the ratio of this metabolite to the parent drug in 196 adult patients with depression in GENDEP, a clinical pharmacogenomic trial. Subjects who had one CYP2D6 allele associated with intermediate metabolizer phenotype and one associated with poor metabolizer (i.e. IM/PM genotypic category) had a higher mean logarithm escitalopram concentration than CYP2D6 extensive metabolizers (EMs) (p = 0.004). Older age was also associated with higher concentrations of escitalopram. Covarying for CYP2D6 and age, we found those homozygous for the CYP2C19*17 allele associated with ultrarapid metabolizer (UM) phenotype had a significantly lower mean escitalopram concentration (2-fold, p = 0.0001) and a higher mean metabolic ratio (p = 0.0003) than EMs, while those homozygous for alleles conferring the PM phenotype had a higher mean escitalopram concentration than EMs (1.55-fold, p = 0.008). There was a significant overall association between CYP2C19 genotypic category and escitalopram concentration (p = 0.0003; p = 0.0012 Bonferroni corrected). In conclusion, we have demonstrated an association between CYP2C19 genotype, including the CYP2C19*17 allele, and steady state escitalopram concentration.

  18. D2d(23)-C84 versus Sc2C2@D2d(23)-C84: Impact of Endohedral Sc2C2 Doping on Chemical Reactivity in the Photolysis of Diazirine.

    Science.gov (United States)

    Yamada, Michio; Tanabe, Yukiko; Dang, Jing-Shuang; Sato, Satoru; Mizorogi, Naomi; Hachiya, Makoto; Suzuki, Mitsuaki; Abe, Tsuneyuki; Kurihara, Hiroki; Maeda, Yutaka; Zhao, Xiang; Lian, Yongfu; Nagase, Shigeru; Akasaka, Takeshi

    2016-12-21

    We compared the chemical reactivity of D2d(23)-C84 and that of Sc2C2@D2d(23)-C84, both having the same carbon cage geometry, in the photolysis of 2-adamantane-2,3'-[3H]-diazirine, to clarify metal-atom doping effects on the chemical reactivity of the carbon cage. Experimental and computational studies have revealed that the chemical reactivity of the D2d(23)-C84 carbon cage is altered drastically by endohedral Sc2C2 doping. The reaction of empty D2d(23)-C84 with the diazirine under photoirradiation yields two adamantylidene (Ad) adducts. NMR spectroscopic studies revealed that the major Ad monoadduct (C84(Ad)-A) has a fulleroid structure and that the minor Ad monoadduct (C84(Ad)-B) has a methanofullerene structure. The latter was also characterized using X-ray crystallography. C84(Ad)-A is stable under photoirradiation, but it interconverted to C84(Ad)-B by heating at 80 °C. In contrast, the reaction of endohedral Sc2C2@D2d(23)-C84 with diazirine under photoirradiation affords four Ad monoadducts (Sc2C2@C84(Ad)-A, Sc2C2@C84(Ad)-B, Sc2C2@C84(Ad)-C, and Sc2C2@C84(Ad)-D). The structure of Sc2C2@C84(Ad)-C was characterized using X-ray crystallography. Thermal interconversion of Sc2C2@C84(Ad)-A and Sc2C2@C84(Ad)-B to Sc2C2@C84(Ad)-C was also observed. The reaction mechanisms of the Ad addition and thermal interconversion were elucidated from theoretical calculations. Calculation results suggest that C84(Ad)-B and Sc2C2@C84(Ad)-C are thermodynamically favorable products. Their different chemical reactivities derive from Sc2C2 doping, which raises the HOMO and LUMO levels of the D2d(23)-C84 carbon cage.

  19. Differential expression of cytochrome P450 enzymes from the CYP2C subfamily in the human brain.

    Science.gov (United States)

    Booth Depaz, Iris M; Toselli, Francesca; Wilce, Peter A; Gillam, Elizabeth M J

    2015-03-01

    Cytochrome P450 enzymes from the CYP2C subfamily play a prominent role in the metabolic clearance of many drugs. CYP2C enzymes have also been implicated in the metabolism of arachidonic acid to vasoactive epoxyeicosatrienoic acids. CYP2C8, CYP2C9, and CYP2C19 are expressed in the adult liver at significant levels; however, the expression of CYP2C enzymes in extrahepatic tissues such as the brain is less well characterized. Form-specific antibodies to CYP2C9 and CYP2C19 were prepared by affinity purification of antibodies raised to unique peptides. CYP2C9 and CYP2C19 were located in microsomal fractions of all five human brain regions examined, namely the frontal cortex, hippocampus, basal ganglia, amygdala, and cerebellum. Both CYP2C9 and CYP2C19 were detected predominantly within the neuronal soma but with expression extending down axons and dendrites in certain regions. Finally, a comparison of cortex samples from alcoholics and age-matched controls suggested that CYP2C9 expression was increased in alcoholics.

  20. CYP2C subfamily, primarily CYP2C9, catalyses the enantioselective demethylation of the endocrine disruptor pesticide methoxychlor in human liver microsomes: use of inhibitory monoclonal antibodies in P450 identification.

    Science.gov (United States)

    Hu, Y; Krausz, K; Gelboin, H V; Kupfer, D

    2004-02-01

    1. The endocrine disruptor pesticide methoxychlor undergoes O-demethylation by mammalian liver microsomes forming chiral mono-phenolic (1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane, i.e. mono-OH-M) and achiral bis-phenolic oestrogenic metabolites. Human liver microsomes (HLM) generated primarily the S-mono-OH-M. 2. Inhibitory monoclonal antibodies (MAb) identified those P450s catalysing the enantioselective O-demethylation of methoxychlor. In HLM, O-demethylation was inhibited by MAb anti-2C9 (30-40%), diminishing the per cent of S-mono-OH-M from about 80 to 55-60%. MAb anti-CYP1A2, 2A6, 2B6, 2C8, 2C19, 2D6 and 3A4 did not affect the demethylation rate in HLM. Nevertheless, MAb anti-CYP1A2 decreased the formation of R-mono-OH-M from 21-23 to 10-17%, indicating that CYP1A2 exhibits a role in generating the R-enantiomer. 3. Among cDNA-expressed human P450s (supersomes), CYP2C19 was the most active in demethylation, but in HLM, CYP2C19 appeared inactive (no inhibition by MAb anti-CYP2C19). There was a substantial difference in the per cent inhibition of demethylation by MAb anti-CYP2C9 and anti-rat CYP2C (MAb inhibiting all human CYP2C forms) and in altering the enantioselectivity, suggesting that demethylation by combined CYP2C8, 2C18 and 2C19 was significant (20-30%). 4. Polymorphism of methoxychlor demethylation was examined with supersomes and HLM-expressing CYP2C9 allelic variants. CYP2C9*1 and 2C9*2 were highly active; however, CYP2C9*3 appeared inactive.

  1. Impact of CYP2C8*3 on paclitaxel clearance

    DEFF Research Database (Denmark)

    Bergmann, T K; Brasch-Andersen, C; Gréen, H

    2011-01-01

    The primary purpose of this study was to evaluate the effect of CYP2C8*3 and three genetic ABCB1 variants on the elimination of paclitaxel. We studied 93 Caucasian women with ovarian cancer treated with paclitaxel and carboplatin. Using sparse sampling and nonlinear mixed effects modeling, the in...... associations found for CYP2C8*4 (P=0.04) and ABCC1 g.7356253C>G (P=0.04).The Pharmacogenomics Journal advance online publication, 6 April 2010; doi:10.1038/tpj.2010.19....

  2. Modelling the B2C Marketplace: Evaluation of a Reputation Metric for e-Commerce

    Science.gov (United States)

    Gutowska, Anna; Sloane, Andrew

    This paper evaluates recently developed novel and comprehensive reputation metric designed for the distributed multi-agent reputation system for the Business-to-Consumer (B2C) E-commerce applications. To do that an agent-based simulation framework was implemented which models different types of behaviours in the marketplace. The trustworthiness of different types of providers is investigated to establish whether the simulation models behaviour of B2C e-Commerce systems as they are expected to behave in real life.

  3. China's B2C e-commerce development and its future prospects

    OpenAIRE

    Jin, Guming

    2012-01-01

    China’s E-commerce environment is improving all the time. Consumers are getting more and more habituated to this form of consumption mode. The recent trend shows that China’s e- commerce market is booming mainly because of major enterprises’ fierce competition within Business To Customer E-commerce market. People are optimistic about B2C E-commerce which strengthens the China’s B2C E-commerce market. Even though E-commerce business in China is soaring, there still persists a problem, too. ...

  4. Sc3N and Sc2C2 encapsulated B40: Smarter than its carbon analogue

    Science.gov (United States)

    Shah, Esha V.; Roy, Debesh R.

    2016-10-01

    A detailed comparative investigation on the recently synthesised B40 and C40 along with their metal nitride (Sc3N)and carbide (Sc2C2) encapsulated endohedral fullerenes, is performed under density functional theory for the first time. The structures, electronic, thermodynamic and magnetic properties of all the considered compounds are explored in detail. The present study identifies borospherene (B40) and its encapsulated nitride (Sc3N@B40) and carbide (Sc2C2@B40) endohedral borofullerenes as the better candidates for future novel nano-applications compared to their carbon bucky ball analogues.

  5. Anisotropic Multiband Many-Body Interactions in LuNi2B2C

    Energy Technology Data Exchange (ETDEWEB)

    Bergk, B.; Petzold, V.; Rosner, H.; Drechsler, S.-L.; Bartkowiak, M.; Ignatchik, O.; Bianchi, A. D.; Sheikin, I.; Canfield, P. C.; Wosnitza, J.

    2008-06-27

    We present a comprehensive de Haas-van Alphen study on the nonmagnetic borocarbide superconductor LuNi{sub 2}B{sub 2}C. The analysis of the angular-dependent effective masses for different bands in combination with full-potential density functional calculations allowed us to determine the mass-enhancement factors, {lambda}, for the different electronic bands and their wave-vector dependences. Our data clearly show the anisotropic multiband character of the superconductivity in LuNi{sub 2}B{sub 2}C.

  6. China's B2C e-commerce development and its future prospects

    OpenAIRE

    2012-01-01

    China’s E-commerce environment is improving all the time. Consumers are getting more and more habituated to this form of consumption mode. The recent trend shows that China’s e- commerce market is booming mainly because of major enterprises’ fierce competition within Business To Customer E-commerce market. People are optimistic about B2C E-commerce which strengthens the China’s B2C E-commerce market. Even though E-commerce business in China is soaring, there still persists a problem, too. ...

  7. Preparation of SnO2/C biomorphic materials by biotemplating from ramie fibres

    Indian Academy of Sciences (India)

    Xin-Hai He; Le-Hua Qi; Jun-Bo Wang; Ming-Qian Shen; Wei Chang; Chong Fu; Min-Ge Yang; Xiao-Lei Su

    2011-08-01

    A new SnO2/C biomorphic material has been prepared by molding into a composite billet and carbothermal-reduction under vacuum from ramie fibres/Sn(OH)4 precursors. The phase composition and microstructure of the prepared materials were characterized. The effects of the carbonization temperature, holding time and other factors on the crystal structure, morphology and ingredients of the prepared samples were discussed. The results showed that the sintering temperature and holding time have significant effects on the final products. When the sintering temperature reached 480°C, the SnO2/C biomorphic materials were synthesized successfully.

  8. E2C(R2) Periodic Benefit-Risk Evaluation Report and E2C(R2) Periodic Benefit-Risk Evaluation Report--Questions and Answers; International Council for Harmonisation; Guidances for Industry; Availability. Notice.

    Science.gov (United States)

    2016-07-19

    The Food and Drug Administration (FDA or Agency) is announcing the availability of guidances for industry entitled ``E2C(R2) Periodic Benefit-Risk Evaluation'' (E2C(R2) guidance) and ``E2C(R2) Periodic Benefit-Risk Evaluation Report--Questions and Answers'' (E2C(R2) Q&A guidance). These guidances were prepared under the auspices of the International Council for Harmonisation (ICH), formerly the International Conference on Harmonisation. The E2C(R2) draft guidance, issued April 11, 2012, updated and combined two ICH guidances, ``E2C Clinical Safety Data Management: Periodic Safety Update Reports for Marketed Drugs'' (E2C guidance) and ``Addendum to E2C Clinical Safety Data Management: Periodic Safety Update Reports for Marketed Drugs'' (addendum to the E2C guidance). The E2C(R2) guidance is intended to describe the format, content, and timing of a Periodic Benefit-Risk Evaluation Report (PBRER) for an approved drug or biologic, and it finalizes the draft guidance. The E2C(R2) Q&A guidance is a supplementary guidance that is intended to clarify key issues in the E2C(R2) guidance.

  9. Relation between CYP2C19 phenotype and genotype in a group of Brazilian volunteers

    Directory of Open Access Journals (Sweden)

    Rafael Linden

    2009-09-01

    Full Text Available The CYP2C19 gene presents polymorphism affecting the pharmacokinetics of several drugs of clinical importance. The purpose of this study was to investigate the correlation between CYP2C19 genotype and metabolic phenotype in a group of 38 Brazilian volunteers, evaluating the phenotype prediction capacity of the genotyping procedure. For CYP2C19 phenotyping, omeprazole was used as the probe drug, using the hydroxylation metabolic ratio as the phenotypic indicator. Venous blood samples were drawn before and three hours after an oral administration of 20 mg omeprazole. The plasma concentrations of omeprazole and hydroxy-omeprazole were determined by high performance liquid chromatography. The genotyping assay was carried out using a Real-Time-PCR-based assay, identifying the alleles *1 (completely functional, *2, *3 and *4 (null. The phenotyping procedure estimated the presence of 4 poor, 34 extensive and 1 ultra-extensive metabolizer. The genotyping identified 4 poor, 23 extensive and 11 intensive metabolizers. The groups of volunteers classified according to the number of active alleles of CYP2C19 had significant differences in the metabolic ratios of omeprazole hydroxylation. However, volunteers exhibiting the same number of active alleles presented different phenotypes. Therefore, the phenotyping of CYP2C19 is a more promising alternative to dose individualization of CYP2C19 substrate drugs.O gene CYP2C19 apresenta polimorfismo genético, com impacto importante na farmacocinética de diversos fármacos de importância clínica. O objetivo deste estudo foi avaliar a correlação entre genótipo e fenótipo de CYP2C19 em um grupo de 38 voluntários brasileiros, avaliando a capacidade de predição do fenótipo a partir de testes de genotipagem. Para a fenotipagem, utilizou-se omeprazol (OME como fármaco-sonda para CYP2C19, empregando sua razão metabólica de hidroxilação como indicador fenotípico. Amostras de sangue foram coletadas antes e tr

  10. Dehydroepiandrosterone activates AMP kinase and regulates GLUT4 and PGC-1α expression in C2C12 myotubes.

    Science.gov (United States)

    Yokokawa, Takumi; Sato, Koji; Iwanaka, Nobumasa; Honda, Hiroki; Higashida, Kazuhiko; Iemitsu, Motoyuki; Hayashi, Tatsuya; Hashimoto, Takeshi

    Exercise and caloric restriction (CR) have been reported to have anti-ageing, anti-obesity, and health-promoting effects. Both interventions increase the level of dehydroepiandrosterone (DHEA) in muscle and blood, suggesting that DHEA might partially mediate these effects. In addition, it is thought that either 5'-adenosine monophosphate-activated protein kinase (AMPK) or peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mediates the beneficial effects of exercise and CR. However, the effects of DHEA on AMPK activity and PGC-1α expression remain unclear. Therefore, we explored whether DHEA in myotubes acts as an activator of AMPK and increases PGC-1α. DHEA exposure increased glucose uptake but not the phosphorylation levels of Akt and PKCζ/λ in C2C12 myotubes. In contrast, the phosphorylation levels of AMPK were elevated by DHEA exposure. Finally, we found that DHEA induced the expression of the genes PGC-1α and GLUT4. Our current results might reveal a previously unrecognized physiological role of DHEA; the activation of AMPK and the induction of PGC-1α by DHEA might mediate its anti-obesity and health-promoting effects in living organisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. MicroRNA-21 dysregulates the expression of MEF2C in neurons in monkey and human SIV/HIV neurological disease.

    Science.gov (United States)

    Yelamanchili, S V; Chaudhuri, A Datta; Chen, L-N; Xiong, Huangui; Fox, H S

    2010-01-01

    MicroRNAs (miRNAs) play important roles in regulating a plethora of physiological and pathophysiogical processes including neurodegeneration. In both HIV associated dementia in humans and its monkey model SIV encephalitis we find miR-21, a miRNA largely known for its link to oncogenesis, to be significantly upregulated in the brain. In situ hybridization of the diseased brain sections revealed induction of miR-21 in neurons. MiR-21 can be induced in neurons by prolonged N-methyl-D-aspartic acid receptor stimulation, an excitotoxic process active in HIV and other neurodegenerative diseases. Introduction of miR-21 into human neurons leads to pathological functional defects. Furthermore, we show that miR-21 specifically targets the mRNA of myocyte enhancer factor 2C (MEF2C), a transcription factor crucial for neuronal function, and reduces its expression. MEF2C is dramatically downregulated in neurons of HIV-associated dementia patients as well as monkeys with SIVE. Together, this study elucidates a novel role for miR-21 in the brain, not only as a potential signature of neurological disease but also as a crucial effector of HIV induced neuronal dysfunction and neurodegeneration.

  12. Further Advances in Optimizing (2-Phenylcyclopropyl)methylamines as Novel Serotonin 2C Agonists: Effects on Hyperlocomotion, Prepulse Inhibition, and Cognition Models.

    Science.gov (United States)

    Cheng, Jianjun; Giguere, Patrick M; Schmerberg, Claire M; Pogorelov, Vladimir M; Rodriguiz, Ramona M; Huang, Xi-Ping; Zhu, Hu; McCorvy, John D; Wetsel, William C; Roth, Bryan L; Kozikowski, Alan P

    2016-01-28

    A series of novel compounds with two halogen substituents have been designed and synthesized to further optimize the 2-phenylcyclopropylmethylamine scaffold in the quest for drug-like 5-HT2C agonists. Compound (+)-22a was identified as a potent 5-HT2C receptor agonist, with good selectivity against the 5-HT2B and the 5-HT2A receptors. ADMET assays showed that compound (+)-22a possessed desirable properties in terms of its microsomal stability, and CYP and hERG inhibition, along with an excellent brain penetration profile. Evaluation of (+)-22a in animal models of schizophrenia-related behaviors revealed that it had a desirable activity profile, as it reduced d-amphetamine-stimulated hyperlocomotion in the open field test, it restored d-amphetamine-disrupted prepulse inhibition, it induced cognitive improvements in the novel object recognition memory test in NR1-KD animals, and it produced very little catalepsy relative to haloperidol. These data support the further development of (+)-22a as a drug candidate for the treatment of schizophrenia.

  13. Comprehensive Evaluation for Substrate Selectivity of Cynomolgus Monkey Cytochrome P450 2C9, a New Efavirenz Oxidase.

    Science.gov (United States)

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2015-07-01

    Cynomolgus monkeys are widely used as primate models in preclinical studies, because of their evolutionary closeness to humans. In humans, the cytochrome P450 (P450) 2C enzymes are important drug-metabolizing enzymes and highly expressed in livers. The CYP2C enzymes, including CYP2C9, are also expressed abundantly in cynomolgus monkey liver and metabolize some endogenous and exogenous substances like testosterone, S-mephenytoin, and diclofenac. However, comprehensive evaluation regarding substrate specificity of monkey CYP2C9 has not been conducted. In the present study, 89 commercially available drugs were examined to find potential monkey CYP2C9 substrates. Among the compounds screened, 20 drugs were metabolized by monkey CYP2C9 at a relatively high rates. Seventeen of these compounds were substrates or inhibitors of human CYP2C9 or CYP2C19, whereas three drugs were not, indicating that substrate specificity of monkey CYP2C9 resembled those of human CYP2C9 or CYP2C19, with some differences in substrate specificities. Although efavirenz is known as a marker substrate for human CYP2B6, efavirenz was not oxidized by CYP2B6 but by CYP2C9 in monkeys. Liquid chromatography-mass spectrometry analysis revealed that monkey CYP2C9 and human CYP2B6 formed the same mono- and di-oxidized metabolites of efavirenz at 8 and 14 positions. These results suggest that the efavirenz 8-oxidation could be one of the selective markers for cynomolgus monkey CYP2C9 among the major three CYP2C enzymes tested. Therefore, monkey CYP2C9 has the possibility of contributing to limited specific differences in drug oxidative metabolism between cynomolgus monkeys and humans.

  14. The Development of B2C E-Commerce in Greece: Current Situation and Future Potential.

    Science.gov (United States)

    Kardaras, Dimitris; Papathanassiou, Eleutherios

    2000-01-01

    Reports on the results of a survey of 120 companies in Greece that evaluated the potential of business to customer (B2C) Internet applications and investigated how the Internet and e-commerce can offer new opportunities for businesses to improve their customers' satisfaction. Discusses electronic commerce problems and future technology. (Contains…

  15. B2C social media value gap-model: a study of the Dutch online retailing

    NARCIS (Netherlands)

    Constantinides, Efthymios; Schepers, Lonieke; Vries, de Sjoerd

    2015-01-01

    Social media are extensively used by customers and businesses in the B2C domain but the objectives and the way the two parties use them are different. Based on the uses and gratifications theory, the article identifies similarities and differences in motives and use of social media in retailing. The

  16. Hysteresis in the field-induced magnetic structure in TmNi2B2C

    DEFF Research Database (Denmark)

    Eskildsen, M.R.; Harada, K.; Gammel, P.L:

    1999-01-01

    Using small-angle neutron scattering we have studied the flux line lattice and the magnetic structure in TmNi2B2C. With an applied field parallel to the crystalline c-axis several magnetic and flux line lattice symmetry transitions have been reported. The subject of this paper is the held-induced...

  17. B2C social media value gap-model: a study of the Dutch online retailing

    NARCIS (Netherlands)

    Constantinides, Efthymios; Schepers, Lonieke; de Vries, Sjoerd A.

    2015-01-01

    Social media are extensively used by customers and businesses in the B2C domain but the objectives and the way the two parties use them are different. Based on the uses and gratifications theory, the article identifies similarities and differences in motives and use of social media in retailing. The

  18. Midway Atoll Site P2C 9/21/2002 21-22M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Midway Atoll, site P2C (28.260 N, 177.345 W), between 21 and 22 meters along a permanent transect.

  19. Midway Atoll Site P2C 9/21/2002 13-14M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Midway Atoll, site P2C (28.260 N, 177.345 W), between 13 and 14 meters along a permanent transect.

  20. The Development of B2C E-Commerce in Greece: Current Situation and Future Potential.

    Science.gov (United States)

    Kardaras, Dimitris; Papathanassiou, Eleutherios

    2000-01-01

    Reports on the results of a survey of 120 companies in Greece that evaluated the potential of business to customer (B2C) Internet applications and investigated how the Internet and e-commerce can offer new opportunities for businesses to improve their customers' satisfaction. Discusses electronic commerce problems and future technology. (Contains…

  1. Thermal ramp tritium release in COBRA-1A2 C03 beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, D.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    Tritium release kinetics, using the method of thermal ramp heating at three linear ramp rates, were measured on the COBRA-1A2 C03 1-mm beryllium pebbles. This report includes a brief discussion of the test, and the test data in graph format.

  2. Accelerating MP2C dispersion corrections for dimers and molecular crystals

    Science.gov (United States)

    Huang, Yuanhang; Shao, Yihan; Beran, Gregory J. O.

    2013-06-01

    The MP2C dispersion correction of Pitonak and Hesselmann [J. Chem. Theory Comput. 6, 168 (2010)], 10.1021/ct9005882 substantially improves the performance of second-order Møller-Plesset perturbation theory for non-covalent interactions, albeit with non-trivial computational cost. Here, the MP2C correction is computed in a monomer-centered basis instead of a dimer-centered one. When applied to a single dimer MP2 calculation, this change accelerates the MP2C dispersion correction several-fold while introducing only trivial new errors. More significantly, in the context of fragment-based molecular crystal studies, combination of the new monomer basis algorithm and the periodic symmetry of the crystal reduces the cost of computing the dispersion correction by two orders of magnitude. This speed-up reduces the MP2C dispersion correction calculation from a significant computational expense to a negligible one in crystals like aspirin or oxalyl dihydrazide, without compromising accuracy.

  3. PRODUCTION, ISOLATION AND SPECTROSCOPIC STUDIES OF THE ENDOHEDRAL FULLERENE Sc2@C80 (Ⅰ-Ⅲ)

    Institute of Scientific and Technical Information of China (English)

    Chunru Wang; Lihua Gan; Chunli Bai; Hisanori Shinohara

    2004-01-01

    The isolation of multiple-isomers of Sc2@C80 (Ⅰ, Ⅱ, Ⅲ) endohedral metallofullerenes is reported for the first time. The new C80-based Sc-metallofullerenes are characterized by UV-Vis-NIR absorption spectroscopy and detailed chromatographic retention time data. A close relationship between the isomer structure and the corresponding HPLC retention time of the metallofullerenes is presented.

  4. L-carnitine protects C2C12 cells against mitochondrial superoxide overproduction and cell death

    Science.gov (United States)

    Le Borgne, Françoise; Ravaut, Gaétan; Bernard, Arnaud; Demarquoy, Jean

    2017-01-01

    AIM To identify and characterize the protective effect that L-carnitine exerted against an oxidative stress in C2C12 cells. METHODS Myoblastic C2C12 cells were treated with menadione, a vitamin K analog that engenders oxidative stress, and the protective effect of L-carnitine (a nutrient involved in fatty acid metabolism and the control of the oxidative process), was assessed by monitoring various parameters related to the oxidative stress, autophagy and cell death. RESULTS Associated with its physiological function, a muscle cell metabolism is highly dependent on oxygen and may produce reactive oxygen species (ROS), especially under pathological conditions. High levels of ROS are known to induce injuries in cell structure as they interact at many levels in cell function. In C2C12 cells, a treatment with menadione induced a loss of transmembrane mitochondrial potential, an increase in mitochondrial production of ROS; it also induces autophagy and was able to provoke cell death. Pre-treatment of the cells with L-carnitine reduced ROS production, diminished autophagy and protected C2C12 cells against menadione-induced deleterious effects. CONCLUSION In conclusion, L-carnitine limits the oxidative stress in these cells and prevents cell death.

  5. Midway Atoll Site P2C 9/21/2002 18-19M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Midway Atoll, site P2C (28.260 N, 177.345 W), between 18 and 19 meters along a permanent transect.

  6. Midway Atoll Site P2C 9/21/2002 24-25M

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — One-meter-square (1 meter x 1 meter) benthic substrate at Midway Atoll, site P2C (28.260 N, 177.345 W), between 24 and 25 meters along a permanent transect.

  7. The High-Pressure Phase of MgB2C2

    NARCIS (Netherlands)

    Woerle, Michael; Fischbach, Urs; Widmer, Daniel; Krumeich, Frank; Nesper, Reinhard; Evers, Juergen; Stalder, Roland; Ulmer, Peter

    2010-01-01

    A high-pressure modification of MgB2C2 was synthesized and structurally characterized. The compound crystallizes in the orthorhombic space group Pnnm, with the lattice parameters a = 7.19633(3) angstrom, b = 4.61791(13) angstrom and c = 2.77714(8) angstrom. The compound contains heterographene B-C n

  8. "Expectations to Change" ((E2C): A Participatory Method for Facilitating Stakeholder Engagement with Evaluation Findings

    Science.gov (United States)

    Adams, Adrienne E.; Nnawulezi, Nkiru A.; Vandenberg, Lela

    2015-01-01

    From a utilization-focused evaluation perspective, the success of an evaluation is rooted in the extent to which the evaluation was used by stakeholders. This paper details the "Expectations to Change" (E2C) process, an interactive, workshop-based method designed to engage primary users with their evaluation findings as a means of…

  9. Dynamical Trust and Reputation Computation Model for B2C E-Commerce

    Directory of Open Access Journals (Sweden)

    Bo Tian

    2015-10-01

    Full Text Available Trust is one of the most important factors that influence the successful application of network service environments, such as e-commerce, wireless sensor networks, and online social networks. Computation models associated with trust and reputation have been paid special attention in both computer societies and service science in recent years. In this paper, a dynamical computation model of reputation for B2C e-commerce is proposed. Firstly, conceptions associated with trust and reputation are introduced, and the mathematical formula of trust for B2C e-commerce is given. Then a dynamical computation model of reputation is further proposed based on the conception of trust and the relationship between trust and reputation. In the proposed model, classical varying processes of reputation of B2C e-commerce are discussed. Furthermore, the iterative trust and reputation computation models are formulated via a set of difference equations based on the closed-loop feedback mechanism. Finally, a group of numerical simulation experiments are performed to illustrate the proposed model of trust and reputation. Experimental results show that the proposed model is effective in simulating the dynamical processes of trust and reputation for B2C e-commerce.

  10. Effect of Carbon Sources on the Catalytic Performance of Ni/β-Mo2C.

    Science.gov (United States)

    Zeng, Li-Zhen; Zhao, Shao-Fei; Li, Wei-Shan

    2015-06-01

    In this paper, Ni/β-Mo2C(S) and Ni/β-Mo2C(G) were prepared from solution-derived precursor with two different carbon sources (starch and glucose) and tested as anodic noble-metal-free catalysts in air-cathode microbial fuel cells (MFCs). The carburized catalyst samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and Brunauer-Emmett-Teller (BET). The activity of the electrocatalyst towards the oxidation of several common microbial fermentation products (formate, lactate, and ethanol) was studied for MFC based on Klebsiella pneumoniae conditions. The composite MFC anodes were fabricated, and their catalytic behavior was investigated. With different carbon sources, the crystalline structure does not change and the crystallinity and surface area increase. The electrocatalytic experiments show that the Ni/β-Mo2C(G) gives the better bio- and electrocatalytic performance than Ni/β-Mo2C(S) due to its higher crystallinity and BET surface area.

  11. Deoxygenation of glycolaldehyde and furfural on Mo2C/Mo(100)

    Science.gov (United States)

    McManus, Jesse R.; Vohs, John M.

    2014-12-01

    The desire to produce fuels and chemicals in an energy conscious, environmentally sympathetic approach has motivated considerable research on the use of cellulosic biomass feedstocks. One of the major challenges facing the utilization of biomass is finding effective catalysts for the efficient and selective removal of oxygen from the highly-oxygenated, biomass-derived platform molecules. Herein, a study of the reaction pathways for the biomass-derived platform molecule furfural and biomass-derived sugar model compound glycolaldehyde provides insight into the mechanisms of hydrodeoxygenation (HDO) on a model molybdenum carbide catalyst, Mo2C/Mo(100). Using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS), it was found that the Mo2C/Mo(100) catalyst was active for selective deoxygenation of the aldehyde carbonyl by facilitating adsorption of the aldehyde in an η2(C,O) bonding configuration. Furthermore, the catalyst showed no appreciable activity for furanic ring hydrogenation, highlighting the promise of relatively inexpensive Mo2C catalysts for selective HDO chemistry.

  12. Magnetotransport Properties in High-Quality Ultrathin Two-Dimensional Superconducting Mo2C Crystals.

    Science.gov (United States)

    Wang, Libin; Xu, Chuan; Liu, Zhibo; Chen, Long; Ma, Xiuliang; Cheng, Hui-Ming; Ren, Wencai; Kang, Ning

    2016-04-26

    Ultrathin transition metal carbides are a class of developing two-dimensional (2D) materials with superconductivity and show great potentials for electrical energy storage and other applications. Here, we report low-temperature magnetotransport measurements on high-quality ultrathin 2D superconducting α-Mo2C crystals synthesized by a chemical vapor deposition method. The magnetoresistance curves exhibit reproducible oscillations at low magnetic fields for temperature far below the superconducting transition temperature of the crystals. We interpret the oscillatory magnetoresistance as a consequence of screening currents circling around the boundary of triangle-shaped terraces found on the surface of ultrathin Mo2C crystals. As the sample thickness decreases, the Mo2C crystals exhibit negative magnetoresistance deep in the superconducting transition regime, which reveals strong phase fluctuations of the superconducting order parameters associated with the superconductor-insulator transition. Our results demonstrate that the ultrathin superconducting Mo2C crystals provide an interesting system for studying rich transport phenomena in a 2D crystalline superconductor with enhanced quantum fluctuations.

  13. Surface morphology of orthorhombic Mo2C catalyst and high coverage hydrogen adsorption

    Science.gov (United States)

    Wang, Tao; Tian, Xinxin; Yang, Yong; Li, Yong-Wang; Wang, Jianguo; Beller, Matthias; Jiao, Haijun

    2016-09-01

    High coverage hydrogen adsorption on twenty two terminations of orthorhombic Mo2C has been systematically studied by using density functional theory and ab initio thermodynamics. Hydrogen stable coverage on the surfaces highly depends on temperatures and H2 partial pressure. The estimated hydrogen desorption temperatures under ultra-high vacuum condition on Mo2C are in reasonable agreement with the available temperature-programmed desorption data. Obviously, hydrogen adsorption can affect the surface stability and therefore modify the surface morphology of Mo2C. Upon increasing the chemical potential of hydrogen which can be achieved by increasing the H2 partial pressure and/or decreasing the temperature, the proportions of the (001), (010), (011) and (100) surfaces increase, while those of the (101), (110) and (111) surfaces decrease. Among these surfaces, the (100) surface is most sensitive upon hydrogen adsorption and the (111) surface is most exposed under a wide range of conditions. Our study clearly reveals the role of hydrogen on the morphology of orthorhombic Mo2C catalyst in conjugation with hydro-treating activity.

  14. High reflectance and low stress Mo2C/Be multilayers

    Science.gov (United States)

    Bajt, Sasa; Barbee, Jr., Troy W.

    2001-01-01

    A material for extreme ultraviolet (EUV) multilayers that will reflect at about 11.3 nm, have a high reflectance, low stress, and high thermal and radiation stability. The material consists of alternating layers of Mo.sub.2 C and Be deposited by DC magnetron sputtering on a substrate, such as silicon. In one example a Mo.sub.2 C/Be multilayer gave 65.2% reflectance at 11.25 nm measured at 5 degrees off normal incidence angle, and consisted of 70 bilayers with a deposition period of 5.78 nm, and was deposited at 0.83 mTorr argon (Ar) sputtering pressure, with the first and last layers being Be. The stress of the multilayer is tensile and only +88 MPa, compared to +330 MPa of a Mo/Be multilayers of the same thickness. The Mo.sub.2 C/Be multilayer was capped with carbon which produced an increase in reflectivity of about 7% over a similar multilayer with no carbon capping material, thus raising the reflectivity from 58.3% to over 65%. The multilayers were formed using either Mo.sub.2 C or Be as the first and last layers, and initial testing has shown the formation of beryllium carbide at the interfaces between the layers which both stabilizes and has a smoothing effect, and appear to be smoother than the interfaces in Mo/Be multilayers.

  15. The pharmacogenetic control of antiplatelet response: candidate genes and CYP2C19.

    Science.gov (United States)

    Yang, Yao; Lewis, Joshua P; Hulot, Jean-Sébastien; Scott, Stuart A

    2015-01-01

    Aspirin, clopidogrel, prasugrel and ticagrelor are antiplatelet agents for the prevention of ischemic events in patients with acute coronary syndromes (ACS), percutaneous coronary intervention (PCI) and other indications. Variability in response is observed to different degrees with these agents, which can translate to increased risks for adverse cardiovascular events. As such, potential pharmacogenetic determinants of antiplatelet pharmacokinetics, pharmacodynamics and clinical outcomes have been actively studied. This article provides an overview of the available antiplatelet pharmacogenetics literature. Evidence supporting the significance of candidate genes and their potential influence on antiplatelet response and clinical outcomes are summarized and evaluated. Additional focus is directed at CYP2C19 and clopidogrel response, including the availability of clinical testing and genotype-directed antiplatelet therapy. The reported aspirin response candidate genes have not been adequately replicated and few candidate genes have thus far been implicated in prasugrel or ticagrelor response. However, abundant data support the clinical validity of CYP2C19 and clopidogrel response variability among ACS/PCI patients. Although limited prospective trial data are available to support the utility of routine CYP2C19 testing, the increased risks for reduced clopidogrel efficacy among ACS/PCI patients that carry CYP2C19 loss-of-function alleles should be considered when genotype results are available.

  16. ABA Inducible Rice Protein Phosphatase 2C Confers ABA Insensitivity and Abiotic Stress Tolerance in Arabidopsis

    Science.gov (United States)

    Singh, Amarjeet; Jha, Saroj K.; Bagri, Jayram; Pandey, Girdhar K.

    2015-01-01

    Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions. PMID:25886365

  17. 76 FR 77833 - Scientific Information Request on CYP2C19 Variants and Platelet Reactivity Tests

    Science.gov (United States)

    2011-12-14

    ... Variants and Platelet Reactivity Tests AGENCY: Agency for Healthcare Research and Quality (AHRQ), HHS... platelet reactivity tests. Scientific information is being solicited to inform our Comparative... for studies that report on CYP2C19 variants and platelet reactivity tests, including those...

  18. BAMBI Promotes C2C12 Myogenic Differentiation by Enhancing Wnt/β-Catenin Signaling

    Directory of Open Access Journals (Sweden)

    Qiangling Zhang

    2015-08-01

    Full Text Available Bone morphogenic protein and activin membrane-bound inhibitor (BAMBI is regarded as an essential regulator of cell proliferation and differentiation that represses transforming growth factor-β and enhances Wnt/β-catenin signaling in various cell types. However, its role in skeletal muscle remains largely unknown. In the current study, we found that the expression level of BAMBI peaked in the early differentiation phase of the C2C12 rodent myoblast cell line. Knockdown of BAMBI via siRNA inhibited C2C12 differentiation, indicated by repressed MyoD, MyoG, and MyHC expression as well as reductions in the differentiation and fusion indices. BAMBI knockdown reduced the activity of Wnt/β-catenin signaling, as characterized by the decreased nuclear translocation of β-catenin and the lowered transcription of Axin2, which is a well-documented target gene of the Wnt/β-catenin signaling pathway. Furthermore, treatment with LiCl, an activator of Wnt/β-catenin signaling, rescued the reduction in C2C12 differentiation caused by BAMBI siRNA. Taken together, our data suggest that BAMBI is required for normal C2C12 differentiation, and that its role in myogenesis is mediated by the Wnt/β-catenin pathway.

  19. Electron Affinity of trans-2-C4F8 from Electron Attachment-Detachment Kinetics

    Science.gov (United States)

    2009-09-04

    either isomer. This attachment rate constant agrees well with other values measured only at 300 K for “2-C4F8” by Bansal and Fessenden (4.9 × 10-8...Grajower, R. Int. J. Mass Spectrom. Ion Phys. 1973, 10, 11. (5) Bansal, K. M.; Fessenden , R. W. J. Chem. Phys. 1973, 59, 1760. (6) Sauers, I

  20. User-Interface Design Characteristics of Fortune 500 B2C E-Commerce Sites and Industry Differences

    Science.gov (United States)

    Zhao, Jensen J.; Truell, Allen D.; Alexander, Melody W.

    2006-01-01

    This study examined the user-interface design characteristics of 107 Fortune 500 B2C e-commerce Web sites and industry differences. Data were collected from corporate homepages, B2C product/service pages, B2C interactive shopping pages, as well as customer satisfaction of 321 online shoppers. The findings indicate that (a) to attract online…

  1. The in-vitro effect of complementary and alternative medicines on cytochrome P450 2C9 activity

    NARCIS (Netherlands)

    Mooiman, Kim D; Goey, Andrew K L; Huijbregts, Tomy J; Maas-Bakker, Roel F; Beijnen, Jos H; Schellens, Jan H M; Meijerman, Irma

    OBJECTIVES: The aim of this study is to establish the inhibitory effects of 14 commonly used complementary and alternative medicines (CAM) on the metabolism of cytochrome P450 2C9 (CYP2C9) substrates 7-methoxy-4-trifluoromethyl coumarine (MFC) and tolbutamide. CYP2C9 is important for the metabolism

  2. User-Interface Design Characteristics of Fortune 500 B2C E-Commerce Sites and Industry Differences

    Science.gov (United States)

    Zhao, Jensen J.; Truell, Allen D.; Alexander, Melody W.

    2006-01-01

    This study examined the user-interface design characteristics of 107 Fortune 500 B2C e-commerce Web sites and industry differences. Data were collected from corporate homepages, B2C product/service pages, B2C interactive shopping pages, as well as customer satisfaction of 321 online shoppers. The findings indicate that (a) to attract online…

  3. 77 FR 2573 - International Product Change-Global Plus 1C and 2C Negotiated Service Agreements

    Science.gov (United States)

    2012-01-18

    ... International Product Change--Global Plus 1C and 2C Negotiated Service Agreements AGENCY: Postal Service TM... Regulatory Commission to add Global Plus 1C and 2C Negotiated Service Agreements to the Competitive Products... of United States Postal Service to Add Global Plus 1C and 2C Negotiated Service Agreements to the...

  4. First-principles study of He trapping in η-Fe2C

    Science.gov (United States)

    He, Bing-Ling; Wang, Jin-Long; Tian, Zhi-Xue; Jiang, Li-Juan; Song, Wei; Wang, Bin

    2016-11-01

    The distribution of He in η-Fe2C has been studied by first-principles calculations. The formation energies of interstitial He and substitutional He (replacing Fe) are 3.76 eV and 3.49 eV, respectively, which are remarkably smaller than those in bcc Fe, indicating that He is more soluble in η-Fe2C than in bcc Fe. The binding potencies of both a substitutional-interstitial He pair (1.28 eV) and a substitutional-substitutional He pair (0.76 eV) are significantly weaker than those in bcc Fe. The binding energy between the two He atoms in an interstitial-interstitial He pair (0.31 eV) is the same as that in bcc Fe, but the diffusion barrier of interstitial He (0.35 eV) is much larger than that in bcc Fe, suggesting that it is more difficult for the interstitial He atom to agglomerate in η-Fe2C than in bcc Fe. Thus, self-trapping of He in η-Fe2C is less powerful than that in bcc Fe. As a consequence, small and dense η-Fe2C particles in ferritic steels might serve as scattered trapping centers for He, slow down He bubble growth at the initial stage, and make the steel more swelling resistant. Project supported by the Research Key Project of Science and Technology of Education Bureau of Henan Province, China (Grant Nos. 14A140030, 15A140032, 15B150010, and 15A430037) and the Innovation Talents Program of Science and Technology of Institution of Higher Education of Henan Province, China (Grant No. 14HASTIT044).

  5. Apoptosis in differentiating C2C12 muscle cells selectively targets Bcl-2-deficient myotubes.

    Science.gov (United States)

    Schöneich, Christian; Dremina, Elena; Galeva, Nadezhda; Sharov, Victor

    2014-01-01

    Muscle cell apoptosis accompanies normal muscle development and regeneration, as well as degenerative diseases and aging. C2C12 murine myoblast cells represent a common model to study muscle differentiation. Though it was already shown that myogenic differentiation of C2C12 cells is accompanied by enhanced apoptosis in a fraction of cells, either the cell population sensitive to apoptosis or regulatory mechanisms for the apoptotic response are unclear so far. In the current study we characterize apoptotic phenotypes of different types of C2C12 cells at all stages of differentiation, and report here that myotubes of differentiated C2C12 cells with low levels of anti-apoptotic Bcl-2 expression are particularly vulnerable to apoptosis even though they are displaying low levels of pro-apoptotic proteins Bax, Bak and Bad. In contrast, reserve cells exhibit higher levels of Bcl-2 and high resistance to apoptosis. The transfection of proliferating myoblasts with Bcl-2 prior to differentiation did not protect against spontaneous apoptosis accompanying differentiation of C2C12 cells but led to Bcl-2 overexpression in myotubes and to significant protection from apoptotic cell loss caused by exposure to hydrogen peroxide. Overall, our data advocate for a Bcl-2-dependent mechanism of apoptosis in differentiated muscle cells. However, downstream processes for spontaneous and hydrogen peroxide induced apoptosis are not completely similar. Apoptosis in differentiating myoblasts and myotubes is regulated not through interaction of Bcl-2 with pro-apoptotic Bcl-2 family proteins such as Bax, Bak, and Bad.

  6. Pharmacokinetics of lansoprazole in Chinese healthy subjects in relation to CYP2C19 genotypes

    Institute of Scientific and Technical Information of China (English)

    Yu-rong HU; Hai-ling QIAO; Quan-cheng KAN

    2004-01-01

    AIM: To study the kinetic characteristics of lansoprazole in healthy Chinese subjects in relation to CYP2C19 genotype status for the individualized dose regimen of lansoprazole. METHODS: Nine homozygous extensive metabolizers (homo EMs) and 9 poor metabolizers (PMs) were recruited for the study from a total of 70 healthy Chinese volunteers, whose CYP2C19 genotype status was determined by the PCR-RFLP techniques. After a single oral dose of 30 mg lansoprazole capsule, plasma concentrations of lansoprazole were determined with HPLC method. RESULTS: In Chinese subjects, the allele frequencies of the CYP2C19ml and CYP2C19m2 mutation were 0.35 and 0.07, respectively. The concentration-time curves in the two groups were best fitted to a one-compartment model. In the homo EMs and the PMs groups, the main kinetic parameters were as follows: Tmax(2.44±0.85)and (2.33±0.94) h, Cmax (1.10±0.34) and (1.73±0.56) mg/L, Cl/F (16.55±6.38) and (3.58± 1) L/h, T1/2ke (1.96±0.51)Cmax values existed between the two groups (P<0.01). CONCLUSION: CYP2C19 genotype is the major factor to influence the interindividual kinetic variability of lansoprazole. Individualized dose regimen of lansoprazole, based on identification of genotype, can be of great benefit for the reasonable use of this drug.

  7. Ndrg2 is a PGC-1α/ERRα target gene that controls protein synthesis and expression of contractile-type genes in C2C12 myotubes.

    Science.gov (United States)

    Foletta, Victoria C; Brown, Erin L; Cho, Yoshitake; Snow, Rod J; Kralli, Anastasia; Russell, Aaron P

    2013-12-01

    The stress-responsive, tumor suppressor N-myc downstream-regulated gene 2 (Ndrg2) is highly expressed in striated muscle. In response to anabolic and catabolic signals, Ndrg2 is suppressed and induced, respectively, in mouse C2C12 myotubes. However, little is known about the mechanisms regulating Ndrg2 expression in muscle, as well as the biological role for Ndrg2 in differentiated myotubes. Here, we show that Ndrg2 is a target of a peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and estrogen-related receptor alpha (ERRα) transcriptional program and is induced in response to endurance exercise, a physiological stress known also to increase PGC-1α/ERRα activity. Analyses of global gene and protein expression profiles in C2C12 myotubes with reduced levels of NDRG2, suggest that NDRG2 affects muscle growth, contractile properties, MAPK signaling, ion and vesicle transport and oxidative phosphorylation. Indeed, suppression of NDRG2 in myotubes increased protein synthesis and the expression of fast glycolytic myosin heavy chain isoforms, while reducing the expression of embryonic myosin Myh3, other contractile-associated genes and the MAPK p90 RSK1. Conversely, enhanced expression of NDRG2 reduced protein synthesis, and furthermore, partially blocked the increased protein synthesis rates elicited by a constitutively active form of ERRα. In contrast, suppressing or increasing levels of NDRG2 did not affect mRNA expression of genes involved in mitochondrial biogenesis that are regulated by PGC-1α or ERRα. This study shows that in C2C12 myotubes Ndrg2 is a novel PGC-1α/ERRα transcriptional target, which influences protein turnover and the regulation of genes involved in muscle contraction and function.

  8. Molecular pharmacology of human NMDA receptors

    DEFF Research Database (Denmark)

    Hedegaard, Maiken; Hansen, Kasper Bø; Andersen, Karen Toftegaard

    2012-01-01

    current knowledge of the relationship between NMDA receptor structure and function. We summarize studies on the biophysical properties of human NMDA receptors and compare these properties to those of rat orthologs. Finally, we provide a comprehensive pharmacological characterization that allows side......-by-side comparison of agonists, un-competitive antagonists, GluN2B-selective non-competitive antagonists, and GluN2C/D-selective modulators at recombinant human and rat NMDA receptors. The evaluation of biophysical properties and pharmacological probes acting at different sites on the receptor suggest...... that the binding sites and conformational changes leading to channel gating in response to agonist binding are highly conserved between human and rat NMDA receptors. In summary, the results of this study suggest that no major detectable differences exist in the pharmacological and functional properties of human...

  9. Toward reduction in animal sacrifice for drugs: molecular modeling of Macaca fascicularis P450 2C20 for virtual screening of Homo sapiens P450 2C8 substrates.

    Science.gov (United States)

    Rua, Francesco; Di Nardo, Giovanna; Sadeghi, Sheila J; Gilardi, Gianfranco

    2012-01-01

    Macaca fascicularis P450 2C20 shares 92% identity with human cytochrome P450 2C8, which is involved in the metabolism of more than 8% of all prescribed drugs. To date, only paclitaxel and amodiaquine, two substrate markers of the human P450 2C8, have been experimentally confirmed as M. fascicularis P450 2C20 drugs. To bridge the lack of information on the ligands recognized by M. fascicularis P450 2C20, in this study, a three-dimensional homology model of this enzyme was generated on the basis of the available crystal structure of the human homologue P450 2C8 using YASARA. The results indicated that 90.0%, 9.0%, 0.5%, and 0.5% of the residues of the P450 2C20 model were located in the most favorable, allowed, generously allowed, and disallowed regions, respectively. The root-mean-square deviation of the C-alpha superposition of the M. fascicularis P450 2C20 model with the Homo sapiens P450 2C8 was 0.074 Å, indicating a very high similarity of the two structures. Subsequently, the 2C20 model was used for in silico screening of 58 known P450 2C8 substrates and 62 inhibitors. These were also docked in the active site of the crystal structure of the human P450 2C8. The affinity of each compound for the active site of both cytochromes proved to be very similar, meaning that the few key residues that are mutated in the active site of the M. fascicularis P450 do not prevent the P450 2C20 from recognizing the same substrates as the human P450 2C8.

  10. Effect of Mo{sub 2}C/(Mo{sub 2}C + WC) weight ratio on the microstructure and mechanical properties of Ti(C,N)-based cermet tool materials

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingzhong; Zhao, Jun, E-mail: zhaojun@sdu.edu.cn; Ai, Xing; Qin, Wenzhen; Wang, Dawei; Huang, Weimin

    2015-11-15

    To optimize the Mo{sub 2}C content in Ti(C,N)-based cermet tool materials used for cutting the high-strength steel of 42CrMo (AISI 4140/4142 steel), the cermets with different Mo{sub 2}C/(Mo{sub 2}C + WC) weight ratios were prepared. And the microstructure and mechanical properties of cermets were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD) and measurements of transverse rupture strength (TRS), Vickers hardness (HV) and fracture toughness (K{sub IC}). The results indicate that the Mo{sub 2}C/(Mo{sub 2}C + WC) ratios have great influences on the microstructure features and mechanical properties of Ti(C,N)-based cermets. When the Mo{sub 2}C/(Mo{sub 2}C + WC) ratio increases, the Ti(C,N) grains become finer with smaller black cores surrounded by thinner rims, and the structure of cermets tends to be more compact with smaller binder mean free path. Owing to the medium grains and moderate rims, the cermets with a Mo{sub 2}C/(Mo{sub 2}C + WC) ratio of 0.4 exhibit better mechanical properties, and can be chosen as the tool material for machining 42CrMo steel due to the lower Mo content. - Highlights: • Mo{sub 2}C/(Mo{sub 2}C + WC) ratios affect microstructure and mechanical properties of cermets. • Grains become fine and structure of cermets tends to be compact with raised Mo{sub 2}C. • The cermets with a Mo{sub 2}C/(Mo{sub 2}C + WC) ratio of 0.4 can be used to machine 42CrMo steel.

  11. Dissolution and electrochemical properties of molybdenum carbide (Mo{sub 2}C) in basic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Maslennikov, A.; Boudanova, N. [Academy of Sciences, Moscow (Russian Federation). A.N. Frumkin Inst. of Physical Chemistry and Electrochemistry; Cannes, C.; Fourest, B. [Institut de Physique Nucleaire (INP), 91 - Orsay (France); Vivier, V. [Lab. Interfaces et Systemes Electrochimiques, 75 - Paris (France); Moisy, P. [CEA VALRHO DEN/DRCP/SCPS, 30 - Bagnols sur Ceze (France)

    2007-07-01

    The dissolution and electrochemical properties of molybdenum carbide were investigated using a number of electrochemical techniques, including general corrosion tests (GCT), linear voltammetry (LV), potential controlled electrolysis (PCE) and Scanning Electrochemical Microscopy (SECM), in basic media (0.5-4 M NaOH and 1 M NaHCO{sub 3}/Na{sub 2}CO{sub 3}, pH 9.1-11.3). It was shown that the Mo2C corrosion potential (E{sub corr}) shifted towards negative values from -0.39 to -0.96 V/SCE with an increase of the OH{sup -} concentration and did not depend on the CO{sub 3}{sup 2-} concentration in the electrolyte. LV measurements in carbonate buffer (pH 9.2), evidenced three potential regions: passivation from E{sub corr} to -0.2 V/SCE, pseudopassivation from -0.25 to 0 V/SCE and anodic dissolution (transpassivation) at E > 0.1 V/SCE. The potentials delimiting the mentioned regions decreased with the increase of the OH{sup -} concentration, becoming undistinguished in 2 M NaOH. The Mo{sub 2}C dissolution rate (k{sub diss}) in the transpassive state was estimated using LV data. In 4 M NaOH at -0.1 V/SCE, k{sub diss} reached 430 mg cm{sup -2}h{sup -1} and decreased with the decrease of the OH{sup -} concentration and the electrolysis potential. The Mo{sub 2}C dissolution current efficiency varied between 12 and 13Fmol{sup -1} Mo{sub 2}C, proving the formation of the intermediate products of a carbon oxidative degradation during PCE. The presence of C{sub 2}O{sub 4}{sup 2-} and non-identified aromatic compounds in the electrolytes after Mo{sub 2}C dissolution was ascertained, using capillary zone electrophoresis. Scanning electrochemical microscopy (SECM) confirmed the formation of a pseudopassive film and demonstrated the increase of its thickness with the increase of the applied potential. The effect of the presence of Mo{sub 2}C on the irradiated UC fuel dissolution rate and the mechanisms involved are discussed. (orig.)

  12. Common polymorphisms in CYP2C9, subclinical atherosclerosis and risk of ischemic vascular disease in 52,000 individuals

    DEFF Research Database (Denmark)

    Kaur-Knudsen, D; Bojesen, S E; Nordestgaard, B G

    2009-01-01

    Cytochrome P450 2C9 (CYP2C9) enzymes metabolize warfarin and arachidonic acid. We hypothesized that the CYP2C9(*)2 (rs.1799853) and CYP2C9(*)3 (rs.1057910) polymorphisms with decreased enzyme activity affect risk of subclinical atherosclerosis (reduced ankle brachial index and increased C...... of follow-up; the Copenhagen General Population Study, a cross-sectional study including 21 629 participants; and the Copenhagen Ischemic Heart Disease Study, a case-control study including 5082 cases and 14 904 controls. CYP2C9 carriers versus noncarriers did not associate with subclinical atherosclerosis......% power. In conclusion, in three independent studies totaling more than 52 000 individuals, we found no association between CYP2C9(*)2 and CYP2C9(*)3 polymorphisms and risk of subclinical atherosclerosis, ischemic vascular disease or death after ischemic heart disease....

  13. Effects of 5-hydroxytryptamine and 5-hydroxytryptamine 2A/2C agonist on the genioglossus activity and sleep apnea in rats

    Institute of Scientific and Technical Information of China (English)

    ZHONG Yi-jue; ZHANG Cheng; WANG Guang-fa

    2010-01-01

    Background 5-hydroxytryptamine (5-HT) is a common neurotransmitter in the brain which plays an important role in the pathogenesis of sleep apnea.Dysfunction of 5-HT and 5-HT2 receptors may lead to the collapse of the upper airway and the instability of respiratory control, which in turn produce apnea.Genioglossus (GG) is one of the most important oropharyngeal muscles maintaining the upper airway open.The present study aimed to investigate the effects of 5-HT and 5-HT2 receptor on GG activity and the sleep apnea in Sprague-Dawley (SD) rats.Methods Microinjection probes were placed within the fourth ventricle of sixteen SD rats.After recovery for a week, the electromyogram (EMG) of GG was recorded in the anesthetized and vagotomized rats.The changes of GG activity before and after the microinjection of 5-HT or 5-HT2A/2c agonist -2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI)were observed.Probes were also laid in another eight SD rats.Electroencephalogram (EEG), EMG of neck muscle and respiration were recorded at the same time a week later.The effects of DOI on the occurrence of sleep apnea were explored.Results Both 5-HT and DOI significantly enhanced the activity of GG just 3 minutes after the completion of injection.The effect of 5-HT disappeared quickly and the effect of DOI lasted for more than 27 minutes.DOI also significantly decreased the post-sigh apnea index in non-rapid-eye-movement (NREM) and rapid-eye-movement (REM) sleep and decreased the spontaneous apnea index only in NREM sleep (P <0.05, respectively).Conclusion 5-HT and 5-HT2A/2c system correlated closely with the pathogenesis of the sleep apnea syndrome and 5-HT receptors may become the target of the drug treatment.

  14. Impact of CYP2C8*3 polymorphism on in vitro metabolism of imatinib to N-desmethyl imatinib.

    Science.gov (United States)

    Khan, Muhammad Suleman; Barratt, Daniel T; Somogyi, Andrew A

    2016-01-01

    1. Imatinib is metabolized to N-desmethyl imatinib by CYPs 3A4 and 2C8. The effect of CYP2C8*3 genotype on N-desmethyl imatinib formation was unknown. 2. We examined imatinib N-demethylation in human liver microsomes (HLMs) genotyped for CYP2C8*3, in CYP2C8*3/*3 pooled HLMs and in recombinant CYP2C8 and CYP3A4 enzymes. Effects of CYP-selective inhibitors on N-demethylation were also determined. 3. A single-enzyme Michaelis-Menten model with autoinhibition best fitted CYP2C8*1/*1 HLM (n = 5) and recombinant CYP2C8 kinetic data (median ± SD Ki = 139 ± 61 µM and 149 µM, respectively). Recombinant CYP3A4 showed two-site enzyme kinetics with no autoinhibition. Three of four CYP2C8*1/*3 HLMs showed single-enzyme kinetics with no autoinhibition. Binding affinity was higher in CYP2C8*1/*3 than CYP2C8*1/*1 HLM (median ± SD Km = 6 ± 2 versus 11 ± 2 µM, P=0.04). CYP2C8*3/*3 (pooled HLM) also showed high binding affinity (Km = 4 µM) and single-enzyme weak autoinhibition (Ki = 449 µM) kinetics. CYP2C8 inhibitors reduced HLM N-demethylation by 47-75%, compared to 0-30% for CYP3A4 inhibitors. 4. In conclusion, CYP2C8*3 is a gain-of-function polymorphism for imatinib N-demethylation, which appears to be mainly mediated by CYP2C8 and not CYP3A4 in vitro in HLM.

  15. A phylogenetic study of canine parvovirus type 2c in midwestern Brazil

    Directory of Open Access Journals (Sweden)

    Danúbia S. Fontana

    2013-02-01

    Full Text Available Since the late 1970s, canine parvovirus type 2 (CPV-2 has emerged as a causative agent of fatal severe acute hemorrhagic enteritis in dogs. To date, three antigenic types of CPV-2 were described worldwide (CPV-2a/b/c. This study was conducted to determine the variants of CPV-2 circulating in dogs from the Cuiabá Municipality in Midwestern Brazil. Out of 50 fecal samples, collected between 2009 and 2011, 27 tested positive for CPV-2. A 583 bp fragment of the VP2 gene was amplified by PCR, 13 representative samples were analyzed further by DNA sequencing. All strains were characterized as CPV-2c, displayed a low genetic variability although observed several amino acid substitution. These findings indicated that CPV-2c has been circulating in dogs from the Cuiabá Municipality in Midwestern Brazil.

  16. Establishing Efficient C2C E-alliance Based on Mobile Agent

    Institute of Scientific and Technical Information of China (English)

    YU Xiao-bing; GUO Shun-sheng; GUO Jun

    2010-01-01

    In order to alleviate difficulties of conducting consumer-to-consumer(C2C)e-commerce transaction,establishing efficient e-alliance was proposed.E-alliance is the union of e-commerce sites.It is constructed by mobile agents.The mobile agent architecture was discussed.The process of selecting suitable e-commerce site to e-alliance was presented based on support vector machine(SVM)and fuzzy method.A prototype of the proposed system is implemented on a web platform.To enable data exchange between e-alliance and e-commerce,the system employs XML as data format.The prototype has demonstrated that the efficient C2C e-alliance is reasonable.

  17. Be{sub 2}C formation in beryllium-carbon binary system by vacuum heating

    Energy Technology Data Exchange (ETDEWEB)

    Ashida, Kan; Watanabe, Kuniaki [Toyama Univ. (Japan). Hydrogen Isotope Research Center

    1998-01-01

    The surface chemical states of beryllium and carbon binary systems at elevated temperature were investigated by means of x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The XPS measurements revealed that the mixed subsurface layers containing Be and C readily yield Be{sub 2}C layers by vacuum heating and ion bombardment. The SIMS measurements showed that hydrogen isotope atoms are trapped by three distinct sites; namely Be, C, and O-sites on the sample surface. The SIMS measurements also showed that carbon atoms lose its ability to bind with hydrogen isotope atoms on forming Be{sub 2}C. It would be a key to control hydrogen inventory when Be and C are used together as PFM. (author)

  18. Neutron Scattering Study of Na_2C_60 in (P,T)-Plane

    Science.gov (United States)

    Trevino, S. F.; Yildirim, T.; Neumann, D. A.; Fischer, J. E.

    1996-03-01

    Na_2C_60 forms the simplest system to investigate various intermolecular interactions. Therefore, we have studied Na_2C_60 for 0 250 K and P > 1 kbar, the structure is distorted, qualitatively similar to suggested pressure induced polymer phase of Na_2RbC_60[1]. Here the peaks at low Q are significantly broaden while the higher Q peaks are almost completely smeared out. Inelastic neutron scattering measurements performed at T=150 K and with P=0 and 4 kbar did not show any new lattice modes in the range 100-200 cm-1, inconsistent with C_60 polymerization. Instead, we observed an excess of low energy states in the distorted phase, reminiscent of what is observed in glassy solids. fˇill [1] Q.Zhu, Phys. Rev. B 52, R723 (1995).

  19. Occurrence of canine parvovirus type 2c in the dogs with haemorrhagic enteritis in India.

    Science.gov (United States)

    Nandi, S; Chidri, S; Kumar, Manoj; Chauhan, R S

    2010-02-01

    Canine parvovirus 2 (CPV-2) causes a highly contagious and often fatal disease in dogs. Since its sudden emergence in the early 1970s, CPV-2 has been evolving through the generation of novel genetic and antigenic variants (CPV-2a/b/c) that are unevenly distributed throughout the world. In the present study we have examined 36 clinical cases of dogs suspected of CPV collected during year 2006. A fragment of the VP2 gene of the virus was analyzed using polymerase chain reaction (PCR), restriction endonuclease (RE) and DNA sequence analysis. Out of the 36 samples analyzed, 16 were found positive for CPV-2a/2b by conventional PCR. DNA sequencing was done for 6 PCR positive samples, out of which three were characterized as CPV-2c, indicating that this CPV type 2c is currently circulating in India.

  20. SPECIAL LINEAR GROUP SL(2, C AND GENERATING FUNCTIONS FOR ULTRASPHERICAL POLYNOMIALS

    Directory of Open Access Journals (Sweden)

    I.K.Khanna

    2011-11-01

    Full Text Available In this paper, the generating functions for ultraspherical polynomials Cα n (x (Gegenbaur polynomials are obtained by using the representa- tion theory of the Lie group SL(2, C (the complex special linear group giving a suitable interpretation to the index 0 n0 . Further, linearly inde- pendent differential J-operators derived, which generate a Lie algebra isomorphic to sl(2, C. The principle interest in our results lies in the fact that, how thecomplex special linear group can be applied suitably to the Gegenbaur polynomials in order to derive six bilinear/bilateral generating functions. The generating functions, in turn yield, Legendre polynomials as special cases. Many results obtained are well known but some of them are believed to be new in the theory of specialfunctions.

  1. Silencing myotubularin related protein 7 enhances proliferation and early differentiation of C2C12 myoblast.

    Science.gov (United States)

    Yuan, Zhuning; Chen, Yaosheng; Zhang, Xumeng; Zhou, Xingyu; Li, Mingsen; Chen, Hu; Wu, Ming; Zhang, Ying; Mo, Delin

    2017-03-11

    Myotubularin related protein 7 (MTMR7) is a key member of the highly conserved myotubularin related proteins (MTMRs) family, which has phosphatase activity. MTMR7 was increased during myoblast differentiation and exhibited high expression level at primary fibers formation stages in pigs. This suggests that MTMR7 may be involved in myogenesis. In our study, we investigated the roles of MTMR7 on proliferation and differentiation of C2C12 myoblasts. Knocking down MTMR7 not only enhanced myoblast early differentiation via altering the expression of Myf5, but also promoted myoblast proliferation through increasing cyclinA2 expression. The improved proliferation capacity was related to the increased phosphorylation of AKT. Taken together, our research demonstrates that MTMR7 plays an important role in proliferation and early differentiation of C2C12 myoblast.

  2. Degradation of triclocarban by a triclosan-degrading Sphingomonas sp. strain YL-JM2C.

    Science.gov (United States)

    Mulla, Sikandar I; Hu, Anyi; Wang, Yuwen; Sun, Qian; Huang, Shir-Ly; Wang, Han; Yu, Chang-Ping

    2016-02-01

    Bacterial degradation plays a vital role in determining the environmental fate of micropollutants like triclocarban. The mechanism of triclocarban degradation by pure bacterium is not yet explored. The purpose of this study was to identify metabolic pathway that might be involved in bacterial degradation of triclocarban. Triclosan-degrading Sphingomonas sp. strain YL-JM2C was first found to degrade up to 35% of triclocarban (4 mg L(-1)) within 5 d. Gas chromatography-mass spectrometry detected 3,4-dichloroaniline, 4-chloroaniline and 4-chlorocatechol as the major metabolites of the triclocarban degradation. Furthermore, total organic carbon results confirmed that the intermediates, 3,4-dichloroaniline (4 mg L(-1)) and 4-chloroaniline (4 mg L(-1)) could be degraded up to 77% and 80% by strain YL-JM2C within 5 d.

  3. Carbon-nitrogen place exchange on NO exposed beta-Mo2C.

    Science.gov (United States)

    Siaj, Mohamed; Maltais, Carl; Zahidi, El Mamoune; Oudghiri-Hassani, Hicham; Wang, Jiqing; Rosei, Federico; McBreen, Peter H

    2005-08-18

    Atomic nitrogen and oxygen were deposited on beta-Mo(2)C through dissociative adsorption of NO. Reflectance absorbance infrared spectroscopy (RAIRS), thermal desorption, and synchrotron X-ray photoelectron spectroscopy (XPS) measurements were used to investigate the interplay between atomic nitrogen, carbon, and oxygen in the 400-1250 K region. The combination of the high resolution and high surface sensitivity offered by the synchrotron XPS technique was used to show that atomic nitrogen displaces interstitial carbon onto the carbide surface. Thermal desorption measurements show that the burnoff of the displaced carbon occurs at approximately 890 K. The incorporation of nitrogen into interstitial sites inhibits oxygen dissolution into the bulk. RAIRS spectroscopy was used to identify surface oxo, terminal oxygen, species formed from O(2) and NO on beta-Mo(2)C.

  4. Rab8A regulates insulin-stimulated GLUT4 translocation in C2C12 myoblasts.

    Science.gov (United States)

    Li, Hanbing; Ou, Liting; Fan, Jiannan; Xiao, Mei; Kuang, Cuifang; Liu, Xu; Sun, Yonghong; Xu, Yingke

    2017-02-01

    Rab proteins are important regulators of GLUT4 trafficking in muscle and adipose cells. It is still unclear which Rabs are involved in insulin-stimulated GLUT4 translocation in C2C12 myoblasts. In this study, we detect the colocalization of Rab8A with GLUT4 and the presence of Rab8A at vesicle exocytic sites by TIRFM imaging. Overexpression of dominant-negative Rab8A (T22N) diminishes insulin-stimulated GLUT4 translocation, while constitutively active Rab8A (Q67L) augments it. In addition, knockdown of Rab8A inhibits insulin-stimulated GLUT4 translocation, which is rescued by replenishment of RNAi-resistant Rab8A. Together, these results indicate an indispensable role for Rab8A in insulin-regulated GLUT4 trafficking in C2C12 cells.

  5. Type II collagen C2C epitope in human synovial fluid and serum after knee injury

    DEFF Research Database (Denmark)

    Kumahashi, N; Swärd, P; Larsson, S

    2015-01-01

    PURPOSE: Investigate in a cross-sectional study time-dependent changes of synovial fluid type II collagen epitope C2C concentrations after knee injury and correlate to other joint injury biomarkers. METHODS: Synovial fluid samples were aspirated between 0 days and 7 years after injury (n = 235...... = 0.403, P collagen (r = 0.444, P = 0.003), ARGS-aggrecan (r = 0.337, P ... with an immediate and sustained local degradation of type II collagen....

  6. Effect of the Ni site substitution on superconducting properties of YNi 2B 2C

    Science.gov (United States)

    Bud'ko, S. L.; Elmassalami, M.; Fontes, M. B.; Mondragon, J.; Vanoni, W.; Giordanengo, B.; Baggio-Saitovitch, E. M.

    1995-02-01

    Structural and superconducting properties of Y(Ni 1- xM x) 2B 2C compounds with MCo, Fe and Ru have been studied. A fast decrease of Tc with the concentration of the dopants was found. This effect can be attributed to the shift of the Fermi level induced by the dopant concentration with the additional contributions from the chemical-pressure effects and from the decrease of the electronic mean free path.

  7. Interdependence of magnetism and superconductivity in the borocarbide TmNi2B2C

    DEFF Research Database (Denmark)

    Nørgaard, K.; Eskildsen, M.R.; Andersen, N.H.

    2000-01-01

    We have discovered anew antiferromagnetic phase in TmNi2B2C by neutron diffraction. The ordering vector is Q(A) = (0.48,0,0) and the phase appears shove a critical in-plans magnetic field of 0.9 T. The field was applied in order to test the assumption that the zero-field magnetic structure at Q...

  8. Floating zone growth and magnetic properties of Y2C two-dimensional electride

    Science.gov (United States)

    Otani, Shigeki; Hirata, Kazuto; Adachi, Yutaka; Ohashi, Naoki

    2016-11-01

    The floating zone method was used to obtain single crystals several mm in size of the low-temperature rhombohedral form of Y2C rather than its typical rocksalt-type cubic form. This was achieved through optimization of the chemical compositions of the starting materials with the aim of producing a two-dimensional electride material. The crystals obtained exhibited a paramagnetic temperature-dependence at 1.8-300 K, with no trace of any obvious magnetic ordering.

  9. 3,4-O-Isopropylidene-2-C-methyl-d-galactonolactone

    Directory of Open Access Journals (Sweden)

    N. Dai

    2010-02-01

    Full Text Available X-ray crystallography unequivocally confirmed the stereochemistry of the 2-C-methyl group in the title molecule, C10H16O6, in which the 1,5-lactone ring exists in a boat conformation. The use of d-galactose in the synthesis determined the absolute stereochemistry. The crystal exists as O—H...O hydrogen-bonded layers in the ab plane, with each molecule acting as a donor and acceptor for two hydrogen bonds.

  10. Rabeprazole can overcome the impact of CYP2C19 polymorphism on quadruple therapy.

    Science.gov (United States)

    Kuo, Chao-Hung; Wang, Sophie S W; Hsu, Wen-Hung; Kuo, Fu-Chen; Weng, Bi-Chuang; Li, Chia-Jung; Hsu, Ping-I; Chen, Angela; Hung, Wen-Chun; Yang, Yuan-Chieh; Wang, Wen-Ming; Wu, Deng-Chyang

    2010-08-01

    The prospective study was designed to clarify the impact of CYP2C19 on quadruple therapies and survey the efficacies of rabeprazole-based quadruple therapy for Helicobacter pylori infection after failure of standard triple therapies. From January 2007 to March 2009, 1055 H. pylori-infected patients received standard triple regimens (proton-pump inhibitor (PPI), clarithromycin, and amoxicillin). Helicobacter pylori eradication was achieved in 865 (81.9%) subjects. One hundred ninety eradication-failure patients were enrolled and randomly assigned to receive a 7-day eradication therapy. Ninety-six patients were treated with esomeprazole-based quadruple rescue therapies (EB), while 94 patients were treated with rabeprazole-based quadruple rescue therapies (RB). Follow-up endoscopy was done 16 weeks later to assess the treatment response. Patients' responses, CYP2C19 genotypes, and antibiotics resistances were also examined. Intention-to-treat analysis revealed that RB had better eradication rates than EB (EB: 72.9%; 95% CI: 64.9-80.9% and RB: 78.7%; 95% CI 72.5-84.9%) (p value = .543). Per-protocol results were EB = 75.3%; 95% CI: 70.3-80.3% and RB = 85.1%; 95% CI: 80.6-89.6% (p value = .0401). Both regimens had similar compliance (p value = 0.155) and adverse events (p value = 0.219). We also surveyed those patients without resistance of any antibiotics. RB still showed better outcome than EB. Our data showed that esomeprazole-based regimen and CYP2C19 Hom EM genotype were important predictors for eradication failure. In quadruple therapy, rabeprazole-based regimens had better efficacy than esomeprazole-based regimens. CYP2C19 polymorphism also played an important role in quadruple therapy. It seems advisable to change PPI to rabeprazole in second-line quadruple therapy.

  11. Lysine suppresses protein degradation through autophagic-lysosomal system in C2C12 myotubes.

    Science.gov (United States)

    Sato, Tomonori; Ito, Yoshiaki; Nedachi, Taku; Nagasawa, Takashi

    2014-06-01

    Muscle mass is determined between protein synthesis and protein degradation. Reduction of muscle mass leads to bedridden condition and attenuation of resistance to diseases. Moreover, bedridden condition leads to additional muscle loss due to disuse muscle atrophy. In our previous study (Sato et al. 2013), we showed that administered lysine (Lys), one of essential amino acid, suppressed protein degradation in skeletal muscle. In this study, we investigated that the mechanism of the suppressive effects of Lys on skeletal muscle proteolysis in C2C12 cell line. C2C12 myotubes were incubated in the serum-free medium containing 10 mM Lys or 20 mM Lys, and myofibrillar protein degradation was determined by the rates of 3-methylhistidine (MeHis) release from the cells. The mammalian target of rapamycin (mTOR) activity from the phosphorylation levels of p70-ribosormal protein S6 kinase 1 and eIF4E-binding protein 1 and the autophagic-lysosomal system activity from the ratio of LC3-II/I in C2C12 myotubes stimulated by 10 mM Lys for 0-3 h were measured. The rates of MeHis release were markedly reduced by addition of Lys. The autophagic-lysosomal system activity was inhibited upon 30 min of Lys supplementation. The activity of mTOR was significantly increased upon 30 min of Lys supplementation. The suppressive effect of Lys on the proteolysis by the autophagic-lysosomal system was maintained partially when mTOR activity was inhibited by 100 nM rapamycin, suggesting that some regulator other than mTOR signaling, for example, Akt, might also suppress the autophagic-lysosomal system. From these results, we suggested that Lys suppressed the activity of the autophagic-lysosomal system in part through activation of mTOR and reduced myofibrillar protein degradation in C2C12 myotubes.

  12. Diameter-Specific Growth of Semiconducting SWNT Arrays Using Uniform Mo2C Solid Catalyst.

    Science.gov (United States)

    Zhang, Shuchen; Tong, Lianming; Hu, Yue; Kang, Lixing; Zhang, Jin

    2015-07-22

    Semiconducting single-walled nanotube (s-SWNT) arrays with specific diameters are urgently demanded in the applications in nanoelectronic devices. Herein, we reported that by using uniform Mo2C solid catalyst, aligned s-SWNT (∼90%) arrays with narrow-diameter distribution (∼85% between 1.0 and 1.3 nm) on quartz substrate can be obtained. Mo2C nanoparticles with monodisperse sizes were prepared by using molybdenum oxide-based giant clusters, (NH4)42[Mo132O372(H3CCOO)30(H2O)72]·10H3CCOONH4·300H2O(Mo132), as the precursor that was carburized by a gas mixture of C2H5OH/H2 during a temperature-programmed reduction. In this approach, the formation of volatile MoO3 was inhibited due to the annealing and reduction at a low temperature. As a result, uniform Mo2C nanoparticles are formed, and their narrow size-dispersion strictly determines the diameter distribution of SWNTs. During the growth process, Mo2C selectively catalyzes the scission of C-O bonds of ethanol molecules, and the resultant absorbed oxygen (Oads) preferentially etches metallic SWNTs (m-SWNTs), leading to the high-yield of s-SWNTs. Raman spectroscopic analysis showed that most of the s-SWNTs can be identified as (14, 4), (13, 6), or (10, 9) tubes. Our findings open up the possibility of the chirality-controlled growth of aligned-SWNTs using uniform carbide nanoparticles as solid catalysts for practical nanoelectronics applications.

  13. Harvesting and preparation of cadaveric osseoligamentous lower cervical spine (C2-C7) for biomechanical testing

    OpenAIRE

    Yeh, J; Jackowski, A

    1998-01-01

    Cadaveric osseoligamentous lower cervical spines (C2-C7) are often used in the investigation of spinal biomechanics in vitro. Surprisingly, however, the techniques of harvesting at postmortem and preparation of cadaveric osseoligamentous lower cervical spine for biomechanical testing have not been described in detail. We describe a simple and effective method that can be readily integrated into the routine autopsy procedure. Points on the avoidance of disfiguring the cadaver and damaging the ...

  14. Intercomparison of an improved 20th Century reanalysis version 2c dataset spanning 1850 to 2012

    Science.gov (United States)

    Compo, G. P.; Whitaker, J. S.; Sardeshmukh, P. D.; Giese, B. S.; Brohan, P.

    2014-12-01

    The historical reanalysis dataset generated by NOAA ESRL and the University of Colorado CIRES, the Twentieth Century Reanalysis version 2 (20CRv2), is a comprehensive global atmospheric circulation dataset spanning 1871-2012, assimilating only surface pressure and using monthly Hadley Centre SST and sea ice distributions (HadISST1.1) as boundary conditions. It has been made possible through collaboration with GCOS, WCRP, and the ACRE initiative. It is chiefly motivated by a need to provide an observational validation dataset, with quantified uncertainties, for assessments of climate model simulations of the 20th century, with emphasis on the statistics of daily weather. It uses, together with an NCEP global numerical weather prediction (NWP) land/atmosphere model to provide background "first guess" fields, an Ensemble Kalman Filter (EnKF) data assimilation method. This yields a global analysis every 6 hours as the most likely state of the atmosphere, and also yields the uncertainty of that analysis. Improvements in the new version ("2c") include an extension back to 1850 and the specification of new boundary conditions. These come from new fields of monthly COBE-SST2 sea ice concentrations and an ensemble of daily Simple Ocean Data Assimilation with Sparse Input (SODAsi.2c) sea surface temperatures. SODAsi.2c itself was forced with 20CR, allowing these boundary conditions to be more consistent with the atmospheric reanalysis. Millions of additional pressure observations contained in the new International Surface Pressure Databank version 3 are also included. These improvements result in 20CR version "2c" having comparable or better analyses, as suggested by improved 24 hour forecast skill, more realistic uncertainty in near-surface air temperature, and a reduction in spurious centennial trends in the tropical and polar regions. An intercomparison with ERA-Interim, MERRA, and JRA-55 reanalyses that assimilate all available upper-air and satellite observations will

  15. I2C: a system for the indexing, storage, and retrieval of medical images by content.

    Science.gov (United States)

    Orphanoudakis, S C; Chronaki, C; Kostomanolakis, S

    1994-01-01

    Image indexing, storage, and retrieval based on pictorial content is a feature of image database systems which is becoming of increasing importance in many application domains. Medical image database systems, which support the retrieval of images generated by different modalities based on their pictorial content, will provide added value to future generation picture archiving and communication systems (PACS), and can be used as a diagnostic decision support tools and as a tool for medical research and training. We present the architecture and features of I2C, a system for the indexing, storage, and retrieval of medical images by content. A unique design feature of this architecture is that it also serves as a platform for the implementation and performance evaluation of image description methods and retrieval strategies. I2C is a modular and extensible system, which has been developed based on object-oriented principles. It consists of a set of cooperating modules which facilitate the addition of new graphical tools, image description and matching algorithms. These can be incorporated into the system at the application level. The core concept of I2C is an image class hierarchy. Image classes encapsulate different segmentation and image content description algorithms. Medical images are assigned to image classes based on a set of user-defined attributes such as imaging modality, type of study, anatomical characteristics, etc. This class-based treatment of images in the I2C system achieves increased accuracy and efficiency of content-based retrievals, by limiting the search space and allowing specific algorithms to be fine-tuned for images acquired by different modalities or representing different parts of the anatomy.

  16. DFT study of oxygen adsorption on Mo2C(001) and (201) surfaces at different conditions

    Science.gov (United States)

    Cheng, Lihong; Li, Wenkui; Chen, Zhiqin; Ai, Jianping; Zhou, Zehua; Liu, Jianwen

    2017-07-01

    Density functional theory (DFT) calculations were performed to investigate oxygen adsorption on Mo2C(001) and (201)surfaces at different coverage. The energies and structures of oxygen from lowest to saturated coverages were clearly identified on each surface. Thermodynamics method was introduced to reveal the roles of temperature, pressure as well as oxygen sources (O2, H2O and CO2) on the surface oxygen coverage, which is related to the surface oxidation. On the basis of phase diagram, we can easily identify the stable oxygen coverage at different defined conditions. In addition, it reveals that O2 is the strongest oxidant, which results in the full coverage of oxygen on both surfaces in a wide range of temperature and pressure. Then, H2O and CO2 are weaker oxidants, which could only cause partial oxidation of Mo2C surfaces. These results indicate the facile oxidation of Mo2C catalyst. The possible ways to avoid surface oxidation are keeping higher temperature and H2 pressure in the gas phase.

  17. Characterization of triclosan metabolism in Sphingomonas sp. strain YL-JM2C

    Science.gov (United States)

    Mulla, Sikandar I.; Wang, Han; Sun, Qian; Hu, Anyi; Yu, Chang-Ping

    2016-02-01

    Triclosan (TCS) is one of the most widespread emerging contaminants and has adverse impact on aquatic ecosystem, yet little is known about its complete biodegradation mechanism in bacteria. Sphingomonas sp, strain YL-JM2C, isolated from activated sludge of a wastewater treatment plant, was very effective on degrading TCS. Response surface methodology (RSM) was applied to optimize the conditions like temperature and pH. From RSM, the optimal TCS degradation conditions were found to be 30 °C and pH 7.0. Under optimal conditions, strain YL-JM2C completely mineralized TCS (5 mg L-1) within 72 h. Gas chromatography-mass spectrometry analysis revealed that 2,4-dichlorophenol, 2-chlorohydroquinone and hydroquinone are three main by-products of TCS. Furthermore, stable isotope experimental results revealed that the 13C12-TCS was completely mineralized into CO2 and part of heavier carbon (13C) of labeled TCS was utilized by strain YL-JM2C to synthesize fatty acids (PLFAs). Cell surface hydrophobicity (CSH) and degradation test results suggested that the strain could enhance degradation capacity of TCS through increasing CSH. In addition, the bacterium also completely degraded spiked TCS (5 mg L-1) in wastewater collected from the wastewater treatment plant. Hence, these results suggest that the strain has potential to remediate TCS in the environment.

  18. Cited3 activates Mef2c to control muscle cell differentiation and survival.

    Science.gov (United States)

    Devakanmalai, Gnanapackiam Sheela; Zumrut, Hasan E; Ozbudak, Ertuğrul M

    2013-05-15

    Vertebrate muscle development occurs through sequential differentiation of cells residing in somitic mesoderm - a process that is largely governed by transcriptional regulators. Our recent spatiotemporal microarray study in zebrafish has identified functionally uncharacterized transcriptional regulators that are expressed at the initial stages of myogenesis. cited3 is one such novel gene encoding a transcriptional coactivator, which is expressed in the precursors of oxidative slow-twitch myofibers. Our experiments placed cited3 into a gene regulatory network, where it acts downstream of Hedgehog signaling and myoD/myf5 but upstream of mef2c. Knockdown of expression of cited3 by antisense morpholino oligonucleotides impaired muscle cell differentiation and growth, caused muscle cell death and eventually led to total immotility. Transplantation experiments demonstrated that Cited3 cell-autonomously activates the expression of mef2c in slow myofibers, while it non-cell-autonomously regulates expression of structural genes in fast myofibers. Restoring expression of cited3 or mef2c rescued all the cited3 loss-of-function phenotypes. Protein truncation experiments revealed the functional necessity of C-terminally conserved domain of Cited3, which is known to mediate interactions of Cited-family proteins with histone acetylases. Our findings demonstrate that Cited3 is a critical transcriptional coactivator functioning during muscle differentiation and its absence leads to defects in terminal differentiation and survival of muscle cells.

  19. TiO2@C Core-Shell Nanoparticles Formed by Polymeric Nano-Encapsulation

    Directory of Open Access Journals (Sweden)

    Mitra eVasei

    2014-07-01

    Full Text Available TiO2 semiconducting nanoparticles are known to be photocatalysts of moderate activity due to their high band-gap and high rate of electron-hole recombination. The formation of a shell of carbon around the core of TiO2, i.e. the formation of TiO2@C nanoparticles, is believed to partly alleviate these problems. It is usually achieved by a hydrothermal treatment in a presence of a sugar derivative. We present here a novel method for the formation of highly uniform C shell around TiO2 nanoparticles. For this purpose, TiO2 nanoparticles were dispersed in water using an oligomeric dispersant prepared by Reversible Addition-Fragmentation chain Transfer (RAFT polymerization. Then the nanoparticles were engaged into an emulsion polymerization of acrylonitrile, resulting in the formation of a shell of polyacrylonitrile (PAN around each TiO2 nanoparticles. Upon pyrolisis, the PAN was transformed into carbon, resulting in the formation of TiO2@C nanoparticles. The structure of the resulting particles was elucidated by X-Ray diffraction, FTIR, UV-VIS and Raman spectroscopy as well as TEM microscopy. Preliminary results about the use of the TiO2@C particles as photocatalysts for the splitting of water are presented. They indicate that the presence of the C shell is responsible for a significant enhancement of the photocurrent.

  20. TiO2@C core-shell nanoparticles formed by polymeric nano-encapsulation.

    Science.gov (United States)

    Vasei, Mitra; Das, Paramita; Cherfouth, Hayet; Marsan, Benoît; Claverie, Jerome P

    2014-01-01

    TiO2 semiconducting nanoparticles are known to be photocatalysts of moderate activity due to their high band-gap and high rate of electron-hole recombination. The formation of a shell of carbon around the core of TiO2, i.e., the formation of TiO2@C nanoparticles, is believed to partly alleviate these problems. It is usually achieved by a hydrothermal treatment in a presence of a sugar derivative. We present here a novel method for the formation of highly uniform C shell around TiO2 nanoparticles. For this purpose, TiO2 nanoparticles were dispersed in water using an oligomeric dispersant prepared by Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization. Then the nanoparticles were engaged into an emulsion polymerization of acrylonitrile, resulting in the formation of a shell of polyacrylonitrile (PAN) around each TiO2 nanoparticles. Upon pyrolysis, the PAN was transformed into carbon, resulting in the formation of TiO2@C nanoparticles. The structure of the resulting particles was elucidated by X-Ray diffraction, FTIR, UV-VIS and Raman spectroscopy as well as TEM microscopy. Preliminary results about the use of the TiO2@C particles as photocatalysts for the splitting of water are presented. They indicate that the presence of the C shell is responsible for a significant enhancement of the photocurrent.

  1. Role of Nodal-PITX2C signaling pathway in glucose-induced cardiomyocyte hypertrophy.

    Science.gov (United States)

    Su, Dongmei; Jing, Sun; Guan, Lina; Li, Qian; Zhang, Huiling; Gao, Xiaobo; Ma, Xu

    2014-06-01

    Pathological cardiac hypertrophy is a major cause of morbidity and mortality in cardiovascular disease. Recent studies have shown that cardiomyocytes, in response to high glucose (HG) stimuli, undergo hypertrophic growth. While much work still needs to be done to elucidate this important mechanism of hypertrophy, previous works have showed that some pathways or genes play important roles in hypertrophy. In this study, we showed that sublethal concentrations of glucose (25 mmol/L) could induce cardiomyocyte hypertrophy with an increase in the cellular surface area and the upregulation of the atrial natriuretic peptide (ANP) gene, a hypertrophic marker. High glucose (HG) treatments resulted in the upregulation of the Nodal gene, which is under-expressed in cardiomyocytes. We also determined that the knockdown of the Nodal gene resisted HG-induced cardiomyocyte hypertrophy. The overexpression of Nodal was able to induce hypertrophy in cardiomyocytes, which was associated with the upregulation of the PITX2C gene. We also showed that increases in the PITX2C expression, in response to Nodal, were mediated by the Smad4 signaling pathway. This study is highly relevant to the understanding of the effects of the Nodal-PITX2C pathway on HG-induced cardiomyocyte hypertrophy, as well as the related molecular mechanisms.

  2. Oxygen adsorption and dissociation during the oxidation of monolayer Ti2C

    KAUST Repository

    Gan, Liyong

    2013-08-20

    Exfoliated two-dimensional early transition metal carbides and carbonitrides are usually not terminated by metal atoms but saturated by O, OH, and/or F, thus making it difficult to understand the surface structure evolution and the induced electronic modifications. To fill this gap, density functional theory and molecular dynamics simulations are performed to capture the initial stage of the oxidation process of Ti2C, a prototypical example from the recently fabricated class of two-dimensional carbides and carbonitrides. It is shown that the unsaturated Ti 3d orbitals of the pristine Ti2C surface interact strongly with the approaching O2 molecules, resulting in barrierless O2 dissociation. The diffusion of the dissociated O atoms is also found to be very facile. Molecular dynamics simulations suggest that both dissociation and diffusion are enhanced as the O2 coverage increases to 0.25 monolayer. For a coverage of less than 0.11 monolayer, the adsorbates lead to a minor modification of the electronic properties of Ti2C, while the modification is remarkable at 0.25 monolayer. The formed Ti2CO2 after O saturation is an indirect narrow gap semiconductor (0.33 eV) with high intrinsic carrier concentration at room temperature and high thermodynamic stability at intermediate temperature (e.g., 550 °C).

  3. Magnetic structure and spin reorientation of quaternary Dy2Fe2Si2C

    Science.gov (United States)

    Susilo, R. A.; Cadogan, J. M.; Hutchison, W. D.; Stewart, G. A.; Avdeev, M.; Campbell, S. J.

    2017-03-01

    We have investigated the low temperature magnetic properties of Dy2Fe2Si2C by using magnetisation, specific heat, x-ray diffraction, neutron powder diffraction and 57Fe Mössbauer spectroscopy measurements over the temperature range 1.5 K–300 K. Dy2Fe2Si2C exhibits two magnetic transitions at low temperatures: an antiferromagnetic transition at {{T}\\text{N}}∼ 26 K and a spin-reorientation transition at {{T}t}∼ 6 K. The magnetic structure above T t can be described with a propagation vector \\mathbf{k}~=~≤ft(0~0~\\frac{1}{2}\\right) with the ordering of the Dy magnetic moments along the monoclinic b-axis whereas on cooling below T t the Dy moment tips away from the b-axis towards the ac-plane. We find that the spin-reorientation in Dy2Fe2Si2C is mainly driven by the competition between the second-order crystal field term B 20 and the higher-order terms, in particular B 40 and B 64.

  4. High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures.

    Science.gov (United States)

    Li, Qian; Zhang, Ning; Yang, Yong; Wang, Guozhong; Ng, Dickon H L

    2014-07-29

    Porous graphitic carbon nitride was synthesized by controllable thermal polymerization of urea in air. Their textural, electrical, and optical properties were tuned by varying the heating rate. The presence of proper residual oxygen in carbon nitride matrix had enhanced light absorption and inhibited the recombination of charge carriers. Furthermore, the MoS2 nanosheets were coupled into the carbon nitride to form MoS2/C3N4 heterostructures via a facile ultrasonic chemical method. The optimized MoS2/C3N4 heterostructure with 0.05 wt % MoS2 showed a reaction rate constant as high as 0.301 min(-1), which was 3.6 times that of bare carbon nitride. As analyzed by SEM, TEM, UV-vis absorption, PL and photoelectrochemical measurements, intimate contact interface, extended light response range, enhanced separation speed of charge carriers, and high photocurrent density upon MoS2 coupling led to the photocatalytic promotion of the MoS2/C3N4 heterostructures. In this architecture, MoS2 served as electron trapper to extend the lifetime of separated electron-hole pairs. Meanwhile, the accumulated holes on the surface of carbon nitride oxidized the organic dye directly, which was a predominant process in the photodegradation of organic pollutants in water treatment. The promotional mechanisms and principles reported here would have great significance in heterogeneous photocatalysis.

  5. Li2C2, a High-Capacity Cathode Material for Lithium Ion Batteries.

    Science.gov (United States)

    Tian, Na; Gao, Yurui; Li, Yurong; Wang, Zhaoxiang; Song, Xiaoyan; Chen, Liquan

    2016-01-11

    As a typical alkaline earth metal carbide, lithium carbide (Li2C2) has the highest theoretical specific capacity (1400 mA h g(-1)) among all the reported lithium-containing cathode materials for lithium ion batteries. Herein, the feasibility of using Li2C2 as a cathode material was studied. The results show that at least half of the lithium can be extracted from Li2C2 and the reversible specific capacity reaches 700 mA h g(-1). The C≡C bond tends to rotate to form C4 (C≡C⋅⋅⋅C≡C) chains during lithium extraction, as indicated with the first-principles molecular dynamics (FPMD) simulation. The low electronic and ionic conductivity are believed to be responsible for the potential gap between charge and discharge, as is supported with density functional theory (DFT) calculations and Arrhenius fitting results. These findings illustrate the feasibility to use the alkali and alkaline earth metal carbides as high-capacity electrode materials for secondary batteries.

  6. Arecoline inhibits myogenic differentiation of C2C12 myoblasts by reducing STAT3 phosphorylation.

    Science.gov (United States)

    Chang, Yung-Fu; Liu, Ting-Yuan; Liu, Shao-Tung; Tseng, Chao-Neng

    2012-10-01

    Areca nut (Areca catechu) is chewed regularly as a medical and psychoactive food by about 10% of the world population, in countries including India, Taiwan and parts of Southern Asia. Areca nut chewing during pregnancy has been associated with both lower birth weight and premature birth. Animals of low birth weights showed retardation of muscle development. Our previous study showed that arecoline, the major areca alkaloid, decreased the number of implanted embryos. Here we sought to determine the effects of arecoline in myogenic differentiation by in vitro assays using C2C12 myoblast cells. The results showed that arecoline higher than 0.4mM significantly increased apoptosis and decreased viability of C2C12 cells. Morphometric measurements of myotube formation and analyses of myogenic markers, myosin heavy chain and myogenin, revealed that myogenic differentiation was inhibited by 0.04-0.08 mM arecoline. Moreover, phosphorylated but not total STAT3 was significantly inhibited by arecoline during myotube formation. These results indicate that arecoline inhibits the myogenic differentiation of C2C12 cells by reducing the activation of STAT3, an upstream regulator of myogenesis. Improved understanding of the effects of arecoline during myogenic differentiation may help to establish public health policies and to develop potential treatments for such patients. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Cyclotron Production of (99m)Tc using (100)Mo2C targets.

    Science.gov (United States)

    Richards, Vernal N; Mebrahtu, Efrem; Lapi, Suzanne E

    2013-10-01

    An investigative study of the (100)Mo (p,2n)(99m)Tc reaction on a medical cyclotron using (100)Mo2C is reported. This is the first report of this compound being used as a target for this reaction. (100)Mo2C, a refractory carbide with high thermal conductivity, properties which underscore its use on a cyclotron, was synthesized using (100)MoO3. Its ease of oxidation back to (100)MoO3 under air at elevated temperatures facilitates the use of thermo-chromatography, a high temperature gas phase separation technique for the separation and isolation of (99m)Tc. Activity yields for (99m)Tc averaged 84% of the calculated theoretical yields. Additionally, the percent recovery of MoO3, the precursor for Mo2C, was consistently high at 85% ensuring a good life cycle for this target material. The produced (99m)Tc was radio-chemically pure and easily labeled MDP for imaging purposes.

  8. Interface observation of heat-treated Co/Mo2C multilayers

    Science.gov (United States)

    Yuan, Yanyan; Le Guen, Karine; André, Jean-Michel; Mény, Christian; Ulhaq, Corinne; Galtayries, Anouk; Zhu, Jingtao; Wang, Zhanshan; Jonnard, Philippe

    2015-03-01

    We study the interface evolution of a series of periodic Co/Mo2C multilayers as a function of the annealing temperature up to 600 °C. Different complementary techniques are implemented to get information on the phenomenon taking place at the interfaces of the stack. The periodical structure of Co/Mo2C multilayer is proven by time-of-flight secondary ion mass spectrometry (ToF-SIMS) depth profiles which demonstrate the formation of an oxide layer at both air/stack and stack/substrate interfaces. From Nuclear magnetic resonance (NMR) spectra, we observed the intermixing phenomenon of Co and C atoms for the as-deposited sample, and then at annealing temperature above 300 °C Co and C atoms separate from their mixed regions. Comparison of NMR results between Co/Mo2C and Co/C references confirms this phenomenon. This is in agreement with X-ray emission spectroscopy (XES) measurements. Furthermore the calculation of the Co-C, Co-Mo and Mo-C mixing enthalpy using Miedema's model gives a proof of the demixing of Co and C atoms present within the stacks above 300 °C. From the transmission electron microscopy (TEM) analysis, we found the presence of some crystallites within the as-deposited sample as well as the mainly amorphous nature of all layers. This is confirmed using X-ray diffraction (XRD) patterns which also demonstrate the growth of crystallites induced upon annealing.

  9. First intron of nestin gene regulates its expression during C2C12 myoblast ifferentiation

    Institute of Scientific and Technical Information of China (English)

    Hua Zhong; Zhigang Jin; Yongfeng Chen; Ting Zhang; Wei Bian; Xing Cui; Naihe Jing

    2008-01-01

    Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China Nestin is an intermediate filament protein expressed in neural progenitor cells and in developing skeletal muscle. Nestin has been widely used as a neural progenitor cell marker. It is well established that the specific expression of the nestin gene in neural progenitor cells is conferred by the neural-specific enhancer located in the second intron of the nestin gene. However, the transcriptional mechanism of nestin expression in developing muscle is still unclear. In this study, we identified a muscle cell-specific enhancer in the first intron of mouse nestin gene in mouse myoblast C2C12 cells.We localized the core enhancer activity to the 291-661 region of the first intron, and showed that the two E-boxes in the core enhancer region were important for enhancer activity in differentiating C2C12 cells. We also showed that MyoD protein was involved in the regulation of nestin expression in the myogenic differentiation of C2C12 cells.

  10. Effect of Additives on Properties of MgO-ZrO2-C Material

    Institute of Scientific and Technical Information of China (English)

    TIAN Shouxin; LIU Shanlin; XIE Mengqin

    2002-01-01

    The paper describes the effect of additives Al, Si,SiC and B4 C on the expansion of MgO-ZrO2-C material after being coked . The results indicate that Al and Si can not increase its hot and cold strength. Al and Si were oxidized to form Al2 O3 and SiO2 respectively, and then reacted with CaZrO3 or stabilizer in c-ZrO2 to form calcium aluminate , spinel ( MA ), dicalcium silicate ( C2 S ) and forsterite (M2S). Meanwhile, α-C2S was transformed to γ-C2S and c-ZrO2 to m-ZrO2 when temperature changed.All the above reactions resulted in the decrease of the amount of Al4 C3 and SiC and the increase in bulk volume ,which caused the structure of MgO-ZrO2-C material destroyed. Hence, contrary to the MgO-C material, when adding Al. and Si, the MgO-ZrO2-C material would be structurally deteriorated after heat-treatment and its strength and corrosion resistance decreased.

  11. Composite Interlaminar Shear Fracture Toughness, G(sub 2c): Shear Measurement of Sheer Myth?

    Science.gov (United States)

    OBrien, T. Kevin

    1997-01-01

    The concept of G2c as a measure of the interlaminar shear fracture toughness of a composite material is critically examined. In particular, it is argued that the apparent G2c as typically measured is inconsistent with the original definition of shear fracture. It is shown that interlaminar shear failure actually consists of tension failures in the resin rich layers between plies followed by the coalescence of ligaments created by these failures and not the sliding of two planes relative to one another that is assumed in fracture mechanics theory. Several strain energy release rate solutions are reviewed for delamination in composite laminates and structural components where failures have been experimentally documented. Failures typically occur at a location where the mode 1 component accounts for at least one half of the total G at failure. Hence, it is the mode I and mixed-mode interlaminar fracture toughness data that will be most useful in predicting delamination failure in composite components in service. Although apparent G2c measurements may prove useful for completeness of generating mixed-mode criteria, the accuracy of these measurements may have very little influence on the prediction of mixed-mode failures in most structural components.

  12. Leucine Modulates Mitochondrial Biogenesis and SIRT1-AMPK Signaling in C2C12 Myotubes

    Directory of Open Access Journals (Sweden)

    Chunzi Liang

    2014-01-01

    Full Text Available Previous studies from this laboratory demonstrate that dietary leucine protects against high fat diet-induced mitochondrial impairments and stimulates mitochondrial biogenesis and energy partitioning from adipocytes to muscle cells through SIRT1-mediated mechanisms. Moreover, β-hydroxy-β-methyl butyrate (HMB, a metabolite of leucine, has been reported to activate AMPK synergistically with resveratrol in C2C12 myotubes. Therefore, we hypothesize that leucine-induced activation of SIRT1 and AMPK is the central event that links the upregulated mitochondrial biogenesis and fatty acid oxidation in skeletal muscle. Thus, C2C12 myotubes were treated with leucine (0.5 mM, alanine (0.5 mM, valine (0.5 mM, EX527 (SIRT1 inhibitor, 25 μM, and Compound C (AMPK inhibitor, 25 μM alone or in combination to determine the roles of AMPK and SIRT1 in leucine-modulation of energy metabolism. Leucine significantly increased mitochondrial content, mitochondrial biogenesis-related genes expression, fatty acid oxidation, SIRT1 activity and gene expression, and AMPK phosphorylation in C2C12 myotubes compared to the controls, while EX527 and Compound C markedly attenuated these effects. Furthermore, leucine treatment for 24 hours resulted in time-dependent increases in cellular NAD+, SIRT1 activity, and p-AMPK level, with SIRT1 activation preceding that of AMPK, indicating that leucine activation of SIRT1, rather than AMPK, is the primary event.

  13. Elementary Steps of Syngas Reactions on Mo2C(001): Adsorption Thermochemistry and Bond Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Medford, Andrew

    2012-02-16

    Density functional theory (DFT) and ab initio thermodynamics are applied in order to investigate the most stable surface and subsurface terminations of Mo{sub 2}C(001) as a function of chemical potential and in the presence of syngas. The Mo-terminated (001) surface is then used as a model surface to evaluate the thermochemistry and energetic barriers for key elementary steps in syngas reactions. Adsorption energy scaling relations and Broensted-Evans-Polanyi relationships are established and used to place Mo{s