WorldWideScience

Sample records for 5-ht4 serotonin receptor

  1. Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action

    DEFF Research Database (Denmark)

    Lucas, Guillaume; Rymar, Vladimir V; Du, Jenny;

    2007-01-01

    Current antidepressants are clinically effective only after several weeks of administration. Here, we show that serotonin(4) (5-HT(4)) agonists reduce immobility in the forced swimming test, displaying an antidepressant potential. Moreover, a 3 day regimen with such compounds modifies rat brain...

  2. Effect of piboserod, a 5-HT4 serotonin receptor antagonist, on left ventricular function in patients with symptomatic heart failure

    DEFF Research Database (Denmark)

    Olsen, Inge C; Kjekshus, John K; Torp-Pedersen, Christian;

    2009-01-01

    AIMS: Myocardial 5-HT(4) serotonin (5-HT) receptors are increased and activated in heart failure (HF). Blockade of 5-HT(4) receptors reduced left ventricular (LV) remodelling in HF rats. We evaluated the effect of piboserod, a potent, selective, 5-HT(4) serotonin receptor antagonist, on LV function...... weeks up titration. The primary endpoint was LVEF measured by cardiac magnetic resonance imaging (MRI). Secondary endpoints were LV volumes, N-terminal pro-brain natriuretic peptide, norepinephrine, quality of life, and 6 min walk test. Piboserod significantly increased LVEF by 1.7% vs. placebo (CI 0...... of life, or exercise tolerance. Patients on piboserod reported more adverse events, but numbers were too small to identify specific safety issues. CONCLUSION: Although patients with chronic HF had a small but significant improvement in LVEF when treated with piboserod for 24 weeks, the result...

  3. The 5-HT(4) receptor levels in hippocampus correlates inversely with memory test performance in humans

    DEFF Research Database (Denmark)

    Haahr, Mette Ewers; Fisher, Patrick; Holst, Klaus;

    2013-01-01

    The cerebral serotonin (5-HT) system is involved in cognitive functions such as memory and learning and animal studies have repeatedly shown that stimulation of the 5-HT type 4 receptor (5-HT(4) R) facilitates memory and learning and further that the 5-HT(4) R modulates cellular memory processes...... of the 5-HT4R binding in hippocampus in relation to memory acquisition and consolidation in healthy young volunteers. We found significant, negative associations between the immediate recall scores and left and right hippocampal BP(ND) , (p = 0.009 and p = 0.010 respectively) and between the right...

  4. Effects of the 5-HT(4) receptor agonist RS67333 and paroxetine on hippocampal extracellular 5-HT levels

    DEFF Research Database (Denmark)

    Licht, Cecilie Löe; Knudsen, Gitte Moos; Sharp, Trevor

    2010-01-01

    The 5-HT(4) receptor modulates activity of serotonergic neurons and is a new potential target for antidepressant treatment. This microdialysis study evaluated the effect of the 5-HT(4) receptor agonist, RS67333, on extracellular serotonin (5-hydroxytryptamine, 5-HT) and 5-HIAA levels in rat ventr...

  5. High trait aggression in men is associated with low 5-HT levels, as indexed by 5-HT4 receptor binding

    DEFF Research Database (Denmark)

    da Cunha-Bang, Sofi; Mc Mahon, Brenda; Fisher, Patrick MacDonald;

    2016-01-01

    Impulsive aggression has commonly been associated with a dysfunction of the serotonin (5-HT) system: many, but not all, studies point to an inverse relationship between 5-HT and aggression. As cerebral 5-HT4 receptor (5-HT4R) binding has recently been recognized as a proxy for stable brain levels...... of 5-HT, we here test the hypothesis in healthy men and women that brain 5-HT levels, as indexed by cerebral 5-HT4R, are inversely correlated with trait aggression and impulsivity. Sixty-one individuals (47 men) underwent positron emission tomography scanning with the radioligand [(11)C]SB207145...... for quantification of brain 5-HT4R binding. The Buss-Perry Aggression Questionnaire (BPAQ) and the Barratt Impulsiveness Scale were used for assessment of trait aggression and trait impulsivity. Among male subjects, there was a positive correlation between global 5-HT4R and BPAQ total score (P = 0.037) as well...

  6. Characterization of the 5-HT4 receptor mediating tachycardia in piglet isolated right atrium.

    OpenAIRE

    Medhurst, A. D.; Kaumann, A J

    1993-01-01

    1. In order to explore whether 5-HT4 receptor subtypes exist, we have characterized further the 5-HT4 receptor that mediates tachycardia in the piglet isolated right atrium. All experiments were carried out in the presence of propranolol (400 nM) and cocaine (6 microM). We used tryptamine derivatives, substituted benzamides and benzimidazolone derivatives as pharmacological tools. 2. Tachycardia responses to 5-hydroxytryptamine (5-HT) were mimicked by other tryptamine derivatives with the fol...

  7. Genetic variation in 5-hydroxytryptamine transporter expression causes adaptive changes in 5-HT4 receptor levels

    DEFF Research Database (Denmark)

    Jennings, Katie Ann; Licht, Cecilie Löe; Bruce, Aynsley;

    2012-01-01

    Genetic variation in 5-HT transporter (5-HTT) expression is a key risk factor for psychiatric disorder and has been linked to changes in the expression of certain 5-HT receptor subtypes. This study investigated the effect of variation in 5-HTT expression on 5-HT4 receptor levels in both 5-HTT kno......). Together, these findings suggest that variation in 5-HTT expression causes adaptive changes in 5-HT4 receptor levels which are directly linked to alterations in 5-HT availability.......Genetic variation in 5-HT transporter (5-HTT) expression is a key risk factor for psychiatric disorder and has been linked to changes in the expression of certain 5-HT receptor subtypes. This study investigated the effect of variation in 5-HTT expression on 5-HT4 receptor levels in both 5-HTT...

  8. 3D Pharmacophore, hierarchical methods, and 5-HT4 receptor binding data.

    Science.gov (United States)

    Varin, Thibault; Saettel, Nicolas; Villain, Jonathan; Lesnard, Aurelien; Dauphin, François; Bureau, Ronan; Rault, Sylvain

    2008-10-01

    5-Hydroxytryptamine subtype-4 (5-HT(4)) receptors have stimulated considerable interest amongst scientists and clinicians owing to their importance in neurophysiology and potential as therapeutic targets. A comparative analysis of hierarchical methods applied to data from one thousand 5-HT(4) receptor-ligand binding interactions was carried out. The chemical structures were described as chemical and pharmacophore fingerprints. The definitions of indices, related to the quality of the hierarchies in being able to distinguish between active and inactive compounds, revealed two interesting hierarchies with the Unity (1 active cluster) and pharmacophore fingerprints (4 active clusters). The results of this study also showed the importance of correct choice of metrics as well as the effectiveness of a new alternative of the Ward clustering algorithm named Energy (Minimum E-Distance method). In parallel, the relationship between these classifications and a previously defined 3D 5-HT(4) antagonist pharmacophore was established.

  9. Induction of neonatal lupus in pups of mice immunized with synthetic peptides derived from amino acid sequences of the serotoninergic 5-HT4 receptor.

    Science.gov (United States)

    Eftekhari, P; Roegel, J C; Lezoualc'h, F; Fischmeister, R; Imbs, J L; Hoebeke, J

    2001-02-01

    We have previously suggested that the recognition of a cross-reactive epitope on the 5-HT4 receptor and the 52-kDa SSA/Ro protein by serotonin-antagonizing autoantibodies could explain the electrophysiological symptoms of congenital heart block in neonatal lupus. To confirm this hypothesis, we immunized female mice with four synthetic peptides corresponding to the recognized epitopes. All mice developed anti-peptide antibodies, which cross-reacted with the Ro52 and 5-HT4 receptor peptides and recognized both cognate proteins. Peptide-immune mice were mated. The pups from mice immunized with the Ro52 peptides had no symptoms of neonatal lupus apart from bradycardia. However, pups from mice immunized with the 5-HT4 receptor peptides and bradycardia, atrioventricular block of type I or II, longer QT intervals, skin rashes and neuromotor problems. The 5-HT4 receptor was detectable in the different fetal tissues affected (heart, skin and brain) by immunohistochemistry. Hearts from diseased pups were less developed and showed disorganized myocardial hyperplasia, compared to the normal littermates. These results demonstrate that the serotoninergic 5-HT4 receptor is the antigenic target of physiopathological autoantibodies in neonatal lupus.

  10. Pharmacological profile of DA-6886, a novel 5-HT4 receptor agonist to accelerate colonic motor activity in mice.

    Science.gov (United States)

    Lee, Min Jung; Cho, Kang Hun; Park, Hyun Min; Sung, Hyun Jung; Choi, Sunghak; Im, Weonbin

    2014-07-15

    DA-6886, the gastrointestinal prokinetic benzamide derivative is a novel 5-HT4 receptor agonist being developed for the treatment of constipation-predominant irritable bowel syndrome (IBS-C). The purpose of this study was to characterize in vitro and in vivo pharmacological profile of DA-6886. We used various receptor binding assay, cAMP accumulation assay, organ bath experiment and colonic transit assay in normal and chemically constipated mice. DA-6886 exhibited high affinity and selectivity to human 5-HT4 receptor splice variants, with mean pKi of 7.1, 7.5, 7.9 for the human 5-HT4a, 5-HT4b and 5-HT4d, respectively. By contrast, DA-6886 did not show significant affinity for several receptors including dopamine D2 receptor, other 5-HT receptors except for 5-HT2B receptor (pKi value of 6.2). The affinity for 5-HT4 receptor was translated into functional agonist activity in Cos-7 cells expressing 5-HT4 receptor splice variants. Furthermore, DA-6886 induced relaxation of the rat oesophagus preparation (pEC50 value of 7.4) in a 5-HT4 receptor antagonist-sensitive manner. The evaluation of DA-6886 in CHO cells expressing hERG channels revealed that it inhibited hERG channel current with an pIC50 value of 4.3, indicating that the compound was 1000-fold more selective for the 5-HT4 receptor over hERG channels. In the normal ICR mice, oral administration of DA-6886 (0.4 and 2mg/kg) resulted in marked stimulation of colonic transit. Furthermore, in the loperamide-induced constipation mouse model, 2mg/kg of DA-6886 significantly improved the delay of colonic transit, similar to 10mg/kg of tegaserod. Taken together, DA-6886 is a highly potent and selective 5-HT4 receptor agonist to accelerate colonic transit in mice, which might be therapeutic agent having a favorable safety profile in the treatment of gastrointestinal motor disorders such as IBS-C and chronic constipation.

  11. Early administration of RS 67333, a specific 5-HT4 receptor agonist, prevents amyloidogenesis and behavioral deficits in the 5XFAD mouse model of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Patrizia eGiannoni

    2013-12-01

    Full Text Available Amyloid β (Aβ accumulation is considered the main culprit in the pathogenesis of Alzheimer's disease (AD. Recent studies suggest that decreasing Aβ production at very early stages of AD could be a promising strategy to slow down disease progression. Serotonin 5-HT4 receptor activation stimulates α-cleavage of the amyloid precursor protein (APP, leading to the release of the soluble and neurotrophic sAPPα fragment and thus precluding Aβ formation. Using the 5XFAD mouse model of AD that shows accelerated Aβ deposition, we investigated the effect of chronic treatments (treatment onset at different ages and different duration with the 5-HT4 receptor agonist RS 67333 during the asymptomatic phase of the disease. Chronic administration of RS 67333 decreased concomitantly the number of amyloid plaques and the level of Aβ species. Reduction of Aβ levels was accompanied by a striking decrease in hippocampal astrogliosis and microgliosis. RS 67333 also transiently increased sAPPα concentration in the cerebrospinal fluid and brain. Moreover, a specific 5-HT4 receptor antagonist (RS 39604 prevented the RS 67333-mediated reduction of the amyloid pathology. Finally, the novel object recognition test deficits of 5XFAD mice were reversed by chronic treatment with RS 67333. Collectively, these results strongly highlight this 5-HT4 receptor agonist as a promising disease modifying-agent for AD.

  12. Changes in 5-HT4 receptor and 5-HT transporter binding in olfactory bulbectomized and glucocorticoid receptor heterozygous mice

    DEFF Research Database (Denmark)

    Licht, Cecilie Löe; Kirkegaard, Lisbeth; Zueger, Maha;

    2010-01-01

    . The olfactory bulbectomized mice displayed increased activity in the open field test, a characteristic depression-like feature of this model. After bulbectomy, 5-HT(4) receptor binding was increased in the ventral hippocampus (12%) but unchanged in the dorsal hippocampus, frontal and caudal caudate putamen...

  13. Changes in 5-HT4 receptor and 5-HT transporter binding in olfactory bulbectomized and glucocorticoid receptor heterozygous mice

    DEFF Research Database (Denmark)

    Licht, Cecilie L; Kirkegaard, Lisbeth; Zueger, Maha;

    2010-01-01

    ]citalopram in two murine models of depression-related states, olfactory bulbectomy and glucocorticoid receptor heterozygous (GR(+/-)) mice. The olfactory bulbectomy model is characterized by 5-HT system changes, while the GR(+/-) mice have a deficit in hypothalamic-pituitary-adrenal (HPA) system control....... The olfactory bulbectomized mice displayed increased activity in the open field test, a characteristic depression-like feature of this model. After bulbectomy, 5-HT(4) receptor binding was increased in the ventral hippocampus (12%) but unchanged in the dorsal hippocampus, frontal and caudal caudate putamen....... Among post hoc analyzed regions, there was a 14% decrease in 5-HT(4) receptor binding in the olfactory tubercles. The 5-HTT binding was unchanged in the hippocampus and caudate putamen of bulbectomized mice but post hoc analysis showed small decreases in lateral septum and lateral globus pallidus...

  14. Evaluation of the novel 5-HT4 receptor PET ligand [11C]SB207145 in the Gottingen minipig

    DEFF Research Database (Denmark)

    Kornum, B.R.; Lind, N.M.; Gillings, N.;

    2009-01-01

    model provides stable and precise estimates of the binding potential in all regions. The binding potentials calculated for striatum, midbrain, and cortex from the PET data were highly correlated with 5-HT(4) receptor concentrations determined in brain homogenates from the same regions, except...

  15. Age and sex effects on 5-HT(4) receptors in the human brain: a [(11)C]SB207145 PET study

    DEFF Research Database (Denmark)

    Madsen, Karine; Haahr, Mette T; Marner, Lisbeth;

    2011-01-01

    . This study aimed to investigate sex and age effects on 5-HT(4) receptor-binding potentials in striatum, the limbic system, and neocortex. Positron-emission tomographic scans were conducted using the radioligand [(11)C]SB207145 in a cohort of 30 healthy subjects (mean age 44 years; range 20 to 86 years; 14...... in the limbic system. The lower limbic 5-HT(4) receptor binding in women supports a role for 5-HT(4) receptors in the sex-specific differences in emotional control and might contribute to the higher prevalence of affective diseases and AD in women. The relatively stable 5-HT(4) receptor binding with aging...

  16. Age and sex effects on 5-HT(4) receptors in the human brain: a [(11)C]SB207145 PET study

    DEFF Research Database (Denmark)

    Madsen, Karine; Haahr, Mette T; Marner, Lisbeth;

    2011-01-01

    study aimed to investigate sex and age effects on 5-HT(4) receptor-binding potentials in striatum, the limbic system, and neocortex. Positron-emission tomographic scans were conducted using the radioligand [(11)C]SB207145 in a cohort of 30 healthy subjects (mean age 44 years; range 20 to 86 years; 14...... limbic system. The lower limbic 5-HT(4) receptor binding in women supports a role for 5-HT(4) receptors in the sex-specific differences in emotional control and might contribute to the higher prevalence of affective diseases and AD in women. The relatively stable 5-HT(4) receptor binding with aging...

  17. The brain 5-HT4 receptor binding is down-regulated in the Flinders Sensitive Line depression model and in response to paroxetine administration

    DEFF Research Database (Denmark)

    Licht, Cecilie Löe; Marcussen, Anders Bue; Wegener, Gregers;

    2009-01-01

    The 5-hydroxytryptamine (5-HT(4)) receptor may be implicated in depression and is a new potential target for antidepressant treatment. We have investigated the brain 5-HT(4) receptor [(3)H]SB207145 binding in the Flinders Sensitive Line rat depression model by quantitative receptor autoradiography...... cortices after chronic paroxetine administration, and markedly reduced in several regions after 5-HT depletion. Thus, the 5-HT(4) receptor binding was decreased in the Flinders Sensitive Line depression model and in response to chronic paroxetine administration....

  18. Effects of ginger constituents on the gastrointestinal tract: role of cholinergic M3 and serotonergic 5-HT3 and 5-HT4 receptors.

    Science.gov (United States)

    Pertz, Heinz H; Lehmann, Jochen; Roth-Ehrang, René; Elz, Sigurd

    2011-07-01

    The herbal drug ginger (Zingiber officinale Roscoe) may be effective for treating nausea, vomiting, and gastric hypomotility. In these conditions, cholinergic M (3) receptors and serotonergic 5-HT (3) and 5-HT (4) receptors are involved. The major chemical constituents of ginger are [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol. We studied the interaction of [6]-gingerol, [8]-gingerol, [10]-gingerol (racemates), and [6]-shogaol with guinea pig M (3) receptors, guinea pig 5-HT (3) receptors, and rat 5-HT (4) receptors. In whole segments of guinea pig ileum (bioassay for contractile M (3) receptors), [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol slightly but significantly depressed the maximal carbachol response at an antagonist concentration of 10 µM. In the guinea pig myenteric plexus preparation (bioassay for contractile 5-HT (3) receptors), 5-HT maximal responses were depressed by [10]-gingerol from 93 ± 3 % to 65 ± 6 % at an antagonist concentration of 3 µM and to 48 ± 3 % at an antagonist concentration of 5 µM following desensitization of 5-HT (4) receptors and blockade of 5-HT (1) and 5-HT (2) receptors. [6]-Shogaol (3 µM) induced depression to 61 ± 3 %. In rat esophageal tunica muscularis mucosae (bioassay for relaxant 5-HT (4) receptors), [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol (2-6.3 µM) showed no agonist effects. The maximal 5-HT response remained unaffected in the presence of the compounds. It is concluded that the efficiency of ginger in reducing nausea and vomiting may be based on a weak inhibitory effect of gingerols and shogaols at M (3) and 5-HT (3) receptors. 5-HT (4) receptors, which play a role in gastroduodenal motility, appear not to be involved in the action of these compounds. PMID:21305447

  19. Evaluation of the novel 5-HT4 receptor PET ligand [11C]SB207145 in the Göttingen minipig

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Lind, Nanna M; Gillings, Nic;

    2009-01-01

    model provides stable and precise estimates of the binding potential in all regions. The binding potentials calculated for striatum, midbrain, and cortex from the PET data were highly correlated with 5-HT(4) receptor concentrations determined in brain homogenates from the same regions, except...

  20. Hyperfunction of muscarinic receptor maintains long-term memory in 5-HT4 receptor knock-out mice.

    Directory of Open Access Journals (Sweden)

    Luis Segu

    Full Text Available Patients suffering from dementia of Alzheimer's type express less serotonin 4 receptors (5-HTR(4, but whether an absence of these receptors modifies learning and memory is unexplored. In the spatial version of the Morris water maze, we show that 5-HTR(4 knock-out (KO and wild-type (WT mice performed similarly for spatial learning, short- and long-term retention. Since 5-HTR(4 control mnesic abilities, we tested whether cholinergic system had circumvented the absence of 5-HTR(4. Inactivating muscarinic receptor with scopolamine, at an ineffective dose (0.8 mg/kg to alter memory in WT mice, decreased long-term but not short-term memory of 5-HTR(4 KO mice. Other changes included decreases in the activity of choline acetyltransferase (ChAT, the required enzyme for acetylcholine synthesis, in the septum and the dorsal hippocampus in 5-HTR(4 KO under baseline conditions. Training- and scopolamine-induced increase and decrease, respectively in ChAT activity in the septum in WT mice were not detected in the 5-HTR(4 KO animals. Findings suggest that adaptive changes in cholinergic systems may circumvent the absence of 5-HTR(4 to maintain long-term memory under baseline conditions. In contrast, despite adaptive mechanisms, the absence of 5-HTR(4 aggravates scopolamine-induced memory impairments. The mechanisms whereby 5-HTR(4 mediate a tonic influence on ChAT activity and muscarinic receptors remain to be determined.

  1. Behavioral effects of D3 receptor inhibition and 5-HT4 receptor activation on animals undergoing chronic cannabinoid exposure during adolescence.

    Science.gov (United States)

    Abboussi, Oualid; Said, Nadia; Fifel, Karim; Lakehayli, Sara; Tazi, Abdelouahhab; El Ganouni, Soumaya

    2016-04-01

    Chronic exposure to cannabinoids during adolescence results in long-lasting behavioral deficits that match some symptomatologic aspects of schizophrenia. The aim of this study was to investigate the reversibility of the emotional and the cognitive effects of chronic exposure to cannabinoids during adolescence, via subsequent modulation of the serotoninergic 5-HT4 and dopaminergic D3 receptors. RS67333 as a 5-HT4 agonist and U-99194A as a D3 antagonist were administered separately at 1 mg/kg and 20 mg/kg, and in combination at 0.5 mg/kg and 10 mg/kg to adult animals undergoing chronic treatment with the synthetic cannabinoid receptor agonist WIN55,212-2 (1 mg/kg) during adolescence. Animals were tested for anxiety-like behavior and episodic-like memory in the open field and novel object recognition tests respectively 30 minutes after the last drug administration. Chronic WIN55,212-2 treated animals exhibited a lasting disruption of episodic memory and increased anxiety levels. The effect on episodic-like memory were partially restored by acute administration of RS67333 and U-99194A and completely by administration of both drugs in combination at lower doses. However, only RS67333 (20 mg/kg) improved the anxiogenic-like effect of WIN55,212-2. These findings give further support that chronic exposure to cannabinoids during adolescence may be used as an animal model for schizophrenia, and highlight D3 and 5-HT4 receptors as potential targets for an enhanced treatment of the cognitive aspect of this disease. PMID:26497809

  2. Chronic 5-HT4 receptor agonist treatment restores learning and memory deficits in a neuroendocrine mouse model of anxiety/depression.

    Science.gov (United States)

    Darcet, Flavie; Gardier, Alain M; David, Denis J; Guilloux, Jean-Philippe

    2016-03-11

    Cognitive disturbances are often reported as serious invalidating symptoms in patients suffering from major depression disorders (MDD) and are not fully corrected by classical monoaminergic antidepressant drugs. If the role of 5-HT4 receptor agonists as cognitive enhancers is well established in naïve animals or in animal models of cognitive impairment, their cognitive effects in the context of stress need to be examined. Using a mouse model of anxiety/depression (CORT model), we reported that a chronic 5-HT4 agonist treatment (RS67333, 1.5mg/kg/day) restored chronic corticosterone-induced cognitive deficits, including episodic-like, associative and spatial learning and memory impairments. On the contrary, a chronic monoaminergic antidepressant drug treatment with fluoxetine (18mg/kg/day) only partially restored spatial learning and memory deficits and had no effect in the associative/contextual task. These results suggest differential mechanisms underlying cognitive effects of these drugs. Finally, the present study highlights 5-HT4 receptor stimulation as a promising therapeutic mechanism to alleviate cognitive symptoms related to MDD. PMID:26850572

  3. Anxiolytic-like actions of the selective 5-HT4 receptor antagonists SB 204070A and SB 207266A in rats.

    Science.gov (United States)

    Kennett, G A; Bright, F; Trail, B; Blackburn, T P; Sanger, G J

    1997-01-01

    The highly selective 5-HT4 receptor antagonists, SB 204070A (0.001-0.1 mg/kg s.c., 30 min pretest) and SB 207266A (0.01, 1 and 10 mg/kg p.o., 1 hr pre-test), increased time spent in social interaction without affecting locomotor activity, in a rat 15 min social interaction test under high light, unfamiliar conditions. At 1 and 10 mg/kg s.c., SB 204070A was no longer active. These results are consistent with the profile expected of anxiolytic treatments in this procedure. In a rat 5 min elevated x-maze test, SB 204070A (0.01 and 1 mg/kg s.c., 30 min pre-test) significantly increased the percentage of time spent on the open arms. SB 204070A (0.01 mg/kg s.c.) and SB 207266A (1 mg/kg p.o., 1 hr pre-test) also increased percentage entries to the open arms. Neither compound affected locomotion at any dose tested in the procedure. The effects of both compounds in this procedure are also consistent with anxiolysis. Neither SB 204070A (0.1 or 1 mg/kg s.c., 30 min pre-test) nor SB 207266A (0.1 or 1 mg/kg p.o., 1 hr pre-test) affected either unpunished or punished responding, in a rat Geller-Seifter conflict model of anxiety. The maximal efficacy of both SB 204070A and SB 207266A in the rat social interaction test was similar to that of the benzodiazepine anxiolytic chlordiazepoxide (5 mg/kg s.c. or p.o.) used as a positive control, but was considerably less in the elevated x-maze procedure. The results suggest that 5-HT4 receptor antagonists may have modest anxiolytic-like actions in rats. PMID:9225297

  4. Design, synthesis, and pharmacological evaluation of multitarget-directed ligands with both serotonergic subtype 4 receptor (5-HT4R) partial agonist and 5-HT6R antagonist activities, as potential treatment of Alzheimer's disease.

    Science.gov (United States)

    Yahiaoui, Samir; Hamidouche, Katia; Ballandonne, Céline; Davis, Audrey; de Oliveira Santos, Jana Sopkova; Freret, Thomas; Boulouard, Michel; Rochais, Christophe; Dallemagne, Patrick

    2016-10-01

    5-HT4 receptor (5-HT4R) activation and blockade of the 5-HT6 receptor (5-HT6R) are known to enhance the release of numerous neurotransmitters whose depletion is implicated in Alzheimer's disease (AD). Furthermore, 5-HT4R agonists seem to favor production of the neurotrophic soluble amyloid protein precursor alpha (sAPPα). Consequently, combining 5-HT4R agonist/5-HT6R antagonist activities in a single chemical compound would constitute a novel approach able to display both a symptomatic and disease-modifying effect in AD. Seventeen novel derivatives of RS67333 (1) were synthesized and evaluated as potential dual-target compounds. Among them, four agents showed nanomolar and submicromolar affinities toward 5-HT4R and 5-HT6R, respectively; one of them, 7m, was selected on the basis of its in vitro affinity (Ki5-HT4R = 5.3 nM, Ki5-HT6R = 219 nM) for further in vivo experiments, where 7m showed an antiamnesic effect in the mouse at 1 mg/kg ip. PMID:27266998

  5. Obesity is associated with high serotonin 4 receptor availability in the brain reward circuitry

    DEFF Research Database (Denmark)

    Haahr, M. E.; Rasmussen, Peter Mondrup; Madsen, K.;

    2012-01-01

    between body mass index and the 5-HT4R density bilaterally in the two reward ‘hot spots’ nucleus accumbens and ventral pallidum, and additionally in the left hippocampal region and orbitofrontal cortex.These findings suggest that the 5-HT4R is critically involved in reward circuits that regulate people......The neurobiology underlying obesity is not fully understood. The neurotransmitter serotonin (5-HT) is established as a satiety-generating signal, but its rewarding role in feeding is less well elucidated. From animal experiments there is now evidence that the 5-HT4 receptor (5-HT4R) is involved...... in food intake, and that pharmacological or genetic manipulation of the receptor in reward-related brain areas alters food intake.Here, we used positron emission tomography in humans to examine the association between cerebral 5-HT4Rs and common obesity.We found in humans a strong positive association...

  6. The Serotonin-6 Receptor as a Novel Therapeutic Target

    OpenAIRE

    Yun, Hyung-Mun; Rhim, Hyewhon

    2011-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter that is found in both the central and peripheral nervous systems. 5-HT mediates its diverse physiological responses through 7 different 5-HT receptor families: 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6, and 5-HT7 receptors. Among them, the 5-HT6 receptor (5-HT6R) is the most recently cloned serotonin receptor and plays important roles in the central nervous system (CNS) and in the etiology of neurological diseases. Compared...

  7. Brain imaging of serotonin 4 receptors in humans with [11C]SB207145-PET

    DEFF Research Database (Denmark)

    Marner, Lisbeth; Gillings, Nic; Madsen, Karine;

    2010-01-01

    Pharmacological stimulation of the serotonin 4 (5-HT(4)) receptor has shown promise for treatment of Alzheimer's disease and major depression. A new selective radioligand, [(11)C]SB207145, for positron emission tomography (PET) was used to quantify brain 5-HT(4) receptors in sixteen healthy subje......-HT(4) receptor binding in human brain can be reliably assessed with [(11)C]SB207145, which is encouraging for future PET studies of drug occupancy or patients with neuropsychiatric disorders.......Pharmacological stimulation of the serotonin 4 (5-HT(4)) receptor has shown promise for treatment of Alzheimer's disease and major depression. A new selective radioligand, [(11)C]SB207145, for positron emission tomography (PET) was used to quantify brain 5-HT(4) receptors in sixteen healthy......(max) was in accordance with post-mortem brain studies (Spearman's r=0.83, p=0.04), and the regional binding potentials, BP(ND), were on average 2.6 in striatum, 0.42 in prefrontal cortex, and 0.91 in hippocampus. We found no effect of sex but a decreased binding with age (p=0.046). A power analysis showed that, given...

  8. Selective serotonin reuptake inhibitors potentiate the rapid antidepressant-like effects of serotonin4 receptor agonists in the rat.

    Directory of Open Access Journals (Sweden)

    Guillaume Lucas

    Full Text Available BACKGROUND: We have recently reported that serotonin(4 (5-HT(4 receptor agonists have a promising potential as fast-acting antidepressants. Here, we assess the extent to which this property may be optimized by the concomitant use of conventional antidepressants. METHODOLOGY/PRINCIPAL FINDINGS: We found that, in acute conditions, the 5-HT(4 agonist prucalopride was able to counteract the inhibitory effect of the selective serotonin reuptake inhibitors (SSRI fluvoxamine and citalopram on 5-HT neuron impulse flow, in Dorsal Raphé Nucleus (DRN cells selected for their high (>1.8 Hz basal discharge. The co-administration of both prucalopride and RS 67333 with citalopram for 3 days elicited an enhancement of DRN 5-HT neuron average firing rate, very similar to what was observed with either 5-HT(4 agonist alone. At the postsynaptic level, this translated into the manifestation of a tonus on hippocampal postsynaptic 5-HT(1A receptors, that was two to three times stronger when the 5-HT(4 agonist was combined with citalopram. Similarly, co-administration of citalopram synergistically potentiated the enhancing effect of RS 67333 on CREB protein phosphorylation within the hippocampus. Finally, in the Forced Swimming Test, the combination of RS 67333 with various SSRIs (fluvoxamine, citalopram and fluoxetine was more effective to reduce time of immobility than the separate administration of each compound. CONCLUSIONS/SIGNIFICANCE: These findings strongly suggest that the adjunction of an SSRI to a 5-HT(4 agonist may help to optimize the fast-acting antidepressant efficacy of the latter.

  9. Serotonin Receptors in Hippocampus

    Directory of Open Access Journals (Sweden)

    Laura Cristina Berumen

    2012-01-01

    Full Text Available Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a functional network that uses several serotonin receptors to regulate their roles in this particular part of the limbic system.

  10. 5-HT3 and 5-HT4 antagonists inhibit peristaltic contractions in guinea-pig distal colon by mechanisms independent of endogenous 5-HT

    Directory of Open Access Journals (Sweden)

    Tiong Cheng Sia

    2013-08-01

    Full Text Available Recent studies have shown that endogenous serotonin is not required for colonic peristalsis in vitro, nor gastrointestinal (GI transit in vivo. However, antagonists of 5-Hydroxytryptamine (5-HT receptors can inhibit peristalsis and GI-transit in mammals, including humans. This raises the question of how these antagonists inhibit GI-motility and transit, if depletion of endogenous 5-HT does not cause any significant inhibitory changes to either GI-motility or transit ? We investigated the mechanism by which 5-HT3 and 5-HT4 antagonists inhibit distension-evoked peristaltic contractions in guinea-pig distal colon. In control animals, repetitive peristaltic contractions of the circular muscle were evoked in response to fixed fecal pellet distension. Distension-evoked peristaltic contractions were unaffected in animals with mucosa and submucosal plexus removed, that were also treated with reserpine (to deplete neuronal 5-HT. In control animals, peristaltic contractions were blocked temporarily by ondansetron (1-10µM and SDZ-205-557 (1-10µM in many animals. Interestingly, after this temporary blockade, and whilst in the continued presence of these antagonists, peristaltic contractions recovered, with characteristics no different from controls. Surprisingly, similar effects were seen in mucosa-free preparations, which had no detectable 5-HT, as detected by mass spectrometry. In summary, distension-evoked peristaltic reflex contractions of the circular muscle layer of the guinea-pig colon can be inhibited temporarily, or permanently, in the same preparation by selective 5-HT3 and 5-HT4 antagonists, depending on the concentration of the antagonists applied. These effects also occur in preparations that lack any detectable 5-HT. We suggest caution should be exercised when interpreting the effects of 5-HT3 and 5-HT4 antagonists; and the role of endogenous 5-HT, in the generation of distension-evoked colonic peristalsis.

  11. Serotonin receptors as cardiovascular targets

    OpenAIRE

    Villalón, Carlos; De Vries, Peter; Saxena, Pramod Ranjan

    1997-01-01

    textabstractSerotonin exerts complex effects in the cardiovascular system, including hypotension or hypertension, vasodilatation or vasoconstriction, and/or bradycardia or tachycardia; the eventual response depends primarily on the nature of the 5-HT receptors involved. In the light of current 5-HT receptor classification, the authors reanalyse the cardiovascular responses mediated by 5-HT receptors and discuss the established and potential therapeutic applications of 5-HT ligands in the trea...

  12. Serotonin receptors as cardiovascular targets

    NARCIS (Netherlands)

    C.M. Villalón (Carlos); P.A.M. de Vries (Peter); P.R. Saxena (Pramod Ranjan)

    1997-01-01

    textabstractSerotonin exerts complex effects in the cardiovascular system, including hypotension or hypertension, vasodilatation or vasoconstriction, and/or bradycardia or tachycardia; the eventual response depends primarily on the nature of the 5-HT receptors involved. In the light of current 5-HT

  13. Increased cholinergic contractions of jejunal smooth muscle caused by a high cholesterol diet are prevented by the 5-HT4 agonist – tegaserod

    Directory of Open Access Journals (Sweden)

    Shaffer Eldon

    2006-02-01

    Full Text Available Abstract Background Excess cholesterol in bile and in blood is a major risk factor for the respective development of gallbladder disease and atherosclerosis. This lipid in excess negatively impacts the functioning of other smooth muscles, including the intestine. Serotonin is an important mediator of the contractile responses of the small intestine. Drugs targeting the serotonin receptor are used as prokinetic agents to manage intestinal motor disorders, in particular irritable bowel syndrome. Thus, tegaserod, acting on 5-HT4 receptor, ideally should obviate detrimental effects of excessive cholesterol on gastrointestinal smooth muscle. In this study we examined the effect of tegaserod on cholesterol-induced changes in the contractile responses of intestinal smooth muscle. Methods The effects of a high cholesterol (1% diet on the in vitro contractile responses of jejunal longitudinal smooth muscle from Richardson ground squirrels to the cholinergic agonist carbachol were examined in the presence or absence of tetrodrodotoxin (TTX. Two groups of animals, fed either low (0.03% or high cholesterol rat chow diet, were further divided into two subgroups and treated for 28 days with either vehicle or tegaserod. Results The high cholesterol diet increased, by nearly 2-fold, contractions of the jejunal longitudinal smooth muscle elicited by carbachol. These cholinergic contractions were mediated by muscarinic receptors since they were blocked by scopolamine, a muscarinic receptor antagonist, but not by the nicotinic receptor antagonist, hexamethonium. Tegaserod treatment, which did not affect cholinergic contractions of tissues from low cholesterol fed animals, abrogated the increase caused by the high cholesterol diet. With low cholesterol diet TTX enhanced carbachol-evoked contractions, whereas this action potential blocker did not affect the augmented cholinergic contractions seen with tissues from animals on the high cholesterol diet. Tegaserod

  14. GABAA receptors, but not dopamine, serotonin or NMDA receptors, are increased in the frontal cortex from schizophrenic subjects

    International Nuclear Information System (INIS)

    Full text: Having shown changed 5HT2A receptor density in the frontal cortex (FC) from schizophrenic subjects (1) we now report on further studies of the molecular neuroanatomy of the FC in schizophrenia. We used in situ radioligand binding and autoradiography to measure the density of [3H]8OH-DPAT (1 nM) binding (5HT1A receptors) and [3H]GR113808 (2.4nM) binding (5HT4 receptors) in Brodmann's areas (BA) 8, 9 and 10 from 10 schizophrenic and 10 controls subjects. In addition, [3H]muscimol (100 nM) binding (GABAA receptors), [3H]TCP (20nM) binding (NMDA receptors), [3H]SCH 23390 (3nM) binding (DA D1like receptors) and [3H]YM-09151-2 (4nM) binding (DA D2-like receptors) was measured in BA 9 from 17 schizophrenic and 17 control subjects. Subjects were matched for age and sex and the post-mortem interval for tissue collection did not differ. There was a significant increase (18%) in the density of GABAA receptors in BA 9 from subjects with schizophrenia (p<0.05) with no change in NMDA, dopamine or serotonin receptors. These data support the hypothesis that there are selective changes in neurotransmitter receptors in the FC of subjects with schizophrenia. It is not yet clear if such changes contribute to the pathology of the illness. Copyright (1998) Australian Neuroscience Society

  15. Cerebral serotonin 4 receptors and amyloid-β in early Alzheimer's disease

    DEFF Research Database (Denmark)

    Madsen, Karine; Neumann, Wolf-Julian; Holst, Klaus Kähler;

    2011-01-01

    Alzheimer disease (AD) patients in relation to cortical Aß burden. Eleven newly diagnosed untreated AD patients (mean MMSE 24, range 19–27) and twelve age- and gender-matched healthy controls underwent a two-hour dynamic [11C]SB207145 PET scan to measure the binding potential of the 5-HT4 receptor. All AD...

  16. Structure and Function of Serotonin G protein Coupled Receptors

    OpenAIRE

    McCorvy, John D.; Roth, Bryan L.

    2015-01-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a...

  17. Serotonin 2c receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis

    Science.gov (United States)

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor a...

  18. Expression of serotonin receptor genes in cranial ganglia.

    Science.gov (United States)

    Maeda, Naohiro; Ohmoto, Makoto; Yamamoto, Kurumi; Kurokawa, Azusa; Narukawa, Masataka; Ishimaru, Yoshiro; Misaka, Takumi; Matsumoto, Ichiro; Abe, Keiko

    2016-03-23

    Taste cells release neurotransmitters to gustatory neurons to transmit chemical information they received. Sweet, umami, and bitter taste cells use ATP as a neurotransmitter. However, ATP release from sour taste cells has not been observed so far. Instead, they release serotonin when they are activated by sour/acid stimuli. Thus it is still controversial whether sour taste cells use ATP, serotonin, or both. By reverse transcription-polymerase chain reaction and subsequent in situ hybridization (ISH) analyses, we revealed that of 14 serotonin receptor genes only 5-HT3A and 5-HT3B showed significant/clear signals in a subset of neurons of cranial sensory ganglia in which gustatory neurons reside. Double-fluorescent labeling analyses of ISH for serotonin receptor genes with wheat germ agglutinin (WGA) in cranial sensory ganglia of pkd1l3-WGA mice whose sour neural pathway is visualized by the distribution of WGA originating from sour taste cells in the posterior region of the tongue revealed that WGA-positive cranial sensory neurons rarely express either of serotonin receptor gene. These results suggest that serotonin receptors expressed in cranial sensory neurons do not play any role as neurotransmitter receptor from sour taste cells. PMID:26854841

  19. Autoradiography reveals selective changes in serotonin binding in neocortex of patients with temporal lobe epilepsy.

    Science.gov (United States)

    Rocha, Luisa; Lorigados-Pedre, Lourdes; Orozco-Suárez, Sandra; Morales-Chacón, Lilia; Alonso-Vanegas, Mario; García-Maeso, Iván; Villeda-Hernández, Juana; Osorio-Rico, Laura; Estupiñán, Bárbara; Quintana, Christian

    2007-08-15

    The main goal of the present study was to evaluate binding to serotonin in the neocortex surrounding the epileptic focus of patients with mesial temporal lobe epilepsy (MTLE). Binding to 5-HT, 5-HT(1A), 5-HT(4), 5-HT(7) receptors and serotonin transporter (5-HTT) in T1-T2 gyri of 15 patients with MTLE and their correlations with clinical data, neuronal count and volume were determined. Autopsy material acquired from subjects without epilepsy (n=6) was used as control. The neocortex from MTLE patients demonstrated decreased cell count in layers III-IV (21%). No significant changes were detected on the neuronal volume. Autoradiography experiments showed the following results: reduced 5-HT and 5-HT(1A) binding in layers I-II (24% and 92%, respectively); enhanced 5-HT(4) binding in layers V-VI (32%); no significant changes in 5-HT(7) binding; reduced 5-HTT binding in all layers (I-II, 90.3%; III-IV, 90.3%, V-VI, 86.9%). Significant correlations were found between binding to 5-HT(4) and 5-HT(7) receptors and age of seizure onset, duration of epilepsy and duration of antiepileptic treatment. The present results support an impaired serotoninergic transmission in the neocortex surrounding the epileptic focus of patients with MTLE, a situation that could be involved in the initiation and propagation of seizure activity.

  20. Whole-body biodistribution and dosimetry estimates of a novel radiotracer for imaging of serotonin 4 receptors in brain: [18F]MNI-698

    International Nuclear Information System (INIS)

    Introduction: A new radiotracer for imaging the serotonin 4 receptors (5-HT4) in brain, [18F]MNI-698, was recently developed by our group. Evaluation in nonhuman primates indicates the novel radiotracer holds promise as an imaging agent of 5-HT4 in brain. This paper aims to describe the whole-body biodistribution and dosimetry estimates of [18F]MNI-698. Methods: Whole-body positron emission tomography (PET) images were acquired over 240 minutes after intravenous bolus injection of [18F]MNI-698 in adult rhesus monkeys. Different models were investigated for quantification of radiation absorbed and effective doses using OLINDA/EXM 1.0 software. Results: The radiotracer main elimination route was found to be urinary and the critical organ was the urinary bladder. Modeling of the urinary bladder voiding interval had a considerable effect on the estimated effective dose. Normalization of rhesus monkeys’ organs and whole-body masses to human equivalent reduced the calculated dosimetry values. The effective dose ranged between 0.017 and 0.027 mSv/MBq. Conclusion: The dosimetry estimates, obtained when normalizing organ and whole-body weights and applying the urinary bladder model, indicate that the radiation doses from [18F]MNI-698 comply with limits and guidelines recommended by key regulatory authorities that govern the translation of radiotracers to human clinical trials. The timing of urinary bladder emptying should be considered when designing future clinical protocols with [18F]MNI-698, in order to minimize the subject absorbed doses

  1. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    Science.gov (United States)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  2. Dual role of endogenous serotonin in 2,4,6-trinitrobenzene sulfonic acid-induced colitis

    Directory of Open Access Journals (Sweden)

    Alberto eRapalli

    2016-03-01

    Full Text Available Background and Aims: Changes in gut serotonin content have been described in Inflammatory Bowel Disease and in different experimental models of colitis: the critical role of this monoamine in the pathogenesis of chronic gastrointestinal inflammation is gradually emerging. Aim of the present study was to evaluate the contribution of endogenous serotonin through the activation of its specific receptor subtypes to the local and systemic inflammatory responses in an experimental model of Inflammatory Bowel Disease. Methods: Colitis was induced by intrarectal 2,4,6-TriNitroBenzene Sulfonic acid in mice subacutely treated with selective antagonists of 5-HT1A (WAY100135, 5-HT2A (Ketanserin, 5-HT3 (Ondansetron, 5-HT4 (GR125487, 5-HT7 (SB269970 receptors and with 5-HT1A agonist 8-Hydroxy-2-(di-n-propylaminotetralin. Results: Blockade of 5-HT1A receptors worsened TNBS-induced local and systemic neutrophil recruitment while 5-HT1A agonist delayed and mitigated the severity of colitis, counteracting the increase in colonic 5-HT content. On the contrary, blockade of 5-HT2A receptors improved global health conditions, reduced colonic morphological alterations, down-regulated neutrophil recruitment, inflammatory cytokines levels and colonic apoptosis. Antagonism of 5-HT3, 5-HT4 and 5-HT7 receptor sites did not remarkably affect the progression and outcome of the pathology or only slightly improved it.Conclusions: The prevailing deleterious contribution given by endogenous serotonin to inflammation in TNBS-induced colitis is seemingly mediated by 5-HT2A and, to a lesser extent, by 5-HT4 receptors and coexists with the weak beneficial effect elicited by 5-HT1A stimulation. These findings suggest how only a selective interference with 5-HT pro-inflammatory actions may represent an additional potential therapeutic option for intestinal inflammatory disorders.

  3. BDNF Val66met and 5-HTTLPR polymorphisms predict a human in vivo marker for brain serotonin levels

    DEFF Research Database (Denmark)

    Fisher, Patrick M; Holst, Klaus K; Adamsen, Dea;

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) has been implicated in multiple aspects of brain function including regulation of serotonin signaling. The BDNF val66met polymorphism (rs6265) has been linked to aspects of serotonin signaling in humans but its effects are not well understood. To address...... this, we evaluated whether BDNF val66met was predictive of a putative marker of brain serotonin levels, serotonin 4 receptor (5-HT4 ) binding assessed with [(11) C]SB207145 positron emission tomography, which has also been associated with the serotonin-transporter-linked polymorphic region (5-HTTLPR...... BDNF val66met significantly predicted a LV reflecting [(11) C]SB207145 binding across regions (P = 0.005). BDNF val66met met-carriers showed 2-9% higher binding relative to val/val homozygotes. In contrast, 5-HTTLPR did not predict the LV but S-carriers showed 7% lower neocortical binding relative...

  4. Structural Basis for Molecular Recognition at Serotonin Receptors

    OpenAIRE

    Wang, Chong; Jiang, Yi; Ma, Jinming; Wu, Huixian; Wacker, Daniel; Katritch, Vsevolod; Han, Gye Won; Liu, Wei; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D.; Gao, Xiang; Zhou, Edward X.; Melcher, Karsten; Zhang, Chenghai

    2013-01-01

    Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist anti-migraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserv...

  5. Agonist-directed signaling of serotonin 5-HT2C receptors: differences between serotonin and lysergic acid diethylamide (LSD).

    Science.gov (United States)

    Backstrom, J R; Chang, M S; Chu, H; Niswender, C M; Sanders-Bush, E

    1999-08-01

    For more than 40 years the hallucinogen lysergic acid diethylamide (LSD) has been known to modify serotonin neurotransmission. With the advent of molecular and cellular techniques, we are beginning to understand the complexity of LSD's actions at the serotonin 5-HT2 family of receptors. Here, we discuss evidence that signaling of LSD at 5-HT2C receptors differs from the endogenous agonist serotonin. In addition, RNA editing of the 5-HT2C receptor dramatically alters the ability of LSD to stimulate phosphatidylinositol signaling. These findings provide a unique opportunity to understand the mechanism(s) of partial agonism.

  6. 四磨汤对慢传输结肠五羟色胺兴奋性受体的干预研究%Effect of Simo Decoction on the Expressions of Excitatory Receptors of Serotonin in Slow Transit Colon

    Institute of Scientific and Technical Information of China (English)

    廖秀军; 茅伟明; 武文静; 邓群; 杨关根

    2013-01-01

    Objective:To study the effect of Simo Decoction on the expression of excitatory receptors of serotonin in slow transit colon. Method: The animal model with slow transit colon was made by SD rats from gavage with rheum offici-nale. 36 SD rats with slow transit colon were divided into 3 groups: control group, treatment group with high dosage Simo decoction and treatment group with low dosage Simo Decoction. The control group were given distilled water,the treatment group were given Simo decoction. 2 weeks later,the promote rate of carbon powder was measured and the colon specimen was obtained. 5 - HT3 and 5 - HT4 receptors mRNA and protein expression were detected by real - time PCR and immu-nohistochemistry,differently. Result;The promote rate of carbon powder of the two treatment groups were higher than that of the control group (P <0. 05) . The ct value of 5 - HT3 and 5 - HT4 receptors mRNA of the two treatment groups were higher than those in the control group( P < 0.05 ). The gray values of 5 - HT3 and 5 - HT4 receptors protein of the two treatment groups were higher than those in the control group(P <0. 05). There was on significant difference of the 5 -HT3 and 5 - HT4 receptors expression between treatment group with high dosage Simo Decoction and treatment group with low dosage. Conclusion: Simo decoction can increase the expressions of 5 - HT3 and 5 - HT4 receptors. It seems that Simo Decoction can improve the motive power of colon from upregulating the excitatory receptors of serotonin.%目的:研究四磨汤对慢传输结肠5-HT信号系统兴奋性受体5-HT3、4的影响,探索理气中药改善结肠动力的作用机制.方法:选取SD大鼠,采用大黄灌胃法制造结肠慢传输型便秘模型,造模成功后,将36只大鼠再随机分为3组,一组为对照组灌蒸馏水,另两组为四磨汤干预高剂量组和低剂量组.中药干预组灌服四磨汤,连续灌服2周后处死,测炭末推进率,取出标本.Realtime-PCR检测5-HT3、4

  7. Structural basis for molecular recognition at serotonin receptors.

    Science.gov (United States)

    Wang, Chong; Jiang, Yi; Ma, Jinming; Wu, Huixian; Wacker, Daniel; Katritch, Vsevolod; Han, Gye Won; Liu, Wei; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D; Gao, Xiang; Zhou, X Edward; Melcher, Karsten; Zhang, Chenghai; Bai, Fang; Yang, Huaiyu; Yang, Linlin; Jiang, Hualiang; Roth, Bryan L; Cherezov, Vadim; Stevens, Raymond C; Xu, H Eric

    2013-05-01

    Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist antimigraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-HT. Compared with the structure of the 5-HT2B receptor, the 5-HT1B receptor displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies, these structures provide a comprehensive structural basis for understanding receptor-ligand interactions and designing subtype-selective serotonergic drugs. PMID:23519210

  8. Studies on central nervous system serotonin receptors in mood disorders.

    Science.gov (United States)

    Young, A; Goodwin, G M

    1991-01-01

    The evidence from studies of central nervous system serotonin (5-HT) receptors is reviewed and the role of these in the pathogenesis of mood disorders is discussed. Clinical evidence indicates that 5-HT function is abnormal in mood disorders. 5-HT precursors and selective inhibitors of 5-HT uptake are effective antidepressives and inhibition of 5-HT synthesis can block the action of antidepressives. Studies of 5-HT in experimental animals after chronic administration of antidepressive treatments suggest that intact 5-HT neurons are necessary for the action of these treatments. Multiple 5-HT receptor subtypes have recently been identified and the effects of chronic antidepressive treatment on some receptor subtypes function in experimental animals have been established. The increasing availability of powerful new in vivo imaging techniques like single photon emission tomography (SPET), and positron emission tomography (PET) may make possible a more direct examination of 5-HT receptor function in patients suffering from mood disorders. PMID:2029163

  9. In vivo imaging of cerebral serotonin transporter and serotonin(2A) receptor binding in 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") and hallucinogen users

    DEFF Research Database (Denmark)

    Erritzoe, David; Frøkjær, Vibe; Holst, Klaus K;

    2011-01-01

    Both hallucinogens and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin.......Both hallucinogens and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin....

  10. 5-HT2A : a serotonin receptor with a possible role in joint diseases

    OpenAIRE

    Kling, Anders

    2013-01-01

    Background Serotonin (5-HT), an amino acid derivative and neurotransmitter, has for long been studied in relation to inflammation. It is an endogenous ligand for several different types of serotonin receptors. The serotonin receptor 5-HT2A has been reported to have a role in the pathophysiology of arthritis in animal experiment models. However, no studies into this subject have been reported in man. Objective The objectives of this project were firstly, to examine possible associations for th...

  11. Activation of serotonin receptors promotes microglial injury-induced motility but attenuates phagocytic activity

    NARCIS (Netherlands)

    Krabbe, Grietje; Matyash, Vitali; Pannasch, Ulrike; Mamer, Lauren; Boddeke, Hendrikus W. G. M.; Kettenmann, Helmut

    2012-01-01

    Microglia, the brain immune cell, express several neurotransmitter receptors which modulate microglial functions. In this project we studied the impact of serotonin receptor activation on distinct microglial properties as serotonin deficiency not only has been linked to a number of psychiatric disea

  12. Functional characterization of serotonin receptor subtypes in human duodenal secretion

    DEFF Research Database (Denmark)

    Engelmann, Bodil Elisabeth; Bindslev, Niels; Poulsen, Steen Seier;

    2006-01-01

    Serotonin (5-HT) stimulates ion secretion in the gastrointestinal tract and the sensitivity for 5-HT might be altered in dyspeptic patients infected with Helicobacter pylori. The purpose of the present study was to characterize the 5-HT-induced electrogenic ion transport in the duodenum of dyspep......Serotonin (5-HT) stimulates ion secretion in the gastrointestinal tract and the sensitivity for 5-HT might be altered in dyspeptic patients infected with Helicobacter pylori. The purpose of the present study was to characterize the 5-HT-induced electrogenic ion transport in the duodenum...... of dyspeptic patients with or without Helicobacter pylori infection, and to determine the 5-HT receptor subtypes functionally involved. Biopsies from the second part of duodenum were obtained from 43 dyspeptic patients during routine endoscopy. Biopsies were mounted in modified Ussing chambers with air suction...... for measurements of short-circuit current by a previously validated technique. Short-circuit current was measured before and after application of graded cumulative doses of 5-HT and a single dose of bumetanide (an inhibitor of chloride/bicarbonate transport), or one of the selective 5-HT receptor antagonists...

  13. Endurance training in Wistar rats decreases receptor sensitivity to a serotonin agonist.

    Science.gov (United States)

    Dwyer, D; Browning, J

    2000-11-01

    There is mounting evidence that increased brain serotonin during exercise is associated with the onset of CNS-mediated fatigue. Serotonin receptor sensitivity is likely to be an important determinant of this fatigue. Alterations in brain serotonin receptor sensitivity were examined in Wistar rats throughout 6 weeks of endurance training, running on a treadmill four times a week with two exercise tests per week to exhaustion. Receptor sensitivity was determined indirectly as the reduction in exercise time in response to a dose of a serotonin (1A) agonist, m-chlorophenylpiperazine (m-CPP). The two groups of controls were used to examine (i) the effect of the injection per se on exercise performance and (ii) changes in serotonin receptor sensitivity associated with maturation. In the test group, undrugged exercise performance significantly improved by 47% after 6 weeks of training (4518 +/- 729 to 6640 +/- 903 s, P=0.01). Drugged exercise performance also increased significantly from week 1 to week 6 (306 +/- 69-712 +/- 192 s, P = 0.04). Control group results indicated that the dose of m-CPP alone caused fatigue during exercise tests and that maturation was not responsible for any decrease in receptor sensitivity. Improved resistance to the fatiguing effects of the serotonin agonist suggests desensitization of central serotonin receptors, probably the 5-HT1A receptors. Endurance training appears to stimulate an adaptive response to the fatiguing effects of increased brain serotonin, which may enhance endurance exercise performance. PMID:11167306

  14. Serotonin 2B receptor: upregulated with age and hearing loss in mouse auditory system.

    Science.gov (United States)

    Tadros, Sherif F; D'Souza, Mary; Zettel, Martha L; Zhu, XiaoXia; Lynch-Erhardt, Martha; Frisina, Robert D

    2007-07-01

    Serotonin (5-HT) is a monoamine neurotransmitter. Serotonin may modulate afferent fiber discharges in the cochlea, inferior colliculus (IC) and auditory cortex. Specific functions of serotonin are exerted upon its interaction with specific receptors; one of those receptors is the serotonin 2B receptor. The aim of this study was to investigate the differences in gene expression of serotonin 2B receptors with age in cochlea and IC, and the possible correlation between gene expression and functional hearing measurements in CBA/CaJ mice. Immunohistochemical examinations of protein expression of IC in mice of different age groups were also performed. Gene expression results showed that serotonin 2B receptor gene was upregulated with age in both cochlea and IC. A significant correlation between gene expression and functional hearing results was established. Immunohistochemical protein expression studies of IC showed more serotonin 2B receptor cells in old mice relative to young adult mice, particularly in the external nucleus. We conclude that serotonin 2B receptors may play a role in the pathogenesis of age-related hearing loss.

  15. Serotonin 2a Receptor and serotonin 1a receptor interact within the medial prefrontal cortex during recognition memory in mice

    Directory of Open Access Journals (Sweden)

    Juan Facundo Morici

    2015-12-01

    Full Text Available Episodic memory, can be defined as the memory for unique events. The serotonergic system one of the main neuromodulatory systems in the brain appears to play a role in it. The serotonin 2a receptor (5-HT2aR one of the principal post-synaptic receptors for 5-HT in the brain, is involved in neuropsychiatric and neurological disorders associated with memory deficits. Recognition memory can be defined as the ability to recognize if a particular event or item was previously encountered and is thus considered, under certain conditions, a form of episodic memory. As human data suggest that a constitutively decrease of 5-HT2A signaling might affect episodic memory performance we decided to compare the performance of mice with disrupted 5-HT2aR signaling (htr2a -/- with wild type (htr2a+/+ littermates in different recognition memory and working memory tasks that differed in the level of proactive interference. We found that ablation of 5-HT2aR signaling throughout development produces a deficit in tasks that cannot be solved by single item strategy suggesting that 5-HT2aR signaling is involved in interference resolution. We also found that in the absence of 5-HT2aR signaling serotonin has a deleterious effect on recognition memory retrieval through the activation of 5-HT1aR in the medial prefrontal cortex.

  16. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons

    Science.gov (United States)

    Scrogin, K. E.; Johnson, A. K.; Schmid, H. A.

    1998-01-01

    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  17. Studies on the development of 99mTc labelled serotonin receptor avid molecules

    International Nuclear Information System (INIS)

    Among the central nervous system (CNS) receptors, serotonin is reported to be very important with respect to the study of brain disorders. Hence this work focuses on serotonin. A summary of the studies that were carried out is given. These include: (a) standardization of the method of serotonin receptor preparation from rat brains and development of a radioreceptor assay using radio-iodinated serotonin, (b) standardization of the method of radio-iodination of serotonin using a tyrosylmethyl ester derivative of serotonin and the preparation of 14C labelled serotonin, (c) synthesis of the SNS tridentate ligand (following the procedure developed by the Democritos National Centre of Scientific Research (NCSR), Athens) and evaluation of a 99mTc complex formed with the tridentate SNS ligand and thiocresol for use as a CNS receptor imaging agent and (d) evaluation of the 99mTc complex formed with a SNS piperazine based tridentate ligand and a monodentate co-ligand (thiophenol obtained from NCSR). This limited study on brain uptake of the complex in rats showed that more structural modification of the ligand is required for preparation of a complex suitable for CNS receptor imaging. Also included is a design for synthesis of a novel complex based on the reported information on the 5-iodo-2-[(2-dimethyl)aminomethylphynoxy]benzyl alcohol compound, which is reported to have a binding affinity for serotonin re-uptake sites. (author)

  18. Similar serotonin-2A receptor binding in rats with different coping styles or levels of aggression

    DEFF Research Database (Denmark)

    Visser, Anniek Kd; Ettrup, Anders; Klein, Anders Bue;

    2015-01-01

    Individual differences in coping style emerge as a function of underlying variability in the activation of a mesocorticolimbic brain circuitry. Particularly serotonin seems to play an important role. For this reason, we assessed serotonin-2A receptor (5-HT2A R) binding in the brain of rats with d...

  19. A characterization of the Manduca sexta serotonin receptors in the context of olfactory neuromodulation.

    Directory of Open Access Journals (Sweden)

    Andrew M Dacks

    Full Text Available Neuromodulation, the alteration of individual neuron response properties, has dramatic consequences for neural network function and is a phenomenon observed across all brain regions and taxa. However, the mechanisms underlying neuromodulation are made complex by the diversity of neuromodulatory receptors expressed within a neural network. In this study we begin to examine the receptor basis for serotonergic neuromodulation in the antennal lobe of Manduca sexta. To this end we cloned all four known insect serotonin receptor types from Manduca (the Ms5HTRs. We used phylogenetic analyses to classify the Ms5HTRs and to establish their relationships to other insect serotonin receptors, other insect amine receptors and the vertebrate serotonin receptors. Pharmacological assays demonstrated that each Ms5HTR was selective for serotonin over other endogenous amines and that serotonin had a similar potency at all four Ms5HTRs. The pharmacological assays also identified several agonists and antagonists of the different Ms5HTRs. Finally, we found that the Ms5HT1A receptor was expressed in a subpopulation of GABAergic local interneurons suggesting that the Ms5HTRs are likely expressed heterogeneously within the antennal lobe based on functional neuronal subtype.

  20. Neuroticism and serotonin 5-HT1A receptors in healthy subjects

    DEFF Research Database (Denmark)

    Hirvonen, Jussi; Tuominen, Lauri; Någren, Kjell;

    2015-01-01

    Neuroticism is a personality trait associated with vulnerability for mood and anxiety disorders. Serotonergic mechanisms likely contribute to neuroticism. Serotonin 5-HT1A receptors are altered in mood and anxiety disorders, but whether 5-HT1A receptors are associated with neuroticism in healthy...... subjects is unclear. We measured brain serotonin 5-HT1A receptor in 34 healthy subjects in vivo using positron emission tomography (PET) and [carbonyl-(11)C]WAY-100635. Binding potential (BPP) was determined using the golden standard of kinetic compartmental modeling using arterial blood samples...... and radiometabolite determination. Personality traits were assessed using the Karolinska Scales of Personality. We found a strong negative association between serotonin 5-HT1A receptor BPP and neuroticism. That is, individuals with high neuroticism tended to have lower 5-HT1A receptor binding than individuals...

  1. Serotonin Transporter and Receptor Expression in Osteocytic MLO-Y4 Cells

    OpenAIRE

    BLIZIOTES, M.; ESHLEMAN, A.; BURT-PICHAT, B.; Zhang, X.-W.; Hashimoto, J; WIREN, K.; C. Chenu

    2006-01-01

    Neurotransmitter regulation of bone metabolism has been a subject of increasing interest and investigation. We reported previously that osteoblastic cells express a functional serotonin (5-HT) signal transduction system, with mechanisms for responding to and regulating uptake of 5-HT. The clonal murine osteocytic cell line, MLO-Y4, demonstrates expression of the serotonin transporter (5-HTT), and the 5-HT1A, and 5-HT2A receptors by real-time RT-PCR and immunoblot analysis. Immunohistochemistr...

  2. Serotonin (2C) receptor regulation of cocaine-induced conditioned place preference and locomotor sensitization

    OpenAIRE

    Craige, Caryne P.; Unterwald, Ellen M.

    2012-01-01

    Previous studies have identified an inhibitory regulatory role of the 5-HT2C receptor in serotonin and dopamine neurotransmission. As cocaine is known to enhance serotonin and dopamine transmission, the ability of 5-HT2C receptors to modulate cocaine-induced behaviors was investigated. Alterations in cocaine reward behavior were assessed in the conditioned place preference (CPP) paradigm. Mice were injected with a selective 5-HT2C receptor agonist, Ro 60-0175 (0, 1, 3, 10 mg/kg, i.p.) prior t...

  3. Loss of serotonin 2A receptors exceeds loss of serotonergic projections in early Alzheimer's disease

    DEFF Research Database (Denmark)

    Marner, Lisbeth; Frøkjær, Vibe; Kalbitzer, Jan;

    2012-01-01

    In patients with Alzheimer's disease (AD), postmortem and imaging studies have revealed early and prominent reductions in cerebral serotonin 2A (5-HT(2A)) receptors. To establish if this was due to a selective disease process of the serotonin system, we investigated the cerebral 5-HT(2A) receptor...... = .0005). No change in [(11)C]DASB binding was found in the midbrain. We conclude that the prominent reduction in neocortical 5-HT(2A) receptor binding in early AD is not caused by a primary loss of serotonergic neurons or their projections....

  4. Enhanced prefrontal serotonin 2A receptor signaling in the subchronic phencyclidine mouse model of schizophrenia

    DEFF Research Database (Denmark)

    Santini, Martin A; Ratner, Cecilia Friis; Aznar, Susana;

    2013-01-01

    Prefrontal serotonin 2A receptors (5-HT2A Rs) have been linked to the pathogenesis and treatment of schizophrenia. Many antipsychotics fully occupy 5-HT2A R at clinical relevant doses, and activation of 5-HT2A receptors by lysergic acid diethylamide (LSD) and LSD-like drugs induces a schizophrenia...

  5. Visualisation of serotonin-1A (5-HT1A) receptors in the central nervous system

    NARCIS (Netherlands)

    Passchier, Jan; van Waarde, A

    2001-01-01

    The 5-HT1A subtype of receptors for the neurotransmitter serotonin is predominantly located in the limbic forebrain and is involved in the modulation of emotion and the function of the hypothalamus. Since 5-HT1A receptors are implicated in the pathogenesis of anxiety, depression, hallucinogenic beha

  6. Larvae of small white butterfly, Pieris rapae, express a novel serotonin receptor

    Science.gov (United States)

    The biogenic amine serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter in vertebrates and invertebrates. It acts in regulation and modulation of many physiological and behavioral processes through G protein-coupled receptors. Insects express five 5-HT receptor subtypes that share high simila...

  7. Two cases of mild serotonin toxicity via 5-hydroxytryptamine 1A receptor stimulation

    Directory of Open Access Journals (Sweden)

    Nakayama H

    2014-02-01

    Full Text Available Hiroto Nakayama,1,* Sumiyo Umeda,2,* Masashi Nibuya,3 Takeshi Terao,4 Koichi Nisijima,5 Soichiro Nomura3 1Yamaguchi Prefecture Mental Health Medical Center, Yamaguchi, Japan; 2Department of Psychiatry, NTT West Osaka Hospital, Osaka, Japan; 3Department of Psychiatry, National Defense Medical College, Saitama, Japan; 4Department of Neuropsychiatry, Oita University Faculty of Medicine, Oita, Japan; 5Department of Psychiatry, Jichi University School of Medicine, Tochigi, Japan  *These authors contributed equally to this work Abstract: We propose the possibility of 5-hydroxytryptamine (5-HT1A receptor involvement in mild serotonin toxicity. A 64-year-old woman who experienced hallucinations was treated with perospirone (8 mg/day. She also complained of depressed mood and was prescribed paroxetine (10 mg/day. She exhibited finger tremors, sweating, coarse shivering, hyperactive knee jerks, vomiting, diarrhea, tachycardia, and psychomotor agitation. After the discontinuation of paroxetine and perospirone, the symptoms disappeared. Another 81-year-old woman, who experienced delusions, was treated with perospirone (8 mg/day. Depressive symptoms appeared and paroxetine (10 mg/day was added. She exhibited tachycardia, finger tremors, anxiety, agitation, and hyperactive knee jerks. The symptoms disappeared after the cessation of paroxetine and perospirone. Recently, the effectiveness of coadministrating 5-HT1A agonistic psychotropics with selective serotonin reuptake inhibitors (SSRIs has been reported, and SSRIs with 5-HT1A agonistic activity have been newly approved in the treatment of depression. Perospirone is a serotonin–dopamine antagonist and agonistic on the 5-HT1A receptors. Animal studies have indicated that mild serotonin excess induces low body temperature through 5-HT1A, whereas severe serotonin excess induces high body temperature through 5-HT2A activation. Therefore, it could be hypothesized that mild serotonin excess induces side effects

  8. Transient expression of functional serotonin 5-HT3 receptors by glutamatergic granule cells in the early postnatal mouse cerebellum

    NARCIS (Netherlands)

    M. Oostland; J. Sellmeijer; J.A. van Hooft

    2011-01-01

    The serotonin 5-HT3 receptor is the only ligand-gated ion channel activated by serotonin and is expressed by GABAergic interneurons in many brain regions, including the cortex, amygdala and hippocampus. Furthermore, 5-HT3 receptors are expressed by glutamatergic Cajal-Retzius cells in the cerebral c

  9. In Vivo Imaging of Cerebral Serotonin Transporter and Serotonin(2A) Receptor Binding in 3,4-Methylenedioxymethamphetamine (MDMA or "Ecstasy") and Hallucinogen Users

    DEFF Research Database (Denmark)

    Erritzoe, David; Frokjaer, Vibe G.; Holst, Klaus K.;

    2011-01-01

    Context: Both hallucinogens and 3,4-methylenedioxy-methamphetamine( MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin.......Objective: To assess the differential effects of MDMA and hallucinogen use on cerebral serotonin transporter (SERT) and serotonin(2A) receptor binding.Design: A positron emission tomography study of 24 young adult drug users and 21 nonusing control participants performed with carbon 11 (C-11)-labeled 3-amino-4-[2-[(di......(methyl) amino) methyl] phenyl]sulfanylbenzonitrile (DASB) and fluorine 18 (F-18)-labeled altanserin, respectively. Scans were performed in the user group after a minimum drug abstinence period of 11 days, and the group was subdivided into hallucinogen-preferring users (n=10) and MDMA-preferring users (n=14...

  10. 5-Hydroxytryptamine 4 Receptor in the Endothelial Cells

    DEFF Research Database (Denmark)

    Profirovic, Jasmina; Vardya, Irina; Voyno-Yasenetskaya, Tatyana

    2006-01-01

    central nervous system (CNS). We have recently demonstrated that 5-HT4 receptor couples to G13 protein to induce RhoA-dependent gene transcription, neurite retraction, and neuronal cell rounding (Ponimaskin et al, 2002). Although multiple studies were focused on the function of the 5-HT4 receptor in the...

  11. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB. 20

    Energy Technology Data Exchange (ETDEWEB)

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT{sub 1C} receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing ({sup 3}H)serotonin, ({sup 3}H)lysergic acid diethylamide or ({sup 3}H)dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor.

  12. Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice

    OpenAIRE

    Halberstadt, Adam L.; Koedood, Liselore; Powell, Susan B.; GEYER, Mark A

    2010-01-01

    Psilocin (4-hydroxy-N,N-dimethyltryptamine) is a hallucinogen that acts as an agonist at 5-HT1A, 5-HT2A, and 5-HT2C receptors. Psilocin is the active metabolite of psilocybin, a hallucinogen that is currently being investigated clinically as a potential therapeutic agent. In the present investigation, we used a combination of genetic and pharmacological approaches to identify the serotonin (5-HT) receptor subtypes responsible for mediating the effects of psilocin on head twitch response (HTR)...

  13. Serotonin 2A receptor antagonists for treatment of schizophrenia

    DEFF Research Database (Denmark)

    Ebdrup, Bjørn Hylsebeck; Rasmussen, Hans; Arnt, Jørn;

    2011-01-01

    receptor antagonists is evaluated. Moreover, the investigational pipeline of major pharmaceutical companies is examined and an Internet search conducted to identify other pharmaceutical companies investigating 5-HT2A receptor antagonists for the treatment of schizophrenia. Expert opinion: 5-HT2A receptor...

  14. Relevance of dorsal raphe nucleus firing in serotonin 5-HT2C receptor blockade-induced augmentation of SSRIs effects

    NARCIS (Netherlands)

    Sotty, Florence; Folgering, Joost H. A.; Brennum, Lise T.; Hogg, Sandra; Mork, Arne; Hertel, Peter; Cremers, Thomas I. F. H.

    2009-01-01

    Selective serotonin reuptake inhibitors are the most widely prescribed antidepressant drugs. However, they exhibit a slow onset of action, putatively due to the initial decrease in serotonin cell firing mediated via somato-dendritic autoreceptors. Interestingly, blockade of 5-HT2C receptors signific

  15. Serotonin/dopamine interactions in a hyperactive mouse: reduced serotonin receptor 1B activity reverses effects of dopamine transporter knockout.

    Directory of Open Access Journals (Sweden)

    Frank Scott Hall

    Full Text Available Knockout (KO mice that lack the dopamine transporter (SL6A3; DAT display increased locomotion that can be attenuated, under some circumstances, by administration of drugs that normally produce psychostimulant-like effects, such as amphetamine and methylphenidate. These results have led to suggestions that DAT KO mice may model features of attention deficit hyperactivity disorder (ADHD and that these drugs may act upon serotonin (5-HT systems to produce these unusual locomotor decreasing effects. Evidence from patterns of brain expression and initial pharmacologic studies led us to use genetic and pharmacologic approaches to examine the influence of altered 5-HT1B receptor activity on hyperactivity in DAT KO mice. Heterozygous 5-HT1B KO and pharmacologic 5-HT1B antagonism both attenuated locomotor hyperactivity in DAT KO mice. Furthermore, DAT KO mice with reduced, but not eliminated, 5-HT1B receptor expression regained cocaine-stimulated locomotion, which was absent in DAT KO mice with normal levels of 5-HT1B receptor expression. Further experiments demonstrated that the degree of habituation to the testing apparatus determined whether cocaine had no effect on locomotion in DAT KO or reduced locomotion, helping to resolve differences among prior reports. These findings of complementation of the locomotor effects of DAT KO by reducing 5-HT1B receptor activity underscore roles for interactions between specific 5-HT receptors and dopamine (DA systems in basal and cocaine-stimulated locomotion and support evaluation of 5-HT1B antagonists as potential, non-stimulant ADHD therapeutics.

  16. Polymorphism in serotonin receptor 3B is associated with pain catastrophizing.

    Directory of Open Access Journals (Sweden)

    Emilia Horjales-Araujo

    Full Text Available Pain catastrophizing, a coping style characterized by excessively negative thoughts and emotions in relation to pain, is one of the psychological factors that most markedly predicts variability in the perception of pain; however, only little is known about the underlying neurobiology. The aim of this study was to test for associations between psychological variables, such as pain catastrophizing, anxiety and depression, and selected polymorphisms in genes related to monoaminergic neurotransmission, in particular serotonin pathway genes. Three hundred seventy-nine healthy participants completed a set of psychological questionnaires: the Pain Catastrophizing Scale (PCS, the State-Trait Anxiety Inventory and Beck's Depression Inventory, and were genotyped for 15 single nucleotide polymorphisms (SNPs in nine genes. The SNP rs1176744 located in the serotonin receptor 3B gene (5-HTR3B was found to be associated with pain catastrophizing scores: both the global score and the subscales of magnification and helplessness. This is the first study to show an association between 5-HTR3B and PCS scores, thus suggesting a role of the serotonin pathway in pain catastrophizing. Since 5-HTR3B has previously been associated with descending pain modulation pathways, future studies will be of great interest to elucidate the molecular pathways involved in the relation between serotonin, its receptors and pain catastrophizing.

  17. Serotonin type-1A receptor imaging in depression

    International Nuclear Information System (INIS)

    Regional 5-hydroxytryptamine1A (5-HT1A) receptor binding potential (BP) of depressed subjects with primary, recurrent, familial mood disorders was compared to that of healthy controls by using positron emission tomography and [carbonyl-11C]WAY-100635 {[11C]N-(2-(4-(2-methoxyphenyl)-1-piperazin-1-yl)ethyl)-N-(2-pyridyl) cyclohexanecarboxamide}. The mean 5-HT1A receptor BP was reduced 42% in the midbrain raphe and 25-33% in limbic and neocortical areas in the mesiotemporal, occipital, and parietal cortex. The magnitude of these abnormalities was most prominent in bipolar depressives and unipolar depressives who had bipolar relatives. These abnormal reductions in 5-HT1A receptor BP are consistent with in vivo evidence that 5-HT1A receptor sensitivity is reduced in major depressive disorder and postmortem data showing a widespread deficit of 5-HT1A receptor expression in primary mood disorders

  18. Serotonin mediation of early memory formation via 5HT2B receptor-induced glycogenolysis in the day-old chick

    OpenAIRE

    Marie Elizabeth Gibbs; Leif eHertz

    2014-01-01

    Investigation of the effects of serotonin on memory formation in the chick revealed an action on at least two 5-HT receptors. Serotonin injected intracerebrally produced a biphasic effect on memory consolidation with enhancement at low doses and inhibition at higher doses. The non-selective 5-HT receptor antagonist methiothepin and the selective 5-HT2B/C receptor antagonist SB221284 both inhibited memory, suggesting actions of serotonin on at least two different receptor subtypes. The 5-HT2B/...

  19. Serotonin 5HT1A receptor availability and pathological crying after stroke

    DEFF Research Database (Denmark)

    Møller, Mette; Andersen, G; Gjedde, A

    2007-01-01

    by selective serotonin re-uptake inhibitor (SSRI) treatment. MATERIALS AND METHODS: We PET scanned patients with acute stroke and PC and age-matched control subjects. Maps of receptor availability were generated from the images of eight cortical regions and raphe nuclei. RESULTS: The maps showed highest......OBJECTIVES: Post-stroke depression and pathological crying (PC) implicate an imbalance of serotonergic neurotransmission. We claim that PC follows serotonin depletion that raises the binding potential (p(B)) of the 5-HT(1A) receptor antagonist [carbonyl-(11)C]WAY-100635, which is reversible...... led to a global increase. DISCUSSION: The study is the first suggestion of changes of serotonergic neurotransmission in the early phase of stroke and the modulation of these changes with SSRI treatment....

  20. Structural features for functional selectivity at serotonin receptors.

    Science.gov (United States)

    Wacker, Daniel; Wang, Chong; Katritch, Vsevolod; Han, Gye Won; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D; Jiang, Yi; Chu, Meihua; Siu, Fai Yiu; Liu, Wei; Xu, H Eric; Cherezov, Vadim; Roth, Bryan L; Stevens, Raymond C

    2013-05-01

    Drugs active at G protein-coupled receptors (GPCRs) can differentially modulate either canonical or noncanonical signaling pathways via a phenomenon known as functional selectivity or biased signaling. We report biochemical studies showing that the hallucinogen lysergic acid diethylamide, its precursor ergotamine (ERG), and related ergolines display strong functional selectivity for β-arrestin signaling at the 5-HT2B 5-hydroxytryptamine (5-HT) receptor, whereas they are relatively unbiased at the 5-HT1B receptor. To investigate the structural basis for biased signaling, we determined the crystal structure of the human 5-HT2B receptor bound to ERG and compared it with the 5-HT1B/ERG structure. Given the relatively poor understanding of GPCR structure and function to date, insight into different GPCR signaling pathways is important to better understand both adverse and favorable therapeutic activities. PMID:23519215

  1. Structural Features for Functional Selectivity at Serotonin Receptors

    OpenAIRE

    Wacker, Daniel; Wang, Chong; Katritch, Vsevolod; Han, Gye Won; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D.; Jiang, Yi; Chu, Meihua; Siu, Fai Yiu; Liu, Wei; Xu, H Eric; Cherezov, Vadim; Roth, Bryan L.; Stevens, Raymond C.

    2013-01-01

    Drugs active at G protein-coupled receptors (GPCRs) can differentially modulate either canonical or non-canonical signaling pathways via a phenomenon known as functional selectivity or biased signaling. We report biochemical studies that show that the hallucinogen lysergic acid diethylamide (LSD), its precursor ergotamine (ERG) and related ergolines display strong functional selectivity for β-arrestin signaling at the 5-hydroxytryptamine (5-HT) receptor 5-HT2B, while being relatively unbiased...

  2. Mast cell expression of the serotonin1A receptor in guinea pig and human intestine

    OpenAIRE

    Wang, Guo-Du; Wang, Xi-Yu; Zou, Fei; Qu, Meihua; Liu, Sumei; Fei, Guijun; Xia, Yun; Needleman, Bradley J.; Mikami, Dean J.; Wood, Jackie D.

    2013-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] is released from enterochromaffin cells in the mucosa of the small intestine. We tested a hypothesis that elevation of 5-HT in the environment of enteric mast cells might degranulate the mast cells and release mediators that become paracrine signals to the enteric nervous system, spinal afferents, and secretory glands. Western blotting, immunofluorescence, ELISA, and pharmacological analysis were used to study expression of 5-HT receptors by mast cells i...

  3. Lack of Association between the Serotonin Transporter (5-HTT) and Serotonin Receptor (5-HT2A) Gene Polymorphisms with Smoking Behavior among Malaysian Malays

    OpenAIRE

    Rozak, Nur Iwani A; Ahmad, Imran; Gan, Siew Hua; Abu Bakar, Ruzilawati

    2014-01-01

    Abstract An insertion/deletion polymorphism in the promoter region of the serotonin transporter gene (5-HTTLPR) and a polymorphism (rs6313) in the serotonin 2A receptor gene (5-HT2A) have previously been linked to smoking behavior. The objective of this study was to determine the possible association of the 5-HTTLPR and 5-HT2A gene polymorphisms with smoking behavior within a population of Malaysian male smokers (n=248) and non-smokers (n=248). The 5-HTTLPR genotypes were determined using the...

  4. The effect of serotonin 1A receptor polymorphism on the cognitive function of premenstrual dysphoric disorder.

    Science.gov (United States)

    Yen, Ju-Yu; Tu, Hung-Pin; Chen, Cheng-Sheng; Yen, Cheng-Fang; Long, Cheng-Yu; Ko, Chih-Hung

    2014-12-01

    Estrogen and serotonin play vital roles in the mechanism of premenstrual dysphoric disorder (PMDD). Cognitive deficit in the premenstrual phase contributes to impaired life function among women with PMDD. The aim of this study was to evaluate the difficulties in cognitive control and working memory (WM) in PMDD and to explore the effects of gonadotropic hormone and polymorphism of serotonin 1A receptor (HTR1A; rs6295) on cognitive deficit in PMDD. Women with PMDD completed diagnostic interviewing, questionnaire assessment, the Go/Nogo task, 2-back and 3-back tasks, and gonadotropic hormone analysis in the premenstrual and follicular phases. Further, they were followed up for two menstrual cycles to confirm two consecutive symptomatic cycles. A total of 59 subjects with PMDD and 74 controls completed all evaluation, fulfilled the criteria, and entered into the final analysis. The results demonstrated cognitive control and WM decline in the premenstrual among women with PMDD. The G/G genotype of HTR1A (rs6295) was found to be associated with impaired WM in the premenstrual phase and premenstrual decline of cognitive function. It also contributed to the vulnerability of cognitive function to the menstrual cycle effect and PMDD effect. As the G/G genotype of HTR1A (rs6295) involves in reducing serotonin neurotransmission, our results provide insight into the serotonin mechanism of cognitive function among women with PMDD. PMID:24158751

  5. Serotonin 5-HT2A Receptor Function as a Contributing Factor to Both Neuropsychiatric and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Charles D. Nichols

    2009-01-01

    Full Text Available There are high levels of comorbidity between neuropsychiatric and cardiovascular disorders. A key molecule central to both cognitive and cardiovascular function is the molecule serotonin. In the brain, serotonin modulates neuronal activity and is actively involved in mediating many cognitive functions and behaviors. In the periphery, serotonin is involved in vasoconstriction, inflammation, and cell growth, among other processes. It is hypothesized that one component of the serotonin system, the 5-HT2A receptor, is a common and contributing factor underlying aspects of the comorbidity between neuropsychiatric and cardiovascular disorders. Within the brain this receptor participates in processes such as cognition and working memory, been implicated in effective disorders such as schizophrenia, and mediate the primary effects of hallucinogenic drugs. In the periphery, 5-HT2A receptors have been linked to vasoconstriction and hypertension, and to inflammatory processes that can lead to atherosclerosis.

  6. Brain serotonin 2A receptor binding: Relations to body mass index, tobacco and alcohol use

    DEFF Research Database (Denmark)

    Erritzoe, D.; Frokjaer, V. G.; Haugbol, S.;

    2009-01-01

    to increased food and alcohol intake, and conversely, stimulation of the serotonergic system induces weight reduction and decreased food/alcohol intake as well as tobacco smoking. To investigate whether body weight, alcohol intake and tobacco smoking were related to the regulation of the cerebral serotonin 2A...... receptor (5-HT(2A)) in humans, we tested in 136 healthy human subjects if body mass index (BMI), degree of alcohol consumption and tobacco smoking was associated to the cerebral in vivo 5-HT(2A) receptor binding as measured with (18)F-altanserin PET. The subjects' BMI's ranged from 18.4 to 42.8 (25...

  7. A nonlinear relationship between cerebral serotonin transporter and 5-HT(2A) receptor binding: an in vivo molecular imaging study in humans

    DEFF Research Database (Denmark)

    Erritzoe, David; Holst, Klaus; Frokjaer, Vibe G.;

    2010-01-01

    Serotonergic neurotransmission is involved in the regulation of physiological functions such as mood, sleep, memory, and appetite. Within the serotonin transmitter system, both the postsynaptically located serotonin 2A (5-HT2A) receptor and the presynaptic serotonin transporter (SERT) are sensitive...

  8. A Novel Role of Serotonin Receptor 2B Agonist as an Anti-Melanogenesis Agent.

    Science.gov (United States)

    Oh, Eun Ju; Park, Jong Il; Lee, Ji Eun; Myung, Cheol Hwan; Kim, Su Yeon; Chang, Sung Eun; Hwang, Jae Sung

    2016-01-01

    BW723C86, a serotonin receptor 2B agonist, has been investigated as a potential therapeutic for various conditions such as anxiety, hyperphagia and hypertension. However, the functional role of BW723C86 against melanogenesis remains unclear. In this study, we investigate the effect of serotonin receptor 2B (5-HTR2B) agonist on melanogenesis and elucidate the mechanism involved. BW723C86 reduced melanin synthesis and intracellular tyrosinase activity in melan-A cells and normal human melanocytes. The expression of melanogenesis-related proteins (tyrosinase, TRP-1 and TRP-2) and microphthalmia-associated transcription factor (MITF) in melan-A cells decreased after BW723C86 treatment. The promoter activity of MITF was also reduced by BW723C86 treatment. The reduced level of MITF was associated with inhibition of protein kinase A (PKA) and cAMP response element-binding protein (CREB) activation by BW723C86 treatment. These results suggest that the serotonin agonist BW723C86 could be a potential therapeutic agent for skin hyperpigmentation disorders. PMID:27077852

  9. A Novel Role of Serotonin Receptor 2B Agonist as an Anti-Melanogenesis Agent

    Directory of Open Access Journals (Sweden)

    Eun Ju Oh

    2016-04-01

    Full Text Available BW723C86, a serotonin receptor 2B agonist, has been investigated as a potential therapeutic for various conditions such as anxiety, hyperphagia and hypertension. However, the functional role of BW723C86 against melanogenesis remains unclear. In this study, we investigate the effect of serotonin receptor 2B (5-HTR2B agonist on melanogenesis and elucidate the mechanism involved. BW723C86 reduced melanin synthesis and intracellular tyrosinase activity in melan-A cells and normal human melanocytes. The expression of melanogenesis-related proteins (tyrosinase, TRP-1 and TRP-2 and microphthalmia-associated transcription factor (MITF in melan-A cells decreased after BW723C86 treatment. The promoter activity of MITF was also reduced by BW723C86 treatment. The reduced level of MITF was associated with inhibition of protein kinase A (PKA and cAMP response element-binding protein (CREB activation by BW723C86 treatment. These results suggest that the serotonin agonist BW723C86 could be a potential therapeutic agent for skin hyperpigmentation disorders.

  10. Familial Risk for Major Depression is Associated with Lower Striatal 5-HT4 Receptor Binding

    DEFF Research Database (Denmark)

    Madsen, Karine; Torstensen, Eva; Holst, Klaus Kähler;

    2015-01-01

    BACKGROUND: The 5-HT4 receptor provides a novel potential target for antidepressant treatment. No studies exist to elucidate the 5-HT4 receptor's in vivo distribution in the depressed state or in populations that may display trait markers for major depression disorder (MDD). The aim of this study...... was to determine whether familial risk for MDD is associated with cerebral 5-HT4 receptor binding as measured with [(11)C]SB207145 brain PET imaging. Familial risk is the most potent risk factor of MDD. METHODS: We studied 57 healthy individuals (mean age 36 yrs, range 20-86; 21 women), 26 of which...... depression, and that lower striatal 5-HT4 receptor binding is associated with increased risk for developing MDD. The finding is intriguing considering that the 5-HT4 receptor has been suggested to be an effective target for antidepressant treatment....

  11. The Structure of the Mouse Serotonin 5-HT3 Receptor in Lipid Vesicles.

    Science.gov (United States)

    Kudryashev, Mikhail; Castaño-Díez, Daniel; Deluz, Cédric; Hassaine, Gherici; Grasso, Luigino; Graf-Meyer, Alexandra; Vogel, Horst; Stahlberg, Henning

    2016-01-01

    The function of membrane proteins is best understood if their structure in the lipid membrane is known. Here, we determined the structure of the mouse serotonin 5-HT3 receptor inserted in lipid bilayers to a resolution of 12 Å without stabilizing antibodies by cryo electron tomography and subtomogram averaging. The reconstruction reveals protein secondary structure elements in the transmembrane region, the extracellular pore, and the transmembrane channel pathway, showing an overall similarity to the available X-ray model of the truncated 5-HT3 receptor determined in the presence of a stabilizing nanobody. Structural analysis of the 5-HT3 receptor embedded in a lipid bilayer allowed the position of the membrane to be determined. Interactions between the densely packed receptors in lipids were visualized, revealing that the interactions were maintained by the short horizontal helices. In combination with methodological improvements, our approach enables the structural analysis of membrane proteins in response to voltage and ligand gating.

  12. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands

    Directory of Open Access Journals (Sweden)

    Zdzisław Chilmonczyk

    2015-08-01

    Full Text Available Serotonin (5-HT is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems, which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies.

  13. Am5-HT7: molecular and pharmacological characterization of the first serotonin receptor of the honeybee (Apis mellifera).

    Science.gov (United States)

    Schlenstedt, Jana; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang

    2006-09-01

    The biogenic amine serotonin (5-HT) plays a key role in the regulation and modulation of many physiological and behavioural processes in both vertebrates and invertebrates. These functions are mediated through the binding of serotonin to its receptors, of which 13 subtypes have been characterized in vertebrates. We have isolated a cDNA from the honeybee Apis mellifera (Am5-ht7) sharing high similarity to members of the 5-HT(7) receptor family. Expression of the Am5-HT(7) receptor in HEK293 cells results in an increase in basal cAMP levels, suggesting that Am5-HT(7) is expressed as a constitutively active receptor. Serotonin application to Am5-ht7-transfected cells elevates cyclic adenosine 3',5'-monophosphate (cAMP) levels in a dose-dependent manner (EC(50) = 1.1-1.8 nm). The Am5-HT(7) receptor is also activated by 5-carboxamidotryptamine, whereas methiothepin acts as an inverse agonist. Receptor expression has been investigated by RT-PCR, in situ hybridization, and western blotting experiments. Receptor mRNA is expressed in the perikarya of various brain neuropils, including intrinsic mushroom body neurons, and in peripheral organs. This study marks the first comprehensive characterization of a serotonin receptor in the honeybee and should facilitate further analysis of the role(s) of the receptor in mediating the various central and peripheral effects of 5-HT. PMID:16945110

  14. Signalling properties and pharmacology of a 5-HT7 -type serotonin receptor from Tribolium castaneum.

    Science.gov (United States)

    Vleugels, R; Lenaerts, C; Vanden Broeck, J; Verlinden, H

    2014-04-01

    In the last decade, genome sequence data and gene structure information on invertebrate receptors has been greatly expanded by large sequencing projects and cloning studies. This information is of great value for the identification of receptors; however, functional and pharmacological data are necessary for an accurate receptor classification and for practical applications. In insects, an important group of neurotransmitter and neurohormone receptors, for which ample sequence information is available but pharmacological information is missing, are the biogenic amine G protein-coupled receptors (GPCRs). In the present study, we investigated the sequence information, pharmacology and signalling properties of a 5-HT7 -type serotonin receptor from the red flour beetle, Tribolium castaneum (Trica5-HT7 ). The receptor encoding cDNA shows considerable sequence similarity with cognate 5-HT7 receptors and phylogenetic analysis also clusters the receptor within this 5-HT receptor group. Real-time reverse transcription PCR demonstrated high expression levels in the brain, indicating the possible importance of this receptor in neural processes. Trica5-HT7 was dose-dependently activated by 5-HT, which induced elevated intracellular cyclic AMP levels but had no effect on calcium signalling. The synthetic agonists, α-methyl 5-HT, 5-methoxytryptamine, 5-carboxamidotryptamine and 8-hydroxy-2-(dipropylamino)tetralin hydrobromide, showed a response, although with a much lower potency and efficacy than 5-HT. Ketanserin and methiothepin were the most potent antagonists. Both showed characteristics of competitive inhibition on Trica5-HT7 . The signalling pathway and pharmacological profile offer important information that will facilitate functional and comparative studies of 5-HT receptors in insects and other invertebrates. The pharmacology of invertebrate 5-HT receptors differs considerably from that of vertebrates. The present study may therefore contribute to establishing a more

  15. Pharmacological and genetic interventions in serotonin (5-HT)(2C) receptors to alter drug abuse and dependence processes

    NARCIS (Netherlands)

    Filip, Malgorzata; Spampinato, Umberto; McCreary, Andrew C.; Przegalinski, Edmund

    2012-01-01

    The present review provides an overview on serotonin (5-hydroxytryptamine; 5-HT)(2C) receptors and their relationship to drug dependence. We have focused our discussion on the impact of 5-HT2C receptors on the effects of different classes of addictive drugs, illustrated by reference to data using ph

  16. Molecular dynamics simulation of the structure and dynamics of 5-HT3 serotonin receptor

    Science.gov (United States)

    Antonov, M. Yu.; Popinako, A. V.; Prokopiev, G. A.

    2016-10-01

    In this work, we investigated structure, dynamics and ion transportation in transmembrane domain of the 5-HT3 serotonin receptor. High-resolution (0.35 nm) structure of the 5-HT3 receptor in complex with stabilizing nanobodies was determined by protein crystallography in 2014 (Protein data bank (PDB) code 4PIR). Transmembrane domain of the structure was prepared in complex with explicit membrane environment (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC)) and solvent (TIP3P water model). Molecular dynamics protocols for simulation and stabilization of the transmembrane domain of the 5-HT3 receptor model were developed and 60 ns simulation of the structure was conducted in order to explore structural parameters of the system. We estimated the mean force profile for Na+ ions using umbrella sampling method.

  17. 5-Hydroxytryptamine (serotonin 2A receptor gene polymorphism is associated with schizophrenia

    Directory of Open Access Journals (Sweden)

    Subash Padmajeya Sujitha

    2014-01-01

    Full Text Available Background & objectives: Schizophrenia, the debilitating neuropsychiatric disorder, is known to be heritable, involving complex genetic mechanisms. Several chromosomal regions associated with schizophrenia have been identified during the past; putative gene (s in question, to be called the global signature for the pathophysiology of the disease, however, seems to evade us. The results obtained from the several population-wise association-non association studies have been diverse. w0 e therefore, undertook the present study on Tamil speaking population in south India to examine the association between the single nucleotide polymorphisms (SNPs at the serotonin receptor gene (5HT2A and the occurrence of the disease. Methods: Blood samples collected from 266 cases and 272 controls were subjected to genotyping (PCR amplification of candidate SNPs, RFLP and sequencing. The data on the SNPs were subjected to statistical analysis for assessing the gene frequencies in both the cases and the controls. Results: The study revealed significant association between the genotypic frequencies of the serotonin receptor polymorphism and schizophrenia. SNP analysis revealed that the frequencies of GG (30%, rs6311 and CC genotypes (32%, rs6313, were higher in patients (P<0.05 than in controls. The study also showed presence of G and C alleles in patients. s0 ignificant levels of linkage disequilibrium (LD were found to exist between the genotype frequencies of rs6311 and rs6313. Interpretation & conclusions: This study indicated an association between the SNPs (rs6311 and rs6313 of the serotonin receptor 5HT2A and schizophrenia. HapMap analysis revealed that in its genotype distribution, the Tamil speaking population was different from several other populations across the world, signifying the importance of such ethnicity-based studies to improve our understanding of this complex disease.

  18. Visualisation of serotonin-1A (5-HT1A) receptors in the central nervous system

    International Nuclear Information System (INIS)

    The 5-HT1A subtype of receptors for the neurotransmitter serotonin is predominantly located in the limbic forebrain and is involved in the modulation of emotion and the function of the hypothalamus. Since 5-HT1A receptors are implicated in the pathogenesis of anxiety, depression, hallucinogenic behaviour, motion sickness and eating disorders, they are an important target for drug therapy. Here, we review the radioligands which are available for visualisation and quantification of this important neuroreceptor in the human brain, using positron emission tomography (PET) or single-photon emission tomography (SPET). More than 20 compounds have been labelled with carbon-11 (half-life 20 min), fluorine-18 (half-life 109.8 min) or iodine-123 (half-life 13.2 h): structural analogues of the agonist, 8-OH-DPAT, structural analogues of the antagonist, WAY 100635, and apomorphines. The most successful radioligands thus far are [carbonyl-11C] WAY-100635 (WAY), [carbonyl-11C]desmethyl-WAY-100635 (DWAY), p-[18F]MPPF and [11C]robalzotan (NAD-299). The high-affinity ligands WAY and DWAY produce excellent images of 5-HT1A receptor distribution in the brain (even the raphe nuclei are visualised), but they cannot be distributed to remote facilities and they probably cannot be used to measure changes in endogenous serotonin. Binding of the moderate-affinity ligands MPPF and NAD-299 may be more sensitive to serotonin competition and MPPF can be distributed to PET centres within a flying distance of a few hours. Future research should be directed towards: (a) improvement of the metabolic stability in primates; (b) development of a fluorinated radioligand which can be produced in large quantities and (c) production of a radioiodinated or technetium-labelled ligand for SPET. (orig.)

  19. Serotonin-1A receptor imaging in recurrent depression: replication and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Drevets, Wayne C. [Mood and Anxiety Disorders Program, MINH Molecular Imaging Branch, Bethesda, MD 20892 (United States); Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Radiology, University of Pittsburgh, Pittsburgh, PA 19213 (United States)], E-mail: drevetsw@mail.nih.gov; Thase, Michael E. [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Psychiatry, University of Pennsylvania, School of Medicine and Philadelphia Veterans Affairs Medical Center, Philadelphia, PA 19104 (United States); Moses-Kolko, Eydie L. [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Price, Julie [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Radiology, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Frank, Ellen; Kupfer, David J. [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Mathis, Chester [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Radiology, University of Pittsburgh, Pittsburgh, PA 19213 (United States)

    2007-10-15

    Introduction: Serotonin-1A receptor (5-HT{sub 1A}R) function appears to be decreased in major depressive disorder (MDD) based on physiological responses to 5-HT{sub 1A}R agonists in vivo and to 5-HT{sub 1A}R binding in brain tissues postmortem or antemortem. We have previously assessed 5-HT{sub 1A}R binding potential (BP) in depression using positron emission tomography (PET) and [carbonyl-{sup 11}C]WAY-100635, and we have demonstrated reduced 5-HT{sub 1A}R BP in the mesiotemporal cortex (MTC) and raphe in depressives with primary recurrent familial mood disorders (n=12) versus controls (n=8) [Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ, Huang Y, Gautier C, Mathis C. PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 1999;46(10):1375-87]. These findings were replicated by some, but not other, studies performed in depressed samples that were more generally selected using criteria for MDD. In the current study, we attempted to replicate our previous findings in an independent sample of subjects selected according to the criteria for primary recurrent depression applied in our prior study. Methods: Using PET and [carbonyl-{sup 11}C]WAY-100635, 5-HT{sub 1A}R BP was assessed in 16 depressed subjects and 8 healthy controls. Results: Mean 5-HT{sub 1A}R BP was reduced by 26% in the MTC (P < .005) and by 43% in the raphe (P < .001) in depressives versus controls. Conclusions: These data replicate our original findings, which showed that BP was reduced by 27% in the MTC (P < .025) and by 42% in the raphe (P < .02) in depression. The magnitudes of these reductions in 5-HT{sub 1A}R binding were similar to those found postmortem in 5-HT{sub 1A}R mRNA concentrations in the hippocampus in MDD [Lopez JF, Chalmers DT, Little KY, Watson SJ. Regulation of serotonin 1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for neurobiology of depression. Biol Psychiatry 1998;43:547-73] and in 5-HT{sub 1A

  20. Changes in sensitivity of brain dopamine and serotonin receptors during long-term treatment with carbidine

    Energy Technology Data Exchange (ETDEWEB)

    Zharkovskii, A.M.; Allikmets, L.K.; Chereshka, K.S.; Zharkovskaya, T.A.

    1986-04-01

    The authors study the state of the dopamine and serotonin receptors of the brain during chronic administration of carbidine to animals. Parts of the brain from two rats were pooled and binding of tritium-spiperone and tritium-LSD was determined. Statistical analysis of the data for apomorphine sterotypy was carried out and the Student's test was used for analysis of the remaining data. It is shown that after discontinuation of carbidine binding of tritium-spiperone and tritium-LSD in the cortex was reduced.

  1. 5-Hydroxytryptamine 1A and 2B serotonin receptors in neurite outgrowth: involvement of early growth response protein 1.

    Science.gov (United States)

    Anelli, Tonino; Cardarelli, Silvia; Ori, Michela; Nardi, Irma; Biagioni, Stefano; Poiana, Giancarlo

    2013-01-01

    Neurotransmitters play important roles in neurogenesis; in particular, acetylcholine and serotonin may regulate neurite elongation. Acetylcholine may also activate transcription factors such as early growth response protein 1 (EGR-1), which plays a role in neurite extension. N18TG2 neuroblastoma cells (which do not produce neurotransmitters and constitutively express muscarinic acetylcholine receptors) were transfected with constructs containing the cDNA for choline acetyltransferase, 5-hydroxytryptamine 1A (5-HT1A) and 5-HT2B serotonin receptors to study acetylcholine and serotonin interplay in neurite outgrowth. 5-HT1A receptor stimulation causes a decrease in EGR-1 levels and inhibition of neurite outgrowth; 5-HT2B stimulation, however, has no effect. Muscarinic cholinergic stimulation, on the other end, increases EGR-1 levels and fiber outgrowth. Inhibition of EGR-1 binding reduces fiber outgrowth activity. When both cholinergic and 5-HT1A receptors are stimulated, fiber outgrowth is restored; therefore, acetylcholine counterbalances the inhibitory effect of serotonin on neurite outgrowth. These results suggest that EGR-1 plays a role in the interplay of acetylcholine and serotonin in the regulation of neurite extension during development. PMID:24158140

  2. Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice.

    Science.gov (United States)

    Halberstadt, Adam L; Koedood, Liselore; Powell, Susan B; Geyer, Mark A

    2011-11-01

    Psilocin (4-hydroxy-N,N-dimethyltryptamine) is a hallucinogen that acts as an agonist at 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptors. Psilocin is the active metabolite of psilocybin, a hallucinogen that is currently being investigated clinically as a potential therapeutic agent. In the present investigation, we used a combination of genetic and pharmacological approaches to identify the serotonin (5-HT) receptor subtypes responsible for mediating the effects of psilocin on head twitch response (HTR) and the behavioral pattern monitor (BPM) in C57BL/6J mice. We also compared the effects of psilocin with those of the putative 5-HT(2C) receptor-selective agonist 1-methylpsilocin and the hallucinogen and non-selective serotonin receptor agonist 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT). Psilocin, 1-methylpsilocin, and 5-MeO-DMT induced the HTR, effects that were absent in mice lacking the 5-HT(2A) receptor gene. When tested in the BPM, psilocin decreased locomotor activity, holepoking, and time spent in the center of the chamber, effects that were blocked by the selective 5-HT(1A) antagonist WAY-100635 but were not altered by the selective 5-HT(2C) antagonist SB 242,084 or by 5-HT(2A) receptor gene deletion. 5-MeO-DMT produced similar effects when tested in the BPM, and the action of 5-MeO-DMT was significantly attenuated by WAY-100635. Psilocin and 5-MeO-DMT also decreased the linearity of locomotor paths, effects that were mediated by 5-HT(2C) and 5-HT(1A) receptors, respectively. In contrast to psilocin and 5-MeO-DMT, 1-methylpsilocin (0.6-9.6 mg/kg) was completely inactive in the BPM. These findings confirm that psilocin acts as an agonist at 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptors in mice, whereas the behavioral effects of 1-methylpsilocin indicate that this compound is acting at 5-HT(2A) sites but is inactive at the 5-HT(1A) receptor. The fact that 1-methylpsilocin displays greater pharmacological selectivity than psilocin indicates that 1-methylpsilocin

  3. Identification of serotonin 5-HT1A receptor partial agonists in ginger.

    Science.gov (United States)

    Nievergelt, Andreas; Huonker, Peter; Schoop, Roland; Altmann, Karl-Heinz; Gertsch, Jürg

    2010-05-01

    Animal studies suggest that ginger (Zingiber officinale Roscoe) reduces anxiety. In this study, bioactivity-guided fractionation of a ginger extract identified nine compounds that interact with the human serotonin 5-HT(1A) receptor with significant to moderate binding affinities (K(i)=3-20 microM). [(35)S]-GTP gamma S assays indicated that 10-shogaol, 1-dehydro-6-gingerdione, and particularly the whole lipophilic ginger extract (K(i)=11.6 microg/ml) partially activate the 5-HT(1A) receptor (20-60% of maximal activation). In addition, the intestinal absorption of gingerols and shogaols was simulated and their interactions with P-glycoprotein were measured, suggesting a favourable pharmacokinetic profile for the 5-HT(1A) active compounds. PMID:20363635

  4. Expression Changes of Serotonin Receptor Gene Subtype 5HT3a in Peripheral Blood Mononuclear Cells from Schizophrenic Patients Treated with Haloperidol and Olanzapin

    Directory of Open Access Journals (Sweden)

    Gholam Reza Shariati

    2009-09-01

    Full Text Available Serotonin receptors are involved in pathophysiology of schizophrenia and may mediate other neurotransmitter effects. We investigated serotonin receptors gene expression in peripheral blood mononuclear cells (PBMC of naïve schizophrenic patients, before and after treatment. Also serotonin receptor gene expression was compared in two treatment groups including Haloperidol and Olanzapine. The PBMC was separated from whole blood by Ficoll-hypaque. The total cellular RNA was extracted and the cDNA was synthesized. This process was followed by real-time PCR using primer pairs specific for 5HT3a serotonin receptor mRNA and beta-actin as internal control. The results showed the presence of subtype of serotonin receptor in lymphocytes. Serotonin gene expression showed significant changes in Olanzapine treatment group which correlated with Clinical Global Impression (CGI score improvement. In conclusion, the present study has shown that human PBMC express serotonin receptors 5HT3a. Moreover, clinical symptom improvement of Olanzapin may be demonstrated by a change in serotonin receptor gene expression.

  5. Serotonin 5-HT(2A) receptor activation induces 2-arachidonoylglycerol release through a phospholipase c-dependent mechanism.

    Science.gov (United States)

    Parrish, Jason C; Nichols, David E

    2006-11-01

    To date, several studies have demonstrated that phospholipase C-coupled receptors stimulate the production of endocannabinoids, particularly 2-arachidonoylglycerol. There is now evidence that endocannabinoids are involved in phospholipase C-coupled serotonin 5-HT(2A) receptor-mediated behavioral effects in both rats and mice. The main objective of this study was to determine whether activation of the 5-HT(2A) receptor leads to the production and release of the endocannabinoid 2-arachidonoylglycerol. NIH3T3 cells stably expressing the rat 5-HT(2A) receptor were first incubated with [(3)H]-arachidonic acid for 24 h. Following stimulation with 10 mum serotonin, lipids were extracted from the assay medium, separated by thin layer chromatography, and analyzed by liquid scintillation counting. Our results indicate that 5-HT(2A) receptor activation stimulates the formation and release of 2-arachidonoylglycerol. The 5-HT(2A) receptor-dependent release of 2-arachidonoylglycerol was partially dependent on phosphatidylinositol-specific phospholipase C activation. Diacylglycerol produced downstream of 5-HT(2A) receptor-mediated phospholipase D or phosphatidylcholine-specific phospholipase C activation did not appear to contribute to 2-arachidonoylglycerol formation in NIH3T3-5HT(2A) cells. In conclusion, our results support a functional model where neuromodulatory neurotransmitters such as serotonin may act as regulators of endocannabinoid tone at excitatory synapses through the activation of phospholipase C-coupled G-protein coupled receptors. PMID:17010161

  6. Differential effects of vilazodone versus citalopram and paroxetine on sexual behaviors and serotonin transporter and receptors in male rats

    NARCIS (Netherlands)

    Oosting, Ronald S; Chan, Johnny S; Olivier, Berend; Banerjee, Pradeep; Choi, Yong Kee; Tarazi, Frank

    2016-01-01

    RATIONALE: Sexual side effects are commonly associated with selective serotonin reuptake inhibitor (SSRI) treatment. Some evidence suggest that activation of 5-HT1A receptors attenuates SSRI-induced sexual dysfunction. OBJECTIVE: This study in male rats compared the effects of vilazodone, an antidep

  7. Serotonin1A receptors in the pathophysiology of schizophrenia: development of novel cognition-enhancing therapeutics.

    Science.gov (United States)

    Sumiyoshi, Tomiki; Bubenikova-Valesova, Vera; Horacek, Jiri; Bert, Bettina

    2008-10-01

    Serotonin (5-HT) receptors have been suggested to play key roles in psychosis, cognition, and mood via influence on neurotransmitters, synaptic integrity, and neural plasticity. Specifically, genetic evidence indicates that 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptor single-nucleotide polymorphisms (SNPs) are related to psychotic symptoms, cognitive disturbances, and treatment response in schizophrenia. Data from animal research suggest the role of 5-HT in cognition via its influence on dopaminergic, cholinergic, glutamatergic, and GABAergic function. This article provides up-to-date findings on the role of 5-HT receptors in endophenotypic variations in schizophrenia and the development of newer cognition-enhancing medications, based on basic science and clinical evidence. Imaging genetics studies on associations of polymorphisms of several 5-HT receptor subtypes with brain structure, function, and metabolism suggest a role for the prefrontal cortex and the parahippocampal gyrus in cognitive impairments of schizophrenia. Data from animal experiments to determine the effect of agonists/antagonists at 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptors on behavioral performance in animal models of schizophrenia based on the glutamatergic hypothesis provide useful information. For this purpose, standard as well as novel cognitive tasks provide a measure of memory/information processing and social interaction. In order to scrutinize mixed evidence for the ability of 5-HT(1A) agonists/antagonists to improve cognition, behavioral data in various paradigms from transgenic mice overexpressing 5-HT(1A) receptors provide valuable insights. Clinical trials reporting the advantage of 5-HT(1A) partial agonists add to efforts to shape pharmacologic perspectives concerning cognitive enhancement in schizophrenia by developing novel compounds acting on 5-HT receptors. Overall, these lines of evidence from translational research will facilitate the development of newer pharmacologic strategies

  8. The 5-HT2A serotonin receptor in executive function: Implications for neuropsychiatric and neurodegenerative diseases.

    Science.gov (United States)

    Aznar, Susana; Hervig, Mona El-Sayed

    2016-05-01

    Executive function entails the interplay of a group of cognitive processes enabling the individual to anticipate consequences, attain self-control, and undertake appropriate goal-directed behaviour. Serotonin signalling at serotonin 2A receptors (5-HT2AR) has important effects on these behavioural and cognitive pathways, with the prefrontal cortex (PFC) as the central actor. Indeed, the 5-HT2ARs are highly expressed in PFC, where they modulate cortical activity and local network oscillations (brain waves). Numerous psychiatric and neurodegenerative diseases result in disrupted executive function. Animal and human studies have linked these disorders with alterations in the 5-HT2AR system, making this an important pharmacological target for the treatment of disorders with impaired cognitive function. This review aims to describe the current state of knowledge on the role of 5-HT2AR signalling in components of executive function, and how 5-HT2AR systems may relate to executive dysfunctions occurring in psychiatric and neurodegenerative diseases. We hope thereby to provide insight into how pharmacotherapy targeting the 5-HT2AR may ameliorate (or exacerbate) aspects of these disorders. PMID:26891819

  9. Contribution of non-genetic factors to dopamine and serotonin receptor availability in the adult human brain

    DEFF Research Database (Denmark)

    Borg, J; Cervenka, S; Kuja-Halkola, R;

    2016-01-01

    The dopamine (DA) and serotonin (5-HT) neurotransmission systems are of fundamental importance for normal brain function and serve as targets for treatment of major neuropsychiatric disorders. Despite central interest for these neurotransmission systems in psychiatry research, little is known about...... and environmental factors, respectively, on dopaminergic and serotonergic markers in the living human brain. Eleven monozygotic and 10 dizygotic healthy male twin pairs were examined with PET and [(11)C]raclopride binding to the D2- and D3-dopamine receptor and [(11)C]WAY100635 binding to the serotonin 5-HT1A...... receptor. Heritability, shared environmental effects and individual-specific non-shared effects were estimated for regional D2/3 and 5-HT1A receptor availability in projection areas. We found a major contribution of genetic factors (0.67) on individual variability in striatal D2/3 receptor binding...

  10. Novel aza-analogous ergoline derived scaffolds as potent serotonin 5-HT6 and dopamine D2 receptor ligands

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, Niels; Jensen, Anders A.; Schrøder, T.J.;

    2014-01-01

    By introducing distal substituents on a tetracyclic scaffold resembling the ergoline structure, two series of analogues were achieved exhibiting subnanomolar receptor binding affinities for the dopamine D2 and serotonin 5-HT6 receptor subtype, respectively. While the 5-HT6 ligands were antagonist......, the D2 ligands displayed intrinsic activities ranging from full agonism to partial agonism with low intrinsic activity. These structures could potentially be interesting for treatment of neurological diseases such as schizophrenia, Parkinson’s disease, and cognitive deficits....

  11. Serotonin and dopamine receptors in motivational and cognitive disturbances of schizophrenia.

    Science.gov (United States)

    Sumiyoshi, Tomiki; Kunugi, Hiroshi; Nakagome, Kazuyuki

    2014-01-01

    Negative symptoms (e.g., decreased spontaneity, social withdrawal, blunt affect) and disturbances of cognitive function (e.g., several types of memory, attention, processing speed, executive function, fluency) provide a major determinant of long-term outcome in patients with schizophrenia. Specifically, motivation deficits, a type of negative symptoms, have been attracting interest as (1) a moderator of cognitive performance in schizophrenia and related disorders, and (2) a modulating factor of cognitive enhancers/remediation. These considerations suggest the need to clarify neurobiological substrates regulating motivation. Genetic studies indicate a role for the monoamine systems in motivation and key cognitive domains. For example, polymorphism of genes encoding catecholamine-O-methyltransferase, an enzyme catabolizing dopamine (DA), affects performance on tests of working memory and executive function in a phenotype (schizophrenia vs. healthy controls)-dependent fashion. On the other hand, motivation to maximize rewards has been shown to be influenced by other genes encoding DA-related substrates, such as DARPP-32 and DA-D2 receptors. Serotonin (5-HT) receptors may also play a significant role in cognitive and motivational disabilities in psychoses and mood disorders. For example, mutant mice over-expressing D2 receptors in the striatum, an animal model of schizophrenia, exhibit both decreased willingness to work for reward and up-regulation of 5-HT2C receptors. Taken together, genetic predisposition related to 5-HT receptors may mediate the diversity of incentive motivation that is impaired in patients receiving biological and/or psychosocial treatments. Thus, research into genetic and neurobiological measures of motivation, in association with 5-HT receptors, is likely to facilitate intervention into patients seeking better social consequences. PMID:25538549

  12. Aging-induced changes in brain regional serotonin receptor binding: Effect of Carnosine.

    Science.gov (United States)

    Banerjee, S; Poddar, M K

    2016-04-01

    Monoamine neurotransmitter, serotonin (5-HT) has its own specific receptors in both pre- and post-synapse. In the present study the role of carnosine on aging-induced changes of [(3)H]-5-HT receptor binding in different brain regions in a rat model was studied. The results showed that during aging (18 and 24 months) the [(3)H]-5-HT receptor binding was reduced in hippocampus, hypothalamus and pons-medulla with a decrease in their both Bmax and KD but in cerebral cortex the [(3)H]-5-HT binding was increased with the increase of its only Bmax. The aging-induced changes in [(3)H]-5-HT receptor binding with carnosine (2.0 μg/kg/day, intrathecally, for 21 consecutive days) attenuated in (a) 24-month-aged rats irrespective of the brain regions with the attenuation of its Bmax except hypothalamus where both Bmax and KD were significantly attenuated, (b) hippocampus and hypothalamus of 18-month-aged rats with the attenuation of its Bmax, and restored toward the [(3)H]-5-HT receptor binding that observed in 4-month-young rats. The decrease in pons-medullary [(3)H]-5-HT binding including its Bmax of 18-month-aged rats was promoted with carnosine without any significant change in its cerebral cortex. The [(3)H]-5-HT receptor binding with the same dosages of carnosine in 4-month-young rats (a) increased in the cerebral cortex and hippocampus with the increase in their only Bmax whereas (b) decreased in hypothalamus and pons-medulla with a decrease in their both Bmax and KD. These results suggest that carnosine treatment may (a) play a preventive role in aging-induced brain region-specific changes in serotonergic activity (b) not be worthy in 4-month-young rats in relation to the brain regional serotonergic activity. PMID:26808776

  13. Serotonin and dopamine receptors in cognitive and motivational disturbances of psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Tomiki eSumiyoshi

    2014-12-01

    Full Text Available Negative symptoms (e.g. decreased spontaneity, social withdrawal, blunt affect and disturbances of cognitive function (e.g. several types of memory, attention, processing speed, executive function, fluency provide a major determinant of long-term outcome in patients with schizophrenia. Specifically, motivation deficits, a type of negative symptoms, have been attracting interest as a moderator of cognitive performance in schizophrenia and related disorders, and also a modulating factor of cognitive enhancers/remediation. These considerations suggest the need to clarify neurobiological substrates regulating motivation. Genetic studies indicate a role for the monoamine systems in motivation and key cognitive domains. For example, polymorphism of genes encoding catecholamine-O-methyltransferase, an enzyme catabolizing dopamine (DA, affects performance on tests of working memory and executive function in a phenotype (schizophrenia vs. healthy controls-dependent fashion. On the other hand, motivation to maximize rewards has been shown to be influenced by other DA-related genes, such as DARPP-32 and DA-D2 receptors. Serotonin (5-HT receptors may also play a key role in cognitive and motivational disabilities in psychoses and mood disorders. For example, mutant mice over-expressing D2 receptors in the striatum, an animal model of schizophrenia, exhibit both decreased willingness to work for reward and up-regulation of 5-HT2C receptors. Taken together, genetic predisposition related to 5-HT receptors may mediate the diversity of incentive motivation that is impaired in patients receiving biological and/or psychosocial treatments. Taken together, research into genetic and neurobiological measures of motivation, in association with 5-HT receptors, is likely to facilitate intervention into patients seeking better social consequences.

  14. Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior.

    Science.gov (United States)

    Thamm, Markus; Balfanz, Sabine; Scheiner, Ricarda; Baumann, Arnd; Blenau, Wolfgang

    2010-07-01

    Serotonin plays a key role in modulating various physiological and behavioral processes in both protostomes and deuterostomes. The vast majority of serotonin receptors belong to the superfamily of G-protein-coupled receptors. We report the cloning of a cDNA from the honeybee (Am5-ht1A) sharing high similarity with members of the 5-HT(1) receptor class. Activation of Am5-HT(1A) by serotonin inhibited the production of cAMP in a dose-dependent manner (EC(50) = 16.9 nM). Am5-HT(1A) was highly expressed in brain regions known to be involved in visual information processing. Using in vivo pharmacology, we could demonstrate that Am5-HT(1A) receptor ligands had a strong impact on the phototactic behavior of individual bees. The data presented here mark the first comprehensive study-from gene to behavior-of a 5-HT(1A) receptor in the honeybee, paving the way for the eventual elucidation of additional roles of this receptor subtype in the physiology and behavior of this social insect. PMID:20349263

  15. Structure-activity relationships for hallucinogenic N,N-dialkyltryptamines: photoelectron spectra and serotonin receptor affinities of methylthio and methylenedioxy derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Kline, T.B.; Benington, F.; Morin, R.D.; Beaton, J.M.; Glennon, R.A.; Domelsmith, L.N.; Houk, K.N.; Rozeboom, M.D.

    1982-11-01

    Serotonin receptor affinity and photelectron spectral data were obtained on a number of substituted N,N-dimethyltryptamines. Evidence is presented that electron-donating substituents in the 5-position lead to enhanced behavioral disruption activity and serotonin receptor affinity as compared to unsubstituted N,N-dimethyltryptamine and analogues substituted in the 4- or 6-position. Some correlation was found between ionization potentials and behavioral activity, which may have implications concerning the mechanism of receptor binding.

  16. Brain serotonin 4 receptor binding is associated with the cortisol awakening response

    DEFF Research Database (Denmark)

    Jakobsen, Gustav R; Fisher, Patrick M; Dyssegaard, Agnete;

    2016-01-01

    Serotonin signalling is considered critical for an appropriate and dynamic adaptation to stress. Previously, we have shown that prefrontal serotonin transporter (SERT) binding is positively associated with the cortisol awakening response (CAR) (Frokjaer et al., 2013), which is an index of hypotha......Serotonin signalling is considered critical for an appropriate and dynamic adaptation to stress. Previously, we have shown that prefrontal serotonin transporter (SERT) binding is positively associated with the cortisol awakening response (CAR) (Frokjaer et al., 2013), which is an index...

  17. Comparative analysis of calcium spikes upon activation of serotonin(1A and purinergic receptors.

    Directory of Open Access Journals (Sweden)

    Roopali Saxena

    Full Text Available Calcium signaling represents one of the most important signaling cascades in cells and regulates diverse processes such as exocytosis, muscle contraction and relaxation, gene expression and cell growth. G protein-coupled receptors (GPCRs are the most important family of receptors that activate calcium signaling. Since calcium signaling regulates a large number of physiological responses, it is intriguing that how changes in cytosolic calcium levels by a wide range of stimuli lead to signal-specific physiological responses in the cellular interior. In order to address this issue, we have analyzed temporal calcium profiles induced by two GPCRs, the serotonin(1A and purinergic receptors. In this work, we have described a set of parameters for the analysis of calcium transients that could provide novel insight into mechanisms responsible for maintaining signal specificity by shaping calcium transients. An interesting feature of calcium signaling that has emerged from our analysis is that the profile of individual transients in a calcium response could play an important role in maintaining downstream signal specificity. In summary, our analysis offers a novel approach to identify differences in calcium response patterns induced by various stimuli.

  18. The serotonin receptor 7 and the structural plasticity of brain circuits

    Science.gov (United States)

    Volpicelli, Floriana; Speranza, Luisa; di Porzio, Umberto; Crispino, Marianna; Perrone-Capano, Carla

    2014-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) modulates numerous physiological processes in the nervous system. Together with its function as neurotransmitter, 5-HT regulates neurite outgrowth, dendritic spine shape and density, growth cone motility and synapse formation during development. In the mammalian brain 5-HT innervation is virtually ubiquitous and the diversity and specificity of its signaling and function arise from at least 20 different receptors, grouped in 7 classes. Here we will focus on the role 5-HT7 receptor (5-HT7R) in the correct establishment of neuronal cytoarchitecture during development, as also suggested by its involvement in several neurodevelopmental disorders. The emerging picture shows that this receptor is a key player contributing not only to shape brain networks during development but also to remodel neuronal wiring in the mature brain, thus controlling cognitive and emotional responses. The activation of 5-HT7R might be one of the mechanisms underlying the ability of the CNS to respond to different stimuli by modulation of its circuit configuration. PMID:25309369

  19. The serotonin receptor 7 and the structural plasticity of brain circuits

    Directory of Open Access Journals (Sweden)

    Floriana eVolpicelli

    2014-09-01

    Full Text Available Serotonin (5-hydroxytryptamine, 5-HT modulates numerous physiological processes in the nervous system. Together with its function as neurotrasmitter, 5-HT regulates neurite outgrowth, dendritic spine shape and density, growth cone motility and synapse formation during development. In the mammalian brain 5-HT innervation is virtually ubiquitous and the diversity and specificity of its signaling and function arise from at least 20 different receptors, grouped in 7 classes. Here we will focus on the role 5-HT7 receptor (5-HT7R in the correct establishment of neuronal cytoarchitecture during development, as also suggested by its involvement in several neurodevelopmental disorders. The emerging picture shows that this receptor is a key player contributing not only to shape brain networks during development but also to remodel neuronal wiring in the mature brain, thus controlling cognitive and emotional responses. The activation of 5-HT7R might be one of the mechanisms underlying the ability of the CNS to respond to different stimuli by modulation of its circuit configuration.

  20. Serotonin 5-HT2 receptor interactions with dopamine function: implications for therapeutics in cocaine use disorder.

    Science.gov (United States)

    Howell, Leonard L; Cunningham, Kathryn A

    2015-01-01

    Cocaine exhibits prominent abuse liability, and chronic abuse can result in cocaine use disorder with significant morbidity. Major advances have been made in delineating neurobiological mechanisms of cocaine abuse; however, effective medications to treat cocaine use disorder remain to be discovered. The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants. Extensive research suggests that the primary contribution of 5-HT to cocaine addiction is a consequence of interactions with dopamine (DA) neurotransmission. The literature on the neurobiological and behavioral effects of cocaine is well developed, so the focus of the review will be on cocaine with inferences made about other monoamine uptake inhibitors and releasers based on mechanistic considerations. 5-HT receptors are widely expressed throughout the brain, and several different 5-HT receptor subtypes have been implicated in mediating the effects of endogenous 5-HT on DA. However, the 5-HT2A and 5-HT2C receptors in particular have been implicated as likely candidates for mediating the influence of 5-HT in cocaine abuse as well as to traits (e.g., impulsivity) that contribute to the development of cocaine use disorder and relapse in humans. Lastly, new approaches are proposed to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder. PMID:25505168

  1. Radiochemical and biological evaluation of a new brain serotonin1A receptor imaging agent

    International Nuclear Information System (INIS)

    Radiochemical and biological evaluations are made of a new bidentate radioligand as a potential brain serotonin1A (5-HT1A) receptor imaging agent. The bidentate part of the complex was a derivative of the well known serotonin1A receptor antagonist molecule, namely WAY 100635; the monodentate parts were thiocresol, thiosalicylic acid and thio-2-naphthol. The labelling procedure was performed through the 99mTc(V)-glucoheptonate precursor. The bidentate + monodentate complex formed during the reaction in the case of thiocresol was identified as 99TcO(o-CH3-C6H4-N(CH2-CH2)2N-CH2CH2S)( p-C6H4CH3)2 (99mTc-1). Its labelling efficiency and stability were determined by thin layer chromatography, the organic solvent extraction method and high performance liquid chromagraphy. The biodistribution of the labelled compound was found by using male Wistar rats. On the basis of these data, kinetic curves were constructed for different organs and the dosimetry for humans was calculated. The brain uptake and pharmacokinetics were followed by planar and single photon emission computed tomography (SPECT) imaging in rats. Average brain count density was calculated and different regional count densities (counts/gram tissue) were obtained for the hippocampus and other receptor-rich regions. A detailed SPECT study was carried out after administration of 99mTc-1 to a cynomolgus monkey (Macaca cynomolgus). The results found show that, of three investigated aromatic thiol compounds, the labelling efficiency was the highest in the case of thiocresol as the monodentate part. Therefore all further studies were carried out using thiocresol. The labelling efficiency of this bidentate complex was about 80%, and the molecule was stable for up to one hour. The biodistribution data show that more than 0.1% of the injected dose is present in the rat brains a few minutes after administration, and the metabolic pathway is through the hepatobiliary system. From the results obtained with the study of the

  2. The antidepressant 5-HT2A receptor antagonists pizotifen and cyproheptadine inhibit serotonin-enhanced platelet function.

    Directory of Open Access Journals (Sweden)

    Olivia A Lin

    Full Text Available There is considerable interest in defining new agents or targets for antithrombotic purposes. The 5-HT2A receptor is a G-protein coupled receptor (GPCR expressed on many cell types, and a known therapeutic target for many disease states. This serotonin receptor is also known to regulate platelet function. Thus, in our FDA-approved drug repurposing efforts, we investigated the antiplatelet activity of cyproheptadine and pizotifen, two antidepressant 5-HT2A Receptor antagonists. Our results revealed that cyproheptadine and pizotifen reversed serotonin-enhanced ADP-induced platelet aggregation in vitro and ex vivo. And the inhibitory effects of these two agents were found to be similar to that of EMD 281014, a 5-HT2A Receptor antagonist under development. In separate experiments, our studies revealed that these 5-HT2A receptor antagonists have the capacity to reduce serotonin-enhanced ADP-induced elevation in intracellular calcium levels and tyrosine phosphorylation. Using flow cytometry, we also observed that cyproheptadine, pizotifen, and EMD 281014 inhibited serotonin-enhanced ADP-induced phosphatidylserine (PS exposure, P-selectin expression, and glycoprotein IIb-IIIa activation. Furthermore, using a carotid artery thrombosis model, these agents prolonged the time for thrombotic occlusion in mice in vivo. Finally, the tail-bleeding time was investigated to assess the effect of cyproheptadine and pizotifen on hemostasis. Our findings indicated prolonged bleeding time in both cyproheptadine- and pizotifen-treated mice. Notably, the increases in occlusion and bleeding times associated with these two agents were comparable to that of EMD 281014, and to clopidogrel, a commonly used antiplatelet drug, again, in a fashion comparable to clopidogrel and EMD 281014. Collectively, our data indicate that the antidepressant 5-HT2A antagonists, cyproheptadine and pizotifen do exert antiplatelet and thromboprotective effects, but similar to clopidogrel and

  3. Enhanced central serotonin release from slices of rat hypothalamus following repeated nialamide administration: evidence supporting the overactive serotonin receptor theory of depression

    International Nuclear Information System (INIS)

    Researchers are suggesting unipolar affective disorders may be related to an abnormality in biogenic amine receptor-sensitivity. This abnormality may be a result of a dysfunction in central serotonin (5-HT) release mechanisms. 5-HT neurotransmission is modulated by presynaptic autoreceptors, which are members of the 5-HT1 receptor subtype. The autoreceptor is thought to play an important role in the homeostasis of the central 5-HT synapse and could be a site at which some antidepressants mediate their therapeutic effect. The number of 5-HT1 type receptor binding sites are reduced and behavior mediated by this receptor is abolished following repeated injections of monoamine oxidase inhibitor type antidepressants. These changes did not occur following a single injection. It was hypothesized that repeated treatment with a monoamine oxidase inhibitor would reduce the sensitivity of 5-HT autoreceptors and enhance 5-HT release. Rats were pretreated with single or repeated (twice daily for 7 days) intraperitoneal injections of nialamide (40 mg/kg) or chlorimipramine (10 mg/kg) and the ability of the autoreceptor agonist to inhibit potassium-induced 3H-5-HT release was evaluated using an in vitro superfusion system. These changes in 5-HT autoreceptor activity are consistent with other reports evaluating monoamine oxidase inhibitors on 5-HT1 type receptors. It is hypothesized that the changes in 5-HT neurotransmission are related to the antidepressant mechanism of monoamine oxidase inhibitors

  4. Effects of serotonin 2A/1A receptor stimulation on social exclusion processing

    Science.gov (United States)

    Preller, Katrin H.; Pokorny, Thomas; Hock, Andreas; Kraehenmann, Rainer; Stämpfli, Philipp; Seifritz, Erich; Scheidegger, Milan; Vollenweider, Franz X.

    2016-01-01

    Social ties are crucial for physical and mental health. However, psychiatric patients frequently encounter social rejection. Moreover, an increased reactivity to social exclusion influences the development, progression, and treatment of various psychiatric disorders. Nevertheless, the neuromodulatory substrates of rejection experiences are largely unknown. The preferential serotonin (5-HT) 2A/1A receptor agonist, psilocybin (Psi), reduces the processing of negative stimuli, but whether 5-HT2A/1A receptor stimulation modulates the processing of negative social interactions remains unclear. Therefore, this double-blind, randomized, counterbalanced, cross-over study assessed the neural response to social exclusion after the acute administration of Psi (0.215 mg/kg) or placebo (Pla) in 21 healthy volunteers by using functional magnetic resonance imaging (fMRI) and resting-state magnetic resonance spectroscopy (MRS). Participants reported a reduced feeling of social exclusion after Psi vs. Pla administration, and the neural response to social exclusion was decreased in the dorsal anterior cingulate cortex (dACC) and the middle frontal gyrus, key regions for social pain processing. The reduced neural response in the dACC was significantly correlated with Psi-induced changes in self-processing and decreased aspartate (Asp) content. In conclusion, 5-HT2A/1A receptor stimulation with psilocybin seems to reduce social pain processing in association with changes in self-experience. These findings may be relevant to the normalization of negative social interaction processing in psychiatric disorders characterized by increased rejection sensitivity. The current results also emphasize the importance of 5-HT2A/1A receptor subtypes and the Asp system in the control of social functioning, and as prospective targets in the treatment of sociocognitive impairments in psychiatric illnesses. PMID:27091970

  5. Serotonin receptor expression is dynamic in the liver during the transition period in Holstein dairy cows.

    Science.gov (United States)

    Laporta, J; Hernandez, L L

    2015-04-01

    Nonneuronal serotonin (5-HT) participates in glucose metabolism, but little is known regarding the actions of 5-HT in the liver during the transition period in dairy cattle. Here, we explore circulating patterns of 5-HT and characterize the hepatic 5-HT receptor and glucose transporter profiles around calving in multiparous Holstein dairy cows (n = 6, average lactation = 4 ± 1.9). Concentrations of serum 5-HT decreased on day -3 compared with -5 and -7 precalving (167.7 ± 80 vs 1511.1 ± 602 ng/mL). 5-HT nadir was on day -1 precalving and remained low postcalving (481.4 ± 49 ng/mL). Plasma glucose concentrations decreased precalving (P = 0.008) and were positively correlated with 5-HT during the precalving period (r = 0.55, P = 0.043). On day 1, postcalving hepatic messenger RNA expression of 5-HT1D, 2B, 3C, 6, and 7 receptors were decreased compared with day -7 (P transition from pregnancy to lactation. PMID:25528206

  6. Alterations in serotonin receptors and transporter immunoreactivities in the hippocampus in the rat unilateral hypoxic-induced epilepsy model.

    Science.gov (United States)

    An, Sung-Jin; Kim, Duk-Soo

    2011-11-01

    Unilateral hypoxic-ischemia results in the frequent occurrence of interictal spikes, and occasionally sustained ictal discharges accompanied by a reduction in paired-pulse inhibition within the non-lesioned dentate gyrus. To elucidate the roles of serotonin (5-hydroxytryptamine [5-HT]) in an epileptogenic insult, we investigated the changes in 5-HT receptors and serotonin transporter (5-HTT) immunoreactivities within the lesioned and contralateral hippocampus following unilateral hypoxic-ischemia. During epileptogenic periods following hypoxic-ischemia, both 5-HT(1A) and 5HT(1B) receptor immunoreactivities were decreased within the lesioned and the non-lesioned hippocampus. However, 5-HTT immunoreactivity was transiently increased within the hippocampus bilaterally. These findings indicate that alteration of the 5-HT system results in a "diaschisis" pattern, and may contribute to neuronal death and the development of emotional disorders in epileptic patients accompanied by psychological stress.

  7. Frontolimbic serotonin 2A receptor binding in healthy subjects is associated with personality risk factors for affective disorder

    DEFF Research Database (Denmark)

    Frokjaer, Vibe G.; Mortensen, Erik L.; Nielsen, Finn Årup;

    2008-01-01

    Background: Serotonergic dysfunction has been associated with affective disorders. High trait neuroticism, as measured on personality inventories, is a risk factor for major depression. In this study we investigated whether neuroticism is associated with serotonin 2A receptor binding in brain...... regions of relevance for affective disorders. Methods: Eighty-three healthy volunteers completed the standardized personality questionnaire NEO-PI-R (Revised NEO Personality Inventory) and underwent [F-18]altanserin positron emission tomography imaging for assessment of serotonin 2A receptor binding...... analysis of the contributions from the six constituent traits of neuroticism showed that the correlation was primarily driven by two of them: vulnerability and anxiety. Indeed, vulnerability, defined as a person's difficulties in coping with stress, displayed the strongest positive correlation, which...

  8. Genetic dysfunction of serotonin 2A receptor hampers response to antidepressant drugs: A translational approach.

    Science.gov (United States)

    Qesseveur, Gaël; Petit, Anne Cécile; Nguyen, Hai Thanh; Dahan, Lionel; Colle, Romain; Rotenberg, Samuel; Seif, Isabelle; Robert, Pauline; David, Denis; Guilloux, Jean-Philippe; Gardier, Alain M; Verstuyft, Céline; Becquemont, Laurent; Corruble, Emmanuelle; Guiard, Bruno P

    2016-06-01

    Pharmacological studies have yielded valuable insights into the role of the serotonin 2A (5-HT2A) receptor in major depressive disorder (MDD) and antidepressant drugs (ADs) response. However, it is still unknown whether genetic variants in the HTR2A gene affect the therapeutic outcome of ADs and the mechanism underlying the regulation of such response remains poorly described. In this context, a translational human-mouse study offers a unique opportunity to address the possibility that variations in the HTR2A gene may represent a relevant marker to predict the efficacy of ADs. In a first part of this study, we investigated in depressed patients the effect of three HTR2A single nucleotide polymorphisms (SNPs), selected for their potential functional consequences on 5-HT2A receptor (rs6313, rs6314 and rs7333412), on response and remission rates after 3 months of antidepressant treatments. We also explored the consequences of the constitutive genetic inactivation of the 5-HT2A receptor (i.e. in 5-HT2A(-/-) mice) on the activity of acute and prolonged administration of SSRIs. Our clinical data indicate that GG patients for the rs7333412 SNP were less prone to respond to ADs than AA/AG patients. In the preclinical study, we demonstrated that the 5-HT2A receptor exerts an inhibitory influence on the neuronal activity of the serotonergic system after acute administration of SSRIs. However, while the chronic administration of the SSRIs escitalopram or fluoxetine elicited a progressive increased in the firing rate of 5-HT neurons in 5-HT2A(+/+) mice, it failed to do so in 5-HT2A(-/-) mutants. These electrophysiological impairments were associated with a decreased ability of the chronic administration of fluoxetine to stimulate hippocampal plasticity and to produce antidepressant-like activities. Genetic loss of the 5-HT2A receptor compromised the activity of chronic treatment with SSRIs, making this receptor a putative marker to predict ADs response. PMID:26764241

  9. 5HT2A and 5HT2B Receptors Contribute to Serotonin-Induced Vascular Dysfunction in Diabetes

    Directory of Open Access Journals (Sweden)

    Peter M. Nelson

    2012-01-01

    Full Text Available Although 5HT2A receptors mediate contractions of normal arteries to serotonin (5HT, in some cardiovascular diseases, other receptor subtypes contribute to the marked increase in serotonin contractions. We hypothesized that enhanced contractions of arteries from diabetics to 5HT are mediated by an increased contribution from multiple 5HT receptor subtypes. We compared responses to selective 5HT receptor agonists and expression of 5HT receptor isoforms (5HT1B, 5HT2A, and 5HT2B in aorta from nondiabetic (ND compared to type 2 diabetic mice (DB, BKS.Cg-Dock7m+/+Leprdb/J. 5HT, 5HT2A (TCB2 and BRL54443, and 5HT2B (norfenfluramine and BW723C86 receptor agonists produced concentration-dependent contractions of ND arteries that were markedly increased in DB arteries. Neither ND nor DB arteries contracted to a 5HT1B receptor agonist. MDL11939, a 5HT2A receptor antagonist, and LY272015, a 5HT2B receptor antagonist, reduced contractions of arteries from DB to 5HT more than ND. Expression of 5HT1B, 5HT2A, and 5HT2B receptor subtypes was similar in ND and DB. Inhibition of rho kinase decreased contractions to 5HT and 5HT2A and 5HT2B receptor agonists in ND and DB. We conclude that in contrast to other cardiovascular diseases, enhanced contraction of arteries from diabetics to 5HT is not due to a change in expression of multiple 5HT receptor subtypes.

  10. Cross-regulation between colocalized nicotinic acetylcholine and 5-HT3 serotonin receptors on presynaptic nerve terminals

    Institute of Scientific and Technical Information of China (English)

    John J DOUGHERTY; Robert A NICHOLS

    2009-01-01

    Aim: Substantial colocalization of functionally independent a4 nicotinic acetylcholine receptors and 5-HT3 serotonin receptors on presynaptic terminals has been observed in brain. The present study was aimed at addressing whether nicotinic acetylcholine receptors and 5-HT3 serotonin receptors interact on the same presynaptic terminal, suggesting a convergence of cholinergic and serotonergic regulation.Methods: Ca2+ responses in individual, isolated nerve endings purified from rat striatum were measured using confocal imaging.Results: Application of 500 nmol/L nicotine following sustained stimulation with the highly selective 5-HT3 receptor agonist m-chlorophenylbiguanide at 100 nmol/L resulted in markedly reduced Ca2* responses (28% of control) in only those striatal nerve endings that originally responded to m-chlorophenylbiguanide. The cross-regulation developed over several minutes. Presynaptic nerve endings that had not responded to m-chlorophenylbiguanide, indicating that 5-HT3 receptors were not present, displayed typical responses to nicotine. Application of m-chlorophenylbiguanide following sustained stimulation with nicotine resulted in partially attenuated Ca2* responses (49% of control). Application of m-chlorophenylbiguanide following sustained stimulation with m-chlorophenylbiguanide also resulted in a strong attenuation of Ca2+ responses (12% of control), whereas nicotine-induced Ca2t responses following sustained stimulation with nicotine were not significantly different from control.Conclusion: These results indicate that the presynaptic Ca2+ increases evoked by either 5-HT, receptor or nicotinic acetylcholine receptor activation regulate subsequent responses to 5-HT3 receptor activation, but that only 5-HT3 receptors cross-regulate subsequent nicotinic acetylcholine receptor-mediated responses. The findings suggest a specific interaction between the two receptor systems in the same striatal nerve terminal, likely involving Ca2+-dependent

  11. Serotonin receptor 3A polymorphism c.-42C > T is associated with severe dyspepsia

    Directory of Open Access Journals (Sweden)

    Grobbee Diederick E

    2011-10-01

    Full Text Available Abstract Background The association between anxiety and depression related traits and dyspepsia may reflect a common genetic predisposition. Furthermore, genetic factors may contribute to the risk of having increased visceral sensitivity, which has been implicated in dyspeptic symptom generation. Serotonin (5-HT modulates visceral sensitivity by its action on 5-HT3 receptors. Interestingly, a functional polymorphism in HTR3A, encoding the 5-HT3 receptor A subunit, has been reported to be associated with depression and anxiety related traits. A functional polymorphism in the serotonin transporter (5-HTT, which terminates serotonergic signalling, was also found associated with these psychiatric comorbidities and increased visceral sensitivity in irritable bowel syndrome, which coexistence is associated with higher dyspeptic symptom severity. We investigated the association between these functional polymorphisms and dyspeptic symptom severity. Methods Data from 592 unrelated, Caucasian, primary care patients with dyspepsia participating in a randomised clinical trial comparing step-up and step-down antacid drug treatment (The DIAMOND trial were analysed. Patients were genotyped for HTR3A c.-42C > T SNP and the 44 bp insertion/deletion polymorphism in the 5-HTT promoter (5-HTTLPR. Intensity of 8 dyspeptic symptoms at baseline was assessed using a validated questionnaire (0 = none; 6 = very severe. Sum score ≥20 was defined severe dyspepsia. Results HTR3A c.-42T allele carriers were more prevalent in patients with severe dyspepsia (OR 1.50, 95% CI 1.06-2.20. This association appeared to be stronger in females (OR 2.05, 95% CI 1.25-3.39 and patients homozygous for the long (L variant of the 5-HTTLPR genotype (OR 2.00, 95% CI 1.01-3.94. Females with 5-HTTLPR LL genotype showed the strongest association (OR = 3.50, 95% CI = 1.37-8.90. Conclusions The HTR3A c.-42T allele is associated with severe dyspeptic symptoms. The stronger association among

  12. Enhanced Food Anticipatory Activity Associated with Enhanced Activation of Extrahypothalamic Neural Pathways in Serotonin2C Receptor Null Mutant Mice

    OpenAIRE

    Mistlberger, Ralph; Hsu, Jennifer; Yu, Lisa; Bowman, Melody; Tecott, Laurence; Sullivan, Elinor

    2010-01-01

    The ability to entrain circadian rhythms to food availability is important for survival. Food-entrained circadian rhythms are characterized by increased locomotor activity in anticipation of food availability (food anticipatory activity). However, the molecular components and neural circuitry underlying the regulation of food anticipatory activity remain unclear. Here we show that serotonin2C receptor (5-HT2CR) null mutant mice subjected to a daytime restricted feeding schedule exhibit enhanc...

  13. Enhanced Food Anticipatory Activity Associated with Enhanced Activation of Extrahypothalamic Neural Pathways in Serotonin2C Receptor Null Mutant Mice

    OpenAIRE

    Hsu, Jennifer L.; Lisa Yu; Elinor Sullivan; Melodi Bowman; Mistlberger, Ralph E.; Tecott, Laurence H.

    2010-01-01

    The ability to entrain circadian rhythms to food availability is important for survival. Food-entrained circadian rhythms are characterized by increased locomotor activity in anticipation of food availability (food anticipatory activity). However, the molecular components and neural circuitry underlying the regulation of food anticipatory activity remain unclear. Here we show that serotonin(2C) receptor (5-HT2CR) null mutant mice subjected to a daytime restricted feeding schedule exhibit enha...

  14. Serotonin receptors expressed in Drosophila mushroom bodies differentially modulate larval locomotion.

    Directory of Open Access Journals (Sweden)

    Bryon Silva

    Full Text Available Drosophila melanogaster has been successfully used as a simple model to study the cellular and molecular mechanisms underlying behaviors, including the generation of motor programs. Thus, it has been shown that, as in vertebrates, CNS biogenic amines (BA including serotonin (5HT participate in motor control in Drosophila. Several evidence show that BA systems innervate an important association area in the insect brain previously associated to the planning and/or execution of motor programs, the Mushroom Bodies (MB. The main objective of this work is to evaluate the contribution of 5HT and its receptors expressed in MB to motor behavior in fly larva. Locomotion was evaluated using an automated tracking system, in Drosophila larvae (3(rd-instar exposed to drugs that affect the serotonergic neuronal transmission: alpha-methyl-L-dopa, MDMA and fluoxetine. In addition, animals expressing mutations in the 5HT biosynthetic enzymes or in any of the previously identified receptors for this amine (5HT1AR, 5HT1BR, 5HT2R and 5HT7R were evaluated in their locomotion. Finally, RNAi directed to the Drosophila 5HT receptor transcripts were expressed in MB and the effect of this manipulation on motor behavior was assessed. Data obtained in the mutants and in animals exposed to the serotonergic drugs, suggest that 5HT systems are important regulators of motor programs in fly larvae. Studies carried out in animals pan-neuronally expressing the RNAi for each of the serotonergic receptors, support this idea and further suggest that CNS 5HT pathways play a role in motor control. Moreover, animals expressing an RNAi for 5HT1BR, 5HT2R and 5HT7R in MB show increased motor behavior, while no effect is observed when the RNAi for 5HT1AR is expressed in this region. Thus, our data suggest that CNS 5HT systems are involved in motor control, and that 5HT receptors expressed in MB differentially modulate motor programs in fly larvae.

  15. Dopamine D4 receptor and serotonin transporter gene effects on the longitudinal development of infant temperament.

    Science.gov (United States)

    Holmboe, K; Nemoda, Z; Fearon, R M P; Sasvari-Szekely, M; Johnson, M H

    2011-07-01

    Existing studies of the effect on infant temperament of the 48 base pair variable number of tandem repeats polymorphism in exon 3 of the dopamine D4 receptor gene, DRD4 VNTR, and the serotonin transporter-linked polymorphic region, 5-HTTLPR, have provided contradictory results, and age seems to be an important factor. The present study investigated the effect of these two polymorphisms on the stability of infant temperament between 4 and 9 months of age. Furthermore, the effect of a recently discovered single nucleotide polymorphism which modulates the 5-HTTLPR (rs25531) was investigated in relation to infant temperament. The study sample consisted of 90 infants, who were assessed by parental report at the two ages under consideration using the Revised Infant Behavior Questionnaire. It was found that infants carrying the 7-repeat allele of the DRD4 VNTR had higher levels of Negative Affect. Furthermore, there was an interaction between DRD4 VNTR and 5-HTTLPR genotype such that infants with the DRD4 VNTR 7-repeat allele and the highest expressing 5-HTTLPR genotype (L(A) L(A) ) had the highest level of Negative Affect. These effects were largely driven by scores on the Falling Reactivity scale. Genetic effects were stable across age. The results emphasize the need for developmental studies of genetic effects on temperament.

  16. Serotonin increases ERK1/2 phosphorylation in astrocytes by stimulation of 5-HT2B and 5-HT2C receptors.

    Science.gov (United States)

    Li, Baoman; Zhang, Shiquen; Li, Min; Hertz, Leif; Peng, Liang

    2010-11-01

    We have previously shown that fluoxetine causes ERK(1/2) phosphorylation in cultured mouse astrocytes mediated exclusively by stimulation of 5-HT(2B) receptors (Li et al., 2008b). This raises the question whether this is also the case for serotonin (5-HT) itself. In the present study serotonin was found to induce ERK(1/2) phosphorylation by stimulation of 5-HT(2B) receptors with high affinity (EC(50): 20-30 pM), and by stimulation of 5-HT(2C) receptor with low affinity (EC(50): 1 microM or higher). ERK(1/2) phosphorylation induced by stimulation of either 5-HT(2B) or 5-HT(2C) receptors was mediated by epidermal growth factor (EGF) receptor transactivation (Peng et al., this issue), shown by the inhibitory effect of AG1478, an inhibitor of the EGF receptor tyrosine kinase, and GM6001, an inhibitor of Zn-dependent metalloproteinases, and thus of 5-HT(2B) receptor-mediated EGF receptor agonist release. It is discussed that the high potency of the 5-HT(2B)-mediated effect is consistent with literature data for binding affinity of serotonin to cloned human 5-HT(2B) receptors and with observations of low extracellular concentrations of serotonin in brain, which would allow a demonstrated moderate and modality-dependent increase in specific brain areas to activate 5-HT(2B) receptors. In contrast the relevance of the observed 5-HT(2C) receptors on astrocytes is questioned.

  17. Mifepristone modulates serotonin transporter function

    Institute of Scientific and Technical Information of China (English)

    Chaokun Li; Linlin Shan; Xinjuan Li; Linyu Wei; Dongliang Li

    2014-01-01

    Regulating serotonin expression can be used to treat psychotic depression. Mifepristone, a glu-cocorticoid receptor antagonist, is an effective candidate for psychotic depression treatment. However, the underlying mechanism related to serotonin transporter expression is poorly un-derstood. In this study, we cloned the human brain serotonin transporter into Xenopus oocytes, to establish an in vitro expression system. Two-electrode voltage clamp recordings were used to detect serotonin transporter activity. Our results show that mifepristone attenuates serotonin transporter activity by directly inhibiting the serotonin transporter, and suggests that the se-rotonin transporter is a pharmacological target of mifepristone for the treatment of psychotic depression.

  18. Endocannabinoids blunt the augmentation of synaptic transmission by serotonin 2A receptors in the nucleus tractus solitarii (nTS)

    OpenAIRE

    Austgen, James R.; Kline, David D.

    2013-01-01

    Serotonin (5-Hydroxytryptamine, 5-HT) and the 5-HT2 receptor modulate cardiovascular and autonomic function in part through actions in the nTS, the primary termination and integration point for cardiorespiratory afferents in the brainstem. In other brain regions, 5-HT2 receptors (5-HT2R) modify synaptic transmission directly, as well as through 5-HT2AR-induced endocannabinoid release. This study examined the role of 5-HT2AR as well as their interaction with endocannabinoids on neurotransmissi...

  19. Effects of serotonin-2A receptor binding and gender on personality traits and suicidal behavior in borderline personality disorder.

    Science.gov (United States)

    Soloff, Paul H; Chiappetta, Laurel; Mason, Neale Scott; Becker, Carl; Price, Julie C

    2014-06-30

    Impulsivity and aggressiveness are personality traits associated with a vulnerability to suicidal behavior. Behavioral expression of these traits differs by gender and has been related to central serotonergic function. We assessed the relationships between serotonin-2A receptor function, gender, and personality traits in borderline personality disorder (BPD), a disorder characterized by impulsive-aggression and recurrent suicidal behavior. Participants, who included 33 BPD patients and 27 healthy controls (HC), were assessed for Axis I and II disorders with the Structured Clinical Interview for DSM-IV and the International Personality Disorders Examination, and with the Diagnostic Interview for Borderline Patients-Revised for BPD. Depressed mood, impulsivity, aggression, and temperament were assessed with standardized measures. Positron emission tomography with [(18)F]altanserin as ligand and arterial blood sampling was used to determine the binding potentials (BPND) of serotonin-2A receptors in 11 regions of interest. Data were analyzed using Logan graphical analysis, controlling for age and non-specific binding. Among BPD subjects, aggression, Cluster B co-morbidity, antisocial PD, and childhood abuse were each related to altanserin binding. BPND values predicted impulsivity and aggression in BPD females (but not BPD males), and in HC males (but not HC females.) Altanserin binding was greater in BPD females than males in every contrast, but it did not discriminate suicide attempters from non-attempters. Region-specific differences in serotonin-2A receptor binding related to diagnosis and gender predicted clinical expression of aggression and impulsivity. Vulnerability to suicidal behavior in BPD may be related to serotonin-2A binding through expression of personality risk factors.

  20. The effect of chronic selective serotonin reuptake inhibitor treatment on serotonin(1B) receptor sensitivity and HPA axis activity

    NARCIS (Netherlands)

    Jongsma, M.E.; Bosker, F.J; Cremers, T.I.F.H.; Westerink, B.H.C.; Den Boer, J.A.

    2005-01-01

    The authors have investigated 5-HT1B receptor function in prefrontal cortex and dorsal hippocampus as well as the HPA axis response after subchronic (24 h) and chronic (15 days) treatment with the SSRI citalopram. All experiments were carried out in presence of citalopram to prevent rapid resensitiz

  1. Serotonin mediation of early memory formation via 5HT2B receptor-induced glycogenolysis in the day-old chick

    Directory of Open Access Journals (Sweden)

    Marie Elizabeth Gibbs

    2014-04-01

    Full Text Available Investigation of the effects of serotonin on memory formation in the chick revealed an action on at least two 5HT receptors. Serotonin injected intracerebrally produced a biphasic effect on memory consolidation with enhancement at low doses and inhibition at higher doses. The non-selective 5HT receptor antagonist methiothepin and the selective 5HT2B/C receptor antagonist SB221284 both inhibited memory, suggesting actions of serotonin on at least 2 different receptor subtypes. The 5HT2B/C and astrocyte-specific 5-HT receptor agonists, fluoxetine and paroxetine, enhanced memory and the effect was attributed to glycogenolysis. Inhibition of glycogenolysis with a low dose of DAB prevented both serotonin and fluoxetine from enhancing memory during short-term memory but not during intermediate memory. The role of serotonin on the 5HT2B/C receptor appears to involve glycogen breakdown in astrocytes during short-term memory, whereas other published evidence attributes the second period of glycogenolysis to noradrenaline.

  2. Physical Interaction of Jab1 with Human Serotonin 6 G-protein-coupled Receptor and Their Possible Roles in Cell Survival*

    OpenAIRE

    Yun, Hyung-Mun; Baik, Ja-Hyun; Kang, Insug; Jin, Changbae; Rhim, Hyewhon

    2010-01-01

    The 5-HT6 receptor (5-HT6R) is one of the most recently cloned serotonin receptors, and it plays important roles in Alzheimer disease, depression, and learning and memory disorders. However, unlike the other serotonin receptors, the cellular mechanisms of 5-HT6R are poorly elucidated relative to its significance in human brain diseases. Here, using a yeast two-hybrid assay, we found that the human 5-HT6R interacts with Jun activation domain-binding protein-1 (Jab1). We also confirmed a physic...

  3. Freud-2/CC2D1B mediates dual repression of the serotonin-1A receptor gene.

    Science.gov (United States)

    Hadjighassem, Mahmoud R; Galaraga, Kimberly; Albert, Paul R

    2011-01-01

    The serotonin-1A (5-HT1A) receptor functions as a pre-synaptic autoreceptor in serotonin neurons that regulates their activity, and is also widely expressed on non-serotonergic neurons as a post-synaptic heteroreceptor to mediate serotonin action. The 5-HT1A receptor gene is strongly repressed by a dual repressor element (DRE), which is recognized by two proteins: Freud-1/CC2D1A and another unknown protein. Here we identify mouse Freud-2/CC2D1B as the second repressor of the 5-HT1A-DRE. Freud-2 shares 50% amino acid identity with Freud-1, and contains conserved structural domains. Mouse Freud-2 bound specifically to the rat 5-HT1A-DRE adjacent to, and partially overlapping, the Freud-1 binding site. By supershift assay using nuclear extracts from L6 myoblasts, Freud-2-DRE complexes were distinguished from Freud-1-DRE complexes. Freud-2 mRNA and protein were detected throughout mouse brain and peripheral tissues. Freud-2 repressed 5-HT1A promoter-reporter constructs in a DRE-dependent manner in non-neuronal (L6) or 5-HT1A-expressing neuronal (NG108-15, RN46A) cell models. In NG108-15 cells, knockdown of Freud-2 using a specific short-interfering RNA reduced endogenous Freud-2 protein levels and decreased Freud-2 bound to the 5-HT1A-DRE as detected by chromatin immunoprecipitation assay, but increased 5-HT1A promoter activity and 5-HT1A protein levels. Taken together, these data show that Freud-2 is the second component that, with Freud-1, mediates dual repression of the 5-HT1A receptor gene at the DRE.

  4. Visualisation of serotonin-1A (5-HT{sub 1A}) receptors in the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Passchier, J.; Waarde, A. van [PET Center, University Hospital Groningen (Netherlands)

    2001-01-01

    The 5-HT{sub 1A} subtype of receptors for the neurotransmitter serotonin is predominantly located in the limbic forebrain and is involved in the modulation of emotion and the function of the hypothalamus. Since 5-HT{sub 1A} receptors are implicated in the pathogenesis of anxiety, depression, hallucinogenic behaviour, motion sickness and eating disorders, they are an important target for drug therapy. Here, we review the radioligands which are available for visualisation and quantification of this important neuroreceptor in the human brain, using positron emission tomography (PET) or single-photon emission tomography (SPET). More than 20 compounds have been labelled with carbon-11 (half-life 20 min), fluorine-18 (half-life 109.8 min) or iodine-123 (half-life 13.2 h): structural analogues of the agonist, 8-OH-DPAT, structural analogues of the antagonist, WAY 100635, and apomorphines. The most successful radioligands thus far are [carbonyl-{sup 11}C] WAY-100635 (WAY), [carbonyl-{sup 11}C]desmethyl-WAY-100635 (DWAY), p-[{sup 18}F]MPPF and [{sup 11}C]robalzotan (NAD-299). The high-affinity ligands WAY and DWAY produce excellent images of 5-HT{sub 1A} receptor distribution in the brain (even the raphe nuclei are visualised), but they cannot be distributed to remote facilities and they probably cannot be used to measure changes in endogenous serotonin. Binding of the moderate-affinity ligands MPPF and NAD-299 may be more sensitive to serotonin competition and MPPF can be distributed to PET centres within a flying distance of a few hours. Future research should be directed towards: (a) improvement of the metabolic stability in primates; (b) development of a fluorinated radioligand which can be produced in large quantities and (c) production of a radioiodinated or technetium-labelled ligand for SPET. (orig.)

  5. Possible involvement of serotonin 5-HT2 receptor in the regulation of feeding behavior through the histaminergic system.

    Science.gov (United States)

    Murotani, Tomotaka; Ishizuka, Tomoko; Isogawa, Yuka; Karashima, Michitaka; Yamatodani, Atsushi

    2011-01-01

    The central histaminergic system has been proven to be involved in several physiological functions including feeding behavior. Some atypical antipsychotics like risperidone and aripiprazole are known to affect feeding behavior and to antagonize the serotonin (5-HT) receptor subtypes. To examine the possible neural relationship between the serotonergic and histaminergic systems in the anorectic effect of the antipsychotics, we studied the effect of a single administration of these drugs on food intake and hypothalamic histamine release in mice using in vivo microdialysis. Single injection of risperidone (0.5mg/kg, i.p.) or aripiprazole (1mg/kg, i.p.), which have binding affinities to 5-HT(1A, 2A, 2B) and (2C) receptors decreased food intake in C57BL/6N mice with concomitant increase of hypothalamic histamine release. However, a selective D(2)-antagonist, haloperidol (0.5mg/kg, i.p.), did not have effects on food intake or histamine release. Furthermore, in histamine H(1) receptor-deficient mice, there was no reduction of food intake induced by atypical antipsychotics, although histamine release was increased. Moreover, selective 5-HT(2A)-antagonists, volinanserin (0.5, 1mg/kg, i.p.) and ketanserin (5, 10mg/kg, i.p.), significantly increased histamine release and 5-HT(2B/2C) -antagonist, SB206553 (2.5, 5mg/kg, i.p.), slightly increased it. On the contrary, 5-HT(1A) -selective antagonist, WAY100635 (1, 2mg/kg), did not affect the histaminergic tone. These findings suggest that serotonin tonically inhibits histamine release via 5-HT(2) receptors and that antipsychotics enhance the release of hypothalamic histamine by blockade of 5-HT(2) receptors resulting in anorexia via the H(1) receptor.

  6. Effect of serotonin receptor blockade on endocrine and cardiovascular responses to head-up tilt in humans

    DEFF Research Database (Denmark)

    Matzen, S; Secher, N H; Knigge, U;

    1993-01-01

    Effects of blockade of serotonin (5-HT) receptors on the integrated cardiovascular and endocrine adaptations during head-up tilt were investigated in normal men. In control experiments 50 degrees head-up tilt increased heart rate (HR), total peripheral resistance (TPR), plasma renin activity (PRA......) and sympathetic activity (plasma noradrenaline; NA). A moderate increase in pituitary-adrenal hormones (plasma ACTH, beta-END and cortisol) was observed. After a mean tilt time of 30 +/- 5 min (n = 20) presyncopal symptoms associated with decreases in HR, TPR and arterial pressure occurred. At this time pituitary...

  7. The extracellular entrance provides selectivity to serotonin 5-HT7 receptor antagonists with antidepressant-like behavior in vivo.

    Science.gov (United States)

    Medina, Rocío A; Vázquez-Villa, Henar; Gómez-Tamayo, José C; Benhamú, Bellinda; Martín-Fontecha, Mar; de la Fuente, Tania; Caltabiano, Gianluigi; Hedlund, Peter B; Pardo, Leonardo; López-Rodríguez, María L

    2014-08-14

    The finding that ergotamine binds serotonin receptors in a less conserved extended binding pocket close to the extracellular entrance, in addition to the orthosteric site, allowed us to obtain 5-HT7R antagonist 6 endowed with high affinity (Ki=0.7 nM) and significant 5-HT1AR selectivity (ratio>1428). Compound 6 exhibits in vivo antidepressant-like effect (1 mg/kg, ip) mediated by the 5-HT7R, which reveals its interest as a putative research tool or pharmaceutical in depression disorders. PMID:25073094

  8. Quantitative phosphoproteomics unravels biased phosphorylation of serotonin 2A receptor at Ser280 by hallucinogenic versus nonhallucinogenic agonists.

    Science.gov (United States)

    Karaki, Samah; Becamel, Carine; Murat, Samy; Mannoury la Cour, Clotilde; Millan, Mark J; Prézeau, Laurent; Bockaert, Joël; Marin, Philippe; Vandermoere, Franck

    2014-05-01

    The serotonin 5-HT(2A) receptor is a primary target of psychedelic hallucinogens such as lysergic acid diethylamine, mescaline, and psilocybin, which reproduce some of the core symptoms of schizophrenia. An incompletely resolved paradox is that only some 5-HT(2A) receptor agonists exhibit hallucinogenic activity, whereas structurally related agonists with comparable affinity and activity lack such a psychoactive activity. Using a strategy combining stable isotope labeling by amino acids in cell culture with enrichment in phosphorylated peptides by means of hydrophilic interaction liquid chromatography followed by immobilized metal affinity chromatography, we compared the phosphoproteome in HEK-293 cells transiently expressing the 5-HT(2A) receptor and exposed to either vehicle or the synthetic hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) or the nonhallucinogenic 5-HT(2A) agonist lisuride. Among the 5995 identified phosphorylated peptides, 16 sites were differentially phosphorylated upon exposure of cells to DOI versus lisuride. These include a serine (Ser(280)) located in the third intracellular loop of the 5-HT(2A) receptor, a region important for its desensitization. The specific phosphorylation of Ser(280) by hallucinogens was further validated by quantitative mass spectrometry analysis of immunopurified receptor digests and by Western blotting using a phosphosite specific antibody. The administration of DOI, but not of lisuride, to mice, enhanced the phosphorylation of 5-HT(2A) receptors at Ser(280) in the prefrontal cortex. Moreover, hallucinogens induced a less pronounced desensitization of receptor-operated signaling in HEK-293 cells and neurons than did nonhallucinogenic agonists. The mutation of Ser(280) to aspartic acid (to mimic phosphorylation) reduced receptor desensitization by nonhallucinogenic agonists, whereas its mutation to alanine increased the ability of hallucinogens to desensitize the receptor. This study reveals a biased

  9. Quantitative Phosphoproteomics Unravels Biased Phosphorylation of Serotonin 2A Receptor at Ser280 by Hallucinogenic versus Nonhallucinogenic Agonists*

    Science.gov (United States)

    Karaki, Samah; Becamel, Carine; Murat, Samy; Mannoury la Cour, Clotilde; Millan, Mark J.; Prézeau, Laurent; Bockaert, Joël; Marin, Philippe; Vandermoere, Franck

    2014-01-01

    The serotonin 5-HT2A receptor is a primary target of psychedelic hallucinogens such as lysergic acid diethylamine, mescaline, and psilocybin, which reproduce some of the core symptoms of schizophrenia. An incompletely resolved paradox is that only some 5-HT2A receptor agonists exhibit hallucinogenic activity, whereas structurally related agonists with comparable affinity and activity lack such a psychoactive activity. Using a strategy combining stable isotope labeling by amino acids in cell culture with enrichment in phosphorylated peptides by means of hydrophilic interaction liquid chromatography followed by immobilized metal affinity chromatography, we compared the phosphoproteome in HEK-293 cells transiently expressing the 5-HT2A receptor and exposed to either vehicle or the synthetic hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) or the nonhallucinogenic 5-HT2A agonist lisuride. Among the 5995 identified phosphorylated peptides, 16 sites were differentially phosphorylated upon exposure of cells to DOI versus lisuride. These include a serine (Ser280) located in the third intracellular loop of the 5-HT2A receptor, a region important for its desensitization. The specific phosphorylation of Ser280 by hallucinogens was further validated by quantitative mass spectrometry analysis of immunopurified receptor digests and by Western blotting using a phosphosite specific antibody. The administration of DOI, but not of lisuride, to mice, enhanced the phosphorylation of 5-HT2A receptors at Ser280 in the prefrontal cortex. Moreover, hallucinogens induced a less pronounced desensitization of receptor-operated signaling in HEK-293 cells and neurons than did nonhallucinogenic agonists. The mutation of Ser280 to aspartic acid (to mimic phosphorylation) reduced receptor desensitization by nonhallucinogenic agonists, whereas its mutation to alanine increased the ability of hallucinogens to desensitize the receptor. This study reveals a biased phosphorylation of

  10. Discovery of a new class of potential multifunctional atypical antipsychotic agents targeting dopamine D3 and serotonin 5-HT1A and 5-HT2A receptors: design, synthesis, and effects on behavior

    DEFF Research Database (Denmark)

    Butini, Stefania; Gemma, Sandra; Campiani, Giuseppe;

    2009-01-01

    Dopamine D(3) antagonism combined with serotonin 5-HT(1A) and 5-HT(2A) receptor occupancy may represent a novel paradigm for developing innovative antipsychotics. The unique pharmacological features of 5i are a high affinity for dopamine D(3), serotonin 5-HT(1A) and 5-HT(2A) receptors, together w...

  11. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism

    OpenAIRE

    Leiser, Steven C; Iglesias-Bregna, Deborah; Westrich, Ligia; Pehrson, Alan L.; Sanchez, Connie

    2015-01-01

    Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/inte...

  12. Serotonin receptor diversity in the human colon: Expression of serotonin type 3 receptor subunits 5-HT3C, 5-HT3D, and 5-HT3E

    OpenAIRE

    Kapeller, Johannes; Möller, Dorothee; Lasitschka, Felix; Autschbach, Frank; Hovius, Ruud; Rappold, Gudrun; Brüss, Michael; Gershon, Michael D.; Niesler, Beate

    2011-01-01

    Since the first description of 5-HT3 receptors more than 50 years ago, there has been speculation about the molecular basis of their receptor heterogeneity. We have cloned the genes encoding novel 5-HT3 subunits 5-HT3C, 5-HT3D, and 5-HT3E and have shown that these subunits are able to form functional heteromeric receptors when coexpressed with the 5-HT3A subunit. However, whether these subunits are actually expressed in human tissue remained to be confirmed. In the current study, we performed...

  13. Gene structure and expression of serotonin receptor HTR2C in hypothalamic samples from infanticidal and control sows

    Directory of Open Access Journals (Sweden)

    Quilter Claire R

    2012-04-01

    Full Text Available Abstract Background The serotonin pathways have been implicated in behavioural phenotypes in a number of species, including human, rat, mouse, dog and chicken. Components of the pathways, including the receptors, are major targets for drugs used to treat a variety of physiological and psychiatric conditions in humans. In our previous studies we have identified genetic loci potentially contributing to maternal infanticide in pigs, which includes a locus on the porcine X chromosome long arm. The serotonin receptor HTR2C maps to this region, and is therefore an attractive candidate for further study based on its function and its position in the genome. Results In this paper we describe the structure of the major transcripts produced from the porcine HTR2C locus using cDNA prepared from porcine hypothalamic and pooled total brain samples. We have confirmed conservation of sites altered by RNA editing in other mammalian species, and identified polymorphisms in the gene sequence. Finally, we have analysed expression and editing of HTR2C in hypothalamus samples from infanticidal and control animals. Conclusions The results confirm that although the expression of the long transcriptional variant of HTR2C is raised in infanticidal animals, the overall patterns of editing in the hypothalamus are similar between the two states. Sequences associated with the cDNA and genomic structures of HTR2C reported in this paper are deposited in GenBank under accession numbers FR720593, FR720594 and FR744452.

  14. Decreased frontal serotonin 5-HT{sub 2a} receptor binding index in deliberate self-harm patients

    Energy Technology Data Exchange (ETDEWEB)

    Audenaert, K. [Dept. of Psychiatry and Medical Psychology, Ghent University Hospital (Belgium); Dept. of Nuclear Medicine, Ghent University Hospital (Belgium); Laere, K. van; Dierckx, R.A. [Dept. of Nuclear Medicine, Ghent University Hospital (Belgium); Dumont, F.; Slegers, G. [Dept. of Radiopharmacy, Ghent Univ. (Belgium); Mertens, J. [VUB-Cyclotron, Brussels (Belgium); Heeringen, C. van [Dept. of Psychiatry and Medical Psychology, Ghent University Hospital (Belgium)

    2001-02-01

    Studies of serotonin metabolites in body fluids in attempted suicide patients and of post-mortem brain tissue of suicide victims have demonstrated the involvement of the serotonergic neurotransmission system in the pathogenesis of suicidal behaviour. Recently developed neuroimaging techniques offer the unique possibility of investigating in vivo the functional characteristics of this system. In this study the 5-HT{sub 2a} receptor population of patients who had recently attempted suicide was studied by means of the highly specific radio-iodinated 5-HT{sub 2a} receptor antagonist 4-amino-N-[1-[3-(4-fluorophenoxy)propyl]-4-methyl-4-piperidinyl]-5-iodo-2-methoxybenzamide or {sup 123}I-5-I-R91150. Nine patients who had recently (1-7 days) attempted suicide and 12 age-matched healthy controls received an intravenous injection of 185 MBq {sup 123}I-5-I-R91150 and were scanned with high-resolution brain single-photon emission tomography (SPET). Stereotactic realigned images were analysed semi-quantitatively using predefined volumes of interest. Serotonin binding capacity was expressed as the ratio of specific to non-specific activity. The cerebellum was used as a measure of non-specific activity. An age-dependent 5-HT{sub 2a} binding index was found, in agreement with previous literature. Deliberate self-harm patients had a significantly reduced mean frontal binding index after correction for age (P=0.002) when compared with controls. The reduction was more pronounced among deliberate self-injury patients (DSI) (P<0.001) than among deliberate self-poisoning patients (DSP). Frontal binding index was significantly lower in DSI patients than in DSP suicide attempters (P<0.001). It is concluded that brain SPET of the 5-HT{sub 2a} serotonin receptor system in attempted suicide patients who are free of drugs influencing the serotonergic system shows in vivo evidence of a decreased frontal binding index of the 5-HT{sub 2a} receptor, indicating a decrease in the number and/or in

  15. The diversity of abnormal hormone receptors in adrenal Cushing's syndrome allows novel pharmacological therapies

    Directory of Open Access Journals (Sweden)

    Lacroix A.

    2000-01-01

    Full Text Available Recent studies from several groups have indicated that abnormal or ectopic expression and function of adrenal receptors for various hormones may regulate cortisol production in ACTH-independent hypercortisolism. Gastric inhibitory polypeptide (GIP-dependent Cushing's syndrome has been described in patients with either unilateral adenoma or bilateral macronodular adrenal hyperplasia; this syndrome results from the large adrenal overexpression of the GIP receptor without any activating mutation. We have conducted a systematic in vivo evaluation of patients with adrenal Cushing's syndrome in order to identify the presence of abnormal hormone receptors. In macronodular adrenal hyperplasia, we have identified, in addition to GIP-dependent Cushing's syndrome, other patients in whom cortisol production was regulated abnormally by vasopressin, ß-adrenergic receptor agonists, hCG/LH, or serotonin 5HT-4 receptor agonists. In patients with unilateral adrenal adenoma, the abnormal expression or function of GIP or vasopressin receptor has been found, but the presence of ectopic or abnormal hormone receptors appears to be less prevalent than in macronodular adrenal hyperplasia. The identification of the presence of an abnormal adrenal receptor offers the possibility of a new pharmacological approach to control hypercortisolism by suppressing the endogenous ligands or by using specific antagonists for the abnormal receptors.

  16. 5-HT1B receptors and serotonin function : microdialysis studies in rats and knockout mice

    NARCIS (Netherlands)

    Groote, Lotte de

    2002-01-01

    The serotonergic system is an important target in the treatment of psychiatric disorders. Selective serotonin reuptake inhibitors (SSRIs) are widely used in the treatment of depression and anxiety disorders, but a clinical problem is the delayed therapeutic effect. This delayed onset of action sugge

  17. Decreased Incentive Motivation Following Knockout or Acute Blockade of the Serotonin Transporter: Role of the 5-HT2C Receptor.

    Science.gov (United States)

    Browne, Caleb J; Fletcher, Paul J

    2016-09-01

    Acute pharmacological elevation of serotonin (5-hydroxytryptamine; 5-HT) activity decreases operant responding for primary reinforcers, suggesting that 5-HT reduces incentive motivation. The mechanism by which 5-HT alters incentive motivation is unknown, but parallel evidence that 5-HT2C receptor agonists also reduce responding for primary reinforcers implicates this receptor as a potential candidate. These experiments examined whether chronic and acute disruptions of serotonin transporter (SERT) activity altered incentive motivation, and whether the 5-HT2C receptor mediated the effects of elevated 5-HT on behavior. To assess incentive motivation, we measured responding for three different reinforcers: a primary reinforcer (saccharin), a conditioned reinforcer (CRf), and an unconditioned sensory reinforcer (USRf). In the chronic condition, responding was compared between SERT knockout (SERT-KO) mice and their wild-type littermates. In the acute condition, responding was examined in wild-type mice following treatment with 10 or 20 mg/kg citalopram, or its vehicle. The ability of the selective 5-HT2C antagonist SB 242084 to prevent the effects of SERT-KO and citalopram on responding was subsequently examined. Both SERT-KO and citalopram reduced responding for saccharin, a CRf, and a USRf. Treatment with SB 242084 enhanced responding for a CRf and a USRf in SERT-KO mice and blocked the effects of citalopram on CRf and USRf responding. However, SB 242084 was unable to prevent the effects of SERT-KO or citalopram on responding for saccharin. These results support a powerful inhibitory function for 5-HT in the control of incentive motivation, and indicate that the 5-HT2C receptor mediates these effects of 5-HT in a reinforcer-dependent manner. PMID:27125304

  18. Molecular characterization and analysis of a truncated serotonin receptor gene expressed in neural and reproductive tissues of abalone.

    Science.gov (United States)

    Panasophonkul, Sasiporn; Apisawetakan, Somjai; Cummins, Scott F; York, Patrick S; Degnan, Bernard M; Hanna, Peter J; Saitongdee, Porncharn; Sobhon, Prasert; Sretarugsa, Prapee

    2009-05-01

    In molluscs, the neurotransmitter serotonin (5-HT) has been linked to a variety of biological roles including gamete maturation and spawning. The possible involvement of 5-HT in abalone gamete release was demonstrated by a dose-dependent increase in Haliotis rubra gonad contractile bioactivity following 5-HT stimulation. Physiological functions associated with 5-HT, are mediated through binding to 5-HT receptors. A cDNA encoding a putative 5-HT receptor consisting of 359 amino acids was isolated from the tropical abalone H. asinina, termed 5-HT(1 ha). The 5-HT(1 ha) shares G-protein-coupled receptor motifs with metazoan 5-HT receptors, including predicted transmembrane domains, active sites for protein kinase action, and N-linked glycosylation sites. However, the third intracellular loop of 5-HT(1 ha) is relatively short, and only six transmembrane domains are predicted, implying a truncated receptor. Phylogenetic analysis with known 5-HT receptor genes suggests that 5-HT(1 ha) belongs to the type 1 5-HT receptor family. Expression analysis by RT-PCR showed that 5-HT(1 ha) mRNA was present in all tissues examined, including the neural ganglia and gonad tissues. Immunocytochemistry revealed the presence of 5-HT(1 ha) specifically within the soma of neuronal cells located in the outer cortex of both cerebral and pleuropedal ganglia. In ovarian and testicular tissues, 5-HT(1 ha) immunoreactivity was observed in epithelial cells of the outer capsule and connective tissue of the trabeculae to which the gamete follicles adhere. Whether this receptor transcript is translated to a functional protein needs to be verified, but if so, it could play a role in reproduction.

  19. Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors.

    Science.gov (United States)

    Smith, R L; Canton, H; Barrett, R J; Sanders-Bush, E

    1998-11-01

    Extensive behavioral and biochemical evidence suggests an agonist role at the 5-HT2A receptor, and perhaps the 5-HT2C receptor, in the mechanism of action of hallucinogenic drugs. However the published in vitro pharmacological properties of N,N-dimethyltryptamine (DMT), an hallucinogenic tryptamine analog, are not consistent with this hypothesis. We, therefore, undertook an extensive investigation into the properties of DMT at 5-HT2A and 5-HT2C receptors. In fibroblasts transfected with the 5-HT2A receptor or the 5-HT2C receptor, DMT activated the major intracellular signaling pathway (phosphoinositide hydrolysis) to an extent comparable to that produced by serotonin. Because drug efficacy changes with receptor density and cellular microenvironment, we also examined the properties of DMT in native preparations using a behavioral and biochemical approach. Rats were trained to discriminate an antagonist ketanserin from an agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in a two-lever choice paradigm. Pharmacological studies showed that responding on the DOI and ketanserin lever reflected agonist and antagonist activity at 5-HT2A receptors, and hence, was a suitable model for evaluating the in vivo functional properties of DMT. Like other 5-HT2A receptor agonists, DMT substituted fully for DOI. Intact choroid plexus was used to evaluate the agonist properties at endogenous 5-HT2C receptors; DMT was a partial agonist at 5-HT2C receptors in this native preparation. Thus, we conclude that DMT behaves as an agonist at both 5-HT2A and 5-HT2A receptors. One difference was evident in that the 5-HT2C, but not the 5-HT2A, receptor showed a profound desensitization to DMT over time. This difference is interesting in light of the recent report that the hallucinogenic activity of DMT does not tolerate in humans and suggests the 5-HT2C receptor plays a less prominent role in the action of DMT. PMID:9768567

  20. Serotonin effects in the crab Neohelice granulata: Possible involvement of two types of receptors in peripheral tissues.

    Science.gov (United States)

    Inohara, Elen Thegla Sander; Pinto, Charles Budazewsky; Model, Jorge Felipe Argenta; Trapp, Márcia; Kucharski, Luiz Carlos; Da Silva, Roselis Silveira Martins; Vinagre, Anapaula Sommer

    2015-07-01

    In crustaceans, serotonin (5-HT) controls various physiological processes, such as hormonal secretion, color changes, reproduction, and metabolism. Since 5-HT injections cause hyperglycemia, this study was designed to further investigate this action of 5-HT in the crab Neohelice granulate, fed with a high-carbohydrate (HC) or a high-protein (HP) diet. The effects of pre-treatment with mammalian 5-HT receptor antagonists, cyproheptadine and methiothepin, were also investigated. A series of in vivo experiments with (3)H-5-HT was carried out in order to investigate the presence of putative receptors in peripheral tissues. Since gills were the tissue with the highest labeling in in vivo experiments, in vitro studies with isolated anterior and posterior gills were also conducted. Cyproheptadine blocked the hyperglycemic effect of 5-HT in HP-fed crabs. Methiothepin reduced glycogen levels in the anterior gills of HP crabs and partially blocked the 5-HT-like posture. The injection of (3)H-5-HT identified specific binding sites in all the tissues studied and revealed that the binding can be influenced by the type of diet administered to the crabs. Incubation of the anterior and posterior gills with (3)H-5-HT and 5-HT confirmed the specificity of the binding sites. Both antagonists inhibited (3)H-5-HT binding. In conclusion, this study highlights the importance of serotonin in the control of glucose homeostasis in crustaceans and provides evidences of at least two types of 5-HT binding sites in peripheral tissues. Further studies are necessary to identify the structure of these receptors and their signaling pathways. PMID:25810362

  1. Norepinephrine and Serotonin Receptors in the Paraventricular Nucleus Interactively Modulate Ethanol Consumption

    OpenAIRE

    Hodge, Clyde W.; Slawecki, Craig J.; Aiken, Amy S.

    1996-01-01

    The homeostatic function of the hypothalamus has long been recognized. In particular, the role of the paraventricular nucleus (PVN) in regulating ingestive behavior has been of interest. Infusions of serotonin and norepinephrine Into the PVN are correlated with nutrient selective decreases and increases in consumatory behavior, respectively. Given the wide range of homeostatic functions of the hypothalamus, it is plausible that similar hypothalamic mechanisms may also be involved in the regul...

  2. Novelty-induced activity-regulated cytoskeletal-associated protein (Arc) expression in frontal cortex requires serotonin 2A receptor activation

    DEFF Research Database (Denmark)

    Santini, Martin; Klein, A B; El-Sayed, M;

    2011-01-01

    Many psychiatric disorders are characterized by cognitive and emotional alterations that are related to abnormal function of the frontal cortex (FC). FC is involved in working memory and decision making and is activated following exposure to a novel environment. The serotonin 2A receptor (5-HT(2A...

  3. Drosophila insulin-producing cells are differentially modulated by serotonin and octopamine receptors and affect social behavior.

    Directory of Open Access Journals (Sweden)

    Jiangnan Luo

    Full Text Available A set of 14 insulin-producing cells (IPCs in the Drosophila brain produces three insulin-like peptides (DILP2, 3 and 5. Activity in IPCs and release of DILPs is nutrient dependent and controlled by multiple factors such as fat body-derived proteins, neurotransmitters, and neuropeptides. Two monoamine receptors, the octopamine receptor OAMB and the serotonin receptor 5-HT1A, are expressed by the IPCs. These receptors may act antagonistically on adenylate cyclase. Here we investigate the action of the two receptors on activity in and output from the IPCs. Knockdown of OAMB by targeted RNAi led to elevated Dilp3 transcript levels in the brain, whereas 5-HT1A knockdown resulted in increases of Dilp2 and 5. OAMB-RNAi in IPCs leads to extended survival of starved flies and increased food intake, whereas 5-HT1A-RNAi produces the opposite phenotypes. However, knockdown of either OAMB or 5-HT1A in IPCs both lead to increased resistance to oxidative stress. In assays of carbohydrate levels we found that 5-HT1A knockdown in IPCs resulted in elevated hemolymph glucose, body glycogen and body trehalose levels, while no effects were seen after OAMB knockdown. We also found that manipulations of the two receptors in IPCs affected male aggressive behavior in different ways and 5-HT1A-RNAi reduced courtship latency. Our observations suggest that activation of 5-HT1A and OAMB signaling in IPCs generates differential effects on Dilp transcription, fly physiology, metabolism and social interactions. However the findings do not support an antagonistic action of the two monoamines and their receptors in this particular system.

  4. Serotonin 5-HT2A receptor gene variants influence antidepressant response to repeated total sleep deprivation in bipolar depression.

    Science.gov (United States)

    Benedetti, Francesco; Barbini, Barbara; Bernasconi, Alessandro; Fulgosi, Mara Cigala; Colombo, Cristina; Dallaspezia, Sara; Gavinelli, Chiara; Marino, Elena; Pirovano, Adele; Radaelli, Daniele; Smeraldi, Enrico

    2008-12-12

    5-HT2A receptor density in prefrontal cortex was associated with depression and suicide. 5-HT2A receptor gene polymorphism rs6313 was associated with 5-HT2A receptor binding potential, with the ability of individuals to use environmental support in order to prevent depression, and with sleep improvement after antidepressant treatment with mirtazapine. Studies on response to antidepressant drugs gave inconsistent results. Here we studied the effect of rs6313 on response to repeated total sleep deprivation (TSD) in 80 bipolar depressed inpatients treated with three consecutive TSD cycles (each one made of 36 h awake followed by a night of undisturbed sleep). All genotype groups showed comparable acute effects of the first TSD, but patients homozygotes for the T variant had better perceived and observed benefits from treatment than carriers of the C allele. These effects became significant after the first recovery night and during the following days, leading to a 36% higher final response rate (Hamilton depression rating<8). The higher density of postsynaptic excitatory 5-HT2A receptors in T/T homozygotes could have led to higher behavioural effects of increased 5-HT neurotransmission due to repeated TSD. Other possible mechanisms involve allostatic/homeostatic adaptation to sleep loss, and a different effect of the allele variants on epigenetic influences. Results confirm the interest for individual gene variants of the serotonin pathway in shaping clinical characteristics of depression and antidepressant response.

  5. Alcohol misuse in emerging adulthood: Association of dopamine and serotonin receptor genes with impulsivity-related cognition.

    Science.gov (United States)

    Leamy, Talia E; Connor, Jason P; Voisey, Joanne; Young, Ross McD; Gullo, Matthew J

    2016-12-01

    Impulsivity predicts alcohol misuse and risk for alcohol use disorder. Cognition mediates much of this association. Genes also account for a large amount of variance in alcohol misuse, with dopamine and serotonin receptor genes of particular interest, because of their role in motivated behavior. The precise psychological mechanisms through which such genes confer risk is unclear. Trait impulsivity conveys risk for alcohol misuse by influencing two distinct domains of cognition: beliefs about the reinforcing effects of alcohol consumption (positive alcohol expectancy) and the perceived ability to resist it (drinking refusal self-efficacy). This study investigated the effect of the dopamine-related polymorphism in the DRD2/ANKK1 gene (rs1800497) and a serotonin-related polymorphism in the HTR2A gene (rs6313) on associations between impulsivity, cognition, and alcohol misuse in 120 emerging adults (18-21years). HTR2A predicted lower positive alcohol expectancy, higher refusal self-efficacy, and lower alcohol misuse. However, neither polymorphism moderated the linkages between impulsivity, cognition, and alcohol misuse. This is the first report of an association between HTR2A and alcohol-related cognition. Theoretically-driven biopsychosocial models have potential to elucidate the specific cognitive mechanisms through which distal risk factors like genes and temperament affect alcohol misuse in emerging adulthood. PMID:27399274

  6. Serotonin in human skin

    Institute of Scientific and Technical Information of China (English)

    Jianguo Huang; Qiying Gong; Guiming Li

    2005-01-01

    In this review the authors summarize data of a potential role for serotonin in human skin physiology and pathology. The uncovering of endogenous serotonin synthesis and its transformation to melatonin underlines a putative important role of this pathway in melanocyte physiology and pathology. Pathways of the biosynthesis and biodegradation of serotonin have been characterized in human beings and its major cellular populations. Moreover, receptors of serotonin are expressed on keratinocytes, melanocytes, and fibroblasts and these mediate phenotypic actions on cellular proliferation and differentiation. And the widespread expression of a cutaneous seorotoninergic system indicates considerable selectivity of action to facilitate intra-, auto-, or paracrine mechanisms that define and influence skin function in a highly compartmentalized manner. Melatonin, in turn, can also act as a hormone, neurotransmitter, cytokine, biological modifier and immunomodulator. Thus, Serotonin local synthesis and cellular localization could thus become of great importance in the diagnosis and management of cutaneous pathology.

  7. Adaptations in pre- and postsynaptic 5-HT1A receptor function and cocaine supersensitivity in serotonin transporter knockout rats.

    NARCIS (Netherlands)

    Homberg, J.R.; Boer, SF De; Raaso, H.S.; Olivier, J.D.A.; Verheul, M.; Ronken, E.; Cools, A.R.; Ellenbroek, B.A.; Schoffelmeer, A.N.; Schuren, L.J. van der; Vries, TJ De; Cuppen, E.

    2008-01-01

    RATIONALE: While individual differences in vulnerability to psychostimulants have been largely attributed to dopaminergic neurotransmission, the role of serotonin is not fully understood. OBJECTIVES: To study the rewarding and motivational properties of cocaine in the serotonin transporter knockout

  8. Adaptations in pre- and postsynaptic 5-HT(1A) receptor function and cocaine supersensitivity in serotonin transporter knockout rats

    NARCIS (Netherlands)

    Homberg, Judith R; De Boer, Sietse F; Raasø, Halfdan S; Olivier, Jocelien D A; Verheul, Mark; Ronken, Eric; Cools, Alexander R; Ellenbroek, Bart A; Schoffelmeer, Anton N M; Vanderschuren, Louk J M J; De Vries, Taco J; Cuppen, Edwin

    2008-01-01

    RATIONALE: While individual differences in vulnerability to psychostimulants have been largely attributed to dopaminergic neurotransmission, the role of serotonin is not fully understood. OBJECTIVES: To study the rewarding and motivational properties of cocaine in the serotonin transporter knockout

  9. The 5-HT2A receptor and serotonin transporter in Asperger’s Disorder: a PET study with [11C]MDL 100907 and [11C]DASB

    OpenAIRE

    Girgis, Ragy R.; Slifstein, Mark; Xu, Xiaoyan; Frankle, W. Gordon; Anagnostou, Evdokia; Wasserman, Stacey; Pepa, Lauren; Kolevzon, Alexander; Abi-Dargham, Anissa; Laruelle, Marc; Hollander, Eric

    2011-01-01

    Evidence from biochemical, imaging, and treatment studies suggest abnormalities of the serotonin system in autism spectrum disorders, in particular in frontolimbic areas of the brain. We used the radiotracers [11C]MDL 100907 and [11C]DASB to characterize the 5-HT2A receptor and serotonin transporter in Asperger’s Disorder. 17 individuals with Asperger’s Disorder (age = 34.3 ± 11.1 yr) and 17 healthy controls (age = 33.0 ± 9.6 yr) were scanned with [11C]MDL 100907. Of the 17 patients, eight (a...

  10. Human fear acquisition deficits in relation to genetic variants of the corticotropin releasing hormone receptor 1 and the serotonin transporter.

    Directory of Open Access Journals (Sweden)

    Ivo Heitland

    Full Text Available The ability to identify predictors of aversive events allows organisms to appropriately respond to these events, and failure to acquire these fear contingencies can lead to maladaptive contextual anxiety. Recently, preclinical studies demonstrated that the corticotropin-releasing factor and serotonin systems are interactively involved in adaptive fear acquisition. Here, 150 healthy medication-free human subjects completed a cue and context fear conditioning procedure in a virtual reality environment. Fear potentiation of the eyeblink startle reflex (FPS was measured to assess both uninstructed fear acquisition and instructed fear expression. All participants were genotyped for polymorphisms located within regulatory regions of the corticotropin releasing hormone receptor 1 (CRHR1 - rs878886 and the serotonin transporter (5HTTLPR. These polymorphisms have previously been linked to panic disorder and anxious symptomology and personality, respectively. G-allele carriers of CRHR1 (rs878886 showed no acquisition of fear conditioned responses (FPS to the threat cue in the uninstructed phase, whereas fear acquisition was present in C/C homozygotes. Moreover, carrying the risk alleles of both rs878886 (G-allele and 5HTTLPR (short allele was associated with increased FPS to the threat context during this phase. After explicit instructions regarding the threat contingency were given, the cue FPS and context FPS normalized in all genotype groups. The present results indicate that genetic variability in the corticotropin-releasing hormone receptor 1, especially in interaction with the 5HTTLPR, is involved in the acquisition of fear in humans. This translates prior animal findings to the human realm.

  11. Lifelong disturbance of serotonin transporter functioning results in fear learning deficits: Reversal by blockade of CRF1 receptors.

    Science.gov (United States)

    Bijlsma, Elisabeth Y; Hendriksen, Hendrikus; Baas, Johanna M P; Millan, Mark J; Groenink, Lucianne

    2015-10-01

    The inability to associate aversive events with relevant cues (i.e. fear learning) may lead to maladaptive anxiety. To further study the role of the serotonin transporter (SERT) in fear learning, classical fear conditioning was studied in SERT knockout rats (SERT(-/-)) using fear potentiation of the startle reflex. Next, fear acquisition and concomitant development of contextual conditioned fear were monitored during training. To differentiate between developmental and direct effects of reduced SERT functioning, effects of acute and chronic SSRI treatment were studied in adult rats. Considering the known interactions between serotonin and corticotropin-releasing factor (CRF), we studied the effect of the CRFR1 antagonist CP154,526 on behavioral changes observed and determined CRF1 receptor levels in SERT(-/-) rats. SERT(-/-) showed blunted fear potentiation and enhanced contextual fear, which resulted from a deficit in fear acquisition. Paroxetine treatment did not affect acquisition or expression of fear-potentiated startle, suggesting that disturbed fear learning in SERT(-/-) results from developmental changes and not from reduced SERT functioning. Although CRF1 receptor levels did not differ significantly between genotypes, CP154,526 treatment normalized both cue- and contextual fear in SERT(-/-) during acquisition, but not expression of fear-potentiated startle. The disrupted fear acquisition and concomitant increase in contextual conditioned fear-potentiated startle fear in SERT(-/-) resembles the associative learning deficit seen in patients with panic disorder and suggests that normal SERT functioning is crucial for the development of an adequate fear neuro-circuitry. Moreover, the normalization of fear acquisition by CP154,526 suggests a role for central CRF signaling in the generalization of fear.

  12. Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling Rett syndrome

    Directory of Open Access Journals (Sweden)

    Bianca eDe Filippis

    2015-04-01

    Full Text Available Rett syndrome (RTT is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2 cause more than 95% of classic cases, and currently there is no cure for this devastating disorder. Recently we have demonstrated that specific behavioral and brain molecular alterations can be rescued in MeCP2-308 male mice, a RTT mouse model, by pharmacological stimulation of the brain serotonin receptor 7 (5-HT7R. This member of the serotonin receptor family – crucially involved in the regulation of brain structural plasticity and cognitive processes – can be stimulated by systemic repeated treatment with LP-211, a brain-penetrant selective 5-HT7R agonist. The present study extends previous findings by demonstrating that the LP-211 treatment (0.25 mg/kg, once per day for 7 days rescues RTT-related phenotypic alterations, motor coordination (Dowel test, spatial reference memory (Barnes maze test and synaptic plasticity (hippocampal long-term-potentiation in MeCP2-308 heterozygous female mice, the genetic and hormonal milieu that resembles that of RTT patients. LP-211 also restores the activation of the ribosomal protein S6, the downstream target of mTOR and S6 kinase, in the hippocampus of RTT female mice. Notably, the beneficial effects on neurobehavioral and molecular parameters of a seven-day long treatment with LP-211 were evident up to two months after the last injection, thus suggesting long-lasting effects on RTT-related impairments. Taken together with our previous study, these results provide compelling preclinical evidence of the potential therapeutic value for RTT of a pharmacological approach targeting the brain 5-HT7R.

  13. Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling Rett syndrome.

    Science.gov (United States)

    De Filippis, Bianca; Chiodi, Valentina; Adriani, Walter; Lacivita, Enza; Mallozzi, Cinzia; Leopoldo, Marcello; Domenici, Maria Rosaria; Fuso, Andrea; Laviola, Giovanni

    2015-01-01

    Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2) cause more than 95% of classic cases, and currently there is no cure for this devastating disorder. Recently we have demonstrated that specific behavioral and brain molecular alterations can be rescued in MeCP2-308 male mice, a RTT mouse model, by pharmacological stimulation of the brain serotonin receptor 7 (5-HT7R). This member of the serotonin receptor family-crucially involved in the regulation of brain structural plasticity and cognitive processes-can be stimulated by systemic repeated treatment with LP-211, a brain-penetrant selective 5-HT7R agonist. The present study extends previous findings by demonstrating that the LP-211 treatment (0.25 mg/kg, once per day for 7 days) rescues RTT-related phenotypic alterations, motor coordination (Dowel test), spatial reference memory (Barnes maze test) and synaptic plasticity (hippocampal long-term-potentiation) in MeCP2-308 heterozygous female mice, the genetic and hormonal milieu that resembles that of RTT patients. LP-211 also restores the activation of the ribosomal protein (rp) S6, the downstream target of mTOR and S6 kinase, in the hippocampus of RTT female mice. Notably, the beneficial effects on neurobehavioral and molecular parameters of a seven-day long treatment with LP-211 were evident up to 2 months after the last injection, thus suggesting long-lasting effects on RTT-related impairments. Taken together with our previous study, these results provide compelling preclinical evidence of the potential therapeutic value for RTT of a pharmacological approach targeting the brain 5-HT7R.

  14. Serotonergic innervation and serotonin receptor expression of NPY-producing neurons in the rat lateral and basolateral amygdaloid nuclei.

    Science.gov (United States)

    Bonn, M; Schmitt, A; Lesch, K-P; Van Bockstaele, E J; Asan, E

    2013-03-01

    Pharmacobehavioral studies in experimental animals, and imaging studies in humans, indicate that serotonergic transmission in the amygdala plays a key role in emotional processing, especially for anxiety-related stimuli. The lateral and basolateral amygdaloid nuclei receive a dense serotonergic innervation in all species studied to date. We investigated interrelations between serotonergic afferents and neuropeptide Y (NPY)-producing neurons, which are a subpopulation of inhibitory interneurons in the rat lateral and basolateral nuclei with particularly strong anxiolytic properties. Dual light microscopic immunolabeling showed numerous appositions of serotonergic afferents on NPY-immunoreactive somata. Using electron microscopy, direct membrane appositions and synaptic contacts between serotonin-containing axon terminals and NPY-immunoreactive cellular profiles were unequivocally established. Double in situ hybridization documented that more than 50 %, and about 30-40 % of NPY mRNA-producing neurons, co-expressed inhibitory 5-HT1A and excitatory 5-HT2C mRNA receptor subtype mRNA, respectively, in both nuclei with no gender differences. Triple in situ hybridization showed that individual NPY mRNA-producing interneurons co-express both 5-HT1A and 5-HT2C mRNAs. Co-expression of NPY and 5-HT3 mRNA was not observed. The results demonstrate that serotonergic afferents provide substantial innervation of NPY-producing neurons in the rat lateral and basolateral amygdaloid nuclei. Studies of serotonin receptor subtype co-expression indicate a differential impact of the serotonergic innervation on this small, but important, population of anxiolytic interneurons, and provide the basis for future studies of the circuitry underlying serotonergic modulation of emotional stimulus processing in the amygdala.

  15. Endocannabinoids blunt the augmentation of synaptic transmission by serotonin 2A receptors in the nucleus tractus solitarii (nTS).

    Science.gov (United States)

    Austgen, James R; Kline, David D

    2013-11-01

    Serotonin (5-Hydroxytryptamine, 5-HT) and the 5-HT2 receptor modulate cardiovascular and autonomic function in part through actions in the nTS, the primary termination and integration point for cardiorespiratory afferents in the brainstem. In other brain regions, 5-HT2 receptors (5-HT2R) modify synaptic transmission directly, as well as through 5-HT2AR-induced endocannabinoid release. This study examined the role of 5-HT2AR as well as their interaction with endocannabinoids on neurotransmission in the nucleus tractus solitarii (nTS). Excitatory postsynaptic currents (EPSCs) in monosynaptic nTS neurons were recorded in the horizontal brainstem slice during activation and blockade of 5-HT2ARs. 5-HT2AR activation augmented solitary tract (TS) evoked EPSC amplitude whereas 5-HT2AR blockade depressed TS-EPSC amplitude at low and high TS stimulation rates. The 5-HT2AR-induced increase in neurotransmission was reduced by endocannabinoid receptor block and increased endogenous endocannabinoids in the synaptic cleft during high frequency, but not low, TS stimulation. Endocannabinoids did not tonically modify EPSCs. These data suggest 5-HT acting through the 5-HT2AR is an excitatory neuromodulator in the nTS and its effects are modulated by the endocannabinoid system.

  16. Effect of peptides corresponding to extracellular domains of serotonin 1B/1D receptors and melanocortin 3 and 4 receptors on hormonal regulation of adenylate cyclase in rat brain.

    Science.gov (United States)

    Shpakova, E A; Derkach, K V; Shpakov, A O

    2014-03-01

    The ligand-recognizing part of G protein-coupled receptors consists of their extracellular loops and N-terminal domain. Identification of these sites is essential for receptor mapping and for the development and testing of new hormone system regulators. The peptides corresponding by their structure to extracellular loop 2 of serotonin 1B/1D receptor (peptide 1), extracellular loop 3 of melanocortin 3 receptor (peptide 2), and N-terminal domain of melanocortin 4 (peptide 3) were synthesized by the solid-phase method. In synaptosomal membranes isolated from rat brain, peptide 1 (10(-5)-10(-4) M) attenuated the effects of 5-nonyloxytryptamine (selective agonist of serotonin 1B/1D receptor) and to a lesser extent serotonin and 5-methoxy-N,N-dimethyltryptamine acting on all the subtypes of serotonin receptor 1. Peptide 2 (10(-5)-10(-4) M) significantly reduced the adenylate cyclase-stimulating effect of γ-melanocyte-stimulating hormone (agonist of melanocortin receptor 3), but had no effect on the adenylate cyclase effect of THIQ (agonist melanocortin receptor 4). Peptide 3 reduced the adenylate cyclase-stimulating effects of THIQ and α-melanocyte-stimulating hormone (non-selective agonist of melanocortin receptors 3 and 4), but did not modulate the effect of γ-melanocyte-stimulating hormone. The effect of peptide 3 was weaker: it was observed at peptide 3 concentration of 10(-4) M. Peptides 1-3 did no change the adenylate cyclase-modulating effects of hormones acting through non-homologous receptors. Thus, the synthesized peptides specifically inhibited the regulatory effects of hormones acting through homologous receptors. This suggests that the corresponding extracellular domains are involved in ligand recognition and binding and determine functional activity of the receptor. PMID:24770752

  17. Serotonin acts as a novel regulator of interleukin-6 secretion in osteocytes through the activation of the 5-HT(2B) receptor and the ERK1/2 signalling pathway.

    Science.gov (United States)

    Li, Xianxian; Ma, Yuanyuan; Wu, Xiangnan; Hao, Zhichao; Yin, Jian; Shen, Jiefei; Li, Xiaoyu; Zhang, Ping; Wang, Hang

    2013-11-29

    Interleukin-6 (IL-6) is a potent stimulator of osteoclastic bone resorption. Osteocyte secretion of IL-6 plays an important role in bone metabolism. Serotonin (5-HT) has recently been reported to regulate bone metabolism. The aim of this study was to evaluate the effect of serotonin on osteocyte expression of IL-6. The requirement for the 5-HT receptor(s) and the role of the extracellular signal-regulated kinase 1/2 (ERK1/2) in serotonin-induced IL-6 synthesis were examined. In this study, real-time PCR and ELISA were used to analyse IL-6 gene and protein expression in serotonin-stimulated MLO-Y4 cells. ERK1/2 pathway activation was determined by Western blot. We found that serotonin significantly activated the ERK1/2 pathway and induced IL-6 mRNA expression and protein synthesis in cultured MLO-Y4 cells. However, these effects were abolished by pre-treatment of MLO-Y4 cells with a 5-HT2B receptor antagonist, RS127445 or the ERK1/2 inhibitor, PD98059. Our results indicate that serotonin stimulates osteocyte secretion of IL-6 and that this effect is associated with activation of 5-HT2B receptor and the ERK1/2 pathway. These findings provide support for a role of serotonin in bone metabolism by indicating serotonin regulates bone remodelling by mediating an inflammatory cytokine. PMID:24211588

  18. Serotonin-3 Receptors in the Posterior Ventral Tegmental Area Regulate Ethanol Self-Administration of Alcohol-Preferring (P) Rats

    Science.gov (United States)

    Rodd, Zachary A.; Bell, Richard L.; Oster, Scott M.; Toalston, Jamie E.; Pommer, Tylene J.; McBride, William J.; Murphy, James M.

    2015-01-01

    Several studies indicated the involvement of serotonin-3 (5-HT3) receptors in regulating alcohol-drinking behavior. The objective of this study was to determine the involvement of 5-HT3 receptors within the ventral tegmental area (VTA) in regulating ethanol self-administration by alcohol-preferring (P) rats. Standard two-lever operant chambers were used to examine the effects of 7 consecutive bilateral micro-infusions of ICS205-930 (ICS), a 5-HT3 receptor antagonist, directly into the posterior VTA on the acquisition and maintenance of 15% (v/v) ethanol self-administration. P rats readily acquired ethanol self-administration by the 4th session. The three highest doses (0.125, 0.25 and 1.25 ug) of ICS prevented acquisition of ethanol self-administration. During the acquisition post-injection period, all rats treated with ICS demonstrated higher responding on the ethanol lever, with the highest dose producing the greatest effect. In contrast, during the maintenance phase, the 3 highest doses (0.75, 1.0 and 1.25 ug) of ICS significantly increased responding on the ethanol lever; following the 7-day dosing regimen, responding on the ethanol lever returned to control levels. Micro-infusion of ICS into the posterior VTA did not alter the low responding on the water lever, and did not alter saccharin (0.0125% w/v) self-administration.. Micro-infusion of ICS into the anterior VTA did not alter ethanol self-administration. Overall, the results of this study suggest that 5-HT3 receptors in the posterior VTA of the P rat may be involved in regulating ethanol self-administration. In addition, chronic operant ethanol self-administration, and/or repeated treatments with a 5-HT3 receptor antagonist may alter neuronal circuitry within the posterior VTA. PMID:20682192

  19. Control of sensory neuron excitability by serotonin involves 5HT2C receptors and Ca(2+)-activated chloride channels.

    Science.gov (United States)

    Salzer, Isabella; Gantumur, Enkhbileg; Yousuf, Arsalan; Boehm, Stefan

    2016-11-01

    Serotonin (5HT) is a constituent of the so-called "inflammatory soup" that sensitizes nociceptors during inflammation. Nevertheless, receptors and signaling mechanisms that mediate an excitation of dorsal root ganglion (DRG) neurons by 5HT remained controversial. Therefore, capsaicin-sensitive nociceptive neurons dissociated from rat DRGs were used to investigate effects of 5HT on membrane excitability and currents through ligand- as well as voltage-gated ion channels. In 58% of the neurons tested, 5HT increased action potential firing, an effect that was abolished by the 5HT2 receptor antagonist ritanserin, but not by the 5HT3 antagonist tropisetron. Unlike other algogenic mediators, such as PGE2 and bradykinin, 5HT did not affect currents through TTX-resistant Na(+) channels or Kv7 K(+) channels. In all neurons investigated, 5HT potentiated capsaicin-evoked currents through TRPV1 channels, an effect that was attenuated by antagonists at 5HT2A (4 F 4 PP), 5HT2B (SB 204741), as well as 5HT2C (RS 102221) receptors. 5HT triggered slowly arising inward Cl(-) currents in 53% of the neurons. This effect was antagonized by the 5HT2C receptor blocker only, and the current was prevented by an inhibitor of Ca(2+)-activated chloride channels (CaCC). The 5HT-induced increase in action potential firing was also abolished by this CaCC blocker and by the TRPV1 inhibitor capsazepine. Amongst the subtype selective 5HT2 antagonists, only RS 102221 (5HT2C-selectively) counteracted the rise in action potential firing elicited by 5HT. These results show that 5HT excites DRG neurons mainly via 5HT2C receptors which concomitantly mediate a sensitization of TRPV1 channels and an opening of CaCCs.

  20. Serotonin7 receptors in the lateral habenular nucleus regulate depressive-like behaviors in the hemiparkinsonian rats.

    Science.gov (United States)

    Han, Ling Na; Zhang, Li; Sun, Yi Na; Du, Cheng Xue; Zhang, Yu Ming; Wang, Tao; Zhang, Jin; Liu, Jian

    2016-08-01

    Preclinical studies indicate that serotonin7 (5-HT7) receptors may regulate depressive-like behaviors. Depression is a common symptom in Parkinson's disease (PD); however, its pathophysiology is unclear. Here we examined whether 5-HT7 receptors in the lateral habenular nucleus (LHb) involve in the regulation of PD-related depression. Unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta in rats induced depressive-like responses as measured by the sucrose preference and forced swim tests when compared to sham-operated rats. Intra-LHb injection of 5-HT7 receptor agonist AS19 (1, 2 and 4μg/rat) induced or increased the expression of depressive-like behaviors in sham-operated and the lesioned rats. Further, intra-LHb injection of 5-HT7 receptor antagonist SB269970 (1.5, 3 and 6μg/rat) produced antidepressant effects in the two groups of rats. However, the doses producing these effects in the lesioned rats were higher than those in sham-operated rats. Neurochemical results showed that intra-LHb injection of AS19 (4μg/rat) decreased dopamine and 5-HT levels in the medial prefrontal cortex, habenula and hippocampus in sham-operated and the lesioned rats; whereas SB269970 (6μg/rat) increased dopamine and 5-HT levels in these structures. In addition, noradrenaline levels in these structures were not changed after intra-LHb injection of AS19 or SB269970 in the two groups of rats. These findings suggest that activation or blockade of 5-HT7 receptors in the LHb may change the activity of LHb glutamate neurons, and then decreases or increases dopamine and 5-HT levels in the limbic and limbic-related brain regions, which are involved in the regulation of depressive-like behaviors. PMID:27178363

  1. Strategies for improved modeling of GPCR-drug complexes: blind predictions of serotonin receptors bound to ergotamine.

    Science.gov (United States)

    Rodríguez, David; Ranganathan, Anirudh; Carlsson, Jens

    2014-07-28

    The recent increase in the number of atomic-resolution structures of G protein-coupled receptors (GPCRs) has contributed to a deeper understanding of ligand binding to several important drug targets. However, reliable modeling of GPCR-ligand complexes for the vast majority of receptors with unknown structure remains to be one of the most challenging goals for computer-aided drug design. The GPCR Dock 2013 assessment, in which researchers were challenged to predict the crystallographic structures of serotonin 5-HT(1B) and 5-HT(2B) receptors bound to ergotamine, provided an excellent opportunity to benchmark the current state of this field. Our contributions to GPCR Dock 2013 accurately predicted the binding mode of ergotamine with RMSDs below 1.8 Å for both receptors, which included the best submissions for the 5-HT(1B) complex. Our models also had the most accurate description of the binding sites and receptor-ligand contacts. These results were obtained using a ligand-guided homology modeling approach, which combines extensive molecular docking screening with incorporation of information from multiple crystal structures and experimentally derived restraints. In this work, we retrospectively analyzed thousands of structures that were generated during the assessment to evaluate our modeling strategies. Major contributors to accuracy were found to be improved modeling of extracellular loop two in combination with the use of molecular docking to optimize the binding site for ligand recognition. Our results suggest that modeling of GPCR-drug complexes has reached a level of accuracy at which structure-based drug design could be applied to a large number of pharmaceutically relevant targets. PMID:25030302

  2. Cerebral 5-HT2A receptor and serotonin transporter binding in humans are not affected by the val66met BDNF polymorphism status or blood BDNF levels

    DEFF Research Database (Denmark)

    Klein, Anders Bue; Trajkovska, Viktorija; Erritzoe, David;

    2010-01-01

    Recent studies have proposed an interrelation between the brain-derived neurotrophic factor (BDNF) val66met polymorphism and the serotonin system. In this study, we investigated whether the BDNF val66met polymorphism or blood BDNF levels are associated with cerebral 5-hydroxytryptamine 2A (5-HT(2A......)) receptor or serotonin transporter (SERT) binding in healthy subjects. No statistically significant differences in 5-HT(2A) receptor or SERT binding were found between the val/val and met carriers, nor were blood BDNF values associated with SERT binding or 5-HT(2A) receptor binding. In conclusion, val66met...... BDNF polymorphism status is not associated with changes in the serotonergic system. Moreover, BDNF levels in blood do not correlate with either 5-HT(2A) or SERT binding....

  3. Downregulation of 5-HT7 Serotonin Receptors by the Atypical Antipsychotics Clozapine and Olanzapine. Role of Motifs in the C-Terminal Domain and Interaction with GASP-1

    DEFF Research Database (Denmark)

    Manfra, Ornella; Van Craenenbroeck, Kathleen; Skieterska, Kamila;

    2015-01-01

    The human 5-HT7 serotonin receptor, a G-protein-coupled receptor (GPCR), activates adenylyl cyclase constitutively and upon agonist activation. Biased ligands differentially activate 5-HT7 serotonin receptor desensitization, internalization and degradation in addition to G protein activation. We......-mediated degradation of 5-HT7 receptors and also interfered with G protein activation. In addition, we tested whether receptor degradation was mediated by the GPCR-associated sorting protein-1 (GASP-1). We show that GASP-1 binds the 5-HT7 receptor and regulates the clozapine-mediated degradation. Mutations...

  4. CB-1 receptors modulate the effect of the selective serotonin reuptake inhibitor, citalopram on extracellular serotonin levels in the rat prefrontal cortex

    NARCIS (Netherlands)

    Kleijn, Jelle; Cremers, Thomas I. F. H.; Hofland, Corry M.; Westerink, Ben H. C.

    2011-01-01

    A large percentage of depressed individuals use drugs of abuse, like cannabis. This study investigates the impact of cannabis on the pharmacological effects of the antidepressant citalopram. Using microdialysis in the prefrontal cortex of rats we monitored serotonin levels before and after cannabino

  5. Impact of RNA editing on functions of the serotonin 2C receptor in vivo

    Directory of Open Access Journals (Sweden)

    Uade B Olaghere Da Silva

    2010-03-01

    Full Text Available Transcripts encoding 5-HT2C receptors are modified posttranscriptionally by RNA editing, generating up to 24 protein isoforms. In recombinant cells, the fully edited isoform, 5-HT2C-VGV, exhibits blunted G-protein coupling and reduced constitutive activity. The present studies examine the signal transduction properties of 5-HT2C-VGV receptors in brain to determine the in vivo consequences of altered editing. Using mice solely expressing the 5-HT2C-VGV receptor (VGV/Y, we demonstrate reduced G-protein coupling efficiency and high-affinity agonist binding of brain 5-HT2C-VGV receptors. However, enhanced behavioral sensitivity to a 5-HT2C receptor agonist was also seen in mice expressing 5-HT2C-VGV receptors, an unexpected finding given the blunted G-protein coupling. In addition, mice expressing 5-HT2C-VGV receptors had greater sensitivity to a 5-HT2C inverse agonist/antagonist enhancement of dopamine turnover relative to wild-type mice. These behavioral and biochemical results are most likely explained by increases in 5-HT2C receptor binding sites in the brains of mice solely expressing -5HT2C-VGV receptors. We conclude that 5-HT2C-VGV receptor signaling in brain is blunted, but this deficiency is masked by a marked increase in 5HT2C receptor binding site density in mice solely expressing the VGV isoform. These findings suggest that RNA editing may regulate the density of 5-HT2C receptor binding sites in brain. We further caution that the pattern of 5-HT2C receptor RNA isoforms may not reflect the pattern of protein isoforms, and hence the inferred overall function of the receptor.

  6. Serotonergic hyperinnervation and effective serotonin blockade in an FGF receptor developmental model of psychosis

    OpenAIRE

    Klejbor, Ilona; Kucinski, Aaron; Wersinger, Scott R.; Corso, Thomas; Spodnik, Jan H.; Dziewiątkowski, Jerzy; Moryś, Janusz; Hesse, Renae A.; Rice, Kenner C.; Miletich, Robert; Stachowiak, Ewa K.; Stachowiak, Michal K.

    2009-01-01

    The role of fibroblast growth factor receptors (FGFR) in normal brain development has been well-documented in transgenic and knock-out mouse models. Changes in FGF and its receptors have also been observed in schizophrenia and related developmental disorders. The current study examines a transgenic th(tk-)/th(tk-) mouse model with FGF receptor signaling disruption targeted to dopamine (DA) neurons, resulting in neurodevelopmental, anatomical, and biochemical alterations similar to those obser...

  7. Expression of hippocampal serotonin receptors 5-HT2C and 5-HT5A in a rat model of diet-induced obesity supplemented with tryptophan.

    Science.gov (United States)

    Lopez-Esparza, Sarahi; Berumen, Laura C; Padilla, Karla; Miledi, Ricardo; García-Alcocer, Guadalupe

    2015-05-01

    Food intake regulation is a complex mechanism that involves endogenous substances and central nervous system structures like hypothalamus or even hippocampus. The neurotransmitter serotonin is distinguished as food intake mediator; within its multiples receptors, the 5-HT2C type is characterized by its inhibitory appetite action but there is no information about 5-HT5A receptors involvement in obesity disease. It is also unknown if there are any changes in the receptors expression in rats hippocampus with induced obesity during development through a high energy diet (HED) supplemented with tryptophan (W). To appreciate the receptors expression pattern in the hippocampus, obesity was induced to young Sprague Dawley rats through a HED and supplemented with W. Immunocytochemical and western blot techniques were used to study the receptor distribution and quantify the protein expression. The rats with HED diet developed obesity until week 13 of treatment. The 5-HT2C receptor expression decreased in CA1, CA2, CA3 and DG of HED group; and also in CA2, CA3 and DG for HEDW group. The 5-HT5A receptor expression only decreased in DG for HED group. Variations of the two serotonin receptors subtypes support their potential role in obesity.

  8. Photoperiod regulates genes encoding melanocortin 3 and serotonin receptors and secretogranins in the dorsomedial posterior arcuate of the Siberian hamster.

    Science.gov (United States)

    Nilaweera, K N; Archer, Z A; Campbell, G; Mayer, C-D; Balik, A; Ross, A W; Mercer, J G; Ebling, F J P; Morgan, P J; Barrett, P

    2009-02-01

    The mechanism(s) involved in the regulation of the seasonal-appropriate body weight of the Siberian hamster are currently unknown. We have identified photoperiodically regulated genes including VGF in a sub-region of the arcuate nucleus termed the dorsomedial posterior arcuate (dmpARC). Gene expression changes in this nucleus so far account for a significant number of those reported as photoperiodically regulated and are therefore likely to contribute to seasonal physiological responses of the hamsters. The present study aimed to identify additional genes expressed in the dmpARC regulated by photoperiod that could be involved in regulating the activity of this nucleus with respect to seasonal physiology of the Siberian hamster. Using laser capture microdissection coupled with a microarray analysis and a candidate gene approach, we have identified several photoperiodically regulated genes in the dmpARC that are known to have roles in secretory and intracellular signalling pathways. These include secretogranin (sg) III and SgVI (secretory pathway), melanocortin 3 receptor (MC3-R) and serotonin (5-HT) receptors 2A and 7 (signalling pathway), all of which increase in expression under a short photoperiod. The spatial relationship between receptor signalling and potential secretory pathways was investigated by dual in situ hybridisation, which revealed that 5-HT2A and 5-HT7 receptors are expressed in neurones expressing VGF mRNA and that a sub-population (approximately 40%) of these neurones express MC3-R. These gene expression changes in dmpARC neurones may reflect the functional requirement of these neurones for seasonal physiological responses of the hamster.

  9. A dynamic view of molecular switch behavior at serotonin receptors: implications for functional selectivity.

    Science.gov (United States)

    Martí-Solano, Maria; Sanz, Ferran; Pastor, Manuel; Selent, Jana

    2014-01-01

    Functional selectivity is a property of G protein-coupled receptors that allows them to preferentially couple to particular signaling partners upon binding of biased agonists. Publication of the X-ray crystal structure of serotonergic 5-HT1B and 5-HT2B receptors in complex with ergotamine, a drug capable of activating G protein coupling and β-arrestin signaling at the 5-HT1B receptor but clearly favoring β-arrestin over G protein coupling at the 5-HT2B subtype, has recently provided structural insight into this phenomenon. In particular, these structures highlight the importance of specific residues, also called micro-switches, for differential receptor activation. In our work, we apply classical molecular dynamics simulations and enhanced sampling approaches to analyze the behavior of these micro-switches and their impact on the stabilization of particular receptor conformational states. Our analysis shows that differences in the conformational freedom of helix 6 between both receptors could explain their different G protein-coupling capacity. In particular, as compared to the 5-HT1B receptor, helix 6 movement in the 5-HT2B receptor can be constrained by two different mechanisms. On the one hand, an anchoring effect of ergotamine, which shows an increased capacity to interact with the extracellular part of helices 5 and 6 and stabilize them, hinders activation of a hydrophobic connector region at the center of the receptor. On the other hand, this connector region in an inactive conformation is further stabilized by unconserved contacts extending to the intracellular part of the 5-HT2B receptor, which hamper opening of the G protein binding site. This work highlights the importance of considering receptor capacity to adopt different conformational states from a dynamic perspective in order to underpin the structural basis of functional selectivity. PMID:25313636

  10. A dynamic view of molecular switch behavior at serotonin receptors: implications for functional selectivity.

    Directory of Open Access Journals (Sweden)

    Maria Martí-Solano

    Full Text Available Functional selectivity is a property of G protein-coupled receptors that allows them to preferentially couple to particular signaling partners upon binding of biased agonists. Publication of the X-ray crystal structure of serotonergic 5-HT1B and 5-HT2B receptors in complex with ergotamine, a drug capable of activating G protein coupling and β-arrestin signaling at the 5-HT1B receptor but clearly favoring β-arrestin over G protein coupling at the 5-HT2B subtype, has recently provided structural insight into this phenomenon. In particular, these structures highlight the importance of specific residues, also called micro-switches, for differential receptor activation. In our work, we apply classical molecular dynamics simulations and enhanced sampling approaches to analyze the behavior of these micro-switches and their impact on the stabilization of particular receptor conformational states. Our analysis shows that differences in the conformational freedom of helix 6 between both receptors could explain their different G protein-coupling capacity. In particular, as compared to the 5-HT1B receptor, helix 6 movement in the 5-HT2B receptor can be constrained by two different mechanisms. On the one hand, an anchoring effect of ergotamine, which shows an increased capacity to interact with the extracellular part of helices 5 and 6 and stabilize them, hinders activation of a hydrophobic connector region at the center of the receptor. On the other hand, this connector region in an inactive conformation is further stabilized by unconserved contacts extending to the intracellular part of the 5-HT2B receptor, which hamper opening of the G protein binding site. This work highlights the importance of considering receptor capacity to adopt different conformational states from a dynamic perspective in order to underpin the structural basis of functional selectivity.

  11. Using psilocybin to investigate the relationship between attention, working memory, and the serotonin 1A and 2A receptors.

    Science.gov (United States)

    Carter, Olivia L; Burr, David C; Pettigrew, John D; Wallis, Guy M; Hasler, Felix; Vollenweider, Franz X

    2005-10-01

    Increasing evidence suggests a link between attention, working memory, serotonin (5-HT), and prefrontal cortex activity. In an attempt to tease out the relationship between these elements, this study tested the effects of the hallucinogenic mixed 5-HT1A/2A receptor agonist psilocybin alone and after pretreatment with the 5-HT2A antagonist ketanserin. Eight healthy human volunteers were tested on a multiple-object tracking task and spatial working memory task under the four conditions: placebo, psilocybin (215 microg/kg), ketanserin (50 mg), and psilocybin and ketanserin. Psilocybin significantly reduced attentional tracking ability, but had no significant effect on spatial working memory, suggesting a functional dissociation between the two tasks. Pretreatment with ketanserin did not attenuate the effect of psilocybin on attentional performance, suggesting a primary involvement of the 5-HT1A receptor in the observed deficit. Based on physiological and pharmacological data, we speculate that this impaired attentional performance may reflect a reduced ability to suppress or ignore distracting stimuli rather than reduced attentional capacity. The clinical relevance of these results is also discussed.

  12. DREADD Modulation of Transplanted DA Neurons Reveals a Novel Parkinsonian Dyskinesia Mechanism Mediated by the Serotonin 5-HT6 Receptor.

    Science.gov (United States)

    Aldrin-Kirk, Patrick; Heuer, Andreas; Wang, Gang; Mattsson, Bengt; Lundblad, Martin; Parmar, Malin; Björklund, Tomas

    2016-06-01

    Transplantation of DA neurons is actively pursued as a restorative therapy in Parkinson's disease (PD). Pioneering clinical trials using transplants of fetal DA neuroblasts have given promising results, although a number of patients have developed graft-induced dyskinesias (GIDs), and the mechanism underlying this troublesome side effect is still unknown. Here we have used a new model where the activity of the transplanted DA neurons can be selectively modulated using a bimodal chemogenetic (DREADD) approach, allowing either enhancement or reduction of the therapeutic effect. We show that exclusive activation of a cAMP-linked (Gs-coupled) DREADD or serotonin 5-HT6 receptor, located on the grafted DA neurons, is sufficient to induce GIDs. These findings establish a mechanistic link between the 5-HT6 receptor, intracellular cAMP, and GIDs in transplanted PD patients. This effect is thought to be mediated through counteraction of the D2 autoreceptor feedback inhibition, resulting in a dysplastic DA release from the transplant.

  13. Serotonin 2A receptors contribute to the regulation of risk-averse decisions

    DEFF Research Database (Denmark)

    Macoveanu, Julian; Rowe, James B; Hornboll, Bettina;

    2013-01-01

    in processing negative outcomes and regulating risk-averse behavior. During fMRI, twenty healthy volunteers performed a gambling task under two conditions: with or without blocking the 5-HT2A receptors. The volunteers repeatedly chose between small, likely rewards and large, unlikely rewards. Choices were...... with large missed rewards. In the context of normal 5-HT2A receptor function, ventral striatum displayed a stronger response to low-risk negative outcomes in risk-taking as opposed to risk-averse individuals. This (negative) correlation between the striatal response to low-risk negative outcomes and risk......-averse choice behavior was abolished by 5-HT2A receptor blockade. The results provide the first evidence for a critical role of 5-HT2A receptor function in regulating risk-averse behavior. We suggest that the 5-HT2A receptor system facilitates risk-taking behavior by modulating the outcome evaluation of "missed...

  14. The time course of serotonin 2C receptor expression after spinal transection of rats

    DEFF Research Database (Denmark)

    Ren, Li-Qun; Wienecke, Jacob; Chen, Meng;

    2013-01-01

    In the spinal cord 5-HT systems modulate the spinal network via various 5-HT receptors. 5-HT2A and 2C receptors are likely the most important 5-HT receptors for enhancing the motoneuron excitability by facilitating the persistent inward current, and thus play an important role for the pathogenesis...... distributed in different regions of the spinal gray matter and was predominantly located in the neuronal somata and their dendrites although it seemed also present in axonal fibers in the superficial dorsal horn. 5-HT2CR-IR in different regions of the spinal gray matter was seen to be increased at 14 days...

  15. Serotonin receptor subtype mediation of the interoceptive discriminative stimuli induced by 5-methoxy-N,N-dimethyltryptamine.

    Science.gov (United States)

    Spencer, D G; Glaser, T; Traber, J

    1987-01-01

    Male Wistar rats were trained to discriminate the interoceptive effects of 5-methoxy-N,N-dimethyltryptamine (5-OMe-DMT; 1.25 mg/kg, IP) from saline in a two-lever operant chamber. Following discrimination learning, the following drugs (with ED50 dose in mg/kg IP) dose-dependently generalized: lysergic acid diethylamide (LSD, 0.04), 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT, 0.11), 6-methoxy-4-(dipropyl-amino)-1,3,4,5-tetrahydrobenz(c,d)indole hydrochloride (BAY R 1531, 0.15), 5-OMe-DMT itself (0.63), ipsapirone (TVX Q 7821, 2.7), and buspirone (3.8). The potencies of these drugs in generalization tests were best correlated with their binding affinities for the 5-HT1A serotonin receptor subtype (as measured by displacement of 3H-ipsapirone in the hippocampus). Drugs not, or only partially generalizing included quipazine, bufotenin, m-trifluoromethylphenylpiperazine (TFMPP), 5-methoxy-3(1,2,3,6-tetrahydropyridine-4-yl)-1H-indole succinate (RU 24969), citalopram, clomipramine, 1,4-dihydro-2,6-dimethyl-3-nitro-4(2-trifluoromethylphenyl)-pyridine-5- carboxylate (BAY K 8644), the buspirone metabolite 1-pyrimidinyl-piperazine (1-PP), methysergide, metergoline, and metitepine. Of the last three compounds with antagonistic activity at 5-HT receptors, as well as ketanserin, pizotifen, and ritanserin, only metitepine and pindolol could fully block the 5-OMe-DMT stimulus. Pizotifen blocked the generalization of quipazine fully, that of 5-OMe-DMT only partially, and that of ipsapirone not at all. These data indicate that the 5-HT1A receptor subtype is strongly involved in the transduction of the interoceptive discriminative stimuli induced by 5-OMe-DMT, with 5-HT2 agonism also playing a possible role. PMID:3122248

  16. Drug: D06396 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D06396 Drug Renzapride (INN) C16H22ClN3O2 323.1401 323.8178 D06396.gif 5-HT4-recept...r08310] G Protein-coupled receptors Rhodopsin family Serotonin 5-HT4-receptor [HSA:3360] [KO:K04160] Renzapride D06396 Renzapride

  17. Expresion of 5 - Hydroxytryptamine 4 Receptor in Congenital Hirschsprung's Disease and Hirschsprung's Allied Disease%5-羟色胺4受体在先天性巨结肠和同源病中的表达

    Institute of Scientific and Technical Information of China (English)

    朱旭; 魏明发; 卞红强; 段栩飞

    2012-01-01

    目的 探讨5-羟色胺4(5-HT4)受体在先天性巨结肠(HD)和先天性巨结肠同源病(HAD)中的表达,并研究能否将此检测应用于HD和HAD的术前鉴别诊断.方法 共收集HD标本25例(HD组)、HAD标本20例(HAD组)和正常结肠标本15例(正常对照组).应用免疫组织化学SP法染色,分析5-HT4受体表达的部位及肠管不同部位5-HT4受体表达水平强度的差异.采用t检验比较其表达是否存在差异性.结果 HD组5-HT4受体阳性指数在远端黏膜层较近端表达下降,肌间神经丛无表达;HAD组远端5 -HT4受体阳性指数在黏膜层和肌间神经丛中均显著低于近端.与正常对照组比较,HD组和HAD组5-HT4受体阳性指数在黏膜及肌间神经从表达均下降.结论 5 -HT4受体在HD及HAD中的表达水平可作为术前鉴别诊断的参考指标之一,也为临床治疗提供新的参考指标.%Objective To explore the role of 5 - hydroxytryptamine 4(5 - HT4) receptor in the pathogenesis of Hirschsprung disease (HD)and Hirschsprung's allied disorder (HAD) .and to research whether the study could be used for preoperative diagnosis of HD and HAD. Methods Twenty -five cases of HD specimens( HD group) .20 cases of HAD specimens( HAD group) and 15 normal colon specimens (normal control group) were collected. SP irnmunorustochemical staining was used to analyze 5 - HT4 receptor sites and the differences of 5 - HT4 receptor sites expression levels in different parts of intestines. T - test was adopted to compare the expression differences. Results In HD group, 5 - HT4 receptors in the distal end of mucosa decreased compared with the proximal end, while 5 - HT4 receptors were not expressed in the mye-nteric plexus of the proximal end. In HAD group, the number of 5 - HT4 receptors also decreased in the distal mucosa and myenteric plexus. Compared with the normal control group ,5 - HT4 receptor expression decreased in HD group and HAD group. Conclusion 5 - HT4 receptors in HD/HAD can

  18. Comparison of P2X and TRPV1 receptors in ganglia or primary culture of trigeminal neurons and their modulation by NGF or serotonin

    Directory of Open Access Journals (Sweden)

    Giniatullin Rashid

    2006-03-01

    Full Text Available Abstract Background Cultured sensory neurons are a common experimental model to elucidate the molecular mechanisms of pain transduction typically involving activation of ATP-sensitive P2X or capsaicin-sensitive TRPV1 receptors. This applies also to trigeminal ganglion neurons that convey pain inputs from head tissues. Little is, however, known about the plasticity of these receptors on trigeminal neurons in culture, grown without adding the neurotrophin NGF which per se is a powerful algogen. The characteristics of such receptors after short-term culture were compared with those of ganglia. Furthermore, their modulation by chronically-applied serotonin or NGF was investigated. Results Rat or mouse neurons in culture mainly belonged to small and medium diameter neurons as observed in sections of trigeminal ganglia. Real time RT-PCR, Western blot analysis and immunocytochemistry showed upregulation of P2X3 and TRPV1 receptors after 1–4 days in culture (together with their more frequent co-localization, while P2X2 ones were unchanged. TRPV1 immunoreactivity was, however, lower in mouse ganglia and cultures. Intracellular Ca2+ imaging and whole-cell patch clamping showed functional P2X and TRPV1 receptors. Neurons exhibited a range of responses to the P2X agonist α, β-methylene-adenosine-5'-triphosphate indicating the presence of homomeric P2X3 receptors (selectively antagonized by A-317491 and heteromeric P2X2/3 receptors. The latter were observed in 16 % mouse neurons only. Despite upregulation of receptors in culture, neurons retained the potential for further enhancement of P2X3 receptors by 24 h NGF treatment. At this time point TRPV1 receptors had lost the facilitation observed after acute NGF application. Conversely, chronically-applied serotonin selectively upregulated TRPV1 receptors rather than P2X3 receptors. Conclusion Comparing ganglia and cultures offered the advantage of understanding early adaptive changes of nociception

  19. Serotonin 2A Receptor SNP rs7330461 Association with Treatment Response to Pomaglumetad Methionil in Patients with Schizophrenia

    Directory of Open Access Journals (Sweden)

    Laura K. Nisenbaum

    2016-02-01

    Full Text Available This study aims to confirm the initial pharmacogenetic finding observed within the clinical proof-of-concept trial of an enhanced response to treatment with pomaglumetad methionil (LY2140023 monohydrate in Caucasian schizophrenia patients homozygous for T/T at single nucleotide polymorphism rs7330461 in the serotonin (5-hydroxytryptamine 2A receptor gene compared to A/A homozygous patients. The effect of the rs7330461 genotype on the response to pomaglumetad methionil treatment was assessed in three additional clinical trials and in an integrated analysis. Overall, this study includes data from 1115 Caucasian patients for whom genotyping information for rs7330461 was available, consisting of 513 A/A homozygous, 466 A/T heterozygous and 136 T/T homozygous patients. Caucasian T/T homozygous patients showed significantly (p ≤ 0.05 greater improvement in Positive and Negative Syndrome Scale (PANSS total scores during treatment with pomaglumetad methionil 40 mg twice daily compared to A/A homozygous patients. Additionally, T/T homozygous patients receiving pomaglumetad methionil had significantly (p ≤ 0.05 greater improvements in PANSS total scores compared to placebo and similar improvements as T/T homozygous patients receiving standard-of-care (SOC treatment. The findings reported here in conjunction with prior reports show that in Caucasian patients with schizophrenia, the T/T genotype at rs7330461 is consistently associated with an increased treatment response to pomaglumetad methionil compared to the A/A genotype.

  20. Impulsive alcohol-related risk-behavior and emotional dysregulation among individuals with a serotonin 2B receptor stop codon.

    Science.gov (United States)

    Tikkanen, R; Tiihonen, J; Rautiainen, M R; Paunio, T; Bevilacqua, L; Panarsky, R; Goldman, D; Virkkunen, M

    2015-01-01

    A relatively common stop codon (Q20*) was identified in the serotonin 2B receptor gene (HTR2B) in a Finnish founder population in 2010 and it was associated with impulsivity. Here we examine the phenotype of HTR2B Q20* carriers in a setting comprising 14 heterozygous HTR2B Q20* carriers and 156 healthy controls without the HTR2B Q20*. The tridimensional personality questionnaire, Brown-Goodwin lifetime aggression scale, the Michigan alcoholism screening test and lifetime drinking history were used to measure personality traits, impulsive and aggressive behavior, both while sober and under the influence of alcohol, and alcohol consumption. Regression analyses showed that among the HTR2B Q20* carriers, temperamental traits resembled a passive-dependent personality profile, and the presence of the HTR2B Q20* predicted impulsive and aggressive behaviors particularly under the influence of alcohol. Results present examples of how one gene may contribute to personality structure and behaviors in a founder population and how personality may translate into behavior. PMID:26575222

  1. Spatiotemporal brain dynamics of emotional face processing modulations induced by the serotonin 1A/2A receptor agonist psilocybin.

    Science.gov (United States)

    Bernasconi, Fosco; Schmidt, André; Pokorny, Thomas; Kometer, Michael; Seifritz, Erich; Vollenweider, Franz X

    2014-12-01

    Emotional face processing is critically modulated by the serotonergic system. For instance, emotional face processing is impaired by acute psilocybin administration, a serotonin (5-HT) 1A and 2A receptor agonist. However, the spatiotemporal brain mechanisms underlying these modulations are poorly understood. Here, we investigated the spatiotemporal brain dynamics underlying psilocybin-induced modulations during emotional face processing. Electrical neuroimaging analyses were applied to visual evoked potentials in response to emotional faces, following psilocybin and placebo administration. Our results indicate a first time period of strength (i.e., Global Field Power) modulation over the 168-189 ms poststimulus interval, induced by psilocybin. A second time period of strength modulation was identified over the 211-242 ms poststimulus interval. Source estimations over these 2 time periods further revealed decreased activity in response to both neutral and fearful faces within limbic areas, including amygdala and parahippocampal gyrus, and the right temporal cortex over the 168-189 ms interval, and reduced activity in response to happy faces within limbic and right temporo-occipital brain areas over the 211-242 ms interval. Our results indicate a selective and temporally dissociable effect of psilocybin on the neuronal correlates of emotional face processing, consistent with a modulation of the top-down control.

  2. Decreased frontal serotonin2A receptor binding in antipsychotic-naive patients with first-episode schizophrenia

    DEFF Research Database (Denmark)

    Rasmussen, Hans; Erritzoe, David; Andersen, Rune;

    2010-01-01

    , in vivo studies of serotonin(2A) binding report conflicting results, presumably because sample sizes have been small or because schizophrenic patients who were not antipsychotic-naive were included. Furthermore, the relationships between serotonin(2A) binding, psychopathology, and central neurocognitive...

  3. Robust upregulation of serotonin 2A receptors after chronic spinal transection of rats: An immunohistochemical study

    DEFF Research Database (Denmark)

    Kong, Xiang-Yu; Wienecke, Jacob; Hultborn, Hans;

    2010-01-01

    of the sacrocaudal spinal cord. The results show that in the spinalized rats the immunoreactivity of 5-HT2A receptors below the lesion is dramatically increased in the motoneuron soma and its proximal dendritic territory, most likely also in their distal dendritic territory, to a level 3-5-fold higher than...

  4. X-ray structure of the mouse serotonin 5-HT3 receptor

    NARCIS (Netherlands)

    Hassaine, Gherici; Deluz, Cedric; Grasso, Luigino; Wyss, Romain; Tol, Menno B.; Hovius, Ruud; Graff, Alexandra; Stahlberg, Henning; Tomizaki, Takashi; Desmyter, Aline; Moreau, Christophe; Li, Xiao-Dan; Poitevin, Frederic; Vogel, Horst; Nury, Hugues

    2014-01-01

    Neurotransmitter-gated ion channels of the Cys-loop receptor family mediate fast neurotransmission throughout the nervous system. The molecular processes of neurotransmitter binding, subsequent opening of the ion channel and ion permeation remain poorly understood. Here we present the X-ray structur

  5. A serotonin-1A receptor agonist and an N-methyl-D-aspartate receptor antagonist oppose each others effects in a genetic rat epilepsy model.

    Science.gov (United States)

    Filakovszky, J; Gerber, K; Bagdy, G

    1999-02-12

    The WAG/RIJ rats exhibit spontaneously occurring spike-wave discharges (SWD) accompanied by behavioural phenomena, with characteristics similar to the human absence type epilepsy. To study the mechanisms involved in this type of epileptiform activity we investigated the effects of the serotonin-1A (5-HT1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) and the N-methyl-D-aspartate (NMDA) receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d]cyclohepten-5,10-imine maleate (MK-801). Intracerebroventricular (i.c.v.) injection of 8-OH-DPAT caused marked, dose dependent increase, MK-801 a decrease in the cumulative duration and number of spike-wave discharges. Pretreatment with MK-801 (10 microg/rat i.c.v.) abolished the increase caused by 8-OH-DPAT (20 microg/rat i.c.v.), but the decrease in SWD to MK-801 was counterbalanced by 8-OH-DPAT. These data provide evidence for an interaction of glutamatergic and serotonergic mechanisms in the triggering and maintenance of epileptic activity in this genetic model of absence epilepsy.

  6. Gender Interacts with Opioid Receptor Polymorphism A118G and Serotonin Receptor Polymorphism -1438 A/G on Speed-Dating Success.

    Science.gov (United States)

    Wu, Karen; Chen, Chuansheng; Moyzis, Robert K; Greenberger, Ellen; Yu, Zhaoxia

    2016-09-01

    We examined an understudied but potentially important source of romantic attraction-genetics-using a speed-dating paradigm. The mu opioid receptor (OPRM1) polymorphism A118G (rs1799971) and the serotonin receptor (HTR2A) polymorphism -1438 A/G (rs6311) were studied because they have been implicated in social affiliation. Guided by the social role theory of mate selection and prior genetic evidence, we examined these polymorphisms' gender-specific associations with speed-dating success (i.e., date offers, mate desirability). A total of 262 single Asian Americans went on speed-dates with members of the opposite gender and completed interaction questionnaires about their partners. Consistent with our prediction, significant gender-by-genotype interactions were found for speed-dating success. Specifically, the minor variant of A118G (G-allele), which has been linked to submissiveness/social sensitivity, predicted greater speed-dating success for women, whereas the minor variant of -1438 A/G (G-allele), which has been linked to leadership/social dominance, predicted greater speed-dating success for men. For both polymorphisms, reverse "dampening" effects of minor variants were found for opposite-gender counterparts. These results support previous research on the importance of the opioid and serotonergic systems in social affiliation, indicating that their influence extends to dating success, with opposite, yet gender-norm consistent, effects for men and women. PMID:27193909

  7. Statistical distribution of blood serotonin as a predictor of early autistic brain abnormalities

    Directory of Open Access Journals (Sweden)

    Janušonis Skirmantas

    2005-07-01

    Full Text Available Abstract Background A wide range of abnormalities has been reported in autistic brains, but these abnormalities may be the result of an earlier underlying developmental alteration that may no longer be evident by the time autism is diagnosed. The most consistent biological finding in autistic individuals has been their statistically elevated levels of 5-hydroxytryptamine (5-HT, serotonin in blood platelets (platelet hyperserotonemia. The early developmental alteration of the autistic brain and the autistic platelet hyperserotonemia may be caused by the same biological factor expressed in the brain and outside the brain, respectively. Unlike the brain, blood platelets are short-lived and continue to be produced throughout the life span, suggesting that this factor may continue to operate outside the brain years after the brain is formed. The statistical distributions of the platelet 5-HT levels in normal and autistic groups have characteristic features and may contain information about the nature of this yet unidentified factor. Results The identity of this factor was studied by using a novel, quantitative approach that was applied to published distributions of the platelet 5-HT levels in normal and autistic groups. It was shown that the published data are consistent with the hypothesis that a factor that interferes with brain development in autism may also regulate the release of 5-HT from gut enterochromaffin cells. Numerical analysis revealed that this factor may be non-functional in autistic individuals. Conclusion At least some biological factors, the abnormal function of which leads to the development of the autistic brain, may regulate the release of 5-HT from the gut years after birth. If the present model is correct, it will allow future efforts to be focused on a limited number of gene candidates, some of which have not been suspected to be involved in autism (such as the 5-HT4 receptor gene based on currently available clinical and

  8. The 5-HT(2A) receptor and serotonin transporter in Asperger's disorder: A PET study with [¹¹C]MDL 100907 and [¹¹C]DASB.

    Science.gov (United States)

    Girgis, Ragy R; Slifstein, Mark; Xu, Xiaoyan; Frankle, W Gordon; Anagnostou, Evdokia; Wasserman, Stacey; Pepa, Lauren; Kolevzon, Alexander; Abi-Dargham, Anissa; Laruelle, Marc; Hollander, Eric

    2011-12-30

    Evidence from biochemical, imaging, and treatment studies suggest abnormalities of the serotonin system in autism spectrum disorders, in particular in frontolimbic areas of the brain. We used the radiotracers [(11)C]MDL 100907 and [(11)C]DASB to characterize the 5-HT(2A) receptor and serotonin transporter in Asperger's Disorder. Seventeen individuals with Asperger's Disorder (age=34.3 ± 11.1 years) and 17 healthy controls (age=33.0 ± 9.6 years) were scanned with [(11)C]MDL 100907. Of the 17 patients, eight (age=29.7 ± 7.0 years) were also scanned with [¹¹C]DASB, as were eight healthy controls (age=28.7 ± 7.0 years). Patients with Asperger's Disorder and healthy control subjects were matched for age, gender, and ethnicity, and all had normal intelligence. Metabolite-corrected arterial plasma inputs were collected and data analyzed by two-tissue compartment modeling. The primary outcome measure was regional binding potential BP(ND). Neither regional [¹¹C]MDL 100907 BP(ND) nor [¹¹C]DASB BP(ND) was statistically different between the Asperger's and healthy subjects. This study failed to find significant alterations in binding parameters of 5-HT(2A) receptors and serotonin transporters in adult subjects with Asperger's disorder. PMID:22079057

  9. Synthesis and Evaluation of Mefway Analogs as Ligands for Serotonin 5HT1A Receptors

    OpenAIRE

    Thio, Joanne P.; Liang, Christopher; Bajwa, Alisha K; Wooten, Dustin W; Christian, Bradley T; Mukherjee, Jogeshwar

    2014-01-01

    18F-Mefway (N-{2-[4-(2′-methoxyphenyl)piperazinyl]ethyl}-N-(2-pyridyl)-N-(4′-18F-fluoro-methylcyclohexane)carboxamide) was developed and evaluated for use as a PET ligand for imaging 5-HT1A receptors. Ongoing studies of 18F-Mefway have shown it to be an effective PET radiotracer. We have synthesized isomers of Mefway by changing the position of the methyl-group in attempts to evaluate stability for imaging purposes. 2-Methyl-, 3-methyl-, and 4-methyl-cyclohexane-1-carboxylic acids and 3-carbo...

  10. Modulatory effects of two novel agonists for serotonin receptor 7 on emotion, motivation and circadian rhythm profiles in mice.

    Science.gov (United States)

    Adriani, Walter; Travaglini, Domenica; Lacivita, Enza; Saso, Luciano; Leopoldo, Marcello; Laviola, Giovanni

    2012-02-01

    Serotonin receptor 7, i.e. 5-HT(7) protein coded by Htr7 gene, was discovered in supra-chiasmatic nucleus (SCN) of the hypothalamus but is widespread in the forebrain. Studies have shown that this receptor is involved in learning/memory, regulation of mood and circadian rhythms. The modulatory effects of two novel agonists, LP-211 and LP-378, were assessed in male adult CD-1 mice with a battery of behavioral tests. Exp. 1 (Black/White Boxes, BWB: Adriani et al., 2009) and Exp. 2 (Dark/Light, D/L; Novelty-seeking, N-S) show: a) that LP-211 administration (acutely, at a 0.25 mg/kg dose i.p.) increases locomotion and BWB exploration; b) that the time spent away from an aversive, lit chamber (i.e., stress-induced anxiety) and in a new environment (i.e., novelty-induced curiosity) are both reduced. Sub-chronic LP-211 (at a 2.5 mg/kg dose i.p.) reveals a sensitization of locomotor-stimulant properties over 4-5 days. In Exp. 3 (BWB), a three- to four-fold dosage (acutely, at 0.83 mg/kg i.p.) is needed with LP-378 to increase locomotion and BWB exploration. In Exp. 4, mice under constant-light conditions reveal the expected spontaneous lengthening (1.5 h per day) of circadian rhythms. A significant phase advance is induced by LP-211 (at a 0.25 mg/kg dose i.p., administered around activity offset), with onset of activity taking place 6 h earlier than in controls. In summary, LP-211 is able to act consistently onto exploratory motivation, anxiety-related profiles, and spontaneous circadian rhythm. In the next future, agonist modulation of 5-HT(7) receptors might turn out to be beneficial for sleep and/or anxiety disorders. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.

  11. Systematic Screening of the Serotonin Receptor 1A (5-HT1A) Gene in Chronic Tinnitus

    Institute of Scientific and Technical Information of China (English)

    Kleinjung T; Langguth B; Fischer B; Hajak G; Eichhammer P; Sand PG

    2006-01-01

    Objective Chronic tinnitus is a highly prevalent condition and has been hypothesized to result from an innate disturbance in central nervous serotonergic transmission. Given the frequent comorbidity with major depression and anxiety, we argue that candidate genes for these disorders are likely to overlap. The present study addresses the gene encoding for the 5-HT1A receptor as a putative risk factor for tinnitus. Methods In 88 subjects with a diagnosis of chronic subjective tinnitus who underwent a detailed neurootological examination, the entire 5-HT1A gene was amplified using overlapping PCR products. Amplicons were custom sequenced bidirectionally and were screened for variants in multiple alignments against the human genome reference. Results We identified a synonymous C > T exchange at residue 184 (Pro) in 7/88 subjects, but detected no missense variants in the population under study. Specifically, the following residues were fully conserved: 16 (Pro), 22 (Gly), 28 (Ile), 98 (Val), 220(Arg), 267 (Val), 273 (Gly), and 418 (Asn). Discussion The present data count against the causation of chronic tinnitus by a change in the 5-HT1A receptor's amino acid sequence. However, the allele frequency for the 184Pro minor allele (0.04) reached twice the frequency reported in control cohorts from the same ethnicity.Additional investigations are invited to clarify the role of the 5-HT1A polymorphism in larger samples, and to control for comorbid affective disorders.

  12. Structure-activity relationships of constrained phenylethylamine ligands for the serotonin 5-HT2 receptors.

    Directory of Open Access Journals (Sweden)

    Vignir Isberg

    Full Text Available Serotonergic ligands have proven effective drugs in the treatment of migraine, pain, obesity, and a wide range of psychiatric and neurological disorders. There is a clinical need for more highly 5-HT2 receptor subtype-selective ligands and the most attention has been given to the phenethylamine class. Conformationally constrained phenethylamine analogs have demonstrated that for optimal activity the free lone pair electrons of the 2-oxygen must be oriented syn and the 5-oxygen lone pairs anti relative to the ethylamine moiety. Also the ethyl linker has been constrained providing information about the bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9-11, and describe their synthetic routes. Ligand docking in the 5-HT2B crystal structure showed that the 1,2-heterocyclized compounds can be accommodated in the binding site. Conformational analysis showed that 11 can only bind in a higher-energy conformation, which would explain its absent or low affinity. The amine and 2-oxygen interactions with D3.32 and S3.36, respectively, can form but shift the placement of the core scaffold. The constraints in 9-11 resulted in docking poses with the 4-bromine in closer vicinity to 5.46, which is polar only in the human 5-HT2A subtype, for which 9-11 have the lowest affinity. The new ligands, conformational analysis and docking expand the structure-activity relationships of constrained phenethylamines and contributes towards the development of 5-HT2 receptor subtype-selective ligands.

  13. Differential control of dopamine ascending pathways by serotonin2B receptor antagonists: New opportunities for the treatment of schizophrenia.

    Science.gov (United States)

    Devroye, Céline; Cathala, Adeline; Haddjeri, Nasser; Rovera, Renaud; Vallée, Monique; Drago, Filippo; Piazza, Pier Vincenzo; Spampinato, Umberto

    2016-10-01

    Recent studies suggest that the central serotonin2B receptor (5-HT2BR) could be an interesting pharmacological target for treating neuropsychiatric disorders related to dopamine (DA) dysfunction, such as schizophrenia. Thus, the present study was aimed at characterizing the role of 5-HT2BRs in the control of ascending DA pathway activity. Using neurochemical, electrophysiological and behavioral approaches, we assessed the effects of two selective 5-HT2BR antagonists, RS 127445 and LY 266097, on in vivo DA outflow in DA-innervated regions, on mesencephalic DA neuronal firing, as well as in behavioral tests predictive of antipsychotic efficacy and tolerability, such as phencyclidine (PCP)-induced deficit in novel object recognition (NOR) test, PCP-induced hyperlocomotion and catalepsy. Both RS 127445 (0.16 mg/kg, i.p.) and LY 266097 (0.63 mg/kg, i.p.) increased DA outflow in the medial prefrontal cortex (mPFC). RS 127445, devoid of effect in the striatum, decreased DA outflow in the nucleus accumbens, and potentiated haloperidol (0.1 mg/kg, s.c.)-induced increase in mPFC DA outflow. Also, RS 127445 decreased the firing rate of DA neurons in the ventral tegmental area, but had no effect in the substantia nigra pars compacta. Finally, both RS 127445 and LY 266097 reversed PCP-induced deficit in NOR test, and reduced PCP-induced hyperlocomotion, without inducing catalepsy. These results demonstrate that 5-HT2BRs exert a differential control on DA pathway activity, and suggest that 5-HT2BR antagonists could represent a new class of drugs for improved treatment of schizophrenia, with an ideal profile of effects expected to alleviate cognitive and positive symptoms, without eliciting extrapyramidal symptoms. PMID:27260325

  14. Serotonin receptor 2A (HTR2A) gene polymorphism predicts treatment response to venlafaxine XR in generalized anxiety disorder.

    Science.gov (United States)

    Lohoff, F W; Aquino, T D; Narasimhan, S; Multani, P K; Etemad, B; Rickels, K

    2013-02-01

    Generalized anxiety disorder (GAD) is a chronic psychiatric disorder with significant morbidity and mortality. Antidepressant drugs are the preferred choice for treatment; however, treatment response is often variable. Several studies in major depression have implicated a role of the serotonin receptor gene (HTR2A) in treatment response to antidepressants. We tested the hypothesis that the genetic polymorphism rs7997012 in the HTR2A gene predicts treatment outcome in GAD patients treated with venlafaxine XR. Treatment response was assessed in 156 patients that participated in a 6-month open-label clinical trial of venlafaxine XR for GAD. Primary analysis included Hamilton Anxiety Scale (HAM-A) reduction at 6 months. Secondary outcome measure was the Clinical Global Impression of Improvement (CGI-I) score at 6 months. Genotype and allele frequencies were compared between groups using χ(2) contingency analysis. The frequency of the G-allele differed significantly between responders (70%) and nonresponders (56%) at 6 months (P=0.05) using the HAM-A scale as outcome measure. Similarly, using the CGI-I as outcome, the G-allele was significantly associated with improvement (P=0.01). Assuming a dominant effect of the G-allele, improvement differed significantly between groups (P=0.001, odds ratio=4.72). Similar trends were observed for remission although not statistically significant. We show for the first time a pharmacogenetic effect of the HTR2A rs7997012 variant in anxiety disorders, suggesting that pharmacogenetic effects cross diagnostic categories. Our data document that individuals with the HTR2A rs7997012 single nucleotide polymorphism G-allele have better treatment outcome over time. Future studies with larger sample sizes are necessary to further characterize this effect in treatment response to antidepressants in GAD. PMID:22006095

  15. Central serotonin(2B) receptor blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical dopamine outflow.

    Science.gov (United States)

    Devroye, Céline; Cathala, Adeline; Di Marco, Barbara; Caraci, Filippo; Drago, Filippo; Piazza, Pier Vincenzo; Spampinato, Umberto

    2015-10-01

    The central serotonin2B receptor (5-HT2BR) is currently considered as an interesting pharmacological target for improved treatment of drug addiction. In the present study, we assessed the effect of two selective 5-HT2BR antagonists, RS 127445 and LY 266097, on cocaine-induced hyperlocomotion and dopamine (DA) outflow in the nucleus accumbens (NAc) and the dorsal striatum of freely moving rats. The peripheral administration of RS 127445 (0.16 mg/kg, i.p.) or LY 266097 (0.63 mg/kg, i.p.) significantly reduced basal DA outflow in the NAc shell, but had no effect on cocaine (10 mg/kg, i.p.)-induced DA outflow in this brain region. Also, RS 127445 failed to modify both basal and cocaine-induced DA outflow in the NAc core and the dorsal striatum. Conversely, both 5-HT2BR antagonists reduced cocaine-induced hyperlocomotion. Furthermore, RS 127445 as well as the DA-R antagonist haloperidol (0.1 mg/kg, i.p.) reduced significantly the late-onset hyperlocomotion induced by the DA-R agonist quinpirole (0.5 mg/kg, s.c.). Altogether, these results demonstrate that 5-HT2BR blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical DA outflow. This interaction takes place downstream to DA neurons and could involve an action at the level of dorsostriatal and/or NAc DA transmission, in keeping with the importance of these brain regions in the behavioural responses of cocaine. Overall, this study affords additional knowledge into the regulatory control exerted by the 5-HT2BR on ascending DA pathways, and provides additional support to the proposed role of 5-HT2BRs as a new pharmacological target in drug addiction. PMID:26116760

  16. The serotonin 5-HT7Dro receptor is expressed in the brain of Drosophila, and is essential for normal courtship and mating.

    Directory of Open Access Journals (Sweden)

    Jaime Becnel

    Full Text Available The 5-HT(7 receptor remains one of the less well characterized serotonin receptors. Although it has been demonstrated to be involved in the regulation of mood, sleep, and circadian rhythms, as well as relaxation of vascular smooth muscles in mammals, the precise mechanisms underlying these functions remain largely unknown. The fruit fly, Drosophila melanogaster, is an attractive model organism to study neuropharmacological, molecular, and behavioral processes that are largely conserved with mammals. Drosophila express a homolog of the mammalian 5-HT(7 receptor, as well as homologs for the mammalian 5-HT(1A, and 5-HT(2, receptors. Each fly receptor couples to the same effector pathway as their mammalian counterpart and have been demonstrated to mediate similar behavioral responses. Here, we report on the expression and function of the 5-HT(7Dro receptor in Drosophila. In the larval central nervous system, expression is detected postsynaptically in discreet cells and neuronal circuits. In the adult brain there is strong expression in all large-field R neurons that innervate the ellipsoid body, as well as in a small group of cells that cluster with the PDF-positive LNvs neurons that mediate circadian activity. Following both pharmacological and genetic approaches, we have found that 5-HT(7Dro activity is essential for normal courtship and mating behaviors in the fly, where it appears to mediate levels of interest in both males and females. This is the first reported evidence of direct involvement of a particular serotonin receptor subtype in courtship and mating in the fly.

  17. Direct interaction and functional coupling between human 5-HT6 receptor and the light chain 1 subunit of the microtubule-associated protein 1B (MAP1B-LC1.

    Directory of Open Access Journals (Sweden)

    Soon-Hee Kim

    Full Text Available Serotonin (5-HT receptors of type 6 (5-HT6R play important roles in mood, psychosis, and eating disorders. Recently, a growing number of studies support the use of 5-HT6R-targeting compounds as promising drug candidates for treating cognitive dysfunction associated with Alzheimer's disease. However, the mechanistic linkage between 5-HT6R and such functions remains poorly understood. By using yeast two-hybrid, GST pull-down, and co-immunoprecipitation assays, here we show that human 5-HT6R interacts with the light chain 1 (LC1 subunit of MAP1B protein (MAP1B-LC1, a classical microtubule-associated protein highly expressed in the brain. Functionally, we have found that expression of MAP1B-LC1 regulates serotonin signaling in a receptor subtype-specific manner, specifically controlling the activities of 5-HT6R, but not those of 5-HT4R and 5-HT7R. In addition, we have demonstrated that MAP1B-LC1 increases the surface expression of 5-HT6R and decreases its endocytosis, suggesting that MAP1B-LC1 is involved in the desensitization and trafficking of 5-HT6R via a direct interaction. Together, we suggest that signal transduction pathways downstream of 5-HT6R are regulated by MAP1B, which might play a role in 5-HT6R-mediated signaling in the brain.

  18. Retinal Neuroprotective Effects of Flibanserin, an FDA-Approved Dual Serotonin Receptor Agonist-Antagonist.

    Directory of Open Access Journals (Sweden)

    Aaron S Coyner

    Full Text Available To assess the neuroprotective effects of flibanserin (formerly BIMT-17, a dual 5-HT1A agonist and 5-HT2A antagonist, in a light-induced retinopathy model.Albino BALB/c mice were injected intraperitoneally with either vehicle or increasing doses of flibanserin ranging from 0.75 to 15 mg/kg flibanserin. To assess 5-HT1A-mediated effects, BALB/c mice were injected with 10 mg/kg WAY 100635, a 5-HT1A antagonist, prior to 6 mg/kg flibanserin and 5-HT1A knockout mice were injected with 6 mg/kg flibanserin. Injections were administered once immediately prior to light exposure or over the course of five days. Light exposure lasted for one hour at an intensity of 10,000 lux. Retinal structure was assessed using spectral domain optical coherence tomography and retinal function was assessed using electroretinography. To investigate the mechanisms of flibanserin-mediated neuroprotection, gene expression, measured by RT-qPCR, was assessed following five days of daily 15 mg/kg flibanserin injections.A five-day treatment regimen of 3 to 15 mg/kg of flibanserin significantly preserved outer retinal structure and function in a dose-dependent manner. Additionally, a single-day treatment regimen of 6 to 15 mg/kg of flibanserin still provided significant protection. The action of flibanserin was hindered by the 5-HT1A antagonist, WAY 100635, and was not effective in 5-HT1A knockout mice. Creb, c-Jun, c-Fos, Bcl-2, Cast1, Nqo1, Sod1, and Cat were significantly increased in flibanserin-injected mice versus vehicle-injected mice.Intraperitoneal delivery of flibanserin in a light-induced retinopathy mouse model provides retinal neuroprotection. Mechanistic data suggests that this effect is mediated through 5-HT1A receptors and that flibanserin augments the expression of genes capable of reducing mitochondrial dysfunction and oxidative stress. Since flibanserin is already FDA-approved for other indications, the potential to repurpose this drug for treating retinal

  19. Serotonin, its receptors and depression%5-羟色胺及其受体与抑郁症

    Institute of Scientific and Technical Information of China (English)

    秦娟娟; 刘振华; 梁艳; 刘鹰; 张黎明; 李云峰

    2012-01-01

    抑郁症作为情感性精神障碍性疾病具有高患病率、高自杀率和低治疗率等特点,其神经生物学机制远未阐明.目前一线抗抑郁药主要基于“单胺策略”而研发,主要包括单胺重摄取抑制剂、单胺氧化酶抑制剂和单胺受体配体药物等.尽管效应明确,但也存在有效率不高、起效延迟等较严重缺陷.长期研究证实,抑郁症与5-羟色胺(5-HT)神经系统功能低下密切相关(经典单胺假说);现代单胺理论认为,5-HT及其单胺自身受体(如5-HT1A等)的适应性和可塑性调节与抑郁症治疗密切相关.近些年对5-HT及其转运蛋白和受体研究取得了系列进展,如对5-HT转运体连锁区域中短(S)等位基因在情绪及认知方面积极作用的发现,5-HT相关受体新拮抗剂或激动剂药理学作用的发现等.5-HT能药物研究也取得了重要突破(如2011年在美国上市的5-HT1A部分激动和5-HT重摄取抑制双靶标新药维拉唑酮).本文就近年来5-HT神经调节与抑郁症之间关系研究的相关进展进行综述.%Depression is an affective disorder with high prevalence, high suicide rate and low treatment rate, its neurobiologi-cal mechanism remains unclear. Most of current first-line antidepressants are based on the "monoamine hypothesis" , including mono-amine reuptake inhibitors, monoamine oxidase inhibitors and monoamine receptor ligand drugs. Although their therapeutic effect is definite , there are still serious defects, such as low response and delayed onset. It has been widely confirmed that depression is closely related to low serotonin(5-hydroxytryptamine, 5-HT) neurotransmission function (classical monoamine hypothesis) .while modern monoamine theory suggests that the adaptability and plasticity regulation of 5-HT and its autoreceptors (such as 5-HT1A) are closely related to the treatment of depression. There are a series of new progress in recent years in the studies of 5-HT transporter proteins and

  20. MDMA-evoked changes in the binding of dopamine D(2) receptor ligands in striatum of rats with unilateral serotonin depletion

    DEFF Research Database (Denmark)

    Ostergaard, Søren Dinesen; Alstrup, Aage Kristian Olsen; Gramsbergen, Jan Bert;

    2010-01-01

    We earlier reported an anomalous 50% decrease in [(11)C]N-methylspiperone ([(11)C]NMSP) binding to dopamine D(2)-like receptors in living pig striatum after challenge with 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy"), suggesting either (1) a species peculiarity in the vulnerability...... lesions, later verified by [(125)I]RTI-55 autoradiography. Baseline [(11)C]NMSP microPET recordings were followed by either saline or MDMA-HCl (4 mg/kg) injections (i.v.), and a second [(11)C]NMSP recording, culminating with injection of [(3)H]raclopride for autoradiography ex vivo. Neither MDMA......-challenge nor serotonin lesion had any detectable effect on [(11)C]NMSP binding. In contrast, MDMA challenge increased receptor occupancy by [(3)H]raclopride ex vivo (relative to the B(max) in vitro) from 8% to 12%, and doubled the free ligand concentration in cerebral cortex, apparently by blocking hepatic CYP...

  1. Behavioral and electroencephalographic effects of a serotonin receptor agonist (5-methoxy-N,N-dimethyltryptamine) in a feline model of photosensitive epilepsy.

    Science.gov (United States)

    Wada, Y; Hasegawa, H; Nakamura, M; Yamaguchi, N

    1992-04-13

    The effects of a serotonin (5-HT) receptor agonist, 5-methoxy-N,N-dimethyltryptamine (5-MeODMT), on epileptic photosensitivity were studied in the lateral geniculate-kindled cat. 5-MeODMT at 4 mg/kg significantly suppressed photically induced myoclonus, but not paroxysmal EEG activity, at 0.5-1 h after injection. This antiepileptic effect was seen in association with the appearance of behavioral signs similar to those seen in the 5-HT syndrome. The present data provide further evidence that 5-HT plays an important role in photosensitive epilepsy, and suggest that the inhibitory effect of 5-MeODMT on photosensitivity results from its agonist action at 5-HT1 receptors. PMID:1407649

  2. Lifelong disturbance of serotonin transporter functioning results in fear learning deficits : Reversal by blockade of CRF1 receptors

    NARCIS (Netherlands)

    Bijlsma, Elisabeth Y; Hendriksen, Hendrikus; Baas, Johanna M P; Millan, Mark J; Groenink, Lucianne

    2015-01-01

    The inability to associate aversive events with relevant cues (i.e. fear learning) may lead to maladaptive anxiety. To further study the role of the serotonin transporter (SERT) in fear learning, classical fear conditioning was studied in SERT knockout rats (SERT(-/-)) using fear potentiation of the

  3. Polymorphisms of serotonin receptor 2A and 2C genes and COMT in relation to obesity and type 2 diabetes

    DEFF Research Database (Denmark)

    Kring, Sofia I I; Werge, Thomas; Holst, Claus;

    2009-01-01

    BACKGROUND: Candidate genes of psychological importance include 5HT2A, 5HT2C, and COMT, implicated in the serotonin, noradrenaline and dopamine pathways, which also may be involved in regulation of energy balance. We investigated the associations of single nucleotide polymorphisms (SNPs) of these...

  4. Effect of 5-HT1A receptor-mediated serotonin augmentation on Fos immunoreactivity in rat brain

    NARCIS (Netherlands)

    Jongsma, ME; Sebens, JB; Bosker, FJ; Korf, J

    2002-01-01

    The consequences of pharmacologically evoked augmented serotonin (5-hydroxytryptamine, 5-HT) release on neuronal activity in the brain, as reflected by the cellular expression of the immediate early gene c-fos, were studied. Wistar rats were treated with saline, the 5-HT reuptake inhibitor citalopra

  5. Ex vivo evaluation of the serotonin 1A receptor partial agonist [³H]CUMI-101 in awake rats

    DEFF Research Database (Denmark)

    Palner, Mikael; Underwood, Mark D; Kumar, Dileep J S;

    2011-01-01

    -DL-phenylalanine, a serotonin synthesis inhibitor, did not show any effect on the standardized uptake values (SUVs) in any region. Citalopram did alter SBR, but this was due to changes in cerebellar SUVs. Our results indicate that [³H]CUMI-101 is a good radioligand for imaging 5-HT(1A) high-density regions in rats; however...

  6. Distribution of serotonin 5-HT2A and 5-HT7 receptors in the Onuf's nucleus of the rat spinal cord

    Institute of Scientific and Technical Information of China (English)

    Fanqing Zeng; Chen Xu; Ge Xu

    2008-01-01

    BACKGROUND: Motoneurons from the Onuf's nucleus of the spinal cord, which innervate the striated muscle of the pelvic floor, play an important role in erection, ejaculation, and urine control. Serotonin (5-hydroxytryptamine, 5-HT) regulates motoneuron activity from the Onuf's nucleus of the spinal cord.However, few studies exist that describe 5-HT receptor distribution in the Onuf's nucleus. In addition, the nature of the effects of 5-HT receptor on the innervating striated muscle of the pelvic floor is controversial.OBJECTIVE: To investigate the distribution of serotonin 5-HT2A and 5-HT7 receptors in motoneurons of Onuf's nucleus in the spinal cord of male rats, and to analyze the relationship of 5-HT2A and 5-H7 receptors to central modulation of urogenital function.DESIGN, TIME AND SETTING: The neural morphology experiment was performed at the Ultramicrostructure Laboratory of Reproductive Medicine, Basic Medical College, Chongqing Medical University, China from April to December 2007.MATERIALS: Ten adult, Sprague Dawley rats (eight males and two females) were randomly divided into a gender control group (n = 4,50% male and 50% female) and a retrograde tracing group (n = 6, 100% male).Recombinant pseudorabies virus (PRV-152) was provided by Professor LW Enquist from Princeton University, USA. Rabbit anti-5-HT2A and 5-HT7 receptor antibodies were purchased from Diasorin, France.METHODS: In the gender control group, the spinal L5-6segments were harvested, sliced, and then incubated antibodies specific against 5-HT2A or 5-HT7 receptors for immunohistochemical staining. In the retrograde tracing group, PRV-152 was separately injected into the right ischiocavernosus (ischiocavernosus subgroup,n = 3) and the fight external urethral sphincter (external urethral sphincter subgroup, n = 3). Four days after injection, L5-6 segments were harvested, sliced, and incubated with antibodies specific against 5-HT2A or 5-HT7 receptors for double-labeling immunofluoresccnce

  7. Selective serotonin receptor stimulation of the medial nucleus accumbens differentially affects appetitive motivation for food on a progressive ratio schedule of reinforcement.

    Science.gov (United States)

    Pratt, Wayne E; Schall, Megan A; Choi, Eugene

    2012-03-01

    Previously, we reported that stimulation of selective serotonin (5-HT) receptor subtypes in the nucleus accumbens shell differentially affected consumption of freely available food. Specifically, activation of 5-HT(6) receptors caused a dose-dependent increase in food intake, while the stimulation of 5-HT(1/7) receptor subtypes decreased feeding [34]. The current experiments tested whether similar pharmacological activation of nucleus accumbens serotonin receptors would also affect appetitive motivation, as measured by the amount of effort non-deprived rats exerted to earn sugar reinforcement. Rats were trained to lever press for sugar pellets on a progressive ratio 2 schedule of reinforcement. Across multiple treatment days, three separate groups (N=8-10) received bilateral infusions of the 5-HT(6) agonist EMD 386088 (at 0.0, 1.0 and 4.0 μg/0.5 μl/side), the 5-HT(1/7) agonist 5-CT (at 0, 0.5, 1.0, or 4.0 μg/0.5 μl/side), or the 5-HT(2C) agonist RO 60-0175 fumarate (at 0, 2.0, or 5.0 μg/0.5 μl/side) into the anterior medial nucleus accumbens prior to a 1-h progressive ratio session. Stimulation of 5-HT(6) receptors caused a dose-dependent increase in motivation as assessed by break point, reinforcers earned, and total active lever presses. Stimulation of 5-HT(1/7) receptors increased lever pressing at the 0.5 μg dose of 5-CT, but inhibited lever presses and break point at 4.0 μg/side. Injection of the 5-HT(2C) agonist had no effect on motivation within the task. Collectively, these experiments suggest that, in addition to their role in modulating food consumption, nucleus accumbens 5-HT(6) and 5-HT(1/7) receptors also differentially regulate the appetitive components of food-directed motivation.

  8. Differential effects of three 5-HT receptor antagonists on the performance of rats in attentional and working memory tasks.

    Science.gov (United States)

    Ruotsalainen, S; Sirviö, J; Jäkälä, P; Puumala, T; MacDonald, E; Riekkinen, P

    1997-05-01

    The effects of three different serotonin (5-HT) receptor antagonists (ketanserin, methysegide, methiothepin) in the modulation of attention, working memory and behavioural activity were investigated in this study by assessing the performance of rats in two separate cognitive models; the 5-choice serial reaction time (5-CSRT) task, which measures attention, and the delayed non-matching to position (DNMTP) task, which measures working memory. Methysergide and methiothepin bind at the 5-HT1 and 5-HT2 as well as the 5-HT5-7 receptors, with varying degrees of selectivity, and ketanserin binds at the 5-HT2A receptors rather selectively. None of these agents bind to any significant extent to 5-HT3 or 5-HT4 receptors. In the 5-CSRT task, neither methiothepin (0.15 mg/kg) nor ketanserin (1.0 and 3.0 mg/kg) impaired the choice accuracy of rats, although they induced sedation. The low doses of methysergide (1.5 and 3.0 mg/kg) slightly increased the behavioural activity of rats, whereas the high dose of methysergide (15.0 mg/kg) reduced behavioural activity and slightly reduced choice accuracy of the rats in the attentional task (monitoring of visual stimuli) under the baseline conditions or curtailed stimulus duration. This effect was not augmented at the reduced stimulus intensity. These findings suggest that the high dose of methysergide did not interfere with the visual discrimination of rats. Furthermore, methysergide did not reduce motivation for this task, since it did not increase food collection latencies. In the DNMTP task, methiothepin (0.15 mg/kg) induced a delay non-dependent deficit in choice accuracy. This could be due to an impaired alternation ability or akinesia, which increases an actual delay between sample and choice. Methiothepin (0.15 mg/kg) also interfered with behavioural activity of rats. Interestingly, ketanserin (1.0 mg/kg and 3.0 mg/kg) and methysergide (3.0-15.0 mg/kg) neither impaired the choice accuracy nor reduced the behavioural activity of

  9. Ex vivo evaluation of the serotonin 1A receptor partial agonist [³H]CUMI-101 in awake rats

    DEFF Research Database (Denmark)

    Palner, Mikael; Underwood, Mark D; Kumar, Dileep J S;

    2011-01-01

    -DL-phenylalanine, a serotonin synthesis inhibitor, did not show any effect on the standardized uptake values (SUVs) in any region. Citalopram did alter SBR, but this was due to changes in cerebellar SUVs. Our results indicate that [³H]CUMI-101 is a good radioligand for imaging 5-HT(1A) high-density regions in rats; however...... different challenge paradigms. [³H]CUMI-101 shows good uptake and good specific binding ratio (SBR) in frontal cortex 5.18 and in hippocampus 3.18. Binding was inhibited in a one-binding-site fashion by WAY100635 and unlabeled CUMI-101. The ex vivo B(max) of [³H]CUMI-101 in frontal cortex (98.7 fmol....../mg) and hippocampus (131 fmol/kg) agree with the ex vivo B(max) of [³H]MPPF in frontal cortex (147.1 fmol/mg) and hippocampus (72.1 fmol/mg) and with in vitro values reported with 8-OH-DPAT. Challenges with citalopram, a selective serotonin reuptake inhibitor, fenfluramine, a serotonin releaser, and 4-chloro...

  10. The serotonin-1A receptor distribution in healthy men and women measured by PET and [carbonyl-11C]WAY-100635

    International Nuclear Information System (INIS)

    The higher prevalence rates of depression and anxiety disorders in women compared to men have been associated with sexual dimorphisms in the serotonergic system. The present positron emission tomography (PET) study investigated the influence of sex on the major inhibitory serotonergic receptor subtype, the serotonin-1A (5-HT1A) receptor. Sixteen healthy women and 16 healthy men were measured using PET and the highly specific radioligand [carbonyl-11C]WAY-100635. Effects of age or gonadal hormones were excluded by restricting the inclusion criteria to young adults and by controlling for menstrual cycle phase. The 5-HT1A receptor BPND was quantified using (1) the 'gold standard' manual delineation approach with ten regions of interest (ROIs) and (2) a newly developed delineation method using a PET template normalized to the Montreal Neurologic Institute space with 45 ROIs based on automated anatomical labeling. The 5-HT1A receptor BPND was found equally distributed in men and women applying both the manual delineation method and the automated delineation approach. Women had lower mean BPND values in every region investigated, with a borderline significant sex difference in the hypothalamus (p=0.012, uncorrected). There was a high intersubject variability of the 5-HT1A receptor BPND within both sexes compared to the small mean differences between men and women. To conclude, when measured in the follicular phase, women do not differ from men in the 5-HT1A receptor binding. To explain the higher prevalence of affective disorders in women, further studies are needed to evaluate the relationship between hormonal status and the 5-HT1A receptor expression. (orig.)

  11. The serotonin-1A receptor distribution in healthy men and women measured by PET and [carbonyl-{sup 11}C]WAY-100635

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Patrycja; Savli, Markus; Fink, Martin; Spindelegger, Christoph; Moser, Ulrike; Kasper, Siegfried; Lanzenberger, Rupert [Medical University of Vienna, Department of Psychiatry and Psychotherapy, Vienna (Austria); Wadsak, Wolfgang; Dudczak, Robert; Kletter, Kurt [Medical University of Vienna, Department of Nuclear Medicine, Vienna (Austria); Mitterhauser, Markus; Mien, Leonhard-Key [Medical University of Vienna, Department of Nuclear Medicine, Vienna (Austria); University of Vienna, Department of Pharmaceutical Technology, Vienna (Austria)

    2008-12-15

    The higher prevalence rates of depression and anxiety disorders in women compared to men have been associated with sexual dimorphisms in the serotonergic system. The present positron emission tomography (PET) study investigated the influence of sex on the major inhibitory serotonergic receptor subtype, the serotonin-1A (5-HT{sub 1A}) receptor. Sixteen healthy women and 16 healthy men were measured using PET and the highly specific radioligand [carbonyl-{sup 11}C]WAY-100635. Effects of age or gonadal hormones were excluded by restricting the inclusion criteria to young adults and by controlling for menstrual cycle phase. The 5-HT{sub 1A} receptor BP{sub ND} was quantified using (1) the 'gold standard' manual delineation approach with ten regions of interest (ROIs) and (2) a newly developed delineation method using a PET template normalized to the Montreal Neurologic Institute space with 45 ROIs based on automated anatomical labeling. The 5-HT{sub 1A} receptor BP{sub ND} was found equally distributed in men and women applying both the manual delineation method and the automated delineation approach. Women had lower mean BP{sub ND} values in every region investigated, with a borderline significant sex difference in the hypothalamus (p=0.012, uncorrected). There was a high intersubject variability of the 5-HT{sub 1A} receptor BP{sub ND} within both sexes compared to the small mean differences between men and women. To conclude, when measured in the follicular phase, women do not differ from men in the 5-HT{sub 1A} receptor binding. To explain the higher prevalence of affective disorders in women, further studies are needed to evaluate the relationship between hormonal status and the 5-HT{sub 1A} receptor expression. (orig.)

  12. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    Science.gov (United States)

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease.

  13. Ligand-dependent conformations and dynamics of the serotonin 5-HT(2A receptor determine its activation and membrane-driven oligomerization properties.

    Directory of Open Access Journals (Sweden)

    Jufang Shan

    Full Text Available From computational simulations of a serotonin 2A receptor (5-HT(2AR model complexed with pharmacologically and structurally diverse ligands we identify different conformational states and dynamics adopted by the receptor bound to the full agonist 5-HT, the partial agonist LSD, and the inverse agonist Ketanserin. The results from the unbiased all-atom molecular dynamics (MD simulations show that the three ligands affect differently the known GPCR activation elements including the toggle switch at W6.48, the changes in the ionic lock between E6.30 and R3.50 of the DRY motif in TM3, and the dynamics of the NPxxY motif in TM7. The computational results uncover a sequence of steps connecting these experimentally-identified elements of GPCR activation. The differences among the properties of the receptor molecule interacting with the ligands correlate with their distinct pharmacological properties. Combining these results with quantitative analysis of membrane deformation obtained with our new method (Mondal et al, Biophysical Journal 2011, we show that distinct conformational rearrangements produced by the three ligands also elicit different responses in the surrounding membrane. The differential reorganization of the receptor environment is reflected in (i-the involvement of cholesterol in the activation of the 5-HT(2AR, and (ii-different extents and patterns of membrane deformations. These findings are discussed in the context of their likely functional consequences and a predicted mechanism of ligand-specific GPCR oligomerization.

  14. QSAR–CoMSIA applied to antipsychotic drugs with their dopamine D2 and serotonine 5HT2A membrane receptors

    Directory of Open Access Journals (Sweden)

    SPERANTA AVRAM

    2011-02-01

    Full Text Available Antipsychotic drugs are psychiatric medication primarily used to manage psychosis (e.g., delusions or hallucinations, particularly in schizophrenia and bipolar disorder. First and second generations of antipshychotics tend to block receptors in the brain's dopamine pathways, but antipsychotic drugs encompass a wide range of receptor targets. The inhibition constant, Ki, at the level of membrane receptors is a major determinant of their pharmacokinetic behavior and, consequently, it can affect their antipsychotic activity. Here, predicted inhibition constants, Ki for 71 antipsychotics, already approved for clinical treatment, as well as representative new chemical structures which exhibit antipsychotic activity, were evaluated using 3D-QSAR–CoMSIA models. Significant values of the cross-validated correlation q2 (higher than 0.70 and the fitted correlation r2 (higher than 0.80 revealed that these models have reasonable power to predict the biological affinity of the 15 new risperidone and 12 new olanzapine derivatives in interactions with dopamine D2 and serotonin 5HT2A receptors; these compounds are suggested for further studies.

  15. Up-regulation of serotonin receptor 2B mRNA and protein in the peri-infarcted area of aged rats and stroke patients.

    Science.gov (United States)

    Buga, Ana-Maria; Ciobanu, Ovidiu; Bădescu, George Mihai; Bogdan, Catalin; Weston, Ria; Slevin, Mark; Di Napoli, Mario; Popa-Wagner, Aurel

    2016-04-01

    Despite the fact that a high proportion of elderly stroke patients develop mood disorders, the mechanisms underlying late-onset neuropsychiatric and neurocognitive symptoms have so far received little attention in the field of neurobiology. In rodents, aged animals display depressive symptoms following stroke, whereas young animals recover fairly well. This finding has prompted us to investigate the expression of serotonin receptors 2A and 2B, which are directly linked to depression, in the brains of aged and young rats following stroke. Although the development of the infarct was more rapid in aged rats in the first 3 days after stroke, by day 14 the cortical infarcts were similar in size in both age groups i.e. 45% of total cortical volume in young rats and 55.7% in aged rats. We also found that the expression of serotonin receptor type B mRNA was markedly increased in the perilesional area of aged rats as compared to the younger counterparts. Furthermore, histologically, HTR2B protein expression in degenerating neurons was closely associated with activated microglia both in aged rats and human subjects. Treatment with fluoxetine attenuated the expression of Htr2B mRNA, stimulated post-stroke neurogenesis in the subventricular zone and was associated with an improved anhedonic behavior and an increased activity in the forced swim test in aged animals. We hypothesize that HTR2B expression in the infarcted territory may render degenerating neurons susceptible to attack by activated microglia and thus aggravate the consequences of stroke. PMID:27013593

  16. Up-regulation of serotonin receptor 2B mRNA and protein in the peri-infarcted area of aged rats and stroke patients

    Science.gov (United States)

    Bădescu, George Mihai; Bogdan, Catalin; Weston, Ria; Slevin, Mark; Di Napoli, Mario; Popa-Wagner, Aurel

    2016-01-01

    Despite the fact that a high proportion of elderly stroke patients develop mood disorders, the mechanisms underlying late-onset neuropsychiatric and neurocognitive symptoms have so far received little attention in the field of neurobiology. In rodents, aged animals display depressive symptoms following stroke, whereas young animals recover fairly well. This finding has prompted us to investigate the expression of serotonin receptors 2A and 2B, which are directly linked to depression, in the brains of aged and young rats following stroke. Although the development of the infarct was more rapid in aged rats in the first 3 days after stroke, by day 14 the cortical infarcts were similar in size in both age groups i.e. 45% of total cortical volume in young rats and 55.7% in aged rats. We also found that the expression of serotonin receptor type B mRNA was markedly increased in the perilesional area of aged rats as compared to the younger counterparts. Furthermore, histologically, HTR2B protein expression in degenerating neurons was closely associated with activated microglia both in aged rats and human subjects. Treatment with fluoxetine attenuated the expression of Htr2B mRNA, stimulated post-stroke neurogenesis in the subventricular zone and was associated with an improved anhedonic behavior and an increased activity in the forced swim test in aged animals. We hypothesize that HTR2B expression in the infarcted territory may render degenerating neurons susceptible to attack by activated microglia and thus aggravate the consequences of stroke. PMID:27013593

  17. Serotonin-1A receptors in the dorsal periaqueductal gray matter mediate the panicolytic-like effect of pindolol and paroxetine combination in the elevated T-maze.

    Science.gov (United States)

    Sela, Vânia Ramos; Biesdorf, Carla; Ramos, Diego Henrique; Zangrossi, Hélio; Graeff, Frederico Guilherme; Audi, Elisabeth Aparecida

    2011-05-01

    The β-adrenergic blocker and 5-HT(1A) receptor antagonist pindolol has been combined with selective serotonin reuptake inhibitors (SSRIs) in patients with depressive and anxiety disorders to shorten the onset of the clinical action and/or increase the proportion of responders. The results of a previous study have shown that pindolol potentiates the panicolytic effect of paroxetine in rats submitted to the elevated T-maze (ETM). Since reported evidence has implicated the 5-HT(1A) receptors of the dorsal periaqueductal gray matter (DPAG) in the panicolytic effect of antidepressants, rats treated with pindolol (5.0mg/kg, i.p.) and paroxetine (1.5mg/kg, i.p.) received a previous intra-DPAG injection of the selective 5-HT(1A) antagonist, WAY-100635 (0.4 μg) and were submitted to the ETM. Pretreatment with WAY-100635 reversed the increase in escape latency, a panicolytic effect, determined by the pindolol-paroxetine combination. These results implicate the 5-HT(1A) receptors of the DPAG in the panicolytic effect of the pindolol-paroxetine combination administered systemically. They also give further preclinical support for the use of this drug combination in the treatment of panic disorder.

  18. Serotonin receptors are involved in the spinal mediation of descending facilitation of surgical incision-induced increase of Fos-like immunoreactivity in rats

    Directory of Open Access Journals (Sweden)

    Prado Wiliam A

    2010-03-01

    Full Text Available Abstract Background Descending pronociceptive pathways may be implicated in states of persistent pain. Paw skin incision is a well-established postoperative pain model that causes behavioral nociceptive responses and enhanced excitability of spinal dorsal horn neurons. The number of spinal c-Fos positive neurons of rats treated intrathecally with serotonin, noradrenaline or acetylcholine antagonists where evaluated to study the descending pathways activated by a surgical paw incision. Results The number of c-Fos positive neurons in laminae I/II ipsilateral, lamina V bilateral to the incised paw, and in lamina X significantly increased after the incision. These changes: remained unchanged in phenoxybenzamine-treated rats; were increased in the contralateral lamina V of atropine-treated rats; were inhibited in the ipsilateral lamina I/II by 5-HT1/2B/2C (methysergide, 5-HT2A (ketanserin or 5-HT1/2A/2C/5/6/7 (methiothepin receptors antagonists, in the ipsilateral lamina V by methysergide or methiothepin, in the contralateral lamina V by all the serotonergic antagonists and in the lamina X by LY 278,584, ketanserin or methiothepin. Conclusions We conclude: (1 muscarinic cholinergic mechanisms reduce incision-induced response of spinal neurons inputs from the contralateral paw; (2 5-HT1/2A/2C/3 receptors-mediate mechanisms increase the activity of descending pathways that facilitates the response of spinal neurons to noxious inputs from the contralateral paw; (3 5-HT1/2A/2C and 5-HT1/2C receptors increases the descending facilitation mechanisms induced by incision in the ipsilateral paw; (4 5-HT2A/3 receptors contribute to descending pronociceptive pathways conveyed by lamina X spinal neurons; (5 α-adrenergic receptors are unlikely to participate in the incision-induced facilitation of the spinal neurons.

  19. Activation of serotonin2A receptors in the medial septum-diagonal band of Broca complex enhanced working memory in the hemiparkinsonian rats.

    Science.gov (United States)

    Li, Li-Bo; Zhang, Li; Sun, Yi-Na; Han, Ling-Na; Wu, Zhong-Heng; Zhang, Qiao-Jun; Liu, Jian

    2015-04-01

    Serotonin2A (5-HT2A) receptors are highly expressed in the medial septum-diagonal band of Broca complex (MS-DB), especially in parvalbumin (PV)-positive neurons linked to hippocampal theta rhythm, which is involved in cognition. Cognitive impairments commonly occur in Parkinson's disease. Here we performed behavioral, electrophysiological, neurochemical and immunohistochemical studies in rats with complete unilateral 6-hydroxydopamine lesions of the medial forebrain bundle (MFB) to assess the importance of dopamine (DA) depletion and MS-DB 5-HT2A receptors for working memory. The MFB lesions resulted in working memory impairment and decreases in firing rate and density of MS-DB PV-positive neurons, peak frequency of hippocampal theta rhythm, and DA levels in septohippocampal system and medial prefrontal cortex (mPFC) compared to control rats. Intra-MS-DB injection of high affinity 5-HT2A receptor agonist TCB-2 enhanced working memory, increased firing rate of PV-positive neurons and peak frequency of hippocampal theta rhythm, elevated DA levels in the hippocampus and mPFC, and decreased 5-HT level in the hippocampus in control and lesioned rats. Compared to control rats, the duration of the excitatory effect produced by TCB-2 on the firing rate of PV-positive neurons was markedly shortened in lesioned rats, indicating dysfunction of 5-HT2A receptors. These findings suggest that unilateral lesions of the MFB in rats induced working memory deficit, and activation of MS-DB 5-HT2A receptors enhanced working memory, which may be due to changes in the activity of septohippocampal network and monoamine levels in the hippocampus and mPFC.

  20. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    Science.gov (United States)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  1. Expression of the 5-HT1A Serotonin Receptor in the Hippocampus Is Required for Social Stress Resilience and the Antidepressant-Like Effects Induced by the Nicotinic Partial Agonist Cytisine

    Science.gov (United States)

    Mineur, Yann S; Einstein, Emily B; Bentham, Matthew P; Wigestrand, Mattis B; Blakeman, Sam; Newbold, Sylvia A; Picciotto, Marina R

    2015-01-01

    Nicotinic acetylcholine receptor (nAChR) blockers potentiate the effects of selective serotonin reuptake inhibitors (SSRIs) in some treatment-resistant patients; however, it is not known whether these effects are independent, or whether the two neurotransmitter systems act synergistically. We first determined that the SSRI fluoxetine and the nicotinic partial agonist cytisine have synergistic effects in a mouse model of antidepressant efficacy, whereas serotonin depletion blocked the effects of cytisine. Using a pharmacological approach, we found that the 5-HT1A agonist 8-OH-DPAT also potentiated the antidepressant-like effects of cytisine, suggesting that this subtype might mediate the interaction between the serotonergic and cholinergic systems. The 5-HT1A receptors are located both presynaptically and postsynaptically. We therefore knocked down 5-HT1A receptors in either the dorsal raphe (presynaptic autoreceptors) or the hippocampus (a brain area with high expression of 5-HT1A heteroreceptors sensitive to cholinergic effects on affective behaviors). Knockdown of 5-HT1A receptors in hippocampus, but not dorsal raphe, significantly decreased the antidepressant-like effect of cytisine. This study suggests that serotonin signaling through postsynaptic 5-HT1A receptors in the hippocampus is critical for the antidepressant-like effects of a cholinergic drug and begins to elucidate the molecular mechanisms underlying interactions between the serotonergic and cholinergic systems related to mood disorders. PMID:25288485

  2. Involvement of the 5-HT(1A) receptor in the anti-immobility effects of fluvoxamine in the forced swimming test and mouse strain differences in 5-HT(1A) receptor binding.

    Science.gov (United States)

    Sugimoto, Yumi; Furutani, Sachiko; Kajiwara, Yoshinobu; Hirano, Kazufumi; Yamada, Shizuo; Tagawa, Noriko; Kobayashi, Yoshiharu; Hotta, Yoshihiro; Yamada, Jun

    2010-03-10

    We previously demonstrated the presence of strain differences in baseline immobility time and sensitivity to the selective serotonin reuptake inhibitor (SSRI) fluvoxamine in five strains of mice (ICR, ddY, C57BL, DBA/2 and BALB/c mice). Furthermore, variations in serotonin (5-HT) transporter binding in the brain were strongly related to strain differences in baseline immobility and sensitivity to fluvoxamine. In the present study, we examined the involvement of the 5-HT(1A) receptor in anti-immobility effects in DBA/2 mice, which show high sensitivity to fluvoxamine. The anti-immobility effects of fluvoxamine in DBA/2 mice were inhibited by the 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide (WAY 100635). However, the 5-HT(1B) receptor antagonist 3-[3-(dimethylamino)propyl]-4-hydroxy-N-[4-(4-pyridinyl)phenyl]benzamide (GR55562), the 5-HT(2) receptor antagonist 6-methyl-1-(methylethyl)-ergoline-8beta-carboxylic acid 2-hydroxy-1-methylpropyl ester (LY 53857), the 5-HT(3) receptor antagonist ondansetron and the 5-HT(4) receptor antagonist 4-amino-5-chloro-2-methoxy-benzoic acid 2-(diethylamino)ethyl ester (SDZ 205,557) did not influence the anti-immobility effects of fluvoxamine in DBA/2 mice. These results suggest that fluvoxamine-induced antidepressant-like effects in DBA/2 mice are mediated by the 5-HT(1A) receptor. We analyzed 5-HT(1A) receptor binding in the brains of five strains of mice. Strain differences in 5-HT(1A) receptor binding were observed. 5-HT(1A) receptor binding in brain was not correlated with baseline immobility time in the five strains of mice examined. These results suggest that, although the anti-immobility effects of fluvoxamine in DBA/2 mice are mediated by the 5-HT(1A) receptor, strain differences in 5-HT(1A) receptor binding are not related to variation in immobility time and responses to fluvoxamine.

  3. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in morphine-dependent mice.

    Science.gov (United States)

    Zhang, Gongliang; Wu, Xian; Zhang, Yong-Mei; Liu, Huan; Jiang, Qin; Pang, Gang; Tao, Xinrong; Dong, Liuyi; Stackman, Robert W

    2016-02-01

    Opioid abuse and dependence have evolved into an international epidemic as a significant clinical and societal problem with devastating consequences. Repeated exposure to the opioid, for example morphine, can induce profound, long-lasting behavioral sensitization and physical dependence, which are thought to reflect neuroplasticity in neural circuitry. Central serotonin (5-HT) neurotransmission participates in the development of dependence on and the expression of withdrawal from morphine. Serotonin 5-HT(2C) receptor (5-HT(2C)R) agonists suppress psychostimulant nicotine or cocaine-induced behavioral sensitization and drug-seeking behavior; however, the impact of 5-HT(2C)R agonists on behaviors relevant to opioid abuse and dependence has not been reported. In the present study, the effects of 5-HT(2C)R activation on the behavioral sensitization and naloxone-precipitated withdrawal symptoms were examined in mice underwent repeated exposure to morphine. Male mice received morphine (10 mg/kg, s.c.) to develop behavioral sensitization. Lorcaserin, a 5-HT(2C)R agonist, prevented the induction and expression, but not the development, of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. Pretreatment of lorcaserin, or the positive control clonidine (an alpha 2-adrenoceptor agonist), ameliorated the naloxone-precipitated withdrawal symptoms. SB 242084, a selective 5-HT(2C)R antagonist, prevented the lorcaserin-mediated suppression of behavioral sensitization and withdrawal. Chronic morphine treatment was associated with an increase in the expression of 5-HT(2C)R protein in the ventral tegmental area, locus coeruleus and nucleus accumbens. These findings suggest that 5-HT(2C)R can modulate behavioral sensitization and withdrawal in morphine-dependent mice, and the activation of 5-HT(2C)R may represent a new avenue for the treatment of opioid addiction. PMID:26432939

  4. Effects of serotonin on expression of the LDL receptor family member LR11 and 7-ketocholesterol-induced apoptosis in human vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Nagayama, Daiji; Ishihara, Noriko [Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan); Bujo, Hideaki [Department of Clinical Laboratory Medicine, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan); Shirai, Kohji [Department of Vascular Function, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan); Tatsuno, Ichiro, E-mail: ichiro.tatsuno@med.toho-u.ac.jp [Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan)

    2014-04-18

    Highlights: • The dedifferentiation of VSMCs in arterial intima is involved in atherosclerosis. • 5-HT showed proliferative effect on VSMCs which was abolished by sarpogrelate. • 5-HT enhanced expression of LR11 mRNA in VSMCs which was abolished by sarpogrelate. • 5-HT suppressed 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. • The mechanisms explain the 5-HT-induced remodeling of arterial structure. - Abstract: Serotonin (5-HT) is a known mitogen for vascular smooth muscle cells (VSMCs). The dedifferentiation and proliferation/apoptosis of VSMCs in the arterial intima represent one of the atherosclerotic changes. LR11, a member of low-density lipoprotein receptor family, may contribute to the proliferation of VSMCs in neointimal hyperplasia. We conducted an in vitro study to investigate whether 5-HT is involved in LR11 expression in human VSMCs and apoptosis of VSMCs induced by 7-ketocholesterol (7KCHO), an oxysterol that destabilizes plaque. 5-HT enhanced the proliferation of VSMCs, and this effect was abolished by sarpogrelate, a selective 5-HT2A receptor antagonist. Sarpogrelate also inhibited the 5-HT-enhanced LR11 mRNA expression in VSMCs. Furthermore, 5-HT suppressed the 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. These findings provide new insights on the changes in the differentiation stage of VSMCs mediated by 5-HT.

  5. Effects of serotonin on expression of the LDL receptor family member LR11 and 7-ketocholesterol-induced apoptosis in human vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Highlights: • The dedifferentiation of VSMCs in arterial intima is involved in atherosclerosis. • 5-HT showed proliferative effect on VSMCs which was abolished by sarpogrelate. • 5-HT enhanced expression of LR11 mRNA in VSMCs which was abolished by sarpogrelate. • 5-HT suppressed 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. • The mechanisms explain the 5-HT-induced remodeling of arterial structure. - Abstract: Serotonin (5-HT) is a known mitogen for vascular smooth muscle cells (VSMCs). The dedifferentiation and proliferation/apoptosis of VSMCs in the arterial intima represent one of the atherosclerotic changes. LR11, a member of low-density lipoprotein receptor family, may contribute to the proliferation of VSMCs in neointimal hyperplasia. We conducted an in vitro study to investigate whether 5-HT is involved in LR11 expression in human VSMCs and apoptosis of VSMCs induced by 7-ketocholesterol (7KCHO), an oxysterol that destabilizes plaque. 5-HT enhanced the proliferation of VSMCs, and this effect was abolished by sarpogrelate, a selective 5-HT2A receptor antagonist. Sarpogrelate also inhibited the 5-HT-enhanced LR11 mRNA expression in VSMCs. Furthermore, 5-HT suppressed the 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. These findings provide new insights on the changes in the differentiation stage of VSMCs mediated by 5-HT

  6. 5-HT(2C) serotonin receptor blockade prevents tau protein hyperphosphorylation and corrects the defect in hippocampal synaptic plasticity caused by a combination of environmental stressors in mice.

    Science.gov (United States)

    Busceti, Carla Letizia; Di Pietro, Paola; Riozzi, Barbara; Traficante, Anna; Biagioni, Francesca; Nisticò, Robert; Fornai, Francesco; Battaglia, Giuseppe; Nicoletti, Ferdinando; Bruno, Valeria

    2015-09-01

    Exposure to multimodal sensory stressors is an everyday occurrence and sometimes becomes very intense, such as during rave parties or other recreational events. A growing body of evidence suggests that strong environmental stressors might cause neuronal dysfunction on their own in addition to their synergistic action with illicit drugs. Mice were exposed to a combination of physical and sensory stressors that are reminiscent of those encountered in a rave party. However, this is not a model of rave because it lacks the rewarding properties of rave. A 14-h exposure to environmental stressors caused an impairment of hippocampal long-term potentiation (LTP) and spatial memory, and an enhanced phosphorylation of tau protein in the CA1 and CA3 regions. These effects were transient and critically depended on the activation of 5-HT2C serotonin receptors, which are highly expressed in the CA1 region. Acute systemic injection of the selective 5-HT2C antagonist, RS-102,221 (2 mg/kg, i.p., 2 min prior the onset of stress), prevented tau hyperphosphorylation and also corrected the defects in hippocampal LTP and spatial memory. These findings suggest that passive exposure to a combination of physical and sensory stressors causes a reversible hippocampal dysfunction, which might compromise mechanisms of synaptic plasticity and spatial memory for a few days. Drugs that block 5-HT2C receptors might protect the hippocampus against the detrimental effect of environmental stressors. PMID:26145279

  7. Test-retest variability of high resolution positron emission tomography (PET) imaging of cortical serotonin (5HT2A) receptors in older, healthy adults

    International Nuclear Information System (INIS)

    Position emission tomography (PET) imaging using [18F]-setoperone to quantify cortical 5-HT2A receptors has the potential to inform pharmacological treatments for geriatric depression and dementia. Prior reports indicate a significant normal aging effect on serotonin 5HT2A receptor (5HT2AR) binding potential. The purpose of this study was to assess the test-retest variability of [18F]-setoperone PET with a high resolution scanner (HRRT) for measuring 5HT2AR availability in subjects greater than 60 years old. Methods: Six healthy subjects (age range = 65–78 years) completed two [18F]-setoperone PET scans on two separate occasions 5–16 weeks apart. The average difference in the binding potential (BPND) as measured on the two occasions in the frontal and temporal cortical regions ranged between 2 and 12%, with the lowest intraclass correlation coefficient in anterior cingulate regions. We conclude that the test-retest variability of [18F]-setoperone PET in elderly subjects is comparable to that of [18F]-setoperone and other 5HT2AR radiotracers in younger subject samples

  8. Fluctuations in [¹¹C]SB207145 PET binding associated with change in threat-related amygdala reactivity in humans

    DEFF Research Database (Denmark)

    Fisher, Patrick MacDonald; Haahr, Mette Ewers; Jensen, Christian Gaden;

    2015-01-01

    that brain serotonin 4 receptor (5-HT4) binding, assessed with [11C]SB207145 PET, was sensitive to a 3-week intervention with the selective serotonin reuptake inhibitor fluoxetine, supporting it as an in vivo model for fluctuations in central serotonin levels. Participants also underwent functional magnetic...

  9. Region-specific alterations of A-to-I RNA editing of serotonin 2c receptor in the cortex of suicides with major depression.

    Science.gov (United States)

    Weissmann, D; van der Laan, S; Underwood, M D; Salvetat, N; Cavarec, L; Vincent, L; Molina, F; Mann, J J; Arango, V; Pujol, J F

    2016-01-01

    Brain region-specific abnormalities in serotonergic transmission appear to underlie suicidal behavior. Alterations of RNA editing on the serotonin receptor 2C (HTR2C) pre-mRNA in the brain of suicides produce transcripts that attenuate 5-HT2CR signaling by impairing intracellular G-protein coupling and subsequent intracellular signal transduction. In brain, the distribution of RNA-editing enzymes catalyzing deamination (A-to-I modification) shows regional variation, including within the cerebral cortex. We tested the hypothesis that altered pre-mRNA 5-HT2CR receptor editing in suicide is region-specific. To this end, we investigated the complete 5-HT2CR mRNA-editing profile in two architectonically distinct cortical areas involved in mood regulation and decision-making in a clinically well-characterized cohort of age- and sex-matched non-psychiatric drug-free controls and depressed suicides. By using an original biochemical detection method, that is, capillary electrophoresis single-stranded conformational polymorphism (CE-SSCP), we corroborated the 5-HT2CR mRNA-editing profile previously described in the dorsolateral prefrontal cortex (Brodmann area 9 (BA9)). Editing of 5-HT2CR mRNA displayed clear regional difference when comparing dorsolateral prefrontal cortex (BA9) and anterior cingulate cortex (BA24). Compared with non-psychiatric control individuals, alterations of editing levels of 5-HT2CR mRNA were detected in both cortical areas of depressed suicides. A marked increase in editing on 5-HT2CR was especially observed in the anterior cingulate cortex in suicides, implicating this cortical area in suicide risk. The results suggest that region-specific changes in RNA editing of 5-HT2CR mRNA and deficient receptor function likely contribute to the etiology of major depressive disorder or suicide. PMID:27576167

  10. Lateral/Basolateral Amygdala Serotonin Type-2 Receptors Modulate Operant Self-administration of a Sweetened Ethanol Solution via Inhibition of Principal Neuron Activity

    Directory of Open Access Journals (Sweden)

    Brian eMccool

    2014-01-01

    Full Text Available The lateral/basolateral amygdala (BLA forms an integral part of the neural circuitry controlling innate anxiety and learned fear. More recently, BLA dependent modulation of self-administration behaviors suggests a much broader role in the regulation of reward evaluation. To test this, we employed a self-administration paradigm that procedurally segregates ‘seeking’ (exemplified as lever-press behaviors from consumption (drinking directed at a sweetened ethanol solution. Microinjection of the nonselective serotonin type-2 receptor agonist, alpha-methyl-5-hydroxytryptamine (-m5HT into the BLA reduced lever pressing behaviors in a dose-dependent fashion. This was associated with a significant reduction in the number of response-bouts expressed during non-reinforced sessions without altering the size of a bout or the rate of responding. Conversely, intra-BLA -m5HT only modestly effected consumption-related behaviors; the highest dose reduced the total time spent consuming a sweetened ethanol solution but did not inhibit the total number of licks, number of lick bouts, or amount of solution consumed during a session. In vitro neurophysiological characterization of BLA synaptic responses showed that -m5HT significantly reduced extracellular field potentials. This was blocked by the 5-HT2A/C antagonist ketanserin suggesting that 5-HT2-like receptors mediate the behavioral effect of -m5HT. During whole-cell patch current-clamp recordings, we subsequently found that -m5HT increased action potential threshold and hyperpolarized the resting membrane potential of BLA pyramidal neurons. Together, our findings show that the activation of BLA 5-HT2A/C receptors inhibits behaviors related to reward-seeking by suppressing BLA principal neuron activity. These data are consistent with the hypothesis that the BLA modulates reward-related behaviors and provides specific insight into BLA contributions during operant self-administration of a

  11. Serotonin receptor B may lock the gate of PTTH release/synthesis in the Chinese silk moth, Antheraea pernyi; a diapause initiation/maintenance mechanism?

    Directory of Open Access Journals (Sweden)

    Qiushi Wang

    Full Text Available The release of prothoracicotropic hormone, PTTH, or its blockade is the major endocrine switch regulating the developmental channel either to metamorphosis or to pupal diapause in the Chinese silk moth, Antheraea pernyi. We have cloned cDNAs encoding two types of serotonin receptors (5HTRA and B. 5HTRA-, and 5HTRB-like immunohistochemical reactivities (-ir were colocalized with PTTH-ir in two pairs of neurosecretory cells at the dorsolateral region of the protocerebrum (DL. Therefore, the causal involvement of these receptors was suspected in PTTH release/synthesis. The level of mRNA(5HTRB responded to 10 cycles of long-day activation, falling to 40% of the original level before activation, while that of 5HTRA was not affected by long-day activation. Under LD 16:8 and 12:12, the injection of dsRNA(5HTRB resulted in early diapause termination, whereas that of dsRNA(5HTRA did not affect the rate of diapause termination. The injection of dsRNA(5HTRB induced PTTH accumulation, indicating that 5HTRB binding suppresses PTTH synthesis also. This conclusion was supported pharmacologically; the injection of luzindole, a melatonin receptor antagonist, plus 5th inhibited photoperiodic activation under LD 16:8, while that of 5,7-DHT, induced emergence in a dose dependent fashion under LD 12:12. The results suggest that 5HTRB may lock the PTTH release/synthesis, maintaining diapause. This could also work as diapause induction mechanism.

  12. Evaluation of 3-Ethyl-3-(phenylpiperazinylbutyl)oxindoles as PET Ligands for the Serotonin 5-HT7 Receptor

    DEFF Research Database (Denmark)

    Herth, Matthias M; Andersen, Valdemar L; Hansen, Hanne D;

    2015-01-01

    We have investigated several oxindole derivatives in the pursuit of a 5-HT7 receptor PET ligand. Herein the synthesis, chiral separation, and pharmacological profiling of two possible PET candidates toward a wide selection of CNS-targets are detailed. Subsequent (11)C-labeling and in vivo evaluat...... evaluation in Danish landrace pigs showed that both ligands displayed high brain uptake. However, neither of the radioligands could be displaced by the 5-HT7 receptor selective inverse agonist SB-269970....

  13. Novel agonists for serotonin 5-HT7 receptors reverse metabotropic glutamate receptor-mediated long-term depression in the hippocampus of wild-type and Fmr1 KO mice, a model of Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    Lara eCosta

    2015-03-01

    Full Text Available Serotonin 5-HT7 receptors are expressed in the hippocampus and modulate the excitability of hippocampal neurons. We have previously shown that 5-HT7 receptors modulate glutamate-mediated hippocampal synaptic transmission and long-term synaptic plasticity. In particular, we have shown that activation of 5-HT7 receptors reversed metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD in wild-type (wt and in Fmr1 KO mice, a mouse model of Fragile X syndrome in which mGluR-LTD is abnormally enhanced, suggesting that 5-HT7 receptor agonists might be envisaged as a novel therapeutic strategy for Fragile X syndrome. In this perspective, we have characterized the basic in vitro pharmacokinetic properties of novel molecules with high binding affinity and selectivity for 5-HT7 receptors and we have tested their effects on synaptic plasticity using patch clamp on acute hippocampal slices.Here we show that LP-211, a high affinity selective agonist of 5-HT7 receptors, reverses mGluR-LTD in wt and Fmr1 KO mice, correcting a synaptic malfunction in the mouse model of Fragile X syndrome. Among novel putative agonists of 5-HT7 receptors, the compound BA-10 displayed improved affinity and selectivity for 5-HT7 receptors and improved in vitro pharmacokinetic properties with respect to LP-211. BA-10 significantly reversed mGluR-LTD in the CA3-CA1 synapse in wt and Fmr1KO mice, indicating that BA-10 behaved as a highly effective agonist of 5-HT7 receptors and reduced exaggerated mGluR-LTD in a mouse model of Fragile X Syndrome. On the other side, the compounds RA-7 and PM-20, respectively arising from in vivo metabolism of LP-211 and BA-10, had no effect on mGluR-LTD thus did not behave as agonists of 5-HT7 receptors in our conditions.The present results provide information about the structure-activity relationship of novel 5-HT7 receptor agonists and indicate that LP-211 and BA-10 might be used as novel pharmacological tools for the therapy of

  14. Novel agonists for serotonin 5-HT7 receptors reverse metabotropic glutamate receptor-mediated long-term depression in the hippocampus of wild-type and Fmr1 KO mice, a model of Fragile X Syndrome.

    Science.gov (United States)

    Costa, Lara; Sardone, Lara M; Lacivita, Enza; Leopoldo, Marcello; Ciranna, Lucia

    2015-01-01

    Serotonin 5-HT7 receptors are expressed in the hippocampus and modulate the excitability of hippocampal neurons. We have previously shown that 5-HT7 receptors modulate glutamate-mediated hippocampal synaptic transmission and long-term synaptic plasticity. In particular, we have shown that activation of 5-HT7 receptors reversed metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD) in wild-type (wt) and in Fmr1 KO mice, a mouse model of Fragile X Syndrome in which mGluR-LTD is abnormally enhanced, suggesting that 5-HT7 receptor agonists might be envisaged as a novel therapeutic strategy for Fragile X Syndrome. In this perspective, we have characterized the basic in vitro pharmacokinetic properties of novel molecules with high binding affinity and selectivity for 5-HT7 receptors and we have tested their effects on synaptic plasticity using patch clamp on acute hippocampal slices. Here we show that LP-211, a high affinity selective agonist of 5-HT7 receptors, reverses mGluR-LTD in wt and Fmr1 KO mice, correcting a synaptic malfunction in the mouse model of Fragile X Syndrome. Among novel putative agonists of 5-HT7 receptors, the compound BA-10 displayed improved affinity and selectivity for 5-HT7 receptors and improved in vitro pharmacokinetic properties with respect to LP-211. BA-10 significantly reversed mGluR-LTD in the CA3-CA1 synapse in wt and Fmr1KO mice, indicating that BA-10 behaved as a highly effective agonist of 5-HT7 receptors and reduced exaggerated mGluR-LTD in a mouse model of Fragile X Syndrome. On the other side, the compounds RA-7 and PM-20, respectively arising from in vivo metabolism of LP-211 and BA-10, had no effect on mGluR-LTD thus did not behave as agonists of 5-HT7 receptors in our conditions. The present results provide information about the structure-activity relationship of novel 5-HT7 receptor agonists and indicate that LP-211 and BA-10 might be used as novel pharmacological tools for the therapy of Fragile X Syndrome

  15. Association of the Serotonin Receptor 3E Gene as a Functional Variant in the MicroRNA-510 Target Site with Diarrhea Predominant Irritable Bowel Syndrome in Chinese Women

    OpenAIRE

    Zhang, Yu; Li, Yaoyao; Hao, Zhenfeng; Li, Xiangming; Bo, Ping; Gong, Weijuan

    2016-01-01

    Background/Aims The functional variant (rs56109847) in the 3′-untranslated regions (3′-UTR) of the serotonin receptor 3E (HTR3E) gene is associated with female diarrhea predominant irritable bowel syndrome (IBS-D) in British populations. However, the relationship of the polymorphism both to HTR3E expression in the intestine and to the occurrence of Chinese functional gastrointestinal disorders has yet to be examined. Methods Polymerase chain reaction amplification and restriction fragment len...

  16. Synergistic Effect between Maternal Infection and Adolescent Cannabinoid Exposure on Serotonin 5HT1A Receptor Binding in the Hippocampus: Testing the "Two Hit" Hypothesis for the Development of Schizophrenia,

    OpenAIRE

    DALTON, VICTORIA

    2012-01-01

    Infections during pregnancy and adolescent cannabis use have both been identified as environmental risk factors for schizophrenia. We combined these factors in an animal model and looked at their effects, alone and in combination, on serotonin 5HT1A receptor binding (5HT1AR) binding longitudinally from late adolescence to adulthood. Pregnant rats were exposed to the viral mimic poly I:C on embryonic day 15. Adolescent offspring received daily injections of the cannabinoid HU210 for 14 days st...

  17. The chemosensitivity of labellar sugar receptor in female Phormia regina is paralleled with ovary maturation: Effects of serotonin.

    Science.gov (United States)

    Solari, Paolo; Stoffolano, John G; De Rose, Francescaelena; Barbarossa, Iole Tomassini; Liscia, Anna

    2015-11-01

    Oogenesis in most adult insects is a nutrient-dependent process involving ingestion of both proteins and carbohydrates that ultimately depends on peripheral input from chemoreceptors. The main goal of this study was to characterize, in the female blowfly Phormia regina, the responsive changes of the labellar chemoreceptors to carbohydrates and proteins in relation to four different stages along the ovarian cycle: (1) immature ovaries, (2) mid-mature ovaries, (3) mature ovaries and ready for egg-laying and (4) post egg-laying ovaries. Then, the possible effects exerted by exogenous serotonin on the chemoreceptor sensitivity profiles were investigated. Our results show that ovary length, width and contraction rate progressively increase from stage 1 to 3, when all these parameters reach their maximum values, before declining in the next stage 4. The sensitivity of the labellar "sugar" chemoreceptors to both sucrose and proteins varies during the ovarian maturation stages, reaching a minimum for sucrose in stage 3, while that to proteins begins. Exogenous 5-HT supply specifically increases the chemoreceptor sensitivity to sugar at the stages 3 and 4, while it does not affect that to proteins. In conclusion, our results provide evidence that in female blowflies the cyclic variations in the sensitivity of the labellar chemosensilla to sugars and proteins are time-related to ovarian development and that during the stages 3 and 4 the responsiveness of the sugar cell to sucrose is under serotonergic control.

  18. Rational planning of antagonist analogues for imaging serotonin 5-HT1A receptor subtypes based on 99mTc

    International Nuclear Information System (INIS)

    Rational planning follows some logical steps in order to reduce the probability of synthesizing chemical compounds that possess low performance. The first step of this kind of procedure is to collect the maximum amount of information available in databases and the literature. Data are normally collected about quantitative structure activity and quantitative structure property studies. The goal is achieved when the main molecular descriptor is discovered in terms of biological activity. This descriptor is then quantified, allowing the choice of the most promising molecular candidates. In this paper, the aim is to convert molecules with high 5-HT1A affinity to 99mTc derivatives. Once such derivatives have to retain receptor affinity, it is very important to find drug-receptor interactions due to: chemical groups with common drug structures, the existence of intra-atomic distances between chemical ligands and physico-chemical properties that drive drug-receptor complexation. (author)

  19. Polymorphisms of serotonin receptor 2A and 2C genes and COMT in relation to obesity and type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Sofia I I Kring

    Full Text Available BACKGROUND: Candidate genes of psychological importance include 5HT2A, 5HT2C, and COMT, implicated in the serotonin, noradrenaline and dopamine pathways, which also may be involved in regulation of energy balance. We investigated the associations of single nucleotide polymorphisms (SNPs of these genes with obesity and metabolic traits. METHODOLOGY/PRINCIPAL FINDINGS: In a population of 166 200 young men examined at the draft boards, obese men (n = 726, BMI> or =31.0 kg/m(2 and a randomly selected group (n = 831 were re-examined at two surveys at mean ages 46 and 49 years (S-46, S-49. Anthropometric, physiological and biochemical measures were available. Logistic regression analyses were used to assess age-adjusted odds ratios. No significant associations were observed of 5HT2A rs6311, 5HT2C rs3813929 and COMT rs4680 with obesity, except that COMT rs4680 GG-genotype was associated with fat-BMI (OR = 1.08, CI = 1.01-1.16. The SNPs were associated with a number of physiological variables; most importantly 5HT2C rs3813929 T-allele was associated with glucose (OR = 4.56, CI = 1.13-18.4 and acute insulin response (OR = 0.65, CI = 0.44-0.94 in S-49. COMT rs4680 GG-genotype was associated with glucose (OR = 1.04, CI = 1.00-1.09. Except for an association between 5HT2A rs6311 and total-cholesterol at both surveys, significant in S-46 (OR = 2.66, CI = 1.11-6.40, no significant associations were observed for the other phenotypes. Significant associations were obtained when combined genotype of 5HT2C rs3813929 and COMT rs4680 were examined in relation to BMI (OR = 1.12, CI = 1.03-1.21, fat-BMI (OR = 1.22, CI = 1.08-1.38, waist (OR = 1.13, CI = 1.04-1.22, and cholesterol (OR = 5.60, CI = 0.99-31.4. Analyses of impaired glucose tolerance (IGT and type 2 diabetes (T2D revealed, a 12.3% increased frequency of 5HT2C rs3813929 T-allele and an 11.6% increased frequency of COMT rs4680 GG-genotype in individuals with IGT or T2D (chi(2, p = 0.05 and p = 0

  20. Pharmacological characterization of serotonin receptor subtypes modulating primary afferent input to deep dorsal horn neurons in the neonatal rat

    OpenAIRE

    Garraway, Sandra M.; Hochman, Shawn

    2001-01-01

    Spinal cord slices and whole-cell patch clamp recordings were used to investigate the effects of serotonergic receptor ligands on dorsal root-evoked synaptic responses in deep dorsal horn (DDH) neurons of the neonatal rat at postnatal days (P) 3 – 6 and P10 – 14.Bath applied 5-hydroxytryptamine (5-HT) potently depressed synaptic responses in most neurons. Similarly, the 5-HT1/7 receptor agonist, 5-carboxamidotryptamine (5-CT) depressed synaptic responses. This action was probably mediated by ...

  1. Enhanced calcium responses to serotonin receptor stimulation in T-lymphocytes from schizophrenic patients--a pilot study.

    Science.gov (United States)

    Genius, J; Schellenberg, A; Tchana-Duope, L; Hartmann, N; Giegling, I; Hartmann, A; Benninghoff, J; Rujescu, D

    2015-03-01

    Even if more extensively investigated in affective disorders, the serotonergic system is likely to be also implicated in modulating the pathogenesis of schizophrenia, where it closely interacts with the dopaminergic and glutamatergic system. To substantiate this notion, we studied the intensity and dynamics of cellular Ca(2+) responses to serotonin (5-hydoxytryptamine, 5-HT) in peripheral lymphocytes taken from currently non-psychotic schizophrenic patients. To this aim, peripheral lymphocytes were freshly obtained from healthy controls and a naturalistic collective of patients with schizophrenia in remission. Intracellular Ca(2+) responses were recorded in real-time by ratiometric fluorometry after 5-HT or phythaemagglutinin (PHA) stimulation, which served as an internal reference for Ca(2+) responsivity to non-specific stimulation. The intracellular Ca(2+) peak early after applying the 5-HT trigger was significantly elevated in schizophrenic patients. No significant differences of Ca(2+) peak levels were seen in response to stimulation with the mitogenic agent PHA, although responses to 5-HT and PHA were positively correlated in individual patients or controls. In conclusion, the serotonergic response patterns in peripheral lymphocytes from schizophrenic patients seem to be elevated, if employing sensitive tools like determination of intracellular Ca(2+) responses. Our observations suggest that the participation of serotonergic neurotransmitter system in the pathogenesis of schizophrenia may deserve more interest, even if it should only act as a modulator on the main pathology in the dopaminergic and glutamatergic systems. We hope that this pilot study will prompt further studies with larger patient collectives to revisit this question. PMID:25576705

  2. Culture as a mediator of gene-environment interaction: Cultural consonance, childhood adversity, a 2A serotonin receptor polymorphism, and depression in urban Brazil.

    Science.gov (United States)

    Dressler, William W; Balieiro, Mauro C; Ferreira de Araújo, Luiza; Silva, Wilson A; Ernesto Dos Santos, José

    2016-07-01

    Research on gene-environment interaction was facilitated by breakthroughs in molecular biology in the late 20th century, especially in the study of mental health. There is a reliable interaction between candidate genes for depression and childhood adversity in relation to mental health outcomes. The aim of this paper is to explore the role of culture in this process in an urban community in Brazil. The specific cultural factor examined is cultural consonance, or the degree to which individuals are able to successfully incorporate salient cultural models into their own beliefs and behaviors. It was hypothesized that cultural consonance in family life would mediate the interaction of genotype and childhood adversity. In a study of 402 adult Brazilians from diverse socioeconomic backgrounds, conducted from 2011 to 2014, the interaction of reported childhood adversity and a polymorphism in the 2A serotonin receptor was associated with higher depressive symptoms. Further analysis showed that the gene-environment interaction was mediated by cultural consonance in family life, and that these effects were more pronounced in lower social class neighborhoods. The findings reinforce the role of the serotonergic system in the regulation of stress response and learning and memory, and how these processes in turn interact with environmental events and circumstances. Furthermore, these results suggest that gene-environment interaction models should incorporate a wider range of environmental experience and more complex pathways to better understand how genes and the environment combine to influence mental health outcomes.

  3. Culture as a mediator of gene-environment interaction: Cultural consonance, childhood adversity, a 2A serotonin receptor polymorphism, and depression in urban Brazil.

    Science.gov (United States)

    Dressler, William W; Balieiro, Mauro C; Ferreira de Araújo, Luiza; Silva, Wilson A; Ernesto Dos Santos, José

    2016-07-01

    Research on gene-environment interaction was facilitated by breakthroughs in molecular biology in the late 20th century, especially in the study of mental health. There is a reliable interaction between candidate genes for depression and childhood adversity in relation to mental health outcomes. The aim of this paper is to explore the role of culture in this process in an urban community in Brazil. The specific cultural factor examined is cultural consonance, or the degree to which individuals are able to successfully incorporate salient cultural models into their own beliefs and behaviors. It was hypothesized that cultural consonance in family life would mediate the interaction of genotype and childhood adversity. In a study of 402 adult Brazilians from diverse socioeconomic backgrounds, conducted from 2011 to 2014, the interaction of reported childhood adversity and a polymorphism in the 2A serotonin receptor was associated with higher depressive symptoms. Further analysis showed that the gene-environment interaction was mediated by cultural consonance in family life, and that these effects were more pronounced in lower social class neighborhoods. The findings reinforce the role of the serotonergic system in the regulation of stress response and learning and memory, and how these processes in turn interact with environmental events and circumstances. Furthermore, these results suggest that gene-environment interaction models should incorporate a wider range of environmental experience and more complex pathways to better understand how genes and the environment combine to influence mental health outcomes. PMID:27270123

  4. Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36

    DEFF Research Database (Denmark)

    Ettrup, Anders; Svarer, Claus; McMahon, Brenda;

    2016-01-01

    ]Cimbi-36 and the 5-HT2A receptor antagonist [(18)F]altanserin. METHODS: Sixteen healthy volunteers (mean age 23.9 ± 6.4years, 6 males) were scanned twice with a high resolution research tomography PET scanner. All subjects were scanned after a bolus of [(11)C]Cimbi-36; eight were scanned twice to determine...... BPNDs measured with [(11)C]Cimbi-36 and [(18)F]altanserin (mean Pearson's r: 0.95 ± 0.04) suggesting similar cortical binding of the radioligands. Relatively higher binding with [(11)C]Cimbi-36 as compared to [(18)F]altanserin was found in the choroid plexus and hippocampus in the human brain....... CONCLUSIONS: Excellent test-retest reproducibility highlights the potential of [(11)C]Cimbi-36 for PET imaging of 5-HT2A receptor agonist binding in vivo. Our data suggest that Cimbi-36 and altanserin both bind to 5-HT2A receptors, but in regions with high 5-HT2C receptor density, choroid plexus...

  5. Pharmacological blockade of serotonin 5-HT₇ receptor reverses working memory deficits in rats by normalizing cortical glutamate neurotransmission.

    Directory of Open Access Journals (Sweden)

    Pascal Bonaventure

    Full Text Available The role of 5-HT₇ receptor has been demonstrated in various animal models of mood disorders; however its function in cognition remains largely speculative. This study evaluates the effects of SB-269970, a selective 5-HT₇ antagonist, in a translational model of working memory deficit and investigates whether it modulates cortical glutamate and/or dopamine neurotransmission in rats. The effect of SB-269970 was evaluated in the delayed non-matching to position task alone or in combination with MK-801, a non-competitive NMDA receptor antagonist, and, in separate experiments, with scopolamine, a non-selective muscarinic antagonist. SB-269970 (10 mg/kg significantly reversed the deficits induced by MK-801 (0.1 mg/kg but augmented the deficit induced by scopolamine (0.06 mg/kg. The ability of SB-269970 to modulate MK-801-induced glutamate and dopamine extracellular levels was separately evaluated using biosensor technology and microdialysis in the prefrontal cortex of freely moving rats. SB-269970 normalized MK-801 -induced glutamate but not dopamine extracellular levels in the prefrontal cortex. Rat plasma and brain concentrations of MK-801 were not affected by co-administration of SB-269970, arguing for a pharmacodynamic rather than a pharmacokinetic mechanism. These results indicate that 5-HT₇ receptor antagonists might reverse cognitive deficits associated with NMDA receptor hypofunction by selectively normalizing glutamatergic neurotransmission.

  6. Central Serotonin-2A (5-HT2A Receptor Dysfunction in Depression and Epilepsy: The Missing Link?

    Directory of Open Access Journals (Sweden)

    Bruno Pierre Guiard

    2015-03-01

    Full Text Available 5-Hydroxytryptamine 2A receptors (5-HT2A-Rs are G-protein coupled receptors. In agreement with their location in the brain, they have been implicated not only in various central physiological functions including memory, sleep, nociception, eating and reward behaviors, but also in many neuropsychiatric disorders. Interestingly, a bidirectional link between depression and epilepsy is suspected since patients with depression and especially suicide attempters have an increased seizure risk, while a significant percentage of epileptic patients suffer from depression. Such epidemiological data led us to hypothesize that both pathologies may share common anatomical and neurobiological alteration of the 5-HT2A signaling. After a brief presentation of the pharmacological properties of the 5-HT2A-Rs, this review illustrates how these receptors may directly or indirectly control neuronal excitability in most networks involved in depression and epilepsy through interactions with the monoaminergic, GABAergic and glutamatergic neurotransmissions. It also synthetizes the preclinical and clinical evidence demonstrating the role of these receptors in antidepressant and antiepileptic responses.

  7. Effects of cocaine history on postsynaptic GABA receptors on dorsal raphe serotonin neurons in a stress-induced relapse model in rats.

    Science.gov (United States)

    Li, Chen; Kirby, Lynn G

    2016-01-01

    The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Stressors and stress hormones can inhibit the dorsal raphe nucleus (DRN)-5-HT system, which composes the majority of forebrain-projecting 5-HT. This inhibition is mediated via stimulation of GABA synaptic activity at DRN-5-HT neurons. Using swim stress-induced reinstatement of morphine conditioned place-preference, recent data from our laboratory indicate that morphine history sensitizes DRN-5-HT neurons to GABAergic inhibitory effects of stress. Moreover, GABAA receptor-mediated inhibition of the serotonergic DRN is required for this reinstatement. In our current experiment, we tested the hypothesis that GABAergic sensitization of DRN-5-HT neurons is a neuroadaptation elicited by multiple classes of abused drugs across multiple models of stress-induced relapse by applying a chemical stressor (yohimbine) to induce reinstatement of previously extinguished cocaine self-administration in Sprague-Dawley rats. Whole-cell patch-clamp recordings of GABA synaptic activity in DRN-5-HT neurons were conducted after the reinstatement. Behavioral data indicate that yohimbine triggered reinstatement of cocaine self-administration. Electrophysiology data indicate that 5-HT neurons in the cocaine group exposed to yohimbine had increased amplitude of inhibitory postsynaptic currents compared to yoked-saline controls exposed to yohimbine or unstressed animals in both drug groups. These data, together with previous findings, indicate that interaction between psychostimulant or opioid history and chemical or physical stressors may increase postsynaptic GABA receptor density and/or sensitivity in DRN-5-HT neurons. Such mechanisms may result in serotonergic hypofunction and consequent dysphoric mood states which confer vulnerability to stress-induced drug reinstatement. PMID:26640169

  8. Elevated expression of serotonin 5-HT2A receptors in the rat ventral tegmental area enhances vulnerability to the behavioral effects of cocaine

    Directory of Open Access Journals (Sweden)

    David V. Herin

    2013-02-01

    Full Text Available The dopamine mesocorticoaccumbens pathway which originates in the ventral tegmental area (VTA and projects to the nucleus accumbens and prefrontal cortex is a circuit important in mediating the actions of psychostimulants. The function of this circuit is modulated by the actions of serotonin (5-HT at 5-HT2A receptors (5-HT2AR localized to the VTA. In the present study, we tested the hypothesis that virally-mediated overexpression of 5-HT2AR in the VTA would increase cocaine-evoked locomotor activity in the absence of alterations in basal locomotor activity. A plasmid containing the gene for the 5-HT2AR linked to a synthetic marker peptide (Flag was created and the construct was packaged in an adeno-associated virus vector (rAAV-5-HT2AR-Flag. This viral vector (2 µl; 109-10 transducing units/ml was unilaterally infused into the VTA of male rats, while control animals received an intra-VTA infusion of Ringer’s solution. Virus-pretreated rats exhibited normal spontaneous locomotor activity measured in a modified open-field apparatus at 7, 14, and 21 days following infusion. After an injection of cocaine (15 mg/kg, ip, both horizontal hyperactivity and rearing were significantly enhanced in virus-treated rats (p<0.05. Immunohistochemical analysis confirmed expression of Flag and overexpression of the 5-HT2AR protein. These data indicate that the vulnerability of adult male rats to hyperactivity induced by cocaine is enhanced following increased levels of expression of the 5-HT2AR in the VTA and suggest that the 5-HT2AR receptor in the VTA plays a role in regulation of responsiveness to cocaine.

  9. The bradycardic and hypotensive responses to serotonin are reduced by activation of GABAA receptors in the nucleus tractus solitarius of awake rats

    Directory of Open Access Journals (Sweden)

    Callera J.C.

    2005-01-01

    Full Text Available We investigated the effects of bilateral injections of the GABA receptor agonists muscimol (GABA A and baclofen (GABA B into the nucleus tractus solitarius (NTS on the bradycardia and hypotension induced by iv serotonin injections (5-HT, 2 µg/rat in awake male Holtzman rats. 5-HT was injected in rats with stainless steel cannulas implanted bilaterally in the NTS, before and 5, 15, and 60 min after bilateral injections of muscimol or baclofen into the NTS. The responses to 5-HT were tested before and after the injection of atropine methyl bromide. Muscimol (50 pmol/50 nl, N = 8 into the NTS increased basal mean arterial pressure (MAP from 115 ± 4 to 144 ± 6 mmHg, did not change basal heart rate (HR and reduced the bradycardia (-40 ± 14 and -73 ± 26 bpm at 5 and 15 min, respectively, vs -180 ± 20 bpm for the control and hypotension (-11 ± 4 and -14 ± 4 mmHg, vs -40 ± 9 mmHg for the control elicited by 5-HT. Baclofen (12.5 pmol/50 nl, N = 7 into the NTS also increased basal MAP, but did not change basal HR, bradycardia or hypotension in response to 5-HT injections. Atropine methyl bromide (1 mg/kg body weight injected iv reduced the bradycardic and hypotensive responses to 5-HT injections. The stimulation of GABA A receptors in the NTS of awake rats elicits a significant increase in basal MAP and decreases the cardiac Bezold-Jarisch reflex responses to iv 5-HT injections.

  10. Antagonism of lateral saphenous vein serotonin receptors from steers grazing endophyte-free, wild-type, or novel endophyte-infected tall fescue.

    Science.gov (United States)

    Klotz, J L; Aiken, G E; Johnson, J M; Brown, K R; Bush, L P; Strickland, J R

    2013-09-01

    Pharmacologic profiling of serotonin (5HT) receptors of bovine lateral saphenous vein has shown that cattle grazing endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have altered responses to ergovaline, 5HT, 5HT2A, and 5HT7 agonists. To determine if 5HT receptor activity of tall fescue alkaloids is affected by grazing endophyte-free (EF), wild-type [Kentucky-31 (KY31)], novel endophyte AR542-infected (MAXQ), or novel endophyte AR584-infected (AR584) tall fescue, contractile responses of lateral saphenous veins biopsied from cattle grazing these different fescue-endophyte combinations were evaluated in presence or absence of antagonists for 5HT2A (ketanserin) or 5HT7 (SB-269970) receptors. Biopsies were conducted over 2 yr on 35 mixed-breed steers (361.5 ± 6.3 kg) grazing EF (n = 12), KY31 (n = 12), MAXQ (n = 6), or AR584 (n = 5) pasture treatments (3 ha) between 84 and 98 d (Yr 1) or 108 to 124 d (Yr 2). Segments (2 to 3 cm) of vein were surgically biopsied, sliced into 2- to 3-mm cross-sections, and suspended in a myograph chamber containing 5 mL of oxygenated Krebs-Henseleit buffer (95% O2/5% CO2; pH = 7.4; 37°C). Veins were exposed to increasing concentrations of 5HT, ergovaline, and ergovaline + 1 × 10(-5) M ketanserin or + 1 × 10(-6) M SB-269970 in Yr 1. In Yr 2, ergotamine and ergocornine were evaluated in presence or absence of 1 × 10(-5) M ketanserin. Contractile response data were normalized to a reference addition of 1 × 10(-4) M norepinephrine. In Yr 1, contractile response to 5HT and ergovaline were least (P ergotamine (P = 0.13) or ergocornine (P = 0.99) across pasture treatments, but ketanserin reduced (P < 0.05) the contractile response to both alkaloids. The 5HT2A receptor is involved in alkaloid-induced vascular contraction and alkaloid binding may be affected by exposure to different endophyte-fescue combinations. PMID:23825335

  11. Disturbance of serotonin 5HT{sub 2} receptors in remitted patients suffering from hereditary depressive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Larisch, R.; Vosberg, H.; Tosch, M.; Mueller-Gaertner, H.W. [Kliniken fuer Nuklearmedizin der Heinrich-Heine-Univ., Duesseldorf (Germany); Klimke, A.; Gaebel, W. [Kliniken fuer Psychiatrie der Heinrich-Heine-Univ., Duesseldorf (Germany); Mayoral, F.; Rivas, F. [Psychiatrische Klinik des Hospital Civil Carlos Haya, Malaga (Spain); Hamacher, K.; Coenen, H.H. [Inst. fuer Nuklearchemie des Forschungszentrums Juelich GmbH (Germany); Herzog, H.R. [Inst. fuer Medizin des Forschungszentrums Juelich GmbH (Germany)

    2001-08-01

    Aim: The characteristics of 5HT{sub 2} receptor binding were investigated in major depression in vivo using positron emission tomography and the radioligand F-18-altanserin. Methods: Twelve patients from families with high loading of depression living in a geographically restricted region were examined and compared with normal control subjects. At the time of the PET measurement all patients were remitted; in some of them remission was sustained by antidepressive medication. Binding potential was assessed by Logan's graphical analysis method. Results: The binding of F-18-altanserin was about 38% lower in patients than in healthy controls (p<0.001). A multiple regression analysis revealed that this difference was mainly induced by depression rather than by medication. Conclusions: The data suggest that 5HT{sub 2} receptors are altered in depression. We present evidence for a reduction of the receptor density, which might be usable as trait marker of subjects susceptible for depressive illness. (orig.) [German] Ziel: Die vorliegende Studie untersucht die 5HT{sub 2}-Rezeptorbindung bei depressiven Patienten in vivo mit der Positronen-Emissionstomographie und dem Radioliganden F-18-Altanserin. Methoden: Zwoelf Patienten aus Familien mit hoher Inzidenz fuer Depressionen, die in einer geographisch abgeschlossenen Region leben, wurden untersucht und mit gesunden Kontrollpersonen verglichen. Zum Zeitpunkt der PET-Messung waren alle Patienten klinisch remittiert, was bei einigen den Einsatz von Antidepressiva erforderlich machte. Das Bindungspotenzial wurde mit Logans graphischer Methode bestimmt. Ergebnisse: Die Altanserinbindung war bei den Patienten um ca. 38% niedriger als bei den Kontrollpersonen (p<0,001). Eine multiple Regressionsanalyse zeigte, dass dieser Unterschied in erster Linie durch die Erkrankung und nicht durch Praemedikation hervorgerufen wurde. Schlussfolgerung: Die Studie zeigt, dass die 5HT{sub 2}-Rezeptoren an der Depression beteiligt sind. Die

  12. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin

    OpenAIRE

    Ripken, Dina; Wielen, van der, F.W.M.; Wortelboer, Heleen M.; Meijerink, Jocelijn; Witkamp, Renger F.; Hendriks, Henk F. J.

    2016-01-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects...

  13. Linoleic acid derivative DCP-LA ameliorates stress-induced depression-related behavior by promoting cell surface 5-HT1A receptor translocation, stimulating serotonin release, and inactivating GSK-3β.

    Science.gov (United States)

    Kanno, Takeshi; Tanaka, Akito; Nishizaki, Tomoyuki

    2015-04-01

    Impairment of serotonergic neurotransmission is the major factor responsible for depression and glycogen synthase kinase 3β (GSK-3β) participates in serotonergic transmission-mediated signaling networks relevant to mental illnesses. In the forced-swim test to assess depression-like behavior, the immobility time for mice with restraint stress was significantly longer than that for nonstressed control mice. Postsynaptic cell surface localization of 5-HT1A receptor, but not 5-HT2A receptor, in the hypothalamus for mice with restraint stress was significantly reduced as compared with that for control mice, which highly correlated to prolonged immobility time, i.e., depression-like behavior. The linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) restored restraint stress-induced reduction of cell surface 5-HT1A receptor and improved depression-like behavior in mice with restraint stress. Moreover, DCP-LA stimulated serotonin release from hypothalamic slices and cancelled restraint stress-induced reduction of GSK-3β phosphorylation at Ser9. Taken together, the results of the present study indicate that DCP-LA could ameliorate depression-like behavior by promoting translocation of 5-HT1A receptor to the plasma membrane on postsynaptic cells, stimulating serotonin release, and inactivating GSK-3β. PMID:24788685

  14. Linoleic acid derivative DCP-LA ameliorates stress-induced depression-related behavior by promoting cell surface 5-HT1A receptor translocation, stimulating serotonin release, and inactivating GSK-3β.

    Science.gov (United States)

    Kanno, Takeshi; Tanaka, Akito; Nishizaki, Tomoyuki

    2015-04-01

    Impairment of serotonergic neurotransmission is the major factor responsible for depression and glycogen synthase kinase 3β (GSK-3β) participates in serotonergic transmission-mediated signaling networks relevant to mental illnesses. In the forced-swim test to assess depression-like behavior, the immobility time for mice with restraint stress was significantly longer than that for nonstressed control mice. Postsynaptic cell surface localization of 5-HT1A receptor, but not 5-HT2A receptor, in the hypothalamus for mice with restraint stress was significantly reduced as compared with that for control mice, which highly correlated to prolonged immobility time, i.e., depression-like behavior. The linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) restored restraint stress-induced reduction of cell surface 5-HT1A receptor and improved depression-like behavior in mice with restraint stress. Moreover, DCP-LA stimulated serotonin release from hypothalamic slices and cancelled restraint stress-induced reduction of GSK-3β phosphorylation at Ser9. Taken together, the results of the present study indicate that DCP-LA could ameliorate depression-like behavior by promoting translocation of 5-HT1A receptor to the plasma membrane on postsynaptic cells, stimulating serotonin release, and inactivating GSK-3β.

  15. Anticonvulsant effects of N-arachidonoyl-serotonin, a dual fatty acid amide hydrolase enzyme and transient receptor potential vanilloid type-1 (TRPV1) channel blocker, on experimental seizures: the roles of cannabinoid CB1 receptors and TRPV1 channels.

    Science.gov (United States)

    Vilela, Luciano R; Medeiros, Daniel C; de Oliveira, Antonio Carlos P; Moraes, Marcio F; Moreira, Fabricio A

    2014-10-01

    Selective blockade of anandamide hydrolysis, through the inhibition of the FAAH enzyme, has anticonvulsant effects, which are mediated by CB1 receptors. Anandamide, however, also activates TRPV1 channels, generally with an opposite outcome on neuronal modulation. Thus, we suggested that the dual FAAH and TRPV1 blockade with N-arachidonoyl-serotonin (AA-5-HT) would be efficacious in inhibiting pentylenetetrazole (PTZ)-induced seizures in mice. We also investigated the contribution of CB1 activation and TRPV1 blockade to the overt effect of AA-5-HT. In the first experiment, injection of AA-5-HT (0.3-3.0 mg/kg) delayed the onset and reduced the duration of PTZ (60 mg)-induced seizures in mice. These effects were reversed by pre-treatment with the CB1 antagonist, AM251 (1.0-3.0 mg/kg). Finally, we observed that administration of the selective TRPV1 antagonist, SB366791 (0.1-1 mg/kg), did not entirely mimic AA-5-HT effects. In conclusion, AA-5-HT alleviates seizures in mice, an effect inhibited by CB1 antagonism, but not completely mimicked by TRPV1 blockage, indicating that the overall effect of AA-5-HT seems to depend mainly on CB1 receptors. This may represent a new strategy for the development of drugs against seizures, epilepsies and related syndromes.

  16. Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans.

    Science.gov (United States)

    Valle, Marta; Maqueda, Ana Elda; Rabella, Mireia; Rodríguez-Pujadas, Aina; Antonijoan, Rosa Maria; Romero, Sergio; Alonso, Joan Francesc; Mañanas, Miquel Àngel; Barker, Steven; Friedlander, Pablo; Feilding, Amanda; Riba, Jordi

    2016-07-01

    Ayahuasca is an Amazonian psychotropic plant tea typically obtained from two plants, Banisteriopsis caapi and Psychotria viridis. It contains the psychedelic 5-HT2A and sigma-1 agonist N,N-dimethyltryptamine (DMT) plus β-carboline alkaloids with monoamine-oxidase (MAO)-inhibiting properties. Although the psychoactive effects of ayahuasca have commonly been attributed solely to agonism at the 5-HT2A receptor, the molecular target of classical psychedelics, this has not been tested experimentally. Here we wished to study the contribution of the 5-HT2A receptor to the neurophysiological and psychological effects of ayahuasca in humans. We measured drug-induced changes in spontaneous brain oscillations and subjective effects in a double-blind randomized placebo-controlled study involving the oral administration of ayahuasca (0.75mg DMT/kg body weight) and the 5-HT2A antagonist ketanserin (40mg). Twelve healthy, experienced psychedelic users (5 females) participated in four experimental sessions in which they received the following drug combinations: placebo+placebo, placebo+ayahuasca, ketanserin+placebo and ketanserin+ayahuasca. Ayahuasca induced EEG power decreases in the delta, theta and alpha frequency bands. Current density in alpha-band oscillations in parietal and occipital cortex was inversely correlated with the intensity of visual imagery induced by ayahuasca. Pretreatment with ketanserin inhibited neurophysiological modifications, reduced the correlation between alpha and visual effects, and attenuated the intensity of the subjective experience. These findings suggest that despite the chemical complexity of ayahuasca, 5-HT2A activation plays a key role in the neurophysiological and visual effects of ayahuasca in humans. PMID:27039035

  17. Genome-wide association study of theta band event-related oscillations identifies serotonin receptor gene HTR7 influencing risk of alcohol dependence.

    Science.gov (United States)

    Zlojutro, Mark; Manz, Niklas; Rangaswamy, Madhavi; Xuei, Xiaoling; Flury-Wetherill, Leah; Koller, Daniel; Bierut, Laura J; Goate, Alison; Hesselbrock, Victor; Kuperman, Samuel; Nurnberger, John; Rice, John P; Schuckit, Marc A; Foroud, Tatiana; Edenberg, Howard J; Porjesz, Bernice; Almasy, Laura

    2011-01-01

    Event-related brain oscillations (EROs) represent highly heritable neuroelectrical correlates of human perception and cognitive performance that exhibit marked deficits in patients with various psychiatric disorders. We report the results of the first genome-wide association study (GWAS) of an ERO endophenotype-frontal theta ERO evoked by visual oddball targets during P300 response in 1,064 unrelated individuals drawn from a study of alcohol dependence. Forty-two SNPs of the Illumina HumanHap 1 M microarray were selected from the theta ERO GWAS for replication in family-based samples (N = 1,095), with four markers revealing nominally significant association. The most significant marker from the two-stage study is rs4907240 located within ARID protein 5A gene (ARID5A) on chromosome 2q11 (unadjusted, Fisher's combined P = 3.68 × 10⁻⁶). However, the most intriguing association to emerge is with rs7916403 in serotonin receptor gene HTR7 on chromosome 10q23 (combined P = 1.53 × 10⁻⁴), implicating the serotonergic system in the neurophysiological underpinnings of theta EROs. Moreover, promising SNPs were tested for association with diagnoses of alcohol dependence (DSM-IV), revealing a significant relationship with the HTR7 polymorphism among GWAS case-controls (P = 0.008). Significant recessive genetic effects were also detected for alcohol dependence in both case-control and family-based samples (P = 0.031 and 0.042, respectively), with the HTR7 risk allele corresponding to theta ERO reductions among homozygotes. These results suggest a role of the serotonergic system in the biological basis of alcohol dependence and underscore the utility of analyzing brain oscillations as a powerful approach to understanding complex genetic psychiatric disorders.

  18. Examination of the hippocampal contribution to serotonin 5-HT2A receptor-mediated facilitation of object memory in C57BL/6J mice.

    Science.gov (United States)

    Zhang, Gongliang; Cinalli, David; Cohen, Sarah J; Knapp, Kristina D; Rios, Lisa M; Martínez-Hernández, José; Luján, Rafael; Stackman, Robert W

    2016-10-01

    The rodent hippocampus supports non-spatial object memory. Serotonin 5-HT2A receptors (5-HT2AR) are widely expressed throughout the hippocampus. We previously demonstrated that the activation of 5-HT2ARs enhanced the strength of object memory assessed 24 h after a limited (i.e., weak memory) training procedure. Here, we examined the subcellular distribution of 5-HT2ARs in the hippocampal CA1 region and underlying mechanisms of 5-HT2AR-mediated object memory consolidation. Analyses with immuno-electron microscopy revealed the presence of 5-HT2ARs on the dendritic spines and shafts of hippocampal CA1 neurons, and presynaptic terminals in the CA1 region. In an object recognition memory procedure that places higher demand on the hippocampus, only post-training systemic or intrahippocampal administration of the 5-HT2AR agonist TCB-2 enhanced object memory. Object memory enhancement by TCB-2 was blocked by the 5-HT2AR antagonist, MDL 11,937. The memory-enhancing dose of systemic TCB-2 increased extracellular glutamate levels in hippocampal dialysate samples, and increased the mean in vivo firing rate of hippocampal CA1 neurons. In summary, these data indicate a pre- and post-synaptic distribution of 5-HT2ARs, and activation of 5-HT2ARs selectively enhanced the consolidation of object memory, without affecting encoding or retrieval. The 5-HT2AR-mediated facilitation of hippocampal memory may be associated with an increase in hippocampal neuronal firing and glutamate efflux during a post-training time window in which recently encoded memories undergo consolidation. PMID:27114257

  19. Role for serotonin2A (5-HT2A) and 2C (5-HT2C) receptors in experimental absence seizures.

    Science.gov (United States)

    Venzi, Marcello; David, François; Bellet, Joachim; Cavaccini, Anna; Bombardi, Cristiano; Crunelli, Vincenzo; Di Giovanni, Giuseppe

    2016-09-01

    Absence seizures (ASs) are the hallmark of childhood/juvenile absence epilepsy. Monotherapy with first-line anti-absence drugs only controls ASs in 50% of patients, indicating the need for novel therapeutic targets. Since serotonin family-2 receptors (5-HT2Rs) are known to modulate neuronal activity in the cortico-thalamo-cortical loop, the main network involved in AS generation, we investigated the effect of selective 5-HT2AR and 5-HT2CR ligands on ASs in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well established polygenic rat model of these non-convulsive seizures. GAERS rats were implanted with fronto-parietal EEG electrodes under general anesthesia, and their ASs were later recorded under freely moving conditions before and after intraperitoneal administration of various 5-HT2AR and 5-HT2CR ligands. The 5-HT2A agonist TCB-2 dose-dependently decreased the total time spent in ASs, an effect that was blocked by the selective 5-HT2A antagonist MDL11,939. Both MDL11,939 and another selective 5-HT2A antagonist (M100,907) increased the length of individual seizures when injected alone. The 5-HT2C agonists lorcaserin and CP-809,101 dose-dependently suppressed ASs, an effect blocked by the selective 5-HT2C antagonist SB 242984. In summary, 5-HT2ARs and 5-HT2CRs negatively control the expression of experimental ASs, indicating that selective agonists at these 5-HT2R subtypes might be potential novel anti-absence drugs. PMID:27085605

  20. Interaction between serotonin transporter and dopamine D2/D3 receptor radioligand measures is associated with harm avoidant symptoms in anorexia and bulimia nervosa.

    Science.gov (United States)

    Bailer, Ursula F; Frank, Guido K; Price, Julie C; Meltzer, Carolyn C; Becker, Carl; Mathis, Chester A; Wagner, Angela; Barbarich-Marsteller, Nicole C; Bloss, Cinnamon S; Putnam, Karen; Schork, Nicholas J; Gamst, Anthony; Kaye, Walter H

    2013-02-28

    Individuals with anorexia nervosa (AN) and bulimia nervosa (BN) have alterations of measures of serotonin (5-HT) and dopamine (DA) function, which persist after long-term recovery and are associated with elevated harm avoidance (HA), a measure of anxiety and behavioral inhibition. Based on theories that 5-HT is an aversive motivational system that may oppose a DA-related appetitive system, we explored interactions of positron emission tomography (PET) radioligand measures that reflect portions of these systems. Twenty-seven individuals recovered (REC) from eating disorders (EDs) (7 AN-BN, 11 AN, 9 BN) and nine control women (CW) were analyzed for correlations between [(11)C]McN5652 and [(11)C]raclopride binding. There was a significant positive correlation between [(11)C]McN5652 binding potential (BP(non displaceable(ND))) and [(11)C]Raclopride BP(ND) for the dorsal caudate, antero-ventral striatum (AVS), middle caudate, and ventral and dorsal putamen. No significant correlations were found in CW. [(11)C]Raclopride BP(ND), but not [(11)C]McN5652 BP(ND), was significantly related to HA in REC EDs. A linear regression analysis showed that the interaction between [(11)C]McN5652 BP(ND) and [(11)C]raclopride BP(ND) in the dorsal putamen significantly predicted HA. This is the first study using PET and the radioligands [(11)C]McN5652 and [(11)C]raclopride to show a direct relationship between 5-HT transporter and striatal DA D2/D3 receptor binding in humans, supporting the possibility that 5-HT and DA interactions contribute to HA behaviors in EDs.

  1. Serotonin2C receptor stimulation inhibits cocaine-induced Fos expression and DARPP-32 phosphorylation in the rat striatum independently of dopamine outflow.

    Science.gov (United States)

    Devroye, Céline; Cathala, Adeline; Maitre, Marlène; Piazza, Pier Vincenzo; Abrous, Djoher Nora; Revest, Jean-Michel; Spampinato, Umberto

    2015-02-01

    The serotonin(2C) receptor (5-HT(2C)R) is known to control dopamine (DA) neuron function by modulating DA neuronal firing and DA exocytosis at terminals. Recent studies assessing the influence of 5-HT(2C)Rs on cocaine-induced neurochemical and behavioral responses have shown that 5-HT2CRs can also modulate mesoaccumbens DA pathway activity at post-synaptic level, by controlling DA transmission in the nucleus accumbens (NAc), independently of DA release itself. A similar mechanism has been proposed to occur at the level of the nigrostriatal DA system. Here, using in vivo microdialysis in freely moving rats and molecular approaches, we assessed this hypothesis by studying the influence of the 5-HT(2C)R agonist Ro 60-0175 on cocaine-induced responses in the striatum. The intraperitoneal (i.p.) administration of 1 mg/kg Ro 60-0175 had no effect on the increase in striatal DA outflow induced by cocaine (15 mg/kg, i.p.). Conversely, Ro 60-0175 inhibited cocaine-induced Fos immunoreactivity and phosphorylation of the DA and c-AMP regulated phosphoprotein of Mr 32 kDa (DARPP-32) at threonine 75 residue in the striatum. Finally, the suppressant effect of Ro 60-0175 on cocaine-induced DARPP-32 phosphorylation was reversed by the selective 5-HT(2C)R antagonist SB 242084 (0.5 mg/kg, i.p.). In keeping with the key role of DARPP-32 in DA neurotransmission, our results demonstrate that 5-HT(2C)Rs are capable of modulating nigrostriatal DA pathway activity at post-synaptic level, by specifically controlling DA signaling in the striatum. PMID:25446572

  2. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory

    Directory of Open Access Journals (Sweden)

    Oliver eStiedl

    2015-08-01

    Full Text Available Serotonin (5-hydroxytryptamine, 5-HT is a multifunctional neurotransmitter innervating cortical and limbic areas involved in cognition and emotional regulation. Dysregulation of serotonergic transmission is associated with emotional and cognitive deficits in psychiatric patients and animal models. Drugs targeting the 5-HT system are widely used to treat mood disorders and anxiety-like behaviors. Among the fourteen 5-HT receptor (5-HTR subtypes, the 5-HT1AR and 5-HT7R are associated with the development of anxiety, depression and cognitive function linked to mechanisms of emotional learning and memory. In rodents fear conditioning and passive avoidance (PA are associative learning paradigms to study emotional memory. This review assesses the role of 5-HT1AR and 5-HT7R as well as their interplay at the molecular, neurochemical and behavioral level. Activation of postsynaptic 5-HT1ARs impairs emotional memory through attenuation of neuronal activity, whereas presynaptic 5-HT1AR activation reduces 5-HT release and exerts pro-cognitive effects on PA retention. Antagonism of the 5-HT1AR facilitates memory retention possibly via 5-HT7R activation and evidence is provided that 5HT7R can facilitate emotional memory upon reduced 5-HT1AR transmission. These findings highlight the differential role of these 5-HTRs in cognitive/emotional domains of behavior. Moreover, the results indicate that tonic and phasic 5-HT release can exert different and potentially opposing effects on emotional memory, depending on the states of 5-HT1ARs and 5-HT7Rs and their interaction. Consequently, individual differences due to genetic and/or epigenetic mechanisms play an essential role for the responsiveness to drug treatment, e.g., by SSRIs which increase intrasynaptic 5-HT levels thereby activating multiple pre- and postsynaptic 5-HTR subtypes.

  3. Serotonin and the regulation of mammalian energy balance.

    OpenAIRE

    MichaelHDonovan

    2013-01-01

    Maintenance of energy balance requires regulation of the amount and timing of food intake. Decades of experiments utilizing pharmacological and later genetic manipulations have demonstrated the importance of serotonin signaling in this regulation. Much progress has been made in recent years in understanding how central nervous system serotonin systems acting through a diverse array of serotonin receptors impact feeding behavior and metabolism. Particular attention has been paid to mechanisms ...

  4. Serotonin and the regulation of mammalian energy balance

    OpenAIRE

    Donovan, Michael H.; Tecott, Laurence H.

    2013-01-01

    Maintenance of energy balance requires regulation of the amount and timing of food intake. Decades of experiments utilizing pharmacological and later genetic manipulations have demonstrated the importance of serotonin signaling in this regulation. Much progress has been made in recent years in understanding how central nervous system (CNS) serotonin systems acting through a diverse array of serotonin receptors impact feeding behavior and metabolism. Particular attention has been paid to mecha...

  5. (18)F-FCWAY, a serotonin 1A receptor radioligand, is a substrate for efflux transport at the human blood-brain barrier.

    Science.gov (United States)

    Liow, Jeih-San; Zoghbi, Sami S; Hu, Shuo; Hall, Matthew D; Hines, Christina S; Shetty, H Umesha; Araneta, Maria D; Page, Emily M; Pike, Victor W; Kreisl, William C; Herscovitch, Peter; Gottesman, Michael M; Theodore, William H; Innis, Robert B

    2016-09-01

    Efflux transporters at the blood-brain barrier can decrease the entry of drugs and increase the removal of those molecules able to bypass the transporter. We previously hypothesized that (18)F-FCWAY, a radioligand for the serotonin 5-HT1A receptor, is a weak substrate for permeability glycoprotein (P-gp) based on its very early peak and rapid washout from human brain. To determine whether (18)F-FCWAY is a substrate for P-gp, breast cancer resistance protein (BCRP), and multidrug resistance protein (MRP1) - the three most prevalent efflux transporters at the blood-brain barrier - we performed three sets of experiments. In vitro, we conducted fluorescence-activated cell sorting (FACS) flow cytometry studies in cells over-expressing P-gp, BCRP, and MRP1 treated with inhibitors specific to each transporter and with FCWAY. Ex vivo, we measured (18)F-FCWAY concentration in plasma and brain homogenate of transporter knockout mice using γ-counter and radio-HPLC. In vivo, we conducted positron emission tomography (PET) studies to assess changes in humans who received (18)F-FCWAY during an infusion of tariquidar (2-4mg/kg iv), a potent and selective P-gp inhibitor. In vitro studies showed that FCWAY allowed fluorescent substrates to get into the cell by competitive inhibition of all three transporters at the cell membrane. Ex vivo measurements in knockout mice indicate that (18)F-FCWAY is a substrate only for P-gp and not BCRP. In vivo, tariquidar increased (18)F-FCWAY brain uptake in seven of eight subjects by 60-100% compared to each person's baseline. Tariquidar did not increase brain uptake via some peripheral mechanism, given that it did not significantly alter concentrations in plasma of the parent radioligand (18)F-FCWAY or its brain-penetrant radiometabolite (18)F-FC. These results show that (18)F-FCWAY is a weak substrate for efflux transport at the blood-brain barrier; some radioligand can enter brain, but its removal is hastened by P-gp. Although (18)F-FCWAY is

  6. Rectal antinociceptive properties of alverine citrate are linked to antagonism at the 5-HT1A receptor subtype.

    Science.gov (United States)

    Coelho, A M; Jacob, L; Fioramonti, J; Bueno, L

    2001-10-01

    Serotonin (5-HT) is considered as a major mediator causing hyperalgesia and is involved in inflammatory reactions and irritable bowel syndrome. Alverine citrate may possess visceral antinociceptive properties in a rat model of rectal distension-induced abdominal contractions. This study was designed to evaluate the pharmacological properties of alverine citrate in a rat model of rectal hyperalgesia induced by 5-HTP (5-HT precursor) and by a selective 5-HT1A agonist (8-OH-DPAT) and to compare this activity with a reference 5-HT1A antagonist (WAY 100635). At 4 h after their administration, 5-HTP and 8-OH-DPAT increased the number of abdominal contractions in response to rectal distension at the lowest volume of distension (0.4 mL). When injected intraperitoneally before 8-OH-DPAT and 5-HTP, WAY 100635 (1 mg kg(-1)) blocked their nociceptive effect, but also reduced the response to the highest volume of distension (1.6 mL). Similarly, when injected intraperitoneally, alverine citrate (20 mg kg(-1)) suppressed the effect of 5-HTP, but not that of 8-OH-DPAT. However, when injected intracerebroventricularly (75 microg/rat) alverine citrate reduced 8-OH-DPAT-induced enhancement of rectal distension-induced abdominal contractions. In-vitro binding studies revealed that alverine citrate had a high affinity for 5-HT1A receptors and a weak affinity for 5-HT3 and 5-HT4 subtypes. These results suggest that 5-HTP-induced rectal hypersensitivity involves 5-TH1A receptors and that alverine citrate acts as a selective antagonist at the 5-HT1A receptor subtype to block both 5-HTP and 8-OH-DPAT-induced rectal hypersensitivity. PMID:11697552

  7. The effects of serotonin1A receptor on female mice body weight and food intake are associated with the differential expression of hypothalamic neuropeptides and the GABAA receptor.

    Science.gov (United States)

    Butt, Isma; Hong, Andrew; Di, Jing; Aracena, Sonia; Banerjee, Probal; Shen, Chang-Hui

    2014-10-01

    Both common eating disorders anorexia nervosa and bulimia nervosa are characteristically diseases of women. To characterize the role of the 5-HT1A receptor (5-HT1A-R) in these eating disorders in females, we investigated the effect of saline or 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) treatment on feeding behavior and body weight in adult WT female mice and in adult 5-HT1A-R knockout (KO) female mice. Our results showed that KO female mice have lower food intake and body weight than WT female mice. Administration of 8-OH-DPAT decreased food intake but not body weight in WT female mice. Furthermore, qRT-PCR was employed to analyze the expression levels of neuropeptides, γ-aminobutyric acid A receptor subunit β (GABAA β subunits) and glutamic acid decarboxylase in the hypothalamic area. The results showed the difference in food intake between WT and KO mice was accompanied by differential expression of POMC, CART and GABAA β2, and the difference in body weight between WT and KO mice was associated with significantly different expression levels of CART and GABAA β2. As such, our data provide new insight into the role of 5-HT1A-R in both feeding behavior and the associated expression of neuropeptides and the GABAA receptor.

  8. Depletion of Serotonin and Selective Inhibition of 2B Receptor Suppressed Tumor Angiogenesis by Inhibiting Endothelial Nitric Oxide Synthase and Extracellular Signal-Regulated Kinase 1/2 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Masanori Asada

    2009-04-01

    Full Text Available The effects of serotonin (5-HT on tumor growth are inconsistent. We investigated whether a decreased level of 5-HT affected tumor growth using 5-HT transporter knockout (5-HTT-/- mice, which showed 5-HT depletion. When cancer cells were injected subcutaneously into both 5-HTT-/- and 5-HTT+/+ mice, the tumor growth was markedly attenuated in 5-HTT-/- mice. Serotonin levels in the blood, forebrain, and tumors of 5-HTT-/- mice bearing tumors were significantly smaller than those of their 5-HTT+/+ littermates. However, 5-HT did not increase cancer cells' proliferation in vitro. When we applied 5-HTT inhibitors to the wild mice bearing tumors, they did not inhibit tumor growth. The endothelial nitric oxide synthase (eNOS expressions in tumors were reduced in 5-HTT-/- mice compared with 5-HTT+/+ mice. Stimulations with 5-HT (1–50 µM induced eNOS expressions in human umbilical vein endothelial cell (HUVEC in a concentration-dependent manner. When we measured activations of multiple signaling pathways by using a high-throughput phosphospecific antibodies platform, 5-HT stimulated the extracellular signal-regulated kinase 1/2 (ERK1/2 in HUVEC. Moreover, we found that the physiological level of 5-HT induced phosphorylation of both ERK1/2 and eNOS in HUVEC. Human umbilical vein endothelial cell expressed both 5-HT2B and 5-HT2C receptors. SB204741, a specific 5-HT2B receptor inhibitor, blocked 5-HT-induced ERK1/2 and eNOS phosphorylations, whereas RS102221, a specific 5-HT2C receptor inhibitor, did not in HUVEC. SB204741 reduced microvessel density in tumors and inhibited the proliferation of HUVEC in vitro. These results suggest that regulation of 5-HT and 5-HT receptors, especially the 5-HT2B receptor, may serve as a therapeutic strategy in cancer therapy.

  9. Serotonin in fear conditioning processes.

    Science.gov (United States)

    Bauer, Elizabeth P

    2015-01-15

    This review describes the latest developments in our understanding of how the serotonergic system modulates Pavlovian fear conditioning, fear expression and fear extinction. These different phases of classical fear conditioning involve coordinated interactions between the extended amygdala, hippocampus and prefrontal cortices. Here, I first define the different stages of learning involved in cued and context fear conditioning and describe the neural circuits underlying these processes. The serotonergic system can be manipulated by administering serotonin receptor agonists and antagonists, as well as selective serotonin reuptake inhibitors (SSRIs), and these can have significant effects on emotional learning and memory. Moreover, variations in serotonergic genes can influence fear conditioning and extinction processes, and can underlie differential responses to pharmacological manipulations. This research has considerable translational significance as imbalances in the serotonergic system have been linked to anxiety and depression, while abnormalities in the mechanisms of conditioned fear contribute to anxiety disorders.

  10. Stress-induced release of anterior pituitary hormones: Effect of H3 receptor-mediated inhibition of histaminergic activity or posterior hypothalamic lesion

    DEFF Research Database (Denmark)

    Knigge, U.; Søe-Jensen, P.; Jørgensen, Henrik;

    1999-01-01

    Histamine receptors, corticotropin, *Gb-endorphin, prolactin, adrenal steroids, stress, endotoxin, serotonin......Histamine receptors, corticotropin, *Gb-endorphin, prolactin, adrenal steroids, stress, endotoxin, serotonin...

  11. The antimalarial drug quinine interferes with serotonin biosynthesis and action.

    Science.gov (United States)

    Islahudin, Farida; Tindall, Sarah M; Mellor, Ian R; Swift, Karen; Christensen, Hans E M; Fone, Kevin C F; Pleass, Richard J; Ting, Kang-Nee; Avery, Simon V

    2014-01-01

    The major antimalarial drug quinine perturbs uptake of the essential amino acid tryptophan, and patients with low plasma tryptophan are predisposed to adverse quinine reactions; symptoms of which are similar to indications of tryptophan depletion. As tryptophan is a precursor of the neurotransmitter serotonin (5-HT), here we test the hypothesis that quinine disrupts serotonin function. Quinine inhibited serotonin-induced proliferation of yeast as well as human (SHSY5Y) cells. One possible cause of this effect is through inhibition of 5-HT receptor activation by quinine, as we observed here. Furthermore, cells exhibited marked decreases in serotonin production during incubation with quinine. By assaying activity and kinetics of the rate-limiting enzyme for serotonin biosynthesis, tryptophan hydroxylase (TPH2), we showed that quinine competitively inhibits TPH2 in the presence of the substrate tryptophan. The study shows that quinine disrupts both serotonin biosynthesis and function, giving important new insight to the action of quinine on mammalian cells.

  12. Cerebral 5-HT2A receptor and serotonin transporter binding in humans are not affected by the val66met BDNF polymorphism status or blood BDNF levels

    DEFF Research Database (Denmark)

    Klein, Anders Bue; Trajkovska, Viktorija; Erritzoe, David;

    2010-01-01

    Recent studies have proposed an interrelation between the brain-derived neurotrophic factor (BDNF) val66met polymorphism and the serotonin system. In this study, we investigated whether the BDNF val66met polymorphism or blood BDNF levels are associated with cerebral 5-hydroxytryptamine 2A (5-HT(2...

  13. Serotonin control of thermotaxis memory behavior in nematode Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Yinxia Li

    Full Text Available Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans.

  14. Structural modifications of the serotonin 5-HT7 receptor agonist N-(4-cyanophenylmethyl)-4-(2-biphenyl)-1-piperazinehexanamide (LP-211) to improve in vitro microsomal stability: A case study.

    Science.gov (United States)

    Lacivita, Enza; Podlewska, Sabina; Speranza, Luisa; Niso, Mauro; Satała, Grzegorz; Perrone, Roberto; Perrone-Capano, Carla; Bojarski, Andrzej J; Leopoldo, Marcello

    2016-09-14

    The 5-HT7 serotonin receptor is revealing a promising target for innovative therapeutic strategies of neurodevelopmental and neuropsychiatric disorders. Here, we report the synthesis of thirty long-chain arylpiperazine analogs of the selective and brain penetrant 5-HT7 receptor agonist LP-211 (1) designed to enhance stability towards microsomal oxidative metabolism. Commonly used medicinal chemistry strategies were used (i.e., reduction of overall lipophilicity, introduction of electron-withdrawing groups, blocking of potential vulnerable sites of metabolism), and in vitro microsomal stability was tested. The data showed that the adopted design strategy does not directly translate into improvements in stability. Instead, the metabolic stability of the compounds was related to the presence of specific substituents in well-defined regions of the molecule. The collected data allowed for the construction of a machine learning model that, in a given chemical space, is able to describe and quantitatively predict the metabolic stability of the compounds. The majority of the synthesized compounds maintained high affinity for 5-HT7 receptors and showed selectivity towards 5-HT6 and dopamine D2 receptors and different selectivity for 5-HT1A and α1 adrenergic receptors. Compound 50 showed 3-fold higher in vitro stability towards oxidative metabolism than 1 and was able to stimulate neurite outgrowth in neuronal primary cultures through the 5-HT7 receptor in a shorter time and at a lower concentration than the agonist 1. A preliminary disposition study in mice revealed that compound 50 was metabolically stable and was able to pass the blood-brain barrier, thus representing a new tool for studying the pharmacotherapeutic potential of 5-HT7 receptor in vivo. PMID:27318552

  15. Serotonin type-1D receptor stimulation of A-type K(+) channel decreases membrane excitability through the protein kinase A- and B-Raf-dependent p38 MAPK pathways in mouse trigeminal ganglion neurons.

    Science.gov (United States)

    Zhao, Xianyang; Zhang, Yuan; Qin, Wenjuan; Cao, Junping; Zhang, Yi; Ni, Jianqiang; Sun, Yangang; Jiang, Xinghong; Tao, Jin

    2016-08-01

    Although recent studies have implicated serotonin 5-HT1B/D receptors in the nociceptive sensitivity of primary afferent neurons, the underlying molecular and cellular mechanisms remain unclear. In this study, we identified a novel functional role of the 5-HT1D receptor subtype in regulating A-type potassium (K(+)) currents (IA) as well as membrane excitability in small trigeminal ganglion (TG) neurons. We found that the selective activation of 5-HT1D, rather than 5-HT1B, receptors reversibly increased IA, while the sustained delayed rectifier K(+) current was unaffected. The 5-HT1D-mediated IA increase was associated with a depolarizing shift in the voltage dependence of inactivation. Blocking G-protein signaling with pertussis toxin or by intracellular application of a selective antibody raised against Gαo or Gβ abolished the 5-HT1D effect on IA. Inhibition of protein kinase A (PKA), but not of phosphatidylinositol 3-kinase or protein kinase C, abolished the 5-HT1D-mediated IA increase. Analysis of phospho-p38 (p-p38) revealed that activation of 5-HT1D, but not 5-HT1B, receptors significantly activated p38, while p-ERK and p-JNK were unaffected. The p38 MAPK inhibitor SB203580, but not its inactive analogue SB202474, and inhibition of B-Raf blocked the 5-HT1D-mediated IA response. Functionally, we observed a significantly decreased action potential firing rate induced by the 5-HT1D receptors; pretreatment with 4-aminopyridine abolished this effect. Taken together, these results suggest that the activation of 5-HT1D receptors selectively enhanced IA via the Gβγ of the Go-protein, PKA, and the sequential B-Raf-dependent p38 MAPK signaling cascade. This 5-HT1D receptor effect may contribute to neuronal hypoexcitability in small TG neurons. PMID:27156838

  16. Gene expression changes in serotonin, GABA-A receptors, neuropeptides and ion channels in the dorsal raphe nucleus of adolescent alcohol-preferring (P) rats following binge-like alcohol drinking.

    Science.gov (United States)

    McClintick, Jeanette N; McBride, William J; Bell, Richard L; Ding, Zheng-Ming; Liu, Yunlong; Xuei, Xiaoling; Edenberg, Howard J

    2015-02-01

    Alcohol binge-drinking during adolescence is a serious public health concern with long-term consequences. We used RNA sequencing to assess the effects of excessive adolescent ethanol binge-drinking on gene expression in the dorsal raphe nucleus (DRN) of alcohol preferring (P) rats. Repeated binges across adolescence (three 1h sessions across the dark-cycle per day, 5 days per week for 3 weeks starting at 28 days of age; ethanol intakes of 2.5-3 g/kg/session) significantly altered the expression of approximately one-third of the detected genes. Multiple neurotransmitter systems were altered, with the largest changes in the serotonin system (21 of 23 serotonin-related genes showed decreased expression) and GABA-A receptors (8 decreased and 2 increased). Multiple neuropeptide systems were also altered, with changes in the neuropeptide Y and corticotropin-releasing hormone systems similar to those associated with increased drinking and decreased resistance to stress. There was increased expression of 21 of 32 genes for potassium channels. Expression of downstream targets of CREB signaling was increased. There were also changes in expression of genes involved in inflammatory processes, axonal guidance, growth factors, transcription factors, and several intracellular signaling pathways. These widespread changes indicate that excessive binge drinking during adolescence alters the functioning of the DRN and likely its modulation of many regions of the central nervous system, including the mesocorticolimbic system.

  17. A voltammetric and mathematical analysis of histaminergic modulation of serotonin in the mouse hypothalamus.

    Science.gov (United States)

    Samaranayake, Srimal; Abdalla, Aya; Robke, Rhiannon; Nijhout, H Frederik; Reed, Michael C; Best, Janet; Hashemi, Parastoo

    2016-08-01

    Histamine and serotonin are neuromodulators which facilitate numerous, diverse neurological functions. Being co-localized in many brain regions, these two neurotransmitters are thought to modulate one another's chemistry and are often implicated in the etiology of disease. Thus, it is desirable to interpret the in vivo chemistry underlying neurotransmission of these two molecules to better define their roles in health and disease. In this work, we describe a voltammetric approach to monitoring serotonin and histamine simultaneously in real time. Via electrical stimulation of the axonal bundles in the medial forebrain bundle, histamine release was evoked in the mouse premammillary nucleus. We found that histamine release was accompanied by a rapid, potent inhibition of serotonin in a concentration-dependent manner. We developed mathematical models to capture the experimental time courses of histamine and serotonin, which necessitated incorporation of an inhibitory receptor on serotonin neurons. We employed pharmacological experiments to verify that this serotonin inhibition was mediated by H3 receptors. Our novel approach provides fundamental mechanistic insights that can be used to examine the full extent of interconnectivity between histamine and serotonin in the brain. Histamine and serotonin are co-implicated in many of the brain's functions. In this paper, we develop a novel voltammetric method for simultaneous real-time monitoring of histamine and serotonin in the mouse premammillary nucleus. Electrical stimulation of the medial forebrain bundle evokes histamine and inhibits serotonin release. We show voltammetrically, mathematically, and pharmacologically that this serotonin inhibition is H3 receptor mediated.

  18. Ondansetron reverses anti-hypersensitivity from clonidine in rats following peripheral nerve injury: Role of γ-amino butyric acid in α2-adrenoceptor and 5-HT3 serotonin receptor analgesia

    Science.gov (United States)

    Hayashida, Ken-ichiro; Kimura, Masafumi; Yoshizumi, Masaru; Hobo, Shotaro; Obata, Hideaki; Eisenach, James C.

    2012-01-01

    Introduction Monoaminergic pathways, impinging an α2-adrenoceptors and 5-HT3 serotonin receptors, modulate nociceptive transmission, but their mechanisms and interactions after neuropathic injury are unknown. Here we examine these interactions in rodents after nerve injury. Methods Male Sprague-Dawley rats following L5-L6 spinal nerve ligation (SNL) were used for either behavioral testing, in vivo microdialysis for γ-amino butyric acid (GABA) and acetylcholine release, or synaptosome preparation for GABA release. Results Intrathecal administration of the α2-adrenoceptor agonist (clonidine) and 5-HT3 receptor agonist (chlorophenylbiguanide) reduced hypersensitivity in SNL rats via GABA receptor-mediated mechanisms. Clonidine increased GABA and acetylcholine release in vivo in the spinal cord of SNL rats but not in normal rats. Clonidine-induced spinal GABA release in SNL rats was blocked by α2-adrenergic and nicotinic cholinergic antagonists. The 5-HT3 receptor antagonist ondansetron decreased and chlorophenylbiguanide increased spinal GABA release in both normal and SNL rats. In synaptosomes from the spinal dorsal horn of SNL rats, pre-synaptic GABA release was increased by nicotinic agonists and decreased by muscarinic and α2-adrenergic agonists. Spinally administered ondansetron significantly reduced clonidine-induced anti-hypersensitivity and spinal GABA release in SNL rats. Conclusion These results suggest that spinal GABA contributes to anti-hypersensitivity from intrathecal α2-adrenergic and 5-HT3 receptor agonists in the neuropathic pain state, that cholinergic neuroplasticity after nerve injury is critical for α2-adrenoceptor-mediated GABA release, and that blockade of spinal 5-HT3 receptors reduces α2-adrenoceptor-mediated anti-hypersensitivity via reducing total GABA release. PMID:22722575

  19. The Selective Serotonin Reuptake Inhibitor Paroxetine Does Not Alter Consummatory Concentration-Dependent Licking of Prototypical Taste Stimuli by Rats

    OpenAIRE

    Mathes, Clare M.; Spector, Alan C.

    2011-01-01

    Serotonin and the 5HT1A receptor are expressed in a subset of taste receptor cells, and the 5HT3 receptor is expressed on afferent fibers innervating taste buds. Exogenous administration of the selective serotonin reuptake inhibitor, paroxetine, has been shown to increase taste sensitivity to stimuli described by humans as sweet and bitter. Serotonergic agonists also decrease food and fluid intake, and it is possible that modulations of serotonin may alter taste-based hedonic responsiveness; ...

  20. Cerebral markers of the serotonergic system in rat models of obesity and after Roux-en-Y gastric bypass

    DEFF Research Database (Denmark)

    Ratner, Cecilia; Ettrup, Anders; Bueter, Marco;

    2012-01-01

    markers. Using receptor autoradiography, brain regional-densities of the serotonin transporter (SERT) and the 5-HT(2A) and 5-HT(4) receptors were measured in (i) selectively bred polygenic diet-induced obese (pgDIO) rats, (ii) outbred DIO rats, and (iii) Roux-en-Y gastric bypass (RYGB)-operated rats. pg...

  1. Early life stress and serotonin transporter gene variation interact to affect the transcription of the glucocorticoid and mineralocorticoid receptors, and the co-chaperone FKBP5, in the adult rat brain.

    Directory of Open Access Journals (Sweden)

    Rick H. A. Van der Doelen

    2014-10-01

    Full Text Available The short allelic variant of the serotonin transporter (5-HTT promoter-linked polymorphic region (5-HTTLPR has been associated with the etiology of major depression by interaction with early life stress (ELS. A frequently observed endophenotype in depression is the abnormal regulation of levels of stress hormones such as glucocorticoids. It is hypothesized that altered central glucocorticoid influence on stress-related behavior and memory processes could underlie the depressogenic interaction of 5-HTTLPR and ELS. One possible mechanism could be the altered expression of the genes encoding the glucocorticoid and mineralocorticoid receptor (GR, MR and their inhibitory regulator FK506-binding protein 51 (FKBP5 in stress-related forebrain areas. To test this notion, we exposed heterozygous (5-HTT+/- and homozygous (5-HTT-/- serotonin transporter knockout rats and their wildtype littermates (5-HTT+/+ to daily 3 h maternal separations from postnatal day 2 to 14. In the medial prefrontal cortex (mPFC and hippocampus of the adult male offspring, we found that GR, MR and FKBP5 mRNA levels were affected by ELS x 5-HTT genotype interaction. Specifically, 5-HTT+/+ rats exposed to ELS showed decreased GR and FKBP5 mRNA in the dorsal and ventral mPFC, respectively. In contrast, 5-HTT+/- rats showed increased MR mRNA levels in the hippocampus and 5-HTT-/- rats showed increased FKBP5 mRNA in the ventral mPFC after ELS exposure. These findings indicate that 5-HTT genotype determines the specific adaptation of GR, MR and FKBP5 expression in response to early life adversity. Therefore, altered extra-hypothalamic glucocorticoid signaling should be considered to play a role in the depressogenic interaction of ELS and 5-HTTLPR.

  2. Association of Polymorphisms within the Serotonin Receptor Genes 5-HTR1A, 5-HTR1B, 5-HTR2A and 5-HTR2C and Migraine Susceptibility in a Turkish Population

    Science.gov (United States)

    Yücel, Yavuz; Coşkun, Salih; Cengiz, Beyhan; Özdemir, Hasan H.; Uzar, Ertuğrul; Çim, Abdullah; Camkurt, M. Akif; Aluclu, M. Ufuk

    2016-01-01

    Objective Migraine, a highly prevelant headache disorder, is regarded as a polygenic multifactorial disease. Serotonin (5-HT) and their respective receptors have been implicated in the patogenesis. Methods We investigated the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT2C receptor gene polymorphisms and their association with migraine in Turkish patients. The rs6295, rs1300060, rs1228814, rs6311, rs6313, rs6314, rs6318, rs3813929 (−759C/T) and rs518147 polymorphisms were analyzed in 135 patients with migraine and 139 healthy subjects, using a BioMark 96.96 dynamic array system. Results We found no difference in the frequency of the analyzed eight out of nine polymorpisms between migraine and control groups. However, a significant association was found between the rs3813929 polymorphism in the promoter region of 5-HTR2C gene and migraine. Also, the allele of rs3813929 was more common in the migraine group. Conclusion This result suggests that the 5-HTR2C rs3813929 polymorphism can be a genetic risk factor for migraine in a Turkish population. PMID:27489378

  3. MPA-capped CdTe quantum dots exposure causes neurotoxic effects in nematode Caenorhabditis elegans by affecting the transporters and receptors of glutamate, serotonin and dopamine at the genetic level, or by increasing ROS, or both

    Science.gov (United States)

    Wu, Tianshu; He, Keyu; Zhan, Qinglin; Ang, Shengjun; Ying, Jiali; Zhang, Shihan; Zhang, Ting; Xue, Yuying; Tang, Meng

    2015-12-01

    As quantum dots (QDs) are widely used in biomedical applications, the number of studies focusing on their biological properties is increasing. While several studies have attempted to evaluate the toxicity of QDs towards neural cells, the in vivo toxic effects on the nervous system and the molecular mechanisms are unclear. The aim of the present study was to investigate the neurotoxic effects and the underlying mechanisms of water-soluble cadmium telluride (CdTe) QDs capped with 3-mercaptopropionic acid (MPA) in Caenorhabditis elegans (C. elegans). Our results showed that exposure to MPA-capped CdTe QDs induced behavioral defects, including alterations to body bending, head thrashing, pharyngeal pumping and defecation intervals, as well as impaired learning and memory behavior plasticity, based on chemotaxis or thermotaxis, in a dose-, time- and size-dependent manner. Further investigations suggested that MPA-capped CdTe QDs exposure inhibited the transporters and receptors of glutamate, serotonin and dopamine in C. elegans at the genetic level within 24 h, while opposite results were observed after 72 h. Additionally, excessive reactive oxygen species (ROS) generation was observed in the CdTe QD-treated worms, which confirmed the common nanotoxicity mechanism of oxidative stress damage, and might overcome the increased gene expression of neurotransmitter transporters and receptors in C. elegans induced by long-term QD exposure, resulting in more severe behavioral impairments.

  4. Rotavirus and Serotonin Cross-Talk in Diarrhoea.

    Directory of Open Access Journals (Sweden)

    Sonja Bialowas

    Full Text Available Rotavirus (RV has been shown to infect and stimulate secretion of serotonin from human enterochromaffin (EC cells and to infect EC cells in the small intestine of mice. It remains to identify which intracellularly expressed viral protein(s is responsible for this novel property and to further establish the clinical role of serotonin in RV infection. First, we found that siRNA specifically silencing NSP4 (siRNANSP4 significantly attenuated secretion of serotonin from Rhesus rotavirus (RRV infected EC tumor cells compared to siRNAVP4, siRNAVP6 and siRNAVP7. Second, intracellular calcium mobilization and diarrhoeal capacity from virulent and avirulent porcine viruses correlated with the capacity to release serotonin from EC tumor cells. Third, following administration of serotonin, all (10/10 infants, but no (0/8 adult mice, responded with diarrhoea. Finally, blocking of serotonin receptors using Ondansetron significantly attenuated murine RV (strain EDIM diarrhoea in infant mice (2.9 vs 4.5 days. Ondansetron-treated mice (n = 11 had significantly (p < 0.05 less diarrhoea, lower diarrhoea severity score and lower total diarrhoea output as compared to mock-treated mice (n = 9. Similarly, Ondansetron-treated mice had better weight gain than mock-treated animals (p < 0.05. A most surprising finding was that the serotonin receptor antagonist significantly (p < 0.05 also attenuated total viral shedding. In summary, we show that intracellularly expressed NSP4 stimulates release of serotonin from human EC tumor cells and that serotonin participates in RV diarrhoea, which can be attenuated by Ondansetron.

  5. Rotavirus and Serotonin Cross-Talk in Diarrhoea.

    Science.gov (United States)

    Bialowas, Sonja; Hagbom, Marie; Nordgren, Johan; Karlsson, Thommie; Sharma, Sumit; Magnusson, Karl-Eric; Svensson, Lennart

    2016-01-01

    Rotavirus (RV) has been shown to infect and stimulate secretion of serotonin from human enterochromaffin (EC) cells and to infect EC cells in the small intestine of mice. It remains to identify which intracellularly expressed viral protein(s) is responsible for this novel property and to further establish the clinical role of serotonin in RV infection. First, we found that siRNA specifically silencing NSP4 (siRNANSP4) significantly attenuated secretion of serotonin from Rhesus rotavirus (RRV) infected EC tumor cells compared to siRNAVP4, siRNAVP6 and siRNAVP7. Second, intracellular calcium mobilization and diarrhoeal capacity from virulent and avirulent porcine viruses correlated with the capacity to release serotonin from EC tumor cells. Third, following administration of serotonin, all (10/10) infants, but no (0/8) adult mice, responded with diarrhoea. Finally, blocking of serotonin receptors using Ondansetron significantly attenuated murine RV (strain EDIM) diarrhoea in infant mice (2.9 vs 4.5 days). Ondansetron-treated mice (n = 11) had significantly (p < 0.05) less diarrhoea, lower diarrhoea severity score and lower total diarrhoea output as compared to mock-treated mice (n = 9). Similarly, Ondansetron-treated mice had better weight gain than mock-treated animals (p < 0.05). A most surprising finding was that the serotonin receptor antagonist significantly (p < 0.05) also attenuated total viral shedding. In summary, we show that intracellularly expressed NSP4 stimulates release of serotonin from human EC tumor cells and that serotonin participates in RV diarrhoea, which can be attenuated by Ondansetron. PMID:27459372

  6. Differential regulation of serotonin-1A receptor stimulated [35S]GTPγS binding in the dorsal raphe nucleus by citalopram and escitalopram

    OpenAIRE

    Rossi, Dania V.; Burke, Teresa F.; Hensler, Julie G.

    2008-01-01

    The effect of chronic citalopram or escitalopram administration on 5-HT1A receptor function in the dorsal raphe nucleus was determined by measuring [35S]GTPγS binding stimulated by the 5-HT1A receptor agonist (R)-(+)-8-OH-DPAT (1nM-10μM). Although chronic administration of citalopram or escitalopram has been shown to desensitize somatodendritic 5-HT1A autoreceptors, we found that escitalopram treatment decreased the efficacy of 5-HT1A receptors to activate G-proteins, whereas citalopram treat...

  7. Cyclopentadienyl tricarbonyl complexes of 99mTc for the in vivo imaging of the serotonin 5-HT 1a receptor in the brain

    International Nuclear Information System (INIS)

    The present interest in the 5-HT 1a receptor is due to its implicated role in several major neuropsychiatric disorders such as depression, eating disorders and anxiety. For the diagnosis of these pathophysiological processes it is important to have radioligands in hand able to specifically bind on the 5-HT 1a receptor in order to allow brain imaging. due to the optimal radiation properties of 99mTc there is a considerable interest in the development of 99mTc radiopharmaceuticals for imaging serotonergic CNS receptors using single-photon emission tomography (SPET). Here we introduce two cyclopentadienyl technitium tricarbonyl conjugates of piperidine derivatives which show high accumulation of radioactivity in brain areas rich in 5-HT 1a receptors

  8. G protein- and agonist-bound serotonin 5-HT2A receptor model activated by steered molecular dynamics simulations

    DEFF Research Database (Denmark)

    Ísberg, Vignir; Balle, Thomas; Sander, Tommy;

    2011-01-01

    molecular dynamics (MD) simulations. The driving force for the transformation was the addition of several known intermolecular and receptor interhelical hydrogen bonds enforcing the necessary helical and rotameric movements. Subsquent MD simulations without constraints confirmed the stability...

  9. A new multi-targeted serotonin receptor antagonist:anti-schizophrenia ITI-007%新型多靶点5-羟色胺受体抑制剂ITI-007

    Institute of Scientific and Technical Information of China (English)

    张海枝; 陈会慧; 刘长鹰; 范成鑫

    2016-01-01

    ITI-007 is an atypical antipsychotic drug which is currently under development by Intra-Cellular Therapies Co. Ltd. In pre-clinical and clinical trials to date, ITI-007 combines potent serotonin 5-HT2A receptor antagonism, dopamine receptor phosphoprotein modulation (DPPM), glutamatergic modulation, and serotonin reuptake inhibition into a single drug candidate for the treatment of acute and residual schizophrenia. ITI-007 has demonstrated significantly improvements in quality of sleep, and reducing the negative symptoms of schizophrenia, and has certain effects in treatment of depression, anxiety, and other symptoms associated with impaired social function. Different from many other antipsychotics such as risperidone, ITI-007 may not cause an increase in the risk of diabetes or cardiovascular disease. Therefore ITI-007 may prove to be a significant improvement relative to many existing antipsychotic drugs in terms of long-term safety and tolerability.%ITI-007是Intra-Cellular Therapies有限公司开发的一种非典型抗精神分裂症药物。到目前为止,在已完成的临床前和临床试验中,该药表现出了结合强效5-HT2A受体拮抗剂、多巴胺受体磷酸化调节剂(DPPM)、谷氨酸调节剂以及5-羟色胺再摄取抑制剂于一身的特点,可用于治疗急性及残留型精神分裂症,为上述症状的单一结构候选药物。ITI-007同时还具有改善睡眠质量的效果,并能减少精神分裂症的阴性症状,对抑郁、焦虑以及与受损的社会功能相关的其他症状也有一定效果。与许多其他抗精神病药物如利培酮不同,ITI-007不会导致糖尿病和心血管疾病风险的增加,因此与许多现有抗精神分裂症药物相比,后者在长期的安全性和耐受性方面可能会有明显改善。

  10. Platelet serotonin in systemic sclerosis.

    OpenAIRE

    Klimiuk, P S; Grennan, A; Weinkove, C.; Jayson, M I

    1989-01-01

    Platelet serotonin concentrations were measured in 43 patients with systemic sclerosis, in 11 patients with primary Raynaud's phenomenon, and in 38 normal controls. Patients with the CREST variant (calcinosis, Raynaud's phenomenon, oesophageal dysmotility, sclerodactyly, telangiectasia) had significantly lower platelet serotonin concentrations than normal controls. Patients with diffuse systemic sclerosis had normal platelet serotonin concentrations. In patients with CREST treatment with keta...

  11. Drug: D09933 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D09933 Drug Naronapride (USAN/INN) C27H41ClN4O5 536.2765 537.0912 D09933.gif Treatm... Serotonin 5-HT4-receptor [HSA:3360] [KO:K04160] Naronapride D09933 Naronapride (USAN/INN) CAS: 860174-12-5

  12. Drug: D06353 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D06353 Drug Zacopride hydrochloride (USAN) C15H20ClN3O2. HCl. H2O 363.1116 364.2674...amily Serotonin 5-HT4-receptor [HSA:3360] [KO:K04160] Zacopride D06353 Zacopride hydrochloride (USAN) CAS: 9

  13. Drug: D09934 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D09934 Drug Naronapride dihydrochloride (USAN) C27H41ClN4O5. 2HCl 608.2299 610.0131...s Rhodopsin family Serotonin 5-HT4-receptor [HSA:3360] [KO:K04160] Naronapride D09934 Naronapride dihydrochl

  14. Serotonin 5-HT2C receptor-independent expression of hypothalamic NOR1, a novel modulator of food intake and energy balance, in mice

    Energy Technology Data Exchange (ETDEWEB)

    Nonogaki, Katsunori, E-mail: knonogaki-tky@umin.ac.jp [Center of Excellence, Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine (Japan); Department of Lifestyle Medicine, Biomedical Engineering Center, Tohoku University (Japan); Kaji, Takao [Department of Lifestyle Medicine, Biomedical Engineering Center, Tohoku University (Japan); Ohba, Yukie; Sumii, Makiko [Center of Excellence, Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine (Japan); Wakameda, Mamoru; Tamari, Tomohiro [Charles River Laboratories Japan, Inc. (Japan)

    2009-08-21

    NOR1, Nur77 and Nurr1 are orphan nuclear receptors and members of the NR4A subfamily. Here, we report that the expression of hypothalamic NOR1 was remarkably decreased in mildly obese {beta}-endorphin-deficient mice and obese db/db mice with the leptin receptor mutation, compared with age-matched wild-type mice, whereas there were no genotypic differences in the expression of hypothalamic Nur77 or Nurr1 in these animals. The injection of NOR1 siRNA oligonucleotide into the third cerebral ventricle significantly suppressed food intake and body weight in mice. On the other hand, the decreases in hypothalamic NOR1 expression were not found in non-obese 5-HT2C receptor-deficient mice. Moreover, systemic administration of m-chlorophenylpiperazine (mCPP), a 5-HT2C/1B receptor agonist, had no effect on hypothalamic NOR1 expression, while suppressing food intake in {beta}-endorphin-deficient mice. These findings suggest that 5-HT2C receptor-independent proopiomelanocortin-derived peptides regulate the expression of hypothalamic NOR1, which is a novel modulator of feeding behavior and energy balance.

  15. [Serotonin and treatment of mental disorders. Present status and future perspectives].

    Science.gov (United States)

    Sevcík, J; Masek, K

    1997-07-14

    Serotoninergic system is involved in the regulation of diverse biological and psychological functions and a variety of serotonin receptor subtypes represent a possible target for a new generation of medications. 5-HT receptors play an important role in both schizophrenia and depression. Modern strategies for treating schizophrenia profit from the existence of interaction between serotonin and dopamine systems. New drugs called serotonin-dopamine antagonists (SDAs) offer wider spectra of activity and lower extrapyramidal side effects liability. The principle of the SDAs is that the drug should be a potent serotonin 5-HT 2A antagonist, with slightly less potent dopamine D2 receptor-blocking properties. New pharmacological agents with great therapeutic potential and fewer side effects were recently developed also for the treatment of depression. Among these new antidepressives the serotonin selective reuptake inhibitors (SSRIs) currently play the most important role. PMID:9340186

  16. Polimorfismos dos genes do receptor de serotonina (5-HT2A e da catecol-O-metiltransferase (COMT: fatores desencadeantes da fibromialgia? Serotonin receptor (5-HT 2A and catechol-O-methyltransferase (COMT gene polymorphisms: Triggers of fibromyalgia?

    Directory of Open Access Journals (Sweden)

    Josie Budag Matsuda

    2010-04-01

    fatigue, sleep disorders, anxiety, depression, memory loss, and dizziness. Although the physiological mechanisms that control fibromyalgia have not been precisely established, neuroendocrine, genetic or molecular factors may be involved in fibromyalgia. OBJECTIVE: The aim of the present study was to characterize serotonin receptor (5-HT2A and catecholO-methyltransferase (COMT gene polymorphisms in Brazilian patients with fibromyalgia and to evaluate the participation of these polymorphisms in the etiology of the disease. MATERIAL AND METHODS: Genomic DNA extracted from 102 blood samples (51 patients, 51 controls was used for molecular characterization of the 5-HT2A and COMT gene polymorphisms by PCR-RFLP. RESULTS: Analysis of the 5-HT2A polymorphism revealed a frequency of 25.49% C/C, 49.02% T/C and 25.49% T/T in patients, and of 17.65% C/C, 62.74% T/C and 19.61% T/T in the control group, with no differences between the two groups.Analysis of the COMT polymorphism in patients showed a frequency of 17.65% and 45.10% for genotypes H/H and L/H, respectively. In the control group the frequency was 29.42% for H/H and 60.78% for L/H, also with no differences between the two groups. However, there was a significant difference in the frequency of the L/L genotype between patients (37.25% and controls (9.8%, which permitted differentiation between the two groups. CONCLUSION: The L/L genotype was more frequent among fibromyalgia patients. Though considering a polygenic situation and environmental factors, the molecular study of the rs4680 SNP of the COMT gene may be helpful to the identification of susceptible individuals.

  17. [3]tetrahydrotrazodone binding. Association with serotonin binding sites

    International Nuclear Information System (INIS)

    High (17 nM) and low (603 nM) affinity binding sites for [3]tetrahydrotrazodone ([3] THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of [3]THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, [3] THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that [3]THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors

  18. Serotonin blockade delays learning performance in a cooperative fish.

    Science.gov (United States)

    Soares, Marta C; Paula, José R; Bshary, Redouan

    2016-09-01

    Animals use learning and memorizing to gather information that will help them to make ecologically relevant decisions. Neuro-modulatory adjustments enable them to make associations between stimuli and appropriate behavior. A key candidate for the modulation of cooperative behavior is serotonin. Previous research has shown that modulation of the serotonergic system spontaneously affects the behavior of the cleaner wrasse Labroides dimidiatus during interactions with so-called 'client' reef fish. Here, we asked whether shifts in serotonin function affect the cleaners' associative learning abilities when faced with the task to distinguish two artificial clients that differ in their value as a food source. We found that the administration of serotonin 1A receptor antagonist significantly slowed learning speed in comparison with saline treated fish. As reduced serotonergic signaling typically enhances fear, we discuss the possibility that serotonin may affect how cleaners appraise, acquire information and respond to client-derived stimuli via manipulation of the perception of danger. PMID:27107861

  19. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors.

    Directory of Open Access Journals (Sweden)

    Xavier Viñals

    2015-07-01

    Full Text Available Activation of cannabinoid CB1 receptors (CB1R by delta9-tetrahydrocannabinol (THC produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties.

  20. Adding 5-hydroxytryptamine receptor type 3 antagonists may reduce drug-induced nausea in poor insight obsessive-compulsive patients taking off-label doses of selective serotonin reuptake inhibitors: a 52-week follow-up case report

    Directory of Open Access Journals (Sweden)

    Martino Matteo

    2010-12-01

    Full Text Available Abstract Poor-insight obsessive-compulsive disorder (PI-OCD is a severe form of OCD where the 'typically obsessive' features of intrusive, 'egodystonic' feelings and thoughts are absent. PI-OCD is difficult to treat, often requiring very high doses of serotonergic drugs as well as antipsychotic augmentation. When this occurs, unpleasant side effects as nausea are common, eventually further reducing compliance to medication and increasing the need for pharmacological alternatives. We present the case of a PI-OCD patient who developed severe nausea after response to off-label doses of the selective serotonin reuptake inhibitor (SSRI, fluoxetine. Drug choices are discussed, providing pharmacodynamic rationales and hypotheses along with reports of rating scale scores, administered within a follow-up period of 52 weeks. A slight reduction of fluoxetine dose, augmentation with mirtazapine and a switch from amisulpride to olanzapine led to resolution of nausea while preserving the anti-OCD therapeutic effect. Mirtazapine and olanzapine have already been suggested for OCD treatment, although a lack of evidence exists about their role in the course of PI-OCD. Both mirtazapine and olanzapine also act as 5-hydroxytryptamine receptor type 3 (5-HT3 blockers, making them preferred choices especially in cases of drug-induced nausea.

  1. Augmentation of SSRI effects on serotonin by 5-HT2C antagonists : Mechanistic studies

    NARCIS (Netherlands)

    Cremers, Thomas I. F. H.; Rea, Kieran; Bosker, Fokko J.; Wikstrom, Hakan V.; Hogg, Sandra; Mork, Arne; Westerink, Ben H. C.

    2007-01-01

    The treatment of depression may be improved by using an augmentation approach involving selective serotonin reuptake inhibitors (SSRIs) in combination with compounds that focus on antagonism of inhibitory serotonin receptors. Using microdialysis coupled to HPLC, it has recently been shown that the s

  2. The Reduction of Baseline Serotonin 2A Receptors in Mild Cognitive Impairment is Stable at Two-year Follow-up

    DEFF Research Database (Denmark)

    Marner, Lisbeth; Knudsen, Gitte M; Madsen, Karine;

    2011-01-01

    We previously demonstrated a 20-30% reduction in cortical 5-HT2A receptor binding in patients with mild cognitive impairment (MCI) as compared to healthy subjects. Here we present a two-year follow-up of 14 patients and 12 healthy age-matched subjects. Baseline and follow-up partial volume...

  3. The excitability and rhythm of medullary respiratory neurons in the cat are altered by the serotonin receptor agonist 5-methoxy-N,N, dimethyltryptamine.

    Science.gov (United States)

    Lalley, P M

    1994-06-13

    5-Methoxy-N,N-dimethyltryptamine (5-MeODMT) is an indolealkylamine which has agonist activity at 5HT receptors. In the present investigation, 5-MeODMT had two types of effects on medullary respiratory neurons of the cat. Iontophoretic administration or i.v. doses (43 +/- 8.9 micrograms/kg) of 5-MeODMT hyperpolarized respiratory neurons and severely reduced action potential discharges. Cinanserin, a 5HT-2/1 c receptor antagonist, when injected i.v. reduced the inhibition produced by i.v. injection of 5-MeODMT. Iontophoresis of cinanserin did not antagonize inhibition produced by iontophoresis of 5-MeODMT or 5-HT. The depression of respiratory discharge by i.v. injection of 5-MeODMT is attributed to presynaptic effects (network depression) and post-synaptic activation of 5HT-1A receptors on respiratory neurons. 5-MeODMT (27 +/- 2.78 micrograms/kg i.v.) also increased discharge frequency of inspiratory and expiratory neurons. Inspiratory neuron discharges were briefer and expiratory neuron discharges occurred earlier in relation to phrenic nerve activity. It is suggested that the effects of the smaller doses are due to binding of 5-MeODMT to 5HT-1A receptors on early inspiratory neurons of the medulla. PMID:7922531

  4. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action.

    Science.gov (United States)

    Vollenweider, F X; Vollenweider-Scherpenhuyzen, M F; Bäbler, A; Vogel, H; Hell, D

    1998-12-01

    Psilocybin, an indoleamine hallucinogen, produces a psychosis-like syndrome in humans that resembles first episodes of schizophrenia. In healthy human volunteers, the psychotomimetic effects of psilocybin were blocked dose-dependently by the serotonin-2A antagonist ketanserin or the atypical antipsychotic risperidone, but were increased by the dopamine antagonist and typical antipsychotic haloperidol. These data are consistent with animal studies and provide the first evidence in humans that psilocybin-induced psychosis is due to serotonin-2A receptor activation, independently of dopamine stimulation. Thus, serotonin-2A overactivity may be involved in the pathophysiology of schizophrenia and serotonin-2A antagonism may contribute to therapeutic effects of antipsychotics.

  5. Molecular interactions of agonist and inverse agonist ligands at serotonin 5-HT2C G protein-coupled receptors: computational ligand docking and molecular dynamics studies validated by experimental mutagenesis results

    Science.gov (United States)

    Córdova-Sintjago, Tania C.; Liu, Yue; Booth, Raymond G.

    2015-02-01

    To understand molecular determinants for ligand activation of the serotonin 5-HT2C G protein-coupled receptor (GPCR), a drug target for obesity and neuropsychiatric disorders, a 5-HT2C homology model was built according to an adrenergic β2 GPCR (β2AR) structure and validated using a 5-HT2B GPCR crystal structure. The models were equilibrated in a simulated phosphatidyl choline membrane for ligand docking and molecular dynamics studies. Ligands included (2S, 4R)-(-)-trans-4-(3'-bromo- and trifluoro-phenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalene-2-amine (3'-Br-PAT and 3'-CF3-PAT), a 5-HT2C agonist and inverse agonist, respectively. Distinct interactions of 3'-Br-PAT and 3'-CF3-PAT at the wild-type (WT) 5-HT2C receptor model were observed and experimental 5-HT2C receptor mutagenesis studies were undertaken to validate the modelling results. For example, the inverse agonist 3'-CF3-PAT docked deeper in the WT 5-HT2C binding pocket and altered the orientation of transmembrane helices (TM) 6 in comparison to the agonist 3'-Br-PAT, suggesting that changes in TM orientation that result from ligand binding impact function. For both PATs, mutation of 5-HT2C residues S3.36, T3.37, and F5.47 to alanine resulted in significantly decreased affinity, as predicted from modelling results. It was concluded that upon PAT binding, 5-HT2C residues T3.37 and F5.47 in TMs 3 and 5, respectively, engage in inter-helical interactions with TMs 4 and 6, respectively. The movement of TMs 5 and 6 upon agonist and inverse agonist ligand binding observed in the 5-HT2C receptor modelling studies was similar to movements reported for the activation and deactivation of the β2AR, suggesting common mechanisms among aminergic neurotransmitter GPCRs.

  6. Interação entre as vias de sinalização de receptores serotoninérgicos e Β-adrenérgicos em artéria femoral de ratos

    Directory of Open Access Journals (Sweden)

    Maria Andréia Delbin

    2012-01-01

    Full Text Available FUNDAMENTO: A doença coronária tem sido amplamente estudada em pesquisas cardiovasculares. No entanto, pacientes com doença arterial periférica (DAP têm piores resultados em comparação àqueles com doença arterial coronariana. Portanto, os estudos farmacológicos com artéria femoral são altamente relevantes para a melhor compreensão das respostas clínicas e fisiopatológicas da DAP. OBJETIVO: Avaliar as propriedades farmacológicas dos agentes contráteis e relaxantes na artéria femoral de ratos. MÉTODOS: As curvas de resposta de concentração à fenilefrina contrátil (FC e à serotonina (5-HT e os agentes relaxantes isoproterenol (ISO e forskolina foram obtidos na artéria femoral de ratos isolada. Para as respostas ao relaxamento, os tecidos foram contraídos com FC ou 5-HT. RESULTADOS: A potência de classificação na artéria femoral foi de 5-HT > FC para as respostas contráteis. Em tecidos contraídos com 5-HT, as respostas de relaxamento ao isoproterenol foram praticamente abolidas em comparação aos tecidos contraídos com FC. A forskolina, um estimulante da adenilil ciclase, restaurou parcialmente a resposta de relaxamento ao ISO em tecidos contraídos com 5-HT. CONCLUSÃO: Ocorre uma interação entre as vias de sinalização dos receptores β-adrenérgicos e serotoninérgicos na artéria femoral. Além disso, esta pesquisa fornece um novo modelo para estudar as vias de sinalização serotoninérgicas em condições normais e patológicas que podem ajudar a compreender os resultados clínicos na DAP.

  7. Plaque deposition dependent decrease in 5-HT2A serotonin receptor in AbetaPPswe/PS1dE9 amyloid overexpressing mice

    DEFF Research Database (Denmark)

    Holm, Peter; Ettrup, Anders; Klein, Anders B;

    2010-01-01

    -HT2A receptor regulation in double transgenic AbetaPPswe/PS1dE9 mice which display excess production of Abeta and age-dependent increase in amyloid plaques. Three different age-groups, 4-month-old, 8- month-old, and 11-month-old were included in the study. [3H]-MDL100907, [3H]-escitalopram, and [11C...

  8. Serotonin 2A Receptors Differentially Contribute to Abuse-Related Effects of Cocaine and Cocaine-Induced Nigrostriatal and Mesolimbic Dopamine Overflow in Nonhuman Primates

    OpenAIRE

    Murnane, Kevin S.; Winschel, Jake; Schmidt, Karl T.; Stewart, LaShaya M.; Rose, Samuel J.; Cheng, Kejun; Rice, Kenner C.; Howell, Leonard L.

    2013-01-01

    Two of the most commonly used procedures to study the abuse-related effects of drugs in laboratory animals are intravenous drug self-administration and reinstatement of extinguished behavior previously maintained by drug delivery. Intravenous self-administration is widely accepted to model ongoing drug-taking behavior, whereas reinstatement procedures are accepted to model relapse to drug taking following abstinence. Previous studies indicate that 5-HT2A receptor antagonists attenuate the rei...

  9. Serotonin 2A Receptors Differentially Contribute to Abuse-Related Effects of Cocaine and Cocaine-Induced Nigrostriatal and Mesolimbic Dopamine Overflow in Nonhuman Primates

    Science.gov (United States)

    Murnane, Kevin S.; Winschel, Jake; Schmidt, Karl T.; Stewart, LaShaya M.; Rose, Samuel J.; Cheng, Kejun; Rice, Kenner C.

    2013-01-01

    Two of the most commonly used procedures to study the abuse-related effects of drugs in laboratory animals are intravenous drug self-administration and reinstatement of extinguished behavior previously maintained by drug delivery. Intravenous self-administration is widely accepted to model ongoing drug-taking behavior, whereas reinstatement procedures are accepted to model relapse to drug taking following abstinence. Previous studies indicate that 5-HT2A receptor antagonists attenuate the reinstatement of cocaine-maintained behavior but not cocaine self-administration in rodents. Although the abuse-related effects of cocaine have been closely linked to brain dopamine systems, no previous study has determined whether this dissociation is related to differential regulation of dopamine neurotransmission. To elucidate the neuropharmacological and neuroanatomical mechanisms underlying this phenomenon, we evaluated the effects of the selective 5-HT2A receptor antagonist M100907 on intravenous cocaine self-administration and drug- and cue-primed reinstatement in rhesus macaques (Macaca mulatta). In separate subjects, we evaluated the role of 5-HT2A receptors in cocaine-induced dopamine overflow in the nucleus accumbens (n = 4) and the caudate nucleus (n = 5) using in vivo microdialysis. Consistent with previous studies, M100907 (0.3 mg/kg, i.m.) significantly attenuated drug- and cue-induced reinstatement but had no significant effects on cocaine self-administration across a range of maintenance doses. Importantly, M100907 (0.3 mg/kg, i.m.) attenuated cocaine-induced (1.0 mg/kg, i.v.) dopamine overflow in the caudate nucleus but not in the nucleus accumbens. These data suggest that important abuse-related effects of cocaine are mediated by distinct striatal dopamine projection pathways. PMID:23946394

  10. 5-Hydroxytryptamine-induced bladder hyperactivity via the 5-HT2A receptor in partial bladder outlet obstruction in rats.

    Science.gov (United States)

    Sakai, Takumi; Kasahara, Ken-ichi; Tomita, Ken-ichi; Ikegaki, Ichiro; Kuriyama, Hiroshi

    2013-04-01

    We investigated the effects of partial bladder outlet obstruction (BOO) on the function and gene expression of 5-hydroxytryptamine (5-HT) receptor subtypes in rat bladder. Isometric contractions of the isolated bladders from sham-operated control and BOO rats were examined. The contractile responses to 5-HT were significantly increased in BOO rat bladder strips, while the responses to KCl, carbachol, or phenylephrine were not different from the control. The 5-HT-induced hypercontraction in BOO rat bladder strips was inhibited by ketanserin, a 5-HT(2A) receptor antagonist. The contractile responses to 5-HT in bladder strips were not affected by urothelium removal from the intact bladder. The gene expression of 5-HT receptor subtypes in the bladders was analyzed by RT-PCR. The mRNA expression of the 5-HT(2A), 5-HT(2B), 5-HT(2C), 5-HT(4), and 5-HT(7) receptors was detected in both the control and BOO rat bladders. Quantitative RT-PCR analysis showed there was a significant increase of 5-HT(2A) receptor mRNA in the BOO rat bladder compared with the control bladder. On the other hand, the gene expression of the 5-HT(4) receptor was not changed in the BOO rat bladder. These results suggest that the increased contractile responses to 5-HT in BOO rat bladder may be partly caused by 5-HT(2A) receptor upregulation in the detrusor smooth muscles. PMID:23344575

  11. Serotonin Promotes Development and Regeneration of Spinal Motor Neurons in Zebrafish.

    Science.gov (United States)

    Barreiro-Iglesias, Antón; Mysiak, Karolina S; Scott, Angela L; Reimer, Michell M; Yang, Yujie; Becker, Catherina G; Becker, Thomas

    2015-11-01

    In contrast to mammals, zebrafish regenerate spinal motor neurons. During regeneration, developmental signals are re-deployed. Here, we show that, during development, diffuse serotonin promotes spinal motor neuron generation from pMN progenitor cells, leaving interneuron numbers unchanged. Pharmacological manipulations and receptor knockdown indicate that serotonin acts at least in part via 5-HT1A receptors. In adults, serotonin is supplied to the spinal cord mainly (90%) by descending axons from the brain. After a spinal lesion, serotonergic axons degenerate caudal to the lesion but sprout rostral to it. Toxin-mediated ablation of serotonergic axons also rostral to the lesion impaired regeneration of motor neurons only there. Conversely, intraperitoneal serotonin injections doubled numbers of new motor neurons and proliferating pMN-like progenitors caudal to the lesion. Regeneration of spinal-intrinsic serotonergic interneurons was unaltered by these manipulations. Hence, serotonin selectively promotes the development and adult regeneration of motor neurons in zebrafish.

  12. Intracolonical administration of protease-activated receptor-2 agonists produced visceral hyperalgesia by up-regulating serotonin in the colon of rats.

    Science.gov (United States)

    Li, Zhi; Zhang, Xiao-Jun; Xu, Hong-xi; Sung, Joseph J Y; Bian, Zhao-xiang

    2009-03-15

    This study aimed to investigate the underlying mechanism of protease-activated receptor-2 (PAR-2) agonist-induced visceral hyperalgesia. Male Sprague-Dawley rat pups were submitted to colonic injection of PAR-2 agonist for 6 consecutive days. The visceral sensitivity to colorectal distention was evaluated by electromyography. The enterochromaffin (EC) cell number, 5-HT content and tryrptophan hydroxylase (TPH) protein expression were detected with immunohistochemistry, fluorescent measurement and Western blot analysis. PAR-2 agonist induced a significant increase of visceral nociceptive response to colorectal distention and a series of neurochemical changes in rat colon, including proliferation of EC cells, increased 5-HT content and enhanced TPH expression. Expression of PAR-2 in EC cells was reported for the first time. Further, selective 5-HT(3) receptor antagonist alosteron significantly inhibited PAR-2-induced visceral hyperalgesia. The enhanced 5-HT signaling is likely responsible for the visceral hyperalgesia induced by PAR-2 agonist. Interruption of this pathway is a possible target for the treatment of visceral hyperalgesia in gastrointestinal diseases. PMID:19374846

  13. Pyrrolo[1,3]benzothiazepine-based serotonin and dopamine receptor antagonists. Molecular modeling, further structure-activity relationship studies, and identification of novel atypical antipsychotic agents.

    Science.gov (United States)

    Campiani, Giuseppe; Butini, Stefania; Fattorusso, Caterina; Catalanotti, Bruno; Gemma, Sandra; Nacci, Vito; Morelli, Elena; Cagnotto, Alfredo; Mereghetti, Ilario; Mennini, Tiziana; Carli, Miriana; Minetti, Patrizia; Di Cesare, M Assunta; Mastroianni, Domenico; Scafetta, Nazzareno; Galletti, Bruno; Stasi, M Antonietta; Castorina, Massimo; Pacifici, Licia; Vertechy, Mario; Di Serio, Stefano; Ghirardi, Orlando; Tinti, Ornella; Carminati, Paolo

    2004-01-01

    Recently we reported the pharmacological characterization of the 9,10-dihydropyrrolo[1,3]benzothiazepine derivative (S)-(+)-8 as a novel atypical antipsychotic agent. This compound had an optimum pK(i) 5-HT(2A)/D(2) ratio of 1.21 (pK(i) 5-HT(2A) = 8.83; pK(i) D(2) = 7.79). The lower D(2) receptor affinity of (S)-(+)-8 compared to its enantiomer was explained by the difficulty in reaching the conformation required to optimally fulfill the D(2) pharmacophore. With the aim of finding novel atypical antipsychotics we further investigated the core structure of (S)-(+)-8, synthesizing analogues with specific substituents; the structure-activity relationship (SAR) study was also expanded with the design and synthesis of other analogues characterized by a pyrrolo[2,1-b][1,3]benzothiazepine skeleton, substituted on the benzo-fused ring or on the pyrrole system. On the 9,10-dihydro analogues the substituents introduced on the pyrrole ring were detrimental to affinity for dopamine and for 5-HT(2A) receptors, but the introduction of a double bond at C-9/10 on the structure of (S)-(+)-8 led to a potent D(2)/5-HT(2A) receptor ligand with a typical binding profile (9f, pK(i) 5-HT(2A)/D(2) ratio of 1.01, log Y = 8.43). Then, to reduce D(2) receptor affinity and restore atypicality on unsaturated analogues, we exploited the effect of specific substitutions on the tricyclic system of 9f. Through a molecular modeling approach we generated a novel series of potential atypical antipsychotic agents, with optimized 5HT(2A)/D(2) receptor affinity ratios and that were easier to synthesize and purify than the reference compound (S)-(+)-8. A number of SAR trends were identified, and among the analogues synthesized and tested in binding assays, 9d and 9m were identified as the most interesting, giving atypical log Y scores respectively 4.98 and 3.18 (pK(i) 5-HT(2A)/D(2) ratios of 1.20 and 1.30, respectively). They had a multireceptor affinity profile and could be promising atypical agents

  14. Elevated Serotonin 1A Binding in Remitted Major Depressive Disorder: Evidence for a Trait Biological Abnormality

    OpenAIRE

    Miller, Jeffrey M.; Brennan, Kathleen G.; R. Todd Ogden; Oquendo, Maria A.; Sullivan, Gregory M.; John Mann, J; Parsey, Ramin V.

    2009-01-01

    Background Several biological abnormalities in major depressive disorder (MDD) persist during episode remission, including altered serotonin neurotransmission, and may reflect underlying pathophysiology. We previously described elevated brain serotonin 1A (5-HT1A) receptor binding in antidepressant-naïve subjects with MDD within a major depressive episode (MDE) compared to healthy controls using positron emission tomography (PET). In the current study, we measured 5-HT1A receptor binding in u...

  15. Familial risk for mood disorder and the personality risk factor, neuroticism, interact in their association with frontolimbic serotonin 2A receptor binding

    DEFF Research Database (Denmark)

    Frøkjær, Vibe; Vinberg, Maj; Erritzøe, David;

    2010-01-01

    -twin history of mood disorder were included. They answered self-report personality questionnaires and underwent [(18)F]altanserin positron emission tomography. We found a significant interaction between neuroticism and familial risk in predicting the frontolimbic 5-HT(2A) receptor binding (p=0......Life stress is a robust risk factor for later development of mood disorders, particularly for individuals at familial risk. Likewise, scoring high on the personality trait neuroticism is associated with an increased risk for mood disorders. Neuroticism partly reflects stress vulnerability...... binding. These findings point at a plausible neurobiological link between genetic and personality risk factors and vulnerability to developing mood disorders. It contributes to our understanding of why some people at high risk develop mood disorders while others do not. We speculate that an increased...

  16. Rat dams exposed repeatedly to a daily brief separation from the pups exhibit increased maternal behavior, decreased anxiety and altered levels of receptors for estrogens (ERα, ERβ), oxytocin and serotonin (5-HT1A) in their brain.

    Science.gov (United States)

    Stamatakis, Antonios; Kalpachidou, Theodora; Raftogianni, Androniki; Zografou, Efstratia; Tzanou, Athanasia; Pondiki, Stavroula; Stylianopoulou, Fotini

    2015-02-01

    In the present study we investigated the neurobiological mechanisms underlying expression of maternal behavior. Increased maternal behavior was experimentally induced by a brief 15-min separation between the mother and the pups during postnatal days 1 to 22. On postnatal days (PND) 12 and 22, we determined in experimental and control dams levels of anxiety in the elevated plus maze (EPM) as well as the levels of receptors for estrogens (ERα, ERβ), oxytocin (OTR) and serotonin (5-HT1AR) in areas of the limbic system (prefrontal cortex-PFC, hippocampus, lateral septum-SL, medial preoptic area-MPOA, shell of nucleus accumbens-nAc-Sh, central-CeA and basolateral-BLA amygdala), involved in the regulation of maternal behavior. Experimental dams, which showed increased maternal behavior towards their offspring, displayed reduced anxiety in the EPM on both PND12 and PND22. These behavioral differences could be attributed to neurochemical alterations in their brain: On both PND12 and PND22, experimental mothers had higher levels of ERα and OTRs in the PFC, hippocampus, CeA, SL, MPOA and nAc-Sh. The experimental manipulation-induced increase in ERβ levels was less widespread, being localized in PFC, the hippocampal CA2 area, MPOA and nAc-Sh. In addition, 5-HT1ARs were reduced in the PFC, hippocampus, CeA, MPOA and nAc-Sh of the experimental mothers. Our results show that the experience of the daily repeated brief separation from the pups results in increased brain ERs and OTRs, as well as decreased 5-HT1ARs in the dam's brain; these neurochemical changes could underlie the observed increase in maternal behavior and the reduction of anxiety.

  17. Association of serotonin transporter (SLC6A4 & receptor (5HTR1A, 5HTR2A polymorphisms with response to treatment with escitalopram in patients with major depressive disorder : A preliminary study

    Directory of Open Access Journals (Sweden)

    Aniruddha Basu

    2015-01-01

    Full Text Available Background & objectives: Genetic factors have potential of predicting response to antidepressants in patients with major depressive disorder (MDD. In this study, an attempt was made to find an association between response to escitalopram in patients with MDD, and serotonin transporter (SLC6A4 and receptor (5HTR1A, 5HTR2A polymorphisms. Methods: Fifty five patients diagnosed as suffering from MDD, were selected for the study. The patients were treated with escitalopram over a period of 6-8 wk. Severity of depression, response to treatment and side effects were assessed using standardised instruments. Genetic variations from HTR1A (rs6295, HTR2A (rs6311 and rs6313 and SLC6A4 (44 base-pair insertion/deletion at 5-HTTLPR were genotyped. The genetic data of the responders and non-responders were compared to assess the role of genetic variants in therapeutic outcome. Results: Thirty six (65.5% patients responded to treatment, and 19 (34.5% had complete remission. No association was observed for genotype and allelic frequencies of single nucleotide polymorphisms (SNPs among remitter/non-remitter and responder/non-responder groups, and six most common side-effects, except memory loss which was significantly associated with rs6311 ( p0 =0.03. Interpretation & conclusions: No significant association was found between the SNPs analysed and response to escitalopram in patients with MDD though a significant association was seen between the side effect of memory loss and rs6311. Studies with larger sample are required to find out genetic basis of antidepressant response in Indian patients.

  18. Rs6295 promoter variants of the serotonin type 1A receptor are differentially activated by c-Jun in vitro and correlate to transcript levels in human epileptic brain tissue.

    Science.gov (United States)

    Pernhorst, Katharina; van Loo, Karen M J; von Lehe, Marec; Priebe, Lutz; Cichon, Sven; Herms, Stefan; Hoffmann, Per; Helmstaedter, Christoph; Sander, Thomas; Schoch, Susanne; Becker, Albert J

    2013-03-01

    Many brain disorders, including epilepsy, migraine and depression, manifest with episodic symptoms that may last for various time intervals. Transient alterations of neuronal function such as related to serotonin homeostasis generally underlie this phenomenon. Several nucleotide polymorphisms (SNPs) in gene promoters associated with these diseases have been described. For obvious reasons, their regulatory roles on gene expression particularly in human brain tissue remain largely enigmatic. The rs6295 G-/C-allelic variant is located in the promoter region of the human HTR1a gene, encoding the G-protein-coupled receptor for 5-hydroxytryptamine (5HT1AR). In addition to reported transcriptional repressor binding, our bioinformatic analyses predicted a reduced binding affinity of the transcription factor (TF) c-Jun for the G-allele. In vitro luciferase transfection assays revealed c-Jun to (a) activate the rs6295 C- significantly stronger than the G-allelic variant and (b) antagonize efficiently the repressive effect of Hes5 on the promoter. The G-allele of rs6295 is known to be associated with aspects of major depression and migraine. In order to address a potential role of rs6295 variants in human brain tissue, we have isolated DNA and mRNA from fresh frozen hippocampal tissue of pharmacoresistant temporal lobe epilepsy (TLE) patients (n=140) after epilepsy surgery for seizure control. We carried out SNP genotyping studies and mRNA analyses in order to determine HTR1a mRNA expression in human hippocampal samples stratified according to the rs6295 allelic variant. The mRNA expression of HTR1a was significantly more abundant in hippocampal mRNA of TLE patients homozygous for the rs6295 C-allele as compared to those with the GG-genotype. These data may point to a novel, i.e., rs6295 allelic variant and c-Jun dependent transcriptional 5HT1AR 'receptoropathy'. PMID:23333373

  19. Prophylaxis of Radiation-Induced Nausea and Vomiting Using 5-Hydroxytryptamine-3 Serotonin Receptor Antagonists: A Systematic Review of Randomized Trials

    Energy Technology Data Exchange (ETDEWEB)

    Salvo, Nadia; Doble, Brett [Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario (Canada); Khan, Luluel [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Amirthevasar, Gayathri [Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario (Canada); Dennis, Kristopher [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Pasetka, Mark; DeAngelis, Carlo [Department of Oncology Pharmacy, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Tsao, May [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Chow, Edward, E-mail: Edward.Chow@sunnybrook.ca [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada)

    2012-01-01

    Purpose: To systematically review the effectiveness and safety of 5-hydroxytryptamine-3 receptor antagonists (5-HT3 RAs) compared with other antiemetic medication or placebo for prophylaxis of radiation-induced nausea and vomiting. Methods and Materials: We searched the following electronic databases: MEDLINE, Embase, the Cochrane Central Register of Controlled Clinical Trials, and Web of Science. We also hand-searched reference lists of included studies. Randomized, controlled trials that compared a 5-HT3 RA with another antiemetic medication or placebo for preventing radiation-induced nausea and vomiting were included. We excluded studies recruiting patients receiving concomitant chemotherapy. When appropriate, meta-analysis was conducted using Review Manager (v5) software. Relative risks were calculated using inverse variance as the statistical method under a random-effects model. We assessed the quality of evidence by outcome using the Grading of Recommendations Assessment, Development, and Evaluation approach. Results: Eligibility screening of 47 articles resulted in 9 included in the review. The overall methodologic quality was moderate. Meta-analysis of 5-HT3 RAs vs. placebo showed significant benefit for 5-HT3 RAs (relative risk [RR] 0.70; 95% confidence interval [CI] 0.57-0.86 for emesis; RR 0.84, 95% CI 0.73-0.96 for nausea). Meta-analysis comparing 5-HT3 RAs vs. metoclopramide showed a significant benefit of the 5-HT3 RAs for emetic control (RR 0.27, 95% CI 0.15-0.47). Conclusion: 5-Hydroxytryptamine-3 RAs are superior to placebo and other antiemetics for prevention of emesis, but little benefit was identified for nausea prevention. 5-Hydroxytryptamine-3 RAs are suggested for prevention of emesis. Limited evidence was found regarding delayed emesis, adverse events, quality of life, or need for rescue medication. Future randomized, controlled trials should evaluate different 5-HT3 antiemetics and new agents with novel mechanisms of action such at the NK

  20. Glucocorticoids Inhibit Basal and Hormone-Induced Serotonin Synthesis in Pancreatic Beta Cells

    Science.gov (United States)

    Hasni Ebou, Moina; Singh-Estivalet, Amrit; Launay, Jean-Marie; Callebert, Jacques; Tronche, François; Ferré, Pascal; Gautier, Jean-François; Guillemain, Ghislaine; Bréant, Bernadette

    2016-01-01

    Diabetes is a major complication of chronic Glucocorticoids (GCs) treatment. GCs induce insulin resistance and also inhibit insulin secretion from pancreatic beta cells. Yet, a full understanding of this negative regulation remains to be deciphered. In the present study, we investigated whether GCs could inhibit serotonin synthesis in beta cell since this neurotransmitter has been shown to be involved in the regulation of insulin secretion. To this aim, serotonin synthesis was evaluated in vitro after treatment with GCs of either islets from CD1 mice or MIN6 cells, a beta-cell line. We also explored the effect of GCs on the stimulation of serotonin synthesis by several hormones such as prolactin and GLP 1. We finally studied this regulation in islet in two in vivo models: mice treated with GCs and with liraglutide, a GLP1 analog, and mice deleted for the glucocorticoid receptor in the pancreas. We showed in isolated islets and MIN6 cells that GCs decreased expression and activity of the two key enzymes of serotonin synthesis, Tryptophan Hydroxylase 1 (Tph1) and 2 (Tph2), leading to reduced serotonin contents. GCs also blocked the induction of serotonin synthesis by prolactin or by a previously unknown serotonin activator, the GLP-1 analog exendin-4. In vivo, activation of the Glucagon-like-Peptide-1 receptor with liraglutide during 4 weeks increased islet serotonin contents and GCs treatment prevented this increase. Finally, islets from mice deleted for the GR in the pancreas displayed an increased expression of Tph1 and Tph2 and a strong increased serotonin content per islet. In conclusion, our results demonstrate an original inhibition of serotonin synthesis by GCs, both in basal condition and after stimulation by prolactin or activators of the GLP-1 receptor. This regulation may contribute to the deleterious effects of GCs on beta cells. PMID:26901633

  1. Glucocorticoids Inhibit Basal and Hormone-Induced Serotonin Synthesis in Pancreatic Beta Cells.

    Directory of Open Access Journals (Sweden)

    Moina Hasni Ebou

    Full Text Available Diabetes is a major complication of chronic Glucocorticoids (GCs treatment. GCs induce insulin resistance and also inhibit insulin secretion from pancreatic beta cells. Yet, a full understanding of this negative regulation remains to be deciphered. In the present study, we investigated whether GCs could inhibit serotonin synthesis in beta cell since this neurotransmitter has been shown to be involved in the regulation of insulin secretion. To this aim, serotonin synthesis was evaluated in vitro after treatment with GCs of either islets from CD1 mice or MIN6 cells, a beta-cell line. We also explored the effect of GCs on the stimulation of serotonin synthesis by several hormones such as prolactin and GLP 1. We finally studied this regulation in islet in two in vivo models: mice treated with GCs and with liraglutide, a GLP1 analog, and mice deleted for the glucocorticoid receptor in the pancreas. We showed in isolated islets and MIN6 cells that GCs decreased expression and activity of the two key enzymes of serotonin synthesis, Tryptophan Hydroxylase 1 (Tph1 and 2 (Tph2, leading to reduced serotonin contents. GCs also blocked the induction of serotonin synthesis by prolactin or by a previously unknown serotonin activator, the GLP-1 analog exendin-4. In vivo, activation of the Glucagon-like-Peptide-1 receptor with liraglutide during 4 weeks increased islet serotonin contents and GCs treatment prevented this increase. Finally, islets from mice deleted for the GR in the pancreas displayed an increased expression of Tph1 and Tph2 and a strong increased serotonin content per islet. In conclusion, our results demonstrate an original inhibition of serotonin synthesis by GCs, both in basal condition and after stimulation by prolactin or activators of the GLP-1 receptor. This regulation may contribute to the deleterious effects of GCs on beta cells.

  2. Changes of Serotonin (5-HT), 5-HT2A Receptor, and 5-HT Transporter in the Sprague-Dawley Rats of Depression,Myocardial Infarction and Myocardial Infarction Co-exist with Depression

    Institute of Scientific and Technical Information of China (English)

    Mei-Yan Liu; Yah-Ping Ren; Wan-Lin Wei; Guo-Xiang Tian; Guo Li

    2015-01-01

    Background:To evaluate whether serotonin (5-HT),5-HT2A receptor (5-HT2AR),and 5-HT transporter (serotonin transporter [SERT]) are associated with different disease states of depression,myocardial infarction (MI) and MI co-exist with depression in Sprague-Dawley rats.Methods:After established the animal model of four groups include control,depression,MI and MI with depression,we measured 5-HT,5-HT2AR and SERT from serum and platelet lysate.Results:The serum concentration of 5-HT in depression rats decreased significantly compared with the control group (303.25 ± 9.99 vs.352.98 ± 13.73;P =0.000),while that in MI group increased (381.78 ± 14.17 vs.352.98 ± 13.73;P =0.000).However,the depression + MI group had no change compared with control group (360.62 ± 11.40 vs.352.98 ± 13.73;P =0.036).The changes of the platelet concentration of 5-HT in the depression,MI,and depression + MI group were different from that of serum.The levels of 5-HT in above three groups were lower than that in the control group (380.40 ± 17.90,387.75 ± 22.28,246.40 ± 18.99 vs.500.29 ± 20.91;P =0.000).The platelet lysate concentration of 5-HT2AR increased in depression group,MI group,and depression + MI group compared with the control group (370.75 ± 14.75,393.47 ± 15.73,446.66 ± 18.86 vs.273.66 ± 16.90;P =0.000).The serum and platelet concentration of SERT in the depression group,MI group and depression + MI group were all increased compared with the control group (527.51 ± 28.32,602.02 ± 23.32,734.76 ± 29.59 vs.490.56 ± 16.90;P =0.047,P =0.000,P =0.000 in each and 906.38 ± 51.84,897.33 ± 60.34,1030.17 ± 58.73 vs.708.62 ± 51.15;P =0.000 in each).Conclusions:The concentration of 5-HT2AR in platelet lysate and SERT in serum and platelet may be involved in the pathway of MI with depression.Further studies should examine whether elevated 5-HT2AR and SERT may contribute to the biomarker in MI patients with depression.

  3. Activation of glucocorticoid receptors increases 5-HT2A receptor levels

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Kirkegaard, Lisbeth; Krey, Gesa;

    2009-01-01

    of depression is unknown. In mice with altered glucocorticoid receptor (GR) expression we investigated 5-HT2A receptor levels by Western blot and 3H-MDL100907 receptor binding. Serotonin fibre density was analyzed by stereological quantification of serotonin transporter immunopositive fibers. To establish...... in dorsal hippocampus (77 +/- 35%, p

  4. [Pulmonary arterial hypertension, bone marrow, endothelial cell precursors and serotonin].

    Science.gov (United States)

    Ayme-Dietrich, Estelle; Banas, Sophie M; Monassier, Laurent; Maroteaux, Luc

    2016-01-01

    Serotonin and bone-marrow-derived stem cells participate together in triggering pulmonary hypertension. Our work has shown that the absence of 5-HT2B receptors generates permanent changes in the composition of the blood and bone-marrow in the myeloid lineages, particularly in endothelial cell progenitors. The initial functions of 5-HT2B receptors in pulmonary arterial hypertension (PAH) are restricted to bone-marrow cells. They contribute to the differentiation/proliferation/mobilization of endothelial progenitor cells from the bone-marrow. Those bone-marrow-derived cells have a critical role in the development of pulmonary hypertension and pulmonary vascular remodeling. These data indicate that bone-marrow derived endothelial progenitors play a key role in the pathogenesis of PAH and suggest that interactions involving serotonin and bone morphogenic protein type 2 receptor (BMPR2) could take place at the level of the bone-marrow. PMID:27687599

  5. Serotonin deficiency exacerbates acetaminophen-induced liver toxicity in mice.

    Science.gov (United States)

    Zhang, Jingyao; Song, Sidong; Pang, Qing; Zhang, Ruiyao; Zhou, Lei; Liu, Sushun; Meng, Fandi; Wu, Qifei; Liu, Chang

    2015-01-29

    Acetaminophen (APAP) overdose is a major cause of acute liver failure. Peripheral 5-hydroxytryptamine (serotonin, 5-HT) is a cytoprotective neurotransmitter which is also involved in the hepatic physiological and pathological process. This study seeks to investigate the mechanisms involved in APAP-induced hepatotoxicity, as well as the role of 5-HT in the liver's response to APAP toxicity. We induced APAP hepatotoxicity in mice either sufficient of serotonin (wild-type mice and TPH1-/- plus 5- Hydroxytryptophan (5-HTP)) or lacking peripheral serotonin (Tph1-/- and wild-type mice plus p-chlorophenylalanine (PCPA)). Mice with sufficient 5-HT exposed to acetaminophen have a significantly lower mortality rate and a better outcome compared with mice deficient of 5-HT. This difference is at least partially attributable to a decreased level of inflammation, oxidative stress and endoplasmic reticulum (ER) stress, Glutathione (GSH) depletion, peroxynitrite formation, hepatocyte apoptosis, elevated hepatocyte proliferation, activation of 5-HT2B receptor, less activated c-Jun NH₂-terminal kinase (JNK) and hypoxia-inducible factor (HIF)-1α in the mice sufficient of 5-HT versus mice deficient of 5-HT. We thus propose a physiological function of serotonin that serotonin could ameliorate APAP-induced liver injury mainly through inhibiting hepatocyte apoptosis ER stress and promoting liver regeneration.

  6. The effects of glycogen synthase kinase-3beta in serotonin neurons.

    Directory of Open Access Journals (Sweden)

    Wenjun Zhou

    Full Text Available Glycogen synthase kinase-3 (GSK3 is a constitutively active protein kinase in brain. Increasing evidence has shown that GSK3 acts as a modulator in the serotonin neurotransmission system, including direct interaction with serotonin 1B (5-HT1B receptors in a highly selective manner and prominent modulating effect on 5-HT1B receptor activity. In this study, we utilized the serotonin neuron-selective GSK3β knockout (snGSK3β-KO mice to test if GSK3β in serotonin neurons selectively modulates 5-HT1B autoreceptor activity and function. The snGSK3β-KO mice were generated by crossbreeding GSK3β-floxed mice and ePet1-Cre mice. These mice had normal growth and physiological characteristics, similar numbers of tryptophan hydroxylase-2 (TpH2-expressing serotonin neurons, and the same brain serotonin content as in littermate wild type mice. However, the expression of GSK3β in snGSK3β-KO mice was diminished in TpH2-expressing serotonin neurons. Compared to littermate wild type mice, snGSK3β-KO mice had a reduced response to the 5-HT1B receptor agonist anpirtoline in the regulation of serotonergic neuron firing, cAMP production, and serotonin release, whereas these animals displayed a normal response to the 5-HT1A receptor agonist 8-OH-DPAT. The effect of anpirtoline on the horizontal, center, and vertical activities in the open field test was differentially affected by GSK3β depletion in serotonin neurons, wherein vertical activity, but not horizontal activity, was significantly altered in snGSK3β-KO mice. In addition, there was an enhanced anti-immobility response to anpirtoline in the tail suspension test in snGSK3β-KO mice. Therefore, results of this study demonstrated a serotonin neuron-targeting function of GSK3β by regulating 5-HT1B autoreceptors, which impacts serotonergic neuron firing, serotonin release, and serotonin-regulated behaviors.

  7. Polimorfismos dos genes do receptor de serotonina (5-HT2A) e da catecol-O-metiltransferase (COMT): fatores desencadeantes da fibromialgia? Serotonin receptor (5-HT 2A) and catechol-O-methyltransferase (COMT) gene polymorphisms: Triggers of fibromyalgia?

    OpenAIRE

    Josie Budag Matsuda; Flávia Regina Barbosa; Lucas Junqueira Fernandes Morel; Suzelei de Castro França; Sonia Marli Zingaretti; Lucienir Maria da Silva; Ana Maria Soares Pereira; Mozart Marins; Ana Lúcia Fachin

    2010-01-01

    INTRODUÇÃO: A fibromialgia é uma síndrome reumática caracterizada por dor difusa e crônica associada a fadiga, insônia, ansiedade, depressão, perda de memória e tontura. Embora os mecanismos fisiológicos que controlam a fibromialgia não tenham sido estabelecidos, fatores neuroendócrinos, genéticos ou moleculares podem estar envolvidos. OBJETIVO: O objetivo do presente estudo foi caracterizar os polimorfismos dos genes do receptor de serotonina (5-HT2A) e da catecolO-metiltransferase (COMT) em...

  8. An interesting case of serotonin syndrome precipitated by escitalopram

    Directory of Open Access Journals (Sweden)

    Sanyal Debasish

    2010-01-01

    Full Text Available Serotonin syndrome is a known entity, which occurs with multiple drugs acting on serotonergic receptors. A 73-year-old lady presented with a history of agitation, altered sensorium, and autonomic hyperactivity after starting escitalopram on therapeutic dosage for her depressive syndrome who was on selegiline for her parkinsonism. This syndrome with therapeutic dose escitalopram warrants the careful and judicious use of the drug especially with other serotonergic drugs, so that this serious medical complication can be avoided.

  9. Drug: D08236 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D08236 Drug Mosapride (INN); Mosart (TN) C21H25ClFN3O3 421.1568 421.8929 D08236.gif...cation of drugs [BR:br08310] G Protein-coupled receptors Rhodopsin family Serotonin 5-HT4-receptor [HSA:3360] [KO:K04160] Mosapride... D08236 Mosapride (INN) CAS: 112885-41-3 PubChem: 96024924 LigandBox: D08236 NIKKAJI:

  10. Early life stress and serotonin transporter gene variation interact to affect the transcription of the glucocorticoid and mineralocorticoid receptors, and the co-chaperone FKBP5, in the adult rat brain

    OpenAIRE

    van der Doelen, Rick H. A.; Calabrese, Francesca; Guidotti, Gianluigi; Geenen, Bram; Riva, Marco A.; Kozicz, Tamás; Homberg, Judith R.

    2014-01-01

    The short allelic variant of the serotonin transporter (5-HTT) promoter-linked polymorphic region (5-HTTLPR) has been associated with the etiology of major depression by interaction with early life stress (ELS). A frequently observed endophenotype in depression is the abnormal regulation of levels of stress hormones such as glucocorticoids. It is hypothesized that altered central glucocorticoid influence on stress-related behavior and memory processes could underlie the depressogenic interact...

  11. Effects of fentanyl on serotonin syndrome-like behaviors in rats.

    Science.gov (United States)

    Kitamura, Sonoe; Kawano, Takashi; Kaminaga, Satomi; Yamanaka, Daiki; Tateiwa, Hiroki; Locatelli, Fabricio M; Yokoyama, Masataka

    2016-02-01

    Emerging evidence from case reports suggests that fentanyl may precipitate potentially life-threatening serotonin syndrome in patients taking serotonergic drugs. However, the underlying mechanism of the association between serotonin syndrome and fentanyl remains under investigation. We therefore investigated the pharmacological effects of an analgesic dose of fentanyl (0.2 mg/kg) injected subcutaneously (s.c.) on serotonergic toxicity-like responses in rats. Rats were s.c. injected with 0.75 mg/kg 8-OH-DPAT, a full 5-HT1A agonist, as an animal model of serotonin syndrome. The 8-OH-DPAT-treated rats showed well-characterized serotonin syndrome-like behaviors (low body posture, forepaw treading), hyperlocomotion, and decreased body temperature. Rats injected s.c. with fentanyl alone showed no significant changes in any of the parameters measured, while concomitant administration of fentanyl + 8-OH-DPAT resulted in exaggerated 8-OH-DPAT-induced serototoxic responses. A separate dose-response experiment showed that the serototoxic effect of fentanyl was dose-dependent. Pretreatment with naloxone [2.0 mg/kg, intraperitoneal (i.p.) injection], an opioid receptor antagonist, failed to antagonize the fentanyl-induced exaggerated serotonin syndrome-like behaviors. In contrast, pretreatment with WAY-100653, a serotonin 5-HT1A receptor antagonist (0.5 mg/kg, i.p. injection) completely inhibited all responses. Our findings provide preclinical proof-of-concept that an analgesic dose of fentanyl enhances serotonin toxicity, likely via its serotonin-reuptake inhibitory activity, independently of interaction with the opioid receptors.

  12. The arylpiperazine derivatives N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide and N-benzyl-4-(2-diphenyl)-1-piperazinehexanamide exert a long-lasting inhibition of human serotonin 5-HT7 receptor binding and cAMP signaling.

    Science.gov (United States)

    Atanes, Patricio; Lacivita, Enza; Rodríguez, Javier; Brea, José; Burgueño, Javier; Vela, José Miguel; Cadavid, María Isabel; Loza, María Isabel; Leopoldo, Marcello; Castro, Marián

    2013-12-01

    We performed a detailed in vitro pharmacological characterization of two arylpiperazine derivatives, compound N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide (LP-211) previously identified as a high-affinity brain penetrant ligand for 5-hydroxytryptamine (serotonin) type 7 (5-HT7) receptors, and its analog N-benzyl-4-(2-diphenyl)-1-piperazinehexanamide (MEL-9). Both ligands exhibited competitive displacement of [(3)H]-(2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine ([(3)H]-SB-269970) radioligand binding and insurmountable antagonism of 5-carboxamidotryptamine (5-CT)-stimulated cyclic adenosine monophosphate (cAMP) signaling in human embryonic kidney (HEK293) cells stably expressing human 5-HT7 receptors. They also inhibited forskolin-stimulated adenylate cyclase activity in 5-HT7-expressing HEK293 cells but not in the parental cell line. The compounds elicited long-lasting (at least 24 h) concentration-dependent inhibition of radioligand binding at 5-HT7-binding sites in whole-cell radioligand binding assays, after pretreatment of the cells with the compounds and subsequent compound removal. In cAMP assays, pretreatment of cells with the compounds rendered 5-HT7 receptors unresponsive to 5-CT and also rendered 5-HT7-expressing HEK293 cells unresponsive to forskolin. Compound 1-(2-biphenyl)piperazine (RA-7), a known active metabolite of LP-211 present in vivo, was able to partially inhibit 5-HT7 radioligand binding in a long-lasting irreversible manner. Hence, LP-211 and MEL-9 were identified as high-affinity long-acting inhibitors of human 5-HT7 receptor binding and function in cell lines. The detailed in vitro characterization of these two pharmacological tools targeting 5-HT7 receptors may benefit the study of 5-HT7 receptor function and it may lead to the development of novel selective pharmacological tools with defined functional properties at 5-HT7 receptors. PMID:25505568

  13. Serotonin modulates immune function in T cells from HIV-seropositive subjects

    DEFF Research Database (Denmark)

    Eugen-Olsen, J; Afzelius, P; Andresen, L;

    1997-01-01

    We have shown earlier increased intracellular levels of cAMP in peripheral lymphocytes from HIV-seropositive subjects and that a chemically induced decrease in this level increases cell proliferation and cytotoxicity. Others have shown that serotonin indirectly decreases intracellular cAMP levels...... proliferation was most likely mediated through the serotonin 5HT1a receptor because similar results could be obtained by using DPAT, a specific activator of this receptor. Changes in the expression of 5HT1a receptors as judged by the expression of mRNA could not explain why serotonin in vitro had a stronger...... enhancing effect on cell proliferation in some HIV-seropositive individuals than in others....

  14. Revisiting the Serotonin Hypothesis: Implications for Major Depressive Disorders.

    Science.gov (United States)

    Fakhoury, Marc

    2016-07-01

    Major depressive disorder (MDD) is a heritable neuropsychiatric disease associated with severe changes at cellular and molecular levels. Its diagnosis mainly relies on the characterization of a wide range of symptoms including changes in mood and behavior. Despite the availability of antidepressant drugs, 10 to 30 % of patients fail to respond after a single or multiple treatments, and the recurrence of depression among responsive patients is very high. Evidence from the past decades suggests that the brain neurotransmitter serotonin (5-HT) is incriminated in MDD, and that a dysfunction of 5-HT receptors may play a role in the genesis of this disease. The 5-HT membrane transporter protein (SERT), which helps regulate the serotonergic transmission, is also implicated in MDD and is one of the main targets of antidepressant therapy. Although a number of behavioral tests and animal models have been developed to study depression, little is known about the neurobiological bases of MDD. Understanding the role of the serotonergic pathway will significantly help improve our knowledge of the pathophysiology of depression and may open up avenues for the development of new antidepressant drugs. The overarching goal of this review is to present recent findings from studies examining the serotonergic pathway in MDD, with a focus on SERT and the serotonin 1A (5-HT1A), serotonin 1B (5-HT1B), and serotonin 2A (5-HT2A) receptors. This paper also describes some of the main molecules involved in the internalization of 5-HT receptors and illustrates the changes in 5-HT neurotransmission in knockout mice and animal model of depression. PMID:25823514

  15. ROLE OF SEROTONIN IN FISH REPRODUCTION

    Directory of Open Access Journals (Sweden)

    Parvathy ePrasad

    2015-06-01

    Full Text Available The neuroendocrine mechanism regulates reproduction through the hypothalamo-pituitary-gonadal (HPG axis which is evolutionarily conserved in vertebrates. The HPG axis is regulated by a variety of internal as well as external factors. Serotonin, a monoamine neurotransmitter, is involved in a wide range of reproductive functions. In mammals, serotonin regulates sexual behaviours, gonadotropin release and gonadotropin-release hormone (GnRH secretion. However, the serotonin system in teleost may play unique role in the control of reproduction as the mechanism of reproductive control in teleosts is not always the same as in the mammalian models. In fish, the serotonin system is also regulated by natural environmental factors as well as chemical substances. In particular, selective serotonin reuptake inhibitors (SSRIs are commonly detected as pharmaceutical contaminants in the natural environment. Those factors may influence fish reproductive functions via the serotonin system. This review summarizes the functional significance of serotonin in the teleosts reproduction.

  16. Peripheral serotonin regulates maternal calcium trafficking in mammary epithelial cells during lactation in mice.

    Directory of Open Access Journals (Sweden)

    Jimena Laporta

    Full Text Available Lactation is characterized by massive transcellular flux of calcium, from the basolateral side of the mammary alveolar epithelium (blood into the ductal lumen (milk. Regulation of calcium transport during lactation is critical for maternal and neonatal health. The monoamine serotonin (5-HT is synthesized by the mammary gland and functions as a homeostatic regulation of lactation. Genetic ablation of tryptophan hydroxylase 1 (Tph1, which encodes the rate-limiting enzyme in non-neuronal serotonin synthesis, causes a deficiency in circulating serotonin. As a consequence maternal calcium concentrations decrease, mammary epithelial cell morphology is altered, and cell proliferation is decreased during lactation. Here we demonstrate that serotonin deficiency decreases the expression and disrupts the normal localization of calcium transporters located in the apical (PMCA2 and basolateral (CaSR, ORAI-1 membranes of the lactating mammary gland. In addition, serotonin deficiency decreases the mRNA expression of calcium transporters located in intracellular compartments (SERCA2, SPCA1 and 2. Mammary expression of serotonin receptor isoform 2b and its downstream pathways (PLCβ3, PKC and MAP-ERK1/2 are also decreased by serotonin deficiency, which might explain the numerous phenotypic alterations described above. In most cases, addition of exogenous 5-hydroxy-L-tryptophan to the Tph1 deficient mice rescued the phenotype. Our data supports the hypothesis that serotonin is necessary for proper mammary gland structure and function, to regulate blood and mammary epithelial cell transport of calcium during lactation. These findings can be applicable to the treatment of lactation-induced hypocalcemia in dairy cows and can have profound implications in humans, given the wide-spread use of selective serotonin reuptake inhibitors as antidepressants during pregnancy and lactation.

  17. Design and biological evaluation of 99mTc ligands derived from WAY 100635 and desmethyl WAY 100635 for serotonin 5-HT1A and α1-adrenergic receptor binding

    International Nuclear Information System (INIS)

    Investigations on Tc labelled ligands for the 5-HT1A receptor carried out at Forschungszentrum Rossendorf from 1999 to 2001 in collaboration with the Karolinska Institute, Stockholm, are reported. The novel Tc labelled receptor ligands basically consist of a Tc chelate unit with the metal in the oxidation state +5 or +3 and 1-(2-methoxyphenyl) piperazine as the receptor targeting domain. Both moieties are linked by alkyl spacers of various chain lengths. Rhenium was used as Tc surrogate for complete chemical characterization and in vitro receptor binding studies. All complexes display in competition experiments not only subnanomolar affinities for the 5-HT1A receptor but also high affinities for the α1-adrenergic receptor. Biodistribution studies in rats show brain uptakes between 0.2 and 0.6% of the injected dose five minutes post-injection. In vitro autoradiographic studies in rat brains and post-mortem human brains indicate the accumulation of the 99mTc complexes in areas which are rich in 5-HT1A receptors and additionally in areas rich in α1-adrenergic receptors. This in vitro enrichment can be blocked respectively by the 5-HT1A receptor agonist 8-OH-DPAT or by prazosin hydrochloride, an α1-adrenergic receptor antagonist. (author)

  18. Tegaserod in the treatment of irritable bowel syndrome (IBS) with constipation as the prime symptom

    OpenAIRE

    Layer, Peter; Keller, Jutta; Loeffler, Helena; Kreiss, Andreas

    2007-01-01

    Irritable bowel syndrome with constipation (IBS-C) as the predominant bowel symptom is a prevalent disorder, characterized by recurring abdominal pain/discomfort, bloating, and constipation, and imposes a significant socio-economic burden. Traditional treatments generally address just one of the multiple IBS symptoms. The efficacy and safety profile of tegaserod, a serotonin 5-HT4 receptor agonist, has been demonstrated in several randomized, placebo-controlled, and open-label trials. This re...

  19. Drug: D09205 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D09205 Drug Prucalopride (USAN/INN) C18H26ClN3O3 367.1663 367.8703 D09205.gif Treat...NSTIPATION A06A DRUGS FOR CONSTIPATION A06AX Other drugs for constipation A06AX05 Prucalopride D09205 Prucalo...mily Serotonin 5-HT4-receptor [HSA:3360] [KO:K04160] Prucalopride [ATC:A03AE04] D09205 Prucalo

  20. Drug: D00274 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D00274 Drug Cisapride (USAN/INN) C23H29ClFN3O4 465.1831 465.9455 D00274.gif Stimula...L GASTROINTESTINAL DISORDERS A03F PROPULSIVES A03FA Propulsives A03FA02 Cisapride D00274 Cisapride...hodopsin family Serotonin 5-HT4-receptor [HSA:3360] [KO:K04160] Cisapride [ATC:A03FA02] D00274 Cisapride (US

  1. A candidate gene study of serotonergic pathway genes and pain relief during treatment with escitalopram in patients with neuropathic pain shows significant association to serotonin receptor2C (HTR2C)

    DEFF Research Database (Denmark)

    Brasch-Andersen, Charlotte; Møller, Malik U; Christiansen, Lene;

    2011-01-01

    the association between polymorphisms in genes involved in the serotonergic pathway and the effect of escitalopram on peripheral neuropathic pain. METHODS: We genotyped 34 participants from a placebo-controlled trial of escitalopram in peripheral neuropathic pain for polymorphisms in five genes: the.......047), with 75% carrying the C allele being responders. The same tendency was seen in women. Similarly, carriership of the C allele at rs6318 was associated with better pain relief during treatment with escitalopram [odds ratio (OR) 15.5, p = 0.014)] Furthermore, there was a tendency of better relief with...... increasing number of short alleles for the 5-HTTLPR polymorphism of the serotonin transporter (OR 5.7, p = 0.057). None of the other polymorphisms showed a significant association with treatment response to escitalopram. CONCLUSION: This study indicates that variation in the HTR2C gene is associated to the...

  2. Serotonin reverts age-related capillarization and failure of regeneration in the liver through a VEGF-dependent pathway

    OpenAIRE

    Furrer, Katarzyna; Rickenbacher, Andreas; Tian, Yinghua; Jochum, Wolfram; Bittermann, Anne Greet; Käch, Andres; Humar, Bostjan; Graf, Rolf; MORITZ, WOLFGANG; Clavien, Pierre-Alain

    2011-01-01

    The function of the liver is well-preserved during the aging process, although some evidence suggests that liver regeneration might be impaired with advanced age. We observed a decreased ability of the liver to restore normal volume after partial hepatectomy in elderly mice, and we identified a pathway that rescued regeneration and was triggered by serotonin. 2,5-dimethoxy-4-iodoamphetamine (DOI), a serotonin receptor agonist, reversed the age-related pseudocapillarization of old liver and im...

  3. SEROTONIN METABOLISM FOLLOWING PLATINUM-BASED CHEMOTHERAPY COMBINED WITH THE SEROTONIN TYPE-3 ANTAGONIST TROPISETRON

    NARCIS (Netherlands)

    SCHRODER, CP; VANDERGRAAF, WTA; KEMA, IP; GROENEWEGEN, A; SLEIJFER, DT; DEVRIES, EGE

    1995-01-01

    The administration of platinum-based chemotherapy induces serotonin release from the enterochromaffin cells, causing nausea and vomiting. This study was conducted to evaluate parameters of serotonin metabolism following platinum-based chemotherapy given in combination with the serotonin type-3 antag

  4. Serotonin and dopamine play complementary roles in gambling to recover losses

    DEFF Research Database (Denmark)

    Campbell-Meiklejohn, Daniel; Cooke, Jennifer; Wakeley, Judi;

    2011-01-01

    Continued gambling to recover losses - 'loss-chasing' - is a prominent feature of social and pathological gambling. However, little is known about which neuromodulators influence this behaviour. In 3 separate experiments, we investigated the role of serotonin activity, D2/D3 receptor activity, and...

  5. Multiple actions of iontophoretically applied serotonin on motorneurones in the turtle spinal cord in vitro

    DEFF Research Database (Denmark)

    Skydsgaard, Morten Arnika; Hounsgaard, J

    1996-01-01

    The effects of focal activation of serotonergic receptors in motorneurones were investigated in a slice preparation of the turtle spinal cord. The test response to glutamate evoked from a dendrite by iontophoresis was attenuated by serotonin or 8-hydroxy-dipropyl-aminotetralin (8-OH-DPAT) applied...

  6. Effects of white spirits on rat brain 5-HT receptor functions and synaptic remodeling.

    Science.gov (United States)

    Lam, H R; Plenge, P; Jørgensen, O S

    2001-01-01

    Previously, inhalation exposure to different types of white spirit (i.e. complex mixtures of aliphatic, aromatic, alkyl aromatic, and naphthenic hydrocarbons) has been shown to induce neurochemical effects in rat brains. Especially, the serotonergic system was involved at the global, regional, and subcellular levels. This study investigates the effects of two types of white spirit on 5-hydroxytryptamine (5-HT) transporters (5-HTT), 5-HT(2A) and 5-HT(4) receptor expression in forebrain, and on neural cell adhesion molecule (NCAM) and 25-kDa synaptosomal associated protein (SNAP-25) concentrations when applied as indices for synaptic remodeling in forebrain, hippocampus, and entorhinal cortex. Male Wistar rats were exposed to 0, 400, or 800 ppm of aromatic (20 vol.% aromatic hydrocarbons) or dearomatized white spirit (catalytically hydrogenated white spirit) in the inhaled air for 6 h/day, 7 days/week for 3 weeks. The 5-HTT B(max) and K(d) were not affected. Both types of white spirit at 800 ppm decreased B(max) for the 5-HT(2A) receptor. The aromatic type decreased the K(d) of the 5-HT(2A) and 5-HT(4) receptors at 800 ppm. Aromatic white spirit did not affect NCAM or SNAP-25 concentrations or NCAM/SNAP-25 ratio in forebrain, whereas NCAM increased in hippocampus and the NCAM/SNAP-25 ratio decreased in entorhinal cortex. Dearomatized white spirit did not affect NCAM, SNAP-25, or NCAM/SNAP-25 ratio in any brain region. The affected 5-HT receptor expression and synaptic plasticity marker proteins indicate that inhalation exposure to high concentrations of white spirit may be neurotoxic to rats, especially the aromatic white spirit type. PMID:11792528

  7. Serotonin increases synaptic activity in olfactory bulb glomeruli.

    Science.gov (United States)

    Brill, Julia; Shao, Zuoyi; Puche, Adam C; Wachowiak, Matt; Shipley, Michael T

    2016-03-01

    Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range. PMID:26655822

  8. Serotonin signaling mediates protein valuation and aging.

    Science.gov (United States)

    Ro, Jennifer; Pak, Gloria; Malec, Paige A; Lyu, Yang; Allison, David B; Kennedy, Robert T; Pletcher, Scott D

    2016-01-01

    Research into how protein restriction improves organismal health and lengthens lifespan has largely focused on cell-autonomous processes. In certain instances, however, nutrient effects on lifespan are independent of consumption, leading us to test the hypothesis that central, cell non-autonomous processes are important protein restriction regulators. We characterized a transient feeding preference for dietary protein after modest starvation in the fruit fly, Drosophila melanogaster, and identified tryptophan hydroxylase (Trh), serotonin receptor 2a (5HT2a), and the solute carrier 7-family amino acid transporter, JhI-21, as required for this preference through their role in establishing protein value. Disruption of any one of these genes increased lifespan up to 90% independent of food intake suggesting the perceived value of dietary protein is a critical determinant of its effect on lifespan. Evolutionarily conserved neuromodulatory systems that define neural states of nutrient demand and reward are therefore sufficient to control aging and physiology independent of food consumption. PMID:27572262

  9. The serotonin transporter knockout rat : A review

    NARCIS (Netherlands)

    Olivier, Jocelien; Cools, Alexander; Ellenbroek, Bart A.; Cuppen, E.; Homberg, Judith; Kalueff, Allan V.; LaPorte, Justin L.

    2010-01-01

    This chapter dicusses the most recent data on the serotonin transporter knock-out rat, a unique rat model that has been generated by target-selected N-ethyl-N-nitrosourea (ENU) driven mutagenesis. The knock-out rat is the result of a premature stopcodon in the serotonin transporter gene, and the abs

  10. Binding of the Multimodal Antidepressant Drug Vortioxetine to the Human Serotonin Transporter

    DEFF Research Database (Denmark)

    Andersen, Jacob; Ladefoged, Lucy Kate; Wang, Danyang;

    2015-01-01

    Selective inhibitors of the human serotonin transporter (hSERT) have been first-line treatment against depression for several decades. Recently, vortioxetine was approved as a new therapeutic option for the treatment of depression. Vortioxetine represents a new class of antidepressant drugs with ......-based drug discovery of novel multimodal drugs with fine-tuned selectivity across different transporter and receptor proteins in the human brain.......Selective inhibitors of the human serotonin transporter (hSERT) have been first-line treatment against depression for several decades. Recently, vortioxetine was approved as a new therapeutic option for the treatment of depression. Vortioxetine represents a new class of antidepressant drugs...

  11. 慢性不可预见性应激易感性差异的5-羟色胺转运体和5-羟色胺受体机制研究%Mechanisms of serotonin transporter and serotonin 1A receptor in the different susceptibility of chronic unpredictable stress

    Institute of Scientific and Technical Information of China (English)

    刘杰; 王瑛; 贾梅志; 王晓慧; 张尚荣; 尚士渲

    2013-01-01

    Objective To investigate the expression of serotonin transporter (5-HTT) and serotonin 1A treceptor (5-HT1 A R) located in the chronic unpredictable stress (CUS)-relative brain areas (mPFC,VTA,NAc) in high and low CUS susceptibility rats,thus to unveil the possible mechanism lead to the different CUS susceptibility.Methods One hundred and fifty male Sprague-Dawley rats were randomly assigned into experiment group (n =120) and control group (n =30).Rats in experiment group were trained according to established CUS procedure.OFT and FST were used to assess the different susceptibility to CUS:high susceptibility group (H group)and low susceptibility group (L group).After the model was established,rats were scarified and cardio-perfused,and the brains were removed and sliced up coronarily.The sections including ventral tegmental area (VTA),nucleus accumben (NAc),medial prefrontal cortex (mPFC) were selected.The mRNA levels of 5-HTT and 5-HT1AR in the regions were estimated with in situ hybridization.Results The expression of 5-HTT in H group were significantly lower than that of in the control and L group in all regions (mPFC:169.20 ± 8.23 vs 143.53 ±5.31 ; Nac:177.41 ± 5.68 vs 158.65 ± 5.24 ; VTA:174.16 ± 5.61 vs 158.65 ± 4.85),and the difference between the H and L group was significant(P<0.01) ;however,the expression of 5-HT1AR in H group were significantly higher than that of in the control and L group in all regions (mPFC:113.98 ± 7.46 vs 125.90 ± 3.30 ; Nac:112.11± 5.50 vs 125.06 ± 3.97 ;VTA:103.11 ± 6.05 vs 115.57 ± 3.19),and the difference between the H and L group was significant (P< 0.01).Conclusion The overexpression of 5-HT1AR and down regulation of 5-HTT in the circuit of VTA-NAc-mPFC may be the basis of the high susceptibility to CUS.%目的 探讨大鼠慢性不可预见性应激(Chronic Unpredictable Stress,CUS)易感性差异的中脑边缘系统5-羟色胺转运体(5-HTT)和5-羟色胺1A受体(5-HT1AR)机制.方法 150只雄性Sprague

  12. Serotonin 5-HT2A receptor binding in platelets from healthy subjects as studied by [3H]-lysergic acid diethylamide ([3H]-LSD): intra- and interindividual variability.

    Science.gov (United States)

    Spigset, O; Mjörndal, T

    1997-04-01

    In studies on platelet 5-HT2A receptor binding in patients with neuropsychiatric disorders, there has been a marked variability and a considerable overlap of values between patients and controls. The causes of the large variability in 5-HT2A receptor parameters is still unsettled. In the present study, we have quantified the intra- and interindividual variability of platelet 5-HT2A receptor binding in 112 healthy subjects and explored factors that may influence 5-HT2A receptor binding, using [3H]-lysergic acid diethylamide as radioligand. Age, gender, blood pressure, and metabolic capacity of the liver enzymes CYP2D6 and CYP2C19 did not influence Bmax and Kd values. Body weight and body mass index (BMI) showed a negative correlation with Kd (p = .04 and .03, respectively), but not with Bmax. Bmax was significantly lower in the light half of the year than in the dark half of the year (p = .001), and Kd was significantly lower in the fall than in the summer and winter (p < .001). In females, there was a significant increase in Bmax from week 1 to week 2 of the menstrual cycle (p = .03). Females taking contraceptive pills had significantly higher Kd than drug-free females in weeks 1 and 4 of the menstrual cycle (p = .04). This study shows that a number of factors should be taken into account when using platelet 5-HT2A receptor binding in studies of neuropsychiatric disorders.

  13. Drug: D01994 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D01994 Drug Mosapride citrate hydrate (JP16); Mosapride citrate dihydrate; Gasmotin... (TN) C21H25ClFN3O3. C6H8O7. 2H2O 649.205 650.047 D01994.gif Peristaltic stimulant Same as: C13494 Therapeutic category: 2399 5-HT4-receptor agonist [HSA:3360] [K...ugs in Japan [BR:br08301] 2 Agents affecting individual organs 23 Digestive organ agents 239 Miscellaneous 2399 Others D01994... drugs [BR:br08310] G Protein-coupled receptors Rhodopsin family Serotonin 5-HT4-receptor [HSA:3360] [KO:K04160] Mosapride D01994... Mosapride citrate hydrate (JP16) CAS: 636582-62-2 PubChem: 7849056 LigandBox: D01994 A

  14. Serotonin syndrome due to fluoxetine and tramadol in renal impaired patient

    Directory of Open Access Journals (Sweden)

    Rajnish Raj

    2014-02-01

    Full Text Available Serotonin syndrome causes confusion or altered mental status; other symptoms include myoclonus, shivering, tremors, diaphoresis, hyperreflexia, incoordination, fever and diarrhoea. Tramadol possesses dual pharmacological effects i.e., a weak opiate agonist at mu, kappa and delta opiate receptors along with reuptake inhibition of norepinephrine and serotonin. Risk associated with tramadol increases when co-administered with serotonergic antidepressants or MAOIs (monoamine oxidase inhibitors and in renal impaired. The incidence of this syndrome is less than 1% as most of the cases remain unreported. The case highlights the fact that interaction between serotonergic agents like fluoxetine and tramadol especially in the presence of co-morbid medical illness can lead to serotonin syndrome. [Int J Basic Clin Pharmacol 2014; 3(1.000: 227-229

  15. Delayed pressure urticaria treated with the selective serotonin reuptake inhibitor escitalopram.

    Science.gov (United States)

    Eskeland, S; Tanum, L; Halvorsen, J A

    2016-07-01

    There is increasing evidence of platelet activation and systemic inflammation in chronic spontaneous urticaria and delayed pressure urticaria (DPU). Inflammation may be central to understanding the high comorbidity of depression and anxiety in patients with chronic urticaria (CU). We report a case of DPU and depression in a patient, which responded favourably to treatment with the selective serotonin reuptake inhibitor (SSRI) escitalopram. Sustained administration of SSRIs is associated with downregulation of serotonin transporters/receptors and depletion of platelet stored serotonin, which may reduce the ability of platelets to aggregate after thrombotic triggers. SSRIs are easier to manage and have significantly less disturbing adverse effects and cardiotoxicity than the tricyclic antidepressants (TCAs). SSRIs may represent an alternative to the traditional use of TCAs in treatment of CU. PMID:27037523

  16. Local serotonin mediates cyclic strain-induced phenotype transformation, matrix degradation, and glycosaminoglycan synthesis in cultured sheep mitral valves.

    Science.gov (United States)

    Lacerda, Carla M R; Kisiday, John; Johnson, Brennan; Orton, E Christopher

    2012-05-15

    This study addressed the following questions: 1) Does cyclic tensile strain induce protein expression patterns consistent with myxomatous degeneration in mitral valves? 2) Does cyclic strain induce local serotonin synthesis in mitral valves? 3) Are cyclic strain-induced myxomatous protein expression patterns in mitral valves dependent on local serotonin? Cultured sheep mitral valve leaflets were subjected to 0, 10, 20, and 30% cyclic strain for 24 and 72 h. Protein levels of activated myofibroblast phenotype markers, α-smooth muscle actin (α-SMA) and nonmuscle embryonic myosin (SMemb); matrix catabolic enzymes, matrix metalloprotease (MMP) 1 and 13, and cathepsin K; and sulfated glycosaminoglycan (GAG) content in mitral valves increased with increased cyclic strain. Serotonin was present in the serum-free media of cultured mitral valves and concentrations increased with cyclic strain. Expression of the serotonin synthetic enzyme tryptophan hydroxylase 1 (TPH1) increased in strained mitral valves. Pharmacologic inhibition of the serotonin 2B/2C receptor or TPH1 diminished expression of phenotype markers (α-SMA and SMemb) and matrix catabolic enzyme (MMP1, MMP13, and cathepsin K) expression in 10- and 30%-strained mitral valves. These results provide first evidence that mitral valves synthesize serotonin locally. The results further demonstrate that tensile loading modulates local serotonin synthesis, expression of effector proteins associated with mitral valve degeneration, and GAG synthesis. Inhibition of serotonin diminishes strain-mediated protein expression patterns. These findings implicate serotonin and tensile loading in mitral degeneration, functionally link the pathogeneses of serotoninergic (carcinoid, drug-induced) and degenerative mitral valve disease, and have therapeutic implications.

  17. Disruption of Transient Serotonin Accumulation by Non-Serotonin-Producing Neurons Impairs Cortical Map Development

    Directory of Open Access Journals (Sweden)

    Xiaoning Chen

    2015-01-01

    Full Text Available Polymorphisms that alter serotonin transporter SERT expression and functionality increase the risks for autism and psychiatric traits. Here, we investigate how SERT controls serotonin signaling in developing CNS in mice. SERT is transiently expressed in specific sets of glutamatergic neurons and uptakes extrasynaptic serotonin during perinatal CNS development. We show that SERT expression in glutamatergic thalamocortical axons (TCAs dictates sensory map architecture. Knockout of SERT in TCAs causes lasting alterations in TCA patterning, spatial organizations of cortical neurons, and dendritic arborization in sensory cortex. Pharmacological reduction of serotonin synthesis during the first postnatal week rescues sensory maps in SERTGluΔ mice. Furthermore, knockdown of SERT expression in serotonin-producing neurons does not impair barrel maps. We propose that spatiotemporal SERT expression in non-serotonin-producing neurons represents a determinant in early life genetic programming of cortical circuits. Perturbing this SERT function could be involved in the origin of sensory and cognitive deficits associated with neurodevelopmental disorders.

  18. The influence of serotonin on fear learning.

    Directory of Open Access Journals (Sweden)

    Catherine Hindi Attar

    Full Text Available Learning of associations between aversive stimuli and predictive cues is the basis of Pavlovian fear conditioning and is driven by a mismatch between expectation and outcome. To investigate whether serotonin modulates the formation of such aversive cue-outcome associations, we used functional magnetic resonance imaging (fMRI and dietary tryptophan depletion to reduce brain serotonin (5-HT levels in healthy human subjects. In a Pavlovian fear conditioning paradigm, 5-HT depleted subjects compared to a non-depleted control group exhibited attenuated autonomic responses to cues indicating the upcoming of an aversive event. These results were closely paralleled by reduced aversive learning signals in the amygdala and the orbitofrontal cortex, two prominent structures of the neural fear circuit. In agreement with current theories of serotonin as a motivational opponent system to dopamine in fear learning, our data provide first empirical evidence for a role of serotonin in representing formally derived learning signals for aversive events.

  19. Transient Serotonin Syndrome by Concurrent Use of Electroconvulsive Therapy and Selective Serotonin Reuptake Inhibitor: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Nagahisa Okamoto

    2012-01-01

    Full Text Available The serotonin syndrome, which is characterized by psychiatric, autonomic nervous and neurological symptoms, is considered to be caused by excessive stimulation of the 5-HT1A and 5-HT2 receptors in the gray matter and spinal cord of the central nervous system, after the start of dosing or increase of the dose of a serotoninergic drug. There have been hardly any reports of induction of serotonin syndrome by electroconvulsive therapy (ECT in combination with antidepressant. We present the case of a female patient with major depressive disorder (MDD who developed transient serotonin syndrome soon after the first session of ECT in combination with paroxetine. Paroxetine was discontinued, and her psychiatric, autonomic nervous and neurological symptoms were gradually relieved and disappeared within 2 days. We performed the second ECT session 5 days after the initial session and performed 12 sessions of ECT without any changes in the procedure of ECT and anesthesia, but no symptoms of SS were observed. Finally, her MDD remitted. ECT might cause transiently increased blood-brain barrier (BBB permeability and enhance the transmissivity of the antidepressant in BBB. Therefore, it is necessary to pay attention to rare side effect of serotonin syndrome by ECT in combination with antidepressant.

  20. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior.

    Science.gov (United States)

    Patrick, Rhonda P; Ames, Bruce N

    2015-06-01

    Serotonin regulates a wide variety of brain functions and behaviors. Here, we synthesize previous findings that serotonin regulates executive function, sensory gating, and social behavior and that attention deficit hyperactivity disorder, bipolar disorder, schizophrenia, and impulsive behavior all share in common defects in these functions. It has remained unclear why supplementation with omega-3 fatty acids and vitamin D improve cognitive function and behavior in these brain disorders. Here, we propose mechanisms by which serotonin synthesis, release, and function in the brain are modulated by vitamin D and the 2 marine omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Brain serotonin is synthesized from tryptophan by tryptophan hydroxylase 2, which is transcriptionally activated by vitamin D hormone. Inadequate levels of vitamin D (∼70% of the population) and omega-3 fatty acids are common, suggesting that brain serotonin synthesis is not optimal. We propose mechanisms by which EPA increases serotonin release from presynaptic neurons by reducing E2 series prostaglandins and DHA influences serotonin receptor action by increasing cell membrane fluidity in postsynaptic neurons. We propose a model whereby insufficient levels of vitamin D, EPA, or DHA, in combination with genetic factors and at key periods during development, would lead to dysfunctional serotonin activation and function and may be one underlying mechanism that contributes to neuropsychiatric disorders and depression. This model suggests that optimizing vitamin D and marine omega-3 fatty acid intake may help prevent and modulate the severity of brain dysfunction.

  1. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  2. Ligand-gated chloride channels are receptors for biogenic amines in C. elegans

    OpenAIRE

    Ringstad, Niels; Abe, Namiko; Horvitz, H. Robert

    2009-01-01

    Biogenic amines such as serotonin and dopamine are intercellular signaling molecules that function widely as neurotransmitters and neuromodulators. We have identified in the nematode Caenorhabditis elegans three ligand-gated chloride channels that are receptors for biogenic amines: LGC-53 is a high-affinity dopamine receptor, LGC-55 is a high-affinity tyramine receptor, and LGC-40 is a low-affinity serotonin receptor that is also gated by choline and acetylcholine. lgc-55 mutants are defectiv...

  3. Theory-based analysis of clinical efficacy of triptans using receptor occupancy

    OpenAIRE

    Tokuoka, Kentaro; Takayanagi, Risa; Suzuki, Yuji; Watanabe, Masayuki; Kitagawa, Yasuhisa; Yamada, Yasuhiko

    2014-01-01

    Background Triptans, serotonin 5-HT1B/1D receptor agonists, exert their action by targeting serotonin 5-HT1B/1D receptors, are used for treatment of migraine attack. Presently, 5 different triptans, namely sumatriptan, zolmitriptan, eletriptan, rizatriptan, and naratriptan, are marketed in Japan. In the present study, we retrospectively analyzed the relationships of clinical efficacy (headache relief) in Japanese and 5-HT1B/1D receptor occupancy (Φ1B and Φ1D). Receptor occupancies were calcul...

  4. Immunomodulatory effects mediated by serotonin.

    Science.gov (United States)

    Arreola, Rodrigo; Becerril-Villanueva, Enrique; Cruz-Fuentes, Carlos; Velasco-Velázquez, Marco Antonio; Garcés-Alvarez, María Eugenia; Hurtado-Alvarado, Gabriela; Quintero-Fabian, Saray; Pavón, Lenin

    2015-01-01

    Serotonin (5-HT) induces concentration-dependent metabolic effects in diverse cell types, including neurons, entherochromaffin cells, adipocytes, pancreatic beta-cells, fibroblasts, smooth muscle cells, epithelial cells, and leukocytes. Three classes of genes regulating 5-HT function are constitutively expressed or induced in these cells: (a) membrane proteins that regulate the response to 5-HT, such as SERT, 5HTR-GPCR, and the 5HT3-ion channels; (b) downstream signaling transduction proteins; and (c) enzymes controlling 5-HT metabolism, such as IDO and MAO, which can generate biologically active catabolites, including melatonin, kynurenines, and kynurenamines. This review covers the clinical and experimental mechanisms involved in 5-HT-induced immunomodulation. These mechanisms are cell-specific and depend on the expression of serotonergic components in immune cells. Consequently, 5-HT can modulate several immunological events, such as chemotaxis, leukocyte activation, proliferation, cytokine secretion, anergy, and apoptosis. The effects of 5-HT on immune cells may be relevant in the clinical outcome of pathologies with an inflammatory component. Major depression, fibromyalgia, Alzheimer disease, psoriasis, arthritis, allergies, and asthma are all associated with changes in the serotonergic system associated with leukocytes. Thus, pharmacological regulation of the serotonergic system may modulate immune function and provide therapeutic alternatives for these diseases. PMID:25961058

  5. Immunomodulatory Effects Mediated by Serotonin

    Directory of Open Access Journals (Sweden)

    Rodrigo Arreola

    2015-01-01

    Full Text Available Serotonin (5-HT induces concentration-dependent metabolic effects in diverse cell types, including neurons, entherochromaffin cells, adipocytes, pancreatic beta-cells, fibroblasts, smooth muscle cells, epithelial cells, and leukocytes. Three classes of genes regulating 5-HT function are constitutively expressed or induced in these cells: (a membrane proteins that regulate the response to 5-HT, such as SERT, 5HTR-GPCR, and the 5HT3-ion channels; (b downstream signaling transduction proteins; and (c enzymes controlling 5-HT metabolism, such as IDO and MAO, which can generate biologically active catabolites, including melatonin, kynurenines, and kynurenamines. This review covers the clinical and experimental mechanisms involved in 5-HT-induced immunomodulation. These mechanisms are cell-specific and depend on the expression of serotonergic components in immune cells. Consequently, 5-HT can modulate several immunological events, such as chemotaxis, leukocyte activation, proliferation, cytokine secretion, anergy, and apoptosis. The effects of 5-HT on immune cells may be relevant in the clinical outcome of pathologies with an inflammatory component. Major depression, fibromyalgia, Alzheimer disease, psoriasis, arthritis, allergies, and asthma are all associated with changes in the serotonergic system associated with leukocytes. Thus, pharmacological regulation of the serotonergic system may modulate immune function and provide therapeutic alternatives for these diseases.

  6. Role of serotonin in pathogenesis of analgesic induced headache

    Energy Technology Data Exchange (ETDEWEB)

    Srikiatkhachorn, A.

    1999-12-16

    Analgesic abuse has recently been recognized as a cause of deterioration in primary headache patients. Although the pathogenesis of this headache transformation is still obscure, and alteration of central pain control system is one possible mechanism. A number of recent studies indicated that simple analgesics exert their effect by modulating the endogenous pain control system rather than the effect at the peripheral tissue, as previously suggested. Serotonin (5-hydroxytryptamine ; 5-HT) has long been known to play a pivotal role in the pain modulatory system in the brainstem. In the present study, we investigated the changes in 5-HT system in platelets and brain tissue. A significant decrease in platelet 5-HT concentration (221.8{+-}30.7, 445.3{+-}37.4 and 467.2{+-}38.5 ng/10{sup 9} platelets, for patients with analgesic-induced headache and migraine patients, respectively, p<0.02) were evident in patients with analgesic induced headache. Chronic paracetamol administration induced a decrease in 5-HT{sub 2} serotonin receptor in cortical and brain stem tissue in experimental animals (B{sub max}=0.93{+-}0.04 and 1.79{+-}0.61 pmol/mg protein for paracetamol treated rat and controls, respectively, p<0.05). Our preliminary results suggested that chronic administration of analgesics interferes with central and peripheral 5-HT system and therefore possibly alters the 5-HT dependent antinociceptive system. (author)

  7. Effects of sleep deprivation on the gene expression of 5-serotonin 1A receptor and dopamine 2 receptor in different brain regions of rats%睡眠剥夺对大鼠不同脑区5-羟色胺1A受体和多巴胺D2受体基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    姚朝宗; 李文强; 朱金富

    2015-01-01

    目的 通过检测不同睡眠剥夺程度模型大鼠海马、下丘脑、纹状体三个脑区5-HT受体1A((5-HT1A))和DA受体D2(D2R)基因表达改变情况,分析睡眠剥夺对5-HT1A和多巴胺D2受体(D2R)基因表达的影响,探讨不同神经递质通路参与睡眠调节的差异.方法 10周龄雄性SD大鼠分别进行24 h、48h、72 h REM睡眠剥夺,不处理动物作为正常对照组.取大鼠海马、下丘脑、纹状体三个部位脑组织利用RT-PCR技术检测5-HT1A和D2R基因的表达情况,分析睡眠剥夺对这些基因表达的影响及不同脑区的差异.结果 睡眠剥夺对大鼠海马和纹状体区域5-HT1A基因表达有显著性影响(F=56.203,P<0.01;F=77.288,P<0.01),不同睡眠剥夺时间组均高于对照组,差异具有统计学意义(均P<0.05).在海马区域,剥夺72 h组(0.618±0.054)高于剥夺24 h和48 h组(0.404±0.023,P<0.01;0.455±0.042,P<0.05),纹状体区,剥夺24 h(0.413±0.033)、48 h (0.464±0.034)和72 h (0.610±0.040)组动物的差异有统计学意义(均P<0.05);睡眠剥夺对大鼠海马和纹状体区域D2R基因表达有显著性影响(F=74.708,P<0.01;F=80.687,P<0.01),不同睡眠剥夺时间组大鼠在海马(24 h:0.386±0.027,48 h:0.318±0.014,72 h:0.250±0.010)和纹状体(24 h:0.396±0.013,48 h:0.349±0.017,72 h:0.260±0.013)区域的表达量均低于对照组,差异具有统计学意义(均P<0.05).睡眠剥夺各组动物两个基因在海马和纹状体两个基因的表达呈负相关(均P<0.05).结论 睡眠剥夺大鼠在海马和下丘脑5-HT1A基因表达增高,D2R基因表达下降,两者基因表达呈负相关.%Objective To analyze the influence of sleep deprivation on expression of serotonin receptor 1A(5-HT1A) and dopanine-2 receptor (D2R) gene and to explore the differences between different neurotransmitter pathways involved in sleep regulation through measuring the gene expression of 5-HT1A and D2R in regions of hippocampus,hypothalamus and striatum with

  8. Relative contributions of norepinephrine and serotonin transporters to antinociceptive synergy between monoamine reuptake inhibitors and morphine in the rat formalin model.

    Directory of Open Access Journals (Sweden)

    Fei Shen

    Full Text Available Multimodal analgesia is designed to optimize pain relief by coadministering drugs with distinct mechanisms of action or by combining multiple pharmacologies within a single molecule. In clinical settings, combinations of monoamine reuptake inhibitors and opioid receptor agonists have been explored and one currently available analgesic, tapentadol, functions as both a µ-opioid receptor agonist and a norepinephrine transporter inhibitor. However, it is unclear whether the combination of selective norepinephrine reuptake inhibition and µ-receptor agonism achieves an optimal antinociceptive synergy. In this study, we assessed the pharmacodynamic interactions between morphine and monoamine reuptake inhibitors that possess different affinities and selectivities for norepinephrine and serotonin transporters. Using the rat formalin model, in conjunction with measurements of ex vivo transporter occupancy, we show that neither the norepinephrine-selective inhibitor, esreboxetine, nor the serotonin-selective reuptake inhibitor, fluoxetine, produce antinociceptive synergy with morphine. Atomoxetine, a monoamine reuptake inhibitor that achieves higher levels of norepinephrine than serotonin transporter occupancy, exhibited robust antinociceptive synergy with morphine. Similarly, a fixed-dose combination of esreboxetine and fluoxetine which achieves comparable levels of transporter occupancy potentiated the antinociceptive response to morphine. By contrast, duloxetine, a monoamine reuptake inhibitor that achieves higher serotonin than norepinephrine transporter occupancy, failed to potentiate the antinociceptive response to morphine. However, when duloxetine was coadministered with the 5-HT3 receptor antagonist, ondansetron, potentiation of the antinociceptive response to morphine was revealed. These results support the notion that inhibition of both serotonin and norepinephrine transporters is required for monoamine reuptake inhibitor and opioid

  9. Quantification of the radio-metabolites of the serotonin-1A receptor radioligand [carbonyl-11C]WAY-100635 in human plasma: An HPLC-assay which enables measurement of two patients in parallel

    International Nuclear Information System (INIS)

    [Carbonyl-11C]WAY-100635 is a potent and effective antagonist for the 5-HT1A receptor subtype. We aimed to assess the status of [carbonyl-11C]WAY-100635 and its main radio-metabolites, [carbonyl-11C]desmethyl-WAY-100635 and [carbonyl-11C]cyclohexanecarboxylic acid, on the basis of an improved radio-HPLC method. Common methods were characterized by preparative HPLC columns with long runtimes and/or high flow rates. Considering the short half-life of C-11, we developed a more rapid and solvent saving HPLC assay, allowing a fast, efficient and reliable quantification of these major metabolites. - Highlights: ► We developed a HPLC assay which allows the measurement of two patients in parallel. ► It allows a fast and efficient quantification of WAY-100635 and its metabolites. ► Better counting statistics with late samples for modeling the input function is achieved. ► The fastest assay so far is about 40% slower in comparison to the presented method.

  10. Genetic moderation of child maltreatment effects on depression and internalizing symptoms by serotonin transporter linked polymorphic region (5-HTTLPR), brain-derived neurotrophic factor (BDNF), norepinephrine transporter (NET), and corticotropin releasing hormone receptor 1 (CRHR1) genes in African American children.

    Science.gov (United States)

    Cicchetti, Dante; Rogosch, Fred A

    2014-11-01

    Genetic moderation of the effects of child maltreatment on depression and internalizing symptoms was investigated in a sample of low-income maltreated and nonmaltreated African American children (N = 1,096). Lifetime child maltreatment experiences were independently coded from Child Protective Services records and maternal report. Child depression and internalizing problems were assessed in the context of a summer research camp by self-report on the Children's Depression Inventory and adult counselor report on the Teacher Report Form. DNA was obtained from buccal cell or saliva samples and genotyped for polymorphisms of the following genes: serotonin transporter linked polymorphic region (5-HTTLPR), brain-derived neurotrophic factor (BDNF), norepinephrine transporter, and corticotropin releasing hormone receptor 1. Analyses of covariance with age and gender as covariates were conducted, with maltreatment status and respective polymorphism as main effects and their Gene × Environment (G × E) interactions. Maltreatment consistently was associated with higher Children's Depression Inventory and Teacher Report Form symptoms. The results for child self-report symptoms indicated a G × E interaction for BDNF and maltreatment. In addition, BDNF and triallelic 5-HTTLPR interacted with child maltreatment in a G × G × E interaction. Analyses for counselor report of child anxiety/depression symptoms on the Teacher Report Form indicated moderation of child maltreatment effects by triallelic 5-HTTLPR. These effects were elaborated based on variation in developmental timing of maltreatment experiences. Norepinephrine transporter was found to further moderate the G × E interaction of 5-HTTLPR and maltreatment status, revealing a G × G × E interaction. This G × G × E was extended by consideration of variation in maltreatment subtype experiences. Finally, G × G × E effects were observed for the co-action of BDNF and the corticotropin releasing hormone receptor 1

  11. Acute social defeat does not alter cerebral 5-HT2A receptor binding in male Wistar rats

    NARCIS (Netherlands)

    Visser, Anniek K. D.; Meerlo, Peter; Ettrup, Anders; Knudsen, Gitte M.; Bosker, Fokko J.; den Boer, Johan A.; Dierckx, Rudi A. J. O.; van Waarde, Aren

    2014-01-01

    It has been hypothesized that effects of uncontrollable stress on serotonin receptor expression contribute to the etiology of stress-related disorders like depression. While the serotonin-2A receptors (5-HT2AR) are thought to be important in this context, only few studies examined effects of stress

  12. The serotonin transporter in psychiatric disorders

    DEFF Research Database (Denmark)

    Spies, Marie; Knudsen, Karen Birgitte Moos; Lanzenberger, Rupert;

    2015-01-01

    and might therefore be relevant for stratification of patients into clinical subsets. PET has enabled the elucidation of mechanisms of response to selective serotonin reuptake inhibitors (SSRIs) and hence provides a basis for rational pharmacological treatment of major depressive disorder. Such imaging......Over the past 20 years, psychotropics affecting the serotonergic system have been used extensively in the treatment of psychiatric disorders. Molecular imaging, in particular PET, has allowed for elucidation of the essential contribution of the serotonin transporter to the pathophysiology...... of various psychiatric disorders and their treatment. We review studies that use PET to measure cerebral serotonin transporter activity in psychiatric disorders, focusing on major depressive disorder and antidepressant treatment. We also discuss opportunities and limitations in the application...

  13. Role of serotonin in the discriminative stimulus properties of mescaline.

    Science.gov (United States)

    Browne, R G; Ho, B T

    1975-01-01

    Rats were trained to discriminate intraperitoneally administered mescaline from saline in a two-lever operant chamber for food reinforcement. Reward was contingent upon responses made greater than 15 sec apart (DRL-15) on the appropriate lever paired with either drug or saline administration. Following the establishment of discriminative response control by mescaline, the animals were tested for stimulus generalization produced by mescaline after: (a) blockade of periphreral and central serotonin (5-HT) receptors with cinanserin, methysergide, or cyproheptadine; (b) blockade of peripheral 5-HT receptors with xylamidine tosylate; and (c) depletion of brain 5-HT with the tryptophan hydroxylase inhibitor p-chlorophenylalanine (PCPA). The results show that all three central 5-HT antagonists greatly reduced the discriminability of mescaline while the peripheral antagonist, xylamidine tosylate, was without effect. Furthermore, these agents at the doses employed did not effect the discriminability of saline. Depletion of 5-HT with PCPA potentiated the effects of a sub-threshold dose of mescaline and slightly reduced the discriminability of saline. The results indicate that mescaline produces its discriminative stimulus properties by directly stimulating central serotonergic receptors.

  14. Serotonin regulates osteoblast proliferation and function in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Dai, S.Q.; Yu, L.P. [Department of Orthopedic Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Shi, X. [Department of Obstetrics and Gynecology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Wu, H. [Emergency Department, The First Affiliated Hospital, Soochow University, Suzhou (China); Shao, P.; Yin, G.Y.; Wei, Y.Z. [Department of Orthopedic Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China)

    2014-08-01

    The monoamine serotonin (5-hydroxytryptamine, 5-HT), a well-known neurotransmitter, also has important functions outside the central nervous system. The objective of this study was to investigate the role of 5-HT in the proliferation, differentiation, and function of osteoblasts in vitro. We treated rat primary calvarial osteoblasts with various concentrations of 5-HT (1 nM to 10 µM) and assessed the rate of osteoblast proliferation, expression levels of osteoblast-specific proteins and genes, and the ability to form mineralized nodules. Next, we detected which 5-HT receptor subtypes were expressed in rat osteoblasts at different stages of osteoblast differentiation. We found that 5-HT could inhibit osteoblast proliferation, differentiation, and mineralization at low concentrations, but this inhibitory effect was mitigated at relatively high concentrations. Six of the 5-HT receptor subtypes (5-HT{sub 1A}, 5-HT{sub 1B}, 5-HT{sub 1D}, 5-HT{sub 2A}, 5-HT{sub 2B}, and 5-HT{sub 2C}) were found to exist in rat osteoblasts. Of these, 5-HT{sub 2A} and 5-HT{sub 1B} receptors had the highest expression levels, at both early and late stages of differentiation. Our results indicated that 5-HT can regulate osteoblast proliferation and function in vitro.

  15. Measuring the serotonin uptake site using [3H]paroxetine--a new serotonin uptake inhibitor

    International Nuclear Information System (INIS)

    Serotonin is an important neurotransmitter that may be involved in ethanol preference and dependence. It is possible to label the serotonin uptake site in brain using the tricyclic antidepressant imipramine, but this also binds to other sites. We have used the new high-affinity uptake blocker paroxetine to define binding to this site and report it to have advantages over imipramine as a ligand

  16. Measuring the serotonin uptake site using (/sup 3/H)paroxetine--a new serotonin uptake inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Gleiter, C.H.; Nutt, D.J.

    1988-01-01

    Serotonin is an important neurotransmitter that may be involved in ethanol preference and dependence. It is possible to label the serotonin uptake site in brain using the tricyclic antidepressant imipramine, but this also binds to other sites. We have used the new high-affinity uptake blocker paroxetine to define binding to this site and report it to have advantages over imipramine as a ligand.

  17. A current view of serotonin transporters.

    Science.gov (United States)

    De Felice, Louis J

    2016-01-01

    Serotonin transporters (SERTs) are largely recognized for one aspect of their function-to transport serotonin back into the presynaptic terminal after its release. Another aspect of their function, however, may be to generate currents large enough to have physiological consequences. The standard model for electrogenic transport is the alternating access model, in which serotonin is transported with a fixed ratio of co-transported ions resulting in net charge per cycle. The alternating access model, however, cannot account for all the observed currents through SERT or other monoamine transporters.  Furthermore, SERT agonists like ecstasy or antagonists like fluoxetine generate or suppress currents that the standard model cannot support.  Here we survey evidence for a channel mode of transport in which transmitters and ions move through a pore. Available structures for dopamine and serotonin transporters, however, provide no evidence for a pore conformation, raising questions of whether the proposed channel mode actually exists or whether the structural data are perhaps missing a transient open state. PMID:27540474

  18. Electrophysiological and biochemical studies of slow responses to serotonin and dopamine of snail identified neurons. Mediating role of the cyclic AMP

    International Nuclear Information System (INIS)

    In this research thesis, the electrophysiological study of slow incoming currents induced in some identified neurons of the Helix aspersa snail by serotonin and dopamine shows that they are associated with a decrease of a potassium conductance involved in the modulation of the action potential duration. By means of enzymatic tests performed on a single cell, and of electrophysiological experiments, the author shows that the cyclic AMP is an intracellular mediator involved in the genesis of these slow responses. Moreover, the obtained results show that serotonin and dopamine act by binding to specific receptors, and that these receptors activate the adenylate-cyclase through a GTP binding protein

  19. The roles of dopamine and serotonin in decision making: evidence from pharmacological experiments in humans.

    Science.gov (United States)

    Rogers, Robert D

    2011-01-01

    Neurophysiological experiments in primates, alongside neuropsychological and functional magnetic resonance investigations in humans, have significantly enhanced our understanding of the neural architecture of decision making. In this review, I consider the more limited database of experiments that have investigated how dopamine and serotonin activity influences the choices of human adults. These include those experiments that have involved the administration of drugs to healthy controls, experiments that have tested genotypic influences upon dopamine and serotonin function, and, finally, some of those experiments that have examined the effects of drugs on the decision making of clinical samples. Pharmacological experiments in humans are few in number and face considerable methodological challenges in terms of drug specificity, uncertainties about pre- vs post-synaptic modes of action, and interactions with baseline cognitive performance. However, the available data are broadly consistent with current computational models of dopamine function in decision making and highlight the dissociable roles of dopamine receptor systems in the learning about outcomes that underpins value-based decision making. Moreover, genotypic influences on (interacting) prefrontal and striatal dopamine activity are associated with changes in choice behavior that might be relevant to understanding exploratory behaviors and vulnerability to addictive disorders. Manipulations of serotonin in laboratory tests of decision making in human participants have provided less consistent results, but the information gathered to date indicates a role for serotonin in learning about bad decision outcomes, non-normative aspects of risk-seeking behavior, and social choices involving affiliation and notions of fairness. Finally, I suggest that the role played by serotonin in the regulation of cognitive biases, and representation of context in learning, point toward a role in the cortically mediated cognitive

  20. The roles of dopamine and serotonin in decision making: evidence from pharmacological experiments in humans.

    Science.gov (United States)

    Rogers, Robert D

    2011-01-01

    Neurophysiological experiments in primates, alongside neuropsychological and functional magnetic resonance investigations in humans, have significantly enhanced our understanding of the neural architecture of decision making. In this review, I consider the more limited database of experiments that have investigated how dopamine and serotonin activity influences the choices of human adults. These include those experiments that have involved the administration of drugs to healthy controls, experiments that have tested genotypic influences upon dopamine and serotonin function, and, finally, some of those experiments that have examined the effects of drugs on the decision making of clinical samples. Pharmacological experiments in humans are few in number and face considerable methodological challenges in terms of drug specificity, uncertainties about pre- vs post-synaptic modes of action, and interactions with baseline cognitive performance. However, the available data are broadly consistent with current computational models of dopamine function in decision making and highlight the dissociable roles of dopamine receptor systems in the learning about outcomes that underpins value-based decision making. Moreover, genotypic influences on (interacting) prefrontal and striatal dopamine activity are associated with changes in choice behavior that might be relevant to understanding exploratory behaviors and vulnerability to addictive disorders. Manipulations of serotonin in laboratory tests of decision making in human participants have provided less consistent results, but the information gathered to date indicates a role for serotonin in learning about bad decision outcomes, non-normative aspects of risk-seeking behavior, and social choices involving affiliation and notions of fairness. Finally, I suggest that the role played by serotonin in the regulation of cognitive biases, and representation of context in learning, point toward a role in the cortically mediated cognitive

  1. Effect of 5-HT7 receptor blockade on liver regeneration after 60-70% partial hepatectomy

    OpenAIRE

    Tzirogiannis, Konstantinos N; Kourentzi, Kalliopi T; Zyga, Sofia; Papalimneou, Vassiliki; Tsironi, Maria; Grypioti, Agni D; Protopsaltis, Ioannis; Panidis, Dimitrios; Panoutsopoulos, Georgios I

    2014-01-01

    Background Serotonin exhibits a vast repertoire of actions including cell proliferation and differentiation. The effect of serotonin, as an incomplete mitogen, on liver regeneration has recently been unveiled and is mediated through 5-HT2 receptor. The aim of the present study was to investigate the effect of 5-HT7 receptor blockade on liver regeneration after partial hepatectomy. Methods Male Wistar rats were subjected to 60-70% partial hepatectomy. 5-HT7 receptor blockade was applied by int...

  2. Bacillus licheniformis Isolated from Traditional Korean Food Resources Enhances the Longevity of Caenorhabditis elegans through Serotonin Signaling.

    Science.gov (United States)

    Park, Mi Ri; Oh, Sangnam; Son, Seok Jun; Park, Dong-June; Oh, Sejong; Kim, Sae Hun; Jeong, Do-Youn; Oh, Nam Su; Lee, Youngbok; Song, Minho; Kim, Younghoon

    2015-12-01

    In this study, we investigated potentially probiotic Bacillus licheniformis strains isolated from traditional Korean food sources for ability to enhance longevity using the nematode Caenorhabditis elegans as a simple in vivo animal model. We first investigated whether B. licheniformis strains were capable of modulating the lifespan of C. elegans. Among the tested strains, preconditioning with four B. licheniformis strains significantly enhanced the longevity of C. elegans. Unexpectedly, plate counting and transmission electron microscopy (TEM) results indicated that B. licheniformis strains were not more highly attached to the C. elegans intestine compared with Escherichia coli OP50 or Lactobacillus rhamnosus GG controls. In addition, qRT-PCR and an aging assay with mutant worms showed that the conditioning of B. licheniformis strain 141 directly influenced genes associated with serotonin signaling in nematodes, including tph-1 (tryptophan hydroxylase), bas-1 (serotonin- and dopamine-synthetic aromatic amino acid decarboxylase), mod-1 (serotonin-gated chloride channel), ser-1, and ser-7 (serotonin receptors) during C. elegans aging. Our findings suggest that B. licheniformis strain 141, which is isolated from traditional Korean foods, is a probiotic generally recognized as safe (GRAS) strain that enhances the lifespan of C. elegans via host serotonin signaling.

  3. A dualistic conformational response to substrate binding in the human serotonin transporter reveals a high affinity state for serotonin

    DEFF Research Database (Denmark)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida;

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across...... that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation...

  4. Serotonin dependent masking of hippocampal sharp wave ripples.

    Science.gov (United States)

    ul Haq, Rizwan; Anderson, Marlene L; Hollnagel, Jan-Oliver; Worschech, Franziska; Sherkheli, Muhammad Azahr; Behrens, Christoph J; Heinemann, Uwe

    2016-02-01

    Sharp wave ripples (SPW-Rs) are thought to play an important role in memory consolidation. By rapid replay of previously stored information during slow wave sleep and consummatory behavior, they result from the formation of neural ensembles during a learning period. Serotonin (5-HT), suggested to be able to modify SPW-Rs, can affect many neurons simultaneously by volume transmission and alter network functions in an orchestrated fashion. In acute slices from dorsal hippocampus, SPW-Rs can be induced by repeated high frequency stimulation that induces long-lasting LTP. We used this model to study SPW-R appearance and modulation by 5-HT. Although stimulation in presence of 5-HT permitted LTP induction, SPW-Rs were "masked"--but appeared after 5-HT wash-out. This SPW-R masking was dose dependent with 100 nM 5-HT being sufficient--if the 5-HT re-uptake inhibitor citalopram was present. Fenfluramine, a serotonin releaser, could also mask SPW-Rs. Masking was due to 5-HT1A and 5-HT2A/C receptor activation. Neither membrane potential nor membrane conductance changes in pyramidal cells caused SPW-R blockade since both remained unaffected by combining 5-HT and citalopram. Moreover, 10 and 30 μM 5-HT mediated SPW-R masking preceded neuronal hyperpolarization and involved reduced presynaptic transmitter release. 5-HT, as well as a 5-HT1A agonist, augmented paired pulse facilitation and affected the coefficient of variance. Spontaneous SPW-Rs in mice hippocampal slices were also masked by 5-HT and fenfluramine. While neuronal ensembles can acquire long lasting LTP during higher 5-HT levels, lower 5-HT levels enable neural ensembles to replay previously stored information and thereby permit memory consolidation memory. PMID:26409781

  5. Two functional serotonin polymorphisms moderate the effect of food reinforcement on BMI.

    Science.gov (United States)

    Carr, Katelyn A; Lin, Henry; Fletcher, Kelly D; Sucheston, Lara; Singh, Prashant K; Salis, Robbert J; Erbe, Richard W; Faith, Myles S; Allison, David B; Stice, Eric; Epstein, Leonard H

    2013-06-01

    Food reinforcement, or the motivation to eat, has been associated with increased energy intake, greater body weight, and prospective weight gain. Much of the previous research on the reinforcing value of food has focused on the role of dopamine, but it may be worthwhile to examine genetic polymorphisms in the serotonin and opioid systems as these neurotransmitters have been shown to be related to reinforcement processes and to influence energy intake. We examined the relationship among 44 candidate genetic polymorphisms in the dopamine, serotonin, and opioid systems, as well as food reinforcement and body mass index (BMI) in a sample of 245 individuals. Polymorphisms in the monoamine oxidase A (MAOA-LPR) and serotonin receptor 2A genes (rs6314) moderated the effect of food reinforcement on BMI, accounting for an additional 5-10% variance and revealed a potential role of the single nucleotide polymorphism, rs6314, in the serotonin 2A receptor as a differential susceptibility factor for obesity. Differential susceptibility describes a factor that can confer either risk or protection depending on a second variable, such that rs6314 is predictive of both high and low BMI based on the level of food reinforcement, while the diathesis stress or dual-gain model only influences one end of the outcome measure. The interaction with MAOA-LPR better fits the diathesis stress model, with the 3.5R/4R allele conferring protection for individuals low in food reinforcement. These results provide new insight into genes theoretically involved in obesity, and support the hypothesis that genetics moderate the association between food reinforcement and BMI.

  6. Serotonin in the solitary tract nucleus shortens the laryngeal chemoreflex in anaesthetized neonatal rats.

    Science.gov (United States)

    Donnelly, William T; Bartlett, Donald; Leiter, J C

    2016-07-01

    What is the central question of this study? Failure to terminate apnoea and arouse is likely to contribute to sudden infant death syndrome (SIDS). Serotonin is deficient in the brainstems of babies who died of SIDS. Therefore, we tested the hypothesis that serotonin in the nucleus of the solitary tract (NTS) would shorten reflex apnoea. What is the main finding and its importance? Serotonin microinjected into the NTS shortened the apnoea and respiratory inhibition associated with the laryngeal chemoreflex. Moreover, this effect was achieved through a 5-HT3 receptor. This is a new insight that is likely to be relevant to the pathogenesis of SIDS. The laryngeal chemoreflex (LCR), an airway-protective reflex that causes apnoea and bradycardia, has long been suspected as an initiating event in the sudden infant death syndrome. Serotonin (5-HT) and 5-HT receptors may be deficient in the brainstems of babies who die of sudden infant death syndrome, and 5-HT seems to be important in terminating apnoeas directly or in causing arousals or as part of the process of autoresuscitation. We hypothesized that 5-HT in the brainstem would limit the duration of the LCR. We studied anaesthetized rat pups between 7 and 21 days of age and made microinjections into the cisterna magna or into the nucleus of the solitary tract (NTS). Focal, bilateral microinjections of 5-HT into the caudal NTS significantly shortened the LCR. The 5-HT1a receptor antagonist, WAY 100635, did not affect the LCR consistently, nor did a 5-HT2 receptor antagonist, ketanserin, alter the duration of the LCR. The 5-HT3 specific agonist, 1-(3-chlorophenyl)-biguanide, microinjected bilaterally into the caudal NTS significantly shortened the LCR. Thus, endogenous 5-HT released within the NTS may curtail the respiratory depression that is part of the LCR, and serotonergic shortening of the LCR may be attributed to activation of 5-HT3 receptors within the NTS. 5-HT3 receptors are expressed presynaptically on C

  7. Serotonin in the solitary tract nucleus shortens the laryngeal chemoreflex in anaesthetized neonatal rats.

    Science.gov (United States)

    Donnelly, William T; Bartlett, Donald; Leiter, J C

    2016-07-01

    What is the central question of this study? Failure to terminate apnoea and arouse is likely to contribute to sudden infant death syndrome (SIDS). Serotonin is deficient in the brainstems of babies who died of SIDS. Therefore, we tested the hypothesis that serotonin in the nucleus of the solitary tract (NTS) would shorten reflex apnoea. What is the main finding and its importance? Serotonin microinjected into the NTS shortened the apnoea and respiratory inhibition associated with the laryngeal chemoreflex. Moreover, this effect was achieved through a 5-HT3 receptor. This is a new insight that is likely to be relevant to the pathogenesis of SIDS. The laryngeal chemoreflex (LCR), an airway-protective reflex that causes apnoea and bradycardia, has long been suspected as an initiating event in the sudden infant death syndrome. Serotonin (5-HT) and 5-HT receptors may be deficient in the brainstems of babies who die of sudden infant death syndrome, and 5-HT seems to be important in terminating apnoeas directly or in causing arousals or as part of the process of autoresuscitation. We hypothesized that 5-HT in the brainstem would limit the duration of the LCR. We studied anaesthetized rat pups between 7 and 21 days of age and made microinjections into the cisterna magna or into the nucleus of the solitary tract (NTS). Focal, bilateral microinjections of 5-HT into the caudal NTS significantly shortened the LCR. The 5-HT1a receptor antagonist, WAY 100635, did not affect the LCR consistently, nor did a 5-HT2 receptor antagonist, ketanserin, alter the duration of the LCR. The 5-HT3 specific agonist, 1-(3-chlorophenyl)-biguanide, microinjected bilaterally into the caudal NTS significantly shortened the LCR. Thus, endogenous 5-HT released within the NTS may curtail the respiratory depression that is part of the LCR, and serotonergic shortening of the LCR may be attributed to activation of 5-HT3 receptors within the NTS. 5-HT3 receptors are expressed presynaptically on C

  8. Serotonin Improves High Fat Diet Induced Obesity in Mice.

    Directory of Open Access Journals (Sweden)

    Hitoshi Watanabe

    Full Text Available There are two independent serotonin (5-HT systems of organization: one in the central nervous system and the other in the periphery. 5-HT affects feeding behavior and obesity in the central nervous system. On the other hand, peripheral 5-HT also may play an important role in obesity, as it has been reported that 5-HT regulates glucose and lipid metabolism. Here we show that the intraperitoneal injection of 5-HT to mice inhibits weight gain, hyperglycemia and insulin resistance and completely prevented the enlargement of intra-abdominal adipocytes without having any effect on food intake when on a high fat diet, but not on a chow diet. 5-HT increased energy expenditure, O2 consumption and CO2 production. This novel metabolic effect of peripheral 5-HT is critically related to a shift in the profile of muscle fiber type from fast/glycolytic to slow/oxidative in soleus muscle. Additionally, 5-HT dramatically induced an increase in the mRNA expression of peroxisome proliferator-activated receptor coactivator 1α (PGC-1α-b and PGC-1α-c in soleus muscle. The elevation of these gene mRNA expressions by 5-HT injection was inhibited by treatment with 5-HT receptor (5HTR 2A or 7 antagonists. Our results demonstrate that peripheral 5-HT may play an important role in the relief of obesity and other metabolic disorders by accelerating energy consumption in skeletal muscle.

  9. Serotonin Improves High Fat Diet Induced Obesity in Mice.

    Science.gov (United States)

    Watanabe, Hitoshi; Nakano, Tatsuya; Saito, Ryo; Akasaka, Daisuke; Saito, Kazuki; Ogasawara, Hideki; Minashima, Takeshi; Miyazawa, Kohtaro; Kanaya, Takashi; Takakura, Ikuro; Inoue, Nao; Ikeda, Ikuo; Chen, Xiangning; Miyake, Masato; Kitazawa, Haruki; Shirakawa, Hitoshi; Sato, Kan; Tahara, Kohji; Nagasawa, Yuya; Rose, Michael T; Ohwada, Shyuichi; Watanabe, Kouichi; Aso, Hisashi

    2016-01-01

    There are two independent serotonin (5-HT) systems of organization: one in the central nervous system and the other in the periphery. 5-HT affects feeding behavior and obesity in the central nervous system. On the other hand, peripheral 5-HT also may play an important role in obesity, as it has been reported that 5-HT regulates glucose and lipid metabolism. Here we show that the intraperitoneal injection of 5-HT to mice inhibits weight gain, hyperglycemia and insulin resistance and completely prevented the enlargement of intra-abdominal adipocytes without having any effect on food intake when on a high fat diet, but not on a chow diet. 5-HT increased energy expenditure, O2 consumption and CO2 production. This novel metabolic effect of peripheral 5-HT is critically related to a shift in the profile of muscle fiber type from fast/glycolytic to slow/oxidative in soleus muscle. Additionally, 5-HT dramatically induced an increase in the mRNA expression of peroxisome proliferator-activated receptor coactivator 1α (PGC-1α)-b and PGC-1α-c in soleus muscle. The elevation of these gene mRNA expressions by 5-HT injection was inhibited by treatment with 5-HT receptor (5HTR) 2A or 7 antagonists. Our results demonstrate that peripheral 5-HT may play an important role in the relief of obesity and other metabolic disorders by accelerating energy consumption in skeletal muscle. PMID:26766570

  10. 5-羟色胺1受体对酸灌注脊髓损伤猫膀胱排尿的影响%Effect of 5-serotonin 1 receptor agonists on acetic acid stimulated micturition in chronic spinal cord injury cats

    Institute of Scientific and Technical Information of China (English)

    吴刚; 程曙杰; 曹海兵; 陈加生; 俞建军; 谷宝军

    2012-01-01

    Objective To evaluate the effects of 5-serotonin 1 (5-HT1) receptor agonists on acetic acid stimulated micturition in cats with chronic spinal cord injury (SCI).Methods Chloralose-anesthetized SCI cats were catheterized through the bladder dome for filling cystometry during 0.5% acetic acid infusion.Dose-response curves for ( R)-8-OH-DPAT (0.30-30.00 μg/kg,i.v.) or GR 46611 (0.03-300.00 μg/kg,i.v.) were followed by 5-HT1A antagonist WAY-100635 (300.00 μg/kg).Threshold volume,bladder capacity,residual volume,micturition volume,and arterial pressure were measured and the external urethral sphincter electromyogram (EUS-EMG) was recorded.Results Acid-infused SCI cats responded to (R)-8-OH-DPAT but not GR-46611 with dose-dependent increases in threshold volume,capacity,and residual volume,significantly at the dose above 10 μg/kg.Effects of (R)-8-OH-DPAT were largely reversed by WAY 100635.Neither (R)-8-OH-DPAT nor GR-46611 augmented EUS-EMG activity.Conclusion Because 5-HT1A receptor agonists increase bladder capacity under either saline or acid infused conditions,they are promising candidates for reducing bladder hyperactivity and increasing bladder capacity in patients with chronic SCI.%目的 观察5-羟色胺1(5-HT1)受体激动剂对酸灌注脊髓损伤(SCI)猫膀胱排尿的影响.方法 手术彻底离断雌猫脊髓12只,术后饲养2个月,氯醛糖麻醉猫后予膀胱置管,注入0.5%乙酸溶液同时行膀胱压力测定.静脉给与5-HTlA受体激动剂8-OH-DPAT(0.30 ~30.00μg/kg)或GR-46611 (0.03 ~300.00 μg/kg),最后给予5-HT1A受体拮抗剂WAY-100635(300.00 μg/kg),记录膀胱容量阈值、膀胱容量、残尿量、排尿量和血压,同时记录尿道外括约肌肌电图(EUS-EMG).结果 8-OH-DPAT作用酸灌注脊髓损伤猫后,其膀胱容量阈值、膀胱容量、残尿量等均呈剂量依赖性增加,剂量≥10μg/kg时反应明显,差异有统计学意义.而GR-46611无类似效应.WAY-100635能逆转8-OH

  11. Cyclopiazonic acid alters serotonin-induced responses in rat thoracic aorta.

    Science.gov (United States)

    Selli, C; Erac, Y; Tosun, M

    2014-01-01

    We previously showed that endothelin A (ETA) receptor antagonist BQ-123 partially inhibited cyclopiazonic acid (CPA)-enhanced endothelin-1 (ET-1)-induced contractions suggesting enhancement of ETA receptor internalization in caveolar structures by sarco/endoplasmic reticulum Ca+2 ATPase (SERCA) blockade. Since serotonin (5-Hydroxytryptamine, 5-HT) receptors are reported to be localized on caveolar membranes, we investigated whether SERCA inhibition affects 5-HT-induced responses and 5-HT receptor antagonism. For this purpose, vascular responses were measured in thoracic aorta segments from male Wistar albino rats using isolated tissue experiments. Data showed that CPA inhibits 5-HT- and PE-induced contractions in intact vessels while potentiating those in endothelium-denuded. Furthermore, non-selective 5-HT receptor blocker methysergide partially inhibited CPA-induced 5-HT contractions. However, α1-adrenergic receptor antagonist prazosin totally inhibited CPA-potentiated PE contractions. We suggest that SERCA inhibition results in 5-HT receptor internalization similar to ETA receptors possibly through protein kinase C activation by increased subsarcolemmal Ca2+ levels, eventually preventing 5-HT receptor antagonism. PMID:24704610

  12. Serotonin 2A Receptors, Citalopram and Tryptophan-Depletion

    DEFF Research Database (Denmark)

    Macoveanu, Julian; Hornboll, Bettina; Elliott, Rebecca;

    2013-01-01

    neural correlates of inhibition using intravenous citalopram and acute tryptophan depletion during functional magnetic resonance imaging. We adapted the NoGo paradigm to isolate effects on inhibition per se as opposed to other aspects of the NoGo paradigm. Successful NoGo inhibition was associated with...... greater activation of the right IFG compared to control trials with alternative responses, indicating that the IFG is activated with inhibition in NoGo trials rather than other aspects of invoked cognitive control. Activation of the left IFG during NoGo trials was greater with citalopram than acute...

  13. Serotonin syndrome presenting as pulmonary edema

    Directory of Open Access Journals (Sweden)

    Nilima Deepak Shah

    2016-01-01

    Full Text Available Serotonin syndrome (SS is a potentially life-threatening condition resulting from excessive central and peripheral serotonergic activity. Clinically, it is a triad of mental-status changes, neuromuscular abnormalities, and autonomic disturbances. It can be caused by intentional self-poisoning, overdose, or inadvertent drug interactions. We report the case of a 58-year-old male with type 2 diabetes mellitus and obsessive compulsive disorder who developed pulmonary edema as a possible complication of SS. SS was caused by a combination of three specific serotonin re-uptake inhibitors (fluoxetine, fluvoxamine, and sertraline, linezolid, and fentanyl. The hospital course was further complicated by difficult weaning from the ventilator. SS was identified and successfully treated with cyproheptadine and lorazepam. The case highlights the importance of effective consultation-liaison and prompt recognition of SS as the presentation may be complex in the presence of co-morbid medical illness.

  14. Platelet Serotonin Transporter Function Predicts Default-Mode Network Activity

    OpenAIRE

    Christian Scharinger; Ulrich Rabl; Christian H. Kasess; Meyer, Bernhard M.; Tina Hofmaier; Kersten Diers; Lucie Bartova; Gerald Pail; Wolfgang Huf; Zeljko Uzelac; Beate Hartinger; Klaudius Kalcher; Thomas Perkmann; Helmuth Haslacher; Andreas Meyer-Lindenberg

    2014-01-01

    Background The serotonin transporter (5-HTT) is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT) from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence. Methods A functional magnetic resonance study was performed in 48 healthy...

  15. The two faces of serotonin in bone biology

    OpenAIRE

    Ducy, Patricia; Karsenty, Gerard

    2010-01-01

    The serotonin molecule has some remarkable properties. It is synthesized by two different genes at two different sites, and, surprisingly, plays antagonistic functions on bone mass accrual at these two sites. When produced peripherally, serotonin acts as a hormone to inhibit bone formation. In contrast, when produced in the brain, serotonin acts as a neurotransmitter to exert a positive and dominant effect on bone mass accrual by enhancing bone formation and limiting bone resorption. The effe...

  16. Methylene Blue Causing Serotonin Syndrome Following Cystocele Repair.

    Science.gov (United States)

    Kapadia, Kailash; Cheung, Felix; Lee, Wai; Thalappillil, Richard; Florence, F Barry; Kim, Jason

    2016-11-01

    Methylene blue is an intravenously administered agent that may potentiate serotonin syndrome. The usage of methylene blue to evaluate ureters for injuries and patency during urological surgeries is recognized as common practice. However, there is no mention of serotonin syndrome caused by methylene blue in urological literature or for urological surgery. We report the first urological case in order to raise awareness of the risk for serotonin toxicity with utilizing methylene blue. PMID:27617215

  17. Mechanism of Paroxetine (Paxil) Inhibition of the Serotonin Transporter

    OpenAIRE

    Davis, Bruce A.; Anu Nagarajan; Forrest, Lucy R.; Singh, Satinder K.

    2016-01-01

    The serotonin transporter (SERT) is an integral membrane protein that exploits preexisting sodium-, chloride-, and potassium ion gradients to catalyze the thermodynamically unfavorable movement of synaptic serotonin into the presynaptic neuron. SERT has garnered significant clinical attention partly because it is the target of multiple psychoactive agents, including the antidepressant paroxetine (Paxil), the most potent selective serotonin reuptake inhibitor known. However, the binding site a...

  18. Autocrine and paracrine roles for ATP and serotonin in mouse taste buds.

    Science.gov (United States)

    Huang, Yijen A; Dando, Robin; Roper, Stephen D

    2009-11-01

    Receptor (type II) taste bud cells secrete ATP during taste stimulation. In turn, ATP activates adjacent presynaptic (type III) cells to release serotonin (5-hydroxytryptamine, or 5-HT) and norepinephrine (NE). The roles of these neurotransmitters in taste buds have not been fully elucidated. Here we tested whether ATP or 5-HT exert feedback onto receptor (type II) cells during taste stimulation. Our previous studies showed NE does not appear to act on adjacent taste bud cells, or at least on receptor cells. Our data show that 5-HT released from presynaptic (type III) cells provides negative paracrine feedback onto receptor cells by activating 5-HT(1A) receptors, inhibiting taste-evoked Ca(2+) mobilization in receptor cells, and reducing ATP secretion. The findings also demonstrate that ATP exerts positive autocrine feedback onto receptor (type II) cells by activating P2Y1 receptors and enhancing ATP secretion. These results begin to sort out how purinergic and aminergic transmitters function within the taste bud to modulate gustatory signaling in these peripheral sensory organs.

  19. 色氨酸羟化酶1与5-羟色胺2A受体基因对抑郁症患者额叶情绪加工的影响%The impact of tryptophan hydroxylase 1 gene and serotonin receptor 2A gene on emotional process in depressive frontal lobe

    Institute of Scientific and Technical Information of China (English)

    唐勇; 张婧; 姚志剑; 刘海燕

    2011-01-01

    Objective: To explore the genetic impact of tryptophan hydroxylase 1 gene(TPHl) A218C, serotonin receptor 2A gene (HTR2A) T102C on abnormal frontal lobe of depressed patients in emotion recog-nization. Method:28 patients with major depression and 34 healthy controls were recruited in our study, which were equal in sex, age, years of education. They all underwent functional magnetic resonance imaging (fMRl) in emotion recognition and were divided into different genotypes with the method of polymerase chain reaction and restriction fragment length polymorphism. The frontal lobe was extracted as region of interest by WFU software into six subregions to compare differences among different groups. Results :①In recognition of happy facial expression,activation of right middle frontal gyms in patients with TPH1AA genotype was less than other five groups. Activation in patients with HTR2ACC genotype was less than patients and controls with AA or AC genotype (P<0.05).② In recognition of sad facial expression,patients and controls with TPH1AA genotype showed increased activation in left inferior frontal lobe than those with AC or CC genotype. Patients with AA genotype showed increased activation in right inferior frontal gyurs than other five groups as well. Patients with HTR2ACC genotype showed increase activation in right middle frontal gyrus than patients with TT of TC genotype and controls with TT genotype,showing increase activation in right inferior frontal gyrus than those with TT or TC genotype (P<0.05).③Superimposition of TPH1A218C and HTR2AT102C was found in abnormal function of right middle frontal gyrus when recognizing positive emotional stimuli and right inferior grontal gyrus when recognizing negative emotional stimuli (P<0.05). Conclusion:Frontal lobe in depressive disorder has the genetic basis of 5-HT to some extent Different genes in serotonin system can affect brain function through a common 5-HT feature.%目的:分析色氨酸羟化酶1 (TPH1)

  20. Exposure to serotonin adversely affects oligodendrocyte development and myelination in vitro.

    Science.gov (United States)

    Fan, Lir-Wan; Bhatt, Abhay; Tien, Lu-Tai; Zheng, Baoying; Simpson, Kimberly L; Lin, Rick C S; Cai, Zhengwei; Kumar, Praveen; Pang, Yi

    2015-05-01

    Serotonin (5-hydroxytryptamine, 5-HT) has been implicated to play critical roles in early neural development. Recent reports have suggested that perinatal exposure to selective serotonin reuptake inhibitors (SSRIs) resulted in cortical network miswiring, abnormal social behavior, callosal myelin malformation, as well as oligodendrocyte (OL) pathology in rats. To gain further insight into the cellular and molecular mechanisms underlying SSRIs-induced OL and myelin abnormalities, we investigated the effect of 5-HT exposure on OL development, cell death, and myelination in cell culture models. First, we showed that 5-HT receptor 1A and 2A subtypes were expressed in OL lineages, using immunocytochemistry, Western blot, as well as intracellular Ca(2+) measurement. We then assessed the effect of serotonin exposure on the lineage development, expression of myelin proteins, cell death, and myelination, in purified OL and neuron-OL myelination cultures. For pure OL cultures, our results showed that 5-HT exposure led to disturbance of OL development, as indicated by aberrant process outgrowth and reduced myelin proteins expression. At higher doses, such exposure triggered a development-dependent cell death, as immature OLs exhibited increasing susceptibility to 5-HT treatment compared to OL progenitor cells (OPC). We showed further that 5-HT-induced immature OL death was mediated at least partially via 5-HT2A receptor, since cell death could be mimicked by 5-HT2A receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride, (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride, but atten-uated by pre-treatment with 5-HT2A receptor antagonist ritanserin. Utilizing a neuron-OL myelination co-culture model, our data showed that 5-HT exposure significantly reduced the number of myelinated internodes. In contrast to cell injury observed in pure OL cultures, 5-HT exposure did not lead to OL death or reduced OL density in neuron-OL co-cultures. However, abnormal

  1. Immunodetection of the serotonin transporter protein is a more valid marker for serotonergic fibers than serotonin

    DEFF Research Database (Denmark)

    Nielsen, Kirsten; Brask, Dorthe; Knudsen, Gitte M.;

    2006-01-01

    transporter (SERT) protein, on the other hand, is less liable to metabolism and for that reason we hypothetized that SERT immunostaining is a more stable marker of serotonergic fibers. Rats were pretreated with monoamine oxidase (MAO) inhibitor and compared with placebo treated rats. Brains were double...... was observed in the number of the SERT positive fibers. Colocalization between serotonin and SERT positive fibers was close to 100% in MAO inhibitor treated animals but only 30% in untreated rats. We conclude that the rapid metabolism of serotonin leads to an underestimation of immunodetected serotonergic...

  2. Infrared Thermography in Serotonin-Induced Itch Model in Rats

    DEFF Research Database (Denmark)

    Jasemian, Yousef; Gazerani, Parisa; Dagnæs-Hansen, Frederik

    2012-01-01

    The study validated the application of infrared thermography in a serotonin-induced itch model in rats since the only available method in animal models of itch is the count of scratching bouts. Twenty four adult Sprague-Dawley male rats were used in 3 experiments: 1) local vasomotor response...... with no scratching reflex was investigated. Serotonin elicited significant scratching and lowered the local temperature at the site of injection. A negative dose-temperature relationship of serotonin was found by thermography. Vasoregulation at the site of serotonin injection took place in the absence of scratching...

  3. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    Science.gov (United States)

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  4. Serotonin and conditioning: focus on Pavlovian psychostimulant drug conditioning.

    Science.gov (United States)

    Carey, Robert J; Damianopoulos, Ernest N

    2015-04-01

    Serotonin containing neurons are located in nuclei deep in the brainstem and send axons throughout the central nervous system from the spinal cord to the cerebral cortex. The vast scope of these connections and interactions enable serotonin and serotonin analogs to have profound effects upon sensory/motor processes. In that conditioning represents a neuroplastic process that leads to new sensory/motor connections, it is apparent that the serotonin system has the potential for a critical role in conditioning. In this article we review the basics of conditioning as well as the serotonergic system and point up the number of non-associative ways in which manipulations of serotonin neurotransmission have an impact upon conditioning. We focus upon psychostimulant drug conditioning and review the contribution of drug stimuli in the use of serotonin drugs to investigate drug conditioning and the important impact drug stimuli can have on conditioning by introducing new sensory stimuli that can create or mask a CS. We also review the ways in which experimental manipulations of serotonin can disrupt conditioned behavioral effects but not the associative processes in conditioning. In addition, we propose the use of the recently developed memory re-consolidation model of conditioning as an approach to assess the possible role of serotonin in associative processes without the complexities of performance effects related to serotonin treatment induced alterations in sensory/motor systems.

  5. Serotonin synthesis, release and reuptake in terminals: a mathematical model

    Directory of Open Access Journals (Sweden)

    Best Janet

    2010-08-01

    Full Text Available Abstract Background Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding of serotonergic systems in the central nervous system involves genomics, neurochemistry, electrophysiology, and behavior. Though associations have been found between functions at these different levels, in most cases the causal mechanisms are unknown. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders in the serotonergic signaling system. Methods We construct a mathematical model of serotonin synthesis, release, and reuptake in a single serotonergic neuron terminal. The model includes the effects of autoreceptors, the transport of tryptophan into the terminal, and the metabolism of serotonin, as well as the dependence of release on the firing rate. The model is based on real physiology determined experimentally and is compared to experimental data. Results We compare the variations in serotonin and dopamine synthesis due to meals and find that dopamine synthesis is insensitive to the availability of tyrosine but serotonin synthesis is sensitive to the availability of tryptophan. We conduct in silico experiments on the clearance of extracellular serotonin, normally and in the presence of fluoxetine, and compare to experimental data. We study the effects of various polymorphisms in the genes for the serotonin transporter and for tryptophan hydroxylase on synthesis, release, and reuptake. We find that, because of the homeostatic feedback mechanisms of the autoreceptors, the polymorphisms have smaller effects than one expects. We compute the expected steady concentrations of serotonin transporter knockout mice and compare to

  6. Depression, osteoporosis, serotonin and cell membrane viscosity between biology and philosophical anthropology

    Directory of Open Access Journals (Sweden)

    Gabrielli Fabio

    2011-03-01

    Full Text Available Abstract Due to the relationship between biology and culture, we believe that depression, understood as a cultural and existential phenomenon, has clear markers in molecular biology. We begin from an existential analysis of depression constituting the human condition and then shift to analysis of biological data confirming, according to our judgment, its original (ontological structure. In this way philosophy is involved at the anthropological level, in as much as it detects the underlying meanings of depression in the original biological-cultural horizon of human life. Considering the integration of knowledge it is the task of molecular biology to identify the aforementioned markers, to which the existential aspects of depression are linked to. In particular, recent works show the existence of a link between serotonin and osteoporosis as a result of a modified expression of the low-density lipoprotein receptor-related protein 5 gene. Moreover, it is believed that the hereditary or acquired involvement of tryptophan hydroxylase 2 (Tph2 or 5-hydroxytryptamine transporter (5-HTT is responsible for the reduced concentration of serotonin in the central nervous system, causing depression and affective disorders. This work studies the depression-osteoporosis relationship, with the aim of focusing on depressive disorders that concern the quantitative dynamic of platelet membrane viscosity and interactome cytoskeleton modifications (in particular Tubulin and Gsα protein as a possible condition of the involvement of the serotonin axis (gut, brain and platelet, not only in depression but also in connection with osteoporosis.

  7. Serotonin and Dopamine Gene Variation and Theory of Mind Decoding Accuracy in Major Depression: A Preliminary Investigation

    OpenAIRE

    Zahavi, Arielle Y.; Sabbagh, Mark A.; Dustin Washburn; Raegan Mazurka; R. Michael Bagby; John Strauss; Kennedy, James L.; Arun Ravindran; Harkness, Kate L.

    2016-01-01

    Theory of mind-the ability to decode and reason about others' mental states-is a universal human skill and forms the basis of social cognition. Theory of mind accuracy is impaired in clinical conditions evidencing social impairment, including major depressive disorder. The current study is a preliminary investigation of the association of polymorphisms of the serotonin transporter (SLC6A4), dopamine transporter (DAT1), dopamine receptor D4 (DRD4), and catechol-O-methyl transferase (COMT) gene...

  8. Reduced cocaine-induced serotonin, but not dopamine and noradrenaline, release in rats with a genetic deletion of serotonin transporters.

    Science.gov (United States)

    Verheij, Michel M M; Karel, Peter; Cools, Alexander R; Homberg, Judith R

    2014-11-01

    It has recently been proposed that the increased reinforcing properties of cocaine and ecstasy observed in rats with a genetic deletion of serotonin transporters are the result of a reduction in the psychostimulant-induced release of serotonin. Here we provide the neurochemical evidence in favor of this hypothesis and show that changes in synaptic levels of dopamine or noradrenaline are not very likely to play an important role in the previously reported enhanced psychostimulant intake of these serotonin transporter knockout rats. The results may very well explain why human subjects displaying a reduced expression of serotonin transporters have an increased risk to develop addiction. PMID:25261262

  9. Identification of genetic modifiers of behavioral phenotypes in serotonin transporter knockout rats

    Directory of Open Access Journals (Sweden)

    Nijman Isaäc J

    2010-05-01

    Full Text Available Abstract Background Genetic variation in the regulatory region of the human serotonin transporter gene (SLC6A4 has been shown to affect brain functionality and personality. However, large heterogeneity in its biological effects is observed, which is at least partially due to genetic modifiers. To gain insight into serotonin transporter (SERT-specific genetic modifiers, we studied an intercross between the Wistar SERT-/- rat and the behaviorally and genetically divergent Brown Norway rat, and performed a QTL analysis. Results In a cohort of >150 intercross SERT-/- and control (SERT+/+ rats we characterized 12 traits that were previously associated with SERT deficiency, including activity, exploratory pattern, cocaine-induced locomotor activity, and abdominal and subcutaneous fat. Using 325 genetic markers, 10 SERT-/--specific quantitative trait loci (QTLs for parameters related to activity and exploratory pattern (Chr.1,9,11,14, and cocaine-induced anxiety and locomotor activity (Chr.5,8 were identified. No significant QTLs were found for fat parameters. Using in silico approaches we explored potential causal genes within modifier QTL regions and found interesting candidates, amongst others, the 5-HT1D receptor (Chr. 5, dopamine D2 receptor (Chr. 8, cannabinoid receptor 2 (Chr. 5, and genes involved in fetal development and plasticity (across chromosomes. Conclusions We anticipate that the SERT-/--specific QTLs may lead to the identification of new modulators of serotonergic signaling, which may be targets for pharmacogenetic and therapeutic approaches.

  10. Serotonin regulates C. elegans fat and feeding through independent molecular mechanisms

    DEFF Research Database (Denmark)

    Srinivasan, Supriya; Sadegh, Leila; Elle, Ida C;

    2008-01-01

    We investigated serotonin signaling in C. elegans as a paradigm for neural regulation of energy balance and found that serotonergic regulation of fat is molecularly distinct from feeding regulation. Serotonergic feeding regulation is mediated by receptors whose functions are not required for fat...... feeding behavior. These findings suggest that, as in mammals, C. elegans feeding behavior is regulated by extrinsic and intrinsic cues. Moreover, obesity and thinness are not solely determined by feeding behavior. Rather, feeding behavior and fat metabolism are coordinated but independent responses...

  11. Measuring serotonin synthesis: from conventional methods to PET tracers and their (pre)clinical implications

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Anniek K.D.; Waarde, Aren van; Willemsen, Antoon T.M. [University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); Bosker, Fokko J. [University of Groningen, University Medical Center Groningen, University Center of Psychiatry, Groningen (Netherlands); Luiten, Paul G.M. [University of Groningen, Center for Behavior and Neurosciences, Department of Molecular Neurobiology, Haren (Netherlands); Boer, Johan A. den [University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University of Groningen, University Medical Center Groningen, University Center of Psychiatry, Groningen (Netherlands); Kema, Ido P. [University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Groningen (Netherlands); Dierckx, Rudi A.J.O. [University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University Hospital Ghent, Department of Nuclear Medicine, Ghent (Belgium)

    2011-03-15

    The serotonergic system of the brain is complex, with an extensive innervation pattern covering all brain regions and endowed with at least 15 different receptors (each with their particular distribution patterns), specific reuptake mechanisms and synthetic processes. Many aspects of the functioning of the serotonergic system are still unclear, partially because of the difficulty of measuring physiological processes in the living brain. In this review we give an overview of the conventional methods of measuring serotonin synthesis and methods using positron emission tomography (PET) tracers, more specifically with respect to serotonergic function in affective disorders. Conventional methods are invasive and do not directly measure synthesis rates. Although they may give insight into turnover rates, a more direct measurement may be preferred. PET is a noninvasive technique which can trace metabolic processes, like serotonin synthesis. Tracers developed for this purpose are {alpha}-[{sup 11}C]methyltryptophan ([{sup 11}C]AMT) and 5-hydroxy-L-[{beta}-{sup 11}C]tryptophan ([{sup 11}C]5-HTP). Both tracers have advantages and disadvantages. [{sup 11}C]AMT can enter the kynurenine pathway under inflammatory conditions (and thus provide a false signal), but this tracer has been used in many studies leading to novel insights regarding antidepressant action. [{sup 11}C]5-HTP is difficult to produce, but trapping of this compound may better represent serotonin synthesis. AMT and 5-HTP kinetics are differently affected by tryptophan depletion and changes of mood. This may indicate that both tracers are associated with different enzymatic processes. In conclusion, PET with radiolabelled substrates for the serotonergic pathway is the only direct way to detect changes of serotonin synthesis in the living brain. (orig.)

  12. Positron-emissionstomografisk kortlaegning af den levende menneskehjernes receptorer

    DEFF Research Database (Denmark)

    Gjedde, A

    2001-01-01

    receptors in Alzheimer's disease, and benzodiazepine and opiate receptors in stroke, epilepsy, and Huntington's chorea; altered opiate receptors in chronic pain and drug abuse; and release of opiates in analgesia; but changes in serotonin synthesis, transport, and binding in affective or psychotic disorders...... tracers are used in diseases of the basal ganglia, whereas serotonin, benzodiazepine, and opiate tracers are used in lesions of the cerebral cortex. PET has revealed loss of dopaminergic terminals and dopamine synthetic capacity in Parkinson's disease, MPTP intoxication, and Lesch-Nyhan's syndrome...

  13. Brain serotonin and pituitary-adrenal functions

    Science.gov (United States)

    Vernikos-Danellis, J.; Berger, P.; Barchas, J. D.

    1973-01-01

    It had been concluded by Scapagnini et al. (1971) that brain serotonin (5-HT) was involved in the regulation of the diurnal rhythm of the pituitary-adrenal system but not in the stress response. A study was conducted to investigate these findings further by evaluating the effects of altering brain 5-HT levels on the daily fluctuation of plasma corticosterone and on the response of the pituitary-adrenal system to a stressful or noxious stimulus in the rat. In a number of experiments brain 5-HT synthesis was inhibited with parachlorophenylalanine. In other tests it was tried to raise the level of brain 5-HT with precursors.

  14. Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera)

    OpenAIRE

    Markus Thamm; Daniel Rolke; Nadine Jordan; Sabine Balfanz; Christian Schiffer; Arnd Baumann; Wolfgang Blenau

    2013-01-01

    BACKGROUND: Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. METHODS: Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA...

  15. Alterations to embryonic serotonin change aggression and fearfulness.

    Science.gov (United States)

    Dennis, Rachel L; Fahey, Alan G; Cheng, Heng W

    2013-01-01

    Prenatal stress can alter the serotonin (5-HT) system in the developing and adult brain and lead to mood and behavioral disorders in children and adults. The chicken provides a unique animal model to study the effects of embryonic stressors on childhood and adolescent behavior. Manipulations to the egg can be made in the absence of confounding maternal effects from treatment. Eggs were injected with 50 μL of excess 5-HT (10 μg/egg), 8-OH-DPAT (a 5-HT1A receptor agonist; 16 μg/egg), or saline on day 0 prior to the 21 days incubation. Injections were performed at 0.5 cm below the shell. Behavior was analyzed at 9 weeks of age and again at the onset of sexual maturity (18 weeks). Hens treated with excess embryonic 5-HT exhibited significantly less aggressive behaviors at 9 weeks of age compared to both 5-HT1A agonist treated and saline hens (P early embryonic stages may create a developmental instability, causing phenotypic variations. These results showed that modification of the serotonergic system during early embryonic development alters its functions in mediating aggressive and fearful or anxious behaviors. Prenatal modification of the serotonergic system has long lived implications on both physiology and behavior, especially aggressive and fearful behaviors. PMID:23386480

  16. Acute serotonin depletion releases motivated inhibition of response vigour

    NARCIS (Netherlands)

    Ouden, H.E.M. den; Swart, J.C.; Schmidt, K.; Fekkes, D.; Geurts, D.E.M.; Cools, R.

    2015-01-01

    Rationale The neurotransmitter serotonin has long been implicated in the motivational control of behaviour. Recent theories propose that the role of serotonin can be understood in terms of an interaction between a motivational and a behavioural activation axis. Experimental support for these ideas,

  17. Acute serotonin depletion releases motivated inhibition of response vigour

    NARCIS (Netherlands)

    Ouden, H.E.M. den; Swart, J.C.; Schmidt, K.; Fekkes, D.; Geurts, D.E.M.; Cools, R.

    2015-01-01

    RATIONALE: The neurotransmitter serotonin has long been implicated in the motivational control of behaviour. Recent theories propose that the role of serotonin can be understood in terms of an interaction between a motivational and a behavioural activation axis. Experimental support for these ideas,

  18. alpha 1-Adrenoceptors modulate citalopram-induced serotonin release

    NARCIS (Netherlands)

    Rea, Kieran; Folgering, Joost; Westerink, Ben H. C.; Cremers, Thomas I. F. H.

    2010-01-01

    Previous studies suggest that noradrenaline may regulate serotonergic (5-HT) neurotransmission at the serotonin cell body and noradrenaline nerve terminal. Using microdialysis coupled to HPLC, we investigated the effects of alpha 1-adrenoceptor manipulation on extracellular serotonin levels in the v

  19. Hippocampal serotonin responses in short and long attack latency mice

    NARCIS (Netherlands)

    van Riel, E; Meijer, OC; Veenema, AH; Joels, M

    2002-01-01

    Short and long attack latency mice, which are selected based on their offensive behaviour in a resident-intruder model, differ in their neuroendocrine regulation as well as in aspects of their brain serotonin system. Previous studies showed that the binding capacity and expression of serotonin-1A re

  20. The Risk of Congenital Heart Anomalies Following Prenatal Exposure to Serotonin Reuptake Inhibitors—Is Pharmacogenetics the Key?

    Science.gov (United States)

    Daud, Aizati N. A.; Bergman, Jorieke E. H.; Kerstjens-Frederikse, Wilhelmina S.; Groen, Henk; Wilffert, Bob

    2016-01-01

    Serotonin reuptake inhibitors (SRIs) are often prescribed during pregnancy. Previous studies that found an increased risk of congenital anomalies, particularly congenital heart anomalies (CHA), with SRI use during pregnancy have created concern among pregnant women and healthcare professionals about the safety of these drugs. However, subsequent studies have reported conflicting results on the association between CHA and SRI use during pregnancy. These discrepancies in the risk estimates can potentially be explained by genetic differences among exposed individuals. In this review, we explore the potential pharmacogenetic predictors involved in the pharmacokinetics and mechanism of action of SRIs, and their relation to the risk of CHA. In general, the risk is dependent on the maternal concentration of SRIs and the foetal serotonin level/effect, which can be modulated by the alteration in the expression and/or function of the metabolic enzymes, transporter proteins and serotonin receptors involved in the serotonin signalling of the foetal heart development. Pharmacogenetics might be the key to understanding why some children exposed to SRIs develop a congenital heart anomaly and others do not. PMID:27529241

  1. The Risk of Congenital Heart Anomalies Following Prenatal Exposure to Serotonin Reuptake Inhibitors-Is Pharmacogenetics the Key?

    Science.gov (United States)

    Daud, Aizati N A; Bergman, Jorieke E H; Kerstjens-Frederikse, Wilhelmina S; Groen, Henk; Wilffert, Bob

    2016-01-01

    Serotonin reuptake inhibitors (SRIs) are often prescribed during pregnancy. Previous studies that found an increased risk of congenital anomalies, particularly congenital heart anomalies (CHA), with SRI use during pregnancy have created concern among pregnant women and healthcare professionals about the safety of these drugs. However, subsequent studies have reported conflicting results on the association between CHA and SRI use during pregnancy. These discrepancies in the risk estimates can potentially be explained by genetic differences among exposed individuals. In this review, we explore the potential pharmacogenetic predictors involved in the pharmacokinetics and mechanism of action of SRIs, and their relation to the risk of CHA. In general, the risk is dependent on the maternal concentration of SRIs and the foetal serotonin level/effect, which can be modulated by the alteration in the expression and/or function of the metabolic enzymes, transporter proteins and serotonin receptors involved in the serotonin signalling of the foetal heart development. Pharmacogenetics might be the key to understanding why some children exposed to SRIs develop a congenital heart anomaly and others do not. PMID:27529241

  2. ROLE OF THE SEROTONIN IN MEMORY PROCESSES IN THE RAT

    Directory of Open Access Journals (Sweden)

    Andreea Ioana Hefco

    2005-08-01

    Full Text Available Chronic 5, 7-dihydroxytryptamine (5, 7-DHT, 150 μg,i.c.v. disruption of the central serotonergic function, is able to interfere with learning and memory processes in the rat. Serotonin depletion significantly diminished spontaneous alternation % in Y-maze task, which suggest the impairment of short-term memory. Long-term memory does not undergo significant changes. Parachlorophenylalanine (200μg i.c.v. x 3 days a semichronic serotonin neurotoxin, do not impaired long-term memory. This effect of serotonin depletion was not produced at the level of organism motricity that, in turn, would allow an enhancing efficiency of another neurotransmitters contribution to memory processes, as number of arm entries was not affected by serotonin depletion. It is concluded that learning and memory processes is a multitransmitter system function, in which serotonin play an important role

  3. Enhanced serotonin and mesolimbic dopamine transmissions in a rat model of neuropathic pain.

    Science.gov (United States)

    Sagheddu, Claudia; Aroni, Sonia; De Felice, Marta; Lecca, Salvatore; Luchicchi, Antonio; Melis, Miriam; Muntoni, Anna Lisa; Romano, Rosaria; Palazzo, Enza; Guida, Francesca; Maione, Sabatino; Pistis, Marco

    2015-10-01

    In humans, affective consequences of neuropathic pain, ranging from depression to anxiety and anhedonia, severely impair quality of life and are a major disease burden, often requiring specific medications. Depressive- and anxiety-like behaviors have also been observed in animal models of peripheral nerve injury. Dysfunctions in central nervous system monoamine transmission have been hypothesized to underlie depressive and anxiety disorders in neuropathic pain. To assess whether these neurons display early changes in their activity that in the long-term might lead to chronicization, maladaptive plasticity and affective consequences, we carried out in vivo extracellular single unit recordings from serotonin neurons in the dorsal raphe nucleus (DRN) and from dopamine neurons in ventral tegmental area (VTA) in the spared nerve injury (SNI) model of neuropathic pain in rats. Extracellular dopamine levels and the expression of dopamine D1, D2 receptors and tyrosine hydroxylase (TH) were measured in the nucleus accumbens. We report that, two weeks following peripheral nerve injury, discharge rate of serotonin DRN neurons and burst firing of VTA dopamine cells are enhanced, when compared with sham-operated animals. We also observed higher extracellular dopamine levels and reduced expression of D2, but not D1, receptors and TH in the nucleus accumbens. Our study confirms that peripheral neuropathy induces changes in the serotonin and dopamine systems that might be the early result of chronic maladaptation to persistent pain. The allostatic activation of these neural systems, which mirrors that already described as a consequence of stress, might lead to depression and anxiety previously observed in neuropathic animals but also an attempt to cope positively with the negative experience. PMID:26113399

  4. The role of the serotonergic system and the effects of antidepressants during brain development examined using in vivo PET imaging and in vitro receptor binding

    OpenAIRE

    Shrestha, Stal Saurav

    2014-01-01

    Serotonin (5-HT) and the serotonergic system, which includes the serotonin transporter (SERT) and the two G protein-coupled 5-HT1A and 5-HT1B receptors, are implicated in the pathophysiology and treatment of several neuropsychiatric disorders including major depressive disorder (MDD) and anxiety. Two classes of antidepressants—selective serotonin reuptake inhibitors (SSRIs), which block SERT, and tricyclic antidepressants (TCAs), which block several monoamine transporters...

  5. Therapeutic Potential of 5-HT2C Receptor Ligands

    Directory of Open Access Journals (Sweden)

    Nanna H. Jensen

    2010-01-01

    Full Text Available Serotonin 2C receptors are G protein-coupled receptors expressed by GABAergic, glutamatergic, and dopaminergic neurons. Anatomically, they are present in various brain regions, including cortical areas, hippocampus, ventral midbrain, striatum, nucleus accumbens, hypothalamus, and amygdala. A large body of evidence supports a critical role of serotonin 2C receptors in mediating the interaction between serotonergic and dopaminergic systems, which is at the basis of their proposed involvement in the regulation of mood, affective behavior, and memory. In addition, their expression in specific neuronal populations in the hypothalamus would be critical for their role in the regulation of feeding behavior. Modulation of these receptors has therefore been proposed to be of interest in the search for novel pharmacological strategies for the treatment of various pathological conditions, including schizophrenia and mood disorders, as well as obesity. More precisely, blockade of serotonin 2C receptors has been suggested to provide antidepressant and anxiolytic benefit, while stimulation of these receptors may offer therapeutic benefit for the treatment of psychotic symptoms in schizophrenia and obesity. In addition, modulation of serotonin 2C receptors may offer cognitive-enhancing potential, albeit still a matter of debate. In the present review, the most compelling evidence from the literature is presented and tentative hypotheses with respect to existing controversies are outlined.

  6. Differential regulation of the excitability of prefrontal cortical fast-spiking interneurons and pyramidal neurons by serotonin and fluoxetine.

    Directory of Open Access Journals (Sweden)

    Ping Zhong

    Full Text Available Serotonin exerts a powerful influence on neuronal excitability. In this study, we investigated the effects of serotonin on different neuronal populations in prefrontal cortex (PFC, a major area controlling emotion and cognition. Using whole-cell recordings in PFC slices, we found that bath application of 5-HT dose-dependently increased the firing of FS (fast spiking interneurons, and decreased the firing of pyramidal neurons. The enhancing effect of 5-HT in FS interneurons was mediated by 5-HT₂ receptors, while the reducing effect of 5-HT in pyramidal neurons was mediated by 5-HT₁ receptors. Fluoxetine, the selective serotonin reuptake inhibitor, also induced a concentration-dependent increase in the excitability of FS interneurons, but had little effect on pyramidal neurons. In rats with chronic fluoxetine treatment, the excitability of FS interneurons was significantly increased, while pyramidal neurons remained unchanged. Fluoxetine injection largely occluded the enhancing effect of 5-HT in FS interneurons, but did not alter the reducing effect of 5-HT in pyramidal neurons. These data suggest that the excitability of PFC interneurons and pyramidal neurons is regulated by exogenous 5-HT in an opposing manner, and FS interneurons are the major target of Fluoxetine. It provides a framework for understanding the action of 5-HT and antidepressants in altering PFC network activity.

  7. Plasma and platelet serotonin levels in patients with liver cirrhosis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To analyze the relationship between plasmaand platelet serotonin levels and the degree of liverinsufficiency.METHODS: The prospective study included 30 patients with liver cirrhosis and 30 healthy controls. The degree of liver failure was assessed according to the Child-Pugh classification. Platelet and platelet poor plasma serotonin levels were determined.RESULTS: The mean plasma serotonin level was higher in liver cirrhosis patients than in healthy subjects (215.0± 26.1 vs 63.1 ± 18.1 nmol/L; P < 0.0001). The mean platelet serotonin content was not significantly different in patients with liver cirrhosis compared with healthy individuals (4.8 ± 0.6; 4.2 ± 0.3 nmol/platelet; P > 0.05).Plasma serotonin levels were significantly higher in ChildPugh grade A/B than in grade C patients (246.8 ± 35.0vs132.3 ± 30.7 nmol/L; P < 0.05). However, platelet serotonin content was not significantly different between Child-Pugh grade C and grade A/B (4.6 ± 0.7 vs 5.2 ± 0.8nmol/platelet; P > 0.05).CONCLUSION: Plasma serotonin levels are significantly higher in patients with cirrhosis than in the controls and represent the degree of liver insufficiency. In addition,platelet poor plasma serotonin estimation is a better marker for liver insufficiency than platelet serotonin content.

  8. Serotonin syndrome:case report and current concepts.

    LENUS (Irish Health Repository)

    Fennell, J

    2005-05-01

    Selective serotonin reuptake inhibitors (SSRI\\'s) are increasingly being used as the first line therapeutic agent for the depression. It is therefore not unusual to see a case of overdose with these agents. More commonly an adverse drug reaction may be seen among the older patients who are particularly vulnerable to the serotonin syndrome due to multiple co-morbidity and polypharmacy. The clinical picture of serotonin syndrome (SS) is non-specific and there is no confirmatory test. SS may go unrecognized because it is often mistaken for a viral illness, anxiety, neurological disorder or worsening psychiatric condition.

  9. 4-haloethenylphenyl tropane:serotonin transporter imaging agents

    Science.gov (United States)

    Goodman, Mark M.; Martarello, Laurent

    2005-01-18

    A series of compounds in the 4-fluoroalkyl-3-halophenyl nortropanes and 4-haloethenylphenyl tropane families are described as diagnostic and therapeutic agents for diseases associated with serotonin transporter dysfunction. These compounds bind to serotonin transporter protein with high affinity and selectivity. The invention provides methods of synthesis which incorporate radioisotopic halogens at a last step which permit high radiochemical yield and maximum usable product life. The radiolabeled compounds of the invention are useful as imaging agents for visualizing the location and density of serotonin transporter by PET and SPECT imaging.

  10. Possible involvement of serotonin in extinction.

    Science.gov (United States)

    Beninger, R J; Phillips, A G

    1979-01-01

    In Experiment 1, rats were trained to leverpress for continuous reinforcement with food; half were then intubated with the serotonin synthesis inhibitor parachlorophenylalanine (PCPA: 400 mg/kg) and half with water. In extinction the PCPA-treated rats responded at a higher rate. In Experiment 2, rats were trained on a random interval schedule and then assigned to two groups, treated as in Experiment 1, and tested in extinction. There was no significant difference in the resistance to extinction of the two groups. In Experiment 3, the responding of rats trained in a punished stepdown response paradigm and then given an intragastric injection of PCPA took longer to recover than the responding of water-injected controls. These observations suggest that serotonergic neurons might play a role in extinction processes. PMID:155820

  11. Serotonin released from amacrine neurons is scavenged and degraded in bipolar neurons in the retina

    OpenAIRE

    Ghai, Kanika; Zelinka, Christopher; Fischer, Andy J.

    2009-01-01

    The neurotransmitter serotonin is synthesized in the retina by one type of amacrine neuron but accumulates in bipolar neurons in many vertebrates. The mechanisms, functions and purpose underlying of serotonin in bipolar cells remain unknown. Here, we demonstrate that exogenous serotonin transiently accumulates in a distinct type of bipolar neuron. KCl-mediated depolarization causes the depletion of serotonin from amacrine neurons and, subsequently, serotonin is taken-up by bipolar neurons. Th...

  12. Risk of prenatal depression and stress treatment: alteration on serotonin system of offspring through exposure to Fluoxetine

    Science.gov (United States)

    Pei, Siran; Liu, Li; Zhong, Zhaomin; Wang, Han; Lin, Shuo; Shang, Jing

    2016-01-01

    Fluoxetine is widely used to treat depression, including depression in pregnant and postpartum women. Studies suggest that fluoxetine may have adverse effects on offspring, presumably through its action on various serotonin receptors (HTRs). However, definitive evidence and the underlying mechanisms are largely unavailable. As initial steps towards establishing a human cellular and animal model, we analyzed the expression patterns of several HTRs through the differentiation of human induced pluripotent stem (hiPS) cells into neuronal cells, and analyzed expression pattern in zebrafish embryos. Treatment of zebrafish embryos with fluoxetine significantly blocked the expression of multiple HTRs. Furthermore, fluoxetine gave rise to a change in neuropsychology. Embryos treated with fluoxetine continued to exhibit abnormal behavior upto 12 days post fertilization due to changes in HTRs. These findings support a possible long-term risk of serotonin pathway alteration, possibly resulting from the “placental drug transfer”. PMID:27703173

  13. Insights into the influence of 5-HT2c aminoacidic variants with the inhibitory action of serotonin inverse agonists and antagonists.

    Science.gov (United States)

    Galeazzi, Roberta; Massaccesi, Luca; Piva, Francesco; Principato, Giovanni; Laudadio, Emilioano

    2014-03-01

    Specific modulation of serotonin 5-HT(2C) G protein-coupled receptors may be therapeutic for obesity and neuropsychiatric disorders. The different efficacy of drugs targeting these receptors are due to the presence of genetic variants in population and this variability is still hard to predict. Therefore, in order to administer the more suitable drug, taking into account patient genotype, it is necessary to know the molecular effects of its gene nucleotide variations. In this work, starting from an accurate 3D model of 5-HT(2C), we focus on the prediction of the possible effect of some single nucleotide polymorphisms (SNPs) producing amino acidic changes in proximity of the 5-HT(2C) ligand binding site. Particularly we chose a set of 5-HT(2C) inverse agonists and antagonists which have high inhibitory activity. After prediction of the structures of the receptor-ligand complexes using molecular docking tools, we performed full atom molecular dynamics simulations in explicit lipid bilayer monitoring the interactions between ligands and trans-membrane helices of the receptor, trying to infer relations with their biological activity. Serotonin, as the natural ligand was chosen as reference compound to advance a hypothesis able to explain the receptor inhibition mechanism. Indeed we observed a different behavior between the antagonists and inverse agonist with respect to serotonin or unbounded receptor, which could be responsible, even if not directly, of receptor's inactivation. Furthermore, we analyzed five aminoacidic variants of 5HT(2C) receptor observing alterations in the interactions between ligands and receptor which give rise to changes of free energy values for every complex considered.

  14. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice

    Science.gov (United States)

    Rovira, Víctor; Geijo-Barrientos, Emilio

    2016-01-01

    Disinhibition of the cortex (e.g., by GABA -receptor blockade) generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14–20 days), the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7) than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05), which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s). We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere), and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges. PMID:26930051

  15. The study of genetic polymorphisms related to serotonin in Alzheimer's disease: a new perspective in a heterogenic disorder.

    Science.gov (United States)

    Oliveira, J R; Zatz, M

    1999-04-01

    Genetic and environmental factors have been implicated in the development of Alzheimer's disease (AD), the most common form of dementia in the elderly. Mutations in 3 genes mapped on chromosomes 21, 14 and 1 are related to the rare early onset forms of AD while the epsilon 4 allele of the apolipoprotein E (APOE) gene (on chromosome 19) is the major susceptibility locus for the most common late onset AD (LOAD). Serotonin (5-hydroxytryptamine or 5-HT) is a key neurotransmitter implicated in the control of mood, sleep, appetite and a variety of traits and behaviors. Recently, a polymorphism in the transcriptional control region upstream of the 5-HT transporter (5-HTT) gene has been studied in several psychiatric diseases and personality traits. It has been demonstrated that the short variant(s) of this 5-HTT gene-linked polymorphic region (5-HTTLPR) is associated with a different transcriptional efficiency of the 5-HTT gene promoter resulting in decreased 5-HTT expression and 5-HT uptake in lymphocytes. An increased frequency of this 5-HTTLPR short variant polymorphism in LOAD was recently reported. In addition, another common polymorphic variation in the 5-HT2A and 5-HT2C serotonin receptor genes previously analyzed in schizophrenic patients was associated with auditory and visual hallucinations in AD. These observations suggest that the involvement of the serotonin pathway might provide an explanation for some aspects of the affective symptoms commonly observed in AD patients. In summary, research on genetic polymorphisms related to AD and involved in receptors, transporter proteins and the enzymatic machinery of serotonin might enhance our understanding of this devastating neurodegenerative disorder.

  16. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice.

    Directory of Open Access Journals (Sweden)

    Víctor Rovira

    Full Text Available Disinhibition of the cortex (e.g., by GABA -receptor blockade generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14-20 days, the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7 than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05, which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s. We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere, and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges.

  17. The study of genetic polymorphisms related to serotonin in Alzheimer's disease: a new perspective in a heterogenic disorder

    Directory of Open Access Journals (Sweden)

    Oliveira J.R.M.

    1999-01-01

    Full Text Available Genetic and environmental factors have been implicated in the development of Alzheimer's disease (AD, the most common form of dementia in the elderly. Mutations in 3 genes mapped on chromosomes 21, 14 and 1 are related to the rare early onset forms of AD while the e4 allele of the apolipoprotein E (APOE gene (on chromosome 19 is the major susceptibility locus for the most common late onset AD (LOAD. Serotonin (5-hydroxytryptamine or 5-HT is a key neurotransmitter implicated in the control of mood, sleep, appetite and a variety of traits and behaviors. Recently, a polymorphism in the transcriptional control region upstream of the 5-HT transporter (5-HTT gene has been studied in several psychiatric diseases and personality traits. It has been demonstrated that the short variant(s of this 5-HTT gene-linked polymorphic region (5-HTTLPR is associated with a different transcriptional efficiency of the 5-HTT gene promoter resulting in decreased 5-HTT expression and 5-HT uptake in lymphocytes. An increased frequency of this 5-HTTLPR short variant polymorphism in LOAD was recently reported. In addition, another common polymorphic variation in the 5-HT2A and 5-HT2C serotonin receptor genes previously analyzed in schizophrenic patients was associated with auditory and visual hallucinations in AD. These observations suggest that the involvement of the serotonin pathway might provide an explanation for some aspects of the affective symptoms commonly observed in AD patients. In summary, research on genetic polymorphisms related to AD and involved in receptors, transporter proteins and the enzymatic machinery of serotonin might enhance our understanding of this devastating neurodegenerative disorder.

  18. D-serine deficiency attenuates the behavioral and cellular effects induced by the hallucinogenic 5-HT(2A) receptor agonist DOI

    DEFF Research Database (Denmark)

    Santini, Martin A; Balu, Darrick T; Puhl, Matthew D;

    2014-01-01

    Both the serotonin and glutamate systems have been implicated in the pathophysiology of schizophrenia, as well as in the mechanism of action of antipsychotic drugs. Psychedelic drugs act through the serotonin 2A receptor (5-HT2AR), and elicit a head-twitch response (HTR) in mice, which directly c...

  19. Multiple messengers in descending serotonin neurons: localization and functional implications.

    Science.gov (United States)

    Hökfelt, T; Arvidsson, U; Cullheim, S; Millhorn, D; Nicholas, A P; Pieribone, V; Seroogy, K; Ulfhake, B

    2000-02-01

    In the present review article we summarize mainly histochemical work dealing with descending bulbospinal serotonin neurons which also express a number of neuropeptides, in particular substance P and thyrotropin releasing hormone. Such neurons have been observed both in rat, cat and monkey, and may preferentially innervate the ventral horns of the spinal cord, whereas the serotonin projections to the dorsal horn seem to lack these coexisting peptides. More recent studies indicate that a small population of medullary raphe serotonin neurons, especially at rostral levels, also synthesize the inhibitory neurotransmitter gamma-amino butyric acid (GABA). Many serotonin neurons contain the glutamate synthesizing enzyme glutaminase and can be labelled with antibodies raised against glutamate, suggesting that one and the same neuron may release several signalling substances, causing a wide spectrum of post- (and pre-) synaptic actions. PMID:10708921

  20. [Effect of phenibut on the respiratory arrest caused by serotonin].

    Science.gov (United States)

    Tarakanov, I A; Tarasova, N N; Belova, E A; Safonov, V A

    2006-01-01

    The role of the GABAergic system in mechanisms of the respiratory arrest caused by serotonin administration was studied in anaesthetized rats. Under normal conditions, the systemic administration of serotonin (20-60 mg/kg, i.v.) resulted in drastic changes of the respiratory pattern, whereby the initial phase of increased respiratory rate was followed by the respiratory arrest. The preliminary injection of phenibut (400 mg/kg, i.p.) abolished or sharply reduced the duration of the respiratory arrest phase induced by serotonin. Bilateral vagotomy following the phenibut injection potentiated the anti-apnoesic effect of phenibut, which was evidence of the additive action of vagotomy and phenibut administration. The mechanism of apnea caused by serotonin administration is suggested to include a central GABAergic element, which is activated by phenibut so as to counteract the respiratory arrest. PMID:16579056

  1. Selective serotonin reuptake inhibitors in the treatment of premature ejaculation

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-fu; CHANG Le; Suks Minhas; David J Ralph

    2007-01-01

    Objective To review and assess the update studies regarding se lective serotonin reuptake inhibitors (SSRIs) in the treatment of premature ejaculation (PE) and then provide practical recommendations and possible mechanisms concerning state of the art knowledge for the use of SSRIs in alleviating PE.Data sources Using the Medline, 48 articles published from January 1st, 1996 to August 1st, 2006 concerning the use of SSRIs and their possible mechanisms in alleviating PE were found and reviewed.Study selection PE, rapid ejaculation, early ejaculation and SSRIs were employed as the keywords, and relevant articles about the use of SSRIs and their possible mechanisms in the treatment of PE were selected.Results Many kinds of SSRIs, such as fluoxetine, sertraline, paroxetine and citalopram, have widely been employed to treat PE. However, their effects are moderate and there is no a universal agreement about the kind, dose, protocol and duration. Dapoxetine, as the first prescription treatment of PE, may change this bottle-neck situation. SSRIs are suggested to be used in young men with lifelong PE, and acquired PE when etiological factors are removed but PE still exists. Phosphodiesterase 5 inhibitors (PDE5-Is) are suggested to be employed alone or combined with SSRIs when SSRIs fail to treat PE or sexual dysfunction associated with SSRIs occurs. The protocol of taking drugs on demand based on taking them daily for a suitable period is proposed to be chosen firstly. The possible mechanisms include increasing serotonergic neurotransmission and activating 5-hydroxytryptamine 2C (5-HT2C) receptors, then switching the ejaculatory threshold to a higher level, decreasing the penile sensitivity and their own effect of antidepression.Conclusion The efficacies of the current SSRIs are moderate in the treatment of PE and they have not been approved by the FDA, therefore new SSRI like dapoxetine needs to be further evaluated.

  2. Distractibility and locomotor activity in rat following intra-collicular injection of a serotonin 1B-1D agonist.

    Science.gov (United States)

    Boulenguez, P; Foreman, N; Chauveau, J; Segu, L; Buhot, M C

    1995-03-01

    The superior colliculus (SC) is thought to be the decision center for reactions to novel and/or moving stimuli in the peripheral visual field. Serotonin 1B (5-HT1B) receptors were previously demonstrated to be located on collicular axon terminals of retinal ganglion cells and their activation might depress afferent inputs from the retina. The effects of intra-collicular injections of 5-HT1 drugs on distractibility were studied in hooded rats trained to run toward illuminated targets for a food reward in a 2-choice runway. 8-hydroxy-2-(di-n-propylamino)tetraline (8-OH-DPAT), a 5-HT1A receptor agonist, RU 24969, a mixed 5-HT1A and 5-HT1B agonist, serotonin-O-carboxymethylglycyltyrosinamide (S-CM-GTNH2), a mixed 5-HT1B and 5-HT1D receptor agonist and saline (control) were alternately injected. Following the S-CM-GTNH2 treatment alone, animals exhibited an erratic running style, involving side-to-side movements of the head, without change in the overall accuracy of their locomotor trajectories, but with substantial decrease in their running speed. When distracting peripheral lights were introduced at the mid-points of the animals' run, in the weaker distracting condition (unilateral distractor) only, distraction indexes were found lower following the S-CM-GTNH2 treatment than following the other drug or saline treatments. It is concluded that serotonin, via 5-HT1B-1D receptors, may induce an elevation of the visual distractibility threshold by modulating directly the transmission of the primary visual signal. PMID:7779294

  3. Halogenated naphthyl methoxy piperidines for mapping serotonin transporter sites

    Science.gov (United States)

    Goodman, M.M.; Faraj, B.

    1999-07-06

    Halogenated naphthyl methoxy piperidines having a strong affinity for the serotonin transporter are disclosed. Those compounds can be labeled with positron-emitting and/or gamma emitting halogen isotopes by a late step synthesis that maximizes the useable lifeterm of the label. The labeled compounds are useful for localizing serotonin transporter sites by positron emission tomography and/or single photon emission computed tomography.

  4. Enhanced contextual fear memory in central serotonin-deficient mice

    OpenAIRE

    Dai, Jin-Xia; Han, Hui-Li; Tian, Meng; Cao, Jun; Xiu, Jian-Bo; Song, Ning-Ning; Huang, Ying; Xu, Tian-Le; Ding, Yu-Qiang; Xu, Lin

    2008-01-01

    Central serotonin (5-HT) dysregulation contributes to the susceptibility for mental disorders, including depression, anxiety, and posttraumatic stress disorder, and learning and memory deficits. We report that the formation of hippocampus-dependent spatial memory is compromised, but the acquisition and retrieval of contextual fear memory are enhanced, in central 5-HT-deficient mice. Genetic deletion of serotonin in the brain was achieved by inactivating Lmx1b selectively in the raphe nuclei o...

  5. Determination of serotonin released from coffee wax by liquid chromatography.

    Science.gov (United States)

    Kele, M; Ohmacht, R

    1996-04-12

    A simple hydrolysis and extraction method was developed for the release of serotonin (5-hydroxytryptamine) from a coffee wax sample obtained from decaffeination of coffee beans. The recoverable amount of serotonin was determined by reversed-phase high-performance liquid chromatography with gradient elution and UV detection, using the standard addition method. Different type of basic deactivated chromatographic columns were used for the separation.

  6. The dysregulation of hippocampal serotonin receptor 4 and let-7a were associated with dual stress-induced depression in rats%海马5-羟色胺受体4及let-7a在双重应激诱发大鼠抑郁中的作用

    Institute of Scientific and Technical Information of China (English)

    薛亮; 朱熊兆; 白玫; 张逸; 张丽; 王玉婷

    2014-01-01

    Objective To study the effect of dual stress on the behaviors and the expression of hippocampal let-7a and serotonin receptor 4(HTR4) in rats.Methods Newborn SD rats were randomly divided into dual stress group (DS,n=6) and control group (C,n=6).The DS rats were deprived of the mother care 6 hours per day from postnatal day 1 to 14 and then were exposed to chronic mild stress for 21 days from 10 weeks old,while the rats from C group received no experimental handle but husbandry care.Open field test,forced swimmiug test and sucrose consumption test were conducted to evaluate rats' depression-like behaviors at the age of thirteen weeks.The let-7a level in hippocampus was detected by real-time Polymerase Chain Reaction and the HTR4 protein level was measured by Western Blotting.Results In the open filed test,the rearing times of DS rats was shorter than that of C group((7.50±2.35) vs (19.00±5.73),P<0.05).In the forced swimming test,the floating time of DS rats was longer than that of C group ((110.17 ± 1.72)s vs (70.33± 1.16)s,P< 0.05).In the sucrose c onsumption test,DS rats consumed less sucrose than rats from C group did((0.80±0.73) vs (0.52±0.26),P< 0.05).The protein level of hippocampal HTR-4 in DS group was lower than that of C group((1.44±0.38) vs (0.46±0.29),P<0.01).The let-7a level in DS group was higher than that of C group((0.04±0.01) vs (1.58±0.27),P<0.01).The Pearson correlation analysis revealed that the sucrose preference rate of rats were negatively and positively correlated with hippocampal let-7a and HTR4 level respectively(r=-0.653,P<0.05; r=0.774,P<0.01),and hippocampal let-7a level showed negative association with HTR4 protein level (r=-0.803,P<0.01).Conclusion Dual stress can induce the depressive behaviors of rats and affect the expression of let-7a and HTR4 in hippocampus.Hippocampal HTR4 and let-7a might be involved in determining individual ability to experience pleasure in rats;and hippocampal let-7a may be involved

  7. The Serotonin Transporter Undergoes Constitutive Internalization and Is Primarily Sorted to Late Endosomes and Lysosomal Degradation*

    Science.gov (United States)

    Rahbek-Clemmensen, Troels; Bay, Tina; Eriksen, Jacob; Gether, Ulrik; Jørgensen, Trine Nygaard

    2014-01-01

    The serotonin transporter (SERT) plays a critical role in regulating serotonin signaling by mediating reuptake of serotonin from the extracellular space. The molecular and cellular mechanisms controlling SERT levels in the membrane remain poorly understood. To study trafficking of the surface resident SERT, two functional epitope-tagged variants were generated. Fusion of a FLAG-tagged one-transmembrane segment protein Tac to the SERT N terminus generated a transporter with an extracellular epitope suited for trafficking studies (TacSERT). Likewise, a construct with an extracellular antibody epitope was generated by introducing an HA (hemagglutinin) tag in the extracellular loop 2 of SERT (HA-SERT). By using TacSERT and HA-SERT in antibody-based internalization assays, we show that SERT undergoes constitutive internalization in a dynamin-dependent manner. Confocal images of constitutively internalized SERT demonstrated that SERT primarily co-localized with the late endosomal/lysosomal marker Rab7, whereas little co-localization was observed with the Rab11, a marker of the “long loop” recycling pathway. This sorting pattern was distinct from that of a prototypical recycling membrane protein, the β2-adrenergic receptor. Furthermore, internalized SERT co-localized with the lysosomal marker LysoTracker and not with transferrin. The sorting pattern was further confirmed by visualizing internalization of SERT using the fluorescent cocaine analog JHC1-64 and by reversible and pulse-chase biotinylation assays showing evidence for lysosomal degradation of the internalized transporter. Finally, we found that SERT internalized in response to stimulation with 12-myristate 13-acetate co-localized primarily with Rab7- and LysoTracker-positive compartments. We conclude that SERT is constitutively internalized and that the internalized transporter is sorted mainly to degradation. PMID:24973209

  8. Thermostabilization of the Human Serotonin Transporter in an Antidepressant-Bound Conformation.

    Directory of Open Access Journals (Sweden)

    Evan M Green

    Full Text Available Serotonin is a ubiquitous chemical transmitter with particularly important roles in the gastrointestinal, cardiovascular and central nervous systems. Modulation of serotonergic signaling occurs, in part, by uptake of the transmitter by the serotonin transporter (SERT. In the brain, SERT is the target for numerous antidepressants including tricyclic antidepressants and selective serotonin reuptake inhibitors (SSRIs. Despite the importance of SERT in human physiology, biochemical, biophysical and high-resolution structural studies have been hampered due to the instability of SERT in detergent micelles. To identify a human SERT (hSERT construct suitable for detailed biochemical and structural studies, we developed an efficient thermostability screening protocol and rapidly screened 219 mutations for thermostabilization of hSERT in complex with the SSRI paroxetine. We discovered three mutations-Y110A, I291A and T439S -that, when combined into a single construct, deemed TS3, yielded a hSERT variant with an apparent melting temperature (Tm 19°C greater than that of the wild-type transporter, albeit with a loss of transport activity. Further investigation yielded a double mutant-I291A and T439S-defined as TS2, with a 12°C increase in Tm and retention of robust transport activity. Both TS2 and TS3 were more stable in short-chain detergents in comparison to the wild-type transporter. This thermostability screening protocol, as well as the specific hSERT variants, will prove useful in studies of other integral membrane receptors and transporters and in the investigation of structure and function relationships in hSERT.

  9. Local renal ischemia during burn shock in rat effected by thromboxane A2 and serotonin.

    Science.gov (United States)

    Haugan, A; Kirkebø, A

    1986-01-01

    Intermittent patchy ischemia in the renal cortex during traumatic shock has previously been observed in dogs and rats. In recent experiments on rats a high rate of abrupt changes in local blood flow was observed after scalding. To try to reveal endogenous factors causing such ischemic episodes, we scalded six series of anesthetized rats (50% of body surface for 30 s in 80 degrees C water) and measured arterial pressure (AP), hematocrit (Hct), and local renal cortical blood flow (RCF). RCF was recorded by the local H2 washout technique. After scalding, RCF decreased markedly in all series whereas AP was relatively well preserved. In accordance with previous experiments, 11% of the washout curves recorded 0-75 min after scalding showed abrupt changes in local blood flow, rising to 27% during the next 60 min in drug-untreated rats. In contrast, blocking of serotonin S2 receptors with Ketanserin abolished the phenomenon. However, in rats treated with the prostaglandin synthesis blockers, indomethacin (general) or 3-ethyl pyridin (thromboxane A2 blocker), the phenomenon was observed in only 2-3% of the washout curves. Furthermore, after blocking the AngII receptors by saralasin or alpha receptors by phentolamine in separate series, the frequency of abrupt flow shifts was reduced in comparison to the frequency in untreated rats. The results indicate that intermittent, patchy vasoconstriction is mediated by serotonin and thromboxane A2 (TxA2), probably released from platelets. The occurrence of ischemic episodes also depends on the local AngII and alpha-adrenergic tonus present after scalding. PMID:3021355

  10. Mutational scanning of the human serotonin transporter reveals fast translocating serotonin transporter mutants

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Larsen, Mads B; Johnsen, Laust B;

    2004-01-01

    The serotonin transporter (SERT) belongs to a family of sodium-chloride-dependent transporters responsible for uptake of amino acids and biogenic amines from the extracellular space. SERT represents a major pharmacological target in the treatment of several clinical conditions, including depression...... affinities, as well as ion dependencies, were drastic. Effects were synergistic compared to the corresponding single mutants. In conclusion, we suggest that mutating threonine-178 to an alanine and phenylalanine-263 to a cysteine mainly alter the overall uptake kinetics of SERT by affecting...

  11. A new family of insect tyramine receptors

    DEFF Research Database (Denmark)

    Cazzamali, Giuseppe; Klærke, Dan Arne; Grimmelikhuijzen, Cornelis J P

    2005-01-01

    The Drosophila Genome Project database contains a gene, CG7431, annotated to be an "unclassifiable biogenic amine receptor." We have cloned this gene and expressed it in Chinese hamster ovary cells. After testing various ligands for G protein-coupled receptors, we found that the receptor was...... specifically activated by tyramine (EC(50), 5x10(-7)M) and that it showed no cross-reactivity with beta-phenylethylamine, octopamine, dopa, dopamine, adrenaline, noradrenaline, tryptamine, serotonin, histamine, and a library of 20 Drosophila neuropeptides (all tested in concentrations up to 10(-5) or 10(-4)M......-like receptor genes in the genomic databases from the malaria mosquito Anopheles gambiae and the honeybee Apis mellifera. These four tyramine or tyramine-like receptors constitute a new receptor family that is phylogenetically distinct from the previously identified insect octopamine/tyramine receptors. The...

  12. Serotonin alterations in anorexia and bulimia nervosa: new insights from imaging studies.

    Science.gov (United States)

    Kaye, Walter H; Frank, Guido K; Bailer, Ursula F; Henry, Shannan E; Meltzer, Carolyn C; Price, Julie C; Mathis, Chester A; Wagner, Angela

    2005-05-19

    Anorexia nervosa (AN) and bulimia nervosa (BN) are related disorders with relatively homogenous presentations such as age of onset and gender distribution. In addition, they share symptoms, such as extremes of food consumption, body image distortion, anxiety and obsessions, and ego-syntonic neglect, raises the possibility that these symptoms reflect disturbed brain function that contributes to the pathophysiology of this illness. Recent brain imaging studies have identified altered activity in frontal, cingulate, temporal, and parietal cortical regions in AN and BN. Importantly, such disturbances are present when subjects are ill and persist after recovery, suggesting that these may be traits that are independent of the state of the illness. Emerging data point to a dysregulation of serotonin pathways in cortical and limbic structures that may be related to anxiety, behavioral inhibition, and body image distortions. In specific, recent studies using PET with serotonin specific radioligands implicate alterations of 5-HT1A and 5-HT2A receptors and the 5-HT transporter. Alterations of these circuits may affect mood and impulse control as well as the motivating and hedonic aspects of feeding behavior. Such imaging studies may offer insights into new pharmacology and psychotherapy approaches.

  13. Serotonin mediates a learned increase in attraction to high concentrations of benzaldehyde in aged C. elegans.

    Science.gov (United States)

    Tsui, David; van der Kooy, Derek

    2008-11-01

    We utilized olfactory-mediated chemotaxis in Caenorhabditis elegans to examine the effect of aging on information processing and animal behavior. Wild-type (N2) young adults (day 4) initially approach and eventually avoid a point source of benzaldehyde. Aged adult animals (day 7) showed a stronger initial approach and a delayed avoidance to benzaldehyde compared with young adults. This delayed avoidance is due to an increased attraction rather than a decreased avoidance to benzaldehyde because (1) aged odr-3 mutants that are defective in odor attraction showed no delayed benzaldehyde avoidance, and (2) the delay in avoidance was also observed with another attractant diacetyl, but not the repellent octanol. Interestingly, the stronger expression of attractive behavior was only observed at benzaldehyde concentrations of 1% or higher. When worms were grown on nonbacterial growth media instead of Escherichia coli, thus removing the contingency between odors released from the food and the food itself, the increase in attraction to benzaldehyde disappeared. The increased attraction recovered after reinitiating the odor-food contingency by returning animals to E. coli food or supplementing axenic media with benzaldehyde. Moreover, serotonin-deficient mutants showed a deficit in the age-enhanced attraction. These results suggest that the increased attraction to benzaldehyde in aged worms is (1) serotonin mediated, (2) specific to high concentration of odorants, and (3) dependent on a learned association of odor metabolites with the presence of food. We propose that associative learning may selectively modify pathways at or downstream from a low-affinity olfactory receptor.

  14. Serotonin and Dopamine Gene Variation and Theory of Mind Decoding Accuracy in Major Depression: A Preliminary Investigation.

    Directory of Open Access Journals (Sweden)

    Arielle Y Zahavi

    Full Text Available Theory of mind-the ability to decode and reason about others' mental states-is a universal human skill and forms the basis of social cognition. Theory of mind accuracy is impaired in clinical conditions evidencing social impairment, including major depressive disorder. The current study is a preliminary investigation of the association of polymorphisms of the serotonin transporter (SLC6A4, dopamine transporter (DAT1, dopamine receptor D4 (DRD4, and catechol-O-methyl transferase (COMT genes with theory of mind decoding in a sample of adults with major depression. Ninety-six young adults (38 depressed, 58 non-depressed completed the 'Reading the Mind in the Eyes task' and a non-mentalistic control task. Genetic associations were only found for the depressed group. Specifically, superior accuracy in decoding mental states of a positive valence was seen in those homozygous for the long allele of the serotonin transporter gene, 9-allele carriers of DAT1, and long-allele carriers of DRD4. In contrast, superior accuracy in decoding mental states of a negative valence was seen in short-allele carriers of the serotonin transporter gene and 10/10 homozygotes of DAT1. Results are discussed in terms of their implications for integrating social cognitive and neurobiological models of etiology in major depression.

  15. Serotonin and Dopamine Gene Variation and Theory of Mind Decoding Accuracy in Major Depression: A Preliminary Investigation.

    Science.gov (United States)

    Zahavi, Arielle Y; Sabbagh, Mark A; Washburn, Dustin; Mazurka, Raegan; Bagby, R Michael; Strauss, John; Kennedy, James L; Ravindran, Arun; Harkness, Kate L

    2016-01-01

    Theory of mind-the ability to decode and reason about others' mental states-is a universal human skill and forms the basis of social cognition. Theory of mind accuracy is impaired in clinical conditions evidencing social impairment, including major depressive disorder. The current study is a preliminary investigation of the association of polymorphisms of the serotonin transporter (SLC6A4), dopamine transporter (DAT1), dopamine receptor D4 (DRD4), and catechol-O-methyl transferase (COMT) genes with theory of mind decoding in a sample of adults with major depression. Ninety-six young adults (38 depressed, 58 non-depressed) completed the 'Reading the Mind in the Eyes task' and a non-mentalistic control task. Genetic associations were only found for the depressed group. Specifically, superior accuracy in decoding mental states of a positive valence was seen in those homozygous for the long allele of the serotonin transporter gene, 9-allele carriers of DAT1, and long-allele carriers of DRD4. In contrast, superior accuracy in decoding mental states of a negative valence was seen in short-allele carriers of the serotonin transporter gene and 10/10 homozygotes of DAT1. Results are discussed in terms of their implications for integrating social cognitive and neurobiological models of etiology in major depression. PMID:26974654

  16. Melatonin and N-acetyl-serotonin cross the red blood cell membrane and evoke calcium mobilization in malarial parasites

    Directory of Open Access Journals (Sweden)

    Hotta C.T.

    2003-01-01

    Full Text Available The duration of the intraerythrocytic cycle of Plasmodium is a key factor in the pathogenicity of this parasite. The simultaneous attack of the host red blood cells by the parasites depends on the synchronicity of their development. Unraveling the signals at the basis of this synchronicity represents a challenging biological question and may be very important to develop alternative strategies for therapeutic approaches. Recently, we reported that the synchrony of Plasmodium is modulated by melatonin, a host hormone that is synthesized only during the dark phases. Here we report that N-acetyl-serotonin, a melatonin precursor, also releases Ca2+ from isolated P. chabaudi parasites at micro- and nanomolar concentrations and that the release is blocked by 250 mM luzindole, an antagonist of melatonin receptors, and 20 mM U73122, a phospholipase C inhibitor. On the basis of confocal microscopy, we also report the ability of 0.1 µM melatonin and 0.1 µM N-acetyl-serotonin to cross the red blood cell membrane and to mobilize intracellular calcium in parasites previously loaded with the fluorescent calcium indicator Fluo-3 AM. The present data represent a step forward into the understanding of the signal transduction process in the host-parasite relationship by supporting the idea that the host hormone melatonin and N-acetyl-serotonin generate IP3 and therefore mobilize intracellular Ca2+ in Plasmodium inside red blood cells.

  17. The norepinephrine reuptake inhibitor reboxetine is more potent in treating murine narcoleptic episodes than the serotonin reuptake inhibitor escitalopram.

    Science.gov (United States)

    Schmidt, Christian; Leibiger, Judith; Fendt, Markus

    2016-07-15

    One of the major symptoms of narcolepsy is cataplexy, a sudden loss of muscle tone. Despite the advances in understanding the neuropathology of narcolepsy, cataplexy is still treated symptomatically with antidepressants. Here, we investigate in a murine narcolepsy model the hypothesis that the antidepressants specifically blocking norepinephrine reuptake are more potent in treating narcoleptic episodes than the antidepressants blocking of serotonin reuptake. Furthermore, we tested the effects of α1 receptor stimulation and blockade, respectively, on narcoleptic episodes. Orexin-deficient mice were treated with different doses of the norepinephrine reuptake inhibitor reboxetine, the serotonin reuptake inhibitor escitalopram, the α1 receptor agonist cirazoline or the α1 receptor antagonist prazosin. The effect of these treatments on narcoleptic episodes was tested. Additionally, potential treatment effects on locomotor activity in an open-field were tested. Reboxetine (doses ≥0.55mg/kg) as well as escitalopram (doses ≥3.0mg/kg) dose-dependently reduced the number of narcoleptic episodes in orexin-deficient mice. The ED50 for reboxetine (0.012mg/kg) was significantly lower than for escitalopram (0.44mg/kg). Cirazoline and prazosin did not affect narcoleptic episodes. Furthermore, cirazoline but not the other compounds reduced locomotor activity of the mice. The present study strongly supports the hypothesis that a specific blockade of norepinephrine reuptake is more potent in treating cataplexy than a specific blockade of serotonin reuptake. This argues for the development of more specific norepinephrine reuptake inhibitors for the treatment of narcolepsy. PMID:27118715

  18. 5-hydroxyindolacetic acid (5-HIAA, a main metabolite of serotonin, is responsible for complete Freund's adjuvant-induced thermal hyperalgesia in mice

    Directory of Open Access Journals (Sweden)

    Moessner Rainald

    2011-03-01

    Full Text Available Abstract Background The role of serotonin (5-hydroxytrptamine, 5-HT in the modulation of pain has been widely studied. Previous work led to the hypothesis that 5-hydroxyindolacetic acid (5-HIAA, a main metabolite of serotonin, might by itself influence pain thresholds. Results In the present study, we investigated the role of 5-HIAA in inflammatory pain induced by intraplantar injection of complete Freund's adjuvant (CFA into the hind paw of mice. Wild-type mice were compared to mice deficient of the 5-HT transporter (5-HTT-/- mice using behavioral tests for hyperalgesia and high-performance liquid chromatography (HPLC to determine tissue levels of 5-HIAA. Wild-type mice reproducibly developed thermal hyperalgesia and paw edema for 5 days after CFA injection. 5-HTT-/- mice treated with CFA had reduced thermal hyperalgesia on day 1 after CFA injection and normal responses to heat thereafter. The 5-HIAA levels in spinal cord and sciatic nerve as measured with HPLC were lower in 5-HTT-/- mice than in wild-type mice after CFA injection. Pretreatment of wild-type mice with intraperitoneal injection of para-chlorophenylalanine (p-CPA, a serotonin synthesis inhibitor, resulted in depletion of the 5-HIAA content in spinal cord and sciatic nerve and decrease in thermal hyperalgesia in CFA injected mice. The application of exogenous 5-HIAA resulted in potentiation of thermal hyperalgesia induced by CFA in 5-HTT-/- mice and in wild-type mice pretreated with p-CPA, but not in wild-type mice without p-CPA pretreatment. Further, methysergide, a broad-spectrum serotonin receptor antagonist, had no effect on 5-HIAA-induced potentiation of thermal hyperalgesia in CFA-treated wild-type mice. Conclusion Taken together, the present results suggest that 5-HIAA plays an important role in modulating peripheral thermal hyperalgesia in CFA induced inflammation, probably via a non-serotonin receptor mechanism.

  19. Increased brain serotonin turnover in panic disorder patients in the absence of a panic attack: reduction by a selective serotonin reuptake inhibitor.

    Science.gov (United States)

    Esler, Murray; Lambert, Elisabeth; Alvarenga, Marlies; Socratous, Florentia; Richards, Jeff; Barton, David; Pier, Ciaran; Brenchley, Celia; Dawood, Tye; Hastings, Jacqueline; Guo, Ling; Haikerwal, Deepak; Kaye, David; Jennings, Garry; Kalff, Victor; Kelly, Michael; Wiesner, Glen; Lambert, Gavin

    2007-08-01

    Since the brain neurotransmitter changes characterising panic disorder remain uncertain, we quantified brain noradrenaline and serotonin turnover in patients with panic disorder, in the absence of a panic attack. Thirty-four untreated patients with panic disorder and 24 matched healthy volunteers were studied. A novel method utilising internal jugular venous sampling, with thermodilution measurement of jugular blood flow, was used to directly quantify brain monoamine turnover, by measuring the overflow of noradrenaline and serotonin metabolites from the brain. Radiographic depiction of brain venous sinuses allowed differential venous sampling from cortical and subcortical regions. The relation of brain serotonin turnover to serotonin transporter genotype and panic disorder severity were evaluated, and the influence of an SSRI drug, citalopram, on serotonin turnover investigated. Brain noradrenaline turnover in panic disorder patients was similar to that in healthy subjects. In contrast, brain serotonin turnover, estimated from jugular venous overflow of the metabolite, 5-hydroxyindole acetic acid, was increased approximately 4-fold in subcortical brain regions and in the cerebral cortex (P < 0.01). Serotonin turnover was highest in patients with the most severe disease, was unrelated to serotonin transporter genotype, and was reduced by citalopram (P < 0.01). Normal brain noradrenaline turnover in panic disorder patients argues against primary importance of the locus coeruleus in this condition. The marked increase in serotonin turnover, in the absence of a panic attack, possibly represents an important underlying neurotransmitter substrate for the disorder, although this point remains uncertain. Support for this interpretation comes from the direct relationship which existed between serotonin turnover and illness severity, and the finding that SSRI administration reduced serotonin turnover. Serotonin transporter genotyping suggested that increased whole brain

  20. Genetic linkage study of bipolar disorder and the serotonin transporter

    Energy Technology Data Exchange (ETDEWEB)

    Kelsoe, J.R.; Morison, M.; Mroczkowski-Parker, Z.; Bergesch, P.; Rapaport, M.H.; Mirow, A.L. [Univ. of California, San Diego, CA (United States)] [and others

    1996-04-09

    The serotonin transporter (HTT) is an important candidate gene for the genetic transmission of bipolar disorder. It is the site of action of many antidepressants, and plays a key role in the regulation of serotonin neurotransmission. Many studies of affectively ill patients have found abnormalities in serotonin metabolism, and dysregulation of the transporter itself. The human serotonin transporter has been recently cloned and mapped to chromosome 17. We have identified a PstI RFLP at the HTT locus, and here report our examination of this polymorphism for possible linkage to bipolar disorder. Eighteen families were examined from three populations: the Old Order Amish, Iceland, and the general North American population. In addition to HTT, three other microsatellite markers were examined, which span an interval known to contain HTT. Linkage analyses were conducted under both dominant and recessive models, as well as both narrow (bipolar only) and broad (bipolar + recurrent unipolar) diagnostic models. Linkage could be excluded to HTT under all models examined. Linkage to the interval spanned by the microsatellites was similarly excluded under the dominant models. In two individual families, maximum lod scores of 1.02 and 0.84 were obtained at D17S798 and HTT, respectively. However, these data overall do not support the presence of a susceptibility locus for bipolar disorder near the serotonin transporter. 20 refs., 2 tabs.

  1. Aggravation of viral hepatitis by platelet-derived serotonin.

    Science.gov (United States)

    Lang, Philipp A; Contaldo, Claudio; Georgiev, Panco; El-Badry, Ashraf Mohammad; Recher, Mike; Kurrer, Michael; Cervantes-Barragan, Luisa; Ludewig, Burkhard; Calzascia, Thomas; Bolinger, Beatrice; Merkler, Doron; Odermatt, Bernhard; Bader, Michael; Graf, Rolf; Clavien, Pierre-Alain; Hegazy, Ahmed N; Löhning, Max; Harris, Nicola L; Ohashi, Pamela S; Hengartner, Hans; Zinkernagel, Rolf M; Lang, Karl S

    2008-07-01

    More than 500 million people worldwide are persistently infected with hepatitis B virus or hepatitis C virus. Although both viruses are poorly cytopathic, persistence of either virus carries a risk of chronic liver inflammation, potentially resulting in liver steatosis, liver cirrhosis, end-stage liver failure or hepatocellular carcinoma. Virus-specific T cells are a major determinant of the outcome of hepatitis, as they contribute to the early control of chronic hepatitis viruses, but they also mediate immunopathology during persistent virus infection. We have analyzed the role of platelet-derived vasoactive serotonin during virus-induced CD8(+) T cell-dependent immunopathological hepatitis in mice infected with the noncytopathic lymphocytic choriomeningitis virus. After virus infection, platelets were recruited to the liver, and their activation correlated with severely reduced sinusoidal microcirculation, delayed virus elimination and increased immunopathological liver cell damage. Lack of platelet-derived serotonin in serotonin-deficient mice normalized hepatic microcirculatory dysfunction, accelerated virus clearance in the liver and reduced CD8(+) T cell-dependent liver cell damage. In keeping with these observations, serotonin treatment of infected mice delayed entry of activated CD8(+) T cells into the liver, delayed virus control and aggravated immunopathological hepatitis. Thus, vasoactive serotonin supports virus persistence in the liver and aggravates virus-induced immunopathology.

  2. [Case of prolonged recovery from serotonin syndrome caused by paroxetine].

    Science.gov (United States)

    Ochiai, Yusuke; Katsu, Hisatoshi; Okino, Shinji; Wakutsu, Noriyuki; Nakayama, Kazuhiko

    2003-01-01

    We report a case of serotonin syndrome in a patient being treated with paroxetine for depression. Despite prompt discontinuation of medication, his serotonin syndrome continued for 10 days before full consciousness was restored. The patient was a 48-year-old male with chief complaints of hypobulia and suicidal thoughts. He consulted as a psychiatric outpatient, and oral paroxetine 20 mg/day, etizolam 1.0 mg/day, and brotizolam 0.25 mg/day were immediately started. Upsurge of feeling and disinhibition state were noted the following day, then on treatment day 6 his condition deteriorated to substupor state and he was admitted for further treatment. On admission, change of mental condition (consciousness disturbance), perspiration, hyperreflexia, myoclonus and tremor were seen, and serotonin syndrome caused by paroxetine was suspected. Paroxetine was thus discontinued, and under intravenous drip his condition gradually improved. However, it was not until the 10th hospital day that he became fully alert. In examinations, no infectious, metabolic or organic diseases were detected. The patient's condition often improves with in 24 hours of discontinuation of the causative medication in serotonin syndrome. Symptoms continued for 10 days in this patient, however, perhaps because paroxetine was administered for 6 days before discontinuation. In addition, interaction with other medications may have occurred. Therefore, when serotonin syndrome is suspected, prompt discontinuation of the suspected causative medication, followed by close monitoring of the pharmacokinetics is warranted. PMID:15027311

  3. Interactions of melatonin and serotonin with lactoperoxidase enzyme.

    Science.gov (United States)

    Şişecioğlu, Melda; Çankaya, Murat; Gülçin, İlhami; Özdemir, Hasan

    2010-12-01

    Melatonin is the chief secretory product of the pineal gland and is synthesized enzymatically from serotonin. These indoleamine derivatives play an important role in the prevention of oxidative damage. Lactoperoxidase (LPO; EC 1.11.1.7) was purified from bovine milk with three purification steps: Amberlite CG-50 resin, CM-Sephadex C-50 ion-exchange, and Sephadex G-100 gel filtration chromatography, respectively. LPO was purified with a yield of 21.6%, a specific activity of 34.0 EU/mg protein, and 14.7-fold purification. To determine the enzyme purity, SDS-PAGE was performed and a single band was observed. The R(z) (A(412)/A(280)) value for LPO was 0.9. The effect of melatonin and serotonin on lactoperoxidase was determined using ABTS as chromogenic substrate. The half-maximal inhibitory concentration (IC(50)) values for melatonin and serotonin were found to be 1.46 and 1.29 μM, respectively. Also, the inhibition constants (K(i)) for melatonin and serotonin were 0.82 ± 0.28 and 0.26 ± 0.04 μM, respectively. Both melatonin and serotonin were found to be competitive inhibitors.

  4. Organization of Monosynaptic Inputs to the Serotonin and Dopamine Neuromodulatory Systems

    Directory of Open Access Journals (Sweden)

    Sachie K. Ogawa

    2014-08-01

    Full Text Available Serotonin and dopamine are major neuromodulators. Here, we used a modified rabies virus to identify monosynaptic inputs to serotonin neurons in the dorsal and median raphe (DR and MR. We found that inputs to DR and MR serotonin neurons are spatially shifted in the forebrain, and MR serotonin neurons receive inputs from more medial structures. Then, we compared these data with inputs to dopamine neurons in the ventral tegmental area (VTA and substantia nigra pars compacta (SNc. We found that DR serotonin neurons receive inputs from a remarkably similar set of areas as VTA dopamine neurons apart from the striatum, which preferentially targets dopamine neurons. Our results suggest three major input streams: a medial stream regulates MR serotonin neurons, an intermediate stream regulates DR serotonin and VTA dopamine neurons, and a lateral stream regulates SNc dopamine neurons. These results provide fundamental organizational principles of afferent control for serotonin and dopamine.

  5. Current radiosynthesis strategies for 5-HT2A receptor PET tracers

    DEFF Research Database (Denmark)

    Herth, Matthias M; Knudsen, Gitte M

    2015-01-01

    Serotonin 2A receptors have been implicated in various psychophysiological functions and disorders such as depression, Alzheimer's disease, or schizophrenia. Therefore, neuroimaging of this specific receptor is of significant clinical interest, and it is not surprising that many attempts have been...

  6. Mechanism of Paroxetine (Paxil) Inhibition of the Serotonin Transporter.

    Science.gov (United States)

    Davis, Bruce A; Nagarajan, Anu; Forrest, Lucy R; Singh, Satinder K

    2016-01-01

    The serotonin transporter (SERT) is an integral membrane protein that exploits preexisting sodium-, chloride-, and potassium ion gradients to catalyze the thermodynamically unfavorable movement of synaptic serotonin into the presynaptic neuron. SERT has garnered significant clinical attention partly because it is the target of multiple psychoactive agents, including the antidepressant paroxetine (Paxil), the most potent selective serotonin reuptake inhibitor known. However, the binding site and orientation of paroxetine in SERT remain controversial. To provide molecular insight, we constructed SERT homology models based on the Drosophila melanogaster dopamine transporter and docked paroxetine to these models. We tested the predicted binding configurations with a combination of radioligand binding and flux assays on wild-type and mutant SERTs. Our data suggest that the orientation of paroxetine, specifically its fluorophenyl ring, in SERT's substrate binding site directly depends on this pocket's charge distribution, and thereby provide an avenue toward understanding and enhancing high-affinity antidepressant activity. PMID:27032980

  7. Role of glycogenolysis in memory and learning: regulation by noradrenaline, serotonin and ATP

    Directory of Open Access Journals (Sweden)

    Marie Elizabeth Gibbs

    2016-01-01

    Full Text Available This paper reviews the role played by glycogen breakdown (glycogenolysis and glycogen re-synthesis in memory processing in two different chick brain regions, (1 the hippocampus and (2 the avian equivalent of the mammalian cortex, the intermediate medial mesopallium (IMM. Memory processing is regulated by the neuromodulators noradrenaline and serotonin soon after training and glycogen breakdown and re-synthesis are involved. In day-old domestic chicks, memory formation is dependent on the breakdown of glycogen (glycogenolysis at three specific times during the first 60 min after learning (around 2.5, 30 and 55 min. The chicks learn to discriminate in a single trial between beads of two colours and tastes. Inhibition of glycogen breakdown by the inhibitor of glycogen phosphorylase 1,4-dideoxy-1,4-imino-D-arabinitol (DAB given at specific times prior to the formation of long-term memory prevents memory forming. Noradrenergic stimulation of cultured chicken astrocytes by a selective β2-adrenergic (AR agonist reduces glycogen levels and we believe that in vivo this triggers memory consolidation at the second stage of glycogenolysis. Serotonin acting at 5-HT2B receptors acts on the first stage, but not on the second. We have shown that noradrenaline, acting via post-synaptic α2-ARs, is also responsible for the synthesis of glycogen and our experiments suggest that there is a readily accessible labile pool of glycogen in astrocytes which is depleted within 10 min if glycogen synthesis is inhibited. Endogenous ATP promotion of memory consolidation at 2.5 and 30 min is also dependent on glycogen breakdown. ATP acts at P2Y1 receptors and the action of thrombin suggests that it causes the release of internal calcium ([Ca2+]i] in astrocytes. Glutamate and GABA, the primary neurotransmitters in the brain, cannot be synthesized in neurons de novo. Neurons rely on astrocytic glutamate synthesis, requiring glycogenolysis.

  8. Palmitoyl Serotonin Inhibits L-dopa-induced Abnormal Involuntary Movements in the Mouse Parkinson Model.

    Science.gov (United States)

    Park, Hye-Yeon; Ryu, Young-Kyoung; Go, Jun; Son, Eunjung; Kim, Kyoung-Shim; Kim, Mee Ree

    2016-08-01

    L-3,4-dihydroxyphenylalanine (L-DOPA) is the most common treatment for patients with Parkinson's disease (PD). However, long term use of L-DOPA for PD therapy lead to abnormal involuntary movements (AIMs) known as dyskinesia. Fatty acid amide hydrolase (FAAH) is enriched protein in basal ganglia, and inhibition of the protein reduces dyskinetic behavior of mice. Palmitoyl serotonin (PA-5HT) is a hybrid molecule patterned after arachidonoyl serotonin, antagonist of FAAH. However, the effect of PA-5HT on L-DOPA-induced dyskinesia (LID) in PD have not yet been elucidated. To investigate whether PA-5HT relieve LID in PD and decrease hyperactivation of dopamine D1 receptors, we used the 6-hydroxydopomine (6-OHDA)-lesioned mouse model of PD and treated the L-DOPA (20 mg/kg) for 10 days with PA-5HT (0.3 mg/kg/day). The number of wall contacts with the forelimb in the cylinder test was significantly decreased by 6-OHDA lesion in mice and the pharmacotherapeutic effect of L-DOPA was also revealed in PA-5HT-treated mice. Moreover, in AIMs test, PA-5HT-treated mice showed significant reduction of locomotive, axial, limb, and orofacial AIMs score compared to the vehicle-treated mice. LID-induced hyper-phosphorylation of ERK1/2 and overexpression of FosB/ΔFosB was markedly decreased in 6-OHDA-lesioned striatum of PA-5HT-treated mice, indicating that PA-5HT decreased the dopamine D1 receptor-hyperactivation induced by chronic treatment of L-DOPA in dopamine-denervated striatum. These results suggest that PA-5HT effectively attenuates the development of LID and enhance of ERK1/2 phosphorylation and FosB/ΔFosB expression in the hemi-parkinsonian mouse model. PA-5HT may have beneficial effect on the LID in PD.

  9. Age-related effect of serotonin transporter genotype on amygdala and prefrontal cortex function in adolescence

    OpenAIRE

    Wiggins, Jillian Lee; Bedoyan, Jirair K.; Carrasco, Melisa; Swartz, Johnna R.; Martin, Donna M.; Monk, Christopher S.

    2012-01-01

    The S and LG alleles of the serotonin transporter-linked polymorphic region (5-HTTLPR) lower serotonin transporter expression. These low expressing alleles are linked to increased risk for depression and brain activation patterns found in depression (increased amygdala activation and decreased amygdala-prefrontal cortex connectivity). Paradoxically, serotonin transporter blockade relieves depression symptoms. Rodent models suggest that decreased serotonin transporter in early life produces de...

  10. A PET study of effects of chronic 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") on serotonin markers in Göttingen minipig brain

    DEFF Research Database (Denmark)

    Cumming, Paul; Møller, Mette; Benda, Kjeld;

    2007-01-01

    The psychostimulant 3,4-methylendioxymethamphetamine (MDMA, "ecstasy") evokes degeneration of telencephalic serotonin innervations in rodents, nonhuman primates, and human recreational drug users. However, there has been no alternative to nonhuman primates for studies of the cognitive and neuroch......The psychostimulant 3,4-methylendioxymethamphetamine (MDMA, "ecstasy") evokes degeneration of telencephalic serotonin innervations in rodents, nonhuman primates, and human recreational drug users. However, there has been no alternative to nonhuman primates for studies of the cognitive...... with MDMA (i.m.), administered at a range of doses. In parallel PET studies, [(11)C]WAY-100635 was used to map the distribution of serotonin 5HT(1A) receptors. The acute MDMA treatment in awake pigs evoked 1 degrees C of hyperthermia. MDMA at total doses greater than 20 mg/kg administered over 2-4 days...... reduced the binding potential (pB) of [(11)C]DASB for serotonin transporters in porcine brain. A mean total dose of 42 mg/kg MDMA in four animals evoked a mean 32% decrease in [(11)C]DASB pB in mesencephalon and diencephalon, and a mean 53% decrease in telencephalic structures. However, this depletion...

  11. Coaction of Stress and Serotonin Transporter Genotype in Predicting Aggression at the Transition to Adulthood

    Science.gov (United States)

    Conway, Christopher C.; Keenan-Miller, Danielle; Hammen, Constance; Lind, Penelope A.; Najman, Jake M.; Brennan, Patricia A.

    2012-01-01

    Despite consistent evidence that serotonin functioning affects stress reactivity and vulnerability to aggression, research on serotonin gene-stress interactions (G x E) in the development of aggression remains limited. The present study investigated variation in the promoter region of the serotonin transporter gene (5-HTTLPR) as a moderator of the…

  12. 21 CFR 862.1390 - 5-Hydroxyindole acetic acid/serotonin test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false 5-Hydroxyindole acetic acid/serotonin test system... Test Systems § 862.1390 5-Hydroxyindole acetic acid/serotonin test system. (a) Identification. A 5-hydroxyindole acetic acid/serotonin test system is a device intended to measure 5-hydroxyindole acetic...

  13. How the cerebral serotonin homeostasis predicts environmental changes

    DEFF Research Database (Denmark)

    Kalbitzer, Jan; Kalbitzer, Urs; Knudsen, Gitte Moos;

    2013-01-01

    Molecular imaging studies with positron emission tomography have revealed that the availability of serotonin transporter (5-HTT) in the human brain fluctuates over the course of the year. This effect is most pronounced in carriers of the short allele of the 5-HTT promoter region (5-HTTLPR), which...... of cerebral serotonin transmission to seasonal and other forms of environmental change imparts greater behavioral flexibility, at the expense of increased vulnerability to stress. This model may explain the somewhat higher prevalence of the s-allele in some human populations dwelling at geographic latitudes...

  14. Psychopharmacology of 5-HT{sub 1A} receptors

    Energy Technology Data Exchange (ETDEWEB)

    Cowen, Philip J

    2000-07-01

    Serotonin{sub 1A} (5-HT{sub 1A}) receptors are located on both 5-HT cell bodies where they act as inhibitory autoreceptors and at postsynaptic sites where they mediate the effects of 5-HT released from nerve terminals. The sensitivity of 5-HT{sub 1A} receptors in humans can be measured using the technique of pharmacological challenge. For example, acute administration of a selective 5-HT{sub 1A} receptor agonist, such as ipsapirone, decreases body temperature and increases plasma cortisol through activation of pre- and postsynaptic 5-HT{sub 1A} receptors, respectively. Use of this technique has demonstrated that unmedicated patients with major depression have decreased sensitivity of both pre- and postsynaptic 5-HT{sub 1A} receptors. Treatment with selective serotonin reuptake inhibitors further down-regulates 5-HT{sub 1A} receptor activity. Due to the hypotheses linking decreased sensitivity of 5-HT{sub 1A} autoreceptors with the onset of antidepressant activity, there is current interest in the therapeutic efficacy of combined treatment with selective serotonin reuptake inhibitors and 5-HT{sub 1A} receptor antagonists.

  15. Principles of agonist recognition in Cys-loop receptors

    DEFF Research Database (Denmark)

    Lynagh, Timothy Peter; Pless, Stephan Alexander

    2014-01-01

    Cys-loop receptors are ligand-gated ion channels that are activated by a structurally diverse array of neurotransmitters, including acetylcholine, serotonin, glycine, and GABA. After the term "chemoreceptor" emerged over 100 years ago, there was some wait until affinity labeling, molecular cloning...

  16. Serotonin's role in piglet mortality and thriftiness.

    Science.gov (United States)

    Dennis, R L; McMunn, K A; Cheng, H W; Marchant-Forde, J N; Lay, D C

    2014-11-01

    Improving piglet survivability rates is of high priority for swine production as well as for piglet well-being. Dysfunction in the serotonin (5-HT) system has been associated with growth deficiencies, infant mortalities, or failure to thrive in human infants. The aim of this research was to determine if a relationship exists between infant mortality and failure to thrive (or unthriftiness), and umbilical 5-HT concentration in piglets. Umbilical blood was collected from a total of 60 piglets from 15 litters for analysis of 5-HT and tryptophan (Trp; the AA precursor to 5-HT) concentrations. Behavior was scan sampled for the first 2 days after birth. Brain samples were also taken at 8 h after birth from healthy and unthrifty piglets (n = 4/group). The raphe nucleus was dissected out and analyzed for 5-HT and dopamine concentrations as well as their major metabolites 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA), respectively. Data were analyzed by ANOVA. Piglets that died within 48 h of birth (n = 14) had significantly lower umbilical blood 5-HT concentrations at the time of their birth compared to their healthy counterparts (n = 46, P = 0.003). However, no difference in Trp was detected (P 0.38). Time spent under the heat lamp and sleeping were positively correlated with umbilical 5-HT levels (P = 0.004 and P = 0.02, respectively), while inactivity had a negative correlation with 5-HT levels (P = 0.04). In the raphe nucleus, the center for brain 5-HT biosynthesis, unthrifty piglets had a greater concentration of 5-HIAA (P = 0.02) and a trend for higher concentrations of 5-HT (P = 0.07) compared with healthy piglets. Dopamine levels did not differ between thrifty and unthrifty piglets (P = 0.45); however, its metabolite HVA tended to be greater in unthrifty piglets (P = 0.05). Our results show evidence of serotonergic dysfunction, at both the central and peripheral levels, accompanying early piglet mortalities. These data suggest a possible route for

  17. Radiosynthesis and evaluation of 11C-CIMBI-5 as a 5-HT2A receptor agonist radioligand for PET

    DEFF Research Database (Denmark)

    Ettrup, Anders; Palner, Mikael; Gillings, Nic;

    2010-01-01

    PET brain imaging of the serotonin 2A (5-hydroxytryptamine 2A, or 5-HT(2A)) receptor has been widely used in clinical studies, and currently, several well-validated radiolabeled antagonist tracers are used for in vivo imaging of the cerebral 5-HT(2A) receptor. Access to 5-HT(2A) receptor agonist ...

  18. Imaging of Serotonin Mechanisms in Epilepsy

    OpenAIRE

    Chugani, Harry T; Chugani, Diane C.

    2005-01-01

    Advances in positron emission tomography (PET) techniques have allowed the measurement and imaging of neurotransmitter synthesis, transport, and receptor binding to be performed in vivo. With regard to epileptic disorders, imaging of neurotransmitter systems not only assists in the identification of epileptic foci for surgical treatment, but also provides insights into the basic mechanisms of human epilepsy. Recent investigative interest in epilepsy has focused on PET imaging of tryptophan me...

  19. Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Markus Thamm

    Full Text Available BACKGROUND: Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera, serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. METHODS: Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca(2+ imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. RESULTS: The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca(2+ concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. CONCLUSIONS: This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors.

  20. Genetic polymorphism in the serotonin transporter gene-linked polymorphic region and response to serotonin reuptake inhibitors in patients with premature ejaculation

    OpenAIRE

    Emin Ozbek; Alper Otunctemur; Abdulmuttalip Simsek; Emre Can Polat; Levent Ozcan; Osman Köse; Mustafa Cekmen

    2014-01-01

    OBJECTIVES: Serotonin plays a central role in ejaculation and selective serotonin reuptake inhibitors have been successfully used to treat premature ejaculation. Here, we evaluated the relationship between a polymorphism in the serotonin transporter gene-linked polymorphic region (5-HTTLPR) and the response of patients with premature ejaculation to SSRI medication. METHODS: Sixty-nine premature ejaculation patients were treated with 20 mg/d paroxetine for three months. The Intravaginal Ejac...